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Abstract In many areas of research and design, simulators are a crucial tool
for optimizing the relevant features of devices and for determining the effect of
parameter variations on the output of a given system. Many commercially available
simulation tools in the microelectronics industry are endowed with optimization
programs, usually based on Least Squares Methods coupled with a numerical
solver for minimizing, such as the normal equations or gradient methods. However
these optimization codes are strictly linked to the whole commercial simulation
package and cannot be easily adapted to the various requirements of an industrial
environment. This chapter aims at introducing the most important algorithms and
methods which could be of interest to CAD engineers working in universities or in
several microelectronics companies. The examples which will be illustrated are real
industrial cases and the results obtained with the cascade of simulators used within
STMicroelectronics will be presented.

7.1 Motivation

In many areas of research and design, simulators are a crucial tool for optimizing the
relevant features of devices and for determining the effect of parameter variations
on the output of a given system.

The simulators are used to replace a large amount of experiments and measure-
ments which are necessary to take into consideration the deterministic and stochastic
behaviour of the manufacturing processes of electronic devices.
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A very important application of optimization is the parameter extraction, by
which the parameters characterizing a given device within a given mathematical
model can be obtained from the measurements of some characteristics of the device.

For instance the parameters required to model the behaviour of a device are
related to physical quantities such as mobility, recombination and so on. When
a device is described by an equivalent circuit, as for example the Gummel-
Poon model, used by many circuit simulators (e.g. SPICE [36]), to perform the
characterization of the electrical behaviour of bipolar transistors, the parameters are
related to the electrical components of the circuit.

Many commercially available simulation tools in the EDA field of microelec-
tronics industry are endowed with optimization programs, usually based on Least
Squares Methods coupled with a numerical solver for minimizing, such as the
normal equations or gradient methods. However these optimization codes are
strictly linked to the whole commercial simulation package and cannot be easily
adapted to the various requirements of an industrial environment.

For instance, in some industrial applications, a designer would like to have a
global optimizer, which, being computationally expensive, is usually not available
in the commercial package. However the greater computational cost of global
optimization could be tolerable in an industrial context if efficient use be made
of the computing power of a given design unit (e.g. by an appropriate use of a
cluster of multivendors workstations). Another important example of great interest
is the optimization of a cost function which is computed by using several simulation
codes which are not integrated in a single software package and have been provided
by different software vendors. Still another example would be the need to add more
functions to the optimization (or parameter extraction) which are not usually found
in commercial optimization software.

Because of these various demands for customized optimization and tolerance
analysis in a CAD/CAM unit, several research groups in the microelectronics
industry have developed their own optimization packages.

In particular the TCAD unit of STMicroelectronics has developed a post process-
ing package called EXEMPLAR [33, 34] which encompasses global optimization
and advanced statistical sensitivity analysis for the cascade of commercial and in
house simulators, which are widely used by the design engineers throughout the
company. The activity, started two decades ago in ST with the development of
Exemplar, has been extended in the COMSON project.

This chapter aims at introducing for the most important algorithms and methods
which are part of the optimization framework Exemplar which could be of interest
to CAD engineers working in universities (graduate students) or in several micro-
electronics companies.

The examples which will be illustrated are real industrial cases and the results
obtained with the cascade of simulators used within STMicroelectronics will be
presented. This textbook is addressed to:

• Researchers in the microelectronics industry working in the CAD area. In
particular those who must keep and update the commercial simulation software
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used by CAD engineers; and must also integrate different commercial simulation
software within optimization environments.

• PhD or advanced students in electrical engineering, computer science and applied
mathematics.

7.2 The Optimization Problem

Optimization is the process by which one finds that value x that maximizes or
minimizes a given function f .x/. The function f is called objective function.

Except in linear case, optimization proceeds by iteration, that is, starting from an
approximate trial solution, a good algorithm gradually refines the research space
until a predetermined level of precision has been reached. An extremum of f
(maximum or minimum point) can be either global or local.

Generally, the global extremum is required, even if to distinguish a local
extremum from a global extremum is not so simple. A technique to determine the
global minimum could be to vary the initial point and take as extremum the one
among all that results to be the minimum or maximum in absolute (if they are not
all equal). If necessary, a high number of initial points can be generated in a random
way. Another technique could be to perturb a local extremum to verify if the algo-
rithm gives again the same extremum. Relatively recent techniques such Simulated
Annealing and Genetic Algorithm are designed to minimize functions that are not
smooth and that may have many local minima. Simulated Annealing algorithms
introduce a random element into the iteration process, giving the algorithm a change
to escape from a local extremum. Genetic Algorithms carry information about
multiple candidates for the global extremum that are simultaneously refined as
iteration proceeds.

In the optimization field it is necessary to make another difference between con-
strained optimization and unconstrained optimization; we talk about constrained
optimization when the x value which minimizes or maximizes f has to satisfy a
priori one or more constraints.

Having established the optimization as unconstrained, we must choose an
optimization method. First of all, we must choose between methods that need
only evaluations of the function to be minimized and methods that also require
evaluations of the derivatives of f. In the multidimensional case, this derivative is
the gradient (rf ), that is the vector whose components are the partial derivatives
of f with respect to xi for i D 1; : : : ; n.

Algorithms using the derivative are somewhat more powerful than those using
only the function, but not always enough so as to compensate for the additional
calculations of derivatives. Another criterion to be taken into account, to choose
an optimization method, is related to the quantity of memory it requires. We must
choose between methods that require storage of order n2 and those that require
only of order n, where n is the number of dimensions. For moderate values of
n and reasonable memory sizes this is not a serious constraint. There will be,
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however, the occasional application where storage may be critical. Among the
methods which does not require the derivatives calculation and require a storage
of order n2, we have to focus more attention on Nelder and Mead’s Simplex
Method and on the Powell’s Method. For as much as regards the algorithms
which require the first derivatives calculation we can consider two major families
of algorithms: Conjugate Gradient Method and Quasi-Newton Methods. The
former requires only of order n storage, while the Quasi-Newton Methods require
of order n2 storage. Both families require a one-dimensional minimization sub-
algorithm, which can itself either use, or not use, the derivatives calculation.

The EXEMPLAR optimizer widely used by ST design engineers, is mainly
based on optimization methods without derivatives. Some of these methods are:
the Simplex method [28], the Powell [31], the CRS (Controlled Random Search)
[7, 32] and the Direct method [26].

In the present chapter we describe the integration of ST PAN modeling flow
[4, 5] with the EXEMPLAR framework in which the innovative Discretized Immune
Algorithm (DIA) is encapsulated (Fig. 7.4).

7.3 Parameter Extraction for Compact Circuit Models

High-Voltage discrete power MOSFETs robustness is hardly tied to the topology of
the layout device. Weakness in layout designs could produce, for example, during
a classic UIS (Unclamped Inductive Switching), current focusing known as “hot
spots” [12, 27] that could compromise the integrity of the entire device. It will
be shown that an automatic optimization of a power MOSFET. layout can reduce
the peak currents focused in hot spot areas during an UIS. The device is modeled
using the innovative Power Analyzer (PAN) technique [4, 5] based on an accurate
extraction of a spice-like model of the power device starting from its physical layout
representation. The optimization is based on a framework fully integrated within the
PAN modeling flow, which utilizes many of the most used and effective state-of-art
optimization algorithms [23].

7.3.1 Automatic Physical Layout Optimization of Discrete
Power MOSFETs for Reducing the Effects of Current
Density

Discrete power MOSFET device represents nowadays a class of power devices
highly requested in the field of SMPS (Switched-Mode Power Supply) for Servers,
Solar & Desktop, AC/DC Converters, Battery Chargers, etc. due to their minimized
gate charge, high speed switching and lowest RDS.ON/ (Static drain-source on
resistance).
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The basic internal structure of a power MOSFET is made up of several
elementary transistor cells connected in parallel rows in order to achieve the current
handling capability required by the design application. Each row, and hence each
single cell, is powered by a gate metal path that branches from the gate pad and
stretching itself across the entire device. In the layout, there are cells displaced in
areas far and very near to the gate pad; the result is that the gate impedance of
each cell seen towards the gate pad could vary in relation to its distance to the
gate pad [2, 6]. As a consequence of this non uniformity, it is possible to observe
during the turn-on or turn-off switching that some cells will receive or loose the gate
signal at different times causing a different behavior in terms of current carried. For
example, at high switching frequencies the time required by the gate signal to reach
the farthest elementary cell may be comparable to the switching times of the input
signal. Therefore, this provides fast switching times for cells near to the gate pad
and increasing delays for those located furthest away. The fast turn off for only
portions of the device forces the remainder to drive large amounts of current during
switching [2]. The result is a dramatic current density increase in the slowest parts
of the device causing what we call a “hot spot” . Hot spots are restricted areas where
probable thermal failures can make devices less robust. Also, in a UIS turn-off,
peaks of current forced by the inductor load will be carried only by those slower
cells, therefore, a better distribution of the cells is necessary to minimize the peak
current which is a constraint that the designer should consider in order to develop
a more robust devices [8, 24, 25]. This target could be reached by modifying the
distribution of the gate metal across the device but paying attention not to vary the
gate impedance of the whole device. This is strongly tied to the displacement of the
metal path which is often a given parameter requested by the customer.

A new optimization framework flow will be demonstrated using new optimiza-
tion algorithms that will modify the geometry of the layout. Moving element
positions in the layout can cause an increase or decrease of the current density
in the device depending on where elements are placed. Power Mos is made up of
elements such as metal gate, fingers, gate pad, source windows, etc. which is shown
in Fig. 7.1.

For example, moving the metal fingers closer together can cause current to reach
some elementary MOS gates quicker and slower for others because the path traveled
may be decreased or increased. The number of relative placements for elements can
be enormous, therefore, a new optimization tool is designed to aid this process.

7.3.2 Modeling Approach

In order to better understand how the whole flow works, we will focus our attention
on a spice-like netlist model used in the flow. This model is produced by an
extraction starting from a CAD (Computer Aided Design) layout view of the device.
Since, the layout usually has many different CAD layers that are not useful during
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Fig. 7.1 Simplified layout of
the Device under
investigation
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the final extraction. A simplified CAD view of the device is effectively used by the
modeling tool as input.

The extracting tool, PAN is used to extract the netlist of the device in two steps
from the simplified view.

The first step is to extract a numerical model which is strictly related to the layout
topology. Each layer is mapped to a number, for example, an elementary cell is
represented by the number 2. The second step starts from the numerical model which
automatically produces the spice-like netlist model through indexes interpretation.
The cell named as “MOS” corresponds to the model of a single elementary cell
which must be supplied by the user and it could also be extracted with the aid of a
TCAD (Technology CAD tool) simulation tool or by measurements on a wafer.

The peculiarity of this spice-like modeling flow is once the numerical model
is produced, then the final netlist could be easily extracted starting from this data.
This very important possibility releases the designer from the original layout so
that many more analysis can be performed simply by modify the numerical model
written in ASCII format which implies modification of the physical layout structure
(es. number of fingers, pad size, position, etc.).

Since the position of elements has been discretized such that they are put on a 2D
lattice with integer coordinates, the algorithms have to find the x and y coordinates
for each element of the circuit under observation.

It is important to outline that any algorithm that is able to work with discrete
variables are suitable for this problem, because it can be tackled as a black box
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optimization problem. In our work, we use, through the Exemplar optimizer, four
algorithms that are the state-of-art in black box and circuit design optimization:
in particular, we use Controlled Random Search (CRS), and Controlled Random
Search Enhanched (CRS-E) [7]. The modelling methodology has been evaluated in
several of its aspect and a U.S. Patent has also been deposited [5].

7.4 The Optimization Algorithm

Designing micro-electronic devices is a complex process, which takes into account
increasing frequency and bandwidth ranges, small size factor, high reliability and
low power consumption [3, 20, 29]. From a mathematical point of view, there
are three major aspects to take into account; the formulation of a formal model
of the system, the performance optimization and the robustness analysis. In this
chapter, we focus on finding an optimal design for the power MOSFET. The
space of solutions defined by the parameters of the power MOSFET is enormous
and it is highly rugged. Moreover, the power MOSFET is a complex device
which simulation requires �5 min; due to this expensive computational cost, an
optimization algorithm has to find good solution using tight budget of simulations
[3, 20, 29]. In order to tackle effectively this optimization problem, we design a
new OPTIMIZATION IMMUNOLOGICAL ALGORITHM, called OPTIA [13, 18]. The
OPTIA is a stochastic optimization algorithm based on the Human Clonal Selection
Principle of the Immune System (IS) [1, 16, 17].

The IS is an excellent example of bottom-up optimization strategy through which
adaptation operates at the local level of cells and molecules, and useful behavior
emerges at the global level [15, 19]. In particular, the Clonal Selection theory shows
that B and T lymphocytes, that are able to recognize the antigen, will start to
proliferate by cloning upon recognition of such antigen. When a B cell is activated
by binding an antigen, many clones are produced in response via the so called
clonal expansion. The newly created cells can undergo to somatic hypermutation,
creating offspring B cells with mutated receptors: the higher the affinity of a B-cell
to the antigens, the more likely it will clone. This results in a Darwinian process
of variation and selection, called affinity maturation. The increase in size of these
populations couples with the production of cells with longer than expected lifetimes,
assuring the organism a higher specific responsiveness to that antigenic attack in the
future: the so called immunological memory of the system.

OPTIA tries to mimic the clonal selection principle for optimization: a problem is
an antigen and a B-cell is a candidate solution. The affinity between an antigen and
a B-cell is given by the objective function of the optimization problem [13, 14, 35].

Each B-cell is a vector of real values of dimension n, where n is the dimension of
the problem; moreover each candidate solution has associated an age � : it indicates
the number of iterations since the last successful mutation [9, 13, 21]. Initially the
age is set to zero.
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Fig. 7.2 Pseudo-code of the
Optimization Immune
Algorithm (optIA)

1: procedure OPTIA(d;dup;tB;r;b ;sa)
2: t←0
3: BCarch←Create_Archive(sa)
4: P(t) ← Initialize(d)
5: Evaluate (Pt)
6: while ¬Termination_Condition() do
7: P(clo) ←Cloning(P(t) ;dup)
8: P(hyp) ← Hypermutation(P(clo) ;r)
9: P(macro) ←Macromutation(P(hyp) ;b )
10: Evaluate(P(macro) )
11: Aging(P(t) ;P(macro) ;tB)
12: P(t+ 1) ← Selection(P(t) ;P(macro) ;BCarch)
13: t← t + 1
14: end while
15: end procedure

An initial population P .0/ of dimension d is generated randomly, with each
variable constrained into its lower and upper bounds. However, it could be useful to
use an ad-hoc population to start the optimization process: optIA can take in input
a starting point pst, and it use this point to initializes one B-cell of the population
and the remaining d � 1 candidate solutions are initialized with vectors obtained as
a perturbation of pst.

The algorithm is iterative: each iteration is made of a cloning, mutation and
selection phase [9, 10, 30]. The algorithm stops when a given stopping criterion
is verified: in particular, it ends when a maximum number of fitness function
evaluations is reached.The pseudo-code of the algorithm is shown in Fig. 7.2.

The cloning phase is responsible for the production of new B-cell. Each B-cell is
cloned dup times producing a population P

.clo/
Nc

of size d � dup D Nc , where each
cloned B-cell takes the same age of its parent. At the same time, the age of the parent
is increased by one.

After the P .clo/ population is created, it undergoes to the mutation phase
in order to find better solutions. In the mutation phase, the hypermutation and
hypermacromutation are applied to each candidate solutions [11]. These operators
are the principle responsible of the exploring and exploiting ability of the algorithm.

The hypermutation operator is based on the self-adaptive gaussian mutation that
is computed by:

� 0
i D �i � exp..� � N.0; 1// C .� 0 � Ni .0; 1/// (7.1)

xnew
i D xi C � � N.0; 1/: (7.2)

The hypermacromutation applies a convex mutation to a given solution according
to the following equation:

xnew
i D .1 � ˇ/ � xi C ˇ � xk I (7.3)
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where xi ¤ xk; ˇ 2 Œ0:1� is a random number obtained with uniform distribution.
Since variables xi and xk typically have different ranges, the value xk is normalized
within the range of xi using the following equation:

xnorm
k D Li C .xk � Lk/

.Uk � Lk/
� .Li � Ui / (7.4)

where Li , Ui are the lower and upper bounds of xi and Lk , Uk are lower and upper
bounds of xk . The value used to mutate the variables xi is then xnorm

k .
The mutation operators are controlled by a mutation rate ˛ that is differently

defined according to the type of operator: for the hypermutation operator, it is
defined as

˛ D e.���f / (7.5)

instead for the macromutation operator is defined as

˛ D .
1

ˇ
/ � e.�f / (7.6)

where f is the fitness function value normalized in Œ0; 1�.
These operators are applied sequentially: the hypermutation operator acts on the

P .clo/ and it produces a new population P .hyp/ and the hypermacromutation mutate
the P .hyp/ generating the P .macro/ population.

The population P .macro/ is evaluated: if a B-cell achieves a better objective
function value, its age is set to zero otherwise it is increased by one.

The Aging operator is executed on P .t/ and P .macro/: it drops all the B-cells with
age greater than �b C 1, where �b is a parameter of the algorithm.

The B-cells deleted by the AGING operator are not discarded but they are saved
into an archive BCarch of size sa: if there is enough space into the archive, the B-cell
is saved into the first available location, otherwise a random location of the archive
is selected and it is substituted by this new B-cell.

The selection is then performed and the new P .tC1/ is created by picking the best
individuals from the parents and the mutated B-cells: if jP .tC1/j < d , d � jP .tC1/j
B-cells are randomly taken from the archive and added to the new population.

Many real world problems associate to each variable of an optimization problem
a fineness parameter in addiction to lower and upper bounds.

OPTIA is able to handle this kind of variable using a grid based model: a grid can
be defined as an n-dimensional space which fineness is specified by a parameter ı.

When OPTIA evaluate the fitness of a B-cell, it projects the solution on the grid
and successively it evaluates the fitness of the projected point. It is possible to define
different strategies to project the point on the grid. For each variable of the problem,
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Fig. 7.3 Extraction of the
description file

...
gpad_width = 7
gpad_length = 7
gpad_x = 14
gpad_y = 8
finger_1_x = 6
finger_1_o = 9
finger_1_oy = 4
finger_2_x = 12
...

OPTIA uses the following projection equation:

˘.x; l; u; ı/ D min.jx � x1
ı j; jx2

ı � xj/ (7.7)

x1
ı D x � l

ı
(7.8)

x2
ı D u � x

ı
(7.9)

where x is a variable of the problem, l; u are the relative lower and upper bounds
and ı is the mesh fineness parameter.

7.4.1 The Optimization Flow

The methodology proposed is based on the possibility of modifying the device
layout structure by simply modifying the contents of the numerical model stored
in an ASCII file. Before using the numerical model in the optimization flow, it must
be translated into a text description format using a custom language named DES 1

which is based on a series of parameters that exhaustively describes the content of
the numerical model.

The DES file automatically created by custom software starting from the
numerical model allows for a better definition of constraints that the optimizer must
take into consideration. The DES parameters are geometric locations of elements
within the power Mos layout, for example, the location of the finger 1 is given by
the x,y coordinates and the width parameters such as finger_1_x, finger_1_oy and
finger_1_o respectively. These parameters are setup as variables which are inputs to
the optimizer that can be modified by the optimizer algorithm to find the optimal
location. The same is true for each of the other parameters in Fig. 7.3.

The optimization flow works accordingly as shown in Fig. 7.4. Firstly, a reference
starting geometric layout must be provided. This geometric layout is simplified into

1DES name used to describe the description of the numerical model matrix.
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Fig. 7.4 IO Optimization Flow

a numerical mapped model of the layout which is extracted by the PAN tool so that it
can be converted using DES2MTX2 software into a detailed text description for each
of the important elements. The text description contains the positional coordinates
and sizes of each element which describes the make up of the discrete power MOS.
These elements positions and sizes become the parameters which may be optimized
in order to resolve the current density problem which has been previously described.
Secondly, the detailed text description is provided as input to the optimization
framework as shown in Fig. 7.3 along with constrained bounds for each elements
parameters under evaluation which is provided on the first iteration cycle and used
through out the entire optimization process. Also, at the same time the PAN tool also
converts the numerical mapped layout into a spice like netlist which is simulated
using a third party tool that is a circuit simulator such as Mentor Graphics Eldo [22]
or a fast spice simulator; the results of the performances or simulation results are
passed to the optimization framework as inputs. Next, the optimization algorithm
goes to work by first reading these inputs and lastly providing new elements
parameters values under evaluation. If the new values under optimization are not
within the given constrained bounds (not yet optimal), a new text description file
provided by the optimization framework is converted back to a numerical model
by the DES2MTX software. Then it is converted to a new spice like netlist again,

2DES2MTX is software to convert description language to numerical mapped data of the
PowerMos layout. At the same manner, also the Mtx2Des software has been developed.
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Fig. 7.5 Starting Layout

which is then simulated, and delivered to the optimization frame work. This flow is
cycled until optimal solutions are found or the maximum number of iterations has
been achieved by the optimizer, even if a solution cannot be obtained. However,
if an optimal solution has been found, the text description file provided by the
optimization framework is converted back to a numerical model by the DES2MTX.
Finally, the PAN tool converts the new numerical model to its original geometric
layout form as the optimized physical layout view.

7.4.2 Simulation Results

In this work, we used the optimization flow described in order to improve the
robustness of power MOSFET devices in terms of maximum current density allowed
in a UIS turn-off.

Taken as reference the starting layout of Fig. 7.5, we obtained as result of the
optimization a better new layout where that maximum currentpeak is lower than
the one in the starting layout. In the built spice-like model of the device, each
single cell represents a portion of area of the real device; the size of that area
depends on how dense the mesh has been chosen for the discretezation necessary
to extract the matrix. An evaluation of the drain current referred to the elementary
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Fig. 7.6 Ipeak current 2D map and waveforms in a UIS turn-off for the starting reference layout

cell and, hence, to a given area, will give us very useful current density information.
For technologist, such as parameter is known and represents a physical limit for
the technology even if other causes of failure are to be searched in an excess of
the silicon temperature reached due to the switching power and of some parasitic
bipolars triggered by the high slopes of the drain currents flowing across the
elementary cells [6]. All these aspects could be easily investigated using the PAN
tool together with the optimization flow but in this work, only matters tied to peak
currents are investigated and result presented. In figure 2D map and waveforms
referred to the Ipeak currents across the reference starting layout is reported in
Fig. 7.6 . The light area on dark background represents regions of the devices where
currents are higher.

That 2D map gives information useful from the qualitatively point of view.
Quantitatively information, instead, are given by the waveforms on the right part
for Fig. 7.6 which reports the whole Idrain current across the drain terminal of the
devices Id , the average current Idm that should have been if each cell of the devices
would have switched ideally without gate/source delay and, at end, the maximum
peak current found across all the cells of the devices. The difference between Ipeak

and Idm represents an index of current unbalancing of the device. To study the
effective of immune algorithm and two investigate the hardness of the problem, we
have conducted a long series of simulation using various optimization algorithm:
we have used the SIMPLEX, CRS and CRS-E methods. In our experimental protocol,
when it is possible, we use as a starting point the circuit proposed by the designers or
we generate one randomly. In particular, OPTIA can work completely from scratch
or take an initial point, that is assigned to an individual and the other individuals of
the population are small perturbations of this starting point.

The stopping criterion adopted is the attainment of a fixed number of simulations
(in our case 104) or, for numerical methods, the achievement of the convergence.
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Table 7.1 PowerMosfet
optimization results using
evolutionary and numerical
algorithms

Algorithm Initial point Ipeak

Designer’s point – 9:948 � 10�3

optIA Random point 7:281 � 10�3

Crs Random point 7:296 � 10�3

optIA Designer’s point 7:394 � 10�3

Crs-E Random point 7:397 � 10�3

Simplex Designer’s point 7:894 � 10�3
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In Table 7.1, we report for each algorithm the best solution found in terms
of IPEAK by the various algorithms: by inspecting the results, OPTIA found the
best solution using random points. From an optimization point of view, this is
not surprising because the designer’s circuit can be a local optimum that prevent
the algorithm to find new good solutions. The 2D final current map and relative
waveforms have been shown in Fig. 7.7. As it is possible to observe, during
the analyzed range of time, where the current peak occurs, the final value for
that parameter is normalized decreasing from 1.0000 to 0.73098 obtaining an
improvement of approximately 27 %. In order to obtain this new result the optimizer
has modified the geometry of the original layout by repositioning and modifying
elements in the layout. The optimizer has decreased the size of poly silicon gate
areas and repositioned them along the gate metal finger. It also repositioned the gate
metal fingers in horizontal fashion. The final result is a new layout geometrically
adjusted and optimized for the better (Fig. 7.8).
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Fig. 7.8 Optimized Layout

7.5 Conclusion

In this work we have shown an innovative methodology for the power MOSFET
design aimed to improve robustness and performances. This methodology opens
new spaces in power device designing giving to the designers new innovative CAD
tools that allows investigating problematic until now little afforded due to the lack
of means. The work, yet in the preliminary phase has shown enormous potential
for investigation in future work, and of course, will be treated. The designed
evolutionary algorithm was shown to produce acceptable solutions in most cases,
where classical techniques failed.
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