
Chapter 6
Advanced Topics in Model Order Reduction

Davit Harutyunyan, Roxana Ionutiu, E. Jan W. ter Maten, Joost Rommes,
Wil H.A. Schilders, and Michael Striebel

Abstract This chapter contains three advanced topics in model order reduction
(MOR): nonlinear MOR, MOR for multi-terminals (or multi-ports) and finally an
application in deriving a nonlinear macromodel covering phase shift when coupling
oscillators. The sections are offered in a preferred order for reading, but can be read
independently.

Section 6.1, written by Michael Striebel and E. Jan W. ter Maten, deals
with MOR for nonlinear problems. Well-known methods like TPWL (Trajectory
PieceWise Linear) and POD (Proper Orthogonal Decomposition) are presented.
Development for POD led to some extensions: Missing Point Estimation, Adapted
POD, DEIM (Discrete Empirical Interpolation Method).
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Section 6.2, written by Roxana Ionutiu and Joost Rommes, deals with the multi-
terminal (or multi-port) problem. A crucial outcome of the research is that one
should detect “important” internal unknowns, which one should not eliminate in
order to keep a sparse reduced model. Such circuits come from verification prob-
lems, in which lots of parasitic elements are added to the original design. Analysis
of effects due to parasitics is of vital importance during the design of large-scale
integrated circuits, since it gives insight into how circuit performance is affected by
undesired parasitic effects. Due to the increasing amount of interconnect and metal
layers, parasitic extraction and simulation may become very time consuming or even
unfeasible. Developments are presented, for reducing systems describing R and RC
netlists resulting from parasitic extraction. The methods exploit tools from graph
theory to improve sparsity preservation especially for circuits with multi-terminals.
Circuit synthesis is applied after model reduction, and the resulting reduced netlists
are tested with industrial circuit simulators. With the novel RC reduction method
SparseMA, experiments show reduction of 95 % in the number of elements and 46x
speed-up in simulation time.

Section 6.3, written by Davit Harutyunyan, Joost Rommes, E. Jan W. ter Maten
and Wil H.A. Schilders, addresses the determination of phase shift when perturbing
or coupling oscillators. It appears that for each oscillator the phase shift can be
approximated by solving an additional scalar ordinary differential equation coupled
to the main system of equations. This introduces a nonlinear coupling effect to
the phase shift. That just one scalar evolution equation can describe this is a
great outcome of Model Order Reduction. The motivation behind this example is
described as follows. Design of integrated RF circuits requires detailed insight in
the behavior of the used components. Unintended coupling and perturbation effects
need to be accounted for before production, but full simulation of these effects can
be expensive or infeasible. In this section we present a method to build nonlinear
phase macromodels of voltage controlled oscillators. These models can be used to
accurately predict the behavior of individual and mutually coupled oscillators under
perturbation at a lower cost than full circuit simulations. The approach is illustrated
by numerical experiments with realistic designs.

6.1 Model Order Reduction of Nonlinear Network Problems

The dynamics of an electrical circuit can in general be described by a nonlinear, first
order, differential-algebraic equation (DAE) system of the form1:

d

dt
q.x.t// C j.x.t// C Bu.t/ D 0; (6.1a)

1Section 6.1 has been written by Michael Striebel and E. Jan W. ter Maten.
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completed with the output mapping

y.t/ D h.x.t/; u.t//: (6.1b)

In the state equation (6.1a), which arises from applying modified nodel analysis
(MNA) to the network graph, x.t/ 2 R

n represents the unknown vector of circuit
variables at time t 2 R; q; j W Rn ! R

n describe the contribution of reactive and
nonreactive elements, respectively and B 2 R

n�m distributes the input excitation
u W R ! R

m. The system’s response y.t/ 2 R
p is a possibly nonlinear function

h W Rn �R
m ! R

q of the system’s state x.t/ and inputs u.t/.
In circuit design, (6.1a) is often not considered to describe the overall design but

rather to be a model of a subcircuit or subblock. Connection to and communication
with a block’s environment is done via its terminals, i.e. external nodes. Therefore,
we assume in the remainder of this document that the inputs u.t/ and outputs y.t/

denote terminal voltages and terminal currents, respectively, or vice versa, which
are injected and extracted linearly, i.e., the output mapping is assumed to be of the
form

y.t/ D Cx.t/; (6.1c)

with C 2 R
p�n.

The dimension n of the unknown vector x.t/ is of the order of the number of
elements in the circuit, which can easily reach hundreds of millions. Therefore, one
may solve the network equations (6.1a) and (6.1c) by means of computer algebra in
an unreasonable amount of time only.

Model order reduction (MOR) aims to replace the original model (6.1a)
and (6.1c) by a system

d

dt
Oq.z.t// C Oj.z.t// C OBu.t/ D 0;

Oy.t/ D OCz.t/;

(6.2)

with z.t/ 2 R
r ; Oq; Oj W Rr ! R

r and OB 2 R
r�m and OC 2 R

p�r , which can compute
the system response Oy.t/ 2 R

p that is sufficiently close to y.t/ given the same input
signal u.t/, but in much less time.

6.1.1 Linear Versus Nonlinear Model Order Reduction

So far most research effort was spent on developing and analysing MOR techniques
suitable for linear problems. For an overview on these methods we refer to [1].

When trying to transfer approaches from linear MOR, fundamental differences
emerge.
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To see this, first consider a linear problem of the form

E
d

dt
x.t/ C Ax.t/ C Bu.t/ D 0; with E; A 2 R

n�n,

y.t/ D Cx.t/:

(6.3)

The state x.t/ is approximated in a lower dimensional space of dimension r � n,
spanned by basis vectors which we subsume in V D .v1; : : : ; vr / 2 R

n�r :

x.t/ � Vz.t/; with z.t/ 2 R
r : (6.4)

The reduced state z.t/, i.e., the coefficients of the expansion in the reduced space, is
defined by a reduced dynamical system. Applying Galerkin technique, this reduced
system arises from projecting (6.3) on a test space spanned by the columns of
some matrix W 2 R

n�r . There, W and V are chosen, such that their columns are
biorthonormal, i.e., WT V D Ir�r . The Galerkin projection2 yields

OE d

dt
z.t/ C OAz.t/ C OBu.t/ D 0;

y.t/ D OCz.t/

(6.5)

with OE D WT EV, OA D WT AV 2 R
r�r and OB D WT B 2 R

r�m, OC D CV 2
R

p�r . The system matrices OE; OA; OB; OC of this reduced substitute model are of smaller
dimension and constant, i.e., need to be computed only once. However, OE; OA are
usually dense whereas the system matrices E and A are usually very sparse.

Applying the same technique directly to the nonlinear system means obtaining
the reduced formulation (6.2) by defining Oq.z/ D WT q.Vz/ and Oj.z/ D WT j.Vz/.
Clearly, Oq and Oj map from R

r to R
r .

To solve network problems of type (6.2) numerically, usually multistep methods
are used. This means that at each timepoint tl a nonlinear equation

˛ Oq.zl / C Ǒ
l C Oj.zl / C OBu.tl / D 0 (6.6)

has to be solved for zl which is the approximation of z.tl /. In the above equation
˛ is the integration coefficient of the method and Ǒ

l 2 R
r contains history from

previous timesteps. Newton techniques that are used to solve (6.6) usually require
an update of the system’s Jacobian matrix in each iterations �:

OJ.�/

l D
 

˛
@ Oq
@z

C @Oj
@z

! ˇ̌̌
zDz.�/

l

D WT

�
˛

@q
@x

C @j
@x

� ˇ̌̌
x.�/DVz.�/

l

V: (6.7)

2Most frequently V is constructed to be orthogonal, such that W D V can be chosen.
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The evaluation of the reduced system, i.e., Oq and Oj, necessitates in each step the back
projection of the argument z to its counterpart Vz followed by the evaluation of the
full system q and j and the projection to the reduced space with W and V.

Consequently, with respect to computation time no reduction will be obtained
unless additional measures are taken or other strategies are pursued.

6.1.2 Some Nonlinear MOR Techniques

In MOR for linear systems especially methods based on Krylov subspaces [19] and
balanced realization [30] are well understood and highly elaborated. Hence, it seems
likely to adapt them to nonlinear problems, too. In the following, we shortly describe
these approaches and give references for further reading.

6.1.2.1 Krylov Subspace Methods in Nonlinear MOR

In linear MOR Krylov subspace methods are used to construct reduced order models
of systems (6.3) such that the moments, i.e., the coefficients in a Taylor expansion
of the frequency domain transfer function of original and reduced system match up
to a certain order. The transfer function H W C ! C

p�m is defined by the linear
equation H.s/ D C.sE C A/�1B.

It is not straightforward to define a transfer function for the nonlinear prob-
lem (6.1a) and (6.1c). Instead, there are Krylov based techniques that deal with
bilinear systems (6.8) or linear periodically time varying (LPTV) problems (6.9).

bilinear system:
d

dt
Ox.t/ C OAOx.t/ C ONOx.t/u.t/ C OBu.t/ D 0 (6.8)

LPTV system:
d

dt
ŒE.t/x.t/� C A.t/x.t/ C Bu.t/ D 0 (6.9)

The type of problem (6.8) arises from expanding a nonlinear problem Px.t/ C
f.x.t// C Bu.t/ D 0 around an equilibrium point. Systems of type (6.9) with
matrices E.t/; A.t/ that are periodic with some period T one gets when linearising
the system (6.1) around a periodic steady state solution with x0.t C T / D x0.t/.

Volterra-series expansion, followed by multivariable Laplace-transformation and
multimoment expansions are the key to apply Krylov subspace based MOR. For
further reading we refer to [15] and the references therein.

In case of the LPTV systems, a timevarying system function H.s; t/ can be
defined. This plays the role of a transfer function and can be determined by a
differential equation. H.s; t/ has to be determined in terms of time- or frequency
samples on Œ0; T / for one s. Krylov techniques can then be applied to get a reduced
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system with which samples for different frequencies s can be constructed. We refer
to [21] and the references therein.

Given a nonlinear problem (6.1a) and (6.1c) of dimension n, the bilinear system
that is reduced actually has a dimension of n C n2 C n3 C � � � , depending on the
order of the expansion. Similar, the system in the LPTV case that is subject to
reduction has dimension k � n with k being the number of timesamples in the initial
determination of H.s; t/. Therefore, it seems that these methods are suitable for
small to medium sized nonlinear problems only.

6.1.2.2 Balanced Truncation in Nonlinear MOR

The energy Lc.x0/ that is needed to drive a system to a given state x0 and the energy
Lo.x0/ the system provides to observe the state x0 it is in are the main terms in
Balanced Truncation. A system is called balanced if states that are hard to reach are
also hard to observe and vice versa, i.e. Lc.x/ large implies Lo.x/. Truncation, i.e.
reduced order modelling is then done by eliminating these states.

For linear problems Lc and Lo are connected directly, by means of algebraic
calculation, to the reachability and observability Gramians P and Q, respectively.
These can be computed from Lyapunov equations, involving the system matrices
E; A; B; C of the linear system (6.3). Balancing is reached by transforming the state
space such that P and Q are simultaneously diagonalised:

P D Q D diag.�1; : : : ; �n/

with the so called Hankel singular values �1; : : : ; �n. From the basis that arises from
the transformation only those basis vectors that correspond to large Hankel singular
values are kept. The main advantage of this approach is that there exists an a priori
computable error bound for the truncated system.

In transferring Balanced Truncation to nonlinear problems, three main tracks can
be recognized. Energy consideration is the common ground for the three directions.

In the approach suggested in [20] the energy functions arise from solving
Hamilton-Jacobi differential equations. Similar to the linear case, a state-space
transformation is searched such that Lc and Lo are formulated as quadratic form
with diagonal matrix. The magnitude of the entries are then basis to truncation again.
The transformation is now state dependent, and instead of singular values, we get
singular value functions. As the Hamilton-Jacobi system has to be solved and the
varying state-space transformations have to be computed, it is an open issue, how
the theory could be applied in a computer environment.

In Sliding Interval Balancing [46], the nonlinear problem is first linearised around
a nominal trajectory, giving a linear time varying system like (6.9). At each state
finite time reachability and observability Gramians are defined and approximated
by truncated Taylor series expansion. Analytic calculations, basically the series
expansions, connect the local balancing transformation smoothly. This necessary
step is the limiting factor for this approach in circuit simulation.
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Finally, balancing is also applied to bilinear systems (6.8). Here the key tool are
so called algebraic Gramians arising from generalised Lyapunov equations. How-
ever, no one-to-one connection between these Gramians and the energy functions
Lc , Lo can be made, but rather they can serve to get approximative bounds for
the aforementioned. Furthermore, convergence parameters have to be introduced to
guarantee the solvability of the generalised Lyapunov equations. For further details
we refer to [9, 14] and the references therein.

6.1.3 TPWL and POD

In view of high dimensional problems in circuit simulation and feasibility in a com-
putational environment, Trajectory PieceWise Linearization (TPWL) and Proper
Orthogonal Decomposition (POD) are amongst the most promising approaches for
the time being. The basic idea of TPWL is to replace nonlinearity with a collection
of linear substitute problems and apply MOR on these. The background of POD
is to identify a low dimensional manifold the solution resides on and reformulate
the problem in such a way that it is solved in terms of the basis of this principal
manifold.

In the following we give more details on the steps done for both approaches.

6.1.3.1 Trajectory PieceWise Linearization

The idea of TPWL [33], is to represent the full nonlinear system (6.1a) and (6.1c)
by a set of order reduced linear models that can reproduce the typical behaviour of
the system.

Since its introduction in [33, 34], TPWL has gained a lot of interest and several
adaptions have been made, see e.g., [18, 39, 49]. In the following we will basically
follow the lines in the original works [33, 34] and briefly mention alternatives that
have been suggested.

For extracting a model, a training input Nu.t/ for t 2 Œtstart; tend� is chosen and
a transient simulation is run in order to get a trajectory, i.e. a collection of points
x0; : : : ; xN , approximating x.ti / at timepoints tstart D t0 < t1 < � � � < tN D tend. The
training input is chosen such that the trajectory it causes, reflects the typical state
of the system. On the trajectory, points fxlin

0 ; : : : ; xlin
s g � fx0; : : : ; xN g are chosen

around which the nonlinear functions q and j are linearised:

q.x.t// � q.xlin
i / C Ei � �x.t/ � xlin

i

� I j.x.t// � j.xlin
i / C Ai � �x.t/ � xlin

i

�
;

(6.10)

with Ei D @q
@x

ˇ̌̌
xDxlin

i

and Ai D @j
@x

ˇ̌̌
xDxlin

i

.
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Then the nonlinear state-space equation (6.1a) can locally be replaced locally
around xlin

i for i D 1; : : : ; s by

d

dt
ŒEi x.t/ C ıi � C Ai x.t/ C � i C Bu.t/ D 0; (6.11)

with ıi D q.xlin
i / � Ei xlin

i and � i D j.xlin
i / � Ai xlin

i .
One approach, used by Rewieński [33], to get a model that represents the

nonlinear problem on a larger range, is to combine the local models (6.11) to

d

dt

 
sX

iD0

wi .x.t// ŒEix.t/ C ıi �

!
C

sX
iD0

wi .x.t// ŒAi x.t/ C � i � C Bu.t/ D 0;

(6.12a)

where wi W Rn ! Œ0; 1� for s D 1; : : : ; s is a state-dependent weight-function. The
weighting functions wi are chosen such that wi .x.t// is large for x close to xlin

i and
such that w0.x.t// C � � � C ws.x.t// D 1.

A different way to define a global substitute model, suggested by Voß [49] is

sX
iD0

wi .x.t//

�
Ei

d

dt
x.t/ C Aix.t/ C �i

�
C Bu.t/ D 0: (6.12b)

Although different in definition, in deployment both approaches (6.12a) and (6.12b)
are equivalent, as we will see later.

Figure 6.1 illustrates the idea: Along a training trajectory, extracted from a full
dimensional simulation, a set of locally valid linear models is created. When this
model is used for simulation with a different input, the existing linear models are
turned on and off, adapted to the state the system is in at one moment.

Simulation of the piecewise linearized system (6.12a) or (6.12b) may already
be faster than simulation of the original nonlinear system. However, the linearized
system can be reduced by using model order techniques for linear systems to
increase efficiency.

The main difference between linear MOR and TPWL is that the latter introduces
in addition to the application of a linear MOR technique the selection of lineariza-

Fig. 6.1 TPWL – model
extraction and usage

training trajectory

trajectory from different input

x1
lin

x2
lin

x3
lin

x6
lin

x5
lin

x4
lin

x0
lin
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tion points (to get a linear problem) and the weighting of the linear submodels (to
recover the global nonlinear behavior).

Reducing the System

Basically, any MOR-technique for linear problems can be applied to the linear
submodels (6.11), i.e., .Ei ; Ai ; ŒB; � i � ; C/. Note that we did extend the columns
of B with � i – thus MOR may exploit refinements for multiple terminals (see,
f.i., Sect. 6.2 in this Chapter). Originally Rewieński [33] proposed the usage of
Krylov-based reduction. Vasilyev, Rewieński and White [40] introduced Balanced
Truncation to TPWL and Voß [49] uses Poor Man’s TBR (PMTBR) as linear MOR
kernel. Each of these methods creates local subspaces, spanned by the columns of
projection matrices Vi 2 R

n�ri for i D 0; : : : ; s. For some comparisons on different
MOR methods used within TPWL, see [29]. For comparison between TPWL and
POD (see Sect. 6.1.3.2), see [7, 42].

In a second step one global subspace is created from the information contained
in the local subspaces. This is done by applying a singular value decomposition
(SVD) on the aggregated matrix Vagg D ŒV0; xlin

0 I : : : I Vs; xlin
s �. Note that the xlin

j

are “snapshots” in time of the nonlinear solution. Their span actually forms a POD-
subspace (see Sect. 6.1.3.2) that is collected on-the-fly within TPWL. The inclusion
reduces the error of the solution of the reduced model [7].

The final reduced subspace is then spanned by the r dominating left singular
vectors, subsumed in V 2 R

n�r . Furthermore let W 2 R
n�r be the corresponding

test matrix, where often we have W D V. Then a reduced order model for the
piecewise-linearized system (6.12a) is

d

dt

 
sX

iD0

wi .Vz.t//
h OEi z.t/ C Oıi

i!
C

sX
iD0

wi .Vz.t//
h OAi z.t/ C O� i

i
C OBu.t/ D 0;

(6.13)

with OEi D WT Ei V, OAi D WT AiV, Oıi D WT ıi , O� i D WT � i and OB D WT B.

Selection of Linearization Points

A crucial point in TPWL is to decide, which linearization points xlin
0 ; : : : ; xlin

s

should be chosen. With a large number of such points, we could expect to find a
linear model suitable to reproduce the nonlinear behaviour locally. But, this would
especially cause to store huge amount of data, making the final model slow. On the
other hand, if too few points are chosen to linearise around, the nonlinear behaviour
will not be reflected correctly. Different strategies to decide upon adding a new
linearization point, and hence a new model automatically exist:

• In the original work, Rewieński [33, 34] suggests to check at each accepted
timepoint t during simulation for the relative distance of the current state
xk � x.tk/ of the nonlinear problem to all yet existing i linearization states
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xlin
0 ; : : : ; xlin

i�1. If the minimum is equal to or greater than some parameter ˛ > 0,
i.e.

min
0�j �i�1

 kxk � xlin
j k1

kxlin
j k1

!
� ˛; (6.14)

xk becomes the .i C 1/st linearization point. Accordingly, a new linear model,
arising from linearizing around xlin

iC1 D xk is added to the collection. The
parameter ˛ is chosen depending on the steady state of the system (6.1a).

• In [49] the mismatch of nonlinear and linear system motivates the creation of a
new linearization point and an additional linear model: at each timepoint during
training both the nonlinear and a currently valid linear system are computed in
parallel with the same stepsize. If the difference of the two approximations to the
true solution at a timepoint tkC1 becomes too large, a new linear model is created
from linearizing the nonlinear system around the state the system was in at the
previous timepoint tk .

• The strategy pursued by Dong an Roychowdhury [18] is similar to (6.14).
Here, not deviations between states but function evaluations at the current
approximation xk and the linearization points xlin

j are considered.
• In Martinez [28] an optimization criterion is used to determine the linearization

points. The technique exploits the Hessian of the system as an error bound metric.

Determination of the Weights

When replacing the full nonlinear problem with the TPWL model (6.13) the weights
wi W R

n ! Œ0; 1� are responsible for switching between the linear submodels,
i.e., for choosing the linear model that reflects best the behaviour caused by the
nonlinearity.

Besides the specifications of the desired behaviour, made before, one wants to
have minimum complexity, i.e., one aims at having to deal with a combination of
just a small number of linear submodels at each timepoint. It is hence obvious that
the weight functions have to be nonlinear in nature. Again, different strategies exist:

• Both Rewieński [33] and Voß [49] use

wi .x/ D e� ˇ
m �di .x/; with di .x/ D kx � xlin

i k2 and m D min
i

di .x/. (6.15a)

The constant ˇ adjusts how abrupt the change of models is. A typical value is
ˇ D 25.

• Dong and Roychowdhury [18], however, use

wi .x/ D
�

m

di.x/
e

�di .x/�m
M

��

; (6.15b)
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where di .x/ and m are the same as in (6.15a) and M is the minimum distance,
taken in the 2-norm, amongst the linearization points. The parameter � is chosen
from f1; 2g.

In both cases, the weights are normalized such that
P

i wi .x/ D 1.
Clearly the nonlinearity of the weights causes the TPWL-model (6.13) arising

from (6.12a) – and similar the reduced model that would originate from (6.12b)
– to be nonlinear still. That means, after applying a numerical integration scheme
to (6.13) , still a nonlinear problem has to be solved to get an approximation zk �
z.tk/. To overcome this problem, both Rewieński [33] and Voß [49] decouple the
evaluation of the weights from the time discretisation by replacing

wi .Vzk/ wi .VQzk/ with Qzk � zk;

i.e., for calculating zk from the discretisation of (6.13) at t D tk , zk in the
weighting is replaced by a cheaper approximation Qzk . It is easy to see that with
this action, (6.12a) and (6.12b) are equivalent.

Note: The work of Dong and Roychowdhury [18] does actually not consider a
piecewise linear a but piecewise polynomial approach, i.e., the Taylor expansions
in (6.10) contain one more coefficient, leading to the need for reducing local bilinear
systems. Tiwary and Rutenbar [39] look into details of implementing a TPWL-
technique in an economic way.

TPWL and Time-Domain MOR

In [53] the TPWL approach is combined with wavelet expansions that are defined
directly in the time-domain. For wavelets in circuit simulation we refer to [16, 17]
and for technical details to [10, 11, 51, 52]. After linearizing a differential equation

d

dt
x.t/ D f.x.t// C Bu.t/ (6.16)

at xi D x.ti /, we obtain that Qx.t/ D x.t/ � xi is approximately given by

d

dt
Qx.t/ D f.xi / C A.Qx.t/ � xi / C Bu.t/; (6.17)

D AQx.t/ C f.xi / � Axi C Bu.t/: (6.18)

where A D @f .x/

@x
.ti /. The output request y.t/ D Cx.t/ transfers to Qy.t/ D Cxi C

CQx.t/, in which the first term is known. Thus it is sufficient to consider on an interval
Œ0; T � the sum of the solutions of the two problems

d

dt
x.t/ D Ax.t/ C Bu.t/; (6.19)

y.t/ D Cx.t/ (6.20)
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and

d

dt
x.t/ D Ax.t/ C f.xi / � Axi ; (6.21)

y.t/ D Cx.t/: (6.22)

Assuming T being integer (see [53] for the more general case), for a wavelet order
J we get M D 2J � T C 3 basis functions �j .t/, j D 1; : : : M . We can write
x.t/ D H1�.t/, and x.t/ D H2�.t/, respectively, where �.t/ D .�1.t/; : : : ; �M .t//

and H1; H2 2 R
n�M . We can plug these expressions into (6.19) and into (6.21).

However, note that in (6.19) the source term is time-dependent, while in (6.21) the
source term is constant. Hence rather then to consider (6.19), one considers

d

dt
x.t/ D Ax.t/ C Bı.t/; (6.23)

y.t/ D Cx.t/ (6.24)

where ı.t/ is an impulse excitation with the property
R t

0
�

ı.�/d� D 1. Then,
for (6.23), the matrix H1 satisfies

H1

d

dt
�.t/ D AH1�.t/ C Bı.t/ (6.25)

Assuming that the wavelets have their support in Œ0; T � we derive

H1�.t/ D AH1

Z t

0
�

�.�/d� C B: (6.26)

In [53] one applies collocation using M collocation points. Next H1 is found after
solving the resulting Sylvester equation. A similar approach is done for (6.21).
Now one determines Vi D Orthog.H1; H2; xi / (note that this is similar to the
multiple terminal approach mentioned before for the frequency domain case). From
.V1; : : : ; Vs/ one determines an overall orthonormal basis V 2 R n � r that is used
for the projection as before.

6.1.3.2 Proper Orthogonal Decomposition and Adaptions

The Proper Orthogonal Decomposition (POD) method, also known as the Principal
Component Analysis and Karhunen–Loève expansion, provides a technique for
analysing multidimensional data [24, 27].

In this section we briefly describe some basics of POD. For a more detailed
introduction to POD in MOR we refer to [31, 47]. For further studies we point
to [32], which addresses error analysis for MOR with POD and [50] where the
connection of POD to balanced model reduction can be found.
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POD sets work on data extracted from a benchmark simulation. In a finite
dimensional setup like it is given by (6.1a), K snapshots of the state xi � x.ti /,
the system is in during the training interval Œtstart; tend�, are collected in a snapshot
matrix

x D .x1; : : : ; xK/ 2 R
n�K : (6.27)

The snapshots, i.e., the columns of x, span a space of dimension k 	 K . We
search for an orthonormal basis fv1; : : : ; vkg of this space that is optimal in the
sense that the time-averaged error that is made when the snapshots are expanded in
the space spanned by just r < k basis vectors to Qxr;i ,

hkx � Qxrk2
2i with the averaging operator hfi D 1

K

KX
iD1

fi (6.28)

is minimised. This least squares problem is solved by computing the eigenvalue
decomposition of the state covariance matrix 1

K
xxT or, equivalently by the singular

value decomposition (SVD) of the snapshot matrix (assuming K > n)

x D UST with U 2 R
n�n; T 2 R

K�K and S D
 

�1

:::
�n

ˇ̌̌
0n�.K�n/

!
;

(6.29)

where Ut and T are orthogonal and the singular values satisfy �1 � �2 � � � � �n � 0.
The matrix V 2 R

n�r whose columns span the reduced subspace is now build from
the first r columns of u, where the truncation r is chosen such that

Pr
iD1 �2

iPn
iD1 �2

i

� d

100
; (6.30)

where usually d D 99 is usually a reasonable choice. For the, in this way
constructed matrix, it holds VT V D Ir�r . Therefore, Galerkin projection as
described above can be applied to create a reduced system (6.2).

However, as mentioned in Sect. 6.1.1 the cost for evaluating the nonlinear
functions q, j is not reduced. In the following we describe some adaptions to POD
that have been made to overcome this problem.

6.1.3.3 Missing Point Estimation

The Missing Point Estimation (MPE) was proposed by Astrid [2, 4] to reduce the
cost of updating system information in the solution process of time varying systems
arising in computational fluid dynamics. Verhoeven and Astrid [3] brought the MPE
approach forward to circuit simulation.



374 D. Harutyunyan et al.

Once a POD basis is constructed, there is no Galerkin projection deployed.
Instead a numerical integration scheme is applied which in general leads to system
of n nonlinear equations, analogue to (6.6), for the r dimensional unknown zl , that
approximate z.tl /. In MPE this system is reduced to dimension g with r 	 g < n by
discarding n�g equations. Formally this can be described by multiplying the system
with a selection matrix3 Pg 2 f0; 1gg�n, stating a g-dimensional overdetermined
problem

˛ Nq.Vzl / C Pgˇl C Nj.Vzl / C PgBu.tl / D 0; (6.31)

with Nq.Vzl / D Pgq.Vzl / and Nj.Vzl / D Pgj.Vzl /. The system (6.31) is solved at
each timepoint tl for zl in the least-squares sense [3, 41, 44, 45].

The effect of Pg operating on q.�/ and j.�/ is the same as evaluating only the
g � n components of q and j corresponding to the columns Pg has a 1 in.

The choice of Pg is motivated by identifying the g most dominant state variables,
i.e., components of x. In terms of the POD basis this is connected to restricting the
orthogonal V to QV D PgV 2 R

g�r in an optimal way. This in turn goes down to

min
Pg

k
� QVT QV

	�1 � Ir�rk: (6.32)

Details on reasoning and solving (6.32) can be found in [4].

6.1.3.4 Adapted POD

A second approach to reduce the work of evaluating the nonlinear functions,
Adapted POD, was proposed in [41, 43–45]. Having done an SVD (6.29) on the
snapshot matrix, not directly a projection matrix V is defined from the singular
values and vectors. Instead the matrix L D u˙ 2 R

n�n, with ˙ D diag.�1; : : : ; �n/

is defined. Hence, L arises from scaling the left-singular vectors with the corre-
sponding singular values. Although L is not orthogonal, its columns are. Next we
transform the original system (6.1a) by writing x.t/ D Lw.t/ with w.t/ 2 R

n and
using the Galerkin approach:

d

dt



LT q.Lw.t//

�C LT j.Lw.t// C LT Bu.t/ D 0: (6.33)

At this point, L and LT are treated as two different matrices, one acting on the
parameter of the function, the other on the value. For both L and LT we identify the
r and g, most dominant columns. A measure for the significance of a column vector
v 2 R

n is its 2-norm kvk2.

3This means, the matrix has exactly one non-zero entry per row at most one non-zero per column.
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As the columns of L are ordered according to the singular values, we will pick
the first r columns in this case. Now L and LT are approximated by matrices that
agree with the respective matrix in the selected r and g selected columns but have
the n � r and n � g, respectively, remaining columns set to 0 2 R

n. This can be
expressed with the help of selection matrices Pr 2 f0; 1gr�n and Pg 2 f0; 1gg�n,
respectively:

L � LPT
r Pr and LT � LT PT

g Pg: (6.34)

We may conclude LT � PT
r Pr LT PT

g Pg, insert these approximations in (6.33) and
multiply with Pr , bearing in mind that Pr PT

r D Ir�r :

d

dt

h
Pr LT PT

g Pgq.LPT
r Pr Qw/

i
CPr LT PT

g Pgj.LPT
r Pr Qw/CPT

r LT Bu D 0: (6.35)

Note that due to the approximations to L and LT in the above equation w has
changed to Qw which can merely be an approximation to the former. We introduce
˙ r D diag.�1; : : : ; �r / and let V 2 R

n�r be the first r columns of u. In this wa we
have LPT

r D VSr . Finally we scale (6.35) with ˙ �1
r and introduce a new unknown

z D ˙ r Pr Qw 2 R
r from which we can reconstruct the full state by approximation

x � Vz. We end up with

d

dt



Wr;g Nq.Vz/

�C Wr;g
Nj.Vz/ C QBu.t/ D 0; (6.36)

with Nq.Vz/ D Pgq.Vz/, Nj.Vz/ D Pgj.Vz/, Wr;g D VT PT
g 2 R

r�g and QB D VT B.
Here Pg has the same effect as noted in the previous subsection: not the full

nonlinear functions q and j have to be evaluated but g components only.

6.1.3.5 Discrete Empirical Interpolation

Recently, Chaturantabut and Sorensen [12, 13] did present the Discrete Empirical
Interpolation Method (DEIM) as a further modification of POD. It originates from
partial differential equations (PDEs) where the nonlinearities exhibit a special
structure. It can, however, be applied to general nonlinearities as well. We give a
brief introduction of how this may look like in circuit simulation problems.

Given a nonlinear function f W Rn ! R
n, the essential idea of DEIM is to approx-

imate f.x/ by projecting it on a subspace, spanned by the basis fu1; : : : ; ugg � R
n:

f.x/ � Uc.x/; (6.37)

where U D .u1; : : : ; ug/ 2 R
n�g and c.x/ 2 R

g is the coefficient vector. Forcing
equality in (6.37) would state an overdetermined system for the g < n coefficients
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ct.x/. Instead accordance in g rows is required, which can be expressed by

Pgf.x/ D .PgU/c.x/; (6.38)

with a selection matrix Pg 2 f0; 1gg�n. If PgU is non-singular, (6.38) has a unique
solution c.x/ and, hence f.x/ can be approximated by

f.x/ � U
�
PgU

��1
Pgf.x/; (6.39)

which means that f.x/ is interpolated at the entries specified by Pg.

In (6.39), U
�
PgU

��1
can be computed in advance, and, again, the multiplication

Pgf.x/ corresponds to evaluating only those entries of f, addressed by Pg .
Using the notations introduced before, POD with the DEIM modification yields

a reduced model (6.2) with

Oq.z.t// D OW Nq.z.t//; Oj.z.t// D OW Nj.z.t//; OB D VT B; OC D CVT ;

(6.40)

with OW D VT U
�
PgU

��1
and Nq.�/ D Pgq.�/ and Nj.�/ D Pgj.�/. Here POD provides

the state-space part of the reduction, i.e., V. And DEIM determines the subspace
on which q and j is projected, hence the columns of the matrix U 2 R

n�g and the
selection Pg.

The reduced subspace, suitable for representing a nonlinear function f on, is
constructed from an SVD on a matrix F D .f.x1/; : : : ; f.xK// 2 R

n�K whose
columns are snapshots of the function evaluations. The matrix U in (6.39) consists
then of the g most dominant left singular vectors of F.

The core of DEIM is the construction of the selection Pg 2 f0; 1gg�n. A set
of indices f	1; : : : ; 	gg � f1; : : : ; ng, determined by the DEIM-algorithm, define
the selection matrix, meaning that Pg has a 1 in the i th row and 	i th column (for
i D 1; : : : ; g) and 0 elsewhere.

The first index, 	1 is chosen to be the index of the largest (in absolute value) entry
in u1. In step l D 2; : : : ; g the residual

rlC1 D UlC1 � Ul .PlUl /
�1 PlUlC1

is computed where Ul D .u1; : : : ; ul / and Pl 2 f0; 1gl�n is constructed from the
indices 	1; : : : ; 	l (cp. (6.39)). Then, the index corresponding to entry of the residual
rlC1 the largest magnitude of is taken as index 	lC1.

Setting up the selection matrix with this algorithm, PgU in (6.37) is guaranteed
to be regular. For a detailed description and discussion, including error estimates we
refer to [12, 13].

Note: Originally, DEIM is constructed in the context of discretisation and approx-
imation of PDEs with a special structure of the nonlinearity involved. Considering
network problem (6.1a) that leads to the reduced problem (6.40), we constructed
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a uniform DEIM-approximation, i.e., U and Pg for the both nonlinearities, q and j
involved. This could probably be approached in a different way, too.

6.1.4 Other Approaches

We shortly address some other approaches. In [5, 6, 8, 48] Krylov-subspace methods
are applied to bilinear and quadratic-bilinear ODE-systems. One exploits the obser-
vation that several nonlinear functions can be generated by extending the system first
with additional unknowns for which simple differential equations are introduced. In
[48] also the application to DAEs is discussed. In [22] a transformation from a set
of nonlinear differential equations to another set of equivalent nonlinear differential
equations that involve only quadratic terms of state variables is described to which
Volterra analysis is applied to derive a reduced model.

We already mentioned [20] for nonlinear balancing in which the energy functions
arise from solving Hamilton-Jacobi differential equations. Related work is on cross
Gramians for dissipative and symmetric nonlinear systems [25, 26].

In [37, 38] interpolating input-output behavior of nonlinear systems is studied.
This is related to table modelling.

6.1.5 Numerical Experiments

For testing purposes, a time-simulator, has been implemented in octave. The
underlying DAE integration scheme used here is CHORAL [23], a Rosenbrock-
Wanner type of method, adapted to circuitry problems. Besides performing
transient-analysis, TPWL and POD models can be extracted and reused in
simulations.

To show the performance of TPWL and POD when applied to an example from
circuit design, the nonlinear transmission line in Fig. 6.2, taken from [33] is chosen.
Only the diodes introduce the designated nonlinearity to the circuit, as the current
{d traversing a diode is modeled by {d .v/ D exp.40 � v/ � 1 where v is the voltage
drop between the diode’s terminals. The resistors and capacitors contained in the
model have unit resistance and capacitance .R D C D 1/, respectively. The current

Fig. 6.2 Nonlinear transmission line
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source between node 1 and ground marks the input to the system u.t/ D {.t/ and
the output of the system is chosen to be the voltage at node 1: y.t/ D v1.t/.

Introducing the state vector x.t/ D .v1.t/; : : : ; vN .t//T 2 R
N , where vi .t/

describes the voltage at node i 2 f1; : : : ; N g modified nodal analysis yields:

d

dt
x.t/ C j.x.t// C Bu.t/ D 0

y.t/ D Cx.t/;

(6.41)

where B D CT D .1; 0; : : : ; 0/T 2 R
N and j W RN ! R

N with

j.x/ D

0
BBBBB@

2 �1

�1 2 �1

: : :
: : :

: : :

�1 2 �1

�1 1

1
CCCCCA � x �

0
BBBBB@

2 � e40x1 � e40.x1�x2/

e40.x1�x2/ � e40.x2�x3/

:::

e40.xN �2�xN �1/ � e40.xN �1�xN /

e40.xN �1�xN / � 1

1
CCCCCA

We choose N D 100, causing a problem of dimension n D 100.
For extracting a model a shifted Heaviside function was used as training input.

Resimulation was done both with the training input and with a cosine function on
the interval Œtstart; tend� D Œ0; 10�:

utrain.t/ D H.t � 3/ D
(

0 t < 3

1 t � 3
uresim.t/ D 1

2

�
1 C cos

�
2


10
t

��
:

The TPWL-model was extracted with the Arnoldi-method as suggested in [33],
leading to a order reduced model of dimension 10. For choosing linearization points,
the strategy proposed by Rewieński with ˛ D 0:0167 in (6.14) has been tested.
With this setting, 27 linear models are constructed. Also the extended strategy
described in Voß [49] is implemented, but does not show much different results
for the transmission line. A more detailed discussion on the model extraction and
statistics on which models are chosen can be found in [35, 36].

For the transmission line, also a POD model as well as a POD model that has been
modified with the Discrete Empirical Interpolation Method (DEIM) algorithm is
constructed. By choosing d D 99:9 in (6.30) a reduced model of dimension 4 is con-
structed. Applying the DEIM algorithm the nonlinear q and j where reduced to order
5. Figure 6.3 displays the singular values form snapshots collected during a training
run and the behaviour of the coverage function (6.30). Note, that only 38 singular
values are shown, although the full system is of dimension 100. This is caused by the
time domain simulation: with tolerances specified for the timestepping mechanism,
only 38 time steps where necessary to resolve the system. However, also with more
snapshots, the gradient of the singular values does not change remarkably.

Figures 6.4 and 6.5 show the trajectories, i.e., the behaviour in time, of the
voltages at nodes 1 and ten, when the training signal is and when the cosine like
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Fig. 6.4 Nonlinear transmission line: resimulation results

signal is applied at the input, respectively. The plots show the signals reproduced
by using the full model, the TPWL-model and the plain POD and DEIM-adapted
POD model. Slight deviations from the reference solution are obvious, but, in total,
a good matching is observable. However, the TPWL-model seems to have problems
following the reference solution, when a signal, different to the input is applied. This
indicates that there are still improvements possible.

Finally, Table 6.1 gathers the performance of the models, measured in time
consumption. Clearly, simulation with the TPWL model is cheaper than using the
full network as not the full nonlinearity has to be evaluated. Still, POD, adapted with
DEIM is superior, as no decision has to be made, which model to use. Furthermore,
as predicted in Sect. 6.1.1 applying only projection without taking care of the
nonlinearity, does not guarantee cheaper to evaluate model: the plain POD model,
used for simulation, causes equal or even increased computational expenses.
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Table 6.1 Transmission line:
performance of nonlinear
MOR techniques

Resimulation (s) Changed input (s)

Full problem 6:67 4:66

TPWL model 4:35 3:47

POD model 6:51 5:23

POD-DEIM model 1:98 1:63

6.2 Model Order Reduction for Multi-terminal Circuits

Analysis of effects due to parasitics is of vital importance during the design of large-
scale integrated circuits and derived products.4 One way to model parasitics is by
means of parasitic extraction, which results in large linear RCL.k/ networks. In ESD
analysis [65, 75], for instance, the interconnect network is modeled by resistors with
resistances that are based on the metal properties. In other (RF) applications one
needs RC or even RCLk extractions to deal accurately with higher frequencies as
well.

The resulting parasitic networks may contain up to millions of resistors, capac-
itors, and inductors, and hundreds of thousands of internal nodes, and thousands
of external nodes (nodes with connections to active elements such as transistors).
Simulation of such large networks within reasonable time is often not possible
[62, 63], and including such networks in full system simulations may be even
unfeasible. Hence, there is need for much smaller networks that accurately or even
exactly describe the behavior of the original network, but allow for fast analysis.

4Section 6.2 has been written by Roxana Ionutiu and Joost Rommes. For an extended treatment on
the topics of this section see also the Ph.D. Thesis of the first author [68].
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In this section we describe recently developed methods for the reduction of
large R networks, and present a new approach for the reduction of large RC

networks. We show how insights from graph theory, numerical linear algebra, and
matrix reordering algorithms can be used to construct a reduced network that shows
sparsity preservation especially for circuits with multi-terminals (ports). Hence it
allows for the same number of external nodes, but needs much fewer internal nodes
and circuit elements (resistors and capacitors). Circuit synthesis is applied after
model reduction, and the resulting reduced netlists are tested with industrial circuit
simulators. For related literature we refer to [55–57].

The section is organized as follows. Section 6.2.1 revisits recent work on
reduction of R networks [83, 84]. It provides the basis for understanding how graph
theoretical tools can be used to significantly improve the sparsity of the reduced
models, which are later synthesized [70] into reduced netlists. Section 6.2.2 deals
with the reduction of RC networks. Section 6.2.2.1 first reviews an existing method
which employs Pole Analysis via Congruence Transformations (PACT) [73] to
reduce RC netlists with multi-terminals. In Sect. 6.2.2.2 the new method Sparse
Modal Approximation (SparseMA) is presented, where graph-theoretical tools are
brought in to enhance sparsity preservation for the reduced models. The numerical
results for both R and RC netlist reduction are presented in Sect. 6.2.3. Section 6.2.4
concludes.

6.2.1 Reduction of R Networks

In this section we review the approach for reducing R networks, as developed in
[83, 84]. Reduction of R networks, i.e., networks that consist of resistors only, is
needed in electro-static discharge analysis (ESD), where large extracted R networks
are used to model the interconnect. Accurate modeling of interconnect is required
here, since the costs involved may vary from a few cents to millions if, due to
interconnect failures, a respin of the chip is needed. An example of a damaged piece
of interconnect that was too small to conduct the amount of current is shown in
Fig. 6.6.

6.2.1.1 Circuit Equations and Matrices

Kirchhoff’s Current Law and Ohm’s Law for resistors lead to the following system
of equations for a resistor network with N resistors (resistor i having resistance ri )
and n nodes (n < N ):

�
R P

�P T 0

� �
ib
v

�
D
�

0
in

�
; (6.42)
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Fig. 6.6 Example of a piece of interconnect that was damaged because it was too small to conduct
the amount of current caused by a peak charge

where R D diag.r1; : : : ; rN / 2 R
N �N is the resistor matrix, P 2 f�1; 0; 1gN �n is

the incidence matrix, ib 2 R
N are the resistor currents, in 2 R

n are the injected node
currents, and v 2 R

n are the node voltages.
The MNA (modified nodal analysis) formulation [60, 76] can be derived

from (6.42) by eliminating the resistor currents ib D �R�1P v:

Gv D in; (6.43)

where G D P T R�1P 2 R
n�n is symmetric positive semidefinite. Since currents

can only be injected in external nodes, and not in internal nodes of the network,
system (6.43) has the following structure:

�
G11 G12

GT
12 G22

� �
ve

vi

�
D
�
B

0

�
ie; (6.44)

where ve 2 R
ne and vi 2 R

ni are the voltages at external and internal nodes,
respectively (n D ne C ni ), ie 2 R

n
e are the currents injected in external nodes,

B 2 f�1; 0; 1gne�ne is the incidence matrix for the current injections, and G11 D
GT

11 2 R
ne�ne , G12 2 R

ne�ni , and G22 D GT
22 2 R

ni �ni . The block G11 is also
referred to as the terminal block.

A current source (with index s) between terminals a and b with current j results
in contributions Ba;s D 1, Bb;s D �1, and ie.s/ D j . If current is only injected
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in a terminal a (for instance if a connects the network to the top-level circuit), the
contributions are Ba;s D 1 and ie.s/ D j .

Finally, systems (6.42)–(6.44) must be made consistent by grounding a node
gnd , i.e., setting v.gnd/ D 0 and removing the corresponding equations. In the
following we will still use the notation G for the grounded system matrix, if this
does not lead to confusion.

6.2.1.2 Problem Formulation

The problem is: given a very large resistor network described by (6.42), find an
equivalent network with (a) the same external nodes, (b) exactly the same path
resistances between external nodes, (c) On � n internal nodes, and (d) Or � r

resistors. Additionally, (e) the reduced network must be realizable as a netlist so
that it can be (re)used in the design flow as subcircuit of large systems.

Simply eliminating all internal nodes will lead to an equivalent network that
satisfies conditions (a)–(c), but violates (d) and (e): for large numbers m of external
nodes, the number of resistors Or D .m2 � m/=2 in the dense reduced network is in
general much larger than the number of resistors in the sparse original network (r
of O.n/), leading to increased memory and CPU requirements.

6.2.1.3 Existing Approaches

There are several approaches to deal with large resistor networks. In some cases the
need for an equivalent reduced network can be circumvented in some way: due to
sparsity of the original network, memory usage and computational complexity are
in principle not an issue, since solving linear systems with the related conductance
matrices is typically of complexity O.n˛/, where 1 < ˛ 	 2, instead of the
traditional O.n3/ [79]. Of course, ˛ depends on the sparsity and will rapidly
increase as sparsity decreases. This also explains why eliminating all internal nodes
does not work in practice: the large reduction in unknowns is easily undone by the
enormous increase in number of resistors, mutually connecting all external nodes.

However, if we want to (re)use the network in full system simulations, a reduced
equivalent network is needed to limit simulation times or make simulation possible
at all. In [77] approaches based on large-scale graph partitioning packages such
as (h)METIS [72] are described, but only applied to small networks. Structure
preserving projection methods for model reduction [66, 86], finally, have the
disadvantage that they lead to dense reduced-order models if the number of
terminals is large. There is commercial software [59, 64] available for the reduction
of parasitic reduction networks.
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6.2.1.4 Improved Approach

Knowing that eliminating all internal nodes is not an option and that projection
methods lead to dense reduced-order models, we use concepts from matrix reorder-
ing algorithms such as AMD [54] and BBBD [88], usually used as preprocessing
step for (parallel) LU- or Cholesky-factorization, to determine which nodes to
eliminate. The fill-in reducing properties of these methods also guarantee sparsity
of the reduced network. Similar ideas have also been used in [77, 89].

Our main motivation for this approach is that large resistor networks in ESD
typically are extracted networks with a structure that is related to the underlying
(interconnect) layout. Unfortunately, the extracted networks are usually produced by
extraction software of which the algorithms are unknown, and hence the structure
of the extracted network is difficult to recover. Standard tools from graph theory,
however, can be used to recover at least part of the structure.

Our approach can be summarized as follows:

1. The first step is to compute the strongly connected components [61] of the
network. The presence of strongly connected components is very natural in
extracted networks: a piece of interconnect connecting two other elements such
as diodes or transistors, for instance, results in an extracted network with two
terminals, disconnected from the rest of the extracted circuit. By splitting the
network into connected components, we have simplified the problem of reduction
because we can deal with the connected components one by one.

2. The second step is to selectively eliminate internal nodes in the individual
connected components. For resistor networks, this can be done using the Schur
complement [67], and no approximation error is made. The key here is that those
internal nodes are eliminated that give the least fill-in. First, (Constrained) AMD
[62] is used to reorder the unknowns such that the terminal nodes will be among
the last to eliminate. To find the optimal reduction, internal nodes are eliminated
one-by-one in the order computed by AMD, while keeping track of the reduced
system with fewest resistors.

Since the ordering is chosen to minimize fill-in, the resulting reduced
matrix is sparse. Note that all operations are exact, i.e., we do not make any
approximations. As a result, the path resistances between external nodes remain
equal to the path resistances in the original network.

3. Finally, the reduced conductance matrix can be realized as a reduced resistor
network that is equivalent to the original network. This is done easily by
unstamping the values in the G matrix intro the corresponding resistor values
and their node connections in the netlist [69]. Since the number of resistors (and
number of nodes) is smaller than in the original network, also the resulting netlist
is smaller in size.

An additional reduction could be obtained by removing relatively large resistors
from the resulting reduced network. However, this will introduce an approximation
error that might be hard to control a priori, since no sharp upper bounds on the
error are available [87]. Another issue that is subject to further research is that the
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optimal ratio of number of (internal) nodes to resistors (sparsity) may also depend
on the ratio of number of external to internal nodes, and on the type of simulation
that will be done with the network.

In the following sections we will describe how strongly connected components
and fill-in minimizing reorderings can be used for the reduction of RC networks as
well.

6.2.2 Reduction of RC Networks

This section presents the developments for RC netlist reduction, first by reviewing
an existing approach called PACT (Pole Analysis via Congruence Transformations).
Then, graph-based tools are brought in to enhance sparsity preservation with the
novel reduction method, SparseMA (Sparse Modal Approximation).

Following the problem description in [73], consider the modified nodal analysis
(MNA) description of an input impedance type RC circuit, driven by input currents:

.G C sC/x.s/ D Bu.s/; (6.45)

where x denote the node voltages, and u represent the currents injected into the
terminals (also called ports or external nodes). The number of internal nodes is n,
and the number of terminals is p, thus G 2 R

.pCn/�.pCn/, C 2 R
.pCn/�.pCn/ and

B 2 R
.pCn/�p . A natural choice for the system outputs are the voltage drops at the

terminal nodes, i. e., y.s/ D BT x.s/. Thus the transfer function of (6.45) is the input
impedance:

Z.s/ D y.s/

u.s/
D BT .G C sC/�1B: (6.46)

Modal approximation is a method to reduce (6.45), by preserving its most
dominant eigenmodes. The dominant eigenmodes are a subset of the poles of
Z.s/ (i. e. of the generalized eigenvalues �.�G; C/) and can be computed using
specialized eigenvalue solvers (SADPA [80] or SAMDP [82, 85]). For the complete
discussion on modal approximation and its implementation we refer to [80, 81, 85].
Here, we emphasize that applying modal approximation to reduce (6.45) directly
is unsuitable especially if the underlying RC circuit has many terminals (inputs).
This is because modal approximation does not preserve the structure of B and BT

during reduction (for ease of understanding we denote the input-output structure
loss as non-preservation of terminals) [69]. Modeling the input-output connectivity
of the reduced model would require synthesis via controlled sources at the circuit
terminals, and furthermore would connect all terminals with one-another [69]. In
this chapter we present several alternatives for reducing RC netlists where not only
the terminals are preserved, but also the sparsity of the reduced models.
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Grouping the node voltages so that xP 2 R
p are the voltages measured at the

terminal nodes (ports), and xI 2 R
n are the voltages at the internal nodes, we can

partition (6.45) as follows:

��
GP GT

C

GC GI

�
C s

�
CP CT

C

CC CI

���
xP

xI

�
D
�

BP

0

�
u: (6.47)

Since no current is injected into internal nodes, the non-zero contribution from the
input is BP 2 R

.p�p/. Eliminating xI , system (6.47) is equivalent to:

Œ.GP C sCP /„ ƒ‚ …
YP .s/

� .GC C sCC /T .GI C sCI /�1.GC C sCC /�„ ƒ‚ …
YI .s/

xP D BP u

(6.48)

Y.s/ D YP .s/ � YI .s/ (6.49)

In (6.48) the matrix blocks .GP C sCP / corresponding to the circuit terminals are
isolated. Applying modal approximation on YI .s/ would reduce the system and
preserve the location of the terminals. This would involve for instance computing the
dominant eigenmodes of .�GI ; CI / via a variant of SAMDP (called here frequency
dependent SAMDP, because the input-output matrices .GC C sCC / depend on the
frequency s). We have implemented this approach, but it turns out that a large
number of dominant eigenmodes of .�GI ; CI / would be needed to capture the
DC and offset of the full system Y.s/. Instead, two alternatives are presented that
improve the quality of the approximation: an existing method called PACT (Pole
Analysis via Congruence Transformations) [73] and a novel graph-based reduction
called SparseMA (Sparse Modal Approximation).

6.2.2.1 Existing Method: PACT

In [73] the authors propose to capture the DC and offset of Y.s/ via a congruence
transformation which reveals the first two moments of Y.s/ as follows. Since GI is
symmetric positive definite, the Cholesky factorization LLT D GI exists. Using the
following congruence transformation:

X D
�

I 0
�G�1

I GC L�T

�
; G0 D XT GX D

�
G0

P 0
0 I

�
; C0 D XT CX D

�
C0

P C0

T
C

C0

C C0

I

�
(6.50)

Eqs. (6.48) and (6.49) are rewritten as:

Œ.G0
P C sC0

P /„ ƒ‚ …
Y0

P .s/

� s2C0T
C .I C sC0

I /�1C0
C �„ ƒ‚ …

Y0

I .s/

x0
P D BP u (6.51)

Y0.s/ D Y0
P .s/ � Y0

I .s/; (6.52)
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where:

G0
P D GP � GT

C M; M D G�1
I GC (6.53)

C0
P D CP � NT M � MT CC ; N D CC � CI M (6.54)

C0
C D L�1N; C0

I D L�1CI L�T : (6.55)

In (6.51), the term Y0
P .s/ captures the first two moments of Y0.s/ and is preserved

in the reduced model. The reduction is performed on Y0
I .s/ only. In [73] this is done

via modal approximation as described next. Using the symmetric eigendecomposi-
tion C0

I D U�0
I UT , UT U D I, the system matrices (6.50) are block diagonalized

as follows:

X0 D
�

I 0
0 U

�
; G00 D X0TG0X0 D

�
G0

P 0
0 I

�
D G0 (6.56)

C00 D X0TC0X0 D
�

C0
P C0T

C U
UT C0

C UT C0
I U

�
D
�

C0
P C00T

C

C00
C �0

I

�
(6.57)

Y00.s/ D Y0
P .s/ � s2ŒC00T

C .I C s�0
I /�1C00

C � (6.58)

The reduced model is obtained by selecting only k of the n eigenvalues from �0
I :

Y00
k.s/ D Y0

P .s/ � s2

kX
iD1

rT
i ri

1 C s�0
i

; rT
i D C0

C
TUŒW;1Wk�; �0

i D �0
I Œi;i �: (6.59)

In [73], a selection criterion for �0
i ; i D 1 : : : k is proposed, based on a user-

specified error and a maximum frequency. These eigenmodes are computed in [73]
via the Lanczos algorithm. The criterion proposed in [81, 85] can also be used to
compute the dominant eigenmodes �0

i via SAMDP.
The advantage of the PACT reduction method is the preservation of the first two

moments of Y.s/ in Y0
P .s/. This ensures that the DC and offset of the response is

approximated well in the reduced model. The main costs of such an approach are:
(1) performing a Cholesky factorization of CI (which becomes expensive when n

is very large, (2) solving an eigenvalue problem from a dense C0
I matrix and, most

importantly, (3) the fill-in in the port block matrices G0
P , C0

P and in C0
C . It turns

out that (2) can be solved more efficiently by keeping C0
I as a product of sparse

matrices during computation, and will be addressed elsewhere. Avoiding problems
(1) and (3) however require new strategies to improve sparsity, and are presented
in Sect. 6.2.2.2. The fill-in introduced in G0

P , C0
P becomes especially important for

RC netlists with many terminals [p 
 O.103/]. Compared to the original model
where the port blocks GP and CP were sparse, the dense G0

P , C0
P will yield many

R and C components during synthesis, resulting in a reduced netlist where almost
all the nodes are interconnected. Simulating such netlists might require longer time
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measures than the original circuit simulation, hence sparser reduced models (and
netlists) are desired. Next, we present several ideas for improving the sparsity of
RC reduced models via a combination of tools including: netlist partitioning, graph-
based node reordering strategies, and efficient algorithms for modal approximation.

6.2.2.2 Improved Graph-Based Method: SparseMA

In this section we present an improved model reduction method for RC circuits,
which overcomes the disadvantages of PACT: it requires no matrix factorizations
prior to reduction, performs all numerical computations on sparse matrices, and
most importantly, preserves the sparsity of the matrix blocks corresponding to the
external nodes. The method is called sparse modal approximation (SparseMA) and
uses tools from graph theory to identify a partitioning and reordering of nodes
that, when applied prior to the model reduction step, can significantly improve the
sparsity of the reduced model.

The idea is to reorder the nodes in the RC netlist so that some of the internal
nodes (m) are promoted as external nodes, together with the circuit terminals (p).
We will denote as selected nodes the collection of p C m terminals and promoted
internal nodes. The n�m internal nodes are the remaining nodes. Supposing one has
already identified such a partitioning of nodes, the following structure is revealed,
where without loss of generality we assume the selected nodes appear in the border
of the G and C matrices:��

GR GK

GT
K GS

�
C s

�
CR CK

CT
K CS

���
xR

xS

�
D
�

0
BS

�
u: (6.60)

Note that in BS the rows corresponding to the promoted m internal nodes are still
zero. Similarly to (6.48), the admittance is expressed as:

Œ.GS C sCS /„ ƒ‚ …
YS .s/

� .GK C sCK/T .GR C sCR/�1.GK C sCK/�„ ƒ‚ …
YR.s/

xS D BS u

(6.61)

Y.s/ D YS .s/ � YR.s/: (6.62)

Recall that reducing YI .s/ directly from the simple partitioning (6.47) and (6.48) is
not a method of choice, because by preserving YP .s/ only, the DC and offset of Y.s/

would not be accurately matched. Using instead the improved partitioning (6.60)
and (6.61), one aims at better approximating the DC and offset of Y.s/ by preserving
YS.s/ (which now encaptures not only the external nodes but also a subset of
the internal nodes). Finding the partitioning (6.60) only requires a reordering of
nodes, thus no Cholesky factorization or fill-introducing congruence transformation
is needed prior to the MOR step. One can reduce YR.s/ directly with modal
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approximation (via frequency dependent SAMDP), and preserve the sparsity of the
extended port blocks from YS .s/.

By interpolating k dominant eigenmodes from the symmetric eigendecoposition
Œ�R; V� D eig.�GR; CR/, the reduced model is obtained:

Yk.s/ D YS .s/ �
kX

iD1

qT
i qi

1 C s�i

; qT
i D .GK C sCK/T VŒW;1Wk�; �i D �RŒi;i �:

(6.63)

In matrix terms, the reduced model is easily constructed by re-connecting the
preserved selected matrix blocks to the reduced blocks:

 " OGR
OGK

OGT
K GS

#
C s

" OCR
OCK

OCT
K CS

#!�OxR

xS

�
D
�

0
BS

�
u; (6.64)

where:

OGR D VT
ŒW;1Wk�GRVŒW;1Wk� ! diagonal; OGK D VT

ŒW;1Wk�GK; GS ! sparse

(6.65)

OCR D VT
ŒW;1Wk�CRVŒW;1Wk� ! diagonal; OCK D VT

ŒW;1Wk�CK; CS ! sparse:

(6.66)

The remaining problem is how to determine the selected nodes and the partition-
ing (6.60). Inspired from the results obtained for R networks, we propose to first find
the permutation P which identifies the strongly connected components (sccs) of G.
Both G and C are reordered according to P, revealing the structure (6.60). With this
permutation, the circuit terminals are redistributed according to the sccs of G, and
several clusters of nodes can be identified: a large component consisting of internal
nodes and very few (or no) terminals, and clusters formed each by internal nodes
plus some terminals. We propose to leave all clusters consisting of internal nodes
and terminals intact, and denote these nodes as the selected nodes mentioned above.
If there are still terminals outside these clusters, they are added to these selected
nodes and complete the blocks GS , CS . The remaining cluster of internal nodes
forms GR and CR. The model reduction step is performed on GR and CR (and
implicitly on GK and CK ). We also note that matrices GK and Ck resulting from
this partitioning usually have many zero columns, thus OGK and OCK will preserve
these zero columns.

The procedure is illustrated in Sect. 6.2.3 through a medium-sized example.
Larger netlists can be treated via a similar reordering and partitioning strategy,
possibly in a recursive manner (for instance when after an initial reordering the
number of selected nodes is too large, the same partitioning strategy could be re-
applied to GS and CS and further reduce these blocks). Certainly, other reorderings



390 D. Harutyunyan et al.

of G and C could be exploited, for instance according to a permutation which
identifies the sccs of C instead of G. The choice for either using G or C to determine
the permutation P is made according to the structure of the underlying system and
may depend on the application. We also emphasize that the reduced models for
both PACT and SparseMA are passive [74] and therefore also stable. Passivity
is ensured by the fact that all transformations applied throughout are congruence
transformations on symmetric positive definite matrices, thus the reduced system
matrices remain symmetric positive definite.

6.2.3 Numerical Results

The graph-based reduction procedures were applied on several networks resulting
from parasitic extraction. We present results for both R and RC networks.

6.2.3.1 R Network Reduction

Table 6.2 shows results for three resistor networks of realistic interconnect layouts.
The number of nodes is reduced by a factor > 10 and the number of resistors by a
factor > 3. As a result, the computing time for calculating path resistances in the
original network (including nonlinear elements such as diodes) is 10 times smaller.

6.2.3.2 RC Network Reduction

We reduce an RC netlist with n D 3;231 internal nodes and p D 22 terminals
(external nodes). The structure of the original G and C matrices is shown in Figs. 6.7
and 6.8, where the p D 22 terminals correspond to their first 22 rows and columns.

The permutation revealing the strongly connected components of G reorders the
matrices as shown in Figs. 6.9 and 6.10. The reordering is especially visible in the
“arrow-form” capacitance matrix. There, the p D 22 terminal nodes together with

Table 6.2 Results of reduction algorithm

Network I Network II Network III

Original Reduced Original Reduced Original Reduced

#external nodes 274 3,399 1,978

#internal nodes 5,558 516 99,112 6,012 101,571 1,902

#resistors 8,997 1,505 161,183 62,685 164,213 39,011

CPU time 10 s 1 s 67 h 7 h 20 h 2 h

Speed up 10� 9.5� 10�
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Fig. 6.7 Original G matrix
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m D 40 internal nodes are promoted to the border, revealing the 62 selected nodes
that will be preserved in the reduced model (i.e. the GS and CS blocks in (6.60)).
The first n � m D 3;191 nodes are the remaining internal nodes and form the GR

and CR blocks in (6.60). The GK block has only 1 non-zero column, and also in CK

many zero columns can be identified.
The reduced SparseMA model is obtained according to (6.63) and (6.64) and

is shown in Figs. 6.11 and 6.12. The internal blocks GR and CR were reduced
from dimension 3;191 to OGR and OCR of dimension k D 7, by interpolating the
7 most dominant eigenmodes of Œ�R; V� D eig.�GR; CR/. Note that OGR and OCR

are diagonal. The selected 62 nodes corresponding to the GS and CS blocks are
preserved, evidently preserving sparsity. The only fill-in introduced by the proposed
reduction procedure is in the non-zero columns of OGK and OCK . It is worth noticing
that OGK only has 1 non-zero column, thus remains sparse.

The sparsity structure of the PACT reduced model (6.59) is shown in Figs. 6.13
and 6.14. The blocks corresponding to the first 22 nodes (the preserved external
nodes) are full, as are the capacitive connection blocks to the reduced internal part.
Only the reduced internal blocks remain sparse (diagonal).

Aside from sparsity preservation, one is interested in the quality of the approx-
imation for the reduced model. In Fig. 6.15, we show that the SparseMA model
accurately matches the original response for a wide frequency range (1 Hz !
10 THz). The Pstar [78] simulations of the synthesized model are identical to
the Matlab simulations (the synthesized model was obtained via the RLCSYN
unstamping procedure [71, 87]). In Fig. 6.16, the relative errors between the
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Fig. 6.10 Permuted C according to scc(G)
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Fig. 6.11 Reduced G matrix with Sparse MA
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Fig. 6.12 Reduced C matrix
with Sparse MA
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Fig. 6.13 Reduced G matrix
with PACT
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Fig. 6.14 Reduced C matrix with PACT
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Fig. 6.15 AC simulation 1: original, reduced (Sparse MA) and synthesized model

original model and three reduced models are presented: SparseMA, PACT and the
commercial software Jivaro [64]. The SparseMA model is the most accurate for the
entire frequency range.
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Fig. 6.17 AC simulation 2: original, reduced (Sparse MA) and reduced (Jivaro)

Figure 6.17 shows a different AC circuit simulation, where the SparseMA model
performs comparably to the reduced model obtained with the commercial software
Jivaro [64]. Finally, the transient simulation in Fig. 6.18 confirms that the SparseMA
model is both accurate and stable.

Table 6.3 shows the reduction results for the RC network. For the 3 reduced
models: SparseMA, PACT and Jivaro we assess the effect of the reduction by means
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Fig. 6.18 Transient simulation 1: all external nodes grounded and voltage measured at node 2.
Original and reduced (Sparse MA – synthesized)

Table 6.3 Results with SparseMA reduction on RC netlist

Original Red. SparseMA Red. PACT Red. Jivaro

#external nodes 22

#internal nodes 3,231 47 7 12

#unknowns 3,253 69 29 34

#resistors 7,944 78 68 28

#capacitors 3,466 383 414 97

#elements

#int: nodes
3.53 9.8 68.8 10.4

#elements

#unknowns
3.5 6.7 16.6 3.67

CPU time 6.8 s 0.1 s 0.06 0.02 s

Speed up 68� 113� 340�

of several factors. With all methods, both the number of nodes and the number
of circuit elements was reduced significantly, resulting in at least 68x speed-up in
AC simulation time. It should be noted that the SparseMA model and the Jivaro
model have lower ratios of #elements

#unknowns and #elements
#int:nodes than the PACT model. Even

though the Jivaro and the PACT model are faster to simulate for this network, the
SparseMA model gives a good trade-off between approximation quality, sparsity
preservation and CPU speed-up. Recall that the matrix blocks corresponding to the
circuit terminals become dense with PACT, but remain sparse with SparseMA. As
for circuits with more terminals 
 O.103/ the corresponding matrix blocks become
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larger, preserving their sparsity via SparseMA is an additional advantage. Hence,
the improvement on simulation time could be greater with SparseMA when applied
on larger models with many terminals.

6.2.4 Concluding Remarks

New approaches were presented for reducing R and RC circuits with multi-
terminals, using tools from graph theory. It was shown how netlist partitioning
and node reordering strategies can be combined with existing model reduction
techniques, to improve the sparsity of the reduced RC models and implicitly their
simulation time. The proposed sparsity preserving method, SparseMA, performs
comparably to the commercial tool Jivaro. Future work will investigate how similar
strategies can be applied to RC models with many more terminals [
 O.103/] and
to RLCk netlists.

6.3 Simulation of Mutually Coupled Oscillators Using
Nonlinear Phase Macromodels and Model Order
Reduction Techniques

The design of modern RF (radio frequency) integrated circuits becomes increasingly
more complicated due to the fact that more functionality needs to be integrated on
a smaller physical area.5 In the design process floor planning, i.e., determining the
locations for the functional blocks, is one of the most challenging tasks. Modern
RF chips for mobile devices, for instance, typically have an FM radio, Blue-
tooth, and GPS on one chip. These functionalities are implemented with Voltage
Controlled Oscillators (VCOs), that are designed to oscillate at certain different
frequencies. In the ideal case, the oscillators operate independently, i.e., they are
not perturbed by each other or any signal other than their input signal. Practically
speaking, however, the oscillators are influenced by unintended (parasitic) signals
coming from other blocks (such as Power Amplifiers) or from other oscillators,
via for instance (unintended) inductive coupling through the substrate. A possibly
undesired consequence of the perturbation is that the oscillators lock to a frequency
different than designed for, or show pulling, in which case the oscillators are
perturbed from their free running orbit without locking.

The locking effect was first observed by the Dutch scientist Christian Huygens in
the seventeenth century. He observed that pendulums of two nearby clocks hanging
on the same wall after some time moved in unison [120] (in other words they

5Section 6.3 has been written by Davit Harutyunyan, Joost Rommes, E. Jan W. ter Maten and
Wil H.A. Schilders.
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locked to the same frequency). Similar effects occur also for electrical oscillators.
When an oscillator is locked to a different frequency, it physically means that the
frequency of the oscillator is changed and as a result the oscillator operates at the
new frequency. In this case in the spectrum of the oscillator we will observe a single
peak corresponding to the new frequency of the oscillator. Contrary to the locking
case, frequency pulling occurs when the interfering frequency source is not strong
enough to cause frequency locking (e.g. weak substrate coupling). In this case in
the spectrum of the pulled oscillator we will observe several sidebands around the
carrier frequency of the oscillator. In Sect. 6.3.9 we will discuss several practical
examples of locking and pulling effects.

Oscillators appear in many physical systems and interaction between oscillators
has been of interest in many applications. Our main motivation comes from the
design of RF systems, where oscillators play an important role [95, 100, 107, 120]
in, for instance, high-frequency Phase Locked Loops (PLLs). Oscillators are also
used in the modeling of circadian rhythm mechanisms, one of the most fundamental
physiological processes [91]. Another application area is the simulation of large-
scale biochemical processes [114].

Although the use of oscillators is widely spread over several disciplines, their
intrinsic nonlinear behavior is similar, and, moreover, the need for fast and accurate
simulation of their dynamics is universal. These dynamics include changes in the
frequency spectrum of the oscillator due to small noise signals (an effect known as
jitter [100]), which may lead to pulling or locking of the oscillator to a different
frequency and may cause the oscillator to malfunction. The main difficulty in
simulating these effects is that both phase and amplitude dynamics are strongly
nonlinear and spread over separated time scales [113]. Hence, accurate simulation
requires very small time steps during time integration, resulting in unacceptable
simulation times that block the design flow. Even if computationally feasible,
transient simulation only gives limited understanding of the causes and mechanisms
of the pulling and locking effects.

To some extent one can describe the relation between the locking range of an
oscillator and the amplitude of the injected signal (these terms will be explained in
more detail in Sect. 6.3.1). Adler [90] shows that this relation is linear, but it is now
well known that this is only the case for small injection levels and that the modeling
fails for higher injection levels [111]. Also other linearized modeling techniques
[120] suffer, despite their simplicity, from the fact that they cannot model nonlinear
effects such as injection locking [111, 127].

In this section we use the nonlinear phase macromodel introduced in [100] and
further developed and analyzed in [104–106, 111, 113, 115, 116, 127]. Contrary to
linear macromodels, the nonlinear phase macromodel is able to capture nonlinear
effects such as injection locking. Moreover, since the macromodel replaces the
original oscillator system by a single scalar equation, simulation times are decreased
while the nonlinear oscillator effects can still be studied without loss of accuracy.
One of the contributions of this paper is that we show how such macromodels can be
used in industrial practice to predict the behavior of inductively coupled oscillators.
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Returning to our motivation, during floor planning, it is of crucial importance
that the blocks are located in such a way that the effects of any perturbing signals
are minimized. A practical difficulty here is that transient simulation of the full
system is very expensive and usually unfeasible during the early design stages. One
way to get insight in the effects of inductive coupling and injected perturbation
signals is to apply the phase shift analysis [100]. In this section we will explain
how this technique can be used to estimate the effects for perturbed individual
and coupled oscillators, and how this can be of help during floor planning. We
will consider perturbations caused by oscillators and by other components such as
balanced/unbalanced transformers (baluns).

In some applications to reduce clockskew (clocksignals becoming out of phase),
for instance, oscillators can be coupled via transmission lines [102]. Since accurate
models for transmission lines can be large, this may lead to increased simulation
times. We show how model order reduction techniques [94, 96, 97, 124] can be used
to decrease simulation times without unacceptable loss of accuracy.

The section is organized as follows. In Sect. 6.3.1 we summarize the phase noise
theory. A practical oscillator model and an example application are described in
Sect. 6.3.2. Inductively coupled oscillators are discussed in detail in Sect. 6.3.3. In
Sect. 6.3.4 we give an overview of existing methods to model injection locking of
individual and resistively/capacitively coupled oscillators. In Sect. 6.3.5 we consider
small parameter variations for mutually coupled oscillators. In Sects. 6.3.6 and 6.3.7
we show how the phase noise theory can be used to analyze oscillator-balun
coupling and oscillator-transmission line coupling, respectively. In Sect. 6.3.8 we
give a brief introduction to model order reduction and present a Matlab script
used in our implementations. Numerical results are presented in Sect. 6.3.9 and the
conclusions are drawn in Sect. 6.3.10.

6.3.1 Phase Noise Analysis of Oscillator

A general free-running oscillator can be expressed as an autonomous system of
differential (algebraic) equations:

dq.x/

dt
C j.x/ D 0; (6.67a)

x.0/ D x.T /; (6.67b)

where x.t/ 2 R
n are the state variables, T is the period of the free running oscillator,

which is in general unknown, q; j W R
n ! R

n are (nonlinear) functions describing
the oscillator’s behavior and n is the system size. The solution of (6.67) is called
Periodic Steady State (PSS) and is denoted by xpss . Although finding the PSS
solution can be an challenging task in itself, we will not discuss this in the present
paper and refer the interested reader to, for example, [105, 108–110, 122, 123, 126].
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A general oscillator under perturbation can be expressed as a system of differen-
tial equations

dq.x/

dt
C j.x/ D b.t/; (6.68)

where b.t/ 2 R
n are perturbations to the free running oscillator. For small perturba-

tions b.t/ it can be shown [100] that the solution of (6.68) can be approximated by

xp.t/ D xpss.t C ˛.t//Cy.t/; (6.69)

where y.t/ is the orbital deviation and ˛.t/ 2 R is the phase shift, which satisfies
the following scalar nonlinear differential equation:

P̨ .t/ D VT .t C ˛.t// � b.t/; (6.70a)

˛.0/ D 0; (6.70b)

where V.t/ 2 R
n is called Perturbation Projection Vector (PPV) of (6.68). It is

a special projection vector of the perturbations and is computed based on Floquet
theory [99, 100, 115]. The PPV is a periodic function with the same period as the
oscillator and can efficiently be computed directly from the PPS solution, see for
example [101]. Using this simple and numerically cheap method one can do many
kinds of analysis for oscillators, e.g. injection locking, pulling, a priori estimate of
the locking range [100, 111].

For small perturbations the orbital deviation y.t/ can be ignored [100] and the
response of the perturbed oscillator is computed by

xp.t/ D xpss.t C ˛.t//: (6.71)

6.3.2 LC Oscillator

For many applications oscillators can be modeled as an LC tank with a nonlinear
resistor as shown in Fig. 6.19. This circuit is governed by the following differential
equations for the unknowns .v; i/:

C
dv.t/

dt
C v.t/

R
C i.t/ C S tanh.

Gn

S
v.t// D b.t/; (6.72a)

L
di.t/

dt
� v.t/ D 0; (6.72b)
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Fig. 6.19 Voltage controlled
oscillator: current of the
nonlinear resistor is given by
f .v/ D S tanh.

Gn

S
v.t//

v

C L

b(t)

R

f(
v)

where C , L and R are the capacitance, inductance and resistance, respectively. The
nodal voltage is denoted by v and the branch current of the inductor is denoted by i .
The voltage controlled nonlinear resistor is defined by S and Gn parameters, where
S has influence on the oscillation amplitude and Gn is the gain [111].

A lot of work [111, 120] has been done for the simulation of this type of
oscillators. Here we will give an example that can be of practical use for designers.
During the design process, early insight in the behavior of system components is
of crucial importance. In particular, for perturbed oscillators it is very convenient to
have a direct relationship between the injection amplitude and the side band level.

For the given RLC circuit with the following parameters L D 930 � 10�12 H,
C D 1:145 � 10�12 F, R D 1;000 ˝ , S D 1=R, Gn D �1:1=R and injected
signal b.t/ D Ainj sin.2
f /, we plot the side band level of the voltage response
versus the amplitude Ainj of the injected signal for different offset frequencies,
see Fig. 6.20. The results in Fig. 6.20 can be seen as a simplified representation of
Arnol’d tongues [98], that is helpful in engineering practice. We see, for instance,
that the oscillator locks to a perturbation signal with an offset of 10 MHz if the
corresponding amplitude is larger than 
 10�4 A (when the signal is locked the
sideband level becomes 0 dB). This information is useful when designing the floor
plan of a chip, since it may put additional requirements on the placement (and
shielding) of components that generate, or are sensitive to, perturbing signals.

As an example, consider the floor plan in Fig. 6.21. The analysis described above
and in Fig. 6.20 first helped to identify and quantify the unintended pulling and
locking effects due to the coupling of the inductors (note that the potential causes
(inductors) of pulling and locking effects first have to be identified; in practice,
designers usually have an idea of potential coupling issues, for instance when there
are multiple oscillators in a design). The outcome of this analysis indicated that
there were unintended pulling effects in the original floorplan and hence some
components were relocated (and shielded) to reduce unintended pulling effects.
Finally, the same macromodels, but with different coupling factors due to the
relocation of components, were used to verify the improved floorplan.

Although the LC tank model is relatively simple, it can be of high value
especially in the early stages of the design process (schematic level), since it can
be used to estimate the effects of perturbation and (unintended) coupling on the
behavior of oscillators. As explained before, this may be of help during floor
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Fig. 6.20 Side band level of the voltage response versus the injected current amplitude for
different offset frequencies

Fig. 6.21 Floor plan with relocation option that was considered after nonlinear phase noise
analysis showed an intolerable pulling due to unintended coupling. Additionally, shielding was
used to limit coupling effects even further

planning. In later stages, one typically validates the design via layout simulations,
which can be much more complex due to the inclusion of parasitic elements. In
general one has to deal with larger dynamical systems when parasitics are included,
but the phase noise theory still applies. Therefore, in this paper we do not consider
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Fig. 6.22 Two inductively coupled LC oscillators

extracted parasitics. However, the values for L, C , R and coupling factors are
typically based on measurement data and layout simulations of real designs.

6.3.3 Mutual Inductive Coupling

Next we consider the two mutually coupled LC oscillators shown in Fig. 6.22. The
inductive coupling between these two oscillators can be modeled as

L1

di1.t/

dt
C M

di2.t/

dt
D v1.t/; (6.73a)

L2

di2.t/

dt
C M

di1.t/

dt
D v2.t/; (6.73b)

where M D k
p

L1L2 is the mutual inductance and jkj < 1 is the coupling factor.
This makes the matrix �

L1 M

M L2

�

positive definite, which ensures that the problem is well posed. In this section all
the parameters with a subindex refer to the parameters of the oscillator with the
same subindex. If we combine the mathematical model (6.72) of each oscillator
with (6.73), then the two inductively coupled oscillators can be described by the
following differential equations

C1

dv1.t/

dt
C v1.t/

R1

C i1.t/ C S tanh.
Gn

S
v1.t// D 0; (6.74a)

L1

di1.t/

dt
� v1.t/ D �M

di2.t/

dt
; (6.74b)
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C2

dv2.t/

dt
C v2.t/

R2

C i2.t/ C S tanh.
Gn

S
v2.t// D 0; (6.74c)

L2

di2.t/

dt
� v2.t/ D �M

di1.t/

dt
: (6.74d)

For small values of the coupling factor k the right-hand side of (6.74b) and (6.74d)
can be considered as a small perturbation to the corresponding oscillator and we can
apply the phase shift theory described in Sect. 6.3.1. Then we obtain the following
simple nonlinear equations for the phase shift of each oscillator:

P̨1.t/ D VT
1 .t C ˛1.t// �

0
@ 0

�M
di2.t/

dt

1
A ; (6.75a)

P̨2.t/ D VT
2 .t C ˛2.t// �

0
@ 0

�M
di1.t/

dt

1
A ; (6.75b)

where the currents and voltages are evaluated by using (6.71):

Œv1.t/; i1.t/�
T D x1

pss.t C ˛1.t//; (6.75c)

Œv2.t/; i2.t/�
T D x2

pss.t C ˛2.t//: (6.75d)

Small parameter variations have also been studied in the literature by Volterra
analysis, see e.g. [92, 93].

6.3.3.1 Time Discretization

The system (6.75) is solved by using implicit backward Euler for the time
discretization and the Newton method is applied for the solution of the resulting
two dimensional nonlinear equations (6.76a) and (6.76b), i.e.

˛mC1
1 D ˛m

1 C �VT
1 .tmC1 C ˛mC1

1 /� (6.76a)0
@ 0

�M
i2.t

mC1/ � i2.t
m/

�

1
A ;

˛mC1
2 D ˛m

2 C �VT
2 .tmC1 C ˛mC1

2 /� (6.76b)0
@ 0

�M
i1.t

mC1/ � i1.t
m/

�

1
A ;

Œv1.tmC1/; i1.t
mC1/�T D x1

pss.t
mC1 C ˛mC1

1 /; (6.76c)
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Œv2.tmC1/; i2.t
mC1/�T D x2

pss.t
mC1 C ˛mC1

2 /; (6.76d)

˛1
1 D 0; ˛1

2 D 0; m D 1; : : : ;

where � D tmC1 � tm denotes the time step. For the Newton iterations in (6.76a)
and (6.76b) we take .˛m

1 ; ˛m
2 / as initial guess on the time level .mC1/. This provides

very fast convergence (in our applications within around four Newton iterations).
See [123] and references therein for more details on time integration of electric
circuits.

6.3.4 Resistive and Capacitive Coupling

For completeness in this section we describe how the phase noise theory applies to
two oscillators coupled by a resistor or a capacitor.

6.3.4.1 Resistive Coupling

Resistive coupling is modeled by connecting two oscillators by a single resistor,
see Fig. 6.23. The current iR0 flowing through the resistor R0 satisfies the following
relation

iR0 D v1 � v2

R0

; (6.77)

where R0 is the coupling resistance. Then the phase macromodel is given by

P̨1.t/ D VT
1 .t C ˛1.t// �

�
.v1 � v2/=R0

0

�
; (6.78a)
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Fig. 6.23 Two resistively coupled LC oscillators
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Fig. 6.24 Two capacitively coupled LC oscillators

P̨2.t/ D VT
2 .t C ˛2.t// �

��.v1 � v2/=R0

0

�
; (6.78b)

where the voltages are updated by using (6.71). More details on resistively coupled
oscillators can be found in [113].

6.3.4.2 Capacitive Coupling

When two oscillators are coupled via a single capacitor with a capacitance C0 (see
Fig. 6.24), then the current iC0 through the capacitor C0 satisfies

iC0 D C0

d.v1 � v2/

dt
: (6.79)

In this case the phase macromodel is given by

P̨1.t/ D VT
1 .t C ˛1.t// �

0
@C0

d.v1 � v2/

dt
0

1
A ; (6.80a)

P̨2.t/ D VT
2 .t C ˛2.t// �

0
@�C0

d.v1 � v2/

dt
0

1
A ; (6.80b)

where the voltages are updated by using (6.71).
Time discretization of (6.78) and (6.80) is done according to (6.76).

6.3.5 Small Parameter Variation Model for Oscillators

For many applications performing simulations with nominal design parameters
is no longer sufficient and it is necessary to do simulations around the nominal
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parameters. In practice designers use Monte-Carlo type simulation techniques to
get insight about the device performance for small parameter variations. However
these methods can be very time consuming and not applicable for large problems.
For analyzing small parameter variations one can use polynomial chaos approach
described in [119]. But in this paper we apply the technique described in [128] to
mutually coupled oscillators. Here we briefly sketch the ideas of the method and for
details we refer to [128].

Consider an oscillator under a perturbation b.t/ described by a set of ODE’s:

dx
dt

C f .x; p/ D b.t/; (6.81)

where f describes the nonlinearity in the oscillator and it is a function of the state
variables x and the parameter p. Let us consider a parameter variation

p D p0 C p; (6.82)

where p0 is the nominal parameter and p is the parameter deviation from p0. Then
for small parameter deviations the phase shift equation for (6.81) reads

P̨ .t/ D VT .t C ˛.t// � .b.t/ � FP .t C ˛.t//p/; (6.83a)

˛.0/ D 0; (6.83b)

where V.t/ is the perturbation projection vector of the oscillator with nominal
parameters and

FP .t C ˛.t// D @f

@p

ˇ̌̌
xpss.tC˛.t//;p0

; (6.84)

where xpss is the PSS of (6.81) with nominal parameters.
In Sect. 6.3.9.1 we show numerical experiments of two inductively coupled

oscillators using small parameter variations.

6.3.6 Oscillator Coupling with Balun

In this section we analyze inductive coupling effects between an oscillator and a
balun. A balun is an electrical transformer that can transform balanced signals to
unbalanced signals and vice versa, and they are typically used to change impedance
(applications in (RF) radio). The (unintended) coupling between an oscillator and
a balun typically occurs on chips that integrate several oscillators for, for instance,
FM radio, Bluethooth and GPS, and hence it is important to understand possible
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Fig. 6.25 Oscillator coupled with a balun

coupling effects during the design. In Fig. 6.25 a schematic view is given of an
oscillator which is coupled with a balun via mutual inductors.

The following mathematical model is used for oscillator and balun coupling (see
Fig. 6.25):

C1

dv1.t/

dt
C v1.t/

R1

C i1.t/ C S tanh.
Gn

S
v1.t// D 0; (6.85a)

L1

di1.t/

dt
C M12

di2.t/

dt
C M13

di3.t/

dt
� v1.t/ D 0; (6.85b)

C2

dv2.t/

dt
C v2.t/

R2

C i2.t/ C I.t/ D 0; (6.85c)

L2

di2.t/

dt
C M12

di1.t/

dt
C M23

di3.t/

dt
� v2.t/ D 0; (6.85d)

C3

dv3.t/

dt
C v3.t/

R3

C i3.t/ D 0; (6.85e)

L3

di3.t/

dt
C M13

di1.t/

dt
C M23

di2.t/

dt
� v3.t/ D 0; (6.85f)

where Mij D kij
p

Li Lj ; i; j D 1; 2; 3; i < j is the mutual inductance and kij

is the coupling factor. The parameters of the nonlinear resistor are S D 1=R1 and
Gn D �1:1=R1 and the current injection in the primary balun is denoted by I.t/.

For small coupling factors we can consider M12
di2.t/

dt
C M13

di3.t/

dt
in (6.85b) as a

small perturbation to the oscillator. Then similar to (6.75), we can apply the phase
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shift macromodel to (6.85a)–(6.85b). The reduced model corresponding to (6.85a)–
(6.85b) is

d˛.t/

dt
D VT .t C ˛.t// �

0
@ 0

�M12

di2.t/

dt
� M13

di3.t/

dt

1
A : (6.86)

The balun is described by a linear circuit (6.85c)–(6.85f) which can be written in a
more compact form:

E
dx.t/

dt
C Ax.t/ C B

di1.t/

dt
C C D 0; (6.87)

where

E D

0
BB@

C2 0 0 0

0 L2 0 M23

0 0 C3 0

0 M23 0 L3

1
CCA ; (6.88a)

A D

0
BB@

1=R2 1 0 0

�1 0 0 0

0 0 1=R3 0

0 0 �1 0

1
CCA ; (6.88b)

BT D �
0 M12 0 M13

�
; (6.88c)

C T D �
I.t/ 0 0 0

�
; (6.88d)

xT D �
v2.t/ i2.t/ v3.t/ i3.t/

�
: (6.88e)

With these notations (6.86) and (6.87) can be written in the following form

d˛.t/

dt
D VT .t C ˛.t// �

�
0

�BT dx.t/

dt

�
; (6.89)

E
dx.t/

dt
C Ax.t/ C B

di1.t/

dt
C C D 0; (6.90)

where i1.t/ is computed by using (6.71). This system can be solved by using a finite
difference method.
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6.3.7 Oscillator Coupling to a Transmission Line

In some applications oscillators are coupled via transmission lines. By coupling
oscillators via transmission lines, for instance, one can reduce the clock skew in
clock distribution networks [102]. Accurate models for transmission lines may
contain up to thousands or millions of RLC components [129]. Furthermore, the
oscillators or the components that perturb (couple to) the oscillators can consists of
many RLC components, for instance when ones takes into account parasitic effects.
Since simulation times usually increase with the number of elements, one would like
to limit the number of (parasitic) components as much as possible, without losing
accuracy.

The schematic view of an oscillator coupled to a transmission line is given
in Fig. 6.26. Using phase macromodel for oscillator and by applying Kirchhoff’s
current law to the transmission line circuit, we obtain the following set of differential
equations:

d˛.t/

dt
D VT .t C ˛.t// �

0
@ y.t/ � v.t/

R1

0

1
A (6.91a)

E
dx.t/

dt
D Ax.t/ C Bu.t/; (6.91b)

y.t/ D CT x; (6.91c)

where

E D diag.C1; C2; : : : ; Cn/; A D tridiag.
1

Ri

; � 1

Ri

� 1

RiC1

;
1

RiC1

/; (6.92a)

B D

0
BBB@

1
R1

0

0 0
:::

:::

0 1

1
CCCA ; x D

0
BBB@

v1.t/

v2.t/
:::

vn.t/

1
CCCA ; u.t/ D

�
v.t/

I.t/

�
; C D

0
BBB@

1

0
:::

0

1
CCCA : (6.92b)
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Fig. 6.26 Oscillator coupled to a transmission line
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In a similar way the phase macromodel of two oscillators coupled via a
transmission line, see Fig. 6.27, is given by the following equations:

d˛1.t/

dt
D VT

1 .t C ˛1.t// �
0
@ v1.t/ � v.t/

R1

0

1
A (6.93a)

E
dx.t/

dt
D Ax.t/ C Bu.t/; (6.93b)

d˛2.t/

dt
D VT

2 .t C ˛2.t// �
0
@ vn.t/ � v0.t/

RnC1

0

1
A ; (6.93c)

where ˛1.t/ and ˛2.t/ (V1 and V2) are phase shifts (PPV’s) of the corresponding
oscillator. The matrices E , A and x are given by (6.92) and

B D

0
BBBB@

1
R1

0

0 0
:::

:::

0 1
RnC1

1
CCCCA ; u.t/ D

�
v.t/

v0.t/

�
: (6.94)

6.3.8 Model Order Reduction

Model order reduction (MOR) techniques [94, 96, 97, 124] can be used to reduce
the number of elements significantly. Here we show how model order reduction can
be used for the analysis of oscillator perturbation effects as well. Since the main
focus is to show how MOR techniques can be used (and not which technique is the
most suitable), we limit the discussion here to Balanced Truncation [118]. For other
methods, see, e.g., [94, 96, 97, 124].
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Given a dynamical system .A; B; C / (assume E D I ), balanced truncation [118]
consists of first computing a balancing transformation V 2 R

n�n. The balanced
system .V T AV; V T B; V T C / has the nice property that the Hankel Singular Values6

are easily available. A reduced order model can be constructed by selecting the
columns of V that correspond to the k < n largest Hankel Singular Values. With
Vk 2 R

n�k having as columns these k columns, the reduced order model (of order
k) becomes .V A

k Vk; V T
k B; V T

k C /. If E ¤ I is nonsingular, balanced truncation
can be applied to .E�1A; E�1B; C /. For more details on balanced truncation, see
[96, 97, 118, 124].

In this section we apply model order reduction to linear circuits that are coupled
to oscillators, and the relevant equations for each problem describing linear circuits
have the form of (6.89b)–(6.89c). For each problem the corresponding matrices A,
E , B , and C can be identified readily, see (6.88), (6.92), (6.94) and note C � C. We
use Matlab [117] implementation for balanced truncation to obtain reduced order
models:

sys = ss( -E\A, -E\B, C’, 0 ) ;
[hsv, baldata] = hsvd(sys); % Hankel singular values
mor_dim = nnz((hsv>1e-10)); % choose largest singular
% values where mor_dim is the dimension
% of the reduced system
rsys= balred(sys,mor_dim,’Elimination’,’Truncate’,...
’Balancing’, baldata) ; %truncate

Note that we can apply balanced truncation because E is nonsingular. It is well
known that in many cases in circuit simulation the system is a descriptor system and
hence E is singular. Although generalizations of balanced truncation to descriptor
systems exist [124, 125], other MOR techniques such as Krylov subspace methods
and modal approximation might be more appropriate. We refer the reader to [94, 96,
97, 124] for a good introduction to such techniques and MOR in general.

6.3.9 Numerical Experiments

It is known that a perturbed oscillator either locks to the injected signal or is pulled,
in which case side band frequencies all fall on one side of the injected signal,
see, e.g., [111]. We will see that contrary to the single oscillator case, where side
band frequencies all fall on one side of the injected signal, for (weakly) coupled
oscillators a double-sided spectrum is formed.

In Sects. 6.3.9.1–6.3.9.3 we consider two LC oscillators with different kinds
of coupling and injection. The inductance and resistance in both oscillators are

6Similar to singular values of matrices, the Hankel singular values and corresponding vectors
can be used to identify the dominant subspaces of the system’s statespace: the larger the Hankel
singular value, the more dominant.
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L1 D L2 D 0:64 nH and R1 D R2 D 50 ˝ , respectively. The first oscillator
is designed to have a free running frequency f1 D 4:8 GHz with capacitance
C1 D 1=.4L1


2f 2
1 / D 1:7178 pF. Then the inductor current in the first oscillator

is A1 D 0:0303 A and the capacitor voltage is V1 D 0:5844 V. In a similar way
the second oscillator is designed to have a free running frequency f2 D 4:6 GHz
with the inductor current A2 D 0:0316 A and the capacitor voltage V2 D 0:5844 V.
For both oscillators we choose Si D 1=Ri , Gn D �1:1=Ri with i D 1; 2. In
Sect. 6.3.9.4 we describe experiments for an oscillator coupled to a balun.

The values for L, C , R and (mutual) coupling factors are based on measurement
data and layout simulations of real designs.

In all the numerical experiments the simulations are run until Tfinal D 6 �
10�7 s with the fixed time step � D 10�11. Simulation results with the phase
shift macromodel are compared with simulations of the full circuit using the
CHORAL[103, 121] one-step time integration algorithm, hereafter referred to as
full simulation. All experiments have been carried out in Matlab 7.3. We would like
to remark that in all experiments simulations with the macromodels were typically
ten times faster than the full circuit simulations.

In all experiments, for a given oscillator or balun we use the response of the
nodal voltage to plot the spectrum (spectrum composed of discrete harmonics) of
the signal.

6.3.9.1 Inductively Coupled Oscillators

Numerical simulation results of two inductively coupled oscillators, see Fig. 6.22,
for different coupling factors k are shown in Fig. 6.28, where the frequency is plotted
versus the Power Spectral Density (PSD7). In Fig. 6.28 we present results for the
first oscillator. Similar results are obtained for the second oscillator around its own
carrier frequency. For small values of the coupling factor we observe a very good
approximation with the full simulation results. As the coupling factor grows, small
deviations in the frequency occur, see Fig. 6.28d. Because of the mutual pulling
effects between the two oscillators a double sided spectrum is formed around each
oscillator carrier frequency. The additional sidebands are equally spaced by the
frequency difference of the two oscillators.

The phase shift ˛1.t/ of the first oscillator for a certain time interval is given
in Fig. 6.29. We note that it has a sinusoidal behavior. For a single oscillator under
perturbation a completely different behavior is observed: in locked condition the
phase shift changes linearly, whereas in the unlocked case the phase shift has a
nonlinear behavior different than a sinusoidal, see for example [112].

7Matlab code for plotting the PSD is given in [107].
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Fig. 6.28 Inductive coupling. Comparison of the output spectrum of the first oscillator obtained by
the phase macromodel and by the full simulation for a different coupling factor k. (a) k D 0:0005.
(b) k D 0:001. (c) k D 0:005. (d) k D 0:01
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Fig. 6.29 Inductive coupling. Phase shift ˛1.t/ of the first oscillator with k D 0:001

Parameter Variation in Two Inductively Coupled Oscillators

Let us consider two inductively coupled oscillators with the nominal parameters
given in Sect. 6.3.9 and a small parameter L variation in the inductance of the
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second oscillator. Then the corresponding model is:

dv1.t/

dt
C v1.t/

C1R1

C i1.t/ C S

C1

tanh.
Gn

S
v1.t// D 0; (6.95a)

di1.t/

dt
� v1.t/

L1

D � M

L1

di2.t/

dt
; (6.95b)

dv2.t/

dt
C v2.t/

C2R2

C i2.t/ C S

C2

tanh.
Gn

S
v2.t// D 0; (6.95c)

di2.t/

dt
� v2.t/

L2 C L
D � M

L2 C L

di1.t/

dt
: (6.95d)

By using the small parameter variation model given in Sect. 6.3.5 we obtain the
corresponding phase shift macromodel for (6.95):

P̨1.t/ D VT
1 .t C ˛1.t// �

0
@ 0

� M

L1

di2.t/

dt

1
A ; (6.96a)

P̨2.t/ D VT
2 .t C ˛2.t// �

0
@ 0

� M

L2 C L

di1.t/

dt
� v2.t/

L2
2

L

1
A ; (6.96b)

where the currents and voltages are evaluated by using (6.75c)–(6.75d).
For this numerical experiments we consider the coupling factor to be equal to

k D 0:0005. Furthermore, let us denote by f full;L
2 and f

phase;L
2 the new frequency

of the second oscillator obtained by full simulation and phase macromodel for the
given parameter variation L. Then we define

f D f full;L
2 � f

phase;L

2 :

In Fig. 6.30 we show the relative frequency difference f versus parameter
variation L. We note that for small parameter variations (L=L2 	 0:01) the
phase macromodel provides a good approximation to the full simulation results.

In Fig. 6.31 we show the output spectrum of the second oscillator for several
values of the parameter L.

6.3.9.2 Capacitively Coupled Oscillators

The coupling capacitance in Fig. 6.24 is chosen to be C0 D k � Cmean, where
Cmean D .C1 C C2/=2 D 1:794 � 10�12 and we call k the capacitive coupling factor.
Simulation results for the first oscillator for different capacitive coupling factors k

are given in Fig. 6.32 (similar results are obtained for the second oscillator around
its own carrier frequency).
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Fig. 6.32 Capacitive coupling. Comparison of the output spectrum of the first oscillator obtained
by the phase macromodel and by the full simulation for a different coupling factor k. (a) k D
0:0005. (b) k D 0:001. (c) k D 0:005. (d) k D 0:01
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Fig. 6.33 Capacitive coupling. Phase shift of the first oscillator with k D 0:001

For a larger coupling factor k D 0:01 the phase shift macromodel shows small
deviations from the full simulation results Fig. 6.32d.

The phase shift ˛1.t/ of the first oscillator and a zoomed section for some interval
are given in Fig. 6.33. In a long run the phase shift seems to change linearly with
a slope of a D �0:00052179. The linear change in the phase shift is a clear
indication that the frequency of the first oscillator is changed and is locked to a new



6 Advanced Topics in Model Order Reduction 419

frequency, which is equal to .1Ca/f1. The change of the frequency can be explained
as follows: as noted in [114], capacitive coupling may change the free running
frequency because this kind of coupling changes the equivalent tank capacitance.
From a mathematical point of view it can be explained in the following way. For the
capacitively coupled oscillators the governing equations can be written as:

.C1 C C0/
dv1.t/

dt
C v1.t/

R
(6.97a)

C i1.t/ C S tanh.
Gn

S
v1.t// D C0

dv2.t/

dt
;

L1

di1.t/

dt
� v1.t/ D 0; (6.97b)

.C2 C C0/
dv2.t/

dt
C v2.t/

R
(6.97c)

C i2.t/ C S tanh.
Gn

S
v2.t// D C0

dv1.t/

dt
;

L2

di2.t/

dt
� v2.t/ D 0: (6.97d)

This shows that the capacitance in each oscillator is changed by C0 and that the new
frequency of each oscillator is

Qfi D 1

2

p

L1.Ci C C0/
; i D 1; 2:

In the zoomed figure within Fig. 6.33 we note that the phase shift is not exactly
linear but that there are small wiggles. By numerical experiments it can be shown
that these small wiggles are caused by a small sinusoidal contribution to the linear
part of the phase shift. As in case of mutually coupled inductors, the small sinusoidal
contributions are caused by mutual pulling of the oscillators (right-hand side terms
in (6.97a) and (6.97c)).

6.3.9.3 Inductively Coupled Oscillators Under Injection

As a next example, let us consider two inductively coupled oscillators where in one
of the oscillators an injected current is applied. Let us consider the case where a
sinusoidal current of the form

I.t/ D Ainj sin.2
.f1 � foff/t/ (6.98)
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Fig. 6.34 Inductive coupling with injection and k D 0:001. Top: phase shift. Bottom: comparison
of the output spectrum obtained by the phase macromodel and by the full simulation with a small
current injection. (a) Oscillator 1. (b) Oscillator 2. (c) Oscillator 1. (d) Oscillator 2

is injected in the first oscillator. Then (6.75a) is modified to

P̨1.t/ D VT
1 .t C ˛1.t// �

0
@ �I.t/

�M
di2.t/

dt

1
A : (6.99)

For a small current injection with Ainj D 10 �A and an offset frequency foff D
20 MHz the spectra of both oscillators and the phase shift with coupling factor
k D 0:001 are given in Fig. 6.34. It is clear from Figs. 6.34a, b that the phase shift
of both oscillators does not change linearly, which implies that the oscillators are
not in the steady state. As a result in Figs. 6.34c, d we observe spectral widening in
the spectra of both oscillators. We note that the phase macromodel simulations are
good approximations of the full simulation results.



6 Advanced Topics in Model Order Reduction 421

6.3.9.4 Oscillator Coupled to a Balun

Finally, consider an oscillator coupled to a balun as shown in Fig. 6.25 with the
following parameters values:

Oscillator Primary balun Secondary balun
L1 D 0:64 nH L2 D 1:10 nH L3 D 3:60 nH
C1 D 1:71 pF C2 D 4:00 pF C3 D 1:22 pF
R1 D 50 ˝ R2 D 40 ˝ R2 D 60 ˝

The coupling factors in (6.85) are chosen to be

k12 D 10�3; k13 D 5:96 � 10�3; k23 D 9:33 � 10�3: (6.100)

The injected current in the primary balun is of the form

I.t/ D Ainj sin.2
.f0 � foff/t/; (6.101)

where f0 D 4:8 GHz is the oscillator’s free running frequency and foff D 20 MHz
is the offset frequency.

Results of numerical experiments done with the phase macromodel and the full
simulations are shown in Fig. 6.35. We note that for a small current injection (Ainj D
10�4 �10�2 A) both the oscillator and the balun are pulled by each other. When the
injected current is not strong (Ainj D 10�4 A) the oscillator is pulled slightly and in
the spectrum of the oscillator (Fig. 6.35a) we observe a spectral widening with two
spikes around-60 dB (weak “disturbance” of the oscillator). By gradually increasing
the injected current, the oscillator becomes more disturbed and in the spectrum we
observe widening with higher side band levels, cf. Fig. 6.35c–f. When the injected
current is strong enough (with Ainj D 10�1 A) to lock the oscillator to the frequency
of the injected signal, we observe a single spike at the new frequency. Similar results
are also obtained for the secondary balun.

Oscillator Coupled to a Balun

Consider an oscillator coupled to a balun as shown in Fig. 6.25 with the following
parameters values:

Oscillator Primary balun Secondary balun
L1 D 0:64 � 10�9 L2 D 1:10 � 10�9 L3 D 3:60 � 10�9

C1 D 1:71 � 10�12 C2 D 4:00 � 10�12 C3 D 1:22 � 10�12

R1 D 50 R2 D 40 R2 D 60

The coefficients of the mutual inductive couplings are k12 D 10�3; k13 D 5:96 �
10�3; k23 D 9:33 � 10�3: The injected current in the primary balun is of the form

I.t/ D Ainj sin.2
.f0 � foff/t/; (6.102)
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Fig. 6.35 Comparison of the output spectrum of the oscillator coupled to a balun obtained by the
phase macromodel and by the full simulation for an increasing injected current amplitude Ainj and
an offset frequency foff D 20 MHz. (a) oscillator. (b) primary balun. (c) oscillator. (d) primary
balun. (e) oscillator. (f) primary balun. (g) oscillator. (h) primary balun
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Fig. 6.36 Comparison of the output spectrum of the oscillator coupled to a balun obtained by
the macromodel-full and the macromodel-MOR simulations for an increasing injected current
amplitude Ainj and an offset frequency foff D 20 MHz

where f0 D 4:8 GHz is the oscillator’s free running frequency, foff is the offset
frequency and Ainj is the current amplitude.

Results of the numerical experiments are shown in Fig. 6.36, where the results
obtained by the macromodel-MOR technique with mor_dim D 2 provide a good
approximation to the full-simulation results. We note that for the injected current
with Ainj D 10�1 A the oscillator is locked to the injected signal. Similar results are
also obtained for the balun.

6.3.9.5 Oscillators Coupled with Transmission Lines

In this section we consider two academic examples, where transmission lines are
modeled with RC components.
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Fig. 6.37 Comparison of the output spectrum around the first and third harmonics of the oscillator
coupled to a transmission line, cf. Fig. 6.26. (a) first harmonic. (b) third harmonic

Single Oscillator Coupled to a Transmission Line

Let us consider the same oscillator as given in the previous section, now coupled
to a transmission line, see Fig. 6.26. The size of the transmission line is n D 100

with the following parameters: C1 D : : : D Cn D 10�2 pF; R1 D 40 k˝; R2 D
: : : D Rn D 1 ˝: The injected current has the form (6.102) with Ainj D 10�2 A and
foff D 20 MHz. Dimension of the reduced system is mor_dim D 18. Simulation
results around the first and third harmonics (this oscillator does not have a second
harmonic) are shown in Fig. 6.37. The macromodel-MOR method, using techniques
described in Sect. 6.3.8, gives a good approximation to the full simulation results.

Two LC Oscillators Coupled via a Transmission Line

For this experiment we consider two LC oscillators coupled via a transmission line
with the mathematical model given by (6.93). The first oscillator has a free running
frequency f1 D 4:8 GHz and is described in Sect. 6.3.9.4. The second LC oscillator
has the following parameter values: R0 D 50 ˝ , L0 D 0:64 nH, C0 D 1:87 pF
and a free running frequency f2 D 4:6 GHz. The size of the transmission line
is n D 100 with the following parameters: C1 D : : : D Cn D 10�2 pF; R1 D
RnC1 D 4 k˝; R2 D : : : D Rn D 0:001 ˝: Dimension of the reduced system
is mor_dim D 16. Numerical simulation results are given in Fig. 6.38. We note that
macromodel-MOR approach gives a very good approximation to the full-simulation
results.
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Fig. 6.38 Comparison of the output spectrum around the first and third harmonics of two
oscillators coupled via a transmission line. (a) first harmonic. (b) third harmonic. (c) first harmonic.
(d) third harmonic

6.3.10 Conclusion

In this section we have shown how nonlinear phase macromodels can be used to
accurately predict the behavior of individual or mutually coupled voltage controlled
oscillators under perturbation, and how they can be used during the design process.
Several types of coupling (resistive, capacitive, and inductive) have been described
and for small perturbations, the nonlinear phase macromodels produce results with
accuracy comparable to full circuit simulations, but at much lower computational
costs. Furthermore, we have studied the (unintended) coupling between an oscillator
and a balun, a case which typically arises during design and floor planning of RF
circuits. For the coupling of oscillators with transmission lines we showed how the
phase macromodel can be used with model order reduction techniques to provide an
accurate and efficient method.
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