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Abstract This chapter offers an introduction to Model Order Reduction (MOR).
It gives an overview on the methods that are mostly used. It also describes the main
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concepts behind the methods and the properties that are aimed to be preserved.
The sections are in a prefered order for reading, but can be read independentlty.
Section 4.1, written by Michael Striebel, E. Jan W. ter Maten, Kasra Mohaghegh
and Roland Pulch, overviews the basic material for MOR and its use in circuit
simulation. Issues like Stability, Passivity, Structure preservation, Realizability are
discussed. Projection based MOR methods include Krylov-space methods (like
PRIMA and SPRIM) and POD-methods. Truncation based MOR includes Balanced
Truncation, Poor Man’s TBR and Modal Truncation.

Section 4.2, written by Joost Rommes and Nelson Martins, focuses on Modal
Truncation. Here eigenvalues are the starting point. The eigenvalue problems related
to large-scale dynamical systems are usually too large to be solved completely.
The algorithms described in this section are efficient and effective methods for the
computation of a few specific dominant eigenvalues of these large-scale systems.
It is shown how these algorithms can be used for computing reduced-order models
with modal approximation and Krylov-based methods.

Section 4.3, written by Maryam Saadvandi and Joost Rommes, concerns passiv-
ity preserving model order reduction using the spectral zero method. It detailedly
discusses two algorithms, one by Antoulas and one by Sorenson. These two
approaches are based on a projection method by selecting spectral zeros of the
original transfer function to produce a reduced transfer function that has the
specified roots as its spectral zeros. The reduced model preserves passivity.

Section 4.4, written by Roxana lonutiu, Joost Rommes and Athanasios C.
Antoulas, refines the spectral zero MOR method to dominant spectral zeros.
The new model reduction method for circuit simulation preserves passivity by
interpolating dominant spectral zeros. These are computed as poles of an associated
Hamiltonian system, using an iterative solver: the subspace accelerated dominant
pole algorithm (SADPA). Based on a dominance criterion, SADPA finds relevant
spectral zeros and the associated invariant subspaces, which are used to construct
the passivity preserving projection. RLC netlist equivalents for the reduced models
are provided.

Section 4.5, written by Roxana Ionutiu and Joost Rommes, deals with synthesis
of a reduced model: reformulate it as a netlist for a circuit. A framework for model
reduction and synthesis is presented, which greatly enlarges the options for the re-
use of reduced order models in circuit simulation by simulators of choice. Especially
when model reduction exploits structure preservation, we show that using the model
as a current-driven element is possible, and allows for synthesis without controlled
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sources. Two synthesis techniques are considered: (1) by means of realizing the
reduced transfer function into a netlist and (2) by unstamping the reduced system
matrices into a circuit representation. The presented framework serves as a basis for
reduction of large parasitic R/RC/RCL networks.

Co-operations Between the Various Co-authors

The subactivity on Model Order Reduction (MOR) of the COMSON project! was
greatly influenced by interaction with additional research on MOR, first at Philips
Research Laboratories and (from october 2006 on) at NXP Semiconductors (both
in Eindhoven). There was direct project work with the TU Eindhoven, with the
Bergische Universitit Wuppertal and with the Royal Institute of Technology (KTH)
in Stockholm:

* R. IONUTIU: Model order reduction for multi-terminal Systems — with applica-
tions to circuit simulation. Ph.D.-Thesis, TU Eindhoven, 2011, http://alexandria.
tue.nl/extra2/716352.pdf.

* M. SAADVANDI: Passivity preserving model reduction and selection of spectral
zeros. MSc. Thesis, Royal Institute of Technology (KTH), Stockholm. Also
published as Technical Note NXP-TN-2008/00276, Unclassified Report, NXP
Semiconductors, Eindhoven, 2008. [In September 2012, Maryam Saadvandi did
complete a Ph.D.-Thesis at KU Leuven, Belgium, on Nonlinear and parametric
model order reduction for second order dynamical systems by the dominant pole
algorithm.]

* M.V. UGRYUMOVA: Applications of Model Order Reduction for IC Modeling.
Ph.D.-Thesis, TU Eindhoven, 2011, http://alexandria.tue.nl/extra2/711015.pdf.

* A. VERHOEVEN: Redundancy reduction of IC models by multirate time-integra-
tion and model order reduction. Ph.D.-Thesis, TU Eindhoven, 2008,
http://alexandria.tue.nl/extra2/200712281.pdf.

» T. Voss: Model reduction for nonlinear differential algebraic equations, MSc.
Thesis, University of Wuppertal, 2005. Unclassified Report PR-TN-2005/00919,
Philips Research Laboratories, September 2005.

[Afterwards, Thomas VoB3 did complete a Ph.D.-Thesis at the Rijksuniversiteit
Groningen, the Netherlands, on Port-Hamiltonian modeling and control of
piezoelectric beams and plates: application to inflatable space structures, 2010,

http://catalogus.rug.nl/DB=1/SET=1/TTL=4/REL?PPN=326-918639.]

'Coupled Multiscale Simulation and Optimization in Nano-electronics, COMSON — EU-FP6
MCA-RTN Research and Training Network Project, 2006-2010, http://www.comson.eu/.
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Here Roxana Ionutiu was partially funded by the COMSON project. Apart from
TU Eindhoven she also worked with Thanos Antoulas at the Jacobs University in
Bremen. Roxana Ionutiu appears several times as co-author in this chapter and in the
following ones. Also Maryam Saadvandi appears as co-author of a section. Work by
the others is found in the reference lists at each section.

Parallel to the COMSON Project research on MOR was done within the
O-MOORE-NICE! project.> The Marie Curie Fellows, Luciano De Tommasi
(University of Antwerp), Davit Harutyunyan (TU Eindhoven), Joost Rommes (NXP
Semiconductors), and Michael Striebel (Chemnitz University of Technology), inter-
acted actively with the COMSON PhD-students. They contribute to several sections
as co-authors, together with researchers from the staff from NXP Semiconductors
(Eindhoven), TU Eindhoven, Bergische Universitit Wuppertal and the Politehnica
Univ. of Bucharest.

The Politehnica Univ. of Bucharest greatly acknowledges co-operation with
Jorge Fernandez Villena and Luis Miguel Silveira of INESC-ID in Lisbon. They
appear as co-author in the next chapter. Jorge Fernandez Villena was partially
funded by the COMSON project. Work in Bucharest and in Lisbon also did
benefit from financial support during earlier years from the following comple-
mentary projects: FP6/Chameleon, FP5/Codestar, CEEX/nEDA, UEFISCSU/IDEI
609/16.01.2009 and POSDRU/89/1.5/5/62557.

The fourth co-author acknowledges the ENIAC JU Project /2010/SP2(Wireless
communication)/270683-2 Artemos, Agile Rf Transceivers and front-Ends for future
smart Multi-standard cOmmunications applicationS, http://.artemos.eu.

The COMSON project did directly lead to four Ph.D.-Theses on MOR-related
topics:

e Z.ILIEVSKI: Model order reduction and sensitivity analysis. Ph.D.-Thesis, TU
Eindhoven, 2010, http://alexandria.tue.nl/extra2/201010770.pdf.

e S. KULA: Reduced order models of interconnects in high frequency integrated
circuits. Ph.D.-Thesis, Politehnica Univ. of Bucharest, 2009.

e K. MOHAGHEGH: Linear and nonlinear model order reduction for numerical
simulation of electric circuits. Ph.D.-Thesis, Bergische Universitit Wuppertal,
Germany. Available at Logos Verlag, Berlin, Germany, 2010.

e A. STEFANESCU: Parametric models for interconnections from analogue high
frequency integrated circuits. Ph.D.-Thesis, Politehnica Univ. of Bucharest,
2009.

2Operational MOdel Order REduction for Nanoscale IC Electronics (O-MOORE-NICE!) —
EU-FP6 MCA-ToK Transfer of Knowledge Project, 2007-2010, http://www.tu-chemnitz.de/
mathematik/industrie_technik/projekte/omoorenice/index.php?lang=en
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4.1 Circuit Simulation and Model Order Reduction

Speaking of “circuit models”, we refer to models of electrical circuits derived
by a network approach.? In circuit simulation the charge-oriented modified nodal
analysis (MNA) is a prominent representative of network approaches used to
automatically create mathematical models for a physical electrical circuit. In the
following we give a short introduction to circuit modeling with MNA. For a detailed
discussion we refer to [22].

In charge-oriented MNA, voltages, currents, electrical charges and magnetic
fluxes are the quantities that describe the activity of a circuit. The electrical circuit
to be modelled is considered to be an aggregation of basic network elements: the
ohmic resistor, capacitor, inductor, voltage source and current source. Real phys-
ical circuit elements, especially semiconductor devices, are replaced by idealised
network elements or so-called “companion models”. The basic network elements
correlate the network quantities. Each basic element is associated to a characteristic
equations:

e Resistor: I = r(U) (linear case: [ = % -U)

* Capacitor: I = ¢ withg = g¢(U) (linear case: I = C - U)

e Inductor: U = ¢ with ¢ = ¢, (I) (linearcase: U = L - 1)

¢ Voltage source: U = v(¢) (controlled source: U = v(Ucy, Ley» 1))
¢ Current source: I = 1(¢) (controlled source: I = 1(Ueyi, Icy, 1))

where U is the voltage drop across the element’s terminal, / is the current flowing
through the element, g is the electric charge stored in a capacitor and ¢ is the
magnetic flux of an inductor. The dot *~ on top of a quantity indicates the usual
time derivative d /dt on that quantity.

All wires, connecting the circuit elements are considered to be electrically ideal,
i.e., no wire possesses any resistance, capacitance or inductance. Thereby, also
the volume expansion of the circuit becomes irrelevant, the electrical system is
considered being a lumped circuit.The circuit’s layout, defined by the interconnects
between elements, is thus reduced to its conceptional structure, which is called
network topology.

The network’s topology consists of branches and nodes. Each network element
is regarded as a branch of the circuit and its terminals are the nodes by which it is
connected to other elements. Assigning a direction to each branch — the direction
of the current traversing the corresponding element — and a serial number to each
node, we end up with a directed graph representing the network. As any directed
graph, the network can be described by an incidence matrix A. This matrix has as

3Section 4.1 has been written by: Michael Striebel, E. Jan W. ter Maten, Kasra Mohaghegh and
Roland Pulch. For additional details we refer to the Ph.D.-Thesis [33] of the third author.
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many columns as there are branches, i.e., elements and as many rows as there are
nodes in the circuit. Each column of the matrix has one entry +1 and one entry —1,
displaying the start and end point of the branch. As all other entries are 0, the matrix
A is sparse.

Usually, one circuit node is tagged as ground node. As a consequence, each
branch voltage U between two nodes / an m can be expressed by the two node
voltages e; and e,,, which are the voltage differences between each node and the
ground node. From this agreement, the node voltage of the ground node is constantly
0 and therefore the information stored in the corresponding row of the incidence
matrix becomes redundant and this very row can be removed. Hence, frequently by
the term incidence matrix, one refers to the reduced matrix A, given by removing
the row corresponding to the ground node.

As each branch of the network represents one of the five basic network element
resistor (R), capacitor (C), inductor (L), voltage and current source (V and I,
respectively), the indicence matrix can be described as an assembly of element
related incidence matrices:

A= (AC7AR7AL5AV5A1)7

with Ag € {0, +1,—1}">"2 for 2 € {C,R, L, V, I}. Here, n, is the number of
nodes (without the ground node) and nc, ..., n; are the cardinalities of the sets of
the different basic elements’ branches.

The Kirchhoff’s laws, which relate the branch voltages in a loop and the currents
accumulating in a node, namely Kirchhoff’s voltage law and Kirchhoff’s current
law, respectively, are the final component for setting up the MNA network equations:

d
Acd—tq+ARr(A,§e) +Api, +Apty +Ani(t) =0, (4.1a)
d ¢ —Ale=0 (4.1b)
dr e '
v(t) — A‘T,e =0, 4.1¢)
q—qc(Ace) =0, (4.1d)
¢—¢,0)=0. (4.1e)

It is worthwile to highlight the subequations (4.1a) and (4.1c). The former is
the personification of Kirchhoff’s current law, stating that for each network node
the sum of branch currents meeting is identically zero. The latter reflects the
functionality of voltage sources: dictating branch voltages.

The unknowns q, ¢, e, 2, , 1y, i.e., the charges, fluxes, node voltages and currents
traversing inductors and voltage sources, respectively — each of them functions of
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time ¢ — are combined to the state vector x(t) € R" of unknowns, of dimension
n=nc+ny+n,+ny + ny. Then, the network equations (4.1) can be stated in
a compact form:

< s + j(x0)) + Bu() =0, @2)

where q,j : R" — R" describe the contribution of reactive and nonreactive
elements, respectively.* The excitations defined by the voltage- and current-sources
are combined to the vector u(z) € R™ with m = ny + n;. The excitations are
assigned to the corresponding nodes and branches by the matrix B € R,

If the circuit under considerations contains only elements with a linear character-
istic equation, the network equations can be written as’

Ex(¢) + Ax(¢) + Bu(z) = 0, (4.3a)
with
AcEAL 00 ARYAL AL Ay A 0
E = 0 0|, A= -AT 0 0], B=|0 0 |. (43b)
0 00 —-AL 0 0 01,

where ¢, £, ¥ are basically diagonal matrices containing the individual capacitors,
inductances and conductances (inverse resistances) of the basic network elements.
I,,, is the identity matrix in R"V>"",

We arrive at this formulation by eliminating the charges and fluxes. Hence the
unknown state vector here is X = (eT, l{, tIT,)T and the excitation vector is u =
@r vhHr.

It is straightforward to see that the structure of the matrices E, A € R and B €
R" is determined by the element related incidence matrices Ac, Ag, A;, Ay, A;.
As there is usually only a week linkage amongst the network node, i.e., nodes are
connected directly to only a few other nodes, these incidence matrices are sparse
and so are the system matrices in (4.3a) and the Jacobian matrices dq/dx, dj/dx €
R™" of the element functions in (4.2), respectively.

“Note that the meaning q in (4.1) and (4.2) is different: in the prior it is an unknown, in the latter
it is a mapping.

>Note that A in (4.3a) does not refer to the incidence matrix A. Furthermore the composition of
the unknown x in (4.2) and (4.3a) can be different. In the latter, taking into account the linear
characteristics for capacitors and inductors, the time derivatives of the charges and fluxes can be
expressed by the time derivative of the node volages e and the inductor current z; directly. In this

case the unknown state vector amounts to x = (e’ t{, lg)T eR"withn =n, +ny +ny.
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In general, real circuit designs contain a large number of transistors. In the
course of setting up the network equations such semiconductor devices are replaced
by companion models that consist of a larger number of the basic network
elements. Here especially resistors with nonlinear characteristics emerge. Hence,
the “mathematical image” of an integrated circuit is usually a nonlinear network
equation of the form (4.2).

However, also linear network equations of the form (4.3a) are fundamental
problems in the design process. As mentioned above, one disregards the volume
extension of a circuit and considers wires as electrically ideal. At the end of
the design process, however, there will be a physical integrated circuit. Even on
the smallest dies there are kilometers of wiring. These wires do have an electric
resistance. As the actual devices are getting small and smaller, capacitive effects
introduced by neighbouring wires can not be neglected just as little as inductive
effects arising from increasing clock rates.

In fact these issues are not neglected. At least at the end of the design process,
when the layout of the chip has to be determined these effects are taken into
account. In the parasitic extraction from the routing on the chip an artificial linear
network is extracted which again is assumed to be a lumped and comprise of ideal
wires. However, the resistances, capacitances and inductances that are present there
describe the effects caused by the wiring on the actual circuit. A characteristic of
these artificial networks is their large dimension: here n can easily be in the range
of 108,

The impact of the effects on the behaviour of the actual circuit are accounted for
by coupling the linear parasitic model to the underlying circuit design.

If the electrical circuit comprises reactive elements, i.e., capacitors and inductors,
the network equation (4.2) or (4.3a), respectively, forms a dynamical problem
for the unknown state vector x. Usually, however, the system matrix E, or the
Jacobian d q/dx, respectively, does not have full rank.® Dynamical systems with
this property, i.e., systems consisting of differential and algebraic equations are
called differential algebraic equations (DAE), or descriptor systems. DAEs differ
in several senses from purely differential equations, causing problems in various
aspects. A requirement for the solvability of the network equation is the regularity
of the matrix pencil {E, A}. The matrix pencil is called regular, if the polynomial
det(AE + A) does not vanish identically. Otherwise {E, A} is called singular matrix
pencil. Then a normal initial-value problem for the linear DAE (4.3a) has none or
infinitely many solutions. The regularity of the matrix pencil can be checked by
examining the element related incidence matrices [15].

SThis is easy to see from inspecting the first subequation — the node-current relation — of the MNA
equation (4.1): a network node for instance, that is not the starting or end point of a capacitor
branch causes a row equal to zero in the incidence matrix A¢ and therefore the node-current
relation for that node is an algebraic equation only.
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In the context of numerical time integration, needed to solve the network
problem in time domain, worthwhile stressing that the initial value has to be
chosen properly — x(0) has to satisfy the algebraic constraints — and that numerical
perturbations can be amplified dramatically. Hence, numerical methods have to
match the requirements posed by the differential-algebraic structure.

For a detailed analysis of DAEs we refer to the textbook [29]. A detailed
discussion of solving DAEs can be found in the textbook [24].

4.1.1 Input-Output Systems in Circuit Simulation

We recall that the origin of the network equations in nonlinear or linear form is a
real circuit design, ment to be simulated, i.e., tested with respect to its performance
under different circumstances. Nowadays, complex integrated circuits are usually
not designed from scratch by a single engineer. In fact, large electrical circuits are
usually developed in a modular way. In radio frequency applications, for instance,
analogue and digital subcircuits are connected to each other. In general several sub-
units of different functionality, e.g., one providing stable oscillations another one
amplifying a signal, are developed separately and glued together. Hence, subunits
possess a way of communication with other subunits, the environment they are
embedded in.

To allow for a communication with an environment, the network model (4.2)
(or (4.3a)) has to be augmented and transfered to a system that can receive and
transmit information. Abstractly, the output of a system can be defined as a function
of the state and the input:

y(t) = h(x(1),u(r)) € R” .

In circuit simulation, however, usually the output is a linear relation of the form:
y(1) = Cx(1) + Du(1),

with the output matrix C € R”" and the feedthrough matrix D € R”",

The excitation, we mentioned above, i.e., the last term Bu(z) in the network
model (4.2) (or (4.3a)) can be understood as information imposed on the system,
in the form of branch currents and node voltages. Therefore we call u(¢) the input
and B the input matrix to the system.

Hence, an input-output system in electrical circuit simulation is given in the form

0 = Ex(7) + Ax(¢) + Bu(?), (4.4a)
y(t) = Cx(t) + Du(z), (4.4b)



168 A.C. Antoulas et al.

if only linear elements form the system. If also nonlinear elements are present, we
arrive at systems of the form:

d
0= d—tq(x(l)) + j(x(¢)) + Bu(z), (4.5a)
y() = Cx(t) + Du(z). (4.5b)

The input to state mapping (4.4a) and (4.5a), respectively, is a relation defined by
a dynamical system. Therefore, the representation of the input-output system (4.4)
and (4.5), respectively, is said to be given in state space formulation. The dimension
n of the state space is referred to as the order of the system.

Frequently the state space formulation in circuit design exhibits a special
structure.

* Often there is no direct feedthrough of the input to the output, i.e.
D=0¢eR”™", (4.6a)
* We often observe
p=m and C =BT e R™". (4.6b)

In full system simulation, individual subcircuit models are connected to each
other. To allow for an information exchange, done in terms of currents and
voltages, each subcircuit possesses a set of terminals — a subset of the unit’s
pins.

From a subcircuit’s point of view incoming information is either a current
being added to or a voltage drop being imposed to the terminal nodes. The former
corresponds to adding a current source term to (4.1a), the latter corresponds to
adding a voltage source to (4.1c). Information returned by the subsystem is the
voltage at the terminal node in the former case or the current traversing that
artificial voltage source in the latter case. Having a detailed look at the MNA
network equations (4.1) and the composition of the state vector x(¢), it is easy to
understand that in this setup, assuming that there are no additional sources in the
subcircuits, the output matrix is the transpose of the input matrix.

4.1.2 The Need for Model Order Reduction

Clearly, mathematical models for a physical circuit are extracted for a purpose. In
short, the manufacturing process of an electrical circuit starts with an idea of what
the physical system should do and ends with the physical product. In-between there
is a, usually iterative, process of conceptual designing the circuit in the form of a
circuit schematic, that comprises parameters defining the layout and nominal values
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of circuit elements and, choosing the parameters, testing the design, adapting the
parameter, . . ., etc.

Testing the design means to analyse its behaviour. There are several types of
analysis we briefly want to mention in the following. For a more detailed discussion
we refer to [22].

e Static (DC) analysis searches for the point to which the system settles in an
equilibrium or rest condition. This is characterised by d /dt x(¢) = 0.

* Transient analysis computes the response y(¢) to the time varying excitation u(¢)
as a function of time.

* (Periodic) steady-state analysis, also called frequency response analysis, deter-
mines the response of the system in the frequency domain to an oscillating, i.e.,
sinusoidal input signal.

* Modal analysis finds the system’s natural vibrating frequency modes and their
corresponding modal shapes;

» Sensitivity analysis determines the changes of the time-domain response and/or
the frequency-domain response to variations in the design parameters.

Transient analysis is run in the time domain. Here the challenge is to numerically
integrate a very high-dimensional DAE problem.

Both the frequency response and the modal analysis are run in the frequency
domain. Hence, a network description in the frequency domain is needed. As this
is basically defined only for linear systems’ we concentrate on linear network
problems of the form (4.4). The Laplace transform is the tool to get from the time
to the frequency domain.

Recall that for a function f : [0, 00) — C with f(0) = 0, the Laplace transform
F : C — Cis defined by

F(s) 1= ZLf}(s) = /0 F(0)e™"dr.

For a vector-valued function f = (fi,..., fy)7, the Laplace transform is defined
component-wise: F(s) = (ZL{f1}(s), ..., L{f}(s)T.

The physically meaningful values of the complex variable s are s = i@ where
o > 0 is referred to as the (angular) frequency. Taking the Laplace transform of
the time domain representation of the linear network problem (4.4) we obtain the
following frequency domain representation:

0 = sEX(s) + AX(s) + BU(s),
Y(s) = CX(s) + DU(s),

.7

7 Applying those types of analysis to nonlinear problems involves a linearisation about some point
of interest x in the state space.
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where X(s), U(s), Y(s) are the Laplace transforms of the states, the input and the
output, respectively. Note that we assumed zero initial conditions, i.e., x(0) = 0,
u(0) = 0 and y(0) = 0.

Eliminating the variable X(s) in the frequency domain representation (4.7) we
see that the system’s response to the input U(s) in the frequency domain is given by

Y(s) = H(s)U(s)
with the matrix-valued transfer function

H(s) = —CGE+A)"'B+D eCr. (4.8)

The evaluation of the transfer function is the key to the frequency domain based
analyses, i.e., the steady-state analysis and the modal frequency analysis. The key
to the evaluation of the transfer function, in turn, is the solution of a linear system
with the system Matrix (sE + A) € C"™" 3

Note that at the very core of any numerical time integration scheme applied in
transient simulation we have to solve as well linear equations with system matrices
of the form «E 4 A were o € R depends on some coefficient characteristic to the
method and the stepsize used.

It is the order n of the problem, i.e., the dimension of the state space that
determines how much computational work has to be spend to compute the p output
quantities. Usually, the order n in circuit simulation is very large, whereas the
dimension of the output is rather small.

The idea of model order reduction (MOR) is to replace the high dimensional
problem by one of reduced order such that the reduced order model produces an
output similar to the output of the original problem when excited with the same
input.

Before we give an overview of some of the most common MOR techniques we
specify the requirement a reduced order model should satisfy. Again, we just briefly
describe some concepts. For a more detailed discussion we refer to the textbook [1].

4.1.2.1 Approximation
The output of the ersatz model should approximate the output of the original model

for the same input signal. There are various measures for “being an approximation”.
In fact these different viewpoints form the basis for different reduction strategies.

8Note that here we see the necessity of {E, A} being a regular matrix pencil.
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We give first a Theorem (for an ODE) that confirms how an approximation in
the frequency domain leads to an accurate result in the time domain. Let 1, C R
be a closed interval (but may be I, = {wo} or I, = R). For convenience we
assume single input u(¢) and single output y(¢), with transfer function H(s) in the
frequency domain between the Laplace transforms U(s) and Y (s). Let H (s) be the
approximation to H(s) which gives Y (s) = H(s) U(s) and y(¢) as the output
approximation in the time domain.

Theorem 4.1 Let |[u(?)|[12(0,00)) < 00 and U(iw) = 0 for o & I,. If the
system (4.4a) consists of ODEs, then we have the estimate

. 1 . s I 1
max|y() = 50 = (- [ 1HGo) = Aio)Pdo ([ Pt @)
>0 2w Jy, 0
Proof We obtain by using the Cauchy-Schwarz inequality in L(1,,)

max |y (1) — y(1)| < max|i/(y(iw) _ Y (iw)e® do)
t>0 >0 27 R

IA

maxi/ [Y(iw) =Y (iw)| - '] dw
>0 27T R
1 -
= —/ |H(iw) — H(iw)| - |U(iw)| do
27 R

1 -
= E/{@ |H(iw) — H(iw)| - |U(iw)| dw

IA

%(/Iw H(iw) - H(z‘w)Pdwﬁ(/Iw UGo)P dw)t

IA

- /1 |H(G0) ~ (i) Pdw)’ /0 " P,

This completes the proof. O

We note that for I, = R the above error estimate is already found in [23],
also for parameterized problems. In [42] the more general case [, is considered
and applied to Uncertainty Quantification for parameterized problems. In MOR the
error estimate becomes often small in an interval I, sufficiently close to the used
expansion point.

Besides producing similar outputs, the reduced order model should behave
similar to the original model in various aspects, which we discuss next.

4.1.2.2 Stability

One of the principal concepts of analyzing dynamical systems is its stability.
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An autonomous dynamical system, i.e., a system without input is called stable if
the solution trajectories are bounded in the time domain. For a linear autonomous
system the system matrices determine whether it is stable or unstable. Considering
for instance the network equation (4.3a) with B = 0 we have to calculate the
generalized eigenvalues® {1;(A,—E),i = 1,...,n} of the matrix pair (A, —E) to
decide whether or not the system is stable. The system is stable if, and only if, all
generalized eigenvalues have non-positive real parts and all generalized eigenvalues
with Re(A; (A, —E)) = 0 are simple.

4.1.2.3 Passivity

For input-output systems of the form (4.4), stability is not strong enough. If
nonlinear components are connected to a stable system it can become unstable.

For square systems, i.e., system where the number of inputs is equal to the
number of outputs, p = m, a property called passivity can be defined. This property
is much stronger than stability: it means that a system is unable to generate energy.

Here, an inspection of the system’s transfer function yields evidence if the system
is passive or not. A necessary and sufficient conditions for a square system to be
passive is that the transfer function is positive real. This means that

* H(s) is analytic for Re(s) > 0;

e« H(s) = H(s), forall s € C;

 The Hermitian part of H(s) is symmetric positive, i.e.: H? (s) + H(s) > 0, for
all s with Re(s) > 0 [50]. Here " means the transposed conjugate complex:
Al = AT,

The second condition is satisfied for real systems and the third condition implies the
existence of a rational function with a stable inverse. Any congruence transforma-
tion applied to the system matrices satisfies the previous conditions if the original
system satisfies them, and so preserves passivity of the system if the following
conditions are true:

* The system matrices are positive definite, E, A > 0.
« B=CT,D=0.

These conditions are sufficient, but not necessary. They are usually satisfied in the
case of electrical circuits, which makes congruence-based projection methods very
popular in circuit simulation.

For a matrix pair (A, B) A is a generalized eigenvalue with a generalized eigenvector v, if Av =
ABv.
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4.1.2.4 Structure Preservation

For the case of having a circuit made up of linear elements only we have seen
in (4.3b) that the system matrices exhibit a block structured form. Furthermore we
recognized that the system matrices are sparse. In fact, the same properties hold for
the linear case (4.3a) also.

As a consequence, the matrices of the form (§E + A) that have to be decomposed
during the different modes of analysis exhibit already a form that can be exploited
when solving the corresponding linear systems.

If the full system (4.4) is replaced by a small dimensional system, it would be
most desirable if that ersatz system again has a structure similar to the structure
of the full problem. Namely, a block structure should be preserved and the system
matrix arising from the reduced order model should be sparse as well, as it can be
more expensive to decompose a small dense matrix then a larger sparse one.

4.1.2.5 Realizability

Preserving the block structure, as just mentioned, is crucial for realizing a reduced
order model again as an RLC-circuit again. Another prerequisit for a reduced order
model to be synthesizable is reciprocity.'® This is a special form of symmetry of
the transfer function H. We will not give details here but refer to [44] for a precise
definition and MOR techniques and to [6] for other reciprocity preserving MOR
techniques.

There is an ongoing discussion if it is necessary to execute this realization (also
referred to as un-stamping). It is worthwhile mentioning two benefits of that

* An industrial circuit simulator does in fact never create the MNA equations.
Actually, a circuit is given in the form of a netlist, i.e., a table where each line
correspond to one element. Each time a system has to be solved, the simulator
runs through that list, evaluates each element and stamps the corresponding value
in the correct places of the system matrix and the corresponding right-hand side.
If a reduced order model is available in the form of such a table as well, the
simulator can treat that ersatz model like any other subcircuit and does not have
to change to a different mode of including the contribution of the subsystem to
the overall system.

* A synthezised reduced order model can provide more insight to the engineers
and designers than the reduced order model in mathematical form [52].

10A two-terminal element is said to be reciprocal, if a variation of the values of one terminal
immediately has the reverse effect on the other terminal’s value. Linear characteristics obviously
have this property.



174 A.C. Antoulas et al.
4.1.3 MOR Methods

We recall the idea of model order reduction (MOR):

Replace a high dimensional problem, say of order n by one of reduced order
r < n such that the two input-output systems produce a similar output when excited
with the same input. Furthermore the reduced order problem should conserve the
characteristics of the full model it was derived from.

In fact there is a need for MOR techniques in various fields of applications and
for different kind of problem structures. Although a lot of effort is being spent
on deriving reliable MOR methods for, e.g., nonlinear problems of the form (4.5)
and for linear time varying (LTV) problems — these are problems of the form (4.4)
where the system matrices E, A, ... depend on time  — MOR approaches for linear
time systems, or, more precisely, for linear time invariant (LTI) systems, are best
understood and are technically mature.

The outcome of MOR applied to the linear state space problem (4.4) is an ersatz
system of the form

0 = Ez(r) + Az(r) + Bu(r), (4.10a)
§(t) = Cz(r) + Du(r), (4.10b)

with state variable z(7) € R’, output y(¢) € R” and system matrices E.A e R,
B € R C e R”™ and D € R”. The order r of this system is much smaller
than the order n of the original system (4.4).

There are many ways to derive such a reduced order model and there are
several possibilities for classifying these approaches. It is beyond the scope of this
introductory chapter to give a detailed description of all the techniques — for this we
refer to [3] and to the textbooks [1, 7, 51] and the papers cited therein.

We classify MOR approaches in projection and truncation based techniques. For
each of the two classes we reflect two methods that can be seen as the basis for
current developments. Note, that actually it is not possible to draw a sharp line. In
fact all MOR techniques aim at keeping major information and removing the less
important one. It is in how they measurure importance that the methods differ. In
fact several current developments can be regarded as a hybridization of different
techniques.

4.1.4 Projection Based MOR

The concept of all projection based MOR techniques is to approximate the high
dimensional state space vector x(¢) € R" with the help of a vector z(t) € R" of
reduced dimension r < n, within the meaning of

x(t) ~ X(t) := Vz(t) withV € R™,
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Note that the first approximation may be interpreted as a wish. We will only aim
for y(r) ~ y(t) = CVz(t) + Du(¢). The columns of the matrix V are a basis
of a subspace .# < R", i.e., the state space M , the solution x(¢) of the network
equation (4.4a) resides in, is projected on .#. A reduced order model, representing
the full problem (4.4) results from deriving a state space equation that determines
the reduced state vector z(¢) such that X(¢) is a reasonable approximation to x(¢).

If we insert X(¢) on the right-hand side of the dynamic part of the input-output
problem (4.4a), it will not vanish identically. Instead we get a residual:

r(t) := EVi(t) + AVz(t) + Bu(f) €R".

We can not demand r(¢#) = 0 in general as this would state an overdetermined
system for z(¢). Instead we apply the Petrov-Galerkin technique, i.e., we demand
the residual to be orthogonal to some testspace #'. Assuming that the columns
of a matrix W € R™" span this testspace, the mathematical formulation of this
orthogonality becomes

0=W'r(t) = W' (EVi(r) + AVz(t) + Bu(t)) €R’,

which states a differential equation for the reduced state z(¢).

Defining
E:=W/EVeR™, A:=W/AVeR™,
B:=W/BeR>*, (:=CVeR™, (4.11)
D:=D e R?",

we arrive at the reduced order model (4.10).

To relate V and W we demand biorthogonality of the spaces ¥ and #  spanned
by the columns of the two matrices, respectively, i.e. W'V = I,. With this, the
reduced problem (4.10) is the projection of the full problem (4.4) onto ¥ along # .
If an orthonormal V and W = V is chosen, we speak of an orthogonal projection
on the space ¥ (and we come down to a Galerkin method).

Now, MOR projection methods are characterised by the way of how to construct
the matrices V and W that define the projection. In the following we find a short
introduction of Krylov methods and POD approaches. The former starts from the
frequency domain representation, the latter from the time domain formulation of
the input-output problem.

4.1.4.1 Krylov Method

Krylov-based methods to MOR are based on a series expansion of the transfer
function H. The idea is to construct a reduced order model such that the series
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expansions of the transfer function H of the reduced model and the full problem’s
transfer function agree up to a certain index of summation.

In the following we will assume that the system under consideration does not
have a direct feedthrough, i.e., (4.6a) is satisfied. Furthermore we restrict to SISO
systems, i.e., single input single output systems. In this case we have p = m = 1,
i.e., B =Dband C = ¢/ whereb, ¢ € R", and the (scalar) transfer function becomes:

H(s) = - GE+A)"'b €eC,

As {E, A} is a regular matrix pencil we can find some frequency sy such that
soE + A is regular (for a good discussion on how to choose such “expansion points”
S0, see [17]). Then the transfer function can be reformulated as

H(s) =1, — (s —s9)F) " 'r, (4.12)

withl:= —¢f,r := —(soE + A)"'band F := (soE + A)'A.
In a neighbourhood of sy one can replace the matrix inverse in (4.12) by the
corresponding Neumann series. Hence, a series expansion of the transfer function is

o0
H(s) = Y my(s —s0)* with my :=1Fr eC. (4.13)
k=0

The quantities my for k = 0,1, ... are called moments of the transfer function.

A different model, of lower dimension, can now be considered to be an
approximation to the full problem, if the moments my. of the new model’s transfer
function H(s) agree with the moments m, defined above, fork = 1, ..., q for some
q € N.

AWE [38], the Asymptotic Waveform Evaluation, was the first MOR method that
was based on this idea. However, the explicit computation of the moments my,
which is the key to AWE, is numerically unstable. This method can, thus, only be
used for small numbers g of moments to be matched.

Expressions like F¥r or 1F* arise also in methods, like Krylov-subspace-
methods, which are used for the iterative solution of large algebraic equations. Here
the Lanczos- and the Arnoldi-method are algorithms that compute biorthogonal
bases W, V or a orthonormal basis V of the uth left and/or right Krylov subspaces

G (FT 0T, 1) = span (1T,FT 17 (FT) 1T) :
,(F,r, ) :=span (r,Fr, ... Py,

for u € N, respectively in a numerically robust way.

The Krylov subspaces, thus “contain” the moments m1; of the transfer function
and it can be shown, e.g., [2, 12], that from applying Krylov-subspace methods,
reduced order models can be created. These reduced order models, however, did not
arise from a projection approach. In fact, the Lanczos- and the Arnold-algorithm
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produces besides the matrices W and/or V whose columns span the Krylov
subspaces .#; and/or JZ;, respectively, a tridiagonal or an upper Hessenbergmatrix
7, respectively. This matrix is then used to postulate a dynamical system whose
transfer function has the desired matching property.

Concerning the moment matching property there is a difference for reduced order
models created from a Lanczos- and those created from an Arnoldi-based process.

For a fixed ¢, the Lanczos-process constructs the gth left and the gth right
Krylov-subspace, hence biorthogonal matrices W,V € R" 7. A reduced order
model of order ¢, arising from this procedure possesses a transfer function H(s)
whose first 2¢g moments coincide with the first 2¢ moments of the original problem’s
transfer function H(s), i.e. my = my for k = 0,...,2¢ — 1. Hence, the Lanczos
MOR model yields a Padé approximation.

The Arnoldi method on the other hand is a one sided Krylov subspace method.
For a fixed ¢ only the gth right Krylov subspace is constructed. As a consequence,
here only the first ¢ moments of the original system’s and the reduced system’s
transfer function match.

Owing to their robustness and low computational cost, Krylov subspace algo-
rithms proved suitable for the reduction of large-scale systems, and gained consid-
erable popularity, especially in electrical engineering. A number of Krylov-based
MOR algorithms have been developed, including techniques based on the Lanczos
method [9, 19] and the Arnoldi algorithm [36, 56]. Note that the moment matching,
mentioned above, can only be valid locally, i.e., for a certain frequency range around
the expansion point so. However, also Krylov MOR schemes based on a multipoint
expansion in the frequency range have been constructed [21].

The main drawbacks of these methods are, in general, lack of provable error
bounds for the extracted reduced models, and no guarantee for preserving stability
and passivity. There are techniques to turn reduced systems to passive reduced
systems. However, this introduced some post-processing of the model [18].

4.1.4.2 Passivity Preservation

Odabasioglu et al. [36] turned the Krylov based MOR schemes into a real
projection method. In addition, the developed scheme, PRIMA (Passive Reduced-
Order Interconnect Macromodeling Algorithm), is able to preserve passivity.

This MOR technique can be applied to electrical circuits that contain only passive
linear resistors, capacitors and inductors and which accepts only currents as input at
the terminals. One says that the RLC-circuit is in impedance form, i.e., the inputs
u(?) are currents and the outputs y are voltages.

In this case, the system matrices E,A,B and C have a special structure
(cp. (4.3b)), namely:

E1 0 A1 A2 T B1
E= , A= R B=C' = s 4.14
(%) (5 %) (3): e
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where E;,A; € R">" and E; € R"2*"L and are symmetric non-negative definit
matrices.

In PRIMA, first the Arnoldi method is applied to create the projection matrix
V. Then, choosing W = V, the system matrices are reduced according to (4.11).
For several implementational details, covering Block-Arnoldi as well as deflation,
see [55]. The reduced order model arising in this way can be shown to be passive
[36]. The key to these findings is the above special structure of linear RLC-circuits
in (4.14).

It is, however, not necessary, to use the Arnoldi method to construct the matrix V.
Furthermore, it is also possible to apply the technique to systems in admittance form,
i.e., where the inputs are voltages and the outputs are currents. For more details we
refer to [27] in this book.

4.1.4.3 Structure Preservation

As we have seen PRIMA takes advantage of the special block structure (4.14) of
linear RLC circuits to create passive reduced order models. The structure, however,
is not preserved during the reduction. This makes it hard to synthesise the model,
i.e., realize the reduced model as an RLC circuit again.

Freund [12-16] developed a Krylov-based method where passivity, the structure
and reciprocity are preserved. SPRIM (Structure-Preserving Reduced-Order Inter-
connect Macromodell) is similar to PRIMA as first the Arnoldi-method is run to
create a matrix V € R"". This, however, is not taken as the projection matrix
directly. Instead, the matrix V is partitioned to

V= (Vl) with 'V, € RV, ¢ R"X,
Vv,
corresponding to the block structure of the system matrices E, A, B, C.
Finally, after re-orthogonalization, the blocks V, V, are rearranged to the matrix

o Vi 0 nx(2r)
V= R , 4.15
(% v.) @.15)

which is then used to transform the system to a reduced order model, according to
the transformations given in (4.11) (withV = W = \A7).

It can be shown, that the SPRIM-model preserves twice as many moments as the
PRIMA, if the same Arnoldi-method is applied. Note, however, that the dimension
also increases by a factor 2.
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4.1.4.4 Multi-input Multi-output

For the general case, where p and m are larger than one, i.e., when we have multiple
inputs and multiple outputs, the procedure carried out by the Krylov MOR methods
is in principle the same. In this case however, Krylov subspaces for multiple starting
vectors have to be computed and one has to take care, when a “breakdown” or a
“near-breakdown” occurs, that is, when the basis vectors constructed for differing
starting vectors, r; and r, become linearly dependent. In this case the progress
for the Krylov subspace becoming linear dependent has to be stopped. The Krylov
subspace methods arising from that considerations are called Block Krylov methods.
For a detailed discussion we refer to the literature given above.

4.1.4.5 POD Method

While the Krylov approaches are based on the matrices, i.e., on the system itself, the
method of Proper Orthogonal Decomposition (POD) is based on the trajectory x(t),
i.e., the outcome of the system (4.4). One could also say that the Krylov methods
are based on the frequency domain, whereas POD is based on the time domain
formulation of the input output system to be modelled.

POD first collects data {x, ..., Xg}. The datapoints are snapshots of the state
space solution x(¢) of the network equation (4.4a) at different timepoints ¢ or
for different input signals u(¢). They are usually constructed by a numerical time
simulation, but may also arise from measurements of a real physical system.

From analysing this data, a subspace is created such that the data points as a
whole are approximated by corresponding points in the subspace in a optimal least-
squares sense. The basis of this approach is also known as Principal Component
Analysis and Karhunen—Loeve Theorem from picture and data analysis.

The mathematical formulation of POD [39] is as follows: Given a set of K
datapoints X := {xi,...,Xg} a subspace ., C R” of dimension r is searched
for that minimizes

K
1
1X — o X3 = & ; I = 0. (4.16)

where o, : R" — ., is the orthogonal projection onto ..

We will not describe POD in full detail here, as in literature, e.g., [1, 39], this
is well explained. However, the key to solving this minimization problem is the
computation of the eigenvalues A; and eigenvectors ¢; (fori = 1,...,n) of the
correlation matrix XX :

XXT‘Pi =2i@;,
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where the eigenvalues and eigenvectors are sorted such that Ay > --- > A,. The
matrix X is defined as X := (x;,...,Xg) € R™X and is called snapshot matrix.

Intuitively the correlation matrix detects the principal directions in the data cloud
that is made up of the snapshots Xy, ..., Xx. The eigenvectors and eigenvalues can
be thought of as directions and radii of axes of an ellipsoid that incloses the cloud
of data. Then, the smaller the radii of one axis is, the less information is lost if that
direction is neglected.

The question arises, how many directions r should be kept and how many can
be neglected. There is no a-priori error bound for the POD reduction (Rathinam and
Petzold [43], though, perform a precise analysis of the POD accuracy). However,
the eigenvalues are a measure for the relevance of the dimensions of the state space.
Hence, it seems reasonable to choose the dimension r of the reduced order model in
such a way, that the relative information content of the reduced model with respect
to the full system is high. The measure for this content, used in the literature cited
above is

Ao Ay
I RV S

J(r) =

Clearly, a high relative information content means to have .# (r) ~ 1. Typically r is
chosen such that this measure is around 0.99 or 0.995.

If the eigenvalues and eigenvectors are available and a dimension r has been
chosen, the projection matrices V and W in (4.11) are taken as

V:=W:=(g,...,0,) € R"",

leading to an orthogonal projection o, = VV on the space . spanned by

P1sees Pre

The procedure described so far relies on the eigenvalue decomposition of the
n x n matrix XX’ . This direct approach is feasible only for problems of moderate
size. For high dimensional problems, i.e., for dimensions n >> 1, the eigenvalues
and eigenvectors are derived form the Singular Value Decomposition (SVD) of the
snapshot matrix X € R"*K,

The SVD provides three matrices:

@ = (g1, - ,¢y) € R orthogonal,
=Y, -, ¥k) € RK orthogonal,

X :diag(O'l,...,O'v)ERuxv witho; >--->0, >0y41 =... =0g =0,

such that

_o (% O yr
x_q>(0 o)w’ 4.17)
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where the columns of @ and ¥ are the left and right singular eigenvectors, respec-

tively, and o1, ..., 0, are the singular values of X (o, being the smallest non-zero
singular value; this also defines the index v). It follows that ¢y, . .., ¢, are eigenvec-
tors of the correlation matrix XX’ with the n eigenvalues 07, ...,02,0,...,0.

4.1.5 Truncation Based MOR

The MOR approaches we reviewed so far rely on the approximation of the high-
dimensional state space, the solution of (4.4) resides in, by an appropriate space
of lower dimension. An equation for the correspondent z(¢) of x(¢) is derived by
constructing a projection onto that lower-dimensional space.

Although the approaches we are about to describe in the following can also be
considered as projection methods in a certain sense, we decided to present them
separately. What makes them different, is that these techniques base on preserving
key characteristics of the system rather than reproducing the solution. We will get
aquainted with an ansatz based upon energy considerations and an approach meant
to preserve poles and zeros of the transfer function.

4.1.5.1 Balanced Truncation

The technique of Balanced Truncation, introduced by Moore [35], is based on
control theory, where one essentially investigates how a system can be steered
and how its reaction can be observed. In this regard, the basic idea of Balanced
Truncation is to first classify, which states x are hard to reach and which states x are
hard to deduce from observing the output y, then to reformulate the system such that
the two sets of states coincide and finally truncate the system such that the reduced
system does not attach importance to these problematic cases.

The system (4.4) can be driven to the state X in time 7 if an input u(¢), with
t € [0, T] can be defined such that the solution at time 7', i.e., x(T") takes the value
x where x(0) = 0. We perceive the Ly-norm || - |2, with |[a3 = fOT a()"a() dr
as energy of the input signal. If the system is in state X at time # = 0 and no input
is applied at its ports we can observe the output y(¢) for ¢ € [0, T'] and the energy
|l¥]l2 emitted at the system’s output ports.

We consider a state as hard to reach if the minimal energy needed to steer the
system to that state is large. Similarly, a state whose output energy is small leaves a
weak mark and is therefore considered to be hard to be observed.

The minimal input energy needed and the maximal energy emitted can be
calculated via the finite and the infinite controllability Gramian

T e’}
P(T) = / ABB A gt and P = / ABBT A gt (4.182)
0 0
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and the finite and infinite observability Gramian
T o
2T) = / eAICTCeMdr and 2 = / eAICT Cerdr, (4.18b)
0 0

respectively. Note that the system (4.4) is assumed to be stable. Furthermore, the
above definition is valid for the case E = 1,,«,,. The latter does not mean a limitation
of the method of Balanced Truncation to standard state space systems. In fact, these
considerations can be applied to descriptor systems as well, e.g., [54].

With the above definitions one can prove that the minimal energy needed, i.e.,
the energy connected to the most economical input u, to reach the state x holds

a3 = %" 27'x.
Similarly, the energy emitted due to the state X holds
1§13 = x2%

The Gramians are positive definite. Applying a diagonalization of the control-
lability Gramian, it is easy to see that states that have a large component in the
direction of eigenvectors corresponding to small eigenvalues of & are hard to reach.
In the same way it is easy to see that states pointing in the direction of eigenvectors
to small eigenvalues of the observability Gramian 2 are hard to observe.

The basic idea of the Balanced Truncation MOR approach is to neglect states that
are both hard to reach and hard to observe. This marks the truncation part. However,
to reach this synchrony of a state being both hard to reach and hard to observe,
the basis of the state space has to be transformed. This marks the balancing part.
Generally, a basis transformation introduces new coordinates X such that x = T %
where T is the matrix representation of the basis transformation. Here the Gramians
transform equivalently to

P =TPZT' and 2=T1'21 7.

The transformation T is called balancing transformation and the system arising
from applying the transformation to the system (4.4) is called balanced if the
transformed Gramians satisfy

P = 2 = diag(o.....,0,). (4.19)

The values o1, ..., 0, are called Hankel Singular Values. They are the positive
square roots of the eigenvalues of the product of the Gramians:

0=V M(Z-2), | =1,...,n.
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Now we assume that the eigenvalues are sorted in descending order, i.e., o7 >
0, > +-- > 0,. We introduce the cluster

01

(o _ (21 )
Or+1 )’

On

and adopt this to the tranformed input-output system'!

_ ?fil(f) 1:\11 1:\12 X1 (1) 1:31
= (iz(f)) * (A21 Azz) (iz(l)) * (Bz) u ().

- (4.20)
X (¢
y(1) = (C1.Cy) (X; (t)) :
such thatX; €e R" and X, € R"™".
Finally we separate the cluster and derive the reduced order model
0 =%,1() + A%, () + Bu(r), (4.21a)
§1(t) = Ci%(¢) (4.21b)

of dimension r < n, by skipping the part corresponding to the small eigenvalues
Or41,...,0, of both Gramians.

Important Properties

Balanced Truncation is an appealing MOR technique because it automatically
preserves stability.

Furthermore, and even more attractive is that this MOR approach provides a
computable error bound: Let 0,41, ...,0; be the different eigenvalues that are
truncated. Then, for the transfer function H; corresponding to (4.21), it holds

[H—-Hiln, <2041+ +0k), (4.22)

where the H, norm is defined as |H||g., := sup,cp |[H(iw)|2 where || - ||2 is the
matrix spectral norm.

''"To simplify matters we have chosen E = I,,x, = diag(l, ..., 1) e R and D = 0.
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Computation

Applying the method of Balanced Truncation as presented above makes it necessary
to compute the Gramians and the simultaneous diagonalization of the Gramians.

The infinite Gramians &2 and 2 are defined by infinity integrals. However, it is
not hard to show that they arise from solving the Lyapunov equations:

AP + ZAT + BBT =0

(4.23)
AT2+2A+C"'C=0
Having solved the Lyapunov equations, one way to determine the balancing
transformation is described by the square root algorithm (see e.g. [1]). The basic
steps in this approach are the computation of the Cholesky factorisations of the
Gramians & = STS and 2 = R”R and the singular value decomposition of the
product SR”

In the past Balanced Bruncation was not favored because the computation of
the solution of the high dimensional matrix equations (4.23) and the balancing was
very cumbersome and costly. In recent years however, progress was made in the
development of techniques to overcome these difficulties. Techniques that can be
applied to realize the Balanced Truncation include the ADI method [30], the sign
function method [4] or other techniques, e.g. [49]. For a collection of techniques we
also refer to [5].

Poor Man’s TBR

Another method that should be mentioned is Poor Man’s TBR,'? introduced
by Phillips and Silveira [37]. Balanced Truncation relies on the Gramians. The
methods we mentioned so far compute these Gramians based on the Lyapunov
equations (4.23).

The idea of Poor Man’s TBR (PMTBR) however, is to compute the Gramians
from their definition (4.18). If the system to be reduced is symmetric, i.e. A = AT
and C = B”, & and 2 coincide. The (controllability and observability) Gramian
is then defined as

o0 T
P = / eABB” M ' dr.
0

As the Laplace transform of e’ is (sI—A)~!, we can apply Parseval’s lemma, which
says that a signal’s energy in the time domain is equal to its energy in the frequency

I2TBR = Truncated Balanced Realization
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domain and transfer the time domain integral to the frequency domain:
o0
P = / (0l —A) BB (0l —A) dw.
—00

PMTBR now starts with applying a numerical quadrature scheme: With nodes
wy, weights wy and defining 7z = (iwxI — A)™'B an approximation & to the
gramian & can be computed as:

PP = wazg =ZW-(ZW)",
k

where Z = (z1,22,...) and W = diag(\/wy, /W2, ...).
For further details on the order reduction we refer to the original paper mentioned
above.

4.1.5.2 Modal Truncation

Engineers usually investigate the transfer behavior of an input-output system by
inspecting its frequency response H(iw) =: G(w) for frequencies @ € R™. The
Bode plot, i.e. the combination of the Bode magnitude and phase plot, expressing
how much a signal component with a specific frequency is amplified or attenuated
and which phase shift can be observed from in- to output, respectively, is a graphical
representation of the frequency response.

One is especially interested in the peaks and sinks of the Bode magnitude plot,
which are caused by the poles and zeros of the transfer function H. The Modal
Truncation [45] is aimed at constructing a reduced order model (4.10) such that
peaks and sinks of the reduced order model’s frequency response G(w) = ﬁ(i )
match with the one of the full dynamical problem (4.4).

Applying Cramer’s rule it is obvious that the transfer function is a rational
function:

_ pn—l(s)
qn(s)

H(s)

with polynomials p,—; and ¢, of degree n — 1 and n respectively. The zeros of the
numerator are the zeros of the transfer function and the zeros of the denominator are
its poles.

The generalized eigenvalues of the matrix pencil {E, A}, or the eigenvalues of A,
if we assume E = 1,,,, are the key to the poles of the transfer function. For a more
detailed discussion we refer to [28]. To illustrate this relation we restrict to the latter
case and consider a SISO system without direct feedtrough, i.e., D = 0.
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The eigentriples (A;,v;,w;) fori = 1,...,n of A consist of the ith eigenvalue
A; € C and the ith right and left eigenvalue v;, w; € C", respectively, that satisfy

Av; = A;v; and leA = A,-W,H.
From assuming that A is diagonalizable it can be derived that
L”AR = 4,

where A = (A,...,A,),R=(v,...,v,) and L = (wy,...,w,) € C"", where
the left and right eigenvectors are scaled such that LYR = I,,x,.

We apply a change of coordinates x = RxX and multiply the input to state
mapping (4.4a) with L? which is a projection on the space spanned by the columns
of R along the space spanned by the columns of L. This transforms the input-output
system (4.4) to

d
—X = AX + L¥bu,
dr (4.24)

y = c/Rx.

The transformed system is equivalent to the original system (4.4), the (scalar)
transfer function can be represented as
H(s)zzs—r—ix,- with 7 = (cv;) (Wb) € C fori =1,....n. (425)

i=1

This form of displaying the transfer function is known as Pole-Residue Representa-
tion, where the quantities r; € C are called residues and where we can see that the
eigenvalues of the matrix A are the poles of H(s).

The idea of modal truncation is to replace the full order problem with a reduced
order model of say order r < n whose transfer function has a pole-residue represen-
tation that is a truncation of the corresponding full model’s representation (4.25), i.e.

r

H(s) = ) ——. (4.26)

i=1

where r; and A; fori = 1,..., r are the same as in (4.25). The corresponding state-
space representation (4.10) evolves from carrying out the matrix projections defined
in (4.11) where V, W € C"*" comprises r right and left eigenvectors vy, ..., v, and
Wi, ..., W,, respectively. As no new poles arise by constructing the reduced order
model in this way, the stability property is inherited from the full order problem.

Immediately the question arises, which pairs (4;, r;) of poles and residues and
how many should be taken into account.
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Rommes [45] and Martins et al. [31] sort these pairs according to decreasing
dominance of the pole. Their measure for dominance of a pole is the magnitude of
the relation

|7

re(A;)] .

Hence, modal truncation takes into account the first » poles/residues according to
this ordering scheme. The answer to the second part of the question, i.e., how many
poles/residues to keep, arises from the error bound [20]

n

A ||
H-H < E , 4.27
j=r+1

and hence from the deviation one is willing to tolerate.

The computation of the error bound (4.27) necessitates a full eigenvalue decom-
position. This is only feasible for moderate orders n < 2,000. For large scale
systems methods using only a partial eigenvalue decomposition can be applied.
Here the Subspace Accelerated Dominant Pole Algorithm (SADPA), introduced by
Rommes and Martins [46] produces a series of dominant poles. The main principle
of SADPA is to search for the zeros of ﬁ using a Newton-iteration. As the
Newton-iteration can only find one zero sufficiently close to a starting value at a
time, the iteration procedure has to be applied several times. In order to find less
dominant poles at each time, the system the dominant pole algorithm is applied to
is adjusted each time one dominant pole has been found. This adjustment is referred
to as subspace acceleration.

Again, for further details we refer to the papers cited above.

4.1.6 Other Approaches

We shortly address some other approaches. In [26, 40, 41], port-Hamiltonian sys-
tems are considered to guarantee structure preserving reduced models. In [8, 10, 11],
vector fitting techniques are used to obtain passivity preserving reduced models. In
[25, 32, 47], one matches additional moments of Laurent expansions involving terms
with 1/s. These are applied to obtain passive reduced models for RLC circuits.

4.1.7 Examples

In this part we will introduce linear circuits and reduce them with techniques which
have already been discussed. We give results for the methods PRIMA [36], SPRIM
[12-16], and PMTBR [37].
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In simulation a Bode magnitude plot of the transfer function shows the magnitude
of H(iw), in decibel, for a number of frequencies w in the frequency domain of
interest. If the transfer function of the original system can be evaluated at enough
points s = i w to produce an accurate Bode plot, the original frequency response can
be compared with the frequency response of the reduced model. In our examples, H
is a scalar.

4.1.7.1 Example 1

We choose an RLC ladder network [33] shown in Fig.4.1. We set all the capaci-
tances and inductances to the same value 1 while R; = % and R, = %, see [34, 53].
We arrange 201 nodes which gives us the order 401 for the mathematical model of
the circuit.

If we write the standard MNA formulation the linear dynamical system is

derived. The system matrices are as follows (for K = 3, for example):

-2 0 0 -1 0 0
0 0 0 -1 1 0
E=1 A= 0O 0-5 01|, B=|5],
1 1 0 0 O 0
0-1 -1 0 O 0
C=[00-500], D=5 (4.28)
In the state variable x, x; is the voltage across capacitance Cx (k = 1,. .., K), or the

current through inductor Ly—_g (k = K +1,...,2K — 1). In general the number of
nodes K is odd. The voltage u and the current y are input and output, respectively.
Note that when the number of nodes is K the order of the system becomes n =
2K — 1. In this test case we have an ODE instead of a DAE as E = 1, see (4.28).
The original transfer function is shown in Fig. 4.2. The plot already illustrates how
difficult it is to reduce this transfer function as many oscillations appear.

Fig. 4.1 RLC Circuit of order n = 2K — 1, Example 1
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Transfer Function
15 T T T T

10

—— Original System

Gain(dB)

-5

Frequency(rad/sec)

Fig. 4.2 Original transfer function for the first example of Fig. 4.1, order n = 401. The frequency
domain parameter  varies between 1072 to 10
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Fig. 4.3 RLC Circuit of order n = 2K — 1, Example 2

4.1.7.2 Example 2

Next, we use another RLC ladder network, given in Fig. 4.3 [33, 48], for the second
example. The major difference to the previous example is that we introduced a
resistor (all of equal value) in parallel to the capacitors at each node connected to
the ground. We set all the capacitances and inductances to the same value 1 while
R, = %, R, = é and R = 1. We choose 201 nodes which results in a system having
order 401 for the mathematical model of the circuit. Like the previous example we
again derive a system of ODEs. The original transfer function of the second example
is shown in Fig. 4.4.
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Fig. 4.4 Original transfer function for the second example of Fig.4.3, order n = 401. The
frequency domain parameter  varies between 1072 to 103
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Fig. 4.5 Hankel Singular Values for Example 1 and 2, (semi-logarithmic scale)

4.1.7.3 MOR by PRIMA, SPRIM and PMTBR

The main reason for choosing these two examples is the behavior of the Hankel
singular values, see Fig. 4.5. The Hankel singular values for the first example do not
show any significant decay, while in the second example we observe a rapid decay
in the values. The results are taken from [33].

The Figs. 4.6 and 4.7 show the absolute error between the transfer function of
the full system and the transfer function of several reduced systems. The model
is reduced by three linear techniques (PRIMA, SPRIM and PMTBR) for both
examples.
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Fig. 4.6 Error plot, the frequency domain parameter o varies between 1072 to 10°, Example 1
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Fig. 4.7 Error plot, the frequency domain parameter  varies between 102 to 10°, Example 2

In the Example 1 we reduced the system from order n = 401 (number of nodes
is K = 201) to order 34, which means that we reduced the system (in all three
methods) by a factor of 10. The order of the reduced model is relatively large in
this case as the dynamical system is somehow stubborn for any reductions, see
Fig.4.5. The price we will pay for a smaller system is too high as we loose a lot
of information during the reduction and the error is becoming relatively large. As
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we expected, PRIMA and SPRIM in Fig. 4.6 produced reliable results close to the
expansion point, in this case s = 0, but the error is immediately increasing for
the rest of the oscillation part, see Fig. 4.2, and then smoothly decreases for higher
frequencies. In the first example the PMTBR method matches a bit worse for the low
frequencies as the error decreases just for a short interval and immediately starts to
increase again. But PMTBR also cannot cover the oscillation part of the transfer
function although it resolves the higher frequencies well. The order in PMTBR
results from a prescribed tolerance.

For the second example the SPRIM and PRIMA produced a nice match around
the expansion point, s = 0, like the first example, but for a larger interval, see
Fig.4.7. The peaks of error for both PRIMA and SPRIM are around —50 and
—80dB, respectively, which are much lower than in Example 1 where the peaks
are around 0dB for both PRIMA and SPRIM. We allowed PMTBR to reduce the
system by a factor of 20 in this case although we keep the order of the reduced
system the same as for the first example for the PRIMA and SPRIM. Despite the
lower dimension for the reduced system PMTBR produced much better results for
this test case compared to the first example as the error starts from —50dB and
smoothly decreases for low frequencies and suddenly falls to —300dB for larger
frequencies.

As we expected, the SPRIM produces a better approximation than PRIMA,
especially for the second example, since it matches twice as much moments.
Although both methods have a good agreement around the expansion point s = 0,
the error increases as we are far from the expansion point. Since the Hankel singular
values for the first example do not decay, the PMTBR method cannot produce an
accurate model for low frequencies in that case. In the second example where the
Hankel singular values rapidly decay PMTBR produced a more reliable result with a
better match. This shows that we cannot stick to one method for reduction in general
and the method should be chosen depending on the circuit’s behavior.

4.1.8 Summary

In industrial applications of different disciplines, model order reduction is gaining
more and more interest. As there is not the one and only type of model to describe
all kinds of dynamics of different physical problems there is not and will never be
the one and only MOR technique that fits best to all problems. Hence, research on
MOR techniques is an ongoing process.

In the following contributions in this chapter you will find different approaches to
different questions, aiming to attack different facets of reduced order models. This
introductory contribution was ment to give an overview of the basic ideas and the
motivation of some MOR techniques that are applied and refined throughout this
chapter.
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4.2 Eigenvalue Methods and Model Order Reduction

Physical structures and processes are modeled by dynamical systems in a wide
range of application areas.'’> The increasing demand for complex components
and large structures, together with an increasing demand for detail and accuracy,
makes the models larger and more complicated. To be able to simulate these
large-scale systems, there is need for reduced-order models of much smaller size,
that approximate the behavior of the original model and preserve the important
characteristics.

In order to preserve the important characteristics, one usually first has to know
what are the important characteristics. For linear dynamical systems, two important
characteristics are the dominant dynamics and stability. The dominant dynamics are
determined by the dominant modes of the system, while stability of the system is
determined by the location of the eigenvalues. Hence, both characteristics can be
computed by solving eigenvalue problems: the dominant dynamics can be found by
computing the dominant eigenvalues (poles) and corresponding eigenvectors, while
stability can be assessed by determining whether the system has no eigenvalues in
the right half-plane (the system is stable if there are no eigenvalues with real part
greater than zero).

A large-scale dynamical system can have a large number of modes. Like a general
square matrix can be approximated by its largest eigenvalues, i.e. by projecting it
onto the space spanned by the eigenvectors corresponding to the largest eigenvalues,
a dynamical system can be approximated by its dominant modes: a reduced order
model, called the modal equivalent, can be obtained by projecting the state space
on the subspace spanned by the dominant eigenvectors. This technique, modal
approximation or modal model reduction, has been successfully applied to scalar
and multivariable transfer functions of large-scale power systems, with applications
such as stability analysis and controller design, see [81, 82].

The dominant eigenvectors, and the corresponding dominant poles of the system
transfer function, are specific eigenvectors and eigenvalues of the state matrix.
Because the systems are very large in practice, it is not feasible to compute all
eigenvectors and to select the dominant ones.

Section 4.2 is concerned with the efficient computation of the dominant poles
and eigenvectors specifically, and their use in model order reduction. The section
is organized as follows. In Sect.4.2.1 the concept of dominant poles and modal
approximation is explained in more detail. Dominant poles can be computed with
specialized eigensolution methods, as is described in Sect. 4.2.2. Some generaliza-
tions of the presented algorithms are shown in Sect. 4.2.3. Ideas on how to improve
Krylov based MOR methods by using dominant poles are discussed in Sect. 4.2.4.
Numerical examples are presented in Sect. 4.2.5. Section 4.2.6 concludes.

13Section 4.2 has been written by: Joost Rommes and Nelson Martins.
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For general introductions to model order reduction we refer to the previous
Sect. 4.1 and to [58, 60, 61, 88]; for eigenvalue problems, see [87, 93]. More detailed
publications on the contents of this section are [80-85]. The pseudocode algorithms
presented in this section are written using Matlab-like [92] notation.

4.2.1 Transfer Functions, Dominant Poles and Modal
Equivalents

In Sect. 4.2, the dynamical systems (E, 4, b, ¢, d) are of the form

Ex(t) = Ax(t) + bu(z)

4.29
y() = ex(0) + dul). @2
where A, E € R™", E may be singular, b, ¢, x(¢) € R”, u(t), y(t),d € R. The
vectors b and ¢ are called the input, and output map, respectively. The transfer
function H : C — C of (4.29) is defined as

H(s) =c*(sE— A)'b+d. (4.30)

The poles of the transfer function in (4.30) are a subset of the eigenvalues A; € C
of the matrix pencil (A4, E). An eigentriplet (A;, X;,y;) is composed of an eigenvalue
A; of (A, E) and corresponding right and left eigenvectors x;,y; € C":

Ax; = A Ex;, x; # 0,
ViA=My'E.  yi#£0,  (=1,...n).

The actual occurring poles in (4.30) are identified by the components of the
eigenvectors in in b and c. Assuming that the pencil is nondefective, the right
and left eigenvectors corresponding to the same finite eigenvalue can be scaled so
that y*Ex; = 1. Furthermore, it is well known that left and right eigenvectors
corresponding to distinct eigenvalues are E-orthogonal: y; Ex; = 0fori # j. The
transfer function H(s) can be expressed as a sum of residues R; € C overthenn < n
finite first order poles [68]:
n Rl
His)=)" it Roo + d, (4.31)

i=1
where the residues R; are

R = (¢"x;)(y;'b).

and R is the constant contribution of the poles at infinity (often zero).
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Although there are different indices of modal dominance [57, 64, 94], the
following will be used in this chapter.

Definition 4.1 A pole A; of H(s) with corresponding right and left eigenvectors x;
andy; (y/ Ex; = 1) is called the dominant pole if | R;|/|Re(A;)| > |R;|/|Re(A;)],
forall j #i.

More generally, a pole A; is called dominant if |R;|/|Re(A;)| is not small
compared to |R;|/|Re(A;)|, for all j # i. A dominant pole is well observable
and controllable in the transfer function. This can also be seen in the corresponding
Bode-plot, which is a plot of the magnitude |H (iw)| against w € R: peaks occur
at frequencies w close to the imaginary parts of the dominant poles of H(s). In
practise one also plots the corresponding phase of H(iw). An approximation of
H (s) that consists of k < n terms with | R;|/|Re(A ;)| above some value, determines
the effective transfer function behavior [90] and is also known as transfer function
modal equivalent:

Definition 4.2 A transfer function modal equivalent Hj (s) is an approximation of
a transfer function H (s) that consists of k < n terms:

k

Hi(s) =) - fjx +d. 4.32)
J

Jj=1

A modal equivalent that consists of the most dominant terms determines the
effective transfer function behavior [90]. If X € C"* and Y € C"** are matrices
having the left and right eigenvectors y; and x; of (A4, E) as columns, such that
Y*AX = A = diag(Ay,...,Ar), with Y*EX = [, then the corresponding
(complex) reduced system follows by setting x = XX and multiplying from the
left by Y*:

X(t) = AX(t) + (Y *b)u(r)
F(t) = (c*X)X(t) + dul(r).

In practice, it is advisable to make a real reduced model in the following way:
for every complex pole triplet (A, X,y), construct real bases for the right and left
eigenspace via [Re(x), Im(x)] and [Re(y), Im(y)], respectively. Let the columns of
X, and Y, be such bases, respectively. Because the complex conjugate eigenvectors
are also in this space, the real bases for the eigenspaces are still (at most) k
dimensional. The real reduced model can be formed by using X, and Y, in
(YYEX, Y*AX,,Y*b,X'c,d).
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For stable nondefective systems, the error in the modal equivalent can be
quantified as [64]

n R
IH = Hilloo = | Y —"—llo

j=kt1® —4
Xn: IR/
150 IRe(@))]

where || H || is the operator norm induced by the 2-norm in the frequency domain
[58, 64]. An advantage of modal approximation is that the poles of the modal
equivalent are also poles of the original system.

The dominant poles are specific (complex) eigenvalues of the pencil (A, E) and
usually form a small subset of the spectrum of (A, E), so that rather accurate modal
equivalents may be possible for k < n. Since the dominant poles can be located
anywhere in the spectrum, specialized eigensolution methods are needed. Because
the dominance of a pole is independent of d, without loss of generality d = 0 in
the following.

4.2.2 Specialized Eigensolution Methods

In this section we describe the Dominant Pole Algorithm and its extension with
deflation and subspace acceleration.

4.2.2.1 The Dominant Pole Algorithm (DPA)

The poles of the transfer function (4.30) are the A € C for which lim,,, |H(s)| =
oo and can be computed via the roots of G(s) = 1/H(s). Applying Newton’s
method leads to the scheme

ctvy

Sk+1 = Sk — (4.33)

w; Evi

where v, = (st E — A)7'b and w; = (sx E — A)"*c. The algorithm based on
this scheme, also known as the Dominant Pole Algorithm (DPA) [72], is shown in
Algorithm 4.1. Note that strictly speaking the definition of dominance used here
is based on |R;| (and not on |R;|/|Re(A;)| as in Definition 4.1); observe that
in(4.32) R; = (c*x j)(y;’.‘ b). The subsequent algorithms offer refinements that may
lead to additional candidates, in any user-specified dominance criterion, including
Definition 4.1.
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Algorithm 4.1 The Dominant Pole Algorithm (DPA)

INPUT: System (E, A, b, ¢), initial pole estimate sy, tolerance € < 1
OUTPUT: Approximate dominant pole A (close to sg) and corresponding right and left eigenvec-
tors x and y
1: Setk =0
2: while not converged do
3: Solve v;, € C" from (sx E — A)vy = b
4: Solve wy € C" from (s E — A)*w; = ¢
5 Compute the new pole estimate

c* vy wi Avg
K =5 — =
AR Wi Evi  wiEv
6: The pole A = s34 withx = v; and y = w;, has converged if

lAvi — sk+1Evill2 < €

7: Setk =k +1
8: end while

The Dominant Pole Algorithm is closely related to Rayleigh Quotient Iteration
[76, 77]: the only difference is that in DPA the right hand-sides in Step 3 and 4
remain fixed, while in Rayleigh Quotient Iterations these are updated with b =
Evj_; and ¢ = E*wj_; every iteration. See [85] for a detailed comparison.

The two linear systems that need to be solved in step 3 and 4 of Algorithm 4.1
to compute the Newton update in (4.33) can be efficiently solved using one LU-
factorization LU = sy E — A, by noting that U*L* = (sx E — A)*. If an exact
LU-factorization is not available, one has to use inexact Newton schemes, such as
inexact Rayleigh Quotient Iteration and Jacobi-Davidson style methods [67, 89, 91].
In the next section, extensions of DPA are presented that are able to compute more
than one eigenvalue in an effective and efficient way.

4.2.2.2 Deflation and Subspace Acceleration

In practical applications often more than one dominant pole is wanted: one is
interested in all the dominant poles, no matter what definition of dominance is used.
Simply running the single pole algorithm DPA for a number of different initial shifts
will most likely result in duplicate dominant poles. A well known strategy to avoid
computation of already found eigenvalues is deflation, see for instance [87]. Itis also
known that subspace acceleration may improve the global convergence: for an n x n
problem, the subspace accelerated algorithm converges within at most n iterations,
although in practice it may need only k < n iterations and will almost never build
a full search space of dimension 7, but restart every k,,,, < n iterations. The use
of subspace acceleration requires that every iteration an approximate pole has to
be selected from the available approximations. This also may improve the global
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convergence, since better approximations than the initial estimate, which may be a
rather crude approximation, become available during the process.

In the next subsections, variants of DPA for the computation of more than one
pole without and with subspace acceleration are discussed. This variant that does not
use subspace acceleration can be implemented efficiently with only constant costs
for deflation, while the subspace accelerated variant has better global convergence.

Throughout the rest of this chapter, let the (n x k) matrices X and Y} have as
their columns the normalized (found) right and left eigenvectors x; and y; (i =
1,...,k) of (A4, E), respectively, and let Ay be a diagonal (k x k) matrix with the
corresponding eigenvalues on its diagonal, i.e. Ay = diag(Ay,...,Ax), Y AX; =
Ay and Yk*EXk = I. For ease of notation, the subscript k will be omitted if this
does not lead to confusion.

4.2.2.3 DPA with Deflation by Restriction

It can be verified that if X = X, and Y = Y, have as their columns exact
eigenvectors (normalized so that Y*EX = [), then the system (E;, A4, by, ¢q),
where

Eq = (I — EXY*)E(I — XY*E),
Ag = (I —EXY*)A(I — XY*E),
by = (I — EXY*)b,

cg = (I — E*YX%)c,

has the same poles, eigenvectors and residues, but with the found A; (i = 1,...,k)
and corresponding R; transformed to 0. So in order to avoid recomputing the same
pole, DPA could be applied to the deflated system (E;, Ay, by, c;) after having
found one or more poles. This would require solves with (sE; — Ay) and (sE; —
Ag)* in step 4 and 5 of Algorithm 4.2,'* but the following theorem shows that it is
sufficient to only replace b by b, and ¢ by ¢, to ensure deflation.

Theorem 4.2 ([80, Thm. 3.3.1]) The deflated transfer function H,(s) = ¢} (sE —
A)"'by, where
b, = (I —EXY*)b and ¢; = (I — E*YX")c,

has the same poles A; and corresponding residues R; as H(s) = ¢*(sE—A)™'b, but
with the residues R; corresponding to the found poles A; (i =1, ..., k) transformed
toR; =0.

4Note that (sE; — A, ) would never be computed explicitly, and that sparse systems (sE; — A4)Xx =
b, can be solved efficiently.
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Algorithm 4.2 Dominant Pole Algorithm with deflation (DPAd)

INPUT: System (E, A, b, ¢), initial pole estimates sé, e sé’ , tolerance € K 1
OUTPUT: Approximate dominant poles A = diag(},., ..., Ap), and corresponding right and left
eigenvectors X = [x;,...,X,Jand Y = [y,...,y,]
1: Setk =0,i =0,5, = Sé
2: while i < p do
3: > Continue until p poles have been found
Solve v € C" from (sx E — A)vy = b
Solve wy € C" from (s E — A)*w; = ¢
Compute the new pole estimate

SARNANE

c*vy wy Avg
Sk+1 = 8§ — = —
wiEvy  WiEv

7: if | Avi — sk4+1 Evi|l2 < € (with [|vg]l, = 1) then

8: Seti =i +1

9: Set Aii = Sk+1

10: Set vi = vi /(W Evi)

11: Set X = [X,vi]and ¥ = [Y, wi]
12: Deflate: b =b — Evyw;b

13: Deflate: ¢ = ¢ — E*wyvj ¢

14: Set sk = sé

15: end if

16: Setk =k +1
17: end while

Proof The proof follows by using the definition of residues and basic linear algebra
[80, Thm. 3.3.1]. O

In other words, by using b, and ¢, the found dominant poles are degraded to non
dominant poles of H,(s), while not changing the dominance of the remaining poles.
Hence these poles will not be recomputed by DPA applied to H,(s). Graphically, the
peaks caused by the found poles are *flattened’ in the Bode plot (see also Fig. 4.8).

Note that if H(s) = ¢*(sE — A)~'b + d with d = 0, then the deflated poles
in fact become zeros of H,(s). It can be shown that DPA applied to H;(s) =
¢’ (sE— A)~'b, and DPA applied to H () =c¢j(sEq — A4)"'by produce the same
results [85].

The important result is that the single pole DPA can easily be extended, see
Algorithm 4.2, to an algorithm that is able to compute more than one pole, while
maintaining constant costs per iteration, except for iterations in which a pole is
found. The only change to be made to Algorithm 4.1, is when a dominant pole
triplet (4, x,y) is found: in that case, the algorithm continues with b and ¢ replaced
by (I — Exy*)b and (I — E*yx*)c, respectively.

This approach has a number of advantages. The implementation is straight-
forward and efficient: search spaces, selection strategies and orthogonalization
procedures are not needed, so that the computational costs per iteration remain
constant, even if the number of found poles increases. For every found pole only
two skew projections are needed once to compute the new b, and ¢y, so the costs
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Fig. 4.8 Exact transfer function (solid) of the New England test system [72], and modal
equivalents where the following dominant pole (pairs) are removed one by one: —0.467 + 8.96i
(square), —0.297 % 6.96i (asterisk), —0.0649 (diamond), and —0.249 = 3.69i (circle). Note that
the corresponding peaks are removed from the Bode plot as well (to see this, check the Bode plot
at the frequencies near the imaginary part of the removed pole)

for deflation are constant. The pseudo code in Algorithm 4.2 can almost literally be
used as Matlab code. The special properties of DPA ensure convergence to dominant
poles (locally). Furthermore, the deflation of found poles is numerically stable in
the sense that even if the corresponding transformed residues are not exactly zero,
which is usually the case in finite arithmetic, this will hardly influence the effect of
deflation: firstly, all the poles are left unchanged, and secondly, already a decrease
of dominance of the found poles to nondominance (because of the projected in- and
output vectors b,y and ¢;) will shrink the local convergence neighborhood of these
poles significantly, again because of the convergence behavior of DPA [85].

This approach, however, may still suffer from the fact that the convergence
behavior can be very local and hence may heavily depend on the initial estimates s/).
Although in practice one often has rather accurate initial estimates of the poles of
interest, this may be problematic if accurate information is not available. It may take
many iterations until convergence if the initial estimate is not in the neighborhood of
a dominant pole. On the other hand, the computational complexity of this problem
depends on the costs of the LU factorization, which in certain practical examples
can be computed very efficiently. In the next section a subspace accelerated version
of DPA is described, that improves the global convergence by using search spaces.
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Algorithm 4.3 Subspace Accelerated DPA (SADPA)

INPUT: System (E, A, b, ¢), initial pole estimate s; and the number of wanted poles p
OUTPUT: Dominant pole triplets (A;,x;,y;),i = 1,...,p
L k= 17pfouml=07A= [],X=Y=[]
2: while ps,yq < p do
Solve v from (sy E — A)v =b
Solve w from (s E — A)*w = ¢
v=MGS(V.v), V = [V, v/[|vl]]
Compute S = W*AV and T = W*EV
(A, X,Y) = Sort(S, T, W*Db, V*c) > Algorithm 4.4
Dominant approximate eigentriplet of (A, E) is

w

VRN

(G =A% = VR/IVE . 51 = Wi/IWF L)

10:  if ||A%, — A1 ER1|]2 < € then

11: (A X,Y,V,W,b,¢) =

12: Deflate(L1, %1, 51, A, X, Y, V Xk, W, E. b, €©) > Algorithm 4.5
13: pfounNd = [gbund +1

14: SetA) = A,k =k—1

15: end if

16: Setk =k +1

17: Set the new pole estimate s, = 11

18: end while

4.2.2.4 Subspace Accelerated DPA

A drawback of DPA is that information obtained in the current iteration is discarded
at the end of the iteration. The only information that is preserved is contained in
the new pole estimate s; 4. The current right and left approximate eigenvectors vy
and wy, however, may also contain components in the direction of eigenvectors
corresponding to other dominant poles. Instead of discarding these approximate
eigenvectors, they are kept in search spaces spanned by the columns of V' and W,
respectively. This idea is known as subspace acceleration.

A global overview of SADPA is shown in Algorithm 4.3. Starting with a single
shift sy, the first iteration is equivalent to the first iteration of the DPA (step 3—4). The
right and left eigenvector approximations v; and w; are kept in spaces V and W. In
the next iteration, these spaces are expanded orthogonally, by using modified Gram-
Schmidt (MGS) [63], with the approximations v, and w, corresponding to the new
shift s, (step 5—6). Hence the spaces grow and will contain better approximations.

It can be shown that subspace accelerated DPA, under certain conditions, is
equivalent to subspace accelerated Rayleigh Quotient Iteration and the Jacobi-
Davidson method, see [80, 85] for more details.
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Algorithm 4.4 (A, X,Y) = Sort(S, 7., b, ¢)
INPUT: S,T € C*** b,c e C*
OUTPUT: A € C¥, X, Y € C* with A, the pole with largest (scaled) residue magnitude and
¥1 and X; the corresponding right and left eigenvectors.
1: Compute eigentriplets of the pair (S, T'):

(X[,i{,i’,‘), ?fTil = 1, i = 1 ..... k
2 A="[h,..., Al
X =[,..., Xk ]
4. Y = [il ..... ik]
5: Compute residues R; = (¢*X;)(¥'b)
6: Sort A, X, Y in decreasing | R;|/|Re(};)| order

Selection Strategy

In iteration k the Petrov-Galerkin approach leads (step 7) to the projected eigen-
problem

W*AVX = AW*EVX,
JW*AV = A§W*EV.

Since the interaction matrices S = W*AV and T = W*EV are of low dimension
k <« n, the eigentriplets (A;,X;,¥y;) of this reduced problem can be computed
using the QZ method (or the QR method in the bi-E-orthogonal case) (step 1
of Algorithm 4.4). This provides k approximate eigentriplets (ii = A% =
VX;,y; = WY;) for (A, E). The most natural thing to do is to choose the triplet
()AL j-X;,¥;) with the most dominant pole approximation (step 8-9): compute the
corresponding residues R = (c*%;)(¥7b) of the k pairs and select the pole with
the largest |1§ il/ |Re(/A\ ;)| (see Algorithm 4.4). The SADPA then continues with the
new shift s+ = /A\j (step 16).

The residues R; can be computed without computing the approximate eigen-
vectors explicitly (step 5 of Algorithm 4.4): if the X; and y; are scaled so that
y:Tx;, = 1 (= §/EX;), then it follows that the R; can be computed as R =
(" V)X) (¥ (W*D)) (= (¢"%;) (¥ D).

Instead of §7 EX; = 1 one can also use the scaling [|§;[l. = ||Xi|l. = 1 when
computing approximate residues. In that case the product of the angles Z(%;, ¢) and
Z(¥i,b) is used in the computation of the approximate residues (see also [85]),
which numerically may be more robust.
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Algorithm 4.5 (A, X, Y, V, W by, ¢s) = Deflate(A,x,y, A, X, Y, V,W, E.,b, ¢)

INPUT: 1 €C,x,yeC', A€eCl, X, Y eC™?, VW € Cr<k E € C"™" b,c € C"
OUTPUT: A €C?, X,Y € C™4.V, W € C™>*~1 b, c; € C", where ¢ = p + 1if A has zero
imaginary part and ¢ = p + 2 if A has nonzero imaginary part.

I: A=[A1]

2: Setx = x/(y* EX)

3 X =[X,x]

4: Y =1[Y,y]

5: Deflate: b, = b — Ex(y*b)

6: Deflate: ¢; = ¢ — E*y(x*¢)

7: if imag(1) # O then

8: B > Also deflate complex conjugate
9: A=][A1]

10: x=Xx, X =[X,x]

1 y=§3Y=[Vy

12: Deflate: by = b; — Ex(y*by)

13: Deflate: ¢; = ¢g — E*y(x*¢y)

14: end if _

15: V=W =[]

16: for j = 1,...,kd~0

17: V = Expand(V,X.Y,E,v;) > Algorithm 4.6
18: W = Expand(W,Y, X, E*,w;) > Algorithm 4.6
19: end for

Deflation

In each iteration step a convergence test (step 10) is done like in DPAd (Algo-
rithm 4.2): if for the selected eigentriplet (;\1, X1,¥1) the norm of the residual
[|AX; — ilEquz is smaller than some tolerance ¢, it is converged. In general
more than one dominant eigentriplet is wanted and it is desirable to avoid repeated
computation of the same eigentriplet. The same deflation technique as used in DPAd
can be applied here (steps 5—-6 and 12-13 of Algorithm 4.5, see also Sect.4.2.2.3),
and since SADPA continues with b; and ¢;, no explicit E-orthogonalization of
expansion vectors against found eigenvectors is needed in step 3 and 4. The effect is
similar to the usual deflation in Jacobi-Davidson methods [62]: found eigenvectors
are hard-locked, i.e. once deflated, they do not participate and do not improve during
the rest of the process (contrary to soft-locking, where deflated eigenvectors still
participate in the Rayleigh-Ritz (Ritz-Galerkin) procedure and may be improved, at
the cost of additional computations and administration, see [69, 70]). In fact, there
is cheap explicit deflation without the need for implicit deflation (cf. [62, remark 5,
p. 106], where a combination of explicit and implicit deflation is used).
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Algorithm 4.6 V = Expand(V, X, Y, E,v)

INPUT: V € C™ with V*V = I, X,Y € C"™?, E € C"™", v € C", Y*EX diagonal,
Y*EV =0

OUTPUT: V € C"**+D with V*V = I and
Xy E

. —T717 _ iy,

I Vg = ]—Ij=1(1 viix,) Y
*

vy =TT” _NYiEy

2v=]];o,U VT Ex, v

3: v=MGS(V,v)
4V =[V.v/lIvll]

If an eigentriplet has converged (steps 11-13 of Algorithm 4.3), the eigenvectors
are deflated from the search spaces by reorthogonalizing the search spaces against
the found eigenvectors. This can be done by using modified Gram-Schmidt (MGS)
and by recalling that, if the exact vectors are found, the pencil

(I — EXY*)A(I — XY*E), (I —EXY*)E(I —XY*E))

has the same eigentriplets as (A, E), but with the found eigenvalues transformed to
zero (Algorithm 4.6, see also [62, 67]). Since in finite arithmetic only approxima-
tions to exact eigentriplets are available, the computed eigenvalues are transformed
to n ~ 0. The possible numerical consequences of this, however, are limited, since
SADPA continues with b; and ¢g, and as argued in Sect. 4.2.2.3, the residues of the
found poles are transformed to (approximately) zero.

If a complex pole has converged, its complex conjugate is also a pole and the
corresponding complex conjugate right and left eigenvectors can also be deflated. A
complex conjugate pair is counted as one pole. The complete deflation procedure is
shown in Algorithm 4.5.

After deflation of the found pole(s), SADPA continues with the second most
dominant approximate pole (steps 13—16 of Algorithm 4.3).

Further Improvements and Remarks

It may happen that the search spaces V' and W become high-dimensional, especially
when a large number of dominant poles is wanted. A common way to deal with
this is to do a thick restart [62, 87]: if the subspaces V and W reach a certain
maximum dimension k,,,, < n, they are reduced to a dimension k,,;, < kjqx by
keeping the k,,;, most dominant approximate eigentriplets; the process is restarted
with the reduced V' and W (already converged eigentriplets are not part of the active
subspaces V' and W). This procedure is repeated until all poles are found.
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Furthermore, as more eigentriplets have converged, approximations of new
eigentriplets may become poorer or convergence may be hampered, due to rounding
errors in the orthogonalization phase and the already converged eigentriplets. It is
therefore advised to take a small tolerance € < 10710, Besides that, as the estimate
converges to a dominant pole, the right and left eigenvectors computed in step 3 and
4 of Algorithm 4.3 are usually more accurate than the approximations computed in
the selection procedure: if the estimate s is close to an eigenvalue A, then s E — A
may become ill-conditioned, but, as is discussed in [79] and [78, Section 4.3], the
solutions v; and wy have large components in the direction of the corresponding
right and left eigenvectors (provided b and ¢ have sufficiently large components
in those directions). In the deflation phase, it is therefore advised to take the most
accurate of both, i.e., the approximate eigenvector with smallest residual. It may also
be advantageous to do an additional step of two-sided Rayleigh quotient iteration to
improve the eigenvectors.

SADPA requires only one initial estimate. If rather accurate initial estimates are
available, one can take advantage of this in SADPA by setting the next estimate after
deflation to a new initial estimate (step 16 of Algorithm 4.3).

Every iteration, two linear systems are to be solved (step 3 and 4). As was already
mentioned, this can efficiently be done by computing one LU-factorization and
solving the systems by using L and U, and U* and L*, respectively. Because
in practice the system matrices A and E are often very sparse and structured,
computation of the LU-factorizations can be relatively inexpensive.

The selection criterion can easily be changed to another of the several existing
indices of modal dominance [57, 64, 94]. Furthermore, the strategy can be restricted
to considering only poles in a certain frequency range. Also, instead of providing the
number of wanted poles, the procedure can be automated even further by providing
the desired maximum error |H(s) — Hi(s)| for a certain frequency range: the
procedure continues computing new poles until the error bound is reached. Note
that such an error bound requires that the transfer function of the complete model
can be evaluated efficiently for the frequency range of interest.

A Numerical Example

For illustrational purposes, SADPA was applied to a transfer function of the New
England test system, a model of a power system. This small benchmark system has
66 state variables (for more information, see [72]). The tolerance used was € =
107'% and no restarts were used. Every iteration, the pole approximation A ; with

largest |I§ il/ |Re(i ;)| was selected. Table 4.1 shows the found dominant poles and
the iteration number for which the pole satisfied the stopping criterion. Bodeplots
of two modal equivalents are shown in Fig. 4.9. The quality of the modal equivalent
increases with the number of found poles, as can be observed from the better match
of the exact and reduced transfer function.
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Table 4.1 Results for SADPA applied to the New England test system (s; = 1i)

#Poles #States New pole Iteration Bodeplot

1 2 —0.4672 &£ 8.9644 13 -

2 4 —0.2968 £ 6.9562i 18 -

3 5 —0.0649 21 Fig. 4.9 (left)

4 7 —0.2491 £ 3.6862i 25 -

5 9 —0.1118 =£ 7.0950i 26 -

6 11 —0.3704 £ 8.6111i 27 Fig.4.9 (right)
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Fig. 4.9 Bode plot of 5th order (/eft) and 11th order (right) modal equivalent, complete model and
error for the transfer function of the New England test system (66 states in the complete model)

4.2.3 Generalizations to Other Eigenvalue Problems

In this section, four variants of the dominant pole algorithm presented in the
previous section are briefly discussed. In Sect.4.2.3.1, the theory is extended to
multi-input multi-output systems. A variant of DPA that computes the dominant
zeros of a transfer function is described in Sect.4.2.3.2. Section 4.2.3.3 describes
the extension to higher-order dynamical systems. Finally, in Sect.4.2.3.4 it is
shown how DPA can be used for the computation of eigenvalues most sensitive
to parameter changes.

4.2.3.1 MIMO Systems
For a multi-input multi-output (MIMO) system

Ex(t) = Ax(t) + Bu(z)
y(@) = C*x(t) + Du(z),
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where A, E € RV, B € R C € R™7,x(t) € R", u(t) € R", y(¢t) € R? and
D € RP*™ the transfer function H(s) : C — CP*™ is defined as

H(s) = C*(sE—A)"'B + D. (4.34)

The dominant poles of (4.34) are those s € C for which the largest singular value
Omax (H(s)) — oo. For square transfer functions (m = p), there is an equivalent
criterion: the dominant poles are those s € C for which the absolute smallest
eigenvalue |[Amin(H ' (s))| — 0. This leads, for square transfer functions, to the
following Newton scheme:

1 1
Mmin VFC* (st E — A)~2Bu’

Sk+1 = Sk —

where ((min, u, v) is the eigentriplet of H ™! (s) corresponding to Amin(H ~!(sx)).
For a dominant pole, the mountain spreads of oy are larger and, therefore, the
neighborhood of convergence attraction is larger than for a less dominant pole,
which would show just a spike. An algorithm for computing the dominant poles
of a MIMO transfer function can be readily derived from Algorithm 4.1. The reader
is referred to [74] for the initial MIMO DPA algorithm and to [81] for an algorithm
SAMDP, similar to SADPA, generalizations to non-square MIMO systems and more
details.

4.2.3.2 Computing the Zeros of a Transfer Function

The zeros of a transfer function H(s) = ¢*(sE — A)~'b + d are those s € C for
which H(s) = 0. An algorithm, similar to Algorithm 4.1, can be derived by noting
that a Newton scheme for computing the zeros of a transfer function is given by

H(s E—A)"'b+d

(st E — A)2b (4.35)

Sk+1 = Sk +

In fact, it can be shown that the dominant zeros can be computed as the dominant
poles of the inverse transfer function [H (s)] ™! = ¢*(sE, — A.)™'b, + d., which has

the realization
Ab EO
A - 3 E = )
) [ch} ) [00}

0 0
SRS

In other words, the dominant zeros of H(s) can be computed by applying DPA to
[H(s)]~". See [73] for further details.
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4.2.3.3 Polynomial Eigenvalue Problems

The main idea of using Newton’s method to find dominant poles can be generalized
to higher order systems [84]. For the second-order transfer function H(s) =
c* (s2M + sC + K)~'b, for instance, the scheme becomes

G — s c'v
TR W Qs M + O

where v = (sM + 5,C + K)"'band w = (s} M + s;,C + K) *c. The efficient
use of subspace acceleration on large scale second-order eigenvalue problems is
described in [84].

4.2.3.4 Computing Eigenvalues Sensitive to Parameter Changes

Let p € R be a system parameter (e.g., a resistor value R, or 1/R, in an electric
circuit), and let A(p) and E(p) be matrices that depend on p. The derivative of an
eigenvalue A of the pencil (A(p), E(p)), with left and right eigenvectors y = y(p)
and x = x(p), to a parameter p is given by [66, 75]

0¥ AR (4.36)
ap y*Ex ' '

The derivative (4.36) is often called the sensitivity (coefficient) of A. Assuming that
?3_5 = 0, with y and x scaled so that y* Ex = 1, the eigenvalue derivative (4.36)

becomes

A . 04
T y o X. (4.37)
The larger the magnitude of the derivative (4.37), the more sensitive eigenvalue A
is to changes in parameter p. In practical applications such information is useful
when, for instance, a system needs to be stabilized by moving poles from the right
half-plane to the left half-plane [83, 95].

Suppose that the derivative of A to parameter p has rank 1 and hence can be
written as

04
— = bc*, (4.38)
dp

where b, ¢ € R” are vectors. Then the sensitivity of an eigenvalue A with left and
right eigenvectors y and x (with y* Ex = 1) becomes

EY 94
3 = y*——x = (y"b)(c*x) = (c*x)(y"b). (4.39)
p ap
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In the right-hand side of (4.39) one recognizes the residues of the transfer function
H(s) = ¢*(sE — A)~'b. Consequently, the most sensitive eigenvalues of the pencil
(A(p), E) can be computed by applying DPA to (E, A, b, ¢), with b and ¢ defined
by (4.38).

It g—/p’ has rank higher than 1, one can change Algorithm 4.1 as follows to

*
compute the most sensitive eigenvalues: replace b and ¢ by g—‘;vk_l and (g—‘;wk_l) ,

respectively. The algorithm based on this is called SASPA. For more details and
generalizations to higher rank derivatives and multiparameter systems, see [83].

Having obtained, with the use of SADPA [82] or SAMDP [81], a reduced model
for a large scale system incorporating feedback controllers at nominal parameters,
one may want to find other reduced models for off-nominal parameters in these
controllers. The SADPA and SAMDP are ideal algorithms for this application, since
they benefit from the reduced model information for the nominal parameters. Note
that only a true modal equivalent can benefit from this sensitivity feature, through
the use of the SASPA [83].

4.2.4 Improving Krylov Models by Using Dominant Poles

It is well known that for some examples moment matching works well, while
reduced order models computed by modal approximation are of low quality, and the
other way around [58, 80]. Generally speaking, modal approximation performs best
if there are k < n dominant poles with residues much larger than the residues of
the non-dominant poles. In other words, there is a k < n for which one has |R;| >
|R2| = ... > |Rk| > |Rk+1| = |Ru=1] = |Ry|, so that truncation at the kth pole
does not give a large error [64]. Moment matching based approaches, on the other
hand, perform best if the moments show a similar steep decay. There is, however,
one additional complication for Krylov based moment matching approaches, that is
best explained by an example. Figure 4.10 shows the Bode magnitude plots of an
exact transfer function and of two reduced order models: one modal approximation
and a moment matching approximation. While the modal approximation captures
the dominant dynamics, the moment matching model deviates for @ > 4 rad/s.

The modal approximation matches the original transfer function well because
it is built from the 7 most dominant poles. The moment matching Arnoldi model
(k = 30) was built using left and right Krylov subspaces with shift so = 0.
Therefore, the match for frequencies up to w = 4rad/s is good. For higher
frequencies, however, this approach suffers from a well known property of Arnoldi
methods, that were originally developed for the computation of eigenvalues: the
eigenvalue approximations, or Ritz values, tend to approximate the eigenvalues at
the outside of the spectrum [93]. This can also be seen in Fig. 4.11, where the circles
denote the poles of the moment matching model (note the inverses of the poles are
shown): they match the eigenvalues at the outside. The dominant poles, however,
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Fig. 4.10 Frequency response of complete system (n = 66), modal approximation (k = 12), and
dual Arnoldi model (k = 30)

may be located anywhere in the spectrum, as can also be seen in Fig. 4.11 (squares).
This explains why the Arnoldi model fails to capture the peaks.

Based on the above observations and theory in [65], the idea is to use the
imaginary parts of dominant poles as shifts for the rational Krylov approach, so
that resonance peaks located well within the system frequency bandwidth can also
be captured by Krylov methods. The combined dominant pole — Krylov approach
can be summarized as follows:

1. Compute k < n dominant poles A; = a; & f;i, with j = 1,...kandi =
V-1
2. Choose interpolation points s; = B;i.
3. Construct V;, W; € C"*i such that their columns are bases for the rational
Krylov [86] spaces
colspan(V;) = #*i ((s; E — A)T'E, (s; E — A)~'b)
and

colspan(W;) = # X ((s; E — A E*, (s; E — A) *¢),

respectively.



4 Model Order Reduction: Methods, Concepts and Properties 211

051} *  exact poles ® ® 4
O SADPA (k=12)

04r O  Dual Arnoldi (k=30) b

0.3} E

0.2F

imag
*
O

or * * * He otk Mok % He * R

o]
!

-05} ® ® .

-1 -09 -08 -07 -06 -05 -04 -03 -02 -0.1 0 0.1
real

Fig. 4.11 Relevant part of pole spectrum of complete system (n = 66), modal approximation
(k = 12), and dual Arnoldi model (k = 30)

4. Project with V' = orth([V4,..., Vi]) and W = orth([W1, ..., Wi]), where orth
constructs an orthogonal basis for the spaces. The size of the reduced model is at
most K = ZI;.:l k j, matching 2K moments.

4.2.5 Numerical Examples
4.2.5.1 Brazilian Interconnected Power System (BIPS)

The Brazilian Interconnected Power System (BIPS) is a year 1999 planning model
that has been used in practice (see [82] for more technical details). The size of the
sparse matrices A and E is n = 13,251 (the number of states in the dense state space
realization is 1,664). The corresponding transfer function has a non-zero direct
transmission term d. Figure 4.12 shows the frequency response of the complete
model and the reduced model (41 states) together with the error. Both the magnitude
and the phase plots show good matches of the exact and the reduced transfer
functions (a relative error of approximately ||H(s) — Hi(s)||/||Hk(s)]|] = 0.1,
also for the DC-gain H(0)). Figure 4.13 shows the corresponding step response
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Fig. 4.12 Bode plot (with modulus and phase) of the modal equivalent, the complete model and
the error for the transfer function Py (s)/ By (s) of BIPS (41 in the modal equivalent, 1664 in the
complete model)

(step u = 0.01)." The reduced model nicely captures the system oscillations.
The reduced model (30 poles, 56 states) was computed by SADPA in 341 LU-
factorizations (k. = 1, kinax = 10). This reduced model could be reduced further
to 41 states (22 poles) by removing less dominant contributions, without decreasing
the quality of the reduced model much.

Sensitivity of BIPS

To study the sensitivity of the dominant poles and system stability of BIPS, the
gain (Kpss) of one of the generators is varied between 0 and 30, with increments
of 0.5. Figure 4.14 shows the traces for the most sensitive poles as computed by
SASPA (Sect.4.2.3.4, see also [83]). The CPU time needed for the 60 runs was
1,450s. A root-locus plot for all poles, computed using the QR method, confirmed
that the most sensitive poles were found, but needed 33,600 s. Hence, for large-scale
systems, SASPA is a very effective and efficient way to produce relevant root-locus
plots.

5Tf hy (¢) is the inverse Laplace transform of H (s), the step response for step u(t) = c of the
reduced model is given by y(t) = for h(t)u(t) = C(Zf=l(%(exp(ki1) —1)) +d).
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Fig. 4.13 Step responses for transfer function Py (s)/ By (s) of BIPS, complete model and modal
equivalent (41 states in the modal equivalent, 1664 in the complete model, step disturbance of
0.01 pu)

4.2.5.2 The Breathing Sphere

Figure 4.15 shows the frequency response of a 70th order Second-Order Arnoldi
[59] reduced model of vibrating body from sound radiation analysis (n = 17,611
degrees of freedom, see [71]), that was computed using the complex parts i § of five
dominant poles A = « + i (computed by Quadratic DPA [84]) as interpolation
points, as described in Sect. 4.2.4. This model is more accurate than reduced order
models based on standard Krylov methods and matches the peaks up to @ = 1rad/s,
because of use of shifts near the resonance frequencies. This model is a good
example of the combined dominant pole — rational Krylov approach, since modal
approximations of similar quality require too much CPU time, while Krylov models
with uniformly spaced shifts do not capture the peaks.

4.2.6 Concluding Remarks

In this chapter eigenvalue methods, based on the Dominant Pole Algorithm, for
the computation of a few specific eigenvalues were discussed. The methods can
be used to solve large-scale eigenvalue problems arising in real-life applications
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Fig. 4.14 Root locus plot of sensitive poles computed by SASPA. As the gain increases, the
critical rightmost pole crosses the imaginary axis and the 5 % damping ratio boundary. Squares
denote initial pole locations

and simulation of dynamical systems, for instance for the computation of transfer
function dominant poles and zeros, and eigenvalues most sensitive to parameter
changes. Furthermore, the corresponding eigenvectors can be used for construction
of reduced-order models (modal equivalents) or to improve Krylov-based models.
The dominant poles can be used to determine shifts in rational Krylov methods for
computing reduced-order models. The practical application of the algorithms was
illustrated by numerical experiments with real-life examples.

4.3 Passivity Preserving Model Order Reduction

In this Section we are concerned with dynamical systems > . = (E,A, B, C,D) of
the form

Ex(1)
y(?)

Ax(t) + Bu(?)
C*x(t) + Du(z),

(4.40)

where A,E € R"™", E may be singular (we assume E is symmetric and positive
(semi) definite), B € R, C € R™?, D € RP”" x(t) € R", y(t) € R? and
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Fig. 4.15 Exact and reduced system transfer functions for a vibrating body, computed by a rational
Krylov method with resonance frequencies as complex interpolation points

u(?) € R™.1% The matrix E is called the descriptor matrix, the matrix A is called
the state space matrix, the matrices B and C are called the input and output map,
respectively, and D is the direct transmission map. The vectors u(¢) and x(¢) are
called the input and the state vector, respectively, and y(¢) is called the output of the
system. The dimension n of the state is defined as the complexity of the system ) _.
These systems often arise in circuit simulation, for instance, and in this application
the system Y _ is often passive.'”
The transfer function G : C" — C?, of (4.40),

G(s) = C*(sSE—A)"'B + D,

can be obtained by applying the Laplace transform to (4.40) under the condition
x(0) = 0. The transfer function relates outputs to inputs in the frequency domain
via Y(s) = G(s)U(s), where Y(s) and U(s) are the Laplace transforms to y(¢) and
u(?), respectively.

16Section 4.3 has been written by: Maryam Saadvandi and Joost Rommes. For further details see
the MSc-Thesis of the first author [108]. Her further research is found in her Ph.D.-Thesis [109].

7Passivity condition is one of the important concepts and many researches have been studying it,
[97-101, 104, 106, 107].
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We want to reduce the original system ) to a reduced order model i =
(E,A,B,C,D)

Ex(t) = AX(t) + Bu(r)

y(t) = C*%(1) + Du(r), (4.41)

where A, E € RF*F B ¢ RF*m C e RF*P D e RP*™ (1) € RF, §(r) € R?,
u(t) e R"and k < n.
It is important to produce a reduced model that preserves stability and passivity.

Remark 4.1 Throughout the reminder of this chapter it is assumed that:

e m = psuchthat B € R"”” C e R and D € RP*?.
e A isastable matrix i.e. Re(X;) < Owith A; € a(A),i = 1,--- ,n.
» The system Y _ is observable and controllable [112] and it is passive.

Spectral zeros play an important role in guaranteeing passivity as will be
explained in the next sections. In Section 4.3.3 the spectral zeros and the method
for computing them are introduced. In the following we describe two projection
reduced order methods from literature for reducing the system, that aim to produce
a reduced transfer function, which has the specified roots at selected spectral zeros.
These methods have been developed by Sorensen [110] and Antoulas [96].

4.3.1 Model Reduction via Projection Matrices

We assume that M and N are k-dimensional subspaces of R". V and W are built for
reducing the system by a projection method. So we construct V.= {v;,--- , v} €
Rk of which the column vectors v; form a basis of M, and W = {wy,--- ,w;} €
R of which the column vectors w ; form a basis of N (we are interested in
W*V = I;.). We assume that V and W are time-invariant.

We suppose x € M is an approximate solution of X'. Hence we can write x = VX,
where X € R* and x = Vx. Then the residual is

Ex — Ax — Bu = EVX — AVX — Bu.
Next, we assume that this residual is orthogonal to N

W*(EVXx —AVX—Bu) =0,
= W*EVX — W*AVX — W*Bu = 0.
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Then the reduced model 3 becomes:

EX(1) = AX()) + Bu(0),
y() C*x(t) + Du(),

where A = W*AV € R*** E = W*EV € RVK B = W*B e RF> C = CV ¢
R¥*P %(t) = VX € R and y = §(¢) € R? [105].

4.3.2 Passive Systems

We can reduce the model by V and W, which are constructed in the previous
Sect.4.3.1. With arbitrary V and W, some features of the original system may not
be preserved. One of these properties, which we are interested in to preserve, is
passivity.

The matrix A is assumed to be stable, which means all its eigenvalues are in the
open left half-plane. Passivity is defined using an energy concept.

Definition 4.3 A system is passive if it does not generate energy internally, and
strictly passive if it consumes or dissipates input energy [110].

In other words X' is passive if

t
Re/ u(t)*y(r)dr > 0, Vi eR, Vue Lr(R)

—00
or strictly passive if

t

13
3>0 st Re/ u(t)*y(r)dt > § -Ref u(t)*u(r)dr, Vit €R, Vue L(R)
—o0 o0

Another more practical definition of passivity is based on the transfer function G(s)
in the frequency domain:

Definition 4.4 [110] The system X is passive iff the transfer function G(s) is
positive real, which means that:

1. G(s) is analytic for Re(s) > 0,

2. G(5) = G(s), Vs € C,

3. G(s) + (G(s))* = 0 for Re(s) > 0 where

(G(s))* = B*(sSE* —A*)"'C + D*.
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We try to construct the V and W in such a way that the transfer function of the
reduced model has the above three properties. Property 3 implies the existence of a
stable rational matrix function K(s) € R?*? (with stable inverse) such that

G(5) + (G(=9)* = K(5)K*(=9).

We prove this only for the scalar case p = 1 of the transfer function. Let G(s) be
a scalar, positive-real transfer function with real coefficients. The spectral zeros of
G are defined as the zeros of G(s) + G™*(—s). Since all coefficients of G are real,
we have G*(—s) = G(—s). Since G(s) is scalar, we can write G(s) = %, where
n(s) and d(s) are polynomials of degree < k + 1 (in this note we assume k is even;
a similar explanation holds when k is odd). Note that (G(—s))* = ;:((:?) Now we
have

n(s n*(—s
% " d*(<—s)>
n(s)d*(—s) + d(s)n*(—s)
d(s)d*(—s)
_r()r (=)
d(s)d*(—s)’

G(s) + (G(=s)" =

(4.42)

We focus on proving (4.42). We will use the following identies:

k)2 k)2
n(s) = ZVZiSZi + 2:1)21‘+132i+1 = A+ B,
i=0 i=0

k)2 k)2
d(s) = 2521'521 + Z(Szi+1S2’+l =C + D.
i=0 i=0

It is easy to see that

k/2 k/2

n(—s) = ZUQ,’SZI — ZUZH_lSZI—H =A- B,
i=0 i=0
k/2 k/2

d(—S) = Z(SziSZi — Z(Szi+1S2i+l =C—-D.
i=0 i =0
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For the sum n(s)d(—s) + n(—s)d(s) we then have

n(s)d(~s) + n(—s)d(s) = (A + B)(C — D) + (A — B)(C + D) =2AC —2BD

k/2 k/2
o St | [
=0 i=0
k/2 k/2
—2 ZVZfHSZiH Z5zi+152i+l
=0 i=0
= (s) — w(s).
Note that
5(s) = ag + 15> + aas* + -+ + aps*,
Ww(s) = Bis® + Bas* + Bas® 4+ -+ + Brgrs* T2
So, we have

t(s) := B(s) — Ww(s) = o + (o1 — B1)s* + -+ + (a — Br)s™ — Brrs™ 2.

Clearly, if s is a zero of ¢(s), so is —sp. Consequently, we can factorize #(s) as
t(s) = r(s)r(—s). Summarizing, we finally have

n(s)d(—=s) + n(=s)d(s) = v(s) —w(s) = 1(s) = r(s)r(=s),

which proves (4.42). |

This last result equals K(s) K*(—s), i.e., this is the spectral factorization of G.
Here K is a called the spectral factor of G. The zeros of K,i.e.the A;,i =1,---,n
such that det(K(A;)) = 0, are the spectral zeros of G.

4.3.3 Spectral Zeros and Generalized Eigenvalue Problem

We start this section with explaining a generalized eigenvalue problem, which
Sorensen used in [110]. It brings together the theory of positive real interpolation by
Antoulas [96] and the invariant subspace method for interpolating the spectral zeros
by Sorensen.

First we recall that for the transfer function G(s) we have

G(s) = C*SE—A)"'B+D, and thus,
(G(—s))* = B*(—sE* —A*)"'C + D*,
= B*(sE* — (—A*))"!(-C) + D*.
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Then we compute G + G*,'8

(C*(SE—A)"'B +D) + (B*(SE* — (-A™))7'(-C) + D*)

. R (SE—A)_1 0 B *
=lew ][N e L] [ e

G(s) + (G(=s))"

~ew)([fe]-[ 3 ]) [E]-eem

Note that this is the transfer function of the following system:

E 0 |. A 0 B
[OE*}X(Z): [O_A*}X(t)—i-[_c}u(t)

(4.43)
y(©) = [CB] x(t) + (D +D*u(r)
Let
A 0 B E
A= 0 —-A* -C and € = E*
C* B* D+ D* 0

The finite spectral zeros of G are the set of all finite complex numbers A such that
Rank(A — A€) < 2n + p,

i.e., the finite generalized eigenvalues o (A, €). The set of spectral zeros is denoted
as 8¢.

Lemma 4.1 If A is a generalized eigenvalue o (A—A&) in S then —X also belongs
to 8¢, i.e.,

Le8g = —LeSg since Aq=1q= q*A = (—/_X)(]*&
where * = [x*,y*,z*] is a right eigenvector and @* = [y*, —x*, z*]. Also
AeS; = —Ae8g since rA=ArE = AF* = (—1)EF,

where r* = [x1*,y1%, z1%] is a left eigenvector and ¥* = [—y1*,x1*,z1%].

18Block wise inversion:

4B _[A7"+A7'B(D—CAT'B)"'CAT! —A7'B(D —CAT'B)™!
CD - —(D—CcA™'B)lca™! (D—cCcA™'B)™!
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Proof If A € 0 (A — A€) and q is the corresponding eigenvector then

Aq = A€q
or
A 0 B X E X
0 —A* -—-C y| =42 E* y
C* B* D+ D* z 0 z
By taking conjugates and changing rows one obtains
A 0 B . E
[y* —x*z*]| 0 —A* —C = —A[y* —x*z*] E* , or
C* B* D+ D* 0

A = —Ag*e.

Now we can conclude that —A € S and that §* is its corresponding eigenvector.
The proof is similar for the left eigenvectors [110]. |

If specified spectral zeros are preserved (interpolated) in the reduced model with
8¢ then a passive reduced model will result. For real systems, 8; must include
conjugate pairs of spectral zeros. This result is based on Antoulas’ theorem [96]:

Theorem 4.3 (Antoulas) Suppose 85 C 8¢ and also that G(k) = G(A) for all
A € 84 and that G is a minimal degree rational interpolant of the values of G on

the set 8. Then the reduced system ) with transfer function G is both stable and
passive.

4.3.4 Passivity Preserving Model Reduction

Theorem 4.3 indicates that Antoulas’s approach [96] preserves passivity for the
reduced model when spectral zero interpolation is applied. The interpolation is
guaranteed by building the projection matrices using a Krylov subspace method
[103, 111]. Antoulas’ method [96] significantly differs from PRIMA [107]. For a
detailed comparison between PRIMA and Antoulas’s approach we refer to [105].
In Antoulas’ method it is assumed that the system X with transfer function G(s)
is passive. Then one defines a set §; C 8g,,,, Where 8g,,,. is the set of stable
spectral zeros and one takes 8, = —8;. Antoulas [96] has shown that the reduced

system ¥ with transfer function f}(s) is passive if the set of interpolation points is
81U 8,.



222 A.C. Antoulas et al.

A second approach has been introduced by Sorensen [110], which can be seen
as an interpolatory model reduction too. It is based on invariant subspaces. In this
method it is not necessary that the spectral zeros (interpolation points) are computed
in advance. Sorensen’s approach transfers the model reduction problem into an
eigenvalue problem. In this case the eigenvalues are the spectral zeros of the transfer
function of the original system. Then the projection matrices are built from a basis
for a chosen invariant subspace.

Choosing different spectral zeros gives us different invariant subspaces, which
return different reduced models. Although these reduced models are passive, they
may not be a good approximation to the original system. So the selection of spectral
zeros must guarantee that the reduced model is a good approximation to the original
ones.

In large scale problems in which the eigen computation of the resulting highly-
structured eigenvalue problem should be done iteratively, all selection criteria can
not be satisfied. So the problem has two goals: the first one is to have a good
approximation of the original model, the second one is to be suitable as an iterative
scheme for large-scale dynamical systems.

4.3.5 Model Reduction by Projection

We will construct a basis for a selected invariant subspace of the pair (A, &)
(Sorensen [110]). Let

AQ = EQR

be a partial real Schur decomposition for the pair (A, €). Then, Q*Q = I and R is
real and quasi-upper triangular. Let Q@ = [X*, Y*, Z*]* be partitioned in accordance
with the block structure of A:

A 0 B X E X
0 —A* —C Y|=]| E* Y |R
C* B* D+D* || Z | 0]z
A 0 B 7TX EX
=] 0 —A* —C Y |=|EY|R (4.44)
C* B* D+D* | | Z 0

The projection will be constructed from X and Y and the reduced model will be
obtained out of these. Here it will be useful to have the following lemma [110].

Lemma 4.2 Suppose that R in (4.44) satisfies Re(A) > 0, VA € o(R). Then
X*E*Y = Y*EX is symmetric.



4 Model Order Reduction: Methods, Concepts and Properties 223
Proof We start with
AQ = EQR. (4.45)
By (4.45) and according to the previous proof we have
Q*A = (-R")Q*¢ where Q" =[Y* —X*Z*], (4.46)
If we multiply equation (4.45) with Q* from the left, then we get
Q*AQ = Q*¢QR. (4.47)

We substitute the right part of equation (4.46) in the left part of equation (4.47),
giving

(—R")Q*EQ = Q*EQR
0.

= R'Q"¢Q+Q*¢QR = (4.48)
Here
X E X
Q*eQ =[Y*-X*Z*]| E* Y
0 Z
= Y'EX - X*E'Y. (4.49)
If we substitute (4.49) in (4.48) we obtain
R*(Y'EX - X*E*Y) + (Y'EX - X*E*Y)R = 0. (4.50)
Therefore the equation (4.50) has the unique solution'®:
Y*EX — X*E*Y = 0,
and hence
Y*EX = X*E'Y,
which completes the proof. |

YEquation (4.50) is a simple form (R*X + XR = 0) of a Lyapunov equation of the more
general type AX — XB = C (which has a unique solution if 0(4) N o(B) = @). Due to the
condition Re(A) > 0 for A in o(R), we have that o(R*) N 0(—R) = @. Hence the Lyapunov
equation (4.50) has a unique (zero) solution.
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For the construction of V and W as projections, we first have to find a basis for an

invariant subspace [102] with all eigenvalues of R in the right half-plane.

Let QXSZQ; = X*Y be the SVD of X*Y and note that Q, = Q.J where J is a

signature matrix by virtue of the fact that X*Y is symmetric.
If S > 0 is nonsingular, put

V = XQ,s™!
W =YQ,S".

It follows that

w*V = (YQ,$7)*XQ.8™!
=  STQIY*XQ.S”!
(include the SVD form of X*Y) = S$7*Q}Q,(S»)*Q:Q.S™!

(Qy and Q, are unitary matrices) = S™*S*S*S—!

= 1.
and also we have
VW = (W'V)* =L

Now from the SVD of X*Y, let

X = S(Q.)"
Y =S(Q,)",
and define
V0O Wo0o0
V=] 0WO0 and W=| 0VO0
001 001

It is obvious that W*V = I and that

VX

(XQ.S™H(SQ¥),

XQ.Q:.

(QF is unitary matrix) = X.

4.51)
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Similarly, WY = Y, so we have

X VoollX
Y|=|0Wo0||Y
V/ 001]||7Z
Therefore
A 0 B E
A=WAV=| 0 -A* —C and &=W*EV = E* |,
C* B* D+ D* 0
and
A0 B X E X
0 —A* —-C Y|=| E* Y | R,
C* B* D+D* | | Z 0|7
or
A0 B X EX
0 —A* —C Y|=|EY [R
C* B* D+D* | | Z 0

where A = W*AV,E = W*EV,B = W*B, and C = V*C.

This shows that §; € 8¢ and since 8z = o(R)Uo(—R*)?* and o'(R) is in the open

right half-plane, the reduced model has no spectral zeros on the imaginary axis.
The previous result is also valid when S is nonsingular. Now we consider the

case S is singular. Beginning with X, Y from (4.44) and with the SVD of X*Y,

20We know that if we have a real matrix A and A € 6(A) then X e 0 (A). In Lemma 4.1 we showed
that if A € 8 then —A € 8. Therefore

A, )_L, —) and— 2 € 8.

On the other hand, R is a selected invariant subspace of (A, £), which means that 6 (R) C 8.
Now, we need to find a basis for an invariant subspace with eigenvalues of R in the open right
half-plane. As we mentioned above o (R) and o (—R*) are a subset of S¢. Thus take

8¢ = oc(R) Ua(—R™).
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Algorithm 4.7 Sorensen’s Algorithm [110]
INPUT: System (E, A, B,C, D),
OUTPUT: Reduced System (E, 4, B, C, D)
: Compute A, £
D ALELZ, 0,V W] = qz(A, &),
: Find spectral zeros, A = eig(A, €);
: Find the real basis for the right eigenvector matrix V,
: Find the positive real spectral zeros and corresponding eingenvectors, A; = []; V} = [];
: fori =1:length(A) do
if (real(A()) > 0 and A(i) arechosen spectral zeros) or imagA(i) = 0
then
8: A=A ADE V=W VEDL
9: end if
10: end for
11: X =Vi(l:n,:); Y =Viin+1:2n,:);
12: [0, 8%, 0,] = svd(X*Y);
13: Construct the projection matrices, V = XQ,.S™'; W = YQ,5—1;
14 E=W*EV; A=W*AV; B=W*B;C = CV;

AN S S

where Q,S?Q, = X*Y, specify a cut-off tolerance 7. € (0, 1) and let j be the
largest positive integer such that

o; > 101  where o; =S(j, ).

Define Q; = Q.(:,1:j),S; = S(1:j,1:j) and then let (Xj)l = Q;(S)™".
Replace X! = X)),V =X(X;) and W = —Y(X;)!. According to [110], in
this way, the reduced system is passive and also the stability of the reduced model
is obtained if Z is full rank.

Sorenson’s Algorithm is described in Algorithm 4.7.

4.3.6 Model Reduction by Projection

We want to reduce the original system ) to XA: where the complexity k of XA:
is (much) less than that of Y (k <« n) (Antoulas [96]). This reduction must
preserve both stability and passivity and it must be numerically efficient. Antoulas’
Algorithm is described in Algorithm 4.8.

We will look for V, W € R such that VW* is a projection with the additional
condition W*V = I (recall that P is a projection matrix if P> = P). So, if we
have V and W with W*V = I, then indeed

(VW*)2 = VW*,
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Algorithm 4.8 Antoulas’s Algorithm [96]
INPUT: System (E, A, B,C, D),
OUTPUT: Reduced System (E, 4, B, C, D)
Compute A, €
2: Find spectral zeros, A = eig(A, &);
AR =[] AC = [J;
4: while n > length(A) do
if A(n) is positive real, AR = [AR A(n)];
6: if A(n) is complex and in right half-plane, AC = [AC  A(n)];
end while
8: form = 1: length(AC) do
if AC(m) chosen spectral zeros then
10: AR =[AR AC(m)];
end if
12: end for
V=[LW=][]
14: for ¢ = 1 : length(AR) do
v=(AR(Q)E — A)7'B;w= (—AR(qQ)E* — A*)~!C*;
16: V= vyW=[W w;
end for
18: Make a real basis for V and W
W= W*V)"lw,
20 E=W*EV;A=W*AV;B=W*B;C = CV;

Given 2k distinct points sy, - - - , $2¢, let
V=[(L-A)""B- (I, —A)~'B],
W = [(se1L, —AHTIC -+ (s, —A®)~'C]. (4.52)

Now take V = V and W = W(V*W)~!. We define
A=W*AV, B=W*B, C=V*C. (4.53)

Then we have the following theorem (Antoulas [96])

Proposition 4.1 Assuming that det(W*V) # 0, the projected system XA:, defined
by (4.53), interpolates the transfer function of _ at the points s;:

Gsi)=G(s;) i=12,- 2k

where s; are the spectral zeros.
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4.3.7 Numerical Results

In [108] several numerical results are presented for an RLC-circuit that is also found
in [96, 110]. The transfer function is a scalar function G(s). The starting point is to
compute the spectral zeros (using a generalized eigenvalue method) and then to try
to categorize them related to their magnitude, like distance from the real and the
imaginary axis in order to have a good match in low or high frequency. The reduced
method was obtained by Algorithm 4.8 of Antoulas. A large distance from the real
axis results in a good approximation at high frequencies. A large distance from the
imaginary axis results in a good approximation at low frequencies. In both situations
including the real spectral zeros plays an important role for having a good reduced
model at low frequencies.

One should check if a spectral zero also occurs as a pole and as a zero, both, in
which case the factors (AI — A) are singular. These spectra zeros should be left out
of the reduction.

In this section we study a circuit which has a descriptor matrix E # I,,. We
consider the circuit shown in Fig. 4.16. We assume that all capacitors and inductors
have a unit value, R; = %.Q, R, = %.Q, Ry = %.Q, where k = 2,3,--- ,n and
R2k+1 = %.Q, where k = 1, 2, R (N

The order of the original system is 1003 and the selected spectral zeros close to
the real axis are shown in Fig. 4.17. In this case, like before, the reduced model has
a good match at low and at high frequencies, as shown in Fig. 4.18.

4.3.8 Conclusion

We have considered two approaches for passive and stable reduction of dynamical
systems in circuit simulation, based on the methods by Antoulas [96] and Sorenson
[110] that both exploit interpolating spectral zeros. The reduced models preserve
passivity and stability. The original system is reduced by projection matrices, which
are built via spectral zero interpolation. Different selections of spectral zeros give
us different approximations of the original model, which may/may not produce

Cl

Fig. 4.16 RLC Circuit of Order 7
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Fig. 4.17 Spectral zeros of the original model (+4), and spectral zeros of the reduced model (o).
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Fig. 4.18 Effect of several real spectral zeros, Left: Frequency responses of the original system
and reduced model. The spectral zeros close to the real axis are interpolated. Right: Frequency

response of the error | X — ||

acceptable reduction. We have considered criteria for selecting the spectral zeros
and also to approximate the original system well in low and high frequency. When
the spectral zeros are chosen close to the real axis, the reduced model matches the
original response well for low frequencies. On the other hand, when they are far
from the real axis, the reduced model is more accurate for high frequencies. As
already shown preserving the real spectral zero plays an important role for having a
good reduction in the whole frequency domain, specially in low frequency. It means

that one should try to save all the real spectral zeros of the system.
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The approaches of Antoulas and Sorensen are equivalent but as Sorensen’s
algorithm works directly with eigenvalues and eigenvectors, it is more usable for
constructing the projection matrices. For the same reason Sorensen’s approach is
more suitable for large scale systems.

4.4 Passivity Preserving Model Reduction Using
the Dominant Spectral Zero Method

The design of integrated circuits has become increasingly complex, thus electro-
magnetic couplings between components on a chip are no longer negligible.”!
To verify coupling effects, on-chip interconnections are modeled as RLC circuits
and simulated. As these circuits contain millions of electrical components, the
underlying dynamical systems have millions of internal variables and cannot be sim-
ulated in full dimension. Model order reduction (MOR) aims at approximating the
mathematical description of a large scale circuit with a model of smaller dimension,
which replaces the original model during verification and speeds up simulation. The
reduction method should preserve important properties of the original model (i.e.,
stability, passivity) and have an efficient, robust implementation, suitable for large-
scale applications. RLC circuits describing the interconnect are passive systems,
with positive real transfer functions [113, 116], thus reduced models should also
be passive. A passive reduced model can be synthesized back into an RLC circuit
[113], which is placed instead of the original in the simulation flow. Passive reduced
circuits also guarantee stable simulations when integrated with the overall nonlinear
macro-model [117, 128, 133] during later simulation stages.

The proposed Dominant Spectral Zero Method (dominant SZM) is a model reduc-
tion method which preserves passivity and stability, and is efficiently implemented
using the subspace accelerated dominant pole algorithm (SADPA) [130, 131].
Passivity preservation is ensured via a new approach, that of interpolation at
dominant spectral zeros, a subset of spectral zeros of the original model. Dominant
SZM reduces automatically all passive systems, including those with formulations
unsuitable for PRIMA (first order susceptance-based models for inductive couplings
(RCS circuits) [140] or models involving controlled sources, such as vector potential
equivalent circuit (VPEC) [139] and partial element equivalent circuit (PEEC)
models [136]). In comparison to positive real balanced truncation (PRBT) [129],
dominant SZM efficiently handles systems with a possibly singular E matrix
[see (4.54)]. Unlike modal approximation (MA) [131, 135] where interpolation is
at dominant poles, our method matches the dominant spectral zeros of the original
system, guaranteeing passivity.

21Section 4.4 has been written by: Roxana Ionutiu, Joost Rommes and Athanasios C. Antoulas.
For an extended treatment on the topics of this Section see also the Ph.D. Thesis of the first author
[121].
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The remainder of this section is structured as follows. The introduction continues
with the mathematical setup of MOR in Sect.4.4.1, and with a brief description
of MOR via spectral zero interpolation in Sect.4.4.2. Dominant SZM is presented
concisely in Sect. 4.4.3.1 (following [125]). It is extended with the concept of domi-
nance at co (Sect. 4.4.3.2), and with an approach for converting the reduced models
to circuit representations (Sect. 4.4.3.3). Numerical results follow in Sect. 4.4.4 and
the section concludes with Sect.4.4.5. Algorithmic pseudocode for the dominant
SZM — SADPA implementation is given in the Appendix 4.4.6.

4.4.1 Background on MOR

The model reduction framework involves approximation of an original dynamical
system described by a set of differential algebraic equations in the form:

Ex(1) = Ax(t) + Bu(t), y(t)=Cx(t) + Du(t), (4.54)

where the entries of x(¢) are the system’s internal variables, u(?) is the system
input and y(¢) is the system output, with dimensions x(t) € R”, u(t) € R”,
y(t) € R”. Correspondingly, E € R"™", A € R"™", (A,E) is a regular pencil,
B e R”X’" Ce RI’X” D € RP>*™ The original system X (E, A, B, C,D) is stable
ﬁ(fi A.B,C, D), which satlsﬁes Ex(t) = AX(?) + Bu(t) y@) = Cx(t) + Du(?),
where X € RF, E € RF% A € ROk B ¢ RF C e RPF D e RP™. 3 is
obtained by projecting the internal variables of the original system x onto a subspace
ColSpan(V) C R™* along Null(W*) C R¥*". The goal is to construct V and
W, such that ¥ is stable and passive. Additionally, V and W should be computed
efficiently. The reduced matrices are obtained as follows:

= W*EV, A = W*AV, B= W*B, C = CV. (4.55)

4.4.2 MOR by Spectral Zero Interpolation

We revise the spectral zero interpolation approach for model reduction as proposed
in [114, 134]. The ingredient for passivity preservation are the spectral zeros of
Y (E,A,B, C,D), defined as follows:

Definition 4.5 For system X with transfer function: H(s) := C(sE—A)"'B + D,
the spectral zeros are all s € C such that H(s) + H*(—s) = 0, where H* (—s) =
B*(—sE* — A*)"!C* +D*.
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According to [114, 134], model reduction via spectral zero interpolation involves
forming rational Krylov subspaces:

V=[sE—A)"'B, ---, (xE—A)"'B],
W = [(—sfE* —A*)7IC*, -+, (—s/E* —A*)~1C*], (4.56)
where sy ... s;, —s] ...—s; are a subset of the spectral zeros of X'. By projecting the

original system with matrices (4.56) according to (4.55), the reduced by interpolates
X at the chosen s; and their mirror images —s*,i = 1,...,k [113, 114]. Projection
matrices V and W insure that the reduced system satisfies the positive real lemma
[113, 114, 116, 134], thus passivity is preserved. If in the original system D # 0,
the reduced system is strictly passive, and realizable with RLC circuit elements. In
Sect.4.4.3.2 we show one way of obtaining strictly passive reduced systems also
when D = 0.

4.4.3 The Dominant Spectral Zero Method

The new Dominant Spectral Zero Method (dominant SZM) is presented. The
spectral zero method [114, 134] is extended with a dominance criterion for selecting
finite spectral zeros. These are computed efficiently and automatically using the
subspace accelerated dominant pole algorithm (SADPA) [130, 131]. We show in
addition how, for certain RLC models, dominant spectral zeros at co can also be
easily interpolated.

4.4.3.1 Dominant Spectral Zeros and Implementation

In [134] it was shown that spectral zeros are solved efficiently from an associated
Hamiltonian eigenvalue problem [127, 137]. In [114, 134] however, the selection of
spectral zeros was still an open problem. We propose a solution as follows: we
extend the concept of dominance from poles [130] to spectral zeros, and adapt
the iterative solver SADPA for the computation of dominant spectral zeros. The
corresponding invariant subspaces are obtained as a by-product of SADPA, and are
used to construct the passivity preserving projection matrices V and W. Essentially,
dominant SZM is the SADPA-based implementation of modal approximation for the
Hamiltonian system associated with G(s) = [H(s)+H*(—s)]™". Recalling Def. 4.5,
the spectral zeros of X are the poles of G(s), with partial fraction expansion:

G(s) = Zi":l f;'j, where s; are the poles of G with associated residues %

[126, 131]. The modal approximate of G(s) is obtained by truncating this sum:
G(s) = Zy‘ %i The procedure is outlined next.

J=1s—s;"
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1. Given Y (E, A, B, C,D), construct the associated Hamiltonian system X, asso-
ciated with transfer function G(s):

a. X, when D+D* is invertible:

A0 B E 00 B
A;=[0-A* —C* |.E,=[0E*0]|.B,=|-C*]| A,

C B* D+D* 000 0
C,=—-A(C B*0), D,=A=(D+D*"' (4.57)

b. X when D = 0:

A0 B EO00 B
A;=[0-A*—C*|,E,=|0E*0]. B,=|-C*|, C,=—(CB*])
C B* 0 000 I

(4.58)

2. Solve the Hamiltonian eigenvalue problem (A, R, L) = eig(Ay, E;), i.e., A;R =
E;RA, L*A; = AL*E;. R = [ry,...,r3,], L = [l},..., ;] and eigenvalues
A = diag(sy,...,8,,—s{,...,—s,) are the spectral zeros of X.

3. Compute residues #; associated with the stable?” spectral zeros s;, j = 1...n
as follows: Z; = y;B;, v; = Csr; (FEsx;)”", B; = I/B;.

4. Sort spectral zeros descendingly according to dominance criterion IIIL%E“)\ [130,
Chapter 3], and reorder right eigenvectors R accordingly.

5. Retain the right eigenspace R = [ry, ..., r;] € C¥> corresponding to the
stable k most dominant spectral zeros. .

6. Construct passivity projection matrices V and W from the rows of R: V. =
Rii:n,1:4), W = Rpy41:20,1:4], and reduce X' according to (4.55).

As explained in [114, 125, 134], by projecting with (4.55), by interpolates the k
most dominant spectral zeros of X', guaranteeing passivity and stability. For large-
scale applications, a full solution to the eigenvalue problem in step 2, followed
by the dominant sort 3—4 is computationally unfeasible. Instead, the iterative
solver SADPA [130, Chapter 3] is applied with appropriate adaptations for spectral
zero computation (see Appendix 4.4.6 for the pseudocode). SADPA implements
steps 2—4 efficiently and automatically gives the k most dominant spectral zeros
and associated 2n X k right eigenspace R. The implementation requires performing
an LU factorization of (s;E — A) at each iteration. The relevant s; are nevertheless
computed automatically in SADPA, which may have several advantages over other
methods (see [125] for a more detailed cost analysis).

225 € C is stable if Re(s) < 0.
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4.4.3.2 D = 0 and Dominance at s — oo

Systems arising in circuit simulation often satisfy D = 0 in (4.54). In this case, the
projection (4.55), with W and V obtained in step 6 in Sect.4.4.3.1, gives a lossless
system [125]. This is because W and V only interpolate dominant finite spectral
zeros, whereas the original system has spectral zeros at co, some of which may be
dominant [120]. A strictly passive system (with all poles in the left half plane) can
nevertheless be obtained by recovering this dominant behavior. For systems often
occurring in circuit simulation this is achieved as follows. Consider the modified
nodal analysis (MNA) description of an RLC circuit:

000 d Vp gll glz 6@1 Vp %1
0% 0 E‘ v; + gikz gzz 6@2 v; = 0 u, (459)
007 i €% =& 0) \iL 0
N e’ e, e’ N e’ e e’ N’
E X A X B

where u(¢) € R” are input currents and y(t) = Cx € R” are output voltages,
C = B*. The states are x(¢) = [v,(1), vi(¢), i,(?)]", with v,(r) € R"» the
voltages at the input nodes (circuit terminals), v; (£) € R" the voltages at the internal
nodes, and iz (f) € R"¢ the currents through the inductors, n, +n; +n;, =n. €
and % are the capacitor and inductor matrix stamps, respectively. With (4.59) it is
assumed that no capacitors or inductors are directly connected to the input nodes,
thus B € Null(E) and C* € Null(E*). As B and C are right and left eigenvectors
corresponding to dominant poles (and spectral zeros) at oo [120], the modified
projection matrices are:

W = [W,C*], V = [W,B], (4.60)

where W and V are obtained from step 6 in Sect.4.4.3.1. With (4.60), the finite
dominant spectral zeros are interpolated as well as the dominant spectral zeros at
oo, and the reduced system is strictly passive [120]. In [125] two alternatives were
proposed for ensuring strict passivity for systems in the more general form (4.54)
withD = 0.

4.4.3.3 Circuit Representation of Reduced Impedance Transfer Function

Reduced models obtained with dominant SZM and other Krylov-type methods
(PRIMA [128], SPRIM [117, 118], SPRIM/IOPOR [115, 138]) are mathematical
abstractions of an underlying small RLC circuit. Circuit simulators however can
only handle mathematical representations to a limited extent, and reduced models
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have to be synthesized with RLC circuit elements. We reduce all circuits with
respect to the input impedance transfer function (i.e., the inputs are the currents
injected into the circuit terminals and the outputs are the voltages measured at the
terminals) [123]. After converting the reduced input impedance transfer function
to netlist format, the reduced circuit can be driven easily by currents or voltages
when simulated. Thus both the input impedance and admittance of an original model
can be reproduced (see Sect. 4.4.4). Here, models obtained with dominant SZM are
converted to netlist representations using the Foster impedance realization approach
[119, 122]. Netlist formats for the SPRIM/IOPOR [115, 117, 138] reduced models
are obtained via the RLCSYN unstamping procedure in [123, 138]. With both
approaches, the resulting netlists may still contain circuit elements with negative
values, nevertheless this does not impede the circuit simulation. Obtaining realistic
synthesized models with positive circuit elements only is still an open problem.

4.4.4 Numerical Results

Two transmission line models are reduced with the proposed dominant spectral
zero method and compared with the input-output structure preserving method
SPRIM/IOPOR [115, 117, 138]. For both circuits, the circuit simulators? yield
systems in the form (4.59), thus the dominant SZM projection is (4.60). RLC netlist
representations for the reduced models are obtained (see Sect. 4.4.3.3) and simulated
with Pstar.

The RLC transmission line with connected voltage controlled current sources
(VCCSs) from [125] is reduced with dominant SZM, SPRIM/IOPOR [117, 138]
and modal approximation (MA). The transfer function is an input impedance i.e., the
circuit is current driven. Matlab simulations of the original and reduced models, as
well as the Pstar netlist simulations are shown in Fig. 4.19: the model reduced with
Dominant SZM gives the best approximation. Table 4.2 summarizes the reduction:
the number of circuit elements and the number of states were reduced significantly
and the simulation time was sped up.

In [125], the voltage driven input admittance of an RLC transmission line (con-
sisting of cascaded RLC blocks) was reduced directly as shown in Fig. 4.20. Here
we reduce and synthesize the underlying input impedance of the same transmission
line (see Figs.4.21 and 4.22). When driving the reduced netlist by an input voltage
during the actual circuit simulation, the same input admittance is obtained as if
the input admittance had been reduced directly, as seen in Figs.4.20 and 4.23.
Table 4.3 summarizes the reduction results. Although the reduced mathematical

ZPstar and Hstar are in-house simulators at NXP Semiconductors, Eindhoven, The Netherlands



236

A.C. Antoulas et al.

Frequency response
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Fig. 4.19 Original, reduced and synthesized systems: Dominant SZM, SPRIM/IOPOR

Table 4.2 Transmission line with VCCSs: reduction and synthesis summary

System Dimension | R C L VCCs | States
Original 1501 1001|500 500 |500 1,500
Dominant SZM 2 3 2 0 |- 4
SPRIM/IOPOR 2 6 3 1 |- 4

models have the same dimension (k

Simulation time
0.5s

0.0ls

0.0ls

23), the reduction effect can only be

determined after obtaining the netlist representations. Although the SPRIM/IOPOR
synthesized model has fewer states, it has more circuit elements than the dominant
SZM model, i.e., the matrix stamp of the model is more dense. This suggests that
simulation time is jointly determined by the number of states and the number of
circuit elements. Thus for practical purposes it is critical to synthesize reduced

models with RLC components.
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Fig. 4.20 Input admittance transfer function: original, synthesized Dominant SZM model

Frequency response
DominantSZM
n =901, kdomSZM =23,H2, =0.11853

120 T T T

1= 1= Original
== Reduced(domSZM)
100 | —— DomSZM-synthesized

110

90

80

70

60

Magnitude (db)

50

40

30

20
-8

Frequency (rad/s)

Fig. 4.21 Input impedance transfer function: original and reduced with Dominant SZM

4.4.5 Concluding Remarks

A novel passivity preserving model reduction method is presented, which is
based on interpolation of dominant spectral zeros. Implemented with the SADPA
eigenvalue solver, the method computes the partial eigenvalue decomposition of an
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Fig. 4.22 Input impedance transfer function: original, reduced with SPRIM/IOPOR
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Fig. 4.23 Input admittance transfer function: original, synthesized SPRIM/IOPOR model

associated Hamiltonian matrix pair, and constructs the passivity preserving projec-
tion. Netlist equivalents for the reduced models are simulated and directions for
future work are revealed. Especially in model reduction of multi-terminal circuits,
achieving structure preservation, sparsity and small dimensionality simultaneously
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Table 4.3 RLC transmission line: Input impedance reduction and synthesis summary

System Dimension R C L States Simulation time
Original 901 500 300 300 901 1.5s

Dominant SZM 23 22 11 10 34 0.02s
SPRIM/IOPOR 23 78 66 6 18 0.02s

is an open question. New developments on sparsity-preserving model reduction for
multi-terminal RC circuits can be found in [124]. In this context, RLC synthesis
with positive circuit elements will also be addressed.

4.4.6 Appendix: SADPA for Computing Dominant Spectral
Zeros

We outline SADPA for SISO systems; the MIMO implementation is similar and
the code for computing dominant poles can be found in [132] or online [130]. The
following pseudocode is extracted from [130, Chapter 3] and [131], with efficient
modifications to automatically account for the four-fold symmetry (A, —A*, 1*, —1)
of spectral zeros. In particular, as soon as a Hamiltonian eigenvalue (spectral zero) A
has converged, we immediately deflate the right/left eigenvectors corresponding to
—A* as well. It turns out that the right/left eigenvectors corresponding to —A* need
not be solved for explicitly. Rather, due to the structure of the Hamiltonian matrices
[127, 137], they can be written down directly from the already converged left/right
eigenvectors for A, as shown in steps 14—17 of Algorithm 4.9. As for modal approx-
imation [131], [130, Chapter 3] deflation for A* and —A is automatically handled
in Algorithm 4.11. To summarize, once the right/left eigenvectors corresponding
to an eigenvalue A have converged, the right/left eigenvectors corresponding to
—A*, A*, —A are also readily available at no additional computational cost, and can
be immediately deflated.

In Algorithm 4.10, the MATLAB gz routine is proposed for solving the small,
projected eigenvalue problem in step 1. This reveals the right/left eigenvectors X,V
of the projected pencil directly, however they are neither orthogonal nor bi-G-
orthogonal. Thus the normalization in step 3 is needed when computing the residues.

A modified Gram-Schimdt procedure (MGS) is used for orthonormalization. We
used the implementation in [130, Algorithm 1.4]. For complete mathematical and
algorithmic details of SADPA we refer to [130, Chapter 3] and [131].



240 A.C. Antoulas et al.

Algorithm 4.9 (A, R, L) =SADPA(E;,, Ay, By, Cy, 51, - . . Pinaxs Kmins Kmax)

INPUT: (E;,A;,B,,C;), E, € C?>2" A, € C*">*?" B, € C¥**!1, C), € C"™?" an initial pole
estimate s; and number of desired poles p,,,, (in the restarted version, k,;, and k,,, are also
specified)

OUTPUT: A, the p,,,, most dominant eigenvalues and associated right, left eigenspaces R, L of
(Ay, Ep)

L: k=1* pfuund=0v A=[]7R=[|*L=[|
2: while pfuna < Pmax do

Solve for x from (s;E; — Aj)x = By,

Solve for v from (s¢E;, — Aj)*v = C}

x =MGS(X, x), X = [X, x/||x|]]

v =MGS(V,v), V= [V,v/|v|]

Compute G = V*E; X and T = V*A, X

(A,X,V) = DomSort(T, G, X, V, B, C;) > b Algorithm 4.10

Compute dominant approximate eigentriplet (1, &1, ¥1):

O RRAINRW

A =11 = XK/ IXK L9 = (Vi)/ [V

10:  if |Au%; —Ep% 4| < € then

11: (A,R,L,X,V,By, C;) = Deflate(A,, X1, 91, A, R, L, XX(. 2.6, VV (:.2:4). Ei, By, i)

12: > > Algorithm 4.11

13: Dfouna + + > > Also find eigenvectors for the antistable spectral zero —i]" and deflate

14: x = _01(n+1:2n.:); i\'1(1:71,;)]

15: V= [;(lln+l:2n.:); _ﬁl(lzn.:) ]

16: (AR, L,X,V,B;,,C)) = Deﬂate(—i*,x, v, A,R, L, X, V.E;,,B;,Cp) > >
Algorithm 4.11

17: Pfound + +

18: 11 = 12 ~

19: else if ncols(X) > k., then

20: > > Possible restart

21: > > Retain first k,,;, most dominant approximate eigenvectors and re-orthonormalize

22: X =MGS(X)~{(;,1;;{M")) > > Orthornormalize all columns sequentially

23: V =MGS(VV(. 1)

24 end if

25: Increment k = k + 1 B

26: Select new most dominant pole estimate s, = A,

27: end while

Algorithm 4.10 (A, X, V) = DomSort(T, G, X, V, B}, Cy)

INPUT: (T,G),X,V,B;,,C,

OUTPUT: (A, X, V), k dominant approximate eigenvalues and associated right, left eigenvectors
of (T, G), sorted such that X 1 is most dominant

1: (AA,BB,0,Z.X,V) = QZ(T,G)

2: A = diag(AA)./diag(BB) and |A;| # o0,i = 1...k

3: R = %&’?M > > Compute residues
4

: Sort (A, X, V) in decreasing |R;|/|Re(X;)| order
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Algorithm 4.11 (A,R,L,X,V,B,,C;) = Deflate(A,%,9,... A,R,L, X, V,E,,
B, Cyp)

INPUT: ()At,f(, V): the newly converged most dominant eigentriplet, (A,R,L): the dominant
eigentriplets already found correctly, X, V: the approximate right/left eigenvectors not yet
checked for convergence, E;,, B;,, C),

OUTPUT: (A,R,L): updated converged eigentriplets, X, V: deflated approximate eigenspaces,
By, C;: deflated matrices

r = x/(V*E;X) > > For keeping converged eigenvectors bi-E-orthogonal
=%

R=[Rf],L=I[L1

Deflate B, = B, — E,£(1*B),)
Deflate Cj, = C), — (C,D)I*E,
. if imag(A # 0) then

A A o e

> D> Also deflate complex conjugate

Nel
N
Il
—
>
*
f—

10: =
1: R=[Ri,L=[L1]

12:  Deflate B, = B, — E,£(i*B))
13:  Deflate C, = Cj, — (C,P)I*E,

14: end if

15:X=Y=]

16: for j = 1...#cols(X) do

17: X = Expand(X,R, L, E;, ﬁj) > > Algorithm 4.12
18: V = Expand(V,R,L,E}, V;) > > Algorithm 4.12
19: end for

Algorithm 4.12 X =Expand(X, R, L, E;, X)

INPUT: X € C?k guch that XX* = I, (R,L) € C"*?: the correctly found right/left
eigenvectors such that: L*E,R is diagonal and L*E;, X = 0, x: approximate eigenvector not
yet checked for convergence, Ej,

OUTPUT: X € C*"**+D expanded such that XX* =T

riI¥Ep \ A
1w = 1= (1= ) 3
2: x = MGS(X, Xx+1)
3 X = [X.x/Ixll]

4.5 A Framework for Synthesis of Reduced Order Models

The main motivation for this section comes from the need for a general framework
for the (re)use of reduced order models in circuit simulation.?* Although many
model order reduction methods have been developed and evolved since the 1990s
(see for instance [141, 146] for an overview), it is usually less clear how to use these

24Section 4.5 has been written by: Roxana Iountiu and Joost Rommes. For an extended treatment
on the topics of this section see also the Ph.D.-Thesis of the first author [156] and [159].
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methods efficiently in industrial practice, e.g., in a circuit simulator. One reason
can be that the reduced order model does not satisfy certain physical properties,
for instance, it may not be stable or passive while the original system is. Failing
to preserve these properties is typically inherent to the reduced order method
used (or its implementation). Passivity (and stability implicitly) can nowadays be
preserved via several methods [142, 151, 157, 166, 169, 173, 174], but none address
the practical aspect of (re)using the reduced order models with circuit simulation
software (e.g., SPICE [150]). While the original system is available in netlist
format, the reduced order model is in general only available in numerical format.
Typically, circuit simulators are not prepared for inputs of this form and would
require additional software architecture to handle them. In contrast, a reduced model
in netlist representation could be easily coupled to bigger systems and simulated.

Synthesis is the realization step needed to map the reduced order model into
a netlist consisting of electrical circuit components [154, 170]. In [148] it was
shown that passive systems (with positive real transfer functions) can be synthesized
with positive R,L,C elements and transformers. Later developments [147] propose
a method to circumvent the introduction of transformers, however the resulting
realization is non-minimal (i.e., the number of electrical components generated
during synthesis is too large). Allowing for possibly negative R, L, C values, other
methods have been proposed via e.g. direct stamping [163, 166] or full realization
[155, 167]. These mostly model the input/output connections of the reduced model
with controlled sources.

In this section we consider two synthesis methods that do not involve controlled
sources: (1) Foster synthesis [154], where the realization is done via the system’s
transfer function and (2) RLCYSN synthesis by unstamping [176], which exploits
input-output structure preservation in the reduced system matrices [provided that
the original system matrices are written in modified nodal analysis (MNA)
representation]. The focus of this section is on structure preservation and RLCSYN,
especially because synthesis by unstamping is simple to implement for both SISO
and MIMO systems. Strengthening the result of [176], we give a simple procedure
to reduce either current- or voltage-driven circuits directly in impedance form by
removing all the sources. Such an impedance-based reduction enables synthesis
without controlled sources. The reduced order model is available as a netlist, making
it suitable for simulation and reuse in other designs. Similar software [149] is
commercially available.

The material in this section is organized as follows. A brief mathematical
formulation of model order reduction is given in Sect.4.5.1. The Foster synthesis
is presented in Sect.4.5.2. In Sect.4.5.3 we focus on reduction and synthesis with
structure (and input/output) preservation. Section 4.5.3.1 describes the procedure to
convert admittance models to impedance form, so that synthesized models are easily
(re)used in simulation. Based on [176], Sect. 4.5.3.2 is an outline of SPRIM/IOPOR
reduction and RLCSYN synthesis. Examples follow in Sect.4.5.4, and Sect. 4.5.5
concludes.
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4.5.1 Problem Formulation

In this section the dynamical systems X'(A, E, B, C,D) are of the form Ex(f) =
Ax(t) + Bu(z), y(¢) = Cx(¢) + Du(z), where A, E € R”" E may be singular but
the pencil (A, E) is regular, B € R, C € R”" x(¢) € R",andu(t) € R",y(¢)
R?, D € R If m, p > 1, the system is called multiple-input multiple-output
(MIMO), otherwise it is called single-input single-output (SISO). The frequency
domain transfer function is defined as: H(s) = C(sE — A)~'B + D. For systems in
MNA form arising in circuit simulation see Sect. 4.5.3.

The model order reduction problem is to find, given an n-th order (descriptor)
dynamical system, a k-th order system: Ex(t) = Ax(t) + Bu(t), (1) = Cx(t) +
Du(r) where k < n, and E,A € RV B € RF>m € e RP*, X(t) € RF u() €
R™ y(¢) € R?, and D € R”*". The number of inputs and outputs is the same as
for the original system, and the corresponding transfer function becomes: H(s) =
CGE — A) 'B + D. For an overview of model order reduction methods, see [141,
145, 146, 172]. Projection based model order reduction methods construct a reduced
order model via Petrov-Galerkin projection:

Y(E,A,B,C,D) = (W'EV,W"AV, W*B, V*C, D), (4.61)

where V,W € R"k are matrices whose k¥ < n columns form bases for
relevant subspaces of the state-space. There are several projection methods, that
differ in the way the matrices V and W are chosen. These also determine which
properties are preserved after reduction. Some stability preserving methods are:
modal approximation [171], Poor Man’s TBR [168]. Among moment matching
[152] methods, the following preserve passivity: PRIMA [166], SPRIM [151],
spectral zero interpolation, [142, 157, 161, 173]. From the balancing methods,
balanced truncation [144] preserves stability, and positive real balanced truncation
[169, 174] preserves passivity.

4.5.2 Foster Synthesis of Rational Transfer Functions

This section describes the Foster synthesis method, which was developed in the
1930s by Foster and Cauer [154] and involves realization based on the system’s
transfer function. The Foster approach can be used to realize any reduced order
model that is computed by standard projection based model order reduction tech-
niques. Realizations will be described in terms of SISO impedances (Z -parameters).
For equivalent realizations in terms of admittances (¥ -parameters), see for instance
[154, 175]. Given the reduced system (4.61) consider the partial fraction expansion
[162] of its transfer function:

H(s) = Z =t D, (4.62)

z—l
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ae | i
The residues are 7; = (C’fﬁ#
yi EX;

is composed of an eigenvalue p; of (A.E) and the corresponding right and left
eigenvectors X;,§; € CK. The expansion (4.62) consists of basic summands of the
form:

and the poles are p;. An eigentriplet (p;,X;,¥;)

2

r3 ry r4 ry ry
+ =+ + — | +sre+ + — |,
S—= P2 S S—ps  S— P4 S§—p7r  S—Pp71
(4.63)

Z(s)=r1+

where for completeness we can assume that any kind of poles may appear, i.e., either
purely real, purely imaginary, in complex conjugate pairs, at co or at 0 (see also
Table 4.4). The Foster realization converts each term in (4.63) into the corresponding
circuit block with R, L, C components, and connects these blocks in series in the
final netlist. This is shown in Fig. 4.24. Note that any reordering of the circuit blocks
in the realization of (4.63) in Fig. 4.24 still is a realization of (4.63). The values for
the circuit components in Fig. 4.24 are determined according to Table 4.4.

The realization in netlist form can be implemented in any language such as
SPICE [150], so that it can be reused and combined with other circuits as well.
The advantages of Foster synthesis are: (1) its straightforward implementation for
single-input-single-output (SISO) transfer functions, via either the impedance or
the admittance transfer function, (2) for purely RC or RL circuits, netlists obtained
from reduction via modal approximation [171] are guaranteed to have positive

Table 4.4 Circuit element values for Fig. 4.24 for the Foster impedance realization of (4.63)

Pole Residue R(Ohm) |C(F) |L(H) G(Ohm™1)
p1 = 00 r € R r
P ER r, €ER —;—22 %
[J3 = 0 rs S R %
p4=cr+ia)€(C r4=a+iﬂ€(C a g 1 @ arbi—ag
Ps = Da rs =74 @ a a?bo—ag(a1b1—ag) aj
ag = —2(ao + Bw), a =2, by=0c>+w? b =-20
Ps = OO re € R re
p7 €iR r; € R 1 2r7
- = — = r7 p1p7
Ps = P17 rg =17

i,
T 3
Wi o= 3o
£
T &

Fig. 4.24 Realization of a general impedance transfer function as a series RLC circuit
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RC or RL values respectively [158]. The main disadvantage is that for multi-
input-multi-output transfer functions, finding the Foster realization (see for instance
[175]) is cumbersome and may also give dense reduced netlists (i.e., all nodes are
interconnected). This is because the Foster synthesis of a k-dimensional reduced
system with p terminals, will generally yield O(p?k) circuit elements. A method
based on partitioning of an RLC circuit is found in [164]. The method produces a
positive-valued, passive and stable reduced RLC circuit.

4.5.3 Structure Preservation and Synthesis by Unstamping

This section describes the second synthesis approach, which is based on unstamping
the reduced matrix data into an RLC netlist and is denoted by RLCSYN [176].
It is suitable for obtaining netlist representations for models reduced via methods
that preserve the MNA structure and the circuit terminals, such as the input-output
structure preserving method SPRIM/IOPOR [176]. The strength of the result in
[176] is that the input/output connectivity is synthesized after reduction without
controlled sources, provided that the system is in impedance form (i.e., inputs are
currents injected into the circuit terminals, and outputs are voltages measured at
the terminals). Here, we interpret the input-output preservation as preserving the
external nodes? of the original model during reduction. This way the reduced
netlist can easily be coupled to other circuitry in place of the original netlist,
and (re)using the reduced model in simulation becomes straightforward. The main
drawback is that, when the reduced system matrices are dense and the number of
terminals is large [ O(10°)], the netlist obtained from RLCSYN will be dense. For a
k dimensional reduced network with p terminals, the RLCSYN synthesized netlist
will generally have O(p?k?) circuit elements. The density of the reduced netlist
however is not a result of the synthesis procedure, but a consequence of the fact that
the reduced system matrices are dense. Developments for sparsity preserving model
reduction for multi-terminal circuits can be found in [160], where sparse netlists are
obtained by synthesizing sparse reduced models via RLCSYN.

First, we motivate reduction and synthesis in impedance form, and show how
it also applies for systems that are originally in admittance form. Then we explain
model reduction via SPRIM/IOPOR, followed by RLCSYN synthesis.

4.5.3.1 A Simple Admittance to Impedance Conversion

In [176] it was shown how SPRIM/IOPOR preserves the structure of the input/out-
put connectivity when the original model is in impedance form, allowing for

25 A terminal (external node) is a node that is visible on the outside, i.e., a node in which currents
can be injected. The other nodes are called internal.
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synthesis via RLCSYN without controlled sources. The emerging question is: How
to ensure synthesis without controlled sources, if the original model is in admittance
form (i.e., it is voltage driven)? We show that reduction and synthesis via the input
impedance transfer function is possible by removing any voltage sources from the
original circuit a priori and re-inserting them in the reduced netlist if needed.

To this end, consider the modified nodal analysis (MNA) description of an input
admittance®® type RLC circuit, driven by voltage sources:

T00\ , (v0) g & &N\ [v@) 0
000 7 is)| +-€." 0 0 is@)| =|%|u@)), (4.64)
00% ir(t) £ 0 0 ir(t) 0
—— ——
Ey Xy —Ay Xy By

where u(t) € R"! are input voltages and y(¢) = Cyx(¢) € R"' are output currents,
Cy = Bj. The states are xy () = [v(¢), is(?), i,(¢)]7, with v(t) € R™ the node
voltages, is(f) € R" the currents through the voltage sources, and iz, (f) € R" the
currents through the inductors, n, + n; + n; = n. The n, = n; + n, node voltages
correspond to the n; external nodes (i.e., the number of inputs/terminals) and the
n, internal nodes.”” Assuming without loss of generality that (4.64) is permuted
such that the first n; nodes are the external nodes, we have: vi.,, () = u(z). The
dimensions of the underlying matrices are: 4 € C"*" & e C""™ &, €
Crm L e CrM & e CM B e C'" Recalling that vy, (1) = u(z),
the following holds:

& = (0‘% ) €CM, B, € CN, B =B, (4.65)

naXni

We derive the first order impedance-type system associated with (4.64). Note
that by definition, is(¢) flows out of the circuit terminals into the voltage source
(i.e., from the + to the — terminal of the voltage source, see also [166, Figure 3]
[158]). We can define new input currents as the currents flowing into the circuit
terminals: i;,(f) = —is(¢). Since u(t) = vy, (¢) are the terminal voltages, they

26The subscript Y refers to quantities associated with a system in admittance form.

2TFor the pencil (Ay, Ey) to be regular, in (4.64) one node must be chosen as a ground (reference)
node; this is however only a numerical requirement.
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describe the new output equations, and it is straightforward to rewrite (4.64) in the
impedance form:

(5 2) % (2 + (2 ) (M) = () o

0.2) dr\i,(t) —<*0)\i,y) \o )™

N—— N—— N——

% A x B (4.66)
(g: 0) (v(t)) ZY(Z) = %UVICHI(Z)’ éa: = (%: 0n1><n2)
—— lL(t)

C S——

E

where B describes the new input incidence matrix corresponding the input currents,
i;,. The new output incidence matrix is C, corresponding to the voltages at the
circuit terminals. We emphasize that (4.66) has fewer unknowns than (4.64), since
the currents ig have been eliminated. The transfer function associated to (4.66) is
an input impedance: H(s) = ii((?). In Sect.4.5.3.2 we explain how to obtain an
impedance type reduced order model in input/output structure preserved form:

(if 0)i(f)(t))+ 4 & (f)(t)) _ (@@) ()
0.2)ar\irm) "\-&; o) \iey) " \o )™

M — Y M
E ?i A X B 4.67)
(é* 0) (7v(t)) =y(t) = ByVim, (1), ‘ga: = (%7: 0"1><k2)
v ir(t)
\“f_/!r—/

c X
where %, &z R g s & v are the reduced MNA matrices, and the reduced input
impedance transfer function is: ﬁ(s) = i,{q (:S)). Due to the input/output preservation,
the circuit terminals are easily preserved in the reduced model (4.67). The simple
example in Sect. 4.5.4.1 illustrates the procedure just described.

It turns out that after reduction and synthesis, the reduced model (4.67) can still
be used as a voltage driven admittance block in simulation. This is shown next. We

can rewrite the second equation in (4.67) as: (%Z 0 0) (v@)r is@) i, (t)T)T =
Au(t). This result together with i;,(r) = —ig(¢), reveals that (4.67) can be rewritten

as:
C00\ (50 G &, 8\ (v0) 0
000 - 1is@)[+]|=€, 0 0]is()|=|Z[u@). “68)
00y ir(1) &0 0) \iL() 0
—— e — N——
Ey JL(Y Ay Xy By

which has the same structure as the original admittance model (4.64). Conceptually
one could have reduced system (4.64) directly via the input admittance. In that
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case, synthesis by unstamping via RLCSYN [176] would have required controlled
sources [155] to model the connections at the circuit terminals. As shown above,
this is avoided by: applying the simple admittance-to-impedance conversion (4.64)
to (4.66), reducing (4.66) to (4.67), and finally reinserting voltage sources after syn-
thesis [if the input-output structure preserved admittance reduced admittance (4.68)
is needed]. Being only a pre- and post-processing step, the proposed voltage-
source removal and re-insertion can be applied irrespective of the model reduction
algorithm used. For ease of understanding we relate it here to model reduction via
SPRIM/IOPOR.

4.5.3.2 1/0O Structure Preserving Reduction and RLCSYN Synthesis

The reduced input impedance model (4.67) is obtained via the input-output structure
preserving SPRIM/IOPOR projection [176] as follows. Let V = (VIT, V2T , V3T )T €
Cn+mtn)xk) pe the projection matrix obtained with PRIMA [166], where V| €
Cmxk) v, ¢ C2>k vy ¢ C>*0) k> ny, i = 1...3. After appropriate
Qrthonormalization (e.g., via Modified Gram-Schmidt [171, Chapter 1]), we obtain:
V; = orth(V;) € C"*ki k; < k. The SPRIM [151] block structure preserving
projection is: V = blkdiag (\71,\72,\73) e CrUatktks) which does not yet
preserve the structure of the input and output matrices. The input-output structure

preserving SPRIM/IOPOR [176] projection is W = (‘;V {? ) € Crxmthatks)
3
where:
W = Ly yxn ~0 e Cmtn)x(itka) (4.69)
0V, ‘ '

Recalling (4.65), we obtain the reduced system matrices in (4.67): ¢ = W*EW,
G = WGW, Z = V12V, & = WEVs, &, = WE, = (B 0,,) "
which compared to (4.65) clearly preserve input-output structure. Therefore a netlist
representation for the reduced impedance-type model can be obtained, that is driven
injected currents just as the original circuit. This is done via the RLCSYN [176]
unstamping procedure. To this end, we use the Laplace transform and convert (4.67)
to the second order form:

[s€ + G + L19(s) = &iin(s)

y ~ % 4.70
§(5) = &75(s). 70

where iz (s) = %.ff_l (@5’1*) V(s) and ' = g”;i”_lz?;k.
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The presentation of RLCSYN follows [176, Sect.4], [158] and is only sum-
marized here. In circuit simulation, the process of forming the 4,¥, % system
matrices from the individual branch element values is called “stamping”. The
reverse operation of “unstamping” involves decomposing entry-wise the values of
the reduced system matrices in (4.70) into the corresponding R, L, and C values.
When applied on reduced models, the unstamping procedure may produce negative
circuit elements because the reduced system matrices are no longer diagonally
dominant (while the original matrices were). Obtaining positive circuit elements
only is subject to further research. The resulting Rs, Ls and C's are connected in the
reduced netlist according to the MNA topology. The reduced input/output matrices
of (4.70) directly reveal the input connections in the reduced model via injected
currents, without any controlling elements. The prerequisites for an unstamping
realization procedure therefore are:

1. The original system is in MNA impedance form (4.66). If the system is of
admittance type (4.64), apply the admittance-to-impedance conversion from
Sect.4.5.3.1.

2. In (4.66), no Ls are directly connected to the input terminals so that, after
reduction, diagonalization and regularization preserve the input/output structure.

3. System (4.66) is reduced with SPRIM/IOPOR [176] to (4.67) and converted to
second order form (4.70). The alternative is to obtain the second order form of
the original system first, and reduce it directly with SAPOR/IOPOR [143, 176].

4. The reduced system (4.70) must be diagonalized and regularized according to
[176]. Diagonalization ensures that all inductors in the synthesized model are
connected to ground (i.e., there are no inductor loops). Regularization eliminates
spurious over-large inductors. These steps however are not needed for purely RC
circuits.

4.5.4 Numerical Examples

We apply the proposed reduction and synthesis framework on several test cases.
The first is a simple circuit which illustrates the complete admittance-to-impedance
formulation and the RLCSYN unstampting procedure, as described in Sect.4.5.3.
The second example is a SISO transmission line model, while the third is a MIMO
model of a spiral inductor.
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i @ Gy
Is1 I'L
¢§ U1 C1
Fig. 4.25 Admittance-type circuit driven by input voltages [166]. G| ,3 = 0.1S, L; = 1073 H,
Cia=107%C. =107* Jlusol = 1

4.5.4.1 Illustrative Example

The circuit in Fig. 4.25 is voltage driven, and the MNA admittance form (4.64) is:

00 0 0 00[0\fvy G 0 -G 0 [10/0\/v 0 0
00 0 0 00[/0 |fvus 0 G; 0 0 [01[1 [Jvs 0 0
00C1+C€ —C( 00/0 1% —G1 0 G1+G2 —G2000 %) 0 0
00 —C. GC+C. 000 ||vs]+] 0O 0 -G, G, 00|l |]vs = 0 0 (2)
00 0 0 00[0 |}is, -1 0 0 0 [00/0 |}is, -1 0
00 0 0 00/0 ||is, 0 -1 0 0 00/0 [|is, 0 -1
00 0 0 00|L/ N\, 0 1 0 —1100/0/\iyg, 0 0
4.71)

Notice that
i, = (’.‘) =— (’.S‘) 4.72)
12 ls,
u= (”1) = (”‘), (4.73)
us V4

thus the external nodes (input nodes/terminals) are v; and vy4, and the internal nodes

are v, and vs. As described in Sect.4.5.3.1, (4.71) has an equivalent impedance
formulation (4.66), with:

00 0 0 G, 0 -G 0 0
00 0 0 0 G 0 0 4

& = ,3=(L),g= 3 L& = (4.74)
00C+C. —C. G, 0 G+G, —G> 0
00 —C. C+C. 0 0 -G G 1

&y = o1 @:(‘1 0),%:—3& 4.75)
00 0 —1
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Matrices (4.74) and (4.75) are reduced either in first order form using SPRIM/IO-
POR according to Sect. 4.5.3.2.

Here we reduce the circuit with SPRIM/IOPOR and synthesize it by unstamping
via RLCSYN. Note that there is an L directly connected to the second input node v4,
thus assumption 2. from RLCSYN is not satisfied. We thus reduce and synthesize
the single-input-single-output version of (4.71) only, where the second input i, is
removed. Therefore the new incidence matrices are:

@@vl = 7%1 - (_1)7 '%Ul == _e%]- (476)

S O O =

We choose an underlying PRIMA projection matrix V. € C"™* spanning a
k = 2-dimensional Krylov subspace (with expansion point 5o = 0). According
to Sect. 4.5.3.2, after splitting V and appropriate re-orthonormalization, the dimen-
sions of the input-output structure preserving partitioning are:

ny = 1, np = 3, n = 1, kz = 2, k3 = 1, (477)
and the SPRIM/IOPOR projection is:

10 00
04.082-107' —4.861-107'0

W=|08.164-10"1 5729-1071 0] € C™*, with W e C*3. (4.78)
04.082-107" —6.597-10710
00 01

After diagonalization and regularization, the SPRIM/IOPOR reduced system
matrices in (4.70) are:

0 0 0 1 8.165-1072 —5.729-1072
€ = 1.749-107° —5.052- 107> |, ¢ = 8.165-1072  9.999-1072 —7.726- 1072

0 —5.052-10—° 1.527-10* —5.7295-1072 —7.7265- 1072  2.084- 107"

00 0 1
F=[oo ol &,=[o0 4.79)
00 30.14 0

Reduced matrices (4.79) are now unstamped individually using RLCSYN. The
reduced system dimension in second order form is thus N = 3, indicating that the
reduced netlist will have 3 nodes and an additional ground node. In the following,
we denote by M; ;i = 1...N, j = 0...N — 1 a circuit element connected
between nodes (i, j) in the resulting netlist. M represents a circuit element of the
type: R,L,C or current source J.
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By unstamping &, we obtain the following R values (for simplicity only 4 figures
behind the period are shown here, nevertheless in implementation they are computed

with machine precision € = 10719):

3 —1

~ ~ —1 - —1

Rio = [2 g(m} =8.04172, Ry = —[g(u)] =—122472. Ris= —[g(m] = 17452 2,
k=1

3

3 —1 —1
~ ~ —1 ~
Rop= [Z g(m} =95798 2, Ros= —[g(m] = 129422, Ryp= [Z g(m} =13.535 Q2.
k=1 k=1

By unstamping %, we obtain the following C values:

3
Coo =) Con=-33026-10"° F, Co3=—Fp3 =50526-107°F,
k=1

3 —1
Cso = [Z %M)} =1.0221-107* F.
k=1

By unstamping I, we obtain the following L values:

3 —1
Ly = [Z ﬁm} =3317-1072 H.
k=1

By unstamping & v » We obtain the current source J; o of amplitude 1 A4.
The Pstar [165] equivalent netlist is shown below:.

circuit;
rr 10 (1, 0) 8.0417250765565598e+000;
rr 12 (1, 2) -1.2247448713915894e+001;
rr 13 (1, 3) 1.7452546181796258e+001;
rr 2 0 (2, 0) 9.5798755840972589e+000;
rr 23 (2, 3) 1.2942609947762115e+001;
rr 3 0 (3, 0) 1.3535652691596653e+001;
1130 (3, 0) 3.3170000000000033e-002;
cc 2 0 (2, 0) -3.3026513336014821e-005;
c c 2 3 (2, 3) 5.0526513336014765e-005;
c c 3.0 (3, 0) 1.0221180442099465e-004;
j 3.1 (1, 0) sw(l, 0);
c: Set node 1 as output: vn(l);
c: Resistors 6;
c: Capacitors 3;
c: Inductors 1;

end;

Table 4.5 summarizes the reduction and synthesis results. Even though the
number of internal variables (states) generated by the simulator is smaller for
the SPRIM/IOPOR model than for the original, the number of circuit elements
generated by RLCSYN is larger in the reduced model than in the original.
Figure 4.26 shows that approximation with SPRIM/IOPOR is more accurate than
with PRIMA. The Pstar simulation of the RLCSYN synthesized model also matches
the MATLAB simulation of the reduced transfer function.
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Table 4.5 Input impedance reduction (SPRIM/IOPOR) and synthesis (RLCSYN)
System Dimension R C L States Inputs/Outputs
Original 5 3 3 1 5 1
SPRIM/IOPOR 4 6 3 1 4 1

Input impedance simulation
PRIMASPRIM/IOPOR
n=5 Ksprmoror = 4 H2,,, = 0:24725

36 1

—— QOriginal
sl i Reduced: PRIMA _

== =+ Reduced: SPRIM/IOPOR
32 =9+ RLCSYN: SPRIM/IOPOR| A

o 30 1

=

S 28 _

2

§) 26 | ",:&'“ m

= % s
24| B
22 1 ’——
20 :"
18 1 1 1 1 .: 1 1 1
0 1 2 3 4 5 6 8 9
Frequency (rad/s)

Fig. 4.26 Original, reduced and synthesized systems: PRIMA, SPRIM/IOPOR. The reduced and

synthesized systems match but miss the peak around 4.5 rad/s

Fig. 4.27 Transmission line from Sect. 4.5.4.2

4.5.4.2 SISO RLC Network

We reduce the SISO RLC transmission line in Fig.4.27. Note that the circuit

is driven by the voltage u, thus it is of admittance type (4.64). The admittance
simulation of the model reduced with the dominant spectral zero method (Dominant
SZM) [157, 161], synthesized with the Foster approach, is shown in Fig.4.28. The

behavior of the original model is well approximated for the entire frequency range,
and can also reproduce oscillations at dominant frequency points.
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Fig. 4.28 Input admittance transfer function: original, reduced with Dominant SZM in admittance
form and synthesized with Foster admittance
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Fig. 4.29 Input admittance transfer function: original and synthesized SPRIM/IOPOR model (via
impedance), after reconnecting the voltage source at the input terminal

In Fig. 4.29 the benefit of the admittance-to-impedance transformation, described
in Sect.4.5.3.1, is seen. By reducing the system in impedance form with SPRIM/-
IOPOR and synthesizing (4.67) [using the second order form (4.70)] with RLCSYN
[176], we are able to recover the reduced admittance (4.68) as well. The approxima-
tion is good for the entire frequency range.
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Fig. 4.30 Coil structure from Sect. 4.5.4.3

4.5.4.3 MIMO RLC Network

We reduce the MIMO RLC netlist resulting from the parasitic extraction [153] of the
coil structure in Fig. 4.30. The model has 4 pins (external nodes). Pin 4 is connected
to other circuit nodes only via C’s, which causes the original model (4.66) to have a
pole at 0. The example shows that the SPRIM/IOPOR model preserves the terminals
and is synthesizable with RLCSYN without controlled sources.

Figure 4.31, shows the simulation of the transfer function from input 4 to output
4. SPRIM/IOPOR is more accurate around DC than PRIMA. Another alternative is
to ground pin 4 prior to reduction. As seen from Fig. 4.32, SPRIM/IOPOR applied
on the remaining 3-terminal system gives better approximation than PRIMA for
the entire frequency range. With pin 4 grounded however, we loose the ability to
(re)connect the synthesized model in simulation via all the terminals.

4.5.5 Conclusions and Outlook

A framework for realizing reduced mathematical models into RLC netlists was
developed. Model reduction by projection for RLC circuits was described and
associated with two synthesis approaches: Foster realization (for SISO transfer
functions) and RLCSYN [176] synthesis by unstamping (for MIMO systems).
An admittance-to-impedance conversion was prosed as a pre-model reduction step
and shown to enable synthesis without controlled sources. The approaches were
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tested on several examples. Future research will investigate reduction and synthesis
methods for RCLK circuits with many terminals, while developments on sparsity-
preserving model reduction for multi-terminal RC circuits can be found in [160].
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