
BPEL Integration Testing

Seema Jehan, Ingo Pill, and Franz Wotawa

Institute for Software Technology
Graz University of Technology, Austria
{sjehan,ipill,wotawa}@ist.tugraz.at

Abstract. Service-oriented architectures, and evolvements such as
clouds, provide a promising infrastructure for future computing. They en-
capsulate an IP core’s functionality for easy access viawell-defined business
andweb interfaces, and in turn allow us to flexibly realize complex software
drawing on available expertise. In this paper, we take a look at some chal-
lenges we have to face during the task of testing such systems for verifica-
tion purposes. In particular, we delve into the task of test suite generation,
and compare the performance of two corresponding algorithms. In addi-
tion, we report on experiments for a collection of BPEL processes taken
from the literature, in order to identify performance trends with respect
to fault coverage metrics. Our results suggest that a structural reasoning
might outperform a completely random approach.

1 Introduction

Today, service oriented architectures (SOAs) are an important instrument for
software design [28], and they might become ubiquitous in future computing -
be it mobile apps, cloud applications, or the realization of public and private
business processes. As their backend, web services encapsulate an intellectual
property (IP) core’s individual functionality and provide a web interface for easy
and flexible access of our own or a third party’s expertise and developments. In
this context, BPEL originated almost a decade ago as OASIS1 standard for
modeling and executing such business processes that implement a desired func-
tionality drawing on web services. Non-functional requirements can be defined,
for instance, in Service Level Agreements (SLAs).

Aside exacerbated issues regarding controllability and observability, the fact
that we have only partial knowledge about some system parts (i.e. third party
web services) - as Friedrich et al. discussed in [24] - makes diagnosis and repair
of these systems a cumbersome and very complex task. In [31], we envisioned an
integrated testing and diagnosis approach that considers such a system’s BPEL
processes. Extracting a control-flow graph from a BPEL model, and annotating
it with (most likely partial) knowledge about invoked web services in the form
of pre- and postconditions, we proposed to use constraint representations as
reasoning model for such an approach [19].

1 Organization for the Advancement of Structured Information Standards, see
https://www.oasis-open.org.

c© Springer-Verlag Berlin Heidelberg 2015
A. Egyed and I. Schaefer (Eds.): FASE 2015, LNCS 9033, pp. 69–83, 2015.
DOI: 10.1007/978-3-662-46675-9_5

https://www.oasis-open.org

70 S. Jehan, I. Pill, and F. Wotawa

Fig. 1. Flow Example

In our current work, we take a closer look at the task of creating an effi-
cient test suite for functional verification purposes. Complementing earlier work
(see Section 4), we focus on path extraction and symbolic execution. Extend-
ing [17], we experiment in Section 3 with two path-oriented variants of system-
atically generating test suites for synchronous, executable BPEL processes (see
Section 2). In particular, we compare the performance of test suites generated
(a) in an entirely random fashion with (b) a structural approach of exploring the
paths in a process’ control structure. In this context, we define a test suite’s ef-
ficiency in terms of its capability to detect an original BPEL process’ mutations
(specifically in relation to consumed resources). Extending our earlier work and
definitions, we support also the flow activity (limited to branches that do not
share variables) that allows designers to model also concurrent computations.

Since considering all of a system’s feasible runs in the control structure is likely
to be infeasible for practical purposes, i.e., in terms of test case generation and
execution, specific questions of ours were whether a random approach achieves
the desired performance, and how (and to which extent) the variation of certain
parameters affects a verdict. Using several example BPEL processes from the
literature, we aimed at discovering common trends by bringing several designs
to the picture, elaborating on our first ideas proposed in [17].

The general idea of the algorithms compared in Section 3 is to traverse a
BPEL process’ flow graph in order to extract the necessary inputs and expected
outputs for real executions and in turn generate test cases. Our work can be
understood best via illustrations for a simple concurrent BPEL process like the
one depicted in Figure 1. For our example, an execution starts with assigning
the input values to the respective variables, and the subsequent flow activity
defines two branches that are triggered if their respective guards (x < 10 and
y < 10) are activated. In both branches, individual activities then offer new
value assignments, where after the branches join again, the variables x and y are
summed up. An execution then follows a run in the graph, where, in contrast
to a path as we have been using in our earlier work for sequential programs
[17,31], more than one branch may be active simultaneously. Deriving a flow

BPEL Integration Testing 71

graph from the BPEL process, and annotating it with our partial knowledge
about called web services (and other available knowledge) in the form of pre-
and postconditions (to be added as conditions and assignments), our test case
generation algorithms still select paths, but to a corresponding run’s model we
add also all the parallel branches that might be traversed as well (depending on
the actual assignment and the corresponding evaluation of the guards). Deriving
a satisfying variable assignment for a constraint representation of this model, we
can derive a corresponding test-case, and in turn, following different strategies
for choosing paths, test suites.

Since we have only partial knowledge about invoked external services, we con-
sider our work to fall in the category of active grey-box testing approaches [19].
In our title, we use the term integration testing, as from a certain and impor-
tant point of view, we test the integration of all a system’s components when
orchestrated by the BPEL process.

Presently, most research in the field of SOA testing focuses on passive, rather
than active testing. Factors here are related costs (i.e. for invoking external web
services), execution times (see our experiments in Section 3), and the impact
of an environment’s dynamic effects (e.g. of the network). We, however, believe
that active testing issues in the SOA domain should not be neglected either. In
fact, they have become more critical in emerging concepts such as clouds and
similar distributed architectures, where faults affect performance for a multitude
of users and trust in correctness is an issue of utmost importance.

2 Basic Definitions and Test Case Generation

For our reasoning, we use a specific control-flow graph and annotate it with
our knowledge about web services using the concept of pre- and postconditions.
In order to support BPEL’s flow constructs, we extend our BPEL Flow Graph
introduced in [19] as follows. Such flow constructs allow for possibly concurrent
branches that are activated by individual and optional guards. If such guards
are not specified, we assume them to be True for simplifying our description.

Definition 1. An Extended BPEL Flow Graph G is a tuple (V,B,E, v0, F, γC
(v ∈ V), γA(v ∈ V), γP (v ∈ V), γG(v ∈ B), γB(v ∈ V \ B)), where V is a finite
set of vertices representing BPEL process activities, B ⊂ V is the finite set of
fork activity vertices (where a run might branch), E ⊆ V × V is a finite set of
directed edges representing the connections between BPEL activities (edge e =
(v1, v2) ∈ E connects v1 to v2), v0 ∈ V is the start vertex, F ⊆ V is the set of
leaf vertices (with no outgoing edges), and the functions γC(v) and γA(v) map
vertices v ∈ V to activity conditions and assignments respectively. If v is in B,
γP (v ∈ V) returns the complementing join activity vertice (and vice versa), and
⊥ otherwise. Function γG(v ∈ B) returns a list of tuples (ei,TGei) for all of a
fork vertice v’s outgoing edges ei and their transition guards TGei (if there is no
guard specified, we assume True so that this branch is always enabled). For any
vertice v in V \B, the function γB(v ∈ V \B) returns the closest predecessor in
B if there is such a node, and ⊥ otherwise.

72 S. Jehan, I. Pill, and F. Wotawa

An extended BPEL flow graph thus covers a process’ structural concept, and
via a vertex’ labels defined by γC(v ∈ V) and γA(v ∈ V), we are able to annotate
vertices by specifying additional (likely partial) knowledge about activities.

If there are no concurrent computations, an actual execution follows a path in
the flow graph, a fact that we exploited in earlier work [17,19] in order to derive
corresponding test cases by searching for a satisfying variable assignment to the
conditions and assignments encountered along a path.

Definition 2. A finite path π of length n in an Extended BPEL flow graph G
as of Def. 1 is a finite sequence π = π1π2...πn such that (1) for any 0 < i ≤ n:
πi ∈ V , (2) π1 = v0, (3) for any 0 < i < n, the edge e = (πi, πi+1) is in E, and
(4) πn ∈ F . |π| denotes the length of a path π. We use f (π) to refer to the last
vertex in π.

Definition 3. A finite path segment π in an Extended BPEL flow graph G is
defined like a path, but does not have to start in G’s initial state v0, and neither
is f (π) required to be in F of G.

For parallel computations, an execution does not follow a single path but
features parallel branches, so that we introduce the following definition of a run.

Definition 4. A finite run r of length n in an Extended BPEL Flow Graph G
as of Def. 1 is a finite sequence r = r1r2...rn such that (1) for any 0 < i ≤ n:
ri ∈ V , (2) r1 = v0, (3) rn ∈ F , and (4) for any 0 < i < n, either the edge
e = (ri, ri+1) is in E, or if γB(pi) �= ⊥ then there has to be some i < j ≤ n such
that (a) there is no i < k < j with rk = γP (γB(ri)) and (b) edge e = (ri, rj) is
in E. |r| denotes the length of run r. With f (r) we refer to the last vertex in r.

Obviously, the activities in parallel branches may interleave, as usually there
is no defined total order of all the events in the parallel branches, but only a
partial one within each individual branch. Part (4) of Def. 4 ensures this partial
order. As we will see by the following two definitions, while an actual execution
defines a run, in general this is not the case in the other direction.

For one, due to some conflict in the conditions and assignments along a run
r, r might actually be infeasible. Accordingly, we have to check a run’s collected
assignments and conditions for a satisfying assignment in order to determine if
such a run is even possible.

Definition 5. A feasible run r is a run as of Def. 4 s.t. the conditions and
assignments encountered along the run are feasible. It is complete, iff for all
satisfied transition guards TGei at all v ∈ B visited by r, the corresponding
branch started by edge ei is present in r.

A corresponding satisfying assignment for a complete run r defines a valid
test case. In earlier work neglecting concurrent constructs, we computed test
cases by choosing paths in the flow graph and deriving test cases directly from
a satisfying assignment for a path’s collected conditions and assignments. Now,
via the triggered guards, an individual assignment defines which branches are

BPEL Integration Testing 73

actually executed, so that pre-selecting which branches are to be taken (specifi-
cally if there are many, broad, and/or nested flow activities) and then asking for
a satisfying assignment might lead to a lot of infeasible instances and thus bad
test suite generation performance. Therefore, we still choose paths π in G, but
for identifying an actual execution, we derive the following run-constraints model
for path π (in analogy to our path constraints in earlier work). Complementing
π’s constraints, all branches of encountered flow constructs are to be modeled,
where only the ones being part of π are specifically required to be active.

Definition 6. For a path π = π1π2...πn in some Extended BPEL flow graph
G as of Def. 1, we create the run-constraints C(π) as follows. For each l ∈
γG(πi) of a πi ∈ B, we define a branching variable bl. Let scope be an initially
empty list of these branching variables, where we can append a variable bl via
append(scope, bl), and ask for the last variable with bl = last(scope) (which will
be ⊥ if the list is empty) as well as remove the last variable via drop(scope).
Furthermore, let stop be an initially empty list of vertices in G which we can
access with the same functions as scope. Then let C(π) be the union of the
constraints as derived by traversing π from π1 to f(π) (possibly recursively) as
of Def. 7, where in recursive calls the original path can be referred to as πo, and
where variables are replaced by indexed variables in order to implement a static
single assignment form (see [10]).

Definition 7. For a given path segment π in G, its branching variables and lists
scope and stop, we do the following: Let Π be an initially empty list of tuples
(v, bm, π′) such that v is a vertex, bm is a branching variable, and π′ is a path
segment in G. Then, traversing π from π1 to f(π) do as follows.

1. if πi = last(stop), then for each (πi, bm, π′) in Π do: First, remove (πi, bm, π′)
from Π, and then add constraints for π′ as of this Definition for a local scope
having bm as it sole element, computing the local branching variables for π′,
and assuming a local empty stop list. When there is no more (πi, bm, π′) in
Π, call drop(scope) and drop(stop).

2. if πi /∈ B then (a) add constraints γC(πi) ∪ γA(πi) if last(scope) = ⊥ and
proceed with Step 1 for πi+1, or (b) add constraints (bl → γC(πi)) ∪ (bl →
γA(πi))∪(¬bl → γ′

A(πi)) for bl = last(scope) �= ⊥ and γ′
A(πi) replacing every

assignment of a variable in γA(πi) with an assignment of the variable’s old
value (so that we are always synchronized in respect of the SSA indices when
arriving at the join activity, regardless of which branch was active).

3. if πi ∈ B then do as follows. For l = ((πi, πi+1),TGl) ∈ γG(πi), add the
constraints bl → TGl and TGl → bl, and append bl to scope, append γP (πi)
to stop, but add the constraint bl only if π = πo. Then find for each m =
((πi, v),TGm) ∈ γG(πi) s.t. m �= l a path segment π′ leading from v to
γP (πi), and add the tuple (γP (πi), bm, π′′) s.t. π′′ equals π′ but with the last
vertex (γP (πi)) removed to Π, as well as add constraints bm → TGm and
TGm → bm.

In detail, the static single assignment form means that we use indexed vari-
ables (i.e. “temporal” variable instances clocked by assignments), such that,

74 S. Jehan, I. Pill, and F. Wotawa

whenever a variable is assigned a value, the index is incremented for further
referrals along the run. This process, described in principle in earlier work [19],
ensures that every variable along a run is defined only once, but might be referred
to many times. Note that our approach is similar to symbolic execution, which
is a very well-known technique in testing [20]. Similar to symbolic execution, we
compute conditions that belong to a particular execution run. In our case, we
convert each run condition into a constraint satisfaction problem.

The basic step in Def. 7 is the second one, since there we collect a visited
node’s conditions and assignments in order to model the run’s constraints. The
scope variable (as assigned in Step 3) tells us if a node is visited in a branch
of a fork activity, so that the corresponding conditions and assignments are of
interest only if the branch is active. Note that (only) for branches being part
of the original path πo, the corresponding branch variables are required to be
true (active). Since we model relevant path segments that might not be part
of the run determined by the actual assignment, we have to make sure that in
the SSA form all the branches (that is, the variable indices) get synchronized.
To this end, for an inactive branch (s.t. the branching variable is false), each
assignment is “replaced” with a propagation of the last (in a temporal sense)
valid value known, so that regardless of the actually active branches, the correct
value is assigned to the variables referenced afterwards. Step 3 is responsible for
establishing a node visit’s scope, and choosing which concurrent branches will
have to be modeled (stored in Π). Whenever we reach the end of a branch, we
ensure in Step 1 that the necessary complementing branches in Π are contained
in the model.

Via run constraints for a path π, we can derive an assignment for a feasible,
complete run to be stored as testcase. The only thing that has do be done is
to filter the propagation assignments synchronizing the branches, which can be
done easily since the assignment contains the branching variables.

Definition 8 (Test Case and Test Suite). A test case for a BPEL Flow
Graph G is a variable assignment that makes a complete run r in G feasible. A
test suite TS is a set of test cases.

For assessing a test suite’s quality, we consider its effectiveness in identifying
mutated versions of the original BPEL flow graph. Therefore, we introduce the
concept of mutants, which are variants of the original BPEL program.

Definition 9. A Mutant is an altered version G′ of an original program G. The
mutant G′ is equivalent to G, if and only if they do not differ in their behavior.

We use a Mutation tool [4] to generate faulty versions of BPEL processes.
Those versions we use to check whether a test suite is able to “kill” the mutants.

Definition 10. A mutant G′ is killed by a test suite TS, if there is some test
case t ∈ TS such that the output triggered for G′ differs from that for G.

Note that a mutant not killed might either be equivalent [16] to the original
process (which would have to be checked manually), or the test suite is simply

BPEL Integration Testing 75

1: procedure StructRuns(G, MaxLen)
2: initialize test suite S ← ∅
3: compute the set P of all paths π s.t. |π| ≤ MaxLen, where for vertices v ∈ B,

we create for each (ei,TGei) in γG(v), a path s.t. TGei is enabled.
4: for each path π ∈ P do
5: check the satisfiability of run-constraints C(π) as of Def. 6
6: if C(π) is satisfiable then
7: add a corresponding test case to S
8: end if
9: end for
10: return test suite S.
11: end procedure

Fig. 2. Our structural TCG algorithm StructRuns

not able to trigger the mutant in the right way in order to make it unveil itself
as a mutant. The higher the mutation score (the percentage of killed mutants),
the better we consider a test suite’s effectiveness at fault detection to be.

In earlier work [19], we introduced the AllPaths test suite generation al-
gorithm that considers all possible paths through a BPEL flow graph (with no
parallel computations) up to a certain path length. The algorithm takes two in-
puts, i.e., the flow graph G and the maximum length MaxLen, and traverses the
flow graph using a depth-first search strategy, returning a test suite covering all
the corresponding feasible paths. Assuming there is no interaction between the
parallel branches, we can derive the variant given in Figure 2, supporting also
parallel computations. The StructRuns algorithm is thus also search based,
and the only difference is that we derive run-constraints as of Def. 6 instead
of collecting only the assignments and conditions along the path itself (path-
constraints) as in [19]. If such a run-constraints model is satisfiable, the relevant
corresponding variable assignments are saved as test case.

Considering limited resources, agile testing requirements, and the fact that
computing all paths might be too time consuming for larger BPEL processes
(as could be executing the tests), we previously proposed also a random algo-
rithm [17]. This algorithm extracts a desired number of random testcases, limited
in length by a given parameter. Like for the AllPath algorithm, we can easily
derive a variant RandomRuns (see Fig. 3) supporting flow constructs via con-
sidering a path’s run-constraints as of Def. 6 instead of its path constraints [17].

3 Empirical Evaluation

Our empirical evaluation’s goal was to analyze the performance of the Struc-
tRuns and the RandomRuns algorithms. In particular, we have been interested
in the coverage and mutation scores obtained when using said algorithms for test
suite generation. In the latter context, our main objective was to compare the al-
gorithms. The initial underlying surmise was that StructRuns should perform
better than RandomRuns with respect to coverage and mutation scores.

76 S. Jehan, I. Pill, and F. Wotawa

1: procedure RandomRuns(G, Len, numTC)
2: initialize test suite S ← ∅
3: while |S| < numTC do
4: initialize path π ← v0
5: while |π| < maxLen do
6: pick random v ∈ V s.t. ∃e = (f(π), v) ∈ E
7: add v to π: π ← πv
8: if f(π) ∈ F then
9: if run-constraints C(π) (see Def. 6) are satisfiable then
10: add a corresponding test case to S
11: end if
12: else
13: increment infeasible paths
14: end if
15: end while
16: end while
17: return test suite S
18: end procedure

Fig. 3. TCG algorithm RandomRuns based on random paths

For our empirical evaluation, we considered ten examples of synchronous
BPEL processes. These examples include activities like Receive, Reply, Assign,
If, Else if, While, Invoke, Sequence and Flow. The three SOA processes Loan,
LoanCov and SquaresS are available from the mutation tool repository [4], where
we used the Loan example also in the evaluation presented in [18]. LoanCov is
a slight variant of the Loan example, and SquaresS computes the obvious arith-
metic function. The SOA example ATM is a simplified version of the process
discussed in [3]. With Triangle, we implemented also a typical example from
software engineering studies (see [21]). This Triangle process decides for a given
triangle whether it is equilateral, isosceles, or scalene. Similarly, Bmi is another
famous example taken from software testing papers. Calc is our last example
with Sequence activity that implements basic calculator functionalities, i.e., ad-
dition, subtraction, multiplication, and division for given input values. The ex-
amples Flow and Flow3 are simple hand-crafted examples using Flow construct,
whereas Order is a variant of an Ordering Service from the BPEL specification
document.

We implemented both algorithms, StructRuns and RandomRuns, in Java.
All the experiments ran on a 13” MacBook Pro (Late 2011) with a 2.4 GHz Intel
Core i5, 4 GB 1333 MHz DDR3, running under OS X 10.7.2.

Tables 1 and 2 offer the experiments’ details when using the StructRuns
and RandomRuns algorithms respectively. The number of a BPEL process’
activities is given by n, the desired maximum path length by mL, the number
of derived paths is labeled p, the minimum and maximum lengths of derived
paths are given in columns labeled miP and maP respectively, and the minimum
and maximum numbers of constraints derived for any path are reported as miC
and maC respectively. GenT defines the total time in milliseconds it took us to
derive a corresponding test suite S. The most interesting values, however, are

BPEL Integration Testing 77

Table 1. Experimental results for the StructRuns TCG algorithm

Prog n mL p miP maP miC maC GenT Cov Mut ExecT

Loan 16 10 2 8 9 9 11 176 76.9 68.50 629,271

15 3 8 12 9 13 227 100.0 87.64 966,228

20 3 8 12 9 13 247 100.0 87.64 962,418

Atm 27 10 1 9 9 12 12 68 35.2 21.77 468,613

15 5 9 15 12 20 569 100.0 80.64 2,411,368

20 5 9 15 12 20 985 100.0 80.64 2,442,709

SquareS 7 10 3 7 10 12 17 200 100.0 88.51 726,955

15 5 7 15 12 32 566 100.0 89.65 1,279,305

20 8 7 19 12 42 830 100.0 89.65 2,421,234

LoanCov 27 10 3 8 10 11 11 293 64.0 52.54 1,346,072

15 5 8 13 11 15 433 100.0 71.03 1,971,916

20 5 8 13 11 15 467 100.0 71.03 1,971,476

Triangle 22 10 1 7 7 9 9 354 38.0 12.34 870,823

15 4 7 15 9 25 477 92.0 66.04 2,289,147

20 5 7 16 9 26 718 100.0 71.03 2,651,180

Bmi 15 10 5 7 9 9 9 485 100.0 90.00 1,081,270

Calc 30 10 4 5 10 6 20 248 40.0 38.63 1,633,480

15 9 5 15 6 32 591 100.0 98.37 3,496,140

Flow 11 15 1 11 11 14 14 156 83.3 54.00 450,463

Flow3 11 15 2 11 11 11 11 243 100.0 83.30 326,788

OrderFlow 24 25 2 24 24 41 41 378 100.0 61.00 366,954

Table 2. Experimental results for the RandomRuns TCG algorithm with len = 40

Prog n rP miP maP miC maC GenT miCov maCov avgCov miMut maMut avgMut stdev ExecT

Loan 16 1 8 12 9 13 451.0 46.1 69.2 51.49 24.71 52.80 39.21 15.28 526,905

2 8 12 9 13 445.0 46.1 76.9 66.89 24.71 68.53 55.16 17.51 696,221

3 8 12 9 13 641.0 46.1 100.0 86.14 24.71 87.64 67.41 17.13 884,560

Atm 27 1 9 14 11 20 479.0 41.1 52.9 50.54 21.77 45.96 33.70 12.58 447,316

3 9 15 11 20 644.4 35.2 76.4 54.66 21.77 66.12 48.22 15.03 1,111,243

5 9 15 11 20 897.5 47.0 100.0 65.85 48.38 80.64 59.59 9.74 1,821,139

SquareS 7 3 7 13 12 27 405.3 100.0 100.0 100.00 83.90 89.65 88.50 1.71 808,907

5 7 25 12 57 728.2 100.0 100.0 100.00 83.90 89.65 88.85 1.80 1,232,068

8 7 21 12 47 872.9 100.0 100.0 100.00 88.50 89.65 89.54 0.36 1,930,244

LoanCov 16 3 8 13 11 15 926.3 47.3 89.4 64.15 33.33 55.73 43.98 11.77 1,325,958

5 8 13 11 15 811.3 47.3 94.7 75.74 34.97 61.74 52.89 7.82 1,884,014

Triangle 22 1 7 12 9 15 475.0 33.3 66.6 50.00 12.96 45.37 26.47 15.04 1,002,234

4 7 15 9 26 654.0 33.3 83.3 74.20 12.96 58.95 44.41 14.39 1,818,729

5 7 15 9 26 646.0 75.0 91.6 85.00 37.96 69.75 59.35 9.86 2,722,881

7 7 15 9 26 915.4 75.0 91.6 84.10 37.34 65.74 57.75 7.78 2,800,813

Bmi 15 1 7 9 9 9 158.7 60.0 60.0 60.00 29.09 52.72 42.09 9.99 406,481

3 7 9 9 9 737.7 60.0 80.0 74.00 45.45 72.72 64.27 10.61 733,752

5 7 9 9 9 700.0 70.0 90.0 83.00 60.90 81.81 73.18 7.68 1,049,588

7 7 9 9 9 797.4 80.0 100.0 87.00 62.72 90.00 77.72 7.59 1,436,189

10 7 9 9 9 816.8 90.0 100.0 92.00 80.90 90.00 83.00 3.71 2,240,604

12 7 9 9 9 678.5 90.0 100.0 97.00 80.90 90.00 87.27 4.39 2,645,961

15 7 9 9 9 852.7 90.0 100.0 98.00 80.90 90.00 88.18 3.83 2,737,402

17 7 9 9 9 877.1 90.0 100.0 97.00 80.90 90.00 87.27 4.39 3,726,332

Calc 30 4 5 25 6 38 703.6 35.0 70.0 46.00 29.73 57.18 39.90 10.28 1,529,496

9 5 24 6 56 822.7 40.0 100.0 68.00 38.23 84.64 59.31 15.72 2,930,746

Flow 11 1 11 11 13 23 768.4 83.3 83.3 83.30 54.54 54.54 54.54 1.17 374,245

Flow3 11 1 11 11 11 17 545.5 50.0 83.3 66.65 42.66 52.00 43.60 6.56 283,808

2 11 11 13 19 884.7 83.3 100.0 91.65 52.00 70.66 67.73 5.65 333,727

Order 24 1 23 23 42 42 826.6 47.0 94.1 65.84 40.84 52.11 45.35 5.81 264,348

2 23 23 42 42 1059 47.0 100.0 82.33 42.25 60.56 52.53 7.99 348,207

78 S. Jehan, I. Pill, and F. Wotawa

those for Cov and Mut that give us the percentage of covered activities and killed
mutants, respectively. The overall test execution time the mutation tool took to
compute mutation coverage (in milliseconds) is given in the columns labeled
ExecT . That is, for the RandomRuns algorithm, we computed 10 samples
per row and report the minimum, maximum, and average values for coverage
and mutation scores respectively, with also GenT referring to the average value
over these 10 samples. For the mutation score, we also report on the standard
deviation stdev. In Table 2, rP defines the desired amount of test cases.

Taking a look at Tables 1 and 2, we obtained the following general obser-
vations. First, for both algorithms, the test suite generation time was always a
fraction of the time needed for executing the mutation tool. That is, whereas
the test suite generation time never exceeded 1 second for any example, test
execution took up to slightly over an hour. Hence, in the SOA domain, test ex-
ecution seems to be very time consuming, even for smaller examples. Second,
when considering the time required to come up with a test suite of the same
size, overall generation time is almost equivalent for both algorithms. Finally,
when taking average values into account (but even for the best cases of Ran-
domRuns), the StructRuns algorithm performs better in terms of coverage
and mutation scores for most of the examples.

We recorded also the number of infeasible paths encountered, where we report
on corresponding results for the Calc example in Table 3. Please note that up to
a path length of 20, we saw no infeasible paths for the StructRuns algorithm.
For the random approach, however, we see how the number of infeasible paths
increases if we raise the desired number of test cases (for a given, fixed maximum
path length). The longer test cases allowed for this variant, very early ran into
issues in this respect. That is, for |S| = 4 we already had to dismiss 3 infeasible
paths at most (over 10 samples), increasing to 8 paths for a test suite of size 9.
As also for 9 test cases, we could reach only a mutation score of 80%, this raises
the question of how many random paths we would need in order to achieve the
same mutation score as with the StructRuns algorithm.

To the end of answering this question, we considered the BMI BPEL process,
and test suite sizes rP of 1, 3, 5 7, 10, 12 ,15, and 17 (see Table 2). The coverage
attained for 12 to 17 paths was roughly the same, with the execution time
increasing from approximately 45 minutes to 62 minutes on average. In Figure 4
we summarize our findings using a box plot diagram, where the grey box indicates
the bounds given by the average value and the standard deviation. We see that
the results are converging to the same mutation score as obtained when using
StructRuns. That is, for 7 test cases or more, the random algorithm provided
the same 100% activity coverage and maximum mutation score of around 90%
as the StructRuns algorithm did. For 12 test cases and above, also the average
mutation score got in the same range. However, the time needed for generating a
test suite with similar average performance almost doubled for RandomRuns.
Moreover, also due to the higher number of test cases, the execution time was
higher for the random approach. That is, for test suite sizes of 10 and above, and
using the StructRuns algorithm, it was less than half of that as when using

BPEL Integration Testing 79

Table 3. Infeasible paths for the RandomRuns TCG algorithm

Prog rP min InP max InP avg InP

Calc 4 0 3 0.4

Calc 9 0 8 1.4

the RandomRuns algorithm. The random approach took 700 milliseconds on
average for computing five paths, achieving an average mutation score of 73.18%
(ranging between 60.9 and 81.81 percent), while the StructRuns took (smaller)
485 milliseconds to compute 5 paths for a given maximum length of 10, offering
a (higher) mutation score of 90% percent.

It is also worth mentioning that there were many surviving mutants for each of
the examples used in our empirical evaluation. The highest achieved mutation
score was 90%. In order to investigate the non killed mutants, we inspected
the surviving mutants manually for the BMI example. We found out that by
adding five additional test cases, we were able to reach a mutation score of 95%.
The remaining mutants were equivalent ones. Hence, we conclude that there is
still room for improving the test case generation process, in order to deliver an
algorithm with an improved performance.

4 Related Research

Exploiting constraints for software testing is an attractive concept. Gotlieb et
al. [15] extracted test cases from programs via a constraint representation of its
source code. Whereas our work is quite close to this in principle, the application
domain and constraint extraction process are different. In our case we exploit
also a component’s pre- and postconditions, because, as a matter of fact, a
SOA’s services’ actual implementations are hardly available. In this respect we
differ also from [7], where, in contrast to our BPEL flow graph, Bentakouk et al.
translate a BPEL model into a symbolic transition system (STS) used to extract
test cases from. They issue specific warnings for situations where their approach
is incomplete due to time-out violations in the construction of the STS. Similar
work was presented in [29].

In the context of web service testing, literature reports on mainly three model
based testing techniques, i.e., symbolic execution, petri nets, and model checking
[9]. Yuan et al. [34] presented a graph search based test case generation of BPEL
processes that exploits matrix transformations of control flow graphs, path cover-
age, and a node classification depending on incoming and outgoing edges. While
their approach is close, we differ in the use of pre- and postconditions added to
the test paths, aiming to solve the test oracle problem. A slight difference is also
in the use of the MINION constraint solver [14] rather than Lp.

The underlying idea behind [32], which relies on an extended Control Flow
Graph (XCFG), is to extract all sequential paths from the XCFG, and to com-
bine them into concurrent test paths. Constraints are then collected from these

80 S. Jehan, I. Pill, and F. Wotawa

Fig. 4. RandomRuns: Mutation score as function of the number of test cases for BMI

concurrent test paths via backward substitution. In contrast, we transform each
sequential path directly into a set of constraints, each set independently checked
for satisfiability. For unsatisfiable constraints, the corresponding path is dis-
carded, satisfiable ones produce the corresponding variables used to execute the
path. These values define a test case to be included in the test suite.

Also model checking [9] can be exploited in the context of web service testing.
For this, BPEL specifications are converted into a formal modeling language like
PROMELA [13]. Defining test criteria as formal properties, in a language such as
LTL [30], a model checker can be used to search for violations of the properties by
the BPEL model. The actual test cases then are derived from the counter exam-
ples provided by the model checker for such violations. Zhen et al. [36] applied the
same idea to web services and BPEL processes, addressing the state space explo-
sion problem inherent with model checking. Moreover, they also developed a tool
for the generation of JUnit test cases for automated test execution. Model based
testing techniques using Petri Nets have also been explored extensively. Petri
Nets are attractive for modeling concurrent processes and their synchronization,
and can be categorized into Plain Petri Nets [27], Colored Petri Nets [33] and
High-level Petri Nets. Dong [11] developed a tool for test case generation of
BPEL processes using High-level Petri Nets. The basic approach is to build a
reachability graph from which test cases can be extracted. The approach has a
very high space complexity.

For test case execution, we use [23], where we convert the abstract test cases
manually to executable ones accepted by the BPELUnit tool [22]. This tool sup-
ports simulated as well as real-life testing, accommodating many BPEL engines
like Active VOS [1], Oracle BPEL Process Manager [5], and Apache ODE [2].
For simulated testing, a BPEL process is not deployed, rather the intended en-
gine is called through a debug API. In real-life testing mode, a business process
is actually deployed and the partner web services are tested using mocks.

The survey of Zakaria et al. [35] gives a very good comparison of different unit
testing approaches applied to BPEL processes. One key issue pointed out there

BPEL Integration Testing 81

is the lack of an empirical evaluation. Surprisingly, only 1 out of 27 considered
studies provides results on real-life BPEL processes.

Random testing has been successfully used in practice. For example, Faigon
[12] reports on experience gained in random testing of a compiler. He mentions
that a simple Random IR (Intermediate Representation) Generator was able to
find more than half of all the bugs reported by customers in just one night.
Other applications include testing graphical user interfaces (GUIs). In GUI test-
ing, dump and smart monkeys [26,6] are used, where the latter makes use of
a simplified model of the application in order to guide testing to some extent.
Arnold [6] reports that monkeys are able to find more than 25% of the bugs
when used early in the development cycle. Hence, random testing can be effec-
tively used in practice. In contrast to these papers, we apply random testing on
a model obtained from the source code directly.

5 Conclusions

Summarizing, we report on experiments with two test suite generation algo-
rithms that implement orthogonal strategies for creating functional tests for
synchronous executable BPEL processes. That is, the StructRuns variant de-
rives test cases covering all feasible paths up to a given length, and the Ran-
domRuns variant derives a desired number of test cases covering a random
selection of feasible paths (and successor states in a path), also limited by a pre-
determined length. Our initial surmise that by construction, the StructRuns
variant should offer better performance in terms of achievable mutation scores
and activity coverage, but might be infeasible in practical terms (s.t. a random
approach might be favorable) was confirmed by our experiments. However, the
experiments showed also that the random approach was inferior in terms of gen-
eration time (and execution time). That is, for the BMI example, even computing
3 random paths took us 50% longer to construct, than all the five paths for a
maximum length of 10. While we saw that for the SOA domain, construction
time is negligible in comparison to test execution time, our random setup was
quite inferior also in the achieved mutation scores for the BMI example and a
comparable execution time. We draw several conclusions from this. First, our
observations regarding execution times show that one definitely has to employ
some strategic reasoning for designing test suites in the context of BPEL process
testing. Our tests also showed that, at least our examples might not favor the use
of longer paths as allowed for the random approach, in comparison to the shorter
paths derived for the StructRuns variant. For a completely random approach,
longer path lengths must be allowed however, due to the random choice of the
successor states (i.e. in the context of loops). Thus an approach mixing a ran-
dom component with some structural reasoning should be the subject of future
research. Such research will also aim at accommodating those five manual tests
that allowed us to improve the mutation score for the BMI example, and will be
subject to stimuli from realistic [8] and search-based test-case generation [25].

82 S. Jehan, I. Pill, and F. Wotawa

Acknowledgement. The research leading to these results has received funding
from the Austrian Science Fund (FWF) under project references P23313-N23
and P22959-N23.

References

1. Active VOS engine, http://www.activevos.com

2. Apache ODE, http://ode.apache.org/

3. JBoss example,
http://docs.jboss.com/jbpm/bpel/v1.1/userguide/tutorial.atm.html

4. MuBPEL- a mutation testing tool for WS-BPEL,
https://neptuno.uca.es/redmine/projects/sources-fm/wiki/MuBPEL

5. Oracle BPEL Process Manager,
http://www.oracle.com/technetwork/middleware/bpel

6. Arnold, T.R.: Visual Test 6 Bible. IDG Books Worldwide, Inc., Foster City (1998)

7. Bentakouk, L., Poizat, P., Zäıdi, F.: A formal framework for service orchestration
testing based on symbolic transition systems. In: Proc. of the 21st IFIP WG 6.1
Int. Conf. on Testing of Software and Communication Systems and 9th Int. FATES
Workshop, pp. 16–32 (2009)

8. Bozkurt, M., Harman, M.: Automatically generating realistic test input from web
services. In: International Symposium on Service-Oriented System Engineering
(SOSE), pp. 13–24 (December 2011)

9. Bozkurt, M., Harman, M., Hassoun, Y.: Testing Web Services: A Survey. Tech.
Rep. TR-10-01, Dep. of Computer Science, King’s College London (January 2010)

10. Brandis, M.M., Mössenböck, H.: Single-pass generation of static assignment form
for structured languages. ACM TOPLAS 16(6), 1684–1698 (1994)

11. Dong, W.: Test case generation method for BPEL-Based Testing. In: Int. Conf.
on Computational Intelligence and Natural Computing, vol. 2, pp. 467–470 (June
2009)

12. Faigon, A.: Testing for zero bugs, http://www.yendor.com/testing/

13. Garcia-fanjul, J., Tuya, J., Riva, C.D.L.: Generating Test Cases Specifications for
BPEL Compositions of Web Services Using SPIN (2006),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.9287

14. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
Proceedings of ECAI 2006, Riva del Garda, pp. 98–102. IOS Press (2006)

15. Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using con-
straint solving techniques. In: ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pp. 53–62 (1998)

16. Grün, B.J.M., Schuler, D., Zeller, A.: The impact of equivalent mutants. In: Pro-
ceedings of the IEEE Int. Conf. on Software Testing, Verification, and Validation
Workshops, ICSTW 2009, pp. 192–199 (2009)

17. Jehan, S., Pill, I., Wotawa, F.: SOA testing via random paths in BPEL models.
In: 10th Workshop on Advances in Model Based Testing; 2014 IEEE Seventh Int.
Conf. on Software Testing, Verification and Validation Workshops (ICSTW), pp.
260–263 (2014)

18. Jehan, S., Pill, I., Wotawa, F.: Functional SOA testing based on constraints. In:
8th Int. Workshop on Automation of Software Test (AST), pp. 33–39 (2013)

http://www.activevos.com
http://ode.apache.org/
http://docs.jboss.com/jbpm/bpel/v1.1/userguide/tutorial.atm.html
https://neptuno.uca.es/redmine/projects/sources-fm/wiki/MuBPEL
http://www.oracle.com/technetwork/middleware/bpel
http://www.yendor.com/testing/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.9287

BPEL Integration Testing 83

19. Jehan, S., Pill, I., Wotawa, F.: SOA grey box testing - a constraint-based approach.
In: 5th Int. Workshop on Constraints in Software Testing, Verification and Anal-
ysis; 2013 IEEE Sixth Int. Conf. on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 232–237 (2013)

20. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),
385–394 (1976), http://doi.acm.org/10.1145/360248.360252

21. Langdon, W.B., Harman, M., Jia, Y.: Efficient Multi-objective Higher Order Muta-
tion Testing with Genetic Programming. J. Syst. Softw. 83(12), 2416–2430 (2010)

22. Lübke, D.: Bpel Unit (2006), http://bpelunit.github.com
23. Mayer, P., Lübke, D.: Towards a BPEL unit testing framework. In: Workshop on

Testing, Analysis, and Verification of Web Services and Applications, pp. 33–42
(2006)

24. Mayer, W., Friedrich, G., Stumptner, M.: On computing correct processes and re-
pairs using partial behavioral models. In: European Conf. on Artificial Intelligence
(ECAI), pp. 582–587 (2012)

25. McMinn, P., Shahbaz, M., Stevenson, M.: Search-based test input generation for
string data types using the results of web queries. In: 5th Int. Conf. on Software
Testing, Verification and Validation (ICST), pp. 141–150 (April 2012)

26. Nyman, N.: Using monkey test tools. Software Testing & Quality Enineering Mag-
azine (January/February 2000)

27. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2-3), 162–198 (2007)

28. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: a research roadmap. Int. J. of Cooperative Information Systems 17(2),
223–255 (2008)

29. Paradkar, A., Sinha, A.: Specify once test everywhere: Analyzing invariants to
augment service descriptions for automated test generation. In: Bouguettaya, A.,
Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 551–557.
Springer, Heidelberg (2008)

30. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 46–57 (1977)

31. Wotawa, F., Schulz, M., Pill, I., Jehan, S., Leitner, P., Hummer, W., Schulte, S.,
Hoenisch, P., Dustdar, S.: Fifty shades of grey in SOA testing. In: 9th Workshop
on Advances in Model Based Testing; 2013 IEEE Sixth Int. Conf. on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 154–157 (2013)

32. J., Li, Z., Yuan, Y., Sun, W., Yan, J.Z.: BPEL4WS Unit Testing: Test case gener-
ation using a concurrent path analysis approach. In: 17th Int. Symp. on Software
Reliability Engineering (ISSRE), pp. 75–84. IEEE Computer Society (2006)

33. Yang, Y., Tan, Q., Xiao, Y.: Verifying web services composition based on hierarchi-
cal colored petri nets. In: 1st Int. Workshop on Interoperability of Heterogeneous
Information Systems, IHIS 2005, pp. 47–54. ACM (2005)

34. Li, Z., Yuan, W.S.Y.: A graph-search based approach to BPEL4WS test generation.
In: Int. Conf. on Software Engineering Advances, p. 14 (October 2006)

35. Zakaria, Z., Atan, R., Ghani, A.A.A., Sani, N.F.M.: Unit testing approaches for
BPEL: A systematic review. In: 16th Asia-Pacific Software Engineering Conference,
pp. 316–322. IEEE Computer Society (2009)

36. Zheng, Y., Zhou, J., Krause, P.: A model checking based test case generation
framework for web services pp. 715–722 (April 2007)

http://doi.acm.org/10.1145/360248.360252
http://bpelunit.github.com

	BPEL Integration Testing

	1 Introduction
	2 Basic Definitions and Test Case Generation
	3 Empirical Evaluation
	4 Related Research
	5 Conclusions
	References

