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Abstract. The detection of causes of performance problems in software
systems and the identification of refactoring actions that can remove
the problems are complex activities (even in small/medium scale sys-
tems). It has been demonstrated that software models can nicely sup-
port these activities, especially because they enable the introduction of
automation in the detection and refactoring steps. In our recent work
we have focused on performance antipattern-based detection and refac-
toring of software models. However performance antipatterns suffer from
the numerous thresholds that occur in their representations and whose
binding has to be performed before the detection starts (as for many
pattern/antipattern categories).

In this paper we introduce an approach that aims at overcoming this
limitation. We work in a fuzzy context where threshold values cannot be
determined, but only their lower and upper bounds do. On this basis,
the detection task produces a list of performance antipatterns along with
their probabilities to occur in the model. Several refactoring alternatives
can be available to remove each performance antipattern. Our approach
associates an estimate of how effective each alternative can be in terms of
performance benefits. We demonstrate that the joint analysis of antipat-
tern probability and refactoring benefits drives the designers to identify
the alternatives that heavily improve the software performance.

Keywords: Software Performance, Model Refactoring, Performance
Antipatterns.

1 Introduction

In the software development domain, there is a high interest in the early vali-
dation of performance requirements because it avoids late and expensive fixes
to consolidated software artifacts. Model-based approaches, pioneered under the
name of Software Performance Engineering (SPE) by Smith [1], aim at produc-
ing performance models early in the development cycle and using quantitative
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results from model solutions to refactor the design with the purpose of meeting
performance requirements [2].

Nevertheless, the problem of interpreting the performance analysis results is
still quite critical. A large gap in fact exists between the representation of per-
formance analysis results and the feedback expected by software designers. The
former usually contains numbers (e.g., mean response time, throughput variance,
etc.), whereas the latter should embed design alternatives useful to overcome
performance problems (e.g., split a software component in two components and
re-deploy one of them). The results interpretation is today exclusively based on
the analysts’ experience and therefore it suffers from lack of automation.

Fig. 1. Model-based software performance refactoring process

Figure 1 illustrates a model-based software performance refactoring process.
It includes three main operational steps: (1) the Model2Model Transformation
step takes as input an annotated1 software model and generates a performance
model [3]; (2) the Model Solution step takes as input a performance model and
produces a set of performance indices [4]; (3) the Results Interpretation and
Feedback Generation macro step takes as input both the software model and the
performance indices to detect possible performance problems, and it provides a
refactored (annotated) software model where problems have been removed. In
particular, the refactored model is obtained with a semantics-preserving trans-
formation that aims at improving the quality of the original software model. In
other words, the functional aspects of this latter model have to remain unaltered
after the transformation. For example, the interaction between two components
might be refactored to improve performance by sending fewer messages with
larger data per message.

1 Software model annotations support the performance analysis by specifying param-
eters like workload, resource demands, etc.
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A number of approaches have been recently introduced for this macro step
[5, 6] (see more details in Section 2), while we were working on the detection
and refactoring of technology-independent performance antipatterns [7–10]. Per-
formance antipatterns [11] are well-known bad design practices that lead to
software products suffering from poor performance. A specific characteristic of
performance antipatterns is that they contain numerical parameters that rep-
resent thresholds referring to either performance indices (e.g., high, low device
utilization) or design features (e.g.,many interface operations, excessive message
traffic).

Both the detection and solution of performance antipatterns are heavily af-
fected by multiplicity and estimation accuracy of thresholds that an antipattern
requires. For this reason, in our previous work we have experimented the in-
fluence of thresholds with respect to these two activities. We have conducted a
sensitivity analysis on a case study by varying the numerical values of several
thresholds for different antipatterns. Then, we have quantified threshold varia-
tions with the support of recall and precision metrics, and derived useful findings
for dealing with performance antipatterns on software models [12].

The motivation of this paper stems from two main reasons:
(i) due to the stochastic nature of the process of Figure 1, it would not be

realistic to assume that threshold values can be exactly determined;
(ii) it is difficult to identify refactoring actions that quicken the convergence of

the whole process of Figure 1.
In this paper we introduce an approach that aims at overcoming these limita-
tions, by providing a thresholds fuzzy binding that does not assign exact values
to antipattern thresholds, but it works on their lower and upper bounds to make
fuzzy the context of antipatterns detection and refactoring.

In such context we envisage (see Figure 1): (i) a detection task that produces
a list of performance antipattern occurrences PA1, . . . , PAn, along with their
probabilities to occur, i.e. p(PA1), . . . , p(PAn), and (ii) a refactoring task that
produces a list of available refactorings r1, . . . , rk with their effectiveness, i.e.
eff(r1), . . . , eff(rk), in terms of expected performance benefits.

The contribution of this paper is to introduce:
1. A method for associating to each detected performance antipattern PAi the

probability of occurring, i.e. p(PAi).
2. A technique that estimates the effectiveness of each available refactoring

action rj , i.e. eff(rj), in terms of expected performance benefits.
3. A Refactoring Reasoning step that jointly analyzes the antipattern probabil-

ity and refactoring benefits to drive the designers towards the identification
of refactoring actions that quicken the process convergence. The output is a
design alternative, i.e. a new (refactored) software model that undergoes the
same process2.

2 Note that we intend to provide here an instrument to help the process convergence,
hence a performance analyzer can decide to limitedly use this instrument, for ex-
ample by stopping the detection and the refactoring steps before all antipatterns
and refactoring actions have been devised (for sake of processing time), and then
reasoning on a reduced set of alternatives.
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The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 describes our approach to deal with the fuzzy antipattern de-
tection and refactoring. Section 4 illustrates the application of our approach to
a case study, i.e. an e-commerce system. Finally, Section 5 concludes the paper
by outlining the most challenging research topics in this area.

2 Related Work

In literature there are some approaches that deal with the problem of improving
the performance of software systems based on analysis results.

Xu et al. [5] present a semi-automated approach to find configuration and
design improvement on the model level. Based on a Layered Queueing Network
(LQN) model, two types of performance problems are identified, i.e, bottleneck
resources and long paths. Then, rules containing performance knowledge are ap-
plied to solve the detected problems. However, the approach is notation-specific,
in fact it is based on LQN rules, and it does not incorporate heuristics to rank
the solutions, as suggested in this paper.

Parsons et al. [13] present a framework for detecting performance antipat-
terns in Java EE architectures. The method requires an implementation of a
component-based system, which can be monitored for performance properties.
However, the limitation of this approach is that it cannot be used in early de-
velopment stages, running EJB systems are required for the detection of perfor-
mance problems.

Diaz Pace et al. [14] present the ArchE framework that assists the software ar-
chitect during the design to create architectures that meet quality requirements.
However, defined rules are limited to improve modifiability only. A simple per-
formance model is used to predict performance metrics for the new system with
improved modifiability.

In previous work [15] we proposed an approach for automated feedback gen-
eration from software performance analysis results, based on model-driven tech-
niques. Support to rank and solve antipatterns has been provided in [16] however
thresholds have been estimated with heuristics. As future work we plan to com-
pare our guilt-based approach with the one presented in this paper to further
investigate pros and cons of the two approaches.

3 Probability-Effectiveness Approach

In this section we describe our approach by providing details on the shaded boxes
of Figure 1 that represent the focus of this paper.

3.1 Antipatterns Fuzzy Detection

Performance antipatterns have been originally defined in natural language [11].
Hence, we first tackled the problem of providing a more formal representation by
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introducing first-order logic rules that express a set of system properties under
which an antipattern occurs [17].

As stated in Section 1, performance antipatterns are very complex (as com-
pared to other software patterns) because they are founded on design character-
istics (e.g.,many usage dependencies, excessive message traffic) and performance
results (e.g., high, low utilization), hence thresholds must be introduced. For ex-
ample, a Blob occurs when a component requires a lot of information from other
ones, it generates excessive message traffic that lead to over utilize the device on
which it is deployed or the network involved in the communication. The logic-
based formula of the Blob antipattern has been defined in [17] and reported in
Equation (1), where swE and S represent the set of all software components and
services, respectively.

∃swEx, swEy ∈ swE, S ∈ S |
(FnumClientConnects(swEx) ≥ ThmaxConnects

∨FnumSupplierConnects(swEx) ≥ ThmaxConnects)

∧FnumMsgs(swEx, swEy, S) ≥ ThmaxMsgs

∧(FmaxHwUtil(Pxy, all) ≥ ThmaxHwUtil

∨FmaxNetUtil(PswEx , PswEy ) ≥ ThmaxNetUtil)

(1)

In our previous work [17] we defined some heuristics to estimate thresholds
numerical values. For example, the ThmaxConnects threshold (that represents the
maximum bound for the number of usage relationships a software component is
involved in) has been estimated as the average number of usage relationships,
with reference to the entire set of software components in the software system,
plus the corresponding variance. In [12] we considered ranges of values around
these average values, but the main issue was to set a suitable width to capture
the actual bad practices.

To overcome such problem, in this paper we move a step ahead by determining
thresholds’ lower and upper bounds, thus to make fuzzy the detection step.
In fact, the logic-based representation of antipatterns allows us to move the
detection process in a fuzzy context by defining the probabilities associated to
the logical predicates involved in antipatterns specifications. Thresholds’ lower
and upper bounds can be defined by examining the whole system and calculating
the minimum and maximum values of the observed properties. For example,
Table 1 reports the description of thresholds included in the Blob specification
along with strategies to derive lower and upper bounds.

In order to calculate the probability of occurrence for each antipattern, we
firstly consider the probabilities associated to logical basic predicates separately,
and then we properly combine them following their logical operators, i.e. AND
(∧), OR (∨).

Each logical basic predicate is associated to a probability value of occurrence
based on its distance from lower and upper bounds, respectively. In particular,
we consider how far a specific design characteristic or a performance index is
from the thresholds’ upper bound (in case of maximum boundaries) or thresh-
olds’ lower bound (in case of minimum boundaries). This quantity is normalized
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Table 1. Thresholds specification for the Blob antipattern

Threshold Description Lower Bound Upper Bound

Design

ThmaxConnects
Maximum bound
for the number of
connections in which
a component is
involved

LBThmaxConnects is
the minimum number
of connections among
all the components

UBThmaxConnects

is the maximum
number of connec-
tions among all the
components

ThmaxMsgs

Maximum bound for
the number of mes-
sages sent by a com-
ponent in a service

LBThmaxMsgs is the
minimum number of
messages sent among
all the components

UBThmaxMsgs is the
maximum number of
messages sent among
all the components

Performance
ThmaxHwUtil

Maximum bound for
the hardware device
utilization

LBThmaxHwUtil

is the minimum
hardware utilization
among all the devices

UBThmaxHwUtil

is the maximum
hardware utilization
among all the devices

ThmaxNetUtil
Maximum bound for
the network link uti-
lization

LBThmaxNetUtil is
the minimum utiliza-
tion among all the
network links

UBThmaxNetUtil is
the maximum utiliza-
tion among all the
network links

over the difference between thresholds’ upper and lower bounds. For example, for
the Blob antipattern the number of connections of a certain swEx software com-
ponent (FnumClientConnects(swEx)) is compared to the corresponding threshold
upper bound (UBThmaxConnects) and lower bound (LBThmaxConnects). The
probability formula for this basic predicate is reported in Equation (2):

1− ((UBThmaxConnects − FnumClientConnects(swEx))/

(UBThmaxConnects − LBThmaxConnects))
(2)

We combine these probabilities to obtain the probability of an antipattern
occurrence, following the classic probability theory formulas for independent
events, that are as follows for the union of two events, (i.e., the probability of
(A ∨ B) in the logical formula):

P (A ∪B) = P (A) + P (B) (3)

and as follows for the intersection of two events (i.e., the probability of (A ∧
B) in the logical formula):

P (A ∩B) = P (A) ∗ P (B) (4)

The experimentation shows that the hypothesis of independency does not
compromise the validity of the approach.

3.2 Antipatterns Fuzzy Refactoring

In this section we provide an answer to a significant research question that
arises when choosing a refactoring to apply on the model: “How to quantify the
effectiveness of a refactoring action?”.

To answer this question, we first observe that in case of systems representable
as separable Queueing Networks (this is our case), it is well-known that the
more the load of the system is balanced among nodes, the better the response
time and throughput are [4, Ch. 5]. This means that, among all the available
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refactorings, we should prefer to apply the one(s) resulting in a more balanced
system. Hence, we need a way to quantify the equilibrium point of a system
configuration in terms of node utilization, because utilization is the index that
more directly relate to the load distribution in the system. Given the utilizations
of the system’s nodes in a configuration, we consider the mean utilization value
as the equilibrium point.

It is evident that, the closer the utilizations of all nodes are to the mean
value, the closer that configuration is to the equilibrium point. Hence, given the
utilization of each node for a configuration (namely config), we can estimate
the distance from the equilibrium point by considering the variance among the
nodes utilizations, denoted with var(config).

In order to compute var(config) we need a technique to estimate the node
utilizations Ū ′ = {u′(n1), u

′(n2), ..., u
′(nk)} after the application of a refactoring

r. In this paper we consider the following refactorings because they represent
foundational actions, and it is possible to build many complex refactorings from
their combination:
- redeploy(Component c, Node n): this action moves a software component c
to the node n. Such refactoring action is aimed at improving the utilization
of the node where the component c was deployed. In a performance model,
this results in moving the resource demand of c to n.

- split(Component c, Node n): this action split a software component c in
two new components c′1 and c′2, by properly distributing the connections of
c between them, while taking into account the functional responsibilities of
c. c′1 remains on the node where c was deployed, whereas c′2 is deployed on
n. Such refactoring action is aimed at reducing the number of connections
of c in an efficient way. In a performance model, this results in moving part
of the resource demand of c to n.

To estimate Ū ′, we define the unitary cost of a resource demand on a node n,
namely uc(n), as follows:

uc(n) =
u(n)∑

c∈D(n)

rd(c)
(5)

where rd(c) is the resource demand of a component c and D(n) is the set of all
components c that are currently deployed on n.

Hence, given two distinct nodes ni and nj , with uc(ni) and uc(nj) respectively,
if we are moving rd(c) from ni to nj , then

Ū ′ = {u′(ni), u
′(nj)}

⋃
Ūk (6)

where

- u′(ni) = u(ni)− rd(c) ∗ uc(ni)
- u′(nj) = u(nj) + rd(c) ∗ uc(nj)

- Ūk =
⋃

k �={i,j}
{u(nk)}
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It is worth to notice that an algebraic approximation of future utilizations
due to refactoring actions cannot be easily extended to nodes not directly in-
volved in the split/redeploy refactorings, although they could be affected by the
propagation of refactoring effects. Hence, we here introduce the assumption that
utilizations of these nodes (other than u′(ni) and u′(nj)) do not change after
refactoring.

The above definitions based on resource demands can be straightforwardly
applied to the case of mass storage resources and, in general, to any resource that
in a queueing network model can be represented as a service center with queue.
However, for sake of simplification, we only refer to CPU resources in our case
study. For other types of resources, such as RAMs, the concepts of utilization
and resource demands are not applicable as they are, so these definitions do
not hold. Hence, for all cases where resources like RAM could be critical, a
different quantification of performance improvements due to refactoring has to
be introduced.

After estimating utilizations of each possible refactored configuration config′,
we can estimate var(config′).

At this point, with respect to the research question that we have arisen above,
we intend to distinguish if a refactoring ri is better than a refactoring rj . For
this goal, denoting by config′i and config′j the configurations resulting from ri
and rj respectively, if var(config′i) < var(config′j) then we assess ri as better
than rj . This is because ri results in a more balanced refactored configuration
(i.e. one that is closer to the equilibrium point) than rj .

Now, starting from the performance shown by an initial model, we make
a distinction between beneficial and non-beneficial refactorings. In particular,
a refactoring r is beneficial if it results in a refactored configuration config′

that shows better performance than the ones shown by the initial configuration
configInitial. Conversely, r is non-beneficial if performance do not improve by
applying it.

With this distinction in mind, we define the effectiveness of a refactoring r
as eff(r) = var(configInitial) − var(config′). Basing on eff(r), we can now
classify the set of available refactorings. In particular, we consider r as a beneficial
refactoring if eff(r) > 0, otherwise as non-beneficial. In practice, the eff(r)
value suggests the degree of influence that r can provide to the performance of
the resulting configuration, i.e. config′.

3.3 Refactoring Reasoning

As shown in Figure 1, the refactoring reasoning operational step takes as in-
put: (i) the list of detected antipatterns associated with their probability of
occurrence; (ii) the list of refactoring actions associated with their effectiveness.
Several strategies can be devised to make use of this knowledge, for example:

- High probability: while looking at the list of detected antipatterns it is pos-
sible to identify the ones that most likely represent a bad practice, and then
to apply (one of) the most effective refactorings to (one of) them;
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- High effectiveness : while looking at the list of refactoring actions it is possible
to identify the ones that most likely provide a performance improvement, and
then to apply (one of) the most effective refactorings to (one of) the most
likely occurring antipatterns;

- High combination of probability and effectiveness : while looking at the list
of detected antipatterns and refactoring actions it is possible to combine
the (probability, effectiveness) values to identify the ones that most likely
provide a performance improvement while removing bad practices.

The goal of providing probability and effectiveness values for antipatterns is to
introduce an ordering in the list of detected antipatterns, where highly ranked
antipatterns are the most promising causes for performance problems as well as
the most promising candidates to solve such problems. The key factor of our
approach is to consider the thresholds’ lower and upper bounds thus to evaluate
the whole system. We first assign a probability to each antipattern, and then we
estimate the effectiveness of its refactoring actions on the basis of the achieved
equilibrium point.

4 Case Study: E-Commerce System (ECS)

E-Commerce System (ECS) is a web-based system that manages business data
related to books and movies. A Guest may invoke the BrowseCatalog service,
whereas a Customer may invoke two services, i.e., Login and MakePurchase.
Several software components and hardware platforms have been defined in ECS.
For the sake of simplicity we name components C1, . . . , C6 and platforms n1,
. . . , n3, in particular C1 and C2 are deployed on n1, C3 and C4 are deployed
on n2, and C5 and C6 are deployed on n3.

Among all system services, we focus here on the MakePurchase, which is
triggered whenever a customer wants to purchase a book or a movie, after au-
thentication. We assume that a performance requirement have been defined on
the MakePurchase service, i.e. its average response time must not exceed 90 sec-
onds. Such requirement must be fulfilled under a workload of 100 customers. The
performance analysis has been conducted by transforming the software model
into a Queueing Network (QN) model [18] and by solving the latter with the
Java Modeling Tools (JMT) [19].

The considered requirement is violated because, under a workload of 100 users
purchasing a product, the mean time elapsed in the server-side for each request
(i.e., the average response time at the server-side) is 93.79 seconds that is larger
than the stated requirement.

4.1 ECS: Antipatterns Fuzzy Detection

As stated in Section 3.1, antipatterns fuzzy detection is performed by assigning
a probability value for the logic basic predicates. In the following we illustrate
our approach applied to the Blob occurrences of the ECS case study, however
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other antipatterns (i.e., the Concurrent Processing System and the Pipe and
Filter [11]) have been detected and analyzed.

Table 2 reports the observed values of the ECS case study. In particular
the first column reports all the software components listed as candidates for
the Blob occurrence. The remaining columns reports the values coming from
the application of functions defined in the Blob logic-based specification (see
Equation 1). For example, in the first row of Table 2 we can notice that the C1
component has 3 connections, it sends 11 messages, and it is deployed on an
hardware platform with an utilization of 57%. In the lower part of Table 2 we
report thresholds’ upper and lower bounds that have been calculated across all
the system features.

Table 2. EHS: Thresholds upper and lower bounds for the Blob antipattern

Component FnumClientConnects(swEx) FnumMsgs(swEx, swEy, S) FmaxHwUtil(Pxy, all)

C1 3 11 0.57
C2 5 16 0.57
C3 7 25 0.87
C4 6 22 0.87
C5 1 4 0.41
C6 3 13 0.41

Upper Bound 7 25 0.87
Lower Bound 1 4 0.41

Table 3. EHS: Fuzzy detection for the
Blob antipattern

Component p(A) p(B) p(C) p(Blob)

C1 0.33 0.33 0.34 0.04
C2 0.67 0.57 0.34 0.13
C3 1 1 1 1
C4 0.83 0.86 1 0.71
C5 0 0 0 0
C6 0.33 0.43 0 0

Table 3 reports the values calcu-
lated according to Equations (4) (3),
and it is structured as follows. The
first column report the set of all the
software components. The subsequent
three columns report the probabilities
of the sub equations (namely A, B, C)
included in the Blob specification. For
Blob occurrence the event A is asso-
ciated to the sub equation related to
the number of connections, and it is
calculated using the formula reported

in Equation (2). For example, Table 3 shows that the C1 component is associ-
ated with p(A) calculated as: 1- (7-3/7-1) = 1 - 4/6 = 0.33. The last column
reports the p(Blob) that represents the probability of occurrence for the corre-
sponding components. For example, Table 3 shows that the C1 component is
associated to a probability equal to 0.04 (= 0.33 * 0.33 * 0.34) that basically
represents the confidence associated in the detection of the C1 component as a
Blob occurrence.

Similarly to Table 3 fuzzy detection of antipatterns have been performed to es-
timate the Concurrent Processing Systems (CPS) and Pipe & Filter occurrences.
Numerical values are reported in Section 4.3.
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4.2 ECS: Antipatterns Fuzzy Refactoring

Figure 2 shows the classification of the refactored configurations vs the initial
one: on the x-axis the refactoring efficiencies (eff(r)) are reported, whereas the
y-axis represents the response time (RT , calculated by simulating the underlying
performance model) of the corresponding refactored configuration.

Fig. 2. Refactoring effectiveness vs. system response time

Our approach bases on the conjecture that we mentioned in Section 3.2,
i.e. “we consider r as a beneficial refactoring if eff(r) > 0, otherwise as non-
beneficial.”. Hence, basing on our approach, there are 6 beneficial actions,
whereas all the remaining ones are non-beneficial. To validate this, we simu-
lated each refactored configuration, obtaining its response time and comparing
it to the one of the initial configuration (i.e. the point with x = 0 in Figure 2).
Given this knowledge, we computed recall and precision of our approach on the
ECS case study3. In particular, the recall is 100%, because all the 5 actual bene-
ficial refactored configurations (i.e. the 5 right-most points) have been retrieved;
instead, the precision is 83.33%, because among the 6 refactored configurations
that we computed (i.e. the 6 points with x > 0), 5 were actually beneficial.

The conjecture above is true for all the points of Figure 2, except for the
point (0.005, 93.79), i.e. the first point in the positive side of x-axis. This is
due to the fact that the corresponding refactoring Split(C1, n3) is a border-line
case; in fact, by simulating the resulting refactored configuration several times,

3 Precision and recall are well-known metrics aimed at quantifying the effectiveness of
a technique for pattern recognition or information retrieval [20]. High recall means
that the technique has returned most of the relevant results, while high precision
means that it has returned substantially more relevant results than irrelevant ones.
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some times the response time deteriorates, other times it improves. Note that,
in this experimentation, we simulated each refactored configuration just once.
As a future work, it would be interesting to take into account this “pathological
uncertainty”, by simulating N times each refactored configuration, and counting
how many times it actually results in a better configuration with respect to the
initial one. Thus, the existence of borderline cases influences precision. In fact, if
at least one border-line case exists, then the precision is strictly less than 100%.
Our conjecture still holds up to borderline cases. However, since we are interested
in directing the user to obtain the best benefit (if one exists), by choosing the
action with the maximum effectiveness we can be confident that if that action
is beneficial, then it is the most beneficial one.

Observing Figure 2, we can notice that there are some “classification errors”.
Given a configuration, it is not well-classified if there exists at least a different
configuration having greater effectiveness (thus, it is considered better by our
approach) and lower RT (thus, actually it is not better) at the same time. Our
approach made 6 classification errors on the case study: one error with respect
to beneficial refactorings and 5 errors with respect to non-beneficial ones. The
former can be discarded, because it is due to the border-line case. Concerning
the latter errors, we notice that the probability of making a classification error
increases while effectiveness decreases; in fact, for very small values of eff(r),
RT is very high.

4.3 ECS: Refactoring Reasoning

In our case study, the refactoring reasoning is based on the occurrences of three
different performance antipatterns, i.e., Blob, CPS and P&F. Figure 3 shows the
summary of our experimentation coming from the antipatterns fuzzy detection
and refactoring steps of the model-based software refactoring process (see Figure
1): each (x, y) point is related to a considered antipattern and a refactoring
action, where x is the antipattern occurrence probability, and y is the refactoring
effectiveness. We are obviously interested to upper right-most points.

Figure 3 shows that if we use the High probability strategy (see Section 3.3) for
the Blob antipattern, occurrences associated with a high probability are actually
the ones that most likely provide a performance benefit.

For example, concerning the Blob antipattern: (i) points (1, y) refer to compo-
nent C3 that has a probability of occurrence equal to one, and two of its refactor-
ing actions bring a system performance improvement, e.g. one is Split(C3, n3)
as labeled in the figure; (ii) points (0.71, y) refer to component C4 that has a
probability of occurrence equal to 0.71, and three of its refactoring actions have
been experimented to be beneficial for the system, e.g. one is Split(C4, n3) as
labeled in the figure; (iii) all the remaining points correspond to low or zero
probabilities of occurrence and refer to components (C1, C2, C5, C6) for which
refactoring effectiveness is very low.

Interestingly, in Figure 3 we can notice that CPS antipattern occurrences
associated with a high probability may not imply a performance improvement.
In our ECS case study we found that in case of the (n2, n3) CPS occurrence,
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which has a probability of one, no refactoring actions are actually beneficial for
the system performance.

Figure 3 also shows that if we use the High effectiveness strategy (see Section
3.3) for the Pipe & Filter antipattern, refactoring actions associated with a high
effectiveness, e.g. Split(C4, n3) as labeled in the figure, are actually the ones
that most likely remove a bad practice.

It is worth to notice that component C3 has a probability of occurrence equal
to one also as a Pipe & Filter, besides as a Blob. This generates the problem
of duplicated antipatterns since the same model element may represent two
different antipattern occurrences. On the contrary, component C4 has a quite
high probability of occurrence as a Pipe & Filter (i.e., 0.83) and it is larger
than the probability found as a Blob occurrence (i.e., 0.71). All the remaining
components (C1, C2, C5, C6) have a low or zero probability of occurrence and
their effectiveness is in fact very low.

The experimentation highlighted that our approach is able to provide some
guidelines to software designers in the selection of refactoring actions. In par-
ticular, we found that antipatterns with a low probability of occurrence do not
entail any performance effectiveness. On the contrary, antipatterns with a high
probability of occurrence may include beneficial refactoring actions but their
effectiveness is not guaranteed in advance.

Figure 4 shows the product between probability of antipattern occurrence and
refactoring effectiveness, to support the High combination of probability and effec-
tiveness refactoring strategy (see Section 3.3). In this case antipatterns showing
different probabilities of occurrence may result similar in their combination with
the effectiveness of available refactorings. For example, the evaluation of p(PA) *
eff(r) for the P&F antipattern points out that even if C3 and C4 have a proba-
bility of occurrence equal to 1 and 0.83, respectively, then their combination val-
ues are quite similar while considering the refactoring actions Split(C3, n1) and
Split(C4, n1), in fact they result in 0.0165 and 0.0166, respectively.

5 Conclusion

In this paper we have presented an approach for performance-based software
model refactoring. The novelty of the approach is that it works in a fuzzy context
where: (i) the detection of antipatterns additionally produces their probabilities
to occur in the model; (ii) the refactoring of antipatterns additionally indicates
the effectiveness of design alternatives in terms of performance benefits. Our
case study have demonstrated that the joint analysis of antipattern probability
and refactoring effectiveness drives the designers to identify the alternatives that
heavily improve the software performance.

This work is embedded in a wider research area that is the interpretation of
performance analysis results and the generation of feedback. A lot of work has
to be done to validate and refine the presented methodology. For example, as
future work, we plan to integrate our approach with the other work that we
have conducted up today in this area, particularly with respect to [16]. More-
over, we are facing the problem of using the effectiveness of refactoring actions
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to decide the most promising model changes that can rapidly lead to remove per-
formance problems. In this direction several interesting issues have to be faced,
such as: (i) the consideration of multiple resources at the same time (e.g. a split
can relieve the CPU load while aggravating the network occupancy due to in-
creased interactions), (ii) the simultaneous application of multiple refactoring
actions.
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