
Making Random Judgments: Automatically Generating
Well-Typed Terms from the Definition of a Type-System

Burke Fetscher1, Koen Claessen2, Michał Pałka2, John Hughes2,
and Robert Bruce Findler1

1 Northwestern University
2 Chalmers University of Technology

Abstract. This paper presents a generic method for randomly generating well-
typed expressions. It starts from a specification of a typing judgment in PLT Re-
dex and uses a specialized solver that employs randomness to find many different
valid derivations of the judgment form.

Our motivation for building these random terms is to more effectively falsify
conjectures as part of the tool-support for semantics models specified in Redex.
Accordingly, we evaluate the generator against the other available methods for
Redex, as well as the best available custom well-typed term generator. Our results
show that our new generator is much more effective than generation techniques
that do not explicitly take types into account and is competitive with generation
techniques that do, even though they are specialized to particular type-systems
and ours is not.

1 Introduction

Redex (Felleisen et al. 2010) employs property-based testing to help semantics engi-
neers uncover bugs in their models. Semantics engineers write down properties that
should hold of their models (e.g., type soundness) and Redex can randomly generate
example expressions in an attempt to falsify those properties. Until recently, Redex
used a naive generation strategy: it simply randomly picks productions from the gram-
mar of the language to build a term and then checks to see if that falsifies the property of
interest. For untyped models, or when the model author writes a “fixing” function that
makes expressions more likely to type-check (e.g., by writing a post-processing func-
tion that binds free variables), this naive technique is effective (Klein 2009; Klein et al.
2012; Klein et al. 2013). With typed models, however, such randomly generated terms
rarely type check and so the testing process spends most of its time rejecting ill-typed
terms instead of actually testing the model.

To make testing more effective, we built a solver that randomly generates solutions to
problems involving a subset of first-order logic with equality and inequality constraints,
and we use that to transform a Redex specification of a type-system into a random
generator of well-typed terms.

We evaluate our generator on a benchmark suite of buggy Redex models and show
that it is far more effective than the naive approach and less effective than the fixing
function approach, but still competitive. We also evaluate our generator against the best
known, hand-tuned generator for random well-typed terms (Pałka et al. 2011). This

© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 383–405, 2015.
DOI: 10.1007/978-3-662-46669-8_16



384 B. Fetscher et al.

generator handles only a language closely matched to the GHC Haskell compiler in-
termediate language, but is better than our generic generator, overall. We compared the
two generators by searching for counterexamples to two properties using a buggy ver-
sion of GHC. A straightforward translation into Redex using our generator is able to
find one bug infrequently, and to investigate the difficulties we refined that translation
into a non-polymorphic model that was much more effective, demonstrating how poly-
morphism can be a difficult issue to tackle with random testing. We carefully explore
why and discuss the issues in section 4.

Section 2 works through the generation process for a specific model in order to ex-
plain our method. Section 3 gives a small, formal model of our generator. Section 4
explains the evaluation of our generator. Section 5 discusses related work and section 6
concludes.

2 Example: Generating a Well-Typed Term

This section gives an overview of our method for generating well-typed terms by work-
ing through the generation of an example term. We will build a derivation satisfying the
judgment form definition in figure 1, a typing judgment for simply-typed lambda cal-
culus with a single base type of natural numbers. We begin with a goal pattern, which
we will want the conclusion of the generated derivation to match.

Our goal pattern will be the following:

stating that we would like to generate an expression with arbitrary type in the empty type
environment. We then randomly select one of the type rules. This time, the generator
selects the abstraction rule, which requires us to specialize the values of and in
order to agree with the form of the rule’s conclusion. To do that, we first generate a new
set of variables to replace the ones in the abstraction rule, and then unify our conclusion
with the specialized rule. We put a super-script on these variables to indicate that they
were introduced in the first step of the derivation building process, giving us this partial
derivation.

Fig. 1. Grammar and type system for the simply-typed lambda calculus used in the example
derivation



Making Random Judgments: Automatically Generating Well-Typed Terms 385

The abstraction rule has added a new premise we must now satisfy, so we follow the
same process with the premise. If the generator selects the abstraction rule again and
then the application rule, we arrive at the following partial derivation, where the super-
scripts on the variables indicate the step where they were generated:

Application has two premises, so there are now two unfinished branches of the deriva-
tion. Working on the left side first, suppose the generator chooses the variable rule:

To continue, we need to use the metafunction, whose definition is shown on
the left-hand side of figure 2. Unlike judgment forms, however, Redex metafunction
clauses are ordered, meaning that as soon as one of the left-hand sides matches an input,
the corresponding right-hand side is used for the result. Accordingly, we cannot freely
choose a clause of a metafunction without considering the previous clauses. Internally,
our method treats a metafunction as a judgment form, however, adding premises to
reflect the ordering.

Fig. 2. Lookup as a metafunction (left), and the corresponding judgment form (right)



386 B. Fetscher et al.

For the lookup function, we can use the judgment form shown on the right of figure 2.
The only additional premise appears in the bottom rule and ensures that we only recur
with the tail of the environment when the head does not contain the variable we’re
looking for. The general process is more complex than suggests and we return
to this issue in section 3.1.

If we now choose that last rule, we have this partial derivation:

The generator now chooses ’s first clause, which has no premises, thus com-
pleting the left branch.

Because pattern variables can appear in two different premises (for example the ap-
plication rule’s appears in both premises), choices in one part of the tree affect the
valid choices in other parts of the tree. In our example, we cannot satisfy the right
branch of the derivation with the same choices we made on the left, since that would
require .

This time, however, the generator picks the variable rule and then picks the first
clause of the , resulting in the complete derivation:



Making Random Judgments: Automatically Generating Well-Typed Terms 387

To finish the construction of a random well-typed term, we choose random values
for the remaining, unconstrained variables, e.g.:

We must be careful to obey the constraint that and are different, which was in-
troduced earlier during the derivation, as otherwise we might not get a well-typed term.
For example, is not well-typed but is an otherwise
valid instantiation of the non-terminals.

3 Derivation Generation in Detail

This section describes a formal model1 of the derivation generator. The centerpiece of
the model is a relation that rewrites programs consisting of metafunctions and judgment
forms into the set of possible derivations that they can generate. Our implementation has
a structure similar to the model, except that it uses randomness and heuristics to select
just one of the possible derivations that the rewriting relation can produce. Our model
is based on Jaffar et al. (1998)’s constraint logic programming semantics.

Fig. 3. The syntax of the derivation generator model

The grammar in figure 3 describes the language of the model. A program consists

of definitions , which are sets of inference rules , here written horizontally
with the conclusion on the left and premises on the right. (Note that ellipses are used
in a precise manner to indicate repetition of the immediately previous expression, in
this case , following Scheme tradition. They do not indicate elided text.) Definitions
can express both judgment forms and metafunctions. They are a strict generalization of
judgment forms, and metafunctions are compiled into them via a process we discuss in
section 3.1.

The conclusion of each rule has the form , where is an identifier naming the
definition and is a pattern. The premises may consist of literal goals or dis-
equational constraints . We dive into the operational meaning behind disequational
constraints later in this section, but as their form in figure 3 suggests, they are a dis-
junction of negated equations, in which the variables listed following are universally

1 The corresponding Redex model is available from this paper’s website (listed after the conclu-
sion), including a runnable simple example that may prove helpful when reading this section.



388 B. Fetscher et al.

Fig. 4. Reduction rules describing generation of the complete tree of derivations

quantified. The remaining variables in a disequation are implicitly existentially quanti-
fied, as are the variables in equations.

The reduction relation shown in figure 4 generates the complete tree of derivations
for the program with an initial goal of the form , where is the identifier of some
definition in and is a pattern that matches the conclusion of all of the generated
derivations. The relation is defined using two rules: and . The

states that the relation acts on are of the form , where represents
a stack of goals, which can either be incomplete derivations of the form , indicat-
ing a goal that must be satisfied to complete the derivation, or disequational constraints
that must be satisfied. A constraint store is a set of simplified equations and disequa-
tions that are guaranteed to be satisfiable. The notion of equality we use here is purely
syntactic; two ground terms are equal to each other only if they are identical.

Each step of the rewriting relation looks at the first entry in the goal stack and rewrites
to another state based on its contents. In general, some reduction sequences are ulti-
mately doomed, but may still reduce for a while before the constraint store becomes
inconsistent. In our implementation, discovery of such doomed reduction sequences
causes backtracking. Reduction sequences that lead to valid derivations always end with
a state of the form , and the derivation itself can be read off of the reduction
sequence that reaches that state.

When a goal of the form is the first element of the goal stack (as is the root case,
when the initial goal is the sole element), then the rule applies. For every rule

of the form in the program such that the definition’s id agrees with the
goal’s, a reduction step can occur. The reduction step first freshens the variables in the
rule, asks the solver to combine the equation with the current constraint store,
and reduces to a new state with the new constraint store and a new goal state. If the
solver fails, then the reduction rule doesn’t apply (because returns instead of a

). The new goal stack has all of the previously pending goals as well as the new ones
introduced by the premises of the rule.

The rule covers the case where a disequational constraint is the
first element in the goal stack. In that case, the disequational solver is called with the



Making Random Judgments: Automatically Generating Well-Typed Terms 389

current constraint store and the disequation. If it returns a new constraint store, then the
disequation is consistent and the new constraint store is used.

The remainder of this section fills in the details in this model and discusses the cor-
respondence between the model and the implementation in more detail. Metafunctions
are added via a procedure generalizing the process used for in section 2, which
we explain in section 3.1. Section 3.2 describes how our solver handles equations and
disequations. Section 3.3 discusses the heuristics in our implementation and section 3.4
describes how our implementation scales up to support features in Redex that are not
covered in this model.

3.1 Compiling Metafunctions

The primary difference between a metafunction, as written in Redex, and a set of
clauses from figure 3 is sensitivity to the ordering of clauses. Specifically,

when the second clause in a metafunction fires, then the pattern in the first clause must
not match, in contrast to the rules in the model, which fire regardless of their relative or-
der. Accordingly, the compilation process that translates metafunctions into the model
must insert disequational constraints to capture the ordering of the cases.

As an example, consider the metafunction definition of on the left and some exam-
ple applications on the right:

The first clause matches any two-element list, and the second clause matches any pattern
at all. Since the clauses apply in order, an application where the argument is a two-
element list will reduce to and an argument of any other form will reduce to . To
generate conclusions of the judgment corresponding to the second clause, we have to
be careful not to generate anything that matches the first.

Applying the same idea as in section 2, we reach this incorrect translation:

This is wrong because it would let us derive , using for and for
in the premise of the right-hand rule. The problem is that we need to disallow all

possible instantiations of and , but the variables can be filled in with just specific
values to satisfy the premise.

The correct translation, then, universally quantifies the variables and :

Thus, when we choose the second rule, we know that the argument will never be able
to match the first clause.



390 B. Fetscher et al.

In general, when compiling a metafunction clause, we add a disequational constraint
for each previous clause in the metafunction definition. Each disequality is between the
left-hand side patterns of one of the previous clauses and the left-hand side of the current
clause, and it is quantified over all variables in the previous clause’s left-hand side.

3.2 The Constraint Solver

The constraint solver maintains a set of equations and disequations that captures in-
variants of the current derivation that it is building. These constraints are called the
constraint store and are kept in the canonical form , as shown in figure 3, with the
additional constraint that the equational portion of the store can be considered an idem-
potent substitution. That is, it always equates variables with with s and, no variable
on the left-hand side of an equality also appears in any right-hand side. Whenever a
new constraint is added, consistency is checked again and the new set is simplified to
maintain the canonical form.

Figure 5 shows , the entry point to the solver for new equational constraints. It
accepts an equation and a constraint store and either returns a new constraint store that
is equivalent to the conjunction of the constraint store and the equation or , indicating
that adding is inconsistent with the constraint store. In its body, it first applies the
equational portion of the constraint store as a substitution to the equation. Second, it
performs syntactic unification (Baader and Snyder 2001) of the resulting equation with
the equations from the original store to build a new equational portion of the constraint.
Third, it calls , which simplifies the disequational constraints and checks their
consistency. Finally, if all that succeeds, returns a constraint store that combines

the results of and . If either or fails, then returns .
Figure 6 shows , the disequational counterpart to . It applies the equa-

tional part of the constraint store as a substitution to the new disequation and then calls
. It returns , then the disequation was already guaranteed in the cur-

rent constraint store and thus does not need to be recorded. If returns then the
disequation is inconsistent with the current constraint store and thus itself re-

turns . In the final situation, returns a new disequation, in which case
adds that to the resulting constraint store.

The function exploits unification and a few cleanup steps to determine if the
input disequation is satisfiable. In addition, is always called with a disequation
that has had the equational portion of the constraint store applied to it (as a substitution).

The key trick in this function is to observe that since a disequation is always a dis-
junction of inequalities, its negation is a conjuction of equalities and is thus suitable as
an input to unification. The first case in covers the case where unification fails.
In this situation we know that the disequation must have already been guaranteed to be
false in constraint store (since the equational portion of the constraint store was applied
as a substitution before calling ). Accordingly, can simply return to
indicate that the disequation was redundant.

Ignoring the call to in the second case of for a moment, con-
sider the case where returns an empty conjunct. This means that ’s argu-
ment is guaranteed to be true and thus the given disequation is guaranteed to be false.



Making Random Judgments: Automatically Generating Well-Typed Terms 391

Fig. 5. The Solver for Equations

Fig. 6. The Solver for Disequations



392 B. Fetscher et al.

Fig. 7. Metafunctions used to process disequational constaints

In this case, we have failed to generate a valid derivation because one of the negated
disequations must be false (in terms of the original Redex program, this means that
we attempted to use some later case in a metafunction with an input that would have
satisfied an earlier case) and so must return .

But there is a subtle point here. Imagine that returns only a single clause of
the form where is one of the universally quantified variables. We know that in

that case, the corresponding disequation is guaranteed to be false because
every pattern admits at least one concrete term. This is where comes in. It
cleans up the result of by eliminating all clauses that, when negated and placed
back under the quantifier would be guaranteed false, so the reasoning in the previous
paragraph holds and the second case of behaves properly.

The last case in covers the situation where composed with
returns a non-empty substitution. In this case, we do not yet know if the disequation is
true or false, so we collect the substitution that returned back into a disequation
and return it, to be saved in the constraint store.

This brings us to , in figure 7. Its first argument is a unifier, as produced
by a call to to handle a disequation, and the second argument is the universally
quantified variables from the original disequation. Its goal is to clean up the unifier by
removing redundant and useless clauses.

There are two ways in which clauses can be false. In addition to clauses of the form
where is one of the universally quantified variables, it may also be the case that

we have a clause of the form and, as before, is one of the universally quantified
variables. This clause also must be dropped, according to the same reasoning (since is
symmetric). But, since variables on the right hand side of an equation may also appear



Making Random Judgments: Automatically Generating Well-Typed Terms 393

elsewhere, some care must be taken here to avoid losing transitive inequalities. The
function (not shown) handles this situation, constructing a new set of clauses
without but, in the case that we also have , adds back the equation . For
the full definition of and a proof that it works correctly, we refer the reader to the
first author’s masters dissertation (Fetscher 2014).

Finally, we return to , shown in figure 7, which is passed the updated dise-
quations after a new equation has been added in (see figure 5). It verifies the
disequations and maintains their canonical form, once the new substitution has been
applied. It does this by applying to any non-canonical disequations.

3.3 Search Heuristics

To pick a single derivation from the set of candidates, our implementation must make
explicit choices when there are differing states that a single reduction state reduces to.
Such choices happen only in the rule, and only because there may be multiple

different clauses, , that could be used to generate the next reduction state.
To make these choices, our implementation collects all of the candidate cases for the

next definition to explore. It then randomly permutes the candidate rules and chooses
the first one of the permuted rules, using it as the next piece of the derivation. It then
continues to search for a complete derivation. That process may fail, in which case the
implementation backtracks to this choice and picks the next rule in the permuted list. If
none of the choices leads to a successful derivation, then this attempt is failure and the
implementation either backtracks to an earlier such choice, or fails altogether.

There are two refinements that the implementation applies to this basic strategy. First,
the search process has a depth bound that it uses to control which production to choose.
Each choice of a rule increments the depth bound and when the partial derivation ex-
ceeds the depth bound, then the search process no longer randomly permutes the can-
didates. Instead, it simply sorts them by the number of premises they have, preferring
rules with fewer premises in an attempt to finish the derivation off quickly.

Fig. 8. Density functions of the distributions used for the depth-dependent rule ordering, where
the depth limit is 4 and there are 4 rules



394 B. Fetscher et al.

The second refinement is the choice of how to randomly permute the list of candi-
date rules, and the generator uses two strategies. The first strategy is to just select from
the possible permutations uniformly at random. The second strategy is to take into ac-
count how many premises each rule has and to prefer rules with more premises near
the beginning of the construction of the derivation and rules with fewer premises as
the search gets closer to the depth bound. To do this, the implementation sorts all of the
possible permutations in a lexicographic order based on the number of premises of each
choice. Then, it samples from a binomial distribution whose size matches the number
of permutations and has probability proportional to the ratio of the current depth and
the maximum depth. The sample determines which permutation to use.

More concretely, imagine that the depth bound was 4 and there are also 4 rules avail-
able. Accordingly, there are 24 different ways to order the premises. The graphs in
figure 8 show the probability of choosing each permutation at each depth. Each graph
has one x-coordinate for each different permutation and the height of each bar is the
chance of choosing that permutation. The permutations along the x-axis are ordered
lexicographically based on the number of premises that each rule has (so permutations
that put rules with more premises near the beginning of the list are on the left and per-
mutations that put rules with more premises near the end of the list are on the right).
As the graph shows, rules with more premises are usually tried first at depth 0 and rules
with fewer premises are usually tried first as the depth reaches the depth bound.

These two permutation strategies are complementary, each with its own drawbacks.
Consider using the first strategy that gives all rule ordering equal probability with the
rules shown in figure 1. At the initial step of our derivation, we have a 1 in 4 chance of
choosing the type rule for numbers, so one quarter of all expressions generated will just
be a number. This bias towards numbers also occurs when trying to satisfy premises of
the other, more recursive clauses, so the distribution is skewed toward smaller deriva-
tions, which contradicts commonly held wisdom that bug finding is more effective when
using larger terms. The other strategy avoids this problem, biasing the generation to-
wards rules with more premises early on in the search and thus tending to produce
larger terms. Unfortunately, our experience testing Redex program suggests that it is
not uncommon for there to be rules with large number of premises that are completely
unsatisfiable when they are used as the first rule in a derivation (when this happens there
are typically a few other, simpler rules that must be used first to populate an environ-
ment or a store before the interesting and complex rule can succeed). For such models,
using all rules with equal probability still is less than ideal, but is overall more likely to
produce terms at all.

Since neither strategy for ordering rules is always better than the other, our imple-
mentation decides between the two randomly at the beginning of the search process
for a single term, and uses the same strategy throughout that entire search. This is the
approach the generator we evaluate in section 4 uses.

Finally, in all cases we terminate searches that appear to be stuck in unproductive or
doomed parts of the search space by placing limits on backtracking, search depth, and a
secondary, hard bound on derivation size. When these limits are violated, the generator
simply abandons the current search and reports failure.



Making Random Judgments: Automatically Generating Well-Typed Terms 395

3.4 A Richer Pattern Language

The model we present in section 3 uses a much simpler pattern language than Redex
itself. The portion of Redex’s internal pattern language supported by the generator2

is shown in figure 9. We now discuss briefly the interesting differences between this
language and the language of our model and how we support them in Redex’s imple-
mentation.

Fig. 9. The subset of Redex's pattern language supported by the generator. Racket symbols are
indicated by s, and c represents any Racket constant.

Named patterns of the form correspond to variables x in the simplified
version of the pattern language from figure 3, except that the variable is paired with
a pattern . From the matcher’s perspective, this form is intended to match a term with
the pattern and then bind the matched term to the name . The generator pre-processes
all patterns with a first pass that extracts the attached pattern and attempts to update
the current constraint store with the equation , after which can be treated as a
logic variable.

The and non-terminals are built-in patterns that match subsets of Racket values.
The productions of are straightforward; , for example, matches any Racket
integer, and matches any Racket s-expression. From the perspective of the unifier,

is a term that may be unified with any integer, the result of which is the integer
itself. The value of the term in the current substitution is then updated. Unification of
built-in patterns produces the expected results; for example unifying and
produces , whereas unifying and fails.

The productions of match Racket symbols in varying and commonly useful ways;
, for example, matches any symbol that is not used

as a literal elsewhere in the language. These are handled similarly to the patterns of the
non-terminal within the unifier.
Patterns of the from match the pattern with the constraint

that two occurrences of the same name may never match equal terms. These are
straightforward: whenever a unification with a mismatch takes place, disequations are

2 The generator is not able to handle parts of the pattern language that deal with evaluation
contexts or “repeat” patterns (ellipses).



396 B. Fetscher et al.

added between the pattern in question and other patterns that have been unified with the
same mismatch pattern.

Patterns of the form refer to a user-specified grammar, and match a term if it
can be parsed as one of the productions of the non-terminal of the grammar. It is less
obvious how such non-terminal patterns should be dealt with in the unifier. To unify two
such patterns, the intersection of two non-terminals should be computed, which reduces
to the problem of computing the intersection of tree automata, for which there is no
efficient algorithm (Comon et al. 2007). Instead a conservative check is used at the time
of unification. When unifying a non-terminal with another pattern, we attempt to unify
the pattern with each production of the non-terminal, replacing any embedded non-
terminal references with the pattern . We require that at least one of the unifications
succeeds. Because this is not a complete check for pattern intersection, we save the
names of the non-terminals as extra information embedded in the constraint store until
the entire generation process is complete. Then, once we generate a concrete term, we
check to see if any of the non-terminals would have been violated (using a matching
algorithm). This means that we can get failures at this stage of generation, but it tends
not to happen very often for practical Redex models.3

4 Evaluating the Generator

We evaluate the generator in two ways. First, we compare its effectiveness against the
standard Redex generator on Redex’s benchmark suite. Second, we compare it against
the best known hand-tuned typed term generator.

4.1 The Redex Benchmark

Our first effort at evaluating the effectiveness of the derivation generator compares it
to the existing random expression generator included with Redex (Klein and Findler
2009), which we term the “ad hoc” generation strategy in what follows. This generator
is based on the method of recursively unfolding non-terminals in a grammar.

To compare the two generators, we used the Redex Benchmark (Findler et al. 2014),
a suite of buggy models developed specifically to evaluate methods of automated testing
for Redex. Models included in the benchmark define a soundness property and come in
a number of different versions, each of which introduces a single bug that can violate
the soundness property into the model. Most models are of programming languages
and most soundness properties are type-soundness. For each version of each model, we
define one soundness property and two generators, one using the method explained in
this paper and one using Redex’s ad hoc generation strategy. For a single test run, we
pair a generator with its soundness property and repeatedly generate test cases using the
generator, testing them with the soundness property, and tracking the intervals between
instances where the test case causes the soundness property to fail, exposing the bug.

3 To be more precise, on the Redex benchmark (see section 4.1) such failures occur on all
“delim-cont” models 2.9±1.1% of the time, on all “poly-stlc” models 3.3±0.3% of the time,
on the “rvm-6” model 8.6±2.9% of the time, and are not observed on the other models.



Making Random Judgments: Automatically Generating Well-Typed Terms 397

Fig. 10. Performance results by individual bug on the Redex Benchmark

For this study, each run continued for either 24 hours4 or until the uncertainty in the
average interval between such counterexamples became acceptably small.

This study used 6 different models, each of which has between 3 and 9 different bugs
introduced into it, for a total of 40 different bugs. The models in the benchmark come
from a number of different sources, some synthesized based on our experience for the
benchmark, and some drawn from outside sources or pre-existing efforts in Redex. The
latter are based on Appel et al. (2012)’s list machine benchmark, the model of contracts
for delimited continuations developed by Takikawa et al. (2013), and the model of the
Racket virtual machine from Klein et al. (2013). Detailed descriptions of all the models
and bugs in the benchmark can be found in Findler et al. (2014).

Figure 10 summarizes the results of the comparison on a per-bug basis. The y-axis is
time in seconds, and for each bug we plot the average time it took each generator to find
a counterexample. The bugs are arranged along the x-axis, sorted by the average time
for both generators to find the bug. The error bars represent 95% confidence intervals
in the average, and in all cases the errors are small enough to clearly differentiate the
averages. The two blank columns on the right are bugs that neither generator was able
to find. The vertical scale is logarithmic, and the average time ranges from a tenth of a
second to several hours, an extremely wide range in the rarity of counterexamples.

To depict more clearly the relative testing effectiveness of the two generation meth-
ods, we plot our data slightly differently in figure 11. Here we show time in seconds

4 With one exception: we ran the derivation generator on “rvm-3” for a total of 32 days of
processor time to reduce its uncertainty.



398 B. Fetscher et al.

Fig. 11. Random testing performance of the derivation generator vs. ad hoc random generation
on the Redex Benchmark

on the x-axis (the y-axis from figure 10, again on a log scale), and the total number of
bugs found for each point in time on the y-axis. This plot makes it clear that the deriva-
tion generator is much more effective, finding more bugs more quickly at almost every
time scale. In fact, an order of magnitude or more on the time scale separates the two
generators for almost the entire plot.

While the derivation generator is more effective when it is used, it cannot be used
with every Redex model, unlike the ad hoc generator. There are three broad categories
of models to which it may not apply. First, the language may not have a type system,
or the type system’s implementation might use constructs that the generator fundamen-
tally cannot handle (like escaping to Racket code to run arbitrary computation). Second,
the generator currently cannot handle ellipses (aka repetition or Kleene star); we hope
to someday figure out how to generalize our solver to support those patterns, however.
And finally, some judgment forms thwart our termination heuristics. Specifically, our
heuristics make the assumptions that the cost of completing the derivation is propor-
tional to the size of the goal stack, and that terminal nodes in the search space are
uniformly distributed. Typically these are safe assumptions, but not always; the bench-
mark’s “let-poly” model, for example, is a CPS-transformed type judgment, embedding
the search’s continuation in the model, and breaking the first assumption.

4.2 Testing GHC: A Comparison with a Specialized Generator

We also compared the derivation generator we developed for Redex to a specialized
generator of typed terms. This generator was designed to be used for differential testing
of GHC, and generates terms for a specific variant of the lambda calculus with poly-
morphic constants, chosen to be close to the compiler’s intermediate language. The
generator is implemented using Quickcheck (Claessen and Hughes 2000), and is able
to leverage its extensive support for writing random test case generators. Writing a



Making Random Judgments: Automatically Generating Well-Typed Terms 399

generator for well-typed terms in this context required significant effort, essentially im-
plementing a function from types to terms in Quickcheck. The effort yielded significant
benefit, however, as implementing the entire generator from the ground up provided
many opportunities for specialized optimizations, such as variations of type rules that
are more likely to succeed, or varying the frequency with which different constants are
chosen. Pałka (2012) discusses the details.

Generator Terms/Ctrex. Gen. Time (s) Check Time (s) Time/Ctrex. (s)
Property 1
Hand-written (size: 50) 25K 0.007 0.009 413.79
Hand-written (size: 70) 16K 0.009 0.01 293.06
Hand-written (size: 90) 12K 0.011 0.01 260.65
Redex poly (depth: 6) ∞ 0.361 0.008 ∞
Redex poly (depth: 7) ∞ 0.522 0.009 ∞
Redex poly (depth: 8)* 4000K 0.63 0.008 2549K
Redex non-poly (depth: 6)* 500K 0.038 0.008 23K
Redex non-poly (depth: 7) 668 0.082 0.01 61.33
Redex non-poly (depth: 8) 320 0.076 0.01 27.29
Property 2
Hand-written (size: 50) 100K 0.005 0.007 1K
Hand-written (size: 70) 125K 0.007 0.008 2K
Hand-written (size: 90) 83K 0.009 0.009 2K
Redex poly (depth: 6) ∞ 0.306 0.005 ∞
Redex poly (depth: 7) ∞ 0.447 0.005 ∞
Redex poly (depth: 8) ∞ 0.588 0.005 ∞
Redex non-poly (depth: 6) ∞ 0.059 0.005 ∞
Redex non-poly (depth: 7) ∞ 0.17 0.01 ∞
Redex non-poly (depth: 8) ∞ 0.142 0.008 ∞
Redex non-poly (depth: 10)* 4000K 0.196 0.01 823K

Fig. 12. Comparison of the derivation generator and a hand-written typed term generator. ∞
indicates runs where no counterexamples were found. Runs marked with * found only one coun-
terexample, which gives low confidence to their figures.

Implementing this language in Redex was easy: we were able to port the formal
description in Pałka (2012) directly into Redex with little difficulty. Once a type sys-
tem is defined in Redex we can use the derivation generator immediately to generate
well-typed terms. Such an automatically derived generator is likely to make some per-
formance tradeoffs versus a specialized one, and this comparison gave us an excellent
opportunity to investigate those.

We compared the generators by testing two of the properties used in Pałka (2012),
and using same baseline version of the GHC (7.3.20111013) that was used there. Prop-
erty 1 checks whether turning on optimization influences the strictness of the compiled
Haskell code. The property fails if the compiled function is less strict with optimization
turned on. Property 2 observes the order of evaluation, and fails if optimized code has
a different order of evaluation compared to unoptimized code.



400 B. Fetscher et al.

Fig. 13. Histograms of the sizes (number of internal nodes) of terms produced by the different
runs. The vertical scale of each plot is one twentieth of the total number of terms in that run.

Counterexamples from the first property demonstrate erroneous behavior of the com-
piler, as the strictness of Haskell expressions should not be influenced by optimization.
In contrast, changing the order of evaluation is allowed for a Haskell compiler to some
extent, so counterexamples from the second property usually demonstrate interesting
cases of the compiler behavior, rather than bugs.

Figure 12 summarizes the results of our comparison of the two generators. Each row
represents a run of one of the generators, with a few varying parameters. We refer to
Pałka (2012)’s generator as “hand-written.” It takes a size parameter, which we varied
over 50, 70, and 90 for each property. “Redex poly” is our initial implementation of
this system in the Redex, the direct translation of the language from Pałka (2012). The
Redex generator takes a depth parameter, which we vary over 6,7,8, and, in one case, 10.
The depths are chosen so that both generators target terms of similar size.5 (Figure 13
compares generated terms at targets of size 90 and depth 8). “Redex non-poly” is a
modified version of our initial implementation, the details of which we discuss below.
The columns show approximately how many tries it took to find a counterexample,
the average time to generate a term, the average time to check a term, and finally the
average time per counterexample over the entire run. Note that the goal type of terms
used to test the two properties differs, which may affect generation time for otherwise
identical generators.

A generator based on our initial Redex implementation was able to find counterex-
amples for only one of the properties, and did so and at significantly slower rate than
the hand-written generator. The hand-written generator performed best when targeting
a size of 90, the largest, on both properties. Likewise, Redex was only able to find coun-

5 Although we are able to generate terms of larger depth, the runtime increases quickly with
the depth. One possible explanation is that well-typed terms become very sparse as term size
increases. Grygiel and Lescanne (2013) show how scarce well-typed terms are even for simple
types. In our experience polymorphism exacerbates this problem.



Making Random Judgments: Automatically Generating Well-Typed Terms 401

terexamples when targeting the largest depth on property one. There, the hand-written
generator was able to find a counterexample every 12K terms, about once every 260
seconds. The Redex generator both found counterexamples much less frequently, at
one in 4000K, and generated terms several orders of magnitude more slowly. Property
two was more difficult for the hand-written generator, and our first try in Redex was
unable to find any counterexamples there.

Comparing the test cases from both generators, we found that Redex was producing
significantly smaller terms than the hand-written generator. The left two histograms in
figure 13 compare the size distributions, which show that most of the terms made by
the hand-written generator are larger than almost all of the terms that Redex produced
(most of which are clumped below a size of 25). The majority of counterexamples we
were able to produce with the hand-written generator fell in this larger range.

Digging deeper, we found that Redex’s generator was backtracking an excessive
amount. This directly affects the speed at which terms are generated, and it also causes
the generator to fail more often because the search limits discussed in section 3.3 are
exceeded. Finally, it skews the distribution toward smaller terms because these failures
become more likely as the size of the search space expands. We hypothesized that the
backtracking was caused by making doomed choices when instantiating polymorphic
types and only discovering that much later in the search, causing it to get stuck in
expensive backtracking cycles. The hand-written generator avoids such problems by
encoding model-specific knowledge in heuristics.

To test this hypothesis, we built a new Redex model identical to the first except with
a pre-instantiated set of constants, removing polymorphism. We picked the 40 most
common instantiations from a set of counterexamples to both models generated by the
hand-written generator. Runs based on this model are referred to as “Redex non-poly”
in both figure 12 and figure 13.

As figure 13 shows, we get a much better size distribution with the non-polymorphic
model, comparable to the hand-written generator’s distribution. A look at the second
column of figure 12 shows that this model produces terms much faster than the first try
in Redex, though still slower than the hand-written generator. This model’s counterex-
ample rate is especially interesting. For property one, it ranges from one in 500K terms
at depth 6 to, astonishingly, one in 320 at depth 8, providing more evidence that larger
terms make better test cases. This success rate is also much better than that of the hand-
written generator, and in fact, it was this model that was most effective on property 1,
finding a counterexample approximately every 30 seconds, significantly faster than the
hand-written generator. Thus, it is interesting that it did much worse on property 2, only
finding a counterexample once every 4000K terms, and at very large time intervals. We
don’t presently know how to explain this discrepancy.

Overall, our conclusion is that our generator is not competitive with the hand-tuned
generator when it has to cope with polymorphism. Polymorphism, in turn, is problem-
atic because it requires the generator to make parallel choices that must match up, but
where the generator does not discover that those choices must match until much later
in the derivation. Because the choice point is far from the place where the constraint
is discovered, the generator spends much of its time backtracking. The improvement
in generation speed for the Redex generator when removing polymorphism provides



402 B. Fetscher et al.

evidence for our explanation of what makes generating these terms difficult. The ease
with which we were able to implement this language in Redex, and as a result, conduct
this experiment, speaks to the value of a general-purpose generator.

5 Related Work

We first address work which our constraint solver draws on, and then related work in
the field of random testing.

5.1 Disequations

Colmerauer (1984) is the first to introduce a method of solving disequational constraints
of the type we use, but his work handles only existentially quantified variables. Like
him, we too use the unification algorithm to simplify disequations.

Comon and Lescanne (1989) address the more general problem of solving all first
order logical formulas where equality is the only predicate, which they term “equa-
tional problems,” of which our constraints are a subset. They present a set of rules as
rewrites on such formulas to transform them into solved forms. We believe our solver
is essentially a way of factoring a stand-alone unifier out of their rules.

Byrd (2009) notes that a related form of disequality constraints has been available
in many Prolog implementations and constraint programming systems since Prolog II.
Notably, miniKanren (Byrd 2009) and cKanren (Alvis et al. 2011) implement them in a
way similar to us, using unification as a subroutine. However, as far as we know, none
of these systems supports the universally quantified constraints we require.

We are currently investigating extending our solver to handle Redex’s repeat pat-
terns. In this area, we note Kutsia (2002)’s work on sequence unification, which handles
patterns similar to Redex’s.

5.2 Random Testing

The most closely related work to ours is Claessen et al. (2014)’s typed term generator.
Their work addresses specifically the problem of generating well-formed lambda terms
based an implementation of a type-checker (in Haskell). They measured their approach
against property 1 from section 4.2 and it performs better than Redex’s ’poly’ generator,
but they are working from a lower-level specification of the type system than we are.
Also, their approach observes the order of evaluation of the predicate, and prunes the
search space based on that; it does not use constraint solving.

Quickcheck (Claessen and Hughes 2000) is a widely-used library for random test-
ing in Haskell. It provides combinators supporting the definition of testable properties,
random generators, and analysis of results. Although Quickcheck’s approach is much
more general than the one taken here, it has been used to implement a random generator
for well-typed terms robust enough to find bugs in GHC (Pałka 2012). This generator
provides a good contrast to the approach of this work, as it was implemented by hand,
albeit with the assistance of a powerful test framework. Significant effort was spent on
adjusting the distribution of terms and optimization, even adjusting the type system in



Making Random Judgments: Automatically Generating Well-Typed Terms 403

clever ways. Our approach, on the other hand, is to provide a straightforward way to
implement a test generator. The relationship to Pałka’s work is discussed in more detail
in section 4.2.

Random program generation for testing purposes is not a new idea and goes back
at least to Hanford (1970), who details the development and application of the “syn-
tax machine”, a generator of random program expressions. The tool was intended for
testing compilers, a common target for this type of random generation. Other uses of
random testing for compiler testing throughout the years are discussed in Bourjarwah
and Saleh (1997)’s survey.

In the area of random testing for compilers, of special note is Csmith (Yang et al.
2011), a highly effective tool for generating C programs for compiler testing. Csmith
generates C programs that avoid undefined or unspecified behavior. These programs
are then used for differential testing, where the output of a given program is compared
across several compilers and levels of optimization, so that if the results differ, at least
one of test targets must contain a bug. Csmith represents a significant development
effort at 40,000+ lines of C++ and the programs it generates are finely tuned to be
effective at finding bugs based on several years of experience. This approach has been
effective, finding over 300 bugs in mainstream compilers as of 2011.

Efficient random generation of program terms has seen some interesting advances in
previous years, much of which focuses on enumerations. Feat (Duregard et al. 2012),
or “Functional Enumeration of Algebraic Types,” is a Haskell library that exhaustively
enumerates a datatype’s possible values. The enumeration is made very efficient by
memoising cardinality metadata, which makes it practical to access values that have
very large indexes. The enumeration also weights all terms equally, so a random sample
of values can in some sense be said to have a more uniform distribution. Feat was
used to test Template Haskell by generating AST values, and compared favorably with
Smallcheck in terms of its ability to generate terms above a certain size. (QuickCheck
was excluded from this particular case study because it was “very difficult” to write
a QuickCheck generator for “mutual recursive datatypes of this size”, the size being
around 80 constructors. This provides some insight into the effort involved in writing
the generator described in Pałka (2012).)

Another, more specialized, approach to enumerations was taken by Grygiel and
Lescanne (2013). Their work addresses specifically the problem of enumerating well-
formed lambda terms. (Terms where all variables are bound.) They present a variety
of combinatorial results on lambda terms, notably some about the extreme scarcity of
simply-typable terms among closed terms. As a by-product they get an efficient gen-
erator for closed lambda terms. To generate typed terms their approach is simply to
filter the closed terms with a typechecker. This approach is somewhat inefficient (as
one would expect due to the rarity of typed terms) but it does provide a uniform distri-
bution.

Instead of enumerating terms, Kennedy and Vytiniotis (2012) develop a bit-coding
scheme where every string of bits either corresponds to a term or is the prefix of some
term that does. Their approach is quite general and can be used to encode many different
types. They are able to encode a lambda calculi with polymorphically-typed constants
and discuss its possible extension to even more challenging languages such as System-



404 B. Fetscher et al.

F. This method cannot be used for random generation because only bit-strings that have
a prefix-closure property correspond to well-formed terms.

6 Conclusion

As this paper demonstrates, random test-case generation is an effective tool for find-
ing bugs in formal models. Even better, this work demonstrates how to build a generic
random generator that is competitive with hand-tuned generators. We believe that em-
ploying more such lightweight techniques for debugging formal models can help the re-
search community more effectively communicate research results, both with each other
and with the wider world. Eliminating bugs from our models makes our results more
approachable, as it means that our papers are less likely to contain frustrating obstacles
that discourage newcomers.

Acknowledgments. Thanks to Casey Klein for help getting this project started and for
an initial prototype implementation, to Asumu Takikawa for his help with the delimited
continuations model, and to Larry Henschen for his help with earlier versions of this
work. Thanks to Spencer Florence for helpful discussions and comments on the writing.
Thanks to Hai Zhou, Li Li, Yuankai Chen, and Peng Kang for graciously sharing their
compute servers with us. Thanks to the Ministry of Science and Technology of the
R.O.C. for their support (under Contract MOST 103-2811-E-002-015) when Findler
visited the CSIE department at National Taiwan University. Thanks also to the NSF for
their support of this work.

This paper is available online at:

http://users.eecs.northwestern.edu/~baf111/random-judgments/

along with Redex models for all of the definitions in the paper and the raw data used to
generate all of the plots.

References

1. Claire, E., Alvis, J.J., Willcock, K.M., Carter, W.E.: Byrd, and Daniel P. Friedman. cKanren:
miniKanren with Constraints. In: Proc. Scheme and Functional Programming (2011)

2. Appel, A.W., Dockins, R., Leroy, X.: A list-machine benchmark for mechanized metatheory.
Journal of Automated Reasoning 49(3), 453–491 (2012)

3. Baader, F., Snyder, W.: Unification Theory. In: Handbook of Automated Reasoning, vol. 1,
pp. 445–532 (2001)

4. Bourjarwah, A.S., Saleh, K.: Compiler test case generation methods: a survey and assess-
ment. Information & Software Technology 39(9), 617–625 (1997)

5. Byrd, W.E.: Relational Programming in miniKanren: Techniques, Applications, and Imple-
mentations. PhD dissertation, Indiana University (2009)

6. Claessen, K., Duregard, J., Palka, M.H.: Generating Constrained Random Data with Uniform
Distribution. In: Proc. Intl. Symp. Functional and Logic Programming, pp. 18–34 (2014)

7. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. In: Proc. ACM Intl. Conf. Functional Programming, pp. 268–279 (2000)

http://users.eecs.northwestern.edu/~baf111/random-judgments/


Making Random Judgments: Automatically Generating Well-Typed Terms 405

8. Colmerauer, A.: Equations and Inequations on Finite and Infinite Trees. In: Proc. Intl. Conf.
Fifth Generation Computing Systems, pp. 85–99 (1984)

9. Comon, H., Dauchet, M., Gilleron, R., Loding, C., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree Automata Techniques and Applications (2007),
http://www.grappa.univ-lille3.fr/tata

10. Comon, H., Lescanne, P.: Equational Problems and Disunification. Journal of Symbolic
Computation 7, 371–425 (1989)

11. Duregard, J., Jansson, P., Wang, M.: Feat: Functional Enumeration of Algebraic Types. In:
Proc. ACM SIGPLAN Haskell Wksp, pp. 61–72 (2012)

12. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex. MIT Press
(2010)

13. Fetscher, B.: The Random Generation of Well-Typed Terms. Northwestern University, NU-
EECS-14-05 (2014)

14. Findler, R.B., Klein, C., Fetscher, B.: The Redex Reference (2014),
http://docs.racket-lang.org/redex

15. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Functional Program-
ming 23(5), 594–628 (2013)

16. Hanford, K.V.: Automatic Generation of Test Cases. IBM Systems Journal 9(4), 244–257
(1970)

17. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The Semantics of Constraint Logic Pro-
gramming. Journal of Logic Programming 37(1-3), 1–46 (1998)

18. Kennedy, A.J., Vytiniotis, D.: Every bit counts: The binary representation of typed data and
programs. J. Functional Programming 22, 529–573 (2012)

19. Klein, C.: Experience with Randomized Testing in Programming Language Metatheory. MS
dissertation, Northwestern University (2009)

20. Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt, M., McCarthy, J.A.,
Rafkind, J., Tobin-Hochstadt, S., Findler, R.B.: Run Your Research: On the Effectiveness of
Lightweight Mechanization. In: Proc. ACM Symp. Principles of Programming Languages
(2012)

21. Klein, C., Findler, R.B.: Randomized Testing in PLT Redex. In: Proc. Scheme and Functional
Programming, pp. 26–36 (2009)

22. Klein, C., Findler, R.B., Flatt, M.: The Racket virtual machine and randomized testing. In:
Higher-Order and Symbolic Computation (2013)

23. Kutsia, T.: Unification with Sequence Symbols and Flexible Arity Symbols and Its Extension
with Pattern-Terms. In: Proc. Intl. Conf. Artificial Intelligence, Automated Reasoning, and
Symbolic Computation, pp. 290–304 (2002)

24. Pałka, M.H.: Testing an Optimising Compiler by Generating Random Lambda Terms. Licen-
tiate dissertation, Chalmers University of Technology, Göteborg (2012)

25. Pałka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an Optimising Compiler by Gener-
ating Random Lambda Terms. In: Proc. International Workshop on Automation of Software
Test (2011)

26. Takikawa, A., Strickland, T.S., Tobin-Hochstadt, S.: Constraining Delimited Control with
Contracts. In: Proc. Euro. Symp. Programming, pp. 229–248 (2013)

27. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and Understanding Bugs in C Compilers. In:
Proc. ACM Conf. Programming Language Design and Implementation, pp. 283–294 (2011)

http://www.grappa.univ-lille3.fr/tata
http://docs.racket-lang.org/redex

	Making Random Judgments: Automatically Generating Well-Typed Terms from the Definition of a Type-System
	1 Introduction
	2 Example: Generating a Well-Typed Term
	3 Derivation Generation in Detail
	3.1 Compiling Metafunctions
	3.2 The Constraint Solver
	3.3 Search Heuristics
	3.4 A Richer Pattern Language

	4 Evaluating the Generator
	4.1 The Redex Benchmark
	4.2 Testing GHC: A Comparison with a Specialized Generator

	5 Related Work
	5.1 Disequations
	5.2 Random Testing

	6 Conclusion
	References




