
Chapter 3
Simulation of Coupled PDAEs: Dynamic
Iteration and Multirate Simulation

Giuseppe Alì, Andreas Bartel, Michael Günther, Vittorio Romano,
and Sebastian Schöps

Abstract This chapter investigates the error transport in dynamic iteration schemes
for coupled DAE systems. The essential theory is developed in detail. Then the
results are applied to various coupled systems stemming from applications in
electrical engineering.

3.1 Aim and Outline

In practice, we often have to deal with multiphysical descriptions of mathematical
models and as well with systems which exhibit widely separated time scales. A com-
mon approach for multiphysical systems is the application of dynamic iteration (or
co-simulation), which allows to treat each subsystem with a dedicated solver, and
also an according discretization. Furthermore, so-called multirate techniques can be
applied to specifically exploit different time scales.
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To reflect this, the aim of this chapter is twofold. First we address dynamic itera-
tion of spatially discretized PDAE systems, which are in fact coupled DAE systems.
We demonstrate the crucial differences between coupled DAE and coupled ODE
systems by investigating the splitting error of these coupled systems theoretically.
Then we apply the obtained knowledge to coupled systems from Chap. 2. Secondly,
a multirate strategy is discussed and studied numerically.

To this end, this chapter is organized as follows. It starts with the detailed theory
of dynamic iteration schemes for coupled DAEs. First we consider a single window
and proof an error recursion for any investigated window. Then we treat multiple
windows and generalize the results. In the following section, we apply our results
to some of the DAE models introduced in Chap. 2: refined network models, electric
networks and Maxwell’s magnetostatic equations. Finally, a multirate method for
the coupled simulation of thermal effects in silicon devices is investigated.

3.2 Theory of Dynamic Iteration Schemes for Coupled DAEs

Here we address the time-domain solution of PDAEs by means of dynamical
iteration schemes. To explain the basic concept, let us suppose that we want to
solve an initial value problem for a system of PDAEs, on a time interval Œ0; te�.
To this end, the time interval Œ0; te� is split in windows Œtn; tnC1� with so-called
synchronization points tn, which satisfy: 0 D t0 < t1 < � � � < tN D te . The windows
are treated sequentially and in each window the subsystems are solved iteratively.
Mathematically speaking, this leads to apply a dynamic iteration scheme.

Coupled systems as our PDAEs, see Chap. 2, can be treated with coupled
simulators, each designed and tailored to the respective subsystem’s structure.
This is called simulator-coupling, co-simulation or distributed (time-)integration.
Compared to monolithic approaches, where the overall system is treated by any
standard integration the distributed computation offers potential w.r.t. parallelization
and incorporates adapted step sizes and orders to every subsystem automatically.

Although we have in mind applications to PDAEs, we will develop the theory
of dynamic iteration schemes for DAEs. For practical applications, all the results
presented in this Chapter can be extended to PDAE after performing suitable spatial
discretizations. A detailed example of this approach is given for PDAEs arising in
refined network modeling.

Iteration schemes were first applied to coupled ODE systems, including
multirate, multi-order, multi-method and dynamic iteration. For the latter, which
is our focus, convergence is unconditional (see [10]) if the windowing technique
is applied. However, the situation changes, when this methods are applied to
DAEs. Here instabilities may occur and solutions can explode even if a windowing
technique is in use. Here convergence, that is, contraction of the corresponding
fixed point operator, can be guaranteed by fulfilling additional stability constraints.
This dates back to Lelarasmee [24] and was applied for single window convergence
[3, 22] and specially coupled systems for multiple windows in [1, 4]. We note that
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the stability restrictions where also encountered in the numerical analysis of DAEs,
see [16, 21] and [1, 23].

Here we follow [4] with some more details to derive a general representation of
the error recursion for coupled systems. The preceding steps, e.g. for convergence
result, are as in [1]. Furthermore we aim at extracting the underlying principle:
algebraic to algebraic coupling is to be excluded or damped.

3.2.1 Description of Coupled Systems

After applying a suitable space discretization to the PDAE problems discussed in the
first chapter, we are faced with the following simulation problem: solve an initial-
value problems of semi-explicit differential-algebraic equations

Py D f.y; z/; (3.1a)

0 D g.y; z/; (3.1b)

where the dot denotes differentiation with respect to time. In this formulation we
do not distinguish between different subsystems, but all subsystems are comprised
within one system. As we will see, this is enough to treat dynamic iteration
schemes. It is specially well-applicable for linear PDE-parts, where space and time
discretization can be easily separated. Also a non-autonomous system can be casted
in this form, by introducing an additional equation: Pt D 1. We assume that this
problem, equipped with initial values

y.0/ D y0 ; z.0/ D z0; (3.2)

has a unique solution y W Œ0; te� ! R
ny ; z W Œ0; te� ! R

nz on the finite time interval
Œ0; te�. In a neighborhood of this solution the functions f and g are supposed to be
sufficiently often differentiable. Furthermore, it is supposed that

the Jacobian @g=@z is non-singular; (3.3)

in the neighborhood of the solution. Hence system (3.1) has index-1. Moreover,
the initial values (3.2) have to be consistent, that is for our semi-explicit index-1
system (3.1), the explicit algebraic constraint (3.1b) is fulfilled for the initial data.

Next we discuss the representation of coupled systems. In multiphysics prob-
lems, system (3.1) is often directly given as a coupled system of r DAE subsystems

Pyi D fi .y; z/; (3.4a)

0 D gi .y; z/ (3.4b)

for i D 1; : : : ; r , with y> D .y>
1 ; : : : ; y>

r /, z> D .z>
1 ; : : : ; z>

r /, f> D .f>1 ; : : : ; f>r /,
g> D .g>

1 ; : : : ; g>
r /. In addition to the index-one assumption (3.3) for the whole



106 G. Alì et al.

system (3.1), we now assume that

@gi =@zi is non-singular for all i D 1; : : : ; r; (3.5)

so that the equations gi .y; z/ D 0 are locally uniquely solvable with respect to zi ,
with other words: system (3.4) defines an index-1 system for unknown functions
yi , zi assuming that all other variables yj , zj (j ¤ i ) are given as time-dependent
functions.

Sometimes system (3.1) may be given as r coupled ODE systems linked to only
one algebraic equation:

Pyi D fi .y; z/; (3.6a)

0 D g.y; z/; (3.6b)

for i D 1; : : : ; r . The index-1 assumption now again reads as in (3.3), that is, we
assume that @g=@z is non-singular in a neighborhood of the solution.

Sometimes a separation in subsystems is not a priori fixed by a simple partition
(e.g. (3.6)). This leads to the following notation, where some quantities are assigned
to several subsystems.

Overlapping modeling The structure (3.6) gives more freedom in a dynamic
iteration scheme by applying appropriate overlapping strategies [2]. For such a
strategy, the system is replaced by a number of overlapping subsystems, defined
by means of splitting matrices. As splitting matrices we introduce Pi 2 R

nz�li with
1 � li � nz and rank.Pi/ D li for i D 1; : : : ; r , such that the matrix

.P1 : : : Pr / 2 R
nz�.

P
i li / has full rank nz (3.7)

(thus we implicitly require
P

i li � nz). In this way, arbitrary parts P>
i g of the

algebraic equation (3.6b) can be extracted, since it holds:

.P1; : : : ; Pr /
>g D 0 if and only if g D 0:

Next, we assign the extracted components to the i -th ODE subsystem to define r

overlapping DAE systems:

Pyi D fi .y; wi /; (3.8a)

0 D P>
i g.y; wi /; (3.8b)

substituting z by wi (for i D 1; : : : ; r). Also z is split into further components
Nzi WD P>

i z, such that it holds

wi D z D .I � Pi P>
i /z C Pi Nzi : (3.9)
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This splitting is crucial for any modular time integration to come. Adding the
coupling equation (3.9) to the r th system, we obtain in fact:

Pyi D Qfi .y; z; Nzi /; (3.10a)

0 D Qgi .y; z; Nzi /; (3.10b)

for i D 1; : : : ; r , with

Qfi .y; z; Nzi / WD fi .y; .I � Pi P>
i /z C Pi Nzi /; i D 1; : : : ; r;

Qgi .y; z; Nzi / WD P>
i g.y; .I � Pi P>

i /z C Pi Nzi / i D 1; : : : ; r � 1;

Qgr .y; z; Nz/ WD

0

B
@

P>
r g.y; .I � PrP>

r /z C Pr Nzr /

z �
�

.I �
rX

j D1

Pj P>
j /z C

rX

j D1

Pj Nzj

�

1

C
A :

If the original system (3.6) has index-1, then also system (3.10) has index-1. In
fact, the index-1 conditions for system (3.10) are:

P>
i .@g=@z/Pi regular;

rX

j D1

Pj P>
j regular;

which are ensured by the index-1 condition (3.3), and by the definition of our
matrices Pj , which satisfy condition (3.7).

Lastly, we notice: (a) according to our system (3.6), we have only overlap-
ping in the algebraic system; of course, more general situations are conceivable;
(b) the case of additional coupling equations can be also retrieved within the above
discussed case.

Next, we discuss several types of iteration schemes, which we can identify with
splitting functions.

3.2.2 Iteration Schemes for Coupled DAE Systems

The idea of our dynamic iteration schemes is now to work directly on the splitting
structure of system (3.1) given by either (3.4) or (3.6) to exploit the varying
properties of the subsystems via multirate and multimethod approaches.

Before going into the details of exploiting the special structure, we define a
generic dynamic iteration scheme in the following. In a first step we split the whole
integration interval Œ0; te� into windows Œtn; tnC1� � Œ0; te� (n D 0; 1; : : : ; N �1 with
t0 D 0 and tN D te), of size Hn WD tnC1 � tn. As already mentioned, this windowing



108 G. Alì et al.

technique guarantees convergence in the case of purely coupled ODE systems and
for DAE systems additional stability restrictions to be discussed play an important
role (for convergence and fast numerical computation of solutions).

Let us now consider a window Œtn; tnC1� and suppose that the numerical solution

.Qy; Qz/> W Œ0; te� ! R
ny �R

nz

has already been computed for t 2 Œ0; tn�. To get a numerical approximation in the
next window Œtn; tnC1�,

Qyj.tn;tnC1�; Qzj.tn;tnC1�;

we proceed as follows:

• Extrapolation step: the iteration starts with

 
Qy.0/

n

Qz.0/
n

!

WD ˆn

�Qyj.tn�1;tn�

Qzj.tn�1;tn�

�

with ˆn D
�

ˆy;n

ˆz;n

�

; (3.11)

where ˆn W NC 1;0
n�1 ! C 1;0

n denotes an operator that extrapolates .Qy; Qz/ continu-
ously from .tn�1; tn� to Œtn; tnC1� with corresponding spaces

NC 1;0
n WD ˚

.y; z/j.tn;tnC1� W .y; z/ 2 C 1;0
n

�
;

C 1;0
n WDC 1.Œtn; tnC1�;R

ny / � C.Œtn; tnC1�;R
nz/:

The most simple initial guesses are constant functions

Qy.0/
n .t/ D Qy.tn/; z.0/

n .t/ D Qz.tn/ .f.a. t 2 Œtn; tnC1�/

which results in approximation errors proportional to the window size Hn.
Approximations of higher order may be obtained by using higher degree
polynomials. In any case, these extrapolation operators satisfy uniform Lipschitz
conditions independent of the window size (see [1]).

• Iteration step: the k-th iteration step in the dynamic iteration scheme (with k D
1; : : : ; kn) defines a mapping

 
Qy.k�1/

n

Qz.k�1/
n

!

!
 

Qy.k/
n

Qz.k/
n

!

WD ‰n

 
Qy.k�1/

n

Qz.k�1/
n

!

with ‰n D
�

‰y;n

‰z;n

�

; (3.12)

‰n W C 1;0
n ! C 1;0

n . Here we assume kn to denote the finite number of iterations to
be performed in the n-th window (Œtn; tnC1�). Regarding the general setting (3.1),
the iteration operator ‰n is implicitly defined via splitting functions F and G by
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solving the initial value problem

PQy.k/
n D F.Qy.k/

n ; Qy.k�1/
n ; Qz.k/

n ; Qz.k�1/
n / (3.13a)

0 D G.Qy.k/
n ; Qy.k�1/

n ; Qz.k/
n ; Qz.k�1/

n / (3.13b)

with initial value

Qy.k/
n .tn/ D Qy.k�1/

n .tn/: (3.13c)

The splitting functions F and G can be chosen as arbitrarily smooth functions
provided that they are related to the right-hand-sides f and g of the DAE system
(3.1) by the compatibility conditions

F.y; y; z; z/ D f.y; z/; G.y; y; z; z/ D g.y; z/: (3.14)

As f, g are assumed to be sufficiently often differentiable, this is also assumed
for F and G.

Remark 3.4 Notice, that the analytic solution .y; z/ is a fixed-point of the iteration
operator ‰n due to the compatibility conditions (3.14).

With these notations the dynamic iteration step for window Œtn; tnC1� may be
written as composition of the above introduced operators:

�Qyj.tn;tnC1�

Qzj.tn;tnC1�

�

D .‰kn
n ı ˆn/.

�Qyj.tn�1;tn�

Qzj.tn�1;tn�

�

/: (3.15)

We now come back to the question how to exploit the given structure of the
coupled DAE system. If the DAE system is given in partitioned form (3.4), we are
looking for numerical approximations

Qyn D .y1;n; : : : ; yr;n/>; Qzn D .z1;n; : : : ; zr;n/>

in split form. Now the iteration operator ‰n should reflect this partitioning. Instead
of (3.13), ‰n is now implicitly defined by the r initial-value problems

PQy.k/
i;n D Fi .Qy.k/

n ; Qy.k�1/
n ; Qz.k/

n ; Qz.k�1/
n /; (3.16a)

0 D Gi .Qy.k/
n ; Qy.k�1/

n ; Qz.k/
n ; Qz.k�1/

n /; (3.16b)

for i D 1; : : : ; r , with initial value

Qy.k/
i;n .tn/ D Qy.k�1/

i;n .tn/: (3.16c)
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Again, all splitting functions Fi and Gi are related to the right-hand-sides fi and gi

of the DAE system (3.4) by the compatibility conditions

Fi .y; y; z; z/ D fi .y; z/; Gi .y; y; z; z/ D gi .y; z/:

And it holds:

F> D .F>
1 ; : : : ; F>

r / and G> D .G>
1 ; : : : ; G>

r /:

In the notation of splitting functions, the following important classes of dynamic
iterations schemes for the coupled system (3.4) read as:

Fi .Qy.k/
n ; Qy.k�1/

n ; Qz.k/
n ; Qz.k�1/

n / D fi .Y
.k/
i;n ; Z.k/

i;n /; (3.17a)

Gi .Qy.k/
n ; Qy.k�1/

n ; Qz.k/
n ; Qz.k�1/

n / D gi .Y
.k/
i;n ; Z.k/

i;n /; (3.17b)

for i D 1; : : : ; r , with:

• Picard iteration:

Y.k/
i;n D Qy.k�1/

n ;

Z.k/
i;n D Qz.k�1/

n ;

• Jacobi iteration:

Y.k/
i;n D .Qy.k�1/

1;n ; : : : ; Qy.k�1/
i�1;n ; Qy.k/

i;n ; Qy.k�1/
iC1;n; : : : ; Qy.k�1/

r;n />;

Z.k/
i;n D .Qz.k�1/

1;n ; : : : ; Qz.k�1/
i�1;n ; Qz.k/

i;n ; Qz.k�1/
iC1;n; : : : ; Qz.k�1/

r;n />;

• Gauss-Seidel iteration:

Y.k/
i;n D .Qy.k/

1;n; : : : ; Qy.k/
i;n ; Qy.k�1/

iC1;n; : : : ; Qy.k�1/
r;n />;

Z.k/
i;n D .Qz.k/

1;n; : : : ; Qz.k/
i;n ; Qz.k�1/

iC1;n; : : : ; Qz.k�1/
r;n />:

These techniques can be applied to the system derived from overlapping (3.8).
The involved multiple computation of certain quantities, enables higher flexibility
with respect to stability, as we will see. In the following we discuss a variant of the
Gauss-Seidel scheme.

Overlapping technique For a DAE system given in form (3.6) (with an overall
algebraic equation), overlapping was introduced in (3.10) with dynamic iteration as
the method of choice [2]. For a Gauss-Seidel-like scheme, this overlapping modular
time integration reads as follows. First, each subsystem

Pyi D fi .y1; : : : ; yr ; Wi /; (3.18a)

0 D P>
i g.y1; : : : ; yr ; Wi /; (3.18b)
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for i D 1; : : : ; r , is equipped with the relation

Wi D .I � Pi P>
i /z.k�1/

n C Pi P>
i Z.k/

i ;

introducing an additional stage vector Z.k/
i , which serves as an intermediate

approximation for components of z. Translated into splitting functions (and adding
the Gauss-Seidel scheme), this leads to system (3.16), with

Fi .Qy.k/
n ; Qy.k�1/

n ; Qz.k/
n ; Qz.k�1/

n / D fi .Y
.k/
i;n ; W.k/

i;n /; i D 1; : : : ; r;

Gi .Qy.k/
n ; Qy.k�1/

n ; Qz.k/
n ; Qz.k�1/

n / D P>
i gi .Y

.k/
i;n ; W.k/

i;n /; i D 1; : : : ; r � 1;

Gr .Qy.k/
n ; Qy.k�1/

n ; Qz.k/
n ; Qz.k�1/

n /

D
 

P>
r gr .Y

.k/
i;n ; W.k/

i;n /

Qz.k/
n �

�
I �Pr

j D1 Aj Pj P>
j

�
Qz.k�1/
n �Pr

j D1 Aj Pj Z.k/
j

!

;

where we have posed

Y.k/
i;n D .Qy.k/

1;n; : : : ; Qy.k/
i;n ; Qy.k�1/

iC1;n; : : : ; Qy.k�1/
r;n />;

W.k/
i;n D .I � Pi P>

i /Qz.k�1/
n C Pi P>

i Z.k/
i :

Thereby in the last algebraic constraint, we have introduced additional matrices

Aj 2 R
nz�nz .j D 1; : : : ; r/

as free parameters for enforcing better stability properties. Notice that the special
choice Pi D e>

i , Ai D I (i D 1; : : : ; r) leads back to system (3.4), solved by
the Jacobi-like iteration scheme, while regarding the algebraic part only. Last, the
index-1 hypothesis, leads to the assumption that

the matrix
rX

j D1

Aj Pj P>
j is regular: (3.19)

This is the case, if .A1P1; : : : ; ArPr / has full rank.
The discussed method corresponds to a dynamic iteration for the overlapping

DAE systems (3.10), with slight generalization with respect to the free parameter
matrices.

Applying Gauss-Seidel, Jacobi or Picard like dynamic iteration schemes, as well
as overlapping modular time integration, to coupled ODEs convergence may always
be achieved using sufficiently small window sizes. In the application to coupled
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differential-algebraic equations, however, two additional contractivity conditions
have to be satisfied to achieve

• Convergence within one window, and
• A stable error propagation in the algebraic components z from one window to

another.

This will be the topic of the next sections, where we generalize corresponding results
of [1] obtained for a special coupled system to the general case of system (3.1).

3.2.3 Convergence and Stability

In the following we address the convergence of the above defined dynamic iteration
schemes. That is, we want to deal with (a) the error within one window, and
(b) the transport and amplification of error from window to window. To this end,
we introduce the related error notations. First, we derive the error recursions for the
error within one window, and prove convergence within each single window under
certain stability requirements. Secondly, we treat a finite number of windows and
prove the convergence under the related requirements.

We consider an analytic error recursion, thus error due to time integration are
not considered explicitly, here. We follow basically [1], but put everything in a
more general context as already started in[3]. Thus in fact, only Lemma 3.1 and
the exact definition of ˛ differ from the preceding work. Here we adopt a more
general viewpoint, to reveal the most prominent structural properties.

3.2.3.1 Error Recursion

Following standard procedures in error analysis, e.g. [21], we define the global error
�y;n.t/; �z;n.t/ on the n-th time window (t 2 Œtn; tnC1�) as the difference of the
numerical approximation Qy.t/, Qz.t/ and the exact solutions y.t/, z.t/, where the
unknowns and hence the errors are split into algebraic and differential components:

�
�y;n

�z;n

�

WD
�

.Qy � y/ j.tn;tnC1�

.Qz � z/ j.tn;tnC1�

�

D 	
‰kn

n ı ˆn



�Qyj.tn�1;tn�

Qzj.tn�1;tn�

�

�
�

yjŒtn;tnC1�

zjŒtn;tnC1�

�

:

Here the numerical approximation on the current time window is given by an
approximation on the previous time window, which is extrapolated by ˆn and then
kn-times iterated by the dynamic iteration operator (e.g. using the Gauss-Seidel
scheme).
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Classically, the global error is split into contributions from previous windows
due to error propagation ey;n, ez;n and into the errors from the current window dy;n,
dz;n, i.e.,

�y;n D ey;n C dy;n

�z;n D ez;n C dz;n;
(3.20)

where the propagated errors are described by

�
ey;n

ez;n

�

WD 	
‰kn

n ı ˆn



�Qyj.tn�1;tn�

Qzj.tn�1;tn�

�

� 	
‰kn

n ı ˆn



�

yj.tn�1;tn�

zj.tn�1;tn�

�

(3.21)

and the local error contributions by

�
dy;n

dz;n

�

WD 	
‰kn

n ı ˆn



�

yj.tn�1;tn�

zj.tn�1;tn�

�

� ‰kn
n

�
yjŒtn;tnC1�

zjŒtn;tnC1�

�

: (3.22)

The sum gives indeed global error, since the exact solution .y; z/ is a fixed point
of ‰n.

To investigate the convergence of the dynamic iteration scheme applied to
system (3.1), we introduce a neighborhood Ud;n of the exact solution xjŒtn;tnC1� WD
.y; z/jŒtn;tnC1�, defined for any given d > 0 by

Ud;n D
n
.Y; Z/ 2 C 1;0

n W ˇˇˇˇY � yjŒtn;tnC1�

ˇ
ˇ
ˇ
ˇ
2;1;

ˇ
ˇ
ˇ
ˇZ � zjŒtn;tnC1�

ˇ
ˇ
ˇ
ˇ
2;1 � d

o
;

with jjvjj2;1 D maxt jv.t/j, where the maximum is taken on the interval of
definition of the vector function v.t/, and j � j denotes the vector 2-norm, that is,
the Euclidean norm. Furthermore, we assume:

Assumption 3.1 For our problem, there exists d0 > 0 such that

� The splitting function F is Lipschitz-continuous in all
its coordinates on Ud0;n with constant LF > 0 ;

(3.23)

� The splitting function G is totally differentiable, and
its derivatives are Lipschitz-continuous on Ud0;n;

(3.24)

� The partial derivative Gz.k/ is invertible on Ud0;n: (3.25)

The Lipschitz continuity means: for any fixed time t and for any set of vectors
Yi ; QYi 2 R

ny, Zi ; QZi 2 R
nz , i D 1; 2, that satisfy jYi � y.t/j; jZi � z.t/j;
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j QYi � y.t/j; j QZi � z.t/j � d0, it holds

ˇ
ˇF.Y1; QY1; Z1; QZ1/ � F.Y2; QY2; Z2; QZ2/

ˇ
ˇ

� LF.jY1 � Y2j C j QY1 � QY2j C jZ1 � Z2j C j QZ1 � QZ2j/

To have a well-defined solution to (3.13), we have the second and third assumption;
it is analogous to the index-1 condition.

For 0 < d < d0, let us consider arbitrary functions X WD .Y; Z/> and QX WD
. QY; QZ/> 2 Ud;n, and denote their image after k dynamic iterations by

Yk
n WD ‰k

y;nX; Zk
n WD ‰k

z;nX;

QYk
n WD ‰k

y;n
QX; QZk

n WD ‰k
z;n

QX:
(3.26)

Do not confuse the above definition (3.26) with the notation in (3.17).
Let us denote distances of the y-component after k dynamic iteration by

�k
y;n.X; QX/.t/ WD Yk

n.t/ � QYk
n.t/;

�k
z;n.X; QX/.t/ WD Zk

n.t/ � QZk
n.t/;

ık
y;n.X; QX/ WD jj�k

y;n.X; QX/jj2;1;

ık
y;n.X; QX/ WD jj�k

y;n.X; QX/jj2;1:

(3.27)

Now, we deduce an estimate for the error when the dynamic iteration is applied to
the functions in Ud;n. As in [3], we have

Lemma 3.1 (Error recursion) Given a DAE (3.1) – with initial conditions (3.2) –
and a dynamic iteration (3.13) with consistent splitting functions F; G. For the
current time window Œtn; tnC1� let Assumption 3.1 hold true. Then there are constants
C; Qc > 0, such that for d < minfd0=C; 1=.2 Qc/g, H < H0 WD 1=C , and

‰k�1
n X; ‰k�1

n
QX 2 Ud;n

implies

 
ık

y;n.X; QX/

ık
z;n.X; QX/

!

� K

 
ık�1

y;n .X; QX/

ık�1
z;n .X; QX/

!

C
 

1

0

!

j�k�1
y;n .X; QX/.tn/j (3.28)

with

K WD
 

CH CH

C CH C ˛n

!

; (3.29)

˛n WD .1 C Qc d/ jjG�1
z.k/ Gz.k�1/ jj2;1 C Cd: (3.30)
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Notice �k�1
y;n .X; QX/.tn/ D �0

y;n.X; QX/.tn/ denotes the offset due to differing
initial values at the beginning of the n-th time window.

Proof We apply the technique used in [1, 3]. First we show

‰k�1
n X; ‰k�1

n
QX 2 Ud;n H) ık

y;n.X; QX/; ık
z;n.X; QX/ � Cd (3.31)

thus ık
y;n.X; QX/; ık

z;n.X; QX/ 2 Ud0;n. On the one hand, we investigate the differential

part (3.13a). To this end, we write this equation for any two sets of functions QX D
. QY; QZ/> and X D .Y; Z/> from Ud;n, which approximate the solution at the start
of the dynamic iteration. Here we take the difference, and time integrate over the
interval Œtn; ��, with tn < � � tnC1. This gives for the k-th iterate, with k > 0,

j�k
y;n.X; QX/.�/j � j�k�1

y;n .X; QX/.tn/j

C LF

Z �

tn

˚j�k
y;n.X; QX/j C j�k�1

y;n .X; QX/j

C j�k
z;n.X; QX/j C j�k�1

z;n .X; QX/j� dt; (3.32)

using Lipschitz-continuity and consistency of F, and observing that the initial value
does not change in the iterations

�k�1
y;n .X; QX/.tn/ D �k

y;n.X; QX/.tn/:

On the other hand, the algebraic part (3.13b) can be solved for variable Z.k/ D
O�.Y.k/; Y.k�1/; Z.k�1// due to Assumption 3.1. The Lipschitz continuity of O� (due

to the implicit function theorem on Ud0;n) leads to

j�k
z;n.X; QX/j D j O�.Y.k/; Y.k�1/; Z.k�1// � O�. QY.k/; QY.k�1/; QZ.k�1//j

� L O�
�
j�k

y;n.X; QX/j C j�k�1
y;n .X; QX/j C j�k�1

z;n .X; QX/j
� (3.33)

for some L O� > 0. Plugging this estimate into (3.32), we obtain

ık
y;n.X; QX/ � j�k�1

y;n .X; QX/.tn/j
C L0 H

�
ık

y;n.X; QX/ C ık�1
y;n .X; QX/ C ık�1

z;n .X; QX/
�

;

where L0 WD LF .1 C L O�/. Now solving for ık
y;n.X; QX/ gives

ık
y;n.X; QX/ �

�

1 C L0

1 � L0 H
H

�

j�k�1
y;n .X; QX/.tn/j

C L0

1 � L0 H
H
�
ık�1

y;n .X; QX/ C ık�1
z;n .X; QX/

�
:
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The smallness of H , i.e., H < H0 D C �1, implies for C > L0

H L0 < H0 L0 < 1:

This motivates the definition cy WD 2L0=.1 � L0H0/ from which follows

ık
y;n.X; QX/ �

�
1 C cy

2
H
�

j�k�1
y;n .X; QX/.tn/j

C cy

2
H
	
ık�1

y;n .X; QX/ C ık�1
z;n .X; QX/




� j�k�1
y;n .X; QX/.tn/j C cyH

	
ık�1

y;n .X; QX/ C ık�1
z;n .X; QX/



; (3.34)

because the initial error at time tn is smaller than the maximal error on the whole
interval

j�k�1
y;n .X; QX/.tn/j � ık�1

y;n .X; QX/:

Estimate (3.34) controls the error propagation for the differential variables, and it is
the first line of the estimate (3.28) with the global constant C > max

˚
cy; L0

� D cy

(so far).
From the estimates (3.34) and (3.33), it is immediate to prove (3.31). In fact, by

hypothesis, the .k � 1/th iterates differ at most by 2d , so we have

ık
y;n.X; QX/ � 2.1 C 2cyH0/ d;

ık
z;n.X; QX/ � 2L O�.3 C 2cyH0/ d:

(3.35)

Thus (3.31) holds with

C > max
n
cy; 2.1 C 2cyH0/d; 2L O�.3 C 2cyH0/ d

o
:

The error recursion estimate for the algebraic component, in the second line of
estimate (3.28), can be deduced from the following homotopy of the kth iterates: let
� 2 Œ0; 1�, and let us put

Y.k/;� .t/ WD � QYk
n.t/ C .1 � �/Yk

n.t/:

Z.k/;� .t/ WD � QZk
n.t/ C .1 � �/Zk

n.t/:

For the splitting function of the algebraic part, we use the short notation

G.�/ WD G
	
Y.k/;� ; Y.k�1/;� ; Z.k/;� ; Z.k�1/;�



and Gu.�/ WD @G

@u
.�/;
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for any argument u of G. Notice that G.0/ D G.1/ D 0. Thus a version of the
fundamental theorem of calculus yields:

0 D G.1/ � G.0/

D
Z 1

0

�
Gy.k/ .�/�k

y;n.X; QX/ C Gy.k�1/ .�/�k�1
y;n .X; QX/

C Gz.k/ .�/ �k
z;n.X; QX/ C Gz.k�1/ .�/ �k�1

z;n .X; QX/
�

d�; (3.36)

since @
@�

Y.k/;� D �k
y;n.X; QX/, and so forth. The upper bound of d in terms of d0, i.e.,

Cd � d0

allows us to use the Lipschitz continuity of Gz.k/ on Ud0;n (inside the integral
of (3.36)). We denote the corresponding constant by L0

G . Together with the above
estimate (3.31), we obtain for any time t 2 Œtn; tnC1�

jGu.�/ � Gu. O�/j � LG0

� ˇ
ˇ� QYk

n.t/ C .1 � �/Yk
n.t/

� O� QYk
n.t/ � .1 � O�/Yk

n.t/
ˇ
ˇ

C � � � C ˇ
ˇ� QZk�1

n .t/ C .1 � �/Zk�1
n .t/

� O� QZk�1
n .t/ � .1 � O�/Zk�1

n .t/
ˇ
ˇ
�

D LG0 j� � O� j
�
j�k

y;n.X; QX/j C j�k�1
y;n .X; QX/j

C j�k
z;n.X; QX/j C j�k�1

z;n .X; QX/j
�

� cgd:

(3.37)

(This defines cg in the obvious way.) The operator G�1
z.k/ .0/ exists due to Assump-

tion 3.1. Left-multiplication of (3.36) by G�1
z.k/ .0/ yields:

0 D
Z 1

0

G�1
z.k/ .0/

�	
Gz.k/ .0/ C �

Gz.k/ .�/ � Gz.k/ .0/
�


�k
z;n.X; QX/

C 	
Gz.k�1/ .0/ C �

Gz.k�1/ .�/ � Gz.k�1/ .0/
�


�k�1
z;n .X; QX/

C 	
Gy.k/ .0/ C �

Gy.k/ .�/ � Gy.k/ .0/
�


�k
y;n.X; QX/

C 	
Gy.k�1/ .0/ C �

Gy.k�1/ .�/ � Gy.k�1/ .0/
�


�k�1
y;n .X; QX/

�
d�:

The matrices G�1
z.k/ ; Gz.k�1/ ; Gy.k/ ; Gy.k�1/ are uniformly bounded on Ud0;n. Let the

constant be denoted by c0
g . Now, this equation is (partially) solved for the first bit of
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�k
z;n.X; QX/. Using

jjG�1
z.k/ Gz.k�1/ jj2 D jjG�1

z.k/ Gz.k�1/ jj2.0/

D ˇ
ˇ
ˇ
ˇG�1

z.k/ Gz.k�1/

ˇ
ˇ
ˇ
ˇ
2

	
Yk

n.t/; Yk
n.t/; Zk

n.t/; Zk
n.t/




and applying the maximum norm in time as well as (3.37) gives

ık
z;n.X; QX/ �

�
jjG�1

z.k/ Gz.k�1/ jj2;1 C Qc
2

d
�

ık�1
z;n .X; QX/

C Qc
2

d ık
z;n.X; QX/ C ch

	
ık

y;n.X; QX/ C ık�1
y;n .X; QX/




with ch WD .cgd C c0
g/ c0

g and Qc WD 2 cgc0
g . Inserting the estimate for ık

y;n.X; QX/

(3.34), we deduce, having H and d small enough, such that d < 1=.2 Qc/, the
estimate

ık
z;n.X; QX/ � .1 C Qcd/ch

�
j�k�1

y;n .X; QX/.tn/j C .1 C cyH/ık�1
y;n .X; QX/

�
(3.38)

C .1 C Qcd/
�
chcyH C jjG�1

z.k/ Gz.k�1/ jj2;1 C Qc
2

d
�

ık�1
z;n .X; QX/

� .1 C Qcd/ch.2 C cyH0/ık�1
y;n .X; QX/ (3.39)

C .1 C Qcd/
�
chcyH C jjG�1

z.k/ Gz.k�1/ jj2;1 C Qc
2

d
�

ık�1
z;n .X; QX/;

.H < H0/. Finally, summing up, the global constant C should be large enough to
state (3.31) from (3.34), (3.35) and to obtain from estimate (3.39) the claim (3.28)
with (3.29). Hence we conclude

C > max
n
cy; 2.1 C 2cyH0/ d; 2L O�.3 C 2cyH0/ d

.1 C Qcd/ch.2 C cyH0/; .1 C Qcd/chcy;
Qc
2

o
:

Then (3.34) and (3.39) yield the recursion (3.28), our claim. ut
When iteratively applying Lemma 3.1, one can deduce the following rather

technical result, which is proven for an analogous recursion in [1]:

Proposition 3.1 (Recursion Estimate) Let the splitting functions fulfill the
assumptions of Lemma 3.1 and ˛n < 1, C > ˛n, then there is a constant C0
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such that
 

ık
y;n.X; QX/

ık
z;n.X; QX/

!

�
 
C.4C C 1/H�

max.0;k�2/
n 4CH�k�2

n

4C�k�1
n �k

n C .�n � ˛n/k

! 
ı0

y;n.X; QX/

ı0
z;n.X; QX/

!

C
 

1 C C0H

C0

!

� ı0
y;n.X; QX/.tn/

(3.40)
with

�n D �.˛n; H/ WD ˛n C 2CH
˛n

2C
C p

H
(3.41)

is satisfied for all k � 1 and for all H � H0.

This result is proven for a similar setting in [1]. It is established using the same
arguments as in the proof of Theorem 3.1 for the local error: the iteration error is
determined by the powers of its matrix K as given in (3.29) and the computation of
the eigenvalues and eigenvectors as in (3.44) proofs the claim.

Next, we will employ the above estimates to show that the mapping is indeed a
fixed-point operator.

3.2.3.2 Contraction and Local Error

We consider in this section the local error as defined in Eq. (3.22) only, where the
error of a single iteration starting from exact data is analyzed

dy;n D �kn
y;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/;

and analogously for dz;n with x WD .y; z/> in both cases. We follow [3] and the
strategy from [1] to proof the following result, that is already predicted in [19].
It shows that the crucial point in the coupling lies in the algebraic-to-algebraic
coupling, which is represented by the additional DAE-contraction factor ˛.

Theorem 3.1 (Contraction) The splitting functions shall fulfill the assumptions of
Lemma 3.1 including the index-1 assumption. Furthermore, let x denote our exact
solution. Then for d and H < H0 small enough the map

ık�1
n .xjŒtn;tnC1�; ˆnxj.tn�1;tn�/ 7! ık

n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/ (3.42)

is strongly contractive for all k provided that

jjG�1
z.k/ Gz.k�1/ jj2;1 < 1: (3.43)
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Proof We show contractivity for the constant extrapolation with Qy.0/
n D Qy.tn/, z.0/

n D
Qz.tn/, from which the contraction for any higher order polynomial extrapolation
follows automatically.

By induction we setup the error recursion (3.28) in Ud;n: as induction basis, we
have for k D 0 and � 2 Œtn; tnC1�

j�0
y;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/j.�/ D ˇ

ˇ
Z �

tn

f.y; z/ dt
ˇ
ˇ� cf H;

where cf WD jjf.y; z/jj2;1. Then the index-1 assumption implies for z

ˇ
ˇ�0

z;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/
ˇ
ˇ.�/ � ˇˇ�.ˆy;nxj.tn�1;tn�/ � �.y/

ˇ
ˇ

� L�

ˇ
ˇˆy;nxj.tn�1;tn� � y

ˇ
ˇ

� cf L�H I

thus choosing H sufficient small, such that cf .L� C 1/ H0 < 1 (and H < H0), we
obtain an extrapolation, which lies in the neighborhood of the solution: ˆnx 2 Ud;n.

Recall the definition of the matrix K (3.29), which denotes an upper bound on
the error recursion. Now, the mapping (3.42) is contractive if the spectral radius
�.K/ < 1. The eigenvalues of K are

	1;2.K/ D 1

2

�
˛n C 2 CH ˙

q
˛2

n C 4 C 2H
�
; (3.44)

Therefore ˛n < 1 is sufficient for contraction provided that d and H0 are small
enough. Inspecting (3.30), this translates into:

jjG�1
z.k/ Gz.k�1/ jj2;1 < 1:

Eventually applying Lemma 3.1 iteratively and using

ı0
y;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/.tn/ D 0

concludes the proof. ut
Remark 3.5 (Convergence Order of Iteration) The eigenvalues of K, defined in
(3.29), suggest a certain order of convergence (i.e., for the asymptotics as H !
0) for the dynamic iteration (3.13): For the rate of convergence, we use Taylor
expansion of the square root term in 	.K/ (3.44) and find

q
˛2

n C 4 C 2H D ˛n .1 C 2 C 2H=˛2
n/ C O.H 2/:

This suggests a order of ˛n C O.H/, if ˛n does not vanish and 4 C 2H < ˛2
n. For

˛n D 0, we have order
p

H .
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We notice: convergence of the DAE-distributed time integration depends on the
stability of the algebraic-to-algebraic component coupling (3.43) (and, of course,
depends on the mentioned hypothesis). Thus modeling coupling is important for
DAEs and should be organized if possible in a way, s.t. contractivity (stability)
is directly given. The following important special case avoids these kinds of
dependencies:

Corollary 3.1 (Simple Coupling) Let the hypothesis of Lemma 3.1 be fulfilled.

(i) If no algebraic constraint depends on an old algebraic variable, i.e.,

Gz.k�1/ D 0 (3.45)

then contraction is archived with ˛n D 0.
(ii) If no algebraic constraint depends on an old algebraic or a differential

variable, i.e.,

Gz.k�1/ D 0 and Gy.k�1/ D 0 (3.46)

then the contraction is archived with convergence order H .

Proof We discuss (3.36) for the special cases in which the given partial derivatives
vanish.

(i) The assumption Gz.k�1/ D 0 gives the following estimate for the algebraic part
replacing (3.39)

ık
z;n.X; QX/ � � C ık�1

y;n .X; QX/ C CH ık�1
z;n .X; QX/:

This is (3.28) with ˛n D 0. This result is in the spirit of the numerical DAE-
theory (cf. [21]).

(ii) Analogously Gy.k�1/ D Gz.k�1/ D 0 yields

ık
z;n.X; QX/ � .1 C Qcd/ch

�
j�k�1

y;n .X; QX/.tn/j C cyHık�1
y;n .X; QX/

�

C .1 C Qcd/chcyH ık�1
z;n .X; QX/

replacing (3.38). This give the error recursion

ık
z;n.X; QX/ � CH ık�1

y;n .X; QX/ C CH ık�1
z;n .X; QX/ C C j�0

y;n.X; QX/.tn/j

which unveils a contraction operator K D O.H/ and hence implies a
convergence order of H , cf. Remark 3.5. Only the initial offset cannot be
improved.

ut



122 G. Alì et al.

Now still following the strategy from [1], we prove estimates for the local
and propagated errors, and conclude from those results the overall stability and
convergence of the method for the nth time window.

Proposition 3.2 (Local Error) Let the assumptions of Lemma 3.1 be fulfilled, then
the recursion (3.40) with �n (3.41) of that Lemma holds. Moreover, then there is for
a sufficiently small H < H0 a constant Cd? , independent of H , ˛n and kn, such that
the local error is bounded by

jjdy;njj C H jjdz;njj � Cd?Hı0
n

where the right-hand-side is given in terms of the extrapolation errors

ı0
n WD�max.0;kn�2/

n ı0
y;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/

C �kn�1
n ı0

z;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/

Proof The proof of Theorem 3.1 showed that ˆnxj.tn�1;tn� 2 Ud;n for H sufficiently
small. Therefore applying Proposition 3.1 to the specific functions

X WD xj.tn;tnC1� and QX WD ˆnxj.tn�1;tn�

where x D .y; z/ is the exact solution. Notice ı0
y;n.X; QX/.tn/ D 0 holds, since the

initial values are equal. Summation of the two equations in (3.40) yields the claimed
estimate. ut

This proves convergence for one window (for kn ! 1), since �n < 1 for H

sufficiently small. Next, we have to address the error transport, since the iteration is
stopped after a finite number of iterations and we are not performing kn ! 1 in
the numerical treatment.

3.2.3.3 Stability and Convergence for Windowing Technique

To obtain convergence and stability of the method on multiple windows it is crucial
to control the error propagation from the previous window to the current one, hence
we need to inspect

ey;n D �kn
y;n.ˆnxj.tn�1;tn�; ˆn Qxj.tn�1;tn�/

and the similar expression for ez;n (here x denotes the analytic solution and Qx an
approximation). The following result is again a consequence of Proposition 3.1
(cf. [1]):

Proposition 3.3 (Propagation Error) Let an continuous extrapolation (3.11) be
given, that is of accuracy O.H/ and satisfies a uniform Lipschitz condition (with
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constant Lˆ) and a dynamic iteration (3.13), which fulfill the assumptions of
Proposition 3.1 with �n < 1, then there is a constant Ce? > 0, such that the
propagation error is bounded by

 
jjey;njj
jjez;njj

!

�
 

1 C Ce? Ce?H

Ce? ˛n?

!

�
 

jj�y;n�1jj
jj�z;n�1jj

!

(3.47)

with ˛?
n depending on the Lipschitz constant Lˆ of the extrapolation operator

˛?
n WD Lˆ.�kn

n C .�n � ˛n/kn/ (3.48)

Proof When applying Proposition 3.1 to the extrapolation of exact and erroneous
functions of the previous time window

X WD ˆnxj.tn�1;tn� and QX WD ˆn Qxj.tn�1;tn� ;

we will have an offset in the initial values (at tn), which is bounded by the total error
on the interval

jj�0
y;n.ˆnxj.tn�1;tn�; ˆn Qxj.tn�1;tn�/.tn/jj � jjy � Qyjj.tn�1;tn�:

Furthermore the extrapolation operator is a uniformly Lipschitz continuous mapping
with Lipschitz constant Lˆ, hence we have

ı0
n.ˆnxj.tn�1;tn�; ˆn Qxj.tn�1;tn�/ � Lˆ

�jjy � Qyjj.tn�1;tn�

jjz � Qzjj.tn�1;tn�

�

D Lˆ

�jjey;n�1jj
jjez;n�1jj

�

;

that completes together with Eq. (3.40) of Proposition 3.1 the proof. ut
Now bringing all pieces together, we obtain the following result on stability and

convergence

Theorem 3.2 (Stability) Let a continuous extrapolation ˆ (3.11) be given, that is
of accuracy order O.H/ and satisfies a uniform Lipschitz condition (Lˆ), further
a dynamic iteration (3.13), where the splitting functions F; G are consistent and
for the current time window Œtn; tnC1� let Assumption 3.1 hold true, furthermore the
contractivity constant is bounded

˛n � N̨ < 1 and Lˆ˛kn
n � N̨

and the numerical solution remains close to the exact solution

jj�y;mjj C jj�z;mjj � d for 0 � m < n;
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then there is a constant C ? > 0, independent of n and H , such that the total error
on the time window Œtn; tnC1� is bounded by

jj�y;njj C jj�z;njj � C ? max
0�m<n

ı0
m � d (3.49)

all for a sufficiently small step size 0 < H < H0.

Proof According to Eq. (3.41) we have �n D ˛n C O.H/ and by assumption
Lˆ˛kn

n � N̨ , hence

˛?
n D Lˆ

	
.�kn

n /kn C .�n � ˛n/kn

 D Lˆ

	
.˛n C O.H//kn C O.H/kn/



< 1;

and therefore the maximum is bounded as well

˛? WD max
0�m�n

˛?
m < 1:

Now combining the results from Propositions 3.2 and 3.3 yields

 
jj�y;njj
jj�z;njj

!

�
 

1 C Ce? Ce?H

Ce? ˛?

!

�
 

jj�y;n�1jj
jj�z;n�1jj

!

C
 

Cd?Hı0
n

Cd?ı0
n

!

and this proves the left half of (3.49), the right bound is enforceable since the
extrapolation error ı0

m D O.H/ decreases with the step size. ut
One can use Theorem 3.2 to prove by induction that the numerical solution

remains close to the exact solution, analogously to the application in [1], then the
overall convergence and stability follows by

Corollary 3.2 (Global Convergence and Stability) Let the assumptions of Theo-
rem 3.2 be fulfilled, then there is a constant C ?, such that the estimate holds

jj Qy � yjjŒ0;te � C jjQz � zjjŒ0;te � � C ? � max
0�n<N

ı0
m;

where ı0
m is the extrapolation error on the m-th window.

This result shows convergence and stability, since the global error can by controlled
in terms of the step size H , which determines the extrapolation error.

3.3 Applications in Electrical Engineering

In this section we show how the dynamic iteration theory can be used to study the
convergence of iteration schemes for the main coupled models introduced in the
previous chapter. These problems basically stem from chip design.
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3.3.1 Refined Network Models

We consider an electric network with semiconductor devices, modeled by drift-
diffusion equations. The electric network is described by the MNA equations, which
can be written in the form:

AC

d

dt
qC .AT

C u/ C ARr.AT
Ru/ C ALiL C AV iV C AI iI C � D 0;

d

dt
�L.iL/ � AT

Lu D 0;

AT
V u � vV D 0:

(3.50)

This system is supplemented with initial data for the differential part,

PC u.t0/ D PC u0; iL.t0/ D iL;0: (3.51)

Here, we have PC D I � QC , where QC is a projector onto the null-space of AT
C ,

and we are assuming index-1 conditions for the uncoupled MNA system.
The above equations are coupled, through the current term �, to the drift-

diffusion equations which describe the devices contained in the circuit. Here, as an
exemplification, we use the space-discretization derived in the previous Chapter, by
means of the Box Integration method. Then, assuming for simplicity that the circuit
contains a single device, this device will be described by the time-dependent vectors
�, n, p, comprising the values of the electric potential �, the electron concentration
n and the hole concentration p, evaluated on the inner grid points, and by the time-
dependent vectors �@, n@, p@, comprising the values of �, n and p on the boundary
grid points. As we have seen in the previous Chapter, these vector functions satisfy
the following equations:

A�� C A@
��@ D b�.n; p/;

A@� C �@ D b@
�.uD/;

A0

dn

dt
C An.�/n C A@

n.�/n@ D bn.n; p/;

A@n C n@ D b@
n;

A0

dp

dt
C Ap.�/p C A@

p.�/p@ D bp.n; p/;

A@p C p@ D b@
p:

(3.52)

These equations must be supplemented with initial data for the differential variables,

n.t0/ D n0; p.t0/ D p0: (3.53)
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The MNA equations (3.50) and the device equations (3.52) are coupled by
means of appropriate relations which express, on the one hand, the boundary
electric potential uD in (3.52) in terms of the network variables (network-to-device
coupling), and on the other hand, the device current source term � in (3.50) in
terms of the device variables (device-to-network coupling). The network-to-device
coupling is given by:

uD D ST
Du: (3.54)

The device-to-network coupling is more involved. In Chap. 1 we have introduced
two alternative formulations. In the first formulation, the device-to-network cou-
pling relation is given by:

� D ADiD; iD D Ac d�

dt
C Ac

n.�/n C Ac
p.�/p; (3.55)

with AD D SD
OAD . This formulation is problematic, because of the appearance of

the time derivative of �, which is an algebraic variable for the uncoupled device
system. Thus, after the coupling, the set of differential variables generally differs
from the union of the differential variables for the network and the device system,
considered as uncoupled.

For this reason, we consider the alternative formulation,

� D AD

d

dt
. QCDA>

Du/ C AD
QID; QID D Ac

n.�/n C Ac
p.�/p: (3.56)

In this formulation, it is simpler to see that the differential variables for the coupled
system are PC u, iL, n, p, provided the additional condition

AT
DQC D 0: (3.57)

Under this condition, we can identify the differential and algebraic components,
and we set

yc D
�

PC u
iL

�

; zc D
�

QC u
iV

�

;

and

yd D
�

n

p

�

; zd D

0

B
B
@

�

n@

p@

�@

1

C
C
A :
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Then, using the standard reduction to differential and algebraic equations, by means
of appropriate projectors, the two systems of equations can be written in the
following form:

Pyc D fc.yc; zc; Q�/;

0 D gc.yc; zc/;

Pyd D fd .yd ; zd /;

0 D gd .yd ; zd ; uD/;

(3.58)

with

Q� D Q�.yd ; zd / WD ADŒAc
n.�/n C Ac

p.�/p�:

Also, we have

uD D ST
D .PC u C QC u/ D ST

D.yc C zc/;

so the above system becomes

Pyc D f�
c .yc; zc; yd ; zd /;

0 D gc.yc; zc/;

Pyd D fd .yd ; zd /;

0 D g�
d .yd ; zd ; yc; zc/:

(3.59)

Next, we apply the dynamic iteration theory, expounded in this Chapter, to the
coupled system (3.59), by using the Gauss-Seidel method. We can use to different
strategies: circuit-device iteration, and device-circuit iteration. For the circuit-device
coupling, we have1:

PQy.k/
c D f�

c .Qy.k/
c ; Qz.k/

c ; Qy.k�1/

d ; Qz.k�1/

d /;

0 D gc.Qy.k/
c ; Qz.k/

c /;

PQy.k/

d D fd .Qy.k/

d ; Qz.k/

d /;

0 D g�
d .Qy.k/

c ; Qz.k/
c ; Qy.k/

d ; Qz.k/

d /:

(3.60)

We can observe that in this case the matrix Gz.k�1/ is identically zero. Thus, by
Corollary 3.1, this scheme leads to an unconditionally, strongly contractive map.

1For simplicity we omit the subscript n.
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By contrast, if we consider the device-circuit iteration scheme, we have

PQy.k/

d D fd .Qy.k/

d ; Qz.k/

d /;

0 D g�
d .Qy.k�1/

c ; Qz.k�1/
c ; Qy.k/

d ; Qz.k/

d /;

PQy.k/
c D f�

c .Qy.k/
c Qz.k/

c ; Qy.k/

d ; Qz.k/

d /;

0 D gc.Qy.k/
c ; Qz.k/

c /:

and the condition (3.43), in Theorem 3.1, which ensure the contractivity of the
dynamic iteration map, is verified if and only if








 
@g�

d

@z.k/

d

!�1
@g�

d

@z.k�1/
c








< 1:

Explicitly, this condition is equivalent to






.A� � A@

�A@/�1
@b@

�

@uD

ST
DQC







< 1; (3.61)

where, by definition, we have

@b@
�;i

@uD;j

D
�

1; if xi 2 
D;j ;

0; otherwise:

The matrix A� � A@
�A@ depends on the space-discretization, so the above condition

implies a smallness assumption on the spacing of the grid, unless ST
DQC D 0. This

condition is stronger than the additional topological condition (3.57), and in general
is not satisfied.

In conclusion, the circuit-device iteration scheme is preferable to the device-
circuit scheme.

3.3.2 Electro-Thermal Coupling

Similarly, the coupling of heat effects with electric systems plays an important role
in electric circuit simulation, see Sect. 2.2.2 and, e.g., [3, 14]. Spatial discretization
of certain thermal models (e.g. for heat conduction) can yield a DAE-ODE coupling.
This type of coupling is less problematic, since no coupling via old algebraic
variables will occur. Therefore no contraction is needed in this case, see, e.g., [3]. In
other models, e.g. with patches, the situation is a bit more complicated—for details
we refer to [14].
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3.3.3 Coupled System of Electric Networks and Maxwell’s
Magnetoquasistatic Equations and Their Properties

3.3.3.1 Introduction

Let us apply the dynamic iteration theory to the field/circuit coupling as introduced
in Sect. 2.2.3.

There are two subproblems, on one hand the electric circuit and on the other
hand the magnetoquasistatic field problem (“eddy current problem”). The circuit
equations can abstractly by described by the semi-explicit initial value problem

Pyc D fc.yc; zc; im/; with yc.0/ D yc;0

0 D gc.yc; zc; im/;
(3.62)

similar to the derivation in Sect. 3.3.1. We assume an index-1 circuit, i.e., the
topological conditions as given in [17] to be fulfilled, such that

@gc

@zc

is nonsingular: (3.63)

The unknowns are given by

yc WD .q; �/>; zc WD .u; iL; iV/>; im WD .istr; isol/
>:

where u denotes node potentials, q charges, � fluxes and iL, iV currents through
inductances and voltage sources. The additional variables istr and isol define currents
through stranded and solid conductors and are treated separately since they are
determined by the field model. This field model describes a relation between those
currents and the voltage drops

vstr WD A>
stru; vsol WD A>

solu

by one common PDE for the whole domain ˝ and an additional differential
equation for the coupling of each stranded (k D 1; : : : ; Nsol) and solid conductor
(l D 1; : : : ; Nsol) in the corresponding subdomains ˝str;k and ˝sol;l to the circuit

�
@A

@t
C r � .�r � A/ D

X

k

�str;k .istr/k C
X

l

��sol;l .vsol/l (3.64a)

Z

˝

�str;k � @A

@t
d˝ D .vstr/k � .Rstr/k;k � .istr/k ; (3.64b)

Z

˝

��sol;l � @A

@t
d˝ D .Gsol/l;l � .vsol/l � .isol/l ; (3.64c)
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with Coulomb gauging, flux wall boundary and initial conditions

r � A D 0; A � n? D 0 on @˝; A D A0 at t D t0; (3.64d)

where A denotes the magnetic vector potential, n? is the vector normal to the
boundary, � D �.A/ the reluctivity tensor and � the conductivity tensor vanishing
on stranded conductor domains, i.e.

�
@A

@t

ˇ
ˇ
ˇ
˝str;k

D 0 (3.65)

since it is assumed that the diameter of the individual strands in the those conductors
is thinner that the skin depth. Each distribution function �str;k and �sol;k distributes
the current in the corresponding conductor domains ˝str;k and ˝sol;k . The diagonal
matrices

.Rstr/k;k D
Z

˝

1

fstr
¢�1�str;k � �str;kd˝ and .Gsol/l;l D

Z

˝

��sol;l � �sol;l d˝

describe lumped DC resistances Rstr for stranded conductors using the fill factor
fstr 2 .0; 1� and DC conductivities Gsol for the solid conductors.

According to Sect. 2.2.3.3, the spatial discretization of the field PDE yields a
DAE, describing a unique vector potential in time. The discrete field problem reads
in the FIT notation, [12]

M¢

d

dt
_a C K�.

__

b/_a D Qstristr C M¢Qsolvsol (3.66a)

Q>
str

d

dt
_a D vstr � Rstristr (3.66b)

Q>
solM¢

d

dt
_a D Gsolvsol � isol; (3.66c)

where _a denotes the discrete magnetic vector potential with consistent initial value
_a.0/ D _a0, the mass matrix M¢ is symmetric positive semi-definite describing
the conductivities, K� is a symmetric curl-curl matrix composed of the discrete
curl-operators and the reluctivities. We assume a regularization on K� , e.g. by the
Coulomb gauging, such that

_e>
�
˛M¢ C @

@_a

	
K�.

__

b/_a

�

_e > 0 for all _e ¤ 0 and ˛ ¤ 0: (3.67)

which ensures a (symmetric) positive definite matrix pencil and hence allows for
the application of iterative solvers, e.g. Krylov subspace methods, [13]. The matrix
Q D ŒQsol; Qstr� is the discrete counterpart to the characteristic functions � in the
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continuous model, it imposes currents and voltages onto edges in the computational
grid.

The matrices of lumped resistances and conductivities can be extracted from the
discrete field model by

Rstr WD Q>
strM

C
¢;strQstr and Gsol WD Q>

solM¢Qsol; (3.68)

where MC
¢;str is the pseudo inverse of a conductivity matrix with positive conductiv-

ities in the stranded conductor domains.

3.3.3.2 Coupling Analysis

To apply the schemes of Sect. 3.2 to the field/circuit coupled problem we need to
verify, that the DAE index of the field problem is one, see Eq. (3.4), and that the
contractivity condition (3.30) is fulfilled. Here comes the decomposition of the field
system into differential and algebraic parts into play: according to the Lemma the
field system (3.66) can be interpreted as the semi-explicit initial value problem

Pym D fm.ym; zma; vc/; with ym.0/ D ym;0;

0 D gma.ym; zma/;

0 D gmb.ym; zma; zmb/;

(3.69)

where ym WD P�
_a, zma WD Q�

_a, zmb WD .istr; isol/
>, and vc WD .vstr; vsol/

>. Now using
this semi-explicit problem formulation we obtain the following result

Lemma 3.2 The field System (3.66) is an index-1 DAEs, i.e.,

@gm

@zm

is nonsingular;

for given voltages vstr and vsol and the matrix pencil of the curl-curl equation (3.67)
is positive definite.

Proof The DAE-indices of Systems (3.66) and (3.69) are equal, since the second
system was obtained only by merely algebraic operations, proof of Lemma 2.1,
hence it is sufficient to consider the more abstract system only; with the definitions

gm WD .gma; gmb/> and zm WD .zma; zmb/>
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the index-1 requirement corresponds to the non-singularity of the Jacobian

@gm

@zm

D

0

B
B
@

@gma

@zma

@gma

@zmb

@gmb

@zma

@gmb

@zmb

1

C
C
A D

0

B
B
@

@gma

@zma
0

@gmb

@zma
I

1

C
C
A ;

where the upper left vanishes, since there is no coupling in the algebraic part of
the curl-curl equation. The lower right block @gmb=@zmb D I is the identity, since
the function gmb is just an assignment of the currents through solid and stranded
conductors and hence trivially regular. On the other hand the upper left block coming
from Eq. (2.163) reads

@gma

@zma
D @

@zma

�
Q� K�P

>
� y2 C Q� K�Q

>
� zma

�

D @

@_a

�
Q� K�.

__

b/_a
� @_a

@zma
D Q�

@

@_a

�
K�.

__

b/_a
�
Q>

�

which is surely regular since the matrix pencil was assumed to be positive definite
and thus the transformation

Q�

�

	
	
M¢ C QstrR�1

str Q>
str


C @

@_a

�
K�.

__

b/_a
��

Q>
�

is still positive definite because Q>
� has full rank and the mass matrix does not

contribute by construction to this submatrix

Q�

	
M¢ C QstrR�1

str Q>
str



Q>

� D 0 :

Hence we obtain the positive definiteness of @

@
_a

�
K�.

__

b/_a
�

, furthermore this shows

the regularity of the minor @gma=@zma and thus we have finally proven System (3.66)
being an index-1 DAE. ut
Theorem 3.3 The field/circuit coupled system (3.62)+(3.69), i.e.,

Pyc D fc.yc; zc; zm /; and Pym D fm.ym; zm; zc /;

0 D gc.yc; zc; zm /; 0 D gm.ym; zm/;

is index-1, if the circuit fulfills the index-1 assumption (3.63), and the matrix pencil
of the underlying curl-curl equation (3.67) is positive definite.

Proof We proceed similarly to the proof of Lemma 3.2, where we inspected the
algebraic constraints for the field DAE. For the algebraic constraints and variables
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of the whole coupled system

g WD .gc; gm/> D .gc; gma; gmb/> and z WD .zc; zm/> D .zc; zma; zmb/>;

follows analogously the Jacobian

@g
@z

D

0

B
B
@

@gc

@zc

@gc

@zm

@gm

@zc

@gm

@zm

1

C
C
A D

0

B
B
@

@gc

@zc

@gc

@zm

0
@gm

@zm

1

C
C
A ;

which is nonsingular, because the index-1 assumption for the circuit guarantees the
regularity of @gc=@zc and finally Lemma 3.2 gives the regularity of @gm=@zm. ut

To allow the coupling of already existing simulator packages, the coupled system
(3.62)C(3.64) is split such both that sub-problems can be computed independently.
The dynamic iteration method will call each simulator to integrate the sub-problem
on a time window and then exchange the obtained voltages and currents at the
synchronization points. During the computation of a sub-problem on a window
the data of the other system is frozen and represented by a source. Since each
system describes for current/voltage relations, we have to decide which quantities
are considered as known for each branch and conductor. This question is crucial
for the field/circuit coupling since the DAE-index of the field system and hence the
applicability of the dynamic iteration method depends on this decision:

Corollary 3.3 The field system (3.66) is index-1, if all voltages .vsol, vstr/ are given,
and in all other cases, i.e., given .isol, vstr/, .vsol, istr/ or .isol, istr/, it is at least
index-2.

Proof The first part for given voltages is proven by Lemma 3.2, since the currents
zmb in (3.69) can be obtained by just evaluating the algebraic equation

0 D gmb.zm; zma; zmb/

but if instead a current is prescribed, then the function f2 depends on an unknown
voltage (vstr or vsol) and hence the coupling equation gmb must be differentiated once
with respect to time to obtain a hidden algebraic constraint for the missing voltage,
such that the overall system is at least index-2. ut
That it is just index-2 has been shown for the case of given currents in solid
conductors in [37] and more generally in [34] was proven, that (3.66) is in fact an
index-2 Hessenberg system, [8], with some additional algebraic (index-1) equations
due to the singularity of the mass matrix.
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3.3.3.3 Field-Circuit Scheme

Now having obtained semi-explicit index-1 formulations of both sub-systems,
(3.62) and (3.69), we give a more abstract description of the coupling that fits into
the framework of dynamic iteration methods in Sect. 3.2.2, i.e., System (3.4).

On hand we have the circuit DAE-IVP

Pyc D fc.yc; zc; zmb /; yc.0/ D yc;0; yc WD 	
q>; �>
>;

0 D gc.yc; zc ; zmb /; zc WD 	
u>; i>L ; i>V


>
;

and on the other hand the field DAE-IVP

Pym D fm.ym; zma; zc /; ym.0/ D ym;0; ym D P�
_a;

0 D gma.ym; zma/; zma D Q�
_a;

0 D gmb.ym; zma; zmb/; zmb D 	
i>str; i>sol


>

where a slight abuse of notation is introduced when inserting all algebraic circuit
unknowns zc into fma instead of only the actually needed voltage drops v.

Let us discuss a dynamic iteration of Gauss-Seidel type on the time interval
Œ0; te�, with 1 � n � N windows Œtn; tnC1� � Œ0; te� and adequate initial values
for each window

�
yc;n

ym;n

�

WD
�

yc.tn/

ym.tn/

�

DW y.tn/:

We start each iteration with the integration of the field DAE-IVP. It depends on
data from the circuit DAE-IVP (denoted by yc , zc). These missing data, i.e., the
voltage drops v at the conductors, are unknown at start time. Hence we extrapolate
the initial value to the current time. We choose the following constant extrapolation
of the differential variables

 
y.0/

c;n

y.0/
m;n

!

D ˆy;n.yj.tn�1;tn// WD y.tn/; (3.70)

from which a consistent supplement z.0/
1;n and z.0/

2;n for the algebraic variables is
obtained. Providing this data the field system can be solved for the first time .k D 1/
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on the time window Œtn; tnC1�

Py.k/
m D fm.y.k/

m ; z.k/
ma ; z.k�1/

c /; y.k/
m .0/ D ym;n;

0 D gma.y.k/
m ; z.k/

ma /;

0 D gmb.y.k/
m ; z.k/

ma ; z.k/
mb /:

(3.71a)

Having obtained a first algebraic iterate z.k/
mb (at k D 1) for the currents istr and isol

we may continue to solve the circuit subsystem

Py.k/
c D fc.y.k/

c ; z.k/
c ; z.k/

mb /; y.k/
c .0/ D yc;n;

0 D gc.y.k/
c ; z.k/

c ; z.k/
mb /:

(3.71b)

After the first iteration the functions y.k/ and z.k/ (k D 1) are obtained and we may
restart the scheme for k C1 until kn sweeps of the n-th time window are completed.
After that we proceed to the next time window (n C 1) and start again with the
constant extrapolation (3.11) and the following knC1 Gauss-Seidel iterations, until
the end of the integration interval Œ0; te� is reached.

In this application of the Gauss-Seidel-Scheme the splitting functions, as intro-
duced in Eqs. (3.13), are defined as the mappings

F.y.k/; y.k�1/; z.k/; z.k�1// WD
 

fc.y
.k/
c ; z.k/

c ; z.k/
mb /

fm.y.k/
m ; z.k/

ma ; z.k�1/
c /

!

and

G.y.k/; y.k�1/; z.k// WD

0

B
@

gc.y
.k/
c ; z.k/

c ; z.k/
mb /

gma.y.k/
m ; z.k/

ma /

gmb.y
.k/
m ; z.k/

ma ; z.k/
mb /

1

C
A

where G does not depend on an old algebraic variable z.k�1/. Therefore Corol-
lary 3.1 applies here

Corollary 3.4 The dynamic iteration scheme (3.71) is is unconditionally stable on
the time interval Œ0; te�.

By contrast, if we consider the circuit-field Gauss-Seidel scheme or a Jacobi-
Scheme, we have to deal with the partial derivatives as in the case of the device-
circuit scheme in Sect. 3.3.
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3.3.3.4 Multimethod and Multirate Benefits

Besides advantages in software engineering, there are other benefits for the coupling
of simulation packages: the most important are benefits due the use of problem-
specific methods for time integration (multimethod) and the possibility of different
step sizes (multirate) for each subproblem. Thus adaptive time stepping schemes
will apply automatically the time step sizes, that are inherently given by the
subproblem and not the minimum of all those step size as in the monolithic
approach. This will yield a computational more efficient integration.

The benefit of the multimethod approach is obviously present since the packages
for field simulation are commonly applying the implicit Euler scheme or implicit
Runge-Kutta schemes for time integration, [28], while circuit simulators are typi-
cally based on schemes from the BDF family, [21].

The advantage due multirate behavior depend highly on the specific configuration
of the problem considered, since different time scales do not occur in the field/circuit
coupling as natural as in the thermal coupling (Sect. 3.3.2), where the effects are
clearly from multiphysics. In contrast to this, the described phenomena of the
field/circuit coupling originate all from Maxwell’s equations and hence there is no
guarantee of multirate effects. Even if present, e.g. due to switches or filters, the
partition of the subsystems according to the network DAE and field PDE model
does not necessarily correspond to time constants of different magnitude. Moreover
a partition into fast and slow switching components would require to split the circuit
at arbitrary nodes and could hence destroy the advantages of the simulator coupling
approach.

Anyhow if the circuit contains only a small number of devices that are active at
a time, while others remain latent and the field model belongs to such a latent part,
then the computational expensive solution of the PDE can be obtained using less
time steps than the circuit solution requires. This weak coupling will be naturally
exploited by the dynamic iteration method, if the step sizes for the time integration
of the sub-problems are chosen accordingly (or are automatically determined by an
adaptive time integrator) and increase its efficiency when compared to a single-rate
integration method.

For such configurations an efficient special case of the dynamic iteration method
is the multirate co-simulation, where only one sweep (kn D 1) is made, but
obviously smaller synchronization steps have to be chosen.

3.3.3.5 Numerical Example

Let us discuss a classical example from engineering: a transformer is excited at its
primary coil by an alternating voltage source with veff D 250 V at f D 50 Hz
and is connected to a rectifier circuit at its secondary coil with a load resistance
of Rload D 100 , Fig. 3.1a. The diodes are described by Shockley’s model with
Is D 10�A. The transformer is represented by a PDE in 3D, discretized by EM
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a b

Fig. 3.1 (a) Example circuit: rectifier. (b) Field model: transformer

Studio from CST Software,2 where each coil is connected to the circuit using the
a stranded conductor model.

The simulation software was implemented within the COMSON DP and applies
either the classic monolithic strategy or the dynamic iteration method by using
Gauss-Seidel’s scheme. Simulation results are presented in Fig. 3.2.

3.3.3.6 Summary

In this section we shown how nonlinear index-analysis of DAEs can be used to
prove the convergence of dynamic iteration methods applied coupled problems. In
the case of Maxwell’s magnetoquasistatic equations coupled to electric circuits we
find that there is no dependence of the algebraic equations on previous algebraic
iterates. This guarantees an index-1 problem in the case of monolithic coupling
and furthermore proofs convergence and stability of the proposed dynamic iteration
scheme. To obtain this result it is not even necessary to validating the contractivity
condition given in Sect. 3.2.3.

3.4 Coupled Numerical Simulations of the Thermal Effects
in Silicon Devices

In this section we analyze the discretization of the model presented in Sect. 2.2.4,
describing the coupling between the transport of electrons and the heating of the
crystal lattice. Results of the simulation of a MOSFET with a nanoscale channel are
presented and the influence of the thermal effects on the electrical performance is
analyzed. This section is based on reference [30, 31] where the interested reader can
find more details.

2see http://www.cst.com/

http://www.cst.com/
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Fig. 3.2 Numerical Example. Error plots with respect to the reference solution. (a) Input (dashed)
and output (solid) voltages of the reference solution, obtained by monolithic simulation with step
size H D 1e � 5. (b) Error in output voltage in multirate co-simulation with window size H D
1e � 4. (c) Error in output voltage in multirate co-simulation with window size H D 1e � 5.
(d) Error in output voltage in dynamic iteration with 3 sweeps and window size H D 1e � 4.
(e) Error in output voltage in dynamic iteration with 3 sweeps and window size H D 1e � 5.
(f) Error in output voltage in monolithic simulation with step size H D 1e � 4. (g) Error in output
voltage in monolithic simulation with step size H D 1e � 5
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In addition to the model presented in Chap. 2, also the holes will be included with
a simple drift-diffusion equation.

The complete mathematical model is given by the equations

@n

@t
C div .n V/ D �R; (3.72)

@p

@t
C div

	
p Vp


 D �R; (3.73)

@ .nW/

@t
C div .n S/ C nqV � r� D nCW ; (3.74)

�cV

@TL

@t
� div ŒK.TL/rTL� D H; (3.75)

E D �r�; ��� D �q.ND � NA � n C p/; (3.76)

with n and p the electron and holes density respectively, W the electron energy, TL

the lattice temperature, � the electrostatic potential and E D �r� the electric field.
ND and NA are the density of donors and acceptors respectively (assumed as known
function of the position). q is the elementary charge, � the silicon density, cV the
specific heat, CW the energy production term, which can be written in a relaxation
form as

CW D �W � W0

�W

; (3.77)

with W0 D 3=2kBTL and �W .W / the energy relaxation time. kB is the Boltzmann
constant and � is the dielectric constant.

The closure relations for the electron velocity V, the energy flux S, the thermal
conductivity K.TL/ and the crystal energy production term H have been obtained in
[32, 33] by employing MEP and are reported in Chap. 2. The holes are described by
a standard drift-diffusion model with constant mobility. Vp is the velocity of holes.

Since the electron production terms are slowly changing with respect to kBTL,
we adopt the simplification that they are evaluated at TL D 300 K.

The phonon energy production is given by

H D �.1 C PS / n CW C PS J � E; (3.78)

where PS D �c2 �R c
.p/
12 plays the role of a thermopower coefficient and �R is the

phonon relaxation time in resistive processes.
R is the generation-recombination term (see [35] for a complete review)

which splits into the Shockley-Read-Hall (SRH) and the Auger contribution (AU)
R D RSRH C RAU where

RSRH D np � n2
i

�p.n C n1/ C �n.p C p1/
; RAU D 	

Ccnn C Ccpp



.np � n2
i /;

(3.79)
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We will take the values Ccn D 2:8�10�31 cm 6 s�1 and Ccp D 9:9�10�32 cm 6 s�1.
In our numerical experiments we set n1 D p1 D ni , ni being the intrinsic
concentration. The expressions of �p and �n we will use are [35]

�n D �n0

1 C ND .x/CNA.x/

N
ref
n

; �p D �p0

1 C ND .x/CNA.x/

N
ref
p

; (3.80)

where �n0 D 3:95 � 10�4, �p0 D 3:25 � 10�5s, N
ref
n D N

ref
p D 7:1 � 1015cm�3.

At the source and drain contacts the Robin boundary condition

� kL

@TL

@n
D R�1

th .TL � Tenv/; (3.81)

is assumed, Rth being the thermal resistivity of the contact and Tenv the environment
temperature. We use no-flux condition for the temperature on the lateral boundary
and oxide silicon interface and Dirichlet condition at the bulk contact. The electron
energy at the source, drain and bulk contacts is set equal to the lattice energy. The
other boundary conditions needed for integrating the Mosfet model are described
in [29].

3.4.1 The Numerical Method

The crystal lattice temperature TL changes much slower than other variables. For
instance the typical relaxation time for the temperature in our simulations is in the
order of thousand picoseconds, while relaxation time of the other fields is in the
order of picoseconds. We exploit this double-scale behavior by applying a variant
of the multirate integration scheme [18, 20] which is a popular choice in coupled
electro-thermal circuit simulation [5]. For the simulation of the transient response
of the model we solve the balance equations by adopting the following multirate
integration scheme:

• Step 1. We first integrate the balance equations for electrons and holes with the
crystal lattice energy and the electric field frozen at the time step k�1. This gives
the density of the electrons and holes and the electron energy at the time step k

and schematically can be written as

@U k

@t
C F.U k; �k�1; T k�1

L / D 0; (3.82)

with U D .n; p; W /. Here k D 1; : : : ; N is the index of the integration interval
Œtk�1; tk �, with tk D tk�1 C �t , �t being the time size of the synchronization
window.
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• Step 2. We integrate the lattice energy balance equation with n and W given by
the step 1

�cV

@T k
L

@t
� div

�
K.T k

L /rT k
L

� D H.U k; T k
L / (3.83)

along with the Poisson equation with n D nk and p D pk .

For steps 1 and 2 different time steps for the numerical integration over the interval
Œtk�1; tk� are used. Typically the time step for integration of (3.83) we can use is 100
times larger than the time step for (3.82).

This sequence can be considered as steps of a splitting technique [26] and we
expect that such a numerical scheme is a stable first-order approximation with
respect to time, as confirmed by the numerical experiments presented in the next
section.

3.4.1.1 Step 1

The numerical scheme is based on an exponential fitting like that employed in the
Scharfetter-Gummel scheme for the drift-diffusion model of semiconductors. The
basic idea is to split the particle and energy density currents as the difference of
two terms. Each of them is written by introducing suitable mean mobilities in order
to get expressions of the currents similar to those arising in other energy-transport
models known in literature [6, 7, 11, 25, 36]. A simple explicit discretization in time
with constant time step proves satisfactorily efficient and avoids the problem related
to the high nonlinear coupling of the discretized equations of [27]. The equations
are spatially discretized on a regular grid. The details of the numerical scheme can
be found in [29]. Here a brief account is given.

For the sake of simplicity, the numerical method is presented only for the electron
part, putting equal to zero the generation-recombination term. The inclusion of holes
and the coupling with electrons is performed straightforwardly in an explicit way.

First the current density J D nV and the energy-flux density Z D n S are
rewritten as

J D J.1/ � J.2/; Z D Z.1/ � Z.2/ (3.84)

and then each term is put into a drift-diffusion form

J.1/ D c22

D
Œr.nU / � qnr�� ; J.2/ D c12

D

�

r.nF / � qn
F

U
r�

�

; (3.85)

Z.1/ D c11

D

�

r.nF / � qn
F

U
r�

�

; Z.2/ D c12

D
Œr.nU / � qnr�� ; (3.86)

with D D c11c22 � c12c21.
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We introduce the grid points .xi ; yj / with xiC1 � xi D h = constant and
yj C1 � yj D k = constant, and the middle points .xi ; yj ˙1=2/ D .xi ; yj ˙ k=2/

and .xi˙1=2; yj / D .xi ˙ h=2; yj /. A uniform time step �t is used and we set
ul

i;j D u.xi ; yj ; l �t/.
By indicating with Jx and Jy the x and y component of the current density

J and by Zx and Zy the x and y component of Z, we discretize the balance
equations (3.72) and (3.74) up to terms of order O.h2; k2; �t/ in the bidimensional
case as

nlC1
i � nl

i

�t
C .Jx/iC1=2;j � .Jx/i�1=2;j

h
C .Jy/i;j C1=2 � .Jy/i;j �1=2

k
D 0;

(3.87)

.n W /lC1
i � .n W /l

i

�t
C .Zx/iC1=2;j � .Zx/i�1=2;j

h
C .Zy/i;j C1=2 � .Zy/i;j �1=2

k
C

� q
.Jx/iC1=2;j C .Jx/i�1=2;j

2

�iC1;j � �i�1;j

2h

� q
.Jy/i;j C1=2 C .Jy/i;j �1=2

2

�i;j C1 � �i;j �1

2k
C ni;j

Wi;j � W0

.�W /i;j

D 0:

(3.88)

The variables without temporal index must be considered evaluated at time level l .
In order to evaluate the components of the currents in the middle points, let us

consider the sets

IiC1=2;j D Œxi ; xiC1� � Œyj �1=2; yj C1=2�; Ii;j C1=2 D Œxi�1=2; xiC1=2� � Œyj ; yj C1�

and expand J
.r/
x , r= 1, 2, in Taylor’s series in IiC1=2;j

J .r/
x .x; y/ 	 .J .r/

x /iC1=2;j C.x�xiC1=2/

 
@J

.r/
x

@x

!

iC1=2;j

C.y�yj /

 
@J

.r/
x

@y

!

iC1=2;j

and J
.r/
y , r =1, 2, in Taylor’s series in Ii;j C1=2

J .r/
y .x; y/ 	 .J .r/

y /i;j C1=2C.x�xi /

 
@J

.r/
y

@x

!

i;j C1=2

C.y�yj C1=2/

 
@J

.r/
y

@y

!

i;j C1=2

:

First, we introduce UT D U.W /=q, which plays the role of a thermal
potential (see [29] for more details) and indicate by U T its piecewise constant
approximation, which is given by U T D U.Wi;j /CU.WiC1;j /

2q
in the cell IiC1=2;j and by
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U T D U.Wi;j C1/CU.Wi;j /

2q
in the cell Ii;j C1=2. Then we introduce the local mobilities

g11 D �c22

D
nU; g12 D �c12

D
nF; g21 D �c11

D
nF; g22 D �c12

D
nU;

(3.89)

where cpq is a piecewise constant approximation of cpqp; q D 1; 2, given by cpq D
cpq

�
Wi;j CWiC1;j

2

�
in the cell IiC1=2;j and by cpq D cpq

�
Wi;j CWi;j C1

2

�
in the cell

Ii;j C1=2, and, as in [15], the local Slotboom variables

skr D exp
	��=U T



gkr k; r D 1; 2

that satisfy

rs1r ' � exp
	��=U T



J.r/; rs2r ' � exp

	��=U T



H.r/ r D 1; 2:

(3.90)

From the x component of (3.90)1, one has

@s1r .x; yj /

@x
' � exp

	��=U T



J .r/

x .x; yj / D

� exp
	��=U T



8
<

:
.J .r/

x /iC1=2;j C .x � xiC1=2/

 
@J

.r/
x

@x

!

iC1=2;j

C o.�x; �y/

9
=

;
;

which, after integration over Œxi ; xiC1� and some algebra, gives

.J .r/
x /iC1=2;j D �ziC1=2;j coth ziC1=2;j

.g1r /iC1;j � .g1r /i;j

h

CziC1=2;j

.g1r /iC1;j C .g1r /i;j

h
; r D 1; 2 (3.91)

where ziC1=2;j D �iC1;j ��i;j

2U T
.

Likewise by evaluating the y component of (3.90)2 and integrating over
Œyj ; yj C1� we find

.J .r/
y /i;j C1=2 D �zi;j C1=2 coth zi;j C1=2

.g1r /i;j C1 � .g1r /i;j

k

Czi;j C1=2

.g1r /i;j C1 C .g1r /i;j

k
; r D 1; 2 (3.92)
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where zi;j C1=2 D �i;j C1��i;j

2U T
. With the same procedure the following discrete

expression for the components of the energy flux are obtained

.H .r/
x /iC1=2;j D �ziC1=2;j coth ziC1=2;j

.g2r /iC1;j � .g2r /i;j

h

CziC1=2;j

.g2r /iC1;j C .g2r /i;j

h
; (3.93)

.H .r/
y /i;j C1=2 D �zi;j C1=2 coth zi;j C1=2

.g2r /i;j C1 � .g2r /i;j

k

Czi;j C1=2

.g2r /i;j C1 C .g2r /i;j

k
; r D 1; 2: (3.94)

The error in formulas (3.91)–(3.94) is O.h; k/.
The Poisson equation is solved by replacing it with

�t � div .�r�/ D q.ND � NA � n/: (3.95)

The solution of (3.95) as t 7! C1 is the same as that of the original Poisson
equation, at least in the smooth case.

If we introduce a time step �Ot and set �r
ij D �.xi ; yj ; r�Ot/, (3.95) can be

discretized in an explicit way as

�rC1
ij D �r

ij C ��Ot
�

1

h2

	
�iC1;j � 2�i;j C �i�1;j


C 1

k2

	
�i;j C1 � 2�i;j C �i;j �1




Cq.Ci;j � ni;j /
�

(3.96)

with the notable advantage to take easily into account the different types of boundary
conditions, that will be considered in more detail in the next sections. The price to
pay is that at each time step, we need to reach the stationary state of (3.95) by using
a time step satisfying the CFL condition, usual for parabolic equations,

�Ot � 1

2

1
1
h2 C 1

k2

:

However the computational effort is comparable with that required by direct
methods.

3.4.1.2 Step 2

A coordinate splitting technique [26] is used for the solution of the lattice energy
equation for the variable u D kBT with time step �tT . The splitting technique
allows an efficient usage of stable implicit time schemes. The procedure contains
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two steps with the two sub operators

�cV

unC1=2 � un

�tT
D @

@x

�

K.T n
L/

@unC1=2

@x

�

C kB

2
H nC1=2; (3.97)

�cV

unC1 � unC1=2

�tT
D @

@y

�

K.T n
L/

@unC1

@y

�

C kB

2
H nC1: (3.98)

This scheme is absolutely stable and approximates the equation of the lattice energy
with first order accuracy in time. For the approximation of the spatial derivatives, the
standard stencil with three points has been chosen. For instance, the approximation
of (3.98) is the following

�cV unC1
i;j D �cV unC1=2

i;j C �tT

k2

" QKi;j C QKi;j C1

2
.unC1

i;j C1 � unC1
i;j /�

QKi;j C QKi;j �1

2
.unC1

i;j � unC1
i;j �1/

#

CkB

2

�tT

�W

.1 C PS /nnC1
i;j

�

W nC1
ij � 3

2
unC1

i;j

�

C kB

2
�tT J nC1

i;j EnC1
i;j ;

where QKi;j D K.TLi;j /. Of course such a discretization is valid in the interior points
of the mesh.

The Robin boundary condition (3.81) is approximated as

� kL

unC1
i;1 � unC1

i;0

k
D R�1

th .unC1
i;0 � kBTenv/: (3.99)

Here we have assumed that at the portion of boundary where the Robin condition
holds, one has j D 0 and the closest interior points have j D 1.

The obtained linear system can be solved efficiently with the tridiagonal matrix
factorization procedure.

3.4.2 Numerical Simulation of the Crystal Lattice Heating
in MOSFETs

We apply the above numerical method for the simulation of the heating of the crystal
lattice in a MOSFET described by the MEP model.

We have modeled the thermal conductivity with the fitting formula K.TL/ D
1:5486 .TL=300 K/�4=3 V A/cm K and have set cV D 703 m2/s2 K (see [35]). The
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Fig. 3.3 Schematic
representation of a
bidimensional MOSFET
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mobility of holes has been considered as constant and equal to 500 cm2/V s. More
details about the values of the physical parameters can be found in [30].

The shape of the device is shown in Fig. 3.3. The length of the channel (x4 � x1

in the figure) is Lc , the length of source and drain (x1 � x0) is L D Lc=2.
We will consider Lc D 50 nm and Lc D 200 nm. The source and drain depths
are 0.1 �m. The gate oxide is 20 nm thick. The substrate thickness is 0.4 �m.
An environment temperature Tenv D 300 K has been considered. In most of our
numerical experiments we will take Rth D 10�8 K m2/W as in [9].

The doping concentration is

ND.x/ � NA.x/ D
�

nC in the nC regions
�p� D �1014cm�3in the p region

(3.100)

with abrupt junctions. We will consider different values of nC in the simulations.
First a MOSFET with 200 nm channel length has been simulated. The stationary

solution is shown in the Figs. 3.4–3.8. The distance between gate and source (x2 �
x1) and between drain and gate (x4 � x3) is 25 nm. The thermal resistivity of the
contact is set equal to Rth D 10�8 K m2/W. The donor concentration is nC D
1017cm�3. In Fig. 3.4 one can see a relatively small heating of the crystal, just a
maximum of about 7ı above the environment temperature. The maximum of the
crystal temperature is attained near the drain contact where also the maximum of
the electron energy is observed (see Fig. 3.5). It is worth remarking that there is
almost no influence of the device self-heating on the current through the device as
shown in Fig. 3.8, where the characteristic curves with the lattice temperature fixed
at 300 K are compared with those obtained with varying TL.
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Fig. 3.4 Stationary solution of the lattice temperature in the MOSFET with channel of 200 nm by
setting Rth D 10�8 Km2/W
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Fig. 3.5 Stationary solution of the electron energy in the MOSFET with channel of 200 nm by
setting Rth D 10�8 Km2/W

As second example we have simulated a nanoscale MOSFET device with a
channel of length 50 nm . The gate length is 45 nm and the gate voltage VDG D 0:8 V.
The donor concentration is nC D 1017cm�3. In the Figs. 3.9 and 3.10 is plotted the
stationary solution of the lattice temperature and the electron energy. In contrast to



148 G. Alì et al.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

0

0.1

0.2

0.3

0.4

0.5

−0.5

0

0.5

1

1.5

2

Jx

Fig. 3.6 Stationary solution of the x component of current in the MOSFET with channel of 200 nm
by setting Rth D 10�8 Km2/W
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Fig. 3.7 Stationary solution of the y component of current in the MOSFET with channel of 200 nm
by setting Rth D 10�8 Km2/W

the previous case, now the lattice temperature raises up to 380 K in the area near the
gate. We argue that this temperature raise should depend, beside the strength of the
electric field, on the density of the hot electrons and might be higher for higher
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Fig. 3.8 Drain current for VDG = 0.4, 0.6, 0.8, 0.9 V. The current increases by increasing VDG

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

0
0.02

0.04
0.06

0.08
0.1

0.12

300

320

340

360

380

400

bulk contact

Te
m

pe
ra

tu
re

 K

Fig. 3.9 Stationary solution of the lattice temperature in the MOSFET with channel of 50 nm by
setting Rth D 10�8 Km2/W

doping concentration. In order to investigate this assumption, a simulation with
nC D 5 � 1017cm�3 has been performed too. As expected one can see in Fig. 3.11
that the maximum lattice temperature attains about 550 K. In Fig. 3.12 the result of
the lattice temperature for the even higher donor concentration nC D 1018 cm�3 is
reported. The maximum lattice temperature achieves about 700 K, confirming the
dependence of it on the density of the electron current.
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Fig. 3.10 Stationary solution of the electron energy in the MOSFET with channel of 50 nm by
setting Rth D 10�8 Km2/W
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Fig. 3.11 Stationary solution of the lattice temperature in the MOSFET with channel of 50 nm by
setting nC D 5 � 1017 cm�3 and Rth D 10�8 Km2/W

By shrinking the dimension of the device the thermal effects have also a non
negligible influence on the current through the device. In Fig. 3.13 current Ãś
voltage characteristics for the device with nC D 1017 cm�3 are shown. With
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Fig. 3.12 Stationary solution of the lattice temperature in the MOSFET with channel of 50 nm by
setting nC D 1018 cm�3 and Rth D 10�8 Km2/W
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Fig. 3.13 Drain current with constant and varying lattice temperature in the MOSFET with
channel of 50 nm by setting nC D 1018cm�3 and Rth D 10�8 for VDG D 0:4, 0.6, 0.8, 0.9 V.
The current increases by increasing VDG

increasing electric field strength, we observe a rising deviation of the characteristic
curves corresponding to a constant lattice temperature from those with varying TL.

The lattice temperature in the device is also strongly influenced by the thermal
resistivity of the contact Rth. This value depends on the manufacturing process. In
Figs. 3.14 and 3.15 the lattice temperature is shown for Rth D 10�10 Km2/W and
Rth D 10�9 Km2/W with nC D 1017 cm�3.
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Fig. 3.14 Stationary solution of the lattice temperature in the MOSFET with channel of 50 nm by
setting Rth D 10�10 Km2/W and nC D 1017 cm�3
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Fig. 3.15 Stationary solution of the lattice temperature in the MOSFET with channel of 50 nm by
setting Rth D 10�9 Km2/W and nC D 1017 cm�3
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Fig. 3.16 Simulated inverter circuit

3.4.3 Coupled Circuit-Device Simulation

At last a case of coupling between a Mosfet and a circuit is present. We simulate
the heating of a transistor in the electrical circuit representing an inverter. The
inverter circuit is plot in Fig. 3.16. Input voltage on the gate contact is (in Volt)
Vin D 0:3 cos.!t/ C 0:5 , with frequency ! D 2� 109 rad/s and power voltage
Vdd D 1V . The width of the transistor (length in the orthogonal direction with
respect to the considered 2D cross section) is set equal to 200 nm. Modified nodal
analysis gives us for the output voltage Vout:

C
dVout

dt
C Vout � Vdd

R
C j.Vin; Vout; t/ D 0; (3.101)

where current through the transistor j.Vin; Vout; t/ is computed by the energy-
transport model. We refer for instance to [9] for details of device-circuits coupled
modeling algorithm.

The output voltage simulated with and without transistor self heating and
maximum temperature in the transistor are plot in the Fig. 3.17. One can see that
lattice temperature in the transistor does not achieve 400 K as we have observed in
the single transistor simulation. It can be explained with smaller average voltage
at the gate and consequently smaller average electrical field. However there is still
a shift in the minimum values of the output voltage and a clear indication of the
crystal heating.
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Fig. 3.17 On the left input and output voltages versus time. On the right maximum value of the
lattice temperature in the MOSFET versus time
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