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Foreword

ETAPS 2015 was the 18th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established
in 1998, and this year consisted of six constituting conferences (CC, ESOP, FASE,
FoSSaCS, TACAS, and POST) including five invited speakers and two tutorial speakers.
Prior to and after the main conference, numerous satellite workshops took place and
attracted many researchers from all over the world.

ETAPS is a confederation of several conferences, each with its own Program Com-
mittee and its own Steering Committee (if any). The conferences cover various aspects
of software systems, ranging from theoretical foundations to programming language
developments, compiler advancements, analysis tools, formal approaches to software
engineering, and security. Organizing these conferences into a coherent, highly syn-
chronized conference program enables the participation in an exciting event, having the
possibility to meet many researchers working in different directions in the field, and to
easily attend talks at different conferences.

The six main conferences together received 544 submissions this year, 152 of which
were accepted (including 10 tool demonstration papers), yielding an overall acceptance
rate of 27.9%. I thank all authors for their interest in ETAPS, all reviewers for the peer-
reviewing process, the PC members for their involvement, and in particular the PC Co-
chairs for running this entire intensive process. Last but not least, my congratulations to
all authors of the accepted papers!

ETAPS 2015 was greatly enriched by the invited talks by Daniel Licata (Wesleyan
University, USA) and Catuscia Palamidessi (Inria Saclay and LIX, France), both unify-
ing speakers, and the conference-specific invited speakers [CC] Keshav Pingali (Univer-
sity of Texas, USA), [FoSSaCS] Frank Pfenning (Carnegie Mellon University, USA),
and [TACAS] Wang Yi (Uppsala University, Sweden). Invited tutorials were provided
by Daniel Bernstein (Eindhoven University of Technology, the Netherlands and the Uni-
versity of Illinois at Chicago, USA), and Florent Kirchner (CEA, the Alternative Ener-
gies and Atomic Energy Commission, France). My sincere thanks to all these speakers
for their inspiring talks!

ETAPS 2015 took place in the capital of England, the largest metropolitan area in
the UK and the largest urban zone in the European Union by most measures. ETAPS
2015 was organized by the Queen Mary University of London in cooperation with
the following associations and societies: ETAPS e.V., EATCS (European Association
for Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). It was supported by the following sponsors: Semmle, Winton, Facebook,
Microsoft Research, and Springer-Verlag.



VI Foreword

The organization team comprised:

– General Chairs: Pasquale Malacaria and Nikos Tzevelekos
– Workshops Chair: Paulo Oliva
– Publicity chairs: Michael Tautschnig and Greta Yorsh
– Members: Dino Distefano, Edmund Robinson, and Mehrnoosh Sadrzadeh

The overall planning for ETAPS is the responsibility of the Steering Committee. The
ETAPS Steering Committee consists of an Executive Board (EB) and representatives of
the individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board comprises Gilles Barthe (satellite events, Madrid), Hol-
ger Hermanns (Saarbrücken), Joost-Pieter Katoen (Chair, Aachen and Twente), Gerald
Lüttgen (Treasurer, Bamberg), and Tarmo Uustalu (publicity, Tallinn). Other members of
the Steering Committee are: Christel Baier (Dresden), David Basin (Zurich), Giuseppe
Castagna (Paris), Marsha Chechik (Toronto), Alexander Egyed (Linz), Riccardo Focardi
(Venice), Björn Franke (Edinburgh), Jan Friso Groote (Eindhoven), Reiko Heckel (Le-
icester), Bart Jacobs (Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Christof
Löding (Aachen), Ina Schäfer (Braunschweig), Pasquale Malacaria (London), Tiziana
Margaria (Limerick), Andrew Myers (Boston), Catuscia Palamidessi (Paris), Frank
Piessens (Leuven), Andrew Pitts (Cambridge), Jean-Francois Raskin (Brussels), Don
Sannella (Edinburgh), Vladimiro Sassone (Southampton), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Cesare Tinelli (Iowa City),
Luca Vigano (London), Jan Vitek (Boston), Igor Walukiewicz (Bordeaux), Andrzej Wą-
sowski (Copenhagen), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work to make the 18th
edition of ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and to Springer for their support. Finally, many thanks
to Pasquale and Nikos and their local organization team for all their efforts enabling
ETAPS to take place in London!

January 2015 Joost-Pieter Katoen



Preface

This volume contains the papers presented at the 18th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2015) held
at Queen Mary University of London, UK, during April 13–16, 2015. FoSSaCS is one
of the European Joint Conferences on Theory and Practice of Software (ETAPS). It is
dedicated to foundational research with a clear significance for software science and
invites submissions on theories and methods to support the analysis, integration, syn-
thesis, transformation, and verification of programs and software systems.

In addition to an invited talk by Frank Pfenning (CMU, USA) on Polarized Sub-
structural Session Types, the contributed papers in the conference ranged over the fol-
lowing topics: semantics of programming languages; categorical models and logics;
logical aspects of computational complexity; concurrent, probabilistic and timed sys-
tems; automata, games, and verification; modal and temporal logics; type theory, proof
theory, and implicit computational complexity.

In response to the call for papers, the Program Committee received a total of 93
submissions. Each submission was reviewed by three or more Program Committee
members, aided by sub-reviewers. The committee decided to accept 28 papers. The
selection was made after extensive discussion by email, based on originality, quality,
and relevance to the scope of FoSSaCS. The quality of the submissions was very high
and many deserving papers could not be selected.

I wish to thank all the authors who submitted papers for consideration, the mem-
bers of the Program Committee for their scholarly efforts and enthusiasm, and all sub-
reviewers who assisted the Program Committee in the evaluation process. I am grateful
to the ETAPS 2015 General Chairs, Pasquale Malacaria and Nikos Tzevelekos and their
support staff for their assistance. I would also like to thank the ETAPS Steering Com-
mitte and particularly its Chair, Joost-Pieter Katoen, for overseeing the complicated
process of producing a joint conference. The conference management system Easy-
Chair was used to handle the submissions, to conduct the electronic Program Commit-
tee meeting, and to assist with the assembly of this proceedings.

January 2015 Andrew Pitts
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Polarized Substructural Session Types

Frank Pfenning1 and Dennis Griffith2

1 Carnegie Mellon University, Pittsburgh, PA 15213, USA
fp@cs.cmu.edu

2 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
dgriffi3@illinois.edu

Abstract. The deep connection between session-typed concurrency and
linear logic is embodied in the language SILL that integrates functional
and message-passing concurrent programming. The exacting nature of
linear typing provides strong guarantees, such as global progress, absence
of deadlock, and race freedom, but it also requires explicit resource man-
agement by the programmer. This burden is alleviated in an affine type
system where resources need not be used, relying on a simple form of
garbage collection.

In this paper we show how to effectively support both linear and affine
typing in a single language, in addition to the already present unre-
stricted (intuitionistic) types. The approach, based on Benton’s adjoint
construction, suggests that the usual distinction between synchronous
and asynchronous communication can be viewed through the lens of
modal logic. We show how polarizing the propositions into positive and
negative connectives allows us to elegantly express synchronization in
the type instead of encoding it by extra-logical means.

1 Introduction

Session types prescribe the communication behavior of concurrent message-
passing processes [13,14]. Anticipated with some analogies for some time [11,23],
session types have recently been placed upon the firm foundation of linear logic
via a Curry-Howard interpretation of linear propositions as types, proofs as
processes, and cut reduction as communication. Variations apply for both intu-
itionistic [5,6] and classical [24] linear logic. This has enabled the application of
proof-theoretic techniques in this domain, for example, developing logical rela-
tions [17], corecursion [22], and parametricity and behavioral polymorphism [4].
It has also given rise to the design of SILL, a modular extension of an underlying
functional language with session-typed concurrency [21].

Practical experience with a SILL prototype has led to a number of new ques-
tions. For example, should the type system really be linear, where all resources
must be fully accounted for by the programmer, or should it be affine[16], where
resources may be reclaimed by a form of garbage collection? Another question
concerns the underlying model of communication: should it be synchronous or
asynchronous? The proof theory does not provide a definitive answer to this
question, supporting both. The purpose of this paper is to show that we can

c© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 3–22, 2015.
DOI: 10.1007/978-3-662-46678-0_1



4 F. Pfenning and D. Griffith

have our cake and eat it, too, in both cases. First, we combine linear and affine
types in an elegant and proof-theoretically justified way, slightly reformulating
unrestricted types along the way. Second, we show how to support synchronous
and asynchronous communication patterns in a single language, again taking
our inspiration from proof theory.

The central idea behind the first step is to generalize Benton’s LNL [3] in
the spirit of Reed’s adjoint logic [18]. This stratifies the propositions into linear,
affine, and unrestricted ones, with modal operators shifting between the strata.
For example, the familiar exponential of linear logic !A is decomposed into two
shifting modalities, one going from A (which is linear) into the unrestricted
layer, and one going from the unrestricted layer back to the linear one. Similar
modalities connect the linear and affine layers of the language.

The main idea behind the second step is to polarize the presentation of linear
logic [15], segregating positive (sending) connectives from negative (receiving)
connectives. Surprisingly, the two sublanguages of propositions can be connected
by new versions of the shift modalities, fully consistent with the adjoint construc-
tion, leading to a pleasantly coherent language.

In the rest of this note we walk through these steps, taking small liberties
with previously published notations for the sake of consistency.

2 Linear Logic and Session Types

We give here only the briefest review of linear logic and its deep connection to
session types. The interested reader is referred to [5,6,21] for further background.

The key idea of linear logic [12] is to view logical propositions as resources:
they must be used exactly once in a proof. We adopt the intuitionistic version [2],
which is defined via a linear hypothetical judgment [8]

A1, . . . , An � A

where the hypotheses A1, . . . , An must be used exactly once in the proof of
the conclusion A. We do not care about the order of the assumptions, treating
them like a multiset, and use Δ to denote such a multiset. The judgmental
rules (sometimes called structural rules) explain the meaning of the hypothetical
judgment itself and are independent of any particular propositions. In a sequent
calculus, there are two such rules: cut, which states that if we can prove A we
are justified to use A as a resource, and identity, which says that we can use a
resource A to prove A.

Δ � A Δ′, A � C

Δ,Δ′ � C
cut

A � A
id

Under the Curry-Howard isomorphism for intuitionistic logic, propositions
are related to types, proofs to programs, and proof reduction to computation.
Here, linear logic propositions are related to session types, proofs to concurrent
programs, and cut reduction in proofs to computation. For this correspondence,
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each hypothesis is labeled by a channel (rather than a variable). In addition,
we also label the conclusion by a channel. This is because, unlike functional
programming, we do not reduce a process to a value but we interact with it. For
such interaction to take place in the concurrent setting, we need a channel to
communicate along.

x1:A1, . . . , xn:An � P :: (x : A)

Here, x1, . . . , xn and x are distinct channels, and A1, . . . , An and A are their
respective session types. We say that process P provides A along channel x and
uses channels x1, . . . , xn.

The rule of cut now is a form of process composition, connecting a client (here
Q) to a provider (here P ).

Δ � Px :: (x : A) Δ,x:A � Qx :: (z : C)

Δ,Δ′ � (x ← Px ; Qx) :: (z : C)
cut

We use syntactic forms for processes, rather than π-calculus terms, to emphasize
the interpretation of proofs as programs. Because every (well-typed) process P
offers a session along exactly one channel, and each channel is provided by exactly
one process, we can think of channels as unique process identifiers. Under this
interpretation, suggested by the intuitionistic formulation of linear logic, we can
see that the cut rule spawns P as a new process. More precisely, the process
identified by z executing (x ← Px ; Qx) creates a fresh channel a, spawns a
process executing Pa that provides session A along a, and continues as Qa.
Because a is fresh, this channel will be a private channel between Pa and Qa.

We can express this in a substructural operational semantics [19] which is
based on multiset rewriting [7]. The notation is again borrowed from linear logic,
but it should not be confused with the use of linear logic propositions as session
types.

cut : procc(x ← Px ; Qx) � {∃a. proca(Pa)⊗ procc(Qa)}
In this formalization procc(P ) is the state of a process executing program P ,
offering along channel c. The multiplicative conjunction (⊗) combines processes
in the same state, linear implication (�) expresses a state transition from left
to right, and the existential quantification corresponds to generation of a fresh
channel. The curly braces {· · · } indicate a monad which essentially forces the
rule above to be interpreted as a multiset rewriting rule.

The identity rule instead forwards between its client and the process that it
uses, which must be of the same type.

y:A � (x ← y) :: x : A
id

There are several ways to describe this action operationally. A straightforward
one globally identifies the channels x and y, while the forwarding process itself
terminates.

id : procc(c ← d) � {c = d}
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This could be implemented in the substrate of the network or operating system.
Or it could be implemented more explicitly by sending a message along c asking
the client to use d for subsequent interactions. For now, we abstract over such
lower level details.

Assigning process expressions to each rule of linear logic yields the following
interpretation of propositions.

A,B,C ::= 1 send end and terminate
| A⊗B send channel of type A and continue as B
| A⊕B send inl or inr and continue as A or B, respectively
| τ ∧B send value v of type τ and continue as B
| A � B receive channel of type A
| A � B receive inl or inr and continue as A or B, respectively
| τ ⊃ B receive value V of type τ and continue as B

Here, we wrote τ ∧B as a special case of ∃x:τ. B where x does not appear in B,
and τ ⊃ B is a special case of ∀x:τ. B. The syntactic simplification is justified
because in this paper we do not consider propositions that depend on terms.

Below is a summary of the process expressions, with the sending construct
followed by the matching receiving construct. For the purpose of the examples
we generalize the binary choice constructs A � B and A ⊕ B to n-ary choice
�{labi : Ai}i and ⊕{labi : Ai}i, respectively. We have as a special case A�B =
�{inl : A, inr : B} and A⊕B = ⊕{inl : A, inr : B}.

P,Q,R ::= x ← Px ; Qx cut (spawn)
| c ← d id (forward)
| close c | wait c 1
| send c (y ← Py) ; Q | x ← recv c ; Rx A⊗B,A � B
| send c d derived form A⊗B, A � B
| send c M ; P | n ← recv c ; Qn A ∧B,A ⊃ B
| c.lab ; P | case c {labi → Qi}i �{labi : Ai}i,⊕{labi : Ai}i

As a running example in this paper we will use variations of an implementation
of polymorphic queues. We begin with the purely linear version. The interface
specifies that a queue presents an external choice between enqueue and dequeue
operations. When the client selects to enqueue, we input a channel of type A (to
be stored in the queue), and recurse.When the client selects to dequeue, we either
indicate that the queue is empty and terminate, or we indicate that there is some
element in the queue, send the first element (removing it in the process), and
recurse. The “recursion” here is an instance of an equirecursive session type [10];
some logical underpinnings are available for coinductive types [22]. We also use
polymorphism intuitively; a formal development can be found in [4].

First, the specification of the queue interface.

queueA = �{enq : A � queueA, deq : ⊕{none : 1, some : A⊗ queueA}}
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We implement queueswith two forms of recursive processes, empty for the empty
queue and elem for a process holding exactly one element. For processes with

x1:A1, . . . , xn:An � P :: (x : A)

we write P : {A ← A1, . . . , An} to specify its typing and x ← P ← x1, . . . , xn

to provide its interface.

empty : {queueA}
c ← empty =
case c of
| enq → x ← recv c ;

e ← empty ;
c ← elem ← x, e

| deq → c.none ;
close c

elem : {queueA ← A, queueA}
c ← elem ← x, d =
case c of
| enq → y ← recv c ;

d.enq ; send d y ;
c ← elem ← x, d

| deq → c.some ;
send c x ;
c ← d

From the perspective of the client, this implementation has constant time en-
queue and dequeue operations. For dequeue this is obvious. For enqueue, the
process at the front of the queue passes the element down the queue and is im-
mediately available to serve another request while the element travels to the end
of the queue.

3 Categorical Truth

The linear logic proposition !A allows A to be used arbitrarily often in a proof—
it functions as an unrestricted resource. In the intuitionistic reconstruction of
linear logic [8], !A internalizes a categorical judgment. We say that A is valid if
it is true, and its proof does not depend on any assumptions about the truth of
other propositions. Since we are working with a linear hypothetical judgment,
this means that the proof of A does not depend on any resources. We further
allow hypotheses Γ that are assumed to be valid (rather than merely true), and
these are allowed in a proof A valid .

Γ ; Δ � C

The meaning of validity is captured in the following two judgmental rules, where
‘·’ stands for an empty context:

Γ ; · � A (Γ,A) ; Δ � C

Γ ; Δ � C
cut!

(Γ,A) ; Δ,A � C

(Γ,A) ; Δ � C
copy

The first, cut!, states that we are justified in assuming that A is valid if we
can prove it without using any resources. The second, copy, states that we are
justified in assuming a copy of the resource A if A is known to be valid. All the
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purely linear rules are generalized by adding an unrestricted context Γ which is
propagated to all premises.

How do we think of these in terms of processes? We introduce a new form of
channel, called a shared channel (denoted by u,w) which can be used arbitrarily
often in a client, and by arbitrarily many clients. It is offered by a persistent
process. Operationally, a persistent process offering along w : A inputs a fresh
linear channel c and spawns a new process P that offers A along c.

We have the following typing rules, first at the level of judgments.

Γ, u:A ; Δ,x:A � Px :: (z:C)

Γ, u:A ; Δ � (x ← send u ; Px) :: (z:C)
copy

Γ ; · � Py :: (y:A) Γ, u:A ; Δ � Qu :: (z:C)

Γ ; Δ � (u ← !(y ← recv u ; Py) ; Qu) :: (z:C)
cut!

The copy rule has a slightly strange process expression,

x ← send u ; Px

It expresses that we send a new channel x along u. The continuation P refers to
x so it can communicate along this new channel. This pattern will be common
for sending fresh channels in a variety of constructs in this paper.

We see that the cut! rule incorporates two steps: creating a new shared channel
u and then immediately receiving a linear channel y along u. There is no simple
way to avoid this, since P in the first premise offers along a linear channel y. We
will see alternatives in later sections.

In the operational semantics we write !procw(P ) for a persistent process, of-
fering along shared channel w. In the language of substructural specification,
!procw(P ) on the left-hand side of a rule means that it has to match a persistent
proposition. We therefore do not need to repeat it on the right-hand side: it will
continue to appear in the state. In this notation, the operational semantics is as
follows:

copy : !procw(y ← recv w ; Py)⊗ procc(x ← send w ; Qx)
� {∃a. proca(Pa)⊗ procc(Qa)}

cut! : procc(u ← !(y ← recv u ; Py) ; Qu)
� {∃w. !procw(y ← recv w ; Py)⊗ procc(Qw)}

The validity judgment realized by persistent processes offering along unrestricted
channels can be internalized as a proposition !A with the following rules. Note
that the linear context must be empty in the !R rule, since validity is a categorical
judgment. Allowing dependence on linear channels would violate their linearity.

Γ ; · � Py :: (y:A)

Γ ; · � (u ← send x ; !(y ← recv u ; Py)) :: (x:!A)
!R

Γ, u:A ; Δ � Qu :: (z:C)

Γ ; Δ,x:!A � (u ← recv x ; Qu) :: (z:C)
!L
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Again the !R rule combines two steps: sending a new persistent channel u along
x and then receiving a linear channel y along u. Operationally:

bang : procc(u ← recv a ; Qu)⊗ proca(u ← send a ; !(y ← recv u ; Py))
� {∃w. procc(Qw)⊗ !procw(y ← recv w ; Py)}

As expected, the persistent process spawned by the bang computation rule has
exactly the same form as the one spawned by cut!, because a linear cut for a
proposition !A becomes a persistent cut for a proposition A.

Let’s analyze the two-step rule in more detail.

Γ ; · � Py :: (y:A)

Γ ; · � (u ← send x !(y ← recv u ; Py)) :: (x:!A)
!R

The judgment A valid (corresponding to an unrestricted hypothesis u:A) is elided
on the right-hand side: we jump directly from the truth of !A to the truth of A.
Writing it out as an intermediate step appears entirely reasonable. We do not
even mention the linear hypotheses in the intermediate step, since the validity
of A depends only on assumptions of validity in Γ .

Γ ; · � Py :: (y:A)

Γ � (y ← recv u ; Py) :: (u:A)
valid

Γ ; · � (u ← send x ; !(y ← recv u ; Py)) :: (x:!A)
!R

We emphasize that !A is positive (in the sense of polarized logic), so it corre-
sponds to a send, while A valid is negative as a judgment, so it correspond to
a receive. In the next section we elevate this from a judgmental to a first-class
logical step.

Revisiting the example, recall that if we are the client of a channel c : queueA,
we must use this channel. This means we have to explicitly dequeue all its ele-
ments. In fact, we have to explicitly consume each of the elements as well, since
they are also linear. However, if we know that each element in the queue is in
fact unrestricted, we can destroy it recursively with the following program.

destroy : {1 ← queue (!A)}
c ← destroy ← q =
q.deq ;
case q of
| none → wait q ; close c
| some → x ← recv q ; % obtain element x

u ← recv x ; % receive shared channel u, using x
c ← destroy ← q % recurse, ignoring u

4 Adjoint Logic

Adjoint logic is based on the idea that instead of a modality like !A that remains
within a given language of propositions, we have two mutually dependent lan-
guages and two modalities going back and forth between them. For this to make
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sense, the operators have to satisfy certain properties that pertain to the seman-
tics of the two languages. We have in fact three language layers, which we call
linear propositions AL, affine propositions AF, and unrestricted propositions AU.
They are characterized by the structural properties they satisfy: linear proposi-
tions are subject to none (they must be used exactly once), affine proposition
can be weakened (they can be used at most once), and unrestricted propositions
can be contracted and weakened (they can be used arbitrarily often). The or-
der of propositions in the context matters for none of them. The hierarchy of
structural properties is reflected in a hierarchy of modes of truth:

U > F > L

U is stronger than F in the sense that unrestricted hypotheses can be used to
prove affine conclusions, but not vice versa, and similarly for the other relations.
Contexts Ψ combine assumptions with all modes. We write ≥ for the reflexive
and transitive closure of > and define

Ψ ≥ k if m ≥ k for every Bm in Ψ

and

Ψ � Ak presupposes Ψ ≥ k

We use the notation ↑mk Ak for an operator going from mode k up to mode m,
and ↓mk Am for an operator going down from mode m to mode k. In both cases
we presuppose m > k.

Taking this approach we obtain the following language:

Modes m, k, r ::= U | F | L
Propositions Am, Bm ::= 1m | Am ⊗m Bm | Am ⊕m Bm | τ ∧m Bm

| Am �m Bm | Am �m Bm | τ ⊃m Bm

| ↑mk Ak (m > k)
| ↓rmAr (r > m)

Because both !A and A are linear propositions, the exponential !A decomposes
into two modalities:

!A = ↓UL ↑ULAL

Because linear and affine propositions behave essentially the same way except
that affine channels need not be used, we reuse all the same syntax (both for
propositions and for process expressions) at these two layers. Unrestricted propo-
sitions would behave quite differently in ways that are outside the scope of this
note, so we specify that there are no unrestricted propositions besides ↑ULAL and
↑UFAF.

In the following logical rules we always presuppose that the sequent in the
conclusion is well-formed and add enough conditions to verify the presupposition
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in the premises.

Ψ � Ak

Ψ � ↑mk Ak
↑R k ≥ r Ψ,Ak � Cr

Ψ, ↑mk Ak � Cr
↑L

Ψ≥m � Am

Ψ � ↓mk Am
↓R Ψ,Am � Cr

Ψ, ↓mk Am � Cr
↓L

Here Ψ≥m is the restriction of Ψ to propositions Ak with k ≥ m. The rule
does not apply if this would erase a linear proposition AL since only affine and
unrestricted propositions are subject to weakening.

The rules with no condition on the modes are invertible, while the others are
not invertible. This means ↑A is negative while ↓A is positive (in the terminology
of polarized logic [15]). We already noted that processes offering a negative type
receive, while processes offering a positive type send. But what do we send or
receive? Thinking of channels as intrinsically linear, affine, or shared suggests
that we should send and receive fresh channels of different modes. Following this
reasoning we obtain:

Ψ � Pxk
:: (xk:Ak)

Ψ � (xk ← recv xm ; Pxk
) :: (xm:↑mk Ak)

↑R

k ≥ r Ψ, xk:Ak � Qxk
:: (zr:Cr)

Ψ, xm:↑mk Ak � (xk ← send xm ; Qxk
) :: (zr:Cr)

↑L

For clarity, we annotate each channel with its mode, although it may not be
strictly necessary. Operationally:

upmk : procar
(xk ← send cm ; Qxk

)⊗ proccm(yk ← recv cm ; Pyk
)

� {∃ck. procar
(Qck)⊗ procck(Pck)}

And for the other modality:

Ψ ≥ m Ψ � Qxm :: (xm:Am)

Ψ � (xm ← send xk ; Qxm) :: (xk:↓mk Am)
↓R

Ψ, xm:Am � Pxm :: (zr:Cr)

Ψ, xk:↓mk Am � (xm ← recv xk ; Pxm) :: (zr:Cr)
↓L

Operationally:

downmk : procar
(ym ← recv ck ; Pym)⊗ procck(xm ← send ck ; Qxm)

� {∃cm. procar
(Pcm)⊗ proccm(Qcm)}

Since processes offering along unrestricted channels are persistent, we use here
the (admittedly dangerous) notational convention that all processes offering
along unrestricted channels cU are implicitly marked persistent. In particular,
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we should read upUk and downUk as

upUk : procar
(xk ← send cU ; Qxk

)⊗ !proccU(xk ← recv cU ; Pxk
)

� {∃ck. procar
(Qck)⊗ procck(Pck)}

downUk : procar
(xU ← recv ck ; PxU

)⊗ procck(xU ← send ck ; QxU
)

� {∃cU. procar
(PcU)⊗ !proccU(QcU)}

At this point we have achieved that every logical connective, including the up and
down modalities, correspond to exactly one matching send and receive action.
Moreover, as we can check, the compound rules for !A decompose into individual
steps.

Returning to our example, we can now specify that our queue is supposed to
be affine, that is, that we can decide to ignore it. We annotate defined types
and type variables with their mode (U, F, or L), but we overload the logical
connectives since their meanings, when defined, are consistent. The elements of
an affine queue should also be affine. If we make them linear, as in

queueF AL = �{ enq : ↑FLAL � queueF AL,

deq : {none : 1, some : ↑FLAL ⊗ queueF AL} }

then we could never use x : ↑FLAL in a process offering an affine service (rule ↑L)
since L �≥ F. So instead we should define an affine queue as

queueF AF = �{ enq : AF � queueF AF,
deq : {none : 1, some : AF ⊗ queueF AF} }

so that all types in the definition (including AF) are affine. Now we no longer
need to explicitly destroy a queue, we can just abandon it and the runtime
system will deallocate it by a form of garbage collection.

If we want to enforce a linear discipline, destroying a queue with linear el-
ements will have to rely on a consumer for the elements of the queue. This
consumer must be unrestricted because it is used for each element. Channels
are linear by default, so in the example we only annotate affine and unrestricted
channels with their mode.

destroy : {1 ← queueL AL, ↑UL (AL � 1)}
c ← destroy ← q, uU =

q.deq ;
case q of
| none → wait q ; close c
| some → x ← recv q ;

d ← send uU ; % obtain instance d of uU

send d x ; wait d ; % use d to consume x
c ← destroy ← q, uU % recurse, reusing uU
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5 Polarized Logic

We now take a step in a different direction by introducing asynchronous com-
munication, postponing discussion of the modalities for now. In asynchronous
communication each linear channel contains a message queue [11], which can be
related directly to the proof system via continuation channels [9]. Sending adds
to the queue on one end and receiving takes from the other. Because session-
based communication goes in both directions, the queue switches direction at
certain times. Moreover, the queue must maintain some information on the di-
rection of the queue so that a process that performs a send followed by a receive
does not incorrectly read its own message. Fortunately, session typing guarantees
that there is no send/receive mismatch.

A simple way to maintain the direction of a queue is to set a flag when
enqueuing a message. We write just q when the direction of q does not matter,

and
←−
q and

−→
q for the two directions. Our convention is that

←−
q corresponds to

messages from a provider to its client, and
−→
q for messages from a client to the

provider. The reasons for this convention is that in procc(P ), the channel c is to
the left of P , which is in turn derived from c ← P for a process expression P
offering a service along c.

We have a predicate queue(c, q, d) for a queue q connecting a process Q using
c with one providing d. Here are two example rules for sending and receiving
data values.

and s : queue(c, q, d)⊗ procd(send d v ; P )

� {queue(c,←−−q · v, d)⊗ procd(P )}
and r : procc(x ← recv c ; Qx)⊗ queue(c,

←−−
v · q, d)

� {procc(Qv)⊗ queue(c, q, d)}
We see some difficulty in the second rule, where the direction of q is unclear. It

should be
←−
q unless q is empty, it which case it is unknown. This ambiguity is

also present in forwarding.

fwd : queue(c, p, d)⊗ procd(d ← e)⊗ queue(d, q, e)
� {queue(c, p · q, e)}

We won’t go into detail why there are some difficulties implementing this, but
we see that there are multiple possibilities for p and q pointing left, right, or
being empty.

Next we note that the polarity of each connective determines the direction
of communication. From the perspective of the service provider, if we have P ::
(x:A) for a positive A then the action of P along x will be a send, if A is negative it
will be receive. Intuitively this is because the right rules for negative connectives
are invertible and therefore carry no information: any information has to come
from the outside. Conversely, the right rules for positive connectives involve
some choice and can therefore communicate the essence of that information.
We can make this explicit by polarizing the logic, dividing the propositions into
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positive and negative propositions with explicit shift operators connecting them.
Omitting other modalities, the syntax of polarized logic is:

Positive propositions A+, B+ ::= 1 send end and terminate
| A+ ⊗B+ send channel of type A+

| A+ ⊕B+ send inl or inr
| τ ∧B+ send value of type τ
| ↓A− send shift, then receive

Negative propositions A−, B− ::= A+ � B− receive channel of type A+

| A−
� B− receive inl or inr

| τ ⊃ B− receive value of type τ
| ↑A+ receive shift, then send

Note that a process that sends along a channel will continue to do so until it
sends a shift and then it starts receiving. Conversely, a process that receives
continues to do so until it receives a shift after which it starts sending. The new
constructs are:

P,Q,R ::= send c shift ; P send shift, then receive along c in P
| shift ← recv c ; Q receive shift, then send along c in Q

We have already annotated the shifts with their expected operational seman-
tics. Queues now always have a definite direction and there can be no further
messages following a shift. We write m for messages other than shift, such as data
values, labels, and channels and treat · as an associative concatenation operator
with the empty queue as its unit.

Queue filled by provider
←−
q ::=

←−· | ←−−
m · q | ←−end | ←−−shift

Queue filled by client
−→
q ::=

−−→
shift | −−→q ·m | −→·

In the polarized setting, we just need to initialize the direction correctly when a
new channel is created, after which the direction is maintained correctly through-
out. When receiving, the direction needs to be checked. When sending, the di-
rection will always be correct by invariant.

and s : queue(c,
←−
q , d)⊗ procd(send d v ; P )

� {queue(c,←−−q · v, d)⊗ procd(P )}
and r : procc(n ← recv c ; Qn)⊗ queue(c,

←−−
v · q, d)

� {procc(Qv)⊗ queue(c,
←−
q , d)}

The shift reverses direction when received.

shift s : queue(c,
←−
q , d)⊗ procd(send d shift ; P )

� {queue(c,←−−−−q · shift, d)⊗ procd(P )}
shift r : proca(shift ← recv c ; Q)⊗ queue(c,

←−−
shift, d)

� {proca(Q)⊗ queue(c,
−→· , d)}
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There are symmetric rules for
−−→
shift, which we elide here.

In our running example, the natural polarization would interpret queue as a
negative type, since it offers an external choice. We have to switch to positive
when we send a response to the dequeue request, and then switch again before we
recurse. The type parameter A is most naturally positive, since both occurrences
in the type are in fact positive.

queue− A+ = �{ enq : A+ � queue− A+,
deq : ↑ ⊕ {none : 1, some : A+ ⊗ ↓ queue− A+} }

The code requires some minimal changes: we have to insert three shift operators.

empty : {queue− A+}
c ← empty =
case c of
| enq → x ← recv c ;

e ← empty ;
c ← elem ← x, e

| deq → shift ← recv c ;
c.none ;
close c

elem : {queue− A+ ← A+, queue−A+}
c ← elem ← x, d =
case c of
| enq → y ← recv c ;

d.enq ; send d y ;
c ← elem ← x, d

| deq → shift ← recv c ; % shift c to send
c.some ; send c x ;
send c shift ; % shift c to recv
c ← d

6 Recovering Synchronous Communication

We obtain maximally asynchronous communication by inserting shifts in a bare
(unpolarized) session type only where necessary.

(1)+ = 1
(A⊗B)+ = (A)+ ⊗ (B)+

(A⊕B)+ = (A)+ ⊕ (B)+

(τ ∧B)+ = τ ∧ (B)+

(A)+ = ↓(A)− for other propositions A
(A � B)− = (A)+ � (B)−

(A � B)− = (A)− � (B)−

(τ ⊃ B)− = τ ⊃ (B)−

(A)− = ↑(A)+ for other propositions A

As a provider, we can send asynchronously at a positive session type until we
shift explicitly to perform an input because we are now at a negative proposition.
A client behaves dually.

In order to simulate synchronous communication, we insert additional shifts
to prevent two consecutive send operations on the same channel. Here, the down
shift after a send switches to a mode where we wait for an acknowledgment,
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which is implicit in the next receive. If this is another shift, it acts as a pure
acknowledgment, otherwise it is already the next message.

(1)+ = 1
(A⊗B)+ = (A)+ ⊗ ↓(B)−

(A⊕B)+ = ↓(A)− ⊕ ↓(B)−

(τ ∧B)+ = τ ∧ ↓(B)−

(A)+ = ↓(A)− for other propositions A
(A � B)− = (A)+ � ↑(B)+

(A � B)− = ↑(A)+ � ↑(B)+

(τ ⊃ B)− = τ ⊃ ↑(B)+

(A)− = ↑(A)+ for other propositions A

If we want to bound the size of message queues then we can insert shift in session
types which would otherwise allow an unbounded number of consecutive sends.

In our running example, a client of a queue can perform an unbounded num-
ber of enqueue operations in the asynchronous operational semantics before the
queue implementation must react. This is because this portion of the queue type
is entirely negative. In order to force synchronization, we can change the type
of the enqueue operation before we recurse.

queue− A+ = �{ enq : A+ � ↑ ↓ queue− A+,
deq : ↑⊕{none : 1, some : A+ ⊗ ↓ queue− A+} }

Now the maximal size of the queue will be 3 in one direction (shift · x · enq) and
also 3 in the other direction (some · x · shift). In a slightly different language,
boundedness calculations for queues in asynchronous session-typed communica-
tion can be found in [11], so we do not repeat a more formal analysis here.

7 Synthesis in Polarized Adjoint Logic

Now we are ready to combine the ideas from adjoint logic in Sec. 4 with po-
larization in Sec. 5. Amazingly, they are fully consistent. The two differences to
the polarized presentation are that (a) the modalities go between positive and
negative propositions (already anticipated by the fact that ↓ is positive and ↑ is
negative), and (b) the modalities ↓mk A and ↑mk allow m ≥ k rather than presup-
posing m > k as before. We no longer index the connectives, overloading their
meaning at the different layers.

Pos. propositions A+
m, B+

m ::= 1 send end and terminate
| A+

m ⊗B+
m send channel of type A+

m

| A+
m ⊕B+

m send inl or inr
| τ ∧B+

m send value of type τ
| ↓rmA−

r (r ≥ m), send shift, then receive
Neg. propositions A−

m, B−
m ::= A+

m � B−
m receive channel of type A+

m

| A−
m � B−

m receive inl or inr
| τ ⊃ B−

m receive value of type τ
| ↑mk A+

k (m ≥ k), receive shift, then send
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A shift staying at the same level just changes the polarity but is otherwise not
subject to any restrictions. We can see this from the rules, now annotated with
a polarity: if m = k in ↑L, then k ≥ r by presupposition since (Ψ, ↑mk A+

k ) ≥ r.
Similarly, in ↓R, Ψ ≥ m by presupposition if m = k.

Ψ � A+
k

Ψ � ↑mk A+
k

↑R k ≥ r Ψ,A+
k � Cr

Ψ, ↑mk A+
k � Cr

↑L

Ψ≥m � A−
m

Ψ � ↓mk A−
m

↓R Ψ,A−
m � Cr

Ψ, ↓mk A−
m � Cr

↓L

Adding process expressions in a straightforward manner generalizes the shift to
carry a fresh channel because there may now be a change in modes associated
with the shift. We have the following new syntax

P,Q ::= shift xk ← send cm ; Pxk
send fresh shift xk, then recv. along xk in P

| shift xk ← recv cm ; Qxk
receive shift xk, then send along xk in Q

and the modified rules

Ψ � Pxk
:: (xk:A

+
k )

Ψ � (shift xk ← recv xm ; Pxk
) :: (xm:↑mk A+

k )
↑R

k ≥ r Ψ, xk:A
+
k � Qxk

:: (zr:Cr)

Ψ, xm:↑mk A+
k � (shift xk ← send xm ; Qxk

) :: (zr:Cr)
↑L

Ψ≥m � Qxm :: (xm:A−
m)

Ψ � (shift xm ← send xk ; Qxm) :: (xk:↓mk A−
m)

↓R

Ψ, xm:A−
m � Pxm :: (zr:Cr)

Ψ, xk:↓mk A−
m � (shift xm ← recv xk ; Pxm) :: (zr:Cr)

↓L

Operationally:

upmk s : procar
(shift xk ← send cm ; Qxk

)⊗ queue(cm,
−→
q , dm)

� {∃ck. ∃dk. procar
(Qck)⊗ queue(ck,

−−−−−−→
shift dk · q, dm)}

upmk r : queue(ck,
−−−−→
shift dk, dm)⊗ procdm

(shift xk ← recv dm ; Pxk
)

� {queue(ck,
←−· , dk)⊗ procdk

(Pdk
)}

downmk s : queue(ck,
←−
q , dk)⊗ procdk

(shift xm ← send dk ; Qxm)

� {∃cm. ∃dm. queue(ck,
←−−−−−−−
q · shift cm, dm)⊗ procdm

(Qdm)}
downmk r : procar

(shift xm ← recv ck ; Pxm)⊗ queue(ck,
←−−−−−
shift cm, dm)

� {procar
(Pcm)⊗ queue(cm,

−→· , dm)}
As pointed out in Sec. 4, we have to assume that processes that offer along an
unrestricted channel cU are persistent. Also, this formulation introduces a new
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channel even when m = k, a slight redundancy best avoided in the syntax and
semantics of a real implementation. Even when going between linear and affine
channels, creating new channels might be avoided in favor of just changing some
channel property.

Returning to forwarding, the earlier agnostic formulation will work more el-
egantly, since both queues to be appended are guaranteed to go into the same
direction.

fwd : queue(c, p, d)⊗ procd(d ← e)⊗ queue(d, q, e)
� {queue(c, p · q, e)}

If implementation or other considerations suggest forwarding as an explicit mes-
sage, we can also implement this, taking advantage of the direction information
that is always available. Here we write x ← recv c as a generic receive operation
along channel c, which is turned into a receive along the forwarded channel e.

fwd s : queue(c,
←−
p , d)⊗ procd(d ← e)

� {queue(c,←−−−−p · fwd, e)}
fwd r : proca(x ← recv c ; Px)⊗ queue(c,

←−
fwd, e)

� {proca(x ← recv e ; Px)}
We elide the symmetric version of the rules pointing to the right. The reason
we would forward in the direction of the current communication is so that send
remains fully asynchronous and does not have to check if a forwarding message
may be present on the channel.

Once again rewriting the linear version of the example, forcing synchroniza-
tion.

queue− A+ = �{ enq : A+ � ↑ ↓ queue− A+,
deq : ↑⊕{none : 1, some : A+ ⊗ ↓ queue− A+} }

empty : {queue− A+}
c ← empty =
case c of
| enq → x ← recv c ;

shift c ← recv c
shift c ← send c
e ← empty ;
c ← elem ← x, e

| deq → shift c ← recv c
c.none ;
close c

elem : {queue− A+ ← A+, queue−A+}
c ← elem ← x, d =
case c of
| enq → y ← recv c ;

shift c ← recv c ; % shift to send
shift c ← send c ; % send ack
d.enq ; send d y ;
shift d ← send d ; % shift to recv
shift d ← recv d ; % recv ack
c ← elem ← x, d

| deq → shift c ← recv c ; % shift to send
c.some ; send c x ;
shift c ← send c ; % shift to recv
c ← d

And destroying a linear queue with affine elements:
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destroy : {1 ← queue (↓FLAF)}
c ← destroy ← q =
q.deq ;
shift q ← send q ; % shift to recv
case q of
| none → wait q ; close c
| some → x ← recv q ; % obtain element x

shift aF ← recv x ; % obtain affine aF, consuming x
shift q ← send q ; % shift to recv
c ← destroy ← q % recurse, ignoring aF

8 Sequent Calculus for Polarized Adjoint Logic

We summarize the sequent calculus rules for polarized adjoint logic in Fig. 1,
omitting the uninteresting rules for existential and universal quantification. How-
ever, we have added in atomic propositions p+m and p−m (corresponding to session
type variables) and removed the stipulation that the only unrestricted proposi-
tions are ↑UmA+

m, thereby making our theorem slightly more general at the ex-
pense of a nonstandard notation for intuitionistic connectives such as AU �U BU

for A ⊃ B.
We have the following theorem.

Theorem 1.

1. Cut is admissible in the system without cut.
2. Identity is admissible for arbitrary propositions in the system with the iden-

tity restricted to atomic propositions and without cut.

Proof. The admissibility of cut follows by a nested structural induction, first
on the cut formula A, second simultaneously on the proofs of the left and right
premise. We liberally use a lemma which states that we can weaken a proof with
affine and unrestricted hypotheses without changing its structure and we exploit
the transitivity of ≥. See [8,18] for analogous proofs.

The admissibility of identity at A follows by a simple structural induction on
the proposition A, exploiting the reflexivity of ≥ in one critical case. ��

A simple corollary is cut elimination, stating that every provable sequent has a
cut-free proof. Cut elimination of the logic is the central reason why the session-
typed processes assigned to these rules satisfy the by now expected properties
of session fidelity (processes are guaranteed to follow the behavior prescribed by
the session type) and global progress (a closed process network of type c0 : 1 can
either take a step will send end along c0). In addition, we also have productivity
(processes will eventually perform the action prescribed by the session type)
and termination if recursive processes are appropriately restricted. The proofs of
these properties closely follow those in the literature for related systems [6,22,20],
so we do not formally state or prove them here.
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m,k, r ::= U | F | L with U > F > L
A+

m, B+
m ::= p+m | 1m | A+

m ⊗m B+
m | A+

m ⊕m B+
m | ↓rmA−

r (r ≥ m)
A−

m, B−
m ::= p−m | A+

m �m B−
m | A−

m �m B−
m | ↑mk A+

k (m ≥ k)
Am, Bm, Cm ::= A+

m | A−
m

Ψ ≥ F

Ψ,Am � Am
id

Ψ ≥ m ≥ r Ψ � Am Ψ ′, Am � Cr

Ψ, Ψ ′ � Cr

cut

Ψ � A+
k

Ψ � ↑mk A+
k

↑R k ≥ r Ψ,A+
k � Cr

Ψ, ↑mk A+
k � Cr

↑L

Ψ≥m � A−
m

Ψ � ↓mk A−
m

↓R Ψ,A−
m � Cr

Ψ, ↓mk A−
m � Cr

↓L

Ψ ≥ F

Ψ � 1m
1R

Ψ � Cr

Ψ,1m � Cr
1L

Ψ � A+
m Ψ ′ � B+

m

Ψ, Ψ ′ � A+
m ⊗m B+

m

⊗R
Ψ,A+

m, B+
m � Cr

Ψ,A+
m ⊗m B+

m � Cr

⊗L

Ψ,A+
m � B−

m

Ψ � A+
m �m B−

m

�R
Ψ ≥ m Ψ � A+

m Ψ ′, B−
m � Cr

Ψ, Ψ ′, A+
m �m B−

m � Cr

�L

Ψ � A−
m Ψ � B−

m

Ψ � A−
m �m B−

m

�R
Ψ,A−

m � Cr

Ψ,A−
m �m B−

m � Cr

�L1

Ψ,B−
m � Cr

Ψ,A−
m �m B−

m � Cr

�L2

Ψ � A+
m

Ψ � A+
m ⊕m B+

m

⊕R1

Ψ � B+
m

Ψ � A+
m ⊕m B+

m

⊕R2

Ψ,A+
m � Cr Ψ,B+

m � Cr

Ψ,A+
m ⊕m B+

m � Cr

⊕L

All judgments Ψ � Am presuppose Ψ ≥ m.
Ψ, Ψ ′ allows contraction of unrestricted AU shared between Ψ and Ψ ′

Fig. 1. Polarized Adjoint Logic

9 Conclusion

We have developed a language which uniformly integrates linear, affine, and
unrestricted types, allowing the programmer to vary the degree of precision
with which resources are managed. At the same time, the programmer has fine-
grained control over which communications are synchronous or asynchronous,
and these decisions are reflected in the type in a logically motivated manner.

On the pragmatic side, we should decide to what extent the constructs here
are exposed to the programmer or inferred during type checking, and develop
a concise and intuitive concrete syntax for those that are explicitly available in
types and process expressions.
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Finally, our language is polarized, but deductions are not focused [1]. This
is perhaps somewhat unexpected since the two are closely connected and his-
torically tied to each other. It suggests that some further benefits from proof-
theoretic concepts are still to be discovered, continuing the current line of inves-
tigation into the foundation of session-typed concurrency.
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Abstract. We study a propositional variant of Hoare logic that can be
used for reasoning about programs that exhibit both angelic and demonic
nondeterminism. We work in an uninterpreted setting, where the mean-
ing of the atomic actions is specified axiomatically using hypotheses of a
certain form. Our logical formalism is entirely compositional and it sub-
sumes the non-compositional formalism of safety games on finite graphs.
We present sound and complete Hoare-style (partial-correctness) calculi
that are useful for establishing Hoare assertions, as well as for synthesiz-
ing implementations. The computational complexity of the Hoare theory
of dual nondeterminism is investigated using operational models, and it
is shown that the theory is complete for exponential time.

1 Introduction

One source of demonic nondeterminism in a program is its interaction with
the environment (e.g., user input, thread scheduling, etc.), which is not under
the control of the program. Even in the absence of such “real” nondeterminacy,
we may use demonic nondeterminism to represent abstraction and partial knowl-
edge of the state of a computation. Angelic nondeterminism, on the other hand,
is used to express nondeterminacy that is under the control of the program. For
example, we use angelic nondeterminism when implementation details are left
underspecified, but we control how they can be resolved in order to achieve the
desired result. The process of resolving these implementation details amounts to
synthesizing a fully specified program. The term dual nondeterminism is used
to refer to the combination of angelic and demonic nondeterminism.

In order to reason about dual nondeterminism, one first needs to have a se-
mantic model of how programs with angelic and demonic choices compute. One
semantic model that has been used extensively uses a class of mathematical ob-
jects that are called monotonic predicate transformers [1] (based on Dijkstra’s
predicate transformer semantics [4,11]). An equivalent denotational model that
is based on binary relations was introduced in [13] (up-closed multirelations) and
further investigated in [10]. These relations have an intuitive interpretation as
two-round games between the angel and the demon.
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We are interested here in verifying properties of programs that can be ex-
pressed as Hoare assertions [5], that is, formulas of the form {p}f{q}, where f
is the program text and p, q denote predicates on the state space, called precon-
dition and postcondition respectively. The formula {p}f{q} asserts, informally,
that starting from any state satisfying the precondition p, the angel has a strat-
egy so that whatever the demon does, the final state of the computation of f
(assuming termination) satisfies the postcondition q. This describes a notion of
partial correctness, because in the case of divergence (non-termination) the angel
wins vacuously. Our language for programs and preconditions/postconditions in-
volves abstract test symbols p, q, r, . . . and abstract action symbols a, b, . . . with
no fixed interpretation. We constrain their meaning with extra hypotheses: we
consider a finite set Φ of Boolean axioms for the tests, and a finite set Ψ of axioms
of the form {p}a{q} for the action letters. So, we typically assert implications of
the form Φ, Ψ ⇒ {p}f{q}, which we call simple Hoare implications. We want to
design a formal system that allows the derivation of the valid Hoare implications.
One important desideratum for such a formal system is to also provide us with
program text that corresponds to the winning strategy of the angel. Then, the
system can be used for the deductive synthesis of programs that satisfy their
Hoare specifications.

There has been previous work on deductive methods to reduce angelic nonde-
terminism and synthesize winning strategies for the angel. The work [2], which
is based on ideas of the refinement calculus [1,11], explores a total-correctness
Hoare-style calculus to reason about angelic nondeterminism. The analysis is in
the first-order interpreted setting, and no completeness or relative completeness
results are discussed.

Of particular relevance is the line of work that concerns two-player infinite
games played on finite graphs [14]. Such games are useful for analyzing (nonter-
minating) reactive programs. One of the players represents the “environment”,
and the other player is the “controller”. Computing the strategies that witness
the winning regions of the two players amounts to synthesizing an appropriate
implementation for the controller. The formalism of games on finite graphs is
very convenient for developing an algorithmic theory of synthesis. However, the
formalism is non-succinct and, additionally, it is inherently non-compositional.
An important class of properties for these games are the so called safety prop-
erties, which assert that something bad never happens. For such properties, we
see that a fully compositional formalism involving usual (terminating) programs
and partial-correctness properties suffices.

Our Contribution. We consider a propositionally abstracted language for pro-
grams with demonic and angelic choices. Our results are the following:
– We present a sound and unconditionally complete calculus for the weak

Hoare theory of dual nondeterminism (over the class of all interpretations).
We also consider a restricted class of interpretations, where the atomic ac-
tions are non-angelic, and we extend our calculus so that it is complete for
the Hoare theory of this smaller class (called strong Hoare theory). The
proofs of these results rely on the construction of free models.
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– We show that (for the free models) the denotational semantics is equivalent
to the intended operational semantics. Using this result, we prove that the
strong Hoare theory of dual nondeterminism is EXPTIME-complete.

– We consider an extension of our Hoare-style calculus with annotations that
denote the winning strategies of the angel. We thus obtain a sound and
complete deductive system for the synthesis of angelic strategies.

– Our formalism is shown to subsume that of safety games on finite graphs,
hence it provides a compositional method for reasoning about safety in re-
active systems. The language of dually nondeterministic program schemes is
exponentially more succinct than explicitly represented game graphs, and it
is arguably a more natural language for describing algorithms and protocols.

Due to lack of space all proofs will be given in a full version of the paper [9].

2 Preliminaries

In this section we give some preliminary definitions regarding while program
schemes with the additional construct � of demonic nondeterministic choice.
First, we present the syntax of these abstract while programs. Then, we give the
standard denotational semantics for them, which is based on binary relations.

We consider a two-sorted algebraic language. There is the sort of tests and
the sort of programs. The tests are built up from atomic tests and the constants
true and false, using the usual Boolean operations: ¬ (negation), ∧ (conjunction),
and ∨ (disjunction). We use the letters p, q, r, . . . to range over arbitrary tests.

The base programs are the atomic programs a, b, c, . . . (also called atomic ac-
tions), as well as the constants id (skip) and ⊥ (diverge). The programs are con-
structed using the operations ; (sequential composition), if (conditional), while
(iteration), and � (demonic nondeterministic choice). We write f, g, h, . . . to
range over arbitrary programs. So, the programs are given by the grammar:

f, g ::= actions a, b, . . . | id | ⊥ | f ; g | if p then f else g | while p do f | f � g.

We also write p[f, g] instead of if p then f else g, and wpf instead of while p do f .
We will present the standard denotational semantics of nondeterministic while

schemes. Every test is interpreted as a unary predicate on the state space, and
every program is interpreted as a binary relation on the state space.

Definition 1 (Nondeterministic Functions & Operations). For a set A,
we write ℘A for the powerset of A. For sets A and B, we say that a function of
type φ : A → ℘B is a nondeterministic function from A to B. We write φ : a �→ b
to mean that b ∈ φ(a). We think informally that such a function describes only
one kind of nondeterminism (for our purposes here, demonic nondeterminism).

The operations of (Kleisli) composition ; , conditional (−)[−,−], binary (non-
deterministic) choice +, arbitrary choice

∑
, identity 1, zero 0, and iteration

(wh − do−) are defined as follows:

φ;ψ � λx ∈ A.
⋃

y∈φ(x) ψ(y) : A → ℘C, for φ : A → ℘B, ψ : B → ℘C
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P[φ, ψ] �
(
φ ∩ (P × ℘B)

) ∪ (
ψ ∩ (∼P × ℘B)

)
, for φ, ψ : A → ℘B, P ⊆ A

φ+ ψ � λx ∈ A. φ(x) ∪ ψ(y) : A → ℘B, where φ, ψ : A → ℘B
∑

i φi � λx ∈ A.
⋃

i φi(x) : A → ℘B, where φi : A → ℘B

1A � λx ∈ A. {x} : A → ℘A and 0AB � λx ∈ A. ∅ : A → ℘B

whP doφ �
∑

n≥0 Wn : A → ℘A, where φ : A → ℘A and P ⊆ A

W0 � P[0AA, 1A] and Wn+1 � P[φ;Wn, 1A]

where ∼P = A \ P above denotes the complement of P w.r.t. A. From the
definition of the conditional, we see that P[φ, ψ](x) is equal to φ(x) when x ∈ P ,
and equal to ψ(x) when x /∈ P .

Definition 2 (Nondeterministic Interpretation). An interpretation of the
language of nondeterministic while program schemes consists of a nonempty set
S, called the state space, and an interpretation function R. For a program term
f , its interpretation R(f) : S → ℘S is a nondeterministic function on S.

The interpretation R(p) of a test p is a unary predicate on S, i.e., R(p) ⊆ S.
R specifies the meaning of every atomic test, and it extends as follows:

R(true) = S R(¬p) = ∼R(p) R(p ∧ q) = R(p) ∩R(q)

R(false) = ∅ R(p ∨ q) = R(p) ∪R(q)

where ∼ is the operation of complementation w.r.t. S, that is, ∼A = S \ A.
Moreover, the interpretation function R specifies the meaning R(a) : S → ℘S of
every atomic program. We extend the interpretation to all program terms:

R(id) = 1S R(f ; g) = R(f);R(g) R(p[f, g]) = R(p)[R(f), R(g)]

R(⊥) = 0SS R(f � g) = R(f) +R(g) R(wpf) = whR(p)doR(f)

Our definition agrees with the standard relational semantics of while schemes.

3 Angelic and Demonic Nondeterminism

We extend the syntax of nondeterministic while program schemes with the ad-
ditional construct � of angelic (nondeterministic) choice. So, the grammar for
the program terms now becomes:

f, g ::= actions a, b, . . . | id | ⊥ | f ; g | p[f, g] | wpf | f � g | f � g.

We call these program terms while game schemes, because they can be considered
to be descriptions of games between the angel (who controls the angelic choices)
and the demon (who controls the demonic choices). Informally, the angel tries
to satisfy the specification, while the demon attempts to falsify it.

We present a relational denotational semantics for while game schemes with
abstract atomic actions. A nonempty set S represents the abstract state space,
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and every test is interpreted as a unary predicate on the state space. Every
program term is interpreted as a binary relation from S to ℘S.

Consider such a binary relation f ⊆ S×℘S, which should be thought of as the
extension of a game program scheme. Informally, the pair (u,X) is supposed to
belong to f when the following holds: if the program starts at state u, then the
angel has a strategy so that whatever the demon does, the final state (supposing
that the program terminates) satisfies the predicate X .

The binary relation f ⊆ S×℘S encodes both the choices of the angel and the
demon, and it can be understood as a two-round game. The angel moves first,
and then the demon makes the final move. The options that are available to the
angel are given by multiple pairs (u,X1), (u,X2), and so on. So, when the game
starts at state u, the angel first chooses either X1, or X2, or any of the other
available options. Suppose that the angel first chooses Xi, where (u,Xi) is in f .
Then, during the second round, the demon chooses some final state v ∈ Xi.

When (u,X) is in f , we understand this as meaning that that the angel can
guarantee the predicate X when we start at u. So, we should expect that the
angel also guarantees any predicate that is weaker than X .

Definition 3 (Game Functions). For nonempty sets A and B, we say that
f ⊆ A× ℘B is a game function from A to B, denoted f : A � B, if it satifies:
1. The set f is closed upwards : (u,X) ∈ f and X ⊆ Y ⊆ B =⇒ (u, Y ) ∈ f .
2. For every u ∈ A there is some X ⊆ B with (u,X) ∈ f .
Given Condition (1), we can equivalently require that (u,B) ∈ f for every u ∈ A,
instead of having Condition (2).

Let f : A � B be a game function. The options of the angel at u ∈ A, which
we denote by f(u), is the set f(u) := {X ⊆ B | (u,X) ∈ f}. In other words,
f(u) is the set of all predicates that the angel can guarantee from u.

We say that a game function f : A � B is non-angelic if for every u ∈ A
there is some X ⊆ B so that f(u) = {Y ⊆ B | X ⊆ Y }. It is easy to see that this
X ⊆ B is unique, because the equality {Y ⊆ B | X1 ⊆ Y } = {Y ⊆ B | X2 ⊆ Y }
implies that X1 = X2. Essentially, the definition says that the angel always
has exactly one minimal choice: for every u ∈ A there is exactly one minimal
predicate X that the angel can guarantee.

Definition 4 (Lifting & Non-angelic Game Functions). When f : A � B
is a non-angelic game function, there is essentially only demonic nondeterminism.
So, the same information can be provided by a nondeterministic function A →
℘B. Indeed, we see easily that f : A � B is non-angelic iff there exists some
function φ : A → ℘B so that f = liftφ, where

liftφ � {(u, Y ) | u ∈ A, φ(u) ⊆ Y } : A � B

defines the lifting operation lift. The definition says that for every u ∈ A and
Y ⊆ B: (u, Y ) ∈ liftφ iff φ(u) ⊆ Y .
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Definition 5 (Operations on Game Functions). We define a binary com-
position operation for game functions, whose typing rule and definition are:

f : A � B g : B � C

f ; g : A � C

(u, Z) ∈ (f ; g) ⇔ there is Y ⊆ B s.t. (u, Y ) ∈ f ,

and (v, Z) ∈ g for every v ∈ Y .

The (semantic) conditional operation is given as follows:

P[f, g] �
(
f ∩ (P × ℘B)

) ∪ (
g ∩ (∼P × ℘B)

)
, for f, g : A � B and P ⊆ A,

where ∼P = A\P is the complement of P w.r.t. A. The angelic choice operation
� for game functions is defined by:

f � g � f ∪ g, where f, g : A � B.

As expected, the angelic choice operation increases the options available to the
angel. Now, we define the demonic choice operation � for game functions as:

f � g � {(u,X ∪ Y ) | (u,X) ∈ f, (u, Y ) ∈ g}, where f, g : A � B.

So, demonic choice increases the options of the demon. The above definition is
equivalent to f � g = f ∩ g. The identity function �A : A � A is defined by

�A � {(u,X) | u ∈ A and u ∈ X}.
So, �A is the smallest game function that contains (u, {u}) for every u ∈ A.
Informally, this definition says that on input u, the angel guarantees output u
in the identity game. The diverging game function �AB : A � B is given by

�AB � {(u,X) | u ∈ A and X ⊆ B} = A× ℘B.

The intuition for the definition of �AB is that when the program diverges, the
demon cannot lead the game to an error state, therefore the angel can guarantee
anything. This describes a notion of partial correctness. Finally, the (semantic)
while operation (wh − do−) has the following typing rule and definition:

P ⊆ A f : A � A

whP do f �
⋂

κ∈OrdWκ : A � A

W0 = P[�AA, �A]

Wκ+1 = P[f ;Wκ, �A]

Wλ =
⋂

κ<λ Wκ, limit ordinal λ

The sets W0 ⊇ W1 ⊇ W2 ⊇ · · · ⊇ Wκ ⊇ · · · form a decreasing chain. That is,
κ ≤ λ implies Wκ ⊇ Wλ, for any ordinals κ and λ.

We note that the above definition gives the while operation as a greatest
fixpoint. This is not surprising, because the semantics we consider is meant to be
useful for reasoning about safety properties. As we will see, this definition agrees
with the standard least fixpoint definition of while loops when there is only
one kind of nondeterminism (Lemma 6). More importantly, we will prove that
our definition is exactly right, becauses it agrees with the intended operational
semantics of dual nondeterminism (Proposition 28).
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Lemma 6 (lift Commutes with the Operations). Let φ and ψ be nonde-
terministic functions, and P be a predicate. Then, the following hold:

lift 0AB = �AB lift(φ;ψ) = (liftφ); (liftψ) lift(P[φ, ψ]) = P[ liftφ, liftψ]

lift 1A = �A lift(φ+ ψ) = (liftφ) � (liftψ) lift(whP doφ) = whP do (liftφ)

Essentially, the lemma says that the game function operations are a generaliza-
tion of the nondeterministic function operations.

For a nondeterministic function φ : A → ℘B and a game function f : A � B,
we say that φ implements f if liftφ ⊆ f . So, φ implements f when it resolves (in
some possible way) the angelic nondeterminism of f .

Definition 7 (Game Interpretation of Programs). As in the case of non-
deterministic program schemes (Definition 2), an interpretation of the language
of while game schemes consists of a nonempty state space S and an interpre-
tation function I. For a program term f , its interpretation I(f) : S � S is a
game function on S. The function I specifies the meaning of every atomic test,
and extends to all tests in the obvious way. Moreover, I specifies the meaning
I(a) : S � S of every atomic action. It extends as: I(id) = �S , I(⊥) = �SS , and

I(f ; g) = I(f); I(g) I(f � g) = I(f)� I(g) I(p[f, g]) = I(p)[I(f), I(g)]

I(f � g) = I(f)� I(g) I(wpf) = wh I(p)do I(f)

We say that the game interpretation I lifts the nondeterministic interpretation
R if they have the same state space, and additionally: (i) I(p) = R(p) for every
atomic test p, and (ii) I(a) = liftR(a) for every atomic program a. We also say
that I is the lifting of R.

4 Hoare Formulas and Their Meaning

In this section, we present formulas that are used to specify programs. The
basic formulas are called Hoare assertions, and we also consider assertions under
certain hypotheses of a simple form (Hoare implications).

Definition 8 (Tests and Entailment). Let I be an interpretation of tests.
For a test p and a state u ∈ S, we write I, u |= p when u ∈ I(p). We read this
as: “the state u satisfies p (under I)”. When I, u |= p for every state u ∈ S, we
say that I satisfies p, and we write I |= p. For a set Φ of tests, the interpretation
I satisfies Φ if it satisfies every test in Φ. We then write I |= Φ. Finally, we say
that Φ entails p, denoted Φ |= p, if I |= Φ implies I |= p for every I.

Definition 9 (Hoare Assertions). An expression {p}f{q}, where p and q are
tests and f is a program term, is called a Hoare assertion. The test p is called the
precondition and the test q is called the postcondition of the assertion. Informally,
the formula {p}f{q} says that when the program f starts at a state satisfying
the predicate p, then the angel has a strategy so that whatever the demon does,
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the final state (upon termination) satisfies the predicate q. The Hoare assertion
{p}a{q}, where a is an atomic program, is called a simple Hoare assertion. More
formally, consider an interpretation I. We say that I satisfies {p}f{q}, and we
write I |= {p}f{q}, when the following holds for every state u ∈ S: I, u |= p
implies that (u, I(q)) ∈ I(f).

Definition 10 (Simple Hoare Implications). Let Φ be a finite set of tests,
and Ψ be a finite set of simple Hoare assertions. We call the expression

Φ, Ψ ⇒ {p}f{q}

a simple Hoare implication. The tests in Φ and the simple assertions in Ψ are the
hypotheses of the implication, and the Hoare assertion {p}f{q} is the conclusion.

Let I be an interpretation of tests and actions. We say that I satisfies the
implication Φ, Ψ ⇒ {p}f{q}, which we denote by I |= Φ, Ψ ⇒ {p}f{q}, when the
following holds: If the interpretation I satisfies every test in Φ and every assertion
in Ψ , then I satisfies the assertion {p}f{q}. An implication Φ, Ψ ⇒ {p}f{q} is
valid, denoted Φ, Ψ |= {p}f{q}, if every interpretation satisfies it. The set of all
valid Hoare implications forms the weak Hoare theory of while game schemes.

Definition 11 (Boolean Atoms & Φ-consistency). Suppose that we have
fixed a finite set of atomic tests. For an atomic test p, the expressions p and
¬p are called literals for p (positive and negative respectively). Fix an enumer-
ation p1, p2, . . . , pk of the atomic tests. A Boolean atom (or simply atom) is an
expression 	1	2 · · · 	k, where every 	i is a literal for pi. We use lowercase letters
α, β, γ, . . . from the beginning of the Greek alphabet to range over atoms. An
atom is essentially a conjunction of literals, and it can also be thought of as
a propositional truth assignment. We write α ≤ p to mean that the atom α
satisfies the test p. We denote by At the set of all atoms.

Assume that Φ is a finite set of tests. We say that an atom α is Φ-consistent
if α ≤ p for every test p in Φ. We write AtΦ for the set of all Φ-consistent atoms.

Definition 12 (The Free Test Interpretation). Let Φ be a finite set of
tests. We define the interpretation IΦ on tests, which is called the free test
interpretation w.r.t. Φ. The state space is the set AtΦ of Φ-consistent atoms,
and every test is interpreted as a unary predicate on AtΦ. For an atomic test
p, define IΦ(p) := {α ∈ AtΦ | α ≤ p} to be the set of Φ-consistent atoms that
satisfy p.

An easy induction on the structure of tests proves that for every (atomic or
composite) test p, IΦ(p) is equal to the set of Φ-consistent atoms that satisfy p.

Note 13 (Complete Boolean Calculus). We assume that we have a com-
plete Boolean calculus, with which we derive judgments Φ � p, where Φ is a
finite set of tests and p is a test. This means that the statements Φ |= p, IΦ |= p,
IΦ(p) = AtΦ, and Φ � p are all equivalent. Moreover, IΦ(p) ⊆ IΦ(q) iff Φ � p → q.
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5 A Hoare Calculus for While Game Schemes

In this section we propose a Hoare-style calculus (Table 1), which is used for
deriving simple Hoare implications that involve while game schemes. As we will
show, the calculus of Table 1 is sound and complete for the weak Hoare theory
of while game schemes. Establishing soundness is a relatively straightforward
result. The most interesting part is the soundness of the (loop) rule for while
loops. The observation is that the loop invariant defines a “safe region” of the
game, and the angel has a strategy to keep a play within this region.

Table 1. Game Hoare Logic: A sound and complete Hoare-style calculus for while
program schemes with angelic and demonic nondeterministic choice

{p}a{q} in Ψ
(hyp)

Φ, Ψ � {p}a{q} (skip)
Φ, Ψ � {p}id{p} (dvrg)

Φ, Ψ � {p}⊥{q}
Φ, Ψ � {p}f{q}
Φ, Ψ � {q}g{r}

(seq)
Φ, Ψ � {p}f ; g{r}

Φ, Ψ � {q ∧ p}f{r}
Φ, Ψ � {q ∧ ¬p}g{r}

(cond)
Φ, Ψ � {q}if p then f else g{r}

Φ, Ψ � {r ∧ p}f{r}
(loop)

Φ, Ψ � {r}while p do f{r ∧ ¬p}
Φ, Ψ � {p}fi{q}

(angi)Φ, Ψ � {p}f1 � f2{q}
Φ, Ψ � {p}f{q} Φ, Ψ � {p}g{q}

(dem)
Φ, Ψ � {p}f � g{q}

Φ � p′ → p Φ, Ψ � {p}f{q} Φ � q → q′
(weak)

Φ, Ψ � {p′}f{q′}
Φ, Ψ � {p1}f{q} Φ, Ψ � {p2}f{q}

(join)
Φ, Ψ � {p1 ∨ p2}f{q}

Φ, Ψ � {false}f{q} (join0)

Φ, Ψ � {p}f{true} (meet0)

Theorem 14 (Soundness). The Hoare calculus of Table 1 is sound.

5.1 First Completeness Theorem: Weak Hoare Theory

We will now prove the completeness of the Hoare calculus of Table 1 with respect
to the class of all interpretations. This means that we consider arbitrary inter-
pretations of the atomic programs a, b, . . . as game functions. So, the deductive
system of Table 1 is complete for the weak Hoare theory of while game schemes.
Note that this is an unconditional completeness result (no extra assumptions),
not a relative completeness theorem [3].

Definition 15 (The Free Game Interpretation). Let Φ be a finite set of
tests, and Ψ be a finite set of simple Hoare assertions. We define the free game
interpretation IΦΨ (w.r.t. Φ and Ψ) to have AtΦ as state space, and to interpret
the tests as IΦ (the free test interpretation w.r.t. Φ, see Definition 12) does.
Moreover, the interpretation IΦΨ (a) : AtΦ � AtΦ of the atomic action a is given
by: for every Φ-consistent atom α,
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– (α,AtΦ) ∈ IΦΨ (a), and for every subset X � AtΦ,
– (α,X) ∈ IΦΨ (a) iff there exists {p}a{q} ∈ Ψ s.t. α ≤ p and IΦ(q) ⊆ X .

Lemma 16. Let Φ be a finite set of tests, and Ψ be a finite set of simple Hoare
assertions. The free game interpretation IΦΨ satisfies all formulas in Φ and Ψ .

Theorem 17 (Completeness). Let Φ be a finite set of tests, and Ψ be a finite
set of simple Hoare assertions. For every program term f and every Φ-consistent
atom α, (α,X) ∈ IΦΨ (f) implies that Φ, Ψ � {α}f{∨X}.
Corollary 18 (Completeness). Let Φ be a finite set of tests, and Ψ be a finite
set of simple Hoare assertions. For every program f , the following are equivalent:
(1) Φ, Ψ |= {p}f{q}.
(2) For every Φ-consistent α ≤ p, the pair (α, IΦ(q)) is in IΦΨ (f).
(3) Φ, Ψ � {p}f{q}.
Corollary 18 gives us a decision procedure for the weak Hoare theory of dual

nondeterminism. Given a Hoare implication Φ, Ψ ⇒ {p}f{q}, we simply have to
compute the free interpretation IΦΨ (f) ⊆ AtΦ × ℘AtΦ, which is a finite object.
Observe that IΦΨ (f) is of doubly exponential size. We will see later that, with
some more work, we can devise a faster algorithm of exponential complexity.

5.2 Second Completeness Theorem: Strong Hoare Theory

The completeness theorem of Section 5.1 concerns the theory generated by the
class of all interpretations, that is, when the atomic programs are allowed to
be interpreted as any game function. However, for most realistic applications
the atomic actions a, b, . . . correspond to computational operations (e.g., vari-
able assignments x := t, etc.) that involve no angelic nondeterministic choice.
This leads us to consider a strictly smaller class of interpretations, and thus the
question is raised of whether this smaller class has the same Hoare theory.

Definition 19 (Validity Over a Class of Interpretations). We fix a lan-
guage with atomic tests and atomic actions. Let C be a class of interpretations of
the atomic symbols (extending to all tests and programs in the usual way). We
say that a Hoare implication Φ, Ψ ⇒ {p}f{q} is valid in C (or C-valid) if every
interpretation I in C satisfies the implication. We then write Φ, Ψ |=C {p}f{q}.
The set of all C-validities is called the Hoare theory of C.

Let All be the class of all interpretations. Observe that an implication is valid
iff it is valid in All . Now, let Dem ⊆ All be the strict subclass of interpretations
where the atomic actions are interpreted as non-angelic game functions.

Lemma 20 (Soundness). The rule (meet) of Table 2, where a is an atomic
action, is sound for the class Dem of interpretations.

Lemma 20 also establishes that the Hoare theory of Dem is different from the
Hoare theory of All . Strictly more implications hold, when we restrict attention
to the interpretations of Dem. For example, consider the set of hypotheses Ψ ,
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Table 2. A rule that is sound when the atomic actions are interpretated as non-angelic
game functions. That is, (meet) is sound for the class Dem.

Φ, Ψ � {p}a{q1} Φ, Ψ � {p}a{q2}
(a-meet)

Φ, Ψ � {p}a{q1 ∧ q2}

which consists of the two simple assertions {p}a{q} and {p}a{r}, where p, q, r
are distinct atomic tests. Observe that the implication Ψ ⇒ {p}a{q ∧ r} is valid
in Dem (by Lemma 20), but it is not valid in All (by virtue of Corollary 18).

Definition 21 (The Free Non-angelic Interpretation). Let Φ be a finite
set of tests, and Ψ be a finite set of simple Hoare assertions. For an atomic action
a, define the nondeterministic interpretation RΦΨ (a) : AtΦ → ℘AtΦ as

RΦΨ (a)(α) � {β ∈ AtΦ | for every {p}a{q} ∈ Ψ with α ≤ p, we have β ≤ q}.
We define the free non-angelic interpretation JΦΨ (w.r.t. Φ and Ψ) to have AtΦ
as state space, and to interpret the tests as IΦ (the free test interpretation w.r.t.
Φ, see Definition 12) does. Moreover, the interpretation JΦΨ (a) : AtΦ � AtΦ of
the atomic action a is given by JΦΨ (a) := liftRΦΨ (a).

Lemma 22. Let Φ be a finite set of tests, and Ψ be a finite set of simple Hoare
assertions. The free non-angelic interpretation JΦΨ satisfies both Φ and Ψ .

Recall that we used the symbol � in Section 5 to denote provability in the
Hoare-style system of Table 1. Now, we will use the symbol �d to denote prov-
ability in the Hoare-style system that extends the calculus of Table 1 with the
additional rule (meet) shown in Table 2.

Theorem 23 (Completeness). Let Φ be a finite set of tests, and Ψ be a finite
set of simple Hoare assertions. For every program term f and every Φ-consistent
atom α, (α, Y ) ∈ JΦΨ (f) implies that Φ, Ψ �d {α}f{∨Y }.
Corollary 24 (Completeness). Let Φ and Ψ be finite sets of tests and simple
Hoare assertions respectively. For every program f , the following are equivalent:
(1) Φ, Ψ |=Dem {p}f{q}.
(2) For every Φ-consistent α ≤ p, the pair (α, IΦ(q)) is in JΦΨ (f).
(3) Φ, Ψ �d {p}f{q}.
The results of this section imply that the Hoare theory of the class Dem, which

we also call the strong Hoare theory of while game schemes, can be reduced to the
weak Hoare theory of the class All . Let Φ, Ψ ⇒ {p}f{q} be an arbitrary Hoare
implication. W.l.o.g. the axioms in Ψ are of the form {α}a{q}, where α is an
atom and a is an atomic action. Now, define Ψ ′ to be the set of hypotheses that
results from Ψ by replacing the axioms {α}a{qi} involving α, a by a single axiom
{α}a{∧i qi}. The crucial observation is that the interpretation JΦΨ is the same
as IΦΨ ′ . Using our two completeness results of Corollary 18 and Corollary 24, it
follows that Φ, Ψ �d {p}f{q} iff Φ, Ψ ′ � {p}f{q}.
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6 Operational Model and Complexity

In this section we investigate the computational complexity of the strong Hoare
theory of while game schemes. We prove that this theory is complete for ex-
ponential time. In order to obtain the EXPTIME upper bound, we consider a
standard operational model that corresponds to the free game interpretation.
We establish that our denotational semantics coincides in a precise sense to the
operational semantics. The operational model is a safety game on a finite graph,
and we can decide validity by computing the winning regions of the players. The
lower bound of EXPTIME-hardness is obtained with a reduction from alternating
Turing machines with polynomially bounded tapes.

First, we restrict slightly the syntax of programterms by eliminating the diverg-
ing ⊥ program, and by forbidding compositions (f ; g);h that associate to the left.
These are not really limitations, because⊥ is semantically equivalent to the infinite
loop while true do id, and (f ; g);h is equivalent to f ; (g;h). We define the syntactic
categories factor and term with the following grammars:

factor e ::= a | id | p[f, g] | wpf | f � g | f � g terms f, g ::= e | e; f

A term according to the above definition is a nonempty list of factors. We write
@ for the concatenation of terms: e@g = e; g and (e; f)@g = e; (f@g).

Definition 25 (Closure & the → Relation on Terms). We define the clo-
sure function C(·) that sends a term to a finite set of terms.

C(a) = {a, id} C(wpf) = {wpf, id} ∪ C(f)@wpf C(e; f) = C(e)@f ∪ C(f)

C(id) = {id} C(f ⊕ g) = {f ⊕ g} ∪ C(f) ∪ C(g)

where (−⊕−) is any of the constructors (−�−), (−�−), or p[−,−]. We define
the relation → on terms as follows:

a → id wpf → f@wpf, id f ⊕ g → f, g id;h → h

a;h → h wpf ;h → f@(wpf);h, id;h (f ⊕ g);h → f@h, g@h

We write →∗ for the reflexive transitive closure of →. The definition of → says,
in particular, that id has no successor. The while loop wpf has exactly two
successors, namely f@wpf and id.

Lemma 26 (Closure & Reachability). Let f be a program term. The car-
dinality of C(f) is linear in the size |f | of f , in fact, |C(f)| ≤ 2|f |. Moreover,
C(f) is equal to the set {f ′ | f →∗ f ′} of terms that are reachable from f via
→.

Definition 27 (Operational Model). Fix a finite set Φ of tests, and a finite
set Ψ of simple Hoare assertions. W.l.o.g. we assume that Ψ contains exactly one
assertion {α}a{q} for every atomic program a and every Φ-consistent atom α.
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Table 3. The operational model that corresponds to the free game interpretation IΦΨ

(α, a) → (IΦ(q), id), where {α}a{q} ∈ Ψ

(α, a;h) → (IΦ(q), id;h), where {α}a{q} ∈ Ψ

(α, id) →
(α, p[f, g]) → (α, f), if α ≤ p

(α, p[f, g]) → (α, g), if α ≤ ¬p
(α,wpf) → (α, f@wpf), if α ≤ p

(α,wpf) → (α, id), if α ≤ ¬p
(α, f � g) → (α, f), (α, g)

(α, f � g) → (α, f), (α, g)

(α, id; h) → (α, h)

(α, p[f, g];h) → (a, f@h), if α ≤ p

(α, p[f, g];h) → (a, g@h), if α ≤ ¬p
(α, (wpf);h) → (α, f@(wpf);h), if α ≤ p

(α, (wpf);h) → (α, id; h), if α ≤ ¬p
(α, (f � g);h) → (α, f@h), (α, g@h)

(α, (f � g);h) → (α, f@h), (α, g@h)

(X, f) → (α, f), where α ∈ X ⊆ AtΦ

Let f be a program term, and E ⊆ AtΦ be a set of error atoms. We define the
operational model for Φ, Ψ, f, E, denoted GΦΨ (f, E), to be the safety game

GΦΨ (f, E) = (V, V0, V1,→, E × {id}),
where V = (AtΦ ×C(f))∪⋃

{α}a{q}∈Ψ (IΦ(q)×C(f)) and the transition relation
→ is defined in Table 3.
– The 0-vertices V0 ⊆ V consist of the pairs of the form (α, f � g), as well as

(α, a) and (α, a;h) for atomic program a.
– The 1-vertices V1 ⊆ V consist of the pairs (α, f � g), as well as (X, f) where

X ⊆ AtΦ is equal to some IΦ(q) with {α}a{q} ∈ Ψ .
The terminal vertices are the pairs (α, id), and the error vertices are E × {id}.

Proposition 28 (Operational & Denotational Semantics). Let Φ be a
finite set of tests, Ψ be a finite set of simple Hoare assertions, f be a program
term, α ∈ AtΦ, and X ⊆ AtΦ. Then, (α,X) ∈ IΦΨ (f) iff Player 0 has a winning
strategy from the vertex (α, f) in the safety game GΦΨ (f,∼X), where ∼X =
AtΦ \X .

Theorem 29 (Complexity Upper & Lower Bound). The strong Hoare
theory (over the class Dem) of while game schemes is EXPTIME-complete.

It is an immediate corollary of the above theorem that the weak Hoare theory
(over the class All) can also be decided in exponential time.

7 A Complete Hoare-Style Calculus for Synthesis

We introduce in Table 4 a Hoare-style calculus which can be used for the deduc-
tive synthesis of �-free programs that satisfy a Hoare specification. It is based
on the complete calculus for the Hoare theory of the class Dem, which contains
interpretations assigning non-angelic game functions (Def. 3) to the atomic pro-
grams (Table 1 with extra rule of a-meet of Table 2). The main differences are:
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Table 4. A sound and complete Hoare-style calculus for the synthesis of programs

{p}a{q} in Ψ
(hyp)

Φ, Ψ � a : {p}a{q} (skip)
Φ, Ψ � id : {p}id{p} (dvrg)

Φ, Ψ � ⊥ : {p}⊥{q}
Φ, Ψ � φ : {p}f{q}
Φ, Ψ � ψ : {q}g{r}

(seq)
Φ, Ψ � φ;ψ : {p}f ; g{r}

Φ, Ψ � φ : {q ∧ p}f{r}
Φ, Ψ � ψ : {q ∧ ¬p}g{r}

(cond)
Φ, Ψ � p[φ,ψ] : {q}if p then f else g{r}

Φ, Ψ � φ : {r ∧ p}f{r}
(loop)

Φ, Ψ � wpφ : {r}while p do f{r ∧ ¬p}
Φ, Ψ � φ : {p}fi{q}

(angi)Φ, Ψ � φ : {p}f1 � f2{q}
Φ, Ψ � φ : {p}f{q} Φ, Ψ � ψ : {p}g{q}

(dem)
Φ, Ψ � φ � ψ : {p}f � g{q}

Φ � p′ → p Φ, Ψ � φ : {p}f{q} Φ � q → q′
(weak)

Φ, Ψ � φ : {p′}f{q′}
Φ, Ψ � φ1 : {p1}f{q} Φ, Ψ � φ2 : {p2}f{q}

(join)
Φ, Ψ � p1[φ1, φ2] : {p1 ∨ p2}f{q}

(a-join0)
Φ, Ψ � a : {false}a{q}

Φ, Ψ � a : {p}a{q1} Φ, Ψ � a : {p}a{q2}
(a-meet)

Φ, Ψ � a : {p}a{q1 ∧ q2}
(a-meet0)

Φ, Ψ � a : {p}a{true}
Φ, Ψ � φ : {p1}f{q}
Φ, Ψ � φ : {p2}f{q}

(join′)
Φ, Ψ � φ : {p1 ∨ p2}f{q}

Φ, Ψ � φ1 : {p ∧ r}f{q}
Φ, Ψ � φ2 : {p ∧ ¬r}f{q}

(join′′)
Φ, Ψ � r[φ1, φ2] : {p}f{q}

(i) The rules join0 and meet0 (of Table 1) have been weakened into the rules
a-join0 and a-meet0 (this is inconsequential).

(ii) Every conclusion {p}f{q} is decorated with a �-free program term φ, which
satisfies the specification {p}φ{q} and implements a winning strategy for
the angel in the safety game described by the assertion {p}f{q}.

Another difference that deserves mention is the introduction in Table 4 of two
new variants (join′) and (join′′) of the rule (join). These rules are not necessary
for completeness and they can be omitted without breaking our theorems, but
they are useful from a practical viewpoint. The new rules (join′) and (join′′) are
sound, and they allow useful shortcuts in the synthesis of �-free programs.

Theorem 30 (Soundness). Suppose that a judgment Φ, Ψ � φ : {p}f{q} is
derivable using the Hoare-style calculus of Table 4. The following hold:
1. Every game interpretation I in Dem satisfies the formula Φ, Ψ ⇒ {p}f{q}.
2. Every nondeterministic interpretation R satisfies Φ, Ψ ⇒ {p}φ{q}.
3. Let R be a nondeterministic interpretation, and I be the game interpretation

that lifts R (see Definition 7). Then, liftR(φ) ⊆ I(f).
Part (3) of the theorem says that R(φ) implements I(f) when I lifts R.

Theorem 31 (Completeness). Let Φ and Ψ be finite sets of tests and simple
Hoare assertions respectively, and f be a program s.t. Φ, Ψ |=Dem {p}f{q}. Then,
there exists a �-free program φ such that Φ, Ψ � φ : {p}f{q}.
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Finally, we will see that solving safety games on finite graphs can be reduced
to deciding the Dem-validity of a Hoare implication involving a while game
scheme that simulates the safety game. This reduction thus gives us a com-
positional deductive way of designing winning strategies for safety games. Let
G = (V0, V1, R,E) be a safety game. For every vertex u ∈ V = V0∪V1, introduce
an atomic test pu, which asserts that the token is currently on the vertex u. We
take Φ to contain the axioms

∨
u∈V pu and ¬(pu∧pv) for all u, v ∈ V with u �= v.

The axioms of Φ say that the token is on exactly one vertex. So, we can identify
the set AtΦ of Φ-consistent atoms with the set {pu | u ∈ V }. For every vertex
u ∈ V , we introduce an atomic action u!, which moves the token to the vertex u.
So, we take Ψ to contain the axioms {true}u!{pu} for every u ∈ V . To emphasize
that Φ and Ψ depend on G, let us denote them by ΦG and ΨG respectively. For
an arbitrary vertex u ∈ V , define the program term (take transition from u) to
be equal to

⊔
v∈uR v! if u ∈ V0, and equal to

�

v∈uR v! if u ∈ V1. Now, we put

fG = while (
∨{pu | u ∈ V \ E}) do

if pu then (take transition from u)
· · ·

else if pw then (take transition from w)

which describes how the safety game is played. A play stops as soon as an error
vertex is encountered.

Theorem 32 (Safety Games). Let G = (V0, V1, R,E) be a finite safety game.
Player 0 has a winning strategy from u ∈ V0 ∪ V1 iff ΦG, ΨG � {pu}fG{false}.

8 Discussion and Conclusion

At a technical level, the present work is closely related to the line of work on the
propositional fragment of Hoare logic, called Propositional Hoare Logic or PHL
[6]. In [8,7], a propositional variant of Hoare logic for mutually recursive pro-
grams is investigated. The present work differs from both [6,8] in considering the
combination of angelic and demonic nondeterminism, which presents significant
new challenges for obtaining completeness and decision procedures.

An extension of Propositional Dynamic Logic, called Game Logic [12], is also
relevant to our work. We note that there are no completeness results for full
Game Logic, and that the theory we consider is not a fragment of Game Logic.
Even though hypotheses-free Hoare assertions {p}f{q} can be encoded in Dy-
namic Logic as partial correctness formulas p → [f ]q, there is no direct mech-
anism for encoding the hypotheses of an implication Φ, Ψ ⇒ {p}f{q} (which
would correspond to some kind of global consequence relation in Dynamic Logic).

We have considered here the weak (over the class All) and the strong (over the
class Dem) Hoare theories of dual nondeterminism, and we have obtained sound
and unconditionally complete Hoare-style calculi for both of them. We have also
shown that they can be both be decided in exponential time, and that the strong
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Hoare theory is EXPTIME-hard. Finally, we have extended our proof system so
that it constructs program terms for the strategies of the angel, thus obtaining
a sound and complete calculus for synthesis.
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Abstract. In this paper, we construct an infinitary variant of the rela-
tional model of linear logic, where the exponential modality is interpreted
as the set of finite or countable multisets. We explain how to interpret
in this model the fixpoint operator Y as a Conway operator alterna-
tively defined in an inductive or a coinductive way. We then extend the
relational semantics with a notion of color or priority in the sense of
parity games. This extension enables us to define a new fixpoint opera-
tor Y combining both inductive and coinductive policies. We conclude
the paper by mentionning a connection between the resulting model of
λ-calculus with recursion and higher-order model-checking.

Keywords: Linear logic, relational semantics, fixpoint operators, induc-
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1 Introduction

In many respects, denotational semantics started in the late 1960’s with Dana
Scott’s introduction of domains and the fundamental intuition that λ-terms
should be interpreted as continuous rather than general functions between do-
mains. This seminal insight has been so influential in the history of our discipline
that it remains deeply rooted in the foundations of denotational semantics more
than fourty-five years later. In the case of linear logic, this inclination for conti-
nuity means that the interpretation of the exponential modality

A �→ !A

is finitary in most denotational semantics of linear logic. This finitary nature of
the exponential modality is tightly connected to continuity because this modality
regulates the linear decomposition of the intuitionistic implication:

A ⇒ B = !A � B.

Typically, in the qualitative and quantitative coherence space semantics of linear
logic, the coherence space !A is either defined as the coherence space !A of finite
cliques (in the qualitative semantics) or of finite multi-cliques (in the quantita-
tive semantics) of the original coherence space A. This finiteness condition on
the cliques {a1, . . . , an} or multi-cliques [a1, . . . , an] of the coherence space !A
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captures the computational intuition that, in order to reach a given position b
of the coherence space B, every proof or program

f : !A � B

will only explore a finite number of copies of the hypothesis A, and reach at
the end of the computation a specific position ai in each copy of the coherence
space A. In other words, the finitary nature of the interpretation of !A is just
an alternative and very concrete way to express in these traditional models of
linear logic the continuity of proofs and programs.

In this paper, we would like to revisit this well-established semantic tradi-
tion and accomodate another equally well-established tradition, coming this
time from verification and model-checking. We find especially important to ad-
dress and to clarify an apparent antagonism between the two traditions. Model-
checking is generally interested in infinitary (typically ω-regular) inductive and
coinductive behaviours of programs which lie obviously far beyond the scope
of Scott continuity. For that reason, we introduce a variant of the relational
semantics of linear logic where the exponential modality, noted in this context

A �→ �A

is defined as the set of finite or countable multisets of the set A. From this follows
that a proof or a program

A ⇒ B = �A � B.

is allowed in the resulting infinitary semantics to explore a possibly countable
number of copies of his hypothesisA in order to reach a position inB. By relaxing
the continuity principle, this mild alteration of the original relational semantics
paves the way to a fruitful interaction between linear logic and model-checking.
This link between linear logic and model-checking is supported by the somewhat
unexpected observation that the binary relation

Y (f) : !X −→ A

defining the fixpoint Y(f) associated to a morphism

f : !X ⊗ !A −→ A

in the familiar (and thus finitary) relational semantics of linear logic is defined
by performing a series of explorations of the infinite binary tree

comb =

• ����◦ • ����◦ • ����◦ •
��◦

by an alternating tree automaton 〈Σ , Q , δf 〉 on the alphabet Σ = {•, ◦} de-
fined by the binary relation f . The key idea is to define the set of states of the
automaton as Q = A 	X and to associate a transition
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δf (•, a) = (x1 ∧ · · · ∧ xk , a1 ∧ · · · ∧ an )

of the automaton to any element (([x1, . . . , xk], [a1, . . . , an]), a) of the binary
relation f , where the xi’s are elements of X and the ai’s are elements of A ; and
to let the symbol ◦ accept any state x ∈ X . Then, it appears that the traditional
definition of the fixpoint operator Y(f) as a binary relation !X → A may be
derived from the construction of run-trees of the tree-automaton 〈Σ , Q , δf 〉 on
the infinitary tree comb. More precisely, the binary relation Y (f) contains all the
elements ([x1, . . . , xk], a) such that there exists a finite run-tree (called witness)
of the tree automaton 〈Σ , Q , δf 〉 accepting the state a with the multi-set of
states [x1, . . . , xk] collected at the leaves ◦. As far as we know, this automata-
theoretic account of the traditional construction of the fixpoint operator Y(f)
in the relational semantics of linear logic is a new insight of the present paper,
which we carefully develop in §4.

Once this healthy bridge between linear logic and tree automata theory iden-
tified, it makes sense to study variations of the relational semantics inspired by
verification. This is precisely the path we follow here by replacing the finitary
interpretation !A of the exponential modality by the finite-or-countable one �A.
This alteration enables us to define an inductive as well as a coinductive fixpoint
operator Y in the resulting infinitary relational semantics. The two fixpoint op-
erators only differ in the acceptance condition applied to the run-tree witness.
We carry on in this direction, and introduce a coloured variant of the relational
semantics, designed in such a way that the tree automaton 〈Σ , Q , δf 〉 asso-
ciated to a morphism f : !X ⊗ !A → A defines a parity tree automaton. This
leads us to the definition of an inductive-coinductive fixpoint operator Y tightly
connected to the current investigations on higher-order model-checking.

Related Works. The present paper is part of a wider research project devoted to
the relationship between linear logic, denotational semantics and higher-order
model-checking. The idea developed here of shifting from the traditional finitary
relational semantics of linear logic to infinitary variants is far from new. The clos-
est to our work in this respect is probably the work by Miquel [12] where stable
but non-continuous functions between coherence spaces are considered. However,
our motivations are different, since we focus here on the case of a modality !A
defined by finite-or-countable multisets in A, which is indeed crucial for higher-
order model-checking, but is not considered by Miquel. In another closely related
line of work, Carraro, Ehrhard and Salibra [5] formulate a general and possibly
infinitary construction of the exponential modality A �→ !A in the relational
model of linear logic. However, the authors make the extra finiteness assump-
tion in [5] that the support of a possibly infinite multiset in !A is necessarily
finite. Seen from that prospect, one purpose of our work is precisely to relax this
finiteness condition which appears to be too restrictive for our semantic account
of higher-order model-checking based on linear logic. In a series of recent works,
Salvati and Walukiewicz [15] [16] have exhibited a nice and promising connec-
tion between higher-order model checking and finite models of the simply-typed
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λ-calculus. In particular, they establish the decidability of weak MSO properties
of higher-order recursion schemes by using purely semantic methods. In compar-
ison, we construct here a cartesian-closed category of sets and coloured relations
(rather than finite domains) where ω-regular properties of higher-order recur-
sion schemes (and more generally of λY -terms) may be interpreted semantically
thanks to a colour modality. In a similar direction, Ong and Tsukada [22] have
recently constructed a cartesian-closed category of infinitary games and strate-
gies with similar connections to higher-order model-checking. Coming back to
linear logic, we would like to mention the works by Baelde [1] and Montelatici
[13] who developed infinitary variants (either inductive-coinductive or recursive)
of linear logic, with an emphasis on the syntactic rather than semantic side. In a
recent paper working like we do here at the converging point of linear logic and
automata theory, Terui [21] uses a qualitative variant of the relational semantics
of linear logic where formulas are interpreted as partial orders and proofs as
downward sets in order to establish a series of striking results on the complexity
of normalization of simply-typed λ-terms. Finally, an important related ques-
tion which we leave untouched here is the comparison between our work and the
categorical reconstruction of parity games achieved by Santocanale [17,18] using
the notion of bicomplete category, see also his more recent work with Fortier [6].

Plan of the Paper. We start by recalling in §2 the traditional relational model
of linear logic. Then, after recalling in §3 the definition of a Conway fixpoint
operator in a Seely category, we construct in §4 such a Conway operator for
the relational semantics. We then introduce in §5 our infinitary variant of the
relational semantics, and illustrate its expressive power in §6 by defining two
different Conway fixpoint operators. Then, we define in §7 a coloured modality
for the relational semantics, and construct in §8 a Conway fixpoint operator in
that framework. We finally conclude in §9.

2 The Relational Model of Linear Logic

In order to be reasonably self-contained, we briefly recall the relational model of
linear logic. The category Rel is defined as the category with finite or countable
sets as objects, and with binary relations between A and B as morphismsA → B.
The category Rel is symmetric monoidal closed, with tensor product defined as
(set-theoretic) cartesian product, and tensorial unit defined as singleton:

A⊗B = A×B 1 = {�}.
Its internal hom (also called linear implication) X � Y simply defined as X⊗Y .
Since the object ⊥ = 1 = {�} is dualizing, the category Rel is moreover ∗-
autonomous. The category Rel has also finite products defined as

A&B = {(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B}
with the empty set as terminal object �. As in any category with finite products,
there is a diagonal morphism ΔA : A → A&A for every object A, defined as

ΔA = {(a, (i, a)) | i ∈ {1, 2} and a ∈ A}
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Note that the category Rel has finite sums as well, since the negation A⊥ =
A � ⊥ of any object A is isomorphic to the object A itself. All this makes Rel a
model of multiplicative additive linear logic. In order to establish that it defines
a model of propositional linear logic, we find convenient to check that it satisfies
the axioms of a Seely category, as originally axiomatized by Seely [19] and then
revisited by Bierman [2], see the survey [11] for details. To that purpose, recall
that a finite multiset over a set A is a (set-theoretic) function w : A → N with
finite support, where the support of w is the set of elements of A whose image
is not equal to 0. The functor ! : Rel → Rel is defined as

!A = Mfin(A)
! f = {([a1, · · · , an], [b1, · · · , bn]) | ∀i, (ai, bi) ∈ f}

The comultiplication and counit of the comonad are defined as the digging and
dereliction morphisms below:

digA = {(w1 + · · ·+ wk, [w1, · · · , wk]) | ∀i, wi ∈ !A} ∈ Rel(!A, !!A)
derA = {([a], a) | a ∈ A} ∈ Rel(!A, A)

In order to define a Seely category, one also needs the family of isomorphisms

m0 : 1 −→ !�
m2

A,B : !A⊗ !B −→ ! (A&B )

which are defined as m0 = {(�, [])} and

m2
A,B = {(([a1, · · · , am], [b1, · · · , bn]), [(1, a1), · · · , (1, am), (2, b1), · · · , (2, bn)])}

One then carefully checks that the coherence diagrams expected of a Seely cat-
egory commute. From this follows that

Property 1. The category Rel together with the finite multiset interpretation of
the exponential modality ! defines a model of propositional linear logic.

3 Fixpoint Operators in Models of Linear Logic

We want to extend linear logic with a fixpoint rule:

!X⊗ !A � A
fix

!X � A

In order to interpret it in a Seely category, we need a parametrized fixpoint
operator, defined below as a family of functions

YX,A : C (!X ⊗ !A , A ) −→ C (!X,A)

parametrized by X,A and satisfying two elementary conditions, mentioned for
instance by Simpson and Plotkin in [20].
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– Naturality: for any g : !X � Z and f : !Z ⊗ !A � A, the diagram:

!X

digX

��

YX,A(k) �� A

! !X
! g

�� !Z

YZ,A(f)

��

commutes, where the morphism k : !X ⊗ !A � A in the upper part of the
diagram is defined as the composite

!X ⊗ !A
k ��

digX ⊗ !A

��

A

! !X ⊗ !A
! g⊗ !A

�� !Z ⊗ !A

f

��

– Parametrized fixpoint property: for any f : !X ⊗ !A � A, the following
diagram commutes:

!X

!ΔX

��

YX,A(f) �� A

! (X &X )

(m2
X,X )−1

��

!X ⊗ !A

f

��

!X ⊗ !X
!X ⊗digX

�� !X ⊗ ! !X

!X ⊗ !YX,A(f)

��

These two equations are fundamental but they do not reflect all the equational
properties of the fixpoint operator in domain theory. For that reason, Bloom and
Esik introduced the notion of Conway theory in their seminal work on iteration
theories [3,4]. This notion was then rediscovered and adapted to cartesian cate-
gories by Hasegawa [8], by Hyland and by Simpson and Plotkin [20]. Hasegawa
and Hyland moreover independently established a nice correspondence between
the resulting notion of Conway fixpoint operator and the notion of trace operator
introduced a few years earlier by Joyal, Street and Verity [9]. Here, we adapt
in the most straightforward way this notion of Conway fixpoint operator to the
specific setting of Seely categories. Before going any further, we find useful to
introduce the following notation: for every pair of morphisms

f : !X ⊗ !B � A and g : !X ⊗ !A � B

we write f � g : !X ⊗ !A � A for the composite:
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!X ⊗ !A

!ΔX ⊗ !A
��

f�g �� A

! (X &X )⊗ !A

(m2
X,X )−1 ⊗ !A

��

!X ⊗ !B

f

��

!X ⊗ !X ⊗ !A

!X ⊗m2
X,A

��

!X ⊗ ! ( !X ⊗ !A )

!X ⊗ ! g

��

!X ⊗ ! (X &A )
!X ⊗digX&A

�� !X ⊗ ! ! (X&A )

!X ⊗ ! (m2
X,A)−1

��

A Conway operator is then defined as a parametrized fixpoint operator satisfying
the two additional properties below:

– Parametrized dinaturality: for any f : !X ⊗ !B � A and g : !X ⊗ !A �
B, the following diagram commutes:

!X

!ΔX

��

YX,A(f�g) �� A

! (X &X )

(m2
X,X )−1

��

!X ⊗ !B

f

��

!X ⊗ !X
!X ⊗digX

�� !X ⊗ ! !X

!X ⊗ !YX,B(g�f)

��

– Diagonal property: for every morphism f : !X ⊗ !A⊗ !A � A,

YX,A ( (m2
X,A)

−1 ◦ YX&A,A ( f ◦ ( (m2
X,A)

−1 ⊗ !A ) ) (1)

belongs to !X � A, since

! (X &A )⊗ !A
(m2

X,A)−1 ⊗ !A
�� !X ⊗ !A⊗ !A

f �� A

is sent by YX&A,A to a morphism of ! (X &A ) � A, so that

(m2
X,A)

−1 ◦ YX&A,A ( f ◦ ( (m2
X,A)

−1 ⊗ !A ) : !X ⊗ !A � A

to which the fixpoint operator YX,A can be applied, giving the morphism
(1) of !X � A. This morphism is required to coincide with the morphism
YX,A(k), where the morphism k : !X ⊗ !A → A is defined as the composite

!X ⊗ !A

!X ⊗ !ΔA

��

k �� A

!X ⊗ ! (A&A )
!X ⊗ (m2

A,A)−1

�� !X ⊗ !A⊗ !A

f

��
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Just as expected, we recover in that way the familiar notion of Conway fixpoint
operator as formulated in any cartesian category by Hasegawa, Hyland, Simpson
and Plotkin:

Property 2. A Conway operator in a Seely category is the same thing as a Con-
way operator (in the sense of [8,20]) in the cartesian closed category associated
to the exponential modality by the Kleisli construction.

4 A Fixpoint Operator in the Relational Semantics

The relational model of linear logic can be equipped with a natural parameterized
fixpoint operator Y which transports any binary relation

f : !X ⊗ !A � A

to the binary relation

YX,A(f) : !X � A

defined in the following way:

YX,A (f) = { (w, a) | ∃witness ∈ run-tree(f, a) with w = leaves(witness)
and witness is accepting } (2)

where run-tree(f, a) is the set of “run-trees” defined as trees with nodes labelled
by elements of the set X 	A and such that:

– the root of the tree is labelled by a,
– the inner nodes are labelled by elements of the set A,
– the leaves are labelled by elements of the set X 	 A,
– and for every node labelled by an element b ∈ A:

• if b is an inner node, and letting a1, · · · , an denote the labels of its
children belonging to A and x1, · · · , xm the labels belonging to X :

b

an· · ·a1xm· · ·x1

then ([(1, x1), · · · , (1, xm), (2, a1), · · · , (2, an)], b) ∈ f
• if b is a leaf, then ([], b) ∈ f .

and where leaves(witness) is the multiset obtained by enumerating the labels of
the leaves of the run-tree witness. Recall that multisets account for the number
of occurences of an element, so that leaves(witness) has the same number of
elements as there are leaves in the run-tree witness. Moreover, leaves(witness) is
independent of the enumeration of the leaves, since multisets can be understood
as abelian versions of lists. Finally, we declare that a run-tree is accepting when
it is a finite tree.

Property 3. The fixpoint operator Y is a Conway operator on Rel.
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Fig. 1. An accepting run-tree
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Fig. 2. A non-accepting run-tree

Example 1. Suppose that

f = {([], a)} ∪ {([a, x], a)}
where A = {a} and X = {x}. Denote by Mn the finite multiset containing the
element x with multiplicity n. Then, for every n ∈ N, we have that (Mn, a) ∈
YX,A(f) since (Mn, a) can be obtained from the {a, x}-labelled witness run-
tree of Figure 1, which has n + 1 internal occurrences of the element a, and n
occurrences of the element x at the leaves. The witness tree is finite, so that it
is accepted. Now, consider the relation

g = {([a], a)} ∪ {([a, x], a)}
In that case, (Mn, a) is not an element of YX,A(g) for any n ∈ N because
all run-trees are necessarily infinite, as depicted in Figure 2, and thus, none is
accepting. As a consequence, YX,A(g) is the empty relation.

The terminology which we have chosen for the definition of Y is obviously
automata-theoretic. In fact, as we already mentioned in the introduction, this
definition may be formulated as an exploration of the infinitary tree comb on
the ranked alphabet Σ = { • : 2, ◦ : 0 } by an alternating tree automaton
associated to the binary relation f : !X ⊗ !A � A. Indeed, given an element
a ∈ A, consider the alternating tree automata Af,a = 〈Σ, X 	 A, δ, a〉 where,
for b ∈ A and x ∈ X :

δ(b, •)=
∨

(([x1,···, xn),[a1,··· , am]),b)∈f

( (1, x1) ∧ · · · ∧ (1, xn) ∧ (2, a1) ∧ · · · ∧ (2, am))

δ(x, •) = ⊥ δ(x, ◦) = � δ(b, ◦) =

{
� if ([], b) ∈ f

⊥ else

Note that we allow here the use of an infinite non-deterministic choice operator∨
in formulas describing transitions, but only with finite alternation. Now, our

point is that run-tree(f, a) coincides with the set of run-trees of the alternating
automaton Af,a over the infinite tree comb depicted in the Introduction. Notice
that only finite run-trees are accepting: this requires that for some b ∈ A the
transition δ(b, •) contains the alternating choice �, in which the exploration
of the infinite branch of comb stops and produces an accepting run-tree. This
requires in particular the existence of some b ∈ A such that ([], b) ∈ f .
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5 Infinitary Exponentials

Now that we established a link with tree automata theory, it is tempting to
relax the finiteness acceptance condition on run-trees applied in the previous
section. To that purpose, however, we need to relax the usual assumption that
the formulas of linear logic are interpreted as finite or countable sets. Suppose
indeed that we want to interpret the exponential modality

�A

as the set of finite or countable multisets, where a countable multiset of elements
of A is defined as a function

A −→ N

with finite or countable support. Quite obviously, the set

�N

has the cardinality of the reals 2ℵ0 . We thus need to go beyond the traditionally
countable relational interpretations of linear logic. However, we may suppose
that every set A interpreting a formula has a cardinality below or equal 2ℵ0 . In
order to understand why, it is useful to reformulate the elements of �A as finite
or infinite words of elements of A modulo an appropriate notion of equivalence
of finite or infinite words up to permutation of letters. Given a finite word u and
a finite or infinite word w, we write

u � w

when there exists a finite prefix v of w such that u is a prefix of v modulo
permutation of letter. We write

w1 � w2
def⇐⇒ ∀u ∈ A∗, u � w1 ⇐⇒ u � w2

where A∗ denotes the set of finite words on the alphabet A.

Proposition 1. There is a one-to-one relationship between the elements of �A
and the finite or infinite words on the alphabet A modulo the equivalence rela-
tion �.

This means in particular that for every set A, there is a surjection from the
set A∞ = A∗ 	Aω of finite or infinite words on the alphabet A to the set �A of
finite or countable multisets. An element of the equivalence class associated to
a multiset is called a representation of this multiset. Notice that if a set A has
cardinality at most 2ℵ0 , the set A∞ is itself bounded by 2ℵ0 , since (2ℵ0)ℵ0 =
2ℵ0×ℵ0 = 2ℵ0 . This property leads us to define the following extension of Rel:

Definition 1. The category Rel has the sets A,B of cardinality at most 2ℵ0 as
objects, and binary relations f ⊆ A×B between A and B as morphisms A → B.

Since a binary relation between two sets A and B is a subset of A × B, the
cardinality of a binary relation in Rel is also bounded by 2ℵ0 . Note that the
hom-set Rel(A,B) is in general of higher cardinality than 2ℵ0 , yet it is bounded
by the cardinality of the powerset of the reals. It is immediate to establish that:
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Property 4. The category Rel is ∗-autonomous and has finite products. As such,
it provides a model of multiplicative additive linear logic.

There remains to show that the finite-or-countable multiset construction � de-
fines a categorical interpretation of the exponential modality of linear logic.
Again, just as in the finitary case, we find convenient to check that Rel together
with the finite-or-countable multiset interpretation � satisfy the axioms of a
Seely category. In that specific formulation of a model of linear logic, the first
property to check is that:

Property 5. The finite-or-countable multiset construction � defines a comonad
on the category Rel.

The counit of the comonad is defined as the binary relation

derA : �A −→ A

which relates [a] to a for every element a of the set A. In order to define its
comultiplication, we need first to extend the notion of sum of multisets to the
infinitary case, which we do in the obvious way, by extending the binary sum
of N to possibly infinite sums in its completion N. In order to unify the notation
for finite-or-countable multisets with the one for finite multisets used in Section
2, we find convenient to denote by [a1, a2, · · · ] the countable multiset admitting
the representation a1a2 · · ·

We are now ready to describe the comultiplication

digA : �A → � �A

of the comonad � as a straightforward generalization of the finite case:

digA = {(w1 + · · ·+ wk, [w1, · · · , wk]) | ∀i ∈ {1, · · ·n}, wi ∈ �A}
∪ {(w1 + · · ·+ wk + · · · , [w1, · · · , wk, · · · ]) | ∀i ∈ N, wi ∈ �A}

One then defines the isomorphism

m0 = {(�, [])} : 1 −→ �� (3)

and the family of isomorphisms

m2
A,B : �A ⊗ �B −→ � (A&B ) (4)

indexed by the objectsA,B of the categoryRel which relates every pair (wA, wB)
of the set �A ⊗ �B with the finite-or-countable multiset

({1} × wA) + ({2} × wB) ∈ � (A&B )

where the operation {1} × wA maps the finite-or-countable multiset wA = [a1,
a2, . . .] of elements of A to the finite-or-countable multiset [(1, a1), (1, a2), . . .] of
�(A&B). We define {2} × wB similarly. We check carefully that

Property 6. The comonad � on the category Rel together with the isomorphisms
(3) and (4) satisfy the coherence axioms of a Seely category – see [11].

In other words, this comonad � over the category Rel induces a new and in-
finitary model of propositional linear logic. The next section is devoted to the
definition of two different fixpoint operators living inside this new model.
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6 Inductive and Coinductive Fixpoint Operators

In the infinitary relational semantics, a binary relation

f : �A � B

may require a countable multiset w of elements (or positions) of the input set A
in order to reach a position b of the output set B. For that reason, we need
to generalize the notion of alternating tree automata to finite-or-countable al-
ternating tree automata, a variant in which formulas defining transitions use of
a possibly countable alternation operator

∧
and of a possibly countable non-

deterministic choice operator
∨
. The generalization of the family of automata

Af,a of §4 leads to a new definition of the set run-tree(f, a), in which witness
trees may have internal nodes of countable arity. A first important observation
is the following result:

Property 7. Given f : �A ⊗ �X � A, a ∈ A, and witness ∈ run-tree(f, a),
the multiset leaves(witness) is finite or countable.

An important consequence of this observation is that the definition of the Con-
way operator Y given in Equation (2) can be very simply adapted to the finite-
or-countable interpretation of the exponential modality � in the Seely category
Rel. Moreover, in this infinitary model of linear logic, we can give more elaborate
acceptation conditions, among which two are canonical:

– considering that any run-tree is accepting, one defines the coinductive fix-
point on the model, which is the greatest fixpoint over Rel.

– on the other hand, by accepting only trees without infinite branches, we
obtain the inductive interpretation of the fixpoint, which is the least fixpoint
operator over Rel.

It is easy to see that the two fixpoint operators are different: recall Exam-
ple 1, and observe that the binary relation g is also a relation in the infinitary
semantics. It turns out that its inductive fixpoint is the empty relation, while its
coinductive fixpoint coincides with the relation

{Mn, a) | ∀n ∈ N} ∪ {([x, x, · · · ], a)}
Inthiscoinductive interpretation, therun-treeobtainedbyusing infinitely([x, a], a)
and never ([a], a) is accepting and is the witness tree generating {([x, x, · · · ], a)}.
Property 8. The inductive and coinductive fixpoint operators over the infinitary
relational model of linear logic are Conway operators on this Seely category.

7 The Coloured Exponential Modality

In their semantic study of the parity conditions used in higher-order model-
checking, and more specifically in the work by Kobayashi and Ong [10], the
authors have recently discovered [7] that these parity conditions are secretly
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regulated by the existence of a comonad � which can be interpreted in the
relational semantics of linear logic as

� A = Col ×A

where Col = {1, . . . , N} is a finite set of integers called colours. The colours
(or priorities) are introduced in order to regulate the fixpoint discipline: in the
immediate scope of an even colour, fixpoints should be interpreted coinductively,
and inductively in the immediate scope of an odd colour. It is worth mentioning
that the comonad � has its comultiplication defined by the maximum operator
in order to track the maximum colour encountered during a computation:

δA = {(max(c1, c2), a), (c1, (c2, a))) | c1, c2 ∈ Col, a ∈ A} : �A � ��A
εA = {(1, a), a) | a ∈ A} : �A � A

whereas the counit is defined using the minimum colour 1. The resulting comonad
is symmetric monoidal and also satisfies the following key property:

Property 9. There exists a distributive law λ : � � → � � between comonads.

A fundamental consequence is that the two comonads can be composed into a
single comonad ��� defined as follows:

��� = � ◦ �
The resulting infinitary and coloured relational semantics of linear logic is ob-
tained from the category Rel equipped with the composite comonad ���.

Theorem 1. The category Rel together with the comonad ��� defines a Seely
category and thus a model of propositional linear logic.

8 The Inductive-Coinductive Fixpoint Operator Y

We combine the results of the previous sections in order to define a fixpoint oper-
ator Y over the infinitary coloured relational model, which generalizes both the
inductive and the coinductive fixpoint operators. Note that in this infinitary and
coloured framework, we wish to define a fixpoint operator Y which transports a
binary relation

f : ���X ⊗ ���A � A

into a binary relation

YX,A (f) : ���X � A.

To that purpose, notice that the definition given in §4 of the set run-tree(f, a)
of run-trees extends immediately to this new coloured setting, since the only
change is in the set of labellings. Again, accepting all run-trees would lead to
the coinductive fixpoint, while accepting only run-trees whose branches are finite
would lead to the inductive fixpoint. We now define our acceptance condition
for run-trees in the expected way, directly inspired by the notion of alternating
parity tree automaton. Consider a run-tree witness, and remark that its nodes



54 C. Grellois and P.-A. Melliès

are labelled with elements of (Col×A )∪(Col×X ). We call the colour of a node
the first element of its label. Coloured acceptance is then defined as follows:

– a finite branch is accepting,
– an infinite branch is accepting precisely when the greatest colour appearing

infinitely often in the labels of its nodes is even.
– a run-tree is accepting precisely when all its branches are accepting.

Note that a run-tree whose nodes are all of an even colour will be accepted
independently of its depth, as in the coinductive interpretation, while a run-tree
labelled only with odd colours will be accepted precisely when it is finite, just
as in the inductive interpretation. We call the fixpoint operator associated with
the notion of coloured acceptation the inductive-coinductive fixpoint operator
over the infinitary coloured relational model.

Theorem 2. The inductive-coinductive fixpoint operator Y defined over the in-
finitary coloured relational semantics of linear logic is a Conway operator.

9 Conclusion

In this article, we introduced an infinitary variant of the familiar relational se-
mantics of linear logic. We then established that this infinitary model accomo-
dates an inductive as well as a coinductive Conway operatorY. This propelled us
to define a coloured relational semantics and to define an inductive-coinductive
fixpoint operator based on a parity acceptance condition. The authors proved re-
cently [7] that a recursion scheme can be interpreted in this model in such a way
that its denotation contains the initial state of an alternating parity automaton
if and only if the tree it produces satisifies the MSO property associated to the
automaton. A crucial point related to the work by Salvati and Walukiewicz [14]
is the fact that a tree satisfies a given MSO property if and only if any suitable
representation as an infinite tree of a λY -term generating it also does. We are
thus convinced that this infinitary and coloured variant of the relational seman-
tics of linear logic will play an important and clarifying role in the denotational
and compositional study of higher-order model-checking.
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Abstract. We show that Hyland and Ong’s game semantics for PCF
can be presented using normalization by evaluation (nbe). We use the
bijective correspondence between innocent well-bracketed strategies and
PCF Böhm trees, and show how operations on PCF Böhm trees, such as
composition, can be computed lazily and simply by nbe. The usual equa-
tions characteristic of games follow from the nbe construction without
reference to low-level game-theoretic machinery. As an illustration, we
give a Haskell program computing the application of innocent strategies.

1 Introduction

In game semantics [17,3] types are interpreted as games between two players
(Player/Opponent), and programs as strategies for Player. Combinators for pro-
grams become operations on strategies that can be quite complex. Composition
of strategies for instance, involves an intricate mechanism of parallel interaction
plus hiding à la CCS. The proof that they satisfy required equations is typically
lengthy and non-trivial. In Hyland and Ong’s game semantics of PCF [17] in
particular, strategies interpreting programs are innocent : recall that a strategy
is a set of admissible plays for Player, and is innocent when Player’s action
only depends on a subset of the play called the P-view. So innocent strategies
are specified – and often defined as – a set of P-views (the view functions).
Composing two such strategies involves computing the full set of plays of both
strategies, composing these using parallel interaction plus hiding, and computing
the P-views of the compound strategy. These computations are quite complex.

Several authors have tried to give more direct or elegant presentations of
innocent strategies and their composition. Quite early, Curien gave syntactic
representations of innocent strategies as abstract Böhm trees [10] and gave an
abstract machine (the VAM) to compose them – this machinery is also quite
involved. Amadio and Curien [5] reason about innocent strategies for PCF syn-
tactically as PCF Böhm trees and compose them via infinitary rewriting. Finally
and more recently, Harmer, Hyland and Melliès gave an elegant categorical re-
construction of innocent strategies from a basic category of simple games [16].
The resulting algorithm to compose strategies is however still quite involved.

In the present paper we provide yet another presentation of the innocent
game semantics for PCF. Like Amadio and Curien we represent strategies as
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PCF Böhm trees. However, we use normalization by evaluation (nbe) [6] rather
than infinitary rewriting. As Aehlig and Joachimski [4] showed, nbe can be used
for computing the potentially partial and infinite Böhm trees of the untyped
lambda calculus, and not only for computing normal forms. To this end they
used lazy evaluation for computing the finite approximations of the Böhm tree.

We here adapt the nbe technique to PCF Böhm trees. To compute an oper-
ation on terms (PCF Böhm trees, strategies), we first evaluate them in a non-
standard semantic domain where we then perform the corresponding semantic
operation. Finally, the result is read back to the resulting PCF Böhm tree. For
example, composition of PCF Böhm trees is performed by ordinary function
composition in the semantic domain.

Finally note that our construction and its soundness are independent of the
standard presentation of game semantics. The fact that our model agrees with
the standard presentation of the innocent model for PCF follows from high-level
reasons that use the soundness, adequacy and definability properties of game
semantics. In particular, our contribution does not (and does not aim to) give
insights into the low-level combinatorics of innocent interaction.

Related work. The first author and Murawski [9] use nbe to generate representa-
tions of innocent strategies in boolean PCF by higher-order recursion schemes.
They exploit the fact that booleans can be replaced by their Church encoding.
In contrast we consider here PCF with a datatype for lazy natural numbers,
which is infinite. Thus our proof requires different techniques and is significantly
more complex. Our approach is not particular to natural numbers and should
smoothly extend to McCusker’s games for recursive types [18].

Our non-standard semantic domain is similar to those used for previous work
on untyped nbe [15,14], where semantic elements can be thought of as infinitary
terms in higher order abstract syntax (hoas). We define a semantic domain for
PCF Böhm trees in hoas, and show how to compute semantic operations in
such a way that certain commuting conversions are executed. This is a key
difference to the semantic domain used for normalizing terms in Gödel system
T [1], which does not include these commuting conversions. We remark that
although this approach to nbe initially was used for untyped nbe, it can also
be used to advantage for typed languages. For example, it was a crucial step in
devising nbe for dependent type theory [2] to use a similar semantic domain of
untyped normal forms in hoas.

Plan of the paper. The rest of the paper is organized as follows. In Section 2
we introduce the syntax and reduction rules of PCF and our notion of model.
We recall some notions from Hyland-Ong game semantics including the notions
of innocent strategy and PCF Böhm tree. We also write a Haskell program
for application of PCF Böhm trees using nbe. In Section 3 we provide a domain
interpretation of the non-standard model used in the Haskell program. We prove
that the interpretation function preserves all syntactic conversions of PCF, and
that the interpretation of a term is identical to its PCF Böhm tree. In Section 4
we use these results to reconstruct the game model of PCF from nbe.
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2 PCF, Innocent Strategies, and PCF Böhm Trees

2.1 PCF

Our version of PCF is close to Plotkin’s original [20], except that we consider
lazy (rather than flat) natural numbers. (Ultimately, we are interested in the
connection between game semantics and Martin-Löf’s meaning explanations [13],
which are based on lazy evaluation of the terms of intuitionistic type theory.)
Nothing in our approach is particular to natural numbers and we believe the
approach extends to a more general setting of recursive types.

Types and terms. The types of PCF are generated by the type N of natural
numbers, and function types A → B. A context is a list of types denoted by
Γ,Δ. The empty context is []. We define the set of raw terms by the following
grammar, where n ∈ N is a natural number.

a, b, c ::= n | app a b | λa | 0 | suc a | casea b c | fix a | Ω
Note that we use de Bruijn indices : the variable n refers to (if it exists) the
first λ encountered after crossing n occurrences of λ when going up the syntax
tree from the variable to the root. We include the non-terminating program Ω.
Terms are assigned types using standard typing rules, displayed in Figure 1.

An−1, . . . , A0 � i : Ai

Γ � b : A → B Γ � a : A

Γ � app b a : B

Γ,A � b : B

Γ � λ b : A → B Γ � 0 : N

Γ � a : N Γ � b : A Γ,N � c : A

Γ � case a b c : A

Γ � a : N

Γ � suc a : N

Γ,A � c : A

Γ � fix c : A Γ � Ω : N

Fig. 1. Typing rules for PCF

Substitution. A substitution is a sequence of terms, written Γ � 〈an−1, . . . , a0〉 :
An−1, . . . , A0 if for all 0 ≤ i ≤ n− 1 we have Γ � ai : Ai. For |Γ | = n we define
abbreviations idΓ = 〈n− 1, . . . , 0〉, pΓ,A = 〈n, . . . , 1〉 and qΓ,A = 0. We have
Γ � idΓ : Γ and Γ,A � pΓ,A : Γ . We will often just write id, p, and q.

(case a b c)[γ] = case a[γ] b[γ] c[〈γ ◦ p,q〉] (suca)[γ] = suc (a[γ]) 0[γ] = 0
(app f a)[γ] = app (f [γ]) (a[γ]) (fix c)[γ] = fix (c[〈γ ◦ p, q〉]) Ω[γ] = Ω

(λf)[γ] = λ (f [〈γ ◦ p, q〉])

Fig. 2. Substitution on term constructors

We define the action a[γ] of a substitution Δ � γ : Γ on a term Γ � a : A by
induction on a, with i[〈an−1, . . . , a0〉] = ai for variables and following the rules
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of Figure 2 for term constructors. The composition of substitutions is defined by
〈an−1, . . . , a0〉 ◦ γ = 〈an−1[γ], . . . , a0[γ]〉. When composing substitutions we will
sometimes omit the operator ◦ and just use juxtaposition. By abuse of notation,
we write 〈γ, a〉 for the sequence obtained by adding a at the end of γ.

c →η1 λ (app (c[p]) q)
app (λa) b →β1 a[〈id, b〉] a →η2 case a 0 (suc q)
case 0 b c →β2 b case (case a b f) b′ f ′ →γ1 case a (case b b′ f)

case (suc a) b c →β3 c[〈id, a〉] (case f (b′[p])
fix f →δ f [〈id,fix f〉] (f ′[〈pp, q〉]))

Ω →Ω Ω app (case a b f) c →γ2 case a (app b c)(app f (c[p]))

Fig. 3. Reduction rules for PCF

Reduction. We equip PCF with the (context closure of the) reduction rules in
Figure 3. The rules are typed : a reduction applies when both sides typecheck.
We write ≈ for convertibility, i.e. the contextual equivalence closure of these
relations. The two columns of Figure 3 will be treated quite differently in our
development. The left hand side contains the computation rules which are used
for evaluating a closed term of ground type. The right hand side contains η-
expansion and commutating conversions, which are additional rules needed in
Section 3.4 for transforming an arbitrary term to its PCF Böhm tree.

We will also need head reduction. For that, define head environments as:

H [] ::= [] | case H [] b c | app H [] b | λ H []

Head reduction →h is H [→α] for α ∈ {β1, β2, β3, δ, Ω} a computation rule.
Head reduction is deterministic: for each term, at most one head reduction ap-
plies. A term a is a head normal form if it is →h-normal. If a →∗

h a′ where a′

is →h-normal, then a′ is the head normal form of a.

Non-dependent cwfs. Usually a model of PCF is a cartesian closed category with
extra structure. We prefer to use a notion of model which separates contexts and
types, and thus more closely matches the structure of our syntax. For that we use
categories with families (cwfs) [12]. Cwfs provide a notion of model of dependent
type theory which is both close to the syntax, and completely algebraic: it can
be presented as a generalized algebraic theory in the sense of Cartmell [7].

Since we do not have dependent types we use non-dependent cwfs, that is cwfs
where the set of types Type(Γ ) does not depend on the context Γ .

Definition 1. A non-dependent cwf consists of a set of types Type, plus:

– A base category C. Its objects represent contexts and its morphisms represent
substitutions. We write Δ � γ : Γ for a context morphism from Δ to Γ . The
identity is written Γ � idΓ : Γ and composition is written γ ◦ δ, or just γδ.
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– A functor T : Cop → SetType. For each context Γ and type A this gives
a set T (Γ )(A), written Γ � A, of terms of type A in context Γ . We write
Γ � a : A for a ∈ Γ � A. For γ : Δ → Γ a morphism in C, then T (γ)(A) :
Γ � A → Δ � A provides a substitution operation, written Δ � a[γ] : A.

– A terminal object [] of C which represents the empty context and a terminal
morphism 〈〉 : Δ → [] which represents the empty substitution.

– A context comprehension which to an object Γ in C and a type A ∈ Type
associates an object Γ ·A of C, a morphism pΓ,A : Γ ·A → Γ of C and a term
Γ ·A � qΓ,A : A such that the following universal property holds: for each
object Δ in C, morphism γ : Δ → Γ , and term a : Δ � A, there is a unique
morphism θ = 〈γ, a〉 : Δ → Γ ·A, such that pΓ,A ◦ θ = γ and qΓ,A[θ] = a.

Democratic [8] non-dependent cwfs are equivalent to categories with finite prod-
ucts, but mimic more closely the structure of syntax. To describe the intended
models of PCF we equip non-dependent cwfs with more structure, as follows.

Definition 2. A non-dependent cwf supports PCF, or is a pcf-cwf, iff it is
closed under the types and term constructors of Figure 1 (other than variable)
and validates the equations and reduction rules of Figures 2 and 3, which have
been chosen to make formal sense in an arbitrary non-dependent cwf as well as in
the syntax of PCF. (A de Bruijn variable n in PCF is interpreted as an iterated
projection q[pn] and all other syntactic constructs have a direct interpretation.)

2.2 Innocent Strategies for PCF

We start with a simple operational presentation of the pcf-cwf of innocent well-
bracketed strategies playing on (arenas for) PCF types.

N → N → N
q OQ

q PQ
0 OA

q PQ
0 OA

0 PA

Fig. 4. A play on N → N → N

Game semantics formalize the intuition that
a program is a strategy, and that execution
is a play of this strategy against its execution
environment according to rules determined by
the type. For instance, a dialogue of type N →
N → N could be that of Figure 4. Moves are
either Questions (Q) or Answers (A) by either
Player (P) or Opponent (O). Questions corre-
spond to variable calls, and Answers to eval-
uation to terminating calls. The lines between
moves are justification pointers : they convey

information about thread indexing – here they are redundant, but become nec-
essary on higher types. The diagram above should be read as follows: Opponent
asks for the output of a function f : N → N → N. This function f (Player)
proceeds to interrogate its first argument. This argument is part of the execu-
tion environment of f , so it is played by Opponent – if it evaluates to 0, then
f evaluates its second argument. If it also evaluates to 0, then f answers 0. A
strategy is a collection of such interactions, informing the full behaviour of a
program under execution.
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The dialogue above, considered as a branch of a strategy, can also be repre-
sented syntactically by the term � λ (λ (case 1 (case 0 0 Ω) Ω)) : N → N → N,
where the occurrences of Ω indicate parts of the term for which the dialogue
above gives no information. In general a dialogue such as the above where (1)
Opponent moves are justified by their immediate predecessor and (2) every An-
swer is justified by the last unanswered Question, can always be represented
syntactically as a partial term – such dialogues are usually called well-bracketed
P-views. In our example, the dialogue is a branch of the strategy for left-plus
that first evaluates its first argument (and copies lazily each successor), then
the second. The strategy for left-plus contains countably many dialogues. As a
typical example, we show the dialogue for the computation of 2 + 2 in Figure 5.

N → N → N
q OQ

q PQ
S OA

S PA
q OQ

q PQ
S OA

S PA

q OQ

q PQ
0 OA

q PQ
S OA

S PA
q OQ

q PQ
S OA

S PA

q OQ

q PQ
0 OA

0 PA

Fig. 5. left-plus

Representing these plays syntactically and pasting
them together, one obtains the infinitary term � plus :
N → N → N defined by

plus = λ (λ (case 1 cc (suc plus1)))

cc = case 0 0 (suc cc)

plusn = case 0 (casen 0 (suc cc)) (suc plusn+1)

Here cc stands for copycat, the back-and-forth copying
performed by the strategy when evaluating its second ar-
gument. Note that the de Bruijn indices grow. Indeed the
second argument of case is an abstraction which binds a
new variable, so the address of the second argument of
f corresponds to larger and larger integers. Alternatively
one can say that each Opponent Answer S in the plays
provide a possible justifier that has to be crossed before
reaching the second argument of f . We call the infinitary
term above the PCF Böhm tree of left-plus.

The ideas above can easily be extended to represent
syntactically (as an infinitary term) any innocent well-
bracketed strategy, i.e. set of well-bracketed P-views on
first-order PCF types N → . . . → N → N. In general how-
ever, types of PCF have the form An−1 → . . . → A0 → N,
where each Ai has itself the form Ai,pi−1 → . . . → Ai,0 →
N. In that case the discussion above still applies to the re-
striction of a strategy to its “first-order sub-type”, which
provides the backbone of a PCF Böhm tree. However,

Player also needs to specify its behaviour should Opponent interrogate any of the
arguments Ai,j of a Player Question at the root of Ai. For each such Opponent
Question, following (co-)inductively the same reasoning, a strategy for Player
would inform a new strategy playing on An−1 → . . . → A0 → Ai,j that can
be set as an argument to the variable call matching the Player Question under
consideration. This presentation of a strategy is called its PCF Böhm tree.
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PCF Böhm trees. We now describe the terms obtained by this process. There
are two kinds. On the one hand we define the neutral PCF Böhm trees which
specify one Player Question (a variable call) along with the Player sub-strategies
for the arguments of this call. On the other hand we define PCF Böhm trees wrap
neutral PCF Böhm trees in a case statement, specifying the Player sub-strategies
to play if Opponent answers 0 or S. We write Γ �Ne e : A if e is a finite neutral
Böhm tree and Γ �Bt t : A if t is a finite PCF Böhm trees of type A in context
Γ . They are defined as follows:

An−1, . . . , Ai, . . . , A0 �Ne i : Ai

Γ �Ne e : A → B Γ �Bt t : A

Γ �Ne app e t : B

Γ,A �Bt t : B

Γ �Bt λ t : A → B

Γ �Bt a : N

Γ �Bt suca : N

Γ �Ne e : N Γ �Bt t : N Γ,N �Bt t
′ : N

Γ �Bt case e t t
′ : N Γ �Bt Ω : N Γ �Bt 0 : N

Fig. 6. Typing rules for finite PCF Böhm trees

These two sets are partially ordered by (the contextual closure of) Ω ≤ a for all
a, and their infinitary counterparts are defined as ideals (non-empty downward
directed sets) for this order [21] – we will often keep this ideal completion implicit.
From now on all PCF Böhm trees are considered infinitary,

The representation process outlined above yields a PCF Böhm tree in this
formal sense. Moreover, this PCF Böhm tree is an infinitary PCF term, so can
be sent back to a strategy using (by continuity) the usual game-theoretic inter-
pretation of terms. This operation is inverse to the reification process described
above, yielding an isomorphism between PCF Böhm trees and innocent strate-
gies. In fact the correspondence is so direct that in the remainder of this paper we
will identify them, and simply consider PCF Böhm trees as our representation
of innocent strategies.

This correspondence is nothing new – it is one of the fundamental properties
of the game model leading to definability: see eg Theorem 5.1 in [11]. It is easy
to adapt this to lazy PCF. It is implicit in McCusker’s definability process for
a language with lazy recursive types (see Proposition 5.8 in [18]). We have not
spelled out this connection more formally, since it would take too much space to
introduce the required game-theoretic machinery.

2.3 Computing Operations on Strategies by nbe

To conclude this section we present (one aspect of) our result: that we can com-
pute operations on innocent well-bracketed strategies, regarded as PCF Böhm
trees, by nbe. As an example, a Haskell program that, given two infinite PCF
Böhm trees as input, produces lazily the application of one to the other. All other
operations of pcf-cwfs can be defined in an analogous way. In the remaining sec-
tions we will then show that application, and all the other pcf-cwf operations,
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satisfy the expected equations, and that we get a pcf-cwf PCFInn of PCF-Böhm
trees (or innocent, well-bracketed strategies).

The Haskell datatype for representing PCF Böhm trees and types of PCF is:

data Tm = ZeroTm | SuccTm Tm | LamTm Tm | CaseTm Tm Tm Tm

| VarTm Int | AppTm Tm Tm

data Ty = Nat | Arr Ty Ty

It should be clear to the reader how inhabitants of Tm include representatives
for PCF Böhm trees, hence for innocent strategies. The first step is to interpret
PCF Böhm trees in a semantic domain D, which is a hoas version of Tm:

data D = ZeroD | SuccD D | LamD (D -> D) | CaseD D D (D -> D)

| VarD Int | AppD D D

We then introduce two semantic operations appD :: D -> D -> D for appli-
cation, and caseD :: D -> D -> (D -> D) -> D for case construction.

appD (LamD f) d’ = f d’

appD (CaseD e d f) d’ = CaseD e (appD d d’) (\x -> appD (f x) d’)

appD (VarD n) d’ = AppD (VarD n) d’

appD (AppD e d) d’ = AppD (AppD e d) d’

caseD ZeroD e’ f’ = e’

caseD (SuccD d) e’ f’ = f’ d

caseD (CaseD e d f) e’ f’ = CaseD e (caseD d e’ f’)

(\x -> caseD (f x) e’ f’)

caseD (AppD e d) e’ f’ = CaseD (AppD e d) e’ f’

caseD (VarD i) e’ f’ = CaseD (VarD i) e’ f’

We can interpret a PCF Böhm tree in the semantic domain D by the function
eval :: Tm -> [D] -> D. It takes a term and interprets it in a given environ-
ment, encoded as a list of elements of the domain.

eval ZeroTm env = ZeroD

eval (SuccTm t) env = SuccD (eval t env)

eval (LamTm t) env = LamD (\x -> eval t (x:env))

eval (CaseTm t1 t2 t3) env = caseD (eval t1 env) (eval t2 env)

(\x -> eval t3 (x:env))

eval (VarTm i) env = env !! i

eval (AppTm t1 t2) env = appD (eval t1 env) (eval t2 env)

An element of the semantic domain can be read back to a term using the
function readbackD :: Int -> D -> Tm, defined as follows.

readbackD n ZeroD = ZeroTm

readbackD n (SuccD d) = SuccTm (readbackD n d)

readbackD n (LamD f) = LamTm (readbackD (n+1) (f (VarD n)))

readbackD n (CaseD e d f) = CaseTm (readbackD n e) (readbackD n d)

(readbackD (n+1) (f (VarD n)))

readbackD n (VarD i) = VarTm (n-i-1)

readbackD n (AppD e d) = AppTm (readbackD n e) (readbackD n d)



64 P. Clairambault and P. Dybjer

Finally, we obtain readback :: Int -> ([D] -> D) -> Tm as

readback n f = readbackD n (f [VarD (n-i-1) | i <- [0..(n-1)]])

The application of a PCF Böhm tree (innocent strategy) Γ �Bt t : A → B
to Γ �Bt t

′ : A with |Γ | = n can now be computed lazily as app n t t’, where
app :: Int -> Tm -> Tm -> Tm is defined by

app n t t’ = readback n (\x -> appD (eval t x) (eval t’ x))

We will in the following sections prove that this simple definition computes
the claimed result. We can define functions for all other pcf-cwf combinators in
a similar way, and prove that they satisfy the pcf-cwf-laws. In this way we get a
pcf-cwf PCFInn which is an alternative nbe-based presentation of the innocent
strategies model of PCF – these will come as a by-product of a nbe procedure
producing the innocent strategy for a term.

3 The Domain Interpretation

To prove the correctness of the nbe program we use its denotational semantics
in Scott domains. We first show that the interpretation function is sound w.r.t.
syntactic conversion and computationally adequate. Then we show that the η-
expanded interpretation of a term is equal to that of its PCF Böhm tree.

3.1 A Semantic Domain

D and its combinators. The Haskell datatype D can be interpreted as a Scott
domain D which is the solution of the domain equation given by the constructors:

LamD : (D → D) → D SucD : D → D 0D : D
AppD : D → D → D CaseD : D → D → (D → D) → D VarD : N → D

We write ΩD for the bottom element. The two semantic operations appD : D →
D → D and caseD : D → D → (D → D) → D are defined as their Haskell
counterparts in Section 2.3.

Interpretation of PCF. Let Tm be the set of elements of the raw syntax of PCF.
If E is a set, [E] denotes the set of lists of elements of E. As for substitutions, we
write 〈〉 for the empty list. If ρ ∈ [D] and d ∈ D, we write ρ :: d for the addition
of d at the end of ρ1 Finally, ρ(i) is the i-th element of ρ starting from the right
and from 0, if it exists, and ΩD otherwise.

The interpretation of PCF is defined as a function �−� : Tm → [D] → D:

[[fix f ]] ρ =
⊔

n∈N
(λd. [[f ]] (ρ :: d))n(ΩD) [[n]] ρ = ρ(n)

[[app s t]] ρ = appD ([[s]] ρ) ([[t]] ρ) [[suc a]] ρ = SucD ([[a]] ρ)
[[λ t]] ρ = LamD (λx.[[t]] (ρ :: x)) [[Ω]] ρ = ΩD

[[casea b c]] ρ = caseD ([[a]] ρ) ([[b]] ρ) (λx. [[c]] (ρ :: x)) [[0]] ρ = 0D

1 This notational difference from the Haskell program ensures that the order of envi-
ronments matches that of the context.
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It is extended to substitutions γ = 〈an−1, . . . , a0〉 by [[γ]] ρ =
〈[[an−1]] ρ, . . . , [[a0]] ρ〉.

3.2 Soundness for Conversion

Here, we prove that the interpretation described above is sound with respect to
conversion in PCF. Reduction rules of PCF come in three kinds: the computation
rules (β1, β2, β3, δ, Ω), the commutation rules (γ1, γ2) and the η-expansion rules
(η1, η2). Soundness w.r.t. computation rules follows from standard (and simple)
verifications, and we verify only the commutation and η-expansion rules.

Commutation rules. The interpretation of PCF validates γ1 and γ2.

Lemma 1. For all d1, d2, d3 ∈ D and f, f1, f2 ∈ D → D, we have:

appD (caseD d1 d2 f) d3 = caseD d1 (appD d2 d3) (λx. appD (f x) d3)

caseD (caseD d1 d2 f1) d3 f2 = caseD d1 (caseD d2 d3 f2) (λx. caseD (f1 x) d3 f2)

Proof. We apply Pitts’ co-induction principle [19] for proving inequalities in re-
cursively defined domains. The proof proceeds by defining a relationR containing
the identity relation on D and all pairs (for d1, d2, d3 ∈ D and f ∈ D → D):

(appD (caseD d1 d2 f) d3, caseD d1 (appD d2 d3) (λx. appD (f x) d3))

Then, R is a bisimulation. For d1 = ΩD,VarD i,AppD d′1 d
′
2,LamD f ′, 0D or

SucD d′, both sides evaluate to the same, so the bisimulation property is trivial.
For d1 = CaseD d′1 d′2 f ′, by direct calculations both sides start with CaseD,
followed by arguments related by R. By Pitts’ result [19] the equality follows.

η-expansion rules. Note that these cannot be true in general since the interpre-
tation ignores type information. So we define a semantic version of η-expansion:

ηN d = caseD d 0D (λx. ηN x) ηA→B d = LamD (λx. ηB appD d (ηA x))

It extends to environments by η[] ρ = [], ηΓ,A [] = (ηΓ []) :: ΩD and ηΓ,A (ρ :: d) =
(ηΓ ρ) :: (ηA d). For f : [D] → D we define ηΓ�A f = λρ. ηA (f (ηΓ ρ)).

From semantic η-expansion we get a typed notion of equality up to η-expansion
in the domain: for a type A and elements d, d′ ∈ D we write d =A d′ iff ηA d =
ηA d′. This generalizes to f =Γ�A f ′ in the obvious way. We now prove that
syntactic η-expansion is validated up to semantic η-expansion.

It is easy to see that for Γ � b : A → B we have �b� =Γ�A→B �λ (app b[p] 0)�
and also to verify the η-rule for N. However, reduction rules are closed under
context, so we need to check that typed equality is a congruence.

This relies on the fact that the interpretation of terms cannot distinguish an
input from its η-expansion. To prove that we start by defining a realizability
predicate on D, by d � N for all d ∈ D, and d � A → B iff for all d′ � A, (1)
appD d d′ =B appD d (ηA d′) and (2) appD d d′ � B. This predicate generalizes
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to contexts (written ρ � Γ ) in the obvious way. We observe by induction on A
that η-expanded elements of D are realizers: for all d ∈ D, ηA d � A. But the
interpretation of terms, despite not being η-expanded, also satisfy it. Indeed we
prove, by induction on typing judgments, the following adequacy lemma.

Lemma 2. For Γ � a : A, ρ�Γ , then (1) �a� ρ =A �a� (ηΓ ρ) and (2) �a� ρ�A.

It is then immediate that the interpretation of term constructors preserves typed
equality. All conversion rules hold up to typed equality in D, which is a congru-
ence w.r.t. the interpretation of terms. Putting it all together we conclude:

Proposition 1 (Soundness). For Γ � a, a′ : A with a ≈ a′, �a� =Γ�A �a′�.

3.3 Computational Adequacy

As a step towards our main result, we prove computational adequacy:

Proposition 2. If Γ � a : A and �a� 
=Γ�A ΩD then a has a head normal form.

First, we reduce the problem to closed terms by noting two properties:

– Firstly, Γ,A � b : B has a head normal form iff λ b has,
– Secondly, �b� =Γ,A�B ΩD iff �λ b� =Γ�A→B ΩD, as can be checked by a

simple calculation.

So we abstract all free variables of a term and reason only on closed terms.
We now aim to prove it for closed terms. The proof has two steps: (1) we prove

it for closed terms of ground type using logical relations, and (2) we deduce it
for closed terms of higher-order types. To obtain (2) from (1) we will need to
temporarily enrich the syntax with an error constant ∗. This ∗ has all types –
we write Γ �∗ a : A for typing judgments in the extended syntax. We also add
two head reductions app ∗ a →h ∗ and case ∗ a b c →h ∗.

We also need to give an interpretation of ∗ in D. At this point it is tempting
to enrich the domain D with a constructor for ∗. Fortunately we can avoid that;
indeed the reader can check that setting �∗� ρ = CaseDΩD ΩD (λx.ΩD) = ∗D,
the interpretation validates the two reduction rules above. Note that the term ∗
is only an auxiliary device used in this section: we will never attempt to apply
nbe on a term with error, so this coincidence will be harmless.

Ground type. We first define our logical relations.

Definition 3. We define a relation ∼n
N between closed terms �∗ a : N and

elements of D by induction on n. First a ∼0
N d always. Then, a ∼n+1

N d iff either
d = ΩD, or a →∗

h 0 and d = 0D, or a →∗
h ∗ and d = ∗D, or finally, if a →∗

h suc a′

and d = SucD d′ and a′ ∼n
N d′. We then define a ∼N d iff for all n ∈ N, a ∼n

N d.
Finally, b ∼A→B d iff for any a ∼A e, app b a ∼B appD d e.

This relation is closed under backward head reduction, and satisfies the con-
tinuity property that for any ω-chain (di)i∈N, if a ∼A di for all i then a ∼A 
idi.
The fundamental lemma of logical relations follows by induction on a.

Lemma 3. For any term Γ �∗ a : A, for any δ ∼Γ ρ, we have a[δ] ∼A �a� ρ.

By definition of ∼A, computational adequacy follows for closed terms of type N.
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Higher-order types. Suppose � a : An−1 → . . . → A0 → N = A satisfies �a� 
=A

ΩD. We need to show that a has a head normal form, but our previous analysis
only applies to terms of ground type. By hypothesis we know that for �a� there
are some arguments dn−1, . . . , d0 making �a� non-bottom. However, in order to
apply our earlier result for ground type, we need to find syntactic counterparts
to dn−1, . . . , d0 – and there is no reason why those would exist. So instead we
replace the dis with ∗D, which does have a syntactic counterpart.

The core argument is that replacing arguments of �a� with ∗D only increases
chances of convergence. To show that we introduce:

Definition 4. We define �n
N⊆ D2 by induction on n. Let d1 �0

N d2 ⇔ � and

d1 �n+1
N d2 ⇔

⎧
⎨

⎩

If d1 = d2 = 0D
If d1 = SucD d′1, d2 = SucD d′2 and d′1 �n

N d′2
If d1 = ΩD or d2 ≥ ∗D

We set d1 �N d2 iff for all n ∈ N, d1 �n
N d2. We lift this to all types by stating

that d1 �A→B d2 iff for all d′1 �A d′2, appD d1 d
′
1 �B appD d2 d

′
2.

This generalizes to a relation on environments ρ1 �Γ ρ2, but unlike what the
notation suggests, �A is not an ordering: it is neither reflexive, nor transitive,
nor antisymmetric. However, for all A and d ∈ D we have ΩD �A d �A ∗D.

The following fundamental lemma is proved by induction on a.

Lemma 4. For any term Γ �∗ a : A, for any ρ1 �Γ ρ2, �a� ρ1 �A �a� ρ2.

Putting the ingredients above together, we prove the following lemma.

Lemma 5. For �∗ a : A, d �A �a� and d 
=A ΩD, a has a head normal form.

Proof. For N, assume there is d �N �a� such that d 
=N ΩD, so d 
= ΩD. It follows
by definition of �N that either �a� = ∗D, or d and �a� respectively start both
with 0D or both with SucD. But by Lemma 3 we have a ∼N �a�, so by definition
of logical relations, a has a head normal form.

For A → B, take �∗ b : A → B and assume there is d �A→B �b� such that
d 
=A→B ΩD. So there is d′ ∈ D such that appD d (ηA d′) 
=B ΩD. But we have
observed above that ηA d′ �A ∗D. Therefore, by definition of �A→B, we have:

appD d (ηA d′) �B appD �b� ∗D = �app b ∗�

By induction hypothesis, app b ∗ has a head normal form. But head reduction
is deterministic, and any potentially infinite head reduction chain on b would
transport to app b ∗, so b has a head normal form.

Finally, it remains to deduce computational adequacy for closed terms. But
for arbitrary �∗ a : A such that �a� 
=A ΩD, by Lemma 4 we have �a� �A �a�,
so we are in the range of Lemma 5 – therefore, a has a head normal form.
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3.4 PCF Böhm Trees Defined by Repeated Head Reduction

In the next section we show how the PCF Böhm tree of a term can be computed
by nbe. We also show that the result of this computation coincides with the
traditional way of defining a PCF Böhm tree as obtained by repeated head
reduction. This definition relies on the following lemma.

Lemma 6. The system {→γ1 ,→γ2} of commutations is strongly normalizing.

Proof. Local confluence follows from a direct analysis of the (two) critical pairs,
and one gets a decreasing measure by defining |a| = 1 on all leaves of the syntax
tree, |casea b f | = 2|a|+max(|b|, |f |) and |appa b| = 2|a|+ |b| and | − | behaves
additively on all other constructors.

The PCF Böhm tree of a term. The PCF Böhm tree BT(a) of a term Γ � a : A
is defined as follows. If A = N and a has no head normal form then BT(a) = Ω.
Otherwise we convert a to head normal form and then to →γ1,γ2-normal form
a′ by Lemma 6 which is still a head normal form. The only possible cases are:

– BT(a) = 0 if a′ = 0.
– BT(a) = sucBT(a′′) if a′ = suca′′

– BT(a) = case (app i
−−−−→
BT(aj)) 0 (suc BT(0)) if a′ = app i−→aj

– BT(a) = case (app i
−−−−→
BT(aj)) BT(b) BT(c) if a

′ = case (app i−→aj) b c.
If A = B → C then BT(a) = λBT(app (a[p]) 0). (BT(a) could be more explicitly
defined as an ideal of finite approximations, see e.g. [14] for details.)

Together with the earlier results, we get the main result of this section.

Proposition 3. If Γ � a : A then Γ �Bt BT(a) : A and ηΓ�A �a� = �BT(a)�.

Proof. As we aim to prove the equality of two elements of D we use again Pitts’
method [19] and define the following relation

R = {(�BT(a)� (ηΓ ρ), ηA (�a� (ηΓ ρ))) | Γ � a : A & ρ ∈ [D]}
and show that it is a bisimulation. Proposition 1 ensures that the conversion
steps needed to transform a term to its PCF Böhm tree are sound in the model,
Proposition 2 ensures that both sides are ΩD at the same time.

This ends the core of the technical development. The same proof scheme can
be used to show that the game interpretation of Section 2.2 validates conversion
to PCF Böhm trees. Details can be obtained by adapting McCusker’s proof [18].

4 Game Semantics of PCF Based on nbe

Normalization by evaluation. We are now ready to show the correctness of an
nbe algorithm which computes innocent strategies for infinitary terms. Recall
that in Section 2.2 we defined PCF Böhm trees as ideals of finite PCF Böhm
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trees. The same construction on arbitrary PCF terms yields a notion of infinitary
term on which BT and �−� automatically extends, along with Proposition 3.

The readback function Rn : ([D] → D) → Tm is the semantic counterpart of
the Haskell readback function in Section 2.3. The following is proved on finitary
terms by a direct induction and extends to PCF Böhm trees by continuity.

Lemma 7. If Γ �Bt t : A is a PCF Böhm tree with |Γ | = n, then Rn �t� = t.

We now define an nbe algorithm which maps a PCF term to its PCF Böhm
tree, and use this lemma together with Proposition 3 to show its correctness:

Theorem 1. Let Γ � a : A be an (infinitary) PCF term. If nbe(a) =
Rn (ηΓ�A�a�), where |Γ | = n, then nbe(a) = BT(a).

The pcf-cwf of PCF Böhm trees. We conclude this paper by showing how to
recover the Hyland-Ong game model of PCF, up to isomorphism of pcf-cwfs. If
d ∈ D, say that d has (semantic) type A iff ηA d = d. Likewise a function
f : [D] → D has type Γ � A iff ηΓ�A f = f , and a function γ : [D] → [D] has
type Γ � Δ iff it is obtained by tupling functions of the appropriate types. This
generalizes to a pcf-cwf D having PCF contexts as objects and functions (resp.
elements) of the appropriate type as morphisms (resp. terms).

As a pcf-cwf, D supports the interpretation of PCF. But the plain domain
interpretation �a� (of Section 3) of a PCF Böhm tree Γ �Bt a : A automatically
has semantic type Γ � A, and so is a term in the sense of D. Furthermore, this
map from PCF Böhm trees to D is injective by Theorem 1. Finally, the image of
PCF Böhm trees in D is closed under all pcf-cwf operations: each of these can be
replicated in the infinitary PCF syntax then normalized using nbe, yielding by
Theorem 1 and Proposition 3 a PCF Böhm tree whose interpretation matches
the result of the corresponding operation in D. So, the interpretation of PCF
Böhm trees forms a sub-pcf-cwf of D, called PCFInn, satisfying:

Theorem 2. PCFInn is isomorphic to the pcf-cwf of PCF contexts/types, and
innocent well-bracketed strategies between the corresponding arenas.

If we unfold this definition we get the Haskell program for application in Sec-
tion 2.3 and similar programs for composition and the other pcf-cwf operations.
The pcf-cwf laws for these programs, such as associativity of composition, β,
and η, follow from the corresponding laws for their domain interpretation in D.
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Abstract. Differential dataflow is a recent approach to incremental
computation that relies on a partially ordered set of differences. In the
present paper, we aim to develop its foundations. We define a small pro-
gramming language whose types are abelian groups equipped with linear
inverses, and provide both a standard and a differential denotational se-
mantics. The two semantics coincide in that the differential semantics is
the differential of the standard one. Möbius inversion, a well-known idea
from combinatorics, permits a systematic treatment of various operators
and constructs.

1 Introduction

Differential computation [2] is a recent approach to incremental computation
(see, e.g., [1,3]) that relies on partially ordered versions of data. We model par-
tially ordered versions as functions over a partial order, and call them streams.
In the intended implementations of differential computation, the set of updates
required to reconstruct any given version At of a stream A is retained in a data
structure indexed by the partial order, rather than consolidated into a “current”
version. For example, in an iterative algorithm with two nested loops with coun-
ters i and j, differential computation may associate a version with each pair
(i, j) (with the product partial order on such pairs). Then an implementation
may re-use work done at all (i′, j′) < (i, j) to compute the (i, j)-th version.

Differential dataflow is an instantiation of differential computation in a data-
parallel dataflow setting. In such a setting the data used are large collections
of records and the fundamental operators are independently applied to disjoint
parts of their inputs. Differential computation preserves the sparseness of in-
put differences in the output, as an output can change only if its input has
changed. The result can be very concise representations and efficient updates.
The Naiad system [4] includes a realization of differential dataflow that sup-
ports high-throughput, low-latency computations on frequently updated large
datasets.

Differential dataflow aims to avoid redundant computation by replacing the
versions of its collection-valued variables with versions of differences. These ver-
sions may have negative multiplicities, so that a version At of a stream A is the
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sum of the differences (δA)s at versions s ≤ t: At =
∑

s≤t δAs. This formula
resembles those used in incremental computation, where s, t ∈ N, but permits
more general partial orders.

Functions on streams A are replaced by their differentials, which operate on
the corresponding difference streams δA, and are responsible for producing cor-
responding output difference streams. In particular, as established in [2], the
product partial order Nk enables very efficient nested iterative differential com-
putation, because each nested iteration can selectively re-use some of the pre-
viously computed differences, but is not required to use all of them. Efficiently
updating the state of an iterative computation is challenging, and is the main
feature of differential dataflow.

In the present paper we aim to develop the foundations of differential dataflow.
We show that the use of collections allowing negative multiplicities and product
partial orders of the natural numbers are special cases of general differential
computation on abelian groups and locally finite partial orders. We demonstrate
the relevance and usefulness of Möbius inversion, a well-known idea from com-
binatorics (see, for example, [5,6]), to understanding and verifying properties of
function differentials.

Specifically, we consider the question of finding the differential of a computa-
tion given by a program in a small programming language that includes nested
iteration. To this end, we define both a standard compositional denotational
semantics for the language and a compositional differential one. Our main theo-
rem (Theorem 1 below) states that the two semantics are consistent in that the
differential semantics is the differential of the standard semantics.

In Section 2 we lay the mathematical foundations for differential computation.
We discuss how abelian groups arise naturally when considering collections with
negative multiplicities. We explain Möbius inversion for spaces of functions from
partial orders to abelian groups. This leads us to a uniform framework of abelian
groups equipped with linear inverses. We then define function differentials, giving
some examples. In particular, we derive some formulas for such differentials,
previously set out without justification [2].

In Section 3 we consider loops. Two policies for loop egress are mentioned
in [2]: exit after a fixed number of iterations and exit on a first repetition. We
consider only the first of these, as it is the one used in practice and mathemati-
cally simpler: the second would require the use of partial streams.

In Section 4 we present the language and its two semantics, and establish
Theorem 1. As noted above, the semantics are denotational, defining what is
computed, rather than how; going further, it may be attractive to describe an
operational semantics in terms of the propagation of differences in a dataflow
graph, somewhat closer to Naiad’s implementation.

In Section 5 we discuss the treatment of prioritization, a technique from [2] for
nested iterative computations. The treatment in [2] via lexicographic products of
partial orders does not correctly support more than one nested loop (despite the
suggestion there that it should); further, the treatment of differential aspects is
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incomplete, and it is not clear how to proceed. We instead propose a simpler rule
and show that it correctly achieves the goal of arbitrary prioritized computation.

We conclude in Section 6, and discuss some possible future work.

2 Mathematical Foundations

The mathematical foundations of differential dataflow concern: data organized
into abelian groups; version-indexed streams of data and their differentials, which
are obtained by Möbius transformation; and stream operations and their differ-
entials, which, in their turn, operate on stream differentials. These three topics
are covered in Sections 2.1, 2.2, and 2.3.

2.1 Abelian Groups

Abelian groups play a major role in our theory, arising from negative multiplic-
ities. The set of collections, or multisets, C(X) over a set X can be defined as
the functions c :X →N that are 0 almost everywhere. It forms a commutative
monoid under multiset union, defined pointwise by: (c ∪ d)(x) = c(x) + d(x).
The set of multisets A(X) with possibly negative multiplicities is obtained by
replacing N by Z; it forms an abelian group under pointwise sum.

A function between commutative monoids is linear if it preserves finite sums;
e.g., selection and aggregation provide linear functions from C(X) to commu-
tative monoids such as C(Y ) and N. These functions lift to the corresponding
groups: every linear f : C(X) → G, with G an abelian group, has a unique linear
extension f : A(X) → G given by f(c) =

∑
x∈X c(x)f(x) (omitting the evident

map X → C(X)). These observations exemplify a well-known general construc-
tion universally embedding cancellative commutative monoids in abelian groups.

2.2 Versions, Streams, and Möbius Inversion

We work with locally finite partial orders, that is, partial orders T such that
↓ t =def {t′ | t′ ≤ t} is finite for all t ∈ T . Examples include finite products of �,
as mentioned in the introduction, and the partial order Pfin(I), of finite subsets
of a given set I (perhaps used to model a set of individuals), ordered by subset.
We think of functions from T to G as T -indexed streams of elements of G.

The Möbius coefficients μT (t
′, t) ∈ Z, with t, t′ ∈ T , are given recursively by:

μT (t
′, t) =

⎧
⎨

⎩

0 (t′ �≤ t)
1 (t′ = t)
−∑

t′≤r<t μT (t
′, r) (t′ < t)

For example for T = N (the natural numbers with their usual ordering), μN(n
′, n)

is 1, if n′ = n; is −1, if n′ = n−1; and is 0, otherwise. For T = Pfin(I), μ(W
′,W )

is −1#(W\W ′), if W ′ ⊆ W ; and is 0 otherwise. For product partial orders one
has: μS×T ((s

′, t′), (s, t)) = μS(s
′, s)μT (t

′, t).
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The Möbius transformation of a function f : T → G, where G is an abelian
group, is given by:

δT (f)(t) =
∑

t′≤t

μT (t
′, t)f(t′)

For example δN(f)(n) = f(n)− f(n− 1), if n > 0, and = f(0) if n = 0.
Defining

ST (f)(t) =
∑

t′≤t

f(t′)

we obtain the famous Möbius inversion formulas:

ST (δT (f)) = f = δT (ST (f))

See, for example, [5,6]. Expanded out, these formulas read:

f(t) =
∑

t′≤t

∑

t′′≤t′
μT (t

′′, t′)f(t′′) f(t) =
∑

t′≤t

μT (t
′, t)

∑

t′′≤t′
f(t′′)

The collection GT of all T -indexed streams of elements of G forms an abelian
group under pointwise addition. We would further like to iterate this function
space construction to obtain the doubly indexed functions mentioned in the
introduction; we would also like to consider products of such groups. It is there-
fore natural to generalize to abelian groups G equipped with linear inverses

G
δG−−→ G

SG−−→ G. A simple example is any abelian group G, such as A(X), with
δG = SG = idG, the identity on G.

For such a G and a locally finite partial order T we define linear inverses

GT
δGT−−−→ GT

SGT−−−→ GT on GT by setting:

δGT (f)(t) =
∑

t′≤t

μT (t
′, t)δG(f(t′)) and SGT (f)(t) =

∑

t′≤t

SG(f(t
′))

It is clear that δGP and SGP are linear; we check they are mutually inverse:

δGP (SGP (f))(t) =
∑

t′≤t μ(t
′, t)δG(

∑
t′′≤t′ SG(f(t

′′)))
=

∑
t′≤t

∑
t′′≤t′ μ(t

′, t)δG(SG(f(t
′′))) (as δG is linear)

=
∑

t′≤t μ(t
′, t)

∑
t′′≤t′ f(t

′′)
= f(t) (by the Möbius inversion formula)

SGP (δGP (f))(t) =
∑

t′≤t SG(
∑

t′′≤t′ μ(t
′′, t′)δG(f(t′′)))

=
∑

t′≤t

∑
t′′≤t′ μ(t

′′, t′)SG(δG(f(t
′′))) (as SG is linear)

=
∑

t′≤t

∑
t′′≤t′ μ(t

′′, t′)f(t′′)
= f(t) (by the Möbius inversion formula)

Iterating the stream construction enables us to avoid the explicit use of prod-
uct partial orders, as the group isomorphism (GT )T

′ ∼= GT×T ′
extends to an

isomorphism of their linear inverses.
As for products, given two abelian groups G and H with linear inverses δG,

SG and δH , SH , we construct linear inverses δG×H and SG×H for G × H by
setting: δG×H(c, d) = (δG(c), δH(d)) and SG×H(c, d) = (SG(c), SH(d)). We write
π0 and π1 for the first and second projections.
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2.3 Function Differentials

The differential (or conjugate) of a function f : G → H is the function δ(f) :
G → H where:

δ(f) =def δH ◦ f ◦ SG

The definition applies to n-ary functions, e.g., for f : G × H → K we have
δ(f)(c, d) = δK(f(SG(c), SH(d))). So δ(f)(δG(c1), δH(c2)) = δK(f(c1, c2)) and
compositions of functions can be recast differentially by replacing both streams
and functions by their corresponding differentials. Efficient differential imple-
mentations were developed in [2] for several important classes of primitive func-
tions (e.g., selection, projection, relational joins).

For any partial order T , a function f : G → H can be lifted pointwise to a
function fT : GT → HT by setting:

fT (c)t = f(ct)

The most common case is when T = N, used to lift a function to one whose
inputs may vary sequentially, either because it is placed within a loop or be-
cause external stimuli may change its inputs. The following proposition relates
the differential of a lifted function to its own differential. It justifies some imple-
mentations from [2], showing that some lifted linear functions, such as selection
and projection, are their own differentials.

Proposition 1. For any c ∈ GT and t ∈ T we have:

1.
δ(fT )(c)t =

∑

t′≤t

μ(t′, t)δ(f)(
∑

t′′≤t′
ct′′)

2. If, further, f is linear then we have: δ(fT )(c)t = δ(f)(ct).
3. If, yet further, δ(f) = f then δ(fT ) = fT , that is, δ(fT )(c)t = f(ct).

Proof. 1. We calculate:

δ(fT )(c)t =
∑

t′≤t μ(t
′, t)δH(fT (SGT (c))t′ )

=
∑

t′≤t μ(t
′, t)δH(f(SGT (c)t′))

=
∑

t′≤t μ(t
′, t)δH(f(

∑
t′′≤t′ SG(c)t′′))

=
∑

t′≤t μ(t
′, t)δH(f(SG(

∑
t′≤t′ ct′′)))

=
∑

t′≤t μ(t
′, t)δ(f)(

∑
t′′≤t′ ct′′)

2. If f is linear so is δ(f) and then, continuing the previous calculation:

δ(fT )(c)t =
∑

t′≤t μ(t
′, t)δ(f)(

∑
t′′≤t′ ct′′)

=
∑

t′≤t μ(t
′, t)

∑
t′′≤t′ δ(f)(ct′′ )

= δ(f)(ct)

3. This is an immediate consequence of the previous part.
��
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For binary functions f : G × H → K, we define fT : GT × HT → KT by
fT (c, d)t = f(ct, dt). In the case T = N a straightforward calculation shows that
if f is bilinear (i.e., linear in each of its arguments) then:

δ(fN)(c, d)n = δ(f)(cn, δ(d)n) + δ(f)(δ(c)n, dn)− δ(f)(δ(c)n, δ(d)n)

justifying the implementations in [2] of differentials of lifted bilinear functions
such as relational join. The equation generalizes to forests, i.e., those locally
finite partial orders whose restriction to any ↓ t is linear.

The following proposition (proof omitted) applies more generally; Part 2 jus-
tifies the implementation of binary function differentials in [2].

Proposition 2. For any c ∈ GT , d ∈ HT , and t ∈ T we have:

1.

δ(fT )(c, d)t =
∑

t′≤t

μ(t′, t)δ(f)(
∑

t′′≤t′
ct′′ ,

∑

t′′≤t′
dt′′ )

2. If, further, f is bilinear (i.e., linear in each argument separately), and T has
binary sups then we have:

δ(fT )(c, d)t =
∑

r, s
r ∨ s = t

δ(f)(cr, ds)

3. If, yet further, δ(f) = f we have:

δ(fT )(c, d)t =
∑

r, s
r ∨ s = t

f(cr, ds)

3 Loops

We follow [2] for the differential of an iterative computation, but employ ad-
ditional formalism to justify the construction, and to be able to generalize it
sufficiently to support prioritization correctly. Loops follow the dataflow compu-
tation pictured in Figure 1. The Ingress node introduces input to a loop, and is
modeled by the function in : G → GN where:

in(c)i =def

{
c (i = 0)
0 (i > 0)

The Feedback node advances values from one iteration to the next, and is mod-
eled by the function fb : GN → GN where:

fb(c)i =def

{
0 (i = 0)
ci−1 (i > 0)
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Fig. 1. A loop (reproduced with permission from [2])

The Concat node merges the input and feedback streams, and is modeled by
the function +GT : GT ×GT → GT . The Egress node effects the fixed-iteration-
number loop egress policy, returning the value at some kth iteration, and is
modeled by the function outk : GN → G where:

outk(c) = ck

In addition, the loop body is modeled by a function fN : GN → GN for a given
function f on G.

The loop is intended to output an N-indexed stream s ∈ GN at W , starting
at f(c), where c ∈ G is input at X , and then successively output f2(c), f3(c),
. . .. It is more convenient, and a little more general, to instead take the output
just after Concat, obtaining the sequence c, f(c), f2(c), . . .. This s is a solution
of the fixed-point equation

d = in(c) + fb(fN(d)) (1)

Indeed it is the unique solution, as one easily checks that the equation is equiv-
alent to the following iteration equations:

d0 = c dn+1 = f(dn)

which recursively determine d. The output of the loop is obtained by applying
outk to s, and so the whole loop construct computes fk(c).

The differential version of the loop employs the differential versions of in, fb,
and out, so we first check these agree with [2].

Proposition 3. The differentials of in, fb, and out satisfy:

δ(in)(c)i =

⎧
⎨

⎩

c (i = 0)
−c (i = 1)
0 (i ≥ 2)

δ(fb) = fb δ(outk)(c) =
∑

m≤k

cm

Proof. 1. We have:

δ(in)(c)(j) = δG�(in(SG(c))(j) =
∑

i≤j μ(i, j)δG(in(SG(c))(i))
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Then we see that if j = 0, this is δG(in(SG(c))(0)) = δG(SG(c)) = c; if
j = 1, this is δG(in(SG(c))(1))− δG(in(SG(c))(0)) = 0− c; and if j ≥ 2, this
is δG(in(SG(c))(j)) − δG(in(SG(c))(j − 1)) = 0− 0.

2. It suffices to show fb preserves S, i.e., fb(SGT (c))j = SGT (fb(c))j , for all
j ∈ N. In case j = 0, both sides are 0. Otherwise we have:

fb(SGT (c))j = SGT (c)j−1

=
∑

i≤j−1 SG(ci)

=
∑

1≤i≤j SG(ci−1)

=
∑

i≤j SG(fb(c)i)

= SGT (fb(c))j

3. We calculate:

δ(outk)(c) = δG(outk(SGT (c))
= δG(outk(m �→ ∑

m′≤m SG(cm′)))

= δG(
∑

m≤k SG(cm))

=
∑

m≤k cm ��
As the differential version of the loop employs the differential versions of in,

fb, and +, one expects δ(s) to satisfy the following equation:

d = δ(in)(δ(c)) + fb(δ(fN)(d)) (2)

since + and fb are their own differentials. This equation arises if we differentiate
Equation 1; more precisely, Equation 1 specifies that d is a fixed-point of F ,
where F (d) =def in(c) + fb(fN(d)). One then calculates δ(F ):

δ(F )(d) = δ(F (S(d)))
= δ(in(c) + fb(fN(Sd)))
= δ(in)(δ(c)) + fb(δ(fN(Sd)))
= δ(in)(δ(c)) + fb(δ(fN)(δ(Sd)))
= δ(in)(δ(c)) + fb(δ(fN)(d))

So Equation 2 specifies that δ(s) is a fixed-point of δ(F ). It is immediate, for any
G and F : G → G, that d is a fixed-point of F iff δ(d) is a fixed-point of δ(F ); so
δ(s) is the unique solution of the second equation. As sn = fn(c), differentiating
we obtain an explicit formula for δ(s):

δ(s)n =
∑

m≤n

μ(m,n)δ(f)m(δ(c))

equivalently:

δ(s)n =

{
δ(c) (n = 0)
δ(f)n(δ(c)) − δ(f)n−1(δ(c)) (n > 0)

Finally, combining the differential versions of the loop and the egress policy,
we find:

δ(outk)(δ(s)) =
∑

m≤k δ(s)m
=

∑
m≤k

∑
l≤m μ(l,m)δ(f)l(δ(c))

= δ(f)k(δ(c))
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and so the differential of the loop followed by the differential of egress is, as
expected, the differential of the kth iteration of the loop body.

4 The Programming Language

The language has expressions e of various types σ, given as follows.

Types
σ ::= b | σ × τ | unit | σ+

where b varies over a given set of base types. Types will denote abelian groups
with linear inverses, with σ+ denoting a group of N-streams.

Expressions
e ::= x | f(e1, . . . , en) | let x : σ be e on e′ |

0σ | e+ e′ | −e |
〈e, e′〉 | fst(e) | snd(e) | ∗ |
iter x : σ to e on e′ | outk(e) (k ∈ N)

where we are given a signature f : σ1, . . . , σn → σ of basic function symbols.
(The basic types and function symbols are the built-ins.) The iteration construct
iter x : σ to e on e′ produces the stream obtained by iterating the function
λx :σ. e, starting from the value produced by e′. The expression outk(e) produces
the kth element of the stream produced by e.

Typing Environments Γ = x1 : σ1, . . . , xn : σn are sequences of variable bind-
ings, with no variable repetition. We give axioms and rules to establish typing
judgments, which have the form Γ � e : σ.

Typing Axioms and Rules

Γ � x : σ (x : σ ∈ Γ )

Γ � ei : σi (i = 1, . . . , n)

Γ � f(e1, . . . , en) : σ
(f : σ1, . . . , σn → σ)

Γ � e : σ Γ, x : σ � e′ : τ
Γ � let x : σ be e on e′ : τ

Γ � 0σ : σ
Γ � e : σ Γ � e′ : σ

Γ � e+ e′ : σ
Γ � e : σ

Γ � −e : σ

Γ � e : σ Γ � e′ : τ
Γ � 〈e, e′〉 : σ × τ

Γ � e : σ × τ

Γ � fst(e) : σ

Γ � e : σ × τ

Γ � snd(e) : τ

Γ, x : σ � e : σ Γ � e′ : σ
Γ � iter x : σ to e on e′ : σ+

Γ � e : σ+

Γ � outk(e) : σ

Proposition 4. (Unique typing) For any environment Γ and expression e, there
is at most one type σ such that Γ � e : σ.

In fact, there will also be a unique derivation of Γ � e : σ.
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4.1 Language Semantics

Types Types are modeled by abelian groups with inverses, as described in Sec-
tion 2. For for each basic type b we assume given an abelian group with inverses
(B[[b]], δb, Sb). The denotational semantics of types is then:

D[[b]] = B[[b]]
D[[σ × τ ]] = D[[σ]] ×D[[τ ]]
D[[unit]] = �

D[[σ+]] = D[[σ]]N

Expressions For each basic function symbol f : σ1, . . . , σn → σ we assume given
a map:

B[[f ]] : D[[σ1]]× . . .×D[[σn]] −→ D[[σ]] .

We do not assume these are linear, multilinear, or preserve the δ’s or S’s.
Let D[[Γ ]] = D[[σ1]] × . . . × D[[σn]] for Γ = x : σ1, . . . , xn : σn. Then for each

Γ � e : σ we define its semantics with type:

D[[Γ � e : σ]] : D[[Γ ]] −→ D[[σ]]

In case Γ, σ are evident, we may just write D[[e]].

Definition of D We define D[[Γ � e : σ]](α) ∈ D[[σ]], for each α ∈ D[[Γ ]] by
structural induction on e as follows:

D[[Γ � xi : σi]](α) = αi

D[[Γ � f(e1, . . . , en) : σ]](α) = B[[f ]](D[[e1]](α), . . . ,D[[en]](α))
D[[Γ � let x : σ be e on e′ : τ ]](α) = D[[Γ, x : σ � e′]](α,D[[e]](α))

D[[Γ � 0σ : σ]](α) = 0D[[σ]]

D[[Γ � e+ e′ : σ]](α) = D[[e]](α) +D[[σ]] D[[e′]](α)
D[[Γ � −e : σ]](α) = −D[[σ]](D[[e]](α))

D[[Γ � 〈e, e′〉 : σ × τ ]](α) = (D[[e]](α),D[[e′]](α))
D[[Γ � fst(e) : σ]](α) = π0(D[[e]](α))
D[[Γ � snd(e) : τ ]](α) = π1(D[[e]](α))
D[[Γ � ∗ : unit]](α) = ∗

D[[Γ �iter x :σ to e on e′ :σ+]](α)n = (λa :D[[σ]].D[[e]](α, a))n(D[[e′]](α))
D[[Γ � outk(e) : σ]](α) = outk(D[[e]](α))

The semantics of iteration is in accord with the discussion of the solution of
Equation 1 for loops.

4.2 Differential Semantics

We next define the differential semantics of our expressions. It has the same form
as the ordinary semantics:

Dδ[[Γ � e : σ]] : D[[Γ ]] −→ D[[σ]]
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The semantics of types is not changed from the non-differential case.
First for f : σ1, . . . , σn → σ we set

Bδ[[f ]](α1, . . . , αn) = δD[[σ]](B[[f ]](SD[[σ1]](α1), . . . , SD[[σn]](αn))

Then Dδ is defined exactly as for the non-differential case except for iteration
and egress where, following the discussion of loops, we set

Dδ[[Γ � iter x : σ to e on e′ : σ+]](α)(n) =
∑

n′≤n μ(n
′, n)(λa : D[[σ]].Dδ [[e]](α, a))n

′
(Dδ[[e]](α)))

and
Dδ[[Γ � outk(e) : σ]](α) =

∑

n≤k

Dδ[[e]](α)(n)

Theorem 1. (Correctness of differential semantics) Suppose Γ � e : σ. Then:

Dδ[[Γ � e : σ]](α) = δD[[σ]](D[[Γ � e : σ]](SD[[σ]](α)))

equivalently:

Dδ[[Γ � e : σ]](δD[[σ]](α)) = δD[[σ]](D[[Γ � e : σ]](α))

Proof. The first of these equivalent statements is proved by structural induction
on expressions. We only give the last two cases of the proof.

Iteration:

Dδ[[Γ � iter x : σ to e on e′ : σ+]](α)(n)

=
∑

n′≤n μ(n
′, n)(λa : D[[σ]].Dδ [[e]](α, a))n

′
(Dδ[[e′]](α))

=
∑

n′≤n μ(n
′, n)(λa : D[[σ]]. δ(D[[e]](Sα, Sa)))n

′
(δ(D[[e′]](Sα))) (by IH)

=
∑

n′≤n μ(n
′, n)(δ ◦ (λa : D[[σ]].D[[e]](Sα, a)) ◦ S)n′

(δ(D[[e′]](Sα)))
=

∑
n′≤n μ(n

′, n)δ((λa : D[[σ]].D[[e]](Sα, a))n
′
(D[[e′]](Sα)))

=
∑

n′≤n μ(n
′, n)δ(D[[iter x : σ to e on e′]](Sα)(n′))

= δ(D[[iter x : σ to e on e′]](Sα))(n)

Egress:

Dδ[[Γ � outk(e) : σ]](α) =
∑

n≤k Dδ[[e]](α)(n)

=
∑

n≤k δ(D[[e]](Sα))(n) (by IH)

=
∑

n≤k

∑
n′≤n μ(n

′, n)δ(D[[e]](Sα)(n′))
= δ(D[[e]](Sα)(k))
= δ(D[[outk(e)]](Sα))

��
A compositional differential semantics satisfying Theorem 1 exists on general
grounds1, as functions f :G→H over given abelian groupsG,H with inverses are
in 1-1 correspondence with their conjugates (the conjugate operator has inverse
f �→ SH ◦ f ◦ δG). However the direct definition of the differential semantics is
remarkably simple and practical.

1 We thank the anonymous referee who pointed this out.
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5 Priorities

In “prioritized iteration” [2], a sequence of fixed-point computations consumes
the input values in batches; each batch consists of the set of values assigned a
given priority, and each fixed-point computation starts from the result of the
previous one, plus all input values in the next batch.

Such computations can be much more efficient than ordinary iterations, but
it was left open in [2] how to implement them correctly for anything more com-
plicated than loop bodies with no nested iteration. The proposed notion of time
was the lexicographic product of N with any nested T , i.e., the partial order on
N× T with:

(e, s) ≤ (e′, s′) ≡ (e < e′) ∨ (e = e′ ∧ s ≤ s′)

where a pair (e, s) is thought of as “stage s in epoch e”. Unfortunately, the
construction in [2] appears incorrect for T �= N. Moreover, the lexicographic
product is not locally finite, so our theory cannot be applied.

It may be that the use of lexicographic products can be rescued. We propose
instead to avoid these difficulties by using a simple generalization of iteration
where new input can be introduced at each iteration. One use of this generality
is prioritized iteration, where elements with priority i are introduced at iteration
i×k; this scheme provides exactly k iterations for each priority, before moving to
the next priority starting from where the previous priority left off. This is exactly
the prioritized iteration strategy from [2] with the fixed-iteration-number loop-
egress policy, but cast in a framework where we can verify its correctness.

The generalisation of Equation 1 is:

d = c+ fb(fN(d)) (3)

where now c is in GN (rather than in G, and placed at iteration 0 by in).
This equation is equivalent to the two iteration equations d0 = c0 and dn+1 =
cn+1 + f(dn) and so has a unique solution, say s. Differentiating Equation 3, we
obtain:

d = δ(c) + fb(δ(fN)(d))

By the remark in Section 3 on fixed-points of function differentials, this also
has a unique solution, viz. δ(s). To adapt the language, one simply changes the
iteration construct typing rule to:

Γ, x : σ � e : σ Γ � e′ : σ+

Γ � iter x : σ to e on e′ : σ+

We assume the ingress function is available as a built-in function; other built-in
functions can enable the use of priority functions. The semantics of this version
of iteration is given by:

D[[Γ �iter x :σ to e on e′ :σ+]](α) = μd :D[[σ+]].D[[e′]](α) + fb(D[[e]](α, d))

where we are making use of the usual notation for fixed-points; that is justified
here by the discussion of Equation 3. The differential semantics has exactly the
same form, and Theorem 1 extends.
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6 Discussion

We have given mathematical foundations for differential dataflow, which was
introduced in [2]. By accounting for differentials using Möbius inversion, we
systematically justified various operator and loop differentials discussed there.
Using the theory we could also distinguish the difficult case of lexicographic
products, and justify an alternative.

Via a schematic language we showed that a differential semantics is the dif-
ferential of the ordinary semantics, verifying the intuition that to compute the
differential of a computation, one only changes how individual operators are
computed, but not its overall shape. (We could have given a more concrete lan-
guage with selection and other such operators, but we felt our approach brought
out the underlying ideas more clearly.)

There are some natural possibilities for further work. As mentioned in the
introduction, one might formulate a small-step operational semantics that prop-
agates differences in a dataflow graph; one would prove a soundness theorem
linking it to the denotational semantics. It would also be interesting to consider
the egress policy of exiting on a first repetition, i.e., at the first k such that
ck = ck+1, where c is the output stream. As no such k may exist, one is led to
consider partial streams, as mentioned in the introduction. This would need a
theory of Möbius inversion for partial functions, but would also give the possi-
bility, via standard domain theory, of a general recursion construct, and so of
more general loops.
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Abstract. State spaces in probabilistic and quantum computation are
convex sets, that is, Eilenberg–Moore algebras of the distribution monad.
This article studies some computationally relevant properties of convex
sets. We introduce the term effectus for a category with suitable coprod-
ucts (so that predicates, as arrows of the shape X → 1 + 1, form effect
modules, and states, arrows of the shape 1 → X, form convex sets). One
main result is that the category of cancellative convex sets is such an
effectus. A second result says that the state functor is a “map of effecti”.
We also define ‘normalisation of states’ and show how this property is
closed related to conditional probability. This is elaborated in an example
of probabilistic Bayesian inference.

1 Introduction

The defining property of a convex set X is its closure under convex combinations.
This means that for x, y ∈ X and λ ∈ [0, 1] the convex combination λx+(1−λ)y
is also in X . There are some subtle properties that these convex combinations
should satisfy, going back to Stone [Sto49]. Here we shall use a more abstract —
but equivalent — categorical approach and call an Eilenberg–Moore algebra of
the distribution monad D a convex set.

It is a basic fact that state spaces (i.e. sets of states) in probabilistic compu-
tation (both discrete and continuous) and in quantum computation are convex
sets. Any serious model of such forms of computation will thus involve convex
structures. It is within this line of research that the present paper contributes
by clarifying several issues in the (computational) theory of convex sets. On a
technical level the paper pinpoints (1) the relevance of a property of convex
sets called ‘cancellation’, and (2) a ‘normalisation’ condition that is crucial for
conditional probability and (Bayesian) inference.

These two points may seem strange and obscure. However, they play an impor-
tant role in an ongoing project [Jac14] to determine the appropriate categorical
axiomatisation for probabilistic and quantum logic and computation. Here we
introduce the term ‘effectus’ for such a category. The main technical results of
the paper can then be summarised as: the category CConv of cancellative
convex sets is an effectus, and: the state functor Stat : B → CConv from an
arbitrary effectus B to CConv is a map of effecti. We illustrate how these re-
sults solidify the notion of effectus, and its associated state-and-effect triangle.
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We further show that conditional probability and (Bayesian) inference can be
described both succinctly and generally via the idea of normalisation of stages.

Convex structures play an important role in mathematics (esp. functional
analysis, see e.g. [AE80]), and in many application areas like economics. In the
context of the axiomatisation of quantum (and probability) theory they are used
systematically in for instance [Gud73] or [Fri09, BW11]. This paper fits in the
latter line of research. It continues and refines [Jac14], by concentrating on the
role of state spaces and their structure as convex sets.

The paper starts by describing background information on (discrete probabil-
ity) distributions and convex sets. Coproducts + of convex sets play an important
role in the sequel, and are analysed in some detail. Subsequently, Section 3 con-
centrates on a well-known property of convex sets, known as cancellation. We
recall how cancellation can be formulated in various ways, and show the equiv-
alence with a joint monicity property that occurs in earlier work on categorical
quantum axiomatisation [Jac14]. Section 4 introduces a categorical description
of the well-known phenomenon of normalisation in probability. Finally, the re-
sulting abstract description of conditional state in Section 6 is illustrated in a
concrete example in Bayesian inference, using probability distributions as states.

2 Preliminaries on Distributions and Convex Sets

For an arbitrary set X we write D(X) for the set of formal finite convex combi-
nations of elements from X . These elements of D(X) will be represented in two
equivalent ways.

– As formal convex sums λ1 |x1〉 + · · · + λn |xn〉, for xi ∈ X and λi ∈ [0, 1]
with

∑
i λi = 1. We use the ‘ket’ notation |x〉 in such formal sums to prevent

confusion with elements x ∈ X .

– As functions ϕ : X → [0, 1] with finite support and
∑

x ϕ(x) = 1. The sup-
port of ϕ is the set { x ∈ X : ϕ(x) �= 0 }.

Elements of D(X) are also called (discrete probability) distributions over X .
The mapping X �→ D(X) can be made functorial: for f : X → Y we get a

function D(f) : D(X) → D(Y ) which may be described in two equivalent ways:

D(f)(
∑

i λi |xi〉 ) =
∑

i λi |f(xi)〉 or D(f)(ϕ)(y) =
∑

x∈f−1(y) ϕ(x).

Moreover, D is a monad, with unit η : X → D(X) given by η(x) = 1 |x〉, and
multiplication μ : D2(X) → D(X) by μ(

∑
i λi |ϕ〉 )(x) =

∑
i λi · ϕi(x). This

monad is monoidal (or sometimes called commutative) from which the following
result follows by general categorical reasoning (see [Koc71a, Koc71b]).

Proposition 1. The category Conv = EM(D) of Eilenberg–Moore algebras is
both complete and cocomplete, and it is symmetric monoidal closed. The tensor
unit is the final singleton set 1, since D(1) ∼= 1. �
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We recall that an Eilenberg–Moore algebra (of the monad D) is a map of
the form γ : D(X) → X satisfying γ ◦ η = id and γ ◦ μ = γ ◦ D(γ). A
morphism

(D(X)
γ→ X

) −→ (D(X ′)
γ′
→ X ′) in EM(D) is a map f : X → X ′

with f ◦ γ = γ′ ◦ D(f). An important point is that we identify an algebra
with a convex set: the map γ : D(X) → X turns a formal convex combination
into an actual element in X . Maps of algebras preserve such convex sums and
are commonly called affine functions. Therefore we often write Conv for the
category EM(D).

Examples 2. 1. Let X be a set. The space D(X) of formal convex combina-
tions over X is itself a convex set (with structure map μX : D2(X) → D(X)).

D(2) D(3) D(4)

Given a natural number n the
space D(n + 1) is (isomorphic to)
the n-th simplex. E.g., D(1) contains a
single point, and D(2), D(3) and D(4)
are pictured right.

2. Any real vector space V is a convex set with structure map γ : D(V ) → V
given by, γ(ϕ) =

∑
v∈V ϕ(v) · v, for ϕ ∈ D(V ). 3. Obviously a convex subset of

a convex space is again a convex set. 4. A convex set which is isomorphic to a
convex subset of a real vector space is called representable. For every set X
the space D(X) is representable since D(X) is a subset of the real vector space
of functions from X to IR.

In the remainder of this section we concentrate on coproducts of convex sets.
Each category of algebras for a monad on Sets is cocomplete, by a theorem of
Linton, see e.g. [BW85, § 9.3, Prop. 4]. This applies in particular to the category
Conv = EM(D), see Proposition 1. Hence we know that coproducts + exist in
Conv, but the problem is that the abstract construction of such coproducts of
algebras uses a coequaliser in the category of algebras. Our aim is to get a more
concrete description. We proceed by first describing the coproduct X• = X + 1
in Conv, where 1 is the final one-element convex set 1 = {•}.

Elements of this ‘lift’ X• = X + 1 can be thought of as being either λx
for λ(0, 1] and x ∈ X , or the special element •. This lift construction will be
useful to construct the coproduct of convex sets later on.

Definition 3. Let X be a convex set, via α : D(X) → X. Define the set

X• = { (λ, x) ∈ [0, 1]× (X ∪ {•} ) : λ = 0 iff x = • }.
We will often write (0, e) even when e is an expression that does not make sense.
In that case, by (0, e) we mean (0, •). For example, (0, 1

0 ) = (0, •). Given (λ, x) ∈
X•, we call λ the weight of (λ, x) and denote it as |(λ, x)| = λ.

Now, we may define a convex structure β : D(X•) → X• succinctly:

β( ρ1 |(λ1, x1)〉 + · · · + ρn |(λn, xn)〉 ) = ( ζ, α(ρ1λ1

ζ |x1〉+ · · ·+ ρnλn

ζ |xn〉) ),
where ζ = λ1ρ1+· · ·+λnρn. Given an affine map f : X → Y , define f• : X• → Y•
by f•(λ, x) = (λ, f(x)) where f(•) := •.
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Lemma 4. This (X•, β) is a convex set and it is the coproduct X+1 in Conv.

Proof. The equation β ◦ η = id is easy: for (x, λ) ∈ X•,

β(η(λ, x)) = β( |(λ, x)〉 ) = (λ, α(λλ |x〉) ) = (λ, α(|x〉) ) = (λ, x).

Verification of the μ-equation is left to the reader. There are obvious coprojec-
tions κ1 : X → X• and κ2 : 1 → X• given by κ1(x) = (1, x) and κ2(•) = (0, •).
Given any convex set Y with γ : D(Y ) → Y together with affine maps c1 : X → Y
and c2 : 1 → Y , we can define a unique affine map h : X• → Y by h(λ, x) =
γ(λ |c1(x)〉 + (1−λ) |c2(•)〉 ). When x = • (and so λ = 0) we interpret h(λ, x) =
γ(|c2(•)〉). �

This lifted convex set X• provides a simple description of coproducts.

Proposition 5. The coproduct of two convex sets X and Y can be identified
with the convex subset of X• × Y• of pairs whose weights sum to one. That is:

X + Y ∼= { (x, y) ∈ X• × Y• : |x|+ |y| = 1 }
The convex structure on this subset is inherited from the product X• × Y•. The
first coprojection is given by κ1(x) = 〈 (1, x), (0, •) 〉, and there is a similar
expression for κ2. The cotuple is [f, g]((λ, x), (ρ, y)) = λf(x) + ρg(y). �

There is a similar description for the coproduct of n convex sets. E.g., for n = 3,

X + Y + Z = { (x, y, z) ∈ X• × Y• × Z• : |x|+ |y|+ |z| = 1 }.
From now on we shall use this concrete description for the coproduct + in Conv.
By the way, the initial object in Conv is simply the empty set, ∅.

3 The Cancellation Property for Convex Sets

The cancellation property that will be defined next plays an important role in
the theory of convex sets. This section collects several equivalent descriptions
from the literature, and adds one new equivalent property, expressed in terms
of ‘jointly monicity’, see Theorem 8 (4) below. Crucially, this property is part
of the axiomatisation proposed in [Jac14], and its equivalence to cancellation is
the main contribution of this section.

Definition 6. Let X be a convex set. We call X cancellative provided that for
all x, y1, y2 ∈ X and λ ∈ [0, 1] with λ �= 1 we have

λx+ (1 − λ)y1 = λx + (1− λ)y2 =⇒ y1 = y2.

We write CConv ↪→ Conv for the full subcategory of cancellative convex sets.

Representable convex sets — subsets of real vector spaces — clearly satisfy
this cancellation property. But not all convex sets do.
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Examples 7. 1. If we remove from the unit interval [0, 1] the point 1 and
replace it by a copy of the unit interval whose points we will denote by 1a
for a ∈ [0, 1], we get a convex space we will call � (pictured right).

0

10

11

The convex structure on � is such that the inclu-
sion a �→ 1a is affine and the quotient � → [0, 1] which
maps 1a to 1 and [0, 1) on itself is affine.
We have 1

2 · 0 + 1
2 · 10 = 1

2 = 1
2 · 0 + 1

2 · 11, but 10 �= 11.
Thus � is not cancellative and hence not representable.

2. A semilattice L becomes a convex set if we define
∑

i λixi =
∨

i xi for all xi ∈
L and λi ∈ (0, 1] with

∑
i λi = 1 (see [Neu70], §4.5). The semilattice L is

cancellative as convex set if and only if x = y for all x, y ∈ L.

Theorem 8. For a convex set X the following statements are equivalent.

1. X is cancellative — see Definition 6;
2. X is representable, i.e. isomorphic to a convex subset of a real vector space;
3. X is separated, in the sense that for all x, y ∈ X if f(x) = f(y) for all affine

maps f : X → IR, then x = y;
4. The two maps [κ1, κ2, κ2], [κ2, κ1, κ2] : X + X + X → X + X are jointly

monic in Conv.

Proof. (3) =⇒ (2) Let Aff(X) denote the set of affine maps X → IR, and V
the vector space of (all) functions Aff(X) → IR, with pointwise structure. Let
η : X → V be given by η(x)(f) = f(x). We will prove that η is an injective affine
map, making X representable.

Let x1, . . . , xN ∈ X and λ1, . . . , λN ∈ [0, 1] with
∑

n λn = 1 be given, and
also f ∈ Aff(X) be given. Since f is affine, we get that η is affine too:

η(λ1x1 + · · ·+ λNxN )(f) = f(λ1x1 + · · ·+ λNxN )

= λ1f(x1) + · · ·+ λNf(xN )

= λ1η(x1)(f) + · · · + λNη(xN )(f)

= ( λ1η(x1) + · · ·+ λNη(xN ) )(f).

Towards injectivity of η, let x, y ∈ X with η(x) = η(y) be given. Then for
each f ∈ Aff(X) we have f(x) = η(x)(f) = η(y)(f) = f(y). Thus x = y since X
is separated.
(2) =⇒ (3) Since X is representable we may assume X is a convex subset of
a real vector space V . Let x, y ∈ X with x �= y be given. To show that X is
separated we must find an affine map f : X → IR such that f(x) �= f(y).

Since x �= y, we have that x − y �= 0. By Zorn’s lemma there is a maximal
linearly independent set B which contains x− y. The set B spans V for if v ∈ V
is not in the span of B then B ∪ {v} is a linearly independent set and B is not
maximal. Thus B is a base for V . There is a unique linear map f : B → IR
such that f(x − y) = 1 and f(b) = 0 for all b ∈ B with b �= x − y. Note
that f(x) �= f(y). Let g : X → IR be the restriction of f to X . Then g is an
affine map and g(x) = f(x) �= f(y) = g(y). Hence X is separated.
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(2) =⇒ (1) is easy.
(1) =⇒ (2) We give an outline of the proof, but leave the key step to Stone
(see [Sto49]). Let V be the real vector space of functions from X to IR with
finite support. Recall that D(X) = {f ∈ V :

∑
x∈X f(x) = 1}. So we have a

map ηX : X → D(X) ⊆ V . Let I be the linear span of

{ ηX(γ(f))− f : f ∈ D(X) } (1)

where γ : D(X) → X is the structure map of X . Let q : V → V/I be the quotient
map. Then by definition of I, the map q ◦ ηX : X −→ V is affine. So to show
that X is representable it suffices to show that q ◦ ηX is injective. Let x, y ∈ X
with q(ηX(x)) = q(ηX(y)) be given. We must show that x = y. We have f :=
ηX(x)− ηY (y) ∈ I. So f is a linear combination of elements from the set in (1).
By the same syntactic argument as in the proof of Theorem 1 of [Sto49] we get
that f = 0 since X is cancellative, and thus x = y.
(1) =⇒ (4) Write ∇1 = [κ1, κ2, κ2] and ∇2 = [κ2, κ1, κ2]. We will prove that ∇1

and ∇2 are jointly injective (and thus jointly monic). Let a, b ∈ X+X+X with
∇1(a) = ∇1(b) and ∇2(a) = ∇2(b) be given. We must show that a = b. Write
a ≡ (a1, a2, a3) and b ≡ (b1, b2, b3) (see Proposition 5). Then we have

∇1(a) = ( a1, a2 ⊕ a3 ), ∇2(a) = ( a2, a1 ⊕ a3 ), (2)

where ⊕ is the partial binary operation on X• given by

(λ, x)⊕ (μ, y) = (λ+ μ, λ
λ+μx + μ

λ+μy )

when λ+ μ ≤ 1, and undefined otherwise. By the equalities from Statement (2)
and similar equalities for ∇1(b) and ∇2(b), we get a1 = b1, a2 ⊕ a3 = b2 ⊕ b3,
a2 = b2, and a1 ⊕ a3 = b1 ⊕ b3. It remains to be shown that a3 = b3. It is easy
to see that ⊕ is cancellative since X is cancellative. Thus a1 ⊕ a3 = b1 ⊕ b3
and a1 = b1 give us that b1 = b3. Thus a = b.
(4) =⇒ (1) We assume that ∇1, ∇2 : X + X + X → X + X (see above) are
jointly monic and must prove that X is cancellative. The affine maps from 1
to X +X +X correspond to the (actual) points of X +X +X , so it is not hard
to see that ∇1 and ∇2 are jointly injective. Let x1, x2, y ∈ X and λ ∈ [0, 1] with
λ �= 0 and λx1+(1−λ)y = λx2+(1−λ)y be given. We must show that x1 = x2.

Write ai = ( λ
2−λ , xi) and b = (1−λ

2−λ , y) (where i ∈ {1, 2}). Then ai, b ∈ X•.
Further, |ai|+ |b|+ |b| = 1, so vi := (b, b, a) ∈ X +X +X . Note that

ai ⊕ b = ( 1
2−λ , λxi + (1− λ)y ).

So we see that a1 ⊕ b = a2 ⊕ b. We have

∇1(b, b, a1) = (b, b⊕ a1) = (b, b⊕ a2) = ∇1(b, b, a2),

∇2(b, b, a1) = (b, b⊕ a1) = (b, b⊕ a2) = ∇2(b, b, a2).

Since ∇1,∇2 are jointly injective this entails a1 = a2. Thus x1 = x2. �
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What we call (cancellative) convex sets appear under various different names
in the literature. For instance, cancellative convex sets are called convex struc-
tures in [Gud77], convex sets in [Ś74], convex spaces of geometric type in [Fri09],
and are the topic of the barycentric calculus of [Sto49]. Convex sets are called
semiconvex sets in [Ś74, Flo81], and convex spaces in [Fri09]. The fact that every
cancellative convex set is representable as a convex subset of a real vector space
was proven by Stone, see Theorem 2 of [Sto49]. The description of convex sets
as Eilenberg–Moore algebras is probably due to Świrszcz, see §4.1.3 of [Ś74] (see
also [Jac10]), but the (quasi)variety of (cancellative) convex sets was already
studied by Neumann [Neu70]. The fact that a convex set is cancellative iff it is
separated by functionals was also noted by Gudder, see Theorem 3 of [Gud77].
The separation of points (and subsets) by a functional in a non-cancellative con-
vex set has been studied in detail by Flood [Flo81]. The pathological convex
set � (see Ex. 1) appears in [Fri09].

The duality of states and effects in quantum theory, see [HZ12], is formalised
categorically in terms of an adjunction between ‘effect modules’ and convex sets.
An effect module is a positive cancellative partial commutative monoid (E,�, 0)
with a selected element 1 such that for all a there is a (unique) a⊥ with a�a⊥ = 1
and with a compatible action of [0, 1]. ByEMod, we denote the category of effect
modules with maps that preserve partial addition �, scalar multiplication and 1.
For details on effect modules we refer to [Jac14], but for the record we should
note the following.

Proposition 9. The adjunction EModop � Conv obtained by “homming into
[0, 1]” restricts to an adjunction EModop � CConv. �

4 Normalisation

This section introduces a categorical description of normalisation, and illustrates
what it means in several examples. As far as we know, this is new. Roughly,
normalisation says that each non-zero substate can be written as a scalar product
of a unique state.

Definition 10. Let C be a category with finite coproducts (+, 0) and a final
object 1. We call maps 1 → X states on X, and maps 1 → X + 1 substates.

1
σ ��

σ

��

X + 1

X + 1
!+id

�� 1 + 1

ω+id

��

We introduce the property normalisation as follows:
for each substate σ : 1 → X + 1 with σ �= κ2 there is a
unique state ω : 1 → X such that ((ω ◦ !) + id) ◦ σ = σ.
That is, the diagram to the right commutes. The scalar
involved is the map (! + id) ◦ σ : 1 → 1 + 1.
(The formulation of normalisation can be simplified a bit
in the Kleisli category of the lift monad (−) + 1.)

Examples 11. We briefly describe what normalisation means in several cate-
gories, and refer to [Jac14] for background information about these categories.
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1. In the Kleisli category K�(D) of the distribution monad D a state 1 → X
is a distribution ω ∈ D(X), and a substate 1 → X + 1 is a subdistribution
σ ∈ D≤1(X), for which

∑
x σ(x) ≤ 1. If such a σ is not κ2, that is, if

r =
∑

x σ(x) ∈ [0, 1] is not zero, take ω(x) = ϕ(x)
r . Then

∑
x ω(x) = 1.

2. Let CstarPU be the category of C∗-algebras with positive unital maps. We
claim that normalisation holds in the opposite category CstaropPU. The oppo-
site is used in this context because C∗-algebras form a category of predicate
transformers, corresponding to computations going in the reverse direction.
In CstaropPU the complex numbers C are final, and coproducts are given by ×.
Thus, let σ : A × C → C be a substate on a C∗-algebra A . If σ is not the
second projection, then r := σ(1, 0) ∈ [0, 1] is non-zero. Hence we define

ω : A → C as ω(a) = σ(a,0)
r . Clearly, ω is positive, linear and ω(1) = 1.

(In fact, substates A ×C → C may be identified with subunital positive maps
ω : A → C, for which 0 ≤ ω(1) ≤ 1. Normalisation rescales such a map ω

to ω′ := ω(−)
ω(1) with ω′(1) = 1.)

3. The same argument can be used in the opposite category EModop of effect
modules. Hence EModop also satisfies normalisation.

4. Normalisation holds both in Conv and in CConv, that is, it holds for convex
and for cancellative convex sets. This is easy to see using the description X+
1 = X• from Lemma 4. Indeed, if σ : 1 → X• is not κ2, then writing σ(•) ≡
(λ, a) we have λ > 0 and a �= •. Now take as state ω : 1 → X with ω(1) = a.

In the present context we restrict ourselves to effect modules and convex
sets over the unit interval [0, 1], and not over some arbitrary effect monoid, like
in [Jac14]. Normalisation holds for such effect modules over [0, 1] because we can
do division s

r in [0, 1], for s ≤ r. More generally, it must be axiomatised in effect
monoids. That is beyond the scope of the current article.

5 Effecti

The next definition refines the requirements from [Jac14] and introduces the
name ‘effectus’ for the kind of category at hand. The main result is that taking
the states of an arbitrary effects yields a functor to cancellative convex sets,
which preserves coproducts. This leads to a robust notion, which is illustrated
via the state-and-effect triangle associated with an effectus, which now consists
of maps of effecti.

Definition 12. A category C is called an effectus if:

1. it has a final object 1 and finite coproducts (0,+);
2. the following diagrams are pullbacks;

A+X
id+g ��

f+id ��

A+ Y
f+id��

B +X
id+g

�� B + Y

Y
κ1 ��

Y
κ1��

Y +A
id+g

�� Y +B
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3. the maps [κ1, κ2, κ2], [κ2, κ1, κ2] : X +X +X → X +X are jointly monic.

An effectus with normalisation is an effectus in which normalisation holds
— see Definition 10.

The main examples of effecti with normalisation — see also Examples 11
— include the Kleisli category K�(D) of the distribution monad D for discrete
probality, but also the Kleisli category K�(G) of the Giry monad for continuous
probability (which we don’t discuss here). In the quantum setting our main
example is the opposite CstaropPU of the category of C∗-algebras, with positive
unital maps.

A predicate on an object X in an effectus is an arrow X → 1 + 1. A scalar
is an arrow 1 → 1+1. A state on X is an arrow 1 → X . We write Pred(X) and
Stat(X) for the collections of predicates and states on X , so that the scalars are
in Pred(1) = Stat(1 + 1). We shall say that C is an effectus over [0, 1] if the set
of scalars Pred(1) in C is (isomorphic to) [0, 1]. This is the case in all previously
mentioned effecti, see Examples 11. An n-test on X is a map X → n · 1, where
n · 1 is the n-fold copower 1 + · · ·+ 1.

This paper goes beyond [Jac14] in that it considers not only effecti but also
their morphisms. This gives a new perspective, see the proposition about the
predicate functor below.

Definition 13. Let C, D be two effecti. A map of effecti C → D is a functor
that preserves the final object and the finite coproducts (and as a consequence,
preserves the two pullbacks in Definition 12).

The next result is proven in [Jac14], without using the terminology of effecti.

Proposition 14. LetC be an effectus over [0, 1]. The assignment X �→ Pred(X)
forms a functor Pred: C → EModop. This functor is a map of effecti. �

This motivates us to see if there is a corresponding result for states, i.e.
whether the assignment X �→ Stat(X) is also a map of effecti. This is where the
cancellation and normalisation properties come into play.

Proposition 15. The category CConv of cancellative convex sets is an effectus
with normalisation.

Proof. It is clear that the one-point convex set 1 is cancellative. It is also easy
to see using the description of the coproduct of convex sets from Proposition 5
that the coproduct in Conv of two cancellative convex sets is cancellative. So
the coproducts + of Conv restrict to CConv.

Moreover, the jointly monic property holds in CConv by Theorem 8, and
normalisation holds by Example 11 (4). What remains is showing that the two
diagrams in Definition 12 are pullbacks in CConv. For this we use the repre-
sentation of the coproduct of (cancellative) convex sets of Proposition 5.

To show that the diagram on the left in Definition 12 (2) is a pullback
in CConv it suffices to show that it is a pullback in Sets, so let elements (a, y) ∈
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A+ Y and (b, x) ∈ B +X with (f + id)(a, y) = (id + g)(b, x) be given. We must
show that there is a unique e ∈ A+X with the following property, called P (e).

(id + g)(e) = (a, y) and (f + id)(e) = (b, x) (P (e))

We claim that P (a, x). For this we must first show that (a, x) ∈ A + X , that
is, |a| + |x| = 1. Note that since (f•(a), y) ≡ (f + id)(a, y) = (id + g)(b, x) ≡
(b, g•(x)) we have f•(a) = b and g•(x) = y. Then |a| = |f•(a)| = |b|. Further,
|b|+ |x| = 1 since (b, x) ∈ B +X . Thus |a|+ |x| = 1, and (a, x) ∈ A+X . Now,
(id + g)(a, x) = (a, g•(x)) = (a, y), and similarly we have (f + id)(a, x) = (b, x).
Hence P (a, x).

For uniqueness, suppose that (a′, x′) ∈ A+X with P (a′, x′) is given. We must
show that a = a′ and x = x′. We have (a, y) = (id + g)(a′, x′) = (a′, g•(x′)) and
similarly (b, x) = (f•(a′), x′). Thus a′ = a and x = x′. Hence the diagram on
the left is pullback in CConv. A similar reasoning works for the diagram on the
right in Definition 12. �

Proposition 16. Let C be an effectus with normalisation over [0, 1]. The state
functor Stat : C → Conv preserves coproducts: Stat(X+Y ) ∼= Stat(X)+Stat(Y )
for X,Y ∈ C.

Proof. For objects X,Y ∈ C, consider the canonical map:

Stat(X) + Stat(Y )
ϑ:=[ Stat(κ1), Stat(κ2) ] �� Stat(X + Y )

We have to show that this ϑ is bijective. First, we give a direct expression for ϑ.
Let (x, y) ∈ Stat(X) + Stat(Y ) be such that |x|, |y| ∈ (0, 1). Then there are a
scalar λ : 1 → 1 + 1 and states x̂ : 1 → X and ŷ : 1 → Y such that (x, y) =
λκ1(x̂)+λ⊥κ2(ŷ), where λ

⊥ = [κ2, κ1] ◦ λ = 1−λ. Observe ϑ(x, y) = (x̂+ ŷ)◦λ.
To prove surjectivity, let ω : 1 → X+Y be a state. Define a scalar λ = (!+!) ◦

ω : 1 → 1 + 1. Define substates x = (id+!) ◦ ω : 1 → X + 1 and y = [κ2 ◦ !, κ1] ◦
ω : 1 → Y +1. For now, suppose that λ �= κ1 and λ �= κ2, i.e., x �= κ2 and y �= κ2.
Then by normalisation, there are states x̂ : 1 → X and ŷ : 1 → Y such that

x = (x̂+ id) ◦ (! + id) ◦ x and y = (ŷ + id) ◦ (! + id) ◦ y.

Define σ := 〈 (λ, x̂), (λ⊥, ŷ) 〉 ∈ Stat(X) + Stat(Y ). We claim that ϑ(σ) = ω.
That is, we must show that (x̂ + ŷ) ◦ λ = ω. Note that the two maps

(id+!) : X + Y → X + 1 and [κ2◦!, κ1] : X + Y → Y + 1

are jointly monic in C by the pullback diagram on the left in Definition 12 (2).
Thus it suffices to show that

(id+!) ◦ (x̂+ ŷ) ◦ λ = (id+!) ◦ ω ≡ x

and [κ2 ◦ !, κ1] ◦ (x̂ + ŷ) ◦ λ = [κ2 ◦ !, κ1] ◦ ω ≡ y
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We verify the first equality and leave the second equality to the reader.

(id+!) ◦ (x̂+ ŷ) ◦ λ = ( (id ◦ x̂) + (! ◦ ŷ) ) ◦ λ

= (x̂+ id) ◦ λ

= (x̂+ id) ◦ (! + id) ◦ (id+!) ◦ ω by def. of λ

= (x̂+ id) ◦ (! + id) ◦ x by def. of x

= x by def. of x̂

Suppose λ = κ2, i.e., x = κ2. Then λ⊥ = κ1, so y �= κ2. Thus there is a unique ŷ
with y = (ŷ + id) ◦ (! + id) ◦ y = (ŷ + id) ◦ λ⊥ = (ŷ + id) ◦ κ1 = κ1 ◦ ŷ. Thus:

(id+!) ◦ κ2 ◦ ŷ = κ2 ◦ ! ◦ ŷ = κ2 = x = (id+!) ◦ ω

[κ2 ◦ !, κ1] ◦ κ2 ◦ ŷ = κ1 ◦ ŷ = y = [κ2 ◦ !, κ1] ◦ ω.

By joint monicity of (id+!) and [κ2 ◦!, κ1] we derive ω = κ2 ◦ ŷ ≡ ϑ(κ1(ŷ)). The
case for x = κ1 is similar. Thus ϑ is surjective.

For injectivity, let (x, y), (x′, y′) ∈ Stat(X)+Stat(Y ) with ϑ(x, y) = ϑ(x′, y′)
be given. Note that |x′| = (!+!) ◦ ϑ(x′, y′) = (!+!) ◦ ϑ(x, y) = |x|. Assume
that |x| ∈ (0, 1). Then there are x̂, x̂′ : 1 → X and ŷ, ŷ′ : 1 → Y such that

x = (|x|, x̂); y = (|x|⊥, ŷ); x′ = (|x|, x̂′) and y′ = (|x|⊥, ŷ′).
Consequently:

(x̂+ id) ◦ |x| = (id+!) ◦ (x̂+ ŷ) ◦ |x| = (id+!) ◦ ϑ(x, y) = (id+!) ◦ ϑ(x′, y′)
= (id+!) ◦ (x̂′ + ŷ′) ◦ |x| = (x̂′ + id) ◦ |x|.

It follows that we have two ‘normalisations’ x̂, x̂′ : 1 → X for the substate σ =
(x̂+ id) ◦ |x| = (x̂′ + id) ◦ |x| : 1 → X + 1:

(x̂ + id) ◦ (! + id) ◦ σ = (x̂ + id) ◦ |x| = (x̂′ + id) ◦ |x| = (x̂′ + id) ◦ (! + id) ◦ σ.

And thus by the uniqueness in the normalisation assumption, we conclude x̂ = x̂′.
Similarly, ŷ = ŷ′. Hence (x, y) = (x′, y′). We leave it to the reader to show
that (x, y) = (x′, y′) when |x| ∈ {0, 1}. Thus ϑ is injective. �

This preservation of coproducts is an important property for an abstract ac-
count of conditional probability, see Section 6 for the discrete case. For C∗-
algebras the above result takes the following concrete, familiar form: let ω be a
state of the form ω : A ×B → C — so that ω is a map 1 → A +B in CstaropPU.
Take λ = ω(1, 0) ∈ [0, 1]. If we exclude the border cases λ = 0 and λ = 1, then
we can write ω as convex combination ω = λ(ω1 ◦ π1) + (1 − λ)(ω2 ◦ π2) for

states ω1 = ω(−,0)
λ : A → C and ω2 = ω(0,−)

1−λ : B → C.
Now we obtain the analogue of Proposition 14 for states.

Theorem 17. Let C be an effectus with normalisation over [0, 1]. The assign-
ment X �→ Stat(X) yields a functor Stat: C → CConv, which is a map of
effecti.
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Proof. Most of this is already clear: the functor Stat preserves + by Proposi-
tion 16. It sends the initial object 0 ∈ C to the set Stat(0) = Hom(1, 0). This
set must be empty, because otherwise 1 ∼= 0, which trivialises C and makes it
impossible that C has [0, 1] as its scalars. Also, Stat(1) ∼= 1, since there is only
one map 1 → 1.

What remains to be shown is that each convex set Stat(X) is cancellative. By
Theorem 8 we are done if we can show that the following two maps are jointly
monic in the category Conv.

Stat(X) + Stat(X) + Stat(X)
[κ1,κ2,κ2] ��

[κ2,κ1,κ2]
�� Stat(X) + Stat(X)

But since the functor Stat: C → Conv preserves coproducts by Proposition 16
this is the same as joint monicity of the maps:

Stat(X +X +X)
Stat([κ1,κ2,κ2]) ��

Stat([κ2,κ1,κ2])
�� Stat(X +X)

Suppose we have two states ω, ω′ ∈ Stat(X +X +X) with Stat([κ1, κ2, κ2])(ω) =
Stat([κ1, κ2, κ2])(ω

′) andStat([κ2, κ1, κ2])(ω) = Stat([κ2, κ1, κ2])(ω
′).Thismeans

that ω, ω′ : 1 → X + X + X satisfy [κ1, κ2, κ2] ◦ ω = [κ1, κ2, κ2] ◦ ω′ and
[κ2, κ1, κ2] ◦ ω = [κ2, κ1, κ2] ◦ ω′. By using the joint monicity property in C,
see Definition 12 (3), we obtain ω = ω′. �

The following observation ties things closer together.

Proposition 18. The adjunction EModop � CConv from Proposition 9 can
be understood in terms of maps of effecti:

– the one functor EMod(−, [0, 1]) : EModop → CConv is the states functor
Stat = EModop(1,−), since [0, 1] is the initial effect module, and thus the
final object 1 in EModop;

– the other functor CConv(−, [0, 1]) : CConv → EModop is the predicate
functor Pred = CConv(−, 1+1), since the sum 1+1 in CConv is [0, 1]. �

EModop
Stat ��� CConv
Pred

��

C
Hom(−,1+1)=Pred

��

Stat=Hom(1,−)

��

The above series of results cul-
minates in the following.

Corollary 19. Let C be an ef-
fectus over [0, 1]. Then we obtain
a “state-and-effect” triangle shown
on the right, where all the arrows
are maps of effecti. (Arrows need not commute.)

As degenerate cases of the triangle we obtain:

EModop
Stat

��� CConv
Pred

��

EModop
Pred Stat

�� EModop
Stat

��� CConv
Pred

��

CConv
Pred

��

Stat
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6 Conditional Probability

An essential ingredient of conditional probability is normalisation, i.e. rescaling
of probabilities: if we throw a dice, then the probability P (4) of getting 4 is 1

6 .
But the conditional probability P (4 | even) of getting 4 if we already know that
the outcome is even, is 1

3 . This
1
3 is obtained by rescaling of 1

6 , via division by the
probability 1

2 of obtaining an even outcome. Essentially this is the normalisa-
tion mechanism of Definition 10, and the resulting coproduct-preservation of the
states functor from Proposition 16, as we will illustrate in the current section.
Our general approach to conditional probability applies to both probabilistic
and quantum systems. We present it in terms of an effectus with so-called ‘in-
struments’. They are described in great detail in [Jac14], but here we repeat the
essentials, for the Kleisli category K�(D) of the distribution monad D. In a later,
extended version of this paper the quantum case, using the effectus CstaropPU of
C∗-algebras will be included.

LetC be an arbitrary effectus. Recall its predicate functor Pred: C → EModop

which takes the maps X → 1 + 1 as predicates on X . In caseC = K�(D) we have
Pred(X) = [0, 1]X , the fuzzy predicates onX . Ann-test in an effectus is ann-tuple
of predicates p1, . . . , pn ∈ Pred(X) with p1 � · · ·�pn = 1. InK�(D) this translates
to predicates pi ∈ [0, 1]X with

∑
i pi(x) = 1, for each x ∈ X . An instrument for

an n-test −→p is a map instr−→p : X → n · X in C, where n · X = X + · · · + X is
the n-fold coproduct. These instruments should satisfy certain requirements, but
we skip them here. In K�(D) such an instrument is a map instr−→p : X → D(n · X)
defined as:

instr−→p (x) = p1(x) |κ1x〉+ · · ·+ pn(x) |κnx〉 .
We can now introduce the notion of conditional state, via coproduct-preservation.

Definition 20. Let C be an effectus (over [0, 1]) with normalisation, and with
instruments as sketched above. Let ω ∈ Stat(X) be a state, and −→p = p1, . . . , pn
be an n-test on X, of predicates pi ∈ Pred(X). By applying the state functor
Stat: C → CConv we can form the new state:

ω′ = Stat
(
instr−→p

)
(ω) ∈ Stat(n ·X)

Prop.16∼= n · Stat(X)
Prop.5

⊆ ∏
n Stat(X)•

Hence we write this new state ω′ as a convex combination of what we call con-
ditional states on X, written as ω|pi ∈ Stat(X). The probabilities ri in this
convex combination can be computed as validity probabilities:

ri = ω |= pi = pi ◦ ω : 1 −→ 1 + 1.

When each ri is non-zero, there are n such conditional states ω|pi.
From a Bayesian perspective such a conditional state ω|pi can be seen as an

update of our state of knowledge, resulting from evidence pi. This will be illus-
trated next in a discrete probabilistic example of Bayesian inference. It uses the
Kleisli category K�(D) as effectus, in which a state 1 → X in K�(D) corresponds
to a distribution ϕ ∈ D(X). Conditional states, as defined above, appear as
conditional distributions, generalising ordinary conditional probabilities.
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Example 21. Suppose, at an archaeological site, we are investigating a tomb of
which we know that it must be from the second century AD, that is, somewhere
from the time period 100 – 200. We wish to learn its origin more precisely.
During excavation we are especially looking for three kinds of objects 0, 1, 2, of
which we know the time of use more precisely, in terms of “prior” distributions.
This prior knowledge involves a split of the time period 100 – 200 into four equal
subperiods A = 100 – 125, B = 125 – 150, C = 150 – 175, D = 175 – 200.
Associated with each object i = 0, 1, 2 there is a predicate pi ∈ [0, 1]{A,B,C,D},
which we write as sequence of probabilities of the form:

p0 = [0.7, 0.5, 0.2, 0.1] p1 = [0.2, 0.2, 0.1, 0.1] p2 = [0.1, 0.3, 0.7, 0.8].

Predicate p0 incorporates the prior knowledge that object 0 is with probability 0.7
from subperiod A, with probability 0.5 from subperiod B, etc. Notice that these
three predicates form a 3-test, since p0 � p1 � p2 = 1. They can be described
jointly as a Kleisli map {A,B,C,D} → D({0, 1, 2}).

Inference works as follows. Let our current knowledge about the subperiod of
origin of the tomb be given as a distribution ϕ ∈ D({A,B,C,D}). We can com-
pute ϕ′ = instr−→p (ϕ) ∈ D(3 · {A,B,C,D}) and split ϕ′ up into three conditional
distributions ϕ|p0, ϕ|p1, ϕ|p2 ∈ D({A,B,C,D}), like in Definition 20. If we find
as “evidence” object i, then we update our knowledge from ϕ to ϕ|pi.
If we start from a uniform distri-
bution, and find objects i1, . . . , in ∈
{0, 1, 2}, then we have as inferred dis-
tribution (knowledge) ϕ|pi1 |pi2 | · · · |pin .
For instance, the series of findings
1, 2, 2, 0, 1, 1, 1, 1 yields the consecutive
distributions shown in figure 21. Hence
period B is most likely. These distribu-
tions are computed by a simple Python
program that executes the steps of Defi-
nition 20. Interestingly, a change in the
order of the objects that are found does
not affect the final distribution. This
is different in the quantum case, where
such commutativity is lacking.

0.25 |A〉+ 0.25 |B〉+ 0.25 |C〉+ 0.25 |D〉
0.33 |A〉+ 0.33 |B〉+ 0.17 |C〉+ 0.17 |D〉
0.09 |A〉+ 0.26 |B〉+ 0.30 |C〉+ 0.35 |D〉
0.02 |A〉+ 0.14 |B〉+ 0.37 |C〉+ 0.48 |D〉
0.05 |A〉+ 0.34 |B〉+ 0.37 |C〉+ 0.24 |D〉
0.08 |A〉+ 0.49 |B〉+ 0.26 |C〉+ 0.17 |D〉
0.10 |A〉+ 0.62 |B〉+ 0.17 |C〉+ 0.11 |D〉
0.11 |A〉+ 0.72 |B〉+ 0.10 |C〉+ 0.06 |D〉
0.12 |A〉+ 0.79 |B〉+ 0.05 |C〉+ 0.04 |D〉

Fig. 1. Inferred distributions

7 Conclusions

Starting from convex sets, in particular from the cancellation property and a
concrete description of coproducts, we have arrived at the notion of effectus
as a step towards a categorical axiomatisation of probabilistic and quantum
computation. We have proven some ‘closure’ properties for effecti, among them
that the states functor is a map of effecti. The concept of normalisation gave rise
to a general notion of conditional state, which we have illustrated in the context
of Bayesian inference.



States of Convex Sets 101

Acknowledgements. We would like to thank Kenta Cho and the anonymous
referees for their constructive feedback.

References

[AE80] Asimow, L., Ellis, A.: Convexity Theory and its Applications in Functional
Analysis. Academic Press, New York (1980)

[BW85] Barr, M., Wells, C.: Toposes, triples and theories, vol. 278. Springer, New
York (1985)

[BW11] Barnum, H., Wilce, A.: Information processing in convex operational theo-
ries. In: Coecke, B., Mackie, I., Panangaden, P., Selinger, P. (eds.) Proceed-
ings of QPL/DCM 2008. Elect. Notes in Theor. Comp. Sci, vol. 270(2), pp.
3–15. Elsevier, Amsterdam (2008)

[Flo81] Flood, J.: Semiconvex geometry. Journal of the Australiam Mathematical
Society 30, 496–510 (1981)

[Fri09] Fritz, T.: Convex spaces I: Definition and examples. arXiv preprint
arXiv:0903.5522 (2009)

[Gud73] Gudder, S.: Convex structures and operational quantum mechanics. Com-
munic. Math. Physics 29(3), 249–264 (1973)

[Gud77] Gudder, S.: Convexity and mixtures. Siam Review 19(2), 221–240 (1977)
[HZ12] Heinosaari, T., Ziman, M.: The mathematical language of quantum theory:

from uncertainty to entanglement. AMC 10, 12 (2012)
[Jac10] Jacobs, B.: Convexity, duality and effects. In: Calude, C.S., Sassone, V.

(eds.) TCS 2010. IFIP AICT, vol. 323, pp. 1–19. Springer, Heidelberg (2010)
[Jac14] Jacobs, B.: New directions in categorical logic, for classical, probabilistic

and quantum logic. arXiv preprint arXiv:1205.3940v3 (2014)
[Koc71a] Kock, A.: Bilinearity and cartesian closed monads. Mathematica Scandi-

navica 29, 161–174 (1971)
[Koc71b] Kock, A.: Closed categories generated by commutative monads. Journal of

the Australian Mathematical Society 12(04), 405–424 (1971)
[Neu70] Neumann, W.D.: On the quasivariety of convex subsets of affine spaces.

Archiv der Mathematik 21(1), 11–16 (1970)
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A Categorical Semantics

for Linear Logical Frameworks
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Abstract. A type theory is presented that combines (intuitionistic)
linear types with type dependency, thus properly generalising both intu-
itionistic dependent type theory and full linear logic. A syntax and com-
plete categorical semantics are developed, the latter in terms of (strict)
indexed symmetric monoidal categories with comprehension. Various op-
tional type formers are treated in a modular way. In particular, we will see
that the historically much-debated multiplicative quantifiers and identity
types arise naturally from categorical considerations. These new multi-
plicative connectives are further characterised by several identities relat-
ing them to the usual connectives from dependent type theory and linear
logic. Finally, one important class of models, given by families with values
in some symmetric monoidal category, is investigated in detail.

1 Introduction

Starting from Church’s simply typed λ-calculus (or intuitionistic propositional
type theory), two extensions in perpendicular directions depart:

• following the Curry-Howard propositions-as-types interpretation dependent
type theory (DTT) [1] extends the simply typed λ-calculus from a proof-
calculus of intuitionistic propositional logic to one for predicate logic;

• linear logic [2] gives a more detailed resource sensitive analysis, exposing
precisely how many times each assumption is used in proofs.

A combined linear dependent type theory is one of the interesting directions
to explore to gain a more fine-grained understanding of homotopy type theory [3]
from a computer science point of view, explaining its flow of information. Indeed,
many of the usual settings for computational semantics are naturally linear in
character, either because they arise as !-co-Kleisli categories (coherence space
and game semantics) or for more fundamental reasons (quantum computation).

Combining dependent types and linear types is a non-trivial task, however,
and despite some work by various authors that we shall discuss, the precise rela-
tionship between the two systems remains poorly understood. The discrepancy
between linear and dependent types is the following.

• The lack of structural rules in linear type theory forces us to refer to each
variable precisely once - for a sequent x : A � t : B, x occurs uniquely in t.

• In dependent type theory, types can have free variables - x : A � B type,
where x is free in B. Crucially, if x : A � t : B, x may also be free in t.

c© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 102–116, 2015.
DOI: 10.1007/978-3-662-46678-0_7
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What does it mean for x to occur uniquely in t in a dependent setting? Do we
count its occurrence in B? The usual way out, which we shall follow too, is to
restrict type dependency on intuitionistic terms. Although this seems very lim-
iting - for instance, we do not obtain an equivalent of the Girard translation,
embedding DTT in the resulting system -, it is not clear that there is a reason-
able alternative. Moreover, as even this limited scenario has not been studied
extensively, we hope that a semantic analysis, which was so far missing entirely,
may shed new light on the old mystery of linear type dependency.

Historically, Girard’s early work in linear logic already makes movements to
extend a linear analysis to predicate logic. Although it talks about first-order
quantifiers, the analysis appears to have stayed rather superficial, omitting the
identity predicates which, in a way, are what make first-order logic tick. Closely
related is that an account of internal quantification, or a linear variant of Martin-
Löf’s type theory, was missing, let alone a Curry-Howard correspondence.

Later, linear types and dependent types were first combined in a Linear Logical
Framework [4], where a syntax was presented that extends a Logical Framework
with linear types (that depend on terms of intuitionistic types). This has given
rise to a line of work in the computer science community [5–7]. All the work
seems to be syntactic in nature, however, and seems to be mostly restricted to
the asynchronous fragment in which we only have �-, Π-, �-, and &-types. An
exception is the Concurrent Logical Framework [8], which treats synchronous
connectives resembling our I-, ⊗-, Σ-, and !-types. An account of additive dis-
junctions and identity types is missing entirely.

On the other hand, similar ideas, this time at the level of categorical semantics
and specific models (from homotopy theory, algebra, and physics), have emerged
in the mathematical community [9–12]. In these models, as with Girard, a notion
of comprehension was missing and, with that, a notion of identity type. Although,
in the past year, some suggestions have been made on the nLab and nForum of
possible connections between the syntactic and semantic work, no account of the
correspondence was published, as far as the author is aware.

The point of this paper1 is to close this gap between syntax and semantics and
to pave the way for a proper semantic analysis of linear type dependency, treating
a range of type formers including the crucial Id-types2. Firstly, in section 2, we
present a syntax, intuitionistic linear dependent type theory (ILDTT), a natural
blend of the dual intuitionistic linear logic (DILL) [15] and dependent type theory
(DTT) [16] which generalises both. Secondly, in section 3, we present a complete
categorical semantics, an obvious combination of linear/non-linear adjunctions
[15] and comprehension categories [17]. Finally, in section 4, an important class
of models is studied: families with values in a symmetric monoidal category.

1 This paper is based on the technical report [13] where proofs and more discussion can
be found. Independently, Krishnaswami et al. [14] developed a roughly equivalent
syntax and gave an operational rather than a denotational semantics. There, type
dependency is added to Benton’s LNL calculus, rather than to DILL.

2 To be precise: extensional Id-types. Intensional Id-types remain a topic of investiga-
tion, due to the subtlety of dependent elimination rules in a linear setting.
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2 Syntax

We assume the reader has some familiarity with the formal syntax of dependent
type theory and linear type theory. In particular, we will not go into syntactic
details like α-conversion, name binding, capture-free substitution of a for x in t
(write t[a/x]), and pre-syntax. Details on all of these topics can be found in [16].

We next present the formal syntax of ILDTT. We start with a presentation
of the judgements that will represent the propositions in the language and then
discuss its rules of inference: first its structural core, then the logical rules for a
series of optional type formers. We conclude this section with a few basic results
about the syntax.

Judgements. We adopt a notation Δ;Ξ for contexts, where Δ is ‘an intuition-
istic region’ and Ξ is ‘a linear region’, as in DILL [15]. The idea will be that
we have an empty context and can extend an existing context Δ;Ξ with both
intuitionistic and linear types that are allowed to depend on Δ.

Our language will express judgements of the following six forms.

ILDTT judgement Intended meaning

� Δ;Ξ ctxt Δ;Ξ is a valid context
Δ; · � A type A is a type in (intuitionistic) context Δ
Δ;Ξ � a : A a is a term of type A in context Δ;Ξ
� Δ;Ξ ≡ Δ′;Ξ′ ctxt Δ;Ξ and Δ′;Ξ′ are judgementally equal contexts
Δ; · � A ≡ A′ type A and A′ are judgementally equal types in (intuitionistic) context Δ
Δ;Ξ � a ≡ a′ : A a and a′ are judgementally equal terms of type A in context Δ;Ξ

Fig. 1. Judgements of ILDTT

Structural Rules. We will use the following structural rules, which are essen-
tially the structural rules of dependent type theory where some rules appear in
both an intuitionistic and a linear form. We present the rules per group, with
their names, from left-to-right, top-to-bottom.

Rules for context formation (C-Emp, Int-C-Ext, Int-C-Ext-Eq, Lin-C-Ext, Lin-C-Ext-Eq):

·; · ctxt

� Δ;Ξ ctxt Δ; · � A type

� Δ, x : A;Ξ ctxt

Δ;Ξ ≡ Δ′;Ξ′ ctxt Δ; · � A ≡ B type

� Δ, x : A;Ξ ≡ Δ′, y : B;Ξ′ ctxt

� Δ;Ξ ctxt Δ; · � A type

� Δ;Ξ, x : A ctxt

Δ;Ξ ≡ Δ′;Ξ′ ctxt Δ; · � A ≡ B type

� Δ;Ξ, x : A ≡ Δ′;Ξ′, y : B ctxt

Variable declaration/axiom rules (Int-Var, Lin-Var):

Δ, x : A,Δ′; · ctxt
Δ, x : A,Δ′; · � x : A

Δ; x : A ctxt

Δ; x : A � x : A

Fig. 2. Context formation and variable declaration rules
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The standard rules expressing that judgemental equality is an equivalence relation (C-Eq-R,
C-Eq-S, C-Eq-T, Ty-Eq-R, Ty-Eq-S, Ty-Eq-T, Tm-Eq-R, Tm-Eq-S, Tm-Eq-T):

� Δ;Ξ ctxt

� Δ;Ξ ≡ Δ;Ξ ctxt

� Δ;Ξ ≡ Δ′;Ξ′ ctxt

� Δ′;Ξ′ ≡ Δ;Ξ ctxt

� Δ;Ξ ≡ Δ′;Ξ′ ctxt � Δ′;Ξ′ ≡ Δ′′;Ξ′′ ctxt

� Δ;Ξ ≡ Δ′′;Ξ′′ ctxt

Δ;Ξ � A type

Δ;Ξ � A ≡ A type

Δ;Ξ � A ≡ A′ type

Δ;Ξ � A′ ≡ A type

Δ;Ξ � A ≡ A′ type Δ;Ξ � A′ ≡ A′′ type

Δ;Ξ � A ≡ A′′ type

Δ;Ξ � a : A

Δ;Ξ � a ≡ a : A

Δ;Ξ � a ≡ a′ : A

Δ;Ξ � a′ ≡ a : A

Δ;Ξ � a ≡ a′ : A Δ;Ξ � a′ ≡ a′′ : A

Δ;Ξ � a ≡ a′′ : A

The standard rules relating typing and judgemental equality (Tm-Conv, Ty-Conv):

Δ;Ξ � a : A � Δ;Ξ ≡ Δ;Ξ′ ctxt Δ; · � A ≡ A′ Type

Δ′;Ξ′ � a : A′

Δ′; · � A type � Δ; · ≡ Δ′; · ctxt
Δ′; · � A type

Fig. 3. A few standard rules for judgemental equality

Exchange, weakening, and substitution rules (Int-Weak, Int-Exch, Lin-Exch, Int-Ty-Subst, Int-
Ty-Subst-Eq, Int-Tm-Subst, Int-Tm-Subst-Eq, Lin-Tm-Subst, Lin-Tm-Subst-Eq):

Δ,Δ′;Ξ � J Δ; · � A type

Δ, x : A,Δ′;Ξ � J

Δ, x : A, x′ : A′, Δ′;Ξ � J
Δ, x′ : A′, x : A,Δ′;Ξ � J

Δ;Ξ, x : A, x′ : A′, Ξ′ � J
Δ;Ξ, x′ : A′, x : A,Ξ′ � J

(if x is not free in A′)

Δ, x : A,Δ′; · � B type Δ; · � a : A

Δ,Δ′[a/x]; · � B[a/x] type

Δ, x : A,Δ′; · � B ≡ B′ type Δ; · � a : A

Δ,Δ′[a/x]; · � B[a/x] ≡ B′[a/x] type

Δ, x : A,Δ′;Ξ � b : B Δ; · � a : A

Δ,Δ′[a/x];Ξ[a/x] � b[a/x] : B[a/x]

Δ, x : A,Δ′;Ξ � b ≡ b′ : B Δ; · � a : A

Δ,Δ′[a/x];Ξ � b[a/x] ≡ b′[a/x] : B[a/x]

Δ;Ξ, x : A � b : B Δ;Ξ′ � a : A

Δ;Ξ,Ξ′ � b[a/x] : B

Δ;Ξ, x : A � b ≡ b′ : B Δ;Ξ′ � a : A

Δ;Ξ,Ξ′ � b[a/x] ≡ b′[a/x] : B

Fig. 4. Exchange, weakening, and substitution rules. Here, J represents a statement of
the form B type, B ≡ B′, b : B, or b ≡ b′ : B, such that all judgements are well-formed.
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Logical Rules. We describe some (optional) type and term formers, for which
we give type formation (denoted -F), introduction (-I), elimination (-E), compu-
tation rules (-C), and (judgemental) uniqueness principles (-U). We also assume
the obvious rules to hold that state that the type formers and term formers re-
spect judgemental equality. Moreover, Σ!x:!A, Π!x:!A, λ!x:!A, and λx:A are name
binding operators, binding free occurences of x within their scope.

We demand -U-rules for the various type formers in this paper, as this al-
lows us to give a natural categorical semantics. This includes Id-types: we study
extensional identity types. In practice, when building a computational imple-
mentation of a type theory like ours, one would probably drop some of these
rules to make the system decidable, which would correspond to switching to
weak equivalents of the categorical constructions presented here.3

Δ, x : A; · � B type

Δ; · � Σ!x:!AB type

Δ; · � a : A Δ;Ξ � b : B[a/x]

Δ;Ξ �!a ⊗ b : Σ!x:!AB

Δ; · � C type

Δ;Ξ � t : Σ!x:!AB

Δ, x : A;Ξ′, y : B � c : C

Δ;Ξ,Ξ′ � let t be !x ⊗ y in c : C

Δ;Ξ � let !a ⊗ b be !x⊗ y in c : C

Δ;Ξ � let !a ⊗ b be !x ⊗ y in c ≡ c[a/x, b/y] : C

Δ;Ξ � let t be !x ⊗ y in !x ⊗ y : Σ!x:!AB

Δ;Ξ � let t be !x ⊗ y in !x⊗ y ≡ t : Σ!x:!AB

Δ, x : A; · � B type

Δ; · � Π!x:!AB type

� Δ;Ξ ctxt Δ, x : A;Ξ � b : B

Δ;Ξ � λ!x:!Ab : Π!x:!AB

Δ; · � a : A Δ;Ξ � f : Π!x:!AB

Δ;Ξ � f(!a) : B[a/x]

Δ;Ξ � (λ!x:!Ab)(!a) : B

Δ;Ξ � (λ!x:!Ab)(!a) ≡ b[a/x] : B[a/x]

Δ;Ξ � λ!x:!Af(!x) : Π!x:!AB

Δ;Ξ � f ≡ λ!x:!Af(!x) : Π!x:!AB

Δ; · � a : A Δ; · � a′ : A

Δ; · � Id!A(a, a′) type

Δ; · � a : A

Δ; · � refl!a : Id!A(a, a)

Δ, x : A, x′ : A; · � D type
Δ, z : A;Ξ � d : D[z/x, z/x′]
Δ; · � a : A
Δ; · � a′ : A
Δ;Ξ′ � p : Id!A(a, a′)

Δ;Ξ[a/z], Ξ′ � let (a, a′, p) be (z, z, refl!z) in d : D[a/x, a′/x′]

Δ;Ξ � let (a, a, refl!a) be (z, z, refl!z) in d : D[a/x, a/x′]

Δ;Ξ � let (a, a, refl!a) be (z, z, refl!z) in d ≡ d[a/z] : D[a/x, a/x′]

Δ, x : A, x′ : A;Ξ, z : Id!A(x, x′) � let (x, x′, z) be (x, x, refl!x) in c[x/x′, refl!x/z] : C

Δ, x : A, x′ : A;Ξ, z : Id!A(x, x′) � let (x, x′, z) be (x, x, refl!x) in c[x/x′, refl!x/z] ≡ c : C

Fig. 5. Rules for linear equivalents of some of the usual type formers from DTT (Σ-F,
-I, -E, -C, -U, Π-F, -I, -E, -C, -U, Id-F, -I, -E, -C, -U)

3 In that case, in DTT, one would usually demand some stronger ‘dependent’ elimi-
nation rules, which would make propositional equivalents of the -U-rules provable,
adding some extensionality to the system, while preserving its computational prop-
erties. Such rules are problematic in ILDTT, however, both from a syntactic and
semantic point of view and a further investigation is warranted here.
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Δ; · � I type

Δ; · � ∗ : I
Δ;Ξ′ � t : I Δ;Ξ � a : A

Δ;Ξ,Ξ′ � let t be ∗ in a : A

Δ;Ξ � let ∗ be ∗ in a : A

Δ;Ξ � let ∗ be ∗ in a ≡ a : A

Δ;Ξ � let t be ∗ in ∗ : I

Δ;Ξ � let t be ∗ in ∗ ≡ t : I

Δ; · � A type Δ; · � B type

Δ; · � A ⊗ B type

Δ;Ξ � a : A Δ;Ξ′ � b : B

Δ;Ξ,Ξ′ � a ⊗ b : A ⊗ B

Δ;Ξ � t : A ⊗ B Δ;Ξ′, x : A, y : B � c : C

Δ;Ξ,Ξ′ � let t be x ⊗ y in c : C

Δ;Ξ � let a ⊗ b be x ⊗ y in c : C

Δ;Ξ � let a ⊗ b be x ⊗ y in c ≡ c[a/x, b/y] : C

Δ;Ξ � let t be x ⊗ y in x ⊗ y : A ⊗ B

Δ;Ξ � let t be x ⊗ y in x ⊗ y ≡ t : A ⊗ B

Δ; · � A type Δ; · � B type

Δ; · � A � B type

Δ;Ξ, x : A � b : B

Δ;Ξ � λx:Ab : A � B

Δ;Ξ � f : A � B Δ;Ξ′ � a : A

Δ;Ξ,Ξ′ � f(a) : B

Δ;Ξ � (λx:Ab)(a) : B

Δ;Ξ � (λx:Ab)(a) ≡ b[a/x] : B

Δ;Ξ � λx:Afx : A � B

Δ;Ξ � λx:Afx ≡ f : A � B

Δ; · � � type
Δ;Ξ ctxt

Δ;Ξ � 〈〉 : �
Δ;Ξ � t : �

Δ;Ξ � t ≡ 〈〉 : �

Δ; · � A type Δ; · � B type

Δ; · � A&B type

Δ;Ξ � a : A Δ;Ξ � b : B

Δ;Ξ � 〈a, b〉 : A&B

Δ;Ξ � t : A&B

Δ;Ξ � fst(t) : A

Δ;Ξ � t : A&B

Δ;Ξ � snd(t) : B

Δ;Ξ � fst(〈a, b〉) : A

Δ;Ξ � fst(〈a, b〉) ≡ a : A

Δ;Ξ � snd(〈a, b〉) : B

Δ;Ξ � snd(〈a, b〉) ≡ b : B

Δ;Ξ � 〈fst(t), snd(t)〉 : A&B

Δ;Ξ � 〈fst(t), snd(t)〉 ≡ t : A&B

Δ; · � 0 type

Δ;Ξ � t : 0

Δ;Ξ,Ξ′ � false(t) : B

Δ;Ξ � t : 0

Δ;Ξ � false(t) ≡ t : 0
Δ; · � A type Δ; · � B type

Δ; · � A ⊕ B type

Δ;Ξ � a : A

Δ;Ξ � inl(a) : A ⊕ B

Δ;Ξ � b : B

Δ;Ξ � inr(b) : A ⊕ B

Δ;Ξ, x : A � c : C Δ;Ξ, y : B � d : C Δ;Ξ′ � t : A ⊕ B

Δ;Ξ,Ξ′ � case t of inl(x) → c || inr(y) → d : C

Δ;Ξ,Ξ′ � case inl(a) of inl(x) → c || inr(y) → d : C

Δ;Ξ,Ξ′ � case inl(a) of inl(x) → c || inr(y) → d ≡ c[a/x] : C

Δ;Ξ,Ξ′ � case inr(b) of inl(x) → c || inr(y) → d : C

Δ;Ξ,Ξ′ � case inr(b) of inl(x) → c || inr(y) → d ≡ d[b/y] : C

Δ;Ξ,Ξ′ � case t of inl(x) → inl(x) || inr(y) → inr(y) : A ⊕ B

Δ;Ξ,Ξ′ � case t of inl(x) → inl(x) || inr(y) → inr(y) ≡ t : A ⊕ B

Fig. 6. Rules for the usual linear type formers in each context (I-F, -I, -E, -C, -U, ⊗-F,
-I, -E, -C, -U, �-F, -I, -E, -C, -U, �-F, -I, -U, &-F, -I, -E1, -E2, -C1, -C2, -U, 0-F, -E,
-U, ⊕-F, -I1, -I2, -E, -C1, -C2, -U, !-F, -I, -E, -C, -U)
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Δ; · � A type

Δ; · �!A type

Δ; · � a : A

Δ; · �!a :!A

Δ;Ξ � t :!A Δ, x : A;Ξ′ � b : B

Δ;Ξ,Ξ′ � let t be !x in b : B

Δ;Ξ � let !a be !x in b : B

Δ;Ξ � let !a be !x in b ≡ b[a/x] : B

Δ;Ξ � let t be !x in !x :!A

Δ;Ξ � let t be !x in !x ≡ t :!A

Fig. 6. (Continued)

Finally, we add rules that say we have all the possible commuting conversions,
which from a syntactic point of view restore the subformula property and from a
semantic point of view say that our rules are natural transformations (between
hom-functors), which simplifies the categorical semantics significantly. We rep-
resent these schematically, following [15]. That is, if C[−] is a linear program
context, i.e. a context built without using !, then (abusing notation and dealing
with all the let be in -constructors in one go) the following rules hold.

Δ;Ξ � C[let a be b in c] : D

Δ;Ξ � C[let a be b in c] ≡ let a be b in C[c] : D

Δ;Ξ � C[false(t)] : D

Δ;Ξ � C[false(t)] ≡ false(t) : D

if C[−] does not bind any free variables in a or b; if C[−] does not bind any free variables in t;

Δ;Ξ � C[case t of inl(x) → c || inr(y) → d] : D

Δ;Ξ � C[case t of inl(x) → c || inr(y) → d] ≡ case t of inl(x) → C[c] || inr(y) → C[d] : D

if C[−] does not bind any free variables in t or x or y.

Fig. 7. Commuting conversions

Remark 1. Note that all type formers that are defined context-wise (I, ⊗, �,
�, &, 0, ⊕, and !) are automatically preserved under the substitutions from Int-
Ty-Subst (up to canonical isomorphism4), in the sense that F (A1, . . . , An)[a/x]
is isomorphic to F (A1[a/x], . . . , An[a/x]) for an n-ary type former F . Similarly,
for T = Σ or Π , we have that (T!y:!BC)[a/x] is isomorphic to T!y:!B[a/x]C[a/x]
and (Id!B(b, b

′))[a/x] is isomorphic to Id!B[a/x](b[a/x], b
′[a/x]). This gives us

Beck-Chevalley conditions in the categorical semantics.

Remark 2. The reader can note that the usual formulation of universes for DTT
transfers very naturally to ILDTT, giving us a notion of universes for linear
types. This allows us to write rules for forming types as rules for forming terms,
as usual. We do not choose this approach and define the various type formers in
the setting without universes.

4 By an isomorphism of types Δ; · � A type and Δ; · � B type in context Δ, we here
mean a pair of terms Δ;x : A � f : B and Δ; y : B � g : A together with a pair of
judgemental equalities Δ;x : A � g[f/y] ≡ x : A and Δ; y : B � f [g/x] ≡ y : B.
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Some Basic Results. As the focus of this paper is the syntax-semantics corre-
spondence, we will only briefly state a few syntactic results. For some standard
metatheoretic properties for (a system equivalent to) the �, Π,�,&-fragment
of our syntax, we refer the reader to [4]. Standard techniques and some small
adaptations of the system should be enough to extend the results to all of ILDTT.

We will only note the consistency of ILDTT both as a type theory (not, for
all Δ;Ξ � a, a′ : A, Δ;Ξ � a ≡ a′ : A) and as a logic (ILDTT does not prove
that every type is inhabited).

Theorem 1 (Consistency). ILDTT with all its type formers is consistent,
both as a type theory and as a logic.

Proof (sketch). This follows from model-theoretic considerations. Later, in sec-
tion 3, we shall see that our model theory encompasses that of DTT, for which
we have models exhibiting both types of consistency.

To give the reader some intuition for these linear Π- and Σ-types, we suggest
the following two interpretations.

Theorem 2 (Π and Σ as Dependent !(−) � (−) and !(−)⊗ (−)). Suppose
we have !-types. Let Δ,x : A; · � B type, where x is not free in B. Then,

1. Π!x:!AB is isomorphic to !A � B, if we have Π-types and �-types;
2. Σ!x:!AB is isomorphic to !A⊗B, if we have Σ-types and ⊗-types.

In particular, we have the following stronger version of a special case.

Theorem 3 (! as ΣI). Suppose we have Σ- and I-types. Let Δ; · � A type.
Then, Σ!x:!AI satisfies the rules for !A. Conversely, if we have !- and I-types,
then !A satisfies the rules for Σ!x:!AI.

A second interpretation is that Π and Σ generalise & and ⊕. Indeed, the idea
is that that (or their infinitary equivalents) is what they reduce to when taken
over discrete types. The subtlety in this result is the definition of a discrete type.
The same phenomenon is observed in a different context in section 4.

For our purposes, a discrete type is a strong sum of � (a sum with a dependent
-E-rule). Let us for simplicity limit ourselves to the binary case. For us, the dis-
crete type with two elements will be 2 = �⊕�, where ⊕ has a strong/dependent
-E-rule (note that this is not our ⊕-E). Explicitly, 2 is a type with the following
-F-, -I-, and -E-rules (and the obvious -C- and -U-rules):

Δ; · � 2 type Δ; · � tt : 2 Δ; · � ff : 2

Δ, x : 2; · � A type Δ; · � t : 2 Δ;Ξ � att : A[tt/x] Δ;Ξ � aff : A[ff/x]

Δ;Ξ � if t then att else aff : A[t/x]

Fig. 8. Rules for a discrete type 2, with -C- and -U-rules omitted for reasons of space

Theorem 4 (Π and Σ as Infinitary Non-Discrete & and ⊕). If we have
a discrete type 2 and a type family Δ,x : 2; · � A, then

1. Π!x:!2A satisfies the rules for A[tt/x]&A[ff/x];
2. Σ!x:!2A satisfies the rules for A[tt/x]⊕A[ff/x].
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3 Categorical Semantics
We now introduce a notion of categorical model for which soundness and com-
pleteness results hold with respect to the syntax of ILDTT in presence of I-
and ⊗-types5. This notion of model will prove to be particularly useful when
thinking about various (extensional) type formers.

Definition 1. By a strict indexed symmetric monoidal category with compre-
hension, we will mean the following data.

1. A category C with a terminal object ·.
2. A strict indexed symmetric monoidal category L over C, i.e. a contravariant

functor L into the category SMCat of (small) symmetric monoidal categories

and strong monoidal functors Cop L−→ SMCat. We will also write −{f} :=
L(f) for the action of L on a morphism f of C.

3. A comprehension schema, i.e. for each Δ ∈ ob(C) and A ∈ ob(L(Δ)) a
representation for the functor

x 	→ L(dom(x))(I, A{x}) : (C/Δ)op −→ Set.

We will write its representing object6 Δ.A
pΔ,A−→ Δ ∈ ob(C/Δ) and univer-

sal element vΔ,A ∈ L(Δ.A)(I, A{pΔ,A}). We will write a 	→ 〈f, a〉 for the

isomorphism L(Δ′)(I, A{f}) ∼= C/Δ(f,pΔ,A), if Δ
′ f−→ Δ.

Remark 3. Note that this notion of model reduces to a standard notion of model
for DTT in the case the monoidal structures on the fibre categories are Cartesian:
a reformulation of split comprehension categories with 1- and ×-types. To get
a precise fit with the syntax, the extra demand called “fullness” is usually put
on these [17]. The fact that we leave out this last condition precisely allows for
non-trivial !-types (i.e. ones such that !A � A) in our models of ILDTT. Every
model of DTT is, in particular, a (degenerate) model of ILDTT, though. We will
see that the type formers of ILDTT also generalise those of DTT.

Theorem 5 (Soundness). We can soundly interpret ILDTT with I- and ⊗-
types in a strict indexed symmetric monoidal category (C,L) with comprehension.

Proof (sketch). The idea is that a context Δ;Ξ will be (inductively) interpreted
by a pair of objects [[Δ]] ∈ ob(C), [[Ξ]] ∈ ob(L([[Δ]]), a type A in contextΔ; · by an

object [[A]] of L([[Δ]]), and a term a : A in context Δ;Ξ by a morphism [[Ξ]]
[[a]]−→

[[A]] ∈ L[[Δ]]). Generally, the interpretation of the propositional linear type theory
in intuitionistic context Δ; · will happen in L(Δ) as would be expected.

The crux is that Int-C-Ext ([[Δ,x : A]] := dom(p[[Δ]],[[A]])), Int-Var ([[Δ,x :
A; · � x : A]] := vΔ,A), and Int-Subst (by L(〈idΔ, a〉) are interpreted through
the comprehension, as is Int-Weak (through L of the obvious morphism in C).

Finally, Soundness is a trivial verification.

5 In case we are interested in the case without I- and ⊗-types, the semantics easily
generalises to strict indexed symmetric multicategories with comprehension.

6 Really, Δ.MA
pΔ,MA−→ Δ would be a better notation, where we think of L � M as an

adjunction inducing !, but it would be very verbose.
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Theorem 6 (Completeness). In fact, this interpretation is complete.

Proof (sketch). We see this through the construction of a syntactic category.

In fact, we would like to say that the syntax is even an internal language for such
categories. This is almost true, can be made entirely true by either putting the
restriction on our notion of model that excludes any non-trivial morphisms into
objects that are not of the form Δ.A. Alternatively, we can extend the syntax
to talk about context morphisms explicitly [18]. Following the DTT tradition,
we have opted against the latter.

We will next characterise the categorical description of the various type for-
mers. First, we note the following.

Theorem 7 (Comprehension Functor). A comprehension schema (p,v) on

a strict indexed symmetric monoidal category (C,L) defines a morphism L M−→ I
of indexed categories, where I is the full sub-indexed category of C/− (by making
a choice of pullbacks) on the objects of the form pΔ,A and where

MΔ(A
a−→ B) := pΔ,A

〈pΔ,A, a{pΔ,A} ◦ vΔ,A〉� pΔ,B .

Note that I is a display map category and hence a model of DTT [17]. We will
think of it as the intuitionistic content of L. We will see that the comprehension
functor will give us a unique candidate for !-types: ! := LM , where L 
 M is a
monoidal adjunction. We conclude that, in ILDTT, the !-modality is uniquely
determined by the indexing. This is worth noting, because, in propositional linear
type theory, we might have many different candidates for !-types.

Theorem 8 (Semantic Type Formers). For the other type formers, we have
the following. A model (C,L,p,v) of ILDTT with I- and ⊗-types...

1. ...supports Σ-types iff all the pullback functors L(pΔ,A) have left adjoints
Σ!A that satisfy the Beck-Chevalley condition in the sense that the canon-

ical map Σ!A{f} ◦ L(qf,A) −→ L(f) ◦ Σ!A is an iso, where Δ′ f−→ Δ and
qf,A := 〈f ◦pΔ′,A{f},vΔ′,A{f}〉, and that satisfy Frobenius reciprocity in the
sense that the canonical morphism Σ!A(Ξ

′{pΔ,A}⊗B) −→ Ξ ′⊗Σ!AB is an
isomorphism , for all Ξ ′ ∈ L(Δ), B ∈ L(Δ.A) .

2. ...supports Π-types iff all the pullback functors L(pΔ,A) have right adjoints
Π!A that satisfy the dual Beck-Chevalley condition for pullbacks of the form
(∗): the canonical L(f) ◦Π!A −→ Π!A{f} ◦ L(qf,A) is an iso.

3. ...supports �-types iff L factors over the category SMCCat of symmetric
monoidal closed categories and their homomorphisms.

4. ...supports �- and &-types iff L factors over the category SMCCat of Carte-
sian categories with symmetric monoidal structure and their homomorphisms.

5. ...supports 0- and ⊕-types iff L factors over the category dSMcCCat of co-
Cartesian categories with a distributive symmetric monoidal structure and
their homomorphisms.



112 M. Vákár

6. ...that supports �-types, supports !-types iff all the comprehension functors

L(Δ)
MΔ−→ I(Δ) have a strong monoidal left adjoint I(Δ)

LΔ−→ L(Δ) and

L− is a morphism of indexed categories: for all Δ′ f−→ Δ ∈ C, LΔ′I(f) =
L(f)LΔ. Then !Δ := LΔ ◦MΔ interprets the comodality ! in context Δ.

7. ... that supports �-types, supports Id-types iff for all A ∈ ob(L(Δ)), we
have left adjoints Id!A 
 −{diagΔ,A} that satisfy a Beck-Chevalley condi-
tion: Id!A{f} ◦ L(qf,A) −→ L(qqf,A ,A{pΔ,A}) ◦ Id!A is an iso. Now, Id!A(I)

interprets Id!A(x, x
′). Above, Δ.A

diagΔ,A := 〈idΔ.A,vΔ,A〉� Δ.A.A{pΔ,A}.
The semantics of ! suggests an alternative definition for the notion of a com-

prehension: if we have Σ-types in a strong sense, it is a derived notion!

Theorem 9 (Lawvere Comprehension). Given a strict indexed monoidal

category (C,L) with left adjoints ΣLf to L(f) for arbitrary Δ′ f−→ Δ ∈ C, then
we can define C/Δ LΔ−→ L(Δ) by LΔ(−) := ΣL−I. In that case, (C,L) has a
comprehension schema iff LΔ has a right adjoint MΔ (for which then MΔ′ ◦
L(f) = L(f) ◦MΔ for all Δ′ f−→ Δ ∈ C). That is, our notion of comprehension
generalises that of Lawvere [19]. Finally, if ΣLf satisfy Frobenius reciprocity and
Beck-Chevalley, then (C,L) supports comprehension iff it supports !-types.

Proof (sketch). This follows trivially if we write out both the representability
condition defining a comprehension and the adjointness condition for Σf .

We observe the following about the usual intuitionistic type formers in I.
Theorem 10 (Type Formers in I). I supports Σ-types iff ob(I) ⊂ mor(C) is
closed under binary compositions. I supports Id-types iff ob(I) is closed under
post-composition with diagΔ,A. If L supports !- and Π-types, then I supports
Π-types. Moreover, type formers in I relate to those in L as follows, leaving out
the subscripts of the indexed functors L 
 M :

Σ!A!B ∼= L(ΣMAMB) Id!A(!B) ∼= LIdMA(MB) MΠ!BC ∼= ΠMBMC.

Remark 4 (Dependent Seely Isomorphisms?). It is easily seen thatMΔ(�) = idΔ
and MΔ(A&B) = MΔ(A)×MΔ(B), hence !Δ� = I and !Δ(A&B) =!ΔA⊗!ΔB.

Now, theorem 10 suggests similar Seely isomorphisms for Σ- and Id-types.
Indeed, I supports Σ- respectively Id-types iff we have “additive” Σ- resp. Id-
types, that is Σ&

AB, Id&
A(B) ∈ ob(L) s.t.

MΣ&
AB

∼= ΣMAMB and hence !Σ&
AB ∼= Σ⊗

!A!B resp.

M Id&A(B) ∼= IdMA(MB) and hence !Id&
A(B) ∼= Id⊗!A(!B),

where we write Σ⊗ and Id⊗ for the usual multiplicative Σ- and Id-types7.
We are in this situation and have to consider such additive Σ- and Id-types if

L· 
 M· : L(·) −→ C is the co-Kleisli adjunction of !. See [13] for more discussion.

7 We call usual Id-types “multiplicative” connectives e.g. since Id⊗
!A(B) ∼= Id⊗

!A(I)⊗B.
Similarly, if we have a suitable Id&

A(�), we can define Id&
A(B) := Id&

A(�)&B.
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4 Some Discrete Models: Monoidal Families
We discuss a simple class of models in terms of families with values in a sym-
metric monoidal category. On a logical level, what the construction boils down
to is starting with a model V of a linear propositional logic and taking the cofree
linear predicate logic on Set with values in this propositional logic. This impor-
tant example illustrates how Σ- and Π-types can represent infinitary additive
disjunctions and conjunctions. The model is discrete in nature, however, and, in
that respect, is not representative for ILDTT.

Suppose V is a symmetric monoidal category. We can then consider a strict
Set-indexed category, defined through the following enriched Yoneda embedding
Fam(V) := V− := SMCat(−,V):

Setop
Fam(V)� SMCat S

f−→ S′ � VS −◦f←− VS′
.

Note that this definition naturally extends to a functorial embedding Fam.

Theorem 11 (Families Model ILDTT). The construction Fam adds type
dependency on Set cofreely, in the sense that it is right adjoint to the forgetful
functor ev1 that evaluates a model of linear dependent type theory at the empty
context to obtain a model of linear propositional type theory (where SMCatSet

op

compr

is the full subcategory of SMCatSet
op

on the objects with comprehension):

SMCat
�ev1
⊥⊂

Fam
� SMCatSet

op

compr.

Proof (sketch). The comprehension on Fam(V) is given by the obvious bijection

Fam(V)(S)(I, B{f}) ∼= prods∈SV(I, B(f(s))) ∼= Set/S′(f,pS′,B),

where pS′,B := coprods′∈S′V(I, B(s′)) fst−→ S′. The rest of the proof is a straight-
forward verification, where the adjunction relies on Set being well-pointed.

We express the existence of type formers in Fam(V) as conditions on V . A char-
acterisation of additive Σ- and Id-types can be found in [13].

Theorem 12 (Type Formers for Families). V has small coproducts that
distribute over ⊗ iff Fam(V) supports Σ-types. In that case, Fam(V) also supports
0- and ⊕-types (which correspond precisely to finite distributive coproducts).

V has small products iff Fam(V) supports Π-types. In that case, Fam(V) also
supports �- and &-types (which correspond precisely to finite products).

Fam(V) supports �-types iff V is monoidal closed.
Fam(V) supports !-types iff V has small coproducts of I that are preserved by

⊗ in the sense that the canonical morphism coprodS(Ξ
′ ⊗ I) −→ Ξ ′ ⊗ coprodSI

is an isomorphism for any Ξ ′ ∈ ob V and S ∈ ob Set. In particular, if Fam(V)
supports Σ-types, then it also supports !-types.

Fam(V) supports Id-types if V has an initial object. Supposing that V has a
terminal object, the only if also holds.
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Proof (sketch). We supply some definitions and leave the rest to the reader.
�-, &-, 0-, and ⊕-types are clear as (co)limits are pointwise in a functor

category. �-types are immediate as well from the previous section. We define
ΣLf(A)(s

′) := coprods∈f−1(s′)A(s) and ΠLf (A)(s
′) = prods∈f−1(s′)A(s). Then

ΣLf 
 −{f} 
 ΠLf . We define Id!A(B)(s, a, a′) :=

{
B(s, a) if a = a′

0 else
. Then,

Id!A 
 −{diagS,A}. Beck-Chevalley conditions are taken care of by the fact that
subtitution is interpreted as precomposition. Finally, this leads to the definition
!A(s) := coprodV(I,A(s))I, which we can note only depends on A(s).

Remark 5. Note that an obvious way to guarantee distributivity of coproducts
over ⊗ is by demanding that V is monoidal closed.

Two simple concrete examples of V come to mind that accommodate all type
formers and illustrate real linear type dependency: a category V = VectF of
vector spaces over a field F , with the tensor product, and the category V = Set∗
of pointed sets, with the smash product. All type formers get their obvious inter-
pretation, but let us consider ! as it is a novelty of ILDTT that it gets uniquely
determined by the indexing, while in propositional linear logic we might have
several choices. In the first example, ! boils down to the following: (!B)(s′) =
coprodVectF (F,B(s′))F

∼= ⊕
B(s′) F , i.e. taking the vector space freely spanned by

all vectors. In the second example, (!B)(s′) = coprodSet∗(2∗,B(s′))2∗ =
∨

B(s′) 2∗ =

B(s′)+ {∗}, i.e. ! freely adds a new basepoint. These models show the following.

Theorem 13 (DTT,DILL� ILDTT). ILDTT is a proper generalisation of
DTT and DILL: we have inclusions of the classes of models DTT,DILL�ILDTT.

Although this class of models is important, it is clear that it only represents a
limited part of the generality of ILDTT. Hence, we are in need of non-Cartsian
models that are less discrete in nature, if we are hoping to observe interesting
new phenomena arising from the connectives of linear dependent type theory.
Some suggestions and work in progress will be discussed in the next section.

5 Conclusions and Future Work

We hope to have convinced the reader that linear dependent types fit very nat-
urally in the landscape of existing type theories and that they admit a well-
behaved semantic theory.

We have presented a system, ILDTT, that, on a syntactic level, is a natural
blend between (intuitionistic) dependent type theory (DTT) and dual intuition-
istic linear logic (DILL). On a semantic level, if one starts with the right notion
of model for dependent types, the linear generalisation is obtained through the
usual philosophy of passing from Cartesian to symmetric monoidal structures.
The resulting notion of a model forms a natural blend between comprehension
categories, modelling DTT, and linear-non-linear models of DILL.

It is very pleasing to see that all the syntactically natural rules for type
formers are equivalent to their semantic counterparts that would be expected
based on the traditions of categorical logic of dependent types and linear types.
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In particular, from the point of view of logic, it is interesting to see that the
categorical semantics seems to have a preference for multiplicative quantifiers.

Finally, we have shown that, as in the intuitionistic case, we can represent
infinitary (additive) disjunctions and conjunctions in linear type theory, through
cofree Σ- and Π-types, indexed over Set. In particular, this construction exhibits
a family of non-trivial truly linear models of dependent types. Moreover, it shows
that ILDTT properly extends both DILL and DTT.

Despite what might be expected from this paper, much of this work has been
very semantically motivated, by specific models. In joint work with Samson
Abramsky, a model of linear dependent types with comprehension has been
constructed in a category of coherence spaces. Apart from the usual type con-
structors from linear logic, it also supports Σ-, Π-, and Id-types. A detailed
account of this model will be made available soon.

In addition to providing a first non-trivial model of such a type system that
goes properly beyond DILL and DTT and is semantically motivated, this work
served as a stepping stone for a model in a category of games, which we developed
together with Radha Jagadeesan and Samson Abramsky. This, in particular,
provides a game semantics for dependent type theory.

An indexed category of spectra over topological spaces has been studied as a
setting for stable homotopy theory [9, 11]. It has been shown to admit I-, ⊗-,
�-, and Σ-types. The natural candidate for a comprehension adjunction, here,
is that between the infinite suspension spectrum and the infinite loop space:
L 
 M = Σ∞ 
 Ω∞. A detailed examination of the situation and an
explanation of the relation with the Goodwillie calculus is desirable. This might
fit in with our ultimate objective of a linear analysis of homotopy type theory.

Another fascinating possibility is that of models related to quantum mechan-
ics. Non-dependent linear type theory has found interesting interpretations in
quantum computation [20]. The question rises if the extension to dependent lin-
ear types has a natural counterpart in physics and could e.g. provide stronger
type systems for quantum computing. Also suggestive is Schreiber’s work [12],
in which it is sketched how linear dependent types can serve as a language to
talk about quantum field theory and quantisation in particular.

Finally, there are still plenty of theoretical questions within the type theory.
Can we find interesting models with type dependency on the co-Kleisli category
of ! and can we make sense of additive Σ- and Id-types, e.g. from the point
of view of syntax? Or should we perhaps doubt the canonicity of the Girard
translation and accept that dependent types are more naturally modeled in co-
Eilenberg-Moore categories? Is there an equivalent of strong/dependent E-rules
for ILDTT and how do we model interesting intensional Id-types? Does the
Curry-Howard correspondence extend in its full glory: do we have a propositions-
as-types interpretation of linear predicate logic in ILDTT? These questions need
to be addressed by a combination of research into the formal system and study
of specific models. We hope that the general framework we sketched will play its
part in connecting all the different sides of the story: from syntax to semantics;
from computer science and logic to geometry and physics.
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A Completeness Result for Finite

λ-bisimulations�

Joost Winter

Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw,
Warsaw, Poland

Abstract. We show that finite λ-bisimulations (closely related to bisim-
ulations up to context) are sound and complete for finitely generated
λ-bialgebras for distributive laws λ of a monad T on Set over an end-
ofunctor F on Set, such that F preserves weak pullbacks and finitely
generated T -algebras are closed under taking kernel pairs. This result
is used to infer the decidability of weighted language equivalence when
the underlying semiring is a subsemiring of an effectively presentable
Noetherian semiring. These results are closely connected to [ÉM10] and
[BMS13], concerned with respectively the decidability and axiomatiza-
tion of weighted language equivalence w.r.t. Noetherian semirings.

1 Introduction

The notion of bisimulation, originating from the world of process algebra, plays
an important role in the field of universal coalgebra: a survey of important
results can be found, for example, in [Rut00]. Bisimulation up to techniques,
generalizing ordinary bisimulations, have been first considered coalgebraically in
[Len99]; later, extensions were given in, for example [PS11], [RBR13], [Pou13],
and [RBB+13]. The soundness of various notions of coalgebraic bisimulation up
to has been extensively studied; in [BP13], moreover, a completeness result for
finite bisimulations up to context (in the setting of NFAs) is presented, together
with an efficient algorithm for deciding equivalence. As far as the author is aware,
this is so far the only result of this type present in the literature.

Structures that have both an algebraic and coalgebraic structure can often be
described as λ-bialgebras using distributive laws. Introductions to this framework
can be found in e.g. [Bar04], [Jac06], and [Kli11]. This framework has been
used to formulate the generalized powerset construction, considered in [SBBR10],
[JSS12], and [SBBR13], providing a category-theoretical generalization of the
classical powerset construction.

Weighted automata, introduced in [Sch61], have been extensively studied:
surveys can be found in e.g. [Eil76] or [BR11]. An important notion here is that
of a simulation between automata, which can be used to prove equivalence of
weighted automata, studied in for example [BLS06] and [ÉM10]. In [ÉM10], it
is shown that weighted language equivalence is decidable over semirings that
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are Noetherian and effectively presentable, using the notions of simulation and
proper semirings. In the Appendix of this paper, we show how these notions
relate to the results in this paper, and how some of the results from [ÉM10] can
be derived from the main result in this paper.

Co- and bialgebraic treatments to weighted automata, instantiating the frame-
work of λ-bialgebras, are found in e.g. [BBB+12], [BMS13], and [JSS12]. In
[BMS13], an (abstract) sound and complete axiomatization is presented for mon-
ads and endofunctors satisfying the same conditions as those required for Propo-
sition 7, and subsequently instantiated to a concrete axiomatization for weighted
languages over Noetherian semirings. The methods used differ substantially from
those used in this paper, but the obtained results are closely related.

After presenting the required preliminaries from the existing literature, in
this paper we show that finite λ-bisimulations are, in certain cases, complete
already (λ-bisimulations in general are complete whenever the behaviour func-
tor preserves weak pullbacks). From this we derive the decidability of weighted
language equivalence over subsemirings of semirings that are Noetherian and ef-
fectively presentable. Finally, in an appendix we discuss the relationship between
some parts of the coalgebraic and classical, respectively, approaches to weighted
automata.

Hence, one of the aims of this paper can be stated as bringing closer together,
on a general level, the classical and coalgebraic approaches to weighted automata,
and, in particular, relating the results from [BMS13] to those from [ÉM10].

2 Preliminaries

We will, in this section, present the preliminary material required for presenting
the main result in the next section. We assume familiar the basic notions of
category theory (which can be found in e.g. [Awo10] or [Mac71]), as well as the
notions of monoids, semirings, and (left and right) semimodules over a semiring
(which can be found in e.g. [BR11]). All of the material presented in this section
can be found in existing literature.

Given a category C and a monad T on C, CT denotes the category of
Eilenberg-Moore algebras for T . We moreover adopt the convention of using
the term S-module to refer to left S-semimodules.

Some of the results in this paper require the axiom of choice (which can be
formulated categorically by stating that (in Set) every epi splits, i.e. has a right
inverse): these results are labelled with the marker (AC).

2.1 Algebras and Congruences

In this subsection, we present the notions of a finitely generated algebra and of a
kernel pair, on a relatively concrete level, sufficient for obtaining the main results
later in the paper.1 Next, we give the definition of a congruence, and present a

1 These are related to finitely presentable algebras, which are extensively studied in
[AR94]: however, for the results in this paper, this notion is not needed.
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result on the existence of coequalizers in SetT , required for our main result in
the next section.

In the (concrete) case where T is a monad on Set, a T -algebra (X,αX) is
called finitely generated2 whenever there is a finite set Y together with a function
i : Y → X such that the unique T -algebra morphism i∗ : (T (Y ), μY ) → (X,αX)
extending i is a regular epimorphism.3 The condition of the epi i∗ being regular
directly implies that the mapping U(i∗) : T (Y ) � X obtained by applying the
forgetful functor is an epi in Set, that is, a surjective function. We can moreover,
without problems, assume that i itself is an injective function, i.e. a mono, and
hence that Y can be regarded as a subset of X .

Given a morphism f : X → Y in a category with pullbacks, the kernel pair
is the pullback of f with itself. Because the forgetful functor U : SetT → Set
creates all limits, the carrier of a kernel pair in SetT can be described as the set

{(x, y) |x, y ∈ UX ∧ Uf(x) = Uf(y)}
and moreover, its algebra structure is compatible with the product algebra X ×
X , i.e. the kernel pair is a subalgebra of X ×X .

Given an endofunctor T on Set, and algebras (X,αX) and (Y, αY ) for this
functor, a congruence between these algebras is a relation R ⊆ X × Y such that
there is a unique T -algebra structure αR on R making the following diagram
commute:

TX �Tπ1
TR

Tπ2� TY

X

αX
�
�π1

R

αR
� π2� FY

αY
�

We furthermore will need the following result establishing the existence of
coequalizers in SetT :

Proposition 1. (AC) For any monad T on Set, coequalizers exist in SetT and
are preserved by the forgetful functor.

Proof. Established in the proof of [BW06, Proposition 9.3.4]. ��

2.2 Universal Coalgebra

We will, in this section, consider some elementary and required results from the
theory of universal coalgebra. For a more comprehensive reference to the theory,
where the results below can also be found, we refer to [Rut00].

Given an endofunctor F on a category C, a F -coalgebra consists of an object
X in C, together with a mapping δ : X → TX . Given two F -coalgebras (X, γ)

2 This is known to correspond to the more general categorical definition of a
finitely generated algebra; see e.g. the remark on http://ncatlab.org/nlab/show/

finitely+generated+object under ‘Definition in concrete categories’.
3 An morphism is a regular epimorphism iff it is the coequalizer of a parallel pair of
morphisms, see e.g. [Bor94]
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and (Y, δ), a morphism between these coalgebras consists of a morphism f : X →
Y such that the following diagram commutes:

X
f� Y

FX

γ
� Ff� FY

δ
�

F -coalgebras and their morphisms form a category, and a terminal object in
this category is called a final coalgebra. Given a F -coalgebra (X, δX), we let
�−�X denote the unique mapping into the final coalgebra whenever F has a final
coalgebra.

Given two F -coalgebras (X, δX) and (Y, δY ), a F -bisimulation between X
and Y is a relation R ⊆ X × Y such that there is some (not necessarily unique)
F -coalgebra structure δR on R making the following diagram commute:

X �π1
R

π2� Y

FX

δX
�

�Fπ1
FR

δR
� Fπ2� FY

δY
�

In general, a largest bisimulation between two F -coalgebras always exists,
and is denoted by ∼X,Y . (We omit the subscripts when no confusion can arise.)
Elements x ∈ X and y ∈ Y are called bisimilar whenever x ∼X,Y y, and
behaviourally equivalent whenever there is some F -coalgebra morphism f such
that f(x) = f(y). Whenever a final F -coalgebra exists, the latter condition is
equivalent to �x�X = �y�Y .

In general, if two elements x ∈ X and y ∈ Y in F -coalgebras (X, δX) and
(Y, δY ) are bisimilar, it follows that x and y are behaviourally equivalent (one
may refer to this condition as the soundness of bisimulation). Under the condi-
tion that the functor F preserves weak pullbacks (a weak pullback is defined in
the same way as a pullback, but without the uniqueness condition), the converse
(which may be called the completeness of bisimulation) also holds.

2.3 λ-bialgebras

In this section, we will present, on an abstract level, the relevant material from
the theory of λ-bialgebras, and the closely related generalized powerset construc-
tion. Comprehensive introductions to the material presented here can be found
in e.g. [Bar04], [Jac06], [Kli11], [SBBR10], and [JSS12]. We will be concerned,
in particular, with λ-bialgebras for a distributive law of a monad (T, μ, η) over
an endofunctor F , without assuming any additional structure (e.g. that of a
copointed functor or comonad) on the behaviour functor F .

Given a monad (T, μ, η) and an endofunctor F on any category C, a distribu-
tive law of the monad T over F is a natural transformation

λ : TF ⇒ FT
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such that the two diagrams of natural transformations

F ==
ηF⇒ TF

FT

λ�

����
Fη

======⇒ and

TTF ==============
μF ⇒ TF

TFT

Tλ�

����

===
λT⇒ FTT ===

Fμ⇒ FT

λ�

����

commute.
Furthermore, given a distributive law λ : TF ⇒ FT , λ-bialgebra (X,α, γ)

consists of a coalgebra (X, γ) for the functor F together with an algebra (X,α)
for the monad T , such that the diagram

TX
α� X

γ� FX

TFX

Tγ
� λX � FTX

Fα
�

commutes. Morphisms of λ-algebras are mappings that simultaneously are F -
coalgebra morphisms and T -algebra morphisms.

The two following, elementary, lemmata can be found in e.g. [Bar04]:

Lemma 2. Given a distributive law λ of a monad (T, μ, η) over an endofunctor

F and a FT -coalgebra (X, δ), (TX, μX , δ̂) is a λ-bialgebra, with δ̂ given as:

δ̂ = FμX ◦ λTX ◦ Tδ.
Proof. This is the first part of [Bar04, Lemma 4.3.3]. ��
Lemma 3. Given a distributive law λ of a monad (T, μ, η) over an endofunctor
F , a λ-bialgebra (Q,α, γ) and an FT -coalgebra (X, δ), if f : X → Q makes the
diagram

X
f � Q

FTX

δ
� Ff∗

� FQ

γ
�

commute (where f∗ : TX → Q is obtained by applying the forgetful functor to
the unique T -algebra morphism from (TX, μX) to (Q,α) extending f), then f∗

is a morphism of λ-bialgebras between (TX, μX , δ̂) and (Q,α, γ).

Proof. See e.g. [Bar04, Lemma 4.3.4]. ��
Given two λ-bialgebras (X,αX , δX) and (Y, αY , δY ), a λ-bisimulation between

X and Y is a relation R ⊆ X×Y such that there is some (not necessarily unique)
FT -coalgebra structure on R making the following diagram commute:

X �π1
R

π2� Y

FX

δX
�

�Fπ1
∗
FTR

δR
� Fπ2

∗
� FY

δY
�
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The following proposition establishes the soundness of λ-bisimulations:

Proposition 4. Given two λ-bialgebras (X,αX , δX) and (Y, αY , δY ), every λ-
bisimulation R ⊆ X × Y is contained in a bisimulation S (for the functor F ).

Proof. See [Bar04, Corollary 4.3.5]. ��
Moreover, the greatest bisimulation on two λ-bialgebras (X,αX , δX) and

(Y, αY , δY ) is a congruence:

Proposition 5. Given two λ-bialgebras (X,αX , δX) and (Y, αY , δY ), the rela-
tion ∼X,Y is a congruence, and its algebra structure is an Eilenberg-Moore alge-
bra.

Proof. See [Bar04, Corollary 3.4.22] and [Bar04, Corollary 3.4.23]. ��
Any final F -coalgebra can be uniquely extended to a final λ-bialgebra:

Proposition 6. Given a distributive law λ : TF ⇒ FT for a functor F that
has a final coalgebra (Ω, δΩ), there is a unique λ-bialgebra compatible with this
final coalgebra, which is a final λ-bialgebra.

Proof. See [Bar04, Corollary 3.4.19] and the following remark. ��
In this case, we can combine the extension from Lemma 2 with the unique

mapping into the final F -coalgebra, obtaining the diagram

X
ηX� TX

�−�� Ω

FTX

δ
� F �−� �
�

δ̂

FΩ

ω
�

This construction, called the generalized powerset construction, is extensively
studied in [SBBR10], [SBBR13], and [JSS12].

We finish this section by noting that there is a close relationship between
the notion of a λ-bisimulation, and that of a bisimulation up to context (see
e.g. [RBB+13] for a comprehensive treatment of this notion). Given two λ-
bialgebras (X,αX , δX) and (Y, αY , δY ), a relation R ⊆ X × Y is called a bisim-
ulation up to context whenever there is some δR making the diagram

X �π1
R

π2� Y

FX

δX
�

�Fπ1
Fc(R)

δR
� Fπ2� FY

δY
�

commute, where c(R) = 〈αX ◦ Tπ1, αY ◦ Tπ2〉(TR) ⊆ X × Y . We note that
there is a surjection e : TR � c(R), and thus, if δR is a witness to R being a
λ-bisimulation, it directly follows that Fe◦ δR is a bisimulation up to context. If
we assume the axiom of choice, the converse also holds: it now follows that there
is some f : c(R) → TR such that e ◦ f = 1c(R), and if δR witnesses that R is a
bisimulation up to context, then Ff ◦ δR witnesses that R is a λ-bisimulation.
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2.4 Weighted Automata, Bialgebraically

We now briefly present the bialgebraic approach to weighted automata (over
arbitrary semirings S). More comprehensive treatments of this bialgebraic ap-
proach can be found in e.g. [BMS13], [BBB+12], and [JSS12].

Here the monad T is instantiated as LinS(−), where LinS(X) is the set

{f : X → S | f has finite support}
regarded as representing finite (left) S-linear combinations of elements of X , for
any semiring S, and the monadic structure can be specified by

ηX(x)(y) = if x = y then 1 else 0

and
μX(f)(x) =

∑

g∈supp(f)

f(g) · g(x).

The category of algebras for this monad is isomorphic to the category of S-
modules and (left) S-linear mappings.

Furthermore, the behaviour functor is instantiated as S×−A. A coalgebra for
this functor (or for the functor S × T (−)A where T is some monad) is usually
represented as a pair of mappings (o, δ) : X → S × XA, with δ(x)(a) usually
represented as xa (or, in the case of a single alphabet symbol, x′), and called
the a-derivative of x, and with o(x) referred to as the output of x. This notation
allows us to conveniently represent these coalgebras as systems of behavioural
differential equations.

There exists a final coalgebra for this functor, with its carrier given by the set

S〈〈A〉〉 = (A∗ → S),

of formal power series in noncommuting variables, and the coalgebraic structure
given by, for any σ ∈ S〈〈A〉〉, o(σ) = σ(1) (with 1 denoting the empty word), and
σa(w) = σ(aw).

The distributive law

λ : LinS(S ×−A) ⇒ S × LinS(−)A

can be given componentwise by

λX

(
n∑

i=1

si(oi, di)

)

=

(
n∑

i=1

sioi, a 
→
n∑

i=1

sidi(a)

)

.

We call a λ-bialgebra for this distributive law an S-linear automaton. The final
bialgebra for this distributive law can be given by adding a pointwise S-module
structure to S〈〈A〉〉. We regard coalgebras for the functor S × LinS(−)A as S-
weighted automata, which can be extended into S-linear automata using Lemma
2. The formal power series accepted by a S-weighted automaton is then given by
the unique mapping of this S-linear automaton into the final S-linear automaton.
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The notion of λ-bisimulation here instantiates to the notion of bisimulation
up to linear combinations. This condition can be concretely expressed as follows:
given S-linear automata (X, oX , δX) and (Y, oY , δY ), a relation R ⊆ X × Y is
a bisimulation up to linear combinations whenever, for all (x, y) ∈ R, oX(x) =
oY (y), and for every alphabet symbol a ∈ A there is a n ∈ N, together with
elements x0, . . . , xn−1 ∈ X , y0, . . . , yn−1 ∈ Y , and scalars s0, . . . , sn−1 ∈ S,
such that for each i ≤ n, (xi, yi) ∈ R, and furthermore, xa =

∑n
i=1 sixi and

ya =
∑n

i=1 siyi. The latter condition can conveniently be represented using the
following notation:

xa =

n∑

i=1

sixi ΣR

n∑

i=1

siyi = ya

3 Main Result

We now are able to state the main result, which can be seen as a completeness
result for finite λ-bisimulations for distributive laws satisfying the required con-
ditions, similarly to how Proposition 4 can be seen as stating the soundness of
λ-bisimulations in general.

We first note that, given a λ-bialgebra (X,α, δ), the bisimilarity relation ∼
has both a F -coalgebra structure (by the definition of bisimulations), as well as
that of an algebra for the monad T (by Proposition 5). Moreover, as a result of
Proposition 1, the set X/ ∼ has the structure of an algebra for the monad T ,
such that the function h : X → X/ ∼ sending each x ∈ X to its equivalence
class w.r.t. ∼ is a T -algebra morphism.

Proposition 7. (AC) Assume:

1. T is a monad on Set such that finitely generated T -algebras are closed under
taking kernel pairs.

2. F is an endofunctor on Set that preserves weak pullbacks.
3. λ is a distributive law TF ⇒ FT .
4. (X,αX , δX) is a finitely generated λ-bialgebra.

Then, given two states x, y ∈ X, x and y are behaviourally equivalent if and
only if there is a finite λ-bisimulation R ⊆ X ×X with (x, y) ∈ R.

Proof. If such a λ-bisimulation R exists, it immediately follows that R is con-
tained in some bisimulation, and hence, that x and y are behaviourally equiva-
lent.

Conversely, assume that there are x, y ∈ X that are behaviourally equivalent.
Because F preserves weak pullbacks, it directly follows that x ∼ y. We now start
by taking the kernel pair of the morphism h : X → X/ ∼. This kernel pair can
be given by the set

∼= {(x, y) |Uh(x) = Uh(y)}
with an algebra structure α∼ : T (∼) →∼ such that (∼, α∼) is a subalgebra of
the product algebra (X,αX) × (X,αX). Because (X,αX) is finitely generated,
it follows from the first assumption that (∼, α∼) again is finitely generated.
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Simultaneously, ∼ is the greatest bisimulation on X , i.e., there is some (not
necessarily unique) δ∼ making the diagram

X �π1 ∼ π2� X

FX

δX
�

�Fπ1
F (∼)

δ∼
� Fπ2� FX

δX
�

commute. (Note that, although ∼ is both the carrier of an algebra for the monad
T and a F -coalgebra, we have not established that ∼ is a λ-bialgebra.)

Because ∼ is finitely generated, there is some finite R ⊆∼ (let i denote the
inclusion of R into ∼) such that the extension i∗ : T (R) →∼ is a regular epi-
morphism in SetT , and hence an epi in Set.

Because the epi i∗ splits by the axiom of choice, it has a right inverse j, and
we can now construct δR as Fj ◦ δ∼ ◦ i to make the diagram

R
i � ∼

FTR

δR
� F (i∗)� F (∼)

δ∼
�

commute. We can furthermore assume that (x, y) ∈ R, simply by adding this
single element to the finite set of generators.

We can now conclude that the diagram

X � π1 ◦ i
R

π2 ◦ i � X

FX

δX
�

�F (π1 ◦ i∗)
FTR

δR
� F (π2 ◦ i∗)� FX

δX
�

(1)

again commutes.
As i∗ and π1 are both T -algebra morphisms, it now also follows that π1 ◦ i∗

is an T -algebra morphism extending π1 ◦ i. Because (TR, μR) is a free algebra,
it now follows that π1 ◦ i∗ = (π1 ◦ i)∗ and π2 ◦ i∗ = (π2 ◦ i)∗. Making these
substitutions in Diagram (1), we can conclude that R is a λ-bisimulation. ��

Remark. If a final coalgebra for the functor F exists, there exists a unique λ-
bialgebra structure on this final coalgebra, and hence it is possible to replace
the morphism h used in the proof with the unique morphism �−� into the final
λ-bialgebra, now yielding ∼ as the kernel pair of the morphism �−�. The reliance
on the axiom of choice can then be relaxed to the condition that, for finite sets
X and arbitrary Y , every epi from TX to Y splits. In particular, this condition
is satisfied by the monad LinS(−), as LinS(X) is countable whenever X is finite.
As a consequence, in the next section, the decidability result can be established
without reliance on the axiom of choice.
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4 An Example

In this section, we will present an example illustrating how to prove the equiva-
lence of states in an automaton using finite λ-bisimulation (or concretely, bisim-
ulation up to linear combinations). The example given is a direct adaptation of
one of the examples given in [BMS13].

Consider the following Q-weighted automaton (over a singleton alphabet)

u ↓ 2 v ↓ 2 x ↓ 2 y ↓ 2

w ↓ 1 z ↓ 2

1

−1

1

1 3
2 − 1

2

− 3
2

1
2

1
2

1
21

which corresponds to the following system of behavioural differential equations:

o(u) = 2 u′ = v − w o(x) = 2 x′ = 3
2x− 3

2y +
1
2z

o(v) = 2 v′ = v o(y) = 2 y′ = 1
2x− 1

2y +
1
2z

o(w) = 1 w′ = w o(z) = 2 z′ = z

Next, consider the following relation:

R = {(u, x), (v, z), (12v − w, 3
2x− 3

2y)}
A proof that R is a bisimulation up to linear combinations is given by

u′ = 1
2v + (12v − w) ΣR 1

2z + (32x− 3
2y) = x′

v′ = v ΣR z = z′

(12v − w)′ = 1
2v − w ΣR 3

2x− 3
2y = (32x− 3

2y)
′

or alternatively by assigning the following weighted automaton structure to R:

o(u, x) = 2 (u, x)′ = 1
2 (v, z) + (12 − w, 3

2x− 3
2y)

o(v, z) = 2 (v, z)′ = (v, z)

o(12v − w, 3
2x− 3

2y) = 0 (12v − w, 3
2x− 3

2y)
′ = (12v − w, 3

2x− 3
2y)

5 Decidability of Weighted Language Equivalence

Following [ÉM10], we call a semiring Noetherian whenever any submodule of
a finitely generated S-module is again finitely generated. Using the result from
Section 3, we can now directly derive a decidability result for equivalence of
(states in) weighted automata over Noetherian semirings. We start by noting
that, if S is a Noetherian semiring, and X is a finitely generated S-module, Y
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is an arbitrary S-module, and f : X → Y is a S-linear mapping, then the kernel
pair of f is a sub-S-module of the finitely generated S-module X×X , and hence
again finitely generated. Hence, the monad LinS(−) satisfies the first condition
of Proposition 7 whenever S is a Noetherian semiring.

We moreover call, following the definition in [ÉM10], a semiring effectively
presentable, whenever its carrier can be represented as a recursive subset of N
such that the operations + and · are recursive functions. This condition by itself
is enough to establish the semidecidability of non-equivalence.

The results in this section are closely related to the decidability results from
[ÉM10]. In the proof of semidecidability of equivalence, the crucial difference is
relying on Proposition 7 instead of on a concrete result establishing properness.

The semidecidability of non-behavioural equivalence holds in general for ef-
fectively presentable semirings:

Proposition 8. Given any effectively presentable semiring S, non-behavioural
equivalence of states in finitely generated S-linear automata is semidecidable.

Proof. (See also [ÉM10, Lemma 5.1].) If states x, y in a finitely generated S-
linear automaton (X, o, δ) are not equivalent, there is some word w ∈ A∗ such
that o(xw) �= o(yw). We can enumerate all words w ∈ A∗ and, because S is
effectively presentable, can check for each word whether o(xw) = o(yw). If x and
y are not equivalent, eventually some word w witnessing this will be found. ��

Moreover, if S additionally is a subsemiring of a Noetherian semiring, we can
also derive semidecidability of behavioural equivalence (and hence, in combina-
tion with the preceding result, decidability) using Proposition 7.

Proposition 9. Given any semiring S that is a subsemiring of an effectively
presentable Noetherian semiring S′, behavioural equivalence of states in free
finitely generated S-linear automata is semidecidable.

Proof. We start by noting that we can see any free finitely generated S-linear
automaton as a free finitely generated S′-linear automaton (X, o, δ). Because S′

is effectively presentable, it is countable, and the set of tuples

(R ∈ Pω(LinS(X)× LinS(X)), δR : R → S × LinS(R))

again is countable, giving an enumeration of its elements.
For each element of this set, we can check whether (x, y) ∈ R and whether

(R, δR) makes Diagram (1) commute. If �x�X = �y�X , a suitable candidate will
eventually be found as a result of Proposition 7, so the process will terminate.

��

Corollary 10. Given any semiring S that is a subsemiring of an effectively pre-
sentable Noetherian semiring S′, behavioural equivalence of states in free finitely
generated S-linear automata is decidable.
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6 Further Directions

The results in this paper give rise to several possible directions for future work.
One possibility is looking for extensions of the main result to distributive laws
of a monad over a functor with additional structure, e.g. that of a copointed
functor or a comonad.

As a final observation, we note that it is also possible to use the main result to
conclude that certain monads do not have the property that finitely generated al-
gebras are closed under taking kernel pairs. A first example follows the approach
in [ÉM10], where it is shown that the tropical semiring T is not Noetherian:
likewise, we can show that finitely generated algebras for the monad LinT(−)
are not closed under taking kernel pairs, as this would imply decidability and it
is known that equivalence of T-weighted automata is not decidable.

A second example of such a negative result can be given by the monad
Pω((− + A)∗): because the context-free languages can be characterized using
a distributive law of this monad over the functor 2×−A ([BHKR13], [WBR13]),
and because equivalence of context-free languages is not decidable, it follows that
algebras for the monad Pω((− + A)∗) are not closed under taking kernel pairs.
(This result can be contrasted to the results in [Cau90] and [CHS95], which es-
tablish the decidability of bisimilarity for context-free processes. However, note
that bisimulation over determinized systems is equal to language equivalence,
which corresponds to the process-algebraic notion of trace equivalence.) A more
detailed study of this type of results is left as future work.
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A Simulations and Bialgebra Homomorphisms

This appendix is meant to elucidate the relation between the notion of a sim-
ulation4, which has been an important tool in the classical theory of weighted
automata for proving the equivalence between automata, and the bialgebraic
notion of a homomorphism between S-linear automata, which plays a similar
role in the co- and bialgebraic approach.

To make the correspondence between the two approaches somewhat more
straightforward, we give a presentation of classical weighted automata that is
symmetric to the traditional one: i.e. in terms of left-linear mappings and matrix
multiplication on the left, rather than in terms of right-linear mappings.

A.1 Weighted Automata

In the classical presentation, a (finite) weighted automaton of dimension n ≥ 1
over a finite alphabet A and a semiring S is a triple A = (α,Ma∈A, β) where

– α ∈ Sn×1 is a vector of length n, the initial vector;
– for every a ∈ A, Ma ∈ Sn×n is the transition matrix for the alphabet symbol

a; and
– β ∈ S1×n is a vector of length n, the final vector.

The correspondence with the coalgebraic view on automata is now given as
follows: we note that we can view every n× n matrix as a left-linear mapping5

LinS(n) → LinS(n) (corresponding to the extension δ̂(−, a)), uniquely deter-
mined by a function n → LinS(n) (corresponding to δ(−, a)), and the final
vector can be seen as a left-linear mapping from the left S-module LinS(n) to S
itself, seen as a left S-module, again uniquely determined by a function n → S.

4 Unrelated to simulations as defined in process algebra.
5 Note that LinS(n) can simply be seen as Sn here.
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Ignoring the initial vector α, a traditional weighted automaton can then be
seen as a coalgebra as follows:

LinS(n)
(β,M)� S × LinS(n)

A

The initial vector α, furthermore, simply is an element of LinS(n), and taking
the word derivative of α to a word w = a1 . . . an corresponds to the sequence of
matrix multiplications

Man . . .Ma1α.

Finally, the formal power series L(A) accepted by a weighted automaton A =
(α,Ma∈A, β) can be specified by

L(A)(a1 . . . ak) = βMak
. . .Ma1α

and by the above construction, it is seen to be equal to the power series �αw�,
where �−� is the usual notion of final coalgebra semantics for the functor S×−A,
with respect to the coalgebra (LinS(n), β,M).

A.2 Simulations and Homomorphisms

Given two weighted automata A = (α,M, β) (of dimension m) and B = (γ,N, δ)
(of dimension n), a matrix Z ∈ Sn×m is called a simulation from A to B when-
ever the following equations hold (in the case of the second equation, for all
a ∈ A):

Zα = γ ZMa = NaZ β = δZ

This definition corresponds to the one given in [ÉM10], with the modification
that Z now represents a left-linear mapping, rather than a right-linear mapping.

A basic fact about simulations is that a simulation between weighted au-
tomata A = (α,M, β) and B = (γ,N, δ) in all cases implies equivalence of the
weighted languages accepted by these automata, i.e. L(A) = L(B). We will now
turn to the connection between this notion of a simulation, and the notion of a
homomorphism of coalgebras, from which this equivalence directly follows.

As Sn×m matrices are in bijective correspondence with left-linear mappings
from LinS(m) to LinS(n), it directly follows that the second and third condition
are equivalent to the condition that the following diagram commutes:

LinS(m)
Z � LinS(n)

S × LinS(m)A

(β,M)
�

1S × ZA
� S × LinS(n)

A

(δ,N)
�

Hence, for finite weighted automata (X, oX , δX) and (Y, oY , δY ), the classical
notion of a simulation between these automata corresponds to the coalgebraic
notion of a homomorphism h from the extended automaton (LinS(X), ôX , δ̂X)

to the extended automaton (LinS(Y ), ôY , δ̂Y ), together with two elements x ∈
LinS(X) and y ∈ LinS(Y ) such that h(x) = y.
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A.3 Proper Semirings

In [ÉM10], a semiring S is called proper whenever, if two automataA = (α,M, β)
and B = (γ,N, δ) are equivalent, i.e. L(A) = L(B), there is a finite sequence
of automata A1, . . . ,Ak for some k with A1 = A and Ak = B, such that for
each i with 1 ≤ i < k there either is a simulation from Ai to Ai+1 or there is a
simulation from Ai+1 to Ai.

Using the results from Section 3, we can now directly conclude that every
Noetherian semiring is proper, as follows: assume we have two S-weighted au-
tomata (X, oX , δX) and (Y, oY , δY ) and elements x ∈ LinS(X) and y ∈ LinS(Y )
such that �x�X = �y�Y w.r.t. the linear extensions of these automata.

We can first construct a weighted automaton (X +Y, oX+Y , δX+Y ) , and it is
easy to see that this gives homomorphisms

LinS(κ1) : LinS(X) → LinS(X + Y )

LinS(κ2) : LinS(Y ) → LinS(X + Y )

where κ1 : X → X + Y and κ2 : Y → X + Y denote the injections of the
coproduct. Instantiating LinS(X + Y ) for X in Diagram (1) and Proposition 7,
we can now conclude that there are homomorphisms

(π1 ◦ i)∗ : LinS(R) → LinS(X + Y )

(π2 ◦ i)∗ : LinS(R) → LinS(X + Y )

and that (κ1(x), κ2(y)) ∈ R.
It now follows that this gives a chain of simulations of automata, as a result of

(a) LinS(κ1) mapping x to κ1(x); (b) (π1 ◦ i)∗ mapping (κ1(x), κ2(y)) to κ1(x);
(c) (π2 ◦ i)∗ mapping (κ1(x), κ2(y)) to κ2(y); and (d) LinS(κ2) mapping y to
κ2(y).

Hence, we can now conclude that S satisfies the conditions of being proper.
This fact is also observed in [ÉM10], using a somewhat different argument, using
the properties of Noetherian semirings, rather than the property of monads
where kernel pairs of finitely generated objects are finitely generated again.
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Abstract. Nakano’s “later” modality, inspired by Gödel-Löb provabil-
ity logic, has been applied in type systems and program logics to capture
guarded recursion. Birkedal et al modelled this modality via the internal
logic of the topos of trees. We show that the semantics of the proposi-
tional fragment of this logic can be given by linear converse-well-founded
intuitionistic Kripke frames, so this logic is a marriage of the intuition-
istic modal logic KM and the intermediate logic LC. We therefore call
this logic KMlin. We give a sound and cut-free complete sequent calcu-
lus for KMlin via a strategy that decomposes implication into its static
and irreflexive components. Our calculus provides deterministic and ter-
minating backward proof-search, yields decidability of the logic and the
coNP-completeness of its validity problem. Our calculus and decision
procedure can be restricted to drop linearity and hence capture KM.

1 Introduction

Guarded recursion [11] on an infinite data structure requires that recursive calls
be nested beneath constructors. For example, a stream of zeros can be defined
with the self-reference guarded by the cons:

z e r o s = 0 : z e ro s

Such equations have unique solutions and are productive: they compute arbi-
trarily large prefixes of the infinite structure in finite time, a useful property in
lazy programming.

Syntactic checks do not always play well with higher-order functions; the
insight of Nakano [27] is that guarded recursion can be enforced through the
type system via an ‘approximation modality’ inspired by Gödel-Löb provability
logic [7]. We follow Appel et al [1] and call this modality later, and use the
symbol �. The meaning of �τ is roughly ‘τ one computation step later’. Type
definitions must have their self-reference guarded by later. For example streams
of integers, which we perhaps expect to be defined as Stream ∼= Z × Stream,
are instead

Stream ∼= Z×�Stream
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DOI: 10.1007/978-3-662-46678-0_9
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Nakano showed that versions of Curry’s fixed-point combinator Y, and Turing’s
fixed-point combinator likewise, can be typed by the strong Löb axiom (see [24])

(�τ → τ) → τ (1)

Returning to our example, Y can be applied to the function

λx.〈0, x〉 : �Stream → Z×�Stream

to define the stream of zeros.
Nakano’s modality was popularised by the typing discipline for intermediate

and assembly languages of Appel et al [1], where for certain ‘necessary’ types a
‘Löb rule’ applies which correlates to the strong Löb axiom (1). The modality has
since been applied in a wide range of ways; a non-exhaustive but representative
list follows. As a type constructor, � appears in Rowe’s type system for Feath-
erweight Java [30], the kind system of the System F extension FORK [28], and
in types for functional reactive programming [22], with applications to graphical
user interfaces [21]. As a logical connective, � was married to separation logic
in [19], then to higher-order separation logic in [2], and to step-indexed logi-
cal relations for reasoning about programming languages with LSLR [13]. Thus
Nakano’s modality is important in various applications in computer science.

We have so far been coy on precisely what the logic of later is, beyond positing
that � is a modality obeying the strong Löb axiom. Nakano cited Gödel-Löb
provability logic as inspiration, but this is a classical modal logic with the weak
Löb axiom �(�τ → τ) → �τ , whereas we desire intuitionistic implication and
the stronger axiom (1). In fact there does exist a tradition of intuitionistic ana-
logues of Gödel-Löb logic [24], of which Nakano seemed mainly unaware; we will
see that logic with later can partly be understood through this tradition. In the
computer science literature it has been most common to leave proof theory and
search implicit and fix some concrete semantics; for example see Appel et al’s
Kripke semantics of stores [1]. A more abstract and general model can be given
via the internal logic of the topos of trees S [4]. This was shown to generalise sev-
eral previous models for logic with later, such as the ultrametric spaces of [5,22],
and provides the basis for a rich theory of dependent types. We hence take the
internal logic of S as a prominent and useful model of logic with later, in which
we can study proof theory and proof search.

In this paper we look at the propositional-modal core of the internal logic of
S. This fragment will be seen to have semantics in linear intuitionistic Kripke
frames whose reflexive reduction is converse-well-founded. Linear intuitionistic
frames are known to be captured by the intermediate logic Dummett’s LC [8]; the
validity of the LC axiom in the topos of trees was first observed by Litak [23]. In-
tuitionistic frames with converse-well-founded reflexive reduction are captured
by the intuitionistic modal logic KM, first called IΔ [26]. Hence the internal
propositional modal logic of the topos of trees is semantically exactly their com-
bination, which we call KMlin (Litak [24, Thm. 50] has subsequently confirmed
this relationship at the level of Hilbert axioms also).
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Our specific contribution is to give a sound and cut-free complete sequent
calculus for KMlin, and by restriction for KM also, supporting terminating back-
wards proof search and hence yielding the decidability and finite model property
of these logics. Our sequent calculus also establishes the coNP-completeness of
deciding validity in KMlin.

To our knowledge sequent calculi for intuitionistic Gödel-Löb logics, let alone
KM or KMlin, have not before been investigated, but such proof systems pro-
vide a solid foundation for proving results such as decidability, complexity, and
interpolation, and given an appropriate link between calculus and semantics can
provide explicit, usually finite, counter-models falsifying given non-theorems.

The main technical novelty of our sequent calculus is that we leverage the fact
that the intutionistic accessibility relation is the reflexive closure of the modal
relation, by decomposing implication into a static (classical) component and a
dynamic ‘irreflexive implication’ � that looks forward along the modal relation.
In fact, this irreflexive implication obviates the need for � entirely, as �ϕ is
easily seen to be equivalent to � � ϕ. Semantically the converse of this applies
also, as ϕ � ψ is semantically equivalent to �(ϕ → ψ)1, but the � connective
is a necessary part of our calculus. We maintain � as a first-class connective in
deference to the computer science applications and logic traditions from which
we draw, but note that formulae of the form �(ϕ → ψ) are common in the
literature - see Nakano’s (→ E) rule [27], and even more directly Birkedal and
Møgelberg’s � constructor. We therefore suspect that treating � as a first-class
connective could be a conceptually fruitful side-benefit of our work.

Note that for space reasons some proofs appear only in the extended version
of this paper [10].

2 From the Topos of Trees to Kripke Frames

In this section we outline the topos of trees model and its internal logic, and
show that this logic can be described semantically by conditions on intuitionis-
tic Kripke frames. Therefore after this section we discard category theory and
proceed with reference to Kripke frames alone.

The topos of trees, written S, is the category of presheaves on the first infinite
ordinal ω (with objects 1, 2, . . ., rather than starting at 0, in keeping with the
relevant literature). Concretely an object A is a pair of a family of sets Ai indexed
by the positive integers, and a family of restriction functions rAi : Ai+1 → Ai

indexed similarly. An arrow f : A → B is a family of functions fi : Ai → Bi

indexed similarly, subject to naturality, i.e. all squares below commute:

A1

f1

��

A2
a1��

f2

��

A3
a2��

f3

��

· · · Aj

fj

��

Aj+1

aj
��

fj+1

��

B1 B2
b1

�� B3
b2

�� · · · Bj Bj+1
bj

��

1 This in turn is equivalent in KMlin (but is not in KM) to �ϕ → �ψ [27, Sec. 3].
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Two S-objects are of particular interest: the terminal object 1 has singletons as
component sets and identities as restriction functions; the subobject classifier Ω
has Ωj = {0, . . . , j} and ωj(k) = min(j, k). We regard the positive integers as
worlds and functions x : 1 → Ω as truth values over these worlds, by considering
x true at j iff xj = j. Such an x is constrained by naturality to have one of three
forms: xj = j for all j (true everywhere); xj = 0 for all j (true nowhere); or
given any positive integer k, xj is k for all j ≥ k, and is j for all j ≤ k (becomes
true at world k, remains true at all lesser worlds). As such the truth values can
be identified with the set N ∪ {∞}, where ∞ captures ‘true everywhere’.

Formulae of the internal logic of S are defined as

ϕ ::= p | � | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ϕ � ϕ | �ϕ

where p ∈ Atm is an atomic formula. Negation may be defined as usual as
ϕ → ⊥. The connective �, read as irreflexive implication, is not in Birekedal et
al [4] but is critical to the sequent calculus of this paper; readers may view � as
a second-class connective generated and then disposed of by our proof system,
or as a novel first-class connective, as they prefer.

Given a map η from propositional variables p ∈ Atm to arrows η(p) : 1 → Ω,
and a positive integer j, the Kripke-Joyal forcing semantics for S are defined by

η, j � p iff η(p)j = j
η, j � � always
η, j � ⊥ never
η, j � ϕ ∧ ψ iff η, j � ϕ and η, j � ψ
η, j � ϕ ∨ ψ iff η, j � ϕ or η, j � ψ
η, j � ϕ → ψ iff ∀k ≤ j. η, k � ϕ implies η, k � ψ
η, j � ϕ � ψ iff ∀k < j. η, k � ϕ implies η, k � ψ
η, j � �ϕ iff ∀k < j. η, k � ϕ

A formula ϕ is valid if η, j � ϕ for all η, j. Note that ϕ � ψ is equivalent to
�(ϕ → ψ), and �ϕ is equivalent to � � ϕ. While implication → can be seen as
a conjunction of static and irreflexive components:

j � ϕ → ψ iff (j � ϕ implies j � ψ) and j � ϕ � ψ (2)

it is not definable from the other connectives, because we have no static (that is,
classical) implication. However our sequent calculus will effectively capture (2).

We now turn to Kripke frame semantics. Kripke semantics for intuitionistic
modal logics are usually defined via bi-relational frames 〈W,R→, R�〉, where R→
and R� are binary relations on W , with certain interaction conditions ensuring
that modal formulae persist along the intuitionistic relation [33]. However for KM
and KMlin the intuitionistic relation is definable in terms of the box relation,
and so only the latter relation need be explicitly given to define a frame:

Definition 2.1. A frame is a pair 〈W,R〉 where W is a non-empty set and R a
binary relation on W . A KM-frame has R transitive and converse-well-founded,
i.e. there is no infinite sequence x1Rx2Rx3R · · ·. A KMlin-frame is a KM-frame
with R also connected, i.e. ∀x, y ∈ W. x = y or R(x, y) or R(y, x).
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Converse-well-foundedness implies irreflexivity. Also, KM- and KMlin-frames
may be infinite because non-well-founded chains · · ·Rw3Rw2Rw1 are permitted.

Given a binary relation R, let R= be its reflexive closure. If 〈W,R〉 is a KM-
frame then 〈W,R=〉 is reflexive and transitive so provides frame semantics for
intuitionistic logic. In fact frames arising in this way in general satisfy only the
theorems of intuitionistic logic, so KM is conservative over intuitionistic logic.
In other words, the usual propositional connectives are too coarse to detect the
converse well-foundedness of a frame; for that we need � and the strong Löb
axiom (1). Similarly the reflexive closure of a KMlin-frame is a linear relation
and so gives semantics for the logic LC, over which KMlin is conservative.

A model 〈W,R, ϑ〉 consists of a frame 〈W,R〉 and a valuation ϑ : Atm �→ 2W

obeying persistence:

if w ∈ ϑ(p) and wRx then x ∈ ϑ(p)

We hence define KM- and KMlin-models by the relevant frame conditions.
We can now define when a KM- or KMlin-model M = 〈W,R, ϑ〉 makes a

formula true at a world w ∈ W , with obvious cases �,⊥,∧,∨ omitted:

M,w � p iff w ∈ ϑ(p)
M,w � ϕ → ψ iff ∀x.wR=x and M,x � ϕ implies M,x � ψ
M,w � ϕ � ψ iff ∀x.wRx and M,x � ϕ implies M,x � ψ
M,w � �ϕ iff ∀x.wRx implies M,x � ϕ

Thus � is the usual modal box. As usual for intuitionistic logic, we have a
monotonicity lemma, provable by induction on the formation of ϕ:

Lemma 2.2 (Monotonicity). If M,w � ϕ and wRv then M, v � ϕ.

Fixing a class of models (KM- or KMlin-), a formula ϕ is valid if for every
world w in every model M we have M,w � ϕ. It is easy to observe that the two
semantics presented above coincide, given the right choice of frame conditions:

Theorem 2.3. Formula ϕ is valid in the internal logic of S iff it is KMlin-valid.

3 The Sequent Calculus SKMlin for KMlin

A sequent is an expression of the form Γ � Δ where Γ and Δ are finite, possibly
empty, sets of formulae with Γ the antecedent and Δ the succedent. We write
Γ, ϕ for Γ ∪{ϕ}. Our sequents are “multiple-conclusioned” since the succedent Δ
is a finite set rather than a single formula as in “single-conclusioned” sequents.

A sequent derivation is a finite tree of sequents where each internal node is
obtained from its parents by instantiating a rule. The root of a derivation is the
end-sequent. A sequent derivation is a proof if all the leaves are zero-premise
rules. A rule may require extra side-conditions for its (backward) application.

The sequent calculus SKMlin is shown in Fig. 1, where Γ , Δ, Φ, Θ, and Σ,
with superscripts and/or subscripts, are finite, possibly empty, sets of formulae.
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�R
Γ � �,Δ

id
Γ, ϕ � ϕ,Δ

⊥L
Γ,⊥ � Δ

Γ,ϕ � Δ Γ, ψ � Δ∨L
Γ, ϕ ∨ ψ � Δ

Γ � ϕ,ψ,Δ∨R
Γ � ϕ ∨ ψ,Δ

Γ,ϕ, ψ � Δ∧L
Γ, ϕ ∧ ψ � Δ

Γ � ϕ,Δ Γ � ψ,Δ∧R
Γ � ϕ ∧ ψ,Δ

Γ, ϕ � ψ � ϕ,Δ Γ,ϕ � ψ,ψ � Δ→L
Γ, ϕ → ψ � Δ

Γ,ϕ � ψ,Δ Γ � ϕ � ψ,Δ→R
Γ � ϕ → ψ,Δ

Prem1 · · · Premk Premk+1 · · · Premk+n
step †

Σl, Θ
�, Γ� � Δ�, Φ�, Σr

Prem1≤i≤k = Σl, Θ,Θ�, Γ→, ϕi � ψi, ϕi � ψi,Δ
→
−i, Φ

Premk+1≤i≤k+n = Σl, Θ,Θ�, Γ→,�φi−k � Δ→, Φ

Θ� = �θ1, · · · ,�θj Θ = θ1, · · · , θj
Γ� = {α1 � β1, · · · , αl � βl} Γ→ = {α1 → β1, · · · , αl → βl}
Δ� = {ϕ1 � ψ1, · · · , ϕk � ψk} Δ→ = {ϕ1 → ψ1, · · · , ϕk → ψk}
Δ→

−i = Δ→ \ {ϕi → ψi}
Φ� = �φ1, · · · ,�φn Φ = φ1, · · · , φn

where † means that the conditions C0, C1 and C2 below must hold

(C0) Δ� ∪ Φ� 	= ∅
(C1) ⊥ 	∈ Σl and � 	∈ Σr and (Σl ∪Θ� ∪ Γ�) ∩ (Δ� ∪ Φ� ∪Σr) = ∅
(C2) Σl and Σr each contain atomic formulae only

Explanations for the conditions:

(C0) there must be at least one �- or �-formula in the succedent of the conclusion

(C1) none of the rules ⊥L,�R, id are applicable to the conclusion

(C2) none of the rules ∨L, ,∨R,∧L,∧R,→L,→R are applicable to the conclusion

Fig. 1. Rules for sequent calculus SKMlin

Rules �R, ⊥L, id, ∨L, ∨R, ∧L, ∧R are standard for a multiple-conclusioned
calculus for Int [32]. Rules→L and→R can be seen as branching on a conjunction
of static and an irreflexive implication: see equation (2). The occurrence of ϕ � ψ
in the right premise of →L is redundant, since ψ implies ϕ � ψ, but its presence
makes our termination argument simpler.

The rule step resembles Sonobe’s multi-premise rule for →R in LC [31,12],
but its interplay of static and dynamic connectives allows us to capture the
converse-well-foundedness of our frames. The reader may like to skip forward to
compare it to the rules for KM in Fig. 4, which are simpler because they do not
have to deal with linearity. Condition C0 is essential for soundness; C1 and C2
are not, but ensure that the step rule is applicable only if no other rules are
applicable (upwards), which is necessary for semantic invertibility (Lem. 3.11).
Note that the formulae in Θ� appear intact in the antecedent of every premise.
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mp
(�p → p) → p,�p → p,�p � p

step
(�p → p) � p,�p � p � �p, p

id
(�p → p) � p,�p � p, p � p →L

(�p → p) � p,�p → p � p
step� (�p → p) � p

mp
�p → p,�p � p

step�p � p � �p, p
id�p � p, p � p →L�p → p � p � (�p → p) � p →R� (�p → p) → p

Fig. 2. SKMlin proof of the strong Löb axiom

id
p � q, p, q � p, q

id
p → q, p, q � p, q � p

step
p � q, p � q, q � p →R

p � q, p � q, q → p

Symmetric to left

q � p, q � p, p → q
step� p � q, q � p

id
p, q � q, p

id
p, q � p, q � p

step
p � q, q � p →R

p � q, q → p

id
q, p � q, p � q

step
q � p, p � q � p � q, q � p →R� p � q, q → p →R� p → q, q → p ∨R� p → q ∨ q → p

Fig. 3. SKMlin proof of the LC axiom

This is not essential as Θ implies Θ�, but will simplify our proof of completeness.
In constrast the formulae in Φ� do not appear in the succedent of any premise.
Also, the formulae in Σr do not appear in the succedent of any premise. So step
contains two aspects of weakening, but C2 ensures this is not done prematurely.

Figs. 2 and 3 give example proofs, using the following derived rule:

Lemma 3.1. The Modus Ponens rules mp is derivable in SKMlin as follows:

Proof.

id
Γ, ϕ, ϕ � ψ � ϕ, ψ

id
Γ, ϕ, ϕ � ψ, ψ � ψ →L

Γ, ϕ, ϕ → ψ � ψ

3.1 Soundness of SKMlin

Given a world w in some model M , and finite sets Γ and Δ of formulae, we
write w � Γ if every formula in Γ is true at w in model M and write w �� Δ if
every formula in Δ is not true at w in model M .

A sequent Γ � Δ is refutable if there exists a model M and a world w in
that model such that w � Γ and w �� Δ. A sequent is valid if it is not refutable.
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A rule is sound if some premise is refutable whenever the conclusion is refutable.
A rule is semantically invertible if the conclusion is refutable whenever some
premise is refutable. Given a model M and a formula ϕ, a world w is a refuter
for ϕ if M,w �� ϕ. It is a last refuter for ϕ if in addition M,w � �ϕ. An
eventuality is a formula of the form ϕ � ψ or �ϕ in the succedent of the
conclusion of an application of the rule step.

Lemma 3.2. In every model, every formula ϕ with a refuter has a last refuter.

Proof. Suppose ϕ has refuter w in model M , i.e. M,w �� ϕ. If all R-successors v
of w have v � ϕ then w � �ϕ, and so w is the last refuter we seek. Else pick any
successor v such that M, v �� ϕ and repeat the argument replacing w with v. By
converse well-foundedness this can only be done finitely often before reaching a
world with no R-successors, which vacuously satisfies �ϕ.

Theorem 3.3 (Soundness). If � ϕ is SKMlin-derivable then ϕ is KMlin-valid.
Proved in extended version [10].

3.2 Terminating Backward Proof Search

In this section we describe how to systematically find derivations using backward
proof search. To this end, we divide the rules into three sets as follows:

Termination Rules: the rules id,⊥L,�R
Static Rules: the rules →L,→R,∨L,∨R,∧L,∧R
Transitional Rule: step.

The proof search strategy below starts at the leaf (end-sequent) Γ0 � Δ0:

while some rule is applicable to a leaf sequent do
stop: apply any applicable termination rule to that leaf
saturate: else apply any applicable static rule to that leaf
transition: else apply the transitional rule to that leaf

The phase where only static rules are applied is called the saturation phase.
The only non-determinism in our procedure is the choice of static rule when
many static rules are applicable, but as we shall see later, any choice suffices.
Note that conditions C1 and C2 actually force step to have lowest priority.

Let sf(ϕ) be the set of subformulae of ϕ, including ϕ itself and let m be the
length of ϕ. Let cl(ϕ) = sf(ϕ) ∪ {ψ1 � ψ2 | ψ1 → ψ2 ∈ sf(ϕ)}.
Proposition 3.4. The (backward) saturation phase terminates for any sequent.

Proof. Each rule either: removes a connective; or removes a formula completely;
or replaces a formula ϕ → ψ with ϕ � ψ to which no static rule can be applied.

Given our strategy (and condition C1), we know that the conclusion of the
step rule will never be an instance of id, hence ϕ � ψ or �ϕ is only an eventu-
ality when an occurrence of it does not already appear in the antecedent of the
conclusion of the step rule in question.
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Proposition 3.5. For all rules, the formulae in the premise succedents are sub-
formulae of formulae in the conclusion, or are →-formulae created from �-
formulae in the conclusion succedent: we never create new eventualities upwards.

Proposition 3.6. Any application of the rule step has strictly fewer eventual-
ities in each premise, than in its conclusion.

Proof. For each premise, an eventuality�ϕ crosses from the succedent of the con-
clusion to the antecedent of that premise and appears in all higher antecedents,
or an eventuality ϕ � ψ from the succedent of the conclusion turns into ϕ → ψ
in the antecedent of the premise and this ϕ → ψ turns back into ϕ � ψ via
saturation, meaning that the eventuality (�ϕ or ϕ � ψ) cannot reappear in the
succedent of some higher saturated sequent without creating an instance of id.

Theorem 3.7. Backward proof search terminates.

Proof. By Prop. 3.4 each saturation phase terminates, so the only way a branch
can be infinite is via an infinite number of applications of the step rule. But by
Prop. 3.6 each such application reduces the number of eventualities of the branch,
and by Prop. 3.5, no rule creates new eventualities. Thus we must eventually
reach a saturated sequent to which no rule is applicable, or reach an instance of
a termination rule. Either way, proof search terminates.

Proposition 3.8. Given an end-sequent Γ0 � Δ0, the maximum number of
different eventualities is the sum of the lengths of the formula in Γ0 ∪Δ0.

Proof. Each eventuality �ϕ is a subformula of the end-sequent, and each even-
tuality ϕ � ψ is created from a subformula ϕ → ψ which is also a subformula
of the end-sequent or is a subformula of the end-sequent.

Corollary 3.9. Any branch of our proof-search procedure for end-sequent Γ0 �
Δ0 contains at most l applications of the step rule, where l is the sum of the
lengths of the formulae in Γ0 ∪Δ0.

3.3 Cut-Free Completeness Without Backtracking

The rules of our sequent calculus, when used according to conditions C0, C1,
and C2, can be shown to preserve validity upwards as follows.

Lemma 3.10 (Semantic Invertibility). All static rules are semantically in-
vertible: if some premise is refutable then so is the conclusion. Proved in extended
version [10].

For a given conclusion instance of the step rule, we have already seen that
conditions C0, C1 and C2 guarantee that there is at least one eventuality in
the succedent, that no termination rule is applicable, that the conclusion is
saturated, and that no eventuality in the succedent of the conclusion is ignored.

Lemma 3.11. The rule step (with C0, C1 and C2) is semantically invertible.
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Proof. Suppose some premise is refutable. That is,

1. for some 1 ≤ i ≤ k there exists a model M1 = 〈W1, R1, ϑ1〉 and w1 ∈ W1

such that M1, w1 � Σl, Θ,Θ�, Γ→, ϕi � ψi, ϕi and M1, w1 �� ψi, Δ
→
−i, Φ; or

2. for some k + 1 ≤ i ≤ k + n there exists a model M2 = 〈W2, R2, ϑ2〉 and
w2 ∈ W2 such that M2, w2 � Σl, Θ,Θ�, Γ→,�φi−k and M2, w2 �� Δ→, Φ.

1 ≤ i ≤ k: We must show there is some model M containing a world w0 such
that M,w0 � Σl, Θ

�, Γ� and M,w0 �� Δ�, Φ�, Σr. We do this by taking the
submodel generated by w1, adding an extra world w0 as a predecessor of w1,
letting w0 reach every world reachable from w1, and setting every member of Σl

to be true at w0.
We formally define M by: W = {w ∈ W1 | w1R1w} ∪ {w0, w1}; R =

{(v, w) ∈ R1 | v ∈ W,w ∈ W} ∪ {(w0, w) | w ∈ W \ {w0}}; for every atomic
formula p and for every w ∈ W \ {w0}, let w ∈ ϑ(p) iff w ∈ ϑ1(p) and put
w0 ∈ ϑ(p) iff p ∈ Σl.

By simultaneous induction on the size of any formula ξ, it follows that for
every world w �= w0 in W , we have M1, w � ξ iff M,w � ξ.

We have M,w0 �� Σr by definition (since its intersection with Σl is empty).
We have M,w0 � Θ� since M1, w1 � Θ implies M,w1 � Θ, and we know that
w0Rw1. Similarly, we have M,w0 � Γ� since w0Rw1 and M1, w1 � Γ→. Since
M1, w1 � ϕi and M1, w1 �� ψi, we must have M,w0 �� ϕi � ψi as desired.
Together with M1, w1 �� Δ→

−i, we have M,w0 �� Δ�. Finally, since M1, w1 �� Φ,
we must have M,w0 �� Φ�. Collecting everything together, we have M,w0 �
Σl, Θ

�, Γ� and M,w0 �� Δ�, Φ�, Σr as desired.
The case k + 1 ≤ i ≤ k + n follows similarly.

Theorem 3.12. If the sequent � ϕ0 is not derivable using the rules of Fig. 1
according to our proof-search strategy then ϕ0 is not KMlin-valid.

Proof. Suppose � ϕ0 is not derivable using our systematic backward proof
search procedure. Thus our procedure gives a finite tree with at least one leaf
Σl, Γ

�, Θ� � Σr obeying both C1 and C2 to which no rules are applicable.
Construct M0 = 〈W0, R0, ϑ0〉 as follows: let W0 = {w0}; let R0 = ∅; and w0 ∈

ϑ0(p) iff p ∈ Σl. Clearly, we have M0, w0 � Σl by definition. Also, M0, w0 �� Σr

since its intersection with Σl is empty by C1. Every formula α � β ∈ Γ� and
�θ ∈ Θ� is vacuously true at w0 in M0 since w0 has no strict successors. Thus
the leaf sequent Σl, Γ

�, Θ� � Σr is refuted by w0 in model M0. The Invertibility
Lemmas 3.10 and 3.11 now imply that � ϕ0 is refutable in some KMlin-model.

Corollary 3.13 (Completeness). If ϕ is KMlin-valid then � ϕ is SKMlin-
derivable.

Cor. 3.13 guarantees that any sound rule can be added to our calculus without
increasing the set of provable end-sequents, including both forms of cut below:

Γ � ϕ,Δ Γ, ϕ � Δ

Γ � Δ

Γ,� ϕ,Δ Γ ′, ϕ � Δ′

Γ, Γ ′ � Δ,Δ′
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Since all static rules are semantically invertible, any order of rule applications
for saturation suffices. Since all rules are invertible we never need backtracking.
That is, our strategy straightfowardly yields a decision procedure. It also tells us
that KMlin, like its parent logics KM and LC, enjoys the finite model property:

Theorem 3.14. If ϕ is not KMlin-valid then it is refutable in a rooted (finite)
KMlin-model of length at most l + 1 where l is the length of ϕ.

Proof. Suppose that ϕ is not valid: that is, ϕ is refuted by some world in some
KMlin model. By soundness Thm. 3.3 � ϕ is not derivable using our proof-search
strategy. In particular, in any branch, there can be at most l applications of the
rule step by Cor. 3.9. From such a branch, completeness Thm. 3.12 allows us
to construct a model M and a world w which refutes ϕ. But the model M we
constuct in the completeness proof is a rooted (finite) KMlin-model with at most
l+1 worlds since the only rule that creates new worlds is the (transitional) step
rule and there are at most l such rule applications in any branch.

Corollary 3.15. KMlin has the finite model property.

3.4 Complexity

We first embed classical propositional logic into KMlin.

Lemma 3.16. If ϕ is a formula built out of atomic formulae, � and ⊥ using
only the connectives ∧, ∨, →, and the sequent � (ϕ → ⊥) → ⊥ is derivable, then
ϕ is a tautology of classical propositional logic.

Proof. Any derivation in our systematic proof search procedure ends as:

ϕ � ⊥ � ϕ,⊥ · · · →L
ϕ → ⊥ � ⊥ · · · →R� (ϕ → ⊥) → ⊥

Thus, the sequent ϕ � ⊥ � ϕ,⊥ is derivable.
Soundness Thm. 3.3 then implies that this sequent is valid on all models. In

particular, it is valid on the class of single-pointed models M = 〈W,R, ϑ〉 where
W = {w0} and R = ∅. The formula ϕ � ⊥ is true at w0 vacuously since w0

has no R-successor. The formula ⊥ is not true in any model, including this one,
hence M,w0 �� ⊥. Thus M,w0 � ϕ. That is, ϕ itself is valid on all single-pointed
models. But such a model is just a valuation of classical propositional logic.

Lemma 3.17. If ϕ is a formula built out of atomic formulae, � and ⊥ using
only the connectives ∧, ∨, →, and the sequent � (ϕ → ⊥) → ⊥ is not derivable,
then ϕ is not a tautology of classical propositional logic.

Proof. Suppose � (ϕ → ⊥) → ⊥ is not derivable. Then, by Thm. 3.12, (ϕ →
⊥) → ⊥ is not KMlin-valid. Thus, there is a finite linear model M = 〈W,R, ϑ〉
with root world w0 ∈ W such that M,w0 �� (ϕ → ⊥) → ⊥. Thus there is a world
v such that w0R

=v and M, v � ϕ → ⊥, which implies that every R=-succesor
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Σl, Θ, Θ�, Γ→, ϕ � ψ,ϕ � ψ
� R ‡

Σl, Θ
�, Γ� � ϕ � ψ,Δ�, Φ�, Σr

Σl, Θ, Θ�, Γ→,�ψ � ψ
�R ‡

Σl, Θ
�, Γ� � �ψ,Δ�, Φ�, Σr

where ‡ means that the following conditions hold:

(C1): ⊥ 	∈ Σl and � 	∈ Σr and the conclusion is not an instance of id

(C2): Σl and Σr contain only atomic formulae (i.e. the conclusion is saturated)

Fig. 4. Transitional rules for logic KM

of v, including a world u (say) with no R-successors, makes ϕ false. But such
a final world u is just a valuation of classical propositional logic, thus there is
a model of classical propositional logic which makes ϕ false. That is, ϕ is not a
tautology of classical propositional logic.

Lemma 3.18. There is a non-deterministic algorithm to test the refutability
(non-validity) of the sequent � ϕ in time polynomial in the length of ϕ. Proved
in extended version [10].

Corollary 3.19. The validity problem for KMlin is coNP-complete.

Proof. By Lem. 3.16 we can faithfully embed the validity problem for classical
propositional logic into KMlin, hence it is at least as hard as checking validity in
classical propositional logic (coNP). By Lem. 3.18, we can non-deterministically
check non-validity of a given formula in time at most polynomial in its size.

4 Terminating Proof Search for KM

This section turns to logic KM, for which models need not be linear. One might
expect that KM, which is conservative over Int, would require single-conclusioned
sequents only, but KM-theorems such as the axiom �ϕ → (ϕ ∨ (ϕ → ψ)) (see
Litak [24]) seem to require multiple conclusions. As such our calculus will resem-
ble that for KMlin. The static rules will be those of KMlin, but the transitional
rule step of KMlin is now replaced by rules � R and �R as shown in Fig. 4.

The backward proof-search strategy is the same as that of Sec. 3.2, except the
transitional rule applications now reads as below:

transition: else choose a �- or �-formula from the succedent and apply
� R or �R, backtracking over these choices until a derivation is found
or all choices of principal formula have been exhausted.

So if the given sequent is � Δ�, Φ�, Σr and Δ� contains m formulae and Φ�

contains n formulae, then in the worst case we must explore m premise instances
of � R and n premise instances of �R.

Theorem 4.1. The rules � R and �R are sound for the logic KM. Proved in
extended version [10].

Termination follows using the same argument as for SKMlin. However the
new rules are not semantically invertible, since we have to choose a particular
�- or �-formula from the succedent of the conclusion and discard all others
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when moving to the premise, yet a different choice may have given a derivation
of the conclusion. Thus these rules require the backtracking which is built into
the new transition part of our proof search strategy.

Lemma 4.2. If a sequent s obeys the ‡ conditions and every premise instance
obtained by applying the rules � R and �R backwards to s is not derivable, then
the sequent s is refutable. Proved in extended version [10].

Corollary 4.3. If the end-sequent Γ0 � Δ0 is not derivable using backward proof
search according to our strategy then Γ0 � Δ0 is refutable.

Corollary 4.4. If ϕ0 is KM-valid then � ϕ0 is SKM-derivable.

As for KMlin, our proofs yield the finite model property for KM as an imme-
diate consequence, although for KM this is already known [26].

5 Related Work

Ferrrari et al [15] give sequent calculi for intuitionistic logic using a compartment
Θ in the antecedents of their sequents Θ;Γ � Δ. This compartment contains
formulae that are not necessarily true now, but are true in all strict successors.
Fiorino [16] gives a sequent calculus using this compartment for LC. This yields
linear depth derivations, albeit requiring a semantic check which is quadratic.
Both [15,16] build in aspects of Gödel-Löb logic by allowing (sub)formulae to
cross from the succedent of the conclusion into the compartment Θ. Our calculus
differs by giving syntactic analogues � and � for these meta-level features, and
by requiring no compartments, but it should be possible to adapt these authors’
work to design sequent calculi for KMlin with linear depth derivations.

Restall [29] investigates “subintuitionistic logics” where each of the conditions
on Kripke frames of reflexivity, transitivity and persistence can be dropped. The
logic of our novel connective � can be seen as the logic bka, which lacks reflexiv-
ity, but has the additional conditions of linearity and converse well-foundedness,
which Restall does not consider. The models studied by Restall all require a
root world, and thus they disallow sequences · · ·x3Rx2Rx1 which are permitted
by KMlin-models. Ishigaki and Kikuchi [20] give “tree-sequent” calculi for the
first-order versions of some of these subintuitionistic logics. Thus “tree-sequent”
calculi for KM and KMlin are possible, but our calculi require no labels.

Labelled sequent calculi for KM and KMlin are possible by extending the
work of Dyckhoff and Negri [14] but termination proofs and complexity results
for labelled calculi are significantly harder than our proofs.

Garg et al [17] give labelled sequent calculi for intuitionistic modal logics and
general conditions on decidability. Their method relies on a first-order character-
isation of the underlying Kripke relations, but converse well-foundedness is not
first-order definable. Labelled calculi can handle converse well-founded frames by
allowing formulae to “cross” sides as in our calculus, but it is not clear whether
the method of Garg et al [17] then applies.

Our complexity results follow directly from our calculi; a possible alternative
may be to adapt the polynomial encoding of LC into classical satisfiability [8].
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6 Conclusion

We have seen that the internal propositional logic of the topos of trees is KMlin.
Indeed it may be tempting to think that KMlin is just LC, as both are sound
and complete with respect to the class of finite sequences of reflexive points, but
note that we cannot express the modality � in terms of the connectives of LC.

Linear frames seem concordant with the step-indexing applications of later,
based as they are on induction on the natural numbers rather than any branching
structure, but seem less natural from a types point of view, which tend to build
on intuitionistic logic. For a possible type-theoretic intepretation of linearity
see Hirai’s λ-calculus for LC with applications to ‘waitfree’ computation [18].
More broadly our work provides a proof-theoretical basis for future research
into computational aspects of intuitionistic Gödel-Löb provability logic.

The topos of trees, which generalises some previous models, has itself been
generalised as a model of guarded recursion in several ways [4,3,25]. These cate-
gories do not all correspond to KMlin; some clearly fail to be linear. The logical
content of these general settings may also be worthy of study.

The most immediate application of our proof search algorithm may be to
provide automation for program logics that use later [19,2,9]. Support for a
richer class of connectives, such as first and higher order quantifiers, would be
desirable. We in particular note the ‘backwards looking box’ used by Bizjak and
Birkedal [6] in sheaves over the first uncountable ordinal ω1, and subsequently
in the topos of trees by Clouston et al [9] to reason about coinductive types.
Acknowledgments. We gratefully acknowledge helpful discussions with Lars
Birkedal, Stephané Demri, Tadeusz Litak, and Jimmy Thomson, and the com-
ments of the reviewers of this and a previous unsuccessful submission.
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Abstract. We use modal logic as a framework for coalgebraic trace
semantics, and show the flexibility of the approach with concrete ex-
amples such as the language semantics of weighted, alternating and tree
automata. We provide a sufficient condition under which a logical seman-
tics coincides with the trace semantics obtained via a given determiniza-
tion construction. Finally, we consider a condition that guarantees the
existence of a canonical determinization procedure that is correct with
respect to a given logical semantics. That procedure is closely related to
Brzozowski’s minimization algorithm.

1 Introduction

Coalgebraic methods [22, 11] have been rather successful in modeling branching
time behaviour of various kinds of transition systems, with a general notion of
bisimulation and final semantics as the main contributions. Coalgebraic modeling
of linear time behaviour such as trace semantics of transition systems or language
semantics of automata, has also attracted significant attention. However, the
emerging picture is considerably more complex: a few approaches have been
developed whose scopes and connections are not yet fully understood. Here, we
exacerbate the situation by suggesting yet another approach.

To study trace semantics coalgebraically, one usually considers systems whose
behaviour type is a composite functor of the form TB or BT , where T represents
a branching aspect of behaviour that trace semantics is supposed to “resolve”,
and B represents the transition aspect that should be recorded in system traces.
Typically it is assumed that T is a monad, and its multiplication structure
is used to resolve branching. For example, in [21, 9], a distributive law of B
over T is used to lift B to the Kleisli category of T , and trace semantics is
obtained as final semantics for the lifted functor. Additional assumptions on
T are needed for this, so this approach does not work for coalgebras such as
weighted automata. On the other hand, in [12, 24] a distributive law of T over B
is used to lift B to the Eilenberg-Moore category of T , with trace semantics again
obtained as final semantics for the lifted functor. This can be seen as a coalgebraic
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generalization of the powerset determinization procedure for non-deterministic
automata. While it applies to many examples, that approach does not work for
systems that do not determinize, such as tree automata. A detailed comparison
of these two approaches is in [12]. In the recent [17], the entire functor TB (or
BT ) is embedded in a single monad, which provides some more flexibility. In [8],
it is embedded in a more complex functor with a so-called observer.

In this paper, we study trace semantics in terms of modal logic. The basic
idea is very simple: we view traces as formulas in suitable modal logics, and
trace semantics of a state arises from all formulas that hold for it. A coalgebraic
approach to modal logic based on dual adjunctions is by now well developed [20,
15, 13, 16], and we apply it to speak of traces generally. Obviously not every logic
counts as a trace logic: assuming a behaviour type of the form BT or TB, we
construct logics from arbitrary (but usually expressive) logics for B and special
logics for T whose purpose is to resolve branching. We call such logics forgetful.

Our approach differs from previous studies in a few ways:

– We do not assume that T is a monad, unless we want to relate our logical
approach to ones that do, in particular to determinization constructions.

– Instead of using monad multiplication μ : TT ⇒ T to resolve branching, we
use a natural transformation α : TG ⇒ G, where G is a contravariant functor
that provides the basic infrastructure of logics. In case of nondeterministic
systems, T is the covariant powerset functor and G the contravariant pow-
erset, so TT and TG act the same on objects, but they carry significantly
different intuitions.

– Trace semantics is obtained not as final semantics of coalgebras, but by
initial semantics of algebras. Fundamentally, we view trace semantics as an
inductive concept and not a coinductive one akin to bisimulation, although
in some well-behaved cases the inductive and coinductive views coincide.

– Thanks to the flexibility of modal logics, we are able to cover examples such
as the language semantics of weighted tree automata, that does not quite fit
into previously studied approaches, or alternating automata.

The idea of using modal logics for coalgebraic trace semantics is not new; it is
visible already in [20]. In [9] it is related to behavioural equivalence, and applied
to non-deterministic systems. A generalized notion of relation lifting is used
in [5] to obtain infinite trace semantics, and applied in [6] to get canonical linear
time logics. In [14], coalgebraic modal logic is combined with the idea of lifting
behaviours to Eilenberg-Moore categories, with trace semantics in mind. In [12],
a connection to modal logics is sketched from the perspective of coalgebraic
determinization procedures. In a sense, this paper describes the same connection
from the perspective of logic.

Our main new contribution is the notion of forgetful logic and its ramifications.
The basic definitions are provided in Section 3 and some illustrative examples in
Section 4. We introduce a systematic way of relating trace semantics to deter-
minization, by giving sufficient conditions for a given determinization procedure,
understood in a slightly more general way than in [12], to be correct with re-
spect to a given forgetful logic (Section 6). For instance, this allows showing



Coalgebraic Trace Semantics via Forgetful Logics 153

in a coalgebraic setting that the determinization of alternating automata into
non-deterministic automata preserves language semantics.

A correct determinization procedure may not exist in general. In Section 7
we study a situation where a canonical correct determinization procedure exists.
It turns out that even in the simple case of non-deterministic automata that
procedure is not the classical powerset construction; instead, it relies on a double
application of contravariant powerset construction. Interestingly, this is what
also happens in Brzozowski’s algorithm for automata minimization [4], so as
a by-product, we get a new perspective on that algorithm which has recently
attracted much attention in the coalgebraic community [1–3].

2 Preliminaries

We assume familiarity with basic notions of category theory (see, e.g., [19]). A
coalgebra for a functor B : C → C consists of an objectX and a map f : X → BX .
A homomorphism from f : X → BX to g : Y → BY is a map h : X → Y
such that g ◦ h = Bh ◦ f . The category of B-coalgebras is denoted Coalg(B).
Algebras for a functor L are defined dually; the category of L-algebras and
homomorphisms is denoted Alg(L).

We list a few examples, where C = Set, the category of sets and functions.
Consider the functor Pω(A×−), where Pω is the finite powerset functor and A
is a fixed set. A coalgebra f : X → Pω(A × X) is a finitely branching labelled
transition system: it maps every state to a finite set of next states. Coalgebras
for the functor (Pω−)A are image-finite labelled transition systems, i.e., the set
of next states for every label is finite. When A is finite the two notions coincide.
A coalgebra f : X → Pω(A × X + 1), where 1 = {∗} is a singleton, is a non-
deterministic automaton; a state x is accepting whenever ∗ ∈ f(x).

Consider the functor BX = 2 × XA, where 2 is a two-element set of truth
values. A coalgebra 〈o, f〉 : X → BX is a deterministic automaton; a state x
is accepting if o(x) = tt, and f(x) is the transition function. The composition
BPω yields non-deterministic automata, presented in a different way than above.
We shall also consider BPωPω-coalgebras, which represent a general version of
alternating automata.

Let S be a semiring. Define MX = {ϕ ∈ S
X | supp(ϕ) is finite} where

supp(ϕ) = {x | ϕ(x) 	= 0}, and M(f : X → Y )(ϕ)(y) =
∑

x∈f−1(y) ϕ(x). A

weighted automaton is a coalgebra for the functor M(A × − + 1). Let Σ be a
polynomial functor corresponding to an algebraic signature. A top-down weighted
tree automaton is a coalgebra for the functor MΣ. For S the Boolean semir-
ing these are non-deterministic tree automata. Similar to non-deterministic au-
tomata above, one can present weighted automata as coalgebras for S× (M−)A.

We note that Pω is a monad, by taking ηX(x) = {x} and μ to be union.
More generally, the functor M extends to a monad, by taking μX(ϕ)(x) =∑

ψ∈SX
ϕ(ψ) ·ψ(x). The case of Pω is obtained by taking the Boolean semiring.

Notice that the finite support condition is required for μ to be well-defined.
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2.1 Contravariant Adjunctions

The basic framework of coalgebraic logic is formed of two categories C, D con-
nected by functors F : Cop → D and G : Dop → C that form an adjunction
F op 
 G. For example, one may take C = D = Set and F = G = 2−, for 2 a
two-element set of logical values. The intuition is that objects of C are collections
of processes, or states, and objects of D are logical theories.

To avoid cluttering the presentation with too much of the (−)op notation,
we opt to treat F and G as contravariant functors, i.e., ones that reverse the
direction of all arrows (maps), between C and D. The adjunction then becomes a
contravariant adjunction “on the right”, meaning that there is a natural bijection

C(X,GΦ) ∼= D(Φ, FX) for X ∈ C, Φ ∈ D.

Slightly abusing the notation, we shall denote both sides of this bijection by
(−)�. Applying the bijection to a map is referred to as transposing the map.

In such an adjunction, GF is a monad on C, whose unit we denote by ι : Id ⇒
GF , and FG is a monad on D, with unit denoted by ε : Id ⇒ FG. Both F and
G map colimits to limits, by standard preservation results for adjoint functors.

In what follows, the reader need only remember that F and G are contravari-
ant, i.e., they reverse maps and natural transformations. All other functors,
except a few that lift F and G to other categories, are standard covariant func-
tors.

3 Forgetful Logics

We begin by recalling an approach to coalgebraic modal logic based on con-
travariant adjunctions, see, e.g., [15, 13]. Consider categories C, D and functors
F , G as in Section 2.1. Given an endofunctor B : C → C, a coalgebraic logic to be
interpreted on B-coalgebras is built of syntax, i.e., an endofunctor L : D → D,
and semantics, a natural transformation ρ : LF ⇒ FB. We will usually refer
to ρ simply as a logic. If an initial L-algebra a : LΦ → Φ exists then, for any
B-coalgebra h : X → BX , the logical semantics of ρ on h is a map s� : X → GΦ
obtained by transposing the map defined by initiality of a as on the left:

LΦ

a

��

Ls �� LFX

ρX

��
FBX

Fh
��

Φ
s

�� FX

Coalg(B)

��

F̂ �� Alg(L)

��
C

F
�� D

(1)

The mapping of a B-coalgebra h : X → BX to an L-algebra Fh ◦ ρX : LFX →
FX determines a contravariant functor F̂ that lifts F , i.e., acts as F on carriers,
depicted on the right above. This functor has no (contravariant) adjoint in gen-
eral; later in Section 7 we shall study well-behaved situations when it does. Notice
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that F̂ maps coalgebra homomorphisms to algebra homomorphisms, and indeed
the logical semantics factors through coalgebra homomorphisms, i.e., behavioural
equivalence implies logical equivalence. The converse holds if ρ is expressive,
meaning that the logical semantics decomposes as a coalgebra homomorphism
followed by a mono.

Example 1. Let C = D = Set, F = G = 2−, B = 2×−A and L = A×−+1. The
initial algebra of L is the set A∗ of words over A. We define a logic ρ : LF ⇒
FB as follows: ρX(∗)(o, t) = o and ρX(a, ϕ)(o, t) = ϕ(t(a)). For a coalgebra
〈o, f〉 : X → 2 × XA the logical semantics is a map s� : X → 2A

∗
, yielding the

usual language semantics of the automaton: s�(x)(ε) = o(x) for the empty word
ε, and s�(x)(aw) = s�(f(x)(a))(w) for any a ∈ A,w ∈ A∗.

Note that logical equivalences, understood as kernel relations of logical seman-
tics, are conceptually different from behavioural equivalences typically consid-
ered in coalgebra theory, in that they do not arise from finality of coalgebras, but
rather from initiality of algebras (albeit in a different category). Fundamentally,
logical semantics for coalgebras is defined by induction rather than coinduction.
In some particularly well-behaved cases the inductive and coinductive views co-
incide; we shall study such situations in Section 7.

A logic ρ : LF ⇒ FB gives rise to its mate ρ� : BG ⇒ GL, defined by

BG
ιBG �� GFBG

GρG �� GLFG
GLε �� GL, (2)

where ι and ε are as in Section 2.1. A routine calculation shows that ρ in turn
is the mate of ρ� (with the roles of F , G, ι and ε swapped), giving a bijective
correspondence between logics and their mates. Some important properties of
logics are conveniently stated in terms of their mates; e.g., under mild additional
assumptions (see [15]), if the mate is pointwise monic then the logic is expressive.

There is a direct characterization of logical semantic maps in terms of mates,
first formulated in [20]. Indeed, by transposing (1) it is easy to check that

BX
Bs� �� BGΦ

ρ�
Φ

��
GLΦ

X

h

��

s�
�� GΦ.

Ga

�� (3)

the logical semantics s� : X → GΦ on a coal-
gebra h : X → BX is a unique map that
makes the “twisted coalgebra morphism” dia-
gram in (3) commute.

Logics for composite functors can often
be obtained from logics of their components.
Consider functors B, T : C → C and logics for
them ρ : LF ⇒ FB and α : NF ⇒ FT , for
some functors L,N : D → D. One can then
define logics for the functors TB and BT :

α� ρ = αB ◦Nρ : NLF ⇒ FTB, ρ� α = ρT ◦ Lα : LNF ⇒ FBT.

It is easy to see that taking the mate of a logic respects this composition operator,
i.e., that (α� ρ)� = α� � ρ�. Such compositions of logics appear in [11] and were
studied in a slightly more concrete setting in [7, 23].
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We shall be interested in the case where the logic for T has a trivial syntax;
in other words, where N = Id. Intuitively speaking, we require a logic for T that
consists of a single unary operator, which could therefore be elided in a syntactic
presentation of logical formulas. The semantics of such an operator is defined by
a natural transformation α : F ⇒ FT or equivalently by its mate α� : TG ⇒ G.
Intuitively, the composite logics α� ρ and ρ� α, when interpreted on TB- and
BT -coalgebras respectively disregard, or forget, the aspect of their behaviour
related to the functor T , in a manner prescribed by α. We call logics obtained
in this fashion forgetful logics.

4 Examples

We instantiate the setting of Section 3 and use forgetful logics to obtain trace
semantics for several concrete types of coalgebras: non-deterministic automata,
transition systems, alternating automata and weighted tree automata.

In the first few examples we let C = D = Set and F = G = 2−, and consider
TB orBT -coalgebras, where T = Pω is the finite powerset functor. Our examples
involve the logic α : 2− ⇒ 2Pω defined by:

αX(ϕ)(S) = tt iff ∃x ∈ S.ϕ(x) = tt. (4)

This choice of F and G has been studied thoroughly in the field of coalgebraic
logic, and our α is an example of the standard notion of predicate lifting [11, 16]
corresponding to the so-called diamond modality. Its mate α� : Pω2

− ⇒ 2− is as
follows: α�

Φ(S)(w) = tt iff ∃ϕ ∈ S.S(w) = tt. In all examples below, Pω could be
replaced by the full powerset P without any problems.

Example 2. We define a forgetful logic α�ρ for PωB, where BX = A×X+1; α
is as above and ρ is given below in terms of its mate ρ� : BG ⇒ GL, in such a way
that the logical semantics yields the usual language semantics. We let L = B,
hence A∗ carries the structure of an initial L-algebra. As a result, the logical
semantics on an automaton will be a map from states to languages (elements of
2A

∗
). Define ρ� : A× 2− + 1 ⇒ 2A×−+1 by

ρ�Φ(∗)(t) = tt iff t = ∗ ρ�Φ(a, ϕ)(t) = tt iff t = (a, w) and ϕ(w) = tt,

for any set Φ. The semantics of the logic α�ρ on an automaton f : X → PωBX
is the map s� from (3), and it is easy to calculate that for any x ∈ X :

s�(x)(ε) = tt iff ∗ ∈ f(x),

s�(x)(aw) = tt iff ∃y ∈ X.(a, y) ∈ f(x) and s�(y)(w) = tt,

for ε the empty word, and for all a ∈ A and w ∈ A∗.

Note that the logic ρ in the above example is expressive. One may expect that
given a different expressive logic θ involving the same functors, the forgetful logics
α � ρ and α � θ yield the same logical equivalences, but this is not the case.
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For instance, define θ� : BG ⇒ GL as θ�Φ(∗)(t) = tt for all t, and θ�Φ(a, ϕ) =
ρ�Φ(a, ϕ). This logic is expressive as well (since θ

� is componentwise monic) but in
the semantics of the forgetful logic α�θ, information on final states is discarded.

Example 3 (Length of words). The initial algebra of LX = X + 1 is N, the set
of natural numbers. Define a logic for BX = A × X + 1 by its mate ρ� : A ×
2− + 1 ⇒ 2−+1 as follows: ρ�Φ(∗)(t) = tt iff t = ∗, and ρ�Φ(a, ϕ)(t) = tt iff
t = w and ϕ(w) = tt. Note that this logic is not expressive. With the above α, we
have a logic α�ρ, and given any f : X → Pω(A×X+1), this yields s� : X → 2N

so that s�(x)(0) = tt iff ∗ ∈ f(x) and s�(x)(n + 1) = tt iff ∃a ∈ A, y ∈ X s.t.
(a, y) ∈ f(x) and s�(y)(n) = tt. Thus, s�(x) is the binary sequence which is tt at
position n iff the automaton f accepts a word of length n, starting in state x.

Example 4 (Non-deterministic automata as BT -coalgebras). Consider the func-
tor BX = 2 ×XA. Let LX = A ×X + 1, let ρ� : 2 × (2−)A ⇒ 2A×−+1 be the
mate of the logic ρ given in Example 1; explicitly, it is the obvious isomorphism
given by manipulating exponents:

ρ�Φ(o, ϕ)(∗) = o ρ�Φ(o, ϕ)(a, w) = ϕ(a)(w) (5)

The logical semantics s� : X → 2A
∗
of ρ � α on a coalgebra 〈o, f〉 : X → 2 ×

Pω(X)A is the usual language semantics: for any x ∈ X we have s�(x)(ε) = o(x),
and s�(x)(aw) = tt iff s�(y)(w) = tt for some y ∈ f(x)(a).

A minor variation on the above, taking BX = XA and adapting ρ� appropri-
ately so that ρ�(t)(∗) = tt for any t, yields finite traces of transition systems.

Non-determinism can be resolved differently: in contrast to (4), consider
β� : Pω2

− ⇒ 2− given by β�
Φ(S)(x) = tt iff ∀ϕ ∈ S.S(x) = tt. Similarly to (4),

β is a predicate lifting that corresponds to the so-called box modality. The se-
mantics s� induced by the forgetful logic ρ � β accepts a word if all paths end
in an accepting state: s�(x)(ε) = o(x), and s�(x)(aw) = tt iff s�(y)(w) = tt for
all y ∈ f(x)(a). We call this the conjunctive semantics. In automata-theoretic
terms, this is the language semantics for (BPω-coalgebras understood as) co-
nondeterministic automata, i.e., alternating automata with only universal states.

Some non-examples. It is not clear how to use forgetful logics to give a conjunc-
tive semantics to coalgebras for Pω(A×X +−); simply using β together with ρ
from Example 2 does not yield the expected logical semantics. Also, transition
systems as Pω(A ×−)-coalgebras do not work well; with α as in (4) the logical
semantics of a state with no successors is always empty, while it should contain
the empty trace.

Example 5 (Alternating automata). Consider BPωPω-coalgebras with B = 2 ×
−A. We give a forgetful logic by combining ρ, α, and β from the previous example
(more precisely, the logic is (ρ � α) � β); recall that α and β resolve the non-
determinism by disjunction and conjunction respectively. Spelling out the details
for a coalgebra 〈o, f〉 : X → 2×(PωPωX)A yields, for any x ∈ X : s�(x)(ε) = o(x)
and for any a ∈ A and w ∈ A∗: s�(x)(aw) = tt iff there is S ∈ f(x)(a) such that
s�(y)(w) = tt for all y ∈ S.
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Example 6 (Weighted Tree Automata). In this example we let C = D = Set and
F = G = S

− for a semiring S. We consider coalgebras forMΣ (Section 2), where
Σ is a polynomial functor corresponding to a signature. The initial algebra of Σ
is carried by the set of finite Σ-trees, denoted by Σ∗∅. Define ρ : ΣF ⇒ FΣ by
cases on the operators σ in the signature:

ρX(σ(ϕ1, . . . , ϕn))(τ(x1 , . . . , xm)) =

{∏
i=1..n ϕi(xi) if σ = τ

0 otherwise

where n is the arity of σ. Define α : S− ⇒ S
M by its mate: α�

Φ(ϕ)(w) =∑
ψ∈SΦ

ϕ(ψ) · ψ(w). Notice that α and ρ generalize the logics of Example 2.

Let s� be the logical semantics of α�ρ on a weighted tree automaton f : X →
MΣX . For any tree σ(t1, . . . tn) and any x ∈ X we have:

s�(x)(σ(t1, . . . , tn)) =
∑

x1,...,xn∈X

f(x)(σ(x1 , . . . , xn)) ·
∏

i=1..n

s�(xi)(ti)

As a special case, we obtain for any weighted automaton f : X → M(A×X+1)
a unique map s� : X → S

A∗
so that for any x ∈ X , a ∈ A and w ∈ A∗: s�(x)(ε) =

f(x)(∗) and s�(x)(aw) =
∑

y∈X f(x)(a, y) ·s�(y)(w). For S the Boolean semiring

we get the usual semantics of tree automata: s�(x)(σ(t1, . . . , tn)) = tt iff there
are x1, . . . , xn such that σ(x1, . . . , xn) ∈ f(x) and for all i ≤ n : s�(xi)(ti) = tt.

Notice that the Σ-algebra F̂ (X, f) (see (1)) is a deterministic bottom-up tree
automaton. It corresponds to the top-down automaton f , in the sense that the
semantics s� of f is the transpose of the unique homomorphism s : Σ∗∅ → S

X

arising by initiality; the latter is the usual semantics of bottom-up tree automata.

5 Forgetful Logics for Monads

In most coalgebraic attempts to trace semantics [5, 8, 12, 14, 17, 21], the functor
T , which models the branching aspect of system behaviour, is assumed to be a
monad. The basic definition of a forgetful logic is more relaxed in that it allows
an arbitrary functor T but one may notice that in all examples in Section 4, T
is a monad.

In coalgebraic approaches cited above, the structure of T is resolved using
monad multiplication μ : TT ⇒ T . Forgetful logics use transformations α : F ⇒
FT with their mates α� : TG ⇒ T for the same purpose. If T is a monad, it will be
useful to assume a few basic axioms analogous to those of monad multiplication:

Definition 1. Let (T, η, μ) be a monad. A natural transformation α� : TG ⇒ G
is a (T )-action (on G) if α� ◦ ηG = id and α� ◦ Tα� = α� ◦ μG, i.e., if each
component of α� is an Eilenberg-Moore algebra for T .

Just as monads generalize monoids, monad actions on functors generalize
monoid actions on sets. We shall use properties of monad actions to relate for-
getful logics to the determinization constructions of [12] in Section 6. It is easy
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to check by hand that in all examples in Section 4, α� is an action, but it also
follows from the following considerations.

In some well-structured cases, one can search for a suitable α by looking at
T -algebras in C. We mention it only briefly and not explain the details, as it will
not be directly used in the following.

If C has products, then for any object V ∈ C there is a contravariant adjunction
as in Section 2.1, where: D = Set, F = C(−, V ) and G = V −, where V X denotes
theX-fold product of V in C. (This adjunction was studied in [18] for the purpose
of combining distributive laws.) By the Yoneda Lemma, natural transformations
α : F ⇒ FT are in bijective correspondence with algebras g : TV → V . Routine
calculation shows that the mate α� is a T -action if and only if the corresponding
g is an Eilenberg-Moore algebra for T .

Alternatively, one may assume that C = D is a symmetric monoidal closed
category and F = G = V − is the internal hom-functor based on an object V ∈ C.
(This adjunction was studied in [15] in the context of coalgebraic modal logic.)
If, additionally, the functor T is strong, then every algebra g : TV → V gives rise
to α : F ⇒ FT , whose components αX : V X → V TX are given by transposing:

TX ⊗ V X strength �� T (X ⊗ V X)
T (application) �� TV

g �� V

If T is a strong monad and g is an E-M algebra for T then α� is a T -action.
If C = D = Set then both these constructions apply (and coincide). All

examples in Section 4 fit in this special case. In this situation more can be
said [12, 11]: the resulting contravariant adjunction can be factored through the
category of Eilenberg-Moore algebras for T .

6 Determinization

The classical powerset construction turns a non-deterministic automaton into
a deterministic one, with states of the former interpreted as singleton states in
the latter. More generally, a determinization procedure of coalgebras involves a
change of state space. We define it as follows:

Definition 2. For a functor T , a (T )-determinization procedure ofH-coalgebras
consists of a natural transformation η : Id ⇒ T , a functor K and a lifting of T :

Coalg(H)

��

T̄ �� Coalg(K)

��
C T �� C

We will mostly focus on cases where H = TB or H = BT , but in Section 7 we
will consider situations where T is not directly related to H .

The classical powerset construction is correct, in the sense that the language
semantics of a state x in a non-deterministic automaton coincides with the fi-
nal semantics (the accepted language) of the singleton of x in the determinized
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automaton. At the coalgebraic level, we capture trace semantics by a forget-
ful logic. Then, a determinization procedure is correct if logical equivalence on
the original system coincides with behavioural equivalence on the determinized
system along η:

Definition 3. A determinization procedure (T̄ , η) of H-coalgebras is correct
wrt. a logic for H if for any H-coalgebra (X, f) with logical semantics s�:

1. s� factors through h◦ηX , for anyK-coalgebra homomorphism h from T̄ (X, f).
2. there exists a K-coalgebra homomorphism h from T̄ (X, f) and a mono m so

that s� = m ◦ h ◦ ηX .

The first condition states that behavioural equivalence on the determinized sys-
tem implies logical equivalence on the original system; the second condition
states the converse.

In [12] a more specific kind of determinization was studied, arising from a
natural transformation κ : TB ⇒ KT and a monad (T, η, μ). A determinization
procedure T κ for TB-coalgebras maps any f : X → TBX to

T κ(X, f) = (TX
Tf �� TTBX

μBX �� TBX
κX �� KTX) (6)

It is easy to see that this construction respects homomorphisms, so that this
indeed yields a lifting. For examples see, e.g., [12] and the end of this section.

The same type of natural transformation can be used to determinize BT -
coalgebras, by mapping any f : X → BTX to

Tκ(X, f) = (TX
Tf �� TBTX

κTX �� KTTX
KμX �� KTX) (7)

This is considered in [24, 12] for the case where B = K and κ is a distributive
law of monad over functor. Again, this conforms to Definition 2.

The following gives a sufficient condition for the logical semantics on TB orBT -
coalgebras to coincide with a logical semantics on determinizedK-coalgebras.

Theorem 1. Suppose (T, η, μ) is a monad and there are α, ρ, κ as above and
θ : LF ⇒ FK so that α� is an action and the following diagram commutes:

TBG
Tρ�

��

κG
��

TGL
α�L �� GL

KTG
Kα�

�� KG
θ�

�� GL.

Let s� be the semantics of α� ρ on some coalgebra f : X → TBX, and let s�θ be
the semantics of θ on T κ(X, f) (see (6)). Then s� = s�θ ◦ ηX .

The same holds for the determinization procedure Tκ (see (7)) for BT -
coalgebras and the logic ρ� α.

This can be connected to behavioural equivalence if θ is expressive:
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Corollary 1. Let (T, η, μ), α, ρ, θ and κ be as in Theorem 1, and suppose that θ
is an expressive logic. Then the determinization procedure T κ of TB-coalgebras
(6) is correct with respect to α � ρ, and the determinization procedure Tκ of
BT -coalgebras (7) is correct with respect to ρ� α.

To illustrate all this, we show that the determinization of weighted automata
as given in [12] is correct with respect to weighted language equivalence. (There
is no such result for tree automata, as they do not determinize.)

Example 7. Fix a semiring S, let B = A × − + 1 and K = S × −A. Consider
κ : MB ⇒ KM defined as follows [12]: κX(ϕ) = (ϕ(∗), λa.λx.ϕ(a, x)). This
induces a determinization procedure Mκ as in (6), for weighted automata. Let
α�ρ be the forgetful logic for weighted automata introduced in Example 6, and
recall that the logical semantics on a weighted automaton is the usual notion of
acceptance of weighted languages. We use Corollary 1 to prove that the deter-
minization procedure Mκ is correct with respect to α� ρ. To this end, consider
the logic θ� : S×(S−)A ⇒ S

A×−+1 given by the isomorphism, similar to the logic
in Example 4. Since θ� is componentwise injective, θ is expressive. Moreover, α�

is an action (see Section 5). The only remaining condition is commutativity of
the diagram in Theorem 1, which is a straightforward calculation. This proves
correctness of the determinization Mκ with respect to the semantics of α� ρ.

Example 8. In [24] it is shown how to determinize non-deterministic automata
of the form BPω, where BX = 2 ×XA, based on κ = 〈κo, κt〉 : Pω(2 × −A) ⇒
2×(Pω−)A (note that B = K in this example) where κo

X(S) = tt iff ∃t.(tt, t) ∈ S,
and κt

X(a) = {x | x ∈ t(a) for some (o, t) ∈ S}. In Example 4 we have seen an
expressive logic ρ and an α so that the logical semantics of ρ�α yields the usual
language semantics. It is now straightforward to check that the determinization
κ together with the logics ρ, α above satisfies the condition of Theorem 1, where
θ = ρ. By Corollary 1 this shows the expected result that determinization of
non-deterministic automata is correct with respect to language semantics.

Moreover, recall that the logic ρ � β, where β is as defined in Example 4,
yields a conjunctive semantics. Take the natural transformation τ = 〈τo, τ t〉 of
the same type as κ, where τo(S) = tt iff o = tt for every (o, t) ∈ S, and τ t = κt.
Using Corollary 1 we can verify that this determinization procedure is correct.

One can also get the finite trace semantics of transition systems (Example 4) by
turning them into non-deterministic automata (then, B and K are different).

Example 9. Alternating automata (Example 5) can be determinized into non-
deterministic automata; we show that this determinization preserves language
semantics, using Theorem 1. Notice that this does not involve final semantics.

Let ρ, α, β and τ be as in Example 8, and let χ : PωPω ⇒ PωPω be as
follows: χX(S) = {−→g (S) | g : S → X s.t. g(U) ∈ U for each U ∈ S}, that is,
given a family of sets S, it returns all possible sets obtained by choosing one
element from each set in S. Now the composition Bχ◦ τPω : PωBPω ⇒ BPωPω

yields a determinization procedure, turning an alternating automaton into a
non-deterministic one over sets of states (to be interpreted as conjunctions).
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We instantiate Theorem 1 by T = Pω, the functor B from the theorem is BT =
2 × TA, the logics ρ and θ are instantiated respectively to ρ and ρ � α from
above. Then commutativity of the diagram in Theorem 1 boils down to the
similar diagram for τ given in Example 8, and that χ distributes conjunction
over disjunction. Finally, β� is an action of the powerset monad (Section 5).
By Theorem 1 we obtain that for any alternating automaton: s� = s�ρ�α ◦ ηX
where X is the set of states, s� is the semantics and s�ρ�α is the usual language
semantics on the non-deterministic automaton obtained by determinization.

7 Logics Whose Mates are Isomorphisms

Corollary 1 provides a sufficient condition for a given determinization procedure
to be correct with respect to a forgetful logic. However, in general there is no
guarantee that a correct determinization procedure for a given logic exists. In-
deed it would be quite surprising if it did: the language semantics of (weighted)
tree automata (see Example 6) is an example of a forgetful logic, and such au-
tomata are well known not to determinize in a classical setting.

In this section we provide a sufficient condition for a correct determinization
procedure to exist. Specifically, for an endofunctor B, we assume a logic ρ whose
mate ρ� : BG ⇒ GL is a natural isomorphism. This condition holds, for instance,
for ρ in Example 4 and for θ in Example 7. It has been studied before in the
context of determinization constructions [12]. Its important consequence is that
s� in (3) from Section 3 can be seen as a B-coalgebra morphism from (X,h)
to (GΦ, (ρ�Φ)

−1 ◦Ga). Moreover, as shown in [12, Lemma 6] (see also [10]), the
construction mapping any g : LA → A to (ρ�A)

−1 ◦ Gg : GA → BGA defines a

functor Ĝ : Alg(L) → Coalg(B), which is a contravariant adjoint to F̂ (see (1) in
Section 3). As a result, Ĝ maps initial objects to final ones, hence (GΦ, (ρ�Φ)

−1 ◦
Ga) is a final B-coalgebra, therefore s� is a final coalgebra morphism from (X,h).

In the remainder of this section, due to space limitations we only deal with
TB-coalgebras. However, a completely analogous development can be made for
BT -coalgebras with little effort.

7.1 Canonical Determinization

The setting of a forgetful logic α�ρ where the mate of ρ is a natural isomorphism
gives rise to the following diagram:

Coalg(TB)
F̃ ��

��

Alg(L)
Ĝ ��

��

Coalg(B)

��

F̂

��

C F �� D
G

		 C
F





The functor F̃ arises from the logic α � ρ, the functor F̂ arises from ρ and
its contravariant adjoint Ĝ from the fact that ρ� is iso. Note that we make no
assumptions on α; in particular, α� need not be an action.



Coalgebraic Trace Semantics via Forgetful Logics 163

The composition ĜF̃ is a determinization procedure, turning a coalgebra
f : X → TBX into a B-coalgebra with carrier GFX . Explicitly, ĜF̃ (X, f) is

GFX
GFf �� GFTBX

GαBX �� GFBX
GρX �� GLFX

(ρ�)−1
FX�� BGFX (8)

This determinization procedure is correct with respect to α� ρ in the following
sense, much stronger then required by Definition 3:

Theorem 2. For any TB-coalgebra (X, f), the logical semantics s� of α� ρ on
(X, f) coincides with the final semantics of the B-coalgebra ĜF̃ (X, f) precom-
posed with ι : Id ⇒ GF .

Strictly speaking, this is not an example of a determinization procedure as
understood in [12]: the functor ĜF̃ lifts GF rather than T , and the lifting does
not arise from a distributive law κ as described in Section 6. However, it is
almost an example: after an encoding of TB-coalgebras as GFB-coalgebras, it
arises from a distributive law κ : GFB ⇒ BGF .

Indeed, define Γ : Coalg(TB) → Coalg(GFB) by:

Γ (X, f) = (X, γBX ◦ f) where γ = α�F ◦ T ι : T ⇒ GF. (9)

GFB-coalgebras have a forgetful logic ᾱ� ρ, where

ᾱ = εF : F ⇒ FGF, equivalently, ᾱ� = Gε : GFG ⇒ G.

(Note that ᾱ� is always a GF -action on G.) It is not difficult to calculate that
for any TB-coalgebra (X, f), the logical semantics of ᾱ�ρ on Γ (X, f) coincides
with the logical semantics of α� ρ on (X, f). Thus, encoding TB-coalgebras as
GFB-coalgebras does not change their logical semantics.

Thanks to the mate ρ� : BG ⇒ GL being an isomorphism, the monad GF has
a distributive law over B, denoted κ : GFB ⇒ BGF and defined by:

GFB
Gρ �� GLF

(ρ�)−1F �� BGF (10)

Using κ we can apply the determinization construction from [12] as described in
Section 6, putting K = B. Straightforward diagram chasing using Corollary 1
shows that the determinization procedure (GF )κ defined as in (6) is correct with
respect to ᾱ� ρ. Altogether, a two-step determinization procedure arises:

Coalg(TB)

��

Γ �� Coalg(GFB)

��

(GF )κ �� Coalg(B)

��
C Id �� C GF �� C

and it is correct with respect to α � ρ. Correctness can also be proved without
Corollary 1, since the procedure coincides with the construction from (8):

Theorem 3. (GF )κ ◦ Γ = Ĝ ◦ F̃ .
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7.2 A Connection to Brzozowski’s Algorithm

Call a B-coalgebra observable if the morphism into a final coalgebra (assuming
it exists) is mono [3]. The above canonical determinization procedure can be
adapted to construct, for any TB-coalgebra, an observable B-coalgebra whose
final semantics coincides with the logical semantics on the original one.

Indeed, suppose Alg(L) has an (epi,mono)-factorization system. Given a coal-
gebra f : X → TBX , the algebra homomorphism s : (Φ, a) → F̃ (X, f) then
decomposes as s = m ◦ e, where m and e are mono and epi respectively; call
the L-algebra in the middle (R, r). Recall that Gs is a coalgebra homomorphism
into the final coalgebra. In the present situation it decomposes as follows:

ĜF̃ (X, f)
Gm

��

Gs

��
Ĝ(R, r)

Ge
�� Ĝ(Φ, a)

and recall that Ĝ(Φ, a) is a final coalgebra. Because G is a right adjoint, it maps
epis to monos, therefore Ge is mono and Ĝ(R, r) is observable. Moreover, thanks
to Theorem 2 we have s� = Ge◦Gm◦ιX, hence the final semantics Ge of Ĝ(R, r)
coincides with the logical semantics on (X, f) along the mapping Gm ◦ ιX .

Note that the construction of Ĝ(R, r) from (X, f) is not a determinization
procedure itself according to Definition 2, as it does not lift any functor on C.

The above refers to TB-coalgebras, but as everything else in this section, anal-
ogous reasoning works also for BT -coalgebras. For T = Id and B = 2×−A, that
(almost) corresponds to Brzozowski’s algorithm for minimization of determin-
istic automata [4]. Applying F̃ to the given automaton corresponds to revers-
ing transitions and turning final states into initial ones. Epi-mono factorization
corresponds to taking the reachable part of this automaton. Then, applying Ĝ
reverses transitions again, and turns initial states into final ones. Our abstract
approach stops here; the original algorithm concludes by taking the reachable
part again, which ensures minimality.

For a more detailed coalgebraic presentation of several concrete examples
see [3]. Another approach, based on duality theory, is presented in [2]; this is
related to the present development, but it uses dual equivalences rather than
plain contravariant adjunctions. Another coalgebraic approach to minimization,
based on factorization structures, is in [1]. A precise connection of these works
to the present development is yet to be understood.

Notice that we only assume the mate of ρ to be iso; there are no requirements
on α. The mate of ρ is iso for the logic from Example 4. Thus, we can instantiate α
to obtain observable deterministic automata from non-deterministic automata or
even alternating automata (by taking T = PωPω and, for α, the composition of α
and β from Example 5). The logic θ from Example 7 is covered as well, so one can
treat Moore automata and weighted automata. However, the abstract construc-
tion of an observable automaton does not necessarily yield a concrete algorithm,
as discussed for the case of weighted automata in [3].
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Abstract. In the literature, two powerful temporal logic formalisms have
been proposed for expressing information-flow security requirements, that
in general, go beyond regular properties. One is classic, based on the knowl-
edge modalities of epistemic logic. The other one, the so-called hyper logic,
is more recent and subsumes many proposals from the literature. In an
attempt to better understand how these logics compare with each other,
we consider the logic KCTL∗ (the extension of CTL∗ with knowledge
modalities and synchronous perfect recall semantics) and HyperCTL∗.
We first establish that KCTL∗ and HyperCTL∗ are expressively incompa-
rable. Then, we introduce a natural linear past extension of HyperCTL∗,
called HyperCTL∗

lp, that unifies KCTL∗ and HyperCTL∗. We show that
the model-checking problem for HyperCTL∗

lp is decidable, and we pro-
vide its exact computational complexity in terms of a new measure of
path quantifiers’ alternation. For this, we settle open complexity issues
for unrestricted quantified propositional temporal logic.

1 Introduction

Temporal logics provide a fundamental framework for the description of the
dynamic behavior of reactive systems, and they usually support the successful
model-checking approach to automatically verify complex finite-state systems.

Classic regular temporal logics, such as standard LTL [21] or the more ex-
pressive CTL∗ [10], lack mechanisms to relate distinct paths or executions of
a system. These mechanisms are required to formally express information-flow
security properties which specify how information may propagate from inputs to
outputs, such as non-interference [12] or opacity [5]. In the literature, two pow-
erful temporal logic formalisms have been proposed for expressing such security
requirements that, in general, go beyond regular properties.

One is classical and is based on the extension of temporal logic with the knowl-
edge modalities of epistemic logic [11], which relate paths that are observation-
ally equivalent for a given agent. A classic instance is KCTL∗, the extension of
CTL∗ with knowledge modalities under the synchronous perfect recall semantics
(where an agent remembers the whole sequence of its observations, and obser-
vations are time-sensitive) [14,24,22,8]. This logic and its linear-time fragment,
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KLTL, have been used to specify secrecy policies that involve sets of execution
traces sharing some similar information [1,13,3].

In the second, more recent, framework [7] one can express properties of sets of
execution traces, known as hyperproperties ; these are useful to formalize security
policies, such as non-interference [12] and observational determinism [18]. The
general hyper logical framework introduced in [7] is based on a second-order logic
for which model-checking is undecidable. More recently, fragments of this logic
have been introduced [6], namely the logics HyperCTL∗ and HyperLTL, for which
model checking is decidable. These logics extend CTL∗ and LTL in a simple and
natural way by allowing explicit and simultaneous quantification over multiple
paths. In [6], an extension of the semantics of HyperCTL∗ and HyperLTL is also
considered. In this setting, a formula can refer to propositions which extend
the alphabet AP of the model K. Then, the path quantification ranges over
all the traces on the augmented alphabet whose projections over AP correspond
to the execution traces of K. Within this affected generalization, KLTL can
be effectively expressed in HyperLTL [6]. The logic HyperCTL∗ also generalizes
the temporal logic secLTL, introduced in [9]. Other logics for hyperproperties
were introduced in [19] but no general approach to verifying such logics exists.

Contribution. Our first contribution in this paper is the comparison of the
expressive power of hyper temporal logics and epistemic temporal logics. We
establish by formal non-trivial arguments that HyperCTL∗ and KCTL∗ are ex-
pressively incomparable.

As a second contribution, we unify HyperCTL∗ and KCTL∗ by extending
HyperCTL∗ with new logical features which provide very natural modeling fa-
cilities. The proposed extension is based on two important observations: first,
HyperCTL∗ has no explicit mechanism to refer to the past which would be useful
to relate histories of different executions (paths). This ability is partially sup-
ported in KCTL∗ by means of observational equivalences between path prefixes;
however, such equivalences are not expressed in the logic itself but are given as
separate input parameters in the model specification. On the other hand, it is
well-known that temporal logics which combine both past and future temporal
modalities make specifications easier to write and more natural. In particular,
the linear past setting, where the history of the current situation increases with
time and is never forgotten, especially suits the specification of dynamic behav-
iors. A relevant example is given by the logic CTL∗lp, a well-known equi-expressive
linear past extension of CTL∗ [15] obtained by adding past temporal modalities
and where path quantification is ‘memoryful’: it ranges over paths that start
at the root of the computation tree and visit the current node. The second
observation is that HyperCTL∗ has no explicit mechanism to select, at a given
non-initial instant, paths which do not visit the current node. This is clearly a
strong limitation for expressing general information-flow requirements.

We remove the above two limitations of HyperCTL∗ by introducing both lin-
ear past modalities and the general hyper quantifier, where path quantifica-
tion ranges over all the paths that start at the root of the computation tree.
These new features yield a novel logic that we call HyperCTL∗lp. In fact, as
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we formally establish, the only addition of general path quantification to
HyperCTL∗ makes the resulting logic already more expressive than HyperCTL∗.
However, it remains open whether both linear past and general quantification
are necessary to capture all the KCTL∗ definable properties. Like for the logics
KCTL∗ and HyperCTL∗, the finite-state model-checking problem for HyperCTL∗lp
is non-elementarily decidable, and we provide the exact complexity in terms of
a variant of the standard alternation depth of path quantifiers. For this, we set-
tle complexity issues for satisfiability of full Quantified Propositional Temporal
Logic (QPTL) [23]. The optimal upper bounds for full QPTL are obtained by
a sophisticated generalization of the standard automata-theoretic approach for
QPTL in prenex normal form [23], which exploits a subclass of parity two-way
alternating word automata. Our results also improve in a meaningful way the
upper bounds provided in [6] for model-checking of HyperCTL∗. An extended
version of this paper with all the proofs can be found in [4].

2 Preliminaries

Let N be the set of natural numbers and for all i, j ∈ N, let [i, j] := {h ∈ N |
i ≤ h ≤ j}. We fix a finite set AP of atomic propositions. A trace is a finite or
infinite word over 2AP. For a word w over some alphabet, |w| is the length of w
(|w| = ∞ if w is infinite), and for each 0 ≤ i < |w|, w(i) is the ith symbol of w.
For a logic formalism L and an L formula ϕ, the size |ϕ| of ϕ is the number of
subformulas of ϕ.

Structures and Tree Structures. A Kripke structure (over AP) is a tuple
K = 〈S, s0, E, V 〉, where S is a set of states, s0 ∈ S is the initial state, E ⊆ S×S
is a transition relation such that for each s ∈ S, (s, t) ∈ E for some t ∈ S, and
V : S → 2AP is an AP-valuation assigning to each state s the set of propositions
in AP which hold at s. A path π = t0, t1, . . . of K is an infinite word over S such
that for all i ≥ 0, (ti, ti+1) ∈ E. For each i ≥ 0, π[0, i] denotes the prefix of π
leading to the ith state and π[i,∞] the suffix of π from the ith state. A finite
path of K is a prefix of some path of K. An initial path of K is a path starting
from the initial state. For a (finite) path π = t0, t1, . . ., the trace V (π) of π is
V (t0), V (t1), . . .. We say that K = 〈S, s0, E, V 〉 is a tree structure if S is a prefix-
closed subset of N∗, s0 = ε (the root of K), and (τ, τ ′) ∈ E ⇒ τ ′ = τ · i for some
i ∈ N. States of a tree structure are also called nodes. For a Kripke structure K,
Unw(K) is the tree structure obtained by unwinding K from the initial state. A
tree structure is regular if it is the unwinding of some finite Kripke structure.

2.1 Temporal Logics with Knowledge Modalities

We recall the non-regular extensions, denoted by KCTL∗ and KLTL, of standard
CTL∗ and LTL obtained by adding the knowledge modalities of epistemic logic
under the synchronous perfect recall semantics [14,24,22,8]. Unlike the asyn-
chronous setting, the synchronous setting can be considered time sensitive in the
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sense that it can model an observer who knows that a transition has occurred
even if the observation has not changed. We fix a finite set Agts of agents.

Formulas ϕ of KCTL∗ over Agts and AP are defined as follows:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ∃ϕ | Kaϕ

where p ∈ AP, a ∈ Agts, X and U are the “next” and “until” temporal modalities,
∃ is the CTL∗ existential path quantifier, and Ka is the knowledge modality
for agent a. We also use standard shorthands: ∀ϕ := ¬∃¬ϕ (“universal path
quantifier”), Fϕ := �Uϕ (“eventually”) and its dual Gϕ := ¬F¬ϕ (“always”). A
formula ϕ is a sentence if each temporal/knowledge modality is in the scope of
a path quantifier. The logic KLTL is the LTL-like fragment of KCTL∗ consisting
of sentences of the form ∀ϕ, where ϕ does not contain any path quantifier.

The logic KCTL∗ is interpreted over extended Kripke structures (K,Obs),
i.e., Kripke structures K equipped with an observation map Obs : Agts → 2AP

associating to each agent a ∈ Agts, the set Obs(a) of propositions which are
observable by agent a. For an agent a and a finite trace w ∈ (2AP)∗, the a-
observable part Obsa(w) of w is the trace of length |w| such that Obsa(w)(i) =
w(i)∩Obs(a) for all 0 ≤ i < |w|. Two finite traces w and w′ are (synchronously)
Obsa-equivalent if Obsa(w) = Obsa(w

′) (note that |w| = |w′|). Intuitively, an
agent a does not distinguish prefixes of paths whose traces are Obsa-equivalent.

For a KCTL∗ formula ϕ, an extended Kripke structure Λ = (K,Obs), an initial
path π of K, and a position i along π, the satisfaction relation π, i |=Λ ϕ for
KCTL∗ is defined as follows (we omit the clauses for the Boolean connectives):

π, i |=Λ p ⇔ p ∈ V (π(i))
π, i |=Λ Xϕ ⇔ π, i+ 1 |=Λ ϕ
π, i |=Λ ϕ1Uϕ2 ⇔ for some j ≥ i : π, j |=Λ ϕ2 and π, k |=Λ ϕ1 for all i ≤ k < j
π, i |=Λ ∃ϕ ⇔ π′, i |=Λ ϕ for some initial path π′ of K s.t. π′[0, i] = π[0, i]
π, i |=Λ Kaϕ ⇔ for all initial paths π′ of K such that

V (π[0, i]) and V (π′[0, i]) are Obsa-equivalent, π
′, i |=Λ ϕ

We say that (K,Obs) satisfies ϕ, denoted (K,Obs) |= ϕ, if there is an initial path
π of K s.t. π, 0 |=(K,Obs) ϕ. Note that if ϕ is a sentence, then the satisfaction
relation π, 0 |=(K,Obs) ϕ is independent of π. One can easily show that KCTL∗ is
bisimulation invariant and, in particular, (K,Obs) |= ϕ iff (Unw(K),Obs) |= ϕ.

Example 1. Let us consider the KLTL sentence ϕp := ∀XFKa ¬p. For all obser-
vation maps Obs such that Obs(a) = ∅, (K,Obs) |= ϕp means that there is some
non-root level in the unwinding of K at which no node satisfies p. Property φp

is a well-known non-regular context-free branching-time property (see e.g. [2]).

2.2 Hyper Logics

In this section, we first recall the logics HyperCTL∗ and HyperLTL [6] which are
non-regular extensions of CTL∗ and LTL with a restricted form of explicit first-
order quantification over paths. Intuitively, path variables are used to express
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linear-time properties simultaneously on multiple paths. Then, we introduce the
novel logic HyperCTL∗lp, an extension of HyperCTL∗ obtained by adding linear
past and the general hyper path quantifier. In this logic, path quantification is
‘memoryful’, i.e., it ranges over paths that start at the root of the computation
tree (the unwinding of the Kripke structure) and either visit the current node
τ (regular path quantification), or visit a node τ ′ at the same level as τ (non-
regular path quantification).

The Logic HyperCTL∗ [6]. For a finite set VAR of path variables, the syntax
of HyperCTL∗ formulas ϕ over AP and VAR is defined as follows:

ϕ ::= � | p[x] | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ∃x.ϕ

where p ∈ AP, x ∈ VAR, and ∃x is the hyper existential path quantifier for
variable x. Informally, formula ∃x.ϕ requires that there is an initial path π such
that ϕ holds when x is mapped to π, and p[x] asserts that p holds at the current
position of the path assigned to x. The hyper universal quantifier ∀x is defined as:
∀x.ϕ := ¬∃x.¬ϕ. A HyperCTL∗ formula ϕ is a sentence if each temporal modality
occurs in the scope of a path quantifier and for each atomic formula p[x], x is
bound by a path quantifier. The logic HyperLTL is the fragment of HyperCTL∗

consisting of formulas in prenex form, i.e., of the form Q1x1. . . . .Qnxn.ϕ, where
Q1, . . . , Qn ∈ {∃, ∀} and ϕ does not contain any path quantifier.

We give a semantics for HyperCTL∗ that is equivalent to the one in [6] but more
suitable for a linear-past generalization. HyperCTL∗ formulas ϕ are interpreted
over Kripke structures K = 〈S, s0, E, V 〉 equipped with a path assignment Π :
VAR → Sω associating to each variable x ∈ VAR an initial path of K, a variable
y ∈ VAR, and a position i ≥ 0. Intuitively, Π(y) is the current path and i is the
current position along the paths in Π . The satisfaction relation Π, y, i |=K ϕ is
defined as follows (we omit the clauses for the Boolean connectives):

Π, y, i |=K p[x] ⇔ p ∈ V (Π(x)(i))
Π, y, i |=K Xϕ ⇔ Π, y, i+ 1 |=K ϕ
Π, y, i |=K ϕ1Uϕ2 ⇔ for some j ≥ i : Π, y, j |=K ϕ2 and

Π, y, k |=K ϕ1 for all i ≤ k < j
Π, y, i |=K ∃x.ϕ ⇔ for some initial path π of K such that π[0, i] = Π(y)[0, i],

Π [x ← π], x, i |= ϕ

where Π [x ← π](x) = π and Π [x ← π](y) = Π(y) for all y �= x. We say
that K satisfies ϕ, written K |= ϕ, if there is a path assignment Π of K and
y ∈ VAR such that Π, y, 0 |=K ϕ. If ϕ is a sentence, then the satisfaction relation
Π, y, 0 |=K ϕ is independent of y and Π .

Example 2. As an example of a formula expressing a non-regular requirement, we

consider the HyperLTL sentence ∃x.∃y. p[x] U
(
(p[x]∧¬p[y])∧XG(p[x] ↔ p[y])

)

which asserts that there are two distinct initial paths π and π′ and 	 > 0 such
that p always holds along the prefix π[0, 	], p does not hold at position 	 of π′,
and the valuations of p along π and π′ coincide for all positions j > 	.
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The Novel Logic HyperCTL∗
lp. HyperCTL

∗
lp formulas ϕ are defined as follows:

ϕ ::= � | p[x] | ¬ϕ | ϕ ∧ ϕ | Xϕ | X−ϕ | ϕUϕ | ϕU−ϕ | ∃x.ϕ | ∃Gx.ϕ

where X− and U− are the past-time counterparts of the temporal modalities
X and U, respectively, and ∃Gx is the general (hyper) existential quantifier for
variable x. We also use some shorthands: ∀Gx. ϕ := ¬∃Gx.¬ϕ (“general uni-
versal path quantifier”), F−ϕ := �U−ϕ (“sometime in the past”) and its dual
G−ϕ := ¬F−¬ϕ (“always in the past”). The notion of sentence is defined as for
HyperCTL∗. The semantics of the modalities X−, U−, and ∃Gx is as follows.

Π, y, i |=K X−ϕ ⇔ i > 0 and Π, y, i− 1 |=K ϕ
Π, y, i |=K ϕ1U

−ϕ2 ⇔ for some j ≤ i : Π, y, j |=K ϕ2 and
Π, y, k |=K ϕ1 for all j < k ≤ i

Π, y, i |=K ∃Gx.ϕ ⇔ for some initial path π of K, Π [x ← π], x, i |= ϕ

Thus, general hyper quantification range over all the initial paths (not only the
ones which visit the current node). The satisfaction relation K |= ϕ is defined
as for HyperCTL∗. Note that while the one-variable fragment of HyperCTL∗ cor-
responds to standard CTL∗, the ∃G-free one-variable fragment of HyperCTL∗lp
corresponds to the well-known equi-expressive linear past memoryful extension
CTL∗lp of CTL∗ [15]. The model-checking problem for HyperCTL∗lp is checking
given a finite Kripke structure K and a HyperCTL∗lp sentence ϕ, whether K |= ϕ.
It is plain to see that HyperCTL∗lp is bisimulation invariant and, in particular,
K |= ϕ iff Unw(K) |= ϕ.

We consider now two relevant examples from the literature which demonstrate
the expressive power of HyperCTL∗lp. Both examples rely on the ability to express
observational equivalence in the logic. We fix an observation map Obs. For an
agent a ∈ Agts and two paths variables x and y in VAR, define ψ(a, x, y) :=
G−(

∧
p∈Obs(a) p[x] ↔ p[y])

The first example shows that the logic can express distributed knowledge, a
notion extensively investigated in [11]. It is crucial for information-flow secu-
rity requirements as it allows to reason about adversaries who can communicate
to share their knowledge: a group of agents A ⊆ Agts has distributed knowl-
edge of ϕ, which we will denote by DAϕ, if the combined knowledge of the
members of A implies ϕ. It is well known that the modality DA cannot be ex-
pressed by means of modalities Ka [11]. Also, since HyperCTL∗ cannot express the
modality Ka (see Section 3.2) and Ka is D{a}, it cannot express either DA. How-
ever, DA is expressible in HyperCTL∗lp. Given a HyperCTL∗lp formula ϕ, we have:

DAϕ ≡ ∀Gy. [(∧a∈A ψ(a, x, y)) → ϕ]. Observe that both distinctive features of
HyperCTL∗lp are used here: the linear past modalities to capture observational
equivalence, and the general hyper quantifier to range over all the initial paths.

The second example, inspired by [1], is an opacity requirement that we con-
jecture can be expressed neither in HyperCTL∗ nor in KCTL∗. Assume that agent
a can observe the low-security (Boolean) variables p (i.e., p ∈ Obs(a)), but not
the high-security variables q (i.e., q /∈ Obs(a)). Consider the case of a secret
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represented by the value true of a high variable qs. Then, the requirement
∀x.G(qs → ∀Gy.ψ(a, x, y)) says that whenever qs holds at some node in the com-
putation tree, all the nodes at the same level have the same valuations of low
variables. Hence, the observer a cannot infer that the secret has been revealed.
Here again, both the linear past and the general hyper quantifier are required.

3 Expressiveness Issues

In this section, we establish that HyperCTL∗ and KCTL∗ are expressively incom-
parable, and HyperCTL∗lp is more expressive than both HyperCTL∗ and KCTL∗.

Let L be a logic interpreted over Kripke structures, L′ be a logic interpreted
over extended Kripke structures, and C be a class of Kripke structures. For a
sentence ϕ of L, a sentence ϕ′ of L′, and an observation map Obs, ϕ and ϕ′

are equivalent w.r.t. C and Obs, written ϕ ≡C,Obs ϕ
′ if for all Kripke structures

K ∈ C, K |= ϕ iff (K,Obs) |= ϕ′. L′ is at least as expressive as L w.r.t. C,
written L ≤C L′, if for every sentence ϕ of L, there is an observation map Obs
and a sentence ϕ′ of L′ such that ϕ ≡C,Obs ϕ′. Conversely, L is at least as
expressive as L′ w.r.t. the class C, written L′ ≤C L, if for every sentence ϕ′

of L′ and for every observation map Obs, there is a sentence ϕ of L such that
ϕ ≡C,Obs ϕ′. Note the obvious asymmetry in the above two definitions due to
the fact that for evaluating a sentence in L′, we need to fix an observation map.
If L �≤C L′ and L′ �≤C L, then L and L′ are expressively incomparable w.r.t. C.
We denote by fin the class of finite Kripke structures.

3.1 HyperCTL∗ is not Subsumed by KCTL∗

In this section, we show that HyperCTL∗ and its fragment HyperLTL are not
subsumed by KCTL∗ even if we restrict ourselves to finite Kripke structures.

Theorem 1. HyperLTL �≤fin KCTL∗.

The main intuition for Theorem 1 is that unlike HyperLTL, KCTL∗ does not
allow to relate two initial paths at an unbounded number of positions. Thus, for
example, there is no mechanism in KCTL∗ to select two distinct paths π and π′

such that the evaluations of a given LTL formula along π and π′ coincide at every
position. Formally, in order to prove Theorem 1, we use the HyperLTL sentence

of Example 2 given by ϕp := ∃x.∃y. p[x] U
(
(p[x] ∧ ¬p[y]) ∧ XG(p[x] ↔ p[y])

)
.

We exhibit two families of regular tree structures (Kn)n>1 and (Mn)n>1 over
2{p} such that: (i) for all n > 1, ϕp distinguishes between Kn and Mn,

1 and (ii)
for every KCTL∗ sentence ψ, there is n > 1 s.t. ψ does not distinguish between
(Kn,Obs) and (Mn,Obs) for all observation mapsObs. Hence, Theorem 1 follows.

In the following, we fix n > 1. The regular tree structure Kn is illustrated in
Fig. 1, where 	n > 1. Note that the root has label {p} and 2n + 1 successors

1 i.e., ϕp evaluates to true on one strucutre and to false on the other one.
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•Kn {p} w0, . . . , w2n are distinct and have length �n

w0 = {p}�n
wn(�n − 1) = ∅

wn−1(�n − 1) = {p}
•

w0

•

η

•
∅n{p}n

{p}ω

•
w2n

•

ξ2n

•
{p}2n

{p}ω

•
wn

•

ξn

•
∅n{p}n

{p}ω

•
wn−1

•

ξn−1

•
∅n+1{p}n−1

{p}ω

•
w1

•

ξ1

•
∅2n−1{p}

{p}ω

Fig. 1. The regular tree structure Kn for the witness HyperLTL formula ϕp

η, ξ1, . . . , ξ2n, and there is a unique initial path visiting η (resp., ξk with k ∈
[1, 2n]). We denote this path by π(η) (resp., π(ξk)). The tree structure Mn is
obtained from Kn by replacing the label {p} of node π(ξn)(	n + 1 + n) with ∅.
Note that in Mn, the traces of π(ξn)[	n +1,∞] and π(ξn−1)[	n +1,∞] coincide.

Proposition 1. Kn |= ϕp and Mn �|= ϕp.

Proof. In the structure Kn, the trace of the finite path π(η)[0, 	n] is {p}�n+1,
the label of π(ξn) at position 	n is ∅, and the traces of π(η)[	n + 1,∞] and
π(ξn)[	n + 1,∞] coincide, which make π(η) and π(ξn) good candidates to fulfill
ϕp. Hence, Kn |= ϕp. It remains to show that Mn �|= ϕp.
By construction, for all distinct initial paths π and π′ and 	 ∈ [0, 	n], the traces
of π[	,∞] and π′[	,∞] in Mn are distinct (recall that π(ξn)(	n) and π(ξn−1)(	n)
have distinct labels). Moreover, π(η) is the unique initial path of Mn where p
holds at every position in [0, 	n]. Thus, since π(η)(	n + 1) has label ∅ and there
is no distinct initial path π′′ of Mn such that the traces of π(η)[	n + 1,∞] and
π′′[	n + 1,∞] coincide, by construction of ϕp, Mn �|= ϕp. ��

A KCTL∗ formula ψ is balanced if for every until subformula ψ1Uψ2 of ψ, it
holds that |ψ1| = |ψ2|. By using the atomic formula �, it is trivial to convert a
KCTL∗ sentence ψ into an equivalent balanced KCTL∗ sentence of size at most
|ψ|2. This observation together with Proposition 1, and the following non-trivial
result provide a proof of Theorem 1.

Theorem 2. Let ψ be a balanced KCTL∗ sentence such that |ψ| < n. Then, for
all observation maps Obs, (Kn,Obs) |= ψ ⇔ (Mn,Obs) |= ψ.

Proof. Given an observation map Obs, it suffices to show that for all initial
paths π and positions i ∈ [0, 	n], π, i |=Kn,Obs ψ iff π, i |=Mn,Obs ψ. The key
for obtaining this result is that since |ψ| < n, ψ cannot distinguish the nodes
π(ξn)(	n +1) and π(ξn−1)(	n +1) both in (Kn,Obs) and in (Mn,Obs). For Mn,
this indistinguishability easily follows from the construction and is independent
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of the size of ψ. For Kn, the indistinguishability is non-trivial and is formally
proved by defining equivalence relations on the set of nodes at distance d ∈ [	n+
1, 	n+2n] from the root, which are parameterized by a natural number h ∈ [1, n],
where h intuitively represents the size of the current balanced subformula of ψ
in the recursive evaluation of ψ on Kn. ��

3.2 KCTL∗ is not Subsumed by HyperCTL∗

In this section, we show that KCTL∗ and its fragment KLTL are not subsumed by
HyperCTL∗ even with respect to finite Kripke structures. The intuitive insight is
that unlike KLTL, HyperCTL∗ cannot express requirements which relate at some
position an unbounded number of paths.

For p ∈ AP, an observation map Obs is p-blind if for all agents a, p /∈ Obs(a).

Theorem 3. KLTL �≤fin HyperCTL∗.

As witness KLTL sentence for Theorem 3, we use the KLTL sentence of Exam-
ple 1 given by ϕp := ∀XFKa¬p. We exhibit two families of regular tree structures
(Kn)n>1 and (Mn)n>1 over 2{p} such that the following holds for all n > 1: (i)
for each p-blind observation map Obs, ϕp distinguishes between (Kn,Obs) and
(Mn,Obs), and (ii) no HyperCTL∗ formula ψ of size less than n distinguishes
between Kn and Mn. Hence, Theorem 3 follows.

Fix n > 1. In order to define Kn and Mn, we need additional definitions.
An n-block is a word in {p}∅∗ of length at least n + 2. Given finite words

w1, . . . , wk over 2{p} having the same length 	, the join join(w1, . . . , wk) of
w1, . . . , wk is the word of length 	 such that join(w1, . . . , wk)(i) = w1(i) ∪ . . . ∪
wk(i) for all i ∈ [0, 	− 1]. For a finite word w over 2{p}, the dual w̃ of w is the
word over 2{p} of length |w| such that for all i ∈ [0, |w|−1], p ∈ w̃(i) iff p /∈ w(i).

Given n finite words w1, . . . , wn over 2{p} of the same length, the tuple
〈w1, . . . , wn〉 satisfies the n-fractal requirement if for all k ∈ [1, n],

join(w1, . . . , wk) is of the form bl k1 . . . bl
k
mk

· {p}
where bl k1 . . . bl

k
mk

are n-blocks. Moreover, m1 = n+ 4, and the following holds:
if k < n, then wk+1 is obtained from join(w1, . . . , wk) by replacing the last sym-
bol with ∅, and by replacing each n-block bl ki of join(w1, . . . , wk) by a sequence
of n+ 4 n-blocks preceded by a non-empty word in ∅∗ of length at least n+ 2.

Remark 1. Assume that 〈w1, . . . , wn〉 satisfies the n-fractal requirement and let
	 be the common length of w1, . . . , wn. Then, for all i ∈ [0, 	 − 1], there is at
most one k ∈ [1, n] such that p ∈ wk(i). Moreover, p ∈ w1(0) and p ∈ w1(	− 1).

Definition 1 (The Tree Structures Kn and Mn). Kn is illustrated in Fig. 2
where 	n > 1. The unique initial path visiting node η (resp., ξk with k ∈ [1, n])
is denoted by π(η) (resp., π(ξk)).

A main position is a position in [1, 	n]. Let ialert be the third (in increasing
order) main position i along π(ξ1) such that the label of π(ξ1)(i) in Kn is {p}
(note that ialert exists). Then, the regular tree structure Mn is obtained from Kn

by replacing the label {p} of π(ξ1) at position ialert with ∅.
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•Kn

•η

•
w0

{p}ω

•ξ1

•
w1

∅ω

• ξn

•
wn

∅ω

|w0| = |w1| = . . . = |wn| = �n

〈w1, . . . , wn〉 satisfies the n-fractal requirement

w0 is the dual of join(w1, . . . , wn)

Fig. 2. The regular tree structure Kn for the witness KLTL formula ϕp := ∀XFKa¬p

By construction, in the tree structure Kn, for each non-root level, there is a
node where p holds and a node where p does not hold. Hence, (Kn,Obs) �|= ϕp.
By Remark 1, for each main position i, there is at most one k ∈ [1, n] such that
the label of π(ξk)(i) in Kn is {p}. If such a k exists, we say that i is a main
p-position and ξk is the type of i. Now, for the level of Mn at distance ialert from
the root, p uniformly does not hold (i.e., there is no node of Mn at distance ialert
from the root where p holds). Thus, we obtain the following result.

Proposition 2. For each p-blind observation map Obs, (Kn,Obs) �|= ϕp and
(Mn,Obs) |= ϕp.

Theorem 3 directly follows from Proposition 2 and the following result.

Theorem 4. For all HyperCTL∗ sentences ψ with |ψ| < n, Kn |= ψ ⇔ Mn |= ψ.

Proof. The main idea is that for a HyperCTL∗ sentence ψ of size less than n, in the
recursive evaluation of ψ on the tree structure Mn, there will be h∗ ∈ [2, n] such
that the initial path π(ξh∗) is not bound by the current path assignment. Then,
the n-fractal requirement ensures that in Mn, the main p-position ialert (which
in Mn has label ∅ along π(ξ1)) is indistinguishable from the main p-positions j of
type ξh∗ which are sufficiently ‘near’ to ialert (such positions j have label ∅ along
the initial paths π(ξk) with k �= h∗). We formalize this intuition by defining
equivalence relations on the set of main positions which are parameterized by
h∗ and a natural number m ∈ [0, n] and reflect the fractal structure of the
main p-position displacement. Since the number of main p-positions of type ξ1
following ialert is at least n, we then deduce that in all the positions i such that
i ≤ iF , where iF is the main p-position of type ξ1 preceding ialert, no HyperCTL∗

formula ψ can distinguish Mn and Kn with respect to path assignments such
that |Π |+ |ψ| < n, where |Π | is the number of initial paths bound by Π . Hence,
the result follows. ��

3.3 HyperCTL∗
lp Unifies KCTL∗ and HyperCTL∗

We show that KCTL∗ can be easily translated in linear time into the two-variable
fragment of HyperCTL∗lp. Intuitively, the knowledge modalities can be simulated
by the general hyper path quantifiers combined with the temporal past modali-
ties. Hence, we obtain the following result.
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Theorem 5. Given a KCTL∗ sentence ψ and an observation map Obs, one can
construct in linear time a HyperCTL∗lp sentence ϕ with just two path variables
such that for each Kripke structure K, K |= ϕ ⇔ (K,Obs) |= ψ.

Note that the KCTL∗ sentence ∀XFKa ¬p used to prove Theorem 3 is equivalent
w.r.t. p-blind observation maps to the HyperCTL∗lp sentence ∀x.XF(∀Gy.¬p[y])
which does not use past modalities. Thus, by Theorems 1, 3, and 5, we obtain:

Corollary 1. HyperCTL∗lp is more expressive than both HyperCTL∗ and KCTL∗.
Moreover, the future fragment of HyperCTL∗lp (where past-time modalities are
disallowed) is already more expressive than HyperCTL∗.

4 Model-Checking against HyperCTL∗
lp

In this section, we address the model-checking problem for HyperCTL∗lp. Simi-
larly to the proof given in [6] for the less expressive logic HyperCTL∗, we show
that the above problem is non-elementarily decidable by linear-time reductions
from/to satisfiability of full Quantified Propositional Temporal Logic (QPTL, for
short) [23], which extends LTL with past (PLTL) by quantification over propo-
sitions. As main contribution of this section, we address complexity issues for
the considered problem by providing optimal complexity bounds in terms of a
parameter of the given HyperCTL∗lp formula, we call strong alternation depth.
For this, we first provide similar optimal complexity bounds for satisfiability of
QPTL. As a corollary of our results, we also obtain that for a relevant fragment
of HyperCTL∗lp, model-checking is EXPSPACE-complete. With regard to QPTL,
well-known optimal complexity bounds, in terms of the alternation depth of ex-
istential and universal quantifiers, concern the fragment of QPTL in prenex form
(quantifiers cannot occur in the scope of temporal modalities) [23]. QPTL for-
mulas can be translated in polynomial time into equisatisfiable QPTL formulas
in prenex form, but in this conversion, the nesting depth of temporal modalities
in the original formula (in particular, the alternation depth between always and
eventually modalities and the nesting depth of until modalities) lead to an equal
increasing in the quantifier alternation depth of the resulting formula. We show
that this can be avoided by directly applying a non-trivial automatic theoretic
approach to unrestricted QPTL formulas. Our results also improve in a mean-
ingful way the upper bounds provided in [6] for model-checking of HyperCTL∗;
indeed, in [6], differently from our approach, occurrences of temporal modalities
count as additional alternations.

The Logic QPTL [23]. QPTL formulas ϕ over AP are defined as follows:

ϕ ::= � | p | ¬ϕ | ϕ ∧ ϕ | Xϕ | X−ϕ | ϕUϕ | ϕU−ϕ | ∃p .ϕ
where p ∈ AP. The positive normal form of a QPTL formula ϕ is obtained by
pushing inward negations to propositional literals using De Morgan’s laws and
the duals R (release), R− (past release), and ∀p (propositional universal quanti-
fier) of U, U−, and ∃p, respectively. A formula is (pure) existential if its positive
normal has no universal quantifier. Analogous notions apply to HyperCTL∗lp.
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QPTL formulas are interpreted over (infinite) pointed words (w, i) over 2AP

consisting of an infinite word w over 2AP and a position i ≥ 0. The semantics of
propositional quantification is as follows.

(w, i) |= ∃p.ϕ ⇔ there is w′ ∈ (2AP)ω such that w =AP\{p} w′ and (w′, i) |= ϕ

where w =AP\{p} w′ means that the projections of w and w′ over AP \ {p}
coincide. For a QPTL formula ϕ, let L℘(ϕ) be the set of pointed words satisfying
ϕ, and L(ϕ) be the set {w | (w, 0) ∈ L℘(ϕ)}; ϕ is satisfiable if L(ϕ) �= ∅.
Optimal Bounds for QPTL Satisfiability. First, we give a generalization
of the standard notion of alternation depth between existential and universal
quantifiers, we call strong alternation depth. This notion takes into account also
the occurrence of temporal modalities between quantifier occurrences, but the
nesting depth of temporal modalities is not considered (it is collapsed to one).

Definition 2. Let O = {∃, ∀,U,U−,R,R−,G,G−,F,F−}. First, we define the
strong alternation length 	(χ) of finite sequences χ ∈ O∗: 	(ε) = 0, 	(O) = 1 for
all O ∈ O, and

	(OO′χ) =

⎧
⎨

⎩

	(O′χ) if O′ ∈ O \ {∃, ∀}
	(O′χ) if either O,O′ ∈ {∃,F,F−} or O,O′ ∈ {∀,G,G−}
1 + 	(O′χ) otherwise

2Then, the strong alternation depth sad(ϕ) of a QPTL formula ϕ is the maxi-
mum over the strong alternation lengths 	(χ), where χ is the sequence of modali-
ties in O along a path in the tree encoding of the positive normal form of ϕ. The
strong alternation depth sad(ϕ) of a HyperCTL∗lp formula ϕ is defined similarly
but we replace quantification over propositions with quantification over path vari-
ables. For a QPTL (resp., HyperCTL∗lp) formula ϕ, if there is a subformula ψ of
the positive normal form of ϕ whose root operator is a universal quantifier and
such that sad(ψ) = sad(ϕ), then we say that ϕ is a first-level universal formula;
otherwise, we say that ϕ is a first-level existential formula.

Note that for a QPTL formula ϕ in prenex form, the strong alternation depth
corresponds to the alternation depth of existential and universal quantifiers plus
one. For all n, h ∈ N, Tower(h, n) denotes a tower of exponentials of height h and
argument n: Tower(0, n) = n and Tower(h+ 1, n) = 2Tower(h,n). We establish the
following result, where h-EXPSPACE is the class of languages decided by deter-
ministic Turing machines bounded in space by functions of n in O(Tower(h, nc))
for some constant c ≥ 1.

Theorem 6. For all h ≥ 1, satisfiability of QPTL formulas ϕ with strong alter-
nation depth at most h is h-EXPSPACE-complete, and (h− 1)-EXPSPACE-
complete in case ϕ is first-level existential or pure existential (even if we only
allow temporal modalities in {X,X−,F,F−,G,G−}).
2 For example, �(∃GU∃U) = �(U∃U) = 2.
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Here, we illustrate the upper bounds of Theorem 6. In the automata-theoretic
approach for QPTL formulas ϕ in prenex form, first, one converts the quantifier-
free part ψ of ϕ into an equivalent Büchi nondeterministic automaton (Büchi
NWA) accepting L(ψ). Then, by using the closure of Büchi NWA definable lan-
guages under projection and complementation, one obtains a Büchi NWA ac-
cepting L(ϕ). This approach would not work for arbitrary QPTL formulas ϕ,
where quantifiers can occur in the scope of temporal modalities. In this case, for
a subformula ϕ′ of ϕ, we need to keep track of the full set L℘(ϕ

′) of pointed
words satisfying ϕ, and not simply L(ϕ′). Thus, we resort to two-way automata
A accepting languages L℘(A) of pointed words. In particular, the proposed ap-
proach is based on a compositional translation of QPTL formulas into a simple
two-way extension of Büchi NWA, which we call Büchi SNWA. Essentially, given
an input pointed word (w, i), a Büchi SNWA splits in two copies: the first one
moves forward along the suffix w[i,∞] and the second one moves backward along
the prefix w[0, i].

Moreover, at each step of the translation into Büchi SNWA, we use as an
intermediate formalism a two-way extension of the class of (one-way) hesitant
alternating automata (HAA, for short) over infinite words introduced in [17].
Like one-way HAA, the set of states Q of a two-way HAA is partitioned into a
set of components Q1, . . . , Qn such that moves from states in Qi lead to states
in components Qj so that j ≤ i. Moreover, each component is classified as
either past, or Büchi, or coBüchi : in a past (resp., Büchi/coBüchi) component
Qi, the unique allowed moves from Qi to Qi itself are backward (resp., forward).
These syntactical requirements ensure that in a run over a pointed word, every
infinite path π of the run gets trapped in some Büchi or coBüchi component,
and the path π eventually use only forward moves. Moreover, the acceptance
condition of a two-way HAA encodes a particular kind of parity condition of
index 2: a Büchi/coBüchi component Qi has an associated subset Fi ⊆ Qi of
accepting states. Then, a run is accepting if for every infinite path π, denoting
with Qi the Büchi/coBüchi component in which π gets trapped, π satisfies the
Büchi/coBüchi acceptance condition associated with Qi. For two-way HAA A,

we establish two crucial results. First, the dual automaton Ã obtained from A
by dualizing the transition function, and by converting a Büchi (resp., coBüchi)
component into a coBüchi (resp., Büchi) component is still a two-wayHAA. Thus,

by standard arguments (see e.g. [25]), automaton Ã accepts the complement
of L℘(A). Second, by using the notion of odd ranking function for standard
coBüchi alternating automata [16] (which allows to convert a coBüchi acceptance
condition into a Büchi-like acceptance condition) and a non-trivial generalization
of the Miyano-Hayashi construction [20], we show that two-way HAA can be
converted in singly exponential time into equivalent Büchi SNWA.

Theorem 7. Given a two-way HAA A with n states, the following holds:
1. the dual automaton Ã of A is a two-way HAA accepting the complement of

L℘(A);
2. one can build “on the fly” and in singly exponential time a Büchi SNWA

accepting L℘(A) with 2O(n·log(n)) states.
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Finally, by using Theorem 7, we establish the following result from which the
upper bounds of Theorem 6 directly follow (note that Büchi SNWA A can be
trivially converted into Büchi NWA accepting the set of infinite words w such that
(w, 0) ∈ L℘(A), and checking non-emptiness for Büchi NWA is in NLOGSPACE).

Theorem 8. Let ϕ be a first-level existential (resp., first-level universal) QPTL
formula and h = sad(ϕ). Then, one can construct “on the fly” a Büchi SNWA
Aϕ accepting L℘(ϕ) in time Tower(h,O(|ϕ|)) (resp., Tower(h+ 1, O(|ϕ|))).
Proof. By structural induction on the positive normal form ϕ+ of ϕ. The rel-
evant case is when the outermost operator of ϕ+ is a temporal modality (the
other cases easily follow from Theorem 7 and the closure of Büchi SNWA de-
finable pointed languages under union, intersection, and projection). This case
is handled by first building a two-way HAA A accepting L℘(ϕ) and then by
applying Theorem 7(2). The construction of A is obtained by a generalization
of the standard linear-time translation of LTL formulas into Büchi alternating
automata which exploits the (inductively built) Büchi SNWA associated with
the maximal quantified subformulas of ϕ+. ��
Optimal Bounds for Model-Checking of HyperCTL∗

lp. By establishing
linear-time reductions from/to satisfiability of QPTL and by exploiting The-
orem 6, we provide optimal bounds on the complexity of model-checking for
HyperCTL∗lp in terms of the strong alternation depth of the formula. In particu-
lar, the linear-time reduction to satisfiability of QPTL generalizes the one given
in [6] for the model checking of HyperCTL∗.

Theorem 9. For all h ≥ 1 and HyperCTL∗lp sentences ϕ with strong alternation
depth at most h, model-checking against ϕ is h-EXPSPACE-complete, and (h−
1)-EXPSPACE-complete in case ϕ is first-level existential or pure existential
(even if we allow only temporal modalities in {X,X−,F,F−,G,G−}).

By Theorem 9, for the first-level existential fragment F of HyperCTL∗lp where
the strong alternation depth is at most 2, model-checking is EXPSPACE-
complete. Notice that the HyperCTL∗ fragment F ′ of F can express important
classes of information-flow requirements as illustrated in [6], and that the model-
checking algorithm in [6] applied to F ′ leads to a non-elementary upper bound.

5 Discussion

We plan to extend this work in many directions. First, we intend to identify
tractable fragments of HyperCTL∗lp and to investigate their synthesis problem;
note that satisfiability of HyperCTL∗ is already undecidable [6]. Second, we
should extend the framework to deal with asynchronicity, as information flows
are relevant for security in many asynchronous frameworks, such as distributed
systems or cryptographic protocols. In the same line, we would like to investigate
the possibility of extending the verification of information-flow requirements to
relevant classes of infinite-state systems such as the class of pushdown systems,
a model extensively investigated in software verification.
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Abstract. Semi-Markov chains (SMCs) are continuous-time probabilis-
tic transition systems where the residence time on states is governed by
generic distributions on the positive real line.

This paper shows the tight relation between the total variation dis-
tance on SMCs and their model checking problem over linear real-time
specifications. Specifically, we prove that the total variation between two
SMCs coincides with the maximal difference w.r.t. the likelihood of sat-
isfying arbitrary MTL formulas or ω-languages recognized by timed au-
tomata.

Computing this distance (i.e., solving its threshold problem) is NP-
hard and its decidability is an open problem. Nevertheless, we propose
an algorithm for approximating it with arbitrary precision.

1 Introduction

The growing interest in quantitative aspects in real world applications motivated
the introduction of quantitative models and formal methods for studying their
behaviors. Classically, the behavior of two models is compared by means of
an equivalence (e.g., bisimilarity, trace equivalence, logical equivalence, etc.).
However, when the models depend on numerical values that are subject to error
estimates or obtained from statistical samplings, any notion of equivalence is too
strong a concept. This motivated the study of behavioral distances. The idea is
to generalize the concept of equivalence with that of pseudometric, aiming at
measuring the behavioral dissimilarities between nonequivalent models.

Given a suitably large set of properties Φ, containing all the properties of
interest, the behavioral dissimilarities of two states s, s′ of a quantitative model
are naturally measured by the pseudometric d(s, s′) = supφ∈Φ |φ(s) − φ(s′)|,
where φ(s) denotes the value of φ at s. This has been the leading idea for several
proposals of behavioral distances, the first one given by Desharnais et al. [12] on
probabilistic systems, and further developed by De Alfaro, van Breugel, Worrell,
and others [10,11,18,15].
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For probabilistic models φ(s) may represent the probability of satisfaction of a
modal formula φ measured at s, hence relating the distance d to the probabilistic
model checking problem. In this context an immediate application is that the
probability φ(s) of satisfying the formula φ at s can be approximated by φ(s′)
with an error bounded by d(s, s′), for any φ ∈ Φ. This may lead to savings in
the overall cost of model checking.

In this paper we study the total variation distance of probabilistic systems,
a popular distance used in a number of domains such as networks security and
artificial intelligence, that measures the maximal difference in the probabilities of
two systems of realizing the same event. We show that it is a genuine behavioral
distance in the above sense by relating it to the probabilistic model checking
problem over linear real-time specifications. Specifically, we prove that the total
variation distance on semi-Markov chains coincides with the maximal difference
in the probability of satisfying the same property, expressed either as an MTL
formula [2,3] or an ω-language accepted by a timed automaton (TA) [1].

Semi-Markov chains (SMCs) are continuous-time probabilistic transition sys-
tems where the residence time on states is governed by generic distributions on
the positive real line. SMCs subsume many probabilistic models, e.g., Markov
chains (MCs) and continuous-time Markov Chains (CTMCs). Our attention on
linear real-time properties is motivated by applications where the system to
be modeled cannot be internally accessed but only tested via observations per-
formed over a set of random executions. For instance, this is mostly common in
domains such as systems biology, modeling/testing and machine learning, where
real-time features are important e.g. for performance evaluation of cyber-physical
systems or dependability analysis.

The total variation distance was already known to be a bound for the maximal
difference w.r.t. the probability of satisfying linear-time formulas; our result
guarantees that it is the tightest one. Since SMCs and MTL subsume MCs
and LTL, respectively, the result holds also in the discrete-time case.

This further motivates the study of efficient methods for computing the total
variation. Unfortunately, in [14,9] the threshold problem for the total variation
distance is proven to be NP-hard in the case of MCs, and to the best of our
knowledge, its decidability is still an open problem. Nevertheless, we prove that
the problem of approximating the total variation distance with arbitrary preci-
sion is computable. This is done providing two effective sequences that converge
from below and above to the total variation distance. This result generalizes that
of [9] to the real-time setting. Our approach, however, is different, as it is based
on a duality that characterizes the total variation between two measures as the
minimal discrepancy associated with their couplings.

The technical contributions of the paper can be summarized as follows.
1. We solved the open problem of how tight is the upper-bound given by the

total variation distance w.r.t. the variational distance ranging over MTL formu-
las and TA specifications, respectively. This has been made possible due to a
more general result (Theorem 6) that entails many other nontrivial characteri-
zations of the total variation distance on SMCs.
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2. We provided sufficient conditions to construct sequences that converge,
from below and above, to the total variation distance. Differently from [9], these
conditions are not specific to the probabilistic transition system at hand, but
the results hold for probability measures on an arbitrary measurable space.

3. Lastly, we proved the computability of the converging sequences of the pre-
vious point. This yields a decidable procedure to approximate the total variation
distance with arbitrary precision.

An extended version of the paper containing all the proofs is available at [5].

2 Preliminaries

The set of functions from X to Y is denoted by Y X and for f ∈ Y X , let
≡f = {(x, x′) | f(x) = f(x′)}. Given an equivalence relation R ⊆ X ×X , X/R
denotes the set of R-equivalence classes and [x]R the equivalence class of x ∈ X .

Measure Theory. A field over a set X is a nonempty family Σ ⊆ 2X closed
under complement and finite union. Σ is a σ-algebra if, in addition, it is closed
under countable union; in this case (X,Σ) is called a measurable space and the
elements of Σ measurable sets. The σ-algebra generated by Σ ⊆ 2X , denoted
by σ(Σ), is the smallest σ-algebra containing Σ. Hereafter (R+,B) denotes the
measurable space of positive real numbers (including zero) with Borel algebra.

Given two measurable spaces (X,Σ) and (Y,Θ), a function f : X → Y is
measurable if for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ∈ Σ. The product space,
(X,Σ) ⊗ (Y,Θ), is the measurable space (X × Y,Σ ⊗ Θ), where Σ ⊗ Θ is the
σ-algebra generated by the rectangles E × F for E ∈ Σ and F ∈ Θ.

A measure on (X,Σ) is a function μ : Σ → R+ s.t. μ(
⋃

E∈F E) =
∑

E∈F μ(E)
for all countable families F of pairwise disjoint measurable sets (σ-additive); it is
a probability measure if, in addition, μ(X) = 1. In what follows Δ(X,Σ) denotes
the set of probability measures on (X,Σ) and let D(X) = Δ(X, 2X).

Given a measurable function f : (X,Σ) → (Y,Θ), any measure μ on (X,Σ)
defines a measure μ[f ] on (Y,Θ) by μ[f ](E) = μ(f−1(E)), for all E ∈ Θ; it is
called the push forward of μ under f .

Given μ and ν measures on (X,Σ) and (Y,Θ), respectively, the product mea-
sure μ×ν on (X,Σ)⊗(Y,Θ) is uniquely defined by (μ×ν)(E×F ) = μ(E)·ν(E),
for all (E,F ) ∈ Σ ×Θ.

A measure ω on (X,Σ)⊗ (Y,Θ) is a coupling for (μ, ν) if for all E ∈ Σ and
F ∈ Θ, ω(E × Y ) = μ(E) and ω(X × F ) = ν(F ) (μ is the left and ν the right
marginals of ω). We denote by Ω(μ, ν) the set of couplings for (μ, ν).

Metric Spaces. Given a set X , d : X ×X → R+ is a pseudometric on X if for
arbitrary x, y, z ∈ X , d(x, x) = 0, d(x, y) = d(y, x) and d(x, y)+d(y, z) ≥ d(x, z);
d is a metric if, in addition, d(x, y) = 0 implies x = y. If d is a (pseudo)metric
on X , (X, d) is called a (pseudo)metric space.

Given a measurable space (X,Σ), the set of measures Δ(X,Σ) is metrized by
the total variation distance, defined by ‖μ− ν‖ = supE∈Σ |μ(E)− ν(E)|.
The Space of Timed Paths. A timed path over a set X is an infinite se-
quence π = x0, t0, x1, t1 . . . , where xi ∈ X and ti ∈ R+; ti are called time
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Fig. 1. Two SMCs. (left) the differences are only in the residence time distributions;
(right) the behavioral differences arise only from their transition distributions.

delays. For any i ∈ N, let π[i] = xi, π〈i〉 = ti, π|i = x0, t0, .., ti−1, xi, and
π|i = xi, ti, xi+1, ti+1, . . . . Let Π (X) denote the set of timed paths on X .

The cylinder set (of rank n) for Xi ⊆ X and Ri ⊆ R+, i = 0..n is the set
C(X0, R0, .., Rn−1, Xn) = {π ∈ Π (X) | π|n ∈ X0 ×R0 × · · · ×Rn−1 ×Xn}. For
F ⊆ 2X and I ⊆ 2R+ , let Cn(F , I) = {C(X0, R0, .., Rn−1, Xn) | Xi ∈ F , Ri ∈ I},
for n ∈ N, and C(F , I) = ⋃

n∈N Cn(F , I).
If (X,Σ) is a measurable space, Π (X,Σ) denotes the measurable space of

timed paths with σ-algebra generated by C(Σ,B). If Σ = σ(F) and B = σ(I),
then σ(C(Σ,B)) = σ(C(F , I)). Moreover, if both F and I are fields, so is C(F , I).

Any function f : X → Y can be stepwise extended to fω : Π (X) → Π (Y ).
Note that if f is measurable, so is fω.

3 Semi-Markov Chains and Trace Distance

In this section we recall labelled semi-Markov chains (SMCs), models that sub-
sume most of the space-finite Markovian models including Markov chains (MCs)
and continuous-time Markov chains (CTMCs). We define the total variation
distance between SMCs, called trace distance, which measures the difference
between two SMCs w.r.t. their probabilities of generating labelled timed traces.

In what follows we fix a countable set A of atomic properties.

Definition 1 (Semi-Markov Chains). A labelled semi-Markov chain is a tu-
ple M = (S, τ, ρ, �) consisting of a finite set S of states, a transition probability
function τ : S → D(S), a residence-time probability function ρ : S → Δ(R+),
and a labelling function � : S → 2A.

In what follows we use M = (S, τ, ρ, �) to range over the class of SMCs.
Intuitively, if M is in the state s, it moves to an arbitrary s′ ∈ S within time

t ∈ R+ with probability ρ(s)([0, t]) · τ(s)(s′). For example, in Fig. 1(right) the
SMC moves from s1 to s2 before time t > 0 with probability 1

4 · U [1, 2]([0, t)),
where U [i, j] is the uniform distribution on [i, j]. An atomic proposition p ∈ A

is said to hold in s if p ∈ �(s).
Notice that MCs are the SMCs s.t. for all s ∈ S, ρ(s) is the Dirac measure at

0 (transitions happen instantaneously); while CTMCs are the SMCs s.t. for all
s ∈ S, ρ(s) = Exp(λ) —the exponential distribution with rate λ > 0.

An SMC in an initial state is a stochastic process generating timed paths.
They are distributed as in the next definition.
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Definition 2. Given s ∈ S state in M, let Ps be the unique probability measure1

on Π (S) such that for all si ∈ S and Ri ∈ B, i = 0..n,

Ps(C({s0}, R0, . . . , Rn−1, {sn})) = 1{s}(s0) ·
∏n−1

i=0 P (si, Ri, si+1) ,

where 1A is the indicator function of A and P (u,R, v) = ρ(u)(R) · τ(u)(v).
Since the only things that we observe in a state are the atomic properties

(labels), timed paths are considered up to label equivalence. This leads to the
definition of trace cylinders, which are elements in C(S/≡�

,B), and to the fol-
lowing equivalence between states.

Definition 3 (Trace Equivalence). For arbitrary M = (S, τ, ρ, �), s, s′ ∈ S
are trace equivalent, written s ≈ s′, if for all T ∈ C(S/≡�

,B), Ps(T ) = Ps′(T ).

Hereafter, we use T to denote the set C(S/≡�
,B) of trace cylinders.

If two states of an SMCs are not trace equivalent, then their difference is
usually measured by the total variation distance between their corresponding
probabilities restricted to events generated by labelled traces.

Definition 4 (Trace Pseudometric). Given M = (S, τ, ρ, �), the trace pseu-
dometric δ : S × S → [0, 1] is defined, for arbitrary s, s′ ∈ S, by

δ(s, s′) = supE∈σ(T ) |Ps(E) − Ps′(E)| .
It is not difficult to observe that two states s, s′ ∈ S are trace equivalent if and

only if δ(s, s′) = 0. This demonstrates that the trace equivalence is a behavioural
distance.

4 Trace Distance and Probabilistic Model Checking

In this section we investigate the connections between the trace distance and
model checking SMCs over linear real-time specifications. We show that the
variational distance over measurable sets expressed either as Metric Temporal
Logic (MTL) formulas or as languages accepted by Timed Automata (TAs)
coincides with the trace distance introduced in the previous section. Both these
results are instances of a more general result (Theorem 6), which also entails
other similar nontrivial characterizations of the trace distance.

A measure μ on (X,Σ) induces the so-called Fréchet-Nikodym pseudometric
on Σ, dμ : Σ×Σ → R+ defined for arbitrary E,F ∈ Σ, by dμ(E,F ) = μ(E�F ),
where E � F := (E \ F ) ∪ (F \ E) is the symmetric difference between sets.

Recall that in a (pseudo)metric space a subset D is dense if its closure D (i.e.,
the set of all the points arbitrarily close to D) coincides with the entire space.
In order to prove the aforementioned general result, we need firstly to provide a
sufficient condition for a family of measurable sets to be dense w.r.t. the Fréchet-
Nikodym pseudometric for some finite measure.

1 Existence and uniqueness of Ps is guaranteed by the Hahn-Kolmogorov extension
theorem and by the fact that, for all s ∈ S, τ (s) and ρ(s) are finite measures.
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Lemma 5. Let (X,Σ) be a measurable space and μ be a measure on it. If Σ is
generated by a field F , then F is dense in the pseudometric space (Σ, dμ).

Proof (sketch). We show that F := {E ∈ Σ | ∀ε > 0. ∃F ∈ F . dμ(E,F ) < ε} =
Σ. To prove Σ ⊆ F , it is sufficient to show that F is a σ-algebra. The closure
under complement follows from E� F = (X \E)� (X \ F ). The closure under
countable union follows from monotonicity, additivity and ω-continuity from
below of μ given that for any {Ei | i ∈ N} ⊆ F and ε > 0 the following hold:

a) there exists k ∈ N, such that dμ(
⋃

i∈N
Ei,

⋃k
i=0 Ei) <

ε
2 ;

b) for all n ∈ N, there exist F0, . . . , Fn ∈ F , such that dμ(
⋃n

i=0 Ei,
⋃n

i=0 Fi) <
ε
2 .

Indeed, by triangular inequality, for arbitrary F0, . . . , Fk ∈ F ,

dμ(
⋃

i∈N
Ei,

⋃k
i=0 Fi) ≤ dμ(

⋃
i∈N

Ei,
⋃k

i=0 Ei) + dμ(
⋃k

i=0 Ei,
⋃k

i=0 Fi) < ε .

Then, the lemma follows since F is a field. ��
With this result in hands we can state the main theorem of this section.

Theorem 6. Let (X,Σ) be a measurable space and μ, ν be two finite measures
on it. If Σ is generated by a field F , then ‖μ− ν‖ = supE∈F |μ(E)− ν(E)|.
Proof. For Y �= ∅ and f : Y → R bounded and continuous, if D ⊆ Y is dense
then sup f(D) = sup f(Y ). By Lemma 5, F is dense in (Σ, dμ+ν). We show that
|μ− ν| : Σ → R is bounded and continuous. Boundedness follows since μ and ν
are finite. By monotonicity, positivity, and additivity of the measures one can
show that μ and ν are 1-Lipschitz continuous, so |μ− ν| is continuous. ��

4.1 Model Checking for MTL Formulas

Metric Temporal Logic [2] has been introduced as a formalism for reasoning on
sequences of events in a real-time setting. The grammar of formulas is as follows

ϕ ::= p | ⊥ | ϕ → ϕ | X[t,t′]ϕ | ϕ U[t,t′] ϕ ,

where p ∈ A and [t, t′] are positive-reals intervals with rational boundaries.
The formal semantics2 of MTL is given by means of a satisfiability relation

defined, for an arbitrary SMC M and a timed path π ∈ Π (S), as follows [16].

M, π |= p if p ∈ �(π[0]) ,

M, π |= ⊥ never ,

M, π |= ϕ → ψ if M, π |= ψ whenever M, π |= ϕ ,

M, π |= X[t,t′]ϕ if π〈0〉 ∈ [t, t′], and M, π|1 |= ϕ ,

M, π |= ϕ U[t,t′] ψ if ∃i > 0 such that
∑i−1

k=0 π〈k〉 ∈ [t, t′], M, π|i |= ψ,

and M, π|j |= ϕ whenever 0 ≤ j < i .

2 This is known as the point-based semantics, since the connectives quantify over a
countable set of positions in the path; it differs from the interval-based semantics,
adopted in [7,17], which associates a state with each point in the real line, and let
the temporal connectives quantify over intervals with uncountable many points.
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Having fixed an SMC M, let �ϕ� = {π | M, π |= ϕ} and �L� = {�ϕ� | ϕ ∈ L},
for any L ⊆ MTL. Let MTL− be the fragment of MTL without until operator.

Lemma 7. (i) �MTL� ⊆ σ(T ) and (ii) T ⊆ σ(�MTL−
�).

Lemma 7 states that (i) MTL formulas describe events in the σ-algebra gener-
ated by the trace cylinders; and (ii) the trace cylinders are measurable sets gen-
erated by MTL formulas without until operator. Consequently, the probabilistic
model checking problem for SMC, which is to determine the probability Ps(�ϕ�)
given the initial state s of M, is well defined. Moreover, for any L ⊆ MTL,

δL(s, s′) = supϕ∈L |Ps(�ϕ�) − Ps′(�ϕ�)|
is a well-defined pseudometric that distinguishes states w.r.t. their maximal dif-
ference in the likelihood of satisfying formulas in L.

Obviously, the trace distance δ is an upper bound of δL; however, Theorem 6
reveals a set of conditions on L guaranteeing that the two actually coincide.

Corollary 8 (Logical Characterization). Let L be a Boolean-closed frag-
ment of MTL s.t. T ⊆ σ(�L�). Then, δL = δ. In particular, δMTL = δMTL− = δ.

Remark 9. The supremum in the definition of δMTL is not a maximum. Fig.1
shows two examples. The SMC on the right is taken from [9, Example 1]3,
where it is proven that δ(s1, s4) has a maximizing event that is not an ω-regular
language, hence not describable by an LTL formula. As for the SMC on the left,
the maximizing event corresponding to δ(u, v) should have the form XI� for
I = [0, log(3)− log(2)]. However the previous is not an MTL formula since I has
an irrational endpoint. �

4.2 Model Checking for Timed Automata

Timed Automata (TAs) [1] have been introduced to model the behavior of real-
time systems over time. Here we consider TAs without location invariants.

Let X be a finite set of variables (clocks) and V(X ) the set of valuations
v : X → R+. As usual, for v ∈ V(X ), t ∈ R+ and X ⊆ X , we denote by 0 the
null valuation, by v + t the t-delay of v and by v[X := t] the update of X in v.

A clock guard g ∈ G(X ) over X is a finite set of expressions of the form x �� q,
for x ∈ X , q ∈ Q+ and �� ∈ {<,≤, >,≥}. We say that a valuation v ∈ V(X )
satisfies a clock guard g ∈ G(X ), written v |= g, if v(x) �� n holds, for all
x �� q ∈ g. Two clock guards g, g′ ∈ G(X ) are orthogonal (or non-overlapping),
written g ⊥ g′, if there is no v ∈ V(X ) such that v |= g and v |= g′.

Definition 10 (Timed Automaton). A timed (Muller) automaton over a
set of clocks X is a tuple A = (Q,L, q0, F,→) consisting of a finite set Q of
locations, a set L of input symbols, an initial location q0 ∈ Q, a family F ⊆ 2Q

of final sets of locations, and a transition relation → ⊆ Q×L×G(X )× 2X ×Q.
A is deterministic if (q, a, g,X, q′), (q, a, g′, X ′, q′′) ∈ → and g �= g′ implies

g ⊥ g′; it is resetting if (q, a, g,X, q′) ∈ → implies X = X .

3 The SMC has been adapted to the current setting where the labels are in the state,
instead of in the transitions.
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A run of A = (Q,L, q0, F,→) over a timed path π = a0, t0, a1, t1, . . . is an infinite
sequence

(q0, v0)
a0,t0−−−−→ (q1, v1)

a1,t1−−−−→ (q2, v2)
a2,t2−−−−→ · · ·

with qi ∈ Q and vi ∈ V(X ) for all i ≥ 0, satisfying the following requirements:
(initialization) v0 = 0; (consecution) for all i ≥ 0, exists (qi, ai, gi, Xi, qi+1)∈→
such that vi+1 = (vi + ti)[Xi := 0] and vi + ti |= gi.

A run over π is accepting (π is accepted by A) if the set of locations visited
infinitely often is in F . Let L(A) be the set of timed paths accepted by A.

A deterministic TA (DTA) has at most one accepting run over a given timed
path in Π (L). With respect to TAs, which are only closed under finite union
and intersection, DTAs are also closed under complement [1].

To relate TAs and SMCs, consider M = (S, τ, ρ, �) and a TA A that uses the
labels of M as input symbols. Let �A� = {π | �ω(π) ∈ L(A)} be the set of timed
paths in M accepted by A and �F� = {�A� | A ∈ F} for any set F ∈ TA.

Lemma 11. (i) �TA� ⊆ σ(T ) and (ii) T ⊆ σ(�DTA�).

Lemma 11 states that the model checking problem of an SMC M against a
TA A, which is to determine the probability Ps(�A�) given the initial state s of
M, is well defined and for any Φ ⊆ TA we can define the pseudometric

δΦ(s, s
′) = supA∈Φ |Ps(�A�) − Ps′(�A�)|

that distinguishes states looking at a specific subclass Φ of TA specifications.
For a generic Φ ⊆ TA, the trace distance is an upper bound of δΦ. However,
Theorem 6 provides conditions that guarantee the equality of the two distances.

Corollary 12. Let Φ ⊆ TA be closed under Boolean operations and such that
T ⊆ σ(�Φ�). Then, δΦ = δ. In particular, δTA = δDTA = δ.

Single-Clock Resetting DTAs. The decidability of model checking CTMCs
against TA specifications is open, even for the subclass of DTAs. Recently,
Chen et al. [8] provided a decidable algorithm for the case of single-clock DTAs
(1-DTAs). In this context, an alternative characterization of the trace distance
in terms of 1-DTAs is appealing. Notice however that Corollary 12 cannot be
applied, since 1-DTAs are not closed under union. We show that the resetting
1-DTAs (1-RDTA) satisfy the requirements, hence δ1-DTA = δ1-RDTA = δ.

Lemma 13. (i) �1-RDTA� is a field and (ii) T ⊆ σ(�1-RDTA�).

5 General Convergence Criteria

In this section we provide sufficient conditions to construct sequences that con-
verge, from below and from above, to the total variation distance between a
generic pair of probability measures. Eventually, we instantiate these results to
the specific case of the trace distance on SMCs.

Convergence from Below. To define a converging sequence of under-approxi-
mations of the total variation distance we exploit Theorem 6 as follows.
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Theorem 14. Let (X,Σ) be a measurable space and μ, ν be probability measures
on it. Let F0 ⊆ F1 ⊆ F2 ⊆ . . . be a sequence s.t. F =

⋃
i∈N

Fi is a field that
generates Σ and

li = sup {|μ(E)− ν(E)| | E ∈ Fi} .

Then, li ≤ li+1 and supi∈N li = ‖μ− ν‖, for all i ∈ N.

Proof. li ≤ li+1 follows from Fi ⊆ Fi+1. Because F is a field s.t. σ(F) = Σ,
μ and ν are finite measures and supi∈N

li = supE∈F |μ(E) − ν(E)|, Theorem 6
concludes our proof. ��

According to Theorem 14, to approximate the trace distance δ from below,
we just need to find an increasing sequence of collections of measurable sets of
timed paths whose union is a field generating σ(T ). We define it as follows.

For k ∈ N, let Ek be the set of all finite unions of cylinders in Ck(S/≡�
,Rk),

where Rk =
{[

n
2k ,

n+1
2k

) | 0≤ n < k2k
}∪{[k,∞)}. Note that, these cylinders are

pairwise disjoint and, in particular, they form a σ(T )-measurable partition of
Π (S). The choice is justified by the following result.

Lemma 15. For all k ∈ N, Ek ⊆ Ek+1 and
⋃

k∈N
Ek is a field generating σ(T ).

Given an SMC M, a sequence of under-approximations of the trace distance
δ is given, for k ∈ N, by δ↑k : S × S → [0, 1] defined by

δ↑k(s, s′) = sup {|Ps(E)− Ps′(E)| | E ∈ Ek} . (1)

The next result is an immediate consequence of Lemma 15 and Theorem 14.

Corollary 16. For all k ∈ N, δ↑k ≤ δ↑k+1 and δ = supk∈N
δ↑k.

Remark 17 (A logical convergence). Note that Theorem 14 suggests alternative
constructions of convergent sequences. For example, as lower-approximations
of δ one can use the pseudometrics δMTL−

k
, where MTL−

k is the set of MTL−

formulas with modal depth at most k ∈ N. �

Convergence from Above. The construction of the converging sequence of
over-approximations of the total variation is based on a classic duality result
asserting that the total variation of two measures corresponds to the minimal
discrepancy measured among all their possible couplings [13].

Recall that a coupling ω ∈ Ω(μ, ν) for two probability measures μ, ν on (X,Σ)
is a measure in the product space (X,Σ)⊗(X,Σ) whose left and right marginals
are μ and ν, respectively. The discrepancy associated with ω is the value ω(�∼=),
where ∼= =

⋂
E∈Σ {(x, y) | x ∈ E iff y ∈ E} is the inseparability relation w.r.t.

measurable sets in Σ. Then, the following duality holds.

Lemma 18 ([13, Th.5.2]). Let μ, ν be probability measures on (X,Σ). Then,
provided that �∼= is measurable in Σ ⊗Σ, ‖μ− ν‖ = min {ω(�∼=) | ω ∈ Ω(μ, ν)}.

Given the above result, we can state a second general converging criterion to
approach the total variation distance from above.
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Theorem 19. Let (X,Σ) be a measurable space s.t. ∼= ∈ Σ ⊗ Σ and μ, ν be
probability measures on it. Let Ω0 ⊆ Ω1 ⊆ Ω2 . . . be an increasing sequence s.t.⋃

i∈N
Ωi is dense in Ω(μ, ν) w.r.t. the total variation distance and define

ui = inf {ω(�∼=) | ω ∈ Ωi} .

Then, ui ≥ ui+1 and infi∈N ui = ‖μ− ν‖, for all i ∈ N.

Proof. ui ≥ ui+1 follows from Ωi ⊆ Ωi+1. To prove infi∈N ui = ‖μ − ν‖, recall
that for Y �= ∅ and f : Y → R bounded and continuous, if D ⊆ Y is dense
then inf f(D) = inf f(Y ). By hypothesis

⋃
i∈N

Ωi ⊆ Ω(μ, ν) is dense; moreover,
μ × ν ∈ Ω(μ, ν) �= ∅. We show that ev�∼= : Ω(μ, ν) → R, defined by ev�∼=(ω) =
ω(�∼=) is bounded and continuous. It is bounded since all ω ∈ Ω(μ, ν) are finite
measures. It is continuous because ‖ω−ω′‖ ≥ |ω(�∼=)−ω′(�∼=)| = |ev�∼=(ω)−ev�∼=(ω′)|
(1-Lipschitz continuity). Now, applying Lemma 18, we derive our result. ��

To conclude this section, we define a sequence of sets of couplings that, ac-
cording to Theorem 19, characterizes the trace distance δ on SMCs.

Observe that the inseparability relation w.r.t. the σ-algebra generated by trace
cylinders is measurable and it can be characterized as follows.

Lemma 20. ≡
ω =
⋂

E∈σ(T ) {(π, π′) | π ∈ E iff π′ ∈ E} ∈ σ(T )⊗ σ(T ).

Next we introduce the notion of coupling structure for an SMC. Let Πk(S) =
{s0, t0, .., tk−1, sk | si ∈ S, ti ∈ R+} be the measurable space with σ-algebra gen-
erated by Rk = {{s0} ×R0 × ..×Rk−1 × {sk} | si ∈ S, Ri ∈ B}. Note that, the
prefix function (·)|k : Π (S) → Πk(S) is measurable, hence, the push forward
w.r.t. it on μ ∈ Δ(Π (S)), denoted by μ|k, is a measure in Πk(S).

Definition 21 (Coupling Structure). A coupling structure of rank k ∈ N

for an SMC M is a function C : S × S → Δ(Πk(S)×Πk(S)) such that, for all
states s, s′ ∈ S, C(s, s′) ∈ Ω(Ps|k,Ps′ |k).
The set of coupling structures of rank k for M is denoted by Ck(M).

A coupling structure of rank k together with a distinguished initial pair of
states, can be intuitively seen as a stochastic process generating pairs of timed
paths divided in multi-steps of length k and distributed according to the follow-
ing probability.

Definition 22. For k ∈ N, s, s′ ∈ S states in M and C ∈ Ck(M), let PC
s,s′ be

the unique probability measure4 on Π (S) ⊗ Π (S) such that, for all n ∈ N and
E = {u0} ×R0 × ..×Rnk−1 ×{unk}, F = {v0}×H0 × ..×Hnk−1 ×{vnk}∈Rnk

P
C
s,s′(C(E)×C(F )) = 1{(s,s′)}(u0, v0) ·

∏n−1
h=0 C(uhk, vhk)(Eh ×Fh) ,

where C(E) denotes the cylinder obtained as the pre-image under (·)|nk of E and
Eh = {uhk} ×Rhk × ..×R(h+1)k−1 ×{u(h+1)k} (similarly for F ).

4 The existence and the uniqueness of this measure follow by Hahn-Kolmogorov ex-
tension theorem and the fact that any cylinder of rank k can always be represented
as a disjoint union of cylinders of rank k′ ≥ k (see e.g., [6, pp.29–32]).
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The name “coupling structure” is justified by the following result.

Lemma 23. Let C be a coupling structure for M, then P
C
s,s′ ∈ Ω(Ps,Ps′).

We are finally ready to describe a decreasing sequence that converges to the
trace distance on SMCs. Given M, let δ↓k : S × S → [0, 1] for k ∈ N, be

δ↓k(s, s′) = min
{
P
C
s,s′(�≡
ω) | C ∈ C2k(M)

}
. (2)

According to Theorem 14 the following suffices to prove the convergence.

Lemma 24. Let s, s′ ∈ S be a pair of states of an SMC M. Then,

(i) for all k ∈ N,
{
P
C
s,s′ | C ∈ Ck(M)

} ⊆ {
P
C
s,s′ | C ∈ C2k(M)

}
;

(ii)
⋃

k∈N

{
P
C
s,s′ | C ∈ C2k(M)

}
is dense in Ω(Ps,Ps′) w.r.t. the total variation.

Proof (sketch). (i) Let k > 0 and C ∈ Ck(M). Define D(s, s′) as the unique
measure on Π2k(S) ⊗ Π2k(S) s.t., for all E = {u0}×R0 × ..×R2k−1 ×{u2k}
and F = {v0}×H0 × ..×H2k−1 ×{v2k} in R2k

D(s, s′)(E × F ) = C(s, s′)(E′ × F ′) · C(uk, vk)(E
′′ × F ′′) ,

where E′={u0}×R0 ×..×Rk−1 ×{uk} and E′′={uk}×Rk ×..×R2k−1 ×{u2k}
(similarly for F ). One can check that D ∈ C2k(M) and P

C
s,s′ = P

D
s,s′ .

(ii) Let Ω =
⋃

k∈N

{
P
C
s,s′ | C ∈ C2k(M)

}
. Let Fk be the collection of all finite

union of sets of the form C(E)×C(F ), for E,F ∈ Rk. Note that F =
⋃

k∈N
Fk is a

field generating the σ-algebra ofΠ (S)⊗Π (S). By Lemma 5 and Definition 22, to
prove that Ω is dense it suffices that for all μ ∈ Ω(Ps,Ps′), k ∈ N and F ∈ Fk,
there exists ω ∈ Ω s.t. ω(F ) = μ(F ). One can check that ω = P

C
s,s′ , where

C ∈ C2k(M) is s.t. C(s, s′) = μ[(·)|2k × (·)|2k ] (i.e., the push forward of μ along

the function (π, π′) �→ (π|2k , π′|2k)) has the desired property. ��
The following corollary derives from Lemma 24 and Theorem 19.

Corollary 25. For all k ∈ N, δ↓k ≥ δ↓k+1 and δ = infk∈N δ↓k.

6 An Approximation Algorithm

This section exploits the aforementioned results to propose a decidable procedure
for approximating the trace distance δ on SMCs with arbitrary precision.

Let ε > 0 and consider the sequences {δ↑k}k∈N
and {δ↓k}k∈N

from Section 5.
The procedure proceeds step-wise (increasing k ≥ 0) by computing the point-
wise difference δ↓k − δ↑k until is smaller then ε. Termination and correctness is
ensured by the convergence of the sequences from above and below to δ.

Theorem 26. Let M be a SMC. There exists an algorithm that, given a rational
number ε > 0, computes a function d : S×S → [0, 1]∩Q+ such that |d− δ| < ε.

We prove this theorem under two reasonable assumptions regarding SMCs:
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A1. For all s ∈ S and q, q′ ∈ Q+, ρ(s)([q, q
′)) is computable;

A2. For all s, s′ ∈ S, ‖ρ(s)− ρ(s′)‖ is computable.

In the above ρ(s)([q, q′)) and ‖ρ(s) − ρ(s′)‖ may assume real values, and with
the term “compute” we mean that there exists an effective Cauchy sequence of
rationals that converges to the value.

Lemma 27. Assuming A1, δ↑k is computable for all k ∈ N.

Proof (sketch). For each k ∈ N, the set Ek is finite. Moreover, for each s ∈ S and
E ∈ Ek, Ps(E) is computable thanks to its additivity and the hypothesis A1. ��

The computability of the sequence {δ↓k}k∈N
is less trivial. Equation (2) sug-

gests to look for a coupling structure C ∈ C2k(M) that minimizes the discrepancy
P
C
s,s′(�≡
ω). This is done by following a searching strategy similar to the one in [4]

and structured as follows: (i) we provide an alternative characterization of the
discrepancy associated with a coupling structure (Section 6.1); (ii) we describe
how to construct an optimal coupling structure and show that its associated
discrepancy is computable (Section 6.2).

6.1 Fixed Point Characterization of the Discrepancy

We characterize the discrepancy associated with a coupling structure C by means
of the least fixed point of a suitable operator parametric in C. To define the fixed
point operator it is convenient to split a coupling structure into two “projec-
tions”: on discrete state transitions (regardless of time delays); and on residence
times (given that a sequence of transitions has occurred). To this end define
S
k : S → D(Sk+1) and T

k : Sk → Δ(Rk
+) as follows

S
k(s)(u0..uk) = 1s(u0) ·

∏k−1
i=0 τ(ui)(ui+1) , T

k(v1..vk) = ρ(v1)× ··· × ρ(vk) .

Lemma 28. The set Ck(M) is in bijection with the set of pairs of functions
τC : S × S → D(Sk+1 × Sk+1) and ρC : Sk × Sk → Δ(Rk

+ × R
k
+) such that

τC(u, v) ∈Ω(Sk(u), Sk(v)) and ρC(u1..uk, v1..vk) ∈Ω(Tk(u1..uk),T
k(v1..vk)) .

Hereafter we identify the coupling structure C with its bijective image (τC , ρC).
Intuitively, τC(u, v)(u0..uk, v0..vk) is the probability that two copies of M,

scheduled according to C, have respectively generated the sequences of states
u0..uk and v0..vk starting from u and v; while ρ(u0..uk−1, v0..vk−1)(R × R′)
is the probability that, having observed u0..uk−1 and v0..vk−1, the generated
sequence of time delays are in R,R′ ⊆ R

k
+, respectively.

For a coupling structure C = (τC , ρC) ∈ Ck(M), define the self-map Γ C over
[0, 1]-valued functions on Sk+1 × Sk+1 as follows5

Γ C(d)(u0..uk, v0..vk) =

⎧
⎪⎨

⎪⎩

0 if α = 0

1 if α �= 0, ∃i. ui �≡
 vi

β + (1− β) · ∫ d dτC(uk, vk) otherwise

5 Since, for all u, v ∈ S, τC(u, v) is a discrete measure on a finite space, the Lebesgue
integral

∫
d dτC(u, v) in the definition of Γ C is

∑
x,y∈Sk+1 d(x, y) · τC(u, v)(x, y).
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where β = ρC(u0..uk−1, v0..vk−1)(�=) and α = τC(u0, v0)(u0..uk, v0..vk).
The operator Γ C is monotonic w.r.t. the point-wise order on [0, 1]-valued

functions. Hence, by Tarski’s fixed point theorem, Γ C has a least fixed point,
which we denote by γC . The next result shows that γC is closely related to the
discrepancy associated with the coupling structure C, and this will eventually be
used to compute it.

Lemma 29. For any coupling structure C, PC
s,s′(�≡
ω) =

∫
γC dτC(s, s′).

6.2 Construction of an Optimal Coupling Structure

In this subsection we construct an optimal coupling structure by iterating suc-
cessive updates of a given coupling structure. We provide necessary and sufficient
conditions for a coupling structure C to ensure that δ↓k is obtained from γC .

To this end, we first introduce the notion of update for a coupling structure.

Definition 30 (Update). Let C = (τC , ρC) ∈ Ck(M). For μ ∈ Ω(Sk(u), Sk(v))
and ν ∈ Ω(Tk(u1..uk),T

k(v1..vk)), define

– transition update: C[(u, v)/μ] = (τC [(u, v) �→ μ], ρC);
– delay update: C〈(u1..uk, v1..vk)/ν〉 = (τC , ρC [(u1..uk, v1..vk) �→ ν]).

where, for a function f : X → Y , f [x �→ y] denotes the update of f at x with y.

Our update strategy relies on the following result.

Lemma 31 (Update Criteria). Let C = (τC , ρC) ∈ Ck(M) be a coupling
structure and u0..uk, v0..vk ∈ S such that τC(u0..uk, v0..vk) > 0 and, for all i ≤ k,
ui ≡
 vi. Then, for μ ∈ Ω(Sk(uk), S

k(vk)), ν ∈ Ω(Tk(u0..uk−1),T
k(v0..vk−1))

and D = C[(uk, vk)/μ]〈(u0..uk−1, v1..vk−1)/ν〉, it holds γD < γC whenever

(i) ν(�=) < ρC(u0..uk−1, v1..vk−1)(�=) and
∫
γC dμ ≤ ∫

γC dτC(uk, vk), or

(ii) ν(�=) ≤ ρC(u0..uk−1, v1..vk−1)(�=) and
∫
γC dμ <

∫
γC dτC(uk, vk).

Condition (i) in Lemma 31 ensures that any C = (τC , ρC) ∈ Ck(M) is improved
by replacing ρC with the function ρ∗ : Sk × Sk → Δ(Rk

+ × R
k
+) defined as

ρ∗(u0..uk−1, v1..vk−1) = min
{
ν(�=) | ν ∈ Ω(Tk(u0..uk−1),T

k(v0..vk−1))
}

= ‖Tk(u0..uk−1)− T
k(v0..vk−1)‖ (Lemma 18)

= 1−∏k−1
i=0 (1 − ‖ρ(ui)− ρ(vi)‖) = β∗ ,

where the last equality follows by the definition of Tk(u0..uk−1) and T
k(v0..vk−1)

as product measures. Notice that, assuming A2, the above is computable. By
replacing β in the definition of Γ C with β∗, γC can be computed as the least
solution of the linear equation system induced by the definition of Γ C.

Condition (ii) of Lemma 31 suggests to improve C with C[(uk, vk)/μ
∗] where

μ∗ = argmin
{∫

γC dμ | μ ∈ Ω(Sk(uk), S
k(vk))

}

= argmin
{∑

x,y∈Sk+1 γC(x, y) · μ(x, y) | μ ∈ Ω(Sk(uk), S
k(vk))

}
.
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The above is a linear program (a.k.a. transportation problem), hence computable.
The sufficient conditions for termination is provided by the following lemma.

Lemma 32. Let C = (τC , ρ∗) ∈ C2k(M) be such that δ↓k(u, v) �=
∫
γC dτC(u, v)

for some u, v ∈ S. Then there exist u′, v′ ∈ S and μ ∈ Ω(S2
k

(u′), S2
k

(v′)) such
that

∫
γC dμ <

∫
γC dτC(u′, v′).

Intuitively, the above ensures that, unless C is an optimal coupling structure, (ii)
in Lemma 31 is satisfied, so that, we can further improve C as aforesaid.

Proposition 33. Assuming A2, δ↓k is computable for all k ∈ N.

Proof (sketch). The aforementioned strategy ensures that the updated couplings
are chosen from the vertices of the polytopes Ω(Sk(u), Sk(v)), for u, v ∈ S. Since
these polytopes have finitely many vertexes, the procedure eventually terminates.
By Lemma 32, the last coupling describes δ↓k. ��

7 Conclusions and Future Work

In this paper we showed that the total variation distance of SMCs (i.e., the trace
distance) is the appropriate behavioral distance to reason about linear real-time
properties. This has been done by giving characterizations in terms of MTL for-
mulas or timed ω-regular languages that arise naturally in the context of linear
real-time probabilistic model checking. Notably, the technique that has been pro-
posed to prove this result is more general and allows for many more interesting
characterizations. We showed, for instance, that the distance can be character-
ized by considering strictly less expressive fragments of MTL, namely MTL−;
analogously, it suffices to consider only the subclass of ω-languages recognized
by single-clock always resetting DTAs.

Moreover, we studied the problem of approximating the trace distance within
any absolute error. We showed that the problem is computable by approximating
the total variation distance both from above and below by means of the sequences
{δ↓k}k and {δ↑k}k, that are proved to be effective. This both extends the result
of [9] to the real-time setting and gives an alternative way to approximate the
total variation distance on MCs.

As a future work we consider to further explore the potentiality of the pre-
sented results by studying how fast the sequences converge to the total variation
distance. Moreover, we would like to see if similar results can be used to link dif-
ferent behavioral distances, such as the Kantorovich-based bisimilarity distance
and the total variation (for which the former is know to be an upper bound of
the latter), opening for the possibility of “bridging the gap” between trace and
branching-based behavioral distances.

From a computational perspective, also motivated by our previous work [4]
on MCs, we would like to implement an on-the-fly algorithm for computing tight
over-approximations of the trace distance.
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Abstract. Hierarchical probabilistic automata (HPA) are probabilistic automata
whose states are partitioned into levels such that for any state and input symbol, at
most one transition with non-zero probability goes to a state at the same level, and
all others go to states at a higher level. We present expressiveness and decidability
results for 1-level HPAs that work on both finite and infinite length input strings;
in a 1-level HPA states are divided into only two levels (0 and 1). Our first result
shows that 1-level HPAs, with acceptance threshold 1/2 (both in the finite and
infinite word cases), can recognize non-regular languages. This result is surpris-
ing in the light of the following two facts. First, all earlier proofs demonstrating
the recognition of non-regular languages by probabilistic automata employ either
more complex automata or irrational acceptance thresholds or HPAs with more
than two levels. Second, it has been previously shown that simple probabilistic
automata (SPA), which are 1-level HPAs whose accepting states are all at level
0, recognize only regular languages. We show that even though 1-level HPAs
with threshold 1/2 are very expressive (in that they recognize non-regular lan-
guages), the non-emptiness and non-universality problems are both decidable in
EXPTIME. To the best our knowledge, this is the first such decidability result
for any subclass of probabilistic automata that accept non-regular languages. We
prove that these decision problems are also PSPACE-hard. Next, we present a
new sufficient condition when 1-level HPAs recognize regular languages (in both
the finite and infinite cases). Finally, we show that the emptiness and universality
problems for this special class of HPAs is PSPACE-complete.

1 Introduction

Probabilistic automata (PA) [13,12,1,10] are finite state machines that have probabilistic
transitions on input symbols. Such machines can either recognize a language of finite
words (probabilistic finite automata PFA [13,12]) or a language of infinite words (prob-
abilistic Büchi/Rabin/Muller automata [1,10,6]) depending on the notion of accepting
run; on finite input words, an accepting run is one that reaches a final state, while on
an infinite input, an accepting run is one whose set of states visited infinitely often sat-
isfy a Büchi, Rabin, or Muller acceptance condition. The set of accepting runs in all
these cases can be shown to be measurable and the probability of this set is taken to be
probability of accepting the input word. Given an acceptance threshold x, the language
L>x(A) (L≥x(A)) of a PA A is the set of all inputs whose acceptance probability is
> x (≥ x). In this paper the threshold x is always a rational number in (0, 1).
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Hierarchical probabilistic automata (HPA) are a syntactic subclass of probabilistic
automata that are computationally more tractable for extremal thresholds [5] — prob-
lems of emptiness and universality which are undecidable for PAs on infinite words
with threshold 0 become decidable for HPAs. Over finite words, the problem of decid-
ing whether the infimum of acceptance probabilities is 0 also becomes decidable for
HPAs [8], even though it is undecidable for general PAs [9]. Intuitively, a HPA is a PA
whose states are stratified into (totally) ordered levels with the property that from any
state q, and input a, the machine can transition with non-zero probability to at most one
state in the same level as q, and all other probabilistic successors belong to a higher
level. Such automata arise naturally as models of client-server systems. Consider such
a system where clients can request services of multiple servers that can fail (catastroph-
ically) with some probability. The state of the automaton models the global state of
all the servers and inputs to the machine correspond to requests from the client to the
servers. The levels of the automaton correspond to the number of failed servers, with
the lowest level modeling no failures. Since failed servers can’t come back, the tran-
sitions in such a system satisfy the hierarchical nature. While HPAs are tractable with
extremal thresholds, the emptiness and universality problems are undecidable for HPA
with threshold 1

2 [4]. In fact, solving these decision problems for 6-level HPAs is un-
decidable [4]. In this paper, we investigate how the landscape changes when we restrict
our attention to 1-level HPAs.

1-level HPAs (henceforth simply called HPAs) are machines whose states are parti-
tioned into two levels (0 and 1), with initial state in level 0, and transitions satisfying
the hierarchical structure. These automata model client-server systems where only one
server failure is allowed. Despite their extremely simple structure, we show that (1-
level) HPAs turn out to be surprisingly powerful — they can recognize non-regular
languages over finite and infinite words (even with threshold 1

2 ). This result is sig-
nificant because all earlier constructions of PFAs [12,13] and probabilistic Büchi au-
tomata [10,2] recognizing non-regular languages use either more complex automata
or irrational acceptance thresholds or HPAs with more than two levels. Moreover, this
result is also unexpected because it was previously shown that simple probabilistic au-
tomata only recognize regular languages [4,5]. The only difference between (1-level)
HPAs and simple probabilistic automata is that all accepting states of a simple proba-
bilistic automaton are required to be in level 0 (same level as the initial state).

Next, we consider the canonical decision problems of emptiness and universality for
(1-level) HPAs with threshold x. Decision problems for PAs with non-extremal thresh-
olds are often computationally harder than similar questions when the threshold is ex-
tremal (either 0 or 1), and the problems are always undecidable [7,5,2,12]. Even though
1-level HPAs are expressive, we show that both emptiness and universality problems for
1-level HPAs are decidable in EXPTIME and are PSPACE-hard. As far as we know,
this is the first decidability result for any subclass of PAs with non-extremal thresholds
that can recognize non-regular languages. Our decision procedure relies on observing
that when the language of a HPA A is non-empty (or non-universal), then there is an
input whose length is exponentially bounded in the size of the HPA that witnesses this
fact.
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Finally, we introduce a special subclass of (1-level) HPAs called integer HPAs. In-
teger HPA are HPAs where from any level 0 state q, on any input a, the probability of
transitioning to a level 1 state is an integer multiple of the probability of the (unique)
transition to a level 0 state on a from q. With this restriction, we can show that integer
HPA with threshold x only recognize regular languages (over finite and infinite words).
For integer HPAs, we show that the canonical decision decision problems of emptiness
and universality are PSPACE-complete.

The rest of the paper is organized as follows. Section 2 has basic definitions, and
introduces HPAs along with some useful propositions. The results characterizing the
expressiveness and decidability of HPAs are presented in Section 3. The results on
integer HPAs are presented in Section 4. Section 5 contains concluding remarks.

2 Preliminaries

We assume that the reader is familiar with finite state automata, regular languages,
Büchi automata, Muller automata and ω-regular languages. The set of natural numbers
will be denoted by N, the closed unit interval by [0, 1] and the open unit interval by
(0, 1). The power-set of a set X will be denoted by 2X .

Sequences. Given a finite set S, |S| denotes the cardinality of S. Given a sequence
(finite or infinite) κ = s0s1 . . . over S, |κ| will denote the length of the sequence (for
infinite sequence |κ| will be ω), and κ[i] will denote the ith element si of the sequence.
As usual S∗ will denote the set of all finite sequences/strings/words over S, S+ will de-
note the set of all finite non-empty sequences/strings/words over S and Sω will denote
the set of all infinite sequences/strings/words over S. We will use u, v, w to range over
elements of S∗, α, β, γ to range over infinite words over Sω.

Given κ ∈ S∗ ∪ Sω, natural numbers i, j ≤ |κ|, κ[i : j] is the finite sequence
si . . . sj and κ[i : ∞] is the infinite sequence sisi+1 . . ., where sk = κ[k]. The set of
finite prefixes of κ is the set Pref (κ) = {κ[0 : j] | j ∈ N, j ≤ |κ|}. Given u ∈ S∗ and
κ ∈ S∗ ∪Sω, uκ is the sequence obtained by concatenating the two sequences in order.
Given L1 ⊆ Σ∗ and L2 ⊆ S∗ ∪Σω, the set L1L2 is defined to be {uκ | u ∈ L1 and κ ∈
L2}. Given u ∈ S+, the word uω is the unique infinite sequence formed by repeating
u infinitely often. An infinite word α ∈ Sω is said to be ultimately periodic if there are
finite words u ∈ S∗ and v ∈ S+ such that α = uvω. For an infinite word α ∈ Sω, we
write inf(α) = {s ∈ S | s = α[i] for infinitely many i}.

Languages. Given a finite alphabet Σ, a language L of finite words is a subset of Σ∗.
A language L of infinite words over a finite alphabet Σ is a subset of Σω. We restrict
only to finite alphabets.

Probabilistic Automaton (PA). Informally, a PA is like a finite-state deterministic
automaton except that the transition function from a state on a given input is described
as a probability distribution which determines the probability of the next state.

Definition 1. A finite state probabilistic automata (PA) over a finite alphabet Σ is a
tuple A = (Q, qs, δ,Acc) where Q is a finite set of states, qs ∈ Q is the initial state,
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δ : Q × Σ × Q → [0, 1] is the transition relation such that for all q ∈ Q and a ∈ Σ,
δ(q, a, q′) is a rational number and

∑
q′∈Q δ(q, a, q′) = 1, and Acc is an acceptance

condition.

Notation: The transition function δ of PA A on input a can be seen as a square matrix
δa of order |Q| with the rows labeled by “current” state, columns labeled by “next state”
and the entry δa(q, q

′) equal to δ(q, a, q′). Given a word u = a0a1 . . . an ∈ Σ+, δu is
the matrix product δa0δa1 . . . δan . For an empty word ε ∈ Σ∗ we take δε to be the
identity matrix. Finally for any Q0 ⊆ Q, we say that δu(q,Q0) =

∑
q′∈Q0

δu(q, q
′).

Given a state q ∈ Q and a word u ∈ Σ+, post(q, u) = {q′ | δu(q, q′) > 0}. For a set
C ⊆ Q, post(C, u) = ∪q∈C post(q, u).

Intuitively, the PA starts in the initial state qs and if after reading a0, a1 . . . , ai results
in state q, then it moves to state q′ with probability δai+1(q, q

′) on symbol ai+1. A run of
the PA A starting in a state q ∈ Q on an input κ ∈ Σ∗∪Σω is a sequence ρ ∈ Q∗∪Qω

such that |ρ| = 1 + |κ|, ρ[0] = q and for each i ≥ 0, δκ[i](ρ[i], ρ[i+ 1]) > 0.
Given a word κ ∈ Σ∗∪Σω, the PA A can be thought of as a (possibly infinite-state)

(sub)-Markov chain. The set of states of this (sub)-Markov Chain is the set {(q, v) | q ∈
Q, v ∈ Pref (κ)} and the probability of transitioning from (q, v) to (q′, u) is δa(q, q′)
if u = va for some a ∈ Σ and 0 otherwise. This gives rise to the standard σ-algebra
on Qω defined using cylinders and the standard probability measure on (sub)-Markov
chains [14,11]. We shall henceforth denote the σ-algebra as FA,κ and the probability
measure as μA,κ.

Acceptance Conditions and PA Languages. The language of a PA A = (Q, qs, δ,Acc)
over an alphabet Σ is defined with respect to the acceptance conditionAcc and a thresh-
old x ∈ [0, 1]. We consider three kinds of acceptance conditions.

Finite acceptance: When defining languages over finite words, the acceptance con-
dition Acc is given in terms of a finite set Qf ⊆ Q. In this case we call the PA A, a
probabilistic finite automaton (PFA). Given a finite acceptance condition Qf ⊆ Q and
a finite word u ∈ Σ∗, a run ρ of A on u is said to be accepting if the last state of ρ is
in Qf . The set of accepting runs on u ∈ Σ∗ is measurable [14] and we shall denote its
measure by μacc,f

A, u . Note that μacc,f
A, u = δu(qs, Qf). Given a rational threshold x ∈ [0, 1]

and � ∈ {≥, >}, the language of finite words Lf�x(A) = {u ∈ Σ∗ | μacc,f
A, u � x} is the

set of finite words accepted by A with probability �x.
Büchi acceptance: Büchi acceptance condition defines languages over infinite words.

For Büchi acceptance, the acceptance condition Acc is given in terms of a finite set
Qf ⊆ Q. In this case, we call the PA A, a probabilistic Büchi automaton (PBA). Given
a Büchi acceptance condition Qf , a run ρ of A on an infinite word α ∈ Σω is said to
be accepting if inf(ρ) ∩ Qf 
= ∅. The set of accepting runs on α ∈ Σω is once again
measurable [14] and we shall denote its measure by μacc,b

A, α . Given a rational threshold
x ∈ [0, 1] and � ∈ {≥, >}, the language of infinite words Lb�x(A) = {α ∈ Σω |
μacc,b
A, α � x} is the set of infinite words accepted by PBA A with probability �x.

Muller acceptance: For Muller acceptance, the acceptance condition Acc is given in
terms of a finite set F ⊆ 2Q. In this case, we call the PA A, a probabilistic Muller
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automaton (PMA). Given a Muller acceptance condition F ⊆ 2Q, a run ρ of A on
an infinite word α ∈ A is said to be accepting if inf(ρ) ∈ F. Once again, the set of
accepting runs are measurable [14]. Given a word α, the measure of the set of accepting
runs is denoted by μacc,m

A, α . Given a a threshold x ∈ [0, 1] and � ∈ {≥, >}, the language
of infinite words Lm�x(A) = {α ∈ Σω |μacc,m

A, α �x} is the set of infinite words accepted
by PMA A with probability �x.

2.1 Hierarchical Probabilistic Automata

Intuitively, a hierarchical probabilistic automaton is a PA such that the set of its states
can be stratified into (totally) ordered levels. From a state q, for each letter a, the ma-
chine can transition with non-zero probability to at most one state in the same level as q,
and all other probabilistic successors belong to a higher level. We define such automata
for the special case when the states are partitioned into two levels (level 0 and level 1).

Definition 2. A 1-level hierarchical probabilistic automaton HPA is a probabilistic au-
tomaton A = (Q, qs, δ,Acc) over alphabet Σ such that Q can be partitioned into two
sets Q0 and Q1 with the following properties.

– qs ∈ Q0,
– For every q ∈ Q0 and a ∈ Σ, |post(q, a) ∩Q0| ≤ 1
– For every q ∈ Q1 and a ∈ Σ, post(q, a) ⊆ Q1 and |post(q, a)| = 1.

Given a 1-level HPA A, we will denote the level 0 and level 1 states by the sets Q0 and
Q1 respectively.

Example 1. Consider the PAs Aint, A 1
3

, and ARabin shown in Figs. 1, 2, and 3 re-
spectively. All three automata have the same set of states ({qs, qacc, qrej}), same ini-
tial state (qs), same alphabet ({0,1}), the same acceptance condition (Qf = {qacc} if



Decidable and Expressive Classes of Probabilistic Automata 205

finite/Büchi, and F = {{qacc}} if Muller) and the same transition structure. The only
difference is in the probability of transitions out of qs. All three of these automata are (1-
level) HPAs; we can take Q0 = {qs}, and Q1 = {qacc, qrej}. Though all three are very
similar automata, we will show that Aint and ARabin are symptomatic of automata that
accept only regular languages (with rational thresholds), while the other (A 1

3
) accepts

non-regular languages (with rational thresholds). The automata ARabin was originally
presented in [13] and it is known to accept a non-regular language with an irrational
threshold [13,3]. Similarly it can be shown that Aint also accepts a non-regular language
with an irrational threshold.

Notation: For the rest of the paper, by a HPA we shall mean 1-level HPA, unless oth-
erwise stated.

Let us fix a HPA A = (Q, qs, δ,Acc) over alphabet Σ with Q0 and Q1 being the level 0
and level 1 states. Observe that given any state q ∈ Q0 and any word κ ∈ Σ∗ ∪Σω, A
has at most one run ρ on α where all states in ρ belong to Q0. We now present a couple
of useful definitions. A set W ⊆ Q is said to be a witness set if W has at most one level
0 state, i.e., |W ∩Q0| ≤ 1. Observe that for any word u ∈ Σ∗, post(qs, u) is a witness
set, i.e., |post(qs, u)∩Q0| ≤ 1. We will say a word κ ∈ Σ∗∪Σω (depending on whether
A is an automaton on finite or infinite words) is definitely accepted from witness set W
iff for every q ∈ W with q ∈ Qi (for i ∈ {0, 1}) there is an accepting run ρ on κ starting
from q such that for every j, ρ[j] ∈ Qi and δκ[j](ρ[j], ρ[j + 1]) = 1. In other words, κ
is definitely accepted from witness set W if and only if κ is accepted from every state
q in W by a run where you stay in the same level as q, and all transitions in the run are
taken with probability 1. Observe that the set of all words definitely accepted from a
witness set W is regular.

Proposition 1. For any HPA A and witness set W , the language

LW = {κ | κ is definitely accepted by A from W}
is regular.

Observe that LW = ∩q∈W L{q} and L∅ (as defined above) is the set of all strings. Thus,
the emptiness of LW can be checked in PSPACE.

Proposition 2. For any HPA A and witness set W , the problem of checking the empti-
ness of LW (as defined in Proposition 1) is in PSPACE.

For a set C ⊆ Q1, a threshold x ∈ (0, 1), and a word u ∈ Σ∗, we will find it useful
to define the following quantity val(C, x, u) given as follows. If δu(qs, Q0) 
= 0 then

val(C, x, u) =
x− δu(qs, C)

δu(qs, Q0)
.

On the other hand, if δu(qs, Q0) = 0 then

val(C, x, u) =

⎧
⎨

⎩

+∞ if δu(qs, C) < x
0 if δu(qs, C) = x
−∞ if δu(qs, C) > x

.
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The quantity val(C, x, u) measures the fraction of δu(qs, Q0) that still needs to move
to C such that the probability of reaching C exceeds the threshold x. This intuition
is captured by the following proposition whose proof follows immediately from the
definition of val(C, x, u).

Proposition 3. Consider a HPA A with threshold x, and words u, v ∈ Σ∗. Let C,D ⊆
Q1 such that post(C, v) = D. The following properties hold.

– If val(C, x, u) < 0 then δuv(qs, D) > x.
– If val(C, x, u) = 0 then δu(qs, C) = x.

Witness sets and the value function play an important role in deciding whether a
word κ is accepted by a HPA. In particular, κ is accepted iff κ can be divided into
strings u, κ′ such that A reaches a witness set W with “sufficient probability” on u, and
κ′ is definitely accepted from W . We state this intuition precisely next.

Proposition 4. For a HPA A, threshold x ∈ [0, 1], and word κ, κ ∈ La>x(A) (where
a ∈ {f, b,m}) if and only if there is a witness set W , u ∈ Σ∗ and κ′ ∈ Σ∗ ∪Σω such
that κ = uκ′, κ′ is definitely accepted by A from W , and one of the following holds.

– Either W ⊆ Q1 and val(W,x, u) < 0, or
– W ∩Q0 
= ∅ and 0 ≤ val(W ∩Q1, x, u) < 1.

3 Expressiveness and Decidability

One-level HPAs have a very simple transition structure. In spite of this, we will show
that HPA can recognize non-regular languages (Section 3.1). Even though it has been
shown before that PFAs [12,13] and PBAs [10,2] recognize non-regular languages, all
the examples before, use either more complex automata or irrational acceptance thresh-
olds or HPAs with more than two levels. We shall then show that even though HPAs can
recognize non-regular languages, nevertheless the emptiness and universality problems
of HPAs are decidable (Section 3.2).

3.1 Non-regular Languages Expressed by 1-level HPA

We will now show that HPA can recognize non-regular languages, under both finite
acceptance and Büchi acceptance conditions. We consider a special type of HPA which
we shall call simple absorbing HPA (SAHPA).

Definition 3. Let A = (Q, qs, δ,Acc) be a HPA over an alphabet Σ with Q0 and Q1

as the sets of states at level 0 and 1 respectively. A is said to be a simple absorbing
HPA (SAHPA) if

– Q0 = {qs}, Q1 = {qacc, qrej}.
– The states qacc, qrej are absorbing, i.e., for each a ∈ Σ, δa(qacc, qacc) = 1 and

δa(qrej, qrej) = 1.
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For an κ ∈ Σ∗ ∪ Σω, GoodRuns(κ) is the set of runs ρ of A on κ such there is an
i ≥ 0 with ρ(j) = qacc for all i ≤ j ≤ |κ|. A word α ∈ Σω is said to be always alive
for A if for each i > 0, δα[0:i](qs, qs) > 0.

Example 2. All three automata Aint, A 1
3

and ARabin (Example 1) shown in Figs. 1, 2,
and 3 are simple absorbing HPAs.

The following lemma states some important properties satisfied by SAHPA.

Lemma 1. Let A = (Q, qs, δ,Acc) be a SAHPA over an alphabet Σ with Q0 and Q1

as the sets of states at level 0 and 1 respectively. For any always alive α ∈ Σω,

1. if α is ultimately periodic and μA,α(GoodRuns(α)) = x then the set
{val({qacc}, x, α[0 : i]) | i ∈ N, i ≥ 0} is a finite set,

2. if limi→∞ δα[0:i](qs, qs) = 0 and x ∈ (0, 1) then μA,α(GoodRuns(α)) = x ⇔
∀i ≥ 0, val({qacc}, x, α[0 : i]) ∈ [0, 1].

Now, we shall show that SAHPA can recognize non-regular languages. We start by
recalling a result originally proved in [13]. Let Σ = {0,1}. Any word κ ∈ Σ∗ ∪Σω

can be thought of as the binary representation of a number in the unit interval [0, 1] by
placing a decimal in front of it. Formally,

Definition 4. Let Σ = {0,1}. The map Σ∗∪Σω → [0, 1] is the unique map such that
bin(ε) = 0 and bin(aκ1) =

ā
2 + 1

2bin(κ1), where ā = 0 if a = 0 and 1 otherwise.

Note that bin(α) is irrational iff α is an infinite word which is not ultimately periodic.
The following is shown in [13].

Theorem 1. Σ = {0,1} and α ∈ Σω be a word which is not ultimately periodic.
Given � ∈ {>,≥},

– {u ∈ Σ∗ | bin(u)� bin(α)} is not regular.
– {γ ∈ Σω | bin(γ)� bin(α)} is not ω-regular.

We make some observations about the automaton A 1
3

shown in Fig. 2 in Lemma 2.

Lemma 2. Let A 1
3

be the SAHPA over the alphabetΣ = {0,1} defined in Example 1.
Let α ∈ Σω be such that α is not an ultimately periodic word. We have that for each
κ ∈ Σ∗ ∪Σω,

bin(κ) < bin(α) ⇔ μA,κ(GoodRuns(κ)) < μA,α(GoodRuns(α))

and
bin(κ) > bin(α) ⇔ μA,κ(GoodRuns(κ)) > μA,α(GoodRuns(α)).

We have:

Theorem 2. Consider the SAHPA A 1
3

over the alphabet Σ = {0,1} defined in Ex-
ample 1. Consider the finite acceptance condition and the Büchi acceptance condition
defined by setting Acc = {qacc}. Given � ∈ {>,≥}, we have that the language of
finite words Lf� 1

2
(A) is not regular and the language of infinite words Lb� 1

2
(A) is not

ω-regular.
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Proof. Given u ∈ Σ∗, we shall denote val({qacc}, 12 , u) by valu. We observe some
properties of the value valu.

Claim (A). For any u ∈ Σ∗,

– valu0 = 3
2valu and valu1 = 3valu − 2.

– If valu ∈ [0, 1] then it is of the form p
2i where p is an odd number and i − 1 is the

number of occurrences of 0 in u.
– valu /∈ {0, 1, 23}.

Proof. The first part of the claim follows from observing that δu0(qs, qs) = 2
3δu(qs, qs),

δu0(qs, qacc) = δu(qs, qacc), δu1(qs, qs) = 1
3δu(qs, qs) and that δu1(qs, qacc) =

δu(qs, qacc) + δu(qs, qs)
2
3 . The second part can be shown easily by an induction on the

length of u using the first part of the claim. (Observe that the base case is bin(ε) = 1
2 ).

The third part of the claim is an easy consequence of the second part. (End: Proof of
Claim (A)) ��
We now show that there is exactly one word β ∈ Σω such that μA,β(GoodRuns(β)) =
1
2 . As each α ∈ Σω is always alive and limi→∞ δα[0:i](qs, qs) = 0, it follows from
Lemma 1 and Claim (A) that it suffices to show that there is exactly one word β ∈ Σω

such that ∀i ≥ 0, valβ[0:i] ∈ (0, 1).
We prove this by constructing β, starting from the empty word and showing that

it can be extended one letter at a time in exactly one way. Clearly, thanks to Claim
(A), since val0 = 3

4 and val1 = − 1
2 , β[0] should be 0. Suppose we have constructed

β[0 : i]. Now, thanks to Claim (A) if 0 < valβ[0:i] <
2
3 then 0 < valβ[0:i]0 < 3

2
2
3 = 1

and valβ[0:i]1 < 3 2
3 − 2 < 0. If 2

3 < valβ[0:i] < 1 then valβ[0:i]0 > 3
2
2
3 = 1 and

0 = 3 2
3 − 2 < valβ[0:i]1 < 3.1 − 2 = 1. Thus if valβ[0:i] <

2
3 then β[i + 1] has to be

0, otherwise β[i + 1] has to be 1. Thus, we see that there is exactly one word β ∈ Σω

such that μA,β(GoodRuns(β)) = 1
2 . We shall now show that the values valβ[0:i] are

all distinct.

Claim (B). For each i, j such that i 
= j, valβ[0:i] 
= valβ[0:j].

Proof. Fix i, j. Without loss of generality, we can assume that j > i. Note that thanks
to Claim (A) that if there is an occurrence of 0 in β[i + 1 : j] then valβ[0:i] 
= valβ[0:j].
If there is no occurrence of 0 in β[i + 1 : j] then every letter of β[i + 1 : j] must be a
1. Thus, the result will follow if we can show that for each i+ 1 ≤ k < j, we have that
valβ[1:k]1 < valβ[1:k]. Using Claim (A), we have that

valβ[1:k]1 < valβ[1:k] ⇔ 3valβ[1:k] − 2 < valβ[1:k] ⇔ valβ[1:k] < 1.

Now valβ[1:k] < 1 by construction of β. The claim follows. (End: Proof of Claim (B))
��

Now, thanks to Lemma 1 and Claim (B), we have that β is not ultimately periodic.
The result follows from Lemma 2 and Theorem 1. ��
Remark 1. Note that since any Büchi acceptance condition can be converted into an
equivalent Muller acceptance condition, HPAs also recognize non-regular languages
under Muller acceptance conditions.
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3.2 Decision Problems for 1-level HPA

We now show that the problems of checking emptiness and universality for HPAs are
decidable, more specifically, they are in EXPTIME. We start by considering emptiness
for the language La>x(A) for a HPA A. In order to construct the decision procedure
for this language, we need to consider special kinds of witness sets. We will say that a
witness set W is good if the language LW defined in Proposition 1 is non-empty. We
have the following.

Proposition 5. Give a HPA A = (Q, qs, δ,Acc), threshold x ∈ [0, 1] and a ∈ {f, b,m},
the language La>x(A) 
= ∅ iff there is a word u ∈ Σ∗ and a good non-empty set H
such that δu(qs, H) > x.

The decision procedure for checking emptiness (or rather non-emptiness) will search
for a word u as in Proposition 5. The following lemma shows that, it is enough to search
for words of exponential length.

Lemma 3. Let A = (Q, qs, δ,Acc) be an HPA with n states (i.e., |Q| = n) such that
all the transition probabilities of A have size at most r 1. Let x ∈ [0, 1] be a rational
threshold of size at most r. For any a ∈ {f, b,m}, La>x(A) 
= ∅ iff there is a finite word
u and a good non-empty set H , such that |u| ≤ 4rn8n and δu(qs, H) > x.

Proof. Observe that if there is a finite word u and a good non-empty set H such that
δu(qs, H) > x then by Proposition 5, La>x(A) 
= ∅. Thus, we only need to prove that
nonemptiness of La>x(A) guarantees the existence of u and H as in the lemma.

Let gwords = {(s,G) | G 
= ∅, G is good and δs(qs, G) > x}. By Proposition 5,
gwords is non-empty. Fix (s,G) ∈ gwords such that for every (s1, G1) ∈ gwords,
|s| ≤ |s1|, i.e., s is the shortest word appearing in a pair in gwords. Note if |s| ≤ 2n

then the lemma follows.
Let us consider the case when |s| > 2n. Let k1 = |s| − 1. Observe that by our

notation, s = s[0 : k1]. Now, for any 0 ≤ i ≤ k1, let Yi = post(qs, s[0 : i]) ∩ Q1

and Xi = {q ∈ Yi : post(q, s[i + 1 : k1]) ⊆ G}. Note that Xi ⊆ Yi and is good.
Since |s| > 2n and A has n states, there must be i, j with i < j ≤ k1 such Xi = Xj

and post(qs, s[0 : i]) ∩ Q0 = post(qs, s[0 : j]) ∩ Q0. If post(qs, s[0 : i]) ∩ Q0 = ∅
then it is easy to see that (s[0 : i]s[j + 1 : k1], G) ∈ gwords contradicting the fact that
s is the shortest such word. Hence, fix j to be the smallest integer such that for some
i < j, Xi = Xj and post(qs, s[0 : i]) ∩ Q0 = post(qs, s[0 : j]) ∩ Q0 
= ∅. Let q be
the unique state in post(qs, s[0 : i]) ∩Q0.

Let s[0 : i] = v, s[i + 1 : j] = w, s[j + 1 : k1] = t; thus, s = vwt. Now, let
z1 = δv(qs, Xi) and y1 = δv(qs, Q1). Similarly, let z2 = δw(q,Xj), y2 = δw(q,Q1)
and z3 = δt(q,G). Since Xi, Xj ⊆ Q1, z1 ≤ y1 and z2 ≤ y2. Also note that |w| > 0
by construction of j and that y2 = δw(q,Q1) > 0 (by the minimality of length of s).

For any integer � ≥ 0, let u� = vw� and s� = u�t. Note that u0 = v and s1 = s.
Let � > 0. We observe that

δs�(qs, G) = δu(�−1)
(qs, Xi) + (1− δu(�−1)

(qs, Q1)) · z2 + (1 − δu�
(qs, Q1)) · z3

1 We say a rational number s has size r iff there are integers m,n such that s = m
n

and the
binary representation of m and n has at most r-bits.
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and
δs(�−1)

(qs, G) = δu(�−1)
(qs, Xi) + (1 − δu(�−1)

(qs, Q1)) · z3. (1)

Therefore,

δs�(qs, G)− δs(�−1)
(qs, G) = (1− δu(�−1)

(qs, Q1)) · z2 −
(δu�

(qs, Q1)− δu(�−1)
(qs, Q1)) · z3.

In addition, δu�
(qs, Q1) = δu(�−1)

(qs, Q1) + (1 − δu(�−1)
(qs, Q1)) · y2 and hence

δu�
(qs, Q1)−δu(�−1)

(qs, Q1) = (1−δu(�−1)
(qs, Q1))·y2 Putting all the above together,

we get for all � > 0,

δs�(qs, G)− δs(�−1)
(qs, G) = (1 − δu(�−1)

(qs, Q1)) · (z2 − y2 · z3).

Since s = s1 is the shortest word in gwords and s0 = vt is a strictly smaller word
than s1, we must have that δs0(qs, G) ≤ x and hence δs1(qs, G) > δs0(qs, G). From
this and the above equality, we see that (1 − δu0(qs, Q1)) > 0 and that (z2 − y2 ·
z3) > 0. This also means that, for all � > 0, δs�(qs, G) ≥ δs(�−1)

(qs, G). Hence,
lim�→∞ δs�(qs, G) exists and is ≥ δs1(qs, G). Since s1 = s, we get that
lim�→∞ δs�(qs, G) > x.

Observe that δw(q,Q1) > 0. Hence, one can show that lim�→∞ (1−δu(�−1)
(qs, Q1))

= 0. This along with Equation (1) means that lim�→∞ δs�(qs, G) = lim�→∞ δu�
(qs, Xi).

The right hand side of this equation is seen to be z1+(1−y1) · z2y2
and since lim�→∞ δs�

(qs, G) > x, we get that z1 + (1 − y1) · z2
y2

> x. Observe that Xi is a good set. Let
m be the minimum � such that δu�

(qs, Xi) > x. Now, we show that the length of um is
bounded by 4rn8n and hence the lemma is satisfied by taking u to be um and H to be
Xi. Observe that

δu�
(qs, Xi) = z1 + (1− y1) · (1 − (1− y2)

�) · z2
y2

.

From this, we see that m is the minimum � such that

(1− y2)
� < 1 − (x− z1)y2

(1− y1)z2
.

That is, m is the minimum � such that � > log(n1)
log(n2)

, where

n1 = (1−y1)z2
(1−y1)z2−(x−z1)y2

and n2 = 1
(1−y2)

.

Now, observe that the probability of a run ρ of A starting from any state, on an input
string of length at most 2n is a product of 2n fractions of the form m1

m2
where mi, for

i = 1, 2, is an integer bounded by 2r. Hence the probability of such a run is itself a
fraction whose numerator and denominator are bounded by 2r2

n

. Second, in an HPA
with n states, on any input of length k, there are at most kn different runs; this is because
once the run reaches a state in Q1 the future is deterministic, and for any prefix, there
is at most one run in a state in Q0. Hence, δv(qs, Q1) is the sum of at most n2n such
fractions. Therefore, y1 is a fraction whose numerator and denominator are integers
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bounded by 2rn4
n

. By a similar argument, we see that z1, y2, z2 are also fractions whose
numerators and denominators are similarly bounded. Now, it should be easy to see that
n1 is bounded by 24rn4

n

and hence m ≤ 4rn4n. Now, the length of um = |vw| +
(m− 1)|w| which is easily seen to be bounded m2n since |vw| and |w| are bounded by
2n. Hence um ≤ 4rn8n. ��

Now, we have the following theorem.

Theorem 3. Given a HPA A = (Q, qs, δ,Acc), a rational threshold x ∈ [0, 1] and
a ∈ {f, b,m}, the problem of determining if La>x(A) = ∅ is in EXPTIME.

Proof. It suffices to show that the problem of determining if La>x(A) 
= ∅ is in EXP-
TIME. Let X be the collection of all witness sets U such that U ∩Q0 
= ∅ and U ∩Q1

is a good set; for a witness set U ∈ X , we will denote by qU the unique state in U ∩Q0.
Let Y be the collection of good witness sets. For U ∈ X and natural number i > 0, let

Prob(U, i) = max{δu(qU ,W ) | u ∈ Σ∗, W ∈ Y, post(U ∩Q1, u) ⊆ W, |u| ≤ i}.

In the above definition, we take the maximum of the empty set to be 0. Let k be
the bound given by Lemma 3 for the length of the word u. Lemma 3 implies that
La>x(A) 
= ∅ iff Prob({qs}, k) > x. This observation yields a simple algorithm to
check non-emptiness: compute Prob({qs}, k) and check if it is greater than x.

Prob(·, ·) can be computed by an iterative dynamic programming algorithm as fol-
lows.

Prob(U, 1) = max{δa(qU ,W ) | a ∈ Σ, W ∈ Y, post(U ∩Q1, a) ⊆ W }
Prob(U, i+ 1) = max ({Prob(U, i)}⋃

{δa(qU , qV )Prob(V, i) + δa(qU , V ∩Q1) | a ∈ Σ, V ∈ X ,
post(U ∩Q1, a) ⊆ V }) .

Let us analyze the algorithm computing Prob(·, ·). Let us assume that A has n states,
and that δa(p, q) is of size at most r for any a ∈ Σ and p, q ∈ Q. Thus, X and Y
have cardinality at most 2n, and by Proposition 2, the sets X and Y can be computed in
EXPTIME (in fact, even in PSPACE). In addition, because |X |, |Y| ≤ 2n, the max-
imum in the above equations for computing Prob is over at most O(2n) terms. Thus,
we would get an exponential time bound provided the arithmetic operations needed to
compute Prob can also be carried out in exponential time. This requires us to bound the
size of the numbers involved in computing Prob(U, i). Observe that for any witness set
W and q ∈ Q, δa(q,W ) is the sum of at most n rational numbers and so has size at
most r+ n. Hence, we can inductively show that the size of Prob(U, i) (for any U ) is a
rational number of size at most 2i(r + n). Since i ≤ k and k is at most exponential in
n (by Lemma 3), the dynamic programming algorithm is in EXPTIME. ��

The emptiness problem for the languages La≥x(A) can be shown to be decidable
using similar methods.

Theorem 4. Given a HPA A, a rational threshold x ∈ [0, 1] and a ∈ {f, b,m}, the
problem of determining if La≥x(A) = ∅ is in EXPTIME.
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Now, we give the following lower bound results for checking non-emptiness of the
languages La�x(A) 
= ∅ for � ∈ {>,≥}.
Theorem 5. Given a HPA A, a ∈ {f, b,m}, � ∈ {>,≥}, the problem of determining
if La�x(A) 
= ∅ is PSPACE-hard.

Theorem 3 and Theorem 4 yield that checking non-universality is also decidable.

Theorem 6. Given a HPA A, a ∈ {f, b,m}, � ∈ {>,≥}, the problem of checking
universality of the language La�x(A) is in EXPTIME and is PSPACE-hard.

4 Integer HPAs

In the previous section we saw that even though (1-level) HPAs have a very simple
transition structure, their ability to toss coins allows them to recognize non-regular lan-
guages. In this section, we will show that if we restrict the numbers that appear as
transition probabilities in the automaton, then the HPA can only recognize regular lan-
guages (see Theorem 7). We will also show that the problems of checking emptiness
and universality of this class of HPAs are PSPACE-complete (see Theorem 8). We will
call this restricted class of HPAs, integer HPAs.

Definition 5. An integer HPA is a (1-level) HPA A = (Q, qs, δ,Acc) over alphabet Σ
with Q0 and Q1 being the level 0 and level 1 states, respectively, such that for every
q ∈ Q0 and a ∈ Σ, if post(q, a) ∩ Q0 is non-empty and equal to {q′}, then for every
q′′ ∈ Q1, δa(q, q′′) is an integer multiple of δa(q, q′).

Example 3. Consider automata Aint, A 1
3

, and ARabin from Example 1 that are shown
in Figs. 1, 2, and 3. Observe that Aint and ARabin are integer automata. On the other
hand, A 1

3
, which was shown to accept non-regular languages in Section 3.1, is not

an integer automaton. The reason is because of the transition from qs on symbol 0;
δ0(qs, qrej) =

1
3 is not an integer multiple of δ0(qs, qs) = 2

3 .

The main result of this section is that for any integer HPA A, and rational x, the
language La>x(A) is regular (for a ∈ {f, b,m}). The proof of this result will rest on
observations made in Proposition 4 that states that a word κ is accepted exactly when a
prefix of κ reaches a witness set with sufficient probability, and the rest of the word κ
is definitely accepted from the witness set. Proposition 1 states that the words definitely
accepted from any witness set is regular. Thus, the crux of the proof will be to show that
there is a way to maintain the val(·, x, ·) function for each witness set using only finite
memory. This observation will rest on a few special properties of integer HPAs.

Proposition 6. Let A be an integer HPA over alphabet Σ with level 0 and level 1 sets
Q0 and Q1, C ⊆ Q1, and x be a rational number c

d . For any u ∈ Σ∗, if val(C, x, u) ∈
[0, 1] then there is e ∈ {0, 1, 2, . . . d} such that val(C, x, u) = e

d .

The above proposition makes a very important observation — the set of relevant
values that the function val can take are finite. Proposition 3 in Section 2.1 essentially
says that when the function val takes on values either below 0 or above 1, either all
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extensions of the current input will have sufficient probability among witness sets in
Q1 or no extension will have sufficient probability. Thus, when measuring the quantity
val what matters is only whether it is strictly less than 0, strictly greater than 1 or its
exact value when it is in [0, 1]. Proposition 6 above, guarantees that val is finite when
it lies within [0, 1]. This allows us to keep track of val using finite memory. This is
captured in the following Lemma.

Lemma 4. Consider an integer HPA A over alphabetΣ with Q0 and Q1 as level 0 and
level 1 states. Let x = c

d be a rational threshold. For an arbitrary C ⊆ Q1, q ∈ Q0,
and e ∈ {0, 1, . . . d}, the following six languages

L(q,C,e) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = {q} and val(C, x, u) ≤ e
d}

L(q,C,−) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = {q} and val(C, x, u) < 0}
L(q,C,+) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = {q} and val(C, x, u) > 1}
L(∗,C,e) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = ∅ and val(C, x, u) ≤ e

d}
L(∗,C,−) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = ∅ and val(C, x, u) < 0}
L(∗,C,+) = {u ∈ Σ∗ | post(qs, u) ∩Q0 = ∅ and val(C, x, u) > 1}

are all regular.

We are ready to present the main result of this section.

Theorem 7. For any integer HPA A, rational threshold x ∈ [0, 1], the languages
La>x(A) and La≥x(A) are regular (where a ∈ {f, b,m}).

Proof. From Proposition 4, we can conclude that

La>x(A) =

⎛

⎝
⋃

C⊆Q1, q∈Q0∪{∗}
L(q,C,−)LC

⎞

⎠ ∪
⎛

⎝
⋃

C⊆Q1, q∈Q0,e∈[0,1)

L(q,C,e)LC∪{q}

⎞

⎠

where LW is the set of words definitely accepted from witness set W , as defined in
Proposition 1. From Proposition 1 and Lemma 4, we can conclude that each of the
languages on the right hand side is regular, and therefore, La>x(A) is regular. The
proof of regularity of La≥x(A) is omitted for lack of space reasons. ��

The following theorem shows that the problems of checking emptiness and univer-
sality are PSPACE-complete for integer HPAs, thus giving a tight upper bound.

Theorem 8. Given an integer HPA A, a ∈ {f, b,m}, � ∈ {>,≥}, the problem of
determining if La�x(A) = ∅ is PSPACE-complete. Similarly, the problem of checking
universality is also PSPACE-complete.

5 Conclusions

We investigated the expressiveness of (1-level) HPAs with non-extremal thresholds and
showed, in spite of their very simple transition structure, they can recognize non-regular
languages. Nevertheless, the canonical decision problems of emptiness and universality
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for HPAs turn out to be decidable in EXPTIME and are PSPACE-hard. Imposing a
very simple restriction on the transition probabilities result in automata that we call
integer HPAs which recognize only regular languages. For integer HPAs, the canonical
decision problems turn out to be PSPACE-complete.

There are a few problems left open by our investigations. The first one is of course the
gap in the complexity of deciding emptiness and universality for these problems. Our
investigations in this paper were motivated by understanding the relationship between
the number of levels in HPAs and the tractability of the model. The results in [4] suggest
that problems become hard for 6-level HPAs and non-extremal thresholds. Our results
here suggest that 1-level HPAs (with non-extremal thresholds) are tractable. Exactly
where the boundary between decidability and undecidability lies is still open. Finally,
as argued in the Introduction, HPAs arise naturally as models of client-server systems,
and it would useful to apply the theoretical results here to such models.
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10. Größer, M.: Reduction Methods for Probabilistic Model Checking. PhD thesis, TU Dresden
(2008)

11. Kemeny, J., Snell, J.: Denumerable Markov Chains. Springer (1976)
12. Paz, A.: Introduction to Probabilistic Automata. Academic Press (1971)
13. Rabin, M.O.: Probabilistic automata. Inf. and Control 6(3), 230–245 (1963)
14. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Symp.

on Foundations of Computer Science, pp. 327–338 (1985)



Knowledge = Observation + Memory + Computation�

Blaise Genest1, Doron Peled2, and Sven Schewe3

1 CNRS, IRISA, Rennes, France
2 Bar Ilan University, Israel

3 University of Liverpool, UK

Abstract. We compare three notions of knowledge in concurrent system: mem-
oryless knowledge, knowledge of perfect recall, and causal knowledge. Mem-
oryless knowledge is based only on the current state of a process, knowledge
of perfect recall can take into account the local history of a process, and causal
knowledge depends on the causal past of a process, which comprises the infor-
mation a process can obtain when all processes exchange the information they
have when performing joint transitions. We compare these notions in terms of
knowledge strength, number of bits required to store this information, and the
complexity of checking if a given process has a given knowledge. We show that
all three notions of knowledge can be implemented using finite memory. Causal
knowledge proves to be strictly more powerful than knowledge with perfect re-
call, which in turn proves to be strictly more powerful than memoryless knowl-
edge. We show that keeping track of causal knowledge is cheaper than keeping
track of knowledge of perfect recall.

1 Introduction

Knowledge represents the information that processes can have about each other and,
consequently, about the state of the entire system. In concurrency theory, there are mul-
tiple definitions of knowledge based on the specification of the system, a limited view of
the other processes, and some information related to the observed history [11]. We study
three types of knowledge for concurrent systems. According to the first type, memory-
less knowledge, a process knows everything consistent with all executions that end in
its current local state. For the second type, knowledge of perfect recall [3,11,12], a pro-
cess knows everything consistent with all executions that share the same local history
visible to this process. We define a third type of knowledge, causal knowledge, where a
process knows everything consistent with all executions that have the same past, where
the past of a process includes the past of other processes up to their last joint transition.

We are interested in the implementation of different kinds of knowledge as a trans-
formation of the system under consideration. The transformation can use additional
variables in order to collect information about history, and also to pass this information
from process to process as part of the scheduled system synchronization. In particular,
such a transformation can keep information related to the observable history in order to
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obtain additional knowledge. This transformation cannot change the values of the origi-
nal variables of the program (including program counters) or the enabledness condition
of the transitions (operations) of the system. Thus, the executions of the original system
are projections of the executions of the transformed system; only further information
is collected in new variables. The different kinds of knowledge become memoryless
knowledge after the transformation, which stores all information required in the pro-
cesses’ local states.

This transformation can be used to monitor the global behavior of a system by local
processes. For example we may use it to control the system to force it to satisfy some
global property by blocking transitions based on knowledge [1,8,16]. Another applica-
tion is to perform some run time checking that a process satisfies some global properties
when reaching particular local states.

Our study differs from the classical question of model-checking knowledge [11],
as it does not attempt to provide algorithms for checking the knowledge of processes.
Instead, we are interested in providing the run-time support to use knowledge. In par-
ticular we are interested in the implementing algorithms and their complexity. When
comparing the commonly used memoryless knowledge and knowledge of perfect re-
call [1,11], there is a tradeoff between the amount of knowledge available to processes
and the complexity of maintaining it. We can know more properties under perfect re-
call, but have to maintain some history related information for that. Quite surprisingly,
the new definition of causal knowledge both improves our knowledge and reduces the
time and space complexity required when compared to knowledge of perfect recall. The
price to pay for this is increased communication: processes have to update each other,
through communication, when performing joint transitions in order to achieve this type
of knowledge. We show that implementing the third kind of knowledge, knowledge
based on causality, can be obtained using a construction based on the “gossip” automata
of Mukund and Sohoni [14], related to the Zielonka construction [17,7,5].

We establish complexity results for implementing the different types of knowledge.
In particular, we show that causal knowledge requires less memory, thanks to the shar-
ing of information during communication. It is, however, interesting to note the stark
difference in cost between implementing causal knowledge and knowledge of perfect
recall: communication does not only improve knowledge, it also saves resources.

2 Transition Systems

Definition 1. A transition system is a tuple Tr = 〈P, V, Lv, T, Lt, S, s0, R〉 where

P is a finite set of processes.
V is a finite set of Boolean variables.
Lv : V → P is a mapping from variables to processes, such that each variable v

is local to the process Lv(p). Let Vp = {x | Lv(x) ∈ p} (the set of variables of
process p).

T is a finite set of transitions, where each transition τ ∈ T has an enabling condition
enτ ⊆ 2V , which is a propositional property, and a transformation fτ : 2V → 2V

over the set of variables. The enabledness condition and transformation have some
constraints as described below.
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Lt : T → 2P maps each transition to the set of processes that execute it. The transition
is executed synchronously by the processes in Lt(τ). Let var(τ) =

⋃
p∈Lt(τ)

Vp.
Then only the variables var(τ) can be used in enτ , and fτ can use and change only
these variables.

S ⊆ 2V is a finite set of states, where each state of Tr is a possible assignments of
values to the variables of V .

s0 ∈ S is the initial state.
R ⊆ S × S is a relation over S. We have (s, s′) ∈ R exactly when there exists some

transition τ ∈ T such that s |= enτ and s′ = fτ (s). We say that τ can be executed
(is enabled) from s, producing s′.

For some future constructions, it will be convenient to assume at times that the system
is first executing some initial (“mythological”) transition �, shared by all the processes,
i.e., Lt(�) = P , ending up with the initial state s0 (starting with some (“mythological”)
initial state s−1).

We assume that S is the set of states reachable from s0, such that the global state
space S and the global transition relation R over S are defined by the other components.

The size |Tr| of a transition system Tr is the number |P | of processes plus the number
|V | of variables plus the number |T | of transitions.

We define a local state s|p as the projection of global state s ∈ S on the local
variables Vp of process p. For a set of processes P ′ ⊆ P , the semi-local state s|P ′ is the
projection of s to the variables in

⋃
p∈P ′ Vp. In particular, we have s|P = s.

Definition 2. A history of a transition system Tr is an alternating sequence h = s0τ1
s1τ2s2 . . . sn of states and transitions such that, for each i ≥ 0, si |= enτi+1 and
si+1 = fτi+1(si). We denote by last(h) the last state sn of h, and lastp(h) = last(h)|p.

A state s is reachable if s = last(h) for some history h. Note that it is PSPACE-
complete to check whether a state is reachable in a transition system [13]. As the initial
state is unique and the effect of transitions is deterministic, we sometimes use only the
sequence of transitions τ1τ2τ3 . . . to denote a history or execution s0τ1s1τ2s2τ3s3 . . .
of a transition system.

3 Notions of Knowledge

In order to avoid using a specific logical formalism, we define state properties ab-
stractly:

Definition 3. A (state) propertyϕ of a transition system Tr is a subset of its states. That
is, ϕ ⊆ S. A state s satisfies ϕ, denoted s |= ϕ, if s ∈ ϕ. An history h satisfies ϕ,
denoted h |= ϕ, if last(h) ∈ ϕ.

Note that properties can be defined compactly, using, for example, propositional
logic. In order to define a general notion of knowledge of state properties, the different
kinds of knowledge are abstracted as information available to a process. In order to de-
fine different kinds of knowledge, we define an equivalence relation between histories.
Let Γ represent a type of knowledge. (The types of knowledge that we consider will be
presented later.)
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Definition 4. Let ≡Γ
p be an equivalence relation between histories with respect to pro-

cess p ∈ P in a transition system Tr. Process p in a transition system Tr knows a state
property ϕ after history h, according to knowledge type Γ , denoted h |= KΓ

p ϕ, if, for
each history h′ such h ≡Γ

p h′, last(h′) |= ϕ.

We study three types of knowledge: memoryless, perfect recall, and causal knowl-
edge. Accordingly, Γ is ML, PR and C , respectively.

Definition 5. We say that the knowledge type Γ is deeper1 than knowledge type Γ ′,
denoted Γ � Γ ′, if, for each history h, process p and property ϕ, h |= KΓ ′

p ϕ implies
h |= KΓ

p ϕ. If Γ � Γ ′, but Γ ′ 	 �Γ , then we call Γ strictly deeper than Γ ′, denoted
Γ � Γ ′.

A simple observation that follows immediately from the above definition can be used
to show that one kind of knowledge is deeper than another:

Observation 1 Let Γ and Γ ′ be two notions of knowledge with ≡Γ
p ⊆≡Γ ′

p for each p.
Then Γ � Γ ′.

Memoryless Knowledge. This is a conservative version of knowledge, where a prop-
erty ϕ is known if it holds in all the states with the same local state of process p. That
is, h ≡ML

p h′ if lastp(h) = lastp(h
′).

Knowledge of Perfect Recall. In the epistemic community, knowledge of perfect recall
[3,11,12] refers to the ability of process p to use local observation to distinguish between
different histories. We can define, in fact, multiple different versions of knowledge of
perfect recall:

PR(l) A process can view (and recall) its local states along the executions (this is the
version that is used in [11]).

PR(t) A process can view the occurrences of transitions in which it participates.
PR(lt) A process can view both the local state and the executed transition.
PR(ct) A process can, when executing a transition, view the combined local state of

the processes involved in this transition.

We choose PR = PR(lt) as our canonical definition of knowledge of perfect recall.
The observations in this case are sequences of p−events, as defined below.

Definition 6. A p−event is a pair 〈τ, r〉, where τ ∈ T , p ∈ Lt(τ), and r is a local state
of p. A p−event is obtained from a history by taking a transition τ that is executed and
involves the process p and the local state just after its execution. We define the sequence
of p−events of a history h, Evp(h), inductively. For h = s0, Evp(s0) = ε, the empty
word. Let h′ = h τ s (that is, h′ extends h with a transition τ , leading to state s). Now,
if p ∈ Lt(τ), then Evp(h

′) = Evp(h)〈τ, s|p〉, and otherwise Evp(h′) = Evp(h).

For instance, for p ∈ Lt(τ), p /∈ Lt(τ
′), and h = s0 τ s τ

′ t τ r, we have
Evp(h) = 〈τ, s|p〉〈τ, r|p〉.

1 We use the term “deeper” instead of “stronger”, as the latter is associated with an implication
of the opposite direction: in logic, ϕ is stronger than ϕ′ when ϕ → ϕ′.
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Definition 7. Knowledge of perfect recall is based on the equivalence ≡PR
p such that

h ≡PR
p h′ exactly when Evp(h) = Evp(h

′).

Similarly,PR(t) is defined based on the projection of Evp(h) on its first components,
while PR(l) is defined based on the projection of Evp(h) on its second components.
Also, PR(ct) is defined based on a sequence of extended events of the form 〈τ, s|L(τ)〉,
using the respective semi-local states (rather than the local states) in Evp(h). In the
example above, this would be Evp(h) = 〈τ, s|Lt(τ)〉〈τ, r|Lt(τ)〉.

Notice that the sequence Evp can grow arbitrarily as the history grows. However, it
has been shown [12,1] that a bounded implementation of PR(l) is possible. We will
give a uniform implementations for all versions of PR in the next section. We now
compare ML and the different definitions of PR.

Lemma 1. Knowledge of perfect recall is strictly deeper than memoryless knowledge.
More precisely, PR(ct) � PR(lt) � PR(l) � ML and PR(lt) � PR(t). However,
PR(t) is incomparable (with respect to �) with ML and with PR(l).

Proof. By definition, the relation ≡PR(ct)
p refines ≡PR(lt)

p , which refines both ≡PR(l)
p

and ≡PR(t)
p , for all p ∈ P . Now, ≡PR(l)

p keeps the sequence of states of p, and in

particular the last one. Hence h ≡PR(l)
p h′ implies lastp(h) = lastp(h

′), hence the

relation ≡PR(l)
p refines ≡ML

p . We now show that the implications are strict.
“PR(ct) vs. PR(lt)”: To show strictness, we consider the histories h = ac and h′ =

bc for the transition system from Figure 1. Obviously, h |= {2} and h |= K
PR(ct)
P2

{2},
because, under PR(ct), P2 knows after executing the joint c transition that P1 is in (the
sink) state 2. At the same time, h′ 	|= {2}, and under PR(lt), P2 sees the same sequence

of P2−events: EvPR(lt)
P2

(h) = Ev
PR(lt)
P2

(h′). Thus, h 	|= K
PR(lt)
P2

{2}.
“PR(t) vs. PR(l)”: Consider the histories h = ad and h′ = bc for the transition sys-

tem from Figure 1. Obviously, h |= {2} and h |= K
PR(t)
P2

{2}, because, under PR(t),
P2 knows after executing the joint d transition that P1 is in (the sink) state 2. At the
same time, h′ 	|= {2}, but, under PR(l), P2 sees the same sequence of P2−events:
Ev

PR(l)
P2

(h) = Ev
PR(l)
P2

(h′). Thus, h 	|= K
PR(l)
P2

{2}. This also implies strictness for
“PR(lt) vs. PR(l)” and implies that ML is not deeper than PR(t).

“PR(l) vs. ML”: We consider the histories h = ε and h′ = bc for the transition
system from Figure 1. Obviously, h |= {0, 1, 2, 3} and h |= K

PR(l)
P2

{0, 1, 2, 3}, be-
cause, under PR(l), P2 knows after h that it has not taken part in any transition, and
4 is only reachable upon taking a c transition. At the same time, h′ 	|= {0, 1, 2, 3}, but
last(h)|P2 = last(h′)|P2 . Thus, h 	|= KML

P2
{0, 1, 2, 3}.

012 3 4
a bc, d c

c, dFig. 1. Local state space of two Processes: P1 (left) with a variable that can take
5 values {0, 1, 2, 3, 4} and P2 without variable. Transitions c, d are joint between P1 and P2
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v1
b2

b1

v2,v3 v2

b2

a

a

b1

v2,v3v1 v2
b

a

a

b

Fig. 2. The bottom left shows the global state space for two Processes P1 (top left) and P2 (right),
with VP1 = {v1} and VP2 = {v2, v3}. Boolean variables represented in the states are those
with value true. Transition a is local to P2. It toggles the value of the variable v3. Transition b is
joint between P1 and P2. It first assigns v1 the value of v3 and then sets v2 and v3 to false. Both
transitions are enabled if, and only if, v2 is true. Initially, v2 and v3 are set to true and v1 is set
to false. Thus, the effect of b on the each process depends on the state of the other process. To
reflect this, the action b is graphically ‘split’ into b1 and b2 in the graphic representation of the
processes. Note, however, that b1 and b2 refer to the same action, b.

“ML vs. PR(t)”: To show that PR(t) is not deeper than ML, and thus not deeper
than PR(l) and PR(lt), we consider the transition system from Figure 2. Consider the
histories h = b and h′ = ab. Obviously, h |= {v1} and h′ 	|= {v1}. Under PR(t),

P1 sees the same sequence of P1−events for h, h′: EvPR(t)
P1

(h) = Ev
PR(t)
P1

(h′). Thus,

h 	|= K
PR(t)
P1

{v1}. However, last(h)|P1 = {v1}, hence h |= KML
P1

{v1} holds.

Notice that PR(t) is deeper than PR(l) when, for all processes p and all transitions
τ , the p-local state after the transition τ only depends on the p-local state before τ . In
this case, the history of local states can be retrieved from the history of transitions. This
is, for example, the case for products of finite state systems.

Causal Knowledge. This notion is related to partial order semantics [10], and has been
used informally in distributed games [4,15,6]. However, as far as we know, it has not
been used in an epistemic framework before. The assumption is that processes may
exchange information each time they perform a joint transition.

We first define the chain of transitions that can affect the view of a process p in a
given history. The exact ordering of transitions is not necessarily known to p, hence the
information function is represented as a partial order. We now define the partial order
associated with a history.

Definition 8. The partial order PO(h) associated with a history h = s0τ1s1τ2s2 . . .
τnsn is a triple 〈E, λ,≺〉 where

– E = {e0, e1, . . . , em} is the set of occurences of events in h.
– λ : E → T labels λ(ei) = ti,
– ≺⊆ E×E is the smallest partial order relation (i.e., transitive, reflexive and asym-

metric relation) satisfying the following: if e, e′ ∈ E with Lt(λ(e))∩Lt(λ(e
′)) 	= ∅

and e appearing before e′ in h then e ≺ e′.
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0 1
a

a, b b

Fig. 3. Processes P1 with a boolean variable (left), P2 (middle) and P3 (right) without variables

For instance, for three processes p, q, and r and three transitions a, b, and c with
Lt(a) = p, Lt(b) = q, Lt(c) = {p, r}, we have POp(abc)=POp(acb)=〈{ea, eb, ec},
≺, λ〉 with λ(ex)=x for all x ∈ {a, b, c} and ea ≺ ec. Process p sees transitions in the
past (for ≺) of the last transition on p.

Definition 9. The causal view Cap(h) of process p in history h includes all the oc-
currences of events that precede its last occurrence according to the partial order
PO(h) = 〈E, ≺ λ〉. If e is the latest occurrence of h that involves p, then let E′ =
{e′ ∈ E|e′ 
 e}. Then, Cap(h) = 〈E′,≺ ∩E′ × E′, λ|E′〉.

The equivalence≡C
p on histories, used to define causal knowledge, is based on h ≡C

p

h′ iff Cap(h) = Cap(h
′).

Lemma 2. Causal knowledge is strictly deeper than knowledge of perfect recall.

Proof (Sketch). We first prove Ca� PR(ct). By Lemma 1, this implies Ca� PR for
all version of PR. Although the causal view Cap(h) of a process p in a history h is
a partial order, it contains, according to Definition 9, in particular, all the occurrences
of transitions of p. The occurrences of transitions in which p participates are totally
ordered by ≺ in the causal view. Given the unique mythological event and the causal
view, one can also construct the p−events corresponding to the occurrences in E and,
in particular, the occurrences in which p participates. To do this, one can complete the
partial order ≺ into some total order that contains it, and start to calculate the global
state after each occurrence, taking the relevant component of p for transitions involving
this process. Although the global states generated in this way are not necessarily the
ones appearing in h, one can show by induction over the length of the constructed
sequence that the p−events are the same. This is the case, because occurrences of h that
are not in E do not affect the values of occurrences in E. Moreover, by the disjointness
of the variables for each process, the order of occurrences not in E can be commuted
with occurrences in E to appear at the end, without affecting the value of the p local
states.

To show that causal knowledge is strictly deeper than knowledge of perfect recall,
we consider the histories h = ab and h′ = b in the transitions system from Figure 3.
Obviously, h |= {1} holds. Further, h |= KCa

P3
{1}: the partial order PO(h) associated

with h is the total order 〈{e1, e2}, λ(e1) = a, λ(e2) = b, e1 < e2}〉, and we have
CaP3(h) = PO(h). That is, Process P3 knows that P1 is in 1.

At the same time, h′ 	|= {1}, but, under PR(ct), P3 sees the same sequence of

P3−events: EvPR(ct)
P3

(h) = Ev
PR(ct)
P3

(h′). Thus, h 	|= K
PR(ct)
P3

{1}. ��
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Notice that the third process in the proof is necessary, because, for two process and
PR(ct), each process learns the global state of the transition system when executing a
joint transition. Ca and PR(lt) can be separated using the transition system with two
processes from Figure 1. This indeed follows from the proof that PR(lt) is not deeper
than PR(ct).

4 Application of Knowledge

Knowledge can be applied to control systems by blocking some transitions. The more
is known about a transition system, the less restrictive the control needs to be. Consider
the system with three processes arb, p, p′ from Figure 4. Process p needs to access a
critical section twice, and process p′ needs to access it once. Process arb helps process
p, p′ to access the critical section in a mutually exclusive way.

Processes p and p′ can try to enter the critical section using an e and e′ transition,
respectively, which they share with the arbiter, and leave it using the shared l and l′

transition, respectively. The effect of transition e (resp. e′) depends on the state of the
arbiter. If arb has given permission to the other process to enter the critical section, and
not yet received the respective ‘leave’ transition, transition e does not change the state.
In Figure 4, e is therefore split into e1 (the case where p progresses) and e2 (the case
where p stays in its previous state). Similarly, e′ is split into e′1 and e′2.

Process p can also ignore the arbiter, and progress using an i transition.
Without control, the system is too permissive. For example, it allows for the history

h = e′i (with h |= c ∧ c′), where first p′ enters the critical section through the e′

transition, followed by p entering the critical section.
However, the following control can be written easily using knowledge: If Kp(f

′),
then allow the ‘ignore’ transition i. Else, disallow it. Clearly, this only allows p to ignore
the arbiter if no future conflict is possible, as p′ will remain in this sink state and does
no longer compete for entering the critical section.

Now we compare different notions of knowledge. With memoryless knowledge, just
looking at its local state, process p will never be able to ignore the arbiter, using i.

With perfect recall, consider the following history: h = e′el′e. After this history,
process p knows under PR that p′ had been in the critical section when it first requested

e2

c

e2

c
e1, i e1, il, i l, i

e′2

c′ f ′e′1 l′

e1, e
′
2 l, l′ e2, e

′
1

l

l′e1

e′1

Fig. 4. Three Processes: p (top), p′ (bottom left), and arb (bottom right). Only some local boolean
variables are represented: c and c′ (set to 1 for p and p′ in critical section, respectively), and f ′ set
to 1 for p′ has finished. The remaining variables are omitted. Effect of the transitions e (resp. e′)
on process p (resp. p′) depends on the arbiter state. It is therefore split into e1, e2 (resp. e′1, e

′
2).
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entry, but has left it meanwhile. It thus knows that f ′ holds henceforth, and p can make
use of i, ignoring the arbiter.

With causal recall, Process p can make even more use of i. Consider the history
h = e′l′e.

With perfect recall, p cannot distinguish it from h′ = e, and can make no use of i.
With causal recall, the knowledge of the arbiter that p′ is in its sink state (such that f ′

holds henceforth) is transferred to p through the shared transition e. It thus knows that
f ′ holds henceforth, and p can make use of i, ignoring the arbiter.

5 Implementation of Knowledge Using Bounded Memory

The notions of knowledge discussed in this paper are quite abstract: they represent some
mathematical definition based on the observation that the processes can have. These ob-
servations are not directly implemented by the processes. Except for theoretical reason-
ing about programs, knowledge can be used in order to control the program [8]. If the
processes need to use such observations so that they can act based on their knowledge,
they necessarily need to store the observation and act on it. If the observation infor-
mation is stored and available to a process, it can decide, based on some precalculated
knowledge table, to restrict its behavior accordingly.

The definitions of knowledge of perfect recall and knowledge with causal memory
are based on unbounded observations. We are interested in transforming the transition
system for these two kinds of knowledge, such that only a bounded amount of infor-
mation is needed. The transformation will add variables and augment the transitions in
such a way, that one can control the system based on the knowledge through a precal-
culated table. In essence, such transformations convert the original system into a new
system, where the knowledge can be observed by a process from its most recent local
state. We provide complexity measures for both the transformations.

5.1 Implementation of Memoryless Knowledge

The implementation of memoryless knowledge of a process is simple, as the observa-
tion that is used consists only of the local state of the process. To decide the current
knowledge regarding a property ϕ from a p-local state sp, we recall that p knows that ϕ
holds if, and only if, for all reachable states s with s|p = sp, s |= ϕ holds. It therefore
suffices to check the existence of a global state s with s|p = sp and s 	|= ϕ.

This is a simple reachability problem. An implementation of memoryless knowledge
may or may not use an offline precomputation.

Online Only. The reachability problem can be solved in time |Tr| · 2O(|V |) (or in
PSPACE) by constructing all reachable states ending with the observed local state.

With an Offline Precomputation. Alternatively, for each p-local state, one can first
compute the reachable states with this p-local state in a preprocessing step. One
can then save this knowledge with respect to p-local states in a binary tree with
2|Vp| entries. Accessing this tree at runtime only takes time linear in the number of
variables local to p, that is, time O(|Vp|). The offline construction of the tree during
the preprocessing step can be done in time |Tr| · 2O(|V |).
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5.2 Implementing Knowledge of Perfect Recall

We describe the transformation of knowledge for all version of perfect recall. The trans-
formation was already known for PR(l) [12,1]. The idea of the construction is that each
process p can consult a global automaton, representing the transformation of the entire
system. A process p is only aware of the occurrences of its own transitions. Hence,
upon an occurrence of a transition τ with p ∈ Lt(τ), the automaton moves according
to τ . However, process p is not aware of further moves of transitions not involving p.
Thus, the actual global state of the system can further change through the firing of any
sequence of such transitions. A subset construction can be used to encode the possible
global states that can be reached without being distinguished by p after a transition τ .

Definition 10. Let 〈S, s0, T, δ〉 be a global automaton for the system Tr. Recall the
notation δ∗(S, ρ) that stands for the usual extension of δ from a single state and a single
transition into a set of states and a finite (possibly empty) sequences of transitions. Let,
for a process p,

– Tp = {τ ∈ T | p ∈ Lt(τ)} be the set of transtitions executed by p (possibly joined
by other processes) and

– Ip = T � Tp be the set of transitions that do not involve p.

Then we construct a deterministic automaton Dp = 〈2S , S0, p−events, δp〉 such that

– S0 = {δ∗({s0}, ρ) | ρ ∈ Ip
∗},

– δp(S
′, 〈τ, r〉) = ⋃

ρ∈I∗
p
δ∗({s′ | ∃s ∈ S′. δ(s, τ) = s′ ∧ s′|p = r}, ρ).

Dp reads a sequence τ ∈ Tp
∗ of p−events. Its state reflects, in which global state

the system can be at a point in time, where process p has seen a sequence of p−events.

Lemma 3. For a given transition system Tr with automaton 〈S, s0, T, δ〉, a process
p ∈ P , and a sequence h ∈ T ∗, we have that s ∈ δp

∗(S0,Evp(h)
)

if, and only if, there
is a sequence h′ with Evp(h) = Evp(h

′) such that s ∈ δ∗(s0, h′).

This can be shown by induction over the length of Evp(h).
For each property ϕ, we equip Dp with an acceptance mechanism to obtain Dϕ

p =

〈2S , S0, p−events, δp, Fϕ〉, where the set of final states is:

Fϕ = {S′ ⊆ S | ∀s ∈ S′. s |= ϕ}.
For Dϕ

p , Lemma 3 provides the following corollary.

Corollary 1. For a given transition system Tr with automaton 〈S, s0, T, δ〉, a process
p ∈ P , and a sequence h ∈ T ∗, we have that Evp(h) is accepted by Dϕ

p iff h |= KPR
p ϕ.

Thus, Dϕ
p can be used to check whether or not process p knows ϕ. The complexity of

this construction is quite high: as a subset automaton,Dϕ
p can have 2|S| states. However,

subset automata like Dϕ
p can be represented succinctly, such that the representation of

a state requires ‘only’ S bits. As S can be exponential in the number of variables, this
translates to O(22

|V |
) states, where each state is represented by O(2|V |) bits.
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Fig. 5. Process 2 from the proof of Theorem 2

Consequently, we can transform Tr by including, for each process p, an implemen-
tation of the automaton Dϕ

p . This may require |S| additional variables to represent the
state of Dϕ

p , which will be variables local to p. They have no influence on the enabled-
ness of transitions.

These new variables intuitively reflect the subset of the states, in which the system
might be in, or, likewise, the set of assignments to its variables consistent with the
sequence of p−events observed. This representation can be improved: the valuation of
the p-local variables Vp is already given by the p-local state, and storing this information
again would be redundant. Thus, O(2|V �Vp|) variables are sufficient to represent the
additional information.

The above construction implements the PR = PR(lt) knowledge. Similarly, we can
implement the other notions of knowledge of perfect recall:

PR(t) Dϕ
p = 〈2S , S0, Tp, δp, Fϕ〉,

δp(S
′, τ) =

⋃
ρ∈I∗

p
δ∗({s′ | ∃s ∈ S′. δ(s, τ) = s′}, ρ).

PR(l) Dϕ
p = 〈2S , S0, S|p, δp, Fϕ〉,

δp(S
′, r) =

⋃
ρ∈I∗

p
δ∗({s′ | ∃s ∈ S′. ∃τ ∈ Tp δ(s, τ)|p = r}, ρ).

PR(ct) Dϕ
p = 〈2S , S0, p−events, δp, Fϕ〉,

δp(S
′, 〈τ, r〉) = ⋃

ρ∈I∗
p
δ∗({s′ | ∃s ∈ S′. δ(s, τ) = s′ ∧ s′|Lt(τ) = r}, ρ).

(Note that the p−events for PR(ct) and PR(lt) are different.)

5.3 Lower Bound on the Transformations for Perfect Recall

We show that the exponential memory blow-up for implementing PR is unavoidable.

Theorem 2. There exists a family of systems (Trn)n∈N with 2 processes {1, 2}, one
variable with n + 3 valuations (or equivalently �log2 n + 3� binary variables), four
transitions, and n + 3 states and a family of assertion ϕn such that knowing with PR
whether ϕn holds requires 2n memory states.

Notice that using |V | binary variables, a counter up to 2|V | can be encoded. Hence,
Theorem 2 proves that one needs at least 2|V | − 3 bits of memory to implement PR,
even when the description size of Trn is polynomial in |V |. For convenience, we use
a variable with domain {−2,−1, 0, . . . , n} instead of encoding the values in binary.
Process 2 is shown in Figure 5.

The proof uses the well-known family (Ln)n∈N = {w ∈ {a, b}∗ | w = uav and |v| =
n} of regular languages, accepted by a non-deterministic automaton with n + 2 states
but not by any deterministic automaton with less than 2n states.
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Proof. The systems are defined as follows:

– there is only one variable v, it is on process 2, and its domain is {−2,−1, 0, . . . , n}.
Its initial value is −2.

– there are three transitions, {a, b, c}, with Lt(a) = Lt(b) = {1, 2} and Lt(c) = {2}.
– transitions a, b are enabled in a state v iff v < n.
– a leads from −2 and −1 to −1, b leads from −2 and −1 to −2, such that the states

−1 and −2 distinguish if the last transition seen has been an a (which is the case in
−1 but not in −2),

– c is only enabled if v = −1 and updates the valuation of v to 0, and
– finally, for 0 ≤ v < n, transitions a, b increment the value of v by 1.

The state property ϕn is v 	= n. Let Hn be the set of histories h such that the suffix
of h is bw with the number of a, b in w is n (w can have 0 or one c). We have that
∀h ∈ Hn, last(h) |= ϕn. The reason is that after a c, there are at most n letters a, b.
Now, writing h = ubw, there cannot be a c in u, as there are n + 1 transition at least
being done afterwards. That is, ub reached state −2. Now, it means that the first letter
of w is not a c, and thus it is an a or a b. In any case, if c happens in w, there will be
strictly less than n letters after it, and thus the valuation v = n cannot be reached.

Notice now that h ∈ Hn iff Ev1(h) = ubw with w ∈ {a, b}n (process 1 has a unique
state as it has no variable, hence we do not indicate it in the p−events). Thus for all
h′ such that Ev1(h′) = Ev1(h), we have h′ ∈ Hn. Thus process 1 knows ϕn after any
h ∈ Hn using PR.

Assume by contradiction that there is an implementation of PR with less than 2n

memory states. Process 1 has no variables, such that its memory is updated only based
on the sequenceEv1(h). As there are less than 2n states, there exists 2 histories u1 · · ·un

	= u′
1 · · ·u′

n ∈ {a, b}∗ leading to the same state s of the implementation. Let u′
i 	= ui,

let say ui = b and u′
i = a. Now, let us consider the histories h = u1 · · ·una

n−i and
h′ = u′

1 · · ·u′
icu

′
i+1 · · ·u′

na
n−i. Clearly, h ∈ Hn, and thus process 1 knows ϕn after

h using PR. However, the memory state after histories h, h′ are the same, as a same
sequence of 1-event is seen from state s. However, last(h′) = (v = n) 	|= ϕn, hence 1
does not know ϕn after h using this implementation. A contradiction. ��

5.4 Implementation of Causal Knowledge

In order to provide a finite representation for causal knowledge we will adapt a con-
struction by Mukund and Sohoni [14] for gossip automata.

Recall Definition 8 of a partial order PO(h) = 〈E, λ,≺〉 associated with a history
h and the causal view of a process p in h (Definition 9). We use the following notation:

– Recall that lastp(h) ∈ 2Vp is the p-state reached by h (or equivalently by PO(h)),
– latestp(h) = max≺{e ∈ E | p ∈ Lt(λ(e))} . This is the most recent occurrence

of an event in h that is executed by p, and therefore the last occurrence of an event
in Cap(h). Notice that the p-state reached on Cap(h) is also lastp(h),

– latestp←q(h) = max≺{e ∈ E | q ∈ Lt(λ(e)) and e ≺ latestp(E)}. This is
the most recent occurrence on q that precedes (or is the same as) the most recent
occurrence of p. We denote by lastp←q(h) the q-state reached on Cap(h), which
corresponds to the q-state reached by latestp←q(h).
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The set Rp(h) = (lastp←q(h))q∈P is the global state reached by Cap(h). We can
define the associated equivalence relation:

Definition 11. h ≈p h′ iff Rp(h) = Rp(h
′).

We can define a knowledge R based on this ≈p. It is immediately clear that Ca� R,
since ≡C

p refines ≈p. In fact, we have equality:

Lemma 4. R is as deep as Ca.

Proof. (Sketch) It is enough to show that for every history h, {last(h′) | Cap(h
′) =

Cap(h)} = {last(h′) | Rp(h
′) = Rp(h)}.

We have trivially {h′ | Cap(h
′) = Cap(h)} ⊆ {h′ | Rp(h

′) = Rp(h)} for every his-
toryh. Hence it suffices to prove that{last(h′)|Rp(h

′) = Rp(h)} ⊆ {last(h′)|Cap(h
′)=

Cap(h)} for every history h.
Let h′ such that Rp(h

′) = Rp(h). We thus have that the global state reached by
Cap(h) is the same as the global state reached by Cap(h

′). By definition of Cap(h
′),

h′ can be obtained from Cap(h
′) by performing a sequence w of occurrences not on p.

Now, consider doing this sequence w of occurrences from Cap(h). It is possible as the
global states reached by Cap(h) and by Cap(h

′) is the same. Hence we obtain a history
h′′ = Cap(h)w. Because the system is deterministic from a global state, last(h′′) =
last(h′) holds. We conclude by remarking that Cap(h

′′) = Cap(hw) = Cap(h). ��
This means that, for p, keeping lastp←q(h) for all q is enough to implement Cap.

Keeping this information is, however, not totally straightforward. Indeed, when per-
forming transition a, all processes q involved in that transition a will have a value for
lastq←r(h) for all process r just before performing a. First, we have lastp←r(ha) =
lastq←r(ha) for all p, q ∈ Lt(a) and all process r: each process will update the value
in the same way. Let state be the tuple (lasts←s(h))s∈Lt(a) aggregating all the latest
s-state from all processes s involved in a. It is easy to see that, if r ∈ Lt(a) is involved
in a, then lastq←r(ha) = δ(state, a)r. That is, it suffices to deterministically perform
a from state and take the r-component. Now, the difficulties appear for r /∈ Lt(a), that
is, if r is not involved in the transition. Then, it is easy to see that, for all q ∈ Lt(a)
involved in a (for which we need to update their state), lastq←r(ha) = lasts←r(ha) for
some process s ∈ Lt(a). The question is, which one of all the process s ∈ Lt(a) has the
freshest information about r. If we know this, then every process p can keep accurately
lastp←r(h) for all r and implement Cap by the previous lemma.

It turns out that knowing which process among a set Q has the freshest informa-
tion about any other process r is exactly what the gossip transformation of [14] does.
Roughly speaking, the gossip transformation keeps a partial ordering regarding not only
the occurrences latestp←q but also the occurrence latestp←q←r (called the tertiary in-
formation), which corresponds to the latest occurrence on r before latestp←q . Com-
paring these partial orders from every process p ∈ Lt(a) involved in the transition a,
one can determine who has the latest information on r for every process r [14]. As the
number of processes is linear, the number of occurrences of the tertiary information is
polynomial.

Keeping the partial order about occurrences of the tertiary information therefore only
requires a polynomial number of bits. Notice that [9] (see also [17,2] for the original
timestamping) gives a construction that uses only O(P 2 logP ) bits of memory.
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Table 1. Complexity of checking knowledge

Knowledge additional bits of information on-the-fly complexity with precomputation
memoryless 0 PSPACE(|V |) O(|Vp|)
perfect recall 2|V | EXPTIME(|V |) O(|V | · 2|V |)
causal |P |2 log(|P |) log(|Tr|) + |V | PSPACE(|V |) O(|V |)

We thus augment the program (the transitions, in our case) with variables that will
implement the gossip automata construction, as well as the state lastp←q for each pro-
cess q. That is, the number of bits we need to implement Cap is O(|V |+ P 2 logP ).

There are again two alternative ways to check for a particular knowledge:

With Offline Precomputation: We precalculate a table that, for each state =
(lastp←q)q∈P , tells whether every global state which can be reached from state
by performing only occurrences not on p models ϕ. If it is the case, then s |= KC

p ϕ
holds. This can be held in a table of O(2n) entries. The complexity to check on the
fly using the table whether state satisfies the property can then be done in PTIME.

Online Construction: If the table is not calculated in advance, we need to perform
a search for a global state not satisfying ϕ and reachable from state using only
occurrences not on p. This may takes exponential time (or, alternatively, PSPACE).

The various complexity results we obtained are summed up in Table 1.

6 Conclusions

Knowledge is the foundation for reasoning about the correctness of concurrent systems.
It is a prerequisite for enforcing some global coordination with minimal synchroniza-
tion. While the most basic notion of knowledge, which only depends on the current
local state, is essentially an invariant (given the current local state of a process, the
global state satisfies some property), knowledge can also be defined based on the ob-
servable history: ‘knowledge of perfect recall’ takes the local observable history of a
process into account [3]. We add another notion of knowledge, one that allows not only
to memorize local history, but also to update it through communication. We provide a
corresponding new definition of knowledge, based on causality.

Knowledge has proven to be useful for the construction of control in concurrent
systems [1,8,16]: based on the knowledge calculation, the system can be controlled
to satisfy additional imposed global properties. Such constructions are monotonic in
the sense that they preserve the knowledge calculated before control was added. When
memoryless knowledge is not sufficient, one may need to use constructions that exploit
perfect recall or causal knowledge. The view we take in this paper is that using knowl-
edge in this context amounts to a simple transformation of the system. Specifically, the
construction we provide here for causal knowledge can be used for supporting such a
control construction. It is interesting to observe that causal knowledge is cheaper than
knowledge of perfect recall, both in terms of bits to remember and in terms of time
complexity. Moreover, causal knowledge is stronger: it refines the knowledge available
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under perfect recall. However, the transformation, which is required for causal knowl-
edge, is based on the ability to exchange information while performing a joint transi-
tion (by the observed or controlled system). If this is not allowed, one may revert to the
weaker control through knowledge of perfect recall, where the controller may need to
keep an expensive progress table that represents the reachable global states.
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Abstract. We study which standard operators of probabilistic process calculi al-
low for compositional reasoning with respect to bisimulation metric semantics.
We argue that uniform continuity (generalizing the earlier proposed property of
non-expansiveness) captures the essential nature of compositional reasoning and
allows now also to reason compositionally about recursive processes. We charac-
terize the distance between probabilistic processes composed by standard process
algebra operators. Combining these results, we demonstrate how compositional
reasoning about systems specified by continuous process algebra operators allows
for metric assume-guarantee like performance validation.

1 Introduction

Probabilistic process algebras describe probabilistic concurrent communicating sys-
tems (probabilistic processes for short). In this paper we study compositional reasoning
over probabilistic processes, specified by terms of probabilistic process algebras.

Behavioral equivalences equate processes that are indistinguishable to any external
observer. The most prominent example is bisimulation equivalence [15], which provides
a well-established theory of the behavior of probabilistic nondeterministic transition
systems. However, bisimulation equivalence is too sensitive to the exact probabilities
of transitions. The slightest perturbation of the probabilities can destroy bisimilarity.
Bisimulation metric [3, 7, 8] provides a robust semantics for probabilistic processes.
It is the quantitative analogue to bisimulation equivalence and assigns to each pair of
processes a distance which measures the proximity of their quantitative properties. The
distances form a pseudometric1 where bisimilar processes are in distance 0.

In order to specify and verify systems in a compositional manner, it is necessary
that the behavioral semantics is compatible with all operators of the language that de-
scribe these systems. For behavioral equivalence semantics there is common agree-
ment that compositional reasoning requires that the considered behavioral equivalence
is a congruence wrt. all operators. On the other hand, for behavioral metric semantics
there are several proposals of properties that operators should satisfy in order to fa-
cilitate compositional reasoning. Most prominent examples are non-expansiveness [8]
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and non-extensiveness [1]. We discuss these properties and propose uniform continuity
as the most natural property of process operators to facilitate compositional reasoning
wrt. behavioral metric semantics especially in presence of recursion. Uniform conti-
nuity generalizes non-extensiveness and non-expansiveness and captures the essential
nature of compositional reasoning wrt. behavioral metric semantics. A uniformly con-
tinuous binary process operator f ensures that for any non-zero bisimulation distance ε
(understood as the admissible tolerance from the operational behavior of the composed
process f (p1, p2)) there are non-zero bisimulation distances δ1 and δ2 (understood as
the admissible tolerances from the operational behavior of the processes p1 and p2) such
that the distance between the composed processes f (p1, p2) and f (p′1, p

′
2) is at most ε

whenever the component p′1 (resp. p′2) is in distance of at most δ1 from p1 (resp. at most
δ2 from p2). Our key contributions are as follows:

1. We develop for many non-recursive and recursive process operators used in various
probabilistic process algebras tight upper bounds on the distance between processes
combined by those operators (Sec. 3.2 and 4.2).

2. We show that non-recursive process operators, esp. (nondeterministic and proba-
bilistic variants of) sequential, alternative and parallel composition, allow for com-
positional reasoning wrt. the compositionality criteria of non-expansiveness and
hence also wrt. uniform continuity (Sec. 3).

3. We show that recursive process operators, e.g. (nondeterministic and probabilistic
variants of) Kleene-star iteration and π-calculus bang replication, allow for compo-
sitional reasoning wrt. the compositionality criterion of uniform continuity, but not
wrt. non-expansiveness and non-extensiveness (Sec. 4).

4. We demonstrate the usefulness of compositional reasoning using a network pro-
tocol build from uniformly continuous operators. In particular, we show how it is
possible to derive performance guarantees of the entire system from performance
assumptions about individual components. Conversely, we show how it is also pos-
sible to derive performance requirements on individual components from perfor-
mance requirements of the complete system (Sec. 5).

2 Preliminaries

We consider transition systems with process terms as states and a transition relation
inductively defined by means of SOS rules. Process terms are inductively defined by
the process combinators. The SOS rules are syntax-driven inference rules that define
the behavior of complex processes in terms of the behavior of their components.

Probabilistic Transition Systems. A signature is a structure Σ = (F, r), where F is a
countable set of operators, or process combinators, and r : F → N is a rank function,
which gives the arity of an operator. By f ∈ Σ we mean f ∈ F. We assume an infinite
set of process variables (or state variables)Vs disjoint from F. The set of process terms
(or state terms) over a signature Σ and a set V ⊆ Vs of variables, notation T(Σ,V), is
the least set satisfying: (i) V ⊆ T(Σ,V), and (ii) f (t1, . . . , tn) ∈ T(Σ,V) whenever f ∈ Σ,
t1, . . . , tn ∈ T(Σ,V) and n = r( f ). We will use n for r( f ) if it is clear from the context.
We write T(Σ) for T(Σ, ∅) (set of all closed process terms) and T(Σ) for T(Σ,Vs) (set of
all open process terms). We may refer to closed process terms as processes.
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Probabilistic transition systems extend transition systems by allowing for probabilis-
tic choices in the transitions. We consider probabilistic nondeterministic labelled transi-
tion systems [15]. The state space is defined as the set T(Σ) of all processes. Probability
distributions over this state space are mappings π : T(Σ) → [0, 1] with

∑
t∈T(Σ) π(t) = 1

that assign to each process t its respective probability π(t). By Δ(T(Σ)) we denote the
set of all probability distributions on T(Σ). We let π, π′ range over Δ(T(Σ)).

Definition 1 (PTS). A probabilistic nondeterministic labeled transition system (PTS)
is given by a triple (T(Σ), A,−→), where Σ is a signature, A is a countable set of actions,

and −→ ⊆ T(Σ) × A × Δ(T(Σ)) is a transition relation. We write t
a−→ π for (t, a, π) ∈ −→.

Bisimulation Metric on PTS. We define now bisimulation metric as the quantitative
analogue to bisimulation equivalence. A 1-bounded pseudometric on the set of pro-
cesses T(Σ) is a function d : T(Σ) × T(Σ) → [0, 1] with d(t, t) = 0, d(t, t′) = d(t′, t),
and d(t, t′) ≤ d(t, t′′) + d(t′′, t′), for all t, t′, t′′ ∈ T(Σ). We will use 1-bounded pseu-
dometrics to describe the behavioral distances between processes. We order 1-bounded
pseudometrics by d1 � d2 iff d1(t, t′) ≤ d2(t, t′) for all t, t′ ∈ T(Σ).

A 1-bounded pseudometric on processes T(Σ) is lifted to a 1-bounded pseudometric
on distributions Δ(T(Σ)) by means of the Kantorovich pseudometric. A matching for
(π, π′) ∈ Δ(T(Σ)) × Δ(T(Σ)) is a distribution ω ∈ Δ(T(Σ) × T(Σ)) with

∑
t′∈T(Σ) ω(t, t′) =

π(t) and
∑

t∈T(Σ) ω(t, t′) = π′(t′) for all t, t′ ∈ T(Σ). LetΩ(π, π′) be the set of all matchings
for (π, π′). The Kantorovich pseudometric K(d) : Δ(T(Σ))×Δ(T(Σ))→ [0, 1] for a pseu-
dometric d : T(Σ)×T(Σ)→ [0, 1] is given by K(d)(π, π′) = minω∈Ω(π,π′)

∑
t,t′∈T(Σ) d(t, t′) ·

ω(t, t′) for all π, π′ ∈ Δ(T(Σ)).
A 1-bounded pseudometric is a bisimulation metric if for all pairs of process terms t

and t′ each transition of t can be mimicked by a transition of t′ with the same label and
the distance between the accessible distributions does not exceed the distance between
t and t′. By means of a discount factor λ ∈ (0, 1] we allow to specify how much the
behavioral distance of future transitions is taken into account [6,8]. The discount factor
λ = 1 expresses no discount, meaning that the differences in the behavior between t and
t′ are considered irrespective of after how many steps they can be observed.

Definition 2 (Bisimulation metric [8]). A 1-bounded pseudometric d on T(Σ) is a λ-
bisimulation metric for λ ∈ (0, 1] if for all process terms t, t′ ∈ T(Σ) with d(t, t′) < 1, if

t
a−→ π then there exists a transition t′

a−→ π′ such that λ ·K(d)(π, π′) ≤ d(t, t′).
The smallest λ-bisimulation metric, notation dλ, is called λ-bisimilarity metric [3,7,8].
By λ-bisimulation distance between t and t′ we mean dλ(t, t′). Bisimilarity equiva-
lence [15] is the kernel of dλ [8], i.e. dλ(t, t′) = 0 iff t and t′ are bisimilar. We may
write d for d1.

Remark 3. Clearly, dλ(t, t′) ∈ [0, λ]∪{1} for all t, t′ ∈ T(Σ). Let λ < 1. Then, dλ(t, t′) = 1
iff t can perform an action which t′ cannot (or vice versa), dλ(t, t′) = 0 iff t and t′
have the same reactive behavior, and dλ(t, t′) ∈ (0, λ] iff t and t′ have different reactive
behavior after performing the same initial action.

Algebra of Probability Distributions. We start with some notations and operations
on probability distributions. We denote by δ(t) with t ∈ T(Σ) the Dirac distribution
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defined by (δ(t))(t) = 1 and (δ(t))(t′) = 0 if t � t′. The convex combination
∑

i∈I piπi of
a family {πi}i∈I of probability distributions πi ∈ Δ(T(Σ)) with pi ∈ (0, 1] and

∑
i∈I pi = 1

is defined by (
∑

i∈I piπi)(t) =
∑

i∈I (piπi(t)) for all t ∈ T(Σ). The expression f (π1, . . . , πn)
with f ∈ Σ and πi ∈ Δ(T(Σ)) denotes the product distribution of π1, . . . , πn defined by
f (π1, . . . , πn)( f (t1, . . . , tn)) =

∏n
i=1 πi(ti) and f (π1, . . . , πn)(t) = 0 for all t ∈ T(Σ) not in

the form t = f (t1, . . . , tn). For binary operators f we may write π1 f π2 for f (π1, π2).
In order to describe probabilistic behavior, we need syntactic expressions that denote

probability distributions. To be precise, each closed expression will denote some prob-
ability distribution, and each open expression instantiates by a closed substitution to
some probability distribution. We assume an infinite set of distribution
variables Vd. We let μ, ν range over Vd. We denote by V the set of process and dis-
tribution variables V = Vs ∪ Vd . The set of distribution terms over process variables
Vs ⊆ Vs and distribution variables Vd ⊆ Vd, notation DT(Σ,Vs,Vd), is the least set
satisfying [12]: (i) Vd ⊆ DT(Σ,Vs,Vd), (ii) {δ(t) | t ∈ T(Σ,Vs)} ⊆ DT(Σ,Vs,Vd),
(iii)
∑

i∈I piθi ∈ DT(Σ,Vs,Vd) whenever θi ∈ DT(Σ,Vs,Vd) and pi ∈ (0, 1] with
∑

i∈I pi =

1, and (iv) f (θ1, . . . , θn) ∈ DT(Σ,Vs,Vd) whenever f ∈ Σ and θi ∈ DT(Σ,Vs,Vd).
We write DT(Σ) for DT(Σ,Vs,Vd) (set of all open distribution terms), and DT(Σ) for
DT(Σ, ∅, ∅) (set of all closed distribution terms).

Distribution terms have the following meaning. A distribution variable μ ∈ Vd is
a variable that takes values from Δ(T(Σ)). An instantiable Dirac distribution δ(t) is
an expression that takes as value the Dirac distribution δ(t′) when variables in t are
substituted so that t becomes the closed term t′. Case iii allows to construct convex
combinations of distributions. We write θ1⊕pθ2 for

∑2
i=1 piθi with p1 = p and p2 = 1−p.

Case iv lifts the structural inductive construction of state terms to distribution terms.
A substitution is a mapping σ : V → T(Σ) ∪ DT(Σ) s.t. σ(x) ∈ T(Σ) if x ∈ Vs and

σ(μ) ∈ DT(Σ) if μ ∈ Vd. σ extends to a mapping from process terms to process terms
as usual and to a mapping from distribution terms to distribution terms by σ(δ(t)) =
δ(σ(t)), σ(

∑
i∈I piθi) =

∑
i∈I piσ(θi), and σ( f (θ1, . . . , θn)) = f (σ(θ1), . . . , σ(θn)). A sub-

stitution σ is closed if σ(x) ∈ T(Σ) for all x ∈ Vs and σ(μ) ∈ DT(Σ) for all μ ∈ Vd .

Specification of Process Combinators. We specify the operational semantics of pro-
cess combinators by SOS rules in the probabilistic GSOS format [2,12]. The operational
semantics of a process term is given by inductively applying the respective SOS rules.

Definition 4 (PGSOS rule [2, 12]). A PGSOS rule has the form:

{xi
ai,k−−−→ μi,k | i ∈ I, k ∈ Ki} {xi

bi,l−−→� | i ∈ I, l ∈ Li}
f (x1, . . . , xn)

a−→ θ
with n the rank of operator f ∈ Σ, I = {1, . . . , n} the indices of the arguments of f ,
finite index sets Ki, Li, actions ai,k, bi,l, a ∈ A, process variables xi ∈ Vs, distribution
variables μi,k ∈ Vd, distribution term θ ∈ DT(Σ), and constraints:

1. all μi,k for i ∈ I, k ∈ Ki are pairwise different;
2. all x1, . . . , xn are pairwise different;
3. Var(θ) ⊆ {μi,k | i ∈ I, k ∈ Ki} ∪ {x1 . . . , xn}.

The expressions xi
ai,k−−−→ μi,k and xi

bi,l−−→� above the line, and f (x1, . . . , xn)
a−→ θ below the

line, are called, resp., positive premises, negative premises and conclusion of the rule.
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Table 1. Standard non-recursive process combinators

ε
√
−→ δ(0) a.

n⊕

i=1

[pi]xi
a−→

n∑

i=1

piδ(xi)

x
a−→ μ a �

√

x; y
a−→ μ; δ(y)

x
√
−→ μ y

a−→ ν
x; y

a−→ ν

x
a−→ μ

x + y
a−→ μ

y
a−→ ν

x + y
a−→ ν

x
a−→ μ y

a−→ ν
x | y a−→ μ | ν

x
a−→ μ

x ||| y a−→ μ ||| δ(y)

y
a−→ ν

x ||| y a−→ δ(x) ||| ν
x

a−→ μ y
a−→ ν a ∈ B \ {√}

x ||B y
a−→ μ ||B ν

x
a−→ μ a � B ∪ {√}

x ||B y
a−→ μ ||B δ(y)

y
a−→ ν a � B ∪ {√}

x ||B y
a−→ δ(x) ||B ν

x
√
−→ μ y

√
−→ ν

x ||B y
√
−→ δ(0)

A probabilistic transition system specification (PTSS) in PGSOS format is a triple
P = (Σ, A,R), where Σ is a signature, A is a countable set of actions and R is a countable
set of PGSOS rules. A supported model of P is a PTS (T(Σ), A,−→) such that the transi-
tion relation −→ contains all and only those transitions for which P offers a justification,

i.e. t
a−→ π ∈ −→ iff for some rule r ∈ R and some closed substitution σ all premises of

r hold, i.e. for all positive premises xi
ai,k−−−→ μi,k we have σ(xi)

ai,k−−−→ σ(μi,k) ∈ −→ and for

all negative premises xi
bi,l−−→� we have σ(xi)

bi,l−−→ π � −→ for all π ∈ Δ(T(Σ)), and the

conclusion f (x1, . . . , xn)
a−→ θ instantiates to σ( f (x1, . . . , xn)) = t and σ(θ) = π. Each

PTSS in PGSOS format has a supported model which is moreover unique [2].
Intuitively, a term f (t1, . . . , tn) represents the composition of processes t1, . . . , tn by

operator f . A rule r specifies some transition f (t1, . . . , tn)
a−→ π that represents the

evolution of the composed process f (t1, . . . , tn) by action a to the distribution π.

Definition 5 (Disjoint Extension). Let P = (Σ, A,R) and P′ = (Σ′, A,R′) be two PTSSs
in PGSOS format. P′ is a disjoint extension of P, notation P � P′, iff Σ ⊆ Σ′, R ⊆ R′
and R′ introduces no new rule for any operator in Σ.

The disjoint extension of the specification of some process combinator allows to specify
arbitrary processes while the operational semantics of the process combinator remains
unchanged. This allows us to study the compositionality properties of concrete process
combinators which hold for the composition of arbitrary processes.

3 Non-recursive Processes

We start by discussing compositional reasoning over probabilistic processes that are
composed by non-recursive process combinators. First we introduce the most com-
mon non-recursive process combinators, then study the distance between composed
processes, and conclude by analyzing their compositionality properties. Our study of
compositionality properties generalizes earlier results of [7, 8] which considered only
a small set of process combinators and only the property of non-expansiveness. The
development of tight bounds on the distance between composed process (necessary for
effective metric assume-guarantee performance validation) is novel.

3.1 Non-recursive Process Combinators

We introduce a probabilistic process algebra that comprises many of the probabilistic
CCS [2] and CSP [4] process combinators. Let ΣPA be a signature with the following
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Table 2. Standard non-recursive probabilistic process combinators

x
a−→ μ y

a−→�
x +p y

a−→ μ
x

a−→� y
a−→ ν

x +p y
a−→ ν

x
a−→ μ y

a−→ ν
x +p y

a−→ μ ⊕p ν

x
a−→ μ y

a−→�
x |||p y

a−→ μ |||p δ(y)

x
a−→� y

a−→ ν
x |||p y

a−→ δ(x) |||p ν
x

a−→ μ y
a−→ ν

x |||p y
a−→ μ |||p δ(y) ⊕p δ(x) |||p ν

operators: i) constants 0 (stop process) and ε (skip process); ii) a family of n-ary prob-
abilistic prefix operators a.([p1] ⊕ . . . ⊕ [pn] ) with a ∈ A, n ≥ 1, p1, . . . , pn ∈ (0, 1]
and
∑n

i=1 pi = 1; iii) binary operators ; (sequential composition), + (alternative
composition), +p (probabilistic alternative composition), | (synchronous parallel
composition), ||| (asynchronous parallel composition), |||p (probabilistic parallel
composition), and ‖B for each for each B ⊆ A (CSP parallel composition). The PTSS
PPA = (ΣPA, A,RPA) is given by the rules RPA in Tab. 1 and Tab. 2. We write a.

⊕n
i=1[pi]

for a.([p1] ⊕ . . . ⊕ [pn] ) and a. for a.([1] ). Moreover, by process a we mean a.0.

3.2 Distance between Non-recursive Processes

We develop now tight bounds on the distance between processes combined by the non
-recursive process combinators. This allows us later to derive the compositionality prop-
erties of those operators. As we will discuss two different compositionality proper-
ties for non-recursive processes, we split in this section the discussion on the distance
bounds accordingly. We use disjoint extensions of the specification of the process com-
binators in order to reason over the composition of arbitrary processes.

We will express the bound on the distance between composed processes f (s1, . . . , sn)
and f (t1, . . . , tn) in terms of the distance between their respective components si and
ti. Intuitively, given a probabilistic process f (s1, . . . , sn) we provide a bound on the
distance to the respective probabilistic process f (t1, . . . , tn) where each component si is
replaced by the component ti. We start with those process combinators that satisfy the
later discussed compositionality property of non-extensiveness (Def. 9).

Proposition 6. Let P = (Σ, A,R) be any PTSS with PPA � P. For all si, ti ∈ T(Σ)

(a) dλ(a.
⊕n

i=1[pi]si, a.
⊕n

i=1[pi]ti) ≤ λ∑n
i=1 pidλ(si, ti);

(b) dλ(s1 + s2, t1 + t2) ≤ max(dλ(s1, t1), dλ(s2, t2));
(c) dλ(s1 +p s2, t1 +p t2) ≤ max(dλ(s1, t1), dλ(s2, t2)).

The distance between action prefixed processes (Prop. 6.a) is discounted by λ since
the processes a.

⊕n
i=1[pi]si and a.

⊕n
i=1[pi]ti perform first the action a before si and ti

may evolve. The distances between processes composed by either the nondeterminis-
tic alternative composition operator or by the probabilistic alternative composition are
both bounded by the maximum of the distances between their respective arguments
(Prop. 6.b and Prop. 6.c). The distance bounds for these operators coincide since the
first two rules specifying the probabilistic alternative composition define the same op-
erational behavior as the nondeterministic alternative composition and the third rule
defines a convex combination of these transitions.

We proceed with those process combinators that satisfy the later discussed composi-
tionality property of non-expansiveness (Def. 12).
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Proposition 7. Let P = (Σ, A,R) be any PTSS with PPA � P. For all si, ti ∈ T(Σ)

(a) dλ(s1; s2, t1; t2) ≤
⎧
⎪⎪⎨
⎪⎪⎩

1 if dλ(s1, t1) = 1

max(da
1,2, dλ(s2, t2)) if dλ(s1, t1) ∈ [0, 1)

(b) dλ(s1 | s2, t1 | t2) ≤ ds

(c) dλ(s1 ||| s2, t1 ||| t2) ≤ da

(d) dλ(s1 ‖B s2, t1 ‖B t2) ≤
⎧
⎪⎪⎨
⎪⎪⎩

ds if B \ {√} � ∅
da otherwise

(e) dλ(s1 |||p s2, t1 |||p t2) ≤ da, with

ds=

⎧
⎪⎪⎨
⎪⎪⎩

1 if dλ(s1, t1) = 1 or dλ(s2, t2) = 1

dλ(s1, t1) + (1 − dλ(s1, t1)/λ)dλ(s2, t2) otherwise

da=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if dλ(s1, t1) = 1

1 if dλ(s2, t2) = 1

max(da
1,2 , da

2,1) otherwise

da
1,2 = dλ(s1, t1) + λ(1 − dλ(s1, t1)/λ)dλ(s2, t2)

da
2,1 = dλ(s2, t2) + λ(1 − dλ(s2, t2)/λ)dλ(s1, t1)

The expression ds captures the distance bound between the synchronously evolv-
ing processes s1 and s2 on the one hand and the synchronously evolving processes t1
and t2 on the other hand. We remark that distances dλ(s1, t1) and dλ(s2, t2) contribute
symmetrically to ds since dλ(s1, t1) + (1 − dλ(s1, t1)/λ)dλ(s2, t2) = dλ(s2, t2) + (1 −
dλ(s2, t2)/λ)dλ(s1, t1) = dλ(s1, t1) + dλ(s2, t2) − dλ(s1, t1)dλ(s2, t2)/λ. The expressions
da

1,2, d
a
2,1, d

a cover different scenarios of the asynchronous evolution of those processes.
The expression da

1,2 (resp. da
2,1) denotes the distance bound between the asynchronously

evolving processes s1 and s2 on the one hand and the asynchronously evolving pro-
cesses t1 and t2 on the other hand, at which the first transition is performed by the pro-
cesses s1 and t1 (resp. the first transition is performed by processes s2 and t2). Hence, the
distances of the asynchronously evolving processes da

1,2 and da
2,1 differ from the distance

ds of the synchronously evolving processes only by the discount factor λ that is applied
to the delayed process. Finally, da captures the distance between asynchronously evolv-
ing processes independent of which of those processes moves first. If dλ(si, ti) = 1
the processes may disagree on the initial actions they can perform and the composed
processes have then also the maximal distance of 1 (cf. Rem. 3).

We consider now the process combinators in detail. The distance between sequen-
tially composed processes s1; s2 and t1; t2 (Prop. 7.a) is given if dλ(s1, t1) ∈ [0, 1) as
the maximum of (i) the distance da

1,2 (which captures the case that first the processes
s1 and t1 evolve followed by s2 and t2), and (ii) the distance dλ(s2, t2) (which cap-
tures the case that the processes s2 and t2 evolve immediately because both s1 and t1
terminate successfully). The distance da

1,2 weights the distance between s2 and t2 by
λ(1−dλ(s1, t1)/λ). The discount λ expresses that the distance between processes s2 and
t2 is observable just after s1 and t1 have performed at least one step. Additionally, note
that the difference between s2 and t2 can only be observed when s1 and t1 agree to ter-
minate. When processes s1 and t1 evolve by one step, they disagree by dλ(s1, t1)/λ on
their behavior. Hence they agree by 1 − dλ(s1, t1)/λ. Thus, the distance between pro-
cesses s2 and t2 needs to be additionally weighted by (1 − dλ(s1, t1)/λ). In case (ii) the
distance between s2 and t2 is not discounted since both processes start immediately.
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The distance between synchronous parallel composed processes s1 | s2 and t1 | t2 is
dλ(s1, t1)+(1−dλ(s1, t1)/λ)dλ(s2, t2) = λ(1−(1−dλ(s1, t1)/λ)(1−dλ(s2, t2)/λ)). The dis-
tance between s1 | s2 and t1 | t2 is bounded by the sum of the distance between s1 and t1
(degree of dissimilarity between s1 and t1) and the distance between s2 and t2 weighted
by the probability that s1 and t1 agree on their behavior (degree of dissimilarity between
s2 and t2 under equal behavior of s1 and t1). Alternatively, the distance between s1 | s2

and t1 | t2 can be understood as composing processes on the behavior they agree upon,
i.e. s1 | s2 and t1 | t2 agree on their behavior if s1 and t1 agree (probability of similar-
ity 1 − dλ(s1, t1)/λ) and if s2 and t2 agree (probability of similarity 1 − dλ(s2, t2)/λ).
The resulting distance is then the probability of dissimilarity of the respective behavior
expressed by 1 − (1 − dλ(s1, t1)/λ)(1− dλ(s2, t2)/λ) multiplied by the discount factor λ.

The distance between asynchronous parallel composed processes s1 ||| s2 and t1 ||| t2
is exactly the expression da. The distance between processes composed by the prob-
abilistic parallel composition operator s1 |||p s2 and t1 |||p t2 is bounded by the same
expression da since the first two rules specifying the probabilistic parallel composi-
tion define the same operational behavior as the nondeterministic parallel composition.
The third rule defining a convex combination of these transitions applies only for those
actions that can be performed by both processes s1 and s2 and resp. t1 and t2.

Processes that are composed by the CSP parallel composition operator ‖B evolve
synchronously for actions in B \ {√}, evolve asynchronously for actions in A \ (B∪{√}),
and the action

√
leads always to the stop process if both processes can perform

√
. Since

ds ≥ da, the distance is bounded by ds if there is at least one action a ∈ B with a �
√

for which the composed processes can evolve synchronously, and otherwise by da.
The distance bounds for non-recursive process combinators are tight.

Proposition 8. Let εi ∈ [0, 1]. There are si, ti ∈ T(ΣPA) with dλ(si, ti) = εi such that the
inequalities in Prop. 6 and 7 become equalities.

3.3 Compositional Reasoning Over Non-recursive Processes

In order to specify and verify systems in a compositional manner, it is necessary that
the behavioral semantics is compatible with all operators of the language that describe
these systems. There are multiple proposals which properties of process combinators
facilitate compositional reasoning. In this section we discuss non-extensiveness [1] and
non-expansiveness [7, 8]), which are compositionality properties based on the p-norm.
They allow for compositional reasoning over probabilistic processes that are built of
non-recursive process combinators. Non-extensiveness and non-expansiveness are very
strong forms of uniform continuity. For instance, a non-expansive operator ensures that
the distance between the composed processes is at most the sum of the distances be-
tween its parts. Later in Sec. 4.3 we will propose uniform continuity as generalization of
these properties that allows also for compositional reasoning over recursive processes.

Definition 9 (Non-extensive Process Combinator). A process combinator f ∈ Σ is
non-extensive wrt. λ-bisimulation metric dλ if or all closed process terms si, ti ∈ T(Σ)

dλ( f (s1, . . . , sn), f (t1, . . . , tn)) ≤ n
max

i=1
dλ(si, ti)
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Theorem 10. The process combinators probabilistic action prefix a.
⊕n

i=1[pi] , non-
deterministic alternative composition + and probabilistic alternative composition
+p are non-extensive wrt. dλ for any λ ∈ (0, 1].

Proposition 11. The process combinators sequential composition ; , synchronous
parallel composition | , asynchronous parallel composition ||| , CSP-like parallel
composition ‖B and probabilistic parallel composition |||p are not non-extensive
wrt. dλ for any λ ∈ (0, 1].

Note that Thm. 10 follows from Prop. 6, and that Prop. 11 follows from Prop. 7 and
Prop. 8. We proceed now with the compositionality property of non-expansiveness.

Definition 12 (Non-expansive Process Combinator). A process combinator f ∈ Σ is
non-expansive wrt. λ-bisimulation metric dλ if for all closed process terms si, ti ∈ T(Σ)

dλ( f (s1, . . . , sn), f (t1, . . . , tn)) ≤
n∑

i=1

dλ(si, ti)

If f is non-extensive, then f is non-expansive.

Theorem 13. All non-recursive process combinators of ΣPA are non-expansive wrt. dλ
for any λ ∈ (0, 1].

Note that Thm. 13 follows from Prop. 6 and Prop. 7. Thm. 13 generalizes a similar
result of [8] which considered only PTSs without nondeterministic branching and only
a small set of combinators. The analysis which operators are non-extensive (Thm. 10)
and the tight distance bounds (Prop. 6 and 7) are novel.

4 Recursive Processes

Recursion is necessary to express infinite behavior in terms of finite process expres-
sions. Moreover, recursion allows to express repetitive finite behavior in a compact
way. We will discuss now compositional reasoning over probabilistic processes that
are composed by recursive process combinators. We will see that the compositionality
properties used for non-recursive process combinators (Sec. 3.3) fall short for recursive
process combinators. We will propose the more general property of uniform continuity
(Sec. 4.3) that captures the inherent nature of compositional reasoning over probabilistic
processes. In fact, it allows to reason compositionally over processes that are composed
by both recursive and non-recursive process combinators. In the next section we apply
these results to reason compositionally over a communication protocol and derive its
respective performance properties. To the best of our knowledge this is the first study
which explores systematically compositional reasoning over recursive processes in the
context of bisimulation metric semantics.

4.1 Recursive Process Combinator

We define PPA� as disjoint extension of PPA with the operators finite iteration n, infi-
nite iteration ω, binary Kleene-star iteration ∗ , probabilistic Kleene-star iteration ∗p ,
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Table 3. Standard recursive process combinators

x
a−→ μ

xn+1 a−→ μ; δ(xn)

x
a−→ μ

xω
a−→ μ; δ(xω)

x
a−→ μ

x∗y
a−→ μ; δ(x∗y)

y
a−→ ν

x∗y
a−→ ν

x
a−→ μ y

a−→ ν
x∗p y

a−→ ν ⊕p μ; δ(x∗p y)

x
a−→ μ y

a−→�
x∗p y

a−→ μ; δ(x∗p y)

x
a−→� y

a−→ ν
x∗p y

a−→ ν
x

a−→ μ
!n+1x

a−→ μ ||| δ(!n x)

x
a−→ μ

!x
a−→ μ ||| δ(!x)

x
a−→ μ

!p x
a−→ μ ⊕p (μ ||| δ(!px))

finite replication !n , infinite replication (bang) operator ! , and probabilistic bang oper-
ator !p . The operational semantics of these operators is specified by the rules in Tab. 3.
The finite iteration tn (resp. infinite iteration tω) of process t expresses that t is performed
n times (resp. infinitely often) in sequel. The binary Kleene-star is as usual. The bang
operator expresses for !t (resp. finite replication !nt) that infinitely many copies (resp.
n copies) of t evolve asynchronously. The probabilistic variants of Kleene-star itera-
tion [2, Sec. 5.2.4(vi)] and bang replication [14, Fig. 1] substitute the nondeterministic
choice of the non-probabilistic variants by a respective probabilistic choice.

4.2 Distance between Recursive Processes

We develop now tight bounds for recursive process combinators.

Proposition 14. Let P = (Σ, A,R) be any PTSS with PPA� � P. For all s, t ∈ T(Σ)

(a) dλ(sn, tn) ≤ dn

(b) dλ(!ns, !nt) ≤ dn

(c) dλ(sω, tω) ≤ dω

(d) dλ(!s, !t) ≤ dω

(e) dλ(s1
∗s2, t1∗t2) ≤ max(dλ(s1

ω, t1ω), dλ(s2, t2))

(f) dλ(s
∗p

1 s2, t
∗p

1 t2) ≤ dλ(s1
∗s2, t1∗t2)

(g) dλ(!ps, !pt) ≤
⎧
⎪⎪⎨
⎪⎪⎩

dλ(s, t) 1
1−(1−p)(λ−dλ (s,t)) if dλ(s, t) ∈ (0, 1)

dλ(s, t) if dλ(s, t) ∈ {0, 1} , with

dn=

⎧
⎪⎪⎨
⎪⎪⎩

dλ(s, t) 1−(λ−dλ(s,t))n

1−(λ−dλ(s,t)) if dλ(s, t) ∈ (0, 1)

dλ(s, t) if dλ(s, t) ∈ {0, 1} dω=

⎧
⎪⎪⎨
⎪⎪⎩

dλ(s, t) 1
1−(λ−dλ(s,t)) if dλ(s, t) ∈ (0, 1)

dλ(s, t) if dλ(s, t) ∈ {0, 1}

First we explain the distance bounds of the nondeterministic recursive process com-
binators. To understand the distance bound between processes that iterate finitely many
times (Prop. 14.a), observe that sn and s; . . . ; s (where s; . . . ; s denotes n sequentially
composed instances of s) denote the same PTSs (up to renaming of states). Recursive
application of the distance bound Prop. 7.a yields dλ(sn, tn) = dλ(s; . . . ; s, t; . . . ; t) ≤
dλ(s, t)

∑n−1
k=0(λ − dλ(s, t)) = dn. The same reasoning applies to the finite replication op-

erator (Prop.14.b) by observing that !ns and s ||| . . . ||| s denote the same PTSs (up to
renaming of states) and that the bounds in Prop. 7.a and 7.c coincide if s1 = s2 = s
and t1 = t2 = t. The distance between processes that may iterate infinitely many times
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(Prop. 14.c), and the distance between processes that may spawn infinite many copies
that evolve asynchronously (Prop. 14.d) are the limit of the respective finite iteration
and replication bounds. The distance between the Kleene-star iterated processes s1

∗s2

and t1∗t2 is bounded by the maximum of the distance dλ(s1
ω, t1ω) (infinite iteration of

s1 and t1 s.t. s2 and t2 never evolve), and the distance dλ(s2, t2) (s2 and t2 evolve imme-
diately). The case where s1 and t1 iterate n-times and then s2 and t2 evolve leads always
to a distance dλ(s1

n, t1n) + (λ − dλ(s1, t1))ndλ(s2, t2) ≤ max(dλ(s1
ω, t1ω), dλ(s2, t2)).

Now we explain the bounds of the probabilistic recursive process combinators. The
distance between processes composed by the probabilistic Kleene star is bounded by
the distance between those processes composed by the nondeterministic Kleene star
(Prop. 14.f), since the second and third rule specifying the probabilistic Kleene star
define the same operational behavior as the nondeterministic Kleene star. The first
rule which defines a convex combination of these transitions applies only for those
actions that both of the combined processes can perform. In fact, dλ(s1

∗p s2, t1∗p t2) =
dλ(s1

∗s2, t1∗t2) if the initial actions that can be performed by processes s1, t1 are dis-
joint from the initial actions that can be performed by processes s2, t2 (and hence the
first rule defining ∗p cannot be applied). Thus, the distance bound of the probabilistic
Kleene star coincides with the distance bound of the nondeterministic Kleene star. The
bound on the distance of processes composed by the probabilistic bang operator can be
understood by observing that !ps behaves as !n+1s with probability p(1− p)n. Hence, by
Prop. 14.b we get dλ(!ps, !pt) ≤ ∑∞n=0 p(1 − p)ndλ(!n+1s, !n+1t) ≤ ∑∞n=0 p(1 − p)ndn+1 =

dλ(s, t)/(1 − (1 − p)(λ − dλ(s, t))).
The distance bounds for recursive process combinators are tight.

Proposition 15. Let εi ∈ [0, 1]. There are si, ti ∈ T(ΣPA) with dλ(si, ti) = εi such that the
inequalities in Prop. 14 become equalities.

4.3 Compositional Reasoning Over Recursive Processes

From Prop. 14 and Prop. 15 it follows that none of the recursive process combinators
discussed in this section satisfies the compositionality property of non-expansiveness.

Proposition 16. All recursive process combinators of ΣPA� (unbounded recursion and
bounded recursion with n ≥ 2) are not non-expansive wrt. dλ for any λ ∈ (0, 1].

However, a weaker property suffices to facilitate compositional reasoning. To reason
compositionally over probabilistic processes it is enough if the distance of the composed
processes can be related to the distance of its parts. In essence, compositional reasoning
over probabilistic processes is possible whenever a small variance in the behavior of the
parts leads to a bounded small variance in the behavior of the composed processes.

We introduce uniform continuity as the compositionality property for both recursive
and non-recursive process combinators. Uniform continuity generalizes the properties
non-extensiveness and non-expansiveness for non-recursive process combinators.

Definition 17 (Uniformly Continuous Process Combinator). A process combinator
f ∈ Σ is uniformly continuous wrt. λ-bisimulation metric dλ if for all ε > 0 there are
δ1, . . . , δn > 0 such that for all closed process terms si, ti ∈ T(Σ)

∀i = 1, . . . , n. dλ(si, ti) < δi =⇒ dλ( f (s1, . . . , sn), f (t1, . . . , tn)) < ε.
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Note that by definition each non-expansive operator is also uniformly continuous (by
δi = ε/n). A uniformly continuous combinator f ensures that for any non-zero bisim-
ulation distance ε there are appropriate non-zero bisimulation distances δi s.t. for any
composed process f (s1, . . . , sn) the distance to the composed process where each si is
replaced by any ti with dλ(si, ti) < δi is dλ( f (s1, . . . , sn), f (t1, . . . , tn)) < ε. We consider
the uniform notion of continuity (technically, the δi depend only on ε and are indepen-
dent of the concrete states si) because we aim at universal compositionality guarantees.

The distance bounds of Sec. 4.2 allow us to derive that finitely recursing process
combinators are uniformly continuous wrt. both non-discounted and discounted bisimu-
lation metric (Thm. 18). On the contrary, unbounded recursing process combinators are
uniformly continuous only wrt. discounted bisimulation metric (Thm. 19 and Prop. 20).

Theorem 18. The process combinators finite iteration n, finite replication !n , and
probabilistic replication (bang) !p are uniformly continuous wrt. dλ for any λ ∈ (0, 1].

Note that the probabilistic bang is uniformly continuous wrt. non-discounted bisimula-
tion metric d1 because in each step there is a non-zero probability that the process is not
copied. On contrary, the process s1

∗p s2 applying the probabilistic Kleene star creates
with probability 1 a copy of s1 for actions that s1 can and s2 cannot perform. Hence,
∗p is uniformly continuous only for discounted bisimulation metric dλ with λ < 1.

Theorem 19. The process combinators infinite iteration ω, nondeterministic Kleene-
star iteration ∗ , probabilistic Kleene-star iteration ∗p , and infinite replication (bang)
! are uniformly continuous wrt. dλ for any λ ∈ (0, 1).

Proposition 20. The process combinators ω, ∗ , ! and ∗p are not uniformly contin-
uous wrt. d1.

5 Application

To advocate both uniform continuity as adequate property for compositional reasoning
as well as bisimulation metric semantics as a suitable distance measure for performance
validation of communication protocols, we exemplify the discussed compositional rea-
soning method by analyzing the bounded retransmission protocol (BRP) as a case study.

The BRP allows to transfer streams of data from a sender (e.g. a remote control
RC) to a receiver (e.g. a TV). The RC tries to send to the TV a stream of n data,
d0, . . . , dn−1, with each di a member of the finite data domain D. The length n of the
stream is bounded by a given N. Each di is sent separately and has probability p to get
lost. When the TV receives di, it sends back an acknowledgment message (ack), which
may also get lost, with probability q. If the RC does not receive the ack for di within a
given time, it assumes that di got lost and retries to transmit it. However, the maximal
number of attempts is T . Since the ack may get lost, it may happen that the RC sends
more than once the same datum di notwithstanding that it was correctly received by the
TV. Therefore the RC attaches a control bit b to each datum di s.t. the TV can recognize
if this datum is original or already received. Data items at even positions, i.e. d2k for
some k ∈ N, get control bit 0 attached, and data items d2k+1 get control bit 1 attached.
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BRP(N, T, p, q) = RC(N, T, p, q) ‖B TV, where B = {c(d, b) | d ∈ D, b ∈ {0, 1}} ∪ {ack, lost}

RC(N, T, p, q) =

[ ∑

0≤n≤N,n=2k

i(n).
(

CH(0, T, p, q) ; CH(1,T, p, q)
) n

2
+

∑

0≤n≤N,n=2k+1

i(n).
((

CH(0, T, p, q) ; CH(1,T, p, q)
) n−1

2
; CH(0, T, p, q)

)]

; res(OK).
√

CH(b, t, p, q) =
∑

d∈D
i(d).CH′(d, b, t, p, q)

CH′(d, b, t, p, q) =

⎧
⎪⎪⎨
⎪⎪⎩

(⊥.CH′(d, b, t − 1, p, q)) ⊕p (c(d, b).CH2(d, b, t, p, q)) if t > 0

res(NOK) if t = 0

CH2(d, b, t, p, q) =

⎧
⎪⎪⎨
⎪⎪⎩

(lost.CH′(d, b, t − 1, p, q)) ⊕q (ack.
√

) if t > 0

res(NOK) if t = 0

T V =
[((∑

d∈D
c(d, 1).(ack.

√
+ lost.

√
)
)∗(∑

d∈D
c(d, 0).o(d).(ack.

√
+ lost.

√
)
))

;

((∑

d∈D
c(d, 0).(ack.

√
+ lost.

√
)
)∗(∑

d∈D
c(d, 1).o(d).(ack.

√
+ lost.

√
)
))]ω

Fig. 1. Specification of the Bounded Retransmission Protocol

The BRP is specified in Fig. 1. Our specification adapts the nondeterministic process
algebra specification of [10] by refining the configuration of lossy channels. While in
the nondeterministic setting a lossy channel (nondeterministically) either successfully
transmits a datum or looses it, we attached a success and failure probability to this
choice. The protocol specification BRP(N, T, p, q) represents a system consisting of
the RC modeled as process RC(N, T, p, q), the TV modeled as process TV , and the
channels CH(b, t, p, q) for data transmission and CH2(d, b, t, p, q) for acknowledgment.
The processes RC(N, T, p, q) and TV synchronize over the actions: (i) c(d, b), modeling
the correct transmission of pair (d, b) from the RC to the TV; (ii) ack, modeling the
correct transmission of the ack from the TV to the RC, and (iii) lost, used to model
the timeout due to loss of the ack. Timeout due to the loss of pair (d, b) is modeled
by action ⊥ by the RC. RC(N, T, p, q) starts by receiving the size n ≤ N of the data
stream, by means of action i(n). Then, for n times it reads the datum di by means of
action i(d) and tries to send it to the TV . If all data are sent successfully, then the other
RC components are notified by means of action res(OK). In case of T failures for one
datum, the whole transmission fails and emits res(NOK). If TV receives a pair (d, b) by
action c(d, b) then, if d is original, namely b is the expected control bit, then d is sent to
other TV components by o(d), otherwise (d, b) is ignored.

To advocate bisimulation metric semantics as a suitable distance measure for perfor-
mance validation of communication protocols we translate performance properties of a
BRP implementation with lossy channels BRP(N, T, p, q) to the bisimulation distance
between this implementation and the specification with perfect channels BRP(N, T, 0, 0).
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Proposition 21. Let N, T ∈ N and p, q ∈ [0, 1].

(a) Bisimulation distance d(BRP(N, T, 0, 0),BRP(N, T, p, q)) = ε relates as follows to
the protocol performance properties:

– The likelihood that N data items are sent and acknowledged without any retry
(i.e. BRP(N, T, p, q) behaves as BRP(N, T, 0, 0)) is 1 − ε.

– The likelihood that N data items are sent and acknowledged with at most k ≤
N · T retries is (1 − ε) 1−(1−(1−ε)1/N )k

(1−ε)1/N .

– The likelihood that N items are sent and acknowledged is (1− ε) 1−(1−(1−ε)1/N )N·T
(1−ε)1/N .

(b) Bisimulation distance d(CH(b, T, 0, 0),CH(b, T, p, q)) = δ relates as follows to the
channel performance properties:

– The likelihood that one datum is sent and acknowledged without retry is 1 − δ.
– The likelihood that one datum is sent and acknowledged with at most k ≤ T

retries is 1 − δk.

Now we show that by applying the compositionality results in Prop. 6, 7, 14 we
can relate the bisimulation distance between the specification BRP(N, T, 0, 0) and some
implementation BRP(N, T, p, q) of the entire protocol with the distances between the
specification and some implementation of its respective components. On the one hand,
this allows to derive from specified performance properties of the entire protocol indi-
vidual performance requirements of its components (compositional verification). On the
other hand, it allows to infer from performance properties of the protocol components
suitable performance guarantees on the entire protocol (compositional specification).

Proposition 22. Let N, T ∈ N and p, q ∈ [0, 1]. For all d ∈ D and b ∈ {0, 1}
(a) d(BRP(N, T, 0, 0),BRP(N, T, p, q)) ≤ 1 − (1 − d(CH(b, T, 0, 0),CH(b, T, p, q)))N

(b) d(CH(b, T, 0, 0),CH(b, T, p, q)) = 1 − (1 − p)(1 − q)

Prop. 22.a follows from Props. 6, 7, 14 and Prop. 22.b from Props. 6, 7.
To advocate uniform continuity as adequate property for compositional reasoning,

we show that the uniform continuity of process combinators in BRP(N, T, p, q) allows us
to relate the distance between this implementation and the specification BRP(N, T, 0, 0)
(which relates by Prop. 21 to performance properties of the entire protocol) to the con-
crete parameters p, q and N of the system. In detail, by Thm. 10, 13, 18 and Prop. 22
we get d(BRP(N, T, p, q),BRP(N, T, 0, 0)) ≤ N/2 · (d(CH(0, T, p, q),CH(0, T, 0, 0)) +
d(CH(1, T, p, q),CH(1, T, 0, 0))) ≤ N(1− (1− p)(1− q)). We infer the following result.

Proposition 23. Let N, T ∈ N and p, q ∈ [0, 1]. For all ε ≥ 0, p+q− pq < ε/N ensures

d(BRP(N, T, p, q),BRP(N, T, 0, 0)) < ε

Combining Prop. 21 – 23 allows us now to reason compositionally over a concrete
scenario. We derive from a given performance requirement to transmit a stream of data
the necessary performance properties of the channel components.

Example 24. Consider the following scenario. We want to transmit a data stream of N =
20 data items with at most T = 1 retry per data item. We want to build an implementa-
tion that should satisfy the performance property ‘The likelihood that all 20 data items
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are successfully transmitted is at least 99%’. By Prop. 21.a we translate this perfor-
mance property to the resp. bisimulation distance d(BRP(N, T, 0, 0),BRP(N, T, p, q)) ≤
0.01052 on the entire system. By Prop. 22.a we derive the bisimulation distance for
its channel component d(CH(b, T, 0, 0),CH(b, T, p, q) ≤ 0.00053. By Prop. 22.b this
distance can be translated to appropriate parameters of the channel component, e.g.
p = 0.0002 and q = 0.00032 or equivalently p = 0.020% and q = 0.032%. Finally,
Prop. 21.b allows to translate the distance between the specification and implementa-
tion of the channel component back to an appropriate performance requirement, e.g.
‘The likelihood that one datum is successfully transmitted is at least 99.95%’. �

6 Conclusion

We argued that uniform continuity is an appropriate property of process combinators to
facilitate compositional reasoning wrt. bisimulation metric semantics. We showed that
all standard (non-recursive and recursive) process algebra operators are uniformly con-
tinuous. In addition, we provided tight bounds on the distance between the composed
processes. We exemplified how these results can be used to reason compositionally over
protocols. In fact, they allow to derive from performance requirements on the entire sys-
tem appropriate performance properties of the respective components, and in reverse to
induce from performance assumptions on the system components performance guaran-
tees on the entire system.

We will continue this line of research as follows. First, we generalize the analysis
of concrete process algebra operators as discussed in this paper to general SOS rule
and specification formats. Preliminary results show that in essence, a process combi-
nator is uniformly continuous if the combined processes are copied only finitely many
times along their evolution [11]. Then, we explore further (as initiated in Sec. 5) the
relation between various behavioral distance measures, e.g. convex bisimulation met-
ric [5], trace metric [9], and total-variation distance based metrics [13] with perfor-
mance properties of communication and security protocols. This will provide further
practical means to apply process algebraic methods and compositional metric reason-
ing wrt. uniformly continuous process combinators.
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Abstract. The call-by-value language RML may be viewed as a canonical re-
striction of Standard ML to ground-type references, augmented by a “bad vari-
able” construct in the sense of Reynolds. We consider the fragment of (finitary)
RML terms of order at most 1 with free variables of order at most 2, and iden-
tify two subfragments of this for which we show observational equivalence to be
decidable. The first subfragment, RMLP-Str

2�1 , consists of those terms in which the
P-pointers in the game semantic representation are determined by the underly-
ing sequence of moves. The second subfragment consists of terms in which the
O-pointers of moves corresponding to free variables in the game semantic repre-
sentation are determined by the underlying moves. These results are shown using
a reduction to a form of automata over data words in which the data values have
a tree-structure, reflecting the tree-structure of the threads in the game semantic
plays. In addition we show that observational equivalence is undecidable at every
third- or higher-order type, every second-order type which takes at least two first-
order arguments, and every second-order type (of arity greater than one) that has
a first-order argument which is not the final argument.

1 Introduction

RML is a call-by-value functional language with state [2]. It is similar to Reduced ML
[17], the canonical restriction of Standard ML to ground-type references, except that
it includes a “bad variable” constructor (in the absence of the constructor, the equality
test is definable). This paper concerns the decidability of observational equivalence of
finitary RML, RMLf . Our ultimate goal is to classify the decidable fragments of RMLf

completely. In the case of finitary Idealized Algol (IA), the decidability of observational
equivalence depends only on the type-theoretic order [13] of the type sequents. In con-
trast, the decidability of RMLf sequents is not so neatly characterised by order (see
Figure 1): there are undecidable sequents of order as low as 2 [12], amidst interesting
classes of decidable sequents at each of orders 1 to 4.

Following Ghica and McCusker [6], we use game semantics to decide observational
equivalence of RMLf . Take a sequent Γ � M : θ with Γ = x1 : θ1, · · · , xn : θn.
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In game semantics [7][10], the type sequent is interpreted as a P-strategy �Γ � M : θ�
for playing (against O, who takes the environment’s perspective) in the prearena �θ � θ�.
A play between P and O is a sequence of moves in which each non-initial move has a
justification pointer to some earlier move – its justifier. Thanks to the fully abstract
game semantics of RML, observational equivalence is characterised by complete plays
i.e. Γ � M ∼= N iff the P-strategies, �Γ � M� and �Γ � N�, contain the same set
of complete plays. Strategies may be viewed as highly constrained processes, and are
amenable to automata-theoretic representations; the chief technical challenge lies in the
encoding of pointers.

In [9] we introduced the O-strict fragment of RMLf , RMLO-Str, consisting of se-
quents x1 : θ1, · · · , xn : θn � M : θ such that θ is short (i.e. order at most 2 and arity
at most 1), and every argument type of every θi is short. Plays over prearenas denoted
by O-strict sequents enjoy the property that the pointers from O-moves are uniquely
determined by the underlying move sequence. The main result in [9] is that the set of
complete plays of a RMLO-Str-sequent is representable as a visibly pushdown automa-
ton (VPA). A key idea is that it suffices to require each word of the representing VPA
to encode the pointer from only one P-question. The point is that, when the full word
language is analysed, it will be possible to uniquely place all justification pointers.

The simplest type that is not O-strict is β → β → β where β ∈ {int, unit}. Encod-
ing the pointers from O-moves is much harder because O-moves are controlled by the
environment rather than the term. As observational equivalence is defined by a quan-
tification over all contexts, the strategy for a term must consider all legal locations of
pointer from an O-move, rather than just a single location in the case of pointer from
a P-move. In this paper, we show that automata over data words can precisely capture
strategies over a class of non-O-strict types.

Contributions. We identify two fragments of RMLf in which we can use deterministic
weak nested data class memory automata [4] (equivalent to the locally prefix-closed
nested data automata in [5]) to represent the set of complete plays of terms in these
fragments. These automata operate over a data set which has a tree structure, and we
use this structured data to encode O-pointers in words.

Both fragments are contained with the fragment RML2�1, which consists of terms-
in-context Γ � M where every type in Γ is order at most 2, and the type of M is
order at most 1. The first fragment, the P-Strict subfragment, consists of those terms in
RML2�1 for which in the game semantic arenas have the property that the P-pointers in
plays are uniquely determined by the underlying sequence of moves. This consists of
terms-in-context Γ � M : θ in which θ is any first order type, and each type in Γ has
arity at most 1 and order at most 2. The second fragment, RMLres

2�1, consists of terms-
in-context Γ � M : θ in which θ, again, is any first order type, and each type θ′ ∈ Γ is
at most order 2, such that each argument for θ′ has arity at most 1. Although these two
fragments are very similar, they use different encodings of data values, and we discuss
the difficulties in extending these techniques to larger fragments of RMLf .

Finally we show that observational equivalence is undecidable at every third- or
higher-order type, every second-order type which takes at least two first-order argu-
ments, and every second-order type (of arity greater than one) that has a first-order
argument which is not the final argument. See Figure 1 for a summary.
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Fragment Representative Type Sequent Recursion Ref.

Decidable
O-Strict / RMLO-Str

(EXPTIME-Complete)
((β → . . . → β) → β) → . . . → β �

(β → . . . → β) → β
while [8,9]

O-Strict + Recursion
(DPDA-Hard)

((β → . . . → β) → β) → . . . → β �
(β → . . . → β) → β

β → β [8]

RMLP-Str
2�1 (β → · · · → β) → β � β → · · · → β while †

RMLres
2�1

(β → β) → · · · → (β → β) → β �
β → · · · → β

while †
Undecidable

Third-Order
� ((β → β) → β) → β

(((β → β) → β) → β) → β � β
⊥ [8],†

Second-Order
� (β → β) → β → β

((β → β) → β → β) → β � β
⊥ [8],†

Recursion Any (β → β) → β [8],†
Unknown

RML2�1
(β → · · · → β) → · · · → (β → · · · → β)

→ β � β → · · · → β
⊥ -

RMLX
� β → (β → β) → β

((β → β) → β) → β � β → β → β
⊥ -

FO RML + Recursion � β → · · · → β β → β → β -

Fig. 1. Summary of RML Decidability Results. († marks new results presented here; β ∈
{int, unit}; we write ⊥ to mean an undecidability result holds (or none is known) even if no
recursion or loops are present, and the only source of non-termination is through the constant Ω).

Related Work. A related language with full ground references (i.e. with a int ref ref
type) was studied in [15], and observational equivalence was shown to be undecidable
even at types � unit → unit → unit. In contrast, for RMLf terms, we show decidability
at the same type. The key technical innovation of our work is the use of automata
over infinite alphabets to encode justification pointers. Automata over infinite alphabets
have already featured in papers on game semantics [14,15] but there they were used
for a different purpose, namely, to model fresh-name generation. The nested data class
memory automata we use in this paper are an alternative presentation of locally prefix-
closed data automata [5].

2 Preliminaries

RML. We assume base types unit, for commands, int for a finite set of integers, and
a integer variable type, int ref. Types are built from these in the usual way. The order
of a type θ → θ′ is given by max(order(θ) + 1, order(θ′)), where base types unit
and int have order 0, and int ref has order 1. The arity of a type θ → θ′ is arity(θ′) +
1 where unit and int have arity 0, and int ref has arity 1. A full syntax and set of
typing rules for RML is given in Figure 2. Note though we include only the arithmetic
operations succ(i) and pred(i), these are sufficient to define all the usual comparisons
and operations. We will write letx = M inN as syntactic sugar for (λx.N)M , and
M ;N for (λx.N)M where x is a fresh variable.
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Γ � () : unit

i ∈ N

Γ � i : int

Γ � M : int

Γ � succ(M) : int

Γ � M : int

Γ � pred(M) : int

Γ � M : int Γ � M0 : θ Γ � M1 : θ

Γ � if M thenM1 elseM0 : θ

Γ � M : int ref

Γ � !M : int

Γ � M : int ref Γ � N : int

Γ � M :=N : unit

Γ � M : int

Γ � ref M : int ref Γ, x : θ � x : θ

Γ � M : θ → θ′ Γ � N : θ

Γ � MN : θ′
Γ, x : θ � M : θ′

Γ � λxθ.M : θ → θ′

Γ � M : int Γ � N : unit

Γ � whileM doN : unit

Γ � M : unit → int Γ � N : int → unit

Γ � mkvar(M,N) : int ref

Fig. 2. Syntax of RML

The operational semantics, defined in terms of a big-step relation, are standard [12].
For closed terms � M we write M⇓ just if there exist s, V such that ∅,M ⇓ s, V .
Two terms Γ � M : θ and Γ � N : θ are observationally equivalent (or contextually
equivalent) if for all (closing) contexts C[−] such that ∅ � C[M ], C[N ] : unit, C[M ]⇓
if and only if C[N ]⇓.

It can be shown that every RML term is effectively convertible to an equivalent term
in canonical form [8, Prop. 3.3], defined by the following grammar (β ∈ {unit, int}).

C ::= () | i | xβ | succ(xβ) |pred(xβ) | if xβ thenC elseC |xint ref := yint | !xint ref |
λxθ.C |mkvar(λxunit.C, λyint.C) | letx = ref 0 inC |whileCdoC | letxβ = C inC |
letx = zyβ inC | letx = zmkvar(λuunit.C, λvint.C) inC | letx = z(λxθ.C) inC

Game Semantics. We use a presentation of call-by-value game semantics in the style
of Honda and Yoshida [7], as opposed to Abramsky and McCusker’s isomorphic model
[2], as Honda and Yoshida’s more concrete constructions lend themselves more easily
to recognition by automata. We recall the following presentation of the game semantics
for RML from [9].

An arena A is a triple (MA,�A, λA) where MA is a set of moves where IA ⊆ MA

consists of initial moves, �A⊆ MA × (MA\IA) is called the justification relation,
and λA : MA → {O,P} × {Q,A} a labelling function such that for all iA ∈ IA
we have λA(iA) = (P,A) and if m �A m′ then (π1λA)(m) 	= (π1λA)(m

′) and
(π2λA)(m

′) = A ⇒ (π2λA)(m) = Q.
The function λA labels moves as belonging to either Opponent or Proponent and

as being either a Question or an Answer. Note that answers are always justified by
questions, but questions can be justified by either a question or an answer. We will use
arenas to model types. However, the actual games will be played over prearenas, which
are defined in the same way except that initial moves are O-questions.

Three basic arenas are 0, the empty arena, 1, the arena containing a single initial
move •, and Z, which has the integers as its set of moves, all of which are initial P-
answers. The constructions on arenas are defined in Figure 3. Here we use IA as an
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abbreviation for MA\IA, and λA for the O/P-complement of λA. Intuitively A ⊗ B
is the union of the arenas A and B, but with the initial moves combined pairwise.
A ⇒ B is slightly more complex. First we add a new initial move, •. We take the
O/P-complement of A, change the initial moves into questions, and set them to now
be justified by •. Finally, we take B and set its initial moves to be justified by A’s
initial moves. The final construction, A → B, takes two arenas A and B and produces
a prearena, as shown below. This is essentially the same as A ⇒ B without the initial
move •.

MA⇒B = {•} �MA �MB MA⊗B = IA × IB � IA � IB
IA⇒B = {•} IA⊗B = IA × IB

λA⇒B = m �→

⎧
⎪⎪⎨

⎪⎪⎩

PA if m = •
OQ if m ∈ IA
λA(m) if m ∈ IA
λB(m) if m ∈ MB

λA⊗B = m �→
⎧
⎨

⎩

PA if m ∈ IA × IB
λA(m) if m ∈ IA
λB(m) if m ∈ IB

�A⇒B = {(•, iA)|iA ∈ IA} �A⊗B = {((iA, iB),m)|iA ∈ IA ∧ iB ∈ IB
∪{(iA, iB)|iA ∈ IA, iB ∈ IB} ∧(iA �A m ∨ iB �B m)}
∪ �A ∪ �B ∪(�A ∩(IA × IA))

∪(�B ∩(IB × IB))

MA→B = MA �MB λA→B(m) =

⎧
⎨

⎩

OQ if m ∈ IA
λA(m) if m ∈ IA
λB(m) if m ∈ MB

IA→B = IA �A→B = {(iA, iB)|iA ∈ IA, iB ∈ IB}∪ �A ∪ �B

Fig. 3. Constructions on Arenas

We intend arenas to represent types, in particular �unit� = 1, �int� = Z (or a finite
subset of Z for RMLf ) and �θ1 → θ2� = �θ1� ⇒ �θ2�. A term x1 : θ1, . . . , xn : θn �
M : θ will be represented by a strategy for the prearena �θ1� ⊗ . . .⊗ �θn� → �θ�.

A justified sequence in a prearena A is a sequence of moves from A in which the first
move is initial and all other moves m are equipped with a pointer to an earlier move
m′, such that m′ �A m. A play s is a justified sequence which additionally satisfies the
standard conditions of Alternation, Well-Bracketing, and Visibility.

A strategy σ for prearena A is a non-empty, even-prefix-closed set of plays from
A, satisfying the determinism condition: if sm1, sm2 ∈ σ then sm1 = sm2. We
can think of a strategy as being a playbook telling P how to respond by mapping odd-
length plays to moves. A play is complete if all questions have been answered. Note
that (unlike in the call-by-name case) a complete play is not necessarily maximal. We
denote the set of complete plays in strategy σ by comp(σ).

In the game model of RML, a term-in-context x1 : θ1, . . . , xn : θn � M : θ is
interpreted by a strategy of the prearena �θ1� ⊗ . . . ⊗ �θn� → �θ�. These strategies
are defined by recursion over the syntax of the term. Free identifiers x : θ � x : θ are
interpreted as copy-cat strategies where P always copies O’s move into the other copy
of �θ�, λx.M allows multiple copies of �M� to be run, application MN requires a form
of parallel composition plus hiding and the other constructions can be interpreted using
special strategies. The game semantic model is fully abstract in the following sense.
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Theorem 1 (Abramsky and McCusker [1,2]). If Γ � M : θ and Γ � N : θ are
RML type sequents, then Γ � M ∼= N iff comp(�Γ � M�) = comp(�Γ � N�).

Nested Data Class Memory Automata. We will be using automata to recognise game
semantic strategies as languages. Equality of strategies can then be reduced to equiva-
lence of the corresponding automata. However, to represent strategies as languages we
must encode pointers in the words. To do this we use data languages, in which every
position in a word has an associated data value, which is drawn from an infinite set
(which we call the data set). Pointers between positions in a play can thus be encoded
in the word by the relevant positions having suitably related data values. Reflecting the
hierarchical structure of the game semantic prearenas, we use a data set with a tree-
structure.

Recall a tree is a simple directed graph 〈D, pred 〉 where pred : D ⇀ D is the
predecessor map defined on every node of the tree except the root, such that every node
has a unique path to the root. A node n has level l just if predl(n) is the root (thus the
root has level 0). A tree is of level l just if every node in it has level ≤ l. We define a
nested data set of level l to be a tree of level l such that each data value of level strictly
less than l has infinitely many children. We fix a nested data set of level l, D, and a
finite alphabet Σ, to give a data alphabet D = Σ × D.

We will use a form of automaton over these data sets based on class memory au-
tomata [3]. Class memory automata operate over an unstructured data set, and on read-
ing an input letter (a, d), the transitions available depend both on the state the automaton
is currently in, and the state the automaton was in after it last read an input letter with
data value d. We will be extending a weaker variant of these automata, in which the
only acceptance condition is reaching an accepting state. The variant of class memory
automata we will be using, nested data class memory automata [4], works similarly:
on reading input (a, d) the transitions available depend on the current state of the au-
tomaton, the state the automaton was in when it last read a descendant (under the pred
function) of d, and the states the automaton was in when it last read a descendant of
each of d’s ancestors. We also add some syntactic sugar (not presented in [4]) to this
formalism, allowing each transition to determine the automaton’s memory of where it
last saw the read data value and each of its ancestors: this does not extend the power of
the automaton, but will make the constructions we make in this paper easier to define.

Formally, a Weak Nested Data Class Memory Automaton (WNDCMA) of level l is
a tuple 〈Q,Σ,Δ, q0, F 〉 where Q is the set of states, q0 ∈ Q is the initial state, F ⊆ Q

is the set of accepting states, and the transition function δ =
⋃l

i=0 δi where each δi is a
function:

δi : Q×Σ × ({i} × (Q � {⊥})i+1) → P(Q×Qi+1)

We write Q⊥ for the set Q�{⊥}, and may refer to the Qj
⊥ part of a transition as its sig-

nature. The automaton is deterministic if each set in the image of δ is a singleton. A con-
figuration is a pair (q, f) where q ∈ Q, and f : D → Q⊥ is a class memory function (i.e.
f(d) = ⊥ for all but finitely many d ∈ D). The initial configuration is (q0, f0) where
f0 is the class memory function mapping every data value to ⊥. The automaton can
transition from configuration (q, f) to configuration (q′, f ′) on reading input (a, d) just
if d is of level-i, (q′, (t0, t1, . . . , ti)) ∈ δ(q, a, (i, f(predi(d), . . . , f(pred(d)), f(d))),
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and f ′ = f [d �→ ti, pred(d) �→ ti−1, . . . , pred
i−1(d) �→ t1, pred

i(d) �→ t0]. A run is
defined in the usual way, and is accepting if the last configuration (qn, fn) in the run is
such that qn ∈ F . We say w ∈ L(A) if there is an accepting run of A on w.

Weak nested data class memory automata have a decidable emptiness problem, re-
ducible to coverability in a well-structured transition system [4,5], and are closed under
union and intersection by the standard automata product constructions. Further, Deter-
ministic WNDCMA are closed under complementation again by the standard method
of complementing the final states. Hence they have a decidable equivalence problem.

3 P-Strict RML2�1

In [9], the authors identify a fragment of RML, the O-strict fragment, for which the
plays in the game-semantic strategies representing terms have the property that the jus-
tification pointers of O-moves are uniquely reconstructible from the underlying moves.
Analogously, we define the P-strict fragment of RML to consist of typed terms in
which the pointers for P -moves are uniquely determined by the underlying sequence of
moves. Then our encoding of strategies for this fragment will only need to encode the
O-pointers: for which we will use data values.

3.1 Characterising P-Strict RML

In working out which type sequents for RML lead to prearenas which are P-strict, it is
natural to ask for a general characterisation of such prearenas. The following lemma,
which provides exactly that, is straightforward to prove:

Lemma 1. A prearena is P-strict iff there is no enabling sequence q � · · · � q′ in which
both q and q′ are P-questions.

Which type sequents lead to a P-question hereditarily justifying another P-question?
It is clear, from the construction of the prearena from the type sequent, that if a free
variable in the sequent has arity > 1 or order > 2, the resulting prearena will have
a such an enabling sequence, so not be P-strict. Conversely, if a free variable is of a
type of order at most 2 and arity at most 1, it will not break P-strictness. On the RHS
of the type sequent, things are a little more complex: there will be a “first” P-question
whenever the type has an argument of order ≥ 1. To prevent this P-question hereditarily
justifying another P-question, the argument must be of arity 1 and order ≤ 2. Hence the
P-strict fragment consists of type sequents of the following form:

(β → · · · → β) → β � ((β → · · · → β) → β) → · · · → ((β → · · · → β) → β) → β

(where β ∈ {unit, int}.)
From results shown here and in [8], we know that observational equivalence of all

type sequents with an order 3 type or order 2 type with order 1 non-final argument
on the RHS are undecidable. Hence the only P-strict types for which observational
equivalence may be decidable are of the form: (β → · · · → β) → β � β → · · · → β or
(β → · · · → β) → β � β → · · · → β → (β → β) → β. In this section we show that
the first of these, which is the intersection of the P-strict fragment and RML2�1, does
lead to decidability.
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Definition 1. The P-Strict fragment of RML2�1, which we denote RMLP-Str
2�1 , consists of

typed terms of the form x1 : Θ̂1, . . . , xn : Θ̂1 � M : Θ1 where the type classes Θi are
as described below:

Θ0 ::= unit | int Θ1 ::= Θ0 |Θ0 → Θ1 | int ref Θ̂1 ::= Θ0 |Θ1 → Θ0 | int ref

This means we allow types of the form (β → · · · → β) → β � β → · · · → β where
β ∈ {unit, int}.

3.2 Deciding Observational Equivalence of RMLP-Str
2�1

Our aim is to decide observational equivalence by constructing, from a term M , an
automaton that recognises a language representing �M�. As �M� is a set of plays, the
language representing �M� must encode both the moves and the pointers in the play.
Since answer moves’ pointers are always determined by well-bracketing, we only rep-
resent the pointers of question moves, and we do this with the nested data values. The
idea is simple: if a play s is in �M� the language L(�M�) will contain a word, w, such
that the string projection of w is the underlying sequence of moves of s, and such that:

– The initial move takes the (unique) level-0 data value; and
– Answer moves take the same data value as that of the question they are answering;

and
– Other question moves take a fresh data value whose predecessor is the data value

taken by the justifying move.

Of course, the languages recognised by nested data automata are closed under automor-
phisms of the data set, so in fact each play s will be represented by an infinite set of
data words, all equivalent to one another by automorphism of the data set.

Theorem 2. For every typed term Γ � M : θ in RMLP-Str
2�1 that is in canonical form

we can effectively construct a deterministic weak nested data class memory automata,
AM , recognising the complete plays of L(�Γ � M�).

Proof. We prove this by induction over the canonical forms. We note that for each
canonical form construction, if the construction is in RMLP-Str

2�1 then each constituent
canonical form must also be. For convenience of the inductive constructions, we in fact
construct automata AM

γ recognising �Γ � M� restricted to the initial move γ. Here we
sketch two illustrative cases.

λxβ.M : β → θ. The prearenas for �M� and �λxβ .M� are shown in Figure 4.
Note that in this case we must have that Γ, x : β � M : θ, and so the initial moves in
�M� contain an x-component. We therefore write these initial moves as (γ, ix) where
γ is the Γ -component and ix is the x-component.

P’s strategy �λxβ .M� is as follows: after an initial move γ, P plays the unique a0-
move •, and waits for a q1-move. Once O plays a q1-move ix, P plays as in �Γ, x � M�

when given an initial move (γ, ix). However, as the q1-moves are not initial, it is pos-
sible that O will play another q1-move, i′x. Each time O does this it opens a new thread
which P plays as per �Γ, x � M� when given initial move (γ, i′x). Only O may switch
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q1

a1

...

qn

an

�Γ �

(a) �Γ, β � θ�

q0

a0

q1

a1

...

qn

an

�Γ �

(b) �Γ � β → θ�

Fig. 4. Prearenas for �Γ, x : β � M : θ� and �Γ � λxβ.M : β → θ�

between threads, and this can only happen immediately after P plays an aj-move (for
any j).

By our inductive hypothesis, for each initial move (γ, ix) of �Γ, x : β � θ� we have
an automaton AM

γ,ix
recognising the complete plays of �Γ, x : β � M : θ� starting with

the initial move (γ, ix). We construct the automaton Aλx.M
γ by taking a copy of each

AM
γ,ix

, and quotient together the initial states of these automata to one state, p, (which
by conditions on the constituent automata we can assume has no incoming transitions).
This state p will hold the unique level-0 data value for the run, and states and transitions
are added to have initial transitions labelled with q0 and a0, ending in state p. The final
states will be the new initial state, the quotient state p, and the states which are final in
the constituent automata. The transitions inside the constituent automata fall into two
categories: those labelled with moves corresponding to the RHS of the term in context
Γ � M , and those labelled with moves corresponding to the LHS. Those transitions
corresponding to moves on the RHS are altered to have their level increased by 1, with
their signature correspondingly altered by requiring a level-0 data value in state p. Those
transitions corresponding to moves on the LHS retain the same level, but have the top
value of their data value signature replaced with the state p. Finally, transitions are
added between the constituent automata to allow switching between threads: whenever
there is a transition out of a final state in one of the automata, copies of the transition are
added from every final state (though keeping the data-value signature the same). Note
that the final states correspond to precisely the points in the run where the environment
is able to switch threads.

letxβ = M inN . Here we assume we have automata recognising �M� and �N�.
The strategy �letxβ = M inN� essentially consists of a concatenation of �M� and
�N�, with the result of playing �M� determining the value of x to use in �N�. Hence
the automata construction is very similar to the standard finite automata construction
for concatenation of languages, though branching on the different results for �M� to
different automata for �N�.

Corollary 1. Observational equivalence of terms in RMLP-Str
2�1 is decidable.
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4 A Restricted Fragment of RML2�1

It is important, for the reduction to nested data automata for RMLP-Str
2�1 , that variables

cannot be partially evaluated: in prearenas where variables have only one argument,
once a variable is evaluated those moves cannot be used to justify any future moves.
If we could later return to them we would need ensure that they were accessed only
in ways which did not break visibility. We now show that this can be done, using a
slightly different encoding of pointers, for a fragment in which variables have unlimited
arity, but each argument for the variable must be evaluated all at once. This means that
the variables have their O-moves uniquely determined by the underlying sequence of
moves.

4.1 Fragment Definition

Definition 2. The fragment we consider in this section, which we denote RMLres
2�1, con-

sists of typed terms of the form x1 : Θ1
2 , . . . , xn : Θ1

2 � M : Θ1 where the type classes
Θi are as described below:

Θ0 ::= unit | int Θ1
1 ::= Θ0 |Θ0 → Θ0 | int ref

Θ1 ::= Θ0 |Θ0 → Θ1 | int ref Θ1
2 ::= Θ1 |Θ1

1 → Θ1
2

q0

...
. . . a0

q1

a1

...

qn

an

q(1)

q
(1)
0

a
(1)
0

a(1)

q(2)

q
(2)
0

a
(2)
0

a(2)

...

q(k)

q
(k)
0

a
(k)
0

a(k)

AB

C

Fig. 5. Shape of arenas in RMLres
2�1

This allows types of the form
(β → β) → · · · → (β → β) → β �
β → · · · → β where β ∈ {unit, int}.
The shape of the prearenas for this
fragment is shown in Figure 5. Note
that moves in section A of the prearena
(marked in Figure 5) relate to the type
Θ1 on the RHS of the typing judge-
ment, and that we need only repre-
sent O-pointers for this section, since
the P-moves are all answers so have
their pointers uniquely determined by
well-bracketing. Moves in sections B
and C of the prearena correspond to
the types on the LHS of the typ-
ing judgement. Moves in section B
need only have their P-pointers rep-
resented, since the O-moves are all
answer moves. Moves in section C
have both their O- and P-pointers rep-
resented by the underlying sequence
of moves: the P-pointers because all
P-moves in this section are answer
moves, the O-pointers by the visibility
condition.



Fragments of ML Decidable by Nested Data Class Memory Automata 259

4.2 Deciding Observation Equivalence

Similarly to the P-Strict case, we provide a reduction to weak nested data class mem-
ory automata that uses data values to encode O-pointers. However, this time we do not
need to represent any O-pointers on the LHS of the typing judgement, so use data val-
ues only to represent pointers of the questions on the RHS. We do, though, need to
represent P-pointers of moves on the LHS. This we do using the same technique used
for representing P-pointers in [9]: in each word in the language we represent only one

pointer by using a “tagging” of moves: the string s
◦
m s′

•
m′ is used to represent the

pointer s m s′ m′. Because P’s strategy is deterministic, representing one pointer in
each word is enough to uniquely reconstruct all P-pointers in the plays from the entire
language. Due to space constraints we do not provide a full explanation of this tech-
nique in this paper: for a detailed discussion see [8,9]. Hence for a term �Γ � M : θ�
the data language we seek to recognise, L(�Γ � M�) represents pointers in the follow-
ing manner:

– The initial move takes the (unique) level-0 data value;
– Moves in �Γ � (i.e. in section B or C of the prearena) take the data value of the

previous move;
– Answer moves in �θ� (i.e. in section A of the prearena) take the data value of the

question they are answering; and
– Non-initial question moves in �θ� (i.e. in section A of the prearena) take a fresh

data value nested under the data value of the justifying answer move.

Theorem 3. For every typed term Γ � M : θ in RMLres
2�1 that is in canonical form

we can effectively construct a deterministic weak nested data class memory automaton,
AM , recognising the complete plays of L(�Γ � M�).

Proof. This proof takes a similar form to that of Theorem 2: by induction over canonical
forms. We here sketch the λ-abstraction case.

λxβ.M : β → θ. This construction is almost identical to that in the proof of
Theorem 2: again the strategy for P is interleavings of P’s strategy for M : θ. The only
difference in the construction is that where in the encoding for Theorem 2 the moves
in each AM

γ,ix
corresponding to the LHS and RHS of the prearena needed to be treated

separately, in this case they can be treated identically: all being nested under the new
level-0 data value. We demonstrate this construction in Example 1

Example 1. Figure 6 shows two weak nested data class memory automata. We draw a

transition p, a, (j,
(s0

...
sj

)
) → p′,

(s′0
...
s′j

)
∈ δ as an arrow from state p to p′ labelled with

“a,
(s0

...
sj

)
→

(s′0
...
s′j

)
”. We omit the “→

(s′0
...
s′j

)
” part of the label if s′j = p′ and si = s′i for

all i ∈ {0, 1, . . . , j − 1}.
The automaton obtained by the constructions in Theorem 3 for the term-in-context

� � let c = ref 0 inλyunit.if !c = 0 then c := 1 elseΩ� is shown in Figure 6a (to aid
readability, we have removed most of the dead and unreachable states and transitions).
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3 4 5, 0 6 7 5, 1
q1, (⊥) a1, (4)

q2,
(
5,0
⊥

)

a2,
(
5,0
(6)

)
→

(
5,1
(7)

)

q2,
(
5,0
⊥

)

(a) Automaton for � � let c = ref 0 inλyunit.if !c = 0 then c := 1 elseΩ�

1

2 3 4 5, 0

5, 1

6 7

q0, (⊥)

a0, (2)
q1,

(
(2)
⊥

)
a1,

(
(2)
(4)

)
q2,

(
(2)
5,0
⊥

)

a2,
((2)
5,0
(6)

)
→

((2)
5,1
(7)

)

q2,
(
(2)
5,0
⊥

)

q1,
(
(2)
⊥

)

q1,
(
(2)
⊥

)

(b) Automaton for � � λxunit.let c = ref 0 inλyunit.if !c = 0 then c := 1 elseΩ�

Fig. 6. Automata recognising strategies

Note that we have the states (5, 0) and (5, 1) - here the second part of the state label
is the value of the variable c: the top-level data value will remain in one of these two
states, and by doing so store the value of c at that point in the run. The move q2 in this
example corresponds to the environment providing an argument y: note that in a run of
the automaton the first time a y argument is passed, the automaton proceeds to reach
an accepting state, but in doing so sets the top level data value to the state (5, 1). This
means the outgoing transition shown from state 7 cannot fire.

The automaton for � � λxunit.let c = ref 0 inλyunit.if !c = 0 then c := 1 elseΩ�

is shown in Figure 6b (again, cleaned of dead/unreachable transitions for clarity). Note
that this contains the first automaton as a sub-automaton, though with a new top-level
data value added to the transitions. The q1 move now corresponds to providing a new
argument for x, thus starting a thread. Transitions have been added from the accepting
states (5) and (7), allowing a new x-thread to be started from either of these locations.
Note that the transition from (7) to (6), which could not fire before, now can fire because
several data values (corresponding to different x-threads) can be generated and left in
the state (5, 0).

5 Undecidable Fragments

In this section we consider which type sequents and forms of recursion are expressive
enough to prove undecidability. The proofs of the results this section proceed by identi-
fying terms such that the induced complete plays correspond to runs of Turing-complete
machine models.
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On the Right of the Turnstile. In [11] it is shown that observational equivalence is un-
decidable for 5th-order terms. The proof takes the strategy that was used to show unde-
cidability for 4th-order IA and finds an equivalent call-by-value strategy. It is relatively
straightforward to adapt the proof to show that observational equivalence is undecidable
at 3rd-order types, e.g. ((unit → unit) → unit) → unit. A further result in [12] showed
that the problem is undecidable at the type (unit → unit) → (unit → unit) → unit.
Both results easily generalise to show that the problem is undecidable at every 3rd-order
type and every 2nd-order type which takes at least two 1st-order arguments. We modify
the second of these proofs to show undecidability at (unit → unit) → unit → unit.
Our proof of this easily adapts to a proof of the following.

Theorem 4. Observational equivalence is undecidable at every 2nd-order type (of ar-
ity at least two) which contains a 1st-order argument that is not the final argument.

On the Left of the Turnstile. Note that � M ∼= N : θ if, and only if, f : θ → unit �
fM ∼= fN : unit. Thus, for any sequent � θ at which observational equivalence is
undecidable, the sequent θ → unit � unit is also undecidable. So the problem is unde-
cidable if, on the left of the turnstile, we have a fourth-order type or a (third-order) type
which has a second-order argument whose first-order argument is not the last.

Recursion. In IA, observational equivalence becomes undecidable if we add recursive
first-order functions [16]. The analogous results for RML with recursion also hold:

Theorem 5. Observational equivalence is undecidable in RMLO-Str equipped with re-
cursive functions (unit → unit) → unit

6 Conclusion

We have used two related encodings of pointers to data values to decide two related
fragments of RML2�1: RMLP-Str

2�1 , in which the free variables were limited to arity 1,
and RMLres

2�1, in which the free variables were unlimited in arity but each argument of
the free variable was limited to arity 1. It is natural to ask whether we can extend or
combine these approaches to decide the whole of RML2�1. Here we discuss why this
seems likely to be impossible with the current machinery used.

In deciding RMLP-Str
2�1 we used the nested data value tree-structure to mirror the shape

of the prearenas. These data values can be seen as names for different threads, with
the sub-thread relation captured by the nested structure. What happens if we attempt to
use this approach to recognise strategies on types where the free variables have arity
greater than 1? With free variables having arity 1, whenever they are interrogated by P,
they are entirely evaluated immediately: they cannot be partially evaluated. With arity
greater than 1, this partial evaluation can happen: P may provide the first argument at
some stage, and then at later points evaluate the variable possibly several times with
different second arguments. P will only do this subject to visibility conditions though:
if P partially evaluates a variable x while in a thread T , it can only continue that partial
evaluation of x in T or a sub-thread of T . This leads to problems when our automata
recognise interleavings of similar threads using the same part of the automaton. If P’s
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strategy for the thread T is the strategy �M� for a term M , and recognised by an au-
tomaton AM , then �λy.M� will consist of interleavings of �M�. The automaton Aλy.M

will use a copy of AM to simulate an unbounded number of M -threads. If T is one such
thread, which performs a partial evaluation of x, this partial evaluation will be repre-
sented by input letters with data values unrelated to the data value of T . If a sibling of
T , T ′, does the same, the internal state of the automaton will have no way of telling
which of these partial evaluations was performed by T and which by T ′. Hence it may
recognise data words which represent plays that break the visibility condition.

Therefore, to recognise strategies for terms with free variables of arity greater than 1,
the natural approach to take is to have the data value of free-variable moves be related
to the thread we are in. This is the approach we took in deciding RMLres

2�1: the free
variable moves precisely took the data value of the part of the thread they were in.
Then information about the partial evaluation was stored by the thread’s data value.
This worked when the arguments to the free variables had arity at most 1: however if
we allow the arity of this to increase we need to start representing O-pointers in the
evaluation of these arguments. For this to be done in a way that makes an inductive
construction work for letx = (λy.M) inN , we must use some kind of nesting of data
values for the different M -threads. The naı̈ve approach to take is to allow the M -thread
data values to be nested under the data value of whatever part of the N -thread they are
in. However, the M -thread may be started and partially evaluated in one part of the
N -thread, and then picked up and continued in a descendant part of that N -thread. The
data values used in continuing the M -thread must therefore be related to the data values
used to represent the partial evaluation of the M -thread, but also to the part of the N -
thread the play is currently in. This would break the tree-structure of the data values,
and so seem to require a richer structure on the data values.

Further Work. A natural direction for further work, therefore, is to investigate richer
data structures and automata models over them that may provide a way to decide
RML2�1.

The automata we used have a non-primitive recursive emptiness problem, and hence
the resulting algorithms both have non-primitive recursive complexity also. Although
work in [8] shows that this is not the best possible result in the simplest cases, the exact
complexities of the observational equivalence problems are still unknown.

To complete the classification of RMLf also requires deciding (or showing undecid-
able) the fragment containing order 2 types (on the RHS) with one order 1 argument,
which is the last argument. A first step to deciding this would be the fragment labelled
RMLX in figure 1. Deciding this fragment via automata reductions similar to those in
this paper would seem to require both data values to represent O-pointers, and some
kind of visible stack to nest copies of the body of the function, as used in [9]. In partic-
ular, recognising strategies of second-order terms such as λf.f() requires the ability to
recognise data languages (roughly) of the form {d1d2...dndn...d2d1 |n ∈ N, each di is
distinct}. A simple pumping argument shows such languages cannot be recognised by
nested data class memory automata, and so some kind of additional stack would seem
to be required.
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Abstract. We present a formal correspondence between Laird’s trace semantics
and the nominal game model of Murawski and Tzevelekos for RefML, a call-
by-value language with higher-order references. This gives an operational flavor
to game semantics, where denotation of terms is generated via an interactive re-
duction, which allows to reduce terms with free functional variables, and where
pointer structure is represented with name pointers. It also leads to transferring
the categorical structure defined on the game model to the trace model. Then,
representing the notion of view from game semantics in terms of available name
pointers, we restrict our trace semantics to GroundML, a language with first-
order references and show its full abstraction using a correspondence with visible
strategies. This gives the first fully abstract trace model for this language.

1 Introduction

Game Semantics [6,3] is a powerful theory to build fully abstract denotational models
of various programming languages. The denotation of a term is represented as a strat-
egy, a set of plays between that term and any context in a game arena, which sets the
rules the plays have to satisfy. One of its most important contributions, the so-called
“Abramsky Cube”, is the characterization of the absence of various impure effects in
terms of extra conditions on the denotation of terms, namely well-bracketing for the ab-
sence of control operators, visibility for the absence of higher-order store, innocence for
pure terms. In recent years, game semantics has been developed to deal with languages
with nominal aspects, from the ν-calculus [1], an extension with storage cells [10], to
ML-like languages with higher-order nominal references [13].

The starting point of this article is the nominal game semantics of Murawski and
Tzevelekos [13], which is fully abstract for RefML, but also for GroundML as soon as
one adds a visibility condition to strategies [14]. As opposed to previous games models
for languages with stores, initiated by Abramsky, Honda and McCusker [2], it uses
nominal techniques [5], to avoid the problem of bad variables. In a more operational
setting, Laird [9] has introduced a trace semantics for a variant of RefML, and has
proven its full abstraction. This model marries a trace representation inspired by game
semantics with an operational definition, i.e. denotations of terms are computed via a
rewriting system rather than defined by induction on their typing judgment.

In this article, we introduce a trace semantics for RefML, whose definition is a typed
variant to the one introduced by Laird. Traces are generated by an interactive reduction,
which can be seen as an extension of the usual operational semantics to open terms with
free functional variables. Then, the denotation of terms is defined via trace-strategies,
i.e. sets of traces that terms generate using this reduction. In fact, traces can be seen

c© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 264–278, 2015.
DOI: 10.1007/978-3-662-46678-0_17
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τ, σ
def
= Int | ref τ | τ → σ

v
def
= () | n̂ | x | l | λx : τ.M | Ωτ (where n ∈ Z, l ∈ Loc)

M,N
def
= v | MN | M +N | casez(M1)(M2,M3) | M == N |

refM | !M | M := N

K
def
= • | KM | vK | K +M | v +K | casez(K)(M,M ′) | refK |

!K | K := M | v := K | K == M | v == K

Fig. 1. Definition of RefML

as a representation of plays used in game semantics where the usual pointer structure,
which represents the causality between the different moves, is encoded with variables.
Such variables that are of functional type are called name pointers.

Following this idea, we build a correspondence between the trace and the game
model of RefML. To do so, we impose on trace-strategies a categorical apparatus that
capture call-by-value languages, namely a closed-Freyd category [16]. To build such
a structure on traces, we recast the definitions of game semantics from [10,13] in the
setting of trace semantics. The main difficulty is that the pointer structure of traces is
no more defined explicitly, but need to be rebuilt from a study of freshness of name
pointers (i.e. functional variables). Finally, we answer a question asked by Laird at the
end of [9] about a possible trace semantics for a language with restricted references,
rephrasing the usual notion of visibility which characterizes this restriction in the set-
ting of trace semantics.

All missing definitions and proofs can be found in Chapter 4 of the PhD thesis of the
author [7].

2 RefML and GroundML

Let us first introduce RefML, a call-by-value λ-calculus with higher-order references.
The syntax of types τ , values v, terms M and evaluation contexts K of RefML is given
in Figure 1.A type is said to be ground if it is not equal to τ → σ. So for example
ref (τ → σ) is ground. As usual, let x = N in M is defined as (λx.M)N and
M ;N is defined as (λx.M)N with x fresh in M .

Locations live in sets Locτ where τ is the type of values they are storing. We define
Loc as

⊎
τ Locτ and Locφ as

⊎
σ,τ Locσ→τ . Heaps h are defined as finite partial maps

Loc ⇀ Val respecting types, i.e. h(l) is a closed value of type τ when l ∈ Locτ . The
empty heap is written ε. Adding a new element to a partial map h is written h · [l ↪→ v],
and is defined only if l /∈ dom(h). We also define h[l ↪→ v], for l ∈ dom(h), as the
partial function h′ which satisfies h′(l′) = h(l′) when l′ �= l, and h′(l) = v. The restric-
tion of a heap h to a set of locations L is written h|L. We write hfn for the subheap of h
which stores higher-order values A heap is said to be closed when, for all l ∈ dom(h), if
h(l) is itself a location l′ then l′ ∈ dom(h). Taking a set L of locations and h a heap, we

define the image of L by h, written h∗(L) as h∗(L)
def
=

⋃
j≤0 h

j(L) with h0(L) = L,
hj+1(L) = h(hj(L))∩Loc. Using it, we define Cl(L), the set of minimal closed heaps

whose domain contains L, as Cl(L)
def
= {h | h closed , dom(h) = h∗(L)}.
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(K[(λx.M)v], h) �→ (K[M {v/x}], h) (K[ref v], h) �→ (K[l], h · [l ↪→ v])
(K[!l], h) �→ (K[h(l)], h) (K[l := v], h) �→ (K[()], h[l ↪→ v])

(K[l == l], h) �→ (K[1̂], h) (K[l == l′], h) �→ (K[0̂], h)

(K[casez(n̂)(M1,M2)], h) �→ (K[Mi], h) (i = 1 if n = 0, otherwise i = 2)

Fig. 2. Operational Semantics of RefML

The small step operational semantics of RefML is defined in Figure 2. We write
M {v/x} to represent the (capture-free) substitution of x by v in M. This reduction is
deterministic, so we suppose that the reduction (K[ref v], h) �→ (K[l], h · [l ↪→ v])
chooses a location l /∈ dom(h). We also consider the non-deterministic reduction �→nd,
defined in the same way but for the rule of allocation, which is s.t. (K[ref v], h) �→nd

(K[l], h · [l ↪→ v]) for any l /∈ dom(h).
Then typing judgments are of the form Σ;Γ � M : τ , where Γ is a variable context

and Σ = (l1, . . . , ln) is a location context. Notice that we do not need to indicate the
types of locations of l in Σ, since the membership l ∈ Locτ already gives its type.

In the following, we make a clear distinction between variables of ground types and
variables of functional types. Such variable of functional types are called name pointers,
which live in the set P ⊆ Var. Indeed, we deal abstractly with variables of functional
types, so we write Σ;Γg, Γf � M : τ to distinguish between typing contexts Γg, Γf

containing respectively ground type variables and functional type variables.
From a typing contextΓ and a function γ : Var ⇀ Val, we say that γ is a substitution

on Γ—written γ : Γ—if γ is defined exactly on all the variables occurring in Γ , and
γ(x) is a value of type τ whenever (x, τ) ∈ Γ . Then, the action of the substitution γ on

a term M , defined as M
−−−−−−−→{γ(xi)/xi} with xi ranging over Γ , is written γ(M).

In this article, we also consider GroundML, a restriction of RefML with only full
ground references, i.e. references which can store integers or other full ground refer-
ences. It is formally defined as the set of terms of RefML whose type do not contain any
subtypes ref (τ → σ), and which do not contain any subterms of the form refM with
M functional. In GroundML, we cannot define diverging terms anymore via higher-
order references, so we rely on special terms Ωτ for each type τ that always diverge. It
is important to have such diverging terms when studying contextual equivalence.

To reason abstractly over name pointers and locations, we use the framework of
nominal sets [5] over a set of names A. More precisely, all the objects we consider in
this article can be seen as nominal sets which is either the set of locations or name
pointers, so A will either be Loc or P. Then two elements t, u of a (A-) nominal set X
are said to be nominally-equivalent, written t ∼A u if there exists a finite permutation
π over A s.t. t = π · u holds. Then a subset X of a nominal set is nominally closed if
for all t ∈ X and permutation π over A, π · t ∈ X . We write νA(t) for the support of
an element t of a nominal set X .

3 Trace Semantics

We now introduce a semantics for RefML where denotations of terms are sets of traces.
It is a variant of the work of Laird [9] more amenable to a comparison with game
semantics by taking track of type informations. Traces are used to represent all possible
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interactions of terms with contexts. They are generated by an interactive reduction,
defined as a labeled transition system, which generalizes the small-step reduction of
Figure 2 by producing actions to deal with free functional variables.

To be able to generate all possible executions, we need to keep track of values dis-
closed to contexts, namely location—so that a context can set arbitrary values in it—or
λ-abstraction—so that a context can call it at any time when it takes control back.

Notice that this reduction is history-independent, i.e. the reduction of a callback
K[f v] does not depend on the possible previous occurrences of K ′[f v] in the reduc-
tion. This is due to the fact that our language has references, so that contexts can keep
track of the number of times their functional arguments provided to the term are called,
and thus give each time a different answer. This corresponds to the fact that strategies
for RefML are not innocent.

3.1 Game-Like Definitions

We start introducing traces following the usual presentation of game semantics, mim-
icking the definitions of the previous section. The notion corresponding to a game move
is called here an action. Actions are formed over ground values and variables, used to
represent higher-order values. These variables, of functional type, are called opponent
and player name pointers. opponent name pointers represent higher-order values pro-
vided by contexts (i.e. opponent) to terms (i.e. player), while it is the opposite for player
name pointers. There are four kinds of basic actions:

– a question of the term (resp. context) via a name pointer x with argument v (with
x �= v), represented by the action x̄ 〈v〉 (resp. x 〈v〉),

– an answer by the term (resp. context) of the value v, represented by the action 〈v̄〉
(resp. 〈v〉).

A name pointer y appearing as an argument of a player (resp. opponent) question
x̄ 〈y〉 (resp. x 〈y〉) or in a player (resp. opponent) answer 〈ȳ〉 (resp. 〈y〉) is called a
player name pointer (resp. opponent name pointer). This means that being an opponent
or a player name pointer depends on the action, and is not inherent to the name pointer.
The sets of player and opponent name pointers (i.e. their supports) of an element X
formed by actions are respectively written νP

P
(X) and νO

P
(X).

Actions a are defined as pairs (a, ξ) of a basic action a and a tag ξ. Tags are words
over the alphabet {l , r , s}, where the concatenation is written ξ · ξ′ and the empty word
is written ε. Such tags are used to indicate to which set (i.e. arena) a basic action belongs
to. This is useful to avoid the use of disjoint unions (as coproduct) and the correspond-
ing injections inl, inr which are usually used in game semantics. In our setting, such
injections are represented respectively by tags beginning with l and r , while s is used
to represent actions corresponding to functions stored in heaps.

Player, Opponent and initial actions are respectively written p, o and i. The labeling
of actions (i.e. the fact they are player or opponent and question or answer actions)
is hard-wired, while labeling of moves in game semantics depends on the underlying
arena. As we will see, this complicates some definitions (arrow arenas and restrictions
of traces to a given arena) where we need to change the labeling of actions.

We define the operation a⊥ as the operation which simply transforms an opponent
action into the corresponding player action, and vice-versa (leaving the tag unchanged).
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IA⊗B
def
= l · IA × r · IB MA⊗B

def
= IA⊗B � l · (MA\IA) � r · (MB\IB)

�A⊗B
def
= {((l · iA, r · iB), l · a) | iA �A a} � {((l · iA, r · iB), r · a) | iB �B a}

�(l · �A|(MA\IA)2 ) � (r · �B|(MB\IB)2 )

IA⇒B
def
= {〈x̄〉 | x ∈ P}

MA⇒B
def
= IA⇒B � l · (MA\IA)⊥ � {(x 〈u〉 , l · ξ) | x ∈ P, (〈ū〉 , ξ) ∈ IA} � r · MB

�A⇒B
def
= {(〈x̄〉 , (x 〈u〉 , l · ξ)) | x ∈ P, (〈ū〉 , ξ) ∈ IA}

�{((x 〈u〉 , l · ξ), l · a) | x ∈ P, (〈ū〉 , ξ) ∈ IA, a ∈ MA, (〈ū〉 , ξ) �A a}
�{((x 〈u〉 , l · ξ), r · iB) | x ∈ P, (〈ū〉 , ξ) ∈ IA} � (l · �A|(MA\IA)2 )

⊥ � (r · �B)

IA→B
def
= {(? 〈u〉 , l · ξ) | (〈ū〉 , ξ) ∈ IA} MA→B

def
= IA→B � l · (MA\IA)⊥ � r · MB

�A→B
def
= {((? 〈u〉 , l · ξ), r · iB) | (〈ū〉 , ξ) ∈ IA, iB ∈ IB} � (l · �A|(MA\IA)2 )

⊥ � (r · �B)

�{((? 〈u〉 , l · ξ), l · a) | (〈ū〉 , ξ) ∈ IA, a ∈ MA, (〈ū〉 , ξ) �A a}

Fig. 3. Definition of compound arenas

It is extended to sets and relations of actions. Then, we introduce the notion of arenas,
which are simply triples (M, I,�) of a set of actions M, a set of initial actions I ⊆ M
and a justification relation �⊆ M × M\I. Following the correspondence with game
semantics, we define: value-arenas (resp. term-arenas) as arenas whose initial actions
are player answers (resp. opponent question).

From two trace value-arenas A,B we construct the value arenas A⊗B and A ⇒ B
and the term arena A → B in Figure 3. In the definition of A → B, the symbol ?
is used as a distinguished name pointer to represent what is interrogated by the initial
opponent question. To each type τ , we associate a trace value-arena [τ ] as:

– [ι]
def
= (Mι,Mι,∅) where Mι

def
= {〈v̄〉 | v a value of type ι}, ι = Unit, Int, ref τ

– [σ → τ ]
def
= [σ] ⇒ [τ ].

To relate actions to the evolution of the heap, we introduce actions-with-heap on an
arena A, i.e. pairs (a, h) of an action a ∈ MA and a functional-free heap h, that is a
heap where stored higher-order values are represented by distinct name pointers. An
action-with-heap (a, ξ, h) is said to introduce the name pointer x if either a is of the
form ȳ 〈x〉 , y 〈x〉 , 〈x̄〉 or 〈x〉, or if x is in the co-domain of h (written codom(h)). In
the latter case, we say that x is l-introduced when h(l) = x.

Such actions which l-introduce name pointers, called φ-actions, correspond to call-
backs coming from disclosed locations storing functions. They belong to the set Mφ

defined as
⋃

τ,τ ′ M[τ→τ ′]. Using it, we define the set TraceA over an arena A as the
set of sequences T of actions-with-heap on MA � (s ·Mφ) s.t. for each name pointer
x in T , x is introduced by at most one action-with-heap in T . TraceA can be seen as a
nominal set over Loc and P. We write T ′ � T when T ′ is a prefix of T .

We say that a trace T ∈ TraceA is justified if every name pointer x in T is introduced
by a previous action in T . Then, we define the depth of an action (a, h) in a trace
T , written depthT (a, h) as the difference between the number of questions and the
number of answers of T1, where T = T1 · (a, h) · T2.

Definition 1. Let (a1, h1), (a2, h2) two actions-with-heap s.t. (a1, h1) appears before
(a2, h2) in a trace T . We say that (a1, h1) justifies (a2, h2) when:

– a2 is an answer and a1 is the latest question of T appearing before a2 s.t.
depthT (a2, h2) = depthT (a1, h1) + 1,
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– or a2 is a question x̄ 〈u〉 or x 〈u〉, and (a1, h1) is the first action introducing x, so
a1 is either equal to 〈x̄〉 , 〈x〉 , ȳ 〈x〉 , y 〈x〉 or x ∈ codom(h1).

In the latter case, we say that x is l-justified when h1(l) = x. A question of T which
does not justify any answer is said to be pending.

We define the set of available locations of a trace T , written Av(T ), as Av(ε)
def
= ∅

and Av(T · (a, h)) def
= h∗(Av(T ) ∪ νL(a)). A justified trace over A is said to be legal

if only its first action-with-heap is in IA and it alternates between player and opponent
actions, and is said to be a play if it is furthermore frugal, i.e. for all T ′ · (a, h) � T ,
dom(h) = Av(T ′ · (a, h)). Using all these definitions, we can finally introduce the
notion of trace-strategy used to define the denotation of terms.

Definition 2. A trace-strategy s over an arenaA is a non-empty set of even-length plays
on A s.t.:

– If T · (o, h) · (p, h′) ∈ s then T ∈ s.
– If T ∈ σ and T ∼ T ′ then T ′ ∈ s.
– If T1 · (p1, h1) and T2 · (p2, h2) are in s and T1 ∼ T2, then T1 · (p1, h1) ∼
T2 · (p2, h2).

3.2 A Correspondence between Traces and Plays

There is a direct correspondence between actions introduced in this paper and moves
in game semantics defined in [13], where we suppose that injections coming from co-
products are also represented by tags. It is obtained by transforming questions x̄ 〈v〉 and
x 〈v〉 into v, transforming answers 〈v̄〉 and 〈v〉 into v, and then transforming all remain-
ing name pointers into �, the initial move of game arenas for functional types1. The
function θ, which performs this two-step translation, transforms actions from an arena
A to moves to the corresponding game-arena A, leaving tags unchanged. The labeling
function is then defined straightforwardly.

We extend this correspondence to justified traces and well-bracketed justified
sequences of game semantics. More precisely, we first extend the function θ to actions-
with-heaps, transforming name pointers stored in heaps into the move �, and then point-
wisely from traces to sequences of moves. So we define a function Θ which transforms
a justified trace T on an arena A to a sequence of moves θ(T ) on the corresponding
arena A, and s.t. for two actions-with-heaps (a1, h1), (a2, h2) of T , there is a pointer
from θ(a2, h2) to θ(a1, h1) when (a2, h2) is justified by (a1, h1). Notice that two traces
which are P-nominal equivalent give rise to the same sequence of moves.

Extending Θ to sets of traces, it is direct that Θ(s) is a game-strategy on an arena A
when s is a trace-strategy on the corresponding arena A.

3.3 Interactive Reduction

We now introduce an interactive reduction which generates traces from terms, rep-
resenting their interactions with any possible applicative contexts K[•τ,ξ], where the

1 We do not need to transform the symbol “?” since it is automatically removed, appearing only
in ? 〈v〉.
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Intern 〈(M, τ, ξ) · −→Ki, γ,I, h,D〉 −−−−−−−−−→ 〈(M ′, τ, ξ) · −→Ki, γ,I, h′, D〉
(when (M,h) �→nd (M ′, h′))

P-AnsG 〈(v, ι, ξ) · −→Ki, γ,I, h,D〉
(〈v̄〉,r·ξ,h′

|D′ )
−−−−−−−−−−→ 〈−→Ki, γ

′, I, h′, D′〉
(v of type ι, γ′ = γ · −−−−−−−−−−−−−−→[xi ↪→ (h(li), τi, s)])

P-Ans 〈(v, τ, ξ) · −→Ki, γ, I, h,D〉
(〈x̄〉,r·ξ,h′

|D′ )
−−−−−−−−−−→ 〈−→Ki, γ

′, I, h′, D′〉
(x fresh, γ′ = γ · [x ↪→ (v, τ, r · ξ)] · −−−−−−−−−−−−−−→[xi ↪→ (h(li), τi, s)])

P-QuestG 〈(K[xv], τ, ξ) · −→Ki, γ,I, h,D〉
(x̄〈v〉,l ·ξ′,h′

|D′ )
−−−−−−−−−−−→ 〈(K[•ι,ξ′ ], τ, ξ) ·

−→
Ki, γ

′, I, h′, D′〉
((x, ι → σ, ξ′) ∈ I , v of type ι, γ′ = γ · −−−−−−−−−−−−−−→[xi ↪→ (h(li), τi, s)])

P-Quest 〈(K[xv], τ, ξ) · −→Ki, γ,I, h,D〉
(x̄〈y〉,l ·ξ′,h′

|D′ )
−−−−−−−−−−−→ 〈(K[•σ′,ξ′ ], τ, ξ) ·

−→
Ki, γ

′, I, h′, D′〉
((x, σ → σ′, ξ′) ∈ I , y fresh, γ′ = γ · [y ↪→ (v, σ, l · ξ′)] · −−−−−−−−−−−−−−→[xi ↪→ (h(li), τi, s)])

in all P-rules: D′ = discl(v, h,D) and h′ = h
−−−−−−→
[li ↪→ xi] with the xi fresh

where li ranges over dom(hfn) ∩ D′ with li ∈ Locτi )

O-AnsG 〈(K[•ι,ξ′ ], τ, ξ) ·
−→
Ki, γ, I, h,D〉

(〈v〉,r·ξ′,h′
|D′ )

−−−−−−−−−−→ 〈(K[v], τ, ξ) · −→Ki, γ,I′, h′, D′〉
(v of type ι, v /∈ dom(h) ∩ D, D′ = discl(v, h′, D), I′ = I · −−−−−−−−→(h(li), τi, s))

O-Ans 〈(K[•σ,ξ′ ], τ, ξ) ·
−→
Ki, γ,I, h,D〉

(〈y〉,r·ξ′,h′
|D′ )

−−−−−−−−−−→ 〈(K[y], τ, ξ) · −→Ki, γ, I′, h′, D′〉
(D′ = discl(h′, D), I′ = I · (y, σ, r · ξ′) · −−−−−−−−→(h(li), τi, s))

O-QuestG 〈−→Ki, γ, I, h,D〉
(x〈v〉,l ·ξ,h′

|D′ )
−−−−−−−−−−−→ 〈(uv, τ, ξ) · −→Ki, γ,I′, h′, D′〉

(γ(x) = (u, ι → τ, ξ), v of type ι, v /∈ dom(h) ∩ D, D′ = discl(v, h′, D), I′ = I · −−−−−−−−→(h′(li), τi, s))

O-Quest 〈−→Ki, γ, I, h,D〉
(x〈y〉,l ·ξ,h′

|D′ )
−−−−−−−−−−−→ 〈(uy, τ, ξ) · −→Ki, γ, I′, h′, D′〉

(γ(x) = (u, σ → τ, ξ), D′ = discl(h′, D), I′ = I · (y, τ, l · ξ)) · −−−−−−−−→(h′(li), τi, s))
in all O-Rules: li ranges over dom(h′

fn) ∩D′ s.t. li ∈ Locτi , y and h′(li) fresh,
h′
|D′ = h|D and h′

|D′ is closed and functional-free)

Fig. 4. Definition of the interaction semantics

symbol •, representing a “hole” (i.e. a pending question), is tagged with a type τ and
a tag ξ, representing the type and the arena of the expected answer which will fill the

hole. This reduction is defined on “stacks” (M, τ, ξ) · −−−−−−−→(Ki, τi, ξi) formed by a term M

and contexts
−→
Ki for player configurations, or on stacks

−−−−−−−→
(Ki, τi, ξi) for opponent config-

urations. Such elements of the stacks comes also with a type τ and a tag ξ. The empty
stack is simply written ♦. When Player provides a higher-order value to Opponent, ei-
ther via a callback (i.e. a question) or directly when reducing to a λ-abstraction (i.e. an
answer), it is stored in an environment γ, which is a partial map from P to Val. Then
Opponent can interrogate what is stored in γ, by asking a question. Opponent only pro-
vides opponent name pointers to represent higher-order values. They are stored in a set
I ⊆ P. They can also be interrogated by Player.

To represent disclosure of locations, we use a set D which grows as the term or the
context discloses new locations. To determine which locations are disclosed when a
value v is played with a heap h, we define a function discl(v, h,D) as h∗(D ∪ {l}) if v
is a location l, h∗(D) otherwise. We simply write discl(h,D) for h∗(D).

The interactive reduction is defined in Figure 4 between player and opponent con-
figurations. The rule Intern allows us to perform the usual (operational) reduction of
terms. Notice that it uses the non-deterministic reduction �→nd rather than the usual
�→, in order to be exhaustive w.r.t. names of locations created. The rules P-AnsG and
P-Ans represent player answers. If the answer is a ground value, then if it is a location
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it is put in D′, otherwise it is simply forgotten by Opponent since it has no meaning
to interrogate it. Otherwise, it is a higher-order value, which is thus stored in γ′. The
rules P-QuestG and P-Quest represent player questions. That is, Player interrogates
an opponent name pointer of I with a value. Player can also disclose indirectly either
new locations or new higher-order values via the already disclosed locations. The new
disclosed locations are caught via discl(v, h,D), while disclosed higher-order values
live in dom(hfn) ∩ D′ (recall that hfn is the subheap of h which stores higher-order
values), so that they are replaced by fresh player name pointers in h′ and γ is updated
consequently. The rules O-AnsG and O-Ans represent opponent answers. When Op-
ponent answers a location, it cannot be one which is private to Player. This explain the
condition “v is ground and not in dom(h) ∩ D” (where D is the complement of D)
in the definition of O-AnsG. And when it should be a higher-order value, it is simply
represented by a fresh opponent name pointer. the rules O-QuestG and O-Quest rep-
resent opponent questions. In that case, Opponent adds to the current execution stack
a new thread, corresponding to the higher-order values stored in γ. Opponent can also
provide new name pointers via the disclosed part of the heap. Those ones live in the
disclosed part of h′

fn, i.e. in codom(h′
fn|D′). An important point here is that the context

can also disclose indirectly new locations via the already disclosed ones. This explain
the great liberty Opponent has when it extends h to h′ with new disclosed locations. It
must however satisfy the equation D′ = discl(v, h′, D), so that it cannot add as many
new (necessarily disclosed) locations as it wants.

This reduction is highly non-deterministic, since we consider the interactions with
all possible contexts. Moreover, the choice of name pointers and locations is also non-
deterministic (even in the rule P-Intern with the use of �→nd).

We say that a traceT is generated by a configurationC if it can be written as a sequence

(a1, h1) · · · (an, hn) of actions-with-heap s.t. C
(a1,h1)−−−−→ C1

(a2,h2)−−−−→ . . .
(an,hn)−−−−−→ Cn,

and we write C
T−→ Cn. We can see that it is indeed a trace due to the freshness condi-

tions in the rules P-Ans, P-Quest, O-Ans and O-Quest. The set of traces generated by C
is writtenTr(C). Notice that such traces are not in general justified, since name-pointers
of C are not introduced. As we will see, the initial (opponent question) action is miss-
ing. Moreover, Tr(C) is not nominally-closed: if π is a permutation s.t. π(a) �= a for
a ∈ νA(C), then taking T ∈ Tr(C), π ∗ T is not in general in Tr(C). This is useful
to distinguish sets Tr〈x, γ, I, h,D〉 and Tr〈x′, γ, I, h,D〉 for different opponent name
pointersx, x′ ∈ I, or to distinguishTr〈l, γ, I, h,D〉 andTr〈l′, γ, I, h,D〉 for locations
l, l′ ∈ dom(h).

Example. Let us consider the term Minc defined as
let x = ref 0 in let f = ref (λ_.x :=!x+ 1) in λg.g f; !f(); !x

The reader can check that one possible trace of this term starting from the initial con-
figuration 〈Minc, ε, ε, ε, ε〉 is

(〈ā〉 , ε) · (a 〈b〉 , ε) · (b̄ 〈l〉 , [l ↪→ c]) · (c 〈()〉 , [l ↪→ c]) · (〈(̄)〉 , [l ↪→ c])·
(〈()〉 , [l ↪→ d]) · (c̄ 〈()〉 , [l ↪→ d]) · (〈()〉 , [l ↪→ d]) · (〈1̄〉 , [l ↪→ d]).

Intuitively, this trace corresponds to the interaction with the context defined as
•(λc.!c(); c := λ_.()). Notice that the value stored in x is incremented not by the call
to !f() in Minc, but by the call made by the context after the disclosure of f via g.
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Indeed, the call to !f() corresponds to the call to λ_.() since the context has modified
the function stored in f .

An important point to notice is that the tags of actions of traces generated by the
interactive reduction can be inferred knowing just the tags of initial actions:

Lemma 1. Let (a1, ξ1, h1) an action justified by (a2, ξ2, h2) in a trace T . Then:
– If a2 is an answers, then ξ1 = l · ξ and ξ2 = r · ξ,
– If a2 is a question, then if a2 is l-justified by a1, ξ2 = l · s · ξ1, otherwise ξ2 = l ·ξ1.

So in the following, we often omit tags when considering actions and traces.

3.4 Copycat Behavior

When a term provides to the context an opponent name pointer x (i.e. a functional
variable), the environment γ is extended with [y �→ x], with y a fresh player name
pointer. Then, when the context interrogates y, this gives rise to a copycat behavior.
Following [13], a pair of consecutive actions (a1, h1), (a2, h2) of a trace T is a copycat
pair when:

– θ((a1, h1)) = θ((a2, h2)),
– if (a1, h1) is justified by (a′1, h

′
1) then (a2, h2) is justified by (a′2, h

′
2) s.t. (a′2, h

′
2),

(a′1, h
′
1) are consecutive in T , and moreover if (a1, h1) is l-justified with l ∈

dom(h′
1), then (a2, h2) is l-justified so l ∈ dom(h′

2).
Notice that a copycat pair (〈u1〉 , h1) · (〈ū2〉 , h2)) will not satisfy u1 = u2 nor h1 = h2

when the ui are name pointers and when the hi store name pointers, due to the freshness
condition of name pointers in the rules of the interactive reduction. This justifies the use
of θ in the definition. Such copycat pairs occur frequently in the heap, when the term
does not modify a higher-order value stored in a disclosed location. Indeed, only name
pointers are stored in disclosed functional part of heaps. And even if what is stored in
a location is not modified, the interaction rule refreshes this name pointer. We use the
following definition to control this refreshing.

Definition 3. Let T a legal trace and T ′ � T , with T ′ ending with (a1, h1) · (a2, h2)
and l ∈ dom(h1)∩dom(h2)∩Locφ a location of functional type, we say that (T, T ′, l)
is a copycat triple if for all φ-actions (a′1, h

′
1) of T which are hereditarily l-justified by

(a1, h1) or (a2, h2), there exists an action (a′2, h
′
2) s.t.:

– if a′1 has the same player as a1, then (a′1, h
′
1) · (a′2, h′

2) is a copycat pair of T ,
– if a′1 has the same player as a2, then (a′2, h′

2) · (a′1, h′
1) is a copycat pair of T .

3.5 Interpretation of Terms

Given a term M s.t. Σ;Γg, Γf � M : τ , we define an associated trace strategy. It is
generated using the interactive reduction. To do so, we first define the list of opponent

name pointers IΓf

ξ as Iε
ξ = ε and I(x:τ),Γ

ξ

def
= (x, τ, l · ξ) · IΓ

r ·ξ .

Definition 4 (Trace Semantics). Let M a term s.t. Σ;Γg, Γf � M : τ . We define
[Σ;Γg, Γf � M : τ ] as the set of even-length traces belonging to the nominal closure
over Loc and P of
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⎧
⎨

⎩

(
?
〈
Σ,

−−−→
γg(xi), I

〉
, l , h

)
·Tr〈(γg(M), τ, ε), ε, I, h,D〉

∣
∣
∣

γg : Γg

h ∈ Cl(Σ, codom(γg))
codom(hfn) ⊆ P

⎫
⎬

⎭

where −→xi ranges overs the variables of Γg , D = dom(h) and I = IΓf

ξ · −−−−−−−→(h(li), τi, s)
s.t. li ranges over dom(hfn) and li ∈ Locτi .

Recall that hfn is the subheap of h formed by higher-order references. We reason up to
nominal equivalence of νLoc(M) (i.e.Σ) and νP(M) (i.e.Γf ) so that [Σ;Γg, Γf � M : τ ]
is nominally closed. Moreover, the substitution γg of ground variables of M introduces
new locations for variables of type ref τ , so we must consider them in h to have a closed
heap. Finally, h is functional-free (i.e. codom(hfn) ⊆ P), so that for any location l ∈
Locφ, if h(l) or h′(l) is defined, it has to store an opponent name pointer.

Let us define [Γ ] as [τ1] ⊗ . . .⊗ [τm] when Γ = (x1 : τ1) . . . (xm : τm) and [Σ] is
defined as [ref τ1]⊗ . . .⊗ [ref τn] when Σ = (l1, . . . , ln : τn) with li ∈ Locτi .

Theorem 1. Let M a term s.t. Σ;Γg, Γf � M : τ , then [Σ;Γg, Γf � M : τ ] is a trace-
strategy over the arena [Σ]⊗ [Γg, Γf ] → [τ ].

A trace T ∈ Tr〈M · −→Ki, γ, I, h,D〉 is said to be complete if the number of answers
occurring in the trace is greater than its number of questions plus the length of the
sequence

−→
Ki. The set of complete traces of a configurationC is written comp(Tr(C)).

4 A Correspondence between Trace and Game Denotations

We now prove a formal link between the denotation of a term in trace semantics and
in game semantics. The problem is that the definition of [Σ;Γ � M : τ ] is done oper-
ationally, while �Σ;Γ � M : τ�—the game interpretation of terms defined in [13]—is
given denotationally, by induction on the typing judgment Σ;Γ � M : τ . To fill this
gap, we show in this section that [Σ;Γ � M : τ ] can actually be decomposed by similar
induction steps on the typing judgment. Using the definition of Θ, which transforms a
trace strategy on a A into a game strategy of the corresponding game arena A, intro-
duced in Section 3.1, we can state a correspondence between the two semantics.

Theorem 2 (Equivalence of the trace and the game semantics). Let M a term of
RefML s.t. Σ;Γ � M : τ , then �Σ;Γ � M : τ� is equal to Θ([Σ;Γ � M : τ ]).

Using this correspondence with game semantics, we can import the full abstraction
result of [13] to trace semantics. Notice that Laird has already proven this result directly
[9], where he needed a complex proof of definability of trace strategy to achieve it. The
proof of Theorem 2 goes in four steps:

– we build a category T whose objects are arenas and morphisms are trace strategies,
– we equip T with a structure of closed-Freyd category, that is a symmetric pre-

monoidal structure (T , I,⊗), a lluf subcategory Tsst of T for which ⊗ is cartesian,
and a premonoidal functor (.)† between Tsst and T , which is identity on objects,
s.t. for every object A of T , the functor (_ ⊗ A)† : Tsst → T has a right adjoint,

– we show that Θ is a functor from T to the game category G which conserve the
closed-Freyd structure,
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– we prove that the canonical interpretation of terms derived from the closed-Freyd
structure is equal to the interpretation of terms, built using the interactive reduction,
of Definition 4.

In the following, we sketch the main points of these four steps. Let us first define a
composition between trace strategy, as parallel composition plus hidden like in game se-
mantics. following the definition from game semantics, we introduce interaction traces
over a term-arena A → B → C formed from three trace value-arenas A,B,C. Given a
trace T on A → B → C, we reason on the restricted traces T|(A,B), T|(B,C) and T|(A,C)

which are not in general frugal. So we introduce a function Frug which removes part
of the heap which has not been disclosed in traces, imposing frugality.

Definition 5. A justified trace T on A → B → C is an interaction trace if
– it is frugal,
– T|(A,B), T|(B,C) and T|(A,C) are legal,
– P(Frug(T|(A,B))),P(Frug(T|(B,C))),O(Frug(T|(A,C))) are two by two disjoint,

where P(T ) (resp. O(T )) is the set of locations introduced by Player (resp. Oppo-
nent),

– for each T ′ � T ending in (a, h) · (a′, h′) and l ∈ dom(h′),
• if a is a player action in X and l /∈ Av(T|X) with X ∈ {(A,B), (B,C)},
• or a is an opponent action in (A,C) and l /∈ Av(T|(A,C)),

then θ(h(l)) = θ(h′(l)) and, moreover, if l ∈ Locφ then (T|X , T ′
|X , l) are a copycat

triple, where X is the respective element of {(A,B), (B,C), (A,C)}.

We now define the parallel composition of two trace strategies s, t, written s||t as the
set of interaction traces T ∈ A → B → C s.t. T|F(A,B) ∈ s and T|F(B,C) ∈ t.

Definition 6. Given s, t two trace-strategies defined respectively on A → B and B →
C, we define their composition, written s; t, as the trace-strategy on A → C formed by
plays T on A → C s.t. there exists T ′ ∈ s||t with T = T ′

|F(A,C).

This composition can be shown to be associative, so that we can define a category T
whose objects are arenas and whose morphisms are trace strategies. It is straightforward
to see that Θ is a functor between T and the game category G from [13]. Moreover, this
composition corresponds to the one coming from the interactive reduction.

Theorem 3. [Γ � N : σ] ; [x : σ � M : τ ] = [Γ � let x = N in M : τ ].

Next, we build a lluf category Tsst of T , in order to get a closed-Freyd category. Mor-
phisms of Tsst are formed by strongly single threaded strategies. To define them, we
first introduce the notion of total strategies, for which traces begin with an opponent
question (? 〈u1〉 , h1) followed by a player answer (〈ū2〉 , h2), without modifying the
heap (this last point is controlled using copycat triples from Section 3.4).

For such total strategies, we define the notion of threads, which are subtraces which
are generated by the opponent questions of the player answer (〈ū1〉 , h1). Total strate-
gies which are formed by such frugal threads can be characterized, they are called
strongly single-threaded strategies Then, we define a function LB

A,C which maps trace-
strategies of (A ⊗B) → C into strongly single-threaded trace-strategy of A → (B ⇒
C). From this, we can define the notion of thread-independent trace plays. They corre-
spond to plays where there is no interaction between their threads. Thus, following [13],
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we can define a “shuffle” operation (·)† which transforms a strongly single-threaded
strategy s on A into a thread-independent strategy s†. This shuffle operation satisfies
that for any thread-independent trace strategy s, (γ(thr(s)))† = s. Then, we can easily
check that [Σ;Γ � λx.M : σ → τ ] is thread-independent. Using it, we can decompose
the denotation of λ-abstraction exactly as it is done in game semantics:

Theorem 4. [Σ;Γ � λx.M : σ → τ ] = (L
[σ]
[Σ;Γ ],[τ ]([Σ;Γ, x : σ � M : τ ]))†.

5 Trace Semantics for GroundML

In this section, we refine our trace semantics to handle GroundML, importing the char-
acterizations of terms of this language, in terms of visible strategies [14], into trace
semantics.

Definition 7 (View and Visibility). The view �T � of a legal trace T on A is a subse-
quence of T defined by induction:

– �ε� = ε and �(iA, h)� = (iA, h),
– �T ′ · (a, h) · T ′′ · (a′, h′)� = �T ′� · (a, h) · (a′, h′) when (a′, h′) is justified by
(a, h).

A trace T is P-visible (resp. O-visible) if for all T ′·(a, h) �even T (resp. T ′·(a, h) �odd

T with (a, h) a player (resp. opponent) action, the justifier of (a, h) is in �T ′�. A trace
strategy is said to be X-visible if all its traces are X-visible, for X ∈ {P,O}.

In our setting, justification is defined using freshness of name pointers, so we introduce
the notion of available X-name pointers, for X ∈ {P,O}, to reason on the view.

Definition 8 (Available Name-Pointers). We define the set of available opponent or
player name pointers AvX(T ) (X ∈ {O,P}) inductively as

– AvX(ε)
def
= ∅ and AvX((i, h))

def
= νX

P
(i),

– AvX(T · (a1, h1) · T ′ · (a2, h2))
def
= AvX(T ) ∪ νX

P
(a2) when (a1, h1) is justified

by (a2, h2).

Notice in the previous definition that we do not need to consider name pointers in heaps,
since we consider terms of GroundML, which do not store any functions in heaps, and
for which contexts cannot disclose higher-order references. Moreover, in the last clause
above, we do not need to consider the name pointers of a1 since its polarity is opposed
as the one of a2. Next, we link available name pointers to the notion of view:

Lemma 2. Let T a justified trace, then for all name pointers x ∈ AvX(T ) (X ∈
{P,O}), x is introduced by an action (a, h) which appears in �T �.

5.1 Ground-refererences Terms of RefML and P-visible Strategies

The characterization of trace-strategies coming from terms of GroundML is given by
the following theorem.

Theorem 5. Let M a term of GroundML s.t. Σ;Γ � M : τ . Then [Σ;Γ � M : τ ] is a
P-visible trace strategy.
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Intern 〈(M, τ, ξ,A) · −→Ki, γ, I, h, D〉 −−−−−−−−−−→ 〈(M′, τ, ξ,A) · −→Ki, γ, I, h′,D〉
(when (M,h) �→nd (M′, h′))

P-AnsG 〈(v, ι, ξ,A) · −→Ki, γ, I, h,D〉
(〈v̄〉,r·ξ,h′

|D)

−−−−−−−−−−→ 〈−→Ki, γ
′, I, h,D′,A〉

(v of type ι, D′ = discl(v, h,D))

P-Ans 〈(v, τ, ξ,A) · −→Ki, γ, I, h, D〉
(〈x̄〉,r·ξ,h|D)

−−−−−−−−−−→ 〈−→Ki, γ
′, I, h,D, x · A〉

(x fresh, γ′ = γ · [x ↪→ (v, τ, r · ξ)])

P-QuestG 〈(K[x v], τ, ξ,A) · −→Ki, γ, I, h, D〉
(x̄〈v〉,l ·ξ′,h|D′ )
−−−−−−−−−−−−→ 〈(K[•ι,ξ′ ], τ, ξ,A) · −→Ki, γ, I, h,D′,A′〉

( (x, ι → σ, ξ′,A′) ∈ I, v of type ι, D′ = discl(v, h,D))

P-Quest 〈(K[x v], τ, ξ,A) · −→Ki, γ, I, h, D〉
(x̄〈y〉,l ·ξ′,h|D)

−−−−−−−−−−−−→ 〈(K[•σ′,ξ′ ], τ, ξ,A) · −→Ki, γ
′,I, h, D, y · A′〉

((x, σ → σ′, ξ′,A′) ∈ I, y fresh, γ′ = γ · [y ↪→ (v, σ, l · ξ′)])

O-AnsG 〈(K[•ι,ξ′ ], τ, ξ,A) · −→Ki, γ, I, h, D,A′〉
(〈v〉,r·ξ′,h′

|D′ )
−−−−−−−−−−−→ 〈(K[v], τ, ξ,A) · −→Ki, γ, I, h′,D′〉

(v of type ι, v /∈ dom(h) ∩ D)

O-Ans 〈(K[•σ,ξ′ ], τ, ξ,A) · −→Ki, γ, I, h,D,A′〉
(〈x〉,r·ξ′,h′

|D′ )
−−−−−−−−−−−→ 〈(K[x], τ, ξ,A) · −→Ki, γ, I′, h′,D′〉

(x fresh, I′ = I · (x, σ, r · ξ′ ,A′))

O-QuestG 〈−→Ki, γ, I, h, D,A〉
(x〈v〉,l ·ξ,h′

|D′ )
−−−−−−−−−−−−→ 〈(u v, τ, ξ,A) · −→Ki, γ, I′, h′,D′〉

(x ∈ A, γ(x) = (u, ι → τ, ξ), v of type ι and not in dom(h) ∩ D)

O-Quest 〈−→Ki, γ, I, h, D,A〉
(x〈y〉,l ·ξ,h′

|D′ )
−−−−−−−−−−−−→ 〈(uy, τ, ξ) · −→Ki, γ, I′, h′, D′〉

(x ∈ A, γ(x) = (u, σ → τ, ξ), y fresh, I′ = I · (y, τ, l · ξ,A))
in all O-Rules: D′ = discl(v, h′, D), h′

|D′ = h|D and h′
|D′ is closed)

Fig. 5. Definition of the interaction semantics for GroundML

To conduct the proof, we need to analyze the structure of traces more closely. We first
notice a crucial property of the interactive reduction of such terms, that when reducing
(M,h) to (M ′, h′), we know that the name pointers contained in M ′ are also in M .
Using this property, we prove that a term M ′ appearing in the interactive reduction of
M via a trace T only contains name pointers from AvO(T ).

Lemma 3. Let M a term of GroundML s.t. Σ;Γ � M : τ , and ((a0, h0) · T · (a, h)) ∈
[Σ;Γ � M : τ ] s.t. 〈M,γ, I, h0, D〉 T−→ 〈M ′ · −→Ki, γ

′, I ′, h′, D′〉 Then νO
P
(M ′) ⊆

AvO((a0, h0) · T ).
From this lemma we get directly the following corollary:

Corollary 1. Let M a term of GroundML s.t. Σ;Γ � M : τ , and T · (x̄ 〈u〉 , h) ∈
[Σ;Γ � M : τ ]. Then x ∈ AvO(T ).

We can finally prove Theorem 5 using the conjunction of Lemma 2 and Corollary 1.

5.2 Full Abstraction for GroundML

We have seen in Section 5.1 that terms of GroundML give rise to P-visible traces. How-
ever, the trace semantics of Section 3.3 is not fully abstract, since there are still traces
which are not generated by an interaction between contexts and terms of GroundML. To
get full abstraction, we need to constrain traces to be O-visible by modifying the inter-
active reduction to control the scope of name pointers s.t. only pointers appearing in the
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view of an action are available. We present the modified interactive reduction in Figure
5. First notice that, since we do not have higher-order references in our language, we do
not need to extend I and γ with pointers representing functions stored in the disclosed
part of the heap. Then, we keep track of available player name pointers, represented by
a set A, in different places of the configuration:

– in opponent configurations 〈−→Ki, γ, I, h,D,A〉, representing the current available
player name pointers;

– within each element (M, τ, ξ,A) or (K[•τ,ξ], σ, ξ′,A) of the execution stack, rep-
resenting the player name pointers available when Opponent add this element to
the execution stack via a question;

– within each opponent name pointers x ∈ I, representing the player name pointers
available when x has been introduced by an opponent action.

Using this set of available player name pointers, we can control the questions Opponent
can interrogate, as shown by the condition x ∈ A in the rules O-QuestG and O-Quest.
This idea is formalized in the following lemma:

Lemma 4. For (i, h0) · T ∈ [Σ;Γf � M : τ ] s.t. 〈(M, τ, ξ,∅), γ, I, h,D〉 T−→ 〈−→Ki, γ
′,

, I ′, h′,D′〉A we have AvP(T ) = A.

Using our restricted interactive reduction, we define the ground interpretation of a judg-
ment [Σ;Γ � M : τ ]G in the same way than in Definition 4, with the empty set of
pointers associated to M in the execution stack. From Lemma 4, we can deduce that
the ground interpretation always gives rise to visible strategies.

Theorem 6. Let M a term of GroundML s.t. Σ;Γ � M : τ . Then [Σ;Γ � M : τ ]G is
a visible strategy (i.e. both P-visible and O-visible).

It is straightforward to see that the notion of visibility introduced here corresponds
exactly to the usual notion of visibility of game semantics. So we can import the full
abstraction result of [14] into our trace semantics of GroundML.

6 Discussion and Future Work

We would like to extend our trace semantics to a polymorphic language, where the
mechanism to represent the arenas an action belongs to in terms of tags would be-
come crucial, as in [11]. It would also be interesting to extend the characterization of
fragments of RefML in trace semantics by dealing with the restriction to integer ref-
erences, namely RedML, as in [15]. We believe that our interactive reduction defined
for GroundML can be restricted to give a fully abstract model of RedML, using similar
restrictions on the use of name pointers in locations.

As we have said, the well-bracketing condition is hard-wired in the definition of
justified traces. To remove it, we would need to specify which question an answer is
answering. One possibility to do that would be to use the work of Gabbay and Ghica [4],
which uses nominal sets to represent strategies. In fact, our work is halfway to them:
the way they name questions, and the freshness condition they impose, seems similar to
our use of name-pointers and the nominal reasoning we perform on them. It should thus
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be possible to use their work to also give fresh name to answers actions. This would
allow us to study languages where we need semantically to remove the well-bracketing
condition, namely languages with control operators like call/cc or exceptions.

Finally, a correspondence between trace and game models has been previously built
by Laird [8] in a different setting, the asynchronous π-calculus (so without references).
Levy and Staton [12] have also recently build an abstract categorical setting to study
such correspondences. It would be interesting if our work could be spelt out in their
framework, and therefore give a high-level categorical meaning to our construction.
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Abstract. It is well-known that constructing models of higher-order
probabilistic programming languages is challenging. We show how to
construct step-indexed logical relations for a probabilistic extension of
a higher-order programming language with impredicative polymorphism
and recursive types. We show that the resulting logical relation is sound
and complete with respect to the contextual preorder and, moreover,
that it is convenient for reasoning about concrete program equivalences.
Finally, we extend the language with dynamically allocated first-order
references and show how to extend the logical relation to this language.
We show that the resulting relation remains useful for reasoning about
examples involving both state and probabilistic choice.

1 Introduction

It is well known that it is challenging to develop techniques for reasoning about
programs written in probabilistic higher-order programming languages. A prob-
abilistic program evaluates to a distribution of values, as opposed to a set of
values in the case of nondeterminism or a single value in the case of determinis-
tic computation. Probability distributions form a monad. This observation has
been used as a basis for several denotational domain-theoretic models of proba-
bilistic languages and also as a guide for designing probabilistic languages with
monadic types [15,21,20]. Game semantics has also been used to give models
of probabilistic programming languages [9,12] and a fully abstract model using
coherence spaces for PCF with probabilistic choice was recently presented [13].

The majority of models of probabilistic programming languages have been
developed using denotational semantics. However, Johann et.al. [14] developed
operationally-based logical relations for a polymorphic programming language
with effects. Two of the effects they considered were probabilistic choice and
global ground store. However, as pointed out by the authors [14], extending their
construction to local store and, in particular, higher-order local store, is likely to
be problematic. Recently, operationally-based bisimulation techniques have been
extended to probabilistic extensions of PCF [7,8]. The operational semantics of
probabilistic higher-order programming languages has been investigated in [16].

Step-indexed logical relations [2,3] have proved to be a successful method for
proving contextual approximation and equivalence for programming languages
with a wide range of features, including computational effects.

In this paper we show how to extend the method of step-indexed logical rela-
tions to reason about contextual approximation and equivalence of probabilistic
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higher-order programs. To define the logical relation we employ biorthogonal-
ity [17,19] and step-indexing. Biorthogonality is used to ensure completeness of
the logical relation with respect to contextual equivalence, but it also makes it
possible to keep the value relations simple, see Fig. 1. Moreover, the definition
using biorthogonality makes it possible to “externalize” the reasoning in many
cases when proving example equivalences. By this we mean that the reasoning
reduces to algebraic manipulations of probabilities. This way, the quantitative
aspects do not complicate the reasoning much, compared to the usual reason-
ing with step-indexed logical relations. To define the biorthogonal lifting we use
two notions of observation; the termination probability and its stratified version
approximating it. We define these and prove the required properties in Section 3.

We develop our step-indexed logical relations for the call-by-value language
Fμ,⊕. This is system F with recursive types, extended with a single probabilistic
choice primitive rand . The primitive rand takes a natural number n and reduces
with uniform probability to one of 1, 2, . . . , n. Thus randn represents the uniform
probability distribution on the set {1, 2, . . . , n}. We choose to add rand instead
of just a single coin flip primitive to make the examples easier to write.

To show that the model is useful we use it to prove some example equivalences
in Section 5. We show two examples based on parametricity. In the first example,
we characterize elements of the universal type ∀α.α → α. In a deterministic lan-
guage, and even in a language with nondeterministic choice, the only interesting
element of this type is the identity function. However, since in a probabilistic
language we not only observe the end result, but also the likelihood with which
it is returned, it turns out that there are many more elements. Concretely, we
show that the elements of the type ∀α.α → α that are of the form Λα.λx.e,
correspond precisely to left-computable real numbers in the interval [0, 1]. In the
second example we show a free theorem involving functions on lists. We show
additional equivalences in the Appendix, including the correctness of von Neu-
mann’s procedure for generating a fair sequence of coin tosses from an unfair
coin, and equivalences from the recent papers using bisimulations [7,8].

We add dynamically allocated references to the language and extend the log-
ical relation to the new language in Section 6. For simplicity we only sketch how
to extend the construction with first-order state. This already suggests that an
extension with general references can be done in the usual way for step-indexed
logical relations. We conclude the section by proving a representation indepen-
dence result involving both state and probabilistic choice.

All the references to the Appendix in this paper refer to appendix in the online
long version [6].

2 The Language Fµ,⊕

The language is a standard pure functional language with recursive, univer-
sal and existential types with an additional choice primitive rand . The base
types include the type of natural numbers nat with some primitive operations.
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The grammar of terms e is

e ::= x | 〈〉 | rand e | n | if1 e then e1 else e2 | P e | S e | 〈e1, e2〉 | proji e
| λx.e | e1 e2 | inl e | inr e | match (e, x1.e1, x2.e2) | Λ.e | e[]
| pack e | unpack e1 as x in e2 | fold e | unfolde

We write n for the numeral representing the natural number n and S and P are
the successor and predecessor functions, respectively. For convenience, numerals
start at 1. Given a numeral n, the term randn evaluates to one of the numerals
1, . . . , n with uniform probability. There are no types in the syntax of terms,
e.g., instead of Λα.e and e τ we have Λ.e and e[]. This is for convenience only.

We write α, β, . . . for type variables and x, y, . . . for term variables. The no-
tation τ [�τ/�α] denotes the simultaneous capture-avoiding substitution of types �τ
for the free type variables �α in the type τ ; e[�v/�x] denotes simultaneous capture-
avoiding substitution of values �v for the free term variables �x in the term e.

We write Stk for the set of evaluation contexts given by the call-by-value
reduction strategy. Given two evaluation contexts E,E′ we define their compo-
sition E ◦E′ by induction on E in the natural way. Given an evaluation context
E and expression e we write E[e] for the term obtained by plugging e into E. For
any two evaluation contexts E and E′ and a term e we haveE[E′[e]] = (E◦E′)[e].

For a type variable context Δ, the judgment Δ � τ expresses that the free
type variables in τ are included in Δ. The typing judgments are entirely standard
with the addition of the typing of rand which is given by the rule

Δ | Γ � e : nat

Δ | Γ � rand e : nat
.

The complete set of typing rules are in the Appendix. We write T(Δ) for the
set of types well-formed in context Δ, and T for the set of closed types τ . We
write Val (τ) and Tm (τ) for the sets of closed values and terms of type τ ,
respectively. We write Val and Tm for the set of all1 closed values and closed
terms, respectively. Stk (τ) denotes the set of τ -accepting evaluation contexts,
i.e., evaluation contexts E, such that given any closed term e of type τ , E[e] is
a typeable term. Stk denotes the set of all evaluation contexts.

For a typing context Γ = x1:τ1, . . . , xn:τn with τ1, . . . , τn ∈ T, let Subst(Γ )
denote the set of type-respecting value substitutions, i.e. for all i, γ(xi) ∈
Val (τi). In particular, if Δ | Γ � e : τ then ∅ | ∅ � eγ : τδ for any δ ∈ TΔ and
γ ∈ Subst(Γδ), and the type system satisfies standard properties of progress
and preservation and a canonical forms lemma.

The operational semantics of the language is a standard call-by-value seman-
tics but weighted with p ∈ [0, 1] which denotes the likelihood of that reduction.

We write
p� for the one-step reduction relation. All the usual β reductions have

weight equal to 1 and the reduction from randn is

randn
1
n� k for k ∈ {1, 2, . . . , n}.

1 In particular, we do not require them to be typeable.



282 A. Bizjak and L. Birkedal

The rest of the rules are given in Fig. 5 in the Appendix. The operational seman-
tics thus gives rise to a Markov chain with closed terms as states. In particular
for each term e we have

∑
e′ | e p�e′ p ≤ 1.

3 Observations and Biorthogonality

We will use biorthogonality to define the logical relation. This section provides
the necessary observation predicates used in the definition of the biorthogonal
lifting of value relations to expression relations. Because of the use of biorthogo-
nality the value relations (see Fig. 1) remain as simple as for a language without
probabilistic choice. The new quantitative aspects only appear in the definition
of the biorthogonal lifting (

-closure) defined in Section 4. Two kinds of ob-
servations are used. The probability of termination, P⇓ (e), which is the actual
probability that e terminates, and its approximation, the stratified termination
probability P⇓

k (e), where k ∈ N denotes, intuitively, the number of computation
steps. The stratified termination probability provides the link between steps in
the operational semantics and the indexing in the definition of the interpretation
of types.

The probability of termination, P⇓ (·), is a function of type Tm → I where
I is the unit interval [0, 1]. Since I is a pointed ω-cpo for the usual order, so is
the space of all functions Tm → I with pointwise ordering. We define P⇓ (·) as
a fixed point of the continuous function Φ on this ω-cpo: Let F = Tm → I and
define Φ : F → F as

Φ(f)(e) =

⎧
⎪⎨

⎪⎩

1 if e ∈ Val
∑

e
p�e′

p · f (e′) otherwise

Note that if e is stuck then Φ(f)(e) = 0 since the empty sum is 0.
The function Φ is monotone and preserves suprema of ω-chains. The proof is

straightforward and can be found in the Appendix. Thus Φ has a least fixed point
in F and we denote this fixed point by P⇓ (·), i.e., P⇓ (e) = supn∈ω Φn(⊥)(e).

To define the stratified observations we need the notion of a path. Given terms

e and e′ a path π from e to e′, written π : e �∗ e′, is a sequence e
p1� e1

p2� e2
p3�

· · · pn� e′. The weight W (π) of a path π is the product of the weights of reductions
in π. We write R for the set of all paths and · for their concatenation (when
defined). For a non-empty path π ∈ R we write � (π) for its last expression.

We call reductions of the form unfold (fold v)
1� v unfold-fold reductions and

reductions of the form randn
1
n� k choice reductions. If none of the reductions

in a path π is a choice reduction we call π choice-free and similarly if none of
the reductions in π is an unfold-fold reductions we call π unfold-fold free.

We define the following types of multi-step reductions which we use in the
definition of the logical relation.

– e
cf

=⇒ e′ if there is a choice-free path from e to e′
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– e
uff
=⇒ e′ if there is an unfold-fold free path from e to e′.

– e
cuff
=⇒ e′ if e cf

=⇒ e′ and e
uff
=⇒ e′.

The following useful lemma states that all but choice reductions preserve the
probability of termination. As a consequence, we will see that all but choice
reductions preserve equivalence.

Lemma 3.1. Let e, e′ ∈ Tm and e
cf
=⇒ e′. Then P⇓ (e) = P⇓ (e′).

The proof proceeds on the length of the reduction path with the strengthened
induction hypothesis stating that the probabilities of termination of all elements
on the path are the same. To define the stratified probability of termination that
approximates P⇓ (·) we need an auxiliary notion.

Definition 3.2. For a closed expression e ∈ Tm we define Red (e) as the
(unique) set of paths containing exactly one unfold-fold or choice reduction
and ending with such a reduction. More precisely, we define the function Red :
Tm → P (R) as the least function satisfying

Red (e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{e 1� e′} if e = E[unfold (fold v)]

{e p� E[k]
∣
∣ p = 1

n , k ∈ {1, 2, . . . , n}} if e = E[randn]
{
(e

1� e′) · π ∣
∣ π ∈ Red (e′)

}
if e

1� e′ and e
cuff
=⇒ e′

∅ otherwise

where we order the power set P (R) by subset inclusion.

Using Red (·) we define a monotone map Ψ : F → F that preserves ω-chains.

Ψ(f)(e) =

⎧
⎪⎨

⎪⎩

1 if ∃v ∈ Val, e
cuff
=⇒ v

∑

π∈Red(e)

W (π) · f (� (π)) otherwise

and then define P⇓
k (e) = Ψk(⊥)(e). The intended meaning of P⇓

k (e) is the
probability that e terminates within k unfold-fold and choice reductions. Since
Ψ is monotone we have that P⇓

k (e) ≤ P⇓
k+1 (e) for any k and e.

The following lemma is the reason for counting only certain reductions, cf.[10].
It allows us to stay at the same step-index even when taking steps in the op-
erational semantics. As a consequence we will get a more extensional logical
relation. The proof is by case analysis and can be found in the Appendix.

Lemma 3.3. Let e, e′ ∈ Tm. If e
cuff
=⇒ e′ then for all k, P⇓

k (e) = P⇓
k (e

′).

The following is immediate from the definition of the chain
{
P⇓

k (e)
}∞

k=0
and

the fact that randn reduces with uniform probability.

Lemma 3.4. Let e be a closed term. If e
1� e′ and the reduction is an unfold-fold

reduction then P⇓
k+1 (e) = P⇓

k (e
′). If the reduction from e is a choice reduction,

then P⇓
k+1 (e) =

1
|Red(e)|

∑
π∈Red(e) P

⇓
k (� (π)).
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The following proposition is needed to prove adequacy of the logical relation
with respect to contextual equivalence. It is analogous to the property used to
prove adequacy of step-indexed logical relations for deterministic and nondeter-
ministic languages. Consider the case of may-equivalence. To prove adequacy in
this case (cf. [4, Theorem 4.8]) we use the fact that if e may-terminates, then
there is a natural number n such that e terminates in n steps. This property
does not hold in the probabilistic case, but the property analogous to it that is
sufficient to prove adequacy still holds.

Proposition 3.5. For each e ∈ Tm we have P⇓ (e) ≤ supk∈ω

(
P⇓

k (e)
)
.

Proof. We only give a sketch; the full proof can be found in the Appendix. We

use Scott induction on the set S =
{
f ∈ F ∣

∣ ∀e, f(e) ≤ supk∈ω

(
P⇓

k (e)
)}

. It is

easy to see that S is closed under limits of ω-chains and that ⊥ ∈ S so we only
need to show that S is closed under Φ. We can do this by considering the kinds
of reductions from e when considering Φ(f)(e) for f ∈ S.

4 Logical, CIU and Contextual Approximation Relations

The contextual and CIU (closed instantiations of uses [18]) approximations are
defined in a way analogous to the one for deterministic programming languages.
We require some auxiliary notions. A type-indexed relation R is a set of tuples
(Δ,Γ, e, e′, τ) such that Δ � Γ and Δ � τ and Δ | Γ � e : τ and Δ | Γ � e′ : τ .
We write Δ | Γ � e R e′ : τ for (Δ,Γ, e, e′, τ) ∈ R.

Definition 4.1 (Precongruence). A type-indexed relation R is reflexive if
Δ | Γ � e : τ implies Δ | Γ � e R e : τ . It is transitive if Δ | Γ � e R e′ : τ and
Δ | Γ � e′ R e′′ : τ implies Δ | Γ � e R e′′ : τ . It is compatible if it is closed
under the term forming rules, e.g.,2

Δ | Γ, x:τ1 � e R e′ : τ2
Δ | Γ � λx.e R λx.e′ : τ1 → τ2

Δ | Γ � e R e′ : nat
Δ | Γ � rand e R rand e′ : nat

A precongruence is a reflexive, transitive and compatible type-indexed relation.

The compatibility rules guarantee that a compatible relation is sufficiently
big, i.e., at least reflexive. In contrast, the notion of adequacy, which relates the
operational semantics with the relation, guarantees that it is not too big. In the
deterministic case, a relation R is adequate if when e R e′ are two related closed
terms, then if e terminates so does e′. Here we need to compare probabilities of
termination instead, since these are our observations.

Definition 4.2. A type-indexed relation R is adequate if for all e, e′ such that
∅ | ∅ � e R e′ : τ we have P⇓ (e) ≤ P⇓ (e′).

2 We only show a few rules, the rest are analogous and can be found in the Appendix.
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The contextual approximation relation, written Δ | Γ � e �ctx e′ : τ , is defined
as the largest adequate precongruence and the CIU approximation relation, writ-
ten Δ | Γ � e �CIU e′ : τ , is defined using evaluation contexts in the usual
way, e.g. [18], using P⇓ (·) for observations. The fact that the largest adequate
precongruence exists is proved as in [18].

Logical Relation. We now define the step-indexed logical relation. We present
the construction in the elementary way with explicit indexing instead of using a
logic with guarded recursion as in [10] to remain self-contained.

Interpretations of types will be defined as decreasing sequences of relations
on typeable values. For closed types τ and σ we define the sets VRel (τ, σ),
SRel (τ, σ) and TRel (τ, σ) to be the sets of decreasing sequences of relations
on typeable values, evaluation contexts and expressions respectively. The types τ
and σ denote the types of the left-hand side and the right-hand side respectively,
i.e. if (v, u) ∈ ϕ(n) for ϕ ∈ VRel (τ, σ) then v has type τ and u has type σ. The
order relation ≤ on these sets is defined pointwise, e.g. for ϕ, ψ ∈ VRel (τ, σ)
we write ϕ ≤ ψ if ∀n ∈ N, ϕ(n) ⊆ ψ(n). We implicitly use the inclusion from
VRel (τ, σ) to TRel (τ, σ). The reason for having relations on values and terms
of different types on the left and right-hand sides is so we are able to prove
parametricity properties in Section 5.

We define maps ·	τ,σ : VRel (τ, σ) → SRel (τ, σ) and ·⊥τ,σ : SRel (τ, σ) →
TRel (τ, σ). We usually omit the type indices when they can be inferred from
the context. The maps are defined as follows

r	τ,σ(n) =
{
(E,E′)

∣
∣ ∀k ≤ n, ∀(v, v′) ∈ r(k),P⇓

k (E[v]) ≤ P⇓ (E′[v′])
}

and r⊥τ,σ(n) =
{
(e, e′)

∣
∣ ∀k ≤ n, ∀(E,E′) ∈ r(k),P⇓

k (E[e]) ≤ P⇓ (E′[e′])
}
. Note

that we only count steps evaluating the left term in defining r	 and r⊥. We write

r		 = r	⊥
for their composition from VRel (τ, σ) to TRel (τ, σ). The function

·	 is order-reversing and ·		 is order-preserving and inflationary.

Lemma 4.3. Let τ, σ be closed types and r, s ∈ VRel (τ, σ). Then r ≤ r		 and
if r ≤ s then s	 ≤ r	 and r		 ≤ s		.

For a type-variable context Δ we define VRel (Δ) using VRel (·, ·) as
VRel (Δ)=

{
(ϕ1, ϕ2, ϕr)

∣
∣ ϕ1, ϕ2 ∈ TΔ, ∀α ∈ Δ,ϕr(α) ∈ VRel (ϕ1(α), ϕ2(α))

}

where the first two components give syntactic types for the left and right hand
sides of the relation and the third component is a relation between those types.

The interpretation of types, �· � ·� is by induction on the judgementΔ � τ . For
a judgmentΔ � τ and ϕ ∈ VRel (Δ) we have �Δ � τ� (ϕ) ∈ VRel (ϕ1(τ), ϕ2(τ))
where the ϕ1 and ϕ2 are the first two components of ϕ and ϕ1(τ) denotes
substitution. Moreover �·� is non-expansive in the sense that �Δ � τ� (ϕ)(n) can
depend only on the values of ϕr(α)(k) for k ≤ n, see [5] for this metric view of
step-indexing. The interpretation of types is defined in Fig. 1. Observe that the
value relations are as simple as for a language without probabilistic choice. The
crucial difference is hidden in the 

-closure of value relations.
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�Δ � nat� (ϕ)(n) =
{
(k, k)

∣
∣ k ∈ N, k > 0

}

�Δ � τ → σ� (ϕ)(n) = {(λx.e, λy.e′) ∣
∣ ∀j ≤ n,∀(v, v′) ∈ �Δ � τ� (ϕ)(j),

((λx.e) v, (λy.e′) v′) ∈ �Δ � σ� (ϕ)��(j)}
�Δ � ∀α.τ� (ϕ)(n) = {(Λ.e, Λ.e′) ∣

∣ ∀σ, σ′ ∈ T,∀r ∈ VRel (σ, σ′) ,
(e, e′) ∈ �Δ,α � τ� (ϕ [α �→ r])��(n)}

�Δ � ∃α.τ� (ϕ)(n) = {(pack v, pack v′) ∣
∣ ∃σ, σ′ ∈ T, ∃r ∈ VRel (σ, σ′) ,

(v, v′) ∈ �Δ,α � τ� (ϕ [α �→ r]) (n)}
�Δ � μα.τ� (ϕ)(0) = Val (ϕ1(μα.τ ))×Val (ϕ2(μα.τ ))

�Δ � μα.τ� (ϕ)(n+ 1) = {(fold v, fold v′) ∣
∣

(v, v′) ∈ �Δ,α � τ� (ϕ [α �→ �Δ � μα.τ� (ϕ)]) (n)}

Fig. 1. Interpretation of types. The cases for sum and product types are in Appendix.

Context extension lemmas. To prove soundness and completeness we need lem-
mas stating how extending evaluation contexts preserves relatedness. We only
show the case for rand . The rest are similarly simple.

Lemma 4.4. Let n ∈ N. If (E,E′) ∈ �Δ � nat� (ϕ)	(n) are related evaluation

contexts then (E ◦ (rand []), E′ ◦ (rand [])) ∈ �Δ � nat� (ϕ)
	
(n).

Proof. Let n ∈ N and (v, v′) ∈ �Δ � τ� (ϕ)(n). By construction we have v = v′ =
m for some m ∈ N, m ≥ 1. Let k ≤ n. If k = 0 the result is immediate, so assume
k = � + 1. Using Lemma 3.4 we have P⇓

k (E[randm]) = 1
m

∑m
i=1 P

⇓
� (E[i]) and

using the assumption (E,E′) ∈ �Δ � nat� (ϕ)
	
(n), the fact that k ≤ n and

monotonicity in the step-index the latter term is less than 1
m

∑m
i=1 P

⇓ (E′[i])
which by definition of P⇓ (·) is equal to P⇓ (E′[randm]).

We define the logical approximation relation for open terms given the inter-
pretations of types in Fig. 1. We define Δ | Γ � e �log e′ : τ to mean

∀n ∈ N, ∀ϕ ∈ VRel (Δ) , ∀(γ, γ′) ∈ �Δ � Γ � (ϕ)(n), (eγ, e′γ) ∈ �Δ � τ�ϕ
		

(n)

Here �Δ � Γ � is the obvious extension of interpretation of types to interpretation
of contexts which relates substitutions, mapping variables to values. We have

Proposition 4.5 (Fundamental Property). The logical approximation rela-

tion �log is compatible. In particular it is reflexive.

Proof. The proof is a simple consequence of the context extension lemmas. We
show the case for rand . We have to show that Δ | Γ � e �log e′ : nat implies

Δ | Γ � rand e �log
rand e′ : nat. Let n ∈ N, ϕ ∈ VRel (Δ) and (γ, γ′) ∈

�Δ � Γ � (ϕ)(n). Let f = eγ and f ′ = e′γ′. Then our assumption gives us (f, f ′) ∈
�Δ � nat� (ϕ)

		
(n) and we are to show (rand f, rand f ′) ∈ �Δ � nat� (ϕ)

		
(n).

Let j ≤ n and (E,E′) ∈ �Δ � nat� (ϕ)
	
(j). Then from Lemma 4.4 we have

(E ◦ (rand []), E′ ◦ (rand [])) ∈ �Δ � nat� (ϕ)	(j) which suffices by the definition

of the orthogonality relation and the assumption (f, f ′) ∈ �Δ � nat� (ϕ)
		

(n).
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We now want to relate logical, CIU and contextual approximation relations.

Corollary 4.6. Logical approximation relation �log is adequate.

Proof. Assume ∅ | ∅ � e �log e′ : τ . We are to show that P⇓ (e) ≤ P⇓ (e′).
Straight from the definition we have ∀n ∈ N, (e, e′) ∈ �∅ � τ�

		
(n). The empty

evaluation context is always related to itself (at any type). This implies ∀n ∈
N,P⇓

n (e) ≤ P⇓ (e′) which further implies (since the right-hand side is indepen-
dent of n) that supn∈ω

(
P⇓

n (e)
) ≤ P⇓ (e′). Using Proposition 3.5 we thus have

P⇓ (e) ≤ supn∈ω

(
P⇓

n (e)
) ≤ P⇓ (e′) concluding the proof.

We now have that the logical relation is adequate and compatible. This does
not immediately imply that it is contained in the contextual approximation
relation, since we do not know that it is transitive. However we have the following
lemma where by transitive closure we mean that for each Δ, Γ and τ we take
the transitive closure of the relation {(e, e′) ∣

∣ Δ | Γ � e �log e′ : τ}. This is
another type-indexed relation.

Lemma 4.7. The transitive closure of �log is compatible and adequate.

Proof. Transitive closure of an adequate relation is adequate. Similarly the tran-
sitive closure of a compatible and reflexive relation (in the sense of Definition 4.1)
is again compatible (and reflexive).

Theorem 4.8 (CIU Theorem). The relations �log, �CIU and �ctx coincide.

Proof. It is standard (e.g. [18]) that �ctx is included in �CIU. We show that the
logical approximation relation is contained in the CIU approximation relation
in the standard way for biorthogonal step-indexed logical relations. To see that
�log is included in �ctx we have by Lemma 4.7 that the transitive closure of �log

is an adequate precongruence, thus included in �ctx. And �log is included in the
transitive closure of �log. Corollary A.13 in the appendix completes the cycle of
inclusions.

Using the logical relation and Theorem 4.8 we can prove some extensionality
properties. The proofs are standard and can be found in the Appendix.

Lemma 4.9 (Functional Extensionality for Values). Suppose τ, σ ∈ T(Δ)
and let f and f ′ be two values of type τ → σ in context Δ | Γ . If for all
u ∈ Val (τ) we have Δ | Γ � f u �ctx f ′ u : σ then Δ | Γ � f �ctx f ′ : τ → σ.

The extensionality for expressions, as opposed to only values, of function type
does not hold in general due to the presence of choice reductions. See Remark 5.2
for an example. We also have extensionality for values of universal types.

Lemma 4.10 (Extensionality for the Universal Type). Let τ ∈ T(Δ,α)
be a type. Let f, f ′ be two values of type ∀α.τ in context Δ | Γ . If for all closed
types σ we have Δ | Γ � f [] �ctx f ′[] : τ [σ/α] then Δ | Γ � f �ctx f ′ : ∀α.τ .
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5 Examples

We now use our logical relation to prove some example equivalences. We show
two examples involving polymorphism. In the Appendix we show additional
examples. In particular we show the correctness of von Neumann’s procedure for
generating a fair sequence of coin tosses from an unfair coin. That example in
particular shows how the use of biorthogonality allows us to “externalize” the
reasoning to arithmetic manipulations.

We first define fix : ∀α, β.((α→β)→(α→β)) → (α→β) be the term
Λ.Λ.λf.λz.δf(fold δf ) zwhere δf is the termλy.lety′ = unfold y inf (λx.y′ y x).
This is a call-by-value fixed-point combinator. We also write e1 ⊕ e2 for the term
if1 rand2 then e1 else e2. Note that the choice is made before evaluating ei’s.

We characterize inhabitants of a polymorphic type and show a free theorem.
For the former, we need to know which real numbers can be probabilities of
termination of programs. Recall that a real number r is left-computable if there
exists a computable increasing (not necessarily strictly) sequence {qn}n∈ω of
rational numbers such that r = supn∈ω qn. In Appendix B we prove

Proposition 5.1. For any expression e, P⇓ (e) is a left-computable real number
and for any left-computable real number r in the interval [0, 1] there is a closed
term er of type 1 → 1 such that P⇓ (er 〈〉) = r.

Inhabitants of the Type ∀α.α → α. In this section we use further syntactic
sugar for sequencing. When e, e′ ∈ Tm are closed terms we write e; e′ for (λ .e′) e,
i.e. first run e, ignore the result and then run e′. We will need the property that
for all terms e, e′ ∈ Tm, P⇓ (e; e′) = P⇓ (e) · P⇓ (e′). The proof is by Scott
induction and can be found in the Appendix.

Using Proposition 5.1 we have for each left-computable real r in the interval
[0, 1] an inhabitant tr of the type ∀α.α → α given by Λ.λx.er 〈〉;x.

We now show that these are the only inhabitants of ∀α.α → α of the form
Λ.λx.e. Given such an inhabitant let r = P⇓ (e[〈〉/x]). We know from Proposi-
tion 5.1 that r is left-computable.

Given a value v of type τ and n ∈ N we define relations R(n) = {(〈〉, v)} and
S(n) = {(v, 〈〉)}. Note that the relations are independent of n, i.e. R and S are
constant relations. By reflexivity of the logical relation and the relational actions
of types we have

∀n, (e[〈〉/x], e[v/x]) ∈ R		(n) and ∀n, (e[v/x], e[〈〉/x]) ∈ S		(n) (1)

from which we conclude that P⇓ (e[〈〉/x]) = P⇓ (e[v/x]). We now show that v
and e[v/x] are CIU-equivalent. Let E ∈ Stk (τ) be an evaluation context. Let q =
P⇓ (E[v]). Define the evaluation context E′ = −; eq 〈〉. Then (E,E′) ∈ S	(n)
for all n which then means, using (1) and Proposition 3.5, that P⇓ (E[e[v/x]]) ≤
P⇓ (E′[e[〈〉/x]]). We then have

P⇓ (E′[e[〈〉/x]]) = P⇓ (e[〈〉/x]) ·P⇓ (eq 〈〉) = r ·P⇓ (E[v])

and so P⇓ (E[e[v/x]]) ≤ r ·P⇓ (E[v]).



Step-Indexed Logical Relations for Probability 289

Similarly we have (E′, E) ∈ R	(n) for all n which implies P⇓ (E[e[v/x]]) ≥
P⇓ (E′[e[〈〉/x]]). We also have P⇓ (E′[e[〈〉/x]]) = r ·P⇓ (E[v]).

So we have proved P⇓ (E[e[v/x]]) = r ·P⇓ (E[v]) = P⇓ (e[v/x]) ·P⇓ (E[v]). It
is easy to show by Scott induction, that P⇓ (E[tr[] v]) = P⇓ (er 〈〉) · P⇓ (E[v]).
We have thus shown that for any value v, the terms e[v/x] and P⇓ (tr[] v) are
CIU-equivalent. Using Theorem 4.8 and Lemmas 4.10 and 4.9 we conclude that
the terms ∀α.λx.e and tr are contextually equivalent.

Remark 5.2. Unfortunately we cannot so easily characterize general values of
the type ∀α.α → α, that is, those not of the form Λ.v for a value v. Consider
the term Λ.t 1

2
⊕ t 1

3
. It is a straightforward calculation that for any evaluation

context E and value v, P⇓
(
E
[(

t 1
2
⊕ t 1

3

)
v
])

= 5
12P

⇓ (E[v]) = P⇓
(
E
[
t 5
12

v
])

thus if Λ.t 1
2
⊕ t 1

3
is equivalent to any Λ.tr it must be Λ.t 5

12
.

Let E be the evaluation context E = let f = −[] in let x = f 〈〉 in f 〈〉.
We compute P⇓

(
E
[
Λ.t 1

2
⊕ t 1

3

])
= 13

72 and P⇓
(
E
[
Λ.t 5

12

])
= 25

144 showing that

Λ.t 1
2
⊕ t 1

3
is not equivalent to Λ.t 5

12
.

This example also shows that extensionality for expressions, as opposed to
values, of function type does not hold. The reason is that probabilistic choice
is a computational effect and so it matters how many times we evaluate the
term and this is what the constructed evaluation context uses to distinguish the
terms.

A Free Theorem for Lists. Let τ be a type and α not free in τ . We write [τ ] for
the type of lists μα.(1+τ×α), nil for the empty list and cons : ∀α.α → [α] → [α]
for the other constructor cons = Λ.λx.λxs.fold (inr 〈x, xs〉). The function map

of type ∀α.∀β.(α → β) → [α] → [β] is the function applying the given function
to all elements of the list in order. Additionally, we define composition of terms
f ◦ g as the term λx.f(g(x)) (for x not free in f and g).

We will now show that any term m of type ∀α.∀β.(α → β) → [α] → [β] equiv-
alent to a term of the form Λ.Λ.λx.e satisfies m[][] (f ◦ g) =ctx m[][]f ◦ map[][] g
for all values f and all deterministic and terminating g. By this we mean that for
each value v in the domain of g, there exists a value u in the codomain of g, such
that g v =ctx u. For instance, if g reduces without using choice reductions and
is terminating, then g is deterministic. There are other functions that are also
deterministic and terminating, though, for instance λx.〈〉 ⊕ 〈〉. In the Appendix
we show that these restrictions are not superfluous.

So let m be a closed term of type ∀α.∀β.(α → β) → [α] → [β] and suppose
further that m is equivalent to a term of the form Λ.Λ.λx.e. Let τ, σ, ρ ∈ T be
closed types and f ∈ Val (σ → ρ) and g ∈ Tm (τ → σ) be a deterministic and
terminating function. Then

∅ | ∅ � m[][](f ◦ g) =ctx m[][]f ◦ map[][]g : [τ ] → [ρ].
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We prove two approximations separately, starting with �ctx. We use The-
orem 4.8 multiple times. We have α, β | ∅ � m[][] : (α → β) → [α] → [β]. Let
R = λn.{(v, u) ∣∣ g v =ctx u} be a member of VRel (τ, σ) and S ∈ VRel (ρ, ρ) be
the constant identity relation on Val (ρ). Let ϕ map α to R and β to S. Propo-

sition 4.5 gives (m[][],m[][]) ∈ �(α → β) → [α] → [β]� (ϕ)
		

(n) for all n ∈ N.
We first claim that (f ◦g, f) ∈ �α → β� (ϕ)(n) for all n ∈ N. Since f is a value

and has a type, it must be of the form λx.e for some x and e. Take j ∈ N, related
values (v, u) ∈ r(j), k ≤ j and (E,E′) ∈ S	(k) two related evaluation contexts.
We then have P⇓ (E′[f u]) = P⇓ (E′[f(g v)]) by Theorem 4.8 and the definition

of relation R. Using the results about P⇓
k (·) and P⇓ (·) proved in Section C in

the Appendix this gives us

P⇓
k (E[f(g(v))]) ≤

∑

π:f(g(v))�∗w

W (π)P⇓
k (E[w]) ≤

∑

π:f(g(v))�∗w

W (π)P⇓ (E′[w])

and the last term is equal to P⇓ (E′[f(g v)]) which is equal to P⇓ (E′[f u]).

From this we can conclude (m[][] (f ◦ g),m[][] f) ∈ �[α] → [β]� (ϕ)		(n) for
all n ∈ N. Note that we have not yet used the fact that g is deterministic and
terminating. We do so now.

Let xs be a list of elements of type τ . Then induction on the length of xs,
using the assumption on g, we can derive that there exists a list ys of elements
of type σ, such that map[][] g xs =ctx ys and (xs, ys) ∈ �[α]� (ϕ)(n) for all n.

This gives us (m[][] (f ◦ g)xs,m[][] f ys) ∈ �[β]� (ϕ)
		

(n) for all n ∈ N. Since
the relation S is the identity relation we have for all evaluation contexts E of a
suitable type, (E,E) ∈ S	(n) for all n, which gives

m[][] (f ◦ g)xs�CIUm[][] f ys=ctxm[][] f (map[][] g xs)=ctx(m[][] f ◦ map[][] g)xs

where the last equality holds because β-reduction is an equivalence.
We now conclude by using the fact that m is (equivalent to) a term of the form

Λ.Λ.λx.e and use Lemma 4.9 to conclude m[][] (f ◦ g) �ctx m[][] f ◦ map[][] g.
For the other direction, we proceed analogously. The relation for β remains

the identity relation, and the relation for R for α is {(v, u) ∣∣ v =ctx g u}.

6 Extension to References

We now sketch the extension of Fμ,⊕ to include dynamically allocated refer-
ences. For simplicity we add ground store only, so we do not have to solve a
domain equation giving us the space of semantic types and worlds [1]. We show
an equivalence using state and probabilistic choice which shows that the addi-
tion of references to the language is orthogonal to the addition of probabilistic
choice. We conjecture that the extension with higher-order dynamically allocated
references can be done as in earlier work on step-indexed logical relations [11].

We extend the language by adding the type refnat and extend the grammar
of terms with � | ref e | e1 := e2 | !e with � being locations.
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To model allocation we need to index the interpretation of types by worlds.
To keep things simple a world w ∈ W is partial bijection f on locations together
with, for each pair of locations (�1, �2) ∈ f , a relation R on numerals. We write
(�1, �2, R) ∈ w when the partial bijection in w relates �1 and �2 and R is the
relation assigned to the pair (�1, �2). Technically, worlds are relations of type
Loc2 × P ({n | n ∈ N}) satisfying the conditions described above.

The operational semantics has to be extended to include heaps, which are
modeled as finite maps from locations to numerals. A pair of heaps (h1, h2) satis-
fies the world w, written (h1, h2) ∈ �w�, when ∀(�1, �2, R) ∈ w, (h1(�1), h2(�2)) ∈
R. The interpretation of types is then extended to include worlds. The denotation
of a type is now an element of W mon→ VRel (·, ·) where the order on W is inclu-

sion. Let WRel (τ, τ ′) = W mon→ VRel (τ, τ ′). We define �Δ � ref nat� (ϕ)(n)
as λw.

{
(�1, �2)

∣
∣ (�1, �2,=) ∈ w

}
where = is the equality relation on numerals.

The rest of the interpretation stays the same, apart from some quantification
over “future worlds” in the function case to maintain monotonicity. We also need
to change the definition of the 

-closure to use the world satisfaction relation.
For r ∈ WRel (τ, τ ′) we define an indexed relation (indexed by worlds) r	 as

r	(w)(n)
{

(E,E′)
∣
∣
∣
∣
∀w′ ≥ w, ∀k ≤ n, ∀(h1, h2) ∈ �w′� , ∀v1, v2 ∈ r(w′)(k),

P⇓
k (〈h1, E[v1]〉) ≤ P⇓ (〈h2, E[v2]〉)

}

and analogously for ·⊥.
We now sketch a proof that two modules, each implementing a counter by us-

ing a single internal location, are contextually equivalent. The increment method
is special. When called, it chooses, uniformly, whether to increment the counter
or not. The two modules differ in the way they increment the counter. One mod-
ule increments the counter by 1, the other by 2. Concretely, we show that the
two counters pack (λ− .ref 1, λx.!x, λx.〈〉 ⊕ (x := S !x)) and pack (λ − .ref2,
λx.!x div 2, λx.〈〉 ⊕ (x := S (S !x))) are contextually equivalent at type ∃α.(1 →
α) × (α → nat) × (α → 1). We have used div for the division function on
numerals which can easily be implemented.

The interpretation of existentials �Δ � ∃α.τ� (ϕ)(n) now maps world w to

{

(pack v, pack v′)
∣
∣ ∃σ, σ′ ∈ T, ∃r ∈ WRel (σ, σ′) ,
(v, v′) ∈ �Δ,α � τ� (ϕ [α �→ r]) (w)(n)

}

To prove the counters are contextually equivalent we show them directly re-
lated in the value relation. We choose the types σ and σ′ to be ref nat and the
relation r to be λw.

{
(�1, �2)

∣
∣
(
�1, �2,

{
(n, 2 · n) ∣

∣ n ∈ N
}) ∈ w

}
. We now need

to check all three functions to be related at the value relation.
First, the allocation functions. We only show one approximation, the other is

completely analogous. Concretely, we show that for any n ∈ N and any world w ∈
W we have (λ− .ref 1, λ− .ref 2) ∈ �1 → α� (r)(w)(n). Let n ∈ N and w ∈ W .
Take w′ ≥ w and related arguments v, v′ at type 1. We know by construction
that v = v′ = 〈〉 so we have to show that (ref 1, ref 2) ∈ �α� (r)

		
(w′)(n).
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Let w′′ ≥ w′ and j ≤ n and take two related evaluation contexts (E,E′) at

�α� (r)
	
(w′′)(j) and (h, h′) ∈ �w′′�. Let � �∈ dom(h) and �′ �∈ dom (h′). We have

P⇓
j (〈h,E[ref 1]〉) = P⇓

j (〈h [� �→ 1], E[�]〉)

and P⇓ (〈h′, E′[ref 2]〉) = P⇓ (〈h′ [�′ �→ 2], E′[�′]〉).
Let w′′′ be w′′ extended with (�, �′, r). Then the extended heaps are in �w′′′�

and w′′′ ≥ w′′. Thus E and E′ are also related at w′′′ by monotonicity. Similarly
we can prove that (�, �′) ∈ �α� (r)(j)(w′′′). This then allows us to conclude

P⇓
j (〈h [� �→ 1], E[�]〉) ≤ P⇓ (〈h′ [�′ �→ 2], E′[�′]〉) which concludes the proof.
Lookup is simple so we omit it. Update is more interesting. Let n ∈ N

and w ∈ W . Let � and �′ be related at �α� (r)(w)(n). We need to show that

(〈〉 ⊕ (� := S !�) , 〈〉 ⊕ (�′ := S (S !�′))) ∈ �1� (r)		(w)(n). Take w′ ≥ w, j ≤ n and
(h, h′) ∈ �w′�. Take related evaluation contexts E and E′ at w′ and j. We have

P⇓
j (〈h,E [〈〉 ⊕ (� := S !�)]〉)= 1

2P
⇓
j (〈h,E [〈〉]〉) + 1

2P
⇓
j (〈h,E [� := S !�]〉)

P⇓ (〈h′, E′ [〈〉 ⊕ (�′ := S S !�′)]〉)= 1
2P

⇓ (〈h′, E′ [〈〉]〉) + 1
2P

⇓ (〈h′, E′ [�′ := S S !�′]〉)
Since � and �′ are related at �α� (r)(w)(n) and w′ ≥ w and (h, h′) ∈ �w′� we
know that h(�) = m and h′(�′) = 2 ·m for some m ∈ N.

Thus P⇓
j (〈h,E [� := S !�]〉) = P⇓

j (〈h1, E[〈〉]〉) where h1 = h [� �→ m+ 1]. Also

P⇓ (〈h′, E′ [�′ := S S !�′]〉) = P⇓ (〈h2, E
′[〈〉]〉) where h2 = h′

[
�′ �→ 2 · (m+ 1)

]
.

The fact that h1 and h2 are still related concludes the proof.
The above proof shows that reasoning about examples involving state and

choice is possible and that the two features are largely orthogonal.

7 Conclusion

We have constructed a step-indexed logical relation for a higher-order language
with probabilistic choice. In contrast to earlier work, our language also features
impredicative polymorphism and recursive types. We also show how to extend
our logical relation to a language with dynamically allocated local state. In
future work, we will explore whether the step-indexed technique can be used for
developing models of program logics for probabilistic computation that support
reasoning about more properties than just contextual equivalence. We are also
interested in including primitives for continuous probability distributions.
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Abstract. We consider the problem of minimising the number of states
in a multiplicity tree automaton over the field of rational numbers. We
give a minimisation algorithm that runs in polynomial time assuming
unit-cost arithmetic. We also show that a polynomial bound in the stan-
dard Turing model would require a breakthrough in the complexity of
polynomial identity testing by proving that the latter problem is logspace
equivalent to the decision version of minimisation. The developed tech-
niques also improve the state of the art in multiplicity word automata:
we give an NC algorithm for minimising multiplicity word automata.
Finally, we consider the minimal consistency problem: does there exist
an automaton with n states that is consistent with a given finite sample
of weight-labelled words or trees? We show that this decision problem is
complete for the existential theory of the rationals, both for words and
for trees of a fixed alphabet rank.

1 Introduction

Minimisation is a fundamental problem in automata theory that is closely related
to both learning and equivalence testing. In this work we analyse the complexity
of minimisation for multiplicity automata, i.e., weighted automata over a field.
We take a comprehensive view, looking at multiplicity automata over both words
and trees and considering both function and decision problems. We also look
at the closely related problem of obtaining a minimal automaton consistent
with a given finite set of observations. We characterise the complexity of these
problems in terms of arithmetic and Boolean circuit classes. In particular, we give
relationships to longstanding open problems in arithmetic complexity theory.

Multiplicity tree automata were first introduced by Berstel and Reutenauer [1]
under the terminology of linear representations of a tree series. They generalise
multiplicity word automata, introduced by Schützenberger [25], which can be
viewed as multiplicity tree automata on unary trees. The minimisation problem
for multiplicity word automata has long been known to be solvable in polynomial
time [25].

In this work, we give a new procedure for computing minimal word automata
and thereby place minimisation in NC improving also on a randomised NC
procedure in [22]. (Recall that NL ⊆ NC ⊆ P, where NC comprises those lan-
guages having L-uniform Boolean circuits of polylogarithmic depth and polyno-
mial size, or, equivalently, those problems solvable in polylogarithmic time on
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parallel random-access machines with polynomially many processors.) By com-
parison, minimising deterministic word automata is NL-complete [12], while
minimising non-deterministic word automata is PSPACE-complete [20].

Over trees, we give what is (to the best of our knowledge) the first complex-
ity analysis of the problem of minimising multiplicity automata. We present an
algorithm that minimises a given tree automaton A in time O

(|A|2 · r) where
r is the maximum alphabet rank, assuming unit-cost arithmetic. This proce-
dure can be viewed as a concrete version of the construction of a syntactic
algebra of a recognisable tree series in [4]. We thus place the problem within
PSPACE in the conventional Turing model. We are moreover able to precisely
characterise the complexity of the decision version of the minimisation problem
as being logspace equivalent to the arithmetic circuit identity testing (ACIT)
problem, commonly also called the polynomial identity testing problem. The lat-
ter problem is very well studied, with a variety of randomised polynomial-time
algorithms, but, as yet, no deterministic polynomial-time procedure. In previ-
ous work we have reduced equivalence testing of multiplicity tree automata to
ACIT [24]; the advance here is to reduce the more general problem of minimi-
sation also to ACIT.

Finally, we consider the problem of computing a minimal multiplicity automa-
ton consistent with a finite set of input-output behaviours. This is a natural
learning problem whose complexity for non-deterministic finite automata was
studied by Gold [17]. For multiplicity word automata over a field F, we show
that the decision version of this problem is logspace equivalent to the problem of
deciding the truth of existential first-order sentences over the field (F,+, ·, 0, 1),
a long-standing open problem in case F = Q. Furthermore we show that the
same result holds for multiplicity tree automata of a fixed alphabet rank, but we
leave open the complexity of the problem for general multiplicity tree automata.

The full version of this paper is available as [21].

Further Related Work. Based on a generalisation of the Myhill-Nerode theo-
rem to trees, one obtains a procedure for minimising deterministic tree automata
that runs in time quadratic in the size of the input automaton [7,11]. There have
also been several works on minimising deterministic tree automata with weights
in a semi-field (that is, a semi-ring with multiplicative inverses). In particular,
Maletti [23] gives a polynomial-time algorithm in this setting, assuming unit
cost for arithmetic in the semi-field. In the non-deterministic case, Carme et
al. [10] define the subclass of residual finite non-deterministic tree automata.
They show that this class expresses the class of regular tree languages and ad-
mits a polynomial-space minimisation procedure.

2 Preliminaries

Let N and N0 denote the set of all positive and non-negative integers, respec-
tively. For every n ∈ N, we write [n] for the set {1, 2, . . . , n}.
Matrices and Vectors. Let n ∈ N. We write In for the identity matrix of
order n. For every i ∈ [n], we write ei for the ith n-dimensional coordinate row
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vector. For any matrix A, we write Ai for its ith row, Aj for its jth column,
and Ai,j for its (i, j)th entry. Given nonempty subsets I and J of the rows and
columns of A, respectively, we write AI,J for the submatrix (Ai,j)i∈I,j∈J of A.

Let A be an m×nmatrix with entries in a field F. The row space of A, written
RS(A), is the subspace of Fn spanned by the rows of A. The column space of A,
written CS (A), is the subspace of Fm spanned by the columns of A.

Given a set S ⊆ F
n, we use 〈S〉 to denote the vector subspace of Fn that is

spanned by S, where we often omit the braces when denoting S.

Kronecker Product. Let A be an m1 × n1 matrix and B an m2 × n2 matrix.
The Kronecker product of A by B, written as A⊗B, is an m1m2 ×n1n2 matrix
where (A⊗B)(i1−1)m2+i2,(j1−1)n2+j2 = Ai1,j1 ·Bi2,j2 for every i1 ∈ [m1], i2 ∈ [m2],
j1 ∈ [n1], j2 ∈ [n2].

The Kronecker product is bilinear, associative, and has the following mixed-
product property: For any matrices A, B, C, D such that products A · C and
B ·D are defined, it holds that (A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D).

For every k ∈ N0 we define the k-fold Kronecker power of a matrix A, written
as A⊗k, inductively by A⊗0 = I1 and A⊗k = A⊗(k−1) ⊗A for k ≥ 1.

Multiplicity Word Automata. Let Σ be a finite alphabet and ε be the empty
word. The set of all words over Σ is denoted by Σ∗, and the length of a word
w ∈ Σ∗ is denoted by |w|. For any n ∈ N0 we write Σn := {w ∈ Σ∗ : |w| = n},
Σ≤n :=

⋃n
l=0 Σ

l, and Σ<n := Σ≤n \Σn. Given two words x, y ∈ Σ∗, we denote
by xy the concatenation of x and y. Given two sets X,Y ⊆ Σ∗, we define
XY := {xy : x ∈ X, y ∈ Y }.

Let F be a field. A word series over Σ with coefficients in F is a mapping
f : Σ∗ → F. The Hankel matrix of f is the matrix H : Σ∗ × Σ∗ → F such that
Hx,y = f(xy) for all x, y ∈ Σ∗.

An F-multiplicity word automaton (F-MWA) is a 5-tuple A = (n,Σ, μ, α, γ)
which consists of the dimension n ∈ N0 representing the number of states,
a finite alphabet Σ, a function μ : Σ → F

n×n assigning a transition matrix
μ(σ) to each σ ∈ Σ, the initial weight vector α ∈ F

1×n, and the final weight
vector γ ∈ F

n×1. We extend the function μ from Σ to Σ∗ by μ(ε) := In and
μ(σ1 . . . σk) := μ(σ1) · . . . · μ(σk) for any σ1, . . . , σk ∈ Σ. It is easy to see that
μ(xy) = μ(x) · μ(y) for any x, y ∈ Σ∗. Automaton A recognises the word series
‖A‖ : Σ∗ → F where ‖A‖(w) = α · μ(w) · γ for every w ∈ Σ∗.

Finite Trees. A ranked alphabet is a tuple (Σ, rk) where Σ is a nonempty finite
set of symbols and rk : Σ → N0 is a function. Ranked alphabet (Σ, rk) is often
written Σ for short. For every k ∈ N0, we define the set of all k-ary symbols
Σk := rk−1({k}). We say that Σ has rank r if r = max{rk(σ) : σ ∈ Σ}.

The set of Σ-trees (trees for short), written TΣ , is the smallest set T satisfying
(i) Σ0 ⊆ T , and (ii) if σ ∈ Σk, t1, . . . , tk ∈ T then σ(t1, . . . , tk) ∈ T . The height
of a tree t, height(t), is defined by height(t) = 0 if t ∈ Σ0, and height(t) =
1 + maxi∈[k] height(ti) if t = σ(t1, . . . , tk) for some k ≥ 1. For any n ∈ N0 we

write T n
Σ := {t ∈ TΣ : height(t) = n}, T≤n

Σ :=
⋃n

l=0 T
l
Σ, and T<n

Σ := T≤n
Σ \ T n

Σ.
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Let � be a nullary symbol not contained in Σ. The set CΣ of Σ-contexts
(contexts for short) is the set of ({�}∪Σ)-trees in which � occurs exactly once.
Let n ∈ N0. We denote by Cn

Σ the set of all contexts c ∈ CΣ where the distance
between the root and the �-labelled node of c is equal to n. Moreover, we write
C≤n

Σ :=
⋃n

l=0 C
l
Σ and C<n

Σ := C≤n
Σ \ Cn

Σ . A subtree of c ∈ CΣ is a Σ-tree
consisting of a node in c and all of its descendants. Given a set S ⊆ TΣ , we
denote by Cn

Σ,S the set of all contexts c ∈ Cn
Σ where every subtree of c is an

element of S; we moreover write C≤n
Σ,S :=

⋃n
l=0 C

l
Σ,S and C<n

Σ,S := C≤n
Σ,S \ Cn

Σ,S .

Given c ∈ CΣ and t ∈ TΣ ∪̇CΣ , we write c[t] for the tree obtained by sub-
stituting t for � in c. Let F be a field. A tree series over Σ with coefficients in
F is a mapping f : TΣ → F. The Hankel matrix of f : TΣ → F is the matrix
H : TΣ × CΣ → F such that Ht,c = f(c[t]) for every t ∈ TΣ and c ∈ CΣ .

Multiplicity Tree Automata. Let F be a field. An F-multiplicity tree automa-
ton (F-MTA) is a 4-tupleA = (n,Σ, μ, γ) which consists of the dimension n ∈ N0

representing the number of states, a ranked alphabet Σ, the tree representation

μ = {μ(σ) : σ ∈ Σ} where for every symbol σ ∈ Σ, μ(σ) ∈ F
nrk(σ)×n represents

the transition matrix associated to σ, and the final weight vector γ ∈ F
n×1. We

speak of an MTA if the field F is clear from the context or irrelevant. The size
of A, written as |A|, is the total number of entries in all transition matrices and
the final weight vector of A, i.e., |A| := ∑

σ∈Σ nrk(σ)+1 + n.
We extend the tree representation μ from Σ to TΣ by μ(σ(t1, . . . , tk)) :=

(μ(t1)⊗ · · · ⊗ μ(tk)) · μ(σ) for every σ ∈ Σk and t1, . . . , tk ∈ TΣ. Automaton A
recognises the tree series ‖A‖ : TΣ → F where ‖A‖(t) = μ(t) · γ for every t ∈ TΣ .

We further extend μ from TΣ to CΣ by treating� as a unary symbol and defin-
ing μ(�) := In. This allows to define μ(c) ∈ F

n×n for every c = σ(t1, . . . , tk) ∈
CΣ inductively as μ(c) := (μ(t1)⊗ · · · ⊗ μ(tk)) · μ(σ). It is easy to see that for
every t ∈ TΣ ∪̇CΣ and c ∈ CΣ , μ(c[t]) = μ(t) · μ(c).

MWAs can be seen as a special case of MTAs: An MWA (n,Σ, μ, α, γ) “is” the
MTA (n,Σ ∪̇{σ0}, μ, γ) where the symbols in Σ are unary, symbol σ0 is nullary,
and μ(σ0) = α. That is, we view (Σ ∪̇{σ0})-trees as words over Σ by omitting
the leaf symbol σ0. Hence if a result holds for MTAs, it also holds for MWAs.
Some concepts, such as contexts, would formally need adaptation, however we
omit such adaptations as they are straightforward. Therefore, we freely view
MWAs as MTAs whenever convenient.

Two MTAs A1, A2 are said to be equivalent if ‖A1‖ = ‖A2‖. An MTA is said
to be minimal if no equivalent automaton has strictly smaller dimension. The
following result was first shown by Habrard and Oncina [18], although a closely
related result was given by Bozapalidis and Louscou-Bozapalidou [6].

Theorem 1 ([6,18]). Let Σ be a ranked alphabet, F be a field, and f : TΣ → F.
Let H be the Hankel matrix of f . Then, f is recognised by some MTA if and
only if H has finite rank over F. In case H has finite rank over F, the dimension
of a minimal MTA recognising f is rank(H) over F.

It follows from Theorem 1 that an F-MTA A of dimension n is minimal if and
only if the Hankel matrix of ‖A‖ has rank n over F.
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Remark 2. Theorem 1 specialised to word automata was proved by Carlyle and
Paz [9] and Fliess [16]. Their proofs show that if X,Y ⊆ Σ∗ are such that
rank(HX,Y ) = rank(H), then f is uniquely determined by HX,Y and HXΣ,Y .

The following closure properties for MTAs can be found in [1,3]; see also [21].

Proposition 3. Let A1 = (n1, Σ, μ1, γ1), A2 = (n2, Σ, μ2, γ2) be two F-MTAs.
One can construct an F-MTA A1 − A2, called the difference of A1 and A2,
such that ‖A1 − A2‖ = ‖A1‖ − ‖A2‖. Secondly, one can construct an F-MTA
A1 × A2 = (n1 · n2, Σ, μ, γ1 ⊗ γ2), called the product of A1 by A2, such that
μ(t) = μ1(t)⊗μ2(t) for every t ∈ TΣ, μ(c) = μ1(c)⊗μ2(c) for every c ∈ CΣ , and
‖A1 ×A2‖ = ‖A1‖ · ‖A2‖. When F = Q, both automata A1 −A2 and A1 ×A2

can be computed from A1 and A2 in logarithmic space.

3 Fundamentals of Minimisation

In this section we prepare the ground for minimisation algorithms. Let us fix a
field F for the rest of this section and assume that all automata are over F. We
also fix an MTA A = (n,Σ, μ, γ) for the rest of the section. We will construct
from A another MTA Ã which we show to be equivalent to A and minimal. A
crucial ingredient for this construction are special vector spaces induced by A,
called the forward space and backward space.

3.1 Forward and Backward Space

The forward space F of A is the (row) vector space F := 〈μ(t) : t ∈ TΣ〉 over F.
The backward space B of A is the (column) vector space B := 〈μ(c) · γ : c ∈ CΣ〉
over F. The following Propositions 4 and 5, proved in [21], provide fundamental
characterisations of F and B, respectively.
Proposition 4. The forward space F has the following properties:

(a) The space F is the smallest vector space V over F such that for all k ∈ N0,
v1, . . . , vk ∈ V , and σ ∈ Σk it holds that (v1 ⊗ · · · ⊗ vk) · μ(σ) ∈ V .

(b) The set of row vectors {μ(t) : t ∈ T<n
Σ } spans F .

Proposition 5. Let S be a set of Σ-trees such that {μ(t) : t ∈ S} spans F . The
backward space B has the following properties:

(a) The space B is the smallest vector space V over F such that γ ∈ V , and for
every v ∈ V and c ∈ C1

Σ,S it holds that μ(c) · v ∈ V .

(b) The set of column vectors {μ(c) · γ : c ∈ C<n
Σ,S} spans B.

3.2 A Minimal Automaton

Let F and B be matrices whose rows and columns span F and B, respectively.
That is, RS (F ) = F and CS (B) = B. We discuss later (Section 4.1) how to
efficiently compute F and B. The following lemma states that rank(F ·B) is the
dimension of a minimal automaton equivalent to A.
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Lemma 6. A minimal automaton equivalent to A has m := rank(F ·B) states.

Proof. Let H be the Hankel matrix of ‖A‖. Define the matrix F ∈ F
TΣ×[n] where

F t = μ(t) for every t ∈ TΣ . Define the matrix B ∈ F
[n]×CΣ where B

c
= μ(c) · γ

for every c ∈ CΣ . For every t ∈ TΣ and c ∈ CΣ we have by the definitions that

Ht,c = ‖A‖(c[t]) = μ(c[t]) · γ = μ(t) · μ(c) · γ = F t · Bc
,

hence H = F · B. Note that

RS (F ) = F = RS (F ) and CS (B) = B = CS (B) . (1)

We now have m = rank(H) = rank(F ·B) = rank(F ·B), where the first equality
is by Theorem 1, and the last equality is by (1) and a general linear-algebra
argument, see [21]. �

By definition, there exist m rows of F · B that span RS(F · B). The corre-
sponding m rows of F form a matrix F̃ ∈ F

m×n with RS (F̃ · B) = RS(F · B).
Define a multiplicity tree automaton Ã = (m,Σ, μ̃, γ̃) with γ̃ = F̃ · γ and

μ̃(σ) · F̃ ·B = F̃⊗k · μ(σ) · B for every σ ∈ Σk. (2)

We show that Ã minimises A:

Proposition 7. The MTA Ã is well defined and is a minimal automaton equiv-
alent to A.

We provide a proof in [21]. Due to the importance of Proposition 7, we sketch
its proof in the rest of this subsection. We do this by proving Proposition 7 for
multiplicity word automata. The main arguments are similar for the tree case.

Let A = (n,Σ, μ, α, γ) be an MWA. The forward and backward space can
then be written as F = 〈α · μ(w) : w ∈ Σ∗〉 and B = 〈μ(w) · γ : w ∈ Σ∗〉,
respectively. The MWA Ã can be written as Ã = (m,Σ, μ̃, α̃, γ̃) with γ̃ = F̃ · γ,

α̃ · F̃ ·B = α · B and (3)

μ̃(σ) · F̃ ·B = F̃ · μ(σ) ·B for every σ ∈ Σ. (4)

First, we show that Ã is a well-defined automaton:

Lemma 8. There exists a unique vector α̃ satisfying Equation (3). For every
symbol σ ∈ Σ, there exists a unique matrix μ̃(σ) satisfying Equation (4).

Proof. Since the rows of F̃ · B form a basis of RS(F · B), it suffices to prove
that α · B ∈ RS(F · B) and RS(F̃ · μ(σ) · B) ⊆ RS(F · B) for every σ ∈ Σ.
By a general linear-algebra argument (see [21]), it further suffices to prove that
α ∈ RS(F ) and RS(F̃ · μ(σ)) ⊆ RS(F ) for every σ ∈ Σ.



Minimisation of Multiplicity Tree Automata 303

We have α = α · μ(ε) ∈ F = RS (F ). Let i ∈ [m]. Since F̃i ∈ RS (F ) = F , it
follows from Proposition 4 (a) that (F̃ ·μ(σ))i = F̃i ·μ(σ) ∈ F for all σ ∈ Σ. �

We now show that the automaton Ã minimises A:

Lemma 9. Automaton Ã is a minimal MWA equivalent to A.

Proof. First, we show that α̃μ̃(w)F̃B = αμ(w)B for every w ∈ Σ∗. Our proof
is by induction on the length of w. For the base case, we have w = ε and by
definition of Ã it holds that α̃μ̃(ε)F̃B = α̃F̃B = αB = αμ(ε)B.

For the induction step, let l ∈ N0 and assume that α̃μ̃(w)F̃B = αμ(w)B holds
for every w ∈ Σl. Take any w ∈ Σl and σ ∈ Σ. For every b ∈ B we have by
Proposition 5 (a) that μ(σ)b ∈ B, and thus by the induction hypothesis

α̃μ̃(wσ)F̃ b = α̃μ̃(w)μ̃(σ)F̃ b
Eq. (4)
= α̃μ̃(w)F̃ μ(σ)b = αμ(w)μ(σ)b = αμ(wσ)b,

which completes the induction. Now for any w ∈ Σ∗, since γ ∈ B we have

‖Ã‖(w) = α̃ · μ̃(w) · γ̃ = α̃ · μ̃(w) · F̃ · γ = α · μ(w) · γ = ‖A‖(w).

Hence, automata Ã and A are equivalent. Minimality follows from Lemma 6. �

By a result of Bozapalidis and Alexandrakis [5, Proposition 4], all equivalent
minimal MTAs are equal up to a change of basis. Thus the MTA Ã is “canonical”
in the sense that any minimal MTA equivalent to A can be obtained from Ã via a
linear transformation: any m-dimensional MTA Ã′ = (m,Σ, μ̃′, γ̃′) is equivalent
toA if and only if there exists an invertible matrix U ∈ F

m×m such that γ̃′ = U ·γ̃
and μ̃′(σ) = U⊗rk(σ) · μ̃(σ) · U−1 for every σ ∈ Σ.

3.3 Spanning Sets for the Forward and Backward Spaces

The minimal automaton Ã from Section 3.2 is defined in terms of matrices
F and B whose rows and columns span the forward space F and the backward
space B, respectively. In fact, the central algorithmic challenge for minimisation
lies in the efficient computation of those matrices. In this section we prove a key
proposition, Proposition 10 below, suggesting a way to compute F and B, which
we exploit in Sections 4.2 and 5.

Propositions 4 and 5 and their proofs already suggest an efficient algorithm for
iteratively computing bases of F and B. We make this algorithm more explicit
and analyse its unit-cost complexity in Section 4.1. The drawback of the resulting
algorithm will be the use of “if-conditionals”: the algorithm branches according
to whether certain sets of vectors are linearly independent. Such conditionals
are ill-suited for efficient parallel algorithms and also for many-one reductions.
Thus it cannot be used for an NC-algorithm nor for a reduction to ACIT.

The following proposition exhibits polynomial-size sets of spanning vectors
for F and B, which, as we will see later, can be computed efficiently without
branching. The proposition is based on the product automaton A × A defined
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in Proposition 3. It defines a sequence (f(l))l∈N of row vectors and a sequence
(b(l))l∈N of square matrices. Part (a) states that the vector f(n) and the ma-
trix b(n) determine matrices F and B, whose rows and columns span F and B,
respectively. Part (b) gives a recursive characterization of the sequences (f(l))l∈N

and (b(l))l∈N . This allows for an efficient computation of f(n) and b(n).

Proposition 10. Let Σ have rank r. Let MTA A×A = (n2, Σ, μ′, γ⊗2) be the

product of A by A. For every l ∈ N, define f(l) :=
∑

t∈T<l
Σ

μ′(t) ∈ F
1×n2

and

b(l) :=
∑

c∈C<l

Σ,T<n
Σ

μ′(c) ∈ F
n2×n2

.

(a) Let F ∈ F
n×n be the matrix with Fi,j = f(n)·(ei⊗ej)

�. Let B ∈ F
n×n be the

matrix with Bi,j = (ei ⊗ ej) · b(n) · γ⊗2. Then, RS(F ) = F and CS (B) = B.
(b) We have f(1) =

∑
σ∈Σ0

μ′(σ), b(1) = In2 , and for all l ∈ N:

f(l + 1) =

r∑

k=0

f(l)⊗k
∑

σ∈Σk

μ′(σ)

b(l + 1) = In2 +

r∑

k=1

k∑

j=1

(
f(n)⊗(j−1) ⊗ b(l)⊗ f(n)⊗(k−j)

) ∑

σ∈Σk

μ′(σ)

Proof (sketch). We provide a proof in [21]. Here we only prove the statement

RS(F ) = F from part (a). Let F̂ ∈ F
T<n
Σ ×[n] be the matrix such that F̂t = μ(t)

for every t ∈ T<n
Σ . From Proposition 4 (b) it follows that RS(F̂ ) = F . By

a general linear-algebra argument (see [21]) we have RS(F̂�F̂ ) = RS (F̂ ) and

hence RS(F̂�F̂ ) = F . Thus in order to prove that RS (F ) = F , it suffices to

show that F̂�F̂ = F . Indeed, using the mixed-product property of the Kronecker
product, we have for all i, j ∈ [n]:

(F̂�F̂ )i,j = (F̂�)i · (F̂ )j =
∑

t∈T<n
Σ

μ(t)i · μ(t)j =
∑

t∈T<n
Σ

(μ(t) · e�i )⊗ (μ(t) · e�j )

=

⎛

⎝
∑

t∈T<n
Σ

(μ(t)⊗ μ(t))

⎞

⎠ (ei ⊗ ej)
� Prop. 3

=

⎛

⎝
∑

t∈T<n
Σ

μ′(t)

⎞

⎠ (ei ⊗ ej)
�

= f(n) · (ei ⊗ ej)
�. �

Loosely speaking, Proposition 10 says that the sum over a small subset of the
forward space of the product automaton encodes a spanning set of the whole
forward space of the original automaton, and similarly for the backward space.

4 Minimisation Algorithms

In this section we devise algorithms for minimising a given multiplicity automa-
ton: Section 4.1 considers general MTAs, while Section 4.2 considers MWAs. For
the sake of a complexity analysis in standard models, we fix the field F = Q.
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4.1 Minimisation of Multiplicity Tree Automata

In this section we describe an implementation of the algorithm implicit in Sec-
tion 3.2, and analyse the number of operations. We denote by r the rank of Σ.

Step 1 “Forward”. The first step is to compute a matrix F whose rows form
a basis of F . Seidl [26] outlines a saturation-based algorithm for that and proves
that the algorithm takes polynomial time assuming unit-cost arithmetic. Based
on Proposition 4 (a) we give in [21] an explicit version of Seidl’s algorithm. This
allows for the following lemma:

Lemma 11. There is an algorithm that, given a Q-MTA (n,Σ, μ, γ), computes
a matrix F whose rows span the forward space F . Each row of F equals μ(t) for
some tree t ∈ T<n

Σ . The algorithm executes O
(∑r

k=0 |Σk| · n2k+1
)
operations.

Step 2 “Backward”. The next step suggested in Section 3.2 is to compute a
matrix B whose columns form a basis of B. Each row of the matrix F computed
by the algorithm from Lemma 11 equals μ(t) for some tree t ∈ T<n

Σ . Let S denote
the set of those trees. By Proposition 5 (a) we have that B is the smallest vector
space V ⊆ Q

n such that γ ∈ V andM ·v ∈ V for allM ∈ M := {μ(c) : c ∈ C1
Σ,S}

and v ∈ V . Tzeng [27] shows, for an arbitrary column vector γ ∈ Q
n and an

arbitrary finite set of matrices M ⊆ Q
n×n, how to compute a basis of V in time

O(|M| · n4). This can be improved to O(|M| · n3) (see, e.g., [14]). This leads to
the following lemma (full proof in [21]):

Lemma 12. Given the matrix F from Lemma 11, a matrix B whose columns
span B can be computed with O

(∑r
k=1 |Σk| · (kn2k + knk+2)

)
operations.

Step 3 “Solve”. The final step suggested in Section 3.2 has two substeps. The
first substep is to compute a matrix F̃ ∈ Q

m×n, where m = rank(F · B) and
RS(F̃ ·B) = RS (F ·B). Matrix F̃ can be computed from F by going through the
rows of F one by one and including only those rows that are linearly independent
of the previous rows when multiplied by B. This can be done in time O(n3), e.g.,
by transforming matrix F ·B into a triangular form using Gaussian elimination.

The second substep is to compute the minimal MTA Ã. The vector γ̃ = F̃ · γ
is easy to compute. Solving Equation (2) for each μ̃(σ) can be done via Gaus-
sian elimination in time O(n3), however, the bottleneck is the computation
of F̃⊗k · μ(σ) for every σ ∈ Σk, which takes O

(∑r
k=0 |Σk| · nk · nk · n) =

O
(∑r

k=0 |Σk| · n2k+1
)
operations. Combining the results of this section, we get:

Theorem 13. There is an algorithm that transforms a given Q-MTA A into an
equivalent minimal Q-MTA. Assuming unit-cost arithmetic, the algorithm takes
time O

(∑r
k=0 |Σk| · (n2k+1 + kn2k + knk+2)

)
, which is O

(|A|2 · r).
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4.2 Minimisation of Multiplicity Word Automata in NC

In this section we consider the problem of minimising a given Q-MWA A =
(n,Σ, μ, α, γ). We prove the following result:

Theorem 14. There is an NC algorithm that transforms a given Q-MWA into
an equivalent minimal Q-MWA. In particular, given a Q-MWA and a number
d ∈ N0, one can decide in NC whether there exists an equivalent Q-MWA of
dimension at most d.

Theorem 14 improves on two results of [22]. First, [22, Theorem 4.2] states that
deciding whether aQ-MWA is minimal is inNC. Second, [22, Theorem 4.5] states
the same thing as our Theorem 14, but with NC replaced with randomised NC.

Proof (of Theorem 14). The algorithm relies on Propositions 7 and 10. Let A =
(n,Σ, μ, α, γ) be the given Q-MWA. In the notation of Proposition 10, we have
for all l ∈ N that b(l + 1) = In2 + b(l) · ∑σ∈Σ μ′(σ). From here one can easily

show, using an induction on l, that b(n) =
∑n−1

k=0

(∑
σ∈Σ μ′(σ)

)k
. It follows for

the matrix B ∈ Q
n×n from Proposition 10 that for all i, j ∈ [n]:

Bi,j = (ei ⊗ ej) ·
(

n−1∑

k=0

( ∑

σ∈Σ

μ′(σ)
)k

)

· γ⊗2

Similarly, we have for the matrix F ∈ Q
n×n from Proposition 10 and all i, j ∈ [n]:

Fi,j = α⊗2 ·
(

n−1∑

k=0

( ∑

σ∈Σ

μ′(σ)
)k

)

· (ei ⊗ ej)
�.

The matrices F,B can be computed in NC since sums and matrix powers can
be computed in NC [13]. Next we show how to compute in NC the matrix F̃ ,
which is needed to compute the minimal Q-MWA Ã from Section 3.2. Our NC
algorithm includes the ith row of F (i.e., Fi) in F̃ if and only if rank(F[i],[n] ·B) >
rank(F[i−1],[n] · B). This can be done in NC since the rank of a matrix can be

computed in NC [19]. It remains to compute γ̃ := F̃ γ and solve Equations (3)
and (4) for α̃ and μ̃(σ), respectively. Both are easily done in NC. �

5 Decision Problem

In this section we characterise the complexity of the following decision problem:
Given a Q-MTA and a number d ∈ N0, the minimisation problem asks whether
there is an equivalent Q-MTA of dimension at most d. We show, in Theorem 15
below, that this problem is interreducible with the ACIT problem.

The latter problem can be defined as follows. An arithmetic circuit is a finite
directed acyclic vertex-labelled multigraph whose vertices, called gates, have
indegree 0 or 2. Vertices of indegree 0, called input gates, are labelled with a non-
negative integer or a variable from the set {xi : i ∈ N}. Vertices of indegree 2 are
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labelled with one of the arithmetic operations +, ×, or −. One can associate, in
a straightforward inductive way, each gate with the polynomial it computes. The
Arithmetic Circuit Identity Testing (ACIT) problem asks, given an arithmetic
circuit and a gate, whether the polynomial computed by the gate is equal to the
zero polynomial. We show:

Theorem 15. Minimisation is logspace interreducible with ACIT.

We consider the lower and the upper bound separately.

Lower Bound. Given a Q-MTA A, the zeroness problem asks whether
‖A‖(t) = 0 for all trees t. Observe that ‖A‖(t) = 0 for all trees t if and only
if there exists an equivalent automaton of dimension 0. Therefore, zeroness is a
special case of minimisation. We prove:

Proposition 16. There is a logspace reduction from ACIT to zeroness.

This implies ACIT-hardness of minimisation.

Proof (of Proposition 16). It is shown in [24] that the equivalence problem for Q-
MTAs is logspace equivalent to ACIT. This problems asks, given two Q-MTAs
A1 and A2, whether ‖A1‖(t) = ‖A2‖(t) holds for all trees t. By Proposition 3
one can reduce this problem to zeroness in logarithmic space. �

Upper Bound. We prove:

Proposition 17. There is a logspace reduction from minimisation to ACIT.

Proof. Let A = (n,Σ, μ, γ) be the Q-MTA, and d ∈ N0 the given number. In our
reduction to ACIT we allow input gates with rational labels as well as division
gates. Rational numbers and division gates can be eliminated in a standard
way by constructing separate gates for the numerators and denominators of the
rational numbers computed by the original gates.

By Lemma 6, the dimension of a minimal automaton equivalent to A is m :=
rank(F · B) where F,B are matrices with RS (F ) = F and CS (B) = B. Thus
we have m ≤ d if and only if rank(F · B) ≤ d. The recursive characterisation
of F and B from Proposition 10 allows us to compute in logarithmic space an
arithmetic circuit for F ·B. Thus, the result follows from Lemma 18 below. �

The following lemma follows easily from the well-known NC procedure for
computing matrix rank [15].

Lemma 18. Let M ∈ Q
m×n. Let d ∈ N0. The problem of deciding whether

rank(M) ≤ d is logspace reducible to ACIT.

Proof. We have rank(M) ≤ d if and only if dim ker(M) ≥ n− d. As ker(M) =
ker(MTM), this is equivalent to dim ker (MTM) ≥ n− d. Now MTM is Hermi-
tian, so dim ker(MTM) ≥ n− d if and only if the n− d lowest-order coefficients
of the characteristic polynomial of MTM are all zero [19]. But these coefficients
are representable by arithmetic circuits with inputs from M (see [15]). �
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We emphasise that our reduction to ACIT is a many-one reduction, thanks
to Proposition 10: our reduction computes only a single instance of ACIT; there
are no if-conditionals.

6 Minimal Consistent Multiplicity Automaton

Fix a field F of characteristic 0. A natural computational problem is to compute
an F-MWA A of minimal dimension that is consistent with a given finite set of
F-weighted words S = {(w1, r1), . . . , (wm, rm)}, where wi ∈ Σ∗ and ri ∈ F for
every i ∈ [m]. Here consistency means that ‖A‖(wi) = ri for every i ∈ [m].

The above problem can be studied in the Blum-Shub-Smale model [2] of com-
putation over a field F. Since we wish to stay within the conventional Turing
model, we consider instead a decision version of the problem, which we call
minimal consistency problem, in which the output weights ri are all rational
numbers and we ask whether there exists an F-MWA consistent with the set of
input-output behaviours S that has dimension at most some non-negative inte-
ger bound n. We show that the minimal consistency problem is logspace equiv-
alent to the problem of deciding the truth of first-order sentences over the field
(F,+, ·, 0, 1). In case F = R the latter problem is in PSPACE [8], whereas over Q
decidability is open. This should be compared with the result that the problem
of finding the smallest deterministic automaton consistent with a set of accepted
or rejected strings is NP-complete [17].

The reduction of the minimal consistency problem to the decision problem
for existential sentences is immediate. The idea is to represent an F-MWA A =
(n,Σ, μ, α, γ) “symbolically” by introducing separate variables for each entry of
the initial weight vector α, final weight vector γ, and each transition matrix μ(σ),
σ ∈ Σ. Then, consistency of automaton A with a given finite sample S ⊆ Σ∗×Q

can directly be written as an existential sentence.
Conversely, we reduce the decision problem for sentences of the form

∃x1 . . . ∃xn

m∧

i=1

fi(x1, . . . , xn) = 0 , (5)

where fi(x1, . . . , xn) =
∑li

j=1 ci,jx
ki,j,1

1 · · ·xki,j,n
n is a polynomial with rational

coefficients, to the minimal consistency problem. It suffices to consider conjunc-
tions of positive atoms in the matrix of (5) since f = 0 ∨ g = 0 is equivalent to
∃x (x2 − x = 0 ∧ xf = 0 ∧ (1 − x)g = 0) and f �= 0 is equivalent to ∃x (fx = 1)
for polynomials f and g.

Define an alphabet Σ = {s, t}∪{#i, c̄i,j , x̄k : i ∈ [m], j ∈ [li], k ∈ [n]}, includ-
ing symbols c̄i,j and x̄k for each coefficient ci,j and variable xk respectively. Over
alphabet Σ we consider the 3-dimensional F-MWA A, depicted in Figure 1 (b).
The transitions in this automaton are annotated by label-weight pairs in Σ × F

or simply by labels from Σ, in which case the weight is assumed to be 1. Recall
that the weights ci,j are coefficients of the polynomials fi. For each k ∈ [n], the
weight ak is a fixed but arbitrary element of F.
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st t ε

ε 1 0 0
s 0 1 0
st 0 0 1

#i 1 1 0
s#i 0 0 1
st#i 0 0 1

c̄i,j 1 0 0
sc̄i,j 0 ci,j 0
stc̄i,j 0 0 1

x̄k 1 0 0
sx̄k 0 ak 0
stx̄k 0 0 1

t 0 0 0
stt 0 0 0
ss 0 0 0
sts 0 0 0

1

#i

c̄i,j
x̄k

#i

s

(c̄i,j ,ci,j)
(x̄k,ak)

#i

t

#i

c̄i,j
x̄k

(a) (b)

Fig. 1. The left figure (a) shows a Hankel-matrix fragment H̃ , where i ∈ [m], j ∈ [li],
k ∈ [n]. The right figure (b) shows a graph representation of the automaton A.

Define X,Y ⊆ Σ∗ by X = {ε, s, st} and Y = {st, t, ε}, and consider the
fragment H̃ = HX∪XΣ,Y , shown in Figure 1 (a), of the Hankel matrix H of A.

Since rank(H̃) = 3 = rank(H), from Remark 2 it follows that any 3-dimensional
F-MWA A′ that is consistent with H̃ is equivalent to A.

Now for every i ∈ [m], we encode polynomial fi by the word

wi := #ic̄i,1x̄
ki,1,1

1 . . . x̄ki,1,n
n . . .#ic̄i,li x̄

ki,li,1

1 . . . x̄
ki,li,n
n #i

over alphabet Σ. Note that wi comprises li ‘blocks’ of symbols, corresponding
to the li monomials in fi, with each block enclosed by two #i symbols. From
the definition of wi it follows that ‖A‖(wi) = fi(a1, . . . , an).

Define the set S ⊆ Σ∗×Q of weighted words as S := S1 ∪S2, where S1 is the
set of all pairs (uv, H̃u,v) with u ∈ X ∪XΣ, v ∈ Y , and uv �∈ {sx̄kt : k ∈ [n]},
and S2 := {(wi, 0) : i ∈ [m]}.

Any 3-dimensional F-MWA A′ consistent with S1 is equivalent to an automa-
ton of the form A for some a1, . . . , an ∈ F. If A′ is moreover consistent with
S2, then fi(a1, . . . , an) = 0 for every i ∈ [m]. From this observation we have the
following proposition (proof in [21]).

Proposition 19. The sample S is consistent with a 3-dimensional F-MWA if
and only if the sentence (5) is true in F.
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From Proposition 19 we derive the main result of this section:

Theorem 20. The minimal consistency problem for F-MWAs is logspace equiv-
alent to the decision problem for existential first-order sentences over F.

Theorem 20 also holds for F-MTAs of a fixed alphabet rank, because the min-
imal consistency problem can be reduced to the decision problem for existential
first-order sentences over F in similar manner to the case for words. Here, fixing
the alphabet rank keeps the reduction in polynomial time.

7 Conclusions and Future Work

We have looked at the problem of minimising a given multiplicity tree automaton
from several angles. Specifically, we have analysed the complexity of computing a
minimal automaton in the unit-cost model, of the minimisation decision problem,
and of the minimal consistency problem. One of the key technical contributions
of our work is Proposition 10, which, based on the product of a given automaton
by itself, provides small spanning sets for forward space F and backward space B.
This technology also led us to an NC algorithm for minimising multiplicity word
automata, thus improving the best previous algorithms (polynomial time and
randomised NC).

It is an open question whether the complexity of the minimal consistency
problem for F-MTAs is higher if the alphabet rank is not fixed. We also plan
to investigate probabilistic tree automata, a class that lies strictly between
deterministic and multiplicity tree automata.
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Robust Multidimensional Mean-Payoff Games
are Undecidable

Yaron Velner�

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract. Mean-payoff games play a central role in quantitative synthesis and
verification. In a single-dimensional game a weight is assigned to every transi-
tion and the objective of the protagonist is to assure a non-negative limit-average
weight. In the multidimensional setting, a weight vector is assigned to every
transition and the objective of the protagonist is to satisfy a boolean condition
over the limit-average weight of each dimension, e.g., LimAvg(x1) ≤ 0 ∨
LimAvg(x2) ≥ 0 ∧ LimAvg(x3) ≥ 0. We recently proved that when one of
the players is restricted to finite-memory strategies then the decidability of deter-
mining the winner is inter-reducible with Hilbert’s Tenth problem over rationals
(a fundamental long-standing open problem). In this work we consider arbitrary
(infinite-memory) strategies for both players and show that the problem is unde-
cidable.

1 Introduction

Two-player games on graphs provide the mathematical foundation for the study of reac-
tive systems. In these games, the set of vertices is partitioned into player-1 and player-2
vertices; initially, a pebble is placed on an initial vertex, and in every round, the player
who owns the vertex that the pebble resides in, advances the pebble to an adjacent
vertex. This process is repeated forever and give rise to a play that induces an infinite
sequence of edges. In the quantitative framework, an objective assigns a value to every
play, and the goal of player 1 is to assure a value of at least ν to the objective. In order
to have robust quantitative specifications, it is necessary to investigate games on graphs
with multiple (and possibly conflicting) objectives. Typically, multiple objectives are
modeled by multidimensional weight functions (e.g., [4,5,7,1]), and the outcome of a
play is a vector of values (r1, r2, . . . , rk). A robust specification is a boolean formula
over the atoms ri ∼ νi, for ∼∈ {≤, <,≥, >}, i ∈ {1, . . . , k} and νi ∈ Q. For example,
ϕ = ((r1 ≥ 9∨r2 ≤ 9)∧r3 < 0∧r4 > 9). The most well studied quantitative metric is
the mean-payoff objective, which assigns the limit-average (long-run average) weight
to an infinite sequence of weights (and if the limit does not exist, then we consider the
limit infimum of the sequence). In this setting, ri is the limit-average of dimension i
of the weight function, and the goal of player 1 is to satisfy the boolean condition. In
this work we prove that determining whether player 1 can satisfy such a condition is
undecidable.
� The author was funded by the European Research Council under the European Unions Seventh

Framework Program (FP7/20072013) / ERC grant agreement no. [321174-VSSC].
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Related Work. The model checking problem (one-player game) for such objectives
(with some extensions) was considered in [1,6,3,12,13] and decidability was estab-
lished. Two-player games for restricted subclasses that contain only conjunction of
atoms were studied in [15,7,2,9] and tight complexity bounds were obtained (and in
particular, the problem was proved to be decidable). In [16] a subclass that contains dis-
junction and conjunction of atoms of the form ri ∼ νi for ∼∈ {≥, >} was studied and
decidability was shown. In [14] we considered a similar objective but restricted player-
1 to play only with finite-memory strategies. We showed that the problem is provably
hard to solve and its decidability is inter-reducible with Hilbert’s tenth problem over
rationals — a fundamental long standing open problem. In this work we consider for
the first time games with robust quantitative class of specifications that is closed under
boolean union, intersection and complement with arbitrary (infinite-memory) strategies.

Undecidability for (single-dimensional) mean-payoff games was proved for par-
tial information mean-payoff games [10] and for mean-payoff games that are played
over infinite-state pushdown automata [8]. These works did not exploit the different
properties of the ≥ and ≤ operators (which correspond to the different properties of
limit-infimum-average and limit-supremum-average). To the best of our knowledge, the
undecidability proof in the paper is the first to exploit these properties. (As we men-
tioned before, when we consider only the ≥ and > operators, the problem is decidable.)

Robust multidimensional mean-payoff games were independently suggested as a
subject to future research by Alur et al [1], by us [16], and by Doyen [11].

Structure of this Paper. In the next section we give the formal definitions for robust
multidimensional mean-payoff games. We prove undecidability by a reduction from
the halting problem of a two-counter machine. For this purpose we first present a re-
duction from the halting problem of a one-counter machine and then we extend it to
two-counter machine. In Section 3 we present the reduction and give an intuition about
its correctness. In Section 4 we give a formal proof for the correctness of the reduction
and extend the reduction to two-counter machine. Due to lack of space, some of the
proof are omitted. Full proofs are available in the technical report [17].

2 Robust Multidimensional Mean-Payoff Games

Game Graphs. A game graph G = ((V,E), (V1, V2)) consists of a finite directed
graph (V,E) with a set of vertices V a set of edges E, and a partition (V1, V2) of V into
two sets. The vertices in V1 are player-1 vertices, where player 1 chooses the outgoing
edges, and the vertices in V2 are player 2 vertices, where player 2 (the adversary to
player 1) chooses the outgoing edges. We assume that every vertex has at least one
out-going edge.

Plays. A game is played by two players: player 1 and player 2, who form an infinite
path in the game graph by moving a token along edges. They start by placing the token
on an initial vertex, and then they take moves indefinitely in the following way. If the
token is on a vertex in V1, then player 1 moves the token along one of the edges going
out of the vertex. If the token is on a vertex in V2, then player 2 does likewise. The
result is an infinite path in the game graph, called plays. Formally, a play is an infinite
sequence of vertices such that (vk, vk+1) ∈ E for all k ≥ 0.

Strategies. A strategy for a player is a rule that specifies how to extend plays. Formally,
a strategy τ for player 1 is a function τ : V ∗ · V1 → V that, given a finite sequence
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of vertices (representing the history of the play so far) which ends in a player 1 ver-
tex, chooses the next vertex. The strategy must choose only available successors. The
strategies for player 2 are defined analogously. A winning objective is a subset of V ω

and a strategy is a winning strategy if it assures that every formed play is in the winning
objective.

Multidimensional Mean-Payoff Objectives. For multidimensional mean-payoff ob-
jectives we will consider game graphs along with a weight function w : E → Q

k that
maps each edge to a vector of rational weights. For a finite path π, we denote by w(π)

the sum of the weight vectors of the edges in π and avg(π) = w(π)
|π| , where |π| is the

length of π, denote the average vector of the weights. We denote by avg i(π) the projec-
tion of avg(π) to the i-th dimension. For an infinite path π, let πi denote the finite prefix
of length i of π; and we define LimInfAvg i(π) = lim infi→∞ avg(ρi) and analogously
LimSupAvgi(π) with lim inf replaced by lim sup. For an infinite path π, we denote by
LimInfAvg(π) = (LimInfAvg1(π), . . . ,LimInfAvgk(π)) (resp. LimSupAvg(π) =
(LimSupAvg1(π), . . . ,LimSupAvgk(π))) the limit-inf (resp. limit-sup) vector of the
averages (long-run average or mean-payoff objectives). A multidimensional mean-
payoff condition is a boolean formula over the atoms LimInfAvg i ∼ νi for ∼∈ {≥,
>,≤, >}. For example, the formula LimInfAvg1 > 8 ∨ LimInfAvg2 ≤ −10 ∧
LimInfAvg < 9 is a possible condition and a path π satisfies the formula if
LimInfAvg1(π) > 8 ∨ LimInfAvg2(π) ≤ −10 ∧ LimInfAvg(π) < 9. We note that
we may always assume that the boolean formula is positive (i.e., without negation), as,
for example, we can always replace ¬(r ≥ ν) with r < ν.

For a given multidimensional weighted graph and a multidimensional mean-payoff
condition, we say that player 1 is the winner of the game if he has a winning strategy
that satisfy the condition against any player-2 strategy.

For an infinite sequence or reals x1, x2, x3, . . . we have LimInfAvg(x1, x2, . . . ) =
−LimSupAvg(−x1,−x2, . . . ). Hence, an equivalent formulation for multidimensional
mean-payoff condition is a positive boolean formula over the atoms LimInfAvg i ∼ νi
and LimSupAvg i ∼ νi for ∼∈ {≥, >}. For positive formulas in which only the
LimInfAvg i ∼ νi occur, determining the winner is decidable by [16]. In the sequel
we abbreviate LimInfAvg i with i and LimSupAvg i with i. In this work we prove un-
decidability for the general case and for this purpose it is enough to consider only the ≥
operator and thresholds 0. Hence, in the sequel, whenever it is clear that the threshold
is 0, we abbreviate the condition i ≥ 0 with i and i ≥ 0 with i. For example, i ∨ j ∧ �
stands for LimInfAvg i ≥ 0 ∨ LimSupAvgj ≥ 0 ∧ LimInfAvg� ≥ 0. By further abuse
of notation we abbreviate the current total weight in dimension i by i (and make sure
that the meaning of i is always clear from the context) and the absolute value of the
total weight by |i|.

3 Reduction from the Halting Problem and Informal Proof of
Correctness

In this chapter we prove the undecidability of determining the winner in games over
general multidimensional mean-payoff condition by a reduction from the halting prob-
lem of two-counter machine. For this purpose we will first show a reduction from the
halting problem of a one-counter machine to multidimensional mean-payoff games, and
the reduction from two-counter machines relies on similar techniques. We first give a
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formal definition for a one-counter machine, and in order to simplify the proofs we give
a non-standard definition that is tailored for our needs. A two-sided one-counter ma-
chine M consists of two finite set of control states, namely Q (left states) and P (right
states), an initial state q0 ∈ Q, a final state qf ∈ Q, a finite set of left to right instruc-
tions δ�→r and a finite set of right to left instructions δr→�. An instruction determines
the next state and manipulates the value of the counter c (and initially the value of c is
0). A left to right instruction is of the form of either:

– q : if c = 0 goto p else c := c− 1 goto p′, for q ∈ Q and p, p′ ∈ P ; or
– q : goto p, for q ∈ Q and p ∈ P (the value of c does not change).

A right to left instruction is of the form of either
– p : c := c+ 1 goto q, for p ∈ P and q ∈ Q ; or
– p : goto q, for a state p ∈ P and a state q ∈ Q (the value of c does not change).

We observe that in our model, decrement operations are allowed only in left to right in-
structions and increment operations are allowed only in right to left instructions. How-
ever, since the model allows state transitions that do not change the value of the counter
(nop transitions), it is trivial to simulate a standard one-counter machine by a two-sided
counter machine.

For the reduction we use the states of the game graph to simulate the states of the
counter machine and we use two dimensions to simulate the value of the one counter.
In the most high level view our reduction consists of three main gadgets, namely, reset,
sim and blame (see Figure 1), and a state qf that represents the final state of the counter
machine. Intuitively, in the sim gadget player 1 simulates the counter machine, and if
the final state qf is reached then player 1 loses. If player 2 detects that player 1 does
not simulate the machine correctly, then the play goes to the blame gadget. From the
blame gadget the play will eventually arrive to the reset gadget. This gadget assigns
proper values for all the dimensions of the game that are suited for an honest simulation
in the sim gadget. When a play leaves the reset gadget, it goes to the first state of the
simulation gadget which represent the first state of the counter machine.

reset

sim

blame

qf

x ← −1

Fig. 1. Overview

We now describe the construction with more details. We first present the winning ob-
jective and then we describe each of the three gadgets. For a two-sided counter machine
M we construct a game graph with 8 dimensions denoted by �, r, gs, c+, c−, gc, x and
y and the objective [(� ∧ r ∨ gs) ∧ (c+ ∧ c− ∨ gc) ∧ x ∧ y.

The Sim Gadget. In the sim gadget player 1 suppose to simulate the run of M , and if
the simulation is not honest, then player 2 activates a blame gadget. The simulation of
the states is straight forward (since the game graph has states), and the difficulty is to
simulate the counter value, more specifically, to simulate the zero testing of the counter.
For this purpose we use the dimensions r, �, gs and c+, c−, gc.
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We first describe the role of r, � and gs. The reset gadget makes sure that in every
invocation of the sim gadget, we have avg(gs) ≈ −1, avg(r) ≈ 1 and avg(�) ≈ 0.
(The reader should read a ≈ b as ”the value of a is very close to the value of b”. Precise
definitions are given in Section 4.) Then, during the simulation the value of gs is always
negative, and the blame gadget makes sure that player 1 must play in such a way that
whenever the machine M is in a right state, r ≈ |gs| and � ≈ 0, and whenever the
machine is in a left state, then r ≈ 0 and � ≈ |gs|. Intuitively, the role of � and r is to
make sure that every left to right or right to left transition is simulated by a significant
number of rounds in the sim gadget, and gs is a guard dimension that makes sure that
the above assumptions on r and � are satisfied.

We now describe the role of c+, c− and gc. In the beginning of each simulation
(i.e., every time that the sim gadget is invoked), we have avg(c+) ≈ avg(c−) ≈
1 and avg(gc) ≈ −1. During the entire simulation we have avg(gc) ≈ −1 and if c
is the value of the counter in the current simulation (i.e., since the sim gadget was in-
voked), then c+ ≈ |gc|+ |gs|c and c− ≈ |gc| − |gs|c. Intuitively, whenever c > 0, then
c− 
 |gc|, and if c < 0 (this can happen only if player 1 is dishonest), then c+ 
 |gc|
(the reader should read a 
 b as ”a is much smaller than b”).

We now describe the gadgets that simulate the operations of inc, dec and nop. The
gadgets are illustrated in Figures 2-5 and the following conventions are used: (i) Player 1
owns the � vertices, player 2 owns the � vertices, and the � vertex stands for a gadget;
(ii) A transition is labeled either with a ← b symbol or with a text (e.g., blame). For a
transition e the label a ← b stands for wa(e) = b. Whenever the weight of a dimension
is not explicitly presented, then the weight is 0. We use text labels only to give intuition
on the role of the transition. In such transitions the weights of all dimensions are 0.

In order to satisfy the invariants, in the first state of every inc, dec or nop gadget, in
a left to right transition, player 1 always moves to the state below (namely, to � 
 0?)
until � ≈ 0 and r ≈ |gs|, and in a right to left transition he always moves to the state
below (namely, to r 
 0?) loops until r ≈ 0 and � ≈ |gs|. If in a left to right gadget
the loop is followed too many times, then � is decremented too many times and player 2
has an incentive invokes the � 
 0 gadget. If the loop was not followed enough times,
then r was not incremented enough times and player 2 invokes the r 
 |gs| blame
gadget. Hence, the blame gadgets allows player 2 to blame player 1 for violating the
assumptions about the values of �, r and gs.

nop

r � 0?

r ← −1, � ← 1
c+ ← 1, c− ← 1
gc ← −1,

� ≈ |gs|?

blame � � |gs|

blame r � 0

blame

ok

Fig. 2. nop r → � gadget

nop

� � 0?

r ← 1, � ← −1
c+ ← 1, c− ← 1
gc ← −1,

r ≈ |gs|?

blame r � |gs|

blame � � 0

blame

ok

Fig. 3. nop � → r gadget

A transition q : if c = 0 goto p else c := c− 1 goto p′, for q ∈ Q and p, p′ ∈ P is
described in Figure 6.
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dec

� � 0?

r ← 1, � ← −1
c+ ← 0, c− ← 2
gc ← −1,

r ≈ |gs|?

blame r � |gs|

blame � � 0

blame

ok

Fig. 4. dec � → r gadget

inc

r � 0?

r ← −1, � ← 1
c+ ← 2, c− ← 0
gc ← −1,

� ≈ |gs|?

blame � � |gs|

blame r � 0

blame

ok

Fig. 5. inc r → � gadget

p

p′

q

c > 0?blame c > 0

blame

declare c = 0
nop � → r

ok

dec � → rdeclare c > 0 c < 0?blame c < 0
ok

blame

Fig. 6. q : if c = 0 then goto p else c := c− 1 goto p′

The Blame Gadgets. The role of the blame gadgets is to make sure that the assump-
tions on �, r and gs are kept in the simulation and to make sure that the zero testing is
honestly simulated. There are six blame gadgets. Four for the honest simulation of r, �
and gs, and two for the zero testing (one for c > 0 and one for c < 0). The gadgets
are described in Figures 7-12. In the blame r 
 0 and blame � 
 0 gadgets the play
immediately continues to the reset gadget. The concept of the other four gadgets is sim-
ilar and hence we describe only the blame r 
 |gs| gadget. We note that in an honest
simulation we have avg(r), avg(�), avg(c+), avg(c−) � 0 in every round. Hence, if
player 1 honestly simulates M and M does not halt, then the winning condition is satis-
fied. The r 
 |gs| blame gadget is described in Figure 12. If the gadget is invoked and
r 
 |gs|, then player 2 can loop on the first state until r 
 0 and still have gs 
 0. If
r ≈ gs, then whenever we have r 
 0 we will also have gs � 0, and thus the winning
objective is still satisfied. We note that player 2 should eventually exit the blame gadget,
since otherwise he will lose the game.

The Reset Gadget. The role of the reset gadget is to assign the following values for
the dimensions: avg(�) ≈ 0, avg(r) ≈ 1, avg(gs) ≈ −1, avg(c−) ≈ avg(c+) ≈
1, avg(gc) ≈ −1. The gadget is described in Figure 13. We construct the gadget is such
way that each of the players can enforce the above values (player 2 by looping enough
times on the first state, player 1 by looping enough time on his two states). But the
construction only gives this option to the players and it does not punish a player if he
acts differently. However, the game graph is constructed in such way that if:

– M does not halt and in the reset gadget, at least one of the players, correctly resets
the values, then player 1 wins.
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c− ← −1, gc ← 1, gs ← −1

reset

Fig. 7. blame c > 0 gadget

c+ ← −1, gc ← 1, gs ← −1

reset

Fig. 8. blame c < 0 gadget

reset

Fig. 9. blame � � 0 gadget

reset

Fig. 10. blame r � 0 gadget

� ← −1, gs ← 1, gc ← −1

reset

Fig. 11. blame � � |gs| gadget

r ← −1, gs ← 1, gc ← −1

reset

Fig. 12. blame r � |gs| gadget

– M halts and in the reset gadget (at least one of the players) correctly reset the
values, then player 2 wins.

Hence, if M does halts, then player 2 winning strategy will make sure that the reset
assigns correct values, and if M does not halt, then we can rely on player 1 to reset the
values. We note that player 2 will not stay forever in his state (otherwise he will lose).
In order to make sure that player 1 will not stay forever in one of his states we introduce
two liveness dimensions, namely x and y. In the simulation and blame gadgets they get
0 values. But if player 1 remains forever in one of his two states in the reset gadget,
then either x or y will have negative lim-sup value and player 1 will lose. Hence, in the
reset gadget, player 1 should not only reset the values, but also assign a positive value
for y and then a positive value for x.

r ← 1, � ← 0
c+ ← 1, c− ← 1
gs ← −1, gc ← −1

r ← 1, � ← 0
c+ ← 1, c− ← 1
gs ← −1, gc ← −1
x ← −1, y ← 1

r ← 1, � ← 0
c+ ← 1, c− ← 1
gs ← −1, gc ← −1
x ← 1, y ← −1

sim

Fig. 13. Reset gadget

Correctness of the Reduction. We claim that player 1 has a winning strategy if and
only if the machine M does not halt. We first summarize the (informal) invariants that
we described in the construction of the reduction. Then, we prove that if M halts, then
player 2 has a winning strategy, and then we prove the converse direction (the proofs
are informal, and formal proofs are given in Section 4).

Summary of Invariants. We first describe the reset invariants that hold each time the
play leaves the reset gadget (or equivalently, each time the sim gadget is invoked). The re-
set invariants for the side dimensions are: avg(gs) ≈ −1, avg(r) ≈ 1, avg(�) ≈ 0, and
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for the counter dimensions the invariants are: avg(c+) ≈ 1, avg(c−) ≈ 1, avg(gc) ≈
−1. We now describe the sim invariants that hold whenever the play is in the sim gad-
get (in all rounds that are played in the sim gadget and also before the first round that is
played in the sim gadget). The sim invariants for the side dimensions are: When the play
is in a right state (i.e., in a state of Q) then r ≈ |gs| and � ≈ 0. When the play is in a left
state (i.e., in a state of P ) then � ≈ |gs| and r ≈ 0.

The next claim follows from the sim invariants: whenever the play is in a state from
Q or P (i.e., after the machine step was simulated), then c+ ≈ |gc| + |gs|c and c− ≈
|gc|− |gs|c, where c is the current value of the counter according to the simulation steps
(i.e., c is the value of the number of times the increment gadget was invoked minus
the number of times that the decrement gadget was invoked from the beginning of the
current invocation of the sim gadget). Informally, the proof of the claim follows by
the fact that according to the sim invariants every step of the machine is simulated by
a sub-play of length |gs| and by the fact that in the increment gadget the dimension
c+ is incremented by 2 while |gc| is incremented by 1 (and similar arguments can be
applied for the decrement gadget and for dimension c−). We formally prove the claim
in Section 4.

Another simple consequence of the sim invariants is that r+ � ≈ |gs| in every round
in the sim gadget. Indeed, whenever in a right or left state the equality holds directly
from the invariants, and in every transition of the sim gadget the sum of weights of
dimension � and r is zero.

If M Halts, Then Player 2 Wins. The winning strategy for player 2 is as follows: In
the reset gadget make sure that the reset invariants are satisfied. This is done by looping
the first state of the reset gadget for enough rounds. In the sim gadget, whenever the sim
invariants are not fulfilled or whenever player 1 cheats a zero-test, then player 2 invokes
a blame gadget. If the sim invariants are fulfilled and player 1 does not cheat a zero test,
then it must be the case that the game reaches state qf , and in that case player 2 wins.
Otherwise, we claim the player 2 wins.

We first prove that if player 1 violates the sim invariants infinitely often, then the
winning condition is violated. W.l.o.g we assume that the first sim invariant is violated
infinitely often and the proof for the second invariant is similar. By the assumption
infinitely often the play is in a right state and either r � |gs| and � 
 0 or r 
 |gs| and
� � 0. If r � |gs|, then � 
 0 and it follows that in the last round that the state � 
 0?
was visited, the value of � was much smaller than 0. Hence, player 2 invoked the � 
 0
blame gadget and the play immediately continued to the reset gadget. If this happens
infinitely often then � < 0 while gs < 0 (as gs remains negative in the blame � 
 0
gadget and never increases in the sim and reset gadgets) and the winning condition is
violated. If r 
 |gs|, then player 2 invokes the blame gadget and loop the first state
until r 
 0. As r 
 |gs| we still have gs 
 0, and thus r < 0 while gs < 0 and the
condition is violated.

We now assume that the sim invariants are violated only finitely often (for simplicity
we assume that they are never violated) and we assume that infinitely often player 1
cheats the zero-test before the play reaches qf . W.l.o.g we assume that player 1 infinitely
often declares c = 0 while the actual value of c is positive (and the proof for the second
cheat is similar). In this case, as c− ≈ |gc| − |gs|c, we have c− 
 |gc|. Hence, in the
blame c > 0 gadget player 2 loops the first state until c− 
 0. As c− 
 |gc| it still
holds that gc 
 0. Hence, c− < 0 while gc < 0 and the condition is violated.
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To conclude, if the invariants are not maintained or player 1 does not honestly simu-
late the zero-tests, then in each simulation, the guard dimensions have negative average
weights, while at least one of the dimensions �, r, c+ or c− has a negative average weight
in the blame gadget. Hence, we get that gs, gc < 0 and � < 0 or r < 0 or c− < 0 or
c+ < 0. Hence, the winning condition is not satisfied and player 2 is the winner.

If M does not Halt, Then Player 1 Wins. The winning strategy is to honestly simu-
late M while maintaining the sim invariants and the reset invariants. If player 2 never
invokes the blame gadget, namely, the play stays forever in the sim gadget, then the
winning condition is satisfied. Indeed, in the sim gadget gs, c+, c−, x and y are never
decremented, thus their mean-payoff value is at least zero and the winning condition is
satisfied. Otherwise, after every invocation of the blame gadget, if a side blame gadget
was invoked, then either the average value of r and � is non-negative or the value of the
guard dimension gs is non-negative. Indeed, if the sim invariants are maintained, then
before a blame � 
 |gs| gadget is invoked we have � ≈ |gs|. Hence, if in the gadget
we have � < 0, then it must be the case that gs ≥ 0. Thus, eventually, we get that
r, � ≥ 0 or gs ≥ 0. Similarly, when a c > 0 gadget is invokes, we have c = 0 and thus
c− ≈ |gc|, and thus in the gadget either c− is non-negative or gc is non-negative (and
similar arguments hold for the c < 0 gadget and for c+). Hence, we get that c+, c− ≥ 0
or gc ≥ 0. Thus, the winning condition is satisfied, and player 1 is the winner.

4 Detailed Proof

In the previous section we accurately described the reduction, and only the proof of the
correctness was informal. In this section we give a precise proof for the correctness of
the reduction, namely, we formally describe player-2 winning strategy in the case that
M halts (Subsection 4.1), and player-1 winning strategy in the case that M does not halt
(Subsection 4.2). In Subsection 4.3 we extend the reduction to two-counter machine.

Terminology. In the next subsections we use the next terminology and definitions:
A round is a round in the game graph (i.e., either player-1 or player-2 move).
A simulation step denotes all the rounds that are played in a transition gadget (i.e.,

in a nop,inc or dec gadget). Formally, a simulation step is a sub-play that begins and
ends in a node from P ∪ Q (i.e., a left or a right state) and visits exactly one time in a
left state and exactly one time in a right state.

A simulation session is a sub-play that begins in an invocation of the sim gadget and
ends before (or exactly when) the play leaves the sim gadget. The first i simulation steps
of a simulation session is a sub-play that begins in an invocation of the sim gadget and
ends after i simulation steps were played.

A loop in a transition gadget is a two round sub-play in the gadget that consists of
the loop that is formed by the first state and the state beneath it.

The total number of rounds is the total number of rounds (moves) from the beginning
of the play. We say that the average weight of dimension d in round i is a, and we denote
avg(d) = a, if the value of dimension d in round i is a · i (i.e., the average weight of d
from the beginning of the play up to round i is a). Given a play prefix of length i, we say
player-2 can achieve avg(d1) ≤ a1 while maintaining avg(d2) ≤ a2, for dimensions
d1, d2 and thresholds a1, a2, if player 2 has a strategy to extend the play prefix in such
way that in some round j ≥ i it holds that avg(d1) ≤ a1 and in every round k such that
i ≤ k ≤ j it holds that avg(d2) ≤ a2.
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4.1 If M Halts, Then Player 2 is the Winner

In this subsection we assume that M halts. We denote by N the number of steps after
which M halts (for initial counter value 0) and we denote ε = 1

(N+1)2 . WLOG we
assume that N > 10. The strategy of player 2 in the reset gadget is to achieve the
following reset invariants (after the play leaves the gadget):

– avg(gs), avg(gc) ≤ − 1
2

– (1− ε
4 )|gs| ≤ r ≤ (1 + ε

4 )|gs|
– − ε

4 |gs| ≤ � ≤ ε
4 |gs|

– (1− ε
4 )|gc| ≤ c+, c− ≤ (1 + ε

4 )|gc|
We note that player 2 can maintain the above by looping sufficiently long time in the
first state, and once the invariants are reached, player 1 cannot violate them in his states
in the reset gadget (since the average value of gs and gc can only get closer to −1, the
value of �

|gs| only gets closer to 0 and r
|gs| ,

c−
|gc| and c+

|gc| only gets closer to 1).
The strategy of player 2 in the sim gadget is to maintain, in every step of the simula-

tion session, the next three invariants, which we denote by the left right invariants:

– (Left state invariant) If the machine is in a left state, then (1 − ε)|gs| ≤ � ≤ (1 +
ε)|gs| and −ε|gs| ≤ r ≤ ε|gs|.

– (Right state invariant) If the machine is in a right state, then (1 − ε)|gs| ≤ r ≤
(1 + ε)|gs| and −ε|gs| ≤ � ≤ +ε|gs|.

– (Minimal value invariant) In every round of a simulation session r, � ≥ −ε|gs|.
We denote δ = 1

1
2+2N(1+2ε)

. We first prove that under these invariants avg(gs) ≤ −δ

in every round of the play. Then we use this fact to show that if player 1 violates these
invariants, then player 2 can violate (� ∧ r ∨ gs), and therefore he wins.

Lemma 1. Assume that for a given simulation session: (i) in the beginning of the ses-
sion avg(gs) ≤ − 1

2 ; (ii) no more that N steps are played in the simulation session; and
(iii) the left-right invariants are maintained in the session. Then for every round in the
session avg(gs) ≤ −δ.

Proof. We denote by R the number of rounds that were played before the current invo-
cation of the simulation gadget. We claim that after simulating i steps of the machine
(in the current invocation of the sim gadget), the total number of rounds in the play
(i.e., number of rounds from the beginning of the play, not from the beginning of the
current invocation) is at most R+ 2i · |gs|(1 + 2ε). The proof is by a simple induction,
and for the base case i = 0 the proof is trivial. For i > 0, we assume WLOG that the
i-th transition is a left-to-right transition. Hence, before the last simulation step we had
r ≥ −ε|gs| and after the i-th step was completed we had r ≤ (1 + ε)|gs|. Since in
every odd round of a step gadget the value of r is incremented by 1, we get that at most
2(1 + 2ε)|gs| rounds were played and the proof of the claim follows (and the proof for
a right-to-left transition is symmetric).

Hence, after N simulation steps we have avg(gs) ≤ gs
R+2N |gs|(1+2ε) . Since in the

beginning of the sim gadget we had avg(gs) ≤ − 1
2 , then R ≤ |gs|

2 . Hence, and since
gs < 0 we get avg(gs) ≤ gs

|gs|
2 +2N |gs|(1+2ε)

= − 1
1
2+2N(1+2ε)

= −δ.
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We note that in every transition of a simulation session the value of gs is not changed.
Hence, avg(gs) gets the maximal value after the N -th step and the proof is
complete. �

Lemma 2. Let γ = min( εδ4 ,
ε
4

1+ 1
2δ− ε

4

). If player 1 violates the left-right invariants in

the first N steps of a session, then player 2 can achieve in the blame gadget either
avg(r) ≤ −γ or avg(�) ≤ −γ (or both) while maintaining avg(gs), avg(gc) ≤ −γ.

Proof. We first prove the assertion over the value of gc. It is an easy observation that if
at the invocation of the sim gadget avg(gc) ≤ − 1

2 , then it remains at most − 1
2 as it gets

a value of −1 in every round in a blame gadget and −1 in every odd round in a step
gadget.

Next, we prove the assertion for the left-state and minimal value invariants and the
proof for the right-state invariant is symmetric. Recall that the invariant consistences of
four assumptions, namely, (i) (1− ε)|gs| ≤ � after a right to left transition; (ii) � ≤ (1+
ε)|gs| after a right to left transition; (iii) −ε|gs| ≤ r in every round; and (iv) r ≤ ε|gs|
after a right to left transition. We first prove the assertion when the first condition is
violated, i.e., we assume that � < (1 − ε)|gs|. If this is the case after a right-to-left
transition, then player 2 will invoke the blame � 
 |gs| gadget after the transition
ends. In the blame gadget he will traverse the self-loop for X · (1 − ε

2 ) times, where
X is the value of |gs| before the invocation of the blame gadget, and then he will go
to the reset gadget. As a result (since in every loop � is decremented by 1 and gs is
incremented by 1) we get that the value of � and gs is at most −X · ε

2 . Before the last
simulation step the left-right invariants were maintained. Hence, before the last step
we had � ≥ −ε|gs| (by the left-right invariants) and thus the last step had at most
|gs| rounds (as we assume that after the last step � < (1 − ε)|gs|). In addition, as
the invariants were maintained, by Lemma 1 we get that before the last step we had
avg(gs) ≤ −δ and thus after the last step we have avg(gs) ≤ − δ

2 (as the value of
gs is not changed in simulation steps). Hence, if R is the number of rounds before the
invocation of the blame gadget, then R ≤ X

2δ . Hence, after the blame gadget ends, we

have avg(�), avg(gs) ≤ − X· ε2
R+X·(1− ε

2 )
≤ − X· ε2

X
2δ+X·(1− ε

2 )
= − ε

2

1+ 1
2δ− ε

2

. In addition, the

value of gs is incremented in every round of the blame gadget. Thus, if after the gadget
ends we have avg(gs) ≤ −γ, then in every round in the blame gadget we also have
avg(gs) ≤ −γ.

If the second condition is violated, namely, if � > (1 + ε)|gs|, then we claim that
it must be the case that r < − ε|gs|

2 . Indeed, when the sim gadget is invoked we have
r ≤ |gs|(1 + ε

4 ) and � ≤ |gs| ε4 . In the sim gadget the value of the sum r + � is not
changed (since r is incremented only when � is decremented and vice versa). Hence,
the sum never exceeds |gs|(1 + ε

2 ). Thus, if � > (1 + ε)|gs|, then it must be the case

that r < − ε|gs|
2 . Hence, in the first round that avg(r) ≤ − ε

2 |gs| player 2 can invoke the
blame r 
 0 gadget which leads the play to the reset gadget after exactly one move.
We note that in this scenario the left-right invariants are satisfied and thus, after leaving
the blame gadget by Lemma 1 we have avg(gs) ≤ −δ and as r ≤ − ε|gs|

2 we get that
avg(r) ≤ − εδ

2 .
If the third condition is violated, namely, if r < −ε|gs|, then it must be the case that

the condition is first violated in a left to right transition (since in a right to left transition
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r is incremented) and the proof follows by the same arguments as in the proof of the
second case.

Finally, if the fourth condition is violated, namely, if r > ε|gs|, then by analyzing the
sum r+ � we get that � ≤ (1− ε

2 )|gs|. We repeat the same analysis as in the case where
the first invariant is violated (i.e., when � ≤ (1− ε)|gs|) and get that avg(gs), avg(r) ≤
− ε

4

1+ 1
2δ− ε

4

. The proof is complete. �

By Lemma 2, if player 2 maintains the reset invariant in the reset gadget, then other than
finitely many simulation sessions, in every simulation session player 1 must satisfy the
left-right invariants. Otherwise, we get that infinitely often the average value of either r
or � is at most −γ while the average value of gs is always at most −γ. Hence gs < 0
and either r < 0 or � < 0 and thus the condition (� ∧ r ∨ gs) is violated and therefore
player 1 is losing.

In the next three lemmas we prove that player 1 must honestly simulates the zero-
testing. The first lemma is a simple corollary of the left-right invariants.

Lemma 3. Under the left-right invariants, in the dec,inc and nop gadgets, player 1
follows the loop of the first state at most |gs|(1 + 2ε) times and at least |gs|(1 − 2ε)
times.

The next lemma shows the correlation between gc and c+ and c−.

Lemma 4. Let #inc (resp.,#dec) be the number of times that the inc (dec) gadget was
visited (in the current simulation session), and we denote c = #inc −#dec (namely,
c is the actual value of the counter in the counter machine M ). Then under the left-
right invariants, in the first N steps of the simulation session we always have c+ ≤
|gc|(1 + ε) + c|gs|+ |gs|

2 and c− ≤ |gc|(1 + ε)− c|gs|+ |gs|
2 .

Proof. We prove the claim of the lemma for c+ and the proof for c− is symmetric. Let
X be the value of |gc| when the sim gadget is invoked. By the reset invariants we get
that c+ ≤ X(1 + ε

4 ). By Lemma 3 we get that every visit in the inc gadget contributes
at most |gs|(1 + 2ε) more to c+ than its contribution to |gc| and every visit in the dec
contributes at least |gs|(1− 2ε) more to |gc| than its contribution to c+. Hence,

c+ ≤ X(1 + ε
4 ) + (|gc| −X) + #inc · |gs|(1 + 2ε)−#dec · |gs|(1− 2ε) =

|gc|+ εX + (#inc −#dec)|gs|(1 + 2ε) + 4ε|gs| ·#dec

We recall that c = (#inc −#dec), and observe that X ≤ |gc|, and that #dec ≤ N

and thus ε ·#dec < 1
10 . Hence, we get that c+ ≤ |gc|(1 + ε) + c|gs|+ |gs|

2 . �

The next lemma suggests that player 1 must honestly simulate the zero-tests.

Lemma 5. If the reset and left-right invariants hold, then for γ = min( 1
20N , δ

8 ) the
following hold: (i) if the blame c < 0 gadget is invoked and c < 0 then player 2
can achieve avg(c+) ≤ −γ while maintaining avg(gs), avg(gc) ≤ −γ; and (ii) if the
blame c > 0 gadget is invoked and c > 0 then player 2 can achieve avg(c−) ≤ −γ
while maintaining avg(gs), avg(gc) ≤ −γ.

Proof. We prove the first item of the lemma and the proof for the second item is sym-
metric. Suppose that c < 0 (i.e., c ≤ −1) when blame c < 0 gadget is invoked. Let X
and Y be the values of |gc| and |gs| before the invocation of the blame gadget. Then by
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Lemma 4, before the invocation we have c+ ≤ X(1 + ε) − Y
2 . Hence, by traversing

the loop of the first state of the blame c < 0 gadget for X(1 + ε) − Y
4 times we get

c+ ≤ −Y
4 and gc ≤ εX − Y

4 . Let R be the number of rounds that were played from
the beginning of the play (and not just from the beginning of the current invocation
of the sim gadget). Since gc is decremented by at most 1 in every round we get that
X(1 + ε)− Y

4 ≤ 2X ≤ 2R. By lemma 1 we have Y
R ≤ −δ. Hence, avg(c+) ≤ c+

2R ≤
− Y

8R ≤ − δ
8 . Similarly, since X

R is bounded by 1, we have avg(gc) ≤ εX
2R − δ

8 ≤ ε
2 − δ

8 .

Recall that δ = 1
1
2+2N(1+2ε)

. Hence, avg(gc) ≤ 2ε+4Nε+8ε2−1
8( 1

2+N(1+2ε))
and since ε = 1

(N+1)2

and N > 10 we get that avg(gc) ≤ − 1
20N . Note that gc is only incremented in the

blame gadget. Thus, as avg(gc) ≤ −γ after the last round of the blame gadget we get
that avg(gc) ≤ −γ in all the rounds that are played in the blame gadget. The value of
gs was at most −δR before the blame gadget, and in the blame gadget gs is decreased
by 1 in every round. Hence avg(gs) ≤ −δ in every round of the blame gadget and the
proof follows by taking γ = min( 1

20N , δ
8 ). �

We are now ready to prove one side of the reduction.

Proposition 1. If the counter machine M halts, then player 2 has a winning strategy
for violating (�∧r∨gs)∧ (c+ ∧c−∨gc)∧x∧y. Moreover, if M halts then there exists
a constant ζ > 0 that depends only on M such that player 2 has a winning strategy for
violating (� ≥ −ζ ∧ r ≥ −ζ ∨ gs ≥ −ζ) ∧ (c+ ≥ −ζ ∧ c− ≥ −ζ ∨ gc ≥ −ζ) ∧ x ≥
−ζ ∧ y ≥ −ζ.

Proof. Suppose that M halts and let N be the number of steps that M runs before
it halts (for an initial counter value 0). Player-2 strategy is to (i) maintain the reset-
invariants; (ii) whenever the left-right invariants are violated, he invokes a side blame
gadget; (iii) whenever the zero-testing is dishonest, he activates the corresponding blame
gadget (either c > 0 or c < 0); and (iv) if qf is reached, he stays there forever. The cor-
rectness of the construction is immediate by the lemmas above. We first observe that
it is possible for player 2 to satisfy the reset-invariants and that if player 1 stays in the
reset gadget forever, then he loses.

Whenever the left-right invariant is violated, then the average weight of r and/or �
is negative, while the average weight of gs and gc remains negative. Hence, if in every
simulation session player 1 violates the left-right invariants in the first N steps we get
that the condition is violated since gs ≤ −γ and either r ≤ −γ or � ≤ −γ. Hence, we
may assume that these invariants are kept in every simulation session.

Whenever the zero-testing is dishonest (while the left-right invariants are satisfied),
then by Lemma 5, player 2 can invoke a counter blame gadget and achieve negative
average for either c+ or c− while maintaining gc and gs negative. If in every simulation
session player 1 is dishonest in zero-testing, then we get that either c− ≤ −γ or c+ ≤
−γ while gc ≤ −γ and the condition is violated. Hence, we may assume that player 1
honestly simulates the zero-tests. Finally, if the transitions of M are properly simulated,
then it must be the case the state qf is reached and when looping this state forever
player 1 loses (since x ≤ −1 < 0). �

4.2 If M does not Halt, Then Player 1 is the Winner

Suppose that M does not halt. A winning strategy of player 1 in the reset gadget is
as following: Let i be the number of times that the reset gadget was visited, and we
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denote εi = 1
i+10 . Similarly to player-2 strategy in Subsection 4.1, player-1 strategy in

the reset gadget is to achieve the following invariants (after the play leaves the gadget):
(i) avg(gs), avg(gc) ≤ − 1

2 ; (ii) (1 − εi
4 )|gs| ≤ r ≤ (1 + εi

4 )|gs|; (iii) − εi|gs|
4 ≤ � ≤

εi|gs|
4 ; and (iv) (1 − εi

4 )|gc| ≤ c+, c− ≤ (1 + εi
4 )|gc|. To satisfy these invariants, he

follows the self-loop of his first state until avg(y) ≥ 0 and then follows the self-loop
of the second state until the invariants are fulfilled and avg(x) ≥ 0. In the sim gadget,
player-1 strategy is to simulate every nop,inc and dec step by following the self-loop
in the corresponding gadget for |gs| rounds, and to honestly simulate the zero-tests..

We denote the above player-1 strategy by τ . The next two lemmas show the basic
properties of a play according to τ , and that player 2 loses if he invokes the blame
gadgets infinitely often.

Lemma 6. In any play according to τ , after the reset gadget was visited for i times, in
the sim gadget we always have: (i) in a right state: r ≥ −εi|gs|, � ≥ (1− εi)|gs| and in
a left state � ≥ −εi|gs|, r ≥ (1 − εi)|gs|; (ii) in every round of the simulation session
r, � ≥ −εi|gs|; and (iii) c+ ≥ (1− εi)|gc|+ c|gs| and c− ≥ (1− εi)|gc| − c|gs|, where
c = #inc −#dec in the current invocation of the sim gadget.

Lemma 7. In a play prefix consistent with τ , in every round that is played in a blame
gadget: (1) In the blame � 
 0 and blame r 
 0 gadgets: avg(�), avg(r) ≥ −εi.
(2) In blame � 
 ‖gs| gadget: if avg(�) ≤ −εi, then avg(gs) ≥ −εi. (3) In blame
r 
 |gs| gadget: if avg(r) ≤ −εi, then avg(gs) ≥ −εi. (4) In the blame c < 0
gadget: if avg(c+) ≤ −εi, then avg(gc) ≥ −εi. (5) In the blame c > 0 gadget: if
avg(c−) ≤ −εi, then avg(gc) ≥ −εi. Where i is the number of times that the reset
gadget was visited.

We are now ready to prove the τ is a winning strategy.

Proposition 2. If M does not halt, then τ is a winning strategy.

Proof. In order to prove that τ satisfies the condition (�∧r∨gs)∧(c+∧c−∨gc)∧x∧y it is
enough to prove that when playing according to τ , for any constant δ > 0 the condition
(� ≥ −δ ∧ r ≥ −δ∨ gs ≥ −δ)∧ (c+ ≥ −δ∧ c− ≥ −δ∨ gc ≥ −δ)∧x∧ y is satisfied.

Let δ > 0 be an arbitrary constant and in order to prove the claim we consider two
distinct cases: In the first case, player 2 strategy will invoke the blame gadgets only
finitely many times. Hence, there is an infinite suffix that is played only in either a
blame gadget, the reset gadget or the sim gadget and in such suffix player 2 loses.

In the second case we consider, player 2 always eventually invokes a blame gadget.
Since a blame gadget is invoked infinitely many times we get that the reset gadget
is invoked infinitely often, and thus x, y ≥ 0. In addition, the sim gadget is invoked
infinitely often. Let i be the minimal index for which εi ≤ δ. By Lemmas 6 and 7 we
get that after the i-th invocation of the sim gadget, in every round (i) either avg(�) ≥
−εi ∧ avg(r) ≥ −εi or avg(gs) ≥ −εi; and (ii) either avg(c+) ≥ −εi ∧ avg(c−) ≥
−εi or avg(gc) ≥ −εi. (A detailed proof is given in the technical report.) Thus, as
of certain round, either avg(�) and avg(r) are always at least −εi, or infinitely often
avg(gs) ≥ −εi. Hence, (� ≥ −εi ∧ r ≥ −εi ∨ gs ≥ −εi) is satisfied and similarly
(c+ ≥ −εi ∧ c− ≥ −εi ∨ gc ≥ −εi) is satisfied. The proof is complete. �
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4.3 Extending the Reduction to Two-counter Machine

When M is a two-counter machine, we use 4 dimensions for the counters, namely
c1+, c

1
−, c

2
+, c

2
− and one guard dimension gc. The winning condition is (� ∧ r ∨ gs) ∧

(c1+∧c1−∧c2+∧c2−∨gc)∧x∧y. In a nop gadget all four dimensions c1+, c
1
−, c

2
+, c

2
− get a

value of 1 in the self-loop. When a counter ci (for i = 1, 2) is incremented (resp., decre-
mented), then counter ci+ and ci− are assigned with weights according to the weights of
c+ and c− in the inc (dec) gadget that we described in the reduction for a one counter
machine, and c3−i

+ , c3−i
− are assigned with weights according to a nop gadget.

The proofs of Proposition 1 and Proposition 2 easily scale to a two-counter machine.
Hence, the undecidability result is obtained.

Theorem 1. The problem of deciding who is the winner in a multidimensional mean-
payoff game with ten dimensions is undecidable.

The winning condition that we use in the reduction can be encoded also by mean-payoff
expressions [6]. Hence, games over mean-payoff expressions are also undecidable.

References

1. Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-payoff
conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333–347. Springer,
Heidelberg (2009)

2. Bohy, A., Bruyère, V., Filiot, E., Raskin, J.-F.: Synthesis from LTL specifications with mean-
payoff objectives. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 169–184. Springer, Heidelberg (2013)

3. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with
accumulative values. In: LICS (2011)

4. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on multiple mean-
payoff objectives in markov decision processes. In: LICS (2011)
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The Cyclic-Routing UAV Problem
is PSPACE-Complete

Hsi-Ming Ho and Joël Ouaknine
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Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract. Consider a finite set of targets, with each target assigned a
relative deadline, and each pair of targets assigned a fixed transit flight
time. Given a flock of identical UAVs, can one ensure that every target is
repeatedly visited by some UAV at intervals of duration at most the tar-
get’s relative deadline? TheCyclic-Routing UAV Problem (cr-uav)
is the question of whether this task has a solution.

This problem can straightforwardly be solved in PSPACE by mod-
elling it as a network of timed automata. The special case of there being
a single UAV is claimed to be NP-complete in the literature. In this pa-
per, we show that the cr-uav Problem is in fact PSPACE-complete even
in the single-UAV case.

1 Introduction

Unmanned aerial vehicles (UAVs) have many uses, ranging from civilian to mili-
tary operations. Like other autonomous systems, they are particularly well-suited
to ‘dull, dirty, and/or dangerous’ missions [21]. A common scenario in such mis-
sions is that a set of targets have to be visited by a limited number of UAVs. This
has given rise to a large body of research on path planning for UAVs.1 Depending
on the specific application at hand, paths of UAVs may be subject to various
complex constraints, e.g., related to kinematics or fuel (see, e.g., [1, 17, 19, 23]).

In this work, we consider the Cyclic-Routing UAV Problem (cr-uav) [7]: the
decision version of a simple recurrent UAV path-planning problem in which
each target must be visited not only once but repeatedly, i.e., at intervals of
prescribed maximal duration. Problems of this type have long been considered
in many other fields such as transportation [16, 22] and robotics [6, 12]. More
recently, a number of game-theoretic frameworks have been developed to study
similar problems in the context of security [4, 11, 20].

A special case of the problem (with a single UAV) is considered in [3, 4, 13],
and is claimed to be NP-complete in [4]. However, the proof of NP-membership
in [4] is not detailed.2 The main result of the present paper is that the cr-uav
Problem is in fact PSPACE-complete, even in the single-UAV case. We note
that this problem can be seen as a recurrent variant of the decision version
1 http://scholar.google.com/ lists thousands of papers on the subject.
2 A counterexample to a crucial claim in [4] is given in the full version of this paper [10].

c© Springer-Verlag Berlin Heidelberg 2015
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of the Travelling Salesman Problem with Time Windows (tsptw) with upper
bounds only (or TSP with Deadlines [5]). Its PSPACE-hardness hence stems
from recurrence: the decision version of the (non-recurrent) tsptw Problem is
NP-complete [18].

PSPACE-membership of the (general) cr-uav Problem follows straightfor-
wardly by encoding the problem as the existence of infinite paths in a network
of timed automata; we briefly sketch the argument in the next section. The bulk
of the paper is then devoted to establishing PSPACE-hardness of the single-UAV
case. This is accomplished by reduction from the periodic sat Problem, known
to be PSPACE-complete [15].

2 Preliminaries

2.1 Scenario

Let there be a set of targets and a number of identical UAVs. Each target has a
relative deadline: an upper bound requirement on the time between successive
visits by UAVs. The UAVs are allowed to fly freely between targets, with a flight
time given for each pair of targets: the amount of time required for a UAV to fly
from one of the targets to the other. We assume that flight times are symmetric,
that they obey the triangle inequality, and that the flight time from target v to
target v′ is zero iff v and v′ denote the same target. In other words, flight times
are a metric on the set of targets. The goal is to decide whether there is a way
to coordinate UAVs such that no relative deadline is ever violated. We make a
few further assumptions:

– Initially, each UAV starts at some target; there may be more than one UAV
at the same target.

– The first visit to each target must take place at the latest by the expiration
time of its relative deadline.

– The UAVs are allowed to ‘wait’ as long as they wish at any given target.
– Time units are chosen so that all relative deadlines and flight times are inte-

gers, and moreover all relative deadlines are interpreted as closed constraints
(i.e., using non-strict inequalities).

2.2 Modelling via Networks of Timed Automata

We briefly sketch how to model the cr-uav Problem as the existence of infinite
non-Zeno paths in a network of Büchi timed automata, following the notation
and results of [2], from which PSPACE-membership immediately follows.

Intuitively, one ascribes a particular timed automaton to each UAV and to
each target. Each UAV-automaton keeps track of the location of its associated
UAV, and enforces flight times by means of a single clock, which is reset the in-
stant the UAV leaves a given target. Each target-automaton is likewise equipped
with a single clock, keeping track of time elapsed since the last visit by some
UAV. The action of a UAV visiting a target is modelled by synchronising on a
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particular event; when this takes place, provided the target’s relative deadline
has not been violated, the target resets its internal clock and instantaneously
visits a Büchi location. Similarly, the action of a UAV leaving a target is mod-
elled by event synchronisation. Finally, since multiple UAVs may visit a given
target simultaneously, each target is in addition equipped with a counter to keep
track at any time of whether or not it is currently being visited by some UAV.

The given instance of the cr-uav Problem therefore has a solution iff there
exists a non-Zeno run of the resulting network of timed automata in which each
Büchi accepting location is visited infinitely often. By Thm. 7 of [2], this can be
decided in PSPACE.

It is worth noting that, since all timing constraints are closed by assump-
tion, standard digitisation results apply (cf. [9]) and it is sufficient to consider
integer (i.e., discrete) time. In the next section, we therefore present a discrete
graph-based (and timed-automaton independent) formulation of the problem
specialised to a single UAV, in order to establish PSPACE-hardness.

2.3 Weighted Graph Formulation

The solution to a single-UAV instance of the cr-uav Problem consists of an
infinite path from target to target in which each target is visited infinitely often,
at time intervals never greater than the target’s relative deadline. One may
clearly assume that the UAV never ‘lingers’ at any given target, i.e., targets are
visited instantaneously. Formally, a single-UAV instance of the cr-uav Problem
can be described as follows. Let V be a set of n ≥ 2 vertices, with each vertex
v ∈ V assigned a strictly positive integer weight RD(v) (intuitively, the relative
deadline of target v). Consider a weighted undirected clique over V , i.e., to each
pair of vertices (v, v′) with v �= v′, one assigns a strictly positive integer weight
FT (v, v′) (intuitively, the flight time from v to v′). In addition we require that
FT be symmetric and satisfy the triangle inequality.

Let G = 〈V,RD ,FT 〉 be an instance of the above data. Given a finite path
u in (the clique associated with) G, the duration dur(u) of u is defined to be
the sum of the weights of the edges in u. A solution to G is an infinite path s
through G with the following properties:

– s visits every vertex in V infinitely often;
– Any finite subpath of s that starts and ends at consecutive occurrences of a

given vertex v must have duration at most RD(v).

Definition 1 (The cr-uav Problem with a Single UAV). Given G as
described above, does G have a solution?

As pointed out in [13], if a solution exists at all then a periodic solution can
be found, i.e., an infinite path in which the targets are visited repeatedly in the
same order.
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2.4 The periodic sat Problem

periodic sat is one of the many PSPACE-complete problems introduced in [15].
In the following definition (and in the rest of this paper), let x be a finite set
of variables and let xj be the set of variables obtained from x by adding a
superscript j to each variable.

Definition 2 (The periodic sat Problem [15]). Consider a CNF formula
ϕ(0) over x0 ∪ x1. Let ϕ(j) be the formula obtained from ϕ(0) by replacing all
variables x0

i ∈ x0 by xj
i and all variables x1

i ∈ x1 by xj+1
i . Is there an assignment

of
⋃

j≥0 x
j such that

∧
j≥0 ϕ(j) is satisfied?

3 PSPACE-Hardness

In this section, we give a reduction from the periodic sat Problem to the cr-
uav Problem with a single UAV. Consider a CNF formula ϕ(0) = c1∧· · ·∧ch over
x0 = {x0

1, . . . , x
0
m} and x1 = {x1

1, . . . , x
1
m}. Without loss of generality, we assume

that each clause cj of ϕ(0) is non-trivial (i.e., cj does not contain both positive
and negative occurrences of a variable) and m > 2, h > 0. We can construct an
instance G of the cr-uav Problem (with the largest constant having magnitude
O(m2h) and |V | = O(mh)) such that

∧
j≥0 ϕ(j) is satisfiable if and only if G

has a solution.
The general idea of the reduction can be described as follows. We construct

variable gadgets that can be traversed in two ‘directions’ (corresponding to as-
signments true and false to variables). A clause vertex is visited if the cor-
responding clause is satisfied by the assignment. Crucially, we use consistency
gadgets, in which we set the relative deadlines of the vertices carefully to ensure
that the directions of traversals of the variable gadgets for x1 (corresponding to
a particular assignment of variables) in a given iteration is consistent with the
directions of traversals of the variable gadgets for x0 in the next iteration.

3.1 The Construction

We describe and explain each part of G in detail. The reader is advised to glance
ahead to Figure 5 to form an impression of G. Note that for ease of presentation,
we temporarily relax the requirement that FT be a metric and describe G as an
incomplete graph.3 In what follows, let l = 24h+ 34 and

T = 2
(
m
(
2(3m+ 1)l + l

)
+m

(
2(3m+ 2)l + l

)
+ l + 2h

)
.

3 In the single-UAV case, if the FT of some edge is greater than any value in RD,
that edge can simply be seen as non-existent.
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Variable Gadgets. For each variable x0
i , we construct (as a subgraph of G) a

variable gadget. It consists of the following vertices (see Figure 1):

– Three vertices on the left side (LS i = {vt,Li , vm,L
i , vb,Li })

– Three vertices on the right side (RS i = {vt,Ri , vm,R
i , vb,Ri })

– A ‘clause box ’ (CB j
i = {va,ji , vb,ji , vc,ji , vd,ji , ve,ji , vf,ji }) for each j ∈ {1, . . . , h}

– A ‘separator box ’ (SBj
i={vā,ji , vb̄,ji , vc̄,ji , vd̄,ji , vē,ji , vf̄ ,ji }) for each j∈{0, . . . , h}

– A vertex at the top (vtop if i = 0, vi−1 otherwise)
– A vertex at the bottom (vi).

· · ·

· · ·

· · ·

(3m + 1)l (3m + 1)l

(3m + 1)l (3m + 1)l

vt,Li

vm,L
i

vb,Li

vā,0i

vb̄,0i

vc̄,0i vd̄,0i

vē,0i

vf̄ ,0i
va,1i

vb,1i

vc,1i vd,1i

ve,1i

vf,1i vā,1i

vb̄,1i

vc̄,1i v
d̄,(h−1)
i

v
ē,(h−1)
i

v
f̄ ,(h−1)
i

va,hi

vb,hi

vc,hi vd,hi

ve,hi

vf,hi vā,hi

vb̄,hi

vc̄,hi
vd̄,hi

vē,hi

vf̄ ,hi vt,Ri

vm,R
i

vb,Ri

Fig. 1. The variable gadget for x0
i

The clause boxes for j ∈ {1, . . . , h} are aligned horizontally in the figure. A
separator box is laid between each adjacent pair of clause boxes and at both
ends. This row of boxes (Row i =

⋃
j∈{1,...,h} CB

j
i ∪

⋃
j∈{0,...,h} SB

j
i ) is then put

between LS i and RS i. The RD of all vertices v ∈ LS i ∪ RS i ∪ Row i are set to
T + l + 2h.

The vertices are connected as indicated by solid lines in the figure. The four
‘long’ edges in the figure have their FT set to (3m + 1)l while all other edges
have FT equal to 2, e.g., FT (vtop, v

t,L
1 ) = (3m + 1)l and FT (vb,11 , vc,11 ) = 2.

There is an exception though: FT (vb,Lm , vm) and FT (vb,Rm , vm) (in the variable
gadget for x0

m) are equal to (3m+ 2)l.
The variable gadgets for variables x1

i are constructed almost identically. The
three vertices on the left and right side are now LS i+m and RS i+m. The set of
vertices in the row is now Row i+m =

⋃
j∈{1,...,h} CB

j
i+m ∪ ⋃

j∈{0,...,h} SB
j
i+m.

The vertex at the top is vi+m−1 and the vertex at the bottom is vi+m (i �= m)
or vbot (i = m). The RD of vertices in LS i+m ∪ RS i+m ∪ Row i+m are set to
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T + l + 2h, and the FT of the edges are set as before, except that all the ‘long’
edges now have FT equal to (3m+ 2)l.

Now consider the following ordering of variables:

x0
1, x

0
2, . . . , x

0
m, x1

1, x
1
2, . . . , x

1
m .

Observe that the variable gadgets for two ‘neighbouring’ variables (with respect
to this ordering) have a vertex in common. To be precise, the set of shared
vertices is S = {v1, . . . , v2m−1}. We set the RD of all vertices in S to T +2h and
the RD of vtop and vbot to T .

Clause Vertices. For each clause cj in ϕ(0), there is a clause vertex vcj with
RD set to 3

2T . If x0
i occurs in cj as a literal, we connect the j-th clause box in

the variable gadget for x0
i to vcj as shown in Figure 2 and set the FT of these

new edges to 2 (e.g., FT (vcj , vc,ji ) = FT (vcj , vd,ji ) = 2). If instead ¬x0
i occurs

in cj , then vcj is connected to va,ji and vf,ji (with FT equal to 2). Likewise, the
variable gadget for x1

i may be connected to vcj via {vc,ji+m, vd,ji+m} (if x1
i occurs in

cj) or {va,ji+m, vf,ji+m} (if ¬x1
i occurs in cj).

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

vcj

2

2

2

2

2

2

2

2

2 2

2

2

Fig. 2. The variable occurs positively in cj

pvtLi

in↓,L
i out↑,Li

in↑,L
i out↓,Li

2

2

2

2

Fig. 3. A consistency gadget LCG i

Consistency Gadgets. For each i ∈ {1, . . . ,m}, we construct two consistency
gadgets LCG i (see Figure 3) and RCG i. In LCG i, the vertex at the centre
(pvt t,Li ) has RD equal to 1

2T +m
(
2(3m+2)l+ l

)− (2i− 1)l+4h. The other four
vertices (in↓,L

i , out↑,Li , in↑,L
i and out↓,Li ) have RD equal to 3

2T . The FT from
pvt t,Li to any of the other four vertices is 2. RCG i is identical except that the
subscripts on the vertices change from L to R.

LCG i and RCGi are connected to the variable gadgets for x0
i and x1

i as in
Figure 4. The vertices in↓,L

i , out↑,Li , in↓,R
i , out↑,Ri are connected to certain vertices

in the variable gadget for x0
i—this allows pvtLi and pvtRi to be traversed ‘from

above’. Similarly, the edges connected to in↑,L
i , out↓,Li , in↑,L

i , out↓,Li allow pvtLi
and pvtRi to be traversed ‘from below’. Formally, FT (v, v′) = 2 if
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x0
i

x1
i

LCG i RCG i

Fig. 4. Connecting the variable gadgets for x0
i and x1

i to LCG i and RCG i

– v = in↓,L
i , v′ ∈ {vb,Li , vc̄,0i } or v = in↓,R

i , v′ ∈ {vf̄ ,hi , vb,Ri }
– v = out↑,Li , v′ ∈ {vt,Li , vā,0i } or v = out↑,Ri , v′ ∈ {vd̄,hi , vt,Ri }
– v = in↑,L

i , v′ ∈ {vb,L(i+m), v
c̄,0
(i+m)} or v = in↑,R

i , v′ ∈ {vf̄ ,h(i+m), v
b,R
(i+m)}

– v = out↓,Li , v′ ∈ {vt,L(i+m), v
ā,0
(i+m)} or v = out↓,Ri , v′ ∈ {vd̄,h(i+m), v

t,R
(i+m)}.

Two parts of an intended path, which we will explain in more detail later, is also
illustrated in Figure 4.

Finally, there is a vertex vmid with RD(vmid) = T connected to vbot and vtop
with two edges, both with FT equal to 1

4T . The FT of all the missing edges
are 2T (note that the largest value in RD is less than 2T , so these edges can
never be taken). This completes the construction of G. An example with m = 3
is given in Figure 5, where vertices in S (shared by two variable gadgets) are
depicted as solid circles.

The rest of this section is devoted to the proof of the following proposition.

Proposition 3.
∧

j≥0 ϕ(j) is satisfiable iff G has a solution.
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vmid

vtop

vbot

v1

v2

v3

v4

v5

x0
1

x0
2

x0
3

x1
1

x1
2

x1
3

1
4
T

1
4
T

(3m+ 1)l (3m+ 1)l

(3m+ 1)l(3m+ 1)l

(3m+ 1)l (3m+ 1)l

(3m+ 1)l(3m+ 1)l

(3m+ 1)l (3m+ 1)l

(3m+ 2)l(3m+ 2)l

(3m+ 2)l (3m+ 2)l

(3m+ 2)l(3m+ 2)l

(3m+ 2)l (3m+ 2)l

(3m+ 2)l(3m+ 2)l

(3m+ 2)l (3m+ 2)l

(3m+ 2)l(3m+ 2)l

Fig. 5. An example with m = 3. Solid circles denote shared vertices S = {v1, . . . , v5}.

3.2 The Proof of Proposition 3

We first prove the forward direction. Given a satisfying assignment of
∧

j≥0 ϕ(j),
we construct a solution s as follows: s starts from vtop and goes through the
variable gadgets for x0

1, x
0
2, . . . , x

0
m, x1

1, x
1
2, . . . , x

1
m in order, eventually reaching

vbot. Each variable gadget is traversed according to the truth value assigned to
its corresponding variable. In such a traversal, both pvtLi and pvtRi are visited
once (see the thick arrows in Figure 4 for the situation when x0

i is assigned
true and x1

i is assigned false). Along the way from vtop to vbot, s detours at
certain times and ‘hits’ each clause vertex exactly once as illustrated by the thick
arrows in Figure 2 (this can be done as ϕ(0) is satisfied by the assignment). Then
s goes back to vtop through vmid and starts over again, this time following the
truth values assigned to variables in x1 ∪x2, and so on. One can verify that this
describes a solution to G.
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Now consider the other direction. Let

s = (vmids1vmid . . . vmidsp)
ω

be a periodic solution to G where each segment sj , j ∈ {1, . . . , p} is a finite
subpath visiting only vertices in V \ {vmid}. The proofs of the following two
propositions can be found in the full version of this paper [10].

Proposition 4. In s = (vmids1vmid . . . vmidsp)
ω, either of the following holds:

– All sj, j ∈ {1, . . . , p} starts with vtop and ends with vbot
– All sj, j ∈ {1, . . . , p} starts with vbot and ends with vtop.

We therefore further assume that s satisfies the first case of the proposition above
(this is sound as a periodic solution can be ‘reversed’ while remaining a valid
solution). We argue that s ‘witnesses’ a satisfying assignment of

∧
j≥0 ϕ(j).

Proposition 5. In each segment sj, each vertex in
⋃

i∈{1,...,m}{pvtLi , pvtRi } ap-
pears twice whereas other vertices in V \ {vmid} appear once.

Based on this proposition, we show that s cannot ‘jump’ between variable gadgets
via clause vertices. It follows that the traversal of each Row i must be done in a
single pass.

Proposition 6. In each segment sj, if vck is entered from a clause box (in
some variable gadget), the edge that immediately follows must go back to the
same clause box.

Proof. Consider a 3× 3 ‘box’ formed by a separator box and (the left- or right-)
half of a clause box. Note that except for the four vertices at the corners, no
vertex in this 3× 3 box is connected to the rest of the graph. Recall that if each
vertex in this 3× 3 box is to be visited only once (as enforced by Proposition 5),
it must be traversed in the patterns illustrated in Figures 6 and 7.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 6. Pattern ‘��’

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 7. Pattern ‘��’

Now consider the situation in Figure 8 where sj goes from vz to vck . The 3×3
box with vz at its lower-right must be traversed in Pattern ‘	
’ (as otherwise vz
will be visited twice). Assume that sj does not visit vx immediately after vck . As
vx cannot be entered or left via vz and vck , the 3×3 box with vx at its lower-left
must also be traversed in Pattern ‘	
’. However, there is then no way to enter
or leave vy. This is a contradiction. 
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

vck

vy

vxvz

Fig. 8. x0
i occurs positively in ck

Note that in Figure 8, the three clause boxes (framed by dotted lines) are all
traversed in Pattern ‘
’ or they are all traversed in Pattern ‘	’. More generally,
we have the following proposition.

Proposition 7. In each segment sj, clause boxes in a given variable gadget are
all traversed in Pattern ‘
’ or they are all traversed in Pattern ‘	’ (with possible
detours via clause vertices).

Write v → v′ for the edge from v to v′ and v � v′ for a finite path that starts
with v and ends with v′. By Proposition 5, each segment sj can be written
as vtop � vb1 � · · · � vb2m−1 � vbot where b1, . . . , b2m−1 is a permutation
of 1, . . . , 2m− 1. We show that each subpath v � v′ of sj with distinct v, v′ ∈
S∪{vtop, vbot} and no v′′ ∈ S∪{vtop, vbot} in between must be of a very restricted
form. For convenience, we call such a subpath v � v′ a fragment.

Proposition 8. In each segment sj = vtop � vb1 � · · · � vb2m−1 � vbot, a
fragment v � v′ visits pvtLi and pvtRi (once for each) for some i ∈ {1, . . . ,m}.
Moreover, each fragment v � v′ in vtop � vb1 � · · · � vbm visits a different set
{pvtLi , pvtRi }. The same holds for vbm � vbm+1 � · · · � vbot.

Proof. It is clear that dur(v � v′) ≥ 2(3m + 1)l, and hence dur(vtop � vb1 �
· · · vbm) ≥ m

(
2(3m+1)l

)
. Let there be a vertex v ∈ ⋃

i∈{1,...,m}{pvtLi , pvtRi } miss-
ing in vtop � vb1 � · · · vbm . Since the time needed from vbm to v is greater than
(3m+1)l, even if sj visits v as soon as possible after vbm , the duration from vbot in
sj−1 to v in sj will still be greater than 1

2T+m
(
2(3m+1)l

)
+(3m+1)l > RD(v),

which is a contradiction. Therefore, all vertices in
⋃

i∈{1,...,m}{pvtLi , pvtRi } must
appear in the subpath from vtop to vbm . The same holds for the subpath from
vbm to vbot by similar arguments. Now note that by Proposition 6, a fragment
v � v′ may visit at most two vertices—{pvtLi , pvtRi } for some i ∈ {1, . . . ,m}.
The proposition then follows from Proposition 5. 
	
Proposition 9. In each segment sj, a fragment v � v′ visits all vertices in
either Row i or Row i+m for some i ∈ {1, . . . ,m} but not a single vertex in⋃

j �=i
j∈{1,...,m}

(Row j ∪ Row j+m).
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Now consider a fragment v � v′ that visits pvtLi and pvtRi (by Proposition 8).
By Proposition 5, v � v′ must also visit exactly two vertices other than pvtLi
in LCGi and exactly two vertices other than pvtRi in RCGi (once for each). It
is not hard to see that v � v′ must contain, in order, the following subpaths
(together with some obvious choices of edges connecting these subpaths):

(i). A long edge, e.g., vi → vb,Ri .
(ii). A ‘side’, e.g., vb,Ri → vm,R

i → vt,Ri .
(iii). A subpath consisting of a pvt vertex and two other vertices in the relevant

consistency gadget, e.g., out↑,Ri → pvtRi → in↓,R
i .

(iv). A traversal of a row with detours.
(v). A subpath consisting of a pvt vertex and two other vertices in the relevant

consistency gadget.
(vi). A side.
(vii). A long edge.

The following proposition is then immediate. In particular, the exact value of
dur(v � v′) is decided by:

– FT of the long edges taken in (i) and (vii)
– detours to clause vertices in (iv).

Proposition 10. In each segment sj, the following holds for all fragments v � v′:

2(3m+ 1)l + l ≤ dur(v � v′) ≤ 2(3m+ 2)l + l + 2h.

Proposition 11. The order the sets {pvtLi , pvtRi } are visited (regardless of which
vertex in the set is first visited) in the first m fragments of each segment sj is
identical to the order they are visited in the last m fragments of sj−1.

Proof. By Proposition 10, if this does not hold then there must be a pvt vertex
having two occurrences in s separated by more than 1

2T +m
(
2(3m+ 1)l+ l

)
+

2(3m+ 1)l. This is a contradiction. 
	

For each segment sj , we denote by first(sj) the ‘first half’ of sj , i.e., the
subpath of sj that consists of the first m fragments of sj and by second(sj) the
‘second half’ of sj. Write ∃(v � v′) ⊆ u if u has a subpath of the form v � v′.

Proposition 12. In each segment sj = vtop � vb1 � · · · � vb2m−1 � vbot, we
have bi = i for all i ∈ {1, . . . , 2m− 1}.

Proof. First note that by construction and Proposition 8, {pvtLm, pvtRm} must be
the last set of pvt vertices visited in second(sj−1). By Proposition 11, it must
also be the last set of pvt vertices visited in first(sj). Now assume that a long
edge of flight time (3m+2)l is taken before pvtLm and pvtRm are visited in first(sj).
Consider the following cases:
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– ∃(pvtLm � pvtRm) ⊆ second(sj−1) and ∃(pvtRm � pvtLm) ⊆ first(sj): Note
that the last edge taken in sj−1 is a long edge of flight time (3m + 2)l,
and hence there are two occurrences of pvtLm in s separated by at least
1
2T +m

(
2(3m+1)l+ l

)
+2l > 1

2T +m
(
2(3m+1)l+ l

)
+ l+4h = RD(pvtLm).

– ∃(pvtRm � pvtLm) ⊆ second(sj−1) and ∃(pvtLm � pvtRm) ⊆ first(sj): The same
argument shows that pvtRm must miss its relative deadline.

– ∃(pvtLm � pvtRm) ⊆ second(sj−1) and ∃(pvtLm � pvtRm) ⊆ first(sj): The same
argument shows that both pvtLm and pvtRm must miss their relative deadlines.

– ∃(pvtRm � pvtLm) ⊆ second(sj−1) and ∃(pvtRm � pvtLm) ⊆ first(sj): The same
argument shows that both pvtLm and pvtRm must miss their relative deadlines.

We therefore conclude that in first(sj), all long edges taken before pvtLm and
pvtRm are visited must have FT equal to (3m + 1)l. Furthermore, all such long
edges must be traversed ‘downwards’ (by Proposition 5). It follows that bi = i
for i ∈ {1, . . . ,m − 1}. By Proposition 11, Proposition 5 and m > 2, we easily
derive that bm = m and then bi = i for i ∈ {m+ 1, . . . , 2m− 1}. 
	

By Proposition 12, the long edges in each variable gadget must be traversed
in the ways shown in Figures 9 and 10.

Fig. 9. The variable is assigned to true Fig. 10. The variable is assigned to false

Proposition 13. For each segment sj, the ways in which the long edges are
traversed in the last m fragments of sj are consistent with the ways in which the
long edges are traversed in the first m fragments of sj+1.

Proof. Without loss of generality, consider the case that ∃(pvtLi � pvtRi ) ⊆
second(sj) and ∃(pvtRi � pvtLi ) ⊆ first(sj+1). By Proposition 12, these two
occurrences of pvtLi in s are separated by, at least, the sum of 1

2T +m
(
2(3m+

2)l + l
) − (2i − 1)l and the duration of the actual subpath pvtRi � pvtLi in

first(sj+1). It is clear that pvtLi must miss its relative deadline. 
	
Proposition 14. In each segment sj, if a variable gadget is traversed as in
Figure 9 (Figure 10), then all of its clause boxes are traversed in Pattern ‘	’
(Pattern ‘
’).

Consider a segment sj . As each clause vertex is visited once in sj (by Propo-
sition 5), the ways in which the long edges are traversed in all fragments v � v′
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of sj (i.e., as in Figure 9 or Figure 10) can be seen as a satisfying assignment
of ϕ(0) (by construction and Proposition 14). By the same argument, the ways
in which the long edges are traversed in all fragments of sj+1 can be seen as a
satisfying assignment of ϕ(1). Now by Proposition 13, the assignment of vari-
ables x1 is consistent in both segments. By IH, s witnesses a (periodic) satisfying
assignment of

∧
j≥0 ϕ(j). Proposition 3 is hence proved.

Finally, note that FT can easily be modified into a metric over V by replacing
each entry of value 2T with the ‘shortest distance’ between the two relevant
vertices. It is easy to see that Proposition 3 still holds. Our main result, which
holds for the metric case, follows immediately from Section 2.2.

Theorem 15. The cr-uav Problem is PSPACE-complete.4

4 Conclusion

We have proved that the cr-uav Problem is PSPACE-complete even in the
single-UAV case. The proof reveals a connection between a periodically specified
problem and a recurrent path-planning problem (which is not succinctly specified
in the sense of [14]). We list below some possible directions for future work:

1. A number of crucial problems in other domains, e.g., the generalised pin-
wheel scheduling problem [8] and the message ferrying problem [24], share
similarities with the cr-uav Problem—namely, they have relative deadlines
and therefore ‘contexts’. Most of these problems are only known to be NP-
hard. It would be interesting to investigate whether our construction can be
adapted to establish PSPACE-hardness of these problems.

2. It is claimed in [13] that the restricted case in which vertices can be realised as
points in a two-dimensional plane (with discretised distances between points)
is NP-complete (with a single UAV). A natural question is the relationship
with the problem studied in the present paper.

3. Current approaches to solving the cr-uav Problem often formulate it as
a Mixed-Integer Linear Program (MILP) and then invoke an off-the-shelf
solver (see, e.g., [4]). Yet as implied by Proposition 3, the length of a solution
can however be exponential in the size of the problem instance. We are
currently investigating alternative implementations which would overcome
such difficulties.
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Typing Weak MSOL Properties
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Abstract. We consider λY -calculus as a non-interpreted functional pro-
gramming language: the result of the execution of a program is its normal
form that can be seen as the tree of calls to built-in operations. Weak
monadic second-order logic (wMSO) is well suited to express properties
of such trees. We give a type system for ensuring that the result of the
execution of a λY -program satisfies a given wMSO property. In order to
prove soundness and completeness of the system we construct a denota-
tional semantics of λY -calculus that is capable of computing properties
expressed in wMSO.

1 Introduction

Higher-order functional programs are more and more often used to write inter-
active applications. In this context it is important to reason about behavioral
properties of programs. We present a kind of type and effect discipline [22]
where a well-typed program will satisfy behavioral properties expressed in weak
monadic second-order logic (wMSO).

We consider the class of programs written in the simply-typed calculus with
recursion and finite base types: the λY -calculus. This calculus offers an abstrac-
tion of higher-order programs that faithfully represents higher-order control. The
dynamics of an interaction of a program with its environment is represented by
the Böhm tree of a λY -term that is a tree reflecting the control flow of the pro-
gram. For example, the Böhm tree of the term Y x.ax is the infinite sequence of
a’s, representing that the program does an infinite sequence of a actions with-
out ever terminating. Another example is presented in Figure 1. A functional
program for the factorial function is written as a λY -term Fct and the value of
Fct applied to a constant c is calculated. Observe that all constants in Fct are
non-interpreted. The Böhm tree semantics means call-by-name evaluation strat-
egy. Nevertheless, call-by-value evaluation can be encoded, so can be finite data
domains, and conditionals over them [18,13]. The approach is then to translate
a functional program to a λY -term and to examine the Böhm tree it generates.

Since the dynamics of the program is represented by a potentially infinite tree,
monadic second-order logic (MSOL) is a natural candidate for the language
to formulate properties in. This logic is an extension of first-order logic with
quantification over sets. MSOL captures precisely regular properties of trees [25],
and it is decidable if the Böhm tree generated by a given λY -term satisfies a given
property [23]. In this paper we will restrict to weak monadic second-order logic
(wMSO). The difference is that in wMSO quantification is restricted to range

c© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 343–357, 2015.
DOI: 10.1007/978-3-662-46678-0_22
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Fig. 1. Böhm tree of the factorial function

over finite sets. While wMSO is a proper fragment of MSO, it is sufficiently strong
to express safety, reachability, and many liveness properties. Over sequences, that
is degenerated trees where every node has one successor, wMSO is equivalent to
full MSO.

The basic judgments we are interested in are of the form BT (M) � α mean-
ing that the result of the evaluation of M , i.e. the Böhm tree of M , has the
property α formulated in wMSO. Going back to the example of the factorial
function from Figure 1, we can consider a property: all computations that even-
tually take the “if” branch of the conditional are finite. This property holds in
BT (Fct c). Observe by the way that BT (Fct c) is not regular – it has infinitely
many non-isomorphic subtrees as the number of subtractions is growing. In gen-
eral the interest of judgments of the form BT (M) � α is to be able to express
liveness and fairness properties of executions, like: “every open action is eventu-
ally followed by a close action”, or that “there are infinitely many read actions”.
Various other verification problems for functional programs can be reduced to
this problem [18,20,24,32,12].

Technically, the judgment BT (M) � α is equivalent to determining whether a
Böhm tree of a given λY -term is accepted by a given weak alternating automa-
ton. This problem is known to be decidable thanks to the result of Ong [23], but
here we present a denotational approach. Our two main contributions are:

– A construction of a finitary model for a given weak alternating automaton.
The value of a term in this model determines if the Böhm tree of the term
is accepted by the automaton. So verification is reduced to evaluation.

– Two type systems. A typing system deriving statements of the form “the
value of a term M is bigger than an element d of the model”; and a typ-
ing system for dual properties. These typing systems use standard fixpoint
rules and follow the methodology coined as Domains in Logical Form [1].
Thanks to the first item, these typing systems can directly talk about ac-
ceptance/rejection of the Böhm tree of a term by an automaton. These type
systems are decidable, and every term has a “best” type that simply repre-
sents its value in the model.



Typing Weak MSOL Properties 345

Having a model and a type system has several advantages over having just
a decision procedure. First, it makes verification compositional: the result for
a term is calculated from the results for its subterms. In particular, it opens
possibilities for a modular approach to the verification of large programs. Next,
it enables semantic based program transformations as for example reflection of
a given property in a given term [8,29,13]. It also implies the transfer theorem
for wMSO [28] with a number of consequences offered by this theorem. Finally,
models open a way to novel verification algorithms be it through evaluation,
type system, or through hybrid algorithms using typing and evaluation at the
same time [31]. We come back to these points in the conclusions.

Historically, Ong [23] has shown the decidability of the MSO theory of Böhm
trees for all λY -terms. This result has been revisited in several different ways.
Some approaches take a term of the base type, and unroll it to some infinite
object: tree with pointers [23], computation of a higher-order pushdown automa-
ton with collapse [14], a collection of typing judgments that are used to define a
game [19], a computation of a Krivine machine [27]. Very recently Tsukada and
Ong [33] have presented a compositional approach: a typing system is used to
reduce the verification problem to a series of game solving problems. Another
recent advance is given by Hofmann and Chen who provide a type system for
verifying path properties of trees generated by first-order λY -terms [11]. In other
words, this last result gives a typing system for verifying path properties of trees
generated by deterministic pushdown automata. Compared to this last work, we
consider the whole λY -calculus and an incomparable set of properties.

Already some time ago, Aehligh [2] has discovered an easy way to prove Ong’s
theorem restricted to properties expressed by tree automata with trivial accep-
tance conditions (TAC automata). The core of his approach can be formulated by
saying that the verification problem for such properties can be reduced to eval-
uation in a specially constructed and simple model. Later, Kobayashi proposed
a type system for such properties and constructed a tool based on it [18]. This
in turn opened a way to an active ongoing research resulting in the steady im-
provement of the capacities of the verification tools [17,9,10,26]. TAC automata
can express only safety properties. Our model and typing systems set the stage
for practical verification of wMSO properties.

The model approach to verification of λY -calculus is quite recent. In [29] it
is shown that simple models with greatest fixpoints capture exactly properties
expressed with TAC automata. An extension is then proposed to allow one to
detect divergence. The simplicity offered by models is exemplified by Haddad’s
recent work [13] giving simple semantic based transformations of λY -terms.

We would also like to mention two other quite different approaches to inte-
grate properties of infinite behaviors into typing. Naik and Palsberg [21] make a
connection between model-checking and typing. They consider only safety prop-
erties, and since their setting is much more general than ours, their type system
is more complex too. Jeffrey [15,16] has shown how to incorporate Linear Tempo-
ral Logic into types using a much richer dependent types paradigm. The calculus
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is intended to talk about control and data in functional reactive programming
framework, and aims at using SMT solvers.

In the next section we introduce the main objects of our study: λY -calculus,
and weak alternating automata. Section 3 presents the type system. Its sound-
ness and completeness can be straightforwardly formulated for closed terms of
atomic type. For the proof though we need a statement about all terms. This
is where the model based approach helps. Section 4 describes how to construct
models for wMSO properties. In Section 5 we come back to our type systems.
The general soundness and completeness property we prove says that types can
denote every element of the model, and the type systems can derive precisely
the judgments that hold in the model (Theorem 3). In the conclusion section
we mention other applications of our model. All proofs can be found in a long
version of the paper [30].

2 Preliminaries

We quickly fix notations related to the simply typed λY -calculus and to Böhm
trees. We then recall the definition of weak alternating automata on ranked trees.
These will be used to specify properties of Böhm trees.

λY -calculus. The set of types T is constructed from a unique basic type o using
a binary operation → that associates to the right. Thus o is a type and if A, B
are types, so is (A → B). The order of a type is defined by: order (o) = 0, and
order (A → B) = max(1 + order (A), order (B)). We work with tree signatures
that are finite sets of typed constants of order at most 1. Types of order 1 are
of the form o → · · · → o → o that we abbreviate oi → o when they contain
i+ 1 occurrences of o. For convenience we assume that o0 → o is just o. If Σ is
a signature, we write Σ(i) for the set of constants of type oi → o. In examples
we will often use constants of type o → o as this makes the examples more
succinct. At certain times, we will restrict to the types o and o2 → o that are
representative for all the cases.

Simply typed λY -terms are built from the constants in the signature, and
constants Y A, ΩA for every type A. These stand for the fixpoint combinator and
undefined term, respectively. Apart from constants, for each type A there is a
countable set of variables xA, yA, . . . . Terms are built from these constants and
variables using typed application and λ-abstraction. We shall write sequences
of λ-abstractions λx1. . . . λxn. M with only one λ: either λx1 . . . xn. M , or even
shorter λx. M . We will often write Y x.M instead of Y (λx.M). Every λY -term
can be written in this notation since Y N has the same Böhm tree as Y (λx.Nx),
and the latter term is Y x.(Nx). We take for granted the operational semantics of
the calculus given by β and δ reductions. The Böhm tree of a term M is obtained
by reducing it until one reaches a term of the form λx.N0N1 . . . Nk with N0 a
variable or a constant. Then BT (M) is a tree having its root labeled by λx.N0

and having BT (N1), . . . , BT (Nk) as subtrees. Otherwise BT (M) = ΩA, where
A is the type of M . Böhm trees are infinite normal forms of λY -terms. A Böhm
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tree of a closed term of type o over a tree signature is a potentially infinite ranked
tree: a node labeled by a constant a of type oi → o has i successors (c.f. Figure 1).

Example. As an example take (Y F. N)a where N = λg.g(b(F (λx.g(g x)))). Both
a and b have the type o → o; while F has type (o → o) → o, and so does N .
Observe that we are using a more convenient notation Y F here. The Böhm
tree of (Y F.N)a is BT ((Y F.N)a) = aba2ba4b . . . a2

n

b . . . after every consecutive
occurrence of b the number of occurrences of a doubles because of the double
application of g inside N .

wMSO and Weak Alternating Automata. We will be interested in properties
of trees expressed in weak monadic second-order logic. This is an extension of
first-order logic with quantification over finite sets of elements. The interplay of
negation and quantification allows the logic to express many infinitary properties.
The logic is closed for example under constructs: “for infinitely many vertices a
given property holds”, “every path consisting of vertices having a given property
is finite”. From the automata point of view, the expressive power of the logic is
captured by weak alternating automata. A weak alternating automaton accepts
trees over a fixed tree signature Σ.

A weak alternating tree automaton over the signature Σ is:

A = 〈Q,Σ, q0 ∈ Q, {δi}i∈N , ρ : Q → N〉
where Q is a finite set of states, q0 ∈ Q is the initial state, ρ is the rank function,
and δi : Q × Σ(i) → P(P(Q)i) is the transition function. For q in Q, we call
ρ(q) its rank. The automaton is weak in the sense that when (S1, . . . , Si) is in
δi(q, a), then the rank of every q′ in

⋃
1≤j≤i Sj is not bigger than the rank of q,

ρ(q′) ≤ ρ(q).
Observe that since Σ is finite, only finitely many δi are nontrivial. From the

definition it follows that δ2 : Q×Σ(2) → P(P(Q)×P(Q)) and δ0 : Q×Σ(0) →
{0, 1}. We will simply write δ without a subscript when this causes no ambiguity.

Automata will work on Σ-labeled binary trees that are partial functions t :
N ∗ ·→ Σ ∪ {Ω} such that the number successors of a node is determined by the
label of the node. In particular, if t(u) ∈ Σ(0) ∪ {Ω} then u is a leaf.

The acceptance of a tree is defined in terms of games between two players
that we call Eve and Adam. A play between Eve and Adam from some node v
of a tree t and some state q ∈ Q proceeds as follows. If v is a leaf and is labeled
by some c ∈ Σ(0) then Eve wins iff δ0(q, c) holds. If the node is labeled by Ω
then Eve wins iff the rank of q is even. Otherwise, v is an internal node; Eve
chooses a tuple of sets of states (S1, . . . , Si) ∈ δ(q, t(v)). Then Adam chooses Sj

(for j = 1, . . . , i) and a state q′ ∈ Sj . The play continues from the j-th son of v
and state q′. When a player is not able to play any move, he/she looses. If the
play is infinite then the winner is decided by looking at ranks of states appearing
on the play. Due to the weakness of A the rank of states in a play can never
increase, so it eventually stabilizes at some value. Eve wins if this value is even.
A tree t is accepted by A from a state q ∈ Q if Eve has a winning strategy in
the game started from the root of t and from q.
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Automata with trivial acceptance conditions, as considered by Kobayashi [17],
are obtained by requiring that all states have rank 0. Automata with co-trivial
are just those whose all states have rank 1.

Observe that without a loss of generality we can assume that δ is monotone,
i.e. if (S1, . . . , Si) ∈ δ(q, a) then for every (S′

1, . . . , S
′
i) such that Sj ⊆ S′

j ⊆
{q′ : ρ(q′) ≤ ρ(q)} we have (S′

1, . . . , S
′
i) ∈ δ(q, a). Indeed, adding the transitions

needed to satisfy the monotonicity condition does not give Eve more winning
possibilities.

An automaton defines a language of closed terms of type o whose Böhm trees
it accepts from its initial state q0:

L(A) = {M : M is closed term of type o, BT (M) is accepted by A from q0}

3 Type Systems for wMSOL

In this section we describe the main result of the paper. We present a type
system to reason about wMSO properties of Böhm trees of terms (a dual type
system is presented in the appendix). We will rely on the equivalence of wMSO
and weak alternating automata, and construct a type system for an automaton.
For a fixed weak alternating automaton A we want to characterize the terms
whose Böhm trees are accepted by A, i.e. the set L(A). The characterization
will be purely type theoretic (cf. Theorem 1).

Fix an automaton A = 〈Q,Σ, q0, {δi}i∈N , ρ〉. Let m be the maximal rank,
i.e., the maximal value ρ takes on Q. For every 0 ≤ k ≤ m we write Qk = {q ∈
Q : ρ(q) = k} and Q≤k = {q ∈ Q : ρ(q) ≤ k}.

The type system we propose is obtained by allowing the use of intersections
inside simple types. This idea has been used by Kobayashi [18] to give a typing
characterization for languages of automata with trivial acceptance conditions.
We work with, more general, weak acceptance conditions, and this will be re-
flected in the stratification of types, and two fixpoint rules: greatest fixpoint rule
for even strata, and the least fixpoint rule for odd strata.

First, we define the sets of intersection types. They are indexed by a rank of
the automaton and by a simple type. Note that every intersection type will have
a corresponding simple type; this is a crucial difference with intersection types
characterizing strongly normalizing terms [4]. Letting TypeskA =

⋃
0≤l≤k types

l
A

we define:

typesko = {q ∈ Q : ρ(q) = k}, typeskA→B = {T → s : T ⊆ TypeskA and s ∈ typeskB} .

The difference with simple types is that now we have a set constructor that will
be interpreted as the intersection of its elements.

When we write typesA or TypesA we mean typesmA and TypesmA respectively;
where m is the maximal rank used by the automaton A.

For S ⊆ TypeskA and T ⊆ typeskB we write S → T for {S → t : t ∈ T }. Notice
that S → T is included in typeskA→B.
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We now give subsumption rules that express the intuitive dependence between
types. So as to make the connection with the model construction later, we have
adopted an ordering of intersection types that is dual to the usual one.

S ⊆ T ⊆ Q

S �0 T

∀s ∈ S,∃t ∈ T, s �A t

S �A T

s = t

s �0 t

T �A S s �B t

S → s �A→B T → t

Given S ⊆ TypesA→B and T ⊆ TypesA we write S(T ) for the set {t : (U → t) ∈
S ∧ U 
 T }.

The typing system presented in Figure 2 derives judgments of the form Γ �
M ≥ S where Γ is an environment containing all the free variables of the term
M , and S ⊆ TypesA with A the type of M . As usual, an environment Γ is a
finite list x1 ≥ S1, . . . , xn ≥ Sn where x1, . . . , xn are pairwise distinct variables
of type Ai, and Si ⊆ TypesAi

. We will use a functional notation and write Γ (xi)
for Si. We shall also write Γ, x ≥ S with its usual meaning.

The rules in the first row of Figure 2 express standard intersection types de-
pendencies: the axiom, the intersection rule and the subsumption rule. The rules
in the second line are specific to our fixed automaton. The third line contains the
usual rules for application and abstraction. The least fixpoint rule in the next
line is standard. The greatest fixpoint rule in the last line is more intricate. It
is allowed only on even strata. If taken for k = 0 the rule becomes the standard
rule for the greatest fixpoint as the set T must be the empty set. For k > 0 the
rule permits to incorporate T that is the result of the fixpoint computation on
the lower stratum.

Γ, x ≥ S 	 x ≥ S

Γ 	 M ≥ S Γ 	 M ≥ T

Γ 	 M ≥ S ∪ T

Γ 	 M ≥ S T � S

Γ 	 M ≥ T

Γ 	 c ≥ {q : δo(q, c) holds}
(S1, . . . , Si) ∈ δ(a, q)

Γ 	 a ≥ {S1 → · · · → Si → q}

Γ 	 M ≥ S Γ 	 N ≥ T

Γ 	 MN ≥ S(T )

S ⊆ Typesk, T ⊆ typesk Γ, x ≥ S 	 M ≥ T

Γ 	 λx.M ≥ S → T

Γ 	 (λx.M) ≥ S Γ 	 (Y x.M) ≥ T
Y odd

Γ 	 Y x.M ≥ S(T )

S ⊆ types2kA , T ⊆ Types2k−1
A , Γ 	 λx.M ≥ (S ∪ T ) → S Γ 	 Y x.M ≥ T

Y even
Γ 	 Y x.M ≥ S ∪ T

Fig. 2. Type system

The main result of the paper says that the typing in this system is equivalent
to accepting with our fixed weak alternating automaton.
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Theorem 1. For every closed term M of type o and every state q of A: the
judgment � M ≥ q is derivable iff A accepts BT (M) from q.

Since there are finitely many types, this typing system is decidable. As we will see
in the following example, this type system allows us to prove in a rather simple
manner properties of Böhm trees that are beyond the reach of trivial automata.
Compared to Kobayashi and Ong type system [19], the fixpoint typing rules
we propose avoid the use of an external solver for a parity game. Our type
system makes it also evident what is the meaning of higher-order terms with
free variables. In the example below we use fixpoint rules on terms of order 2.

Example 2. Consider the term M = (Y F.N)a where N = λg.g(b(F (λx.g(g x)))).
As we have seen on page 347, BT (M) = aba2ba4b . . . a2

n

b . . . . We show with
typing that there are infinitely many occurrences of b in BT (M). To this end we
take an automaton has states Q = {q1, q2}, and works over the signature that
contains a and b. The transitions of the automaton are:

δ(q1, a) = {q1} δ(q2, a) = {q1, q2} δ(q1, b) = ∅ δ(q2, b) = q2

The ranks of states are indicated by their subscripts. Starting with state q2,
the automaton only accepts sequences that contain infinitely many b’s. So our
goal is to derive � (Y F.N)a ≥ q2. First observe that from the definition of the
transitions of the automaton we get axioms:

	 a ≥ q1 → q1 	 a ≥ {q1, q2} → q2 	 b ≥ ∅ → q1 	 b ≥ q2 → q2

Looking at the typings of a, we can see that we will get our desired judgment
from the application rule if we prove:

� Y F.N ≥ S where S is {q1 → q1, {q1, q2} → q2} → q2.

To this end, we apply subsumption rule and the greatest fixpoint rule:

	 λF.N ≥ (S ∪ T ) → S 	 Y F.N ≥ T
Y even

	 Y F.N ≥ S ∪ T

	 Y F.N ≥ S

where T = {(q1 → q1) → q1}

The derivation of the top right judgment uses the least fixpoint rule:

g ≥ q1 → q1 	 g ≥ q1 → q1 g ≥ q1 → q1 	 b(F (λx.g(g x))) ≥ q1

g ≥ q1 → q1 	 g(b(F (λx.g(g x)))) ≥ q1

	 λFλg.g(b(F (λx.g(gx)))) ≥ ∅ → (q1 → q1) → q1
Y odd

	 Y F.N ≥ (q1 → q1) → q1

We have displayed only one of the two premises of the Y odd rule since the
other is of the form ≥ ∅ so it is vacuously true. The top right judgment is
derivable directly from the axiom on b. The derivation of the remaining judgment
� λF.N ≥ (S ∪ T ) → S is as follows.
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Γ 	 g ≥ {q1, q2} → q2 Γ 	 b(F (λx.g(g x))) ≥ q1, q2

Γ 	 g(b(F (λx.g(g x)))) ≥ q2

	 λFλg.g(b(F (λx.g(gx)))) ≥ (S ∪ T ) → S

where Γ is F ≥ S∪T, g ≥ {q1 → q1, {q1, q2} → q2}. So the upper left judgment is
an axiom. The other judgment on the top is an abbreviation of two judgments:
one to show ≥ q1 and the other one to show ≥ q2. These two judgments are
proven directly using application and intersection rules.

4 Models for Weak Automata

This section presents the model that captures wMSO properties. We assume
basic knowledge about domain theory. More specifically, we shall work with
(finite) complete lattices and with monotone functions between complete lattices.
Given two complete lattices L1 and L2 we write mon[L1 �→ L2] for the complete
lattice of monotone functions between L1 and L2. We construct a model that
captures the language defined by a weak automaton: this model depends only on
the states of the automaton and their ranks. The transitions of the automaton
will be encoded in the interpretation of constants.

The challenge in this construction comes from the fact that simply using the
least or greatest fixpoints is not sufficient. Indeed, we have shown in [29] that
extremal fixpoints in finitary models of λY -calculus capture precisely boolean
combinations of properties expressed by automata with trivial acceptance con-
ditions. The structure of a weak automaton will help us here. For the sake of the
discussion let us fix an automatonA, and let A≤k stand for A restricted to states
of rank at most k. Ranks stratify the automaton: transitions for states of rank
k depend only on states of rank at most k. We will find this stratification in our
model too. The interpretation of a term at stratum k will give us the complete
information about the behaviour of the term with respect to A≤k. Stratum k+1
will refine this information. Since in a run the ranks cannot increase, the infor-
mation calculated at stratum k+1 does not change what we already know about
A≤k. Abstract interpretation tells us that refinements of models are obtained via
Galois connections which are instrumental in our construction. In our model, ev-
ery element in the stratum k is refined into a complete lattice in the stratum
k + 1 (cf. Figure 3). Therefore we will be able to define the interpretations of
fixpoints by taking at stratum k the least or the greatest fixpoint depending on
the parity of k. In the whole model, the fixpoint computation will perform a sort
of zig-zag as represented in Figure 4.

We fix a finite set of states Q and a ranking function ρ : Q → N . Let m be
the maximal rank, i.e., the maximal value ρ takes on Q. Recall that for every
0 ≤ k ≤ m we let Qk = {q ∈ Q : ρ(q) = k} and Q≤k = {q ∈ Q : ρ(q) ≤ k}.

We define by induction on k ≤ m an applicative structure Dk = (Dk
A)A∈types

and a logical relation Lk (for 0 < k) between Dk−1 and Dk. For k = 0, the
model D0 is just the model of monotone functions over the powerset of Q0 with
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D0
o = P(Q0) and D0

A→B = mon[D0
A �→ D0

B]. For k > 0, we define Dk by means
of Dk−1 and a logical relation Lk:

Dk
o =P(Q≤k) Lk

o = {(R,P ) ∈ Dk−1
o ×Dk

o : R = P ∩Q≤(k−1)},
Lk
A→B ={(f1, f2) ∈ Dk−1

A→B ×mon[Dk
A �→ Dk

B] :

∀(g1, g2) ∈ Lk
A. (f1(g1), f2(g2)) ∈ Lk

B}
Dk

A→B ={f2 : ∃f1 ∈ Dk−1
A→B. (f1, f2) ∈ Lk

A→B}

Observe that Dk
A is defined by a double induction: the outermost on k and the

auxiliary induction on the size of the type. Since Lk is a logical relation between
Dk−1 and Dk, each Dk is an applicative structure. As Dk−1

o = P(Q≤(k−1)), the

refinements of elements R in Dk−1
o are simply the sets P in P(Q≤k) so that

R = P ∩ Q≤(k−1). This explains the definition of Lk
o . For higher types, Lk is

defined as it is usual for logical relations. Notice that Dk
A→B is the subset of

the monotone functions e from Dk
A to Dk

B for which there exist an element d in
Dk−1

A→B so that (d, e) is in Lk
A→B ; that is we only keep those monotone functions

that correspond to refinements of elements in Dk−1
A→B .

Remarkably this construction puts a lot of structure on Dk
A. The first thing

to notice is that for each type A, Dk
A is a complete lattice. Given d in Dk−1

A ,
we write Lk

A(d) for the set {e ∈ Dk
A : (d, e) ∈ Lk

A}. For each d, we have that
Lk
A(d) is a complete lattice and that moreover, for d1 and d2 in Dk−1

A , Lk
A(d1)

and Lk
A(d2) are isomorphic complete lattices. We write d↑∨ and d↑∧ respectively

for the greatest and the least elements of Lk
A(d). Finally, for each element e in

Dk
A, there is a unique d so that (d, e) is in Lk

A, we write e↓ for that element.
Figure 3 represents schematically the essential properties of Dk

A.
The formalization of the intuition that Dk

A is a refinement of Dk−1
A is given

by the fact that the mappings (·)↓ and (·)↑∨ form a Galois connection between
Dk

A and Dk−1
A and that (·)↓ and (·)↑∧ form a Galois connection between Dk−1

A

and Dk
A.

Fig. 3. Relation between models Dk−1 and Dk. Every element in Dk−1 is related to a
sub-lattice of elements in Dk.

We can now define fixpoint operators in every applicative structure Dk.
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Definition 1. For f ∈ D0
A→A we define fix0A(f) =

∧{fn(�0) : n ≥ 0}. For
0 < 2k ≤ m and f ∈ D2k

A→A we define

fix2kA (f) =
∧

{fn(e) : n ≥ 0} where e = (fix2k−1
A (f↓))↑∨

For 0 < 2k + 1 ≤ m and f ∈ D2k+1
A→A we define

fix2k+1
A (f) =

∨
{fn(d) : n ≥ 0} where d = (fix2kA (f↓))↑∧

Observe that, for even k, e is obtained with (·)↑∨ ; while for odd k, (·)↑∧ is used.
The intuitive idea behind the definition of the fixpoint is presented in Figure 4.

On stratum 0 it is just the greatest fixpoint. Then this greatest fixpoint is lifted
to stratum 1, and the least fixpoint computation is started from it. The result
is then lifted to stratum 2, and once again the greatest fixpoint computation is
started, and so on. The Galois connections between strata guarantee that this
process makes sense.

Fig. 4. A computation of a fixpoint: it starts in D0, and then the least and the greatest
fixpoints alternate

Equipped with the interpretation of fixpoints given by Definition 1 the ap-
plicative structure Dk is a model of the λY -calculus. In particular, two terms
that are βδ-convertible have the same interpretation in that model. A constant
c in Σ(i), is then interpreted as the function fk,c of Dk

oi→o so that for every
S1, . . . , Si ⊆ Dk

o , fk,c(S1, . . . , Si) = {q ∈ Dk
o : (S1, . . . , Si) ∈ δ(c, q)}. Observe

that the identity (fk+1,c)
↓ = fk,c holds. Moreover if we let A(M) = {q ∈ Q :

A accepts BT (M) from q} be the set of states from which A accepts the tree
BT (M), then we have that:

Theorem 2. For every closed term M of type 0, and for every 0 ≤ k ≤ m we
have: [[M ]]k = A(M) ∩Q≤k.

The two directions of Theorem 2 are proved using different techniques. The left
to right inclusion uses a rather simple unrolling. The other inclusion is proved
using a standard technique based on logical relations.
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5 From Models to Type Systems

We are now in a position to show that our type system from Figure 2 can reason
about the values of λY -terms in a stratified model (Theorem 3). Thanks to
Theorem 2 this means that the type system can talk about the acceptance of the
Böhm tree of a term by the automaton. This implies soundness and completeness
of our type system, Theorem 1.

Throughout this section we work with a fixed signature Σ and a fixed weak
alternating automaton A = 〈Q,Σ, q0, δo, δo2→o, ρ〉. As in the previous section,
for simplicity of notations we will assume that the constants in the signature are
of type o or o → o → o. We will also prefer the notation Y x.M to Y (λx.M).

The arrow constructor in types will be interpreted as a step function in the
model. Step functions are particular monotone functions from a lattice L1 to a
lattice L2. For d in L1 and e in L2, the step function d ⇁ e is defined by:

(d ⇁ e)(h) = e when d ≤ h ⊥ otherwise

Types can be meaningfully interpreted at every level of the model. So [[t]]l will
denote the interpretation of t in Dl defined as follows.

[[q]]
l
= {q} if ρ(q) ≤ l, ∅ otherwise

[[S]]
l
=

∨
{[[t]]l : t ∈ S} for S ⊆ TypesA

[[T → s]]
l
= [[T ]]

l
⇁ [[s]]

l
for (T → s) ∈ TypesA

Actually every element ofDl is the image of some type via [[·]]l: types are syntactic
representations of the model. The next theorem is the main technical result of
the paper. It says that the type system can derive all lower-approximations of
the meanings of terms in the model. For an environment Γ , we write [[Γ ]]

k
for

the valuation such that [[Γ ]]
k
(x) = [[Γ (x)]]

k
.

Theorem 3. For k = 0, . . . ,m and S ⊆ Typesk: [[M ]]
k
[[Γ ]]k ≥ [[S]]

k
iff Γ � M ≥

S is derivable.

The above theorem implies Theorem 1 stating soundness and completeness of
the type system. Indeed, let us take a closed term M of type o, and a state q
of our fixed automaton A. Theorem 2 tells us that [[M ]] = A(M); where A(M)
is the set of states from which A accepts BT (M). So � M ≥ q is derivable iff
[[M ]] ⊇ {q} iff q ∈ A(M).

One may ask if it is also possible to reason about over-approximations of
the value of a term, i.e. about statements of the form [[M ]]

k
[[Γ ]]k ≤ d. This is

indeed possible thanks to the dualities of the model. It is enough to dualize the
type system: restricting the rule for greatest fixpoint on odd ranks instead of
even ones, taking the dual subsumption order for the types, and typing constant
with the transitions of the dual weak alternating automaton. This dual system
is presented in the appendix. It derives judgments of the form: Γ � M � S
since the interpretation of S is also dualized. Without going into details of this
dualization we can state the following theorem.
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Theorem 4. For every closed term M of type o and every state q of A: the
judgment � M � q is derivable iff A does not accept BT (M) from q.

Together the type system and its dual give a precise characterization of [[M ]] =
L(A) that is the set of states from which our fixed automaton A accepts BT (M).

Corollary 1. For a closed term M of type o, [[M ]] = [[S]] iff both � M ≥ S and
� M � (Q− S).

6 Conclusions

We have shownhow to construct amodel for a givenweak alternating tree automa-
ton so that the value of a term in themodel determines if the Böhm tree of the term
is accepted by the automaton. Our construction builds on ideas from [29] but re-
quires to bring out the modular structure of the model. This structure is very rich,
as testified by Galois connections. This structure allows us to derive type systems
for wMSO properties following the “domains in logical form” approach.

The type systems are relatively streamlined: the novelty is the stratification of
types used to restrict applicability of the greatest fixpoint rule. In comparison,
Kobayashi and Ong [19] use a type system only as an intermediate formalism to
obtain a game whose solution answers the model-checking problem. Their type
system handles only closed terms of type o. It does not have a rule for lambda-
abstraction, nor for fixpoints (that are handled via games). Tsukada and Ong
have recently proposed a higher-order analogue of this system [33]. Even in
this new approach the fixpoint is still handled by games, and the algorithmic
properties of the model behind their system are not investigated. While our
approach applies only to wMSO, our model is simply based on functions over
finite sets with standard application operation.

Typing in our system is decidable, actually the height of the derivation is
bounded by the size of the term. Yet the width can be large, that is unavoidable
given that the typability is n-Exptime hard for terms of order n [31]. Due to
the correspondence of the typing with semantics, every term has a “best” type.

While the paper focuses on typing, our model construction can be also used in
other contexts. It allows us to immediately deduce reflection [8] and transfer [28]
theorems for wMSO. Our techniques used to construct models and prove their
correctness rely on usual techniques of domain theory [3], offering an alternative,
and arguably simpler, point of view to techniques based on unrolling.

The idea behind the reflection construction is to transform a given term so
that at every moment of its evaluation every subterm “knows” its meaning in
the model. In [8] this property is formulated slightly differently and is proved
using a detour to higher-order pushdown automata. Recently Haddad [13] has
given a direct proof for all MSO properties. The proof is based on some notion
of applicative structure that is less constrained than a model of the λY -calculus.
One could apply his construction, or take the one from [29].

The transfer theorem says that for a fixed finite vocabulary of terms, an MSOL
formula ϕ can be effectively transformed into an MSOL formula ϕ̂ such that for
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every term M of type 0 over the fixed vocabulary: M satisfies ϕ̂ iff the Böhm
tree of M satisfies ϕ. Since the MSO theory of a term, that is a finite graph,
is decidable, the transfer theorem implies decidability of MSO theory of Böhm
trees of λY -terms. As shown in [28] it gives also a number of other results.

A transfer theorem for wMSO can be deduced from our model construction.
For every wMSO formula ϕ we need to find a formula ϕ̂ as above. For this we
transform ϕ into a weak alternating automaton A, and construct a model Dϕ

based on A. Thanks to the restriction on the vocabulary, it is quite easy to write
for every element d of the model Dϕ a wMSO formula αd such that for every

term M of type 0 in the restricted vocabulary: M � αd iff [[M ]]
Dϕ = d. The

formula ϕ̂ is then just a disjunction
∨

d∈F αd, where F is the set elements of Dϕ

characterizing terms whose Böhm tree satisfies ϕ.
The fixpoints in our models are non-extremal: they are neither the least nor

the greatest fixpoints. From [29] we know that this is unavoidable. We are aware
of very few works considering such cases. Our models are an instance of carte-
sian closed categories with internal fixpoint operation as studied by Bloom and
Esik [6]. Our model satisfies not only Conway identities but also a generaliza-
tion of the commutative axioms of iteration theories [5]. Thus it is possible to
give semantics to the infinitary λ-calculus in our models. It is an essential step
towards obtaining an algebraic framework for weak regular languages [7].

References

1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51(1-2),
1–77 (1991)

2. Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science 3(1), 1–23 (2007)

3. Amadio, R.M., Curien, P.-L.: Domains and Lambda-Calculi. Cambridge Tracts in
Theoretical Computer Science, vol. 46. Cambridge University Press (1998)

4. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and
the completeness of type assignment. J. Symb. Log. 4, 931–940 (1983)
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regular games over Böhm trees. In: LICS (to appear, 2014)

https://hal.archives-ouvertes.fr/hal-01061202


 

 

 
 
 
 
 
 
 
 
 
 
 

Logical Aspects of Computational 
Complexity 

 
 
 
 
 
 
 
 
 
 
 



Three Variables Suffice for Real-Time Logic

Timos Antonopoulos1, Paul Hunter2, Shahab Raza1, and James Worrell1

1 Department of Computer Science, Oxford University, UK
{timos,shahab,jbw}@cs.ox.ac.uk
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Abstract. A natural framework for real-time specification is monadic
first-order logic over the structure (R, <,+1)—the ordered real line with
unary +1 function. Our main result is that (R, <,+1) has the 3-variable
property: every monadic first-order formula with at most 3 free variables
is equivalent over this structure to one that uses 3 variables in total.
As a corollary we obtain also the 3-variable property for the structure
(R, <, f) for any fixed linear function f : R → R. On the other hand, we
exhibit a countable dense linear order (E,<) and a bijection f : E → E
such that (E,<, f) does not have the k-variable property for any k.

1 Introduction

Monadic first-order logic is an expansion of first-order logic by infinitely many
unary predicate variables. In this setting a class of structures C is said to have
the k-variable property if every formula with at most k free first-order variables
is equivalent over C to a formula with at most k first-order variables in total
(allowing multiple binding occurrences of the same variable). The k-variable
property for monadic first-order logic over linearly ordered structures has been
studied in [1,2,4,8,12,14,15], among others. In finite model theory the k-variable
property plays an important role in descriptive complexity. Over infinite models
it is closely connected with expressive completeness of temporal logics.

It is well known that Linear Temporal Logic (LTL) with Stavi modalities is
expressively complete for monadic first-order logic over the class of linear or-
ders [3,13]. More precisely, LTL is expressively complete for the class of monadic
first-order formulas with one free variable (corresponding to the fact that LTL
formulas are evaluated at a single point of a linear order). The translation from
LTL to first-order logic is a straightforward inductive construction that maps
into the 3-variable fragment of first-order logic. It follows that every monadic
first-order formula with at most one free variable is equivalent to a 3-variable
formula over linear orders. However this is a strictly weaker condition than the
3-variable property in general: Hodkinson and Simon [8] give a class of par-
tial orders over which every monadic first-order formula with at most one free
variable is equivalent to a 3-variable formula, but which does not have the k-
variable property for any k. Nevertheless the 3-variable property does hold over
linear orders, as shown by Poizat [14] and Immerman and Kozen [12], using
Ehrenfeucht-Fräıssé games.
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DOI: 10.1007/978-3-662-46678-0_23
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Going beyond pure linear orders, Venema [16] gives a dense linear order with a
single equivalence relation over which monadic first-order logic does not have the
k-variable property for any k. A more powerful result by Rossman [15] shows that
the class of finite linearly ordered graphs does not have the k-variable property
for any k, resolving a longstanding conjecture of Immerman [11].

In this paper we are concerned with monadic first-order logic over the ordered
reals with unary +1 function (R, <,+1). This logic has been extensively studied
in the context of real-time verification. An expansion of (R, <,+1) with interpre-
tations of the unary predicate variables can be seen as a real-time signal, with the
unary predicates denoting propositions that may or may not hold at any given
time. First-order logic over signals can express both metric and order-theoretic
temporal properties and is an expressive meta-language into which many differ-
ent real-time logics can directly be translated [5,6]. In particular, first-order logic
over signals is expressively equivalent with Metric Temporal Logic (MTL) [9,10].

Our main result is that (R, <,+1) has the 3-variable property. For example,
the property

∀x1∃x2∃x3∃x4

⎛

⎝x4 < x1 + 1 ∧
∧

1≤i≤3

xi < xi+1 ∧
∧

2≤i≤4

P (xi)

⎞

⎠

that P is true at least 3 times in every unit interval can equivalently be written

∀x∃y(x < y ∧ P (y) ∧ ∃z(y < z ∧ P (z) ∧ ∃y(z < y < x+ 1 ∧ P (y)))) .

From the expressive completeness of MTL it follows that every monadic first-
order formula with at most one free variable is equivalent to a 3-variable formula
over (R, <,+1). However, as remarked above, this condition is weaker than the
3-variable property in general. Moreover the proof of expressive completeness
of MTL combines intricate syntactic manipulations of MTL formulas together
with technically involved results of [3] for LTL. On the other hand, the model-
theoretic argument given here, using Ehrenfeucht-Fräıssé games, is self-contained
and exposes a novel two-level compositional technique that can potentially be
applied in more general settings and to other ends (see the Conclusion).

As a corollary of our main result we straightforwardly derive the 3-variable
property for each structure (R, <, f) with f : R → R a linear function f(x) =
ax + b. We believe that the result can be generalised to other linear orders
and suitably well-behaved functions. However, unsurprisingly, the property fails
for sufficiently ‘wild’ functions. Adapting Venema’s construction [16], we give an
example of a countable dense linear order E and a (far from monotone) bijection
f : E → E such that (E,<, f) does not have the k-variable property for any k.

The paper naturally divides into two parts. Sections 3 to 4 are exclusively
concerned with the structure (R, <,+1), while Sections 5 and 6 consider other
unary functions in place of +1.
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2 Background

2.1 Ehrenfeucht-Fräıssé Games

Throughout the paper we work with a first-order signature σ with a binary rela-
tion symbol < and a unary function symbol f . The monadic first-order language
over σ is defined as follows:

– There is an infinite collection of monadic predicate variables P1, P2, . . ..
– The atomic formulas are x = y, x < y, Pn(x), and x = f(y) for first-order

variables x and y and n ∈ N.
– If ϕ1 and ϕ2 are formulas and x is a variable then ¬ϕ1, ϕ1 ∧ ϕ2 and ∃xϕ1

are also formulas.

Referring to the restricted use of the function symbol f in atomic formulas, we
say that the formulas above are unnested. The unnesting assumption essentially
amounts to treating the function symbol f as a binary relation symbol. We make
this assumption as an alternative to restricting to a purely relational signature.
The unnesting assumption does not affect expressiveness since we can translate
an arbitrary formula to an equivalent unnested formula by successively replacing
atomic formulas fm(x) = fn(y) with m > 0 by ∃z (z = f(x)∧fm−1(z) = fn(y)),
and similarly for fm(x) < fn(y). While this transformation may increase the
quantifier depth, it preserves the subclass of 3-variable formulas.

Let A = (A,<A, fA, P
A
) denote a σ-structure expanded with interpretations

of the monadic predicate variables P1, P2, . . .. We call A a labelled σ-structure.
Given first-order variables x1, . . . , xk, an assignment in A with
domain {x1, . . . , xk} is a tuple u = u1 . . . uk in Ak. Given another assignment v
with the same domain in a labelled σ-structure B, we say that (u, v) is a partial
isomorphism between A and B if A |= ϕ[u] iff B |= ϕ[v] for all atomic formulas
ϕ(x1, . . . , xk).

The Ehrenfeucht-Fräıssé (EF) game on structures A and B is played by two
players—Spoiler and Duplicator.1 Each player has a collection of pebbles, re-
spectively labelled x1, x2, . . .. The game is played over a fixed number of rounds.
In each round Spoiler chooses a structure and places a pebble on an element
of the structure (either an unused pebble or one that has already been placed);
Duplicator responds by placing a pebble with the same label on some element
of the other structure. A placement of k pebbles on each structure naturally
determines a pair of assignments (u, v), called a k-configuration. (Our notation
for k-configurations leaves the structures A and B implicit.) If the configura-
tion after each round is a partial isomorphism then Duplicator wins, otherwise
Spoiler wins. For each configuration (u, v) and number of rounds n, exactly one
of the players has a winning strategy in the n-round game starting from (u, v)
(see [12] for more details).

A natural restriction on Ehrenfeucht-Fräıssé games is to limit each player to
a fixed number of pebbles. In the k-pebble game both Spoiler and Duplicator

1 By convention, Spoiler is male and Duplicator is female.
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possess only k pebbles, respectively labelled x1, . . . , xk. The following theorem
shows how Ehrenfeucht-Fräıssé games can be used to characterise the expres-
siveness of first-order logic according to the number of variables.

Theorem 2.1 ([12]). Let C be a class of σ-structures such that for all n there
exists m such that if Spoiler wins the n-round Ehrenfeucht-Fräıssé game on a
pair of labelled structures from C starting in a k-configuration (u, v), then he also
wins the m-round k-pebble game starting in (u, v). Then C has the k-variable
property.

In the remainder of this section we specialise our attention to the σ-structure
(R, <,+1). In this case we call a labelled σ-structure a signal.

In addition to k-pebble games, on signals we introduce another restriction of
Ehrenfeucht-Fräıssé games.Givenanassignmentu∈ R

kwithdomain{x1, . . . , xk},
the diameter of u is diam(u) = max{|ui − uj | : 1 ≤ i, j ≤ k}. Given D ∈ R, the
D-local game on a pair of signals is such that Spoiler andDuplicatormustmaintain
the invariant that all assignments have diameter at mostD.

We will always explicitly indicate any restrictions on the number of pebbles or
the diameter of configurations in games: thus the default notion of Ehrenfeucht-
Fräıssé game is without restriction on the number of pebbles or the diameter.

Recall that our main result is that (R, <,+1) has the 3-variable property. The
main conceptual insight underlying the proof is that one should first prove the
3-variable property for “local” formulas. We treat locality semantically through
the notion of local EF games, as defined above, but intuitively a local formula is
one that asserts properties of elements at a bounded distance from one another.
For example, ∃x∃y (P (x)∧Q(y)∧x,< y < x+1) is local but ∃x∃y (P (x)∧Q(y))
is not local.

We prove the 3-variable property for local formulas by a compositional argu-
ment based on the fractional-part preorder on R. We then extend the 3-variable
property to all formulas by adapting the well-known composition lemma for
sums of linear orders to the structure (R, <,+1). Roughly speaking, this sec-
ond compositional lemma shows that Duplicator strategies on summands can be
composed provided that there is sufficient distance between pebbles in different
summands. However this precondition is not always met and here it is crucial
that we have already established the 3-variable property for local formulas.

2.2 Interpretations

In this section we briefly deviate from the setting of linear orders and unary
functions to recall from [7, Chapter 4.3] the notion of an interpretation of one
first-order structure in another.

Let σ1 and σ2 be signatures,A a σ1-structure with domain A,B a σ2-structure
with domain B, and n a positive integer. An n-dimensional interpretation Γ of
B in A consists of three items:

– a σ1-formula ∂Γ (x1, . . . , xn) denoting the domain of the interpretation, which
is the set ∂Γ (A

n) := {a ∈ An : A |= ∂Γ [a]}.
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– for each unnested atomic σ2-formula ϕ(x1, . . . , xm), a σ1-formula ϕΓ (x1, . . . ,
xm) in which the xi are disjoint n-tuples of distinct variables,

– a surjective coding map fΓ : ∂Γ (A
n) → B such that for all unnested atomic

σ2-formulas ϕ and all ai ∈ ∂Γ (A
n),

B |= ϕ[fΓa1, . . . , fΓam] iff A |= ϕΓ [a1, . . . , am] .

3 From Local Games to 3-Pebble Games

In this section we consider an Ehrenfeucht-Fräıssé game on two signals A and
B. Here u = u1 . . . us will always denote an assignment in A and v = v1 . . . vs
will always denote an assignment in B.

Write u ≡ v if u and v are indistinguishable by difference constraints, that is,
ui − uj < c ⇔ vi − vj < c and ui − uj = c ⇔ vi − vj = c for all constants c ∈ Z

and indices 1 ≤ i, j ≤ s. Equivalently, u ≡ v if and only if 
ui − uj� = 
vi − vj�
for all indices 1 ≤ i, j ≤ s.2 Assignments that are indistinguishable by difference
constraints are, in particular, ordered the same way.

Define the fractional part of u ∈ R by frac(u) = u − 
u�. The proof of the
following proposition can be found in the Appendix.

Proposition 3.1. Let u = u1 . . . us and v = v1 . . . vs be two assignments with
u ≡ v. Then

frac(ui − uk) < frac(uj − uk) ⇔ frac(vi − vk) < frac(vj − vk)

for all indices i, j, k ∈ {1, . . . , s}.
We say that u1 . . . us is in increasing order if frac(ui − u1) ≤ frac(ui+1 − u1)

for i = 1, . . . , s − 1. Intuitively u1 . . . us is in increasing order if it is listed
in increasing order of fractional parts relative to u1. Note that if u1 . . . us is
in increasing order then any cyclic permutation is also in increasing order. By
Proposition 3.1, if u ≡ v then u and v can both be brought into increasing order
by a common permutation.

The following proposition can be seen as a compositional lemma for ≡. The
proof can be found in the Appendix.

Proposition 3.2. Suppose that u1 . . . us and v1 . . . vs are both increasing and
that u1 . . . um ≡ v1 . . . vm and um . . . us ≡ vm . . . vs for some m, 1 ≤ m ≤ s.
Then u1 . . . us ≡ v1 . . . vs.

Proposition 3.3 and Corollary 3.4 show that three pebbles suffice to determine
equivalence of configurations under the relation ≡.

Proposition 3.3. Let n ∈ N. Consider a 2-configuration (u1u2, v1v2) such that
either (i) u1 − u2 < c and v1 − v2 �< c for some non-negative integer c < 2n or
(ii) u1 − u2 = c and v1 − v2 �= c for some non-negative integer c ≤ 2n. Then
Spoiler wins the n-round 3-pebble game from (u1u2, v1v2).

2 Note that �ui − uj� = �vi − vj� if and only if �uj − ui� = �vj − vi�, so there is no
need to add a separate clause for ceiling in the characterisation of ≡.
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Proof. The proof is by induction on n.
Base case (n = 0). Under either assumption (i) or (ii) the configuration

(u1u2, v1v2) is not a partial isomorphism, and is therefore immediately winning
for Spoiler in the 3-pebble game.

Induction step (n ≥ 1). Suppose u1 − u2 < c but v1 − v2 �< c, where c < 2n.
Write c′ = 
c/2�, so that c′ < 2n−1 and c−c′ ≤ 2n−1. Suppose that Spoiler places
a pebble on u3 such that u1−u3 = c− c′ and u3−u2 < c′. Since v1− v2 �< c, for
any response v3 of Duplicator we either have v1 − v3 �= c− c′ or v3 − v2 �< c′. In
the first case, by the induction hypothesis, (u1u3, v1v3) is winning in n−1 rounds
for Spoiler; likewise in the second case (u2u3, v2v3) is winning in n − 1 rounds
for Spoiler. Thus in either case (u1u2u3, v1v2v3) is winning in n − 1 rounds for
Spoiler. We conclude that (u1u2, v1v2) is winning in n rounds for Spoiler. This
handles (i); Case (ii) is almost identical. ��
Corollary 3.4. Let (u, v) be a 3-configuration such that u �≡ v and at least one
of u and v has diameter at most 2m. Then Spoiler wins the m-round 3-pebble
game from (u, v).

Proof. Since u �≡ v, there are indices i, j such that ui − uj ∼ c and vi − vj �∼ c
for some non-negative integer constant c and comparison operator ∼ ∈ {<,=}.
Moreover, since at least one of u and v has diameter at most 2m, we can assume
that c ≤ 2m. But then Spoiler wins the m-round 3-pebble game from (u, v) by
Proposition 3.3. ��

One can think of following proposition as showing the 3-variable property for
local formulas. The proof uses the compositional principle in Proposition 3.2.

Proposition 3.5. Let (u, v) be a 3-configuration of diameter at most 2m. If
Spoiler wins the n-round 2m-local game from (u, v) then he wins the (m + n)-
round 3-pebble game from (u, v).

Proof. If u �≡ v then the result follows from Corollary 3.4. Thus it suffices to
prove the proposition under the assumption u ≡ v.

Without loss of generality assume that u and v are both increasing. The proof
is by induction on n, with the following induction hypothesis.

Induction Hypothesis: Let assignments u1 . . . us ≡ v1 . . . vs be increasing and
have diameter at most 2m. If Spoiler wins the n-round 2m-local game from (u, v),
then he wins the (m+n)-round 3-pebble game from a 2-configuration of the form
(uiui+1, vivi+1), 1 ≤ i ≤ s− 1, or (usu1, vsv1).

Base case (n = 0). By assumption (u, v) is immediately winning for Spoiler
in the local game. Since u ≡ v, ui and vi must disagree on a unary predicate for
some index i. Then (ui, vi) is immediately winning for Spoiler in the 3-pebble
game. Clearly the position remains immediately winning for Spoiler if we add
an extra pebble to each assignment. Thus the base case of the induction is
established.

Induction step (n ≥ 1). Pick a Spoiler move according to his winning strategy
in the local game in configuration (u, v). Without loss of generality, assume that
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this move, say u′, is in structure A. Since any cyclic permutation of an increasing
configuration is also increasing, we may assume without loss of generality that
u1 . . . usu

′ is increasing.
If (u1us, v1vs) is winning for Spoiler in the (m+n)-round 3-pebble game then

we are done, so suppose that this is not the case. Then there exists a Duplicator
move v′ such that (u1usu

′, v1vsv′) is winning for Duplicator in the (m+ n− 1)-
round 3-pebble game. Since diam(u1usu

′) ≤ 2m, by Corollary 3.4 we must have
u1usu

′ ≡ v1vsv
′. It follows that v1 . . . vsv′ is increasing.

Since u1 . . . usu
′ and v1 . . . vsv

′ are increasing, u1 . . . us ≡ v1 . . . vs, and usu
′ ≡

vsv
′, by Proposition 3.2 we have

u1 . . . usu
′ ≡ v1 . . . vsv

′ . (1)

Since the pair of assignments in (1) is winning for Spoiler in the (n − 1)-
round local game, by the induction hypothesis there exists a sub-configuration
(comprising two consecutive pebbles in each assignment) from which Spoiler wins
the (m+n−1)-round 3-pebble game. This 2-configuration cannot be (usu

′, vsv′)
nor (u1u

′, v1v′), since (u1usu
′, v1vsv′) is winning for Duplicator in the (m+n−1)-

round 3-pebble game. Thus Spoiler must win the (m + n − 1)-round 3-pebble
game from a 2-configuration (uiui+1, vivi+1) for some i ∈ {1, . . . , s−1}.A fortiori
Spoiler also wins the (m+ n)-round 3-pebble game from this configuration. ��

4 Main Results

4.1 Composition Lemma

In this section we consider an Ehrenfeucht-Fräıssé game on two signals A and
B. We will prove a Composition Lemma that allows us to compose winning
Duplicator strategies under certain assumptions. From this we obtain our main
result, that monadic first-order logic over signals has the 3-variable property.

Assume assignments u = u1 . . . us in A and v = v1 . . . vs in B with u1 < . . . <
us and v1 < . . . < vs. The Composition Lemma is predicated on a decompo-
sition of u into a left part u� = u1 . . . ul, middle part u� = ul . . . ur, and right
part u� = ur . . . us, where 1 ≤ l ≤ r ≤ s. We call ul the left boundary and ur

the right boundary. The left margin is defined to be margin(u�) = ul − ul−1,
where u0 = −∞ by convention. Likewise the right margin is defined to be
margin(u�) = ur+1 − ur, where us+1 = ∞ by convention. We consider a corre-
sponding decomposition of v into v� = v1 . . . vl, v� = vl . . . vr, and v� = vr . . . vs,
for the same values of l and r.

The Composition Lemma gives conditions under which we can obtain a win-
ning strategy for Duplicator in a configuration (u, v) by composing winning
Duplicator strategies in the left configuration (u�, v�), the middle configuration
(u�, v�), and right configuration (u�, v�), see Figure 1. The main idea behind
the proof is to maintain adequate separation between pebbles played by the left
and middle Duplicator strategies, and likewise between pebbles played by the
middle and right strategies. We do this by maintaining the left and right margins
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u1 . . . u�−1 u� u�+1 . . . ur ur+1 . . . us

v1 . . . v�−1 vl v�+1 . . . vr vr+1 . . . vs

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸

(u�, v�)
(u�, v�)

(u�, v�)

margin(u�)

diam(u�)
margin(u�)

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

Right StrategyMiddle StrategyLeft Strategy

Fig. 1. Situation of the Composition Lemma

appropriately. Importantly for later use, we need only assume that Duplicator
has a local winning strategy in the middle configuration.

Lemma 4.1 (Composition Lemma). Suppose that Duplicator wins the n-
round games from configurations (u�, v�) and (u�, v�) respectively, and let D be
such that Duplicator wins the 3n-round D-local game from configuration (u�, v�).
If margin(u�) > 2n, margin(u�) > 2n, D ≥ diam(u�)+2n+1, and the correspond-
ing three conditions also hold for v, then Duplicator wins the n-round game from
configuration (u, v).

Proof. We show that configuration (u, v) is winning for Duplicator in the n-round
game. The proof is by induction on n.

Base case (n = 0). Note that (u, v) is a partial isomorphism since (u�, v�),
(u�, v�), and (u�, v�) are all partial isomorphisms, margin(u�) and margin(v�)
are both greater than one, and likewise for margin(u�) and margin(v�).

Induction step (n > 0). Without loss of generality assume that Spoiler plays
a move u′ in structure A. We consider three cases.

Case (i). Suppose that u′ < ul− 2n−1. Then Duplicator’s winning strategy in
configuration (u�, v�) yields a response v′ such that (u�u

′, v�v′) is winning for
Duplicator in the (n−1)-round game. In particular, applying Proposition 3.3, we
have v′ < vl − 2n−1. Applying the induction hypothesis to (u�u

′, v�v′), (u�, v�),
and (u�, v�) we get that (uu

′, vv′) is winning for Duplicator in the (n− 1)-round
game.

Case (ii). Suppose that u′ > ur + 2n−1. This case is entirely analogous to
Case (i), except that Duplicator’s response to u′ is generated from her winning
strategy in configuration (u�, v�).

Case (iii). Suppose that ul − 2n−1 ≤ u′ ≤ ur + 2n−1. Then Duplicator’s win-
ning strategy in configuration (u�, v�) yields a response v′ such that Duplicator
wins the (3n− 1)-round D-local game from (u�u′, v�v′). By Proposition 3.3 we
must have vl − 2n−1 ≤ v′ ≤ vr + 2n−1.

To apply the induction hypothesis, the idea is to “expand the middle config-
uration” by adding new left and right boundary pebbles u′

l, u
′
r and v′l, v

′
r respec-

tively. Formally, Spoiler moves u′
l := ul−2n−1 and u′

r := ur+2n−1 in the D-local
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game in position (u�u′, v�v′) force Duplicator responses v′l := vl−2n−1 and v′r :=
vr+2n−1 such that (u′

lu�u′u′
r, v

′
lv�v

′v′r) is winning for Duplicator in the 3(n−1)-
round D-local game. By the same reasoning, (u�u

′
l, v�v

′
l) and (u′

ru�, v
′
rv�) are

both winning positions for Duplicator in the (n − 1)-round game. A fortiori
(u1 . . . ul−1u

′
l, v1 . . . vl−1v

′
l) and (u′

rur+1 . . . us, v
′
rvr+1 . . . vs) are also both win-

ning for Duplicator in the (n − 1)-round game. Finally, applying the induction
hypothesis with left configuration (u1 . . . ul−1u

′
l, v1 . . . vl−1v

′
l), middle configu-

ration (u′
lu�u′u′

r, v
′
lv�v

′v′r), and right configuration (u′
rur+1 . . . us, v

′
rvr+1 . . . vs),

we conclude that (uu′, vv′) is winning for Duplicator in n− 1 rounds. ��

4.2 3-Variable Theorem

Proposition 4.2. Suppose that Duplicator wins the (4n + 2)-round 3-pebble
game from a configuration (u, v) with |u| = |v| ≤ 3. Then she also wins the
n-round (unrestricted-pebble) game from configuration (u, v).

Proof. The proof is by induction on n. The base case (n = 0) is immediate, and
the induction step (n > 0) is as follows. Suppose that |u| = |v| < 3. Then for
any Spoiler move, Duplicator replies using her 3-pebble strategy, leading to a
3-configuration (u′, v′). Duplicator now has a winning strategy for the (4n+1)-
round 3-pebble game starting from the configuration (u′, v′), and therefore she
also has a winning strategy for the (4(n − 1) + 2)-round 3-pebble game from
(u′, v′). By the induction hypothesis, she has a winning strategy for the (n− 1)-
round unrestricted game from (u′, v′), and therefore a winning strategy for the
n-round game from (u, v).

Now suppose that |u| = |v| = 3. We claim that given any 3-configuration
(u, v), we can decompose it into a left part (u�, v�), a middle part (u�, v�) and
a right part (u�, v�), satisfying the following desiderata:

1. diam(u�) ≤ 2n+1,
2. margin(u�) > 2n and margin(u�) > 2n,
3. |u�| ≤ 2 and |u�| ≤ 2,
4. Conditions 1–3 hold for v�, v�, and v�.

By Proposition 3.5, if the above four conditions hold, we obtain that Duplica-
tor has a winning strategy for the 3n-round 2n+2-local game from the configura-
tion (u�, v�). Furthermore, by (3) and the case described above for configurations
of size strictly less than 3, it follows that Duplicator has a winning strategy for
the n-round games from the configurations (u�, v�) and (u�, v�). Thus, by ap-
plying the Composition Lemma 4.1, Duplicator has a winning strategy for the
n-round game from the configuration (u, v).

It remains to show that given any 3-configuration (u, v), we can always find a
decomposition that satisfies the above conditions. We show this by the following
case analysis. Without loss of generality, assume that u1 ≤ u2 ≤ u3 and v1 ≤
v2 ≤ v3.

Case(i). Suppose that u2−u1 ≤ 2n and u3−u2 ≤ 2n. Then it is also the case
that v2 − v1 ≤ 2n and v3 − v2 ≤ 2n, since otherwise Spoiler would have a n-
round 3-pebble winning strategy by the contraposition of Corollary 3.4. Then let
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u� = u1, u� = u3 and u� = u1u2u3, and assume a corresponding decomposition
of v.

Case(ii). Suppose that u3 − u2 > 2n and u2 − u1 > 2n. Then it is also the
case that v3 − v2 > 2n and v2 − v1 > 2n by Corollary 3.4. Let then u� = u2,
u� = u1u2, u� = u2u3, and consider the corresponding decomposition for v.

Case(iii). Suppose finally that u3 − u2 > 2n and u2 − u1 ≤ 2n. By Corollary
3.4, we also have that v3 − v2 > 2n and v2 − v1 ≤ 2n. Let u� = u1, u� = u1u2,
u� = u2u3 and consider the corresponding decomposition of v.

The case where u3 − u2 ≤ 2n and u2 − u1 > 2n is symmetric. ��

From Proposition 4.2 and Theorem 2.1 we immediately obtain our main result:

Theorem 4.3. (R, <,+1) has the 3-variable property.

5 Linear Functions

In this section we show the 3-variable property for the σ-structure (R, <, f) with
f : R → R a linear function f(x) = ax+ b. This follows fairly straightforwardly
from our main result, Theorem 4.3, using the classical compositional method for
sums of ordered structures.

5.1 Monotone Linear Functions

Consider f : R → R given by f(x) = ax+ b, where a, b ∈ R and a > 0. We prove
that (R, <, f) has the 3-variable property.

Suppose that a = 1, that is, f(x) = x+b. If b > 0 then (R, <, f) is isomorphic
to (R, <,+1). If b < 0 then (R, <, f) is isomorphic to (R, <op,+1), where <op is
the opposite order on R. In either case (R, <, f) inherits the 3-variable property
from (R, <,+1).

Assume now that a �= 1. Notice that f has a unique fixed point x∗ = b
1−a .

Moreover, considering the intervals I0 = (−∞, x∗) and I1 = (x∗,∞), f restricts
to bijections fi : Ii → Ii for i = 0, 1. Now the map Φ0(x) = − log(x∗−x) defines
an isomorphism of σ-structures from (I0, <, f0) to (R, <,+a). Likewise the map
Φ1(x) = log(x − x∗) defines an isomorphism from (I1, <, f1) to (R, <,+a). It
follows that (I0, <, f0) and (I1, <, f1) both have the 3-variable property.

We argue that (R, <, f) has the 3-variable property as follows. LetA andB be
expansions of (R, <, f) with interpretations of the monadic predicate variables.
Let A0 be the sub-structure ofA with domain I0 and let A1 be the sub-structure
of A with domain I1. Define B0 and B1 likewise. Then if Spoiler wins the n-
round EF game on A and B he also wins the n-round game on the substructures
A0 andB0 and the n-round game onA1 and B1. Thus there existsm, depending
only on n, such that Spoiler wins the m-round 3-pebble EF games on A0 and B0

and on A1 and B1. Then by the usual composition argument on sums of ordered
structures [12], we can show that Spoiler wins the m-round 3-pebble game on A
and B.
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5.2 Antitone Linear Functions

Consider a linear function f(x) = ax + b, where a < 0. Note that the map
f2 := f ◦ f : R → R is monotone and linear. The idea is to exploit the fact
that (R, <, f2) has the 3-variable property to rewrite a given monadic first-order
σ-sentence ϕ to a 3-variable sentence ϕ′′ that is equivalent to ϕ over (R, <, f).
In this rewriting it is convenient to use x∗ as an additional constant symbol in
intermediate forms, where x∗ is the unique fixed point of f . We also allow nested
applications of f in intermediate formulas.

We obtain ϕ′′ as follows. Motivated by the fact that f maps the open in-
terval (x∗,∞) onto (−∞, x∗) and vice versa, working bottom-up, replace each
subformula ∃xψ by

∃x (x > x∗ ∧ (ψ ∨ ψ[f(x)/x] ∨ ψ[x∗/x])) .

Now simplify the atomic subformulas as follows, bearing in mind that all vari-
ables range over (x∗,∞). Replace every term fn(x∗) with x∗. Replace fn(x) = x∗

with false. Replace fn(x) = fm(y) with fn−1(x) = fm−1(y) if n and m are both
odd, and with false if n and m have different parity. If n is odd then replace
x∗ < fn(x) with false and fn(x) < x∗ with true. Replace fn(x) < fm(y) by
fn−1(x) < fm−1(y) if n and m are both odd, by true if n is odd and m is even,
and by false if n is even and m is odd. Finally eliminate the constant symbol x∗

using the fact that it is definable in terms of f2, e.g., replace each subformula
P (x∗) with ∃y (y = f2(y) ∧ P (y)).

Let ϕ′ denote the sentence arising from the above transformation. Treating
the atomic formulas P (f(x)) as unary predicate variables, we can interpret ϕ′ as
a monadic first-order sentence over the structure (R, <, f2). Since f2 is monotone
we can use the result of Section 5.1 to transform ϕ′ to an equivalent 3-variable
sentence ϕ′′ over (R, <, f2). Then ϕ′′ is equivalent to ϕ considered as a formula
over the structure (R, <, f).

6 Counterexample

In this section we exhibit a countable dense linear order E and function g : E →
E such that (E,<, g) does not have the k-variable property for any k.

Let (S,<) be the set of non-empty finite sequences of integers under the
lexicographic order, and let E be the equivalence relation on S that relates any
two such sequences that end with the same element. Since the integers have no
greatest or least element, any non-empty interval in S contains an element of
each E-equivalence class. Venema [16] has shown that the structure (S,<,E)
does not have the k-variable property for any k. For example, one can express
the property “predicate P holds on at least k+1 E-inequivalent elements” with
k + 1 variables but not k variables. Indeed it is not hard to see that in the
k-pebble EF game (over any number of rounds) Spoiler cannot distinguish the
cases that predicate P is a union of k E-equivalence classes and that P is a union
of k + 1 E-equivalence classes.
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We next translate this example to the setting of linear orders with unary
functions. Consider the equivalence relation E above as an ordered set under
the lexicographic order on S × S. Define g : E → E by g(s, t) = (t, s) and
consider the σ-structure E = (E,<, g) (where σ is the signature for linear orders
and unary functions, defined in Section 2.1). Note that g is very far from being
monotone.

To each labelled expansion S of (S,<,E) we associate a labelled expansion
E of (E,<, g), where PE = {(s, s) : s ∈ PS} for each monadic predicate symbol
P . There is moreover a one-dimensional interpretation Γ (cf. Section 2.2) of S
in E. The domain formula ∂Γ (x) of Γ is x = g(x) so that ∂Γ (E) = {(s, t) ∈
E : s = t}. The coding map fΓ : ∂Γ (E) → S is given by fΓ (s, s) = s. The
interpretation also specifies for each atomic formula ϕ(x1, . . . , xm) over S a cor-
responding formula ϕΓ (x1, . . . , xm) over E, with S |= ϕ[s1, . . . , sm] if and only if
E |= ϕΓ [(s1, s1), . . . , (sm, sm)] for all s1, . . . , sm ∈ S. This correspondence sends
x < y and P (x) to themselves and E(x, y) to the formula ψ(x, y)∨ψ(y, x), where

ψ(x, y) :=∃u (x < u < g(u) < y∧
∀v(x < v < u ∨ g(u) < v < y → g(v) �= v)) .

Conversely there is a natural two-dimensional first-order interpretation Γ of
E in S. The domain formula is ∂Γ (x, y) = E(x, y), and thus ∂Γ (S

2) = {(s, t) ∈
S×S : (s, t) ∈ E}. The coding map fΓ : ∂Γ (S

2) → E is given by fΓ (s, t) = (s, t).
The translation of atomic formulas over E to corresponding formulas over S is
similarly straightforward, e.g., x < y is mapped to x1 < y1∨ (x1 = y1∧x2 < y2).

As observed in Dawar [1, Section 3] in a similar context, the existence of such
a two-way interpretation entails that if (E,<, g) has the k-variable property for
some k then (S,<,E) has the k′-variable property for some k′. It follows that
(E,<, g) does not have the k-variable property for any k.

7 Conclusion and Future Work

We have shown that the structure (R, <, f) has the 3-variable property for linear
functions f : R → R. In future work it would be natural to consider whether the
k-variable property holds, for some k, for richer classes of functions, e.g., classes
of polynomials.

Moving beyond the reals, we would like to explore whether the results in this
paper generalise to arbitrary linear orders and families of monotone functions
thereon. More generally, there is the problem, raised by Immerman and Kozen
in the conclusion of [12], of finding a model-theoretic characterisation of those
classes of structures possessing the k-variable property for some k.

In those settings in which the k-variable property holds, following [4], it is nat-
ural to consider how the number of variables affects the succinctness of formulas
and, in view of [2], also to seek expressively complete temporal logics.
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A Appendix

A.1 Missing Proofs from Section 3

Proposition 3.1. Let u1 . . . us ≡ v1 . . . vs be two assignments. Then

frac(ui − uk) < frac(uj − uk) ⇔ frac(vi − vk) < frac(vj − vk)

for all indices i, j, k ∈ {1, . . . , s}.
Proof. Fix i, j, k ∈ {1, . . . , s}. From the assumption u1 . . . us ≡ v1 . . . vs we have
the following chain of equivalences:

frac(ui − uk) < frac(uj − uk) ⇔ ui − uk − 
ui − uk� < uj − uk − 
uj − uk�
⇔ ui − uj < 
ui − uk� − 
uj − uk�
⇔ vi − vj < 
ui − uk� − 
uj − uk�
⇔ vi − vj < 
vi − vk� − 
vj − vk�
⇔ vi − vk − 
vi − vk� < vj − vk − 
vj − vk�
⇔ frac(vi − vk) < frac(vj − vk) .

��
Proposition 3.2. Suppose that u1 . . . us and v1 . . . vs are both increasing and
that u1 . . . um ≡ v1 . . . vm and um . . . us ≡ vm . . . vs for some m, 1 ≤ m ≤ s.
Then u1 . . . us ≡ v1 . . . vs.

Proof. We must show that 
uj − ui� = 
vj − vi� for all i ≤ m < j. To this end,
we observe that since u1 . . . us is increasing,

frac(uj − ui) = frac(uj − um + (um − ui))

= frac(uj − um) + frac(um − ui) .

It follows that


uj − ui� = uj − ui − frac(uj − ui)

= (uj − um) + (um − ui)− (frac(uj − um) + frac(um − ui))

= (uj − um)− frac(uj − um) + (um − ui)− frac(um − ui)

= 
uj − um�+ 
um − ui� .

We can similarly show that


vj − vi� = 
vj − vm�+ 
vm − vi� .

But 
uj − um� = 
vj − vm� since um . . . us ≡ vm . . . vs. Likewise 
um − ui� =

vm−vi� since u1 . . . um ≡ v1 . . . vm. We conclude that 
uj−ui� = 
vj −vi�. ��
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Peter Habermehl1 and Dietrich Kuske2

1 LIAFA, University Paris Diderot, France
2 TU Ilmenau, Germany

Abstract. We consider Presburger arithmetic (PA) extended with mod-
ulo counting quantifiers. We show that its complexity is essentially the
same as that of PA, i.e., we give a doubly exponential space bound. This
is done by giving and analysing a quantifier elimination procedure sim-
ilar to Reddy and Loveland’s procedure for PA. We also show that the
complexity of the automata-based decision procedure for PA with mod-
ulo counting quantifiers has the same triple-exponential time complexity
as the one for PA when using least significant bit first encoding.

1 Introduction

Presburger arithmetic is the first-order theory of the structure Z, i.e., the in-
tegers with addition and comparision. More precisely, we also allow the binary
relations ≡k (standing for equality modulo k) for k � 2, and all constants c ∈ Z

to appear in formulas. This theory was shown to be decidable by Presburger [17],
upper bounds on the complexity of (fragments of) Presburger arithmetic can,
e.g., be found in [16,18,7,2,8,20,9]. Coding integers in binary, we know since
the 60’s that every definable relation can be accepted by a synchronous multi-
tape automaton. The basic idea is that a synchronous three-tape automaton
can verify the equation k + � = m (in terms of the codings of the numbers
k, �, and m) and synchronously rational relations are effectively closed under
Boolean operations and projection. At first glance, this translation results in au-
tomata of non-elementary size since complementation of automata comes with
an exponential blow-up. From Klaedtke’s results [13], it follows that automata of
triply-exponential size suffice and that they can be constructed in four-fold expo-
nential time using purely automata-theoretic methods. This result was improved
by Durand-Gasselin and Habermehl who showed that “small” automata can be
constructed efficiently, i.e., in triply-exponential time. Their first proof [6] uses
an ad hoc construction of automata, their second proof [5] is more uniform in
the sense that it applies to the structure Z and to automatic structures [10,11,3]
of bounded degree (improving a result from [14]). Thus, Presburger arithmetic
can be decided using automata-theoretic methods in triply exponential time.

More generally, these automata-theoretic methods rely on the fact that Z is an
automatic structure. The motivating result on automatic structures is that their

� This work was partially supported by EGIDE/DAAD-Procope TAMTV.

c© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 375–389, 2015.
DOI: 10.1007/978-3-662-46678-0_24



376 P. Habermehl and D. Kuske

first-order theory is decidable [10,11,3]. One line of research on automatic struc-
tures concentrated on the extension of this result to more powerful logics. One can,
for instance, extend first-order logic by a modulo-counting quantifier ∃(p′,p) saying
“modulo p, there are p′ elements satisfying ...”. The reason is that, as in the case
of Z and first-order logic, one can construct from a formula in this extended logic
a synchronousn-tape automaton that accepts all satisfying assignments of the for-
mula [12] (see [19] formore quantifierswith this property).1 SinceZ is an automatic
structure, this alsoholdshere independentofwhetherwecode integers inbase2or3.
Consequently, by the Cobham-Semenov theorem [4,22], any relation inZ definable
in this extended logic is effectively semilinear and therefore definable in first-order
logic not using themodulo-counting quantifier (this claim also follows from [1] that
presents a quantifier elimination for Härtig’s quantifier “the number of witnesses
for ϕ equals that for ψ”, see also [21]).

This paper determines the complexity of the set of all formulas in the extended
logic thathold inZ.To this aim,wefirstpresentaprocedure thateliminatesmodulo-
counting quantifiers (see the beginning of Section 3.3for a comparisionwithApelt’s
[1] and Schweikardt’s [21] procedures). This procedure is inspired by the classical
one by Reddy and Loveland [18]. As in [18], we do not analyse the complexity of
this procedure, but the resulting quantifier-free formula.We obtain that every for-
mula in the extended logic has an equivalent quantifier-free formula that uses coef-
ficients and moduli of doubly exponential size and constants of triply exponential
size. Based on this finding and classical results on solutions of linear Diophantine
equations [23], we show that the theory of the structureZ in the extended logic can
be decided in doubly exponential space.Based on the quantifier elimination,we can
also show that the construction of automata from formulas using the algorithms
known from the theory of automatic structures can be done in triply exponential
time. Thus, the theory of the structure Z in the extended logic can be decided in
triply exponential time using automata-theoreticmethods. In summary, we obtain
that adding modulo-counting quantifiers does not increase the complexity of the
theory of integer addition. Proof details can be found in the full version of the pa-
per.

2 Preliminaries

The structure. The universe of the structure Z is the set of integers Z. On this
set, we consider the constants c ∈ Z, the binary function +, the binary relation <
and the binary relations ≡k for k � 2 (with m ≡k n iff k | m− n).

The language. We will use a sequence x̄ = (xi)i∈N of variables. A term is an
expression ā x̄ + c where ā = (ai)i∈N is a sequence of integers with ai �= 0 for
finitely many i ∈ N and c ∈ Z. Let P be an arbitrary but fixed natural number.
Then formulas of LP , Presburger’s logic with modulo-counting quantifiers, are
defined by recursion:

1 In the complete version of this extended abstract, we show that the theory of an auto-
matic structure using only modulo-counting quantifiers can be non-elementary.
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– If s and t are terms, then s < t (also written t > s) and s ≡k t are (atomic)
formulas (for k � 2).

– If ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ ↔ ψ.

– If ϕ is a formula, x is a variable, and 0 � p′ < p, 2 � p � P are natural
numbers2, then ∃x : ϕ and ∃(p′,p)x : ϕ are formulas.

An evaluation is a function f that assigns integers to variables. For x a variable
and a ∈ Z, we let f [x/a] be the evaluation with f [x/a](x) = a and f [x/a](y) =
f(y) for all variables y �= x. We can extend in a standard way an evaluation
f to a function (also denoted f) that maps terms into Z and formulas to the
truth values tt and ff. In particular, if s and t are terms, then f(s ≡k t) = tt
iff f(s) − f(t) is a multiple of k. Furthermore, if ϕ and ψ are formulas, x a
variable, and 0 � p′ < p natural numbers, then f(∃(p′,p)x : ϕ) = tt iff the set
{a ∈ Z | f [x/a](ϕ) = tt} is finite and |{a ∈ Z | f [x/a](ϕ) = tt}| ≡p p′.

A formula ϕ is valid if f(ϕ) = tt for all evaluations f . Presburger arithmetic
with modulo-counting quantifiers is the set of all valid formulas of LP . For two
formulas F and G, we write F ⇔ G for ”f(F ) = f(G) for all evaluations f”.
We define as usual addition of terms as well as multiplication of a term with an
integer.

For a term t = ā x̄+ c and a variable xi, we call ai the coefficient of xi in t.
If the coefficient of xi in t is 0, then we call t an xi-free term.

Let x be a variable. Then an atomic formula ϕ is x-separated if there are
an x-free term t and a non-negative integer a ∈ N such that ϕ is of the form
ax < t, t < ax, or ax ≡k t. If t is an x-free term, then, e.g., the formula 0 ≡k t
is x-separated since we identified the terms 0x and 0.

An atomic formula is constant separated if it is of the form c < s or s ≡k c
where s is a term and c a constant.

A formula ϕ with a vector of k free variables x = (x1, . . . , xk) is also written
as ϕ(x). Then we define �ϕ(x)� = {(f(x1), . . . , f(xk)) | f is an evaluation such
that f(ϕ) = tt}. We also write a.x > c (resp. a.x ≡k c) for constant separated
formulas with free variables x.

Next, let ϕ be a formula. Then Coeff(ϕ) ⊆ Z is the set of integers −1, 0, 1
and ±a such that there is an atomic formula s < t in ϕ such that a is a coefficient
appearing in the term s−t. Similarly, Const(ϕ) ⊆ Z is the set of integers−1, 0, 1
and ±c such that there is an atomic formula s < t in ϕ such that c is the constant
term in s−t. The setMod(ϕ) ⊆ N contains all integers k � 2 such that an atomic
formula of the form s ≡k t appears in ϕ. Finally, P(ϕ) = Coeff(ϕ) ∪Mod(ϕ).

Note that Coeff(ϕ) and Const(ϕ) depend on subformulas of the form s < t,
but not on subformulas of the form s ≡k t. On the other hand, Mod(ϕ) only
depends on subformulas of the form s ≡k t.

2 This insures that we have only finitely many quantifiers.
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3 Quantifier Elimination and a Decision Procedure

3.1 Elimination of ∃
In this section, we will eliminate the quantifier from a formula of the form ∃x : β
where β is a Boolean combination of atomic formulas. Our main concern is the
“size” of the resulting formula, more precisely, of the coefficients, constants, and
moduli appearing in it. Neither the result (Proposition 3.3) nor the method
presented here is new, but this section is meant to simplify reading and to allow
the reader to grasp the new results concerning the modulo-counting quantifier.

To this aim, we define the following sets (that will turn out to overapproximate
the corresponding sets of the resulting quantifier-free formula):

Coeff′(β) = {a1a2 − a3a4 | a1, a2, a3, a4 ∈ Coeff(β)}

Const′(β) =
{

a1c1 − a2(c2 + c)

∣
∣
∣
∣
a1, a2 ∈ Coeff(β), c1, c2 ∈ Const(β)
|c| � maxCoeff(β) · lcmMod(β)

}

Mod′(β) = {a1a2kp | a1a2 ∈ Coeff(β), k ∈ Mod(β), 1 � p � P}

Using these sets, we formulate the following condition on the pair of formulas
(β, γ):

Coeff(γ) ⊆ Coeff′(β) , Const(γ) ⊆ Const′(β) ,Mod(γ) ⊆ Mod′(β) (1)

Lemma 3.1. Let β be a Boolean combination of x-separated atomic formulas,
ax < t or t < ax some atomic formula from β with a > 0 and −aN � c � aN
where N = lcmMod(β). There exists a Boolean combination βa,t+c of x-free
atomic formulas such that (β, βa,t+c) satisfies (1) and, for all evaluations f ,

f(ax) = f(t+ c) =⇒ f(β) = f(βa,t+c) .

Proof. The formula βa,t+c is obtained from β by the following replacements
(where s is some x-free term and k � 2):

a′x < s is replaced by a′t+ a′c < as
s < a′x is replaced by as < a′t+ a′c
a′x ≡k s is replaced by a′t+ a′c ≡ak as 
�

Lemma 3.2. Let x be a variable and β a Boolean combination of x-separated
atomic formulas. Then there exists a Boolean combination γ of x-free atomic
formulas such that (β, γ) satisfies (1) and (∃x : β) ⇔ γ.

Proof. Let T be the set of all pairs (a, t) such that β contains an atomic formula
of the form ax < t or t < ax with a > 0 (or T = {(1, 0)} if no such atomic formula
exists). Let furthermore N = lcm(Mod(β)) such that N is a multiple of every
integer k such that an atomic formula of the form ax ≡k t appears in β. Then

∃x : β is equivalent with the formula γ :=
∨

(a,t)∈T

∨

−aN�c�aN

(βa,t+c ∧ 0 ≡a t+ c).


�
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Proposition 3.3. Let x be a variable and α a Boolean combination of atomic
formulas. Then there exists a Boolean combination γ of x-free atomic formulas
such that (β, γ) satisfies (1) and (∃x : α) ⇔ γ.

Proof. Without changing the sets Coeff etc., we can transform α into an equiv-
alent Boolean combination β of x-separated atomic formulas. Then γ is the for-
mula obtained from Lemma 3.2. 
�

3.2 Elimination of ∃(p′,p)

In this section, we want to prove a proposition analogous to Prop. 3.3, where
∃x : α is replaced by ∃(p′,p)x : α. The crucial point is to prove the analogue of
Lemma 3.2.

Lemma 3.4. Let x be a variable, β a Boolean combination of x-separated atomic
formulas, and 0 � p′ < p � P natural numbers. Then there exists a Boolean com-
bination of atomic formulas γ such that (β, γ) satisfies (1) and (∃(p′,p)x : β) ⇔ γ.

The proof of this lemma requires several claims and definitions that we demon-
strate first, the actual proof of Lemma 3.4 can be found on page 381.

Let T be the set of all pairs (a, t) such that β contains an atomic formula of
the form ax < t or t < ax with a > 0 (if no such formula exists, set T = {(1, 0)}).

Let S be some non-empty subset of T and let ≺ be a strict linear order on S.
We call an evaluation f consistent with ≺ if the following hold:

– f(s1)
a1

< f(s2)
a2

⇐⇒ (a1, s1) ≺ (a2, s2) for all (a1, s1), (a2, s2) ∈ S

– for all (a1, t1) ∈ T , there exists (a2, s2) ∈ S with f(t1)
a1

= f(s2)
a2

.

In the following, let S = {(a1, s1), (a2, s2), . . . , (an, sn)} with (a1, s1) ≺ (a2, s2) ≺
· · · ≺ (an, sn). Consider the following formulas for 0 � r < p and 1 � i < n:

β0,r = ∃(r,p)x : (a1x < s1 ∧ β) βn,r = ∃(r,p)x : (sn < anx ∧ β)

βi,r = ∃(r,p)x : (si < aix ∧ ai+1x < si+1 ∧ β) β′
i,r = ∃(r,p)x : (x = si ∧ β)

If f is an evaluation, then β0,r expresses that (modulo p) there are r integers

b with f [x/b](β) = tt and b < f(s1)
a1

. Similarly, βi,r holds under f if and only

if there are (modulo p) r integers b in the open interval
(

f(si)
ai

, f(si+1)
ai+1

)
with

f [x/b](β) = tt etc. Now consider the formula

ϕ≺ =
∨

⎛

⎝
∧

0�i�n

βri,p ∧
∧

1�i�n

β′
r′i,p

⎞

⎠

where the disjunction extends over all tuples (r0, r1, . . . , rn, r
′
1, r

′
2 . . . , r

′
n) of in-

tegers from {0, 1, . . . , p− 1} that, modulo p, sum up to p′. For any evaluation f
consistent with ≺, we therefore get f(∃(p′,p)x : β) = f(ϕ≺) . In order to construct
γ as claimed in Lemma 3.4, it therefore suffices to eliminate the counting quan-
tifiers from the formulas βi,r and β′

i,r. In this elimination procedure (detailed in
the following claims), we will assume the evaluation to be consistent with ≺.
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Claim 3.4.1. Let 0 � r < p. There exist Boolean combinations γ≺
0,r and γ≺

n,r of

atomic formulas such that (β, γ≺
0,r) and (β, γ≺

n,r) satisfy (1) and f(β0,r) = f(γ≺
0,r)

as well as f(βn,r) = f(γ≺
n,r) for all evaluations f that are consistent with ≺.

We next want to eliminate the quantifier from βi,r for 1 � i < n, i.e., we

consider the integers in the open interval
(

f(si)
ai

, f(si+1)
ai+1

)
. It turns out to be

convenient to split the set of these integers b according to (aib−f(si)) mod aiN .

Claim 3.4.2. For 1 � i < n, 1 � c � aiN , and 0 � r < p, set

βi,r,c = ∃(r,p)c : (si < aix ∧ ai+1x < si+1 ∧ aix ≡aiN si + c ∧ β) .

There exists a Boolean combination γ≺
i,r,c of atomic formulas such that (β, γ≺

i,r,c)

satisfies (1) and f(βi,r,c) = f(γ≺
i,r,c) for all evaluations f consistent with ≺.

Proof. Let f be any evaluation that is consistent with ≺. We consider the fol-
lowing two sets X ⊇ Y :

X =

{

b ∈ Z

∣
∣
∣
∣
f(si)

ai
< b <

f(si+1)

ai+1
, aib ≡aiN f(si) + c

}

and

Y = {b ∈ X | f [x/b](β) = tt}
Our aim is to construct a formula γ≺

i,r,c that holds under the evaluation f if and
only if |Y | ≡p r. Since the formula we construct is independent from f , this will
prove the claim.

Let b be an integer from the open interval
(

f(si)
ai

, f(si+1)
ai+1

)
. Then b ∈ X iff

aib ≡aiN f(si) + c. But this is the case iff b ≡N
f(si)+c

ai
(which, in particular,

means f(si)+c
ai

∈ Z). Hence X is the set of integers of the form f(si)+c
ai

+ N · k
for some k ∈ N from the above open interval.

Next let b1 ∈ Y ⊆ X and b2 ∈ X . Then b1 ≡N b2 and f [x/b1](β) = tt. Since
N is a multiple of all moduli appearing in β, we get f [x/b2](β) = tt and therefore

b2 ∈ Y . Hence Y ∈ {∅, X}. Since f(si)+c
ai

∈ X if and only if X �= ∅, we have

Y = X if f(si)+c
ai

∈ Y and Y = ∅ otherwise. Note that the first case occurs if
and only if f(θ) = tt where

θ = ∃x(aix = si + c ∧ ai+1x < si+1 ∧ β) .

Now assume f(si)+c
ai

∈ Y which in particular implies that ai divides f(si)+ c.

Then the size |X | of the set X is the maximal natural number k with f(si)+c
ai

+

N · k < f(si+1)
ai+1

, i.e., |X | = k if and only if

ai+1(f(si) + c+ aiN · k) < aif(si+1) � ai+1(f(si) + c+ aiN · (k + 1)) .

Consequently, we have in this case |Y | ≡p r if and only if |X | ≡p r if and only
if the following formula ν holds under f :

ν = ∃y :
⎛

⎝
aiai+1Ny < aisi+1 − ai+1si − ai+1c

∧ aisi+1 − ai+1si − ai+1c− aiai+1N � aiai+1Ny
∧ y ≡p r

⎞

⎠
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So far, we showed that f(βi,r,c) = tt if and only if

f(θ ∧ ν) = tt or (r = 0 and f(ν) = ff) . (2)

Now, we can construct quantifier-free formulas θ̄ and ν̄ that can be shown to
be equivalent to θ and ν, respectively, and to satisfy (1). 
�
Claim 3.4.3. Let 1 � i < n and 0 � r < p. There exists a Boolean combina-
tion γ≺

i,r of atomic formulas such that (β, γ≺
i,r) satisfies (1) and f(βi,r) = f(γ≺

i,r)
for all evaluations f consistent with ≺.

Proof. Note that the formulas si < aix ∧ ai+1x < si+1 ∧ β and
∨

1�c�aiN

(si < aix ∧ ai+1x < si+1 ∧ aix ≡aiN si + c ∧ β)

are equivalent and the disjunction in this formula is exclusive (i.e., every x
satisfies at most one conjunct). Therefore, we can set

γ≺
i,r =

∨ ∧

1�c�aiN

γ≺
i,c,rc

where the disjunction extends over all tuples (r1, r2, . . . , raiN ) of integers from
{0, 1, . . . , p−1} with

∑
1�c�aiN

rc ≡p r. Now the claim follows from Claim 3.4.2.

�

Claim 3.4.4. Let 1 � i � n and 0 � r < p. There exists a Boolean combination
δ≺i,r of atomic formulas such that (β, δ≺i,r) satisfies (1) and, for all evaluations f
(even those that are not consistent with ≺),

f(β′
i,r) = f(δ≺i,r) .

Proof. By Lemma 3.1, the formulas aix = si ∧ β and aix = si ∧ βai,si are
equivalent. Hence the formula

δ≺i,r =

⎧
⎪⎨

⎪⎩

¬βai,si if r = 0

βai,si if r = 1

0 < 0 if r > 1

is equivalent with β′
i,r. Since δ

≺
i,r is a Boolean combination of the formulas βai,si

and 0 < 0, the pair (β, δ≺i,r) satisfies (1) by Lemma 3.1. 
�
Having shown all these claims, we now use them to finally prove Lemma 3.4.

Proof (of Lemma 3.4). Let S ⊆ T be some non-empty subset of T and let ≺
be a strict linear order on S. As above, we let S = {(a1, s1), . . . , (an, sn)} with
(a1, s1) ≺ (a2, s2) ≺ · · · ≺ (an, sn). Then set

γ≺ =
∨

⎛

⎝
∧

0�i�n+1

γ≺
i,ri

∧
∧

1�i�n

δ≺i,r′i

⎞

⎠
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where the disjunction extends over all tuples (r0, r1, . . . , rn+1, r
′
1, r

′
2 . . . , r

′
n) of

natural numbers from {0, 1, . . . , p−1} with∑
0�i�n+1 ri+

∑
1�i�n r′i ≡p p′. Then

f(ϕ≺) = f(γ≺) for all evaluations f that are consistent with ≺. Furthermore,
γ≺ is a Boolean combination of atomic formulas and (β, γ≺) satisfies (1).

Next consider the formla

α≺ =
∧

1�i<n

ai+1si < aisi+1 ∧
∧

(a,t)∈T

∨

1�i�n

ait = asi .

Then, for any evaluation f , we have f(α≺) = tt if and only if f is consistent
with ≺. Since α≺ is a Boolean combination of formulas of the form a′s < at with
(a, s), (a′, t) ∈ T , the pair (β, α≺) satisfies (1).

Finally, let

γ =
∧

(∗)
(α≺ → γ≺)

where the conjunction (∗) extends over all strict linear orders ≺ on some non-
empty subset of T . 
�
Proposition 3.5. Let x be a variable and α a Boolean combination of atomic
formulas. Let furthermore E = ∃ or E = ∃(p′,p) for some 0 � p′ < p and
2 � p � P . Then there exists a Boolean combination γ of atomic formulas such
that (Ex : α) ⇔ γ. Furthermore, we have the following:

maxP(γ) � maxP(α)3 · P
maxConst(γ) � maxConst(α) · 2maxP(α)3

3.3 An Efficient Decision Procedure

Now, by induction on the quantifier depth we can obtain the following theorem.

Theorem 3.6. Let ϕ ∈ LP be a formula of quantifier-depth d. There exists an
equivalent Boolean combination γ of atomic formulas with

maxP(γ) � (P ·maxP(ϕ))4
d

and

maxConst(γ) � 2(P ·maxP(ϕ))4
d

·maxConst(ϕ) .

Comparison with Apelt’s and with Schweikardt’s elimination procedure. In the
structure Z, the modulo counting quantifier is a special case of Härtig’s quanti-
fier. Apelt [1] and Schweikardt [21] presented quantifier elimination procedures
for Härtig’s quantifier and therefore for its special case, the modulo counting
quantifier. Differently from Schweikardt, we do not transform ϕ into disjunctive
normal form, we do not normalize terms, and we do not replace a counting quan-
tifier by many existential quantifiers. While we are not able to handle Härtig’s
quantifer this way, these differences allow to obtain the elementary bounds de-
scribed in the theorem above. These elementary bounds are the basis for the
following decision procedure.



On Presburger Arithmetic Extended with Modulo Counting Quantifiers 383

Let ϕ(x) be a Boolean combination of atomic formulas (note that x is the only
free variable) and A = max(P(ϕ)∪{6}). If ϕ is satisfiable, then results from [23]

imply that ϕ has a witness of absolute value at most AA5 ·maxConst(ϕ). Using
Theorem 3.6, we can infer a similar result for arbitrary formulas ϕ(x) with one
free variable. If ϕ has � additional variables, instantiated by integers of absolute
value � N , we can prove the following:

Corollary 3.7. There exists κ � 1 with the following property. Consider a for-
mula ϕ(x, y1, . . . , y�) from LP of quantifier-depth d. Let n1, . . . , n� ∈ Z with
|ni| � N . Then the formula ∃x : ϕ(x, n1, . . . , n�) is true if and only if there
exists n ∈ Z such that ϕ(n, n1, . . . , n�) is true with

|n| � 2(P ·maxP(ϕ))κ
d

·maxConst(ϕ) ·N ·max(1, �).

Next, we want to prove a similar result for the modulo-counting quantifier.
Recall that ∃(p′,p)x : ϕ(x) can only be true if ϕ has only finitely many witnesses,
i.e., if the formula ∃y∀x : (ϕ(x) → |x| � y) is true. Applying the above corollary,
one finds a finite interval such that ϕ has infinitely many witnesses iff it has at
least one witness in this interval. In case ϕ has only finitely many witnesses, then
all of them are of bounded absolute value. More precisely, we get the following

Corollary 3.8. Let κ be the constant from Corollary 3.7 and

C = 2(P ·maxP(ϕ))κ
d+1

·maxConst(ϕ) ·N ·max(1, �) .

Let ϕ = ϕ(x, y1, . . . , y�) ∈ LP be a formula of quantifier-depth d, let n1, . . . , n� ∈
Z with |ni| � N . Then ∃(p′,p)x : ϕ(x, n1, . . . , n�) is true if and only if the following
hold:

(1) no integer n with C < |n| � C2 makes ϕ(n, n1, . . . , n�) true and
(2) |{n ∈ Z | |n| � C and ϕ(n, n1, . . . , n�) is true}| ≡p p′ .

Corollaries 3.7 and 3.8 allow to evaluate the truth value of a sentence ϕ by,
recursively, evaluating the truth value of subformulas ψ of ϕ with arguments of
bounded size. Analysing this size carefully, one obtains

Theorem 3.9. Presburger arithmetic with modulo-counting quantifiers is decid-
able in doubly exponential space.

Note that this complexity matches the best known upper bound for Presburger
arithmetic without modulo-counting quantifiers from [7].

4 Automata Based Decision Procedure

In this section we show that an automaton accepting all solutions of a formula
of LP can be constructed in triply exponential time. We follow the same ideas
as in [6] where the same result was given for Presburger’s logic.
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4.1 Encoding

We represent integer vectors as finite words. We use a vectorial least signifi-
cant bit first coding. For h > 0 we define Σh = {0, 1}h. Moreover we use the
separate sign alphabet Sh = {+,−}h (indicating if the corresponding integer
is positive or negative). Given any letter a in Σh or Sh we write πi(a) with
1 ≤ i ≤ h for its i-th component. Similarly, the i-th component of a h dimen-
sional vector x ∈ Z

h is denoted by πi(x). The symbol + corresponds to 0 and
− corresponds to 1. In this way, to each letter a ∈ Σh corresponds a letter
s(a) ∈ Sh. Similarly to each letter s ∈ Sh corresponds a letter a(s) ∈ Σh. Words
of Σ∗

hSh represent h-dimensional integer vectors. A word w0 . . . wns ∈ Σ∗
hSh rep-

resents the integer vector denoted by 〈w0 . . . wns〉 whose ith component (with
1 ≤ i ≤ h) is computed as: If si = +, then πi(〈w0 . . . wns〉) =

∑n
j=0 2

j .πi(wj)

and if si = −, then πi(〈w0 . . . wns〉) = −2n+1 +
∑n

j=0 2
j.πi(wj). For example,

〈(0, 1)(1, 1)(1, 0)(+,−)〉 = 〈(0, 1)(1, 1)(1, 0) (0, 1)(+,−)〉 = (6,−5). In partic-
ular, 〈+〉 = 0 and 〈−〉 = −1. We also define the notation 〈.〉+ over Σ∗

h as
〈w〉+ = 〈w(+, . . . ,+)〉.

Remark 4.1. Let w′, w ∈ Σ∗
h, s ∈ Sh. We have 〈w′ws〉 = 〈w′〉+ + 2|w

′|〈ws〉.

Each vector has an infinite number of representations. Indeed for each word
w0 . . . wns ∈ Σ∗

hSh, any word in w0 . . . wn(a(s))
∗s represents the same vector.

To get a unique representation for each vector, we can take the shortest word
representing it.

Given a Presburger formula ϕ(x) with h free variables, we say that it defines
the language Lϕ = {w ∈ Σ∗

hSh | 〈w〉 ∈ �ϕ(x)�}. Such languages are regular,
called Presburger-definable and meet the following saturation property: If a rep-
resentation of a vector is in the language then any other representation of that
vector is also in the language. Our coding satisfies the following property [15].

Property 4.2. Any residual of a Presburger-definable language is either a Pres-
burger-definable language, or the empty word language.

A deterministic automaton (DFA) is a tuple (Σ,Q, q0, Qf , δ) where Σ is the
finite alphabet, Q the set of states, q0 the initial state, Qf ⊆ Q the set of final
states and δ the transition function from Q × Σ to Q. We suppose DFA to be
complete (containing a sink state, if necessary). In a DFA accepting all solutions
of a Presburger formula ϕ(x) with h free variables, a word w ∈ Σ∗

h leads from
the initial state to a state accepting exactly all solutions of ϕ(2|w|x + 〈w〉+).
Therefore, we can consider states (except final ones) of such automata as being
Presburger formulas.

Given any Presburger-definable language L, the corresponding uniformised
Presburger-definable language is defined by taking only one word (the shortest)
representing the given vector. We obtain it by intersecting L (or the correspond-
ing automaton) with a regular language (⊆ Σ∗

hSh) which forbids that words end
with a(s)s ∈ ΣhSh for some s ∈ Sh. We call this operation uniformisation.
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4.2 Complexity of the Automata Based Decision Procedure

The well-known decision procedure for Presburger arithmetic using automata is
based on recursively constructing an automaton accepting solutions of a Pres-
burger formula by using automata constructions for handling logical connec-
tives and quantifiers. Automata for constant separated formulas can be easily
constructed. The following lemmas are from [6]. Let ‖a‖+ = Σ{i | ai≥0} ai and
‖a‖− = Σ{i | ai≤0} | ai|. Let ⊥ be the formula 0 < 0.

Lemma 4.3. The minimal DFA accepting the Presburger definable language
corresponding to the formula a.x > c has at most 2 · max(||a||, |c|) + 1 states.
Each non-final state accepts languages corresponding to formulas of the form ⊥
or a.x > c′ with c′ = c or min(c,−‖a‖+) ≤ c′ < max(c, ‖a‖−)
Lemma 4.4. The minimal DFA accepting the Presburger definable language
corresponding to the formula a.x ≡2m(2n+1) c with 0 ≤ c < 2m(2n + 1) and
m,n ≥ 0 has at most 2m(2n + 1) + 1 states. Each non-final state accepts lan-
guages corresponding to formulas of the form a.x ≡2n+1 c′ with c′ ∈ [0, 2n]
(this type of states is reached after m transitions) and a.x ≡2m1(2n+1) c

′ where
(m1 = m ∧ c′ = c) ∨ (m1 < m ∧ γ ∈ [0, 2m1(2n+ 1)− 1] and m1 < m.

Each logical connective (∧, ∨, ↔, ¬) corresponds then naturally to opera-
tions on automata (For ¬ it is of course crucial to have a deterministic automa-
ton). Furthermore to get an automaton for ∃y : ϕ(y,x) given an automaton for
ϕ(y,x) one projects away 3 the component for y and obtains a non-deterministic
automaton. Then, to be able to continue the recursive construction, the au-
tomaton is determinised, uniformised and minimised. Starting from an automa-
ton of triple-exponential size, determinisation might lead to an automaton of
quadruple-exponential size. However, for Presburger’s logic the size of the au-
tomata during the construction is at most triple-exponential in the size of the
formula [6]. We refine this analysis here to get the same upper bound for for-
mula containing also ∃(p′,p) quantifiers. For that we first detail the corresponding
automata construction before analysing the size of the (intermediate) automata.

Automata Construction for the Modulo-Counting Quantifier. We adapt
the construction of [12,19] for our particular encoding. Here it is crucial to have
uniformised automata.

Lemma 4.5. Given a DFA Aϕ accepting the uniformised Presburger language
Lϕ defined by a formula ϕ(y,x) of LP one can construct a DFA Aψ accepting the

uniformised Presburger definable language Lψ defined by ψ = ∃(p′,p)y : ϕ(y,x).

Proof. Without loss of generality we suppose that the value of y is given by
the first component of letters of Aϕ. We need first some definitions. A max-V

3 As the automaton should accept shortest encodings, additional transitions with a
sign letter going to the final state have to be added before uniformisation.
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multiset wrt. a natural number max ≥ 1 and a set V is a multiset of elements
of V such that each element appears at most max times. We denote all of these
multisets by Mmax(V ). A max-V multiset can be seen as a multiplicity function
mapping elements from V to {0, 1, 2, . . . ,max}. For positive natural numbers x
and y with y > 1, we define x mod1 y = x mod y if x mod y �= 0, x mod1 y = 0
if x = 0 and x mod1 y = y else. Given two max-V multisets m1,m2 their union
m1 ∪m2 is defined as (m1 ∪m2)(v) = (m1(v) +m2(v)) mod1 max for all v ∈ V .

Since Aϕ is uniformised, we can suppose that Aϕ has exactly one accepting
state which has outgoing transitions only to the sink state. Let Aϕ = (Σh ∪
Sh, Q∪ {F}, q0, {F}, δ) with L(A) ⊆ Σ∗

hSh. We construct a DFA Aψ = (Σh−1 ∪
Sh−1, Q

′ ∪ {F ′}, q′0, {F ′}, δ′) with L(Aψ) ⊆ Σ∗
h−1Sh−1 as follows: The idea is to

count modulo p how often a state can be reached (0 means unreachable) from the
initial state using transitions where the first component of letters is arbitrary.

Formally, we have Q′ ⊆ Mp(Q). Furthermore, we construct Q′ starting from
the multiset q′0 = {q0} with a modified on the fly subset construction. That
means that Q′ only contains reachable p-Qmultisets of states. For each letter a ∈
Σh−1 and each state m (a p-Q multiset) of Q′ we define a successor state m′ =
δ(m, a) by setting for all q ∈ Q,m′(q) = (

∑
q1∈Q m(q1)·|{(q1, b) | δ(q1, (b, a)) = q

and b ∈ {0, 1}}|) mod1 p. Now, we describe how to determine the transitions
going to the final state F ′. Here we have to take into account the number of times
(which can be infinite) a vector corresponding to a word from Σ∗

h−1 obtained
by projection from a word w of L(Aϕ) can be obtained by projection from
other longer words of L(Aϕ) with same prefix w. Since the automaton Aϕ is
uniformised each such word is only counted once. For each sign letter s ∈ Sh with
s = (s1, . . . , sh) we first define s+ = (+, s2, . . . , sh) and s− = (−, s2, . . . , sh).
For each sign letter s ∈ Sh and each state q ∈ Q, we compute then ms,q, the
(possible infinite) number of paths from q in A to the final state F labeled by
a word from the language (a(s+) + a(s−))∗s. Then, for each sign letter s ∈
Sh−1 there is a transition from a state m ∈ Q′ to the final state F ′ iff (1)
m(+,s),q and m(−,s),q are both not infinite for all q ∈ Q with m(q) �= 0 and (2)
(
∑

q∈Q∧δ(q,(+,s))=F m(q)m(+,s),q +
∑

q∈Q∧δ(q,(−,s))=F m(q)m(−,s),q) mod p = p′.
The obtained automaton is then uniformised and completed to obtain Aψ . 
�

Our analysis relies on building automata for Boolean combinations of constant
separated formulas. A Boolean combination of formulas ϕ1, . . . , ϕn is a formula
generated by �,⊥, ϕ1, . . . , ϕn,¬,∨,∧ or ↔. We denote by C(ϕ1, . . . , ϕn) such a
Boolean combination. We build (on the fly) a product automaton whose states
are Presburger formulas (not tuples of formulas).

Definition 4.6. Given a Boolean combination of constant separated formulas
C(ϕ1(x), . . . , ϕn(x)) containing h free variables we define the product automa-
ton AC(ϕ1(x),...,ϕn(x)) = (Σh ∪ Sh, Q ∪ {F}, q0, {F}, δ) by: Q is the set of Pres-
burger formulas, F the designated final state, q0 = C(ϕ1(x), . . . , ϕn(x)) and for
all a ∈ Σh, δ(C(ψ1(x), . . . , ψn(x)), a) = C(ψ′

1(x), . . . , ψ
′
n(x)) each ψi(x) being

a state, possibly ⊥ (equivalent to 0 < 0), of Aϕi (the automaton of ϕi), and
ψ′
i(x) = δϕi(ψi(x), a). If s ∈ Sh, then δ(C(ψ1(x), . . . , ψn(x)), s) = F , when

〈s〉 ∈ �C(ψ1(x), . . . , ψn(x))� and δ(C(ψ1(x), . . . , ψn(x)), s) = ⊥ otherwise.
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The following theorem gives a bound on the automata size for a formula in
Presburger’s logic with modulo-counting quantifiers. A corresponding theorem
for classical Presburger’s logic was given in [6] (using results from [13] where a
most significant digit first encoding is used). Its proof is basically the same, as we
can also eliminate all quantifiers and construct an automaton from the resulting
atomic formulas. We will need the construction of the automaton later to handle
the ∃(p′,p) quantifier. We use the abbreviations exp2(x) = 22

x

and exp3(x) =

22
2x

. Notice that in [6] the size of the DFA was bounded by exp3(κn logn).

Theorem 4.7. The size of the minimal DFA accepting solutions of a formula
ϕ(x) from LP with h free variables and length n is at most exp3(κn) for some
constant κ.

Proof. Let d < n be the quantifier depth of ϕ. Let γ(x) be the equivalent quan-
tifier free formula obtained from ϕ using Theorem 3.6. We have maxP(γ) �
(P ·maxP(ϕ))4

d

and maxConst(γ) � 2(P ·maxP(ϕ))4
d ·maxConst(ϕ). Clearly,

maxConst(γ) ≤ exp3(κ1n) for some constant κ1. If we build the product au-
tomaton for γ according to Definition 4.6, a naive analysis of its size gives a
quadruple-exponential, as there are possibly a quadruple exponential number
of distinct inequations in γ. We give a slightly different construction of the au-
tomaton Aγ accepting solutions of γ. Let a1, . . . ,atγ be an enumeration of all
different vectors a corresponding to coefficients of variables of x = (x1, . . . , xh)
appearing in constant separated inequations of γ. Let γ1, . . . , γt′γ be an enu-
meration of all atomic formulas of the form ai.x > cj with 1 ≤ i ≤ tγ and
cj such that |cj| ∈ [−‖ai‖+ − 1, ‖ai‖−]. Due to the bound on maxP(γ) we
have t′γ � exp2(κ2n) for some constant κ2. Let (b1, k1), . . . , (bdγ , kdγ ) be an
enumeration of all different vectors b corresponding to coefficients of variables
of x = (x1, . . . , xh) together with its modulus appearing in constant separated
modulo constraints of γ. Each ki can be written as ki = k′i · k′′i where k′i is the
biggest possible power of 2 and k′′i odd. Let φ1, . . . , φd′

γ
be an enumeration of all

modulo constraints of the form bix ≡k′′
i
cj with 1 ≤ i ≤ dγ and cj < k′′i . Again

due to the bound on maxP(γ) we have d′γ � exp2(κ3n) for some constant κ3.
We define BC to be the set of all Boolean combinations having the form

C(γ1, . . . , γt′γ , φ1, . . . , φd′
γ
). For each member of BC an automaton can be built

with the product construction of Definition 4.6. All these automata are the same
except for transitions leading to the final and sink states.

We describe now informally the automaton Aγ which we construct from γ. It
has first the form of a complete tree starting at the initial state. Its branching fac-
tor is the size of the alphabet Σh and its depth is exp2(κ1n). Each of the states in
the tree recognises the solutions of the formula γ(2|w|x+〈w〉+) wherew ∈ Σ∗

h with
|w| ≤ exp2(κ1n) is the word leading to the state from the initial state. Then, at
level exp2(κ1n) there are separate automata accepting solutions of the correspond-
ing formulas reached after reading the word leading to them. All these automata
correspond to Boolean combinations of BC. Indeed, for any constant separated
formula ζ(x) = a.x > c of γ and any word w ∈ Σ∗

h with |w| = exp2(κ1n) we
have ζ(2|w|x + 〈w〉+) ⇔ a.x > c′ for some c′ ∈ [−‖a‖+ − 1, ‖a‖−]. Therefore,
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for any atomic inequation ζ(x) of γ, ζ(2|w|x+ 〈w〉+) is equivalent to some γi. The
same is true for modulo constraints, i.e. each modulo constraint reached after w is
equivalent to some φi. So, γ(2

|w|x + 〈w〉+) is equivalent to a formula of BC. No-
tice that in any member of BC all atomic formulas of a given form appear. That is
not a restriction, since we can just expand each Boolean combination to be of this
form. Let W = {w ∈ Σ∗

h | |w| = exp2(κ1n)}. For any w ∈ W , let Cw ∈ BC be the
Boolean combination equivalent to γ(2|w|x+〈w〉+). For each Cw we can construct
an automaton ACw = (Σh ∪ Sh, Qw ∪ {F}, qw,0, {F}, δw) according to Definition
4.6. Notice that the automata ACw only differ in the transitions going to the final
state, since the atomic formulas composing them are all the same. The final state
F is the same in each automaton.

We can now give the definition of the automaton for the formula γ formally,
i.e. Aγ = (Σh ∪Sh, Q, qε, {F}, δ) where Q = Q1 ∪Q2∪{F} with Q1 = {qw | w ∈
Σ∗

h ∧ |w| < exp2(κ1n)} and Q2 =
⋃

w∈W Qw. Furthermore, δ(qw , b) = {qwb}
for all b ∈ Σh and |w| < exp2(κ1n) − 1, δ(qw, b) = {qwb,0} for all b ∈ Σh and
|w| = exp2(κ1n) − 1 and δ(q, b) = δw(q, b) for all b ∈ Σh and q ∈ Q2. Clearly,
the number of states (and also the size) of the automaton Aγ is smaller than
exp3(κn) for some constant κ. 
�

When applying the construction of Lemma 4.5 to eliminate a modulo-counting
quantifier, one could have a potential exponential blow-up which could lead to
a quadruple exponential automaton. We can show that this is not the case by
analysing the structure of the constructed automaton (similarly as in [6] for the
existential quantifier) and obtain the following theorem.

Theorem 4.8. Let ∃y(p′,p) : ϕ(y,x) be a formula from LP of size n, A the min-
imal DFA accepting the uniform Presburger definable language corresponding to
ϕ(y,x) and A′ the automaton obtained for ∃y(p′,p) : ϕ(y,x) using the construc-
tion of Lemma 4.5. Then A′ is of size at most exp3(κn) for some constant κ.

Corollary 4.9. The automata based decision procedure for Presburger arith-
metic with modulo-counting quantifiers takes triple-exponential time in the size
of the formula.

In [5] the complexity of the automata based construction for Presburger’s
logic is analysed using Ehrenfeucht-Fräıssé relations. There a most significant
bit first encoding is used. An open question is to know if this approach can be
also applied for modulo-counting quantifiers.
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Abstract. In this paper it is shown that deciding the winner of a parity
game is in LogCFL, if the underlying graph has bounded tree-width, and
in LogDCFL, if the tree-width is at most 2. It is also proven that parity
games of bounded clique-width can be solved in LogCFL via a log-space
reduction to the bounded tree-width case, assuming that a k-expression
for the parity game is part of the input.

1 Introduction

Parity games are two-player graph games of infinite duration. The central ques-
tion in the study of parity games is to determine the winner of a given game. This
problem is motivated by its close connection to the μ-calculus model-checking
problem [1] but also from a complexity theoretical perspective the problem has
an interesting status: The best known upper bound is NP ∩ coNP (to be precise,
UP ∩ coUP [2]) and no polynomial time algorithm is known.

In this paper we study the parallel complexity of parity games of bounded
tree- and clique-width. It was shown by Obdržálek that on such classes parity
games become polynomial time solvable [3,4]. Recently, Fearnley and Schewe
presented an efficient parallel algorithm for parity games of bounded tree-width;
more precisely, they proved that the problem belongs to NC2 [5].

We improve the complexity bounds for parity games of bounded tree- and
clique-width to LogCFL, a subclass of NC2 containing those languages which
are log-space reducible to a context-free language [6]. In the tree-width case the
LogCFL bound follows from the observation that the polynomial time algorithm
by Obdržálek can be simulated by a bottom-up tree automaton reading the tree
decomposition. For the sake of completeness we present a new proof inspired by
[7], in which hierarchically defined parity games are treated. For parity games
of tree-width ≤ 2 we can improve the bound further to LogDCFL, containing
those languages which are log-space reducible to a deterministic context-free
language. Graphs of tree-width ≤ 2 are also known as series-parallel graphs.
Finally, we prove that parity games of bounded clique-width can be log-space
reduced to parity games of bounded tree-width if we assume that a k-expression
for the input game is given. This yields an alternative proof for Obdržálek’s
clique-width result with an improved complexity bound.
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A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 390–404, 2015.
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2 Preliminaries

For k ∈ N we abbreviate {1, . . . , k} by [k]. For a function f we write dom(f) for
the domain of f . We denote by [a �→ b] the function which maps a to b, and by
f [a �→ b] the function which maps a to b and is otherwise defined as f . All graphs
considered in this paper are directed graphs. We assume familiarity with the
basic concepts of log-space reductions, in particular the fact that the composition
of two log-space computable functions is log-space computable again. We refer
to [8] for more details on parallel complexity theory.

2.1 Parity Games

A parity game G = (V0, V1, E, λ) consists of a directed graph (V,E) where
V = V0 ∪ V1 is partitioned into vertices, or positions, of Player 0 and 1, and
a priority function λ : V → N. We only consider finite parity games and define
the size of G is the number of positions |V |. The two players move a token from
a starting position along the edges forming a path π, also called play: if the to-
ken is currently in position v ∈ Vs then Player s moves the token to a successor
position of v. If a position v ∈ Vs without successors is reached, then Player 1−s
wins the play. Otherwise the play π = v0v1 . . . is infinite and is won by Player 0
if and only if the maximal priority occurring infinitely often in λ(v0)λ(v1) . . . is
even.

A strategy σ for Player s is a partial function σ : V ∗Vs → V which maps a
finite sequence v0 . . . vn to a successor of vn. A play π = v0v1 . . . is conform with
σ if σ(v0 . . . vi) = vi+1 for all i < |π| where vi ∈ Vs. A strategy σ for Player s
is winning from v0 ∈ V if Player s wins every play which is conform with σ; we
also say that Player s wins G from v0. The winning region of Player s is the set
of all positions from which Player s wins G. A positional strategy σ for Player s
depends only on the current position and can be represented by a partial function
σ : Vs → V where (v, σ(v)) ∈ E for all v ∈ dom(σ). It is known that every parity
game G is positionally determined, i.e. from every position either Player 0 or 1
has a positional winning strategy [9]. Solving parity games is formulated as the
decision problem: Given a parity game G and a starting position v0 ∈ V , does
Player 0 win G from v0?

An important parameter of a parity game G is the maximal priority d oc-
curring in G because the running times of many algorithms for solving parity
games are polynomial in the size of G but exponential in d. It is also known
that the winning regions of parity games where the maximal priority is bounded
can be defined by a fixed MSO-formula [10]. Hence, by the log-space version of
Courcelle’s Theorem [11] parity games whose tree-width and maximal priority
are bounded by constants can be solved in log-space. For our purposes it is im-
portant that the maximal priority of a parity game can be assumed to be linear
in the number of vertices by a compression of the priority function, see [12].
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Fig. 1. An edge-labeled parity game where circles belong to Player 0 and squares
belong to Player 1

2.2 Edge-Labeled Parity Games

For the tree-width result it is useful to convert the given parity game into a dif-
ferent form where priorities are assigned to edges instead of vertices. Further we
allow multiple (finitely many) edges between two vertices, which is convenient
for gluing together two parity games. Formally, an edge-labeled parity game has
the form G = (V0, V1, E) where E ⊆ V × N × V is a finite set of labeled edges.
In this context, a play π = (v0, p0, v1)(v1, p1, v2) . . . is a finite or infinite se-
quence of edges, which is won by Player 0 if and only if the maximal priority
occurring infinitely often in p0p1 . . . is even. A strategy for Player s is a partial
function ρ : V ∗Vs → E which maps a finite sequence v0 . . . vn to an outgoing
edge (vn, p, vn+1) of vn. A positional strategy is a partial function ρ : Vs → E,
where ρ(v) is an outgoing edge of v for all v ∈ dom(ρ). Winning strategies and
winning regions are defined similarly as for standard parity games. Figure 1 de-
picts an edge-labeled parity game where the marked positions and edges form
the winning region and a positional winning strategy of Player 0.

Lemma 1. For every parity game there is an edge-labeled parity game with the
same winning regions, and vice versa. In particular, edge-labeled parity games
are positionally determined.

Proof. Given a parity game, assign to each edge the priority of its starting vertex.
Conversely, given an edge-labeled parity game, subdivide every edge and assign
its priority to its new vertex; all other vertices have priority 0. 	


We will mainly deal with edge-labeled parity games G without multiple edges,
i.e. (u, p, v), (u, q, v) ∈ E implies p = q, which we call simple (edge-labeled) parity
games. Whenever an edge-labeled parity game contains exactly one edge between
a pair of positions u and v, we sometimes denote the edge by (u, v) without the
priority and we write λ(u, v) = p. Every edge-labeled parity game can be made
simple as witnessed by the following lemma.

Lemma 2. For every edge-labeled parity game one can compute in log-space a
simple edge-labeled parity game with the same winning regions.
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Proof. Consider the reward order � on N, which intuitively sorts the priorities
according to their attractivity to Player 0: We define p � q if p and q are even
and p ≤ q, or p and q are odd and p ≥ q, or p is odd and q is even.

For an edge-labeled parity game G = (V0, V1, E) we define the simplified edge-
labeled parity game simple(G) by combining multiple edges between two end-
points (u, v) into a single one with the following priority:

λ(u, v) =

{
max�{p ∈ N : (u, p, v) ∈ E}, if u ∈ V0,

min�{p ∈ N : (u, p, v) ∈ E}, if u ∈ V1.

It can be verified that winning regions are preserved. 	


2.3 Tree-Width

In the following we define two well-known graph decompositions and the cor-
responding graph measures, tree-width and clique-width. Many NP-complete
problems become solvable in log-space or linear time on classes of bounded tree-
or clique-width, see [11,13,14].

A tree decomposition T = (T, {Xi}i∈I) of a graph G = (V,E) consists of
a rooted tree T with node set I and a family of bags Xi ⊆ V for i ∈ I such
that for all (u, v) ∈ E there exists i ∈ I with u, v ∈ Xi, and for all v ∈ V
the set {i ∈ I : v ∈ Xi} is non-empty and connected in T . The width of T is
maxi∈I |Xi| − 1 and the tree-width of a graph G is the minimum width of a tree
decomposition of G. The tree-width of a parity game is the tree-width of its
underlying graph. Deciding whether the tree-width of a given graph is at most a
given parameter k ∈ N is NP-complete [15]; however, for every fixed k ∈ N there
exists a log-space algorithm which decides whether a given graph has tree-width
≤ k and in that case computes a width-k tree decomposition for it [11]. We call
a width-k tree decomposition T = (T, {Xi}i∈I) smooth if

(a) |Xi| = k + 1 for all i ∈ I,
(b) |Xi ∩Xj | = k for all edges (i, j) in T .

It is known that tree decompositions can be made smooth in linear time, see [16,
Chapter 6]. For our purposes we devise a space efficient algorithm:

Lemma 3. For every fixed k ∈ N there exists a log-space algorithm which, given
a width-k tree decomposition T of G, computes a smooth width-k tree decompo-
sition of G.

Proof. Let T = (T, {Xi}i∈I) be a tree decomposition of width k. First of all,
we root T at some node i ∈ I such that |Xi| = k + 1, which is computable in
log-space.

For property (a) we present a procedure which adds a vertex to each bag Xi

which does not have maximal size. Let I0 = {i ∈ I : |Xi| = k + 1}. For each
i ∈ I \ I0 independently we add a vertex to Xi as follows: Let j be the lowest
ancestor of i in I0 and let j′ be the unique child of j on the path from j to i.
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We add the lexicographically smallest vertex in Xj \Xj′ to Xi. This procedure
preserves the tree decomposition properties and can be performed in log-space.
After at most k + 1 iterations of this procedure, all bags have uniform size.

For property (b) consider an inclusion maximal set J ⊆ I where Xi = Xj

for all i, j ∈ J , which forms a connected subtree of T . All such sets J can
be found in log-space and can be merged into single nodes such that all bags
are pairwise distinct. Now assume |Xi ∩ Xj | < k for some tree edge (i, j). Let
Xi \Xj = {u1, . . . , um} and Xj \Xi = {v1, . . . , vm}. We replace the edge (i, j)
by a path (i0, . . . , im) where Xi� = (Xi ∩Xj) ∪ {v1, . . . , v�, u�+1, . . . , um}. 	


2.4 Clique-Width

To define clique-width we need to consider colored graphs G = (V,E, γ) where
γ : V → [k] is a coloring function. A k-expression is a term built up from
constants i ∈ [k], unary symbols ρβ and αi,j where β : [k] → [k] and i, j ∈ [k],
and a binary symbol ⊕. Every k-expression t defines a colored graph val(t) up
to isomorphism as follows:

– val(i) = ({v}, ∅, [v �→ i]) where v is a fresh symbol.
– val(t1 ⊕ t2) is the disjoint union of val(t1) and val(t2).
– If val(t) = (V,E, γ), we set val(ρβ(t)) = (V,E, β ◦ γ).
– If val(t) = (V,E, γ), we set val(αi,j(t)) = (V,E′, γ) where

E′ = E ∪ {(v, w) ∈ V 2 : γ(v) = i, γ(w) = j}.

The clique-width of a graph G is the minimal number k ∈ N such that there is
a k-expression t and a coloring function γ of G with val(t) = (G, γ). We remark
that the standard definition of k-expressions uses operations of the form ρi→j

which recolors all vertices with color i to j; this does not affect the definition of
clique-width. To define the clique-width of parity games we modify the form of
k-expressions to define colored parity games (G, γ). In this context a k-expression
is built up from constants (i, s, p) ∈ [k]×{0, 1}×N, which defines a parity game
with a single vertex of Player s with color i and priority p, and the unary and
binary symbols as before.

It is known that every graph class of bounded tree-width has also bounded
clique-width but not vice versa [17]. In that sense clique-width is a more general
graph measure than tree-width. As with tree-width, deciding whether the clique-
width of a given graph is at most a given parameter is NP-complete [18]. Unlike
tree-width it is open whether for fixed k ≥ 4 the question, does a given graph
have clique-width ≤ k, is solvable in polynomial time. In Section 5 we will assume
that a k-expression for the parity game is already part of the input.

2.5 Tree Automata

We consider terms (or trees) over a ranked alphabet Σ, i.e. a finite set of func-
tion symbols where every symbol has an arity. A (bottom-up) tree automaton
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A = (Q,Δ, F ) over Σ consists of a finite set of states Q, a set Δ of transition
rules of the form a(q1, . . . , qn) → q where a ∈ Σ is n-ary and q1, . . . , qn, q ∈ Q,
and a set of final states F ⊆ Q. We callA deterministic if there are no two rules in
Δ with the same left-hand side, otherwiseA is called nondeterministic. A tree t is
accepted by A if t

∗→Δ q for some q ∈ F where →Δ is the one-step rewriting rela-
tion defined by Δ. The uniform membership problem for (non)deterministic tree
automata asks: Does a given (non)deterministic tree automaton accept a given
tree? It is known that the uniform membership problem is LogCFL-complete in
the nondeterministic case and in LogDCFL in the deterministic case [19].

3 Parse Trees

Instead of working directly with tree decompositions our algorithm for parity
games of bounded tree-width uses an equivalent notion from [16, Chapter 6],
called parse trees, which describe how a graph or a parity game of bounded
tree-width can be constructed using simple operations.

3.1 Parse Trees for Graphs

A k-graph (V,E, τ) is a graph together with an injective function τ : [k] → V ,
which distinguishes k vertices, called boundary vertices. Vertices which are not
boundary are called internal. Given k-graphs G = (V,E, τ), G′ = (V ′, E′, τ ′) we
define the following parsing operators:

– renameβ(G) = (V,E, τ ◦ β−1) where β is a permutation of [k],
– push(G) = (V ∪ {v}, E, τ [1 �→ v]) where v is a fresh symbol,
– glue(G,G′) takes the disjoint union of two k-graphs, and identifies τ(i) and

τ ′(i) for all i ∈ [k].

If glue(G,G′) = (V ′′, E′′, τ ′′), we assume for simplified notation that V ∪V ′ =
V ′′ and τ = τ ′ = τ ′′, i.e. a boundary vertex in glue(G,G′) has the same name in
G and in G′. We will consider graphs constructed by combining atomic k-graphs,
which are k-graphs of size k, with the parsing operators. A parse tree t of width
k is the representation of such a construction as a labeled tree. A parse tree t
defines a k-graph G if G is isomorphic to the k-graph obtained by evaluating t
bottom-up; we also simply say that G is definable if the parse tree is irrelevant.
A parse tree t defines a graph G if t defines (G, τ) for some τ .

It was shown in [16] that a graph has tree-width≤ k if and only if it is definable
by a parse tree of width ≤ k+1. Their proof shows that the conversion from tree
decompositions to parse trees can be carried out in linear time. Using smooth
tree decompositions we prove that parse trees can be computed in log-space for
graphs of bounded tree-width.

Lemma 4. For every fixed k ∈ N, there exists a log-space algorithm which, given
a graph G of tree-width ≤ k, computes a parse tree of width ≤ k+1 defining G.
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Proof. Let T = (T, {Xi}i∈I) be a width-k tree decomposition of G computed
by the log-space algorithm from [11]. By Lemma 3 we can make T smooth in
log-space. For each i ∈ I we fix a numbering of the k + 1 vertices in Xi. Let
Gi be the (k + 1)-graph induced by the subtree of T rooted in i where the j-th
boundary vertex of Gi is the j-th vertex in Xi.

We present a bottom-up construction for the (k + 1)-graphs Gi. If i ∈ I is a
leaf node, then Gi is atomic. If i ∈ I is an inner node, for each child j ∈ I of i
we apply the following operations to Gj to obtain G′

j : Assume Xj \Xi = {v}
and Xi \ Xj = {w}. Permute v to be the first boundary vertex, introduce w
using push, add existing edges between w and the other boundary vertices by
gluing with a suitable atomic (k + 1)-graph and permute the boundary vertices
according to the order on Xi. By gluing all such graphs G′

j we obtain a (k+1)-
graph isomorphic to Gi. This construction gives rise to a parse tree, which can
be computed in log-space from T . 	


3.2 Parse Trees for Parity Games

We want to transfer the notion of parse trees to parity games. For that we con-
sider k-games, i.e. edge-labeled parity games G = (V0, V1, E, τ) with k boundary
positions given by an injective function τ : [k] → V . The operator renameβ is
defined as previously. The operator pushs carries a parameter s ∈ {0, 1} which
specifies that the new position belongs to Player s. Finally glue(G1,G2) is only
defined if G1 and G2 are compatible, i.e. corresponding boundary positions belong
to the same player. Parse trees for k-games are defined in an analogous manner.
Here the leaf nodes are labeled by atomic k-games, i.e. k-games of size k.

As a precomputation step of the algorithms in the next section we compute for
a given parity game G and a starting position v0 a parse tree t of width k which
defines a k-game in which v0 is a boundary position. This can be done in log-
space by an adaption of Lemma 4: First we compute in log-space a smooth tree
decomposition of the underlying graph of G. Then we root the tree decomposition
at some bag containing v0 before converting it into a parse tree. In the conversion
phase we label the leaf nodes of the parse tree by the atomic k-games induced
by the leaf bags. Whenever a new position v is introduced by push, we annotate
the push-operator by the parameter s ∈ {0, 1} depending on the owner of v.

4 Parity Games of Bounded Tree-Width

In this section by parity games we always mean edge-labeled parity games. Con-
sider the construction of a definable k-game G from atomic k-games using the
parsing operators, as described by a parse tree. We reduce the problem of de-
termining the winner of G from some boundary position to the evaluation of
a tree automaton reading the parse tree. One possible approach is to compute
in a bottom-up manner for each tree node a small k-game which is equivalent
in a certain sense to the k-game defined by the subtree rooted in that node. In
the end it remains to solve a small parity game in the root node. In fact, every
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definable 3-game has an equivalent simple atomic 3-game. Simple parity games
of constant size can be stored in space O(log d) where d is the maximal priority.
However, this approach fails for definable k-games where k > 3, i.e. parity games
with tree-width > 2. Instead, with the help of a nondeterministic tree automaton
we guess and fix a positional strategy for Player 0, and obtain a parity game
in which only Player 1 makes non-trivial moves. So called solitaire k-games can
again be compressed to size k. In both approaches the tree automata can be con-
structed using only logarithmic space. Since the uniform membership problems
for the corresponding tree automata can be solved in LogCFL and LogDCFL,
respectively, parity games of bounded tree-width can be solved in LogCFL and
parity games of tree-width ≤ 2 can be solved in LogDCFL.

4.1 Equivalent k-Games and Valid Reduction Rules

We start by defining the following Myhill-Nerode type equivalence: Two compat-
ible k-games G1,G2 are called equivalent, denoted by G1 ≈ G2, if for all k-games
H compatible with G1 and G2 and all positions v in H we have

Player 0 wins glue(G1,H) from v ⇐⇒ Player 0 wins glue(G2,H) from v.

In fact, ≈ is a congruence with respect to the parsing operators, i.e. G1 ≈ G2

implies renameβ(G1) ≈ renameβ(G2), pushs(G1) ≈ pushs(G2) and glue(G1,H) ≈
glue(G2,H) for all k-games H compatible with G1 and G2.

We introduce valid reduction rules, which compute in log-space to a given k-
game G an equivalent k-game G′. For example, the operation simple from Lemma
2, which removes multiple edges, is valid, which can be shown by a very similar
proof. We will always append the application of simple to valid reduction rules
without mentioning it. In the following let G = (V0, V1, E, τ) be a simple k-game.
For the sake of easier proofs we can assume that each player uses a uniform
positional winning strategy, which is winning from all positions in his winning
region [20, Chapter 6]. A positional strategy ρ uses an edge (u, p, v) ∈ E if
ρ(u) = (u, p, v). One can also assume that a positional winning strategy ρ for
Player s is minimal, i.e. dom(ρ) is contained in the winning region of Player
s. In the following, if we mention winning strategies, we always mean uniform
minimal positional winning strategies.

Lemma 5. Let u ∈ Vs be an internal position where (u, p, u) ∈ E.

1. If p ≡ s (mod 2), it is valid to add loops with priority s to all predecessors
of u in Vs and then to remove u.

2. If p �≡ s (mod 2), it is valid to remove the loop (u, p, u).

Proof. Let H be a k-game compatible with G and let G′ be the modified k-game.

1. If a winning strategy for Player s in glue(G,H) uses an edge leading to u,
Player s can instead use the new loops with priority s in glue(G′,H). On the
other hand no winning strategy for Player 1− s in glue(G,H) can use one of
the edges leading to u.
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2. The loop (u, p, u) cannot be used by any winning strategy for Player s in
glue(G,H). Hence, glue(G,H) and glue(G′,H) have the same winning regions.

	

Lemma 6. Let u, v ∈ Vs where (v, u) ∈ E. It is valid to add edges (v, p, w)
where p = max(λ(v, u), λ(u,w)) for each successor w of u, and then to remove
the edge (v, u).

Proof. Let H be a k-game compatible with G, let G′ be the modified k-game
and let ρ be a winning strategy for Player s in glue(G,H). If ρ(v) = (v, u), then
ρ(u) must be defined, say ρ(u) = (u,w). In glue(G′,H) Player s can win from
the same winning region by moving from v directly to w and otherwise playing
according to ρ. Conversely, if ρ is a winning strategy for Player s in glue(G′,H)
which uses one of the new edges (v, p, w), then Player s can win from the same
winning region by moving from v via u to w, and otherwise playing according
to ρ. 	

Lemma 7. Let (u, p, v), (v, q, u) ∈ E where u and v belong to different players
and let s = max(p, q) mod 2. It is valid to remove the edge from the cycle whose
starting point belongs to Player 1− s.

Proof. Let H be a k-game compatible with G. No winning strategy for Player
1 − s in glue(G,H) can use the edge which is to be removed because Player s
could win by responding with the other edge. 	


Let C be a class of k-games and let f be an n-ary partial operation mapping
n-tuples G = (G1, . . . ,Gn) of k-games to a k-game f(G). A partial operation
f ′ : Cn → C implements f on C if f(G) ≈ f ′(G) for all G ∈ dom(f) ∩ Cn. With
the help of the previous lemmata we can prove the following main ingredient for
solving parity games of tree-width at most 2 using deterministic tree automata.

Lemma 8. All parsing operators have log-space computable implementations on
the class of all simple atomic 3-games.

Proof. On the class of all simple atomic k-games renameβ implements itself and
simple ◦ glue implements glue. It remains to treat the parsing operator pushs.

If G is an atomic 3-game, then pushs(G) is the disjoint union of a 2-game of
size 3 and a boundary position belonging to Player s. Since the addition of an
isolated boundary position respects ≈, it suffices to show that for each simple
2-game of size 3 one can compute in log-space an equivalent 2-game of size 2.

So let G = (V0, V1, E, τ) be a simple 2-game of size 3. Let vi = τ(i) for
i ∈ {1, 2} and let u ∈ Vs be the unique internal position. By applying the
reduction rules from Lemma 5, 6 and 7 to u, we can eliminate all cycles of
length at most 2 in G which contain u. Hence, between u and each vi there
exists at most one edge in one direction. We can eliminate u using the following
valid reduction rules:

1. If u has no incoming edge, remove u.
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Fig. 2. Applying valid reduction rules to a 2-game

2. If u has no outgoing edge, add loops with priority 1 − s to all predecessors
of u in V1−s and remove u.

3. Otherwise the only edges incident to u are (vi, u), (u, vj) ∈ E for i �= j. Add
an edge (vi, vj) with priority max(λ(vi, u), λ(u, vj)) and remove u. 	


Later we will see that Lemma 8 cannot be extended to k-games for k > 3.
However, if we fix a positional strategy of Player 0 it suffices to consider parity
games in which Player 1 makes non-trivial moves. A solitaire game for Player s
is a parity game where all positions belong to Player s.

Lemma 9. For every k ∈ N and s ∈ {0, 1}, all parsing operators except for
push1−s have log-space computable implementations on the class of all simple
atomic solitaire k-games for Player s.

Proof. As in Lemma 8 we only need to show that every simple atomic solitaire
k-game G of size k + 1 can be compressed to size k in log-space. Using Lemma
5 and 6 we can eliminate all incoming edges of the unique internal position u in
G. Then u can be removed. 	


4.2 Construction of the Tree Automata

We fix the following (arbitrary) encoding of isomorphism classes of k-games. An
atomic k-game G = (V0, V1, E, τ) is in normal form if V = [k] and τ(i) = i for
all i ∈ [k]. Given an atomic k-game G, we denote by [G] the unique k-game in
normal form isomorphic to G.
Theorem 10. Parity games of tree-width ≤ 2 can be solved in LogDCFL.

Proof. Let G0 be a parity game of tree-width ≤ 2 with maximal priority d and
let v0 be a given starting position. We apply simple to G0 and compute a parse
tree t of width 3 as explained in Section 3.2 such that v0 is the i-th boundary
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position of the 3-game defined by t. We assume that the atomic 3-games in the
leaf nodes of t are in normal form.

Let C be the set of simple atomic 3-games in normal form with maximal
priority ≤ d. We can encode the elements G ∈ C using O(log d) bits where d was
assumed to be linear in the size of G. We compute from the parameters d and i
a deterministic tree automaton A = (C, Δ, F ) over the alphabet of t, where Δ
contains for all compatible G,H ∈ C transitions of the form

G → G,
renameβ(G) → [rename′β(G)],

pushs(G) → [push′s(G)],
glue(G,H) → [glue′(G,H)].

Here f ′ denotes the implementation of f from Lemma 8. A state G is contained
in F if and only if Player 0 wins G from the i-th boundary position, which can be
easily computed in log-space. Player 0 wins G0 from v0 if and only if A accepts
t, which can be decided in LogDCFL [19]. 	


For our approach to solve parity games with tree-width > 2 it is convenient to
assume that every position has at least one successor, which can be established
by adding to each position of Player s a loop with priority 1 − s. Let ρ be a
positional strategy for Player 0 in an edge-labeled parity game G = (V0, V1, E).
We define Gρ = (∅, V0 ∪ V1, Eρ) where

Eρ = {ρ(v) : v ∈ dom(ρ)} ∪ {(v, p, w) ∈ E : v ∈ V1},
which is a solitaire game for Player 1. It is easy to see that Player 0 wins G from
v if and only if there exists a positional strategy ρ for Player 0 with dom(ρ) = V0

such that Player 0 wins Gρ from v. A nondeterministic automaton reading a parse
tree can guess and fix positional strategies for Player 0 on the atomic k-games
in the leaf nodes and verify whether they together form a positional strategy ρ
in the whole game such that dom(ρ) = V0.

Theorem 11. Parity games of bounded tree-width can be solved in LogCFL.

Proof. We adapt the proof of Theorem 10 where G0 now has tree-width ≤ k. We
compute in log-space a parse tree t which defines a (k + 1)-game (G0, τ) such
that τ(i) = v0. Let M = {j ∈ [k + 1] : τ(j) ∈ V0} and let C be the set of simple
atomic solitaire (k+1)-games for Player 1 in normal form with maximal priority
≤ d. We define A = (C × 2[k+1], Δ, F ) over the alphabet of t, where Δ contains
for all compatible G,H ∈ C, subsets U,W ⊆ [k + 1] and positional strategies ρ
for Player 0 on G, transitions of the form

G → (Gρ, dom(ρ)),

renameβ((G, U)) → ([rename′β(G)], β(U)),

pushs((G, U)) → ([push′1(G)], U \ {1}),
glue((G, U), (H,W )) → ([glue′(G,H)], U ∪W ), if U ∩W = ∅.
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Fig. 3. 4-games for the separation of ≈-classes

Here f ′ denotes the implementation of f from Lemma 9. A state (G, U) is in
F if and only if Player 0 wins G from the i-th boundary position and U = M .
We can encode all states using O(log d) bits and compute Δ and F in log-space.
Player 0 wins G0 from v0 if and only if A accepts t, which can be decided in
LogCFL. 	


4.3 A Lower Bound

We conclude this section with a proof that parity games of tree-width 3 cannot
be solved in LogDCFL using the deterministic tree automata approach as in
Theorem 10.

Theorem 12. For each d ∈ N there exist 2d − 1 many definable 4-games which
have maximal priority ≤ 2d and are pairwise inequivalent.

Proof. Consider the atomic 4-games Gi and Hi depicted in Figure 3. For ev-
ery non-empty subset I ⊆ [d] we construct a 4-game GI by gluing all 4-games
push1(Gi) for i ∈ I together. In glue(GI ,Hi) we denote by u the unique position
of Player 0 and by vk the position whose outgoing edges are labeled by 2k − 1
and 2k for all k ∈ I.

We claim that for all i ∈ [d] and non-empty I ⊆ [d], Player 0 wins glue(GI ,Hi)
from u if and only if i ∈ I, which proves that all 4-games GI are pairwise
inequivalent. If i ∈ I, Player 0 wins glue(GI ,Hi) by always moving from u to vi.
If i /∈ I, Player 1 wins glue(GI ,Hi) as follows. From a position vk Player 1 moves
along the edge labeled by 2k − 1 if k > i, and along the edge labeled by 2k if
k < i. 	


For numbers k, d ∈ N and i ∈ [k], consider the tree language of all parse
trees which define k-games with maximal priority ≤ d won by Player 0 from
the i-th boundary position. This tree language is regular by Theorem 11 but
already for k = 4 it cannot be recognized by a deterministic tree automaton
with a polynomial number of states in d according to Theorem 12. It remains
open whether the presented complexity bounds for parity games of bounded
tree-width can be improved.
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5 Parity Games of Bounded Clique-Width

In this final section we present a log-space reduction which transforms parity
games given by k-expressions into parity games of tree-width ≤ 8k − 1 and
preserves the winners. As a corollary we obtain the following theorem:

Theorem 13. For every k ∈ N, parity games of clique-width ≤ k can be solved
in LogCFL, assuming that a k-expression for the parity game is part of the input.

Let tG be a k-expression which defines a parity game G = (V0, V1, E, λ). We
view tG as a labeled tree and define T to be the set of all tree nodes, i.e. all
subterms of tG . For each v ∈ V we denote by tv ∈ T the unique leaf node which
introduces v. Recall that tv specifies the color of v when first introduced, which
we denote by γ(v), the owner of v and its priority λ(v).

We simulate G by the tree game G∗, which is basically played on the tree tG .
During a play in the tree game we need to memorize additional information,
which is why we have multiple copies of each tree node. The positions in the tree
game G∗ are of the form (t, i,m, s) where

– t ∈ T is a tree node,
– i ∈ [k] is the current color,
– m ∈ {↑, ↓} specifies the current direction and
– s ∈ {0, 1} indicates that the position (t, i,m, s) belongs to Player s.

For every position v ∈ Vs in G we define the corresponding position v↑ =
(tv, γ(v), ↑, s) in G∗. The edges of G∗ are defined in the following: Player s can
draw from a position (t, i, ↑, s) to (t′, j, ↑, s) where t′ is the father node of t and, if
t′ = ρβ(t), then β(i) = j, otherwise i = j. In a position of the form (αi,j(t), i, ↑, s)
Player s can decide to draw to (αi,j(t), j, ↓, s). Then, Player s can draw from a
position (t, i, ↓, s) to (t′, j, ↓, s) where t′ is a child node of t and, if t = ρβ(t

′) then
β(j) = i, otherwise i = j. From a position of the form (tw, γ(w), ↓, s) Player s
has to draw to w↑ from where the owner of w continues to play. Note that there
are positions without outgoing edges in the tree game, for example positions
(tv, i, ↓, s) where i �= γ(v) or positions (αi,j(t), k, ↑, s) where i �= k and αi,j(t) is
the root of tG . For all v ∈ V we assign the priority λ(v) to the position v↑ and to
all other positions priority 0. Clearly, G∗ can be computed in log-space from tG .
The following lemma shows how plays in G can be simulated in the tree game.

Lemma 14. Player 0 wins G from v0 ∈ V if and only if she wins the tree game
G∗ from v↑0 .

Proof. A move from v ∈ Vs to a successor w in G can be simulated by a finite
path πvw in G∗ from v↑ to w↑. Let αi,j(t) be a tree node that introduces the
edge (v, w). Player s moves “upwards” to (αi,j(t), i, ↑, s), then to (αi,j(t), j, ↓, s).
After that Player s moves “downwards” to (tw , γ(w), ↓, s) and finally to w↑. In
this way, every positional strategy σ for Player s in G defines a strategy σ∗ for
Player s in G∗, which in general is not positional. The maximal priority of a
position in πvw is max(λ(v), λ(w)). Also notice that v ∈ Vs has no outgoing
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Fig. 4. A 2-expression and a finite play in the tree game

edges in G if and only if no other position of the form w↑ is reachable from v↑

in G∗, i.e. Player s loses G∗ from v↑.
Consider a positional strategy σ of Player s in G and a play π∗ in G∗ from v↑0

which is conform with σ∗. If π∗ is infinite, it is of the form π∗ = πv0v1πv1v2 . . .
where π = v0v1 . . . is a play in G conform with σ and both plays have the same
winner. If π∗ is finite, it can be decomposed as π∗ = πv0v1πv1v2 . . . πvn−1vnπ

′

where π′ has no prefix of the form πvw . In this case v0 . . . vn is a finite play in
G conform with σ and both plays are lost by the owner of vn. Hence, if σ is
winning from v0, then σ∗ is winning from v↑0 . 	


The simulation is illustrated in Figure 4 using two colors. Using the notion
from [21] we can state that G∗ has strong tree-width ≤ 4k, which implies a tree-
width bound of 8k − 1. This proves that parity games of clique-width ≤ k are
log-space reducible to parity games of tree-width ≤ 8k−1, under the assumption
that a k-expression is provided, and hence Theorem 13 follows.

The algorithm by Obdržálek for parity games of bounded clique-width in [4]
uses the fact that every winning strategy can be transformed into an equivalent t-
strategy, which is a simple corollary of Lemma 14: By the positional determinacy
theorem we can assume that Player 0 uses a positional strategy in the tree game
G∗, which indeed defines a t-strategy in G.
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Abstract. We present the guarded lambda-calculus, an extension of
the simply typed lambda-calculus with guarded recursive and coinduc-
tive types. The use of guarded recursive types ensures the productivity
of well-typed programs. Guarded recursive types may be transformed
into coinductive types by a type-former inspired by modal logic and
Atkey-McBride clock quantification, allowing the typing of acausal func-
tions. We give a call-by-name operational semantics for the calculus, and
define adequate denotational semantics in the topos of trees. The ade-
quacy proof entails that the evaluation of a program always terminates.
We demonstrate the expressiveness of the calculus by showing the de-
finability of solutions to Rutten’s behavioural differential equations. We
introduce a program logic with Löb induction for reasoning about the
contextual equivalence of programs.

1 Introduction

The problem of ensuring that functions on coinductive types are well-defined has
prompted a wide variety of work into productivity checking, and rule formats for
coalgebra. Guarded recursion [11] guarantees productivity and unique solutions
by requiring that recursive calls be nested under a constructor, such as cons
(written ::) for streams. This can sometimes be established by a simple syntactic
check, as for the stream toggle and binary stream function interleave below:

toggle = 1 :: 0 :: toggle
interleave (x :: xs) ys = x :: interleave ys xs

Such syntactic checks, however, are often too blunt and exclude many valid
definitions. For example the regular paperfolding sequence, the sequence of left
and right turns (encoded as 1 and 0) generated by repeatedly folding a piece of
paper in half, can be defined via the function interleave as follows [12]:

paperfolds = interleave toggle paperfolds

This definition is productive, but the putative definition below, which also applies
interleave to two streams and so apparently is just as well-typed, is not:

paperfolds’ = interleave paperfolds’ toggle

c© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 407–421, 2015.
DOI: 10.1007/978-3-662-46678-0_26
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This equation is satisfied by any stream whose tail is the regular paperfolding
sequence, so lacks a unique solution. Unfortunately the syntactic productivity
checker of the proof assistant Coq [13] will reject both definitions.

A more flexible approach, first suggested by Nakano [19], is to guarantee
productivity via types. A new modality, for which we follow Appel et al. [3] by
writing � and using the name ‘later’, allows us to distinguish between data we
have access to now, and data which we have only later. This � must be used
to guard self-reference in type definitions, so for example guarded streams of
natural numbers are defined by the guarded recursive equation

Strg � N×�Strg

asserting that stream heads are available now, but tails only later. The type of
interleave will be Strg → �Strg → Strg, capturing the fact the (head of the) first
argument is needed immediately, but the second argument is needed only later.
In term definitions the types of self-references will then be guarded by � also.
For example interleave paperfolds′ toggle becomes ill-formed, as the paperfolds′

self-reference has type �Strg, rather than Strg, but interleave toggle paperfolds
will be well-formed.

Adding � alone to the simply typed λ-calculus enforces a discipline more rigid
than productivity. For example the obviously productive stream function

every2nd (x :: x’ :: xs) = x :: every2nd xs

cannot be typed because it violates causality [15]: elements of the result stream
depend on deeper elements of the argument stream. In some settings, such as
reactive programming, this is a desirable property, but for productivity guaran-
tees alone it is too restrictive. We need the ability to remove � in a controlled
way. This is provided by the clock quantifiers of Atkey and McBride [4], which
assert that all data is available now. This does not trivialise the guardedness
requirements because there are side-conditions controlling when clock quanti-
fiers may be introduced. Moreover clock quantifiers transform guarded recursive
types into first-class coinductive types, with guarded recursion defining the rule
format for their manipulation.

Our presentation departs from Atkey and McBride’s [4] by regarding the ‘ev-
erything now’ operator as a unary type-former, written � and called ‘constant’,
rather than a quantifier. Observing that the types �A → A and �A → ��A
are always inhabited allows us to see the type-former, via the Curry-Howard iso-
morphism, as an S4 modality, and hence base our operational semantics on the
established typed calculi for intuitionistic S4 (IS4) of Bierman and de Paiva [5].
This is sufficient to capture all examples in the literature, which use only one
clock; for examples that require multiple clocks we suggest extending our calculus
to a multimodal logic.

In this paper we present the guarded λ-calculus, gλ, extending the simply typed
λ-calculus with coinductive and guarded recursive types. We define call-by-name
operational semantics, which blocks non-termination via recursive definitions
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unfolding indefinitely. We define adequate denotational semantics in the topos
of trees [6] and as a consequence prove normalisation. We introduce a program
logic Lgλ for reasoning about the denotations of gλ-programs; given adequacy
this permits proofs about the operational behaviour of terms. The logic is based
on the internal logic of the topos of trees, with modalities �,� on predicates,
and Löb induction for reasoning about functions on both guarded recursive and
coinductive types. We demonstrate the expressiveness of the calculus by showing
the definability of solutions to Rutten’s behavioural differential equations [21],
and show that Lgλ can be used to reason about them, as an alternative to
standard bisimulation-based arguments.

We have implemented the gλ-calculus in Agda, a process we found helpful
when fine-tuning the design of our calculus. The implementation, with many
examples, is available at http://cs.au.dk/~hbugge/gl-agda.zip.

2 Guarded λ-calculus

This section presents the guarded λ-calculus, written gλ, its call-by-name oper-
ational semantics, and its types, then gives some examples.

Definition 2.1. gλ-terms are given by the grammar

t ::= x | 〈〉 | zero | succ t | 〈t, t〉 | πdt | λx.t | tt | fold t | unfold t
| next t | prev σ.t | boxσ.t | unbox t | t� t

where d ∈ {1, 2}, x is a variable and σ = [x1 ← t1, . . . , xn ← tn], usually
abbreviated [�x ← �t], is a list of variables paired with terms.

prev[�x ← �t].t and box[�x ← �t].t bind all variables of �x in t, but not in �t. We
write prev ι.t for prev[�x ← �x].t where �x is a list of all free variables of t. If
furthermore t is closed we simply write prev t. We will similarly write box ι.t and
box t. We adopt the convention that prev and box have highest precedence.

We may extend gλ with sums; for space reasons these appear only in the
extended version of this paper [9].

Definition 2.2. The reduction rules on closed gλ-terms are

πd〈t1, t2〉 �→ td (d ∈ {1, 2})
(λx.t1)t2 �→ t1[t2/x]

unfold fold t �→ t

prev[�x ← �t].t �→ prev t[�t/�x] (�x non-empty)
prev next t �→ t

unbox(box[�x ← �t].t) �→ t[�t/�x]
next t1 � next t2 �→ next(t1t2)

The rules above look like standard β-reduction, removing ‘roundabouts’ of
introduction then elimination, with the exception of those regarding prev and
next. An apparently more conventional β-rule for these term-formers would be

prev[�x ← �t].(next t) �→ t[�t/�x]

http://cs.au.dk/~hbugge/gl-agda.zip
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but where �x is non-empty this would require us to reduce an open term to derive
next t. We take the view that reduction of open terms is undesirable within a
call-by-name discipline, so first apply the substitution without eliminating prev.

The final rule is not a true β-rule, as � is neither introduction nor elimi-
nation, but is necessary to enable function application under a next and hence
allow, for example, manipulation of the tail of a stream. It corresponds to the
‘homomorphism’ equality for applicative functors [16].

We next impose our call-by-name strategy on these reductions.

Definition 2.3. Values are terms of the form

〈〉 | succn zero | 〈t, t〉 | λx.t | fold t | boxσ.t | next t

where succn is a list of zero or more succ operators, and t is any term.

Definition 2.4. Evaluation contexts are defined by the grammar

E ::= · | succE | πdE | Et | unfoldE | prevE | unboxE | E � t | v � E

If we regard � as a variant of function application, it is surprising in a call-by-
name setting to reduce on both its sides. However both sides must be reduced
until they have main connective next before the reduction rule for � may be
applied. Thus the order of reductions of gλ-terms cannot be identified with the
call-by-name reductions of the corresponding λ-calculus term with the novel
connectives erased.

Definition 2.5. Call-by-name reduction has format E[t] �→ E[u], where t �→ u
is a reduction rule. From now the symbol �→ will be reserved to refer to call-by-
name reduction. We use � for the reflexive transitive closure of �→.

Lemma 2.6. The call-by-name reduction relation �→ is deterministic.

Definition 2.7. gλ-types are defined inductively by the rules of Fig. 1. ∇ is a
finite set of type variables. A variable α is guarded in a type A if all occurrences
of α are beneath an occurrence of � in the syntax tree. We adopt the convention
that unary type-formers bind closer than binary type-formers.

∇, α � α ∇ � 1 ∇ � N

∇ � A1 ∇ � A2

∇ � A1 ×A2

∇ � A1 ∇ � A2

∇ � A1 → A2

∇, α � A

∇ � μα.A
α guarded inA

∇ � A

∇ � �A

· � A

∇ � �A

Fig. 1. Type formation for the gλ-calculus
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Note the side condition on the μ type-former, and the prohibition on �A for
open A, which can also be understood as a prohibition on applying μα to any α
with � above it. The intuition for these restrictions is that unique fixed points
exist only where the variable is displaced in time by a �, but � cancels out this
displacement by giving ‘everything now’.

Definition 2.8. The typing judgments are given in Fig. 2. There d ∈ {1, 2},
and the typing contexts Γ are finite sets of pairs x : A where x is a variable and
A a closed type. Closed types are constant if all occurrences of � are beneath an
occurrence of � in their syntax tree.

Γ, x : A � x : A Γ � 〈〉 : 1 Γ � zero : N

Γ � t : N

Γ � succ t : N

Γ � t1 : A Γ � t2 : B

Γ � 〈t1, t2〉 : A×B

Γ � t : A1 ×A2

Γ � πdt : Ad

Γ, x : A � t : B

Γ � λx.t : A → B

Γ � t1 : A → B Γ � t2 : A

Γ � t1t2 : B

Γ � t : A[μα.A/α]

Γ � fold t : μα.A

Γ � t : μα.A

Γ � unfold t : A[μα.A/α]

Γ � t : A

Γ � next t : �A

x1 : A1, . . . , xn : An � t : �A
Γ � t1 : A1 · · · Γ � tn : An

Γ � prev[x1 ← t1, . . . , xn ← tn].t : A
A1, . . . , An constant

x1 : A1, . . . , xn : An � t : A
Γ � t1 : A1 · · · Γ � tn : An

Γ � box[x1 ← t1, . . . , xn ← tn].t : �A
A1, . . . , An constant

Γ � t : �A

Γ � unbox t : A

Γ � t1 : �(A → B) Γ � t2 : �A

Γ � t1 � t2 : �B

Fig. 2. Typing rules for the gλ-calculus

The constant types exist ‘all at once’, due to the absence of � or presence
of �; this condition corresponds to the freeness of the clock variable in Atkey
and McBride [4] (recalling that we use only one clock in this work). Its use as
a side-condition to �-introduction in Fig. 2 recalls (but is more general than)
the ‘essentially modal’ condition for natural deduction for IS4 of Prawitz [20].
The term calculus for IS4 of Bierman and de Paiva [5], on which this calculus
is most closely based, uses the still more restrictive requirement that � be the
main connective. This would preclude some functions that seem desirable, such
as the isomorphism λn. box ι.n : N → �N.
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In examples prev usually appears in its syntactic sugar forms

x1 : A1, . . . , xn : An 	 t : �A

Γ, x1 : A1, . . . , xn : An 	 prev ι.t : A
A1, . . . , An constant

	 t : �A

Γ 	 prev t : A

and similarly for box; the more general form is nonetheless necessary because
(prev ι.t)[�u/�x] = prev[�x ← �u].t. Getting substitution right in this setting is
somewhat delicate. For example our reduction rule prev[�x ← �t].t �→ prev t[�t/�x]
breaches subject reduction on open terms (but not for closed terms). See Bier-
man and de Paiva [5] for more discussion of substitution with respect to IS4.

Lemma 2.9 (Subject Reduction). 	 t : A and t � u implies 	 u : A.

Example 2.10. (i) The type of guarded recursive streams of natural numbers,
Strg, is defined as μα.N×�α. These provide the setting for all examples be-
low, but other definable types include infinite binary trees, as μα.N×�α×
�α, and potentially infinite lists, as μα.1+(N×�α).

(ii) We define guarded versions of the standard stream functions cons (written
infix as ::), head, and tail as obvious:

:: � λn.λs. fold〈n, s〉 : N → �Strg → Strg

hdg � λs.π1 unfold s : Str
g → N tlg � λs.π2 unfold s :: Str

g → �Strg

then use the � term-former for observations deeper into the stream:

2ndg � λs.(next hdg)� (tlg s) : Strg → �N

3rdg � λs.(next 2ndg)� (tlg s) : Strg → ��N · · ·
(iii) Following Abel and Vezzosi [2, Sec. 3.4] we may define a fixed point com-

binator fix with type (�A → A) → A for any A. We use this to define
a stream by iteration of a function: iterate takes as arguments a natural
number and a function, but the function is not used until the ‘next’ step of
computation, so we may reflect this with our typing:

iterate � λf. fixλg.λn.n :: (g � (f � nextn)) : �(N → N) → N → Strg

We may hence define the guarded stream of natural numbers

nats � iterate (nextλn. succn) zero .

(iv) With interleave, following our discussion in the introduction, we again may
reflect in our type that one of our arguments is not required until the next
step, defining the term interleave as:

fixλg.λs.λt.(hdg s) :: (g � t� next(tlg s)) : Strg → �Strg → Strg

This typing decision is essential to define the paper folding stream:

toggle � fixλs.(succ zero) :: (next(zero ::s))

paperfolds � fixλs. interleave toggle s



Guarded Recursion for Coinductive Types 413

Note that the unproductive definition with interleave s toggle cannot be
made to type check: informally, s : �Strg cannot be converted into a Strg

by prev, as it is in the scope of a variable s whose type Strg is not constant.
To see a less articifial non-example, try to define a filter function on streams
which eliminates elements that fail some boolean test.

(v) μ-types are in fact unique fixed points, so carry both final coalgebra and
initial algebra structure. To see the latter, observe that we can define

foldr � fixλgλf.λs.f〈hdg s, g � next f � tlg s〉 : ((N×�A) → A) → Strg → A

and hence for example mapg h : Strg → Strg is foldr λx.(hπ1x) :: (π2x).
(vi) The� type-former lifts guarded recursive streams to coinductive streams, as

we will make precise in Ex. 3.4. Let Str � �Strg. We define hd : Str → N and
tl : Str → Str by hd = λs. hdg(unbox s) and tl = λs. box ι. prev ι. tlg(unbox s),
and hence define observations deep into streams whose results bear no trace
of�, for example 2nd � λs. hd(tl s) : Str → N.
In general boxed functions lift to functions on boxed types by

lim � λf.λx. box ι.(unbox f)(unboxx) : �(A → B) → �A → �B

(vii) The more sophisticated acausal function every2nd : Str → Strg is

fixλg.λs.(hd s) :: (g � (next(tl(tl s)))).

Note that it must take a coinductive stream Str as argument. The function
with coinductive result type is then λs. box ι. every2nd s : Str → Str.

3 Denotational Semantics and Normalisation

This section gives denotational semantics for gλ-types and terms, as objects
and arrows in the topos of trees [6], the presheaf category over the first infinite
ordinal ω (we give a concrete definition below). These semantics are shown to
be sound and, by a logical relations argument, adequate with respect to the
operational semantics. Normalisation follows as a corollary of this argument.
Note that for space reasons many proofs, and some lemmas, appear only in the
extended version of this paper [9].

Definition 3.1. The topos of trees S has, as objects X, families of sets X1, X2,
. . . indexed by the positive integers, equipped with families of restriction functions
rXi : Xi+1 → Xi indexed similarly. Arrows f : X → Y are families of functions
fi : Xi → Yi indexed similarly obeying the naturality condition fi◦rXi = rYi ◦fi+1.

S is a cartesian closed category with products defined pointwise. Its expo-
nential AB has, as its component sets (AB)i, the set of i-tuples (f1 : A1 →
B1, . . . , fi : Ai → Bi) obeying the naturality condition, and projections as re-
striction functions.
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Definition 3.2. – The category of sets Set is a full subcategory of S via the
functor Δ : Set → S with (ΔZ)i = Z, rΔZ

i = idZ , and (Δf)i = f . Objects
in this subcategory are called constant objects. In particular the terminal
object 1 of S is Δ{∗} and the natural numbers object is ΔN;

– Δ is left adjoint to homS(1, –); write � for Δ ◦ homS(1, -) : S → S. unbox :
� →̇ idS is the counit of the resulting comonad. Concretely unboxi(x) = xi,
i.e. the i’th component of x : 1 → X applied to ∗;

– � : S → S is defined by (�X)1 = {∗} and (�X)i+1 = Xi, with r�X
1 defined

uniquely and r�X
i+1 = rXi . Its action on arrows f : X → Y is (�f)1 = id{∗}

and (�f)i+1 = fi. The natural transformation next : idS →̇ � has next1
unique and nexti+1 = rXi for any X.

Definition 3.3. We interpet types in context ∇ 	 A, where ∇ contains n free
variables, as functors �∇ 	 A� : (Sop×S)n → S, usually written �A�. This mixed
variance definition is necessary as variables may appear negatively or positively.

– �∇, α 	 α� is the projection of the objects or arrows corresponding to positive

occurrences of α, e.g. �α�( �W ,X, Y ) = Y ;
– �1� and �N� are the constant functors Δ{∗} and ΔN respectively;

– �A1 ×A2�( �W ) = �A1�( �W )× �A2�( �W ) and likewise for S-arrows;
– �A1 → A2�( �W ) = �A2�( �W )�A2�( �W ′) where �W ′ is �W with odd and even ele-

ments switched to reflect change in polarity, i.e. (X1, Y1, . . .)
′ = (Y1, X1, . . .);

– ��A�, ��A� are defined by composition with the functors �,� (Def. 3.2).

– �μα.A�( �W ) = Fix(F ), where F : (Sop × S) → S is the functor given by

F (X,Y ) = �A�( �W ,X, Y ) and Fix(F ) is the unique (up to isomorphism) X
such that F (X,X) ∼= X. The existence of such X relies on F being a suitably
locally contractive functor, which follows by Birkedal et al [6, Sec. 4.5] and
the fact that � is only ever applied to closed types. This restriction on � is
necessary because the functor � is not strong.

Example 3.4. �Strg�i = N
i, with projections as restriction functions, so is an

object of approximations of streams – first the head, then the first two elements,
and so forth. �Str�i = N

ω at all levels, so is the constant object of streams. More
generally, any polynomial functor F on Set can be assigned a gλ-type AF with
a free type variable α that occurs guarded. The denotation of �μα.AF is the
constant object of the carrier of the final coalgebra for F [18, Thm. 2].

Lemma 3.5. The interpretation of a recursive type is isomorphic to the inter-
pretation of its unfolding: �μα.A�( �W ) ∼= �A[μα.A/α]�( �W ).

Lemma 3.6. Closed constant types denote constant objects in S.
Note that the converse does not apply; for example ��1� is a constant object.

Definition 3.7. We interpret typing contexts Γ = x1 : A1, . . . , xn : An as
S-objects �Γ � � �A1� × · · · × �An� and hence interpret typed terms-in-context
Γ 	 t : A as S-arrows �Γ 	 t : A� : �Γ � → �A� (usually written �t�) as follows.
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�x� is the projection �Γ � × �A� → �A�. �zero� and �succ t� are as obvious.
Term-formers for products and function spaces are interpreted via the cartesian
closed structure of S. Exponentials are not pointwise, so we give explicitly:

– �λx.t�i(γ)j maps a �→ �Γ, x : A 	 t : B�j(γ�j, a), where γ�j is the result of
applying restriction functions to γ ∈ �Γ �i to get an element of �Γ �j;

– �t1t2�i(γ) = (�t1�i(γ)i) ◦ �t2�i(γ);

�fold t� and �unfold t� are defined via composition with the isomorphisms of Lem.
3.5. �next t� and �unbox t� are defined by composition with the natural transfor-
mations introduced in Def. 3.2. The final three cases are

– �prev[x1 ← t1, . . .].t�i(γ) � �t�i+1(�t1�i(γ), . . .), where �t1�i(γ) ∈ �A1�i is
also in �A1�i+1 by Lem. 3.6;

– �box[x1 ← t1, . . .].t�i(γ)j = �t�j(�t1�i(γ), . . .), again using Lem. 3.6;

– �t1 � t2�1 is defined uniquely; �t1 � t2�i+1(γ) � (�t1�i+1(γ)i) ◦ �t2�i+1(γ).

Lemma 3.8. Given typed terms in context x1 : A1, . . . , xm : Am 	 t : A and
Γ 	 tk : Ak for 1 ≤ k ≤ m, �t[�t/�x]�i(γ) = �t�i(�t1�i(γ), . . . , �tm�i(γ)).

Theorem 3.9 (Soundness). If t � u then �t� = �u�.

We now define a logical relation between our denotational semantics and
terms, from which both normalisation and adequacy will follow. Doing this
inductively proves rather delicate, because induction on size will not support
reasoning about our values, as fold refers to a larger type in its premise. This
motivates a notion of unguarded size under which A[μα.A/α] is ‘smaller’ than
μα.A. But under this metric �A is smaller than A, so next now poses a problem.
But the meaning of �A at index i+ 1 is determined by A at index i, and so, as
in Birkedal et al [7], our relation will also induct on index. This in turn creates
problems with box, whose meaning refers to all indexes simultaneously, motivat-
ing a notion of box depth, allowing us finally to attain well-defined induction.

Definition 3.10. The unguarded size us of an open type follows the obvious
definition for type size, except that us(�A) = 0.

The box depth bd of an open type is

– bd(A) = 0 for A ∈ {α,0,1,N};
– bd(A×B) = min(bd(A), bd(B)), and similarly for bd(A → B);
– bd(μα.A) = bd(A), and similarly for bd(�A);
– bd(�A) = bd(A) + 1.

Lemma 3.11. (i) α guarded in A implies us(A[B/α]) ≤ us(A).
(ii) bd(B) ≤ bd(A) implies bd(A[B/α]) ≤ bd(A)

Definition 3.12. The family of relations RA
i , indexed by closed types A and

positive integers i, relates elements of the semantics a ∈ �A�i and closed typed
terms t : A and is defined as



416 R. Clouston et al.

– ∗R1
i t iff t � 〈〉;

– nRN
i t iff t � succn zero;

– (a1, a2)R
A1×A2

i t iff t � 〈t1, t2〉 and adR
Ad

i td for d ∈ {1, 2};
– fRA→B

i t iff t � λx.s and for all j ≤ i, aRA
j u implies fj(a)R

B
j s[u/x];

– aRμα.A
i t iff t � foldu and hi(a)R

A[μα.A/α]
i u, where h is the “unfold” iso-

morphism for the recursive type (ref. Lem. 3.5);
– aR�A

i t iff t � nextu and, where i > 1, aRA
i−1u.

– aR�A
i t iff t � boxu and for all j, ajR

A
j u;

This is well-defined by induction on the lexicographic ordering on box depth, then
index, then unguarded size. First the � case strictly decreases box depth, and no
other case increases it (ref. Lem. 3.11.(ii) for μ-types). Second the � case strictly
decreases index, and no other case increases it (disregarding �). Finally all other
cases strictly decrease unguarded size, as seen via Lem. 3.11.(i) for μ-types.

Lemma 3.13 (Fundamental Lemma). Take Γ = (x1 : A1, . . . , xm : Am),
Γ 	 t : A, and 	 tk : Ak for 1 ≤ k ≤ m. Then for all i, if akR

Ak

i tk for all k,
then

�Γ 	 t : A�i(�a)R
A
i t[�t/�x].

Theorem 3.14 (Adequacy and Normalisation).

(i) For all closed terms 	 t : A it holds that �t�iR
A
i t;

(ii) �	 t : N�i = n implies t � succn zero;
(iii) All closed typed terms evaluate to a value.

Proof. (i) specialises Lem. 3.13 to closed types. (ii), (iii) hold by (i) and inspec-
tion of Def. 3.12.

Definition 3.15. Typed contexts with typed holes are defined as obvious. Two
terms Γ 	 t : A,Γ 	 u : A are contextually equivalent, written t �ctx u, if for all
closing contexts C of type N, the terms C[t] and C[u] reduce to the same value.

Corollary 3.16. �t� = �u� implies t �ctx u.

Proof. �C[t]� = �C[u]� by compositionality of the denotational semantics . Then
by Thm. 3.14.(ii) they reduce to the same value.

4 Logic for Guarded Lambda Calculus

This section presents our program logic Lgλ for the guarded λ-calculus. The
logic is an extension of the internal language of S [6,10]. Thus it extends multi-
sorted intuitionistic higher-order logic with two propositional modalities � and
�, pronounced later and always respectively. The term language of Lgλ includes
the terms of gλ, and the types of Lgλ include types definable in gλ. We write Ω
for the type of propositions, and also for the subobject classifier of S.

The rules for definitional equality extend the usual βη-laws for functions and
products with new equations for the new gλ constructs, listed in Fig. 3.
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Γ � t : A [μα.A/α]

Γ � unfold(fold t) = t

Γ � t : μα.A

Γ � fold(unfold t) = t

Γ � t1 : A → B Γ � t2 : A

Γ � next t1 � next t2 = next(t1t2)

Γ� � t : A Γ � �t : Γ�

Γ � prev[�x ← �t].(next t) = t
[
�t/�x

]
Γ� � t : �A Γ � �t : Γ�

Γ � next
(
prev[�x ← �t].t

)
= t

[
�t/�x

]

Γ� � t : A Γ � �t : Γ�

Γ � unbox(box[�x ← �t].t) = t
[
�t/�x

]
Γ� � t : �A Γ � �t : Γ�

Γ � box[�x ← �t]. unbox t = t
[
�t/�x

]

Fig. 3. Additional equations. The context Γ� is assumed constant.

Definition 4.1. A type X is total and inhabited if the formula Total (X) ≡
∀x : �X, ∃x′ : X,next(x′) =�X x is valid.

All of the gλ-types defined in Sec. 2 are total and inhabited (see the extended
version [9] for a proof using the semantics of the logic), but that is not the case
when we include sum types as the empty type is not inhabited.

Corresponding to the modalities � and � on types, we have modalities � and
� on formulas. The modality � is used to express that a formula holds only
“later”, that is, after a time step. It is given by a function symbol � : Ω → Ω.
The � modality is used to express that a formula holds for all time steps. Unlike
the � modality, � on formulas does not arise from a function on Ω [8]. As with
box, it is only well-behaved in constant contexts, so we will only allow � in such
contexts. The rules for � and � are listed in Fig. 4.

Γ | Ξ, (� φ ⇒ φ) � φ
Löb

Γ, x : X | ∃y : Y, � φ(x, y) � � (∃y : Y, φ(x, y))
∃ �

Γ, x : X | �(∀y : Y, φ(x, y)) � ∀y : Y, � φ(x, y)
∀ �

Γ | Ξ,φ � � φ


 ∈ {∧,∨,⇒}
Γ | �(φ 
 ψ) �� � φ 
 �ψ

Γ | ¬¬φ � ψ

Γ | φ � �ψ

Γ | φ � �ψ

Γ | ¬¬φ � ψ

Γ | φ � ψ

Γ | �φ � �ψ

Γ | �φ � φ Γ | �φ � ��φ ∀x, y : X. �(x =X y) ⇔ nextx =�X next y
eq�

next

Fig. 4. Rules for � and �. The judgement Γ | Ξ � φ expresses that in typing context
Γ , hypotheses in Ξ prove φ. The converse entailment in ∀ � and ∃ � rules holds if Y is
total and inhabited. In all rules involving the � the context Γ is assumed constant.

The � modality can in fact be defined in terms of lift : �Ω → Ω (called succ
by Birkedal et al [6]) as � = lift ◦ next. The lift function will be useful since it
allows us to define predicates over guarded types, such as predicates on Strg.

The semantics of the logic is given in S; terms are interpreted as morphisms
of S and formulas are interpreted via the subobject classifier. We do not present
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the semantics here; except for the new terms of gλ, whose semantics are defined
in Sec. 3, the semantics are as in [6,8].

Later we will come to the problem of proving x =�A y from unboxx =A

unbox y, where x, y have type �A. This in general does not hold, but using the
semantics of Lgλ we can prove the proposition below.

Proposition 4.2. The formula �(unboxx =A unbox y) ⇒ x =�A y is valid.

There exists a fixed-point combinator of type (�A → A) → A for all types A
in the logic (not only those of in gλ) [6, Thm. 2.4]; we also write fix for it.

Proposition 4.3. For any term f : �A → A we have fix f =A f (next(fix f))
and, if u is any other term such that f(nextu) =A u, then u =A fix f .

In particular this can be used for recursive definitions of predicates. For instance
if P : N → Ω is a predicate on natural numbers we can define a predicate PStrg

on Strg expressing that P holds for all elements of the stream:

PStrg � fixλr.λxs.P (hdg xs) ∧ lift (r � (tlg xs)) : Strg → Ω.

The logic may be used to prove contextual equivalence of programs:

Theorem 4.4. Let t1 and t2 be two gλ terms of type A in context Γ . If the
sequent Γ | ∅ 	 t1 =A t2 is provable then t1 and t2 are contextually equivalent.

Proof. Recall that equality in the internal logic of a topos is just equality of
morphisms. Hence t1 and t2 denote same morphism from Γ to A. Adequacy
(Cor. 3.16) then implies that t1 and t2 are contextually equivalent.

Example 4.5. We list some properties provable using the logic. Except for the
first property all proof details are in the extended version [9].

(i) For any f : A → B and g : B → C we have

(mapg f) ◦ (mapg g) =Strg→Strg mapg(f ◦ g).
Unfolding the definition of mapg from Ex. 2.10(vi) and using β-rules and
Prop. 4.3 we havemapg f xs = f (hdg xs)::(next(mapg f)�(tlg xs)). Equality
of functions is extensional so we have to prove

Φ � ∀xs : Strg,mapg f (mapg g xs) =Strg mapg(f ◦ g)xs.
The proof is by Löb induction, so we assume �Φ and take xs : Strg. Using
the above property of mapg we unfold mapg f (mapg g xs) to

f (g (hdg xs)) :: (next(mapg f)� ((next(mapg g))� tlg xs))

and we unfold mapg(f ◦g)xs to f (g (hdg xs)) :: (next(mapg(f ◦ g))� tlg xs).
Since Strg is a total type there is a xs′ : Strg such that nextxs′ = tlg xs.
Using this and the rule for � we have

next(mapg f)� ((next(mapg g))� tlg xs) =�Strg next(mapg f(mapg g xs′))

and next(mapg(f ◦ g)) � tlg xs =�Strg next(mapg(f ◦ g)xs′). From the in-
duction hypothesis �Φ we have �(mapg(f ◦ g)xs′ =Strg mapg f (mapg g xs′))
and so rule eq�

next concludes the proof.
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(ii) We can also reason about acausal functions. For any n : N, f : N → N,

every2nd(box ι. iterate (next f)n) =Strg iterate (next f
2)n,

where f2 is λm.f (f m). The proof again uses Löb induction.
(iii) Since our logic is higher-order we can state and prove very general proper-

ties, for instance the following general property of map

∀P,Q : (N → Ω), ∀f : N → N, (∀x : N, P (x) ⇒ Q(f(x)))

⇒ ∀xs : Strg, PStrg(xs) ⇒ QStrg(mapg f xs).

The proof illustrates the use of the property lift ◦ next = �.
(iv) Given a closed term (we can generalise to terms in constant contexts) f of

type A → B we have box f of type �(A → B). Define L(f) = lim(box f)
of type �A → �B. For any closed term f : A → B and x : �A we can
then prove unbox(L(f)x) =B f (unboxx). Then using Prop. 4.2 we can, for
instance, prove L(f ◦ g) = L(f) ◦ L(g).
For functions of arity k we define Lk using L, and analogous properties
hold, e.g. we have unbox(L2(f)x y) = f (unboxx) (unbox y), which allows
us to transfer equalities proved for functions on guarded types to functions
on �’d types; see Sec. 5 for an example.

5 Behavioural Differential Equations in gλ

In this section we demonstrate the expressivity of our approach by showing how
to construct solutions to behavioural differential equations [21] in gλ, and how
to reason about such functions in Lgλ, rather than with bisimulation as is more
traditional. These ideas are best explained via a simple example.

Supposing addition + : N → N → N is given, then pointwise addition of
streams, plus, can be defined by the following behavioural differential equation

hd(plus σ1 σ2) = hdσ1 + hdσ2 tl(plusσ1 σ2) = plus(tl σ1) (tl σ2).

To define the solution to this behavioural differential equation in gλ, we first
translate it to a function on guarded streams plusg : Strg → Strg → Strg, as

plusg � fixλf.λs1.λs2.(hd
g s1 + hdg s2) :: (f � (tlg s1)� (tlg s2))

then define plus : Str → Str → Str by plus = L2(plus
g). By Prop. 4.3 we have

plusg = λs1.λs2.(hd
g s1 + hdg s2) :: ((next plus

g)� (tlg s1)� (tlg s2)). (1)

This definition of plus satisfies the specification given by the behavioural dif-
ferential equation above. Let σ1, σ2 : Str and recall that hd = hdg ◦λs. unbox s.
Then use Ex. 4.5.(iv) and equality (1) to get hd(plusσ1σ2) = hdσ1 + hdσ2.

For tl we proceed similarly, also using that tlg(unboxσ) = next(unbox(tl σ))
which can be proved using the β-rule for box and the η-rule for next.



420 R. Clouston et al.

Since plusg is defined via guarded recursion we can reason about it with Löb
induction, for example to prove that it is commutative. Ex. 4.5.(iv) and Prop. 4.2
then immediately give that plus on coinductive streams Str is commutative.

Once we have defined plusg we can use it when defining other functions on
streams, for instance stream multiplication ⊗ which is specified by equations

hd(σ1 ⊗ σ2) = (hdσ1) · (hdσ2) tl(σ1 ⊗ σ2) = (ρ(hdσ1)⊗ (tl σ2))⊕ ((tl σ1)⊗ σ2)

where ρ(n) is a stream with head n and tail a stream of zeros, and · is multipli-
cation of natural numbers, and using ⊕ as infix notation for plus. We can define
⊗g : Strg → Strg → Strg by ⊗g �

fixλf.λs1.λs2. ((hd
g s1) · (hdg s2)) ::

(next plusg �(f � next ιg(hdg s1)� tlg s2)� (f � tlg s1 � next s2))

then define ⊗ = L2 (⊗g). It can be shown that the function ⊗ so defined satisfies
the two defining equations above. Note that the guarded plusg is used to define
⊗g, so our approach is modular in the sense of [17].

The example above generalises, as we can show that any solution to a be-
havioural differential equation in Set can be obtained via guarded recursion
together with Lk. The formal statement is somewhat technical and can be found
in the extended version [9].

6 Discussion

Following Nakano [19], the�modality has been used as type-former for a number
of λ-calculi for guarded recursion. Nakano’s calculus and some successors [15,22,2]
permit only causal functions. The closest such work to ours is that of Abel and
Vezzosi [2], but due to a lack of destructor for� their (strong) normalisation result
relies on a somewhat artificial operational semantics where the number of nexts
that can be reduced under is bounded by some fixed natural number.

Atkey and McBride’s extension of such calculi to acausal functions [4] forms
the basis of this paper. We build on their work by (aside from various minor
changes such as eliminating the need to work modulo first-class type isomor-
phisms) introducing normalising operational semantics, an adequacy proof with
respect to the topos of trees, and a program logic.

An alterative approach to type-based productivity guarantees are sized types,
introduced by Hughes et al [14] and now extensively developed, for example
integrated into a variant of System Fω [1]. Our approach offers some advantages,
such as adequate denotational semantics, and a notion of program proof without
appeal to dependent types, but extensions with realistic language features (e.g.
following Møgelberg [18]) clearly need to be investigated.
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Abstract. The vast power of iterated recurrence is tamed by data ram-
ification: if a function over words is definable by ramified recurrence
and composition, then it is feasible, i.e. computable in polynomial time,
i.e. any computation using the first n input symbols can have at most
p(n) distinct configurations, for some polynomial p. Here we prove a
dual result for coinductive data: if a function over streams is definable
by ramified corecurrence, then any computation to obtain the first n
symbols of the output can have at most p(n) distinct configurations, for
some polynomial p. The latter computation is by multi-cursor finite state
transducer on streams.

A consequence is that a function over finite streams is definable by
ramified corecurrence iff it is Turing-computable in logarithmic space.
Such corecursive definitions over finite streams are of practical interest,
because large finite data is normally used as a knowledge base to be
consumed, rather than as recurrence template. Thus, we relate a syntac-
tically restricted computation model, amenable to static analysis, to a
major complexity class for streaming algorithms.

1 Introduction

Implicit computational complexity relates resource-based complexity classes of
functions and languages to declarative paradigms, restricted along various con-
ceptual parameters, such as functionality, linearity, repetition, and flow control.
The theoretical and practical benefits of this research abound, notably in leading
to static analysis of the computational complexity of declarative programs.

A well known approach along these lines is data ramification, also known as
tiering. Here one construes data as coming in varying computational strengths.
For instance, querying a large database might be feasible, but using it to drive
a recurrence would not. This is reflected in a requirement that a function’s
recurrence argument should be computationally stronger than its output, i.e. at
a higher tier. This approach was used to characterize major complexity classes
such as PTime [1,9], and PSpace [13].

In [14] we initiated an exploration of ramified declarative programming over
coinductive data, such as streams, rather than inductive data, such as words.

c© Springer-Verlag Berlin Heidelberg 2015
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We showed that functions defined by ramified corecurrence and composition
using just two tiers are feasible, in the sense of being computable by finite state
transducers (with cursor jump). Moreover, such transducers can be simulated by
Turing-transducers over streams that operate in logarithmic space with respect
to the output, that is: to compute the n-th entry of the output requires auxiliary
computation space of size O(log n).

The analysis of corecurrence ramified into an arbitrary number of tiers requires
amore foundational approach.We introduce here notions of locality, weak-locality
and continuity for machines over streams, and show that a function defined by
ramifiedcorecurrence andcomposition,withoutput tier t, is computablebyafinite-
state transducer (with jumps) which is continuous (with polynomialmoduli of con-
tinuity) in arguments of tiers < t, weakly-local in arguments of tier t, and local in
arguments of tiers> t. These properties are used to show that if a function f is de-
fined by corecurrence from step-functions that are so defined, then f is computable
by a continuous finite-state transducer (with jump).

Our results reveal a striking duality between ramified recurrence and ramified
corecurrence. If a function f over words is definable by ramified recurrence then
it is polynomial time or — equivalently — any computation of f that uses the
first n input symbols has at most p(n) distinct configurations (p a polynomial).
Dually, if a function over streams is definable by ramified corecurrence, then
any computation to obtain the first n symbols of the output can have at most
p(n) distinct configurations (p a polynomial). There is, however, an asymmetry:
read-only inputs are given, whereas write-only outputs are not. corecurrence the
configurations must, in addition, be of size logarithmic in the n, because the
input is given, p(n) entries input entries that might occur in configurations are
determined merely by their address. This contrasts with recurrence: the output
is not given, and so the p(n) output entries that might occur in configurations
may well be different.

These results have further consequences for functions over finite streams: such
a function is definable by ramified corecurrence (in any number of tiers) iff it
is Turing-computable (as a function over words) in logarithmic space, in the
usual sense. Referring to finite streams may seem at first blush to be an oxy-
moron. Indeed, finite data is commonly identified with textual data, or more
generally data generated inductively from constant values by iterating finite clo-
sure rules. A salient property of inductive data of that sort is their use to drive
the recurrence schema associated with the corresponding generative process; for
example, the recurrence (i.e. “primitive recursive”) schema for the natural num-
bers. However, the increasing relevance of finite, but very large data, suggests
an alternative viewpoint of finite data, that emphasizes access to data-elements.
Viewed from that angle, it becomes relevant and interesting to consider finite
instances of coinductive data. In particular, finite boolean streams, are exten-
sionally similar to words, but their computational behavior is coinductive: while
a computation over words gets as input complete words and produces com-
plete words as output, a computation over streams produces its output piece-
meal, using pieces of its input(s). Indeed, important applications that involve
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computing over very large data are modeled better by streams than by words
(see for example [15,6]). Thus, ramified corecurrence lends credence to the im-
portance and stability of log-space computing over large data, which is what all
of us do daily in our use of the internet.

In summary, our results elucidate the foundational inter-relations between
coinductive data, ramification, finite-state stream-transducers, and log-space
computing, while providing a static-analysis method for establishing the fea-
sibility of functional programs over streams.

2 Finite Transducers on Streams

2.1 Jumping Finite Transducers

Fix a finite alphabet Σ = {a0, a1, . . . , a�} (� ≥ 2). The set of streams over Σ,
denoted S(Σ) or simply S when Σ is clear, is defined coinductively by the closure
condition:

σ ∈ S =⇒ (∃a ∈ Σ) (∃τ ∈ S) σ = a : τ

The basic machine model for computing functions from streams to streams
is the finite stream transducer (FT) over an alphabet Σ. A FT reads its input
stream one-way at multiple cursors (“heads”) and writes its output stream one-
way forward. The read is optional (i.e. read ε is possible), and so is the write.
We also consider a less restrictive variant of FTs, the jumping finite transducer
(JFT). Here a cursor that scans the input may be re-positioned (“jump”) to the
current position of another cursor. Neither FTs nor JFTs can detect coincidence
between two cursors. Using such detection, JFTs could simulate two-way cursors
on the input, and consequently be Turing complete (on infinite streams).

Formally, an r-ary JFT over Σ-streams F consists of a finite set Q of states,
a distinguished start state s ∈ Q, a finite set C = {c1, . . . , ck} of cursors, an
initial cursor configuration γ : C →{1, .., r}, a transition partial-function, and
an output partial function. The transition partial-function

δ : Q× (C→Σ) ⇀ Q× (C→M)

refers to the set of moves M = C ∪ {+}. When δ(q, κ) = 〈p, α〉 we also write

q
κ(α)−−−−→ p. The intent is: an argument κ : C→Σ gives the source values of the

cursors; an action α : C→M instructs each cursor c to jump to the position of
cursor α(c), if α(c) ∈ C, or to step forward if α(c) = +.

The output partial-function

O : Q× (C→Σ) ⇀ Σ

indicates the output symbol, if any, that F emits.
To give the formal semantics of JFTs we refer to configurations, each consist-

ing of a state and a mapping π : C → [1..r] × N, that assigns to each cursor c
a stream index i ∈ [1..r] and an address (in binary) on that stream. Note that
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configurations are finite objects, and do not refer to input or output stream as
a whole.

Let Cfg be the set of configurations. The initial configuration is β0 = 〈s, π0〉,
where π0(c) = 〈γ(c), 0〉.

Given infinite streams σ1, . . . , σr as inputs, δ determines a partial Yield func-
tion

YldF,σ̃ : Cfg ⇀ Cfg

that maps a configuration to its successor configuration, as described informally
above.1 When β′ = YldF,σ̃(β) we also write β =⇒F,σ̃ β′. Thus, each configura-
tion β generates a (finite or infinite) stream of configurations,

T (β) = β1 : β2 : · · ·
dubbed the trace for β, where β1 is β and βi =⇒F,σ̃ βi+1. The trace T (β) is
finite when δ is undefined for its last configuration.

The output function O determines, for input streams σ̃, a partial function

OutbitF,σ̃ : Cfg ⇀ Σ

that maps some configuration to symbols a ∈ Σ. The output stream of F for
inputs σ̃ is obtained from collecting into a stream the output symbols emitted
by OutbitF,σ̃ for the trace of F for σ̃.

2.2 Composition of JFTs

We consider functions over the two base type Σ (the alphabet symbols) and
S (streams over Σ). Consider the schema of typed composition of functions.
f(x̃) = d(e1(x̃), . . . , ek(x̃)). Using auxiliary variables, this can be reduced to the
schema f(x̃) = d(e(x̃), x̃).

Theorem 1. If d, e are JFT-computable functions over Σ and S, then so is
f(x1, . . . xr) = d(e(x̃), x̃).

Proof. Suppose d : S × τ1 × · · · × τ r → S is computed by a JFT D, and
e : τ1 · · · × τr → S is computed by a JFT E, where the τ i’s are S or Σ.

We construct a JFT F to compute f , using a copy of D, as well as a copy Ec

of E for each cursor c that D maintains on its first (i.e. composition-) argument,
which we take to be x0. Each such copy is intended to represent E producing the
n-th entry of e(x̃), where n is the current position of the cursor c. Accordingly,
F also maintains internally the value σc ∈ Σ at that position.

F starts by initializing each σc to the first output symbol of E. It then moves
on to simulate D. Where D would step forward a cursor c on D’s first argument
F runs Ec until the next output symbol σ is produced, leaves the internal config-
uration of Ec as reached, and updates σc to σ. Where D would read the value at
c of its i-th input, F supplies σc as that value. Where D would relocate cursor c
to the position of cursor c′, F sets the configuration of Ec (internal states, cursor
positions, and σc) to the configuration of Ec′ . 
�
1 We use tilde for vectors.
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2.3 Locality and Continuity Properties of JFTs

Equational computing systems, such as the primitive corecursive functions, per-
mit effortless copying of an input to the output, an operation which a JFT must
carry out by an infinite entry-by-entry transfer. To better reflect the ease of
equational copying we consider a variant of JFTs with an added operation Goc,
whose semantics is: The output from this point on is the stream starting with
the current position of cursor c. No computation power is added, of course, since
each invocation of Goc can be replaced by a trivial loop.

We say that a JFT F is local on an argument (i.e. input) x if there is a
bound b (uniform with respect to all remaining inputs) such that F does not
move cursors beyond x’s b-th entry, and does not invoke a Goc operation for
any cursor c residing on x. F is weakly-local on x if it is local as above, except
that F ’s output is obtained by a Go for some cursor on x (necessarily abiding
by the locality condition, i.e. at a position ≤ b). Note that this violates locality:
sufficiently far-out entries of the output will depend on far-out entries of x, but
in a very simple way: by identity. In either case, we refer to b as the bound of F
on x.

We say that F is continuous on x, with modulus ω : N→N, if for each n ≥ 1,
while calculating its n-th output symbolF does notmove cursors beyond theω(n)-
th entry of x. We say that F has degree k on argument y if it has a modulus ω of
order O(nk). F is polynomial on argument y if it has degree k on y for some k.

The next Lemma shows how the locality and continuity properties of functions
determine those properties for their composition.

Lemma 1. Assume the premises of Theorem 1, and let F be the JFT defined
in its proof. Let y be one of the variables x1, . . . , xr.

1. If D is local on x0, or E is local on y, then F has the same property on y
as D on y: local, weakly-local, or continuous with modulus ω.

2. If D has modulus ω0 on x0 and ω1 on y, whereas E has modulus ωE on y,
then F has modulus max(ω0 ◦ ωE , ω1) on y.
In particular, if ωE and ω0 are both constants, i.e. D is weakly-local on x0

and E is weakly-local on y, and if D has modulus ω on y, then F has a
modulus of order O(ω) on y.

Proof.

1. If D is local on z then F needs to access y via E only for a fixed finite set of
entries of E’s output, and since E is continuous, that means a fixed number
of positions of y. On the other hand, if E is local on y, then F access y via E
only for a fixed finite set of entries, regardless of D’s queries for the output
of E. In either case, the use of y by F is dominated by the direct access of
D to y.

2. To calculate its n-th output symbol F reads ωy(n) symbols of y when access-
ing y directly. It also needs to identify the first ωz(n) symbols of the output
of E, which calls for reading ωE(ωz(n)) entries of y.


�
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3 Corecurrence

3.1 Stream Functions Defined by Corecurrence

We continue to refer to an alphabet Σ = {a0, a1, . . . , a�} and to the set S of
streams over Σ. The scheme of corecurrence over streams provides a definition
of a function f : Sr → S from given functions h : Sr → Σ and gi : Sr → Sr

(i = 1..r):
f(x̃) = h(x̃) : f(g̃(x̃)) (1)

More generally, a function-vector f̃ = (f1, . . . , fm) is defined from functions h̃,
g̃1, . . ., g̃m:

fi(x̃) = hi(x̃) : fji(g̃i(x̃)) (2)

The functions h̃ are the head-functions, and g̃i (i = 1..r) the step-functions.
If p : {1..m}→{1..m} is defined by p(i) = ji, then Equation (2) can be written

fp(i)(g̃i(x̃)). In most cases of interest p is a permutation, but it need not be. For

h̃ : Sr →Σ, g̃i : Sr → Sr, and p as above we write corecr,m,p[h̃, g̃1, . . . , g̃m]
for the function tuple f̃ : Sr→Sr defined as above. We omit the indices r,m, p
when in no danger of confusion.

Note that the schema (2) requires that each cycle generate an output symbol.
This is natural, because the focus of coinductive computing is generating the
output, rather than consuming the input as in the scheme of recurrence (i.e.
primitive-recursion). Just as recurrence consumes one input element at each
computation cycle, thereby guaranteeing termination of the computation with
a finite output, the scheme of corecurrence generates one output element in
each cycle, thereby guaranteeing a productive (i.e. infinite) output. We comment
below on an alternative, “lazy,” variant of corecurrence, where the production
of an output symbol is optional.

3.2 Primitive Corecursive Stream Functions

Definition 1. The initial stream-valued functions are:

– Projections functions Pn
i : Sn→S (1 ≤ i ≤ n), defined by Pn

i (x1, . . . , xn) =
xi.

– The tail function tl : S→S, defined by tl(a :σ) = σ.
– The branching function B : Σ × S� → S, defined by B(a, y1, . . . , y�) = if

a = ai then yi.

The initial symbol-valued functions are:

– Projection functions Qn
i : Σn→Σ (1 ≤ i ≤ n), defined by Qn

i (x1, . . . , xn) =
xi.

– For each a ∈ Σ a nullary function a.
– The head function hd : S→Σ.
– The branching function L : Σ�+1→Σ, defined by L(a, z1, . . . , z�) = if a = ai

then zi.
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The primitive corecursive (p.c.) stream functions are generated from the initial
functions above using type-correct composition and the scheme of corecurrence
2. That is, a function over streams and letters is p.c. when it is the denotation
of a term of the typed-lambda calculus with base types Σ and S, and constants
for the initial functions and the corecursion operator above.

3.3 Locality and Continuity Under Corecurrence

Suppose

f(x1 . . . , xr) = h(x̃) : f(g1(x̃), . . . , gr(x̃)) (3)

with each gi computed by a JFT Gi and h by H . In general we cannot expect
f to be computed by a JFT: if it were, then it would be Turing-computable in
logspace [14], but Example [14, §2.3(vi)] shows that it need not be.

However, our next Lemma shows that if the arguments x1, . . . , xr are such
that Gj is weakly local on xj and local on xj+1, . . . , xr, then a finite amount of
information about g̃[n](x̃),2 of the same size for all n, permits the computation
of g̃[n+1](x̃). This makes it possible to define a JFT which is continuous on all
arguments.

Lemma 2. Suppose f = corec[h, g̃, ỹ], as in 3. Suppose the corecursive argu-
ments fall into q disjoint sub-lists x̃i, where x̃i = 〈xi1, . . . , xiri〉, and that gij is
computed by a JFT Gij and h is computed by a JFT H so that:

1. Each Gij is continuous on x̃m for m < i, with modulus ωij of order ndij ;
2. each Gij is weakly-local on arguments x̃i (with bound bi);
3. each Gij is local on x̃m where m > i (with bound bi);
4. all cursor jumps and Go operations are within the same group: when Gij

jumps a cursor or fires a Go, it must involve cursors on arguments of group
i.

Then f is computed by a JFT F which is continuous on all corecursive argu-
ments, with as modulus a finite composition of depth ≤ r of the moduli ωim.

Proof. Without loss of generality we assume that all bi’s are identical (and de-
noted b), and that q = r, with each group Ai consisting just of xi. We can thus
write Gi for Gi1. We also assume that ωi,i+p = ωi,i+1 ◦ωi+1,i+2 ◦· · ·◦ωi+p−1,i+p,
that is, the modulus of Gi on the i+p-th input is the composition of the one-step
moduli. The proof of the general case only requires more tedious detail.

Define the i-th cache for a stream g̃[n](x̃) to be the list Ci of the first ωir(b)
entries of (g̃[n](x̃))i. The cache for g̃[n]n(x̃) is the list C1; · · · ;Cr, i = 1, . . . , r.

We now describe a JFT F that computes f , and is continuous on all its input.
By assumption (4) of the Lemma, if an update of the cache invokes a Go by
some Gi, then it must be on its i-th argument, and since Gi is weakly-local on
that argument, it is invoked to generate a tail of xi. When this operation is

2 We write g̃[n] for the n-th iteration of g̃.
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iterated, it therefore remains true that a Go is triggered by Gi to generate a tail
of xi.

Gi is weakly-local on its i-th argument; so when applied to g̃[n](x̃), Gi triggers
a Go on (g̃[n](x̃))i. By induction on n it follows that every such Go yields a
stream which is a tail of the original i-th input x1. F will use a reserved cursor
on xi to record that position. We refer to that cursor as the i-th pointer.

F calculates successively for n = 1, 2, ... the caches and pointers for g̃[n](x̃).
Each cycle concludes with F invoking H to calculate h(g̃[n](x̃)): since H needs
only the first b entries of each of its inputs, and ωiq(n) ≥ n for all i, H needs
only use the cache for that calculation.

F starts by initializing the cache for i to the first ωir(b) entries of xi, and the
pointer for i to the head entry of xi.

F then proceeds to calculate the caches and pointers for g̃[n+1](x̃), from the
caches and pointers for g̃[n](x̃), as follows. To calculate the first ωir entries of
(g̃[n+1](x̃))i F invokes Gi. This calculation uses up to ωji(b) entries of (g̃

[n](x̃))j
for j < i, and up to b entries of (g̃[n](x̃))j for j ≥ i. These are all available in
caches for g̃[n](x̃), by our assumptions about the moduli ω... As noted, Gi finally
triggers a Go on its i-th argument, namely (g̃[n](x̃))j , by a cursor at position
p ≤ b. F thus steps its i-th pointer p times.

Clearly, the JFT F is continuous on its corecurrence arguments. 
�

4 Ramified Corecurrence

4.1 Computing with Ramified Data

Ramified recurrence [2,9] is based on a distinction between tiers (i.e. opera-
tional levels) of data. Inductive data of tiers t supports recurrence of (possibly
parametrized) functions between data of lower tier. A consequence is that a
function defined by recurrence on data of tier t has output of tier < t, thereby
blocking the self-feeding of the output into the recurrence position, as would
be the case in defining the iterate of a tier-lowering function g, f(n) = g[[n]](0)
by the recurrence f(s(x)) = g(f(x)). Intuitively, the generative process leading
up to the recurrence argument has a higher “energy level” than the function’s
output.

Dually, ramified corecurrence, requires that the output tier of a corecursive
function is higher than the tiers of its inputs. Intuitively, this is because the
decomposition of the output requires greater energy than the decomposition of
the arguments. The duality between inductive and coinductive data is brought
out in ramified second order logic [16]. Here one ramifies set variables, and re-
strict the instantiation of a universal set quantifiers: if X is a set variable of
tier t, then formula ∀Xt ϕ[X ] can be instantiated to a set-definition λz.ϕ only
when the formula ϕ does not refer to quantified set-variables of tier ≥ t or to
free set variables of tier > t. In particular, this restriction blocks impredicative
set-existence (Comprehension).
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Referring in the ramified context to second-order definitions of inductive data
using ∀ over sets, it follows that recurrence is admissible only if it is ramified.
Dually, given that coinductive data is definable using ∃ over sets, corecurrence
is admissible only if it is ramified in the sense above. See e.g. [14] for a more
detailed discussion.

4.2 Ramified Corecurrence

To formally convey the notion of ramified corecurrence, we posit copies Si (i ≥ 0)
of the set S of Σ-streams, dubbed tiers. We can construe these as disjoint base
types, in addition to the base type Σ.

As usual, we give rules for typing judgments of the form Γ � e : τ , where
Γ is a type environment, e an expression and τ a type. We write Γ, Γ ′ for the
union Γ ∪Γ ′, which is implicitly assumed to be legal (i.e. without multiple types
assigned to the same variable). Arrows associate to the right. Since we do not
deal with higher types, our type environments will refer only to arrow-free types.
The type system is given in the following table. The main points to keep in mind
are these:

1. Each stream comes with a tier, which conveys its computational strength as
input for a corecursive definition. Symbols a ∈ Σ are not classified into tiers.

2. Ramified corecurrence defines a function from inputs of various tiers, to an
output at a tier that majorizes them all. As explained above, a higher tier
means here weaker computation power, so ramified corecurrence degrades
the computation power of its arguments, by using them.

3. Composition is typed as usual, which implies here that it respects tiers.

Type system RC for the primitive corecursive functions

Underlying alphabet: Σ = {a0, a1, . . . , a�}.

Generic lambda rules

X
Γ � x : τ

(x : τ in Γ )

Γ, x : τ � E : σ

Γ � λx.E : τ→σ

Γ � E : τ→σ Γ ′ � F : τ

Γ , Γ ′ � E(F ) : σ

Γ j � Ej : τ j (j = 0, 1)

Γ 0, Γ 1 � 〈E0, E1〉 : τ 0 × τ1

Γ � E : τ0 × τ1

Γ � πj(E) : τ j
(j = 0, 1)
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Initial functions

� Pn
k : Si1 × · · · × Sin →Sik

� ε : Sj

� tl : Sj→Sj

� B : Σ × S�
j → Sj

(a ∈ Σ) � a : Σ (a ∈ Σ)

� hd : Sj→Σ

� L : Σ�+1→Σ

Corecurrence

If τ is a product of r base types,
and is of tier i > 0 where i < j, then

Γ � h : τ→Σm Γ ′ � g : (τ→τ)m

Γ , Γ ′ � corecr,m,p[h, g] : τ→Sm
j

4.3 The Computational Contents of Ramified Corecurrence

Theorem 2. If a primitive-corecursive function f is defined by a term t : Si1 × · · · ×
Sir → Sj in the type system RT, then f is computable by a JFT F . Moreover, F
is local on each argument of tier > j, weakly-local on each argument of tier Sj, and
continuous with a polynomial modulus on each argument of tier < j.

Also, if a symbol-valued function is definable by a term t : Si1 × · · ·×Sir → Σ, then
it is local on all arguments.

Proof. The proof proceeds by induction on the typing derivation of t in RT. The base
cases are straightforward. The induction step for composition is given by Lemma 1,
and the step for ramified corecurrence by Lemma 2. �	

4.4 Characterization of Ramified Corecurrence

The schema (1) requires that each computation cycle generate an output symbol. The
schema of lazy corecurrence relaxes this requirement, using test functions ki to indicate
whether or not it is triggered:

fi(x̃) =

{
fi(x̃) if hd(k(x̃)) = ε

fj(g̃i(x̃)) otherwise
(4)

This relaxation is useful for simulation of machine models, such as JFT, where
computation steps need not always emit an output symbol. Indeed,
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Theorem 3. [14, Proposition 4.1] If a function over streams is computed by a JFT
then it is definable from the initial functions using composition and lazy corecurrence.

However, lazy corecurrence goes counter the very rationale of corecurrence. The
point of the schema of recurrence (i.e. primitive recursion) is that it consumes its input,
thereby guaranteeing termination. Dually, the point of corecurrence is that it builds
its output, thereby guaranteeing productiveness. We might, for instance, consider a
schema of “lazy recurrence”, where the consumption of the input is optional; the result
would simply be equational programs in the style of Herbrand-Gödel [8], i.e. a Turing-
complete computation model. Lazy corecurrence has a similar effect for computing over
streams: it captures Turing computability over functions of type N→Σ.

A drastic ramification of the definition into two tiers, reduces the computational
power to that of a JFT [14], but the class of functions definable this way is not closed
under composition.

Lazy corecurrence can be represented by our standard (“strict”) corecurrence, by
fixing a reserved symbol, say e, to stand for the “empty” output-symbol of a lazy-
corecurrence. The intended output stream σ is then obtained from the actual output
τ by a collapse operation, that erases all occurrences of e in τ . This representation is
less trifling than may first seem: it keeps a record of computational resources, which is
useful for function composition.

Theorem 4. Let f be a function over streams. The following are equivalent.

1. f is definable by 2-tier ramified lazy corecurrence.
2. f is the collapse of a function definable by (all tier) ramified corecurrence.
3. f is computable by a JFT.

Proof. (1) implies (2) trivially.

(2) implies (3): Suppose f is the collapse of a function g defined by ramified corecur-
rence. By Theorem 2 g is computed by some JFT M , and so f is computed by the
composition of M with a finite state transducer that erases all occurrences of e. By
Theorem 1 it follows that f is computed by a JFT.

(3) implies (1) by [14]. �	

5 Log-Space Computation over Finite Streams

5.1 Computing over Finite and Regular Streams

We have commented in the introduction about the practical significance of computing
coinductively on very large (but finite) data. Several representations of finite streams
are possible; the best suited to our purpose is the use of a symbol e as an end-marker.
That is, a word w ∈ Σ∗ is represented by the stream that extends w with an indefinite
repetition of e. (Recall that e 
∈ Σ.)3 We refer to w as the significant portion of the
stream w : eω ≡ w : e : e : · · · representing w.

3 A more principled representation uses of a nullary constructor for the empty word,
yielding a coinductive type for both finite and infinite streams. That would call,
though, for a restatement of the corecurrence schemas, and would not mesh well
with the regular streams discussed below.
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This representation of finite streams also agrees with a natural representation of
regular streams, in the sense of [5], i.e. eventually-periodic streams. The salient property
of such streams is that they have only finitely many distinct sub-streams.

Of course, we are particularly interested in the finite streams. Given a function
f : Sr→S let ffin denote the partial-function on Σ∗ obtained by restricting f to finite
streams, that is:

ffin(w̃) = the significant portion of the collapse of f(w̃)

Proposition 1. If a function f : Sr → S is computed by a JFT M , then it maps
(vectors of) regular streams to regular streams.

More precisely, suppose that M has d states and k cursors. If σ̃ = (σ1, . . . , σr) is
such that each σi has at most n distinct sub-streams, then f(σ̃) has at most d · nrk

distinct sub-streams.

Proof. The number of possible configurations of M for input σ̃ is d · nrk. �	
Virtually the same argument establishes:

Corollary 1. If f : Sr → S is computed by a JFT M , then ffin is computable in
logarithmic space. �	

5.2 Simulation of Log-Space by JFTs

In [14] we considered Turing transducers over streams. Such transducers are similar to
JFT’s, except that they have an auxiliary read/write memory. Note that we allow such
machines to have several cursors on each input stream. We say that a Turing stream-
transducer is log-space if the work-tape is restricted to size O(log n) when computing
the n’the entry of the output.

A well-known simulation of log-space computation by multi-cursor two-way au-
tomata [7] is based on the representation of configurations of log-space size by cursors
on the input. Our Turing transducers on streams can similarly be simulated by JFT’s,
provided the latter can place cursors on some word of length n when calculating the
n’th output entry. That proviso is no longer needed when the inputs are finite streams.
Indeed, if f : Sr→S is computed by a logspace Turing stream-transducer, then there
is a JFT G which computes a function g that agrees with f on all finite input. Here
we are interested in the following restricted case of that observation:

Proposition 2. If g : (Σ∗)r→Σ∗ is computable by a log-space Turing transducer M ,
then there is a JFT F computing a function f : Sr→S such that g = ffin.

Proof. F simulates the work-tape of M using additional cursors on (the significant
portion of) the input, whose end is detected by M by the first occurrence of e. Once
M completes emitting output symbols for the given inputs, F proceeds to emit e

indefinitely. �	
Combining Corollary 1, Proposition 2, and Theorem 4 we obtain

Theorem 5. Let g : (Σ∗)r→Σ. The following are equivalent:

1. g is log-space computable.
2. g = ffin for some f : Sr → S which is computable by a JFT, or equivalently

definable by ramified lazy corecurrence, or equivalently is the collapse of a function
definable by corecurrence.

�	
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6 Conclusion and Research Directions

This paper is a contribution to the broad project of using ramification methods in Im-
plicit Computational Complexity. We have settled here the status of the computational
contents of ramified corecurrence in all tiers, and showed that it is captured by jumping
finite transducers, and for finite streams by log-space Turing transducers. (The case of
two tiers only was settled in [14] using the very strong limitations imposed on two tier
corecurrence, due to the fact that the step functions must in that case be unary.) The
converse holds, in a slightly modified form, by our previous work [14].

The methods developed here seem promising in tackling several more general or
related questions. An obvious one is the generic extension of our treatment to arbitrary
coinductive data, such as finite/infinite trees. We would expect that the extension of
JFTs to such data,4 might answer this question. Moreover, we would like to characterize
the computational nature of ramified computing over data generated by both inductive
and coinductive, for example in the framework of [12].

The effect of ramification in such a broad context can be brought to bear on more
general forms of recurrence and corecurrence, in particular using higher type function-
als. In [10] it was shown that the functions over inductive data defined by ramified
recurrence in all finite types are precisely the Kalmar-elementary functions (as op-
posed to the ε0-recursive functions in the un-ramified case), and [11] shows that the
type-2 functionals defined by ramified recurrence (on base type) form precisely the
Cook-Urquhart’s class BFF of Basic Feasible Functionals. Our aim is to explore such
results in the broader context of inductive/coinductive data-types.

Closer to home, we would like to better understand the nature of computational com-
plexity over coinductive types in general, and streams in particular, e.g. the status of
the “size yardsticks” that we used in the JFT simulation of logspace stream-transducers
in [14].

Last but not least, there are intriguing and promising questions on the use of ramified
corecurrence in the analysis and understanding of practical algorithms on streams and
other coinductive data.
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Abstract. Many correctness criteria have been proposed since linear
logic was introduced and it is not clear how they relate to each other.
In this paper, we study proof-nets and their correctness criteria from
the perspective of dependency, as introduced by Mogbil and Jacobé de
Naurois. We introduce a new correctness criterion, called DepGraph, and
show that together with Danos’ contractibility criterion and Mogbil and
Naurois criterion, they form the three faces of a notion of dependency
which is crucial for correctness of proof-structures. Finally, we study the
logical meaning of the dependency relation and show that it allows to
recover and characterize some constraints on the ordering of inferences
which are implicit in the proof-net.

Keywords: Linear logic, MLL, Proof nets, Correctness criterion, Con-
tractibility, Mogbil-Naurois Criterion, Permutability of inferences.

1 Introduction

The benefits of Curry-Howard. Since the discovery of Curry-Howard correspon-
dence [2], that is of the deep connections between logical proofs and computer
programs, programming language theory and proof theory have been tightly
intertwined.

Among the numerous and fruitful back-and-forths between proofs and pro-
grams, linear logic [3] certainly stands as exemplary.

While working on second-order arithmetics, Girard introduced system F [4,5],
a polymorphic λ-calculus. Studying the semantics of system F, he later in-
troduced the coherent semantics [6] which led to the linear decomposition of
implication (A ⇒ B = !A�B), the cornerstone of linear logic [3] since this se-
mantical observation turns to be syntactically reflected in a well-behaved proof
system. With linear logic came a very canonical representation of proofs (for
fragments) of linear logic: proof nets [3,7,8] are a graphical notation for proofs,
resulting in very canonical proof objects (contrarily to sequent proofs) in which
cut-elimination is very elegant, and simple. As such, they are certainly one of
the most original innovations of linear logic. The beauty of proof-nets is espe-
cially striking in the multiplicative fragment with no logical constant (also said
unit-free multiplicative logic) to which most of the paper will be dedicated.
� An extended version with supporting proofs can be found in [1] at http://www.pps.
univ-paris-diderot.fr/ saurin/Publi/DepGraphLong.pdf
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Proof-nets and logical correctness. By moving from inductive objects (e.g. se-
quent calculus proof trees) to more geometrical objects (proof structures), cor-
rectness becomes a global property contrarily to sequent proofs where correctness
was local (a proof is correct if every step in the argument is correct). To give a
status to those (possibly incorrect) objects, one speaks of proof structures, re-
serving the term proof nets to those objects which actually come from a sequent
calculus proof. From this comes the need for conditions to ensure the logical
correctness of proof structures. Several correctness criteria have been introduced
in the literature. Among the best-known criteria, one can refer to the original
long-trip criterion (LT) [3], Danos-Regnier criterion (DR) [8], counter-proofs cri-
terion (CP) [9,10], contractibility (C) [11], graph-parsing criterion (GP) [12,13],
Dominator Tree (DT) [14] and more recently Mogbil-Naurois criterion (MN) [15].

Relating correctness criteria. Actually, correctness criteria usually provide us
with some specific viewpoints on the proof-theoretical or computational proper-
ties of proofs. For instance, they can (i) provide precise means to sequentialize
a proof-net into a sequent proof, or (ii) tell us about the complexity of the
correctness problem, or even (iii) say something about the structure of proofs.

Although correctness of proof-nets is now well-studied and understood, the
question of comparing and relating those criteria attracted much less attention.

Contributions of the paper. The present paper is a contribution in this direction:
we investigate a notion of dependency between inferences of a proof structure
and use it to compare three correctness criteria (C, MN and DepGraph, a new
criterion we introduce here) showing that they constitute three faces of this
dependency relation.

We reformulate Contractibility in a big-step version from which arises the
notion of dependency that one finds in MN criterion. This leads us to introduce
a new criterion, DepGraph. We then show that these three criteria, arising from
the notion of dependency, meet the three categories given above: we show that
Contractibility gives actually a sequentialization of a proof-net, MN is a criterion
with efficiency purposes and DepGraph emphasizes the structural properties of
logic since (i) it deals separately with positive and negative inferences, suggesting
possible connections with focusing, (ii) it is switching-independent, contrarily
to MN, (iv) it makes use of a well-known necessary condition for correctness
following from Euler-Poincaré property [10] and finally (iv) we use its notion of
dependency in order to characterize constraints on the order of introduction of
inferences which are shared by all sequentializations of a given proof-net.

We focus on multiplicative and unit-free linear logic. Rather than a restriction
of the results, this is a matter of presentation: DepGraph criterion can easily be
extended to MELL, thus capturing typed lambda-calculus

Organization of the paper. In Section 2, we recall the basics of proof nets and
correctness criteria and dedicate Section 3 to analyzing and comparing the three
criteria mentioned above by (i) showing how contractibility is related with se-
quentialization, (ii) formulating a big-step notion of contractibility, (iii) justifying
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the occurrence of a dependency relation in proof-nets, (iv) introducing a new cor-
rectness criterion, DepGraph and (iv) comparing DepGraph with MN-criterion.
We finally focus in Section 4 on the logical meaning of dependency graphs. Due
to lack of space, proofs are omitted but can be found in an extended version
with supporting proofs and more material, available online in [1].

2 Correctness Problem of Proof Structures in Linear
Logic

2.1 Linear Logic and Proof Nets

MLL. In this paper, we will deal with multiplicative linear logic (MLL), which is
a fragment of linear logic. MLL formulas are built from the following grammar:

A,B := X | X⊥ | A⊗B | A�B (X ∈ V)
MLL is usually presented via a sequent calculus: an MLL sequent is a finite

unordered list of MLL formulas, written � Γ and a proof is a tree with nodes
labelled by (ax), (cut), (⊗), (�) and edges are labelled by sequents as follows:

Identity Group: (ax)
� A,A⊥

� A,Γ � A⊥, Δ
(cut)� Γ,Δ

Multiplicative Group:
� A,Γ � B,Δ

(⊗)� A⊗B,Γ,Δ

� A,B, Γ
(�)� A�B,Γ

Sequent calculus induces a sometimes irrelevant order between inferences. This
is evidenced by possible permutations between inferences of a sequent proof. We
recall in figure 1 the main cases of these permutations, the other cases are much
alike, included the permutations involving the cut inference.

� A,C, Γ � D,Δ
⊗� A,C ⊗D,Γ,Δ � B,Σ

⊗� A⊗B,C ⊗D,Γ,Δ,Σ

↔
� A,C, Γ � B,Σ

⊗� A⊗B,C, Γ,Σ � D,Δ
⊗� A⊗B,C ⊗D,Γ,Δ,Σ

� A,B,C,D, Γ
�� A�B,C,D, Γ
�� A�B,C�D,Γ

↔
� A,B,C,D, Γ

�� A,B,C�D,Γ
�� A�B,C�D,Γ

� A,Γ

� B,C,D,Δ
�� B,C�D,Δ
⊗� A⊗B,C�D,Γ,Δ

↔
� A,Γ � B,C,D,Δ

⊗� A⊗B,C,D, Γ,Δ
�� A⊗B,C�D,Γ,Δ

Fig. 1. Key cases of inference permutations in the sequent calculus
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Proof structures and proof nets. Proof nets are canonical representations of MLL
sequent proofs quotienting them by the previous permutation rules, resulting in
a confluent cut-elimination and other very good properties. Proof structures
allow to present MLL proofs in a non-sequential way and therefore those objects
are not inductively presented anymore which makes the checking of the logical
correctness of those object challenging, calling for correctness criteria.

In the following, we shall consider only cut-free proof structures. Indeed, cut
behaves exactly as⊗ from the view point of correctness and therefore introduces
no difficulty nor interesting aspects in our developments.

Definition 1 (Proof structure). A proof structure is a finite undirected graph
where vertices are labelled by the names of MLL inference rules or the special
label c (for the conclusions of the proof) and edges are labelled with formulas
of MLL. Moreover, edges which are adjacent to a vertex are partitioned into
premises and conclusions according to the following rules:

• Nodes of label ⊗ (resp. �) have two premises and one conclusion. If A is
the label of the first premise and B the label of the second premise, then the
conclusion is labelled A⊗B (resp. A�B);

• Nodes of label ax have no premise and two conclusions. If the label of the
first conclusion is A, the label of the second conclusion is A⊥;

• Nodes labelled c have one premise and no conclusion1.
• Every edge is premise of one of its endpoints and conclusion of the other.

Definition 2 (Desequentialization). To any MLL proof π, one associates a
proof structure [π], its desequentialization, by forgetting the order of the inference
rules and keeping only the subformula ordering together with the axiom links.

Definition 3 (Proof net). A proof net is any proof-structure which is the
desequentialization of some sequent proof.

By the previous definition, one immediately gets an inductive characteriza-
tion of proof nets. Proof nets are those proof structures which can be obtained
inductively as in figure 2

Remark 1. In the graphical representation of proof nets, we put arrows on edges
to represent the information on premise/conclusion, but we consider the graph
as undirected, in particular with respect to any notion such as paths, cycles, ...

2.2 Correctness Criteria

The graph in figure 3 is indeed a proof structure but it cannot be associated
with a MLL proof. A proof structure therefore does not necessarily correspond
to a sequent calculus proof; such a proof structure is called non-sequentializable.
There is a number of methods to distinguish sequentializable proof structures –
proof nets – from non sequentializable ones; such methods are called correctness
criteria.
1 We shall often omit those nodes in the graphical representation of nets: they will be
depicted as pending edges.
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A A⊥
ax

R1 R2

A B

A⊗B

⊗

R1

A B

A�B

�

Fig. 2. Inductive characterization of proof nets

A A⊥
ax

A⊗A⊥
⊗

Fig. 3. A proof structure which is not a proof net

Several correctness criteria have been introduced in the literature. In the rest
of this section, we shall present the Danos-Regnier (DR) criterion which is one of
the most popular criteria; then we present Contractibility and Mogbil-Naurois
(MN) criterion which we will compare in the next section.

2.3 Danos-Regnier Criterion

Definition 4 (Switching). A switching of a proof structure R is the choice,
for every � node of the graph, of one of its premises. More formally, a switching
of R is a map from the � nodes of R to {l, r}.

Given a switching s of a proof structure R, a � node n will be said to be
switched to the right (resp. to the left) if the right premise (resp. left) has been
selected, that is if s(n) = l (resp. r).

Definition 5 (Correction Graph). A Correction graph of a proof struc-
ture R = (VR, ER) and a switching S of R is the undirected graph S(R) =
(VS(R), ES(R)) defined as VS(R) = VR and ES(R) is the subset of edges of R con-
taining all edges from R but for the left (resp. right) premise of a � node n when
S(n) = r (resp. l) and such that the labels are the inherited from R.

Definition 6 (Danos-Regnier Criterion (DR)). A proof structure satisfies
the Danos-Regnier criterion if every correction graph is connected and acyclic;
in that case, it is said to be DR-correct.

Theorem 1 ([8]). A proof structure is a proof net if, and only if, it is DR-
correct.
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2.4 Contractibility

The contractibility criterion expresses a topological property of the proof struc-
ture, more precisely of an underlying graph structure, the paired graph which
contains just enough information to distinguish premises of a � from the other
edges.

Definition 7 (Paired Graph). A paired graph is given by a graph G =
(V,E) together with a set P (G) of paired edges, that are unordered pairs of
edges which share at least one endpoint.

Definition 8 (C(R)). To a proof structure R, one associates a paired graph,
written C(R), which is simply R together with the set of paired edges given as
the set of pairs of edges which are premises of a � node.

Example. We show below the unique proof net Ra�a⊥ for the sequent � a�a⊥

and the paired graph C(Ra�a⊥) which is associated to Ra�a⊥ (paired edges are
distinguished by a ̂):

a a⊥
ax

a�a⊥
�

•

•̂
•

Definition 9 (Contraction rules). One defines two graph-rewriting rules on
paired graphs as follows (note that in both rules the two nodes shall be distinct
and, in R2, the contracted edge is not paired with any other edge):

• •
R1 : −→ • R2 : −→ •

•̂ •

Definition 10 (Contractibility). A proof structure R is contractible if

C(R) →∗ •.

Contractibility characterizes proof nets, it provides a correctness criterion:

Theorem 2 ([11]). A proof structure is a proof net if, and only if, it is con-
tractible.
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2.5 Mogbil-Naurois Criterion

We shall first present Mogbil-Naurois criterion, one of the most recent correctness
criteria which characterized the space-complexity of the correctness problem.

Definition 11 (Elementary path). A path in a undirected graph is elemen-
tary when it does not enter twice the same edge.

Definition 12 (Dependency graph of a correction graph). Given R a
proof structure and S a switching of R, the dependency graph of S(R), written
D(S, R) is an oriented graph (V,E) defined as follows:

• The set of nodes V consists in the set of conclusions of � nodes of R together
with an additional node s.

• Let x be a � node in R, xr (resp. xl) the other endpoint of its right (resp.
left) premise in R.
• There is an edge (s → x) in E if there exists an elementary path xl, . . . , xr

in S(R) which goes through no � node.
• Let y be another � node in R. There is an edge (y → x) if there exists
an elementary path xl, . . . , xr in S(R) containing y.

Definition 13 (SDAG graphs). A graph G is SDAG if: it is acyclic and it
contains a node s, the source, such that all nodes of G are accessible from s.

Definition 14 (Mogbil-Naurois Criterion). A proof structure satisfies the
Mogbil-Naurois criterion (MN) if there exists a connected and acyclic switching
S such that D(S, R) is SDAG. Such a proof structure is said MN-correct.

Theorem 3. A proof structure is a proof net if, and only if, it is MN-correct.

One notices that dependency graphs are defined on correction graphs and thus
they depend on the switching. Compared to Danos-Regnier, the use of switchings
in (MN)-criterion is quite odd: it only requires to analyze one switching and
the corresponding correction graph. Moreover, the choice of this switching is
itself arbitrary. It is therefore natural to wonder what is the exact role of this
switching: is it really necessary? We answer this question in the following by
going back to the origin of the idea of dependence, which was already present
in the contractibility criterion as we shall see in section 3. From that point, we
state a dependency-graph based criterion which does not rely on any switching.

3 On the Three Faces of Contractibility

Despite the wide diversity of correctness criteria, their relationship remains
poorly studied in the literature. In this section, we shall investigate the con-
nections between three criteria: Mogbil-Naurois, Contractibility and DepGraph
which is a new criterion that we introduce in the remainder.
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3.1 Contractibilty and Sequentialization

Before relating contractibility with the other two criteria, we make clear that
it gives a genuine sequentialization. To do this, we simply label nodes of the
paired graph of the proof structures with open proofs containing context vari-
ables. These open proofs correspond to partial sequentializations, which become
larger and larger as contraction progresses, until reaching a full MLL proof. More
precisely, these open proofs are constructed on sequents with context variables,
generated by the following syntax (F is a formula and Γ ? is a context variable):

S := ∅ | S, F | S, Γ ?

We consider these sequents up to commutativity. Open proofs are constructed
by the following syntax:

(ax)
� A�A⊥ � S

� S1, A � S2, B
(⊗)� S1, S2, A⊗B

� S,A,B
(�)� S,A�B

Given a proof structure R, the labelled paired graph Cl(R) is obtained by ap-
plying the following rules:

ax � ⊗−→ −→ −→� A,A⊥
� A,B, Γ ?

A�B

� A�B,Γ ?
A�B

� A,Γ ?
A � B,Γ ?

B

� A⊗B,Γ ?
A, Γ

?
B

A⊥A

A B

A⊗B

A B

A�B

A⊥A

A⊗B

A B A B

A�B

Labeled contractibility rules become:

R1 :

� A,B, Γ ?
A�B

ν

π

� A,B, Γ

A
B −→

π

� A,B, Γ

� ν[Γ/Γ ?
A�B]

R2 :

θ � A,Γ ?
A⊥

ν

π

� A,Γ

A
−→ θ

π

� A,Γ

� ν[Γ/Γ ?
A⊥ ]

If R is actually a proof net, the node at which its paired graph contracts is
labeled by one of its sequentializations:

Proposition 1. Let R be a proof structure. If C(R) contracts (by rules R1 and
R2) to a point, then by following the same contraction path, Cl(R) contracts to
a point whose label is a sequentialization of R.

Proof and examples are provided in the long version.Notice that two different
contraction paths may lead to different sequentializations of a proof net.

Remark 2. Similar sequetialization processes directly based on a correctness cri-
terion already exist in the literature. This ranges from the first naive correctness
criterion to the so-called graph-parsing criterion. For instance, the naive crite-
rion induces a bottom-up sequentialization, triggered by the conclusion of the
proof, while the graph-parsing criterion induces a top-down sequentialization,
triggered by the axioms. Compared to those, the above sequentialization can be
triggered by “any” part of the proof-net.
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3.2 Big-step Contractibility

We reformulate Contractibility in a big-step fashion to highlight the intrinsic
notion of dependency present in this criterion.

One defines a new graph-rewriting rule R as follows:

Definition 15 (Big-step Contraction R). An elementary cycle can be con-
tracted to a point if it contains exactly two paired edges that are paired together
that are adjacent in the cycle.

⇒

This new notion of contractibility is easily seen to correspond to usual con-
tractibility and thus induces a correctness criterion expressed as:

Theorem 4. A proof structure is a proof net if, and only if, contraction R can
be applied until:

• no paired edges are left and
• it leads to a tree of unpaired edges.

3.3 Towards Dependency Graphs

This version of contractibility criterion induces a natural dependency relation
between the � nodes of the proof structure: when the premises of a � node are
connected by a path that does not go through any premise of an other � node
(see figure 4), one can contract directly this path; these are the nodes connected
at the source in the dependency graph of MN-criterion. When, on the contrary,
the path from the premises of a � node (�1) goes through one of the premises of
another � node (�2) (see figure 4), we say that �1 depends on �2 because �1

can only be contracted if �2 is contracted before. In this way, we can construct
a dependency graph which looks like the dependency graph of MN criterion, but
this one is built directly on the proof structure rather than on a correction graph.
The first condition of big-step contractibilty criterion says simply that this graph
is SDAG. We will see how to transform the second condition in order to get a
full correctness criterion. Before moving to the study of this new criterion, let
us simply remark that one can actually define a dependency relation between �

nodes of a proof structure R and any set of nodes of R as follows:

Definition 16 (Dependency graph of a proof structure, relatively to
a set of nodes). Let R be a proof structure and N a set of nodes of R. We
denote by P the set of � nodes of R. The dependency graph of R relatively to
N , DN(R), is the oriented graph (V,E) defined as follows:
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�

�2

�1

Fig. 4. Various dependency configurations

• V = N ∪ P ∪ {s} where s is an additional node.
• Let p be an element of P .

• There is an edge (s → p) in E if the premises of p are connected by an
elementary path in R which goes through no � node.

• Let q be an element of V . There is an edge (q → p) if the premises of
p are connected by an elementary path containing q which does not go
successively through the two premises of a � node.

Remark 3. The intuition underlying this extended notion of dependency graph
is that in big-step contractibility, the contraction of the paired graph depends
not only on dependencies between paired edges, but also on the fact that the ⊗
nodes on the cycles actually can be contracted to a point (with no loop), thus
making a � node depend on a ⊗ node.

Notation. The previous definition has two natural instances: when we take N
to be the set of the � nodes of a proof structure R, DN(R) is a graph which
expresses the dependency relation between � nodes only. We note it by D�(R);
an example is given in figure 5. When N is taken to be the set of all � and
⊗ nodes of a proof structure, DN (R) is a graph which expresses the dependency
relations between the � nodes and the other � and⊗ nodes; we write it D�,⊗(R).
In the following we shall consider only D�(R) until section 4 where D�,⊗(R) will
be considered. When there is no ambiguity will shall omit the subscript.

3.4 DepGraph Criterion

As said before, the first condition of big-step contractibility expresses that D�(R)
is SDAG: the existence of a contractibility sequence ensures that there is some �

node having a cycle that does not contain any paired edges which is the condition
to be connected to the source, while the acyclicity condition ensures that we will
always find a � node with a cycle that can be contracted.

To get a full correctness criterion, we will make use of a graph-theoretic prop-
erty called Euler-Poincaré lemma, as suggested by Girard in [10].

Definition 17. Let G be an undirected graph and n, e be its numbers of nodes
and edges. We set χG = n− e and call this quantity the characteristic of G.
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R =

ax
ax
ax
ax

⊗ ⊗

⊗
P4

�

P3

�

P2

�

P1

�

R′ =
ax ax

P2

�

P1

�

⊗

D�(R) =

s

P3 P4

P2

P1

D�(R′) =

P2

P1

Fig. 5. Examples of dependency graphs

Theorem 5 (Euler-Poincaré Lemma). Let G be an undirected acyclic graph
and cG be its number of connected components. The following equality holds:

χG = cG.

Proposition 2. For every correction graph G of a proof net, one has χG = 1.

Proposition 3. Every correction graph G of a proof structure R satisfies:

χG = #ax−#⊗ .

Putting the two previous propositions together, a sequentializable proof struc-
ture must have one more axiom link than it has tensor links: #ax−#⊗= 1.

Remark 4. When a structure contains cuts, one has χG = #ax−#⊗−#cut for
every correction graph G. The condition above becomes #ax−#⊗−#cut = 1.

We can finally state our new criterion, DepGraph:

Definition 18 (DepGraph criterion). A proof structure R is D�-correct (or
satisfies DepGraph criterion) if

(1) D�(R) is a SDAG, (2) R is connected and (3) #ax−#⊗= 1.

Theorem 6. A proof structure is a proof net if, and only if, it is D�-correct.
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ax
ax
ax
ax

⊗ ⊗

⊗
P4

�

P3

�

P2

�

P1

�

ax
ax
ax
ax

⊗ ⊗

⊗
P4

�

P3

�

P2

�

P1

�

D(S , R) =

s

P3 P4

P2

P1

D(S ′, R) =

s

P3 P4

P2

P1

Fig. 6. Switchings S S ′ of net R, the associated dependency graphs

3.5 Comparing the Two Notions of Dependency Graphs

Example in figure 6 shows that Mogbil-Naurois dependency graphs are switching-
dependent, developing on example of figure 5. We will show that, for proof
nets, they are almost invariant: the transitive closure of the dependency graphs
induced by different switchings are all equal and are equal to the transitive
closure of the dependency graph we introduced in the previous section.

Notations. If S is a switching for a proof structure R and a a �-link in R, we
note Sa the switching S in which we have toggled the switching for a.

Given a graph D, D� is its transitive closure.

Lemma 1. Let z and a be two � links of a proof net R and S be a switching.

• if (z → a) ∈ D(S, R), then (z → a) ∈ D(Sa, R)
• if (a → z) ∈ D(S, R), then (a → z) ∈ D(Sa, R)

Theorem 7. Let R be a proof net and S,S ′ be switchings of R. Then we have

D(S, R)� = D(S ′, R)�.

Remark 5. The proof relies strongly on the fact that in a connected acyclic
graph, there always exists a single elementary path between two nodes. The
result would not hold if the structure were not correct.

Finally, we have:

Theorem 8. Let R be a proof net and S a switching for R. Then: D�(R)� =
D(S, R)�.
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4 On the Order of Introduction of Connectives
in Sequentializations

In this section, we will investigate the logical meaning of the notion of depen-
dency introduced for DepGraph criterion. A crucial step in proving that a proof
net satisfies DepGraph is to show that if π is a sequentialization of proof net
R, every dependence in the dependency graph is also present in the order of
introduction graph, more precisely:

Definition 19 (Order of introduction). Let π be an MLL proof. For every
� or ⊗ rule rF introducing formula F , we note πF the sub-tree of π rooted in
the conclusion of rF . We define a partial order on the (occurrences of) formulas
introduced by � or ⊗ inferences in π, that will be noted <π as follows:

F <π G if rF ∈ πG and F 	= G

It formalizes the relation “to be introduced above”.
The graph of this relation is noted O−(π) and one defines O(π) as O−(π)

augmented by adding a vertex s and, for all vertice e in O−(π), an edge s → e.

To show that every proof net is D�-correct, we established the following:

Lemma 2. Let π be an MLL proof and R its desequentialization. Then

D�(R) ⊆ O(π).

As a consequence, D�(R) ⊆ O(R) := ∩π,[π]=RO(π) where O(R) can be seen
as the essence of the sequentalizations of R. It is natural to wonder whether this
inclusion can be sharpened in a characterization of O(R) relying on our notion
of dependency. Actually, D� expresses only the relationship betweep � nodes,
and it is not enough to characterize O(R). We will use instead the dependency
graph D�,⊗(R) to take in account also the dependency relation between � and
⊗ nodes.

Definition 20 (Subformula graph of a proof net). Let R be a proof net. The
subformula graph of R, SF (R), is the directed graph (V,E) defined as follows:

• V = P ∪ T where P and T are respectively the set of � nodes and ⊗ nodes.
• Let n and m be two elements of V . There is an edge (m → n) in E if
the formula of the conclusion of m is a subformula of the formula of the
conclusion of n.

Theorem 9. Let R be a proof net. Then (D�,⊗(R) ∪ SF (R))� = O(R).

The result is proved by double inclusion.

Proposition 4. Let π be an MLL proof and R its desequentialization. Then:

D�,⊗(R) ⊆ O(π).

Corollary 1. Let R be a proof net. One has (D�,⊗(R) ∪ SF (R))� ⊆ O(R).
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Proposition 5. Let R be a proof net. One has O(R) ⊆ (D�,⊗(R) ∪ SF (R))�.

Proof. (Sketch, see [1] for details.) We prove the result by induction on the
minimal distance between two inferences in any sequentialization of R. If this
distance is zero, then we prove that if (F1 → F2) ∈ O(R) then either F1 is a
subformula of F2 and then (F1 → F2) ∈ SF (R), or (F1 → F2) ∈ D�,⊗(R). In
the inductive case, minimality ensures the existence of an F such that (F1 →
F ) ∈ O(R) and (F → F2) ∈ O(R) on which induction hypothesis applies. �


5 Conclusion

Comparing correctness criteria. We have seen that Contractibility, Mogbil and
Naurois’ criterion and DepGraph are three faces of the same notion, dependency.
More precisely, those three criteria can be understood as different concrete im-
plementations of a proto-criterion related with dependency relation, along the
different points of view developed in the introduction: we showed that (i) Con-
tractibility gives actually a sequentialization of a proof-net from which arises
dependency, (ii) MN is a criterion with efficiency purposes (working on the gen-
eralized dependency graph, it is not clear how to stay in NL since it requires
to remember which premise of a � node has been visited, thus justifying the
seemingly odd choice of a switching) while (iii) DepGraph emphasizes structural
properties of logic by clearly separating conditions on � inferences from other
inferences and by unveiling the meaning of its dependency graph which corre-
ponds (when considered together with the subformula relation) to the order of
introduction of inferences common to all sequentializations of a given proof-net.

This last point actually evidences an interesting fact. While they are com-
pletely parallel proof objects, proof-nets contain enough logical dependency to
allow for the retrieval of inherently sequential information. Indeed, computing
the dependency relation extracts the true logical causality of sequential proofs.

Future works. The present work suggests three main directions for future works:
• The separation between positive and negative inferences which is the cor-

nerstone of DepGraph criterion suggests connections with focusing. While
proof-nets and focalized proofs are the results of diverging choices of proof-
theoretical design (parallelism versus hypersequentiality), this suggests that
they actually may be different aspects of the same phenomenon as already
advocated in the study of multi-focusing [16].

• We plan to investigate connections between dependency graphs on the one
hand, kingdoms and empires on the other. Indeed, the dependency graph
D�,⊗(R) corresponds to a characterization of kingdoms given in [17] for
correct proof structures. We plan to focus on complexity issues and to study
notions of kingdoms for incorrect proof structures.

• Another direction concerns the development and the validation of our com-
parative study of proof-nets. Indeed, the prototypical classification we sug-
gested is mainly built on empirical considerations and we plan to investigate
it more systematically in the future, in particular by considering connections
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with other criteria which seems to be related with the notion of dependency
such as Di Giamberardino and Faggian’s work on jumps [18], Murawski and
Ong’s work on dominator’s trees [14] or even earlier, with Banach sweepline
sequentialization [19].

Acknowledgements. The authors wish to thank Claudia Faggian, Roberto
Maieli and Virgile Mogbil for helpful discussions regarding this work.
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Abstract. We study the decidability and complexity of fragments of
intuitionistic first-order logic over (∀,→) determined by the alternation
of positive and negative occurrences of quantifiers (Mints hierarchy).
We prove that fragments Π2 and Σ2 are undecidable and that Σ1 is
Expspace-complete.

1 Introduction

The leading proof assistants such as Coq [6], Agda [3] or Isabelle/HOL [15]
are founded on constructive logics. Still, the complexity behind proof search in
constructive reasoning systems is not well understood even for their basic and
crucial fragments where the implication and universal quantification are used.
This situation is caused partly by the difficulty of the field and partly by the
lack of a systematic approach, especially in the case of quantifiers.

Quantifiers are present in logic at least from the time of Aristotle but a modern
theory of quantification was probably initiated by Ch.S. Peirce [1]. The system-
atic approach to quantifiers through their grouping at the beginning of a logical
formulas was implicit in the work of Peirce, and made explicit by A. Church [5],
who first used the term “prenex normal form”. Since then classifying formu-
las according to the quantifier prefix remains a standard stratification tool in
modern logic, just to mention Ehrenfeucht-Fraïssé games [11, Chapter 6] or the
arithmetical hierarchy of Kleene and Mostowski [9, Chapter 7].

While the prenex normal form is useful for classification of formulas, which
was demonstrated in full strength by Börger, Grädel, and Gurevich in their in-
fluential book [2], it is rarely used in practice. The structure of formulas arising
from actual reasoning (in particular proof formalization) usually involves quan-
tification in arbitrary positions. For instance this happens when a quantified
definition is expanded in a formula.

In addition, the prenex normal form theorem applies to classical logic only.
Things become quite different for constructive logic (aka intuitionistic logic), be-
cause the prenex fragment of intuitionistic logic is decidable [18]. This contrasts
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with the undecidability of the general case (see e.g. [22]) and that makes this
form of stratification unsuitable in the constructive context.

Can we replace the prenex classification by something adequate for intuition-
istic logic? Yes, we can: as observed by Grigori Mints [14], the principal issue is
the alternation of positive and negative occurrences of quantifiers in a formula.
This yields the Mints hierarchy of formulas:

Π1 – All quantifiers at positive positions.
Σ1 – All quantifiers at negative positions.
Π2 – Up to one alternation: no positive quantifier in scope of a negative one.
Σ2 – Up to one alternation: no negative quantifier in scope of a positive one.

And so on. (This can be generalised to cover existential quantifiers.) In a classical
reduction to a prenex form, all the quantifiers on positive positions become
universal and those at negative positions become existential. But a formula can
be classified as a Πn or a Σn formula without actually reducing it to a prenex
form. Therefore, Mints hierarchy makes perfect sense for intuitionistic logic.

As for the existing knowledge, Mints proved that the fragment Π1 of the
constructive logic with all connectives and quantifiers is decidable [14]. An al-
ternative proof of Mints’ result (for the calculus with ∀ and → only) was given
by Dowek and Jiang [8]. A similar decidability result was also obtained by Rum-
melhoff [19] for the positive fragment of second-order propositional intuitionistic
logic (system F). The 2-co-Nexptime lower bound for Π1 was proved by Schu-
bert, Urzyczyn and Walukiewicz-Chrząszcz [20], but the problem is conjectured
to be non-elementary [21]. The undecidability of Σ2 with all connectives and
quantifiers can be derived from the undecidability of the classical satisfiability
problem for ∀∗∃∗ using a result of Kreisel [12, Thm. 7]. This would not work
for Π2 because the Ramsey class ∃∗∀∗ is decidable. Undecidability for Π2 (for
the full language with one unary predicate) is implied by a result of Orevkov [16].

There are other forms of quantifier-oriented hierarchical stratifications of intu-
itionistic formulas. For instance, the classical prenex hierarchy can be embedded
in a fragment of the intuitionistic logic: a negation of a prenex formula is clas-
sically provable if and only if it is provable intuitionistically [12]. A similar, but
more general class of formulas in so called pseudoprenex form, where quanti-
fiers may be separated by double negation ¬¬, was studied in depth by Orevkov
who gave a full characterisation of decidable cases [17]. Also a full character-
ization of decidable cases was given for the logic with equality and function
symbols [7]. Other hierarchies of intuitionistic formulas were proposed e.g., by
Fleischmann [10] and Burr [4] (the latter for arithmetic). However, we are not
aware of any complexity-oriented results for those hierarchies.

In this paper we initiate a systematic study of the decision problem in Mints
hierarchy. We restrict attention to the fragment where only the implication and
the universal quantifier may occur. Our main results are as follows:

A. The decision problems for classes Σ2 and Π2 are undecidable;
B. The decision problem for the class Σ1 is Expspace-complete.
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These results are supplemented by the 2-co-NExptime lower bound for Π1

obtained in [20]. Observe that, because of conservativity, part A applies directly
to the full intuitionistic logic, and the same holds for the lower bound in B. The
upper bound in B also extends to the general case at the cost of some additional
complication. This issue is deferred to the full version of this paper.

The undecidabilities in A are shown for the monadic fragment of minimal logic
(i.e., the language with only unary predicate symbols). It is slightly different with
B, where we conjecture that the monadic case is co-NExptime complete.

The paper is organized as follows. Section 2 introduces some basics, in partic-
ular the undecidable tiling puzzles. Those are encoded in Section 3 into Σ2 and
Π2 formulas. In Section 3.3 we use a syntactic translation to obtain the unde-
cidability results for the monadic fragments of Σ2 and Π2. In Section 4 we show
Expspace-completeness for Σ1 using the decision problem of bus machines [23].

2 Preliminaries

We consider first-order intuitionistic logic without function symbols and with-
out equality. That is, the only individual terms are object variables , written in
lower case, e.g., x, y, . . . We also restrict attention to formulas built only from
implication and the universal quantifier. A formula is therefore either an atom
P(x1, . . . , xn), where n ≥ 0, or an implication ϕ → ψ, or it has the form ∀xϕ.

We use standard parentheses-avoiding conventions, in particular we take the
implication to be right-associative, i.e., ϕ → ψ → ϑ stands for ϕ → (ψ → ϑ).

Mints hierarchy: We define classes of formulas Σn and Πn by induction, begin-
ning with Σ0 = Π0 being the set of open formulas. The induction step can be
expressed by the following “grammar”:

– Σn+1 ::= Σn | Πn | Πn+1 → Σn+1;
– Πn+1 ::= Σn | Πn | Σn+1 → Πn+1 | ∀xΠn+1.

Our proof notation is an extended lambda-calculus of proof terms or simply
proofs or terms . Types assigned to proof terms are formulas. In addition to
object variables, in proof terms there are also proof variables , written as upper-
case letters, like X , Y , Z. An environment is a set of declarations (X : ϕ),
where X is a proof variable and ϕ is a formula. The following type-assignment
rules infer judgements of the form Γ � M : ϕ, where Γ is an environment, M is
a term, and ϕ is a formula. In (∀ I) we require x �∈ FV (Γ ) and y in (∀E) is an
arbitrary object variable.

Γ,X : ϕ � X : ϕ (Axiom)

Γ,X : ϕ � M : ψ
(→ I)

Γ � λXϕM : ϕ → ψ

Γ � M : ϕ → ψ Γ � N : ϕ
(→E)

Γ � MN : ψ

Γ � M : ϕ
(∀ I)

Γ � λxM : ∀xϕ
Γ � M : ∀xϕ

(∀E)
Γ � My : ϕ[x := y]
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As we can see there are two kinds of lambda-abstraction here: the proof ab-
straction λXϕM and the object abstraction λxM . There are also two forms of
application: the proof application MN , where N is a proof term, and the object
application My, where y is an object variable. We use the common conventions,
e.g., unnecessary parentheses are omitted and the application is left-associative.
Terms and formulas are taken up to alpha-conversion.

The formalism is used liberally. For instance, we often say that “a term M has
type α” leaving the environment implicit. Also we often identify environments
with sets of formulas, as well as we write Γ � ϕ when Γ � M : ϕ and M is
not relevant at the moment. Sometimes for convenience we drop ϕ from λXϕM
when it can be deduced from the context.

Free (object) variables FV(ϕ) in a formula ϕ are as usual. For proofs we define
FV(X) = ∅, FV(λXϕ M) = FV(ϕ) ∪ FV(M), FV(MN) = FV(M) ∪ FV(N),
FV(λxM) = FV(M)− {x}, FV(My) = FV(M) ∪ {y}. The notation M [
x := 
y ]
stands for the simultaneous substitution of variables 
y for free occurrences of
(pairwise different) variables 
x.

A term is in normal form when it contains no redex, i.e., no subterm such
as (λXϕ.M)N or (λxM)y. We also define the notion of a proof term in long
normal form, abbreviated as lnf .

– If N is an lnf of type α then λxN is an lnf of type ∀xα.
– If N is an lnf of type β then λXα. N is an lnf of type α → β.
– If N1, . . . , Nn are lnf or object variables and XN1 . . . Nn is of an atom type

then XN1 . . . Nn is an lnf.

Normalization for our proofs follows e.g., from [21]:

Lemma 1. If σ is intuitionistically derivable from Γ then Γ � N : σ, for some
long normal form N .

The target of a formula is the relation symbol at the end of it. The following
observation is essential in long normal proof search.

Lemma 2. If Γ � N : P(
x), where P(
x) is an atomic formula and N is an lnf,
then N = X 
D, where (X : ψ) ∈ Γ with target P, and 
D is a sequence of terms
and object variables.

2.1 Machines and Tilings

To give a concise account of our lower bound results, we disguise Turing Machines
as tiling problems, cf. [2, Chapter 3.1.1]. While the masquerade is quite obvious
to unveil, it is still useful: some formulas become simpler. Our tiling puzzle is
defined as a tuple of the form G = 〈 T ,R,E,ok 〉, where T is a finite set of tiles ,
R : T 4 → T is a tiling function, and E, ok are different elements of T . Such G
defines a unique tiling TG : N× N → T :

– TG(m,n) = E, when n = 0 or m = 0;
– TG(m+1, n+1) = R(K,L,M,N), where

K = TG(m,n+1), L = TG(m,n), M = TG(m+1, n), and N = TG(m+2, n).
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Fig. 1. Result tile

That is, the tile E is placed along the horizontal and
vertical edges of the grid N × N and every other tile
is determined by its neighbourhood consisting of four
tiles: one tile to the left and three tiles below. This is
illustrated by Fig. 1, where T = R(K,L,M,N).
We say that G is solvable when TG(m,n) = ok, for
some numbers m,n. The following is unavoidable:

Lemma 3. It is undecidable to determine if a given tiling puzzle is solvable.

Proof. A routine reduction of the following problem:
Does a deterministic Turing Machine accept the empty input?

Row n in the tiling corresponds to the n-th step of a computation. �


Fig. 2. Dependency of locations

Locations in tilings: To place a tile at
a location (m,n) we must tile all loca-
tions in the set L(m,n) = {(k, l) | l ≤
n ∧ k ≤ m + n − l}, as illustrated in
Fig. 2, where the gray square is the lo-
cation (m,n). Define (m,n) � (k, l) when
L(m,n) ⊆ L(k, l). This inherits the prop-
erties of inclusion, in particular the rela-
tion � is a well-founded partial order.

3 Classes Σ2 and Π2

Our undecidability results are shown by a reduction from the tiling puzzle prob-
lem. The reader has to be aware that the argument to follow is proof-theoretical
rather than semantical. We are not concerned with the interpretation of our
formulas in any model, but in their formal structure and in the mechanism of
proof construction. The construction of the tiling is encoded by expanding the
proof environment: adding new tiles corresponds to adding more assumptions.

3.1 Undecidability for Σ2

We encode a tiling puzzle G = 〈 T ,R,E,ok 〉 as a Σ2 formula over the signature:

– Nullary relation symbols: start , loop, for global control;
– Unary relation symbols T, for each tile T ∈ T , including E;
– Unary relation symbols A, B, representing border positions;
– Binary relation symbols H, V, for horizontal and vertical neighbourhood.

Technically, it is convenient to define a finite set ΓG of Π2 formulas, and
consider the entailment problem ΓG � start rather than a single Σ2 formula. For
every “rule” of the form R(K,L,M,N) = X, the set ΓG contains the formula:

(0) ∀yzuv (K(y)→L(z)→M(u)→N(v)→V(z, y)→H(z, u)→H(u, v)→
∀x (T(x)→H(y, x)→V(u, x)→ loop)→ loop).
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Fig. 3. Formula (0)

Observe that quantifiers ∀yzuv are positive in the for-
mula (0), and ∀x is negative. This is reversed in the
judgement ΓG � start . The intended meaning of the for-
mula is illustrated by Fig. 3. Variables yzuv represent
tile positions, the assumptions K(y), . . . ,H(u, v) describe
the situation of the tiling before placing tile T at x. The
predicates T(x),H(y, x),V(u, x) extend the proof envi-
ronment to account for the new tile. The other formulas
in ΓG are the following:

(1) ∀y (E(y)→A(y)→B(y)→ loop)→ start ;
(2) ∀y (E(y)→A(y)→∀x (H(y, x)→E(x)→A(x)→ loop)→ loop);
(3) ∀y (E(y)→B(y)→∀x (V(y, x)→E(x)→B(x)→ loop)→ loop);
(4) ∀x (ok(x) → loop).

Let Δ be a set of formulas in the above signature. Object variables occurring
in Δ may be interpreted as tile locations, and predicates H and V are used to
determine these locations. A variable x may have one or more pairs of coordinates
in Δ. This is defined by induction:

– If A(x),B(x) ∈ Δ then x has coordinates (0, 0);
– If H(x, y) ∈ Δ and x has coordinates (m,n) then y has coordinates (m+1, n);
– If V(x, y) ∈ Δ and x has coordinates (m,n) then y has coordinates (m,n+1).

A set of formulas (i.e., an environment) Δ is good when all formulas in Δ are of
the forms A(x), B(x), H(x, y), V(x, y), or T(x), where T ∈ T , and in addition:

– Each x ∈ FV(Δ) has exactly one pair of coordinates.
– For each x ∈ FV(Δ) with coordinates (m,n), and every T ∈ T ,

• T(x) ∈ Δ if and only if TG(m,n) = T;
• B(x) ∈ Δ if and only if m = 0;
• A(x) ∈ Δ, if and only if n = 0.

The intuition is that a good environment consistently represents partial informa-
tion about TG, with possible redundancy: several variables may have the same
coordinates. Good environments consist only of atoms, and targets of non-atomic
formulas in ΓG are nullary. Therefore, for good Δ, and for a unary or binary
atom α, it follows from Lemma 2 that ΓG , Δ � α is only possible when α actu-
ally belongs to Δ.

Lemma 4. If ΓG , Δ � F : loop, for some good Δ, and some long normal proof F ,
then G is solvable.

Proof. We proceed by induction with respect to the length of F . Since loop is
an atom, the long normal proof F must begin with a proof variable Z declared
in ΓG , Δ so that its type ends with loop (cf. Lemma 2).

If the variable Z is of type (4) then F = Zx′D, where x′ is an object
variable and ΓG , Δ � D : ok(x′). Then ok(x′) must actually be in Δ. Hence
TG(m,n) = ok, for some m,n.



On the Mints Hierarchy in First-Order Intuitionistic Logic 457

Now suppose that Z is of type (2). Then F = Zy′DEDA(λx
′λZ1Z2Z3. D),

where DE and DA are, respectively, of type E(y′) and A(y′), and
ΓG , Δ, Z1 : H(y′, x′), Z2 : E(x′), Z3 : A(x′) � D : loop.

As in the previous case, the atoms E(y′) and A(y′) must occur in Δ. To apply
induction to D, it suffices to prove that the environment

Δ′ = Δ,Z1 : H(y′, x′), Z2 : E(x′), Z3 : A(x′)
is good. Since Δ is good, the variable y′ has exactly one pair of coordinates (m, 0)
in Δ′. The new variable x′ has the coordinates (m+1, 0) and this is its only pair
of coordinates. We conclude that Δ′ is good.

If Z is of type (3) then the argument is similar as in case (2). If it is of type (0)
then F = Zy′z′u′v′DKDLDMDNDVD

1
HD

2
H(λx

′λZ1Z2Z3. D), where:

– Terms DK, DL, DM, DN, DV, D1
H, D2

H are respectively of types K(y′), L(z′),
M(u′), N(v′), V(z′, y′), H(z′, u′), H(u′, v′) in the environment ΓG , Δ;

– ΓG , Δ, Z1 : T(x
′), Z2 : H(y

′, x′), Z3 : V(u
′, x′) � D : loop;

– T = R(K,L,M,N).

But if a long normal form has type K(y′) in ΓG , Δ then it must be a proof
variable. The same holds for all the proofs mentioned in the first item above:
these atoms must simply belong to Δ.

Let Δ′ = Δ,T(x′),H(y′, x′),V(u′, x′). The environment Δ is good, so the
variables y′, z′, v′, and u′ have exactly one pair of coordinates each. In addition,
the presence of assumptions V(z′, y′) and H(z′, u′) forces that the coordinates of
y′, z′, u′ are of the form (m,n + 1), (m,n), and (m + 1, n), respectively. Since
H(y′, x′),V(u′, x′) ∈ Δ′, the added variable x′ has coordinates (m + 1, n + 1)
in Δ′, and it is the only such pair. In addition, v′ has coordinates (m + 2, n),
because H(y′, x′) ∈ Δ′. Since Δ is good, and contains K(y′), L(z′), M(u′), and
N(v′), we have TG(m+ 1, n+ 1) = T.

It follows that Δ′ is a good environment, and we can apply induction to D
because it is a proof of loop shorter than F . �

Lemma 5. If ΓG � start then G is solvable.

Proof. A long normal proof of start must be of the form D = Z(λxλXY V.D′),
for some variable Z of type (1) and some D′ with

ΓG , X : E(x), Y : A(x), V : B(x) � D′ : loop.
The set Δ = {E(x),A(x),B(x)} is good and we apply Lemma 4. �

Our next aim is to show the converse to Lemma 5. For the rest of this section
we assume that G is solvable with TG(m0, n0) = ok. For a good set Δ define

SΔ = {(m,n) | some x ∈ FV(Δ) has coordinates (m,n)}.
We say that a set Δ of formulas is very good when Δ is good and:

– The set SΔ is a subset of L(m0, n0);
– For every (m,n) ∈ SΔ, exactly one x ∈ FV(Δ) has coordinates (m,n);
– If x ∈ FV(Δ) has coordinates (m+ 1, n) then some H(y, x) is in Δ;
– If x ∈ FV(Δ) has coordinates (m,n+ 1) then some V(y, x) is in Δ.
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Intuitively, in a very good set there is no redundancy and every location is “fully
justified”.

Lemma 6. If Δ �= ∅ is very good then ΓG , Δ � loop.

Proof. Induction with respect to the cardinality of the difference L(m0, n0)− SΔ.
In the base case we have (m0, n0) ∈ SΔ, whence ok(x) ∈ Δ, for some x. We use
the assumption (4) to derive loop.

For the induction step, let (m′, n′) ∈ L(m0, n0)−SΔ be minimal with respect
to �. It exists because the relation � is well-founded. Suppose for example
that m′ = m + 1 and n′ = 0. By the minimality of (m′, n′), there is a unique
variable y ∈ FV(Δ) with coordinates (m, 0) and with E(y),A(y) ∈ Δ. Then
Δ′ = Δ∪{H(y, x),E(x),A(x)} is very good, for a fresh x, whence ΓG , Δ′ � loop.
That is, we have ΓG , Δ � H(y, x)→E(x)→A(x)→ loop. Since x �∈ FV(Δ), we
generalize over x and use the assumption (2) to obtain ΓG , Δ � loop. �

Lemma 7. If G is solvable then ΓG � start.

Proof. The set Δ = {E(x),A(x),B(x)} is very good, so by Lemma 6 we have
ΓG ,E(x),A(x),B(x) � loop. Hence ΓG � E(x) → A(x) → B(x) → loop. Using
axiom (1) one derives ΓG � start . �

Theorem 8. Provability in Σ2 is undecidable.

Proof. By Lemma 3, solvability of tiling puzzles is undecidable. Lemmas 5 and 7
give an effective reduction from the tiling puzzle problem to provability. �


3.2 Undecidability for Π2

The undecidability proof for Π2 formulas follows a similar pattern as the proof
for Σ2. Given a tiling puzzle G, we define a set ΓG of Σ2 formulas, where formu-
las (1) and (4) remain unchanged, while formulas (0), (2), and (3) are replaced
by formulas (0’), (2’), and (3’) using new unary predicates R, Rh, and Rv. Those
serve as intermediate proof goals or “internal states” in proof construction.

(0’) ∀x [∀yzuv (K(y)→L(z)→M(u)→N(v)→ V(z, y)→H(z, u)→H(u, v)→
(T(x)→H(y, x)→V(u, x)→ loop)→ R(x)) → R(x)] → loop;

(2’) ∀x[E(x) → A(x) →
∀y(E(y) → A(y) → (H(y, x)→loop) → Rh(x)) → Rh(x)] → loop;

(3’) ∀x[E(x) → B(x) →
∀y(E(y) → B(y) → (V(y, x)→loop) → Rv(x)) → Rv(x)] → loop.

Theorem 9. Provability in Π2 is undecidable.

Proof. The proof is similar to that of Theorem 8. Lemmas 4–7 need some adjust-
ments. We say that a set Σ of formulas is neutral , when it consists exclusively
of formulas of the following shapes:

– ∀yzuv [K(y)→L(z)→M(u)→N(v)→ V(z, y)→H(z, u)→H(u, v)→
(T(x)→H(y, x)→V(u, x)→ loop)→ R(x)];
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– E(y) → A(y) → (H(y, x)→loop) → Rh(x);
– E(y) → B(y) → (V(y, x)→loop) → Rv(x),

where x and y may be any individual variables. We first show the following
analogue of Lemma 4:

If ΓG , Δ,Σ � F : loop, for some good Δ, some neutral Σ,
and some long normal proof F , then G is solvable.

The proof is quite similar to that of Lemma 4, but there are some alterations.
For instance, a normal proof of loop using assumption Z of type (0′) may now
take the form Z(λx′λU.G), where U is a proof variable of type

∀yzuv (K(y) → L(z) → M(u) → · · · → R(x′)),
and G is a proof of R(x′), possibly using U . Now, since x′ is a new eigenvariable,
not occurring in ΓG , Δ,Σ, the only way to define G is this:

G = Uy′z′u′v′DKDLDMDNDVD
1
HD

2
H(λZ1Z2Z3. D),

with D being a shorter proof of loop in an environment extended by the dec-
larations of variables Z1, Z2, Z3 (as in the proof of Lemma 4), but also by the
declaration of U . However, adding Z1, Z2, and Z3 to Δ preserves the goodness
of Δ, and also adding U to Σ preserves the neutrality of Σ. We can thus use the
induction hypothesis.

An analogue of Lemma 5 is easily derived from the above. For the converse
we need to reprove the statement of Lemma 6:

If Δ �= ∅ is very good then ΓG , Δ � loop,
in the new setting, and this requires only minor adjustments. For example, in case
m′ = m+1 and n′ = n+1, we have a very good Δ′ = Δ∪{T(x),H(y, x),V(u, x)},
where x is a fresh variable. From the induction hypothesis we have ΓG , Δ′ � loop,
whence ΓG , Δ � T(x)→H(y, x)→V(u, x)→ loop. So if ϑ(x) denotes
∀yzuv (K(y)→ · · · →H(u, v)→ (T(x)→H(y, x)→V(u, x)→ loop) → R(x)),

then we can derive ΓG , Δ, ϑ(x) � R(x). This yields ΓG , Δ � ∀x [ϑ(x) → R(x)],
because x is not free in ΓG , Δ. It remains to apply (0’) to derive loop. �


3.3 Monadic Σ2 and Π2

Our proofs of Theorems 8 and 9 used binary relation symbols. We now show
how to eliminate them by a syntactic translation.

Let 1 and 2 be fresh unary relation symbols (i.e., not occurring in the source
language). With every binary relation symbol P we associate another fresh
nullary symbol p. We define P(x, y) = 1(x) → 2(y) → p, for binary P, and
P(x) = P(x), P = P, when P is unary or nullary. Then, by induction, define
∀xϕ = ∀xϕ, and ϕ → ψ = ϕ → ψ.

Lemma 10. Let Σ consist of binary atoms and let targets of all formulas in Γ
be nullary or unary. Then Γ,Σ � P(x, y) implies P(x, y) ∈ Σ.
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Proof. We have Γ ,Σ,1(x),2(y) � p. No formula in Γ may end with p, thus
a long normal proof of p must begin with an element of Σ: a variable of
type Q(u, v) = 1(u) → 2(v) → q. Then q = p, i.e., P = Q, and we have
Γ,Σ,1(x),2(y) � 1(u) and Γ,Σ,1(x),2(y) � 2(v). There is no other way to
prove 1(u) but to use the assumption 1(x). Hence, x = u, and similarly we also
obtain y = v. Thus, P(x, y) = Q(u, v) ∈ Σ. �

We say that a formula is easy when it is either an atom, or has the form

– ∀xϕ, where ϕ is easy and it is not an atom, or
– ϕ → ψ, where ϕ and ψ are easy, and the target of ψ is unary or nullary.

Observe that the sets ΓG in Section 3 and 3.2 consist of easy formulas.

Lemma 11. If Γ � ϕ, where ϕ and all formulas in Γ are easy, then Γ � ϕ.

Proof. A quasi-long eliminator is a term of the form XE1 . . . Em, where X is
a proof variable and every Ei is either a lnf or an object variable. Observe that
if Γ � M : τ , where M is a quasi-long eliminator, then either τ = ϕ, for some ϕ,
or τ = 2(y) → p, or τ = p, for some p and y. In the last two cases, we have
M = M ′N1 or M = M ′N1N2, with M ′ : P(x, y), and N1 : 1(x), and N2 : 2(y),
for some x.

Let now Γ � M : ϕ, where M is an lnf or a quasi-long eliminator. We prove
that Γ � ϕ, by induction with respect to M . The case of a variable is obvious.

Let M = λZ.N . The case of ϕ = P(x, y) follows from Lemma 10, because
the only easy formulas with binary targets are atoms. So we can assume that
ϕ = ψ → ϑ, and we have Γ ,Z :ψ � N : ϑ. By the induction hypothesis for N
we have Γ, ψ � ϑ, whence Γ � ϕ.

If M = λy N (where we can assume y fresh) then ϕ = ∀y τ , which means
that ϕ = ∀y ψ with ψ = τ . We have Γ � N : ψ, so Γ � ψ and thus Γ � ϕ by
generalization.

If Γ � X 
EN : ϕ then the type of X 
E must be of the form ψ → ϕ, because ϕ
is neither of the form 2(y) → p nor p. By the induction hypothesis, both ψ → ϕ
and ψ are provable, and so must be ϕ.

If Γ � X 
Ey : ϕ, where y is an object variable, then Γ � X 
E : ∀x τ , for some τ
with ϕ = τ [y/x]. Since X 
E is a quasi-long eliminator, we must have ∀x τ = ∀xψ,
and ϕ = ψ[y/x]. We apply induction to X 
E. �


The converse to Lemma 11 is obvious. Since all formulas used in our coding
are easy, we can restate Lemmas 5 and 7 using ΓG instead of ΓG .

Theorem 12. It is undecidable whether a given Σ2 (resp. Π2) formula with
unary predicates is provable.

4 Expspace-completeness for Σ1

The lower bound is obtained by encoding the halting problem for bus ma-
chines [23] into the inhabitation problem. A bus machine is an alternating com-
puting device operating on a finite word (bus) of a fixed length. At every step the
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whole content of the bus is updated according to one of the instructions of the
machine. In addition new instructions may be created each time and those can
be used in later steps. A precise definition is as follows.

A simple switch over a finite alphabet A is a pair of elements of A, written
a � b. A labeled switch is a quadruple, written a � b(c � d), where the simple
switch c� d is the label. Finally, a universal switch is a triple, written a� b× c.

Formally, a bus machine is a tuple M = 〈A,m,w0, w1, I 〉, where A is a finite
alphabet, m > 0 is the bus length of M (the length of the words processed),
w0 and w1 are words of length m over A, called the initial and final word ,
respectively, and I is a set of global instructions .

Every global instruction is an m-tuple I = 〈 I1, . . . , Im 〉 of sets of switches.
Switches in Ii are meant to act on the i-th symbol of the bus. It is required that
all switches in a given instruction I are of the same kind: either all are simple, or
all are labeled, or all are universal. Therefore we classify instructions as simple,
labeled, and universal. A local instruction is a special case of a simple instruction
with singleton sets at all coordinates.

A configuration of M is a pair 〈w,J 〉, where w is a word over A of length m,
and J is a set of local instructions. The initial configuration is 〈w0,∅ 〉, and
any configuration of the form 〈w1,J 〉 is called final .

Let I = 〈 I1, . . . , Im 〉, w = a1 . . . am, and w′ = b1 . . . bm, w′′ = c1 . . . cm.
Transitions of M according to I are defined as follows:

– If I is a simple instruction, and for every i ≤ m the switch ai � bi belongs
to Ii, then 〈w,J 〉 ⇒I

M 〈w′,J 〉;
– If I is a labeled instruction and ai� bi(ci � di) is in Ii, for every i ≤ m, then

〈w,J 〉 ⇒I

M 〈w′,J ′ 〉, where J ′ = J ∪ {〈 {c1 � d1}, . . . , {cm � dm} 〉};
– If I is universal and ai�bi×ci is in Ii, for all i ≤ m, then 〈w,J 〉 ⇒I

M 〈w′,J 〉,
and also 〈w,J 〉 ⇒I

M 〈w′′,J 〉.
A configuration 〈w,J 〉 is accepting iff it is either a final configuration, or

– There is a non-universal instruction I ∈ I ∪ J , with 〈w,J 〉 ⇒I

M 〈w′,J ′ 〉,
where 〈w′,J ′ 〉 is accepting, or

– There is a universal I ∈ I ∪ J such that we have 〈w,J 〉 ⇒I

M 〈w′,J 〉 and
〈w,J 〉 ⇒I

M 〈w′′,J 〉, where both 〈w′,J 〉 and 〈w′′,J 〉 are accepting.

The machine M halts iff the initial configuration is accepting. As usual with
alternating machines, an accepting computation of a bus machine should be
imagined as a tree with final configurations at all leaves and universal transitions
at branching nodes.

Example 13. This example is based on [13]. Let A = {0, 1, 2, 3}, and let
I+ = {0 � 1(2 � 3)}, I− = {1� 0(3 � 2)},

I = {0 � 0(2 � 2), 1 � 1(3 � 3)}, I∗ = {1 � 2}.
Consider M = 〈A, 4, 0000, 3333, I 〉, where I consists of the following tuples:
〈 I, I, I, I+ 〉, 〈 I, I, I+, I− 〉, 〈 I, I+, I−, I− 〉, 〈 I+, I−, I−, I− 〉, 〈 I∗, I∗, I∗, I∗ 〉.

The machine M behaves in a deterministic way, for example the only instruction
applicable in the initial configuration 〈 0000,∅ 〉 is 〈 I, I, I, I+ 〉. Executing it
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yields 〈 0001, {I0} 〉, where I0 is 〈 {2�2}, {2�2}, {2�2}, {2�3} 〉. The latter can
be used later to change a configuration of the form 〈 2222,J 〉 into 〈 2223,J 〉.
But now the machine must execute 〈 I, I, I+, I− 〉 and enter 〈 0010, {I0, I1} 〉,
where I1 = 〈 {2� 2}, {2� 2}, {2� 3}, {3� 2} 〉.

In the first phase of computation only global instructions are executed and all
words over {0, 1} appear on the bus in the lexicographic order. Every application
of a global instruction creates a new unique local instruction. After arriving
at 1111, the machine rewrites the bus to 2222 using 〈 I∗, I∗, I∗, I∗ 〉 and then
executes one by one all the local instructions, eventually reaching the final 3333.

Theorem 14 ([23]). The bus machine halting problem is Expspace-complete.

Given a bus machine M = 〈A,m,w0, w1, I 〉, we construct (in Logspace)
a set of universal formulas ΓM and an open formula αM such that ΓM � αM
if and only if M halts. The free variables in ΓM and αM are identified with
the symbols in A and the number, as well as arity, of relation symbols in our
formulas also depend on M. The main relation symbol Bus is m-ary and it is
intended to represent the content of the bus. The obvious convention is to write
Bus(w) for Bus(a1, . . . , am), when w = a1 . . . am and to write 
a for a1a2 . . . am.

The formula αM is Bus(w0), and Bus(w1) is a member of ΓM. The idea is that
a proof of Bus(w0) succeeds when every branch of a computation can terminate
by calling the axiom Bus(w1).

We associate binary (resp. ternary, quaternary) predicate symbols I with
sets I of simple (resp. universal, labeled) switches occurring in the instructions
of M. Then for every simple switch a � b in I, the atomic formula I(a, b) is
placed in ΓM, and similarly for universal and labeled switches. For example, the
set I in Example 13 yields two assumptions I(0, 0, 2, 2) and I(1, 1, 3, 3).

In ΓM there are also formulas ψI for all global instructions I in I. In case of
a simple instruction I = 〈 I1, . . . , Im 〉, the formula takes the form:
(1) ψI = ∀
x
y (I1(x1, y1) → · · · → Im(xm, ym) → Bus(
y) → Bus(
x)).

If I = 〈 I1, . . . , Im 〉 is labeled, then:
(2) ψI = ∀
x
y
z
u (I1(x1, y1, z1, u1)→ · · · → Im(xm, ym, zm, um)

→ ((Bus(
u) → Bus(
z)) → Bus(
y)) → Bus(
x)).

Finally, for a universal instruction I = 〈 I1, . . . , Im 〉, we take:
(3) ψI = ∀
x
y
z (I1(x1, y1, z1)→ · · · →Im(xm, ym, zm)

→ Bus(
z) → Bus(
y) → Bus(
x)).

A local instruction J may be identified with a rewrite rule of the form w ⇒ v.
Such a rule will be represented as a formula ϕJ of the form Bus(v) → Bus(w).
We define ΓJ = {ϕJ | J ∈ J }.

To see the motivation, suppose we want to derive ΓM � Bus(1111), where M
is as in Example 13. We use the formula ψ〈 I∗,I∗,I∗,I∗ 〉:

∀
x
y(I∗(x1, y1) → I∗(x2, y2) → I∗(x3, y3) → I∗(x4, y4) → Bus(
y) → Bus(
x),

instantiated by substituting 1 for xi and 2 for yi. Since the assumption I∗(1, 2)
is in ΓM, the task of proving Bus(1111) is reduced to proving Bus(2222).
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Lemma 15. A configuration 〈w,J 〉 is accepting if and only if the judgement
ΓM, ΓJ � Bus(w) is derivable.

Proof. From left to right the proof is by induction with respect to the defini-
tion of an accepting configuration. Let 〈w,J 〉 be accepting. If it is final, the
proof is trivial, because Bus(w1) ∈ ΓM. Otherwise, assume for example that
〈w,J 〉 ⇒I

M 〈w′,J ′ 〉, where 〈w′,J ′ 〉 is accepting, by an application of a labeled
instruction I = 〈 I1, . . . , Im 〉. Then J ′ = J ∪{J}, where J is a new local instruc-
tion. By the induction hypothesis we have ΓM, ΓJ , ϕJ � Bus(w′). It follows that
ΓM, ΓJ � ϕJ → Bus(w′). For j = 1, . . . ,m, let aj � bj(cj � dj) be the switches
used in this step. Then w = a1 . . . am, w′ = b1 . . . bm, and the formula ϕJ is
Bus(d1 . . . dm) → Bus(c1 . . . cm). Hence ΓM, ΓJ � (Bus(
d) → Bus(
c)) → Bus(
b).
We have all the Ij(aj , bj, cj , dj) in ΓM, so we prove Bus(
a) using the appropriate
axiom (2) instantiated with 
x := 
a, 
y := 
b, 
z := 
c, 
u := 
d.

The proof in the direction from right to left is by induction with respect to the
length of long normal proofs. Assume that ΓM, ΓJ � Bus(w). If w is not final
then a long normal proof must begin with a variable of type (2), (1), or (3). Sup-
pose for example that (3) is the case. For some instantiation 
x := 
a = w, 
y := 
b,

z := 
c, there are proofs of Ii(ai, bi, ci) and of Bus(
b) and Bus(
c). A proof
of Ii(ai, bi, ci) is only possible when Ii(ai, bi, ci) actually occurs in ΓM. This is
because there are no other assumptions with target Ii. In particular this proves
that variables bi, ci do correspond to actual bus symbols. Since Bus(
b) and Bus(
c)

are provable, it follows from the induction hypothesis that 〈
b,J 〉 and 〈
c,J 〉
are accepting. Therefore also 〈w,J 〉 is accepting. �


Upper bound for Σ1: A judgement of the form Γ � ϕ, where ϕ is a Σ1 formula
and all assumptions in Γ are Π1 formulas, is called a Σ1 judgement . Observe
that normal proofs of Σ1 judgements are of the form Γ � λX :α.M : α → β
or Γ � XM1 . . .Mr : β, where each Mi, for i = 1, . . . , r, is a proof term or an
object variable. Proofs of the latter shape are called eliminators . We say that
N ′ is an instance of N when N ′ = N [
x := 
y ] for some object variables 
x, 
y.

Lemma 16. Fix an object variable x0. If Γ � N : ϕ then Γ � N ′ : ϕ, for some
instance N ′ of N such that FV(N ′) ⊆ W = FV(Γ ) ∪ FV(ϕ) ∪ {x0}.

Proof. If x �∈ W then replacing x by x0 in N does not affect Γ and ϕ. �


Lemma 17. Let Γ � N : ϕ, where Γ is a Π1 environment and N is normal.
Assume in addition that either N is an eliminator or ϕ is a Σ1 formula. Then
the term N contains no occurrences of object abstraction. In addition, if N is
an eliminator then ϕ is in Π1.

Proof. Induction with respect to N . If N = X then the type of X is in Π1,
because X is declared in Γ .

If N = λX :ψ. P then ψ is in Π1 and Γ,X :ψ � P : ϑ, for some ϑ ∈ Σ1. We
use the induction hypothesis for P . Case N = λxN ′ is impossible.
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If N = X 
NM , where M is a proof term, then we have Γ � X 
N : ψ → ϕ and
Γ � M : ψ, for some ψ. Since X 
N is an eliminator, the formula ψ → ϕ is in Π1

and so must be ϕ, while ψ is in Σ1. We apply induction to X 
N and M .
If N = X 
Ny, where y is an object variable, we apply induction to X 
N . �


Let W be a set of variables. If FV(Γ ) ∪ FV(ϕ) ∪ FV(M) ⊆ W then we say that
Γ � M : ϕ is a W-judgement. A judgement is W-derivable when it is derivable
using only W-judgements. We have the following easy lemma:

Lemma 18. Let Γ � M : ϕ and let FV(Γ ) ∪ FV(M) ∪ FV(ϕ) ⊆ W. If M
contains no object abstraction then the judgement Γ � M : ϕ is W-derivable.

Lemma 19. The decision problem for Σ1 formulas is solvable in Expspace.

Proof. To find a proof of a given Σ1 formula ϕ one uses an obvious generalization
of the Ben-Yelles algorithm [22] for simple types. It follows from Lemma 17
that a normal inhabitant N of a Σ1 formula ϕ must not contain any object
abstraction. In addition, by Lemma 16 one can assume that free variables of N
are all in the set W = FV(ϕ) ∪ {x0}. (The variable x0 is added to make sure
that the set is not empty.) By Lemma18, the judgement � N : ϕ is W-derivable.
Therefore the algorithm needs only to consider judgements Γ ′ � M : ψ where
all object variables are in W . The number of different formulas in Γ ′ is thus at
most exponential in the size of ϕ. (With at most n variables, every subformula
of ϕ has at most nn instances.) Using the same argument as for simple types we
therefore obtain an alternating exponential time algorithm. �


Theorem 20. The decision problem for Σ1 is Expspace-complete.

Proof. Lemma 15 reduces the halting problem for bus machines to provability
in Σ1. The upper bound is provided by Lemma 19. �


5 Conclusion

We proved that derivability of universally-implicational formulas for classes Σ2

and Π2 of Mints hierarchy is undecidable even for unary predicate symbols. In
case of Σ1 we proved Expspace-completeness of the problem in the polyadic
case. These results combined with an earlier analysis [20] give the picture of
complexity of provability in Mints hierarchy in which the level of a formula ϕ
is determined by the level of a prenex formula classically equivalent to ϕ. What
is also important methodologically, the whole development uses purely proof-
theoretical methods.

All the hardness results were obtained for formulas with a fixed depth of
quantifiers. This suggests an interesting question to investigate: can all formulas
be effectively reduced to ones with a fixed quantifier depth. Two other issues
demanding future work are the exact complexity of the class Π1 and monadic Σ1.
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Murawski, Andrzej S. 249

Ong, C.-H. Luke 249
Ouaknine, Joël 328
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