Chapter 5
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Abstract This Chapter introduces parameterized, or parametric, Model Order
Reduction (pMOR). The Sections are offered in a prefered order for reading,
but can be read independently. Section 5.1, written by Jorge Ferniandez
Villena, L. Miguel Silveira, Wil H.A. Schilders, Gabriela Ciuprina, Daniel Ioan and

G. Ciuprina (<) * D. Ioan
Politehnica University of Bucharest, Spl.Independentei 313, 060042 Bucharest, Romania
e-mail: Gabriela@lmn.pub.ro; Daniel @lmn.pub.ro

J. Fernandez Villena ¢ L.M. Silveira
INESC ID/IST - TU Lisbon, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
e-mail: Jorge.Fernandez @inesc-id.pt; LMS @inesc-id.pt

Z. Nlievski

European Space & Technology Centre, Keplerlaan 1, P.O. Box 299, 2200 AG Noordwijk,
The Netherlands

e-mail: Zoranl @gmail.com

S. Kula

Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University,
ul. Kopernika 1, 85-074 Bydgoszcz, Poland

e-mail: SKula@ukw.edu.pl

E. Jan W. ter Maten
Chair of Applied Mathematics/Numerical Analysis, Bergische Universitit Wuppertal,
GauBstraBe 20, D-42119 Wuppertal, Germany

Department of Mathematics and Computer Science, CASA, Eindhoven University of Technology,
P.O. Box 513, 5600 Eindhoven, The Netherlands
e-mail: Jan.ter.Maten @math.uni-wuppertal.de; E.J.W.ter.Maten @tue.nl

K. Mohaghegh

Multiscale in Mechanical and Biological Engineering (M2BE), Aragén Institute of Engineering
Research (I3A), University of Zaragoza, Maria de Luna, 3, E-50018 Zaragoza, Spain

e-mail: Kasra@unizar.es

R. Pulch

Institut fiir Mathematik und Informatik, Ernst Moritz Arndt Universitit Greifswald,
Walther-Rathenau-Strae 47, D-17487 Greifswald, Germany

e-mail: PulchR @uni-greifswald.de

© Springer-Verlag Berlin Heidelberg 2015 267
M. Giinther (ed.), Coupled Multiscale Simulation and Optimization

in Nanoelectronics, Mathematics in Industry 21,

DOI 10.1007/978-3-662-46672-8_5


mailto:Gabriela@lmn.pub.ro
mailto:Daniel@lmn.pub.ro
mailto:Jorge.Fernandez@inesc-id.pt
mailto:LMS@inesc-id.pt
mailto:ZoranI@gmail.com
mailto:SKula@ukw.edu.pl
mailto:Jan.ter.Maten@math.uni-wuppertal.de
mailto:E.J.W.ter.Maten@tue.nl
mailto:Kasra@unizar.es
mailto:PulchR@uni-greifswald.de

268 G. Ciuprina et al.

Sebastian Kula, overviews the basic principles for pMOR. Due to higher integration
and increasing frequency-based effects, large, full Electromagnetic Models (EM)
are needed for accurate prediction of the real behavior of integrated passives and
interconnects. Furthermore, these structures are subject to parametric effects due to
small variations of the geometric and physical properties of the inherent materials
and manufacturing process. Accuracy requirements lead to huge models, which are
expensive to simulate and this cost is increased when parameters and their effects
are taken into account. This Section introduces the framework of pMOR, which
aims at generating reduced models for systems depending on a set of parameters.

Section 5.2, written by Gabriela Ciuprina, Alexandra Stefanescu, Sebastian Kula
and Daniel Ioan, provides robust procedures for pMOR. This Section proposes
a robust specialized technique to extract reduced parametric compact models,
described as parametric SPICE-like netlists, for long interconnects modeled as
transmission lines with several field effects such as skin effect and substrate losses.
The technique uses an EM formulation based on partial differential equations
(PDE), which is discretized to obtain a finite state space model. Next, a variability
analysis of the geometrical data is carried out. Finally, a method to extract an
equivalent parametric circuit is proposed.

Section 5.3, written by Michael Striebel, Roland Pulch, E. Jan W. ter Maten,
Zoran Ilievski, and Wil H.A. Schilders, covers ways to efficiently determine
sensitivity of output with respect to parameters. First direct and adjoint techniques
are considered with forward and backward time integration, respectively. Here also
the use of MOR via POD (Proper Orthogonal Decomposition) is discussed. Next,
techniques in Uncertainty Quantification are described. Here pMOR techniques can
be used efficiently.

Section 5.4, written by Kasra Mohaghegh, Roland Pulch and E. Jan W. ter Maten,
provides a novel way in extending MOR to Differential-Algebraic Systems. Here
new MOR techniques for reducing semi-explicit system of DAEs are introduced.
These techniques are extendable to all linear DAEs. Especially pMOR techniques
are exploited for singularly perturbed systems.
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5.1 Parametric Model Order Reduction

Model Order Reduction (MOR) techniques are a set of procedures which aim at
replacing a large-scale model of a physical system by a lower dimensional model
which exhibits similar behavior, typically measured in terms of its input-output
response.! Reducing the order or dimension of these models, while guaranteeing
that the input-output response is accurately captured, is crucial to enable the
simulation and verification of large systems [1-3, 33]. Since the first attempts in
this area [31], the methods for linear model reduction have greatly evolved and can
be broadly characterized into two types: those that are based on subspace generation
and projection methods [13, 27], and those based on balancing techniques [26, 30]
(sometimes also referred to as Singular Value Decomposition (SVD)-based [2]).
Hybrid techniques that try to combine some of the features of each family have also
been presented [18, 19, 21, 29].

Although previously ignored when analyzing or simulating systems, parameter
variability can no longer be disregarded as it directly impacts system behavior and
performance. Accounting for the effects of manufacturing or operating variability,
such as geometric parameters, temperature, etc., leads to parametric models whose
complexity must be tackled both during the design and verification phases. For this
purpose, Parametric MOR (pMOR, also known as Parameterized MOR) techniques
that can handle parameterized descriptions are being considered as essential in
the determination of correct system behavior. The systems generated by pMOR
procedures must retain the ability to model the effects of both geometric and
operating variability, in order to accurately predict behavior and optimize designs.

Several pMOR techniques have been developed for modeling large-scale param-
eterized systems. Although the first approaches were based on perturbation based
techniques, such as [17, 25], the most common and effective ones appear to
be extensions of the basic projection-based MOR algorithms [27, 29] to handle
parameterized descriptions. An example of these are multiparameter moment-
matching pMOR methods [8] which can generate accurate reduced models that
capture both frequency and parameter dependence. The idea is to match, via
different approaches, generalized moments of the parametric transfer function, and
build an overall projector. Sample-based techniques have been proposed in order
to contain the large growth in model order for multiparameter, high accuracy
systems [28, 37]. They rely on sampling the joint multi-dimensional frequency
and parameters space. This approach allows the inclusion of a priori knowledge
of the parameter variation, and provides some error estimation. However, the issue
of sample selection becomes particularly relevant when done in a potentially high-
dimensional space.

!Section 5.1 has been writen by: Jorge Ferndndez Villena, L. Miguel Silveira, Wil H.A. Schilders,
Gabriela Ciuprina, Daniel Ioan and Sebastian Kula. For additional topics and applications see also
the Ph.D.-Thesis of the last author [20].
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5.1.1 Representation of Parametric Systems

In order to include parametric systems inside an efficient simulation flow, the
parametric dependence should be explicit. This means that it must be possible to
access the parameter values and modify them inside the same representation, while
avoiding, if possible, re-computing the parametric systems, i.e. to perform another
extraction.

Parameters usually affect the geometrical or electrical properties of the layout,
and thus, most of these variations can be represented as modifications of the values
of the system matrices inside a state-space descriptor. For this reason, in most cases,
the input and output ports are not affected by these variations (this of course depends
on how the system is built), and in the case when they are in fact affected, these
variations can be shifted to the inner states. The variability leads to a dependence
of the extracted circuit elements on several parameters, of electrical or geometrical
origin. This dependence results in a parametric state-space system representation,
which in descriptor form can be written as

C(/\l,... ,AP) X(/\l, ,AP) + G(/\l, ,AP) X(Al, e ,/\p) = Bu, (5 1)
y(/ll,...,/\p):Lx(/ll,...,/\p), '
where C,G € R™" are again, respectively, the dynamic and static matrices, B €
R"? is the matrix that relates the input vector u € R? to the inner states x € R”"
and L € R?" is the matrix that links those inner states to the outputs y € R?. The
elements of the matrices C and G, as well as the states of the system x, depend on a
set of P parameters A = [A1, A, ..., Ap]| which model the effects of the mentioned
uncertainty. This time-domain descriptor yields a parametric dependent frequency

response modeled via the transfer function

H(s,At,....Ap) =L (sC(A1,....Ap) + G(A1,...,Ap))" ' B (5.2)

for which we seek to generate a reduced order approximation, able to accurately
capture the input-output behavior of the system for any point in the parameter space

H(s Aoo.. Ap) =L (sC(A1u... . Ap) + G(A,....Ap) "' B. (5.3)

In general, one attempts to generate a reduced order model whose structure is,
as much as possible, similar to the original, i.e. exhibiting a similar parametric
dependence. The “de facto” standard used in most of the literature for representing
a parametric system is based on a Taylor series expansion with respect to the
parameters (shown here for first order in the frequency domain):

((C() +CiAr+...+ CPAP)S + (Go + GiA+...+ GPAP)) X(S,l) = BM(S),
y(s,A) = Lx(s,A),
5.4
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where Gy and C; are the nominal values of the matrices, whereas G; and C; are
the sensitivities with respect to the parameters. Novel extraction methodologies can
efficiently generate such sensitivity information [5, 12].

A nice feature of this representation is that this explicit parameter dependence
allows to obtain a reduced, yet similar representation when a projection scheme is
applied

(Co+Cidi+ ...+ Cprp)s + (Go+ Gidi + ...+ GpAp)) x(s,2) = Bu(s),
y(s,A) = Lx(s,A),
(5.5)

where C; = VIC;V, G, = VTG, V,B=V'Band L = LV.

Some questions may be raised about the order neccessary for an accurate
representation of the parametric model. This depends on the range of variation and
the effect of each parameter, and therefore is not trivial to ascertain.

However, some literature presents interesting results in this area [4, 6], with the
conclusion that low order (first order in most cases) Taylor series are a good and
useful approximation to the real parametric system. As it will be shown later, this
statement has important consequences from the point of view of some parametric
algorithms, especially those which rely on moment matching techniques.

5.1.2 Reduction of Parametric Systems

The most straight-forward approach for the reduction of such a parametric system
is to apply nominal techniques. A first possibility is to apply nominal reduction
methodologies on the perturbed system. This means that the model in (5.4) is
evaluated for a set of parameter values. This model is no longer parametric, and thus
standard reduction methodologies can be applied on it. However, once a “perturbed”
system is evaluated and reduced, the parameter dependence is lost, and thus the
result is a system which is no longer parametric, and therefore only accurate for a
set of parameters.

A slightly different approach that overcomes this issue is to apply the projection
on the Taylor series approximation. In this case, depending on the framework
applied, we can distinguish two cases:

 First, in a projection methodology, the projector is computed from the nominal
system, and later applied on the nominal and on the sensitivity matrices,
obtaining a model as in (5.5).

* Second, in the case of Balanced Truncation realizations, the computation of the
Gramians is done via the nominal system, but the balancing and the truncation is
done both on the nominal matrices and on the sensitivities.

These methods, although not oriented to accurately capture the behavior of the
system under variation of the parameters, can yield good approximations in cases
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of small variations or mild effect of the parameters. However, they are not reliable,
and their performance heavily depends on the system.

5.1.2.1 Pertubation Based Parametric Reduction

The first attemps to handle and reduce systems under variations were focused on
perturbation techniques.

One of the earliest attempts to address this variational issue was to com-
bine perturbation theory with moment matching MOR algorithms [25] into a
Perturbation-based Projector Fitting scheme. To model the variational effects
of the interconnects, an affine model was built for the capacitance and conductance
matrices,

G, ....Ap) =Go+ MG+ ...+ ApGp, (5.6)
CAy,...,Ap) =Co+AiCi+ ...+ ApCp, '
where now Cy and G are the nominal matrix values, i.e., the value of the matrices
under no parameter variation, and C; and G;, i = 1,..., P, are their sensitivities
with respect to those parameters. For small parameter variations, the projection
matrix obtained via a moment-matching type algorithm such as PRIMA also may
show small perturbations. To capture such effect, several samples in the parameter
space were drawn G(Aq,...,Ap) and C(Ay, ..., Ap), and for each sample PRIMA
was applied resulting a projector. A fitting methodology was later applied in order
to determine the coefficients of a parameter dependent projection matrix

V(Al,...,AP)ZI/()+All/1+...+Apr. 5.7

To obtain a reduced model, both the parametric system and the projector are
evaluated with the parameter set. Projection is applied and the reduced model
obtained. However, this reduced model is only valid for the used parameter set. If a
reduced model for a different parameter set is needed, the evaluation and projection
must be applied again, what makes hard to include this method in a simulation
environment.

Another method combined perturbation theory with the Truncated Balanced
Realization (TBR) [26, 30] framework. A perturbation matrix was theoretically
obtained starting from the affine models shown in (5.6) [17]. This matrix was
applied via a congruence transformation over the Gramians to address the vari-
ability, obtaining a set of perturbed Gramians. These in turn were used inside a
Balancing Truncation procedure. As with most TBR-inspired methods, this one
is also expensive to compute and hard to implement. The above methods have
obvious drawbacks, perhaps the most glaring of which is the heavy computation
cost required for obtaining the reduced models and the limitation that comes from
perturbation based approximations, possibly leading to inaccuracy in certain cases.
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5.1.2.2 Multi-dimensional Moment Matching

Most of the techniques in the literature extend the moment matching paradigm [13,
27, 34] to the multi-dimensional case. They usually rely on the implicit or explicit
matching of the moments of the parametric transfer function (5.2). These moments
depend not only on the frequency, but on the set of parameters affecting the system,
and thus are denoted as multi-dimensional or multi-parameter moments.

This family of algorithms assumes that a model based on the Taylor Series
expansion can be used for approximating the behavior of the conductance and
capacitance, G(1) and C(A), expressed as a function of the parameters

Griso s Ap) = Y0g o Yonmo Giroin Mo AL,

COve Ap) =Yg 300 Ciyip M AR (5-8)

where G;, i, and C;, ;. are the multidimensional Taylor series coefficients. This
Taylor series can be extended up to the desired (or required) order, including cross
derivatives, for the sake of accuracy. If this formulation is used, the structure for
parameter dependence may be maintained if the projection is not only applied to the
nominal matrices, but to the sensitivities as well.

Multiple methodologies follow these basic premises, but they differ in how and
which such moments are generated and used in the projection stage.

The Multi-Parameter Moment Matching method [8] relies on a single-point
expansion of the transfer function (5.2) in the joint space of the frequency s and the
parameters Ap, ..., Ap, in order to obtain a power series in several variables,

o0 k k—ks k—ks—kl....—kP71
ks 1k k
x(s’kl""’AP)ZZZ Z Z Mk,ks,kl,___,kpSSAII...APP,
k=0 ky=0k;=0 kp=0
5.9

corresponding to the coefficient term s*s AII“ . Al}” .

A basis for the subspace spanned from these moments can be built and the
resulting orthonormal basis V' can be used as a projection matrix for reducing the
original system

colspanV’ = colspan{Moo_o, - .., Mi i, ky...kp }- (5.10)

This parametrized reduced model matches up to the k-th order multi-parameter
moment of the original system.
Howeyver, the main inefficiencies of this method are twofold:

* On the one hand, this method generates pure multi-dimensional moments (see
Eq.(5.9)), which means that the number of moments grows dramatically (all
the possible combinations for a given order must be done) when the number
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of parameters is increased, even for a modest number of moments for each
parameter. For this reason, the reduced model size grows exponentially with the
number of parameters and the moments to match.

* On the other hand, the process parameters fluctuate in a small range around their
nominal value, whereas the frequency range is much larger, and a higher number
of moments are necessary in order to capture the global response for the whole
frequency range. This algorithm treates the frequency as one parameter more,
which turns to be highly innefficient.

An improvement of the previous approach is to perform a Low-Rank Approxi-
mation of the multi-dimensional moments [22]. An SVD-based low-rank approxi-
mation of the generalized moments, G~'G; and G7'C; (which are related to the
multidimensional moments), is applied. Then, separate subspaces are built from
these low-rank approximations for every parameter. The global projector is obtained
from the orthonormalization of the nominal moments (computed via Arnoldi for
example), and the moments of the subspaces related to the parameters. The projector
is applied on the Taylor Series approximation to obtain a reduced parametric model.
This approach, although providing more flexibility and improving the matching,
requires the low-rank SVD of the generalized moments, which comes at a cost of
O(n?), i.e., limiting its applicability to small-medium size problems.

A different multi-dimensional moment matching approach was also presented
in [16], called Passive Parameterized Time-Domain Macro Models. It relies
on the computation of several subspaces, built separately for each dimension,
i.e. the frequency s (to which respect k; block moments are obtained in a basis
denoted as Q) and the parameter set A (generating the basis Q; which match k;,
block moments with respect to parameter A;). These independent subspaces can be
efficiently computed using standard nominal approaches, e.g. PRIMA. Once all the
subspaces have been computed, an orthonormal basis can be obtained so that its
columns span the joint of all subspaces. For example, in the affine Taylor Series
representation, using Krylov spaces Kr(A, B, k) (matrix A, multi-columns vector
B, moments k):

A=-G7C,

R=G7'B

A; :—(G+SC)_1(Gi +SC,'),
Ri=—(G+sC)"'B
V=0R[Q; Q1 ... Qi ...0p],

colsp{Q;s} = Kr{A, R, ks} with {

colsp{Q;} = Kr{A;, R;, k;} with {

(5.11)

where subscript i refers to the i -th parameter A;, and the parameter related moments
have been generalized to any shifted frequency s. OR stands for the QR-factorization
based orthonormalization. Applying the resulting matrix V' in a projection scheme
ensures that the parametric Reduced Order Model matches k; moments of the
original system with respect to the frequency, and k; moments with respect to
the parameter A;. If the cross-term moments are needed for accuracy reasons, the
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subspace that spans these moments can also be included by following the same
scheme.

A different approach is explored in CORE [23]. Here an explicit moment
matching with respect to the parameters is first done, via Taylor-series expansion,
followed by an implicit moment matching in frequency (via projection). The first
step in done by expanding the state space vector x and the matrices G and C in its
Taylor Series only with respect to the parameters,

XA =Y > Xiip () A LLAY (5.12)
i1=0 ip=0
GO = Y0y 300 Gy A A 5.13)

CO) =30y 50y Ciyip M AT

where Gy o(s) are the nominal values for the matrices and
the states vector, respectively. The remaining G, i,, Ci,...ip and x;, ;. are the
sensitivities with respect to the parameters. Explicitly matching the coefficients of
the same powers leads to an augmented system, in which the parametric dependence
is shifted to the output related matrix L 4:

Co B
C, Gy 0
CA = 0 C() 5 BA - 5
C; 0 0Cy 0 X0
X1
xa=|: |,
Gy Xi
G, Gy .
Gy = 0 Go JLi=[L ML --- ML ---].

(5.14)

The second step applies a typical nominal moment matching procedure (e.g. PRIMA
[27]) to reduce this augmented system. This is possible because the matrices G 4, C4
and By used to build the projector do not depend on the parameters. The projector
is latter applied on all the matrices of the augmented system in (5.14). Furthermore,
the Block Lower Triangular structure of the system matrices G4 and C4 can be
exploited in recursive algorithms to speed-up the reduction stage. This two-step
approach allows to increase the number of the matched multi-parameter moments
with respect to other techniques, for a similar reduced order. In principle, in spite
of the larger size of the augmented model, the order of the reduced system can be
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much smaller than in the previous cases. On the other hand, the structure of the
dependence with respect to the parameters is lost, since the parametric dependence
is shifted to the later projected output related L matrix. The projection mixes all the
parameters, losing the possibility of modifying them without need of recomputation.
This method also has the disadvantage that the explicit computation of the moments
with respect to the parameters can lead to numerical instabilities. The method,
although stability-preserving, is unable to guarantee passivity preservation.

Some algorithms [24, 37] try to match the same moments as CORE, but in
a more numerical stable and efficient fashion, using Recursive and Stochastic
Approaches. They generalize the CORE paradigm up to an arbitrary expansion
order with respect to the parameters, and apply an iterative procedure in order
to compute the frequency moments related to the nominal matrices, and the ones
obtained from the parametric part (this means, to obtain a basis for each block of
states x; in (5.14), but without building such system).

colspan {V} = Kr{A, R, qo} = [VOO | A VO"_I],

with A =—(Go+sCo) "' Co. R = (Go+5¢Co)”"' B,
colspan{V;} = [Vio V! V,] ],

with V/ = —(Go + 51.Co)™" (Gi Vi 4 s GV + COI/,.f‘l),
Gi = Go.o10..0,

Ci = Co..010..0

(5.15)

where sy is the expansion point for the Krylov subspace generation, and V;/ is the
j-th moment with respect to the frequency for the i-th parameter. This general
recursive scheme, here presented for first order with respect to the parameters, can
be extended to any (independent) order with respect to each parameter.

The technique in [37] uses a tree graph scheme, in which each node is associated
to a moment, and the branches represent recursive dependences among moments.
Each tree level contains all the moments of the same multi-parameter order. On this
tree, a random sampling approach is used to select and generate some representative
moments, preventing the exponential growth.

On the other hand, the technique in [24] advocates for an exhaustive computation
at each parameter order. This means that all the moments for zero-parameter order
(i.e. nominal), are computed until no rank is added. The same procedure is repeated
for first order with respect to all parameters. If the model is not accurate, more order
with respect to the parameters can be added.

Notice that both schemes provide a large degree of flexibility, as different orders
with respect to each parameter and with respect to the frequency can be applied.
In both approaches, the set of all the moments generated is orthonormalized, so
an overall projector is obtained. This is used inside a congruence transformation
on the Taylor Series approximation (5.4), to generate a reduced model in the same
representation. Another advantage of these methodologies is that the passivity is
PRIMA-like preserved, and the basis is built in a numerical stable fashion.
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5.1.2.3 Multi-dimensional Sampling

Another option present in the literature relies on sampling schemes for capturing
the variational nature of the parametric model. They are applied for the building of
a projector to later apply congruence tranformation on the original model.

A simple generalization of the multi-point moment matching framework [11]
to a multi-dimensional space can be done via Variational Multi-Point Moment
Matching. Small research has been devoted to this family of approaches, but one
algorithm can be found in [22]. The flexibility it provides is also one of its main
drawbacks, as the methodology can be applied in a variety of schemes, from a
single-frequency multi-parameter sampling to a pure multi-dimensional sampling.
From these expansion points, several moments are computed following a typical
moment matching scheme. The orthonormalization of the set of moments provides
the overall projector which is applied in a congruence reduction scheme. However,
it is hard to determine the number and placement of samples, and the number of
moments to match with respect to the frequency and to the parameters.

Another scheme, which overcomes some of the issues of the previous approach
is the Variational Poor Man’s TBR [28]. This approach is based on the statistical
interpretation of the algorithm (see [29] for details) and enhances its applicability to
multiple dimensions. In this interpretation, the Gramian X is seen as a covariance
matrix for a Gaussian variable x;, obtained by exciting the (presumed stable) system
with u involving white noise. Rewriting the Gramian as

X =/ / (joCy + G3) ' BBT (jwCy + G)™ p(L) dwd A, (5.16)
Sy J—o0

where p(A) is the probability density of A in the parameter space, S. Just as in
PMTBR, a quadrature rule can be applied in the overall parameter plus frequency
space to approximate the Gramian via numerical computation. But in this case the
weights are chosen taking into account the Probability Density Function (PDF) of A;
and the frequency constraints. This can be generalized to a set of parameters, where
a joint PDF of all the parameters can be applied on the overall parameter space, or
the individual PDF of each parameter can be used. This possibility represents an
interesting advantage, since a-priori knowledge of the parameters and the frequency
can be included in order to constrain the sampling and yield a more accurate
reduced model. The result of this approach is an algorithm which generates Reduced
Order Models whose size is less dependent on the number of parameters. In the
deterministic case, an error analysis and control can be included, via the eigenvalues
of the SVD. However, in the variational case only an expected error bound can be
given:

E{|£.0)—x (03} < Y o7, (5.17)
i=r+1
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where r is the reduced order and n the original number of states. On the other
hand, in this method the issue of sample selection, already an important one in the
deterministic version, becomes even more relevant, since the sampling must now be
done in a potentially much higher-dimensional space.

5.1.3 Practical Consideration and Structure Preservation

Inside the pMOR realm, the moment matching algorithms based on single point
expansion may not be able to capture the complete behavior along the large
frequency range required for common RF systems, and may lead to excessively
large models if many parameters are taken into account. Therefore the most
suitable techniques for the reduction seem to be the multipoint ones. Among
those techniques, Variational PMTBR [28] offers a reliable framework with some
interesting features that can be exploited, such as the inclusion of probabilistic
information and the trade off between size and error, which allows for some control
of the error via analysis of the singular values related to the dropped vectors. On
the other hand, it requires a higher computational effort than the multi-dimensional
moment matching approaches, as it is based on multidimensional sampling schemes
and Singular Value Decomposition (SVD), but the compression ratio and reliability
that it offers compensates this drawback. The effort spent in the generation of such
models can be amortized when the reduced order model generated is going to be
used multiple times. This is usually the case for parametric models, as the designer
may require several evaluations for different parameter sets (e.g. in the case of
Monte Carlo simulations, or optimization steps). Furthermore, this technique offers
some extra advantages when combined with block structured systems [14], such as
the block-wise error control with respect to the global input-output behaviour, which
can be applied to improve the efficiency of the reduction. This means that each block
can be reduced to a different order depending on its relevance in the global response.

An important point to recall here is that the block division may not reflect
different sub-domains. Different sub-divisions can be done to address different
hierarchical levels. For instance, it may be interesting to divide the complete set
in sub-domains connected by hooks, which generates a block structured matricial
representation. But inside each block corresponding to a sub-domain, another block
division may be done, corresponding either to smaller sub-domains or to a division
related to the different kind of variables used to model each domain (for example,
in a simple case, currents and voltages). This variable related block structure
preservation has already been advocated in the literature [15] and may help the
synthesis of and equivalent SPICE-like circuit [35] in the case that is required.
Figure 5.1 presents a more intuitive depiction of the previous statements, in which
a two domain example is shown with its hierarchy, and each domain has also some
inner hierarchy related to the different kind of variables (in this case, voltages and
currents, but it can also be related to the electric and magnetic variables, depending
on the formulation and method used for the generation of the system matrices).
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The proposed flow starts from a parametric state-space descriptor, such as (5.1),
which exhibits a multi-level hierarchy, and a block parametric dependence (as
different parameters may affect different sub-domains). The matrices of size n have
K domains, each with size n;, n = Zi n;. For instance, for the static part,

Gu(Aay) ... Gik(Auky)
G = : .. -, (5.18)

Gri(Aky) ... Grr(Akky)
where A is the set of parameters affecting G; € R"”""/. Then we perform the
multi-dimensional sampling, both in the frequency and the parameter space. For
each point we generate a matrix or vector z; (a matrix in case B includes multiple
inputs)

zj = (C(A,)s; + G(A)) ™' B, (5.19)

where C(A) and G(A) are the global matrices of the complete domain, with n
degrees of freedom (dofs). To generate the matrix z; € R™", with m the number
of global ports, we can apply a direct procedure, meaning a factorization (at cost
On?), with 1.1 < B < 1.5 for sparse matrices) and a solve (at cost O(n%),
with 1 < o < 1.2 for sparse matrices). Novel sparse factorization schemes can
be applied to improve the efficiency [9, 10]. In cases when a direct method may be
too expensive iterative procedures may be used [32].

The choice of the sampling points may be an issue, as there is no clear scheme or
procedure that is known to provide an optimal solution. However, as stated in [28],
the accuracy of the method does not depend on the accuracy of the quadrature (and
thus in the sampling scheme), but on the subspace generated. For this reason, a good
sampling scheme is to perform samples in the frequency for the nominal system, and
around these nominal samples, perform some parametric random sampling in order
to capture the vectors that the perturbed system generates. The reasoning behind
this scheme is that for small variations, such as the ones resulting from process
parameters, the subspace generated along the frequency is generally more dominant
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than the one generated by the parameters. In addition, under small variations, the
nominal sampling can be used as a good initial guess for an iterative solver to
generate the parametric samples. For the direct solution scheme, to generate P
samples (and thus Pm vectors) for the global system has a cost of O(Pn® + PnP).
Note that since m is the number of global (or external) ports, the number of vectors
is smaller than if we take all the hooks into account.

The next step is the orthonormalization, via SVD, of the Pm vectors for
generating a basis of the subspace in which to project the matrices. Here an
independent basis V;, i € {1,..., K}, can be generated for each i-th sub-domain.
To this end the columns in z; are split according to the block structure present in
the system matrices (i.e., the n; rows for each block), and an SVD is performed
on each of these set of vectors, at a cost of O(n; (Pm)?), where n; is the size of
the corresponding block, and n = ), n;. For each block, the independent SVD
allows to drop the vectors less relevant for the global response (estimated by the
dropped singular value ratio, as presented in [28]). This step generates a set of
projectors, V; € R"*¥  with ¢; < n; the reduced size for the i-th block of the
global system matrix. These projectors can be placed in the diagonal blocks of an
overall projector, that can be used for reducing the initial global matrices to an order
g = Y_; ¢i- This block diagonal projector allows a block structure (and thus sub-
domain) preservation, increasing the sparsity of the ROM with respect to that of
the standard projection. This sparsity increase is particularly noticeable in the case
of the sensitivities (if a Taylor series is used as base representation), as the block
parameter dependence is maintained (e.g. in the static matrix)

Gy = Vi Gy V- (5.20)
The total cost for the procedure can be approximated by

O(Pr® + Pn + (Pm)* 3", n;). (5.21)

5.1.4 Examples
5.1.4.1 L-Shape

As a first example we present a simple L-shape interconnect structure depending
on the width of the metal layer. Figure 5.2 shows the frequency response for a
fixed parameter value, of the nominal system, the Taylor series approximation
(both of order 313), and the reduction models obtained with several parametric
approaches:

* Nominal reduction of the Taylor Series, via PRIMA, of order 25,
* Multi-dimensional moment matching, via CORE, of order 25,
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Frequency Response with p = 2.797e-006
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Fig. 5.2 (Top): Frequency response of the L-shape example. The original, both the nominal and
the Taylor series for a fixed parameter value, of order 313, and the reductions via PRIMA,
CORE, Passive Parameterized Time-Domain Macro Models (PP TDM), and variational PMTBR
(VPMTBR), of different orders. (Bottom): Relative error of the reduction models with respect to
the original Taylor series approximation

e Multi-dimensional moment matching, via Passive Parameterized Time-Domain
Macro Models technique, of order 20,
* And Multi-dimensional sampling, via Variational PMTBR, of order 16.

Figure 5.3 shows the same example, but in this case the response of the systems
with respect of the parameter variation, for a given frequency point. It is clear that
the parametric Model Order Reduction techniques are able to capture the parametric
behavior, whereas the nominal approach (PRIMA) fails to do so, even for high order.

5.1.4.2 U-Coupled

This is a simple test case, which has two U-shape conductors; each of the conductors
ends represent one port, having one terminal voltage excited (intentional terminal,
IT) and one terminal connected to ground. A clear illustration of the setting is given
by Fig. 5.4. The distance (d) separating the conductors and the thickness (/) of the
corresponding metal layer are parameterized. The complete domain is partitioned
into three sub-domains, each of them connected to the others via a set of hooks (both
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Parameter Impact at 5.6094GHz
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Fig. 5.3 Parameter impact on the response of the L-shape example. The EM model for several
parameter values (of order 313), the Taylor series approximation (of order 313 as well), and the
reductions via PRIMA, CORE, PP TDM, and VPMTBR, of different orders
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Fig. 5.4 Topology of the U-shape: (Up) cross view, (Down) top view. Parameters: distance
between conductors, d, and thickness of the metal, &

electric, EH, and magnetic, MH). The domain hierarchy and parameter dependence
are kept after the reduction, via Block Structure Preserving approaches. The Full
Wave EM model was obtained via Finite Integration Technique (FIT) [7], and its
matrices present a Block Structure that follows the domain partitioning. Table 5.1
shows the characteristics of the original system. Each sub-domain is affected by
a parameter. The left and right sub-domains contain the conductors, and thus are
affected by the metal thickness /. The middle domain width varies with the distance
between the two conductors, and thus is affected by parameter d . For each parameter
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Table 5.1 Characteristics of the examples

Ex Domain Dofs Terminals (EH,MH,IT) ROM Dofs
U-shape Left 785 77 (42,34,1) 85
Middle 645 152 (84,68, 0) 90
Right 785 77 (42,34,1) 85
Complete 2,215 2(0,0,2) 260
Double Spiral Var, 49,125 2(0,0,2) 142
Var, 54,977 2(0,0,2) 165
Complete 104,102 2(0,0,2) 307

the first order sensitivity is taken into account, and a first order Taylor Series (TS)
formulation is taken as the original system.

For the reduction we apply three techniques. First, a Nominal Block Structure
Preserving (BSP) PRIMA [36], with a single expansion point and matching
50 moments, is applied. This leads to a 100-vector generated basis, that after
BSP expansion produces a 300-dofs Reduced Order Model (ROM). Second, a
BSP procedure coupled with a Multi-Dimensional Moment Matching (MDMM)
approach [16], is tried. The basis will match 40 moments with respect to the
frequency, and 30 moments with respect to each parameter. The orthonormalized
basis has 196 vectors, that span a BSP ROM of size 588. Third, the proposed BSP
VPMTBR, with 60 multidimensional samples, and a relative tolerance of 0.001 for
each block, is studied. This process generates different reduced sizes for each block:
85, 90 and 85, with a global size of 260.

Figure 5.5 shows the relative error in the frequency transfer function at a
parameter set point for the three ROMs w.r.t. the Taylor series. PRIMA and MDMM
approaches fail to capture the behavior with the order set, but the proposed approach
performs much better even for a lower order. Figure 5.6 shows the response change
with the variation of parameter d at a single frequency point (Parameter Impact).
PRIMA and MDMM only present accuracy for the nominal point, whereas the
proposed method maintains the accuracy for the parameter range.

5.1.4.3 Double Spiral

This is an industrial example, composed by two square integrated spiral inductors
in the same configuration as the previous example (See Fig.5.7). The complete
domain has two ports, and 104,102 Dofs. The example also depends on the same two
parameters, the distance d between spirals, and the thickness / of the corresponding
metal layer. In this case a single domain is used, but the BSP approach is applied
on the inner structure provided by the different variables in the FIT method (electric
and magnetic grid). For the reduction, the proposed BSP VPMTBR methodology
is benchmarked against a nominal BSP PRIMA (400 dofs) methodology, and
compared with the original Taylor Series formulation. The ROM size in this case
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Fig. 5.5 U-coupled: Relative error (dB) in | H 1 (s)| for (Up) the nominal response, and (Down) the
perturbed response at a single parameter set. The curves represent: BSP PRIMA, BSP VPMTBR,
and BSP MDMM

is 142 and 165 respectively for the blocks. The results are presented in the Figs. 5.8
and 5.9. Figure 5.8 shows the frequency relative error of the ROMs with respect
to the original Taylor Series. PRIMA, although accurate for the nominal response,
fails to capture the parametric behavior, whereas the proposed method succeeds in
modeling such behavior. This is also the conclusion that can be drawn from the
parameter impact in Fig.5.9.

5.1.5 Conclusions

We conclude that Parametric Model Order Reduction techniques are essential for
addressing parameter variability in the simulation of large dynamical systems.
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Parameter Impact for frequency = 5.9636e+009
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Fig. 5.6 U-coupled: Variation of |H ;| vs. the variation of the parameter d at 59.6 GHz for the
original TS and the three BSP ROMs
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Fig. 5.7 Layout configuration of the Double Spiral example (view from the fop)

Representation of the state space based on Taylor series expansion with respect to
the parameters provide the flexibility and accuracy required by efficient simulation.
This reresentation approach can be combined with projection-based methods to
generate structural equivalent reduced models.

Single-point based moment-matching approaches are suitable for small varia-
tions and local approximations, but usually suffer from several drawbacks when
applied to EM based models operating in a wide frequency range. Multi-point
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Fig. 5.9 Double Spiral: |Hjy| vs. the variation of the parameter d at a frequency point for the
original TS and the ROMs: PRIMA, and VPMTBR

based approaches, although computationally more expensive, are more reliable and
generate more compressed models. Thus, the generation cost can be amortized in
the simulation stages.
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Combination of the projection methodologies with Block Structure Preserving
approaches can be done efficiently in parametric environments. Further advantages
can be obtained in this case, such as different compression order for each block
based on its relevance in the global behavior, higher degree of sparsification of the
nominal matrices, and in particular, of the sensitivities, and the maintenance of the
block domain hierarchy and block parameter dependence after reduction.

5.2 Robust Procedures for Parametric Model Order
Reduction of High Speed Interconnects

Due to higher integration and increasing of running frequency, full Electromagnetic
Models (EM) are needed for an accurate prediction of the real behavior of integrated
passives and interconnects in currently designed chips [45].> In general, if on-
chip interconnects are sorted with respect to their electric length, they may be
categorized in three classes: short, medium and long. While the short interconnects
have simple circuit models with lumped parameters, the extracted model of the
interconnects longer than the wave length has to consider the effect of the distributed
parameters, as well. Fortunately, the long interconnects have usually the same cross-
sectional geometry along their extension. If not, they may be decomposed in straight
parts connected by junction components (Fig. 5.10). The former are represented as
transmission lines (TLs) whereas the latter are modeled as common passive 3D
components.

Due to the fact that the lithographic technology is pushed today to work at its
limit, the variability of geometrical and physical properties cannot be neglected.

X-shaped junction/cross

~

Interconnects modeled as TL‘ [-shaped junction
element

Fig. 5.10 Decomposition of the interconnect net in 2D TLs and 3D junctions

T-shaped junction

A

2Section 5.2 has been written by: Gabriela Ciuprina, Alexandra Stefinescu, Sebastian Kula and
Daniel Ioan. For additional topics see also the Ph.D.-Theses of the second author [59] and of the
third author [56].



288 G. Ciuprina et al.

That is why, to obtain robust devices, the variability analysis is necessary even
during the design stage [44, 55].

This Section proposes a robust specialized technique to extract reduced para-
metric compact models, described as parametric SPICE like netlists, for long
interconnects modeled as transmission lines with several field effects such as skin
effect and substrate losses. The technique uses an EM formulation based on partial
differential equations (PDE), which is discretized to obtain a finite state space
model. Next, a variability analysis of the geometrical data is carried out. Finally,
a method to extract an equivalent parametric circuit is proposed. The procedure is
validated by applying it on a study case for which experimental data is available.

5.2.1 Field Problem Formulation: 3D — PDE Models

Long interconnects and passive components with significant high frequency field
effects, have to be modeled by taken into consideration Full Wave (FW) electromag-
netic field equations. Typical examples of such parasitic effects are: skin effect and
proximity, substrate losses, propagation retardation and crosstalk. Only Maxwell
equations in FW regime

cul H=J +%2 divB =0
’ 5.22
curlE = —28  divD = p, ( )

complemented with the constitutive equations which describe the material behavior:
B=pH, D=c¢E, J=0E, (5.23)

can model these effects. While material constants are known for each subdomain (Si,
Al, SiO,), vectorial fields B,H,E,D : 2 x[0,T) — R3 and the scalar field p:
£2x[0,T) — R are the unknowns of the problem. They can be univocal determined
in the simple connected set §2, which is the computational domain, for zero initial
conditions (B = 0,D = 0 for ¢+ = 0), if appropriate boundary conditions are
imposed.

According to authors’ knowledge, the best boundary conditions which allow
the field-circuit coupling are those given by the electric circuit element (ECE)
formulation [54]. Considering S}, S5.. .., S, C 02 a disjoint set of surfaces, called
terminals (Fig. 5.11), the following boundary conditions are assumed:

n-curlE =0 on 052, (5.24)
n-curlH =0 on 3R\ Uj_, S; (5.25)
nxE=0 on Ui_, S; (5.26)
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Fig. 5.11 ECE - electric circuit element with multiple terminals

Condition (5.24) interdicts the magnetic coupling between the domain and its
environment, (5.25) interdicts the galvanic coupling and the capacitive coupling
through the boundary excepting for the terminals and (5.26) interdicts the variation
of the electric potential over the terminal, thus allowing the connection of the device
to exterior electric circuit nodes. For each terminal, k = 1,...,n the voltage and
the current can be univocal defined:

uk:/ E-dr, ix=| H-dr, (5.27)
CrCoR2 as;

where C; is an arbitrary path on the device boundary d£2, that starts on S; and
ends on S,;, where, by convention, the n-th terminal is considered as reference,
ie. u, = 0. If we assume that the terminals are excited in voltage, then uy,
k = 1,2,...,n — 1 are input signals and iy, k = 1,2,...,n — 1 are output
signals. Equations (5.24) = (5.26) define a multiple input multiple output (MIMO)
linear system with n — 1 inputs and n — 1 outputs, but with a state space of
infinite dimension. In the weak form of Maxwell’s equations, state variables, H, E
belong to the Sobolev space H (curl, £2) [39]. Uniqueness theorem of the ECE field
problem [54] generates the correct formulation of the transfer function Y(s) : C —
C=Dx=1 which represents the matrix of the terminals admittance for a complex
frequency s. The relation

i=Yu (5.28)

defines a linear transformation in the frequency domain of the terminal voltages
vectoru € C"! to the currents vectori € C"~!.
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5.2.2 Numeric Discretization and State Space Models

PDE models are too complex for designers needs. The approach we propose for the
extraction of the electric models is schematically represented in Fig.5.12. The left
block corresponds to the formulation described in the previous section.

The next important step in the EM modeling is the discretization of the PDEs.
One of the simplest methods to carry out this, is based on the Finite Integration
Technique (FIT), a numerical method able to solve field problems based on spatial
discretization “without shape functions”. Two staggered orthogonal (Yee type) grids
are used as discretization mesh [42]. The centers of the primary cells are the nodes
of the secondary cells. The degrees of freedom (dofs) used by FIT are not local field
components as in FEM or in FDTD, but global variables, i.e., electric and magnetic
voltages u,, u,,, electric currents i, and magnetic and electric fluxes ¢,  assigned to
the grid elements: edges and faces, respectively. They are associated to these grids
elements in a coherent manner (Fig. 5.13).

By applying the global form of electromagnetic field equations on the mesh
elements (elementary faces and their borders), a system of differential algebraic
equations (DAE), called Maxwell Grid Equations (MGE) is obtained:

0B d
crlE = —2- = [ Edr=—[[; ®dA = Cu, = —7‘:’ (5.29)

< divB = 0 = [ [xBdA =0 =Dyp=0 (5.30)

* Discrete model *
FIT=MGE +Hodge

Fig. 5.12 Three levels of abstraction for a component model and its corresponding equations

0z (1,4, k)
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Fig. 5.13 Dofs for FIT numerical method in the two dual grids cells
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D
curlH:J—i—%—t = [pHdr = [ [; (J + P)dA = C'u, =i+‘;—'f

(5.31)

—divD=p = [[;DdA=[[[, pdv =Dy =q (5.32)

a d
< div) = —a—’;’ = [[pJdA =—[ [ [, 2dv :>Di:—7(tl (5.33)

FIT combines MGE with Hodge’s linear transform operators, which approximate
the material behavior (5.23):

¢ =Gpu,, V¥ =Ceu, i=G.u,. (5.34)

The main characteristics of the FIT method are:

* There is no discretization error in the MGE fundamental Eqgs. (5.29) + (5.33).
All numerical errors are hold by the discrete Hodge operators (5.34).

* An equivalent FIT circuit (Fig. 5.14), having MGE + Hodge as equations may be
easily build. The graphs of the two constituent mutually coupled sub-circuits
are exactly the two dual discretization grids; therefore the complexity of the
equivalent circuit has a linear order with respect to the number of grid-cells [49].

* MGE are:

— Sparse: matrices G,,,C, and G, are diagonal and matrices C, D have
maximum siX non-zero entries per row,

— Maetric-free: matrices C — the discrete-curl and D — the discrete-div operators
have only 0, +1 and —1 as entries,

— Mimetic: in Maxwell equations curl and div operators are replaced by their
discrete counterparts C and D, and

— Conservative: the discrete form of the discrete charge conservation equation
is a direct consequence of both Maxwell and as well as of the MGE equations.

Due to these properties the numerical solutions have no spurious modes.

Iy e al __________________
I i | At

Fig. 5.14 Electric (left) and magnetic (right) equivalent FIT circuits
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Considering FIT Eqgs.(5.29), (5.31), and (5.34) with the discrete forms of
boundary conditions (5.24) = (5.27) a linear time-invariant system is defined having
the same input-output quantities as (5.28), but the state equations:

d
o d—’; +Gx=Bu, i=Lx, (5.35)

where x = [ufq, ueT, i T]T is the state space vector, consisting of electric voltages
u, defined on the electric grid used by FIT, magnetic voltages u,, defined on the
magnetic grid and output quantities i. Equations can be written such that only
two semi-state space matrices (C and G) are affected by geometric parameters
(denoted by o in what follows). Considering all terminals voltage-excited, the
number of inputs is always equal to the number of outputs. Since output currents
are components of the state vector, the matrix L = BT is merely a selection matrix.

For instance, the structure of the matrices in the case of voltage excitation is the
following:

[ G () 0 0] 0 B, B, 0 ]
0 —Ci(@)00 Bl —Gi(@)0 0
0 0 0 0 0By 0
C = G = 5.36
0 Csi(ax) 0 0 Gyl 0 (-3¢
0 CTE(OZ) 0 0 GTE(O{) —SE
0 0 0 0 P 0 |

There are six sets of rows, corresponding to the six sets of equations. The first
group of equations is obtained by writing Faraday’s law for inner elementary
electric loops. G, is a diagonal matrix holding the magnetic conductances that
pass through the electric loops. The block [Bl B 2] has only 0, 1, —1 entries,
describing the incidence of inner branches and branches on the boundary to electric
faces. The second group corresponds to Ampere’s law for elementary magnetic
loops. C; and G; are diagonal matrices, holding the capacitances and electric
conductances of the inner branches. The third group represents Faraday’s law
for electric loops on the boundary. Bg has only 0, 1, —1 entries, describing the
incidence of electric branches included in the boundary to the electric boundary
faces. The forth row is obtained from the current conservation law for all nodes on
the boundary excepting for the nodes on the electric terminals. G and Cg hold
electric conductances and capacitances directly connected to boundary. The fifth set
of equations represents current conservation for electric terminals. G ¢ and C 7¢
hold electric conductances and capacitances that are directly connected to electric
terminals. S g is the connexion matrix between electric branches and terminals path.
The last row is the discrete form of (5.27), obtained by expressing the voltages of
electric terminals as sums of voltages along open paths from terminals to ground,
P ¢ being a topological matrix that holds the paths that connect electric terminals to
ground.
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Thus, the top left square block of C is diagonal and the top left square bloc of
G is symmetric. The size of this symmetric bloc corresponds to the useful magnetic
branches and to the useful inner electric branches. Its size is dominant over the size
of the matrix, therefore, solving or reduction strategies that take into consideration
this particular structure are useful.

The discretized state-space system given by (5.35) describes the input output
relationship in the frequency domain

i =Yu, (5.37)
similar to (5.28), but having as transfer (circuit) function:
Y=L(6C+G)'B (5.38)

which is a rational function with a finite number of poles.

In conclusion, the discretization of the continuous model leads to a model
represented by a MIMO linear time invariant system described by the state equations
of finite size. Even if this is an important step ahead in the extraction procedure,
the state space dimension is still too large for designer’s needs, therefore a further
modeling step aiming an order reduction is required.

5.2.3 Transmission Lines: 2D + 1D Models

In this section, aiming to reduce the model extraction effort, we will exploit the
particular property of interconnects of having invariant transversal section along
their extent. We assume that the field has a similar structure as a transversal electro-
magnetic wave that propagates along the line. The typical interconnect configuration
(Fig.5.15) considered consists of n parallel conductors having rectangular cross
section, permeability 4 = o, permittivity ¢ = &y and conductivity oy, k =
1,2,---,n, placed in a SiO; layer (04, &4, possibly dependent on y) placed above
a silicon substrate (oy, &5).

Fig. 5.15 Typical Metal
interconnect configuration
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If the field is decomposed in its longitudinal (oriented along the line, which is
assumed to lie along the Oz axis) and the transversal components (oriented in the
xOy plane)

E=E +KkE, J=1J +kJ, H=H, +kH, (5.39)

then Maxwell’s Equations can be separated into two groups:

3k, ; AuH;
curlyHy = k (Jz + ea—b;) , divy(uHp) = — 0553’

d(eE,)

o (5.40)
curlyE, = —k/ia—t:, div,y(eEy) = p — 9z

called transversal equations and

BB—F;" —grad E; = _H%(Ht x k);
33—11’ — gradxsz =J; xk+ ea—at(Et x k);

called propagation equations.
The following hypotheses are adopted:

e The volume charge density p and the displacement current density %—? are
neglected both in conductors and in the substrate.

e The following “longitudinal” terms E, = 0, H, = 0 are canceled in the
transversal equations, neglecting the field generated by eddy currents.

* The longitudinal conduction current is neglected in dielectric J, = 0, but not in
the conductors.

* Since the conductances oy of the conductors are much bigger than the dielectric
conductance o, the transversal component of the electric field is neglected in the
line conductors and in the substrate:

1
E =—J =0. (5.41)
O

Under these hypotheses the transversal equations have the following form (where
(k) = conductor, (s) = substrate, (d) = dielectric):

kJ, in (k) and (s)
0, in(d)
curl , E, = 0, divy(eE;) = 0,

curl, H; = dive, (uH;) =0

(5.42)

identical with the steady state electromagnetic field equations. For this reason,
the electric field admits a scalar electric potential V(x, y, z,t), whereas the mag-
netic field admits a vector magnetic potential A(x, y,z,¢) = kA(x, y,z,t) with
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longitudinal orientation, so that:
E = —gradxy V, (5.43)

1 1
H; = —[k x (curlA x k)] = —k x —grad, (A4 x k). (5.44)
H H
Thus, the propagation equations become:

grad,, [%—/t‘ + %—IZ/ + EZ] =0,

(5.45)
—grad, H. = Kk x [ﬁgradxy (%—?) + ograd, V + egrad,, (%—It/)] .
By assuming an asymptotic behavior of potentials, the integration of the propagation
equations yields to:

9z ar’
(5.46)
Ho= o [L i (3) + 0%+ e (39)] o

where C is a curve in the plane z = constant, which starts from the infinity and
stops in the computation point of the field H., n is the normal to the curve, oriented
so that the line element is

ds = dsk x n. 5.47)

From (5.41) it follows that the potential V' is constant on every transversal cross-
section of the conductors and zero in the substrate:

Vs, = Vi(z, 1), Vs =0. (5.48)

From relations (5.42) and (5.43) it follows that, in the transversal plane, the
electric field has the same distribution as an electrostatic field. By using the
uniqueness theorem of the electrostatic field it results that the function V(x, y, z, )
is uniquely determined by the potentials of the conductors Vi. Consequently, due
to the linearity, the per unit length (p.u.1.) charge of conductors and the current loss
through the dielectric are:

K% ‘
(z, 1) = —/ €;—ds = Crm Vi (2,1); (5.49)
qi ( s, on m2=:l k )

1% “
e 1) = — / 00 ds = 3 gnVn(e.t). (5.50)
gk a5, 31’1 mzz:l ki

where ¢y, is the p.u.l. capacitance, and gy, is the p.u.l. conductance between the
conductor k and the conductor m.
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By integrating E, equation from (5.46) over the surface Sy and H, equation
from (5.46) along the path 0.5, which bounds this surface, the following propagation
equations for potentials are obtained:

Uy 0, 3671(. diy . 351k
e =Tl + o o =g + at’ (5.51)

where r,? = 1/(ox As,) is the p.u.l. d.c. resistance of the conductor k, and

(2, 1) = ﬁfsk V(x,y,z,t)dxdy = vk (z,1),

~ (5.52)

ap = thk A(x,y,z, t)dxdy

are the average values of the two potentials on the cross-section of the conductor k.

By computing the average values of the magnetic potential as in [58] and by

substituting (5.49), (5.50) in (5.51) the following expressions are obtained in zero
initial conditions:

vk i dlim
- rk1k+21km 5 Z az/ ( )[ tlm(‘c,t)d‘c, (5.53)

0l Zn: ( avm)
o = 8lmVUm + Con—— | » (5.54)
dz = ot
where [ are the p.u.l. external inductances (self inductances for k = m and

mutual inductances for k # m) of the conductors (k) and (m) where the return
current is distributed on the surface of the substrate, and /y,,(¢) are “transient p.u.l.
inductances”, defined as the average values on Sy of the vector potential A obtained
in zero initial conditions by a unity step current injected in conductor (m).

For zero initial conditions for the currents im(z,0) = 0, for the potential
Um(z,0) = 0 and for the field BY «(s) = 0, the Laplace transform of (5.53) and
(5.54) can be written as:

_dyg (z, s) dlk(z, s)

Z ka(S)lm (Zs S)

m=1

Z Yin(s)vm(z.5),  (5.55)

which is identical to the operational form of the classical Transmission Lines (TLs)
Telegrapher’s equations, but where the p.u.l. inductances depend on s (implicitly on
the frequency in a time-harmonic regime). In order to extract these dependencies, a
magneto-quasi-static (MQS) field problem has to be solved.
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Fig. 5.16 The coarsest R+sL

model for a single o— " mmm———©
transmission line: a pi

equivalent circuit Cl2 —— —— c/2

[ ]

5.2.4 Numeric Extraction of Line Parameters

Models with various degrees of fineness can be established for TLs. The coarsest
ones are circuit models with lumped parameters, such as the pi equivalent circuit for
a single TL shown in Fig.5.16. As expected, the characteristic of such a circuit is
appropriate only at low frequencies, over a limited range, and for short lines. Even
chaining similar cells, the result is not appropriate.

At high frequencies, the distributed effects have to be considered as an important
component of the model. Proper values for the line parameters can be obtained only
by simulating the electromagnetic field. The extraction of line parameters is the
main step in TLs modeling since the behavior of a line with a given length can be
computed from them. For instance, for a multiconductor transmission line, from the
per unit length parameters matrices R, L, C and G the transfer matrix for a line of
length / can be computed as

' 0 —R 0 -L
T = exp[(D + jwE)l], where D—|:_G 0 :|, E—|:_C 0 i|

(5.56)

From them, other parameters (impedance, admittance or scattering) can be com-
puted. The simplest method to extract constant matrices of the line resistance R,
capacitance C and inductance L, respectively, is to solve the field equations numeri-
cally in steady-state electric conduction (EC), electrostatics (ES) and magnetostatics
(MS) regimes. Empirical formulas may also be found in the literature, such as
the ones given in [62] for the line capacitance. None of them take the frequency
dependence of p.u.l. parameters into account.

A first attempt to take into consideration the frequency effect, which becomes
important at high frequencies, is to compute the skin depth in the conductor and
to use a better approximation for the resistance. In [52] we proposed a much more
accurate estimation of frequency dependent line parameters based on the numerical
modeling of the EM field including the semiconductor substrate. The previous
section is the theoretical argument of this approach in which two complementary
problems are solved, the first one describing the transversal behavior of the line
from which Y;(w) = G(w) + joC(w) is consequently extracted, and the second
one describing the longitudinal behavior of the line from which Z;(®w) = R(w) +
joL(w) is extracted.



298 G. Ciuprina et al.

Since the first field problem is dedicated to the computation of the transversal
capacitances between wires and their loss conductances, according to the previous
section, the natural choice is to solve a 2D problem of the transversal electro-quasi-
static (EQS) field in dielectrics, considering the line wires as perfect conductors with
given voltage. The boundary conditions are of Dirichlet type V' = 0 on the lower
electrode, and open boundary conditions (e.g. Robin, SDI or appropriate ELOB
[50]) on the other three sides. A dual approach, such as dFIT [51] allows a robust
and accurate parameter extraction.

The second field problem focuses on the longitudinal electric and the generated
transversal magnetic field. Consequently, a short line-segment (with only one cell
layer) is considered. The magneto-quasi-static (MQS) regime of the EM field is
appropriate for the extraction of Z;(w). However, for our simulations we used a
our FIT solver for Full Wave (FW) ECE problems. The magnetic grid is 2D, thus
ensuring the TM mode of propagation.

In order to eliminate the transversal distribution of the electric field, the lower
electrode is prolongated over the entire far-end cross-section of the rectangular
computational domain, which thus has perfect electric conductor (PEC) boundary
conditions E; = 0 on two of their faces. On the three lateral faces, open-absorbing
boundary conditions are the natural choice, whereas on the near-end cross-section
the natural boundary conditions are those of the Electric Circuit Element (ECE):
B, = 0, n x curlH = 0 excepting for the wire traces, where E, = 0. These
conditions ensure the correct definition of the terminals voltages, and consequently
of the impedance/admittance matrix (Fig.5.17).

V=0 R

y

Fig. 5.17 Boundary conditions for the full wave — transversal magnetic problem
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Fig. 5.18 The pi equivalent ZMQs
circuit for a simulated short |
line segment. Parameters are

evaluated from field 7™ 05
simulations 3> Yeas

These boundary conditions are the field representation of the line segment with
short-circuit at the far-end, whereas the 2D EQS problem is the field representation
of the segment-line with open far-end.

The transversal component is finally subtracted from the FW-TM simulation to
obtain an accurate approximation of the line impedance, as given by

o1 -
Zyos = (Zm} - EYEQS) . (5.57)

This subtraction is carried out according to a pi-like equivalent net for the simulated
short segment (Fig. 5.18). Finally, the line parameters are:

G(w) =Re(Y)), C(w) =Im(Y))/w, R(w)=Re(Z), L(w)=ImZ)/w,
(5.58)

where
Y, = Ygos/Al, Z; = Zygs/Al, (5.59)

where Al is the length of the considered line-segment and Zry, is the impedance
matrix extracted from the TM field solution.

This numerical approach to extract the line parameters, named the two fields
method, is more robust and may be applied without difficulties to multi-wire lines.
The obtained values of the line parameters are frequency dependent, taking into
consideration proximity and skin effects as well as losses induced in the conducting
substrate.

5.2.5 Variability Analysis of Line Parameters

The simplest way to analyze the parameter variability is to compute first order
sensitivities. These are derivatives of the device characteristics with respect to the
design parameters. The sensitivities of the line parameters are essential to estimate
the impact of small variations on the device behavior. Moreover, the sensitivity of
the terminal behavior of interconnects can also be estimated.
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For instance, in the case of a single TL, having the global admittance given by

Yo Y coshyl 1

11 f12 Zesinhyl ~ Zesinhyl

Y= [Y Y :| = 7 Sl (5.60)
21 422 Z.sinhyl  Z.sinhyl

the sensitivities of the terminal admittance with respect to a parameter can be
computed as:

Yy 1 dy  coshyl 9Z. 1 cosh’yl dy
da  Z.da Z2sinhyl da  Z. sinh?yl da
Y12 1 0Z, [ cosh 0y

= =y — 5.62
do Z2sinhyl da + Z, sinh?yl do (5.62)

(5.61)

where the sensitivities of

Yy =V(R+ joL)G + joC) and Z.=+/(R+ joL)/(G + joC)

can be computed if the sensitivities of the p.u.l. parameters dR /da, etc. are known.

In the case of a multiconductor TL with n conductors the sensitivity of the
admittance matrix Y of dimension (21 x2n) is computed by means of the sensitivity
of the transfer matrix

T T12i|
T = (5.63
|:T21 T, )

also of dimension (2n x 2n), knowing that

Y Y12i| [ —T, Tn Ty, i|
Y = - B N (5.64)
[YZI Y2 ToT Ti — Ta —TnTy

In the formulas above, all the sub-blocks are of dimensions (n x n). For instance

8Y11 8T12 BT“

P = o T T — Ty =, (5.65)
Y 0T,
_80;2 =-T;} —a;T ) (5.66)

The transfer matrix T is computed with (5.56) and its sensitivity is

aT D . OE
— =exp[(D + jwE)|| — + jo— (5.67)
do do
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where

aD_[ 0 —BR/aa] 8E_[ 0 —BL/aa} (5.68)

da | —9G/da 0 da | —0C/oa 0

Thus, the basic quantities needed to estimate the sensitivity of the admittance are
the sensitivities of the p.u.l. parameters. By using a direct differentiation technique,
as explained in [41] the sensitivities of the EQS and TM problems with respect to
the parameters that vary, i.e. dYggs/doe and 0Zgy /0o are computed. Then, the
sensitivity of the MQS mode is computed by taking the derivative of (5.57):

BZMQS 1 -1 8ZTM 1 BYEQS 1 -1
“oq (ZTM 2YEQS) ~Zoy——— e Loy — 3 90 Loy — ZYEQS

(5.69)
Finally, the sensitivities of the p.u.l. parameters are:

oR 1 0Zygs JL 1 0Zygs
— =_-R — =1 i
a1 e{ b | o ba | (5.70)
G 1 Y gos aC 1 0Ygos
— — "R — =1 . g1
b 1 e{ da | da lo | da .7)

The values of the sensitivities thus obtained depend on the frequency as well.

5.2.6 Parametric Models Based on Taylor Series

Continuous improvements in today’s fabrication processes determine smaller chip
sizes and smaller device geometries. Process variations induce changes in the
properties of metallic interconnect between devices.

Simple parametric models are often obtained by truncating the Taylor series
expansion for the quantity of interest. This requires the computation of the deriva-
tives of the device characteristics with respect to the design parameters [55]. Let us
assume that y(oy, a0, -+ ,a,) = y(e) is the device characteristic which depends
on the design parameters « = [o], &2, - - - , &, ]. The quantity y may be, for instance,
the real or the imaginary part of the device admittance at a given frequency or any
of the p.u.l. parameters. The parameter variability is thus completely described by
the real function, y, defined over the design space S, a subset of R". The nominal
design parameters correspond to the particular choice ey = [0 @2 -+ ®on]-



302 G. Ciuprina et al.

5.2.6.1 Additive Model (A)

If y is smooth enough then its truncated Taylor Series expansion is the best
polynomial approximation in the vicinity of the expansion point a. For one
parameter (n = 1), the additive model is the first order truncation of the Taylor
series:

(@) = ylan) + (o) e — o). (5.72)

If we denote by y(cg) = yo the nominal value of the output function, by g—i (»0) ‘;‘—g =

Sy the relative first order sensitivity and by (o — ) /g = So the relative variation
of the parameter ¢, then the variability model based on (5.72) defines an affine [60]
or additive model (A):

F(a) = yo(1 + S28a). (5.73)

To ensure a relative validity range of the first order approximation of the output
quantity less a given threshold #;, the absolute variation of the parameter must be

less than
[2yot1
Vi = , 5.74
d D, (5.74)

where D, is an upper limit of the second order derivative of the output quantity y
with respect to parameter o [41].
For the multiparametric case, one gets:

Y@ = ylan) + Vy@o) - (@ —an) =+ Y o @) — o). (9
k=1

Similar with one parameter case, the relative sensitivities w.r.t. each parameter are
denoted by % (o) O;—z‘ = S, and the relative variations of the parameters by So, =
(o — otor )/ otk » the additive model (A) for n parameters being given by:

Y(a) = yo (1 +y Sgksak) . (5.76)

k=1

Thus, each new independent parameter taken into account adds a new term to the
sum [52]. The additive model is simply a normalized standard version of a linearly
truncated Taylor expansion.
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Instead of using this truncated expansion may be numerically favorable to expand
some transformation F(y) of y instead. Two particular choices for F' have practical
importance: identity and inversion as it will be indicated below.

5.2.6.2 Rational Model (R)
The rational model is the additive model for the reverse quantity 1/y. It is obtained

from the first order truncation of the Taylor Series expansion for the function 1/y.

For n = 1, if we denote by r(«) = y(a) , it follows that:

Fla) = r(ag) + g—r(ao)(a — ). (5.77)
o

We define the relative first order sensitivity of the reverse circuit function:

ar o
35 @) =S, =S5,/ (5.78)
r(ao)
Consequently, we obtain the rational model for n = 1:
Yo
(@)= ——7—. (5.79)
1+ Sa Sa
1
It can be easily shown that the reverse relative sensitivity is S4 = —Sg. For the
multiple parameter case, the rational model is:
N Yo
V() = (5.80)

1+Zk 1 l/y(SOlk

If the circuit function y is for instance the admittance, its inverse 1/y is the
impedance. In the time domain, these two transfer functions correspond to a device
excited in voltage or in current, respectively. Consequently, the choice between
additive and rational models for the variability analysis of the circuit functions
in frequency domain can be interpreted as a change in the terminal excitation
mode in the time domain state representation. Choosing the appropriate terminal
excitation, the validity range of the parametric model based on first order Taylor
series approximation can be dramatically extended.

5.2.7 Parametric Circuit Synthesis

We have shown in [48] that one of the most efficient order reduction method for the
class of problems we address is the Vector Fitting (VFIT) method proposed in [47],
improved in [43, 46] and available at [61]. It finds the transfer function matching
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a given frequency characteristic. Thus, in the frequency domain, for the output
quantity y(s), this procedure finds the poles p,, (real or complex conjugate pairs),
the residuals k,, and the constant terms k¢ and ko, of a rational approximation of
the output quantity (e.g an admittance):

km

S_pm‘

q
Y() & Yypr(s) = koo + sko + )

m=1

(5.81)

The resulting approximation has guaranteed stable poles and the passivity can
be enforced in a post-processing step [43]. The transfer function (5.81) can be
synthesized by using the Differential Equation Macromodel (DEM) [57]. Our aim
is to extend DEM to take into consideration the parameterization.

To simplify the explanations, we assume a single input single output system,
excited in voltage. It follows that the output current is given by (5.82), where x,, ()
is a new variable defined by (5.83).

q
i(5) = y($)uls) = koou(s) + skou(s) + D knxm(s),  (5.82)
m=1
X (s) = S”_(S; ) (5.83)

By applying the inverse Laplace transformation to (5.82) and (5.83), relation-
ships (5.84) and (5.85) are obtained:

0 = koot + k0 2D 4 3 k0 (5.84)
1 = Kool 0 dz P mXm s .
d);mt(t) = Do (1) + u(2). (5.85)

If we use the following matrix notations

. T
A =diag(p1, pa,....pg), b=[11--1], (5.86)

r X = [xl Xy +e- xq]T, (5.87)

c=lkiks-ky|
then equations of the system (5.84), (5.85) can be written in a compact form as

dx (1)
dr

= Ax(t) + bu(?), (5.88)
du(t)

u
dr

i(t) = koou(t) + ko +ex(1). (5.89)
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Fig. 5.19 Equivalent circuit
for the output equation if all

\ A

poles are real
q
u  —/—ky | |keo P
m=1
Fig. 5.20 Sub-circuit
corresponding to a real pole
u 1=— |xm P,

5.2.7.1 Case of Real Poles

In the case in which all poles (and consequently, all the residuals) are real, Eq. (5.84)
can be synthesized by the circuit shown in Fig.5.19 which consists of a capacitor
having the capacitance kg, in parallel with a resistor having the conductance koo,
in parallel with g voltage controlled current sources, their parameters being the
residuals k,,,.

Equation (5.85) can be synthesized by the circuit in Fig.5.20, where x,, is the
voltage across a unity capacitor, connected in parallel with a resistor having the
conductance — p,, and a voltage controlled current source, controlled by the input
voltage u.

We would like to include the parametric dependence into the VFIT model and
in the synthesized circuit. To keep the explanations simple, we assume that there is
only one parameter that varies, i.e. the quantity « is a scalar. Assuming that keeping
the order ¢ is satisfactory for the whole range of the variation of this parameter, this
means that (5.81) can be parameterized as:

d k(o)
Y(s,0) & yypr(s, o) = Kool@) + skol@) + ) ————.
VFIT 0 mzz:l S — pm(@)

(5.90)
Without loss of generality, we can assume that the additive model is more accurate
than the rational one. If not, the reverse quantity is used, which is equivalent, for
our class of problems, to change the excitation of terminals from voltage excited to
current excited, and use an additive model for the impedance z = y~!. The additive
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model (5.73) can be written as

y(s,a) =y, (s,a) = y(s,a0) t 5 o (s ao) (e — ap), (5.91)

where here y is a matrix function. By combining (5.90) and (5.91) we obtain an
approximate additive model based on VFIT:

Y vrrr

3 (s, 0) (o — ). (5.92)
o

Y(s,0) = Y s4_ypr(s, @) = yypr(s, o) +

From (5.90) it follows that the sensitivity of the VFIT approximation needed in
(5.92)is

(5.93)

Oyyer _ koo ko z": [akm/aa ko aﬂ}

da o da S—pm (5= pm)? da

m=1

The sensitivity dy/da can be evaluated with (5.61) for as many frequencies as
required and thus the sensitivities of poles and residues in (5.93) can be computed
by solving the linear system (5.93) by least square approximation. Finally, by
substituting (5.93) and (5.90) in (5.92), the final parameterized and frequency
dependent model is obtained:

do

I Tk + (0 — )k / Dt kn  0pm
+,§[ Sl A _“0)2[(s—pm>2 ]
(5.94)

Y avem(s.a) = [ ot (a—a@i} s [ko . a@—}

Expression (5.94) has the advantage that it has an explicit dependence with respect
both to the frequency s = jw and parameter «, is easy to implement and feasible
to be synthesized as a net-list having components with dependent parameters, as
explained below.

If we denote by

ky(a) = kx

(5.95)

where k. = k«(ap) then Eq. (5.94) can be written as

Ya—vrr(s,a) = yi(s,a) + ya(s, ), (5.96)
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where
1165.) = keol@) + sko(e) + 3. k_(z) (5.97)
m=1 m
Va(s,@) = (& — o) Z n a” i (5.98)
’ ‘(s — pm)? 0 '
The output current is thus
i(S,Ol) = YI(Sva)u(S) +YZ(Ss0l)M(S)v (599)

where the first term can be synthesized with a circuit similar to the one in Fig.5.19
but where the k. parameters depend on ¢, and the second term

km  Opm

o2 u(s) (5.100)

ir(s,a) = (@ — ap) Z G
adds g new parallel branches to the circuit (Fig. 5.21). It is useful to write (5.100) as

u(s) 5. Where E, (o) = W%.
-1 Py O
(5.101)
The part that depends on s in (5.101) can be synthesized by a second order circuit,
such as the one in Fig. 5.22.
The current through the coil is

ia(s, @) = ZE @ =7

m=1 Pm

. u(s)
= = 5.102
j(s) s2LC 4+ sLG + 1 ( )

Fig. 5.21 Parameterized i

circuit corresponding to the i
output equation
q q
U ==Ky | [|Kega 2 K (00X, Y E. (@],
m=1 m=1
Fig. 5.22 Second order
subcircuit, with a voltage J
controlled current source
u G ——C L
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Fig. 5.23 Second order

subcircuit corresponding to a Jm
real pole X )
u PoT2 3
1

To obtain the expression in (5.101) it is necessary that LC = 1/p2, LG = —2/ p,,
for instance, we can chose G = —p,,, L = 2/p2, C = 1/2. Thus, the parame-
terized circuit is given by the sub-circuits in Figs.5.21, 5.20 and 5.23. The circuit
that corresponds to the output equations has new branches with current controlled
current sources. Only this sub-circuit contained parameterized components.

Another possibility to derive a parameterized circuit is to do as follows. In (5.100)
we denote by

1 P
ma%u(s) = fn(s), (5.103)
and by
(s = pm) S (5) = gm(5). (5.104)

Relationships (5.103) and (5.104) are equivalent to

Sgm(S) = pm&m(s) + %u(s), (5.105)
$fm(8) = Pm fn(5) + gm(5), (5.106)
which correspond in the time domain to
) en) + Puge), (5.107)
dt du
d@(’) = P fun®) + g (0). (5.108)

Equations (5.107) and (5.108) can be synthesized with the subcircuit shown in
Fig.5.24. In this case the circuit that corresponds to the output equation is the one
in Fig. 5.25. In brief, the parameterized reduced order circuit can be either the one
in Figs.5.21, 5.20 and 5.23 or in Figs. 5.25, 5.20 and 5.24. In both approaches only
the circuit that corresponds to the output equation is parameterized. The second
approach has the advantage that can be generalized for a transfer function having
complex poles as well.
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g%-u(t) 1=— |9 P, Im 1=— |fm B

Fig. 5.24 Subcircuit corresponding to the second order term (second approach)

q q
u  ——kyo | |Keg 2 K (X, Dla- ok, fry
m=1

m=1

Fig. 5.25 Parameterized circuit corresponding to the output equation (second approach)

5.2.7.2 Case of Complex Poles
Nominal Differential Equation Macromodel

If some of the g poles are complex, then they appear in conjugated pairs since
they are the roots of the characteristic equation corresponding to a real matrix. We
assume for the beginning that the transfer function has only one pair of complex
conjugate poles: p = a + jb and p* = a — jb. In this case the transfer function is

s) = ki N ky  (s—a)ki + ko) + jb(ki —k2)
Y Cs—p  s—p* (s —a)®>+b?

(5.109)

The numerator can be a real polynomial in s only if k; and k, are complex
conjugated residues: k| = ¢ +jd, ko = ¢ —jd. In this case, the matrices in (5.86) are

A:[a+jb 0 T

T . . _
0 a—jbi|’ b—[ll] c-[c+Jdc—Jd] x—[xlxz]

(5.110)

In order to obtain a real coefficient equation, a matrix transformation is intro-
duced. The system (5.88) becomes

dx(¢)
de

14 =VAV 'Vx(@) + Vbu(), (5.111)

du(t)

i(t) = koou(t) + ko i1

+cV VX)), (5.112)
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where
1 _ 1 1 L
V:[ f_f] V—lz[_f f} (5.113)
V2 V2 2 V2
Let
A ~ ~ 1T ~ —1 a _b
2=Vx=[% %] . A=vav''= b al (5.114)
b=Vb=[-v20], é=cV'=[-V2cv2d]. (5115
The transformation A = VAV ' is a similarity transformation, preserving the

eigenvalues of the matrix and thus the characteristic polynomial of the system.
The two equations corresponding to the complex conjugated pair of poles

d Xt | _| P 0 X1 1
ol R | K Y C

become after applying the similarity transformation

d )21 a—b )ACl —«/E

sl =le 2 [ o 5117)
If there are several pairs of complex conjugated poles, Eq. (5.117) will be true for
any of these pairs and, by renaming p — py, X1 — X, X2 = X/, a — apm,
b — by, the synthesized circuit is shown in Fig. 5.26.

In general, if the system has ¢ poles out of which ¢, are real and g. = (¢ —¢,)/2
are pairs of complex conjugate poles, then the synthesis will be done as follows: for
each real polem = 1,...,4,, let k,, be the residue corresponding to the pole; for
each pair of complex conjugate polesm = 1,..., g, letthe polebe p, = amm+ jbm,
with the corresponding residue k), = ¢, + jdy. An equivalent circuit for the output
equation is shown in Fig.5.27. It consists of the following elements connected in
parallel:

* A capacitance k;
* A conductance koo,

(=l

3

>
| 1=

Fig. 5.26 Sub-circuit corresponding to a pair of complex conjugate poles
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Fig. 5.27 Sub-circuit corresponding to a pair of complex conjugate poles

* ¢, voltage controlled current sources (having the parameter k,,, controlled by the

voltages x,,),

* g, voltage controlled current sources (having the parameter —~/2c,,, controlled

by the voltages X/,)

* g, voltage controlled current sources (having the parameter +/2d,,, controlled by

the voltages X/).

The voltages x,, are defined on the g, subcircuits that correspond to real poles
(Fig. 5.20) and the voltages x/,, X/ are defined on the g, subcircuits that correspond
to the pair of complex conjugate poles (Fig. 5.26).

Parametric DEM

To derive the parametric circuit in the case of complex poles, we could proceed as
we did in the first approach for real poles. This would conduce to a transfer function
of order 4, which is not obvious how it can be synthesized. The second approach

can be extended to the case of complex poles, as follows.

Let’s consider Egs. (5.107) and (5.108) written for a pair of complex conjugate

poles p; = a + jb, p» = a — jb:

dgi(1)
dr

dfi)
dr

dgx(1)
dr

d f2(?)
dr

By using the matrix notations

_|& _| A
g_[gz] f_[fz]

= pi )+ Lutr),
(073

= p1 i) + g1(0),

= p2g2(t) + %MU),
o

= p2f2(1) + g2(2).

p

do

gl

p1/dex
0pa/da

)

|

P 0
0 p2

]

(5.118)

(5.119)

(5.120)

(5.121)

(5.122)
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it follows that (5.118) = (5.121) can be written in a compact form as

dg(r) ap
- = Ag(t) + wu(t), (5.123)
d{h(t) —Af(t)+g(0). (5.124)

and by applying the similarity transformation described in the previous section it
follows that

dg (1) =VAV$(1) + Va_pu(t), (5.125)
dr do
d{u(t) = VAV f0)+ 2), (5.126)

where V AV ! is given by (5.114). It is straightforward to derive that

Ip da b
Vw = [— 2@ - 2%] (5127)

Thus, the Eqgs. (5.123) and (5.124) corresponding to the two complex-conjugated
poles become after applying the similarity transformation

dlg|_[a-b]]& —/20a /b
dr |:§2i| B |:b a i||:§2i| + I:—ﬁab/aa}u(t)’ (5.128)

i f:l _ a—b f:l gl
JHE I FIE !

If there are several pairs of complex conjugated poles, equations above will be
true for any of these pairs and, by renaming p — py, &1 — &, &2 — &, 1 —
fs fo— f),a — am, b — by, the synthesized circuit is shown in Fig. 5.28.

aa'm 1 ~ b’mg'ZL 1 N A
V2 e U ~m ==1q,, 5 e f;n —Qm b £V
Im
ob 1., pomim 1. :
28—;”u —am ==|g! 5 =\’ |%m bin S
m

Fig. 5.28 Sub-circuit corresponding to a pair of complex conjugate poles
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qr qec
ko i () Fom (@ Z[ Ve (), n a — ap)km fm Ve, Gfﬂo)f
( Ij % %1 1 4/2d,, () %mz—l %Zl +\/—d (v — g f,J

Fig. 5.29 Parametric sub-circuit corresponding to the output equation

The new terms added in the output equations are

S
f2

= (@ —a) [—v2e V2d | f = —V2c(a — ao) fi + V2d (@ — ao) .

ir(s,@) = (@ —ao) [k k*] [ } =(@—a)[kk*]V7'f = (5.130)

In general, if the system has ¢ poles out of which ¢, are real and g, = (¢ —¢,)/2
are pairs of complex conjugate poles, then the parametric synthesis will be done as
follows: for each real pole m = 1,...,¢,, let k,, be the residue corresponding to
the pole; for each pair of complex conjugate poles m = 1,...,q, let the pole be
Pr, = am + jbu, with the corresponding residue k), = ¢, + jd,. The equivalent
circuit for the parametric output equation is shown in Fig.5.29. It consists of the
following elements connected in parallel:

e A parameterized capacitance ko(o) = ko + (@ — «p)dko/0cx,

* A parameterized conductance koo (@) = koo + (@ — 0t9) 0k o/ 0t

* g, voltage controlled current sources (having as parameter the parameterized
value k,, (o) =k, + (o — ag) 9k, / 0cx, controlled by the voltages x,,),

* g, voltage controlled current sources (having as parameter the parameterized
value —ﬁcm (@), controlled by the voltages x/,),

* g, voltage controlled current sources (having the parameter ~/2d,, (e), controlled
by the voltages X)),

* ¢, voltage controlled voltage sources (having the parameter (¢ — o)k, con-
trolled by the voltages f,,,

* ¢, voltage controlled current sources (having the parameter —~/2c,, (o — o),
controlled by the voltages fn’l),

* g, voltage controlled current sources (having the parameter V2d,, (¢ — ap),
controlled by the voltages f,{[ ).

The voltages x,, are defined on the g, subcircuits that correspond to real poles
(Fig. 5.20), the voltages %/,, X/ are defined on the ¢, subcircuits that correspond
to the pair of complex conjugate poles (Fig.5.26), the voltages f,, are defined on
the ¢, subcircuits that correspond to real poles (Fig. 5.24), the voltages f;/l and f"/l’
are defined on the ¢, subcircuits that correspond to the complex poles (Fig. 5.28).
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//’
.
z

Fig. 5.30 Stripline parameterized structure

5.2.8 Case Study

In order to validate our approach and to evaluate different parametric models
which can be extracted by the proposed procedure, several experiments have been
performed on a test structure that consists of a microstrip (MS) transmission
line having one Aluminum conductor embedded in a SIO, layer. The line has
a rectangular cross-section, parameterized by several parameters (Fig.5.30). The
return path is the grounded surface placed at y = 0. The nominal values used are:
hy = lpm, b, = 0.69um, hs = 10pum, a = 130.5um, p; = hy, py = hy,
p3 = 3um, X,y = 264 pm. In order to comply with designer’s requirements, the
model should include the field propagation along the line, taking into consideration
the distributed parameters and the high frequency effects.

5.2.8.1 Validation of the Nominal Model

The first step of the validation refers to the simulation of the nominal case
for which measurements (S parameters) are available from the European project
FP5/Codestar (http://www.magwel.com/codestar/). By using dFIT + dELOB [52],
at low frequencies, the following values are obtained:

R =18.11k£2/m, L =322nH/m, C = 213pF/m, (5.131)

which are coherent with the values obtained from the measurements at low
frequencies, and validates the grid used and the extension of the boundary used
in the numerical model. Then, by using the method described in Sect.5.2.4 the
dependence of p.u.l. parameters with respect to the frequency was computed. The
comparison between the resulting S parameters and the measurements is shown in


http://www.magwel.com/codestar/
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Fig. 5.31 Frequency characteristic Re(S;;): numerical model vs. measurements

Fig.5.31 and it validates the nominal model. The sensitivities of the p.u.l. parameters
are computed using the CHAMY software [40], by direct differentiation method
applied to the state space equations [41]. They could also be computed by Adjoint
Field Technique (AFT) [38, 53].

5.2.8.2 Parametric Models

In this section, the accuracy of several parametric models for the line capacitance is
investigated.

The first sets of tests considered only one parameter that varies, namely the width
of the line, p3. The nominal value chosen was p3 = 3 wm and samples in the interval
[1,5] wm were considered. The reference result was obtained by simulated the
samples separately (each sample was discretized and solved). These were compared
with the approximate values obtained from models A and R (Fig. 5.32). As expected
intuitively, the dependence w.r.t. p3 is almost linear and the A model is better than
the R model. Considering the relative variation of the parameters less than 15 %
(which is the typical limit for the technological variations nowadays) the relative
variation of the output parameter is obtained (Fig.5.32, right). The errors of both
affine and rational first order models for p.u.l. parameters are given in Table 5.2.
Model A based on the first order Taylor series approximation has a maximal error
for technologic variations 1.78 % for p.u.l. resistance when p3 is variable, whereas
model R has an approximation error of only 0.6 % for the same range of the
technological variations for p.u.l. capacitance when p3 is variable. Using (5.74) one
can be easily identify which is the best model for any case.
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Fig. 5.32 Left: Reconstruction of the p.u.l. C from Taylor Series first order expansion; Right:
Relative error w.r.t. the relative variation of parameter ps

Table 5.2 Maximal errors

Parameter | Quantity | Affine (A1) |Rational (R1)
[%] of p.u.l. parameters for 3 o011 015
technology variation of £ P : :
15 % C 0.65 0.25
D3 R 1.78 0.22
L 0.34 0.04
C 0.035 0.6

The second set of tests considered two parameters that vary simultaneously: p;
and ps. For reference, a set of samples in [0.8, 1.2] x [2, 4] wm were considered. The
p-u.l. capacitance was approximated using the additive, rational and multiplicative
models described above. In this case, a new model M is computed using an additive
model for p; and a rational one for p;, which is the best choice. Fig.5.33, left
compares the relative variation of the errors w.r.t. a relative variation of parameter
p1 for a variation of p3 of 5 %. Model M provides lower errors (maximum error is
2 %) than models A (3.7 %) and R (2.2 %). Figure 5.33, right illustrates that in the
range from 20 to 40 % model M is the best one if we look at the variation w.r.t. p3
for a variation of p; of 10 %.

Thus, by using the appropriate multiplicative models in the modeling of the
technological variability, the necessity of higher order approximations can be
eliminated.

5.2.8.3 Frequency Dependent Parametric Models

In this case, the parameter considered variable is h,. The sensitivity of the
admittance with respect to this parameter has been calculated according to (5.61),
using EM field solution. By applying Vector Fitting, a transfer function with 8 poles
has been obtained. This conduced to an overdetermined system of size (236, 26)
which has been solved with an accuracy (relative residual) of 3.7 % (Fig. 5.34-left).
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Fig. 5.33 Left: Relative error w.r.t. the relative variation of parameter p;, for a variation of p; of
5 %; Right: Relative error w.r.t. the relative variation of parameter p3, for a variation of p; of 10 %
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Fig. 5.34 Left: variation of the admittance sensitivity with respect to the frequency; right:
reference simulation vs. answer obtained from the frequency dependent parametric model (5.94)

Finally, the relative error of the A-VFIT model is 1.09 % compared to the relative
error of the A model which is 0.95 % for a relative variation of the parameter of
10 % (in Fig. 5.34-right the three curves are on top of each other).

5.2.9 Conclusions

The paper describes an effective procedure to extract reduced order parametric
models of on-chip interconnects allowing model order reduction in coupled field
(PDE) — circuit (DAE) problems. These models consider all EM field effects at
high frequency, described by 3D-FW Maxwell equations. The proposed procedure
is summarized by the following steps:

* Step 1 — Solve two field problems (2D EQS and FW-TM) and compute frequency
dependent p.u.l. parameters and their sensitivities with respect to the geometric
parameters that vary;

* Step 2 — Compute admittance for the real length of the line and its sensitivities
with respect to the variable parameters;
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* Step 3 — Choose the A/R variation model, i.e. the appropriate terminal excitation
(admittance or impedance);

* Step 4 — Apply Vector Fitting for the nominal case in order to extract a rational
model for the circuit function with respect to the frequencys;

* Step 5 — Compute sensitivities of poles and residues of the circuit function by
solving a least square problem;

* Step 6 — Assemble the frequency dependent parametric model by using the
compact expression (5.94) or by synthesis of a SPICE like parametric netlist
having frequency constant parameters.

Step 1 is dedicated to the extraction of the frequency dependent p.u.l. line
parameters in a more robust and flexible way than the inversion of the equation of
the short line segment. It is based on the solving of two field problems: 2D-EQS field
which describes the transversal effects such as capacitive coupling whereas EMQS-
TM field describes the longitudinal effects such as inductive, skin effect and eddy
currents. The longitudinal propagation is described by the classic TL equations, but
with frequency dependent p.u.l. line parameters.

Then (step 2), variability models for TL structures considering the dependency of
p-u.l. parameters w.r.t. geometric parameters, at a given frequency were analyzed. A
detailed study of the line sensitivity was made by using numeric techniques. For
one parameter case, the proposed methods avoid the evaluation of higher order
sensitivities, but keeping a high level of accuracy by introducing models based
on a rational approximation in the frequency domain. The multi-parametric case
has been analyzed, in addition, a multiplicative parametric model (M) has been
proposed. This is based on the assumption that the quantity of interest can be
expressed with separated variables, for which A and/or R models are used. Model
M is sometimes better than A and R models obtained from Taylor Series expansion.
Its specific terms (products of first order sensitivities) can thus approximate higher
order, cross-terms of Taylor Series. In order to automatically select the best first
order model for a multiparametric problem, the validity ranges of direct and reversed
quantities have to be evaluated (step 3). Once we establish the best model (A or
R) for each parameter, the M model will be easily computed by multiplication of
individual submodels. Our numerical experiments with the proposed algorithm in
all particular structures we investigated prove that the technological variability (e.g.
+20 % variation of geometric parameters, which is typical for the technology node
of 65 nm) can be modeled with acceptable accuracy (relative errors under 5 %)
using only first order parametric models for line parameters. This is one of the most
important results of our research.

Next, a rational approximation in the frequency domain, obtained with Vector
Fitting (step 4) is combined with a first order Taylor Series approximation. The
sensitivities of poles, residues and constant terms are computed by solving an over-
determined system of linear equations (step 5). The main advantage of this approach
is that the final result is amenable to be synthesized with a small parameterized
circuit (step 6). This method relies on the differential equation macromodel which
is extended in order to take into account the variability. It also assumes that a first
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order Taylor Series expansion for the parameter that varies is accurate enough for
the frequency range of interest. As shown in our previous work, there is a specific
excitation type of terminals for which this assumption is acceptable for a certain
frequency range. The passivity of the obtained circuit is guaranteed by the fact that
the transfer function used as input for the synthesis procedure is passive as it is
obtained by a fitting procedure with passivity enforcement.

Thus, the proposed method allows one to obtain parameterized reduced order cir-
cuits, having equivalent behavior as on-chip interconnects. These equivalent circuits
described in SPICE language are extracted by considering all electromagnetic field
effects in interconnects at very high frequency. This method applied to extract the
reduced order model of the system described by PDE is a robust and efficient one,
being experimentally validated.

The advantages of the proposed approach are:

* Its high accuracy, due to the consideration of all field effects at high frequencys;

* Fast model extraction due to the reduced order of degrees of freedom in the
numerical approach;

» High efficiency of the model order reduction step due to the use of Vector Fitting;
in all interconnect studied cases, extracted models with an order less than 10 had
an acceptable accuracy for designers.

* Simple geometric variability models based only on first order sensitivities, with
extended valability domain due to the appropriate excitation;

» Appropriate variation model for frequency and length of interconnects, due to the
transmission lines approach;

e The reduced SPICE models are simple and compact, containing ideal linear
elements with lumped frequency independent constant parameters: capacitances,
resistances and voltage controlled current sources; these element parameters have
very simple affine variation in the case of the geometric variability.

The proposed method was successfully applied to model technological variabil-
ity, without being necessary the use of higher order sensitivities.

5.3 Model Order Reduction and Sensitivity Analysis

Several types of parameters p = (d,s, 8) influence the behaviour of electronic
circuits and have to be taken into account when optimizing appropriate performance
functions f(p): design parameters d, manufacturing process parameters s, and
operating parameters 6.> The impact of changes of design parameters, e.g., the width
and length of transistors or the values of resistors, plays a key role in the design of

3Section 5.3 has been written by: Michael Striebel, Roland Pulch, E. Jan W. ter Maten, Zoran
Tlievski, and Wil H.A. Schilders. Of parts of this Section extensions can be found in the Ph.D.-
Thesis of the fourth author [95].
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integrated circuits. Deviations from the nominal values defined in the design phase
arise in the manufacturing process. Hence, to guarantee that the physical circuit
shows the performances that were specified, the design has to be robust with respect
to variations in the manufacturing phase. It has to be analysed how sensitive to
parameter changes an integrated circuit and its performance is.

The manufacturing process parameters have a statistical impact, f.i., for the oxide
thickness threshold. Examples of operating parameters are temperature and supply
voltage.

Sensitivity can ease calculations on statistics (for instance by including the
sensitivity in calculating the standard deviation of quantities that nearly linearly
depend on independent normal distributed parameters [91]: if F(p) ~ Fo+ Ap
with p; ~ N(0,0;) then 6*(F;) ~ }_; a;o; (o(F;), and 0; being the standard
deviation of F; and p;, resp.).

For optimizing one wants to minimize a performance function f(p) while also
several constraints have to be satisfied. The performance function f(p) and the
constraint functions c(p) can be costly to evaluate and are subject to noise (for
instance due to numerical integration effects). For both, the dependency on p can be
highly nonlinear. Here there is interest in derivative free optimization [118], or to
response surface model techniques [79, 80, 92, 117]. Partly these approaches started
because in circuit simulation, sensitivities of f(p) and c(p) with respect to p are
not always provided (several model libraries do not yet support the calculation of
sensitivities). However, when the number of parameters increases adjoint sensitivity
methods become of interest [74, 75]. For transient integration of linear circuits this is
described in [76, 77]. In [96] a more general procedure is described that also applies
to nonlinear circuits and retains efficiency by exploiting (nonlinear) techniques from
Model Order Reduction.

A special sensitivity problem arises in verification of a design after layouting.
During the verification the original circuit is extended by a huge number of
‘parasitics’, linear elements that generate additional couplings to the system. To
reduce their effect the dominant parasitics should be detected in order to modify the
layout.

Adjoint equations are also used for goal achievement. One example is in global
error estimation in numerical integration [73, 99].

In this Section we describe adjoint techniques for sensitivity analysis in the
time domain and indicate how MOR techniques like POD (Proper Orthogonal
Decomposition) may fit here. Next we give a short introduction into Uncertainity
Quantification which techniques provide an alternative way to perform sensitivity
analysis. Here pMOR (parameterized MOR) techniques can be exploited.

5.3.1 Recap MNA and Time Integration of Circuit Equations

Modified Nodal Analysis (MNA) is commonly applied to model electrical circuits
[86, 90]. Including the parameterization the dynamical behaviour of a circuit is then
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described by network equations of the general form

d
d—tq(X(t,p),p) +Jjx(, p),p) = s, p). (5.132a)

The state variables x(¢, p) € R”, i.e., the potentials at the network’s nodes and the
currents through inductors and current sources, are the unknowns in this system.
They depend implicitly on the parameters gathered in the vector p € R"7, because
the voltage-charge and current-flux relations of capacitors and inductors, subsumed
in q(-,-) € R", the voltage-current relations of resistive elements, appearing in
j(,-) € R" and the source terms s(-,-) € R”, i.e., the excitation of the circuit,
may depend on the parameterization. The elements’ characteristics q, j are usually
nonlinear in the state variables X, e.g., when transistors or diodes are present in the
design at hand.

If, however, all elements behave linear with respect to x, the MNA equations are
of the form

C(p)x(z,p) + G(p)x(z,p) = s(z, p), (5.132b)

where x denotes total differentiation, (d /dt) x(¢, p) with respect to time. C(p) and
G(p) are real n x n-matrices that might depend nonlinearly on the parameters p.

Usually the network equations (5.132) state a system of Differential-Algebraic
Equations (DAEs), i.e., (d/0x) q(x, p) (or C(p)) does not have full rank along the
solution trajectory x(¢, p).

In transient analysis the network equations (5.132) are solved on a time-interval
[t0, tena] C R, where the parameter vector p is fixed and a (consistent) initial value
Xop = X(t,p) € R" is chosen. As the system can usually not be solved exactly,
numerical integration, e.g., BDF (backward differentiation formulas) or RK (Runge-
Kutta) methods are used to compute approximations X; , ~ X(f;,p) to the state
variables on a discrete timegrid {fo,...,#,...,tx = tenq}. For a timestep i form
tj—1 tot; = tj—;+h, multistep methods, like the BDF schemes, approximate the time
derivative d%q(x(tl, p). p) by some k-stage operator pq(X;p, p) := aq(X;p,p) + B,
where & = a(h) € R is the integration coefficient and 8 € R" is made up of history
terms q(x, p, p) at the timepoints ¢, for u = [ —k,...,l — 1. For the backward
Euler method, e.g., we have

1 1
pq(X1p, P) := 7 q(X/p.P) _EQ(XI—I,INP)-
—— ~———
= =B
This results at each discretisation point #; € {fy, ], ...,tx} in a nonlinear equation

for the state variable x; p of the form

aq(x7p,p) + B + j(X1p, p) =s(17,p). (5.133)
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This nonlinear problem is usually solved with some Newton-Raphson technique,
where in each underlying iteration v = 1, 2,... a linear system with a system
matrix of the form

aq(-, 0

I _( qat.p) 3 p))( ) (5.134)
ox

appears. Typically, simplified Newton-Raphson iterqations may be applied. That is,

only the evaluation at x}l) is involved. Note, also when applying a onestep method,

like an RK-scheme, hnear systems, made up of the Jacobian (5.134) arise.

5.3.2 Sensitivity Analysis

We encounter that the state variables x(¢, p) implicitly depend on the the parameters
p € R"». Hence, one is interested in how sensitive the behavior of the circuit with
respect to variations in the parameters is. Thinking about “behavior of the system”
we can basically have in mind

(i) How do the state variables vary with varying parameters?
(ii)) How do measures derived from the state variables, e.g., the power consumption
change with varying parameter?

Furthermore, due to usually nonlinear dependence of the element characteristics
q and j or C and G, respectively, on the parameters, we are interested in variations
around a nominal value py € R"?.

In the following we will give a brief overview on the different kinds of
sensitivities and how they can be treated numerically. For further reading we refer
to the PhD thesis by Ilievski [95] and the papers by Daldoss et al. [78], Hovecar
et al. [93], Cao et al. [74, 75] and Ilievski et al. [96].

5.3.2.1 State Sensitivity

In (transient) state sensitivity one is interested, how the trajectories of the state
variables x vary with respect to the parameters p around the nominal setting po.
Hence, the goal is to compute

dx(r,p)

Xpo () i= e R™"»,  forallt € [tg, feng]- (5.135)
dp

|P=P0

As described by Daldoss et al. [78] we linearize the nonlinear network equa-
tions (5.132b) around the nominal parameter set po, i.e., we differentiate with
respect to p. We assume that the element functions ¢, j are sufficiently smooth
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such that we can exchange the order of differentiation (Schwarz’s theorem) and get:

d d
T [Cx(t) - Xpy ()] + G (1) - xp, (1) =S, (1) — (d—tcp(r) +G,(1)  (5.136)

0 0
with Cy(r) = B—E(X(I,Po),l’o), C, (1) = %(X(Z,Po),Po),
dj dj
Go(0) = GL (o). Po). - Gy(1) = 5 (0. po). o)
d
S,(@t) = £(17P0),

where C, (1), G, () € R and C,(1),G,(t).S,(r) € R""» and x(t, po) solves
the network problem (5.132a).

The initial sensitivity value x, (f0) =: X ,,0 =: X];OC can easily be calculated as
the sensitivity of the DC-solution x(0, po) := XEOC of the network equation (5.132a),
satisfying

J(Xp . po) = s(t0. po). (5.137)

Obviously, the DAE (5.136) states a linear time varying dynamical system for the
state sensitivity Xpo» €Ven when (5.132a) was nonlinear. We assume that we have
used the backward Euler method to solve the network problem (5.132). Using the
same time grid for solving the state sensitivity problem (5.136), we advance from
time point £ to t; = tj—; + h, i.e., we compute Xpod = Xpo (t;) again with the
backward Euler by solving

M; xp,; = rhs; (5.138)
with
1 aq dj
M[ L= ECX(Z[) + Gx(tl) ~ &(Xl,p()s pO) + &(Xl,p()vpo)s

d 1
rhs; 1 =8S,(1) — (Ecp(tl) + G, (1)) + Zcx(tl—l) * Xpo.l—1
(5.139)
1 (dq aq
~S,(t) — (E (%(Xl,povpo) - %(Xl—l,po’po))

dj 1 dq
+%(Xl,pov pO)) - Z&(Xl—l,pov pO) : Xpo,/—l'

We note, that the partial derivatives with respect to x have already been computed
in the transient analysis and are available, if they have been stored. Especially, the
system matrix M; is the same as we have used in applying the backward Euler
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method in the underlying simulation: within the Newton iterations these where the
system matrices in the steps where convergence was recorded. Hence, also the
decomposition of this matrix is available, such that the system could be solved
efficiently. For schemes other than the backward Euler, we can also state, that
the solution of the transient sensitivity problem (5.136) needs ingredients that are
available (if they have been stored) from the solution of the network problem with
the same method and the same step size. A reasoning for this and details on step
size control and error estimation can be found in the paper by Daldoss et al. [78].

However, the sensitivities of the element functions (,j and s have to be
calculated. In total, the evaluation of the right-hand side rhs; requires &'(n,, - n*) +
O(n, - n) operations [96]. As in addition a lot of data has to be stored, computing
the state sensitivities for circuits containing a large number of parameters is not
tractable.

5.3.2.2 Observation Function Sensitivity

Often one is not interested in the sensitivity x, (¢) of the states of the parameter
dependent network problem (5.132) but rather in the sensitivity of some perfor-
mance figures of the system, like e.g., power consumption. These measures can
usually be described by some observation function I (x, p) € R" of the form

tend
I'(x,p) = / g(x.17,p)dr, (5.140)

fo

where the function g : R” x RxR"”? — R" is such that the partial derivatives
dg / 0x and dg / dp exist and are bounded. Note that at the left-hand side of (5.140)
x = Xx(., p), which is a whole waveform in time.

The sensitivity of the observation function I' : R" x R"? — R"* around some
nominal parameter set pg € R"7, clearly is

ar or 9 ar
d (x(P0). Po) = =—(x(Po). Po) — (x(P0). P0) + —— (x(po). po) € R"" .
(5.141)

For problems where the sensitivity of a few observables, i.e., where n, is small
but the system depends on a large number 1, of parameters, the adjoint method,
introduced by Cao et al. in [74, 75] is an attractive approach. In the mentioned
papers, the observation sensitivity problem is derived for implicit differential
equations of the form

F(x,x,z,p) = 0. (5.142)
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Here we derive the observation sensitivity problem for problem (5.132a) as we
usually encounter in circuit simulation. The idea however, follows the idea presented
by Cao et al. in the papers mentioned.

The observation function’s sensitivity is not calculated directly. Instead, an
intermediate quantity A, defined by a dynamical system, the adjoint model [82]
of the parent problem, is calculated.

5.3.2.3 Adjoint System for Sensitivity Analysis

Instead of considering the definition (5.140) of the observation function I" directly,
we define an augmented observation function

fend d
Y (x.p) := I'(x,p) —/ AT(@) [d—IQ(X(LP),P) +J(x(.p).p) —S(t,p)} dt
' (5.143)

which arises from coupling the dynamics and the observation function I' by a
Lagrangian multiplier A (z) € R"*" that we will define more precisely further on.

If x(z, p) solves the network equations (5.132a) for p = py it holds ¥ (x, pp) =
I’ (x, po) and also the sensitivities coincide:

dF dr
(x Po) = p ——(X, o).

Note, that where it is clear from the context we omit in the following the
specifications of the evaluation points, e.g., (X, po)-

By the definitions (5.140) and (5.143) of the observation function and the
augmented observation function, respectively, we get

dr fend (9 dg Ox fend d dq dj ds
— = = _ Al (¢ - _
dp /to (8p+8x8p)d /,0 ()(dt dp dp dp) i

We have a closer look at the second integral and apply integration by parts:

/tend T( )(d dq) [A‘qu}tend /tend le@dt
0 dr d dp w dt dp
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Recombining this with the observation sensitivity (5.144) and expanding the total
derivatives with respect to p we see

dr

e LG CROVMOERSH0) e

tend dA‘T
+/ (TCX(I) —ATG (1) + )’x(l)) “ Xp, () dt (5.145)

Tend dA‘T T
4 / 7,0+ ZCo0) = AT [G, = 5,(0)] ) ar,
to
where C,, Gy, C,, G, and S, are the quantities defined in Eq. (5.136) and

3 Xn 3 NnoXn
Yo(6) = <2 (x(t,po) € R™, p(t) := = (x(t, po)) € R""»
0x op

are the partial derivatives of the kernel of the observable and can thus be computed,
if the solution trajectory x(¢, po) is known.

In the present form (5.145) the calculation of the observation function’s sensi-
tivity still demands to know the development of the state sensitivities xp, (7). As
the above considerations are valid for any smooth A (1) € R"™" we may choose
this parameter such that the state sensitivity disappears in the equation. We have
already seen that the sensitivity XEOC of the circuit’s operating point XEOC can easily
be calculated. Hence, choosing A such that

da
cf(r)z —G.(t)"A = —pT (@) (5.146a)
and AT(T)C.(T) =0, (5.146b)
the calculation of the observable function’s sensitivity reduces to evaluating

r
fl—p =A7(10) (Cx(10) xpy + Cp(10)) = AT (tena) Cp (fena)

» T (5.147)
+/ (yp(t) + 7c,,(z)—)LT [Gp—Sp(t)]) dr.

Equation (5.146a) inherits the basic structure of the underlying network prob-
lem (5.132a). Therefore, this equation defining the Lagrangian A (¢), is usually a
DAE system. This linear system is called the adjoint system to the underlying
network equation. For DAEs of index up to 1, the choice (5.146b) defines a
consistent initial value [75]. For systems of index larger and equal to 2, the
consistent initialisation is more difficult. As an initial value for A4 is specified for
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the end of the interval [fy, f.nq] Of interest, the adjoint equation (5.146a) is solved
backwards in time.

Several kind of observation functions also need x = d%x in addition to x. For
instance when considering jitter one is interesting in the time difference between
two subsequent times t; and 1, when a specific unknown reaches or crosses a
given value ¢ (with equal signs of the time derivative). For the frequency of the
jitter we have f = 1/T = 1/(t2 — 71). Let the specific unknown be x;(z, p).
The time moment t for which x;(r, p) = ¢ may be determined by inverse
interpolation between two time points #; and #; and known values x; obtained
by time integration such that x;(¢;, p) < ¢ < x;(t2, p). Of course v depends
on p, so more precisely we have x;(z(p), p) = c. By differentiation we obtain:
d(z)/dp = —[d(x;)/d] " d(x;)/dp.

Hence we are also interested in a more general case than (5.140)

fend

H(x(p). x(p). p) = / F(x(t. p). x(t.p). p)dr. (5.148)

fo

By a similar analysis as presented in [96] for (5.144)—(5.145) we derive (§ = 0x/dp)

/tm (aF L aF)dt
PREAN) ¢ ox op

oF
(87 o) Cultena) = 5 (tena) ) Xy (fena) = 7 (ena)C )

S H((p). x(p). )
p

oF
+(¢7 W) Cxlt0) = S (10) ) sy 10) + T (1) (1)

f0 dt " 0x
¢t r oF
+ Gt (6,-5,) + %)dt. (5.149)

which holds for any ¢ (z) € R"*"*. If ¢ is chosen such that

dc d oF OF\T
T T T
—_ = —(— — |\ — .1
C dt G dt(ax) (8x) ’ (5.150)
e T IF 7
with ‘initial’ value C; {(tend) = (?) (fend), (5.151)
X

a significant reduction occurs in (5.149) and x (¢) is not explicitly needed. This gen-
eralizes the result in [96] (see also [64]). Note that x, (0) = X(0,po) = Xpc(po),
which is the sensitivity of the DC-solution, which one needs to determine explicitly.
Some efficiency is gained by calculating {7 (0)C,(0)%pc = [CI(0)£(0)]” %Xpc
(whenn, > 1).Note however that (5.151) can be satisfied only when the right-hand
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side is in the range of C;. Because in (5.150)—(5.151) the right-hand sides are
evaluated at x(¢, p), in general, the solution ¢ will depend on p, even in the case
of constant matrices C, and G,. This is in contrast to [64].

Summing up, the backward adjoint method for computing the sensitivity of the
observable I' with respect to parameter variations around a nominal parameter
setting po is carried out by the following steps

1. Solve the network DAE (5.132a) for x = x(¢, po), on the interval [ty, fenq];

2. Solve the backward adjoint problem (5.146a), subject to the initial condi-
tion (5.146b) for A on the interval [fenq, fo], i.€., backward in time;

3. Compute the observable sensitivity d I / d p using the expression (5.147).

Carrying out the backward adjoint method, one has to consider several aspects we
do not address here. Amongst these are the evaluations of the partial derivatives
like C, along the solution trajectory. On the one hand, these derivatives are usually
not available as a closed function but are approximated by finite differences. On
the other hand, the evaluation points, i.e., points on the trajectory x(#, po) are also
available as approximations only. Furthermore, the integral in the formula (5.147)
has to be approximated by a numerical quadrature. The nodes needed in the
according scheme may not be met exactly during transient simulation and/or during
the backward integration of the adjoint problem. For further reading on these
problems we refer to [95, 96].

However, leaving all these aspects aside, one has to integrate two dynamical
systems numerically. First the (nonlinear) forward problem (5.132a) for the states
and then the linear backward problem (5.146a). The contribution of the COMSON
project for transient sensitivity analysis was to add model order reduction (MOR) to
the process. More precisely, the idea elaborated during the project was to solve an
order reduced variant of the backward problem where the data needed to apply the
reduction is calculated from the forward solving phase. In the next section we will
describe the very basic idea of MOR and give a brief introduction to the specific
technique that was used in this project.

5.3.3 Model Order Reduction (with POD)

Solving a dynamical system with any numerical scheme implies to set up and solve
a series of linear equations. In circuit simulation typically the dimension of these
systems are in a range of 10°-~10°. Both the evaluation of the system matrices and
right-hand sides, e.g., M; and rhs; in (5.138)—(5.139), as well as solving the system,
i.e., decomposing the system matrices, is computationally costly.

However, in circuit design often the main interest is the analysis of how a circuit
block processes an input signal, e.g., if some input signal is amplified or damped by
the circuit. That means, one may not be interested in all z internal state variables but
only in a limited selection. This concern is described by an input-output variant of
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the network model. For a linear network problem (5.132b), omitting the parameters
for ease of notation, e.g., the corresponding input-output system reads

Cx(t) + Gx(¢) = Bu(r),

(5.152)
y() = Lx(1),
where u(f) € R and y(¢) € RY are the input and the output of the system, injected
to and extracted from the system by the matrices B € R"*” and L. € R?*".
As in an input-output setting, the states x represent an auxiliary variable only.
The idea of MOR is to replace the high-dimensional dynamical system (5.152) by

Ci(r) + Gz(r) = Bu(r),

R (5.153)
y(r) = La(1),
where z(7) € R’ and the system matrices C,G € R"™*", B € R"™*” and L € R?*"
are chosen such that r < n and y(¢) ~ y(t).

There are various methods to construct the reduced variant (5.153) from the full
problem (5.152). We refer to Chapter 4 for an overview, as well as to [63, 67, 69,
70, 103, 108-110, 121] for further studies.

A large class of MOR methods are based on projection. These methods determine
a subspace of dimension r, spanned by a basis of vectors v; € R" (i = 1,...,r).
The original state vector x(¢) is approximated by an element of this subspace that
can be written in the form Vz(t), where V = (vi,...,v,) € R Hence, one
replaces x(¢) by Vz(¢) in (5.152) and projects the equation onto the space subspaces
spanned by the columns of V by a Galerkin approach. In this way, a dynamical
system (5.153) emerges where the system matrices are given by

~

C:=vV'cv, G:=V'GV, B:=V'B, L:=LV. (5.154)

5.3.3.1 Proper Orthogonal Decomposition

While other MOR methods start operating from the matrices C, G, B and L, the
method of Proper Orthogonal Decomposition (POD) constructs the matrix V, whose
columns span the reduced space the system (5.152) is projected on, from the space
that is spanned by the trajectory x(¢), i.e., the solution of the dynamical system. The
method applies to nonlinear systems as well.

Recall, that our aim is to construct a reduced model for the backward adjoint
problem (5.146). As this is a linear system from which we know the system matrices
only after a solution of the underlying forward network problem (5.132a), POD
seems to be the best choice for this task.
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The mission POD fulfills is to find a subspace approximating a given set of data in
an optimal least-squares sense. The basis of this approach is known also as Principal
Component Analysis and Karhunen-Loéve theorem from picture and data analysis.

The mathematical formulation of POD [103, 107, 121] is as follows: Given a

set of K datapoints X := {xy,...,Xg}, a subspace S C R” is searched for that
minimizes
| K
1X = X3 := = > % — ox«ll5 (5.155)
k=1
where ¢ : R" — S is the orthogonal projection onto S, which has {¢,,...,¢,} as

an orthonormal basis of S.

This problem is solved, applying the Singular Value Decomposition (SVD) to the
matrix X := (Xq,...,Xg) € R"™K which is called snapshot matrix, as its columns
are (approximations to) the solution of the dynamical system (5.152) at timepoints
t,...,tg € [to, tena]- The SVD applied to the matrix X, provides three matrices:

@ ¢ R orthogonal,

¥ e RE*K orthogonal,

Y =diag(oy,...,0,) e RV withoy>--->0,>0,41=... =0k =0,
such that
0\ ;
X=9¢ v, 5.156
(5 0) (5.156)

where the columns of @ and ¥ are left and right eigenvectors, respectively, and
oy,...,0, are the singular values of X.

Then, for any r < v, taking @, ..., @, as the first r columns of the matrix @ is
optimal in the sense that it minimizes the projection mismatch (5.155).

Both cases,n > K and n < K, are allowed; in practice one often has n > K.

Finally, the MOR projection matrix V in (5.154) is chosen made up of these basis
vectors:

V:=(¢...,9,) € R,
To understand why the first 7 columns of @ solve the minimization problem (5.155)
one canrecall thatfori = 1,...,n theith column ¢, of @ is actually an eigenvector

of the correlation (or covariance) matrix of the snapshots with criz as eigenvalue:

XX"p; =0’ 9;.
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Algorithm 5.1 BRAM: Backward Reduced Adjoint Method

1: Integrate (5.132a) and store the solutions x(#;, p)

2: Build the snapshot matrix X = [x(y, p), ..., X(¢y, p)] (Where ty = fenq)

3: Determine the singular value decomposition X = @' ¥YV¥ and dominant singular values

O1y...,0p.

4: Determine the Proper Orthogonal Decomposition (POD) time-independent projection matrix
V, such that x &~ VX and %x ~ V%i

: if (BRAM II) then

Include a second forward time integration, now for the reduced system of equations.

: end if

: Integrate (5.157) backward in time using reduced matrices V*CIV and VI GTV and the

T
projected right-hand side VT[ )T ( ) ]

Intuitively the correlation matrix XX’ detects the principal directions in the data
cloud that is made up of the snapshots X, . .., Xx. The eigenvectors and eigenvalues
can be thought of as directions and radii of axes of an ellipsoid that incloses the
cloud of data. Then, the smaller the radii of one axis is, the less information is lost
if that direction is neglected.

We abandon to explain the derivation of POD in detail here as in literature e.g.,
[63, 103, 121] this is well explained. For details on the accuracy of MOR with POD
we refer to papers by Petzold et al. [94, 107].

5.3.4 The BRAM Algorithm

In [96] it was observed that a forward analysis in time of (5.132a) automatically
provides provides snapshots x(z;, p) at time points 7;. This can lead to a reduced
system of equations for £(¢) = V¢ in (5.150)—(5.151)

dt d OF IF\T
T ~T TaTvys — T (9% 157
VICIVE - VIGIVE = VI ()" V(ax),(SS)
with “initial’ value V7 CTVE(feng) = VT(T)T(zend), (5.158)
l X

Then the overall algorithm is described in Algorithm 5.1, without the lines 5-7.
Here it is assumed that the matrices are saved after the forward simulation. It is also
assumed that for the adjoint system the same step sizes are used as in the forward
run. If not, additional interpolation has to be taken into account to determine the
reduced matrices at intermediate solutions and also effort has to be spent in LU-
decomposition.

Apart from this discussion, the question is why this should work in general
(apart from special cases in [96]). The solution X A~ VX depends on the right-
hand side s of (5.132a). Clearly V”'s should contain the dominant behaviour of s. If
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T
VT[%(?J—E)T - (g—g) ] behaves similarly when compared to the right-hand side of

(5.150) we may expect a similar good approximation for the solution { = Vf .
Because the right-hand side of (5.157) does not depend on ¢ this can be checked
in advance, before solving (5.157). In the case of power loss through a resistor

T
we have (?TE) = (Ax)7 (for some matrix A) and we have to check if (Ax)7 ~

VIXTVTAT,
Another point of attention is that the projection matrix V found implies that we
more or less are looking to the sensitivity of the solution X of

d i i
E[VTq(VX(t, p).p)l + V7 j(Vx(t.p).p) = V's(t,p) (5.159)

rather than for the solution x of (5.132a). By this it is clear that V depends on p and
thus

X ~ ‘ X - — X~ —X + ‘_. . 60
ap p ’p 3 3 3

The question is: can we ignore the first term at the right-hand side of (5.160).
Here the last term represents the change inside the space defined by the span of
the columns of V. The first term represents the effect by the change of this space
itself. One may expect that this term is smaller than the last term (‘the first term
will in general require more energy’), especially when the reduction is more or less
determined by topology. In several tests we made, this first term indeed was much
smaller than the other term.

Note that we not intend to solve (5.159) by using a fixed projection matrix V,
valid for p = py, for several different values of p. The danger of obtaining improper
results when doing this was pointed out by [83]. Contrarily, we always apply an up-
to-date matrix V(p). However, this example shows that g—;’ is not always negligible.

One can collect V = [V(py). ..., V(px)] and apply an additional SVD to V. This
procedure provides a larger, uniform, projection matrix V.

In [95] the parameter dependency of the singular values for POD was analysed
for a battery charger, for a ring oscillator, and for a car transceiver example. Also
the nr of dominant singular values as function of p was studied. Finally the angle
between the subspaces for different p was studied. Note that one can use a matlab
function for this based on the algorithm by Knyazev-Argentati [98].

Finally, in [95] a modification was introduced in Algorithm 5.1 by introducing
the lines 5—7. Note that the additional step 6 is cheap. We obtain the solution of
the POD-reduced system. In [94, 103, 107, 121] error estimates are determined for
the approximation error of the POD approximation. Actually, in step 8, BRAM 11
determines the sensitivity of the POD solution. In Fig. 5.35 [95] the singular values
of POD after 3,500 snapshots within a simulation from #y) = O ms and #.,g = 200 ms
for a Li-ion charger for different values of the area of a capacitor. The parameter
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Singular Value Decay for Parameter Values
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Fig. 5.35 Singular values of POD after 3,500 snapshots for a Li-ion charger for different values
of the area of a capacitor

p took values p = 30, 32,34, 36, 38, 40. Clearly the first 100 singular values are
enough for a good reconstruction, which as a by-product als shows a high potential
for the application of the BRAM methods as the dimension of the problem can be
reduced by roughly a factor 35. In Fig.5.36 [95] the angle in the rotation of the
principle vector is studied, the nominal being for p = 30. The apparent jump to 90°
rotation near the cut off point is due to matrix diagonal zero padding introduced in
the general case for principle vector analysis. These large 90° rotations are not due
to principle vectors influenced by parameter changes and should not be taken into
account.

5.3.5 Sensitivity by Uncertainty Quantification

A modern approach to Uncertainty Quantification is to expand a solution x(¢, p)
in a series of orthogonal polynomials in which the p is argument of the (multidi-
mensional) polynomials and the ¢ appears in the coefficients. If the p are subject
to variations such a representation is called a generalized Polynomial Chaos (gPC)
expansion. Having established the expansion, this provides facilities similar like a
response surface model: fast and accurate statistics and sensitivity.
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Principle Vector Rotation, Truncation at first 100 dominent basis modes
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Fig. 5.36 Principle vector rotation as a function of the capacitor area for the problem in Fig. 5.35

In this section we shortly summarize some basic items. We also point out how a
strategy for parameterized Model Order Reduction (pMOR) fits here. This strategy
contains a generalization of one of the pMOR algorithms described in Sect. 5.1 of
this Chapter.

We will denote parameters by p = (py, ..., p,,)T and assume a probability space
given (2, o7, &) with & : o/ — R (measure; in our case the range will be [0, 1])
andp : 2 — Q C RY w — p(w). Here we will assume that the p; are
independent random variables, with factorizable joint probability density p(p).

For a function f : Q0 — R, the mean or expected value is defined by

<f>= /Q FP@)AP (@) = /Q 70 p(p)dp. (5.161)
A bilinear form < f, g > is defined by

< fg>= /Q £®) g0 pp)ip =< f g > . (5.162)

The last form is convenient when products of more functions are involved. Similar
definitions hold for vector- or matrix-valued functions f: 0 — R™".

We assume a complete orthonormal basis of polynomials (¢; );en, ¢ : R? — R,
given with < ¢;,¢; >= §; (i, j,> 0). When ¢ = 1, ¢; has degree i. To treat
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Table 5.3 One-dimensional orthogonal polynomials related to well-known probability density
functions

Distribution Polynomial Weight function Support range
Gaussian Hermite H,(p) e FTZ (—00, 00)
Uniform Legendre P,(p) 1 [—1,1]

Beta Jacobi P,‘,J'ﬁ(p) 11— p)yd+ p)? [—1,1]
Exponential Laguerre L,(p) e~ ? [0, c0)
Gamma Generalized Laguerre LY (p) ple? [0, 00)

a uniform distribution (i.e., for studying effects caused by robust variations) one
can use Legendre polynomials; for a Gaussian distribution one can use Hermite
polynomials [100, 123, 124]. Some one-dimensional polynomials are mentioned
in Table 5.3. A polynomial ¢ on R? can be defined from one-dimensional
polynomials: ¢i(p) = [1%_, ¢i,(pa). Actually i orders a vectori = (i, ....i5)";
however we will simply write ¢;, rather then ¢;. An example is given in (5.163),
using Legendre polynomials. Note that, due to normalization, Lo(p) = 1/+/2,
Li(p) = /3/2p, La(p) = %\/g(3p2 — 1) — see also [87]. In [88] one finds
algorithms how to efficiently generate orthogonal polynomials from a given weight
function.

$o(p) = Lo(p1) Lo(p2).
¢1(p) = Li(p1) Lo(p2).
$2(p) = Lo(p1) Li(p2).
¢3(p) = La(p1) Lo(p2), (5.163)
¢4(p) = L1(p1) L1(p2).
¢s(p) = Lo(p1) L2(p2).

We will denote a dynamical system by
F(x(z,p),t,p) =0, fort € [ty,11]. (5.164)

Here F may contain differential operators. The solution x € R" depends on ¢ and on
p- In addition initial and boundary values are assumed. In general these may depend
on p as well.

A solution x(¢,p) = (x1(¢.p)....,x,(t.p))" of the dynamical system becomes
a random process. We assume that second moments < xf (¢, p) > are finite, for all
t €lty,ti]land j = 1,...,n. We express x(¢, p) in a Polynomial Chaos expansion

x(t.p) = Y vi(t) ¢i(p). (5.165)

i=0
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where the coefficient functions v; () are defined by

vi(t) =< x(z,p). $i(p) > . (5.166)

Continuity/smoothness follow from the solution x(#, p) and similarly the construc-
tion of expected values and variances.
A finite approximation x” (¢, p) to x(z, p) is defined by

X"(t,p) = D _vi(t) ¢ (p). (5.167)

i=0

For long time range integration m may have to be chosen larger than for short time
ranges. Further below we will describe how the coefficient functions v;(¢) can be
efficiently approximated.

For functions x(¢, p) that depend smoothly on p convergence rates for ||x(¢,.) —
x"(t,.)||, in the norm associated with (5.162), are known. For instance, for
one-dimensional functions x(p) that depend on a scalar parameter p such that
xM .., x% are continuous (i.e., derivatives w.r.t. p), one has

1
lx() = xF Ol < €5 ||x<’<>(.)||L/%, (Hermite expansion [65]),  (5.168)
m

k
1 )
[x() =x7 Ol < C— Z [lxO )] ? (Legendre expansion [124]).
b m —~

12’
(5.169)

Here the Lf)-norms include the weighting/density function p(.). Note that the
upperbound in (5.169) actually involves a Sobolev-norm. In [72] one also finds
upperbounds using seminorms (that involve less derivatives).

For more general distributions p(.) convergence may not be true. For instance,
polynomials in a lognormal variable are not dense in L/z,. For convergence one needs
to require that the probability measure is uniquely determined by its moments [81].
One at least needs that the expected value of each polynomial has to exist. This
has a practical impact. The imperfections in a manufacturing process cause some
variability in the components of an electronic circuit. To address the variability,
corresponding parameters or functions are replaced by random variables or random
fields for uncertainty quantification. However, the statistics of the parameters often
do not obey traditional probability distributions like Gaussian, uniform, beta or
others. In such a case one may have to construct probability distributions or
probability density functions, respectively, which approximate the true statistics at a
sufficient accuracy. Thereby, one has to match corresponding data obtained from
measurements and observations of electronic devices. The resulting probability
distribution functions should be continuous and all moments of the random variables
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should be finite such that a broad class of methods like, e.g., Polynomial Chaos, is
applicable.

The integrals (5.166) can be computed by (quasi) Monte Carlo, or by multi-
dimensional quadrature. We assume quadrature grid points p!, p?,...,pX and
quadrature weights wy, 1 < k < K, such that

K
<x(1,p), ¢i(p) >~ Y wi x(1,p*) ¢ (p"). (5.170)
k=1

We solve (5.164) for x(z, pk), k = 1,..., K (K deterministic simulations). Here
any suitable numerical solver for (5.164) can be used. In fact (5.170) is a (discrete)
inner-product with weighting function wg (p) = > le wi 8(p—p*). This approach
is called Stochastic Collocation [100, 123, 124]. Afterwards we determine

K
vi(t) =Y wi x(t.p*) ¢i(p"). foreachi. (5.171)
k=0

Here the Polynomial Chaos expansion is just a post-processing step.

Only for low dimensions ¢, tensor-product grids of Gaussian quadrature are used.
Gaussian quadrature points are optimal for accuracy. In higher-dimensional cases
(g > 1) one prefers sparse grids [123, 124], like the Smolyak algorithm. Sparse
grids may have options for refinement. Note that Gaussian points do not offer this
refinement. Stroud-3 and Stroud-5 formulas [116] have become popular [122].

An alternative approach to Stochastic Collocation is provided by Stochastic
Galerkin. After, inserting an expansion of the solution, in polynomials in p,
into the equations one orthogonally projects the residue of the equations to the
subspace spanned by these polynomials. By this, one gets one big system of
differential equations in which the v; are the unknowns [100, 123, 124]. In practice,
Stochastic Collocation is much more easily combined with dedicated software
for the simulation problem at hand than is the case with Stochastic Galerkin.
Theoretically the last approach is more accurate. However, statistics obtained with
Stochastic Collocation is very satisfactory.

We note that the expansion x(¢, p), see (5.165), gives full detailed information
when varying p. From this the actual (and probably biased) range of solutions can
be determined. These can be different from envelope approximations based on mean
and variances.

Because of the orthogonality, the mean of x(¢, p) and of X" (¢, p) are equal and
are given by

E,[x(1.p)] = /Q x(t, P)p(p) dp = volt) = [Q (e dp. (5.172)
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Using (5.171), we get an approximative value. The integrals in (5.172) involve all py
together. One may want to consider effects of p; and p; separately. This restricts
the parameter space R? to a one-dimensional subset with individual distribution

densities p; (p) and p; (p).
A covariance function of x(z, p) can also be easily expressed

Rux(t1,12) = E,[(x(t1,p) — E, [x(11, p))" (x(12, p) — Ep[x(12, p)])]
= /Q(X(lep) —E,[x(t1,p)D)" (x(12,p) — E, [x(12, p))p(P) dP

~ < (xX"(t1,p) — E,[X" (11, p)D" (X" (2. p) — E, X" (12, p)]) >

< Q_vItei) QO _vi()$; (p) >

i=1 j=l1

=Y v ()vi(n). (5.173)

i=1

This outcome clearly depends on m. A (scalar) variance is given by

Var, [x(t. p)] = Rax(t.1) 2 Y VT (Vi (1) = 3 W01 = (VoI
i=1 i=1

(5.174)
where VI (1) = (07, vI (¢),...,vI(1))T. Note that this equals

m q q m q
Var, [x(t.p) & Y Y 07,(0) =D D v, (1) = Var)[xs(t.p).  (5.175)
i=1d=1 d=1i=1 d=1

Having a gPC expansion the sensitivity (matrix) w.r.t. p is easily obtained

Ix(z, p) - i (p)
S,(,p) = A i (t . 5.176
pom = | TP 3w T (5,176
One may restrict this to S, (¢, u,), where u, = E[p] and %;p) is the solution of

the system that is differentiated w.r.t. p at p = u,. For a scalar quantity x one can
order according to a ‘stochastic influence’ based on

ox ox
Oy — O ) (5.177)
P P1 apq Pq}
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Here cr;i = Var[p;]. The sensitivity matrix also is subject to stochastic variations.

With a gPC expansion one can determine a mean global sensitivity matrix by

Sp(z):Ep[aX(Z p)} Z () M o(p) dp. (5.178)

Note that the integrals at the right-hand side can be determined in advance and stored
in tables.
In [85] (see also [84]) a parameterized system in the frequency domain

[sC(p) + G(p)]x(s,p) = Bu(s), (5.179)
y(s.p) = B x(s, p). (5.180)

is considered. Here s is the (angular) frequency. For this system a parameterized
MOR approach is proposed, which exploits an expansion of C(p) and G(p)

ki kg

Cp) = Z @,.1,(P)Cyy ., s (5.181)
.01y =0..0

kg

G(p) = Z @i,..1,(P)Gyy. 1, (5.182)
.01y =0..0

I
®,.1,(p) = P\ P57 ... Py (5.183)

In [71] the parameter variation in C and G did come from parameterized layout
extraction of RC circuits.

In Algorithm 5.2 it is assumed that a set p!,p?,...,pX is given in advance,
together with frequencies sy, 52, ..., Sk. Let 1/ (sk, pk ). Furthermore, let A =
sC(p) + G(p) and AX = B, and, similarly, A; = A(¥*) = s C(p*) + G(p¥) and
A Xy = B.

A projection matrix V (with orthonormal columns v;) is determined such that
X(s,p) ~ X(s,p) = VX(s, p) = ZIK=/1 a; (s, p)v;. Algorithm 5.2 applies a strategy
of which a key step is found in [85]. The extension of V is similar to the recycling
of Krylov subspaces [102] and used in MOR by [84]. The refinement introduced in
[85] is in the selection from the remaining set (steps 5-6). Note that the residues
deal with B and with x and not with the effect in y. Hence, one may consider a
two-sided projection here. The method of [85] was used in [71] (using expansions
of the matrices in moments of p; note that used expressions from layout extraction
were linear in p).
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Algorithm 5.2 pMOR Strategy in Uncertainty Quantification

1: A set pl s pz, L. ,pK is given in advance, together with frequencies s, 5,, ..., Sg. In our case
the p', p?,...,p" can come from quadrature points in Stochastic Collocation. Let wk =
(sx. p¥). Furthermore, let A = sC(p) + G(p) and AX = B, and, similarly, Ay = A(¥F) =
sk C(p*) + G(p*) and A; X, = B.

2: Assume that we have already found some part of the (orthonormal) basis, V = (v, ..., V)

3: For any W/, that was not selected before to extend the basis, the actual error formally is
given by E/ = X(¥/) — Zf;l o; (¥7)v; and thus for the residue we have R/ = A ;E/ =
B — fo:l @ (¥/)A;v;. In [85] one determines R = B _L Span(A;V), the residue after
orthogonalization of B against Span(A ; V). This step does not require evaluation of a solution.

4: LetR= (Ry,...,R,), r; = X/, |IR;|| and determine jj such that r;, = max; r;.
5: if (rj, > ¢) then
6: X(¥},) may add most significantly rank to the space spanned by V. Hence one now really

evaluates X ;, = X(¥},) and orthogonalizes this against V and extends V with this orthogonal
complement. Thus X;, = X(¥},) = [Ax]7'B = [A(WFF)]7'B and V;, = X, — V(V'X})
is the expansion to V. One can use a rank-revealing QR for this step (which also includes a
tolerance). Note that until now one collects only zero-moments (in the frequency expansion);
for refinements see remarks at the end of this Section.
7 Reduce the set of the ¥* with ¥/, Go to Step 2.
8: else
9: Decide for applying MOR on remainder.
10: if (MOR) then

11: if (Expressions for C(p) and G(p) are explicitly known) then

12: Expand the matrices C(p) and G(p) in polynomials as in (5.181)—(5.182)

13: Apply the common projection matrix to get the reduced parameterized system.

14: Apply the collocation to the reduced system (and possibly re-evaluate for param-

eters used so far the solutions of the reduced system). The solutions of the reduced system at
the re-evaluated parameters may be compared to the solutions of the non-reduced system to
provide some error control. Note that the expanded expressions provide expressions for the
reduced system.

15: for all ¥* do

16: Evaluate C(p*) and G(p*) of the reduced system.

17: Solve the reduced system.

18: end for

19: One now has a parameterized reduced system.

20: else

21: for all ¥* do

22: Evaluate C(p*) and G(p*) of the big system (in the CAD environment, say).

23: Apply the common projection matrix to get the reduced system.

24: Solve the reduced system.

25: end for

26: end if

27: Determine the gPC-expansion of the solution of the reduced system.

28: Perform statistics and/or determine sensitivity of the solution of the reduced system.

29: else

30: Use the Krylov space found so far to efficiently solve all remaining solutions X(¥;).
Note that we can use the original expressions in (5.179).

31: Determine the gPC-expansion of the solution of the original system (5.179).

32: Perform statistics and/or determine sensitivity of the solution of the original system.

33: end if

34: end if
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This procedure assumes that the evaluation of a matrix Ay (and subsequent
matrix vector multiplications) is much cheaper than determining a solution X(¥).
Note also that after extending the basis V in the next step the norms of the residues
should reduce. This allows for some further efficiency in the algorithm [85]. Finally,
we remark that the X are zero order (block) moments at . After determining
the LU-decomposition of Ay one easily includes higher moments as well when
extending the basis.

A main conclusion of this section is that for the Stochastic Collocation the expan-
sions (5.181)—(5.183) are not explicitly needed by the algorithm. This facilitates
dealing with parameters that come from geometry, like scaling [111-115]. The
evaluation can completely be done within the CAD environment of the simulation
tool — in which case the expressions remain hidden.

The selection of the next parameter introduces a notion of “dominancy” from an
algorithmic point of view: this parameter most significantly needs extension of the
Krylov subspace. To invest for this parameter will automatically reduce work for
other parameters (several may even drop out of the list because of small residues).

If first order sensitivity matrices are available, like in C(p) = Co(po) + C’(po)p
and in G(p) = Go(po) + G'(po)p one can apply a Generalized Singular Value
Decomposition [89] to both pairs (CZ (po), [C']” (po)) and (G{ (po). [G']” (po)).
In [101] this was applied in MOR for linear coupled systems. The low-rank
approximations for C’(py) and G’(po) (obtained by a Generalized SVD [89]) give
way to increase the basis for the columns of B of the source function. Note that by
this one automatically will need MOR methods that can deal with many terminals
[68, 97, 120].

In Algorithm 5.2 and in [85] the subspace generated by the basis V is slightly
increasing with each new pi. A different approach is to apply normal MOR for
each py, giving bases Vi, and next determine V by an SVD or rank-revealing QR-
factorization of [V, ..., Vk]. In [66] this approach is used to obtain a Piecewise
#65-Optimal Interpolation pMOR Algorithm.

To efficiently apply parameterized MOR in Uncertainty Quantification is
described in [104, 119]. In [105, 106] sensitivity analysis of the variance did
provide ways to identify dominant parameters that contribute most to the variance of
a quantity of interest. This approach is different from the low-rank approximations
(using the Generalized SVD), mentioned above.

5.4 MOR for Singularly Perturbed Systems

For large systems of ordinary differential equations (ODEs), efficient MOR methods
already exist in the linear case, see [125].* We want to generalize according
techniques to the case of differential-algebraic equations (DAEs). On the one hand,

“4Section 5.4 has been written by: Kasra Mohaghegh, Roland Pulch and E. Jan W. ter Maten. For an
extended version we refer to the Ph.D.-Thesis [135] of the first author and to the papers [136, 137].
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a high-index DAE problem can be converted into a lower-index system by analytic
differentiations, see [127]. A transformation to index zero yields an equivalent
system of ODEs. On the other hand, a regularization is directly feasible in case of
semi-explicit systems of DAEs. Thereby, we obtain a singularly perturbed problem
of ODEs with an artificial parameter. Thus according MOR techniques can be
applied to the ODE system. An MOR approach for DAEs is achieved by considering
the limit to zero of the artificial parameter.

We consider a simplified, semi-explicit DAE system to illustrate some concepts
only

y() = £(y(1). 2(2)). y:R >R,

(5.184)
0 = g(y(1),z(1)), z:R >R,
with differential and perturbation index 1 or 2. For the construction of numerical
methods to solve initial value problems of (5.184), a direct as well as an indi-
rect approach can be used. The direct approach applies an e-embedding of the
DAEs (5.184), i.e., the system changes into

y@) = f(y (), 2(2)) N y(@) = f(y(1). 2(1))

(5.185)
ez(r) = g(y (1), z(1)) (1) = 1(y(1), (1))

with a real parameter ¢ # 0. Techniques for ODEs can be employed for the
singularly perturbed system (5.185). The limit ¢ — 0 yields an approach for solving
the DAEs (5.184). The applicability and quality of the resulting method still has to
be investigated.

Alternatively, the indirect approach is based on the state space form of the
DAEs (5.184) with differential and perturbation index 1 or 2, for nonlinear cases
see [139], i.e.,

y@) = f(y(0), 2(y(1))) (5.186)

with z(¢) = @(y(¢)). To evaluate the function @, the nonlinear system

gy(®), @(y(r)) =0 (5.187)

is solved for given value y(¢). Consequently, the system (5.186) represents ODEs
for the differential variables y and ODE methods can be applied. In each evaluation
of the right-hand side in (5.186), a nonlinear system (5.187) has to be solved. More
details on techniques based on the e-embedding and the state space form can be
found in [132].

Although some MOR methods for DAEs already exist, several techniques are
restricted to ODEs or exhibit better properties in the ODE case in comparison to the
DAE case. The direct or the indirect approach enables the usage of MOR schemes
for ODEs (5.185) or (5.186), where an approximation with respect to the original
DAE:s (5.184) follows. The aim is to obtain suggestions for MOR schemes via these
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strategies, where the quality of the resulting approximations still has to be analyzed
in each method.

In this section, we focus on the direct approach for semi-explicit system of
DAEs, i.e., the e-embedding (5.185) is considered. MOR methods are applied
to the singularly perturbed system (5.185). Two scenarios exist to achieve an
approximation of the behavior of the original DAEs (5.184) by MOR. Firstly, an
MOR scheme can be applied to the system (5.185) using a constant ¢ # 0, which is
chosen sufficiently small (on a case by case basis) such that a good approximation is
obtained. Secondly, a parametric or parameterized Model Order Reduction (pMOR)
method yields a reduced description of the system of ODEs, where the parameter &
still represents an independent variable. Hence the limit ¢ — 0 causes an approach
for an approximation of the original DAEs.

We investigate the two approaches with respect to MOR methods based on an
approximation of the transfer function, which describes the input-output behavior
of the system in frequency domain.

5.4.1 Model Order Reduction and e-Embedding

We restrict ourselves to semi-explicit DAE systems of the type (5.188)—(5.189) and
introduce w(t) as an output instead of y (¢) with exact the same condition. According
to (5.184), after linearizing, we can write the system as

Cx = —Gx + Bu(?), (5.188)
w(t) = Lx(?). (5.189)

The solution x and the matrix C exhibit the partitioning:

_ (Y o Lxk 0
X_(Z)’ C_( 0 lel)'

w(?) is the output of the system. The order of the system is n = k + [, where k
and / are the dimensions of the differential part and the algebraic part (constraints),
respectively, defined in the semi-explicit system (5.184). B € R™; L € R”*",
After taking the Laplace transform, the corresponding p x m matrix-valued rational
transfer function is

-1
H(S)ZL'(G—i-sC)_l.B:L.(G+S(Ik0xk 00 )) B,
Ix]

provided that det(G + sC) # 0 and x(0) = 0 and u(0) = 0. Following the direct
approach [135], the e-embedding changes the system (5.188)—(5.189) into:
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dx(t) _ =
% C(e) 2 Gx(1) +Bu(r),  x(0) = xo, (5.190)

w(t) = Lx(?),

where

(L O
C(e) = ( 0 SIM) for e € R

with the same inner state and input/output as before. For ¢ # 0, the matrix C(g) is
regular in (5.190) and the transfer function reads:

Hi(s) =L-(G+s-Ce)"'-B

provided that det(G + sC(e)) # 0. For convenience, we introduce the notation

o Tk O
M(s, e) :=s5C(e) = s ( 0 €sz1) .

It holds M(s, 0) = sC with C from (5.188).

Concerning the relation between the original system (5.188)—(5.189) and the
regularized system (5.190) with respect to the transfer function, we achieve the
following statement. Without loss of generality, the induced matrix norm of the
Euclidean vector norm is applied.

Lemma 5.1 Ler A, A € R, det(A) # 0 and |A — A|> = || AA|> where AA is
small enough. Then it holds:

IAT"3 - [1AA[2
IA= 2 - [ AA]l2

A~ = A" = o
Proof It holds

1A= — A7, = max HA x—A- xH .

lIxll2=1 2
Suppose y := A7 'x, § = A~'x, then the sensitivity analysis of linear systems
yields
1Ayl < K(A) [AAll, | [14x]l,
Iyl = 1— )il | 1AL X1l
——

=0
where the quantity

k() = A7, 1Al
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is the relative condition number. So by substituting the value of x(A) we have:

[A'], - 1AALL - A", s,

Iy —¥ll, < -
2 1— A7, - [AA]l,
then
- A7 2. 1AA
A A, < A AR
1 —[[A 2« | AA]2
O
We conclude from Lemma 5.1 that
lim A~ = A7,
AA—0
for example.
Theorem 5.1 For fixed s € C with det(G + M(s, 0)) # 0 and ¢ € R satisfying
Is| ¢ (5.191)

= e Mo,

for some ¢ € (0, 1), the transfer functions H(s) and H,(s) of the systems (5.188)—
(5.189) and (5.190) exist and it holds

IH(s) — He(s) [l < 1Ll - 1Bl - K(5) - [s] - [é]

with

1
K(s) = 7— (G + M)~

Proof LetA = G+M(s, 0) and A= G+M(s, ¢). The condition (5.191) guarantees
that the matrices A are regular. The definition of the transfer functions implies:

IH) — H()ll, < L], - |A™ = A7 - Bl

We obtain:

= Is] - lel.
2

|a-A], = 6.0 - Mol = i1+ | (3 )
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Applying the Lemma 5.1, the term at the right-hand side of the expression above
becomes:

—112
”A 1”2' ||M(S,O)—M(S,8)|I2
27 1= [|A7Y; - IM(s,0) — M(s, &)l

a4~

IA

1
T AT IMGs.0) = Ms. o)

IA

K(s) [M(s,0) —M(s, &), -

Thus the proof is completed. O

It is clear that for inequality (5.191) we have:

¢
s#0eC: e <
Is| - I(G + M(s,0) 7l
s=0eC: ¢ arbitrary

We conclude from Theorem 5.1 that
lim H.(s) = H(s)
e—>0
for each s € C with G 4 sC regular. The relation (5.191) gives feasible domains

of e

1:]e] < ¢ —
16 +M(,0) T,

[s| > 1:]e| <
|s] -

Is| <

(G + M(s.0)) "I,
We also obtain the uniform convergence

|H(s) —Hy(s)||, < K |¢|] forall se S
in a compact domain S C C and ¢ < § with:

1 ~
§ = ¢ -min for § =0,
ses (G + M(s,0)7" |,

1

8:6’.

1 -
min - | min — for § # 0,
mum+Mmmwm}deJ #
~_———
<1

with § := {z € S : |z| > 1}. Furthermore, Theorem 5.1 implies the property

lin}) H(s) —H.(s) =0
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for fixed ¢ assuming det G # 0. However, we are not interested in the limit case of
small variables s.

For reducing the DAE system (5.188)—(5.189), we have two ways to handle the
artificial parameter ¢, which results in two different scenarios. In the first scenario,
we fix a small value of the parameter €. Thus we use one of the standard techniques
for the reduction of the corresponding ODE system. Finally, we achieve a reduced
ODE (with small ¢ inside). The ODE system with small ¢ represents a regularized
DAE. Any reduction scheme for ODE:s is feasible. Recent research shows that the
Poor Man’s TBR (PMTBR), see [138], can be applied efficiently to the ODE case.
Figure 5.37 indicates the steps for the first scenario.

In the second scenario, the parameter ¢ is considered as an independent variable
(value not predetermined). We can use the parametric MOR for reducing the
corresponding ODE system. The applied parametric MOR is based on [128, 129]
in this case. The limit ¢ — 0 yields the results in an approximation of original
DAEs (5.188)—(5.189). The existence of the approximation in this limit still has to
be analyzed. Figure 5.38 illustrates the strategy for the second scenario.

Fig. 5.37 The approach of
the e-embedding for MOR in DAE constant € ODE
the first scenario dimension n = dimension »n
constant €
MOR
for ODEs
v
Reduced ODE

dimension 9 << n
constant €

Fig. 5.38 The approach of

the e-embedding for MOR in DAE parameter & . ODE
the second scenario dimension 7 dimension 71
parameter €
Parametric
MOR
Reduced limit & —0 Reduced ODE
. System dimension q<<n
dimenSion q<<n
pa.rameter €
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Theorem 5.1 provides the theoretical background for the both scenarios. We
apply an MOR scheme based on an approximation of the transfer function to the
system of ODEs (5.190). Let H, (s) be a corresponding approximation of H,(s).

It follows

IH(s) — He(s)[|2 < [[H(s) — He(9)[|2 + [He(s) — He(s) 2 (5.192)

for each s € C with det(G + sC) # 0. Due to Theorem 5.1, the first term
becomes small for sufficiently small parameter . However, & should not be chosen
smaller than the machine precision on a computer. The second term depends on the
applicability of an efficient MOR method to the ODEs (5.190). Thus H, (s) can be
seen as an approximation of the transfer function H(s) belonging to the system of
DAEs (5.188)—(5.189).

5.4.2 Test Example and Numerical Results

We consider a substitute model of a transmission line (TL), see [130], which
consists of N cells. Each cell includes a capacitor, an inductor and two resistors,
see Fig.5.39. This TL model represents a scalable benchmark problem (both in
differential part and algebraic part but not separately), because we can select the
number N of cells. The used physical parameters are

C=10"F/m, L=10%H, R=0.1Q/m, G =10S/m.

We apply modified nodal analysis, see [131], to the RLC circuit and then the state
variables x € R3V*3 consist of the voltages at the nodes, the currents traversing the

i hL i+1/2 hR i+1

S

hC/2 —_

Fig. 5.39 One cell of the RLC transmission line
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inductances L and the currents at the boundaries of the circuit:

Vo, Vi, oo, V), 1y2, 1372, ..., IN—1)2),
M2, Vapas oo Vveiy2),s (o, In).

So far we have 3N + 3 unknowns and only 3N 4 1 equations. Thus two boundary
conditions are necessary. Equations for the main nodes and the intermediate nodes
in each cell are

%CI_)O + 4GV + Ly — L =0,
hCI/l + hGK + ],-{—1/2 - Il—l/z =07 i = la"'aN_ 17
%CVN + %GVN + Iy —Iy-12=0,

Vitipo=Vi
—lit12 + e
]’lLI,‘_H/z + (Vi+l/2_ Vi)=0,i=0,1,...,N —1,

where the variable 4 > O represents a discretization step size in space. We apply the
boundary conditions

Iy —u(t) =0,
LliN + Vy =0

with L; > 0 and an independent current source u. Now a direct approach (e-
embedding) is used. For the first simulation the variable ¢ is fixed to 10~'* and
1077, respectively, and the PMTBR method [138] is used as a reduction scheme
for the ODE system. For all runs we selected the number of cells to N = 300,
which results in the order n = 903 of the original system of DAEs (5.188)—(5.189).
Figure 5.40 shows the transfer function both for the DAE and the ODE (including ¢)
and the reduced ODE with fixed ¢ for frequencies s = i with @ € R. The number
in parentheses shows the order of the systems.

Finally the second scenario with parametric MOR is studied. We apply the
PIMTAB parametric MOR following [133, 134]. The limit ¢ — 0 gives the result
for the reduced DAE.The error plot for the parametric reduction scheme is shown
in Fig. 5.41. The error plot shows an overall nice match for the case of ¢ = 0, 10710
and as the value for the parameter ¢ increases, the accuracy of the method and of the
reduction algorithm decreases. It is also important to mention that the order of the
reduced system in the second scenario is nearly half of the one in the first scenario.

Table 5.4 shows which value for the parameter ¢ is acceptable for the both
scenarios.
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Fig. 5.40 Original transfer function for DAE and ODE and reduced transfer function of PMTBR
in case of three different parameters ¢. The frequency o ranges from 1078 to 108

Table 5.4 Acceptance of the method: different values for ¢ are mentioned. A dash indicates that
the error is not calculated; A. and N.A indicate accepted and not accepted, respectively

Value used for ¢ :

Scenario with fixed &

Scenario with parametric ¢

54.3

Conclusions

0 10— 1010 1077
Same as DAE A. A. N.A.
A. - A. N.A.

In this section we applied the e-embedding to approximate a linear system of DAEs
by a system of ODEs. We did consider the transfer function in the frequency
domain as a function of ¢ and proved uniform convergence for frequencies s in
a compact region S where the matrix G + sC is regular (and thus its inverse
uniformly bounded). This motivated the usage of MOR methods for ODEs. Most
of the reduction schemes are designed and adopted for linear ODEs. Well-known
methods are PMTBR (Poor Man’s Truncated Balanced Realization [138]) and the
spectral zeros preservation MOR of Antoulas [126].
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Fig. 5.41 Absolute error plot for the transfer function in the e-embedding, reduction carried out
by parametric MOR with PIMTAB, ¢ = 0, 10~°, 10~

In the first scenario we applied a fixed ¢ and studied for a transmission line model
the behavior of the transfer functions of the DAE, of the ODE and of the reduced
model obtained with PMTBR for ¢ = 1074, 1071°, 1077, Already for the last
value the transfer functions between DAE and ODE differ significantly. If we choose
bigger values for ¢, the system is more friendly but the error is larger and the solution
will be changed. On the other hand the transfer function obtained by PMTBR is able
to approximate quite well the transfer function of the ODE.

In the second approach we applied the parametric MOR technique PIMTAB
[133, 134] to the parameterized ODE. Here we do not need to predefine the value
of the . We obtain a parameterized MOR that gives a reduced model for ¢ = 0 for
which the transfer function approximates well the one for the DAE [135, 137].
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