Probabilistic Programs as Spreadsheet Queries*

Andrew D. Gordon!2, Claudio Russo!, Marcin Szymczak2, Johannes Borgstr6m3,
Nicolas Rolland', Thore Graepel1 , and Daniel Tarlow!

'Microsoft Research, Cambridge, United Kingdom
2University of Edinburgh, Edinburgh, United Kingdom
3Uppsala University, Uppsala, Sweden

Abstract. We describe the design, semantics, and implementation of a proba-
bilistic programming language where programs are spreadsheet queries. Given
an input database consisting of tables held in a spreadsheet, a query constructs
a probabilistic model conditioned by the spreadsheet data, and returns an output
database determined by inference. This work extends probabilistic programming
systems in three novel aspects: (1) embedding in spreadsheets, (2) dependently
typed functions, and (3) typed distinction between random and query variables.
It empowers users with knowledge of statistical modelling to do inference simply
by editing textual annotations within their spreadsheets, with no other coding.

1 Spreadsheets and Typeful Probabilistic Programming

Probabilistic programming systems [11, 14] enable a developer to write a short piece of
code that models a dataset, and then to rely on a compiler to produce efficient inference
code to learn parameters of the model and to make predictions. Still, a great many of the
world’s datasets are held in spreadsheets, and accessed by users who are not developers.
How can spreadsheet users reap the benefits of probabilistic programming systems?

Our first motivation here is to describe an answer, based on an overhaul of Tabular
[13], a probabilistic language based on annotating the schema of a relational database.
The original Tabular is a standalone application that runs fixed queries on a relational
database (Microsoft Access). We began the present work by re-implementing Tabular
within Microsoft Excel, with the data and program held in spreadsheets.

The conventional view is that the purpose of a probabilistic program is to define the
random variables whose marginals are to be determined (as in the query-by-missing-
value of original Tabular). In our experience with spreadsheets, we initially took this
view, and relied on Excel formulas, separate from the probabilistic program, for post-
processing tasks such as computing the mode (most likely value) of a distribution, or
deciding on an action (whether or not to place a bet, say). We found, to our surprise,
that combining Tabular models and Excel formulas is error-prone and cumbersome,
particularly when the sizes of tables change, the parameters of the model change, or we
simply need to update a formula for every row of a column.

In response, our new design contributes the principle that a probabilistic program de-
fines a pseudo-deterministic query on data. The query is specified in terms of three sorts

* This work was supported by Microsoft Research through its PhD Scholarship Programme.

(© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 1-25, 2015.
DOI: 10.1007/978-3-662-46669-8 1

2 A.D. Gordon et al.

of variable: (1) deterministic variables holding concrete input data; (2) nondeterminis-
tic random variables constituting the probabilistic model conditioned on input data; and
(3) pseudo-deterministic query variables defining the result of the program (instead of
using Excel formulas). Random variables are defined by draws from a set of builtin dis-
tributions. Query variables are defined via an infer primitive that returns the marginal
posterior distributions of random variables. For instance, given a random variable of
Boolean type, infer returns the probability p that the variable is true. In theory, infer is
deterministic—it has an exact semantics in terms of measure theory; in practice, infer
(and hence the whole query) is only pseudo-deterministic, as implementations almost
always perform approximate or nondeterministic inference. We have many queries as
evidence that post-processing can be incorporated into the language.

Our second motivation is to make a case for typeful probabilistic programming in
general, with evidence from our experience of overhauling Tabular for spreadsheets.
Cardelli [5] identifies the programming style based on widespread use of mechanically-
checked types as typeful programming. Probabilistic languages that are embedded DSLs,
such as HANSEI [17], Fun [2], and Factorie [19], are already typeful in that they inherit
types from their host languages, while standalone languages, such as BUGS [9] or Stan
[28], have value-indexed data schemas (but no user-defined functions). Still, we find
that more sophisticated forms of type are useful in probabilistic modelling.

We make two general contributions to typeful probabilistic programming.

(1) Value-indexed function types usefully organise user-defined components, such as
conjugate pairs, in probabilistic programming languages.

We allow value indexes in types to indicate the sizes of integer ranges and of array
dimensions. We add value-indexed function types for user-defined functions, with a
grid-based syntax. The paper has examples of user-defined functions (such as Action
in Section 6) showing their utility beyond the fixed repertoire of conjugate pairs in the
original Tabular. An important difficulty is to find a syntax for functions and their types
that fits with the grid-based paradigm of spreadsheets.

(2) A type-based information-flow analysis usefully distinguishes the stochastic and
deterministic parts of a probabilistic program.

To track the three sorts of variable, each type belongs to a space indicating whether
it is: (det) deterministic input data, (rnd) a non-deterministic random variable defin-
ing the probabilistic model of the data, or (qry) a pseudo-deterministic query-variable
defining a program result. Spaces allow a single language to define both model and
query, while the type system governs flows between the spaces: data flows from rnd to
gry via infer, but to ensure that a query needs only a single run of probabilistic infer-
ence, there are no flows from gry to rnd. There is an analogy between our spaces and
levels in information flow systems: det-space is like a level of trusted data; rnd-space
is like a level of untrusted data that is tainted by randomness; and qry is like a level of
trusted data that includes untrusted data explicitly endorsed by infer.

The benefits of spaces include: (1) to document the role of variables, (2) to slice a
program into the probabilistic model versus the result query, and (3) to prevent acci-
dental errors. For instance, only variables in det-space may appear as indexes in types
to guarantee that our models can be compiled to the finite factor graphs supported by
inference backends such as Infer. NET [20].

Probabilistic Programs as Spreadsheet Queries 3

This paper defines the syntax, semantics, and implementation of a new, more typeful
Tabular. Our implementation is a downloadable add-in for Excel. For execution on data
in a spreadsheet, a Tabular program is sliced into (1) an Infer. NET model for inference,
and (2) a C# program to compute the results to be returned to the spreadsheet.

The original semantics of Tabular uses the higher-order model-learner pattern [12],
based on a separate metalanguage. Given a Tabular schema S and an input database DB
that matches S, our semantics consists of two algorithms.

(1) An algorithm CoreSchema(S) applies a set of source-to-source reductions on S to
yield S', which is in a core form of Tabular without user-defined functions and some
other features.

(2) An algorithm CoreQuery(S',DB) first constructs a probabilistic model based on
the rnd-space variables in S’ conditioned by DB, and then evaluates the qry-space
variables in S’ to assemble an output database DB'.

Our main technical results about the semantics are as follows.

(1) Theorem 1 establishes that CoreSchema(S) yields the unique core form S’ of a
well-typed schema S, as a corollary of standard properties of our reduction relation
with respect to the type system (Proposition 1, Proposition 2, and Proposition 3).

(2) Theorem 2 establishes pre- and post-conditions of the input and output databases
when DB’ = CoreQuery(S', DB).

Beyond theory, the paper describes many examples of the new typeful features of
Tabular, including a detailed account of Bayesian Decision Theory, an important ap-
plication of probabilistic programming, not possible in the original form of Tabular. A
language like IBAL or Figaro allows for rational decision-making, but via decision-
specific language features, rather than in the core expression language. We present a
numeric comparison of a decision theory problem expressed in Tabular versus the same
problem expressed in C# with direct calls to Infer.NET, showing that we pay very little
in performance in return for a much more succinct spreadsheet program.

2 Functions and Queries, by Example

Primer: Discrete and Dirichlet Distributions. To begin to describe the new features
of Tabular, we recall a couple of standard distributions. If array V = [po;...;p,—1] is a
probability vector (that s, each p; is a probability and they sum to 1) then Discrete[n](V)
is the discrete distribution that yields a sample i € 0..n — 1 with probability p;. The dis-
tribution Discrete[2]([;; 5]) models a coin that we know to be fair. If we are uncertain
whether the coin is fair, we need a distribution on probability vectors to represent our
uncertainty. The distribution Dirichlet[n]([co;. . .;cn—1]) on a probability vector V repre-
sents our uncertainty after observing a count ¢; — 1 of samples of i from Discrete[n](V)
fori € 0..n — 1. We omit the formal definition, but discuss the case n = 2.

A probability vector V drawn from Dirichlet[2]([t + 1;4 + 1]) represents our un-
certainty about the bias of a coin after observing ¢ tails and & heads. It follows that
V = [1 — p; p] where p is the probability of heads. The expected value of p is , fhtb
and the variance of p diminishes as ¢ and % increase. If t = h = 0, the expected value
is é and p is uniformly distributed on the unit interval. If # = h = 10 say, the expected

value remains é but p is much more likely near the middle than the ends of the interval.

4 A.D. Gordon et al.

Review: Probabilistic Schemas in Tabular. Suppose we have a table named Coins with
a column Flip containing a series of coin flips and wish to infer the bias of the coin. (The
syntax [for i < 2 — 1.0] is an array comprehension, in this case returning [1.0,1.0].)

table Coins (original Tabular)

V real]] static output Dirichlet[2]([for i < 2 —1.0])

Flip int output Discrete[2](V)

The model above (in original Tabular up to keyword renaming) is read as a prob-
abilistic recipe for generating the coin flips from the unknown parameter V, condi-
tioned on the actual dataset. The first line creates a random variable V = [1 — p; p]
from Dirichlet[2]([1;1]), which amounts to choosing the probability p of heads uni-
formly from the unit interval. The second line creates a random variable Flip from
Discrete[n](V) for each row of the table and conditions the variable in each row to equal
the actual observed coin flip, if it is present. Each Tabular variable is either at static- or
inst-level. A static-variable occurs just once per table, whereas an inst-variable occurs
for each row of the table. The default level is inst, so Flip is at inst-level.

Now, suppose the data for the column Flip is [1;1;0]; the prior distribution of V
is updated by observing 2 heads and 1 tails, to yield the posterior Dirichlet[2]([2;3]),
which has mean ; Given our example model, the fixed queries of this initial form of
Tabular compute the posterior distribution of V, and write the resulting distributions as
strings into the spreadsheet, as shown below. The missing value in cell B6 of the Flip
column is predicted by the distribution in cell M6: 60% chance of 1, 40% chance of 0.
(Cells E2 and E3 show dependent types of our new design, not of the original Tabular.)

A B C| b E F G H I 1 K L M
1 |Coins Coins posterior_Coins Log Evidence Coins
2 - M neal[z] sta_til_: output Dirix_:_hlet_[zl(_[f_qr i<_2 = 10]) Dirichlet(2 3) -2.48490665 -
3 0 1] Flip mod(2) output Discrete[2](V) 0 Discrete(1=10=0)
4 1 il 1 Discrete(1=1 0=0)
5 2 0 2 Discrete(0=1 1=0)
6 3 3 Discrete(1=0.6 0=0.4),

New Features of Tabular. Our initial experience with the re-implementation shows that
writing probabilistic programs in spreadsheets is viable but suggests three new language
requirements, explained in the remainder of this section.

(1) User-defined functions for abstraction (to generalize the fixed repertoire of primi-
tive models in the original design).

(2) User-defined queries to control how parameters and predictions are inferred from
the model and returned as results (rather than simply dumping raw strings from
fixed queries).

(3) Value-indexed dependent types (to catch errors with vectors, matrices, and integer
ranges, and help with compilation).

(1) User-Defined Functions. The Coins example shows the common pattern of a dis-
crete distribution with a Dirichlet prior. We propose to write a function for such a pattern
as follows. It explicitly returns the ret output but also implicitly returns the V output.

fun CDiscrete

N int!det static input

R reallrnd static input

V real[N]lrnd static output Dirichlet[N]([for i < N —R])
ret mod(N)!rnd output Discrete[N](V)

Probabilistic Programs as Spreadsheet Queries 5

In a table description, input-attributes refer implicitly to fully observed columns in
the input database. On the other hand, a function is explicitly invoked using syntax
like CDiscrete(N = 2;R = 1), and the input-attributes N and R refer to the argument
expressions, passed call-by-value.

(2) User-Defined Queries. To support both the construction of probabilistic models for
inference, and the querying of results, we label each type with one of three spaces:

(1) det-space is for fully observed input data;

(2) rnd-space is for probabilistic models, conditioned by partially observed input data;

(3) qgry-space is for deterministic results queried from the inferred marginal distribu-
tions of rnd-space variables.

We organise the three spaces via the least partial order given by det < rnd and
det < gry, so as to induce a subtype relation on types. Moreover, to allow flows from
rnd-space to gry-space, an operator infer.D‘y,-(E) computes the parameter y; in qry-
space of the marginal distribution D(yy,...,y,) of an input E in rnd-space.

For example, here is a new model of our Coins table, using a call to CDiscrete to
model the coin flips in rnd-space, and to implicitly define a rnd-space variable V for
the bias of the coin. Assuming our model is conditioned by data [1;1;0], the marginal
distribution of V is Dirichlet[2]([2;3]) where [2;3] is the counts-parameter. Hence, the

call infer.Dirichlet[2].counts(V) yields [2;3], and the query returns the mean 3.
table Coins

Flip mod(2)!rnd output CDiscrete(N=2, R=1.0)(x*returns Flip and Flip Vx)
counts real[2]!qry static local infer.Dirichlet[2].counts(Flip V)

Mean reallqry static output counts[1]/(counts[1]+counts[0])

Our reduction relation rewrites this schema to the following core form.

table Coins

R real'rnd static local 1.0

Flip V real[2]!lrnd static output Dirichlet[2]([for i < 2 —R])
Flip mod(2)!rnd output Discrete[2](V)

counts real[2]!qry static local infer.Dirichlet[2].counts(Flip V)
Mean reallqry static output counts[1]/(counts[1]+counts[0])

(3) Simple Dependent Types. Our code has illustrated dependent types of statically-
sized arrays and integer ranges: values of T'[e] are arrays of T of size e, while values of
mod(e) are integers in the set 0..(e — 1). In both cases, the size ¢ must be a det-space
int. (Hence, the dependence of types on expressions is simple, and all sizes may be
resolved statically, given the sizes of tables.) The use of dependent types for arrays is
standard (as in Dependent ML [30]); the main subtlety in our probabilitic setting is the
need for spaces to ensure that indexes are deterministic.
Primitive distributions have dependent types:

Distributions: D, : [x; : T1,..., %0 : Tl(y1 1 Ui, ..., y0 1 Up) = T

Discreteg, : [N : int!det](probs : real!spc[N]) — mod(N)!rnd
Dirichletgyc : [N : int!det](counts : real!spc[N]) — (real!rnd)[N]

User-defined functions have dependent types written as grids, such as the following
type Qcpiscrete for CDiscrete:

6 A.D. Gordon et al.

N int!det static input

R reallrnd static input

V real[N]lrnd static output

ret mod(N)!rnd output

Finally, the table type for our whole model of the Coins table is the following grid.
It lists the rnd-space variables returned by CDiscrete as well as the explicitly defined
Mean. Attributes marked as local are private to a model or function, are identified up
to alpha-equivalence, and do not appear in types. Attributes marked as input or output
are binders, but are not identified up to alpha-equivalence, and are exported from tables
or functions. Their names must stay fixed because of references from other tables.
\Y, real[2]!rnd static output

Flip mod(2)!rnd output
Mean reallqry static output

3 Syntax of Tabular Enhanced with Functions and Queries

We describe the formal details of our revision of Tabular in this section. In the next,
Section 4, we show how features such as function applications may be eliminated by
reducing schemas to a core form with a direct semantics.

Column-Oriented Databases. Let t range over table names and ¢ range over attribute
names. We consider a database to be a pair DB = (0, ps;) consisting of a record of
tables &, = [t; — ; "€!"], and a valuation py, = [t; — sz; ‘'] holding the number of
rows sz; € N in each column of table #;. Each table 7; = [¢; — a; /El"mi} is a record of
attributes ;. An attribute is a value V tagged with a level . An attribute is normally a
whole column inst(V), where V is an array of length sz; and the level inst is short for
“instance”. It may also be a single value, static(V), a static attribute. The main purpose
of allowing static attributes is to return individual results (such as Mean in our Coins
example) from queries.

Databases, Tables, Attributes, and Values:

Sin = [t T €1 whole database

T o= [ci > a; €1 table in database

a:x=LV) attribute value: V with level ¢
Voe=2s| Vo, o, Vaoi] nullable value

¢, pc := static | inst level (static < inst)

For example, the data for our Coins example is DB = (i, ps;) Where &;, = [Coins —
[Flip — inst([1;1;0])]] and ps; = [Coins — 3].

In examples, we assume each table has an implicit primary key ID and that the keys
are in the range 0..sz; — 1. A value V may contain occurrences of “?”, signifying missing
data; we write known(V) if V contains no occurrence of ?. Otherwise, a value may be
an array, or a constant s: either a Boolean, integer, or real.

Syntax of Tabular Expressions and Schemas. An index expression e may be a variable
X or a constant, and may occur in types (as the size of an array, for instance). Given a
database DB = (i, ps;), sizeof(t) denotes the constant p,, (7). Attribute names ¢ (but

Probabilistic Programs as Spreadsheet Queries 7

not table names) may occur in index expressions as variables. A attribute type T can be
a scalar, a bounded non-negative integer or an array. Each type has an associated space
(which is akin to an information-flow level, but independent of the notion of level in
Tabular, introduced later on). (The type system is discussed in detail in Section 5.)

Index Expressions, Spaces and Dependent Types of Tabular:

e =x|s| sizeof(r) index expression

S ::=bool]| int | real scalar type

spc :=det | rnd | qry space

T,U ::=(S!spc) | (mod(e) !spc) | Tle] (attribute) type
space(S!spc) 2 spc space(T[e]) = space(T) space(mod(e) ! spc) £ spc

spe(T) = space() = spc

We write link(¢) as a shorthand for mod(sizeof(t)), for foreign keys to table .

The syntax of (full) expressions includes index expressions, plus deterministic and
random operations. We assume sets of deterministic functions g, and primitive distri-
butions D. These have type signatures, as illustrated for Discrete and Dirichlet in Sec-
tion2.In Dley,...,en)(Fi,...,F,), the arguments ey, ..., e, index the result type, while
Fi, ..., F, are parameters to the distribution. The operator infer.Dley, ..., en].y(E) is
described intuitively in Section 2. We write fv(T) and fv(E) for the sets of variables
occurring free in type T and expression E.

Expressions of Tabular:

E F = expression
e index expression
g(Er,....Ep) deterministic primitive g
Dley,....em|(Fi,...,Fy) random draw from distribution D
if E then F; else F» if-then-else
[El,....Ey] | E[F] array literal, lookup
[forx < e — F] for loop (scope of index x is F)
infer.Dley,...,en].y(E) parameter y of inferred marginal of E
E:tc dereference link E to instance of ¢
t.c dereference static attribute c of ¢

A Tabular schema is a relational schema with each attribute annotated not just with
atype T, but also with a level ¢, a visibility viz, and a model expression M.

Tabular Schemas:

Su=[tH=Ti);...;(ta=T,)] (database) schema

T ::= [coly;. . .;col,] table (or function)
coli=(c: T LvizM) attribute ¢ declaration
viz :=input | local | output visibility

M,N ::=¢€|E | Mlejgex < €size] | TR model expression

Ri=(c1=e1,...,cn=2¢y) function arguments

8 A.D. Gordon et al.

For (¢ : T £ viz M) to be well-formed, viz = input if and only if M = €. We only
consider well-formed declarations. The visibility viz indicates whether the attribute c is
given as an input, defined locally by the model expression M, or defined as an output
by the model expression M. When omitted, the level of an attribute defaults to inst.

Functions, Models, and Model Expressions. A challenge for this paper was to find a
syntax for functions that is compatible with the grid format of spreadsheets; we do so
by re-interpreting the syntax T for tables as also the syntax of functions. A function is a
table of the form T = [col;...;col,; (ret : T output E)]. A model is a function where
each col; is a local or an output. A model expression M denotes a model as follows:

— An expression E denotes the model that simply returns E.

— A function application T (¢ = ey,...,c, = e,) denotes the function T, but with
each of its inputs ¢; replaced by e;.

— An indexed model M[ejng.x < esize] denotes the model for M, but with any rnd
static attribute c replicated ey, times, as an array, and with references to ¢ replaced
by the lookup c[eingex]-

Formally, functions are embedded within our syntax of function applications T R. In
practice, our implementation supports separate function definitions written as fun f T,
such as CDiscrete in Section 1 and CG in Section 6. A function reference (within a
model expression) is written f R to stand for T R.

Indexed models appear in the original Tabular, while function applications are new.

Binders and Alpha-Equivalence. All attribute names ¢ are considered bound by their
declarations. The names of local attributes are identified up to alpha-equivalence. The
names of input and output attributes are considered as fixed identifiers (like the fields
of records) that export values from a table, and are not identified up to alpha-equivalence,
because changing their names would break references to them.

Let inputs(T) be the input attributes of table T, that is, the names cin (c: T £ input €).
Letlocals(T) be all the local attributes of table T, that is, the names c in (¢ : T £ local M).
Let outputs(T) be all the output attributes of table T, that is, the names ¢ in
(¢: T ¢ output M) plus outputs(M), where the latter consists of the union of outputs(T;)
for any applications of T; within M. Let dom(T) be the union inputs(T) Ulocals(T) U
outputs(T). Hence, the free variables fv(T) are given by:

fv((c: T Lviz M) :: T') £ fv(T) Ufv(M) U (fv(T") \ ({c} Uoutputs(M))) fv([]) = {}

4 Reducing Schemas to Core Tabular

We define reduction relations that explain the meaning of function calls and indexed
models by rewriting, and hence transforms any well-typed schema to a core form. The
reduction semantics allows us to understand indexed models, and also function calls,
within the Tabular syntax. Hence, this semantics is more direct and self-contained than
the original semantics of Tabular [13], based on translating to a semantic metalanguage.

Probabilistic Programs as Spreadsheet Queries 9

If all the attributes of a schema are simple expressions E instead of arbitrary model
expressions, we say it is in core form:

Core Attributes, Tables, and Schemas:

Core((c: T Linput g)) Core((c:T £local E)) Core((c:T ¢ outputE))
Core([col;;...;col,]) if Core(col;), ..., Core(col,)
Core([t; = T; '] if Core(T;) for eachi € 1..n

To help explain our reduction rules, consider the following function definition.

fun CG

M realldet static input

P real!det static input

Mean reallrnd static output GaussianFromMeanAndPrecision(M,P)

Prec reallrnd static output Gamma(1.0,1.0)

ret reallrnd output GaussianFromMeanAndPrecision(Mean,Prec)

The following mixture model, for a dataset consisting of durations and waiting times
for Old Faithful eruptions, uses three function applications and two indexed models.
Each row of the model belongs to one of two clusters, indicated by the attribute cluster;
the indexed models for duration and time give different means and precisions depend-
ing on the value of cluster. Since cluster is an output, Tabular allows missing values
in that column (and indeed they are all missing), but the qry-space assignment returns
the most likely cluster for each row as the result of the query.

table faithful

cluster mod(2)!rnd output CDiscrete(N=2, R=1.0)

duration reallrnd output CG(M=0.0, P=1.0)[cluster < 2]

time reallrnd output CG(M=60.0, P=1.0)[cluster < 2]
assignment mod(2)!qry output ArgMax(infer.Discrete[2].probs(cluster))

The relation T - R ~~», T| means that T; is the outcome of substituting the argu-
ments R for the input attributes of the function T, within an attribute named o. For
example, for the function application in the duration attribute, we have CG F [M =
0.0, p = 1.0] ~>guration CG1, where CG; is as follows:

duration Mean reallrnd static output GaussianFromMeanAndPrecision(0.0, 1.0)
duration Prec reallrnd static output Gamma(1.0, 1.0)
duration reallrnd output GaussianFromMeanAndPrecision(duration Mean, duration Prec)

The inductive definition follows. Rule (APPLY INPUT) instantiates an input ¢ with an
argument e; (APPLY SKIP) prefixes localand output attributes with 0; and (APPLY RET)
turns the ret attribute of the function into name o of the call-site.

Inductive Definition of Function Application: T R ~», T

(APPLY INPUT)
T{¢/c} =R~ Ty dom(T)Nfv(e) =2
(c:Tlinpute) Tk [c=e]::R~,T

(APPLY RET)

[(ret: T Lviz E)]F[] ~ [(0: T £viz E)]
(APPLY SKIP) (viz € {local,output})
T{o¢/c} FR~, Ty c ¢ tv(R)
(¢c:TUvizE)::THR~, (0 c: T LvizE) =T

10 A.D. Gordon et al.

Next, we define indexs(T,e1,e2) to be the outcome of indexing the static rnd or
gry variables of a core table T, that is, turning each declaration of such a variable into
an array of size e,, and each reference to such a variable into an array access indexed, at
static level, by a local replication index i, or, at instance level, by the random indexing
expression e; (or its mode at qry level). Both i and e; are integers bounded by e;.
Variables that require indexing are accumulated in the renaming substitution ¢ (which
is initially empty). For instance, CG[cluster < 2] expands to indexg (CGy, cluster,2):

duration Mean real[2]!rnd static output [for i < 2 — GaussianFromMeanAndPrecision(0.0, 1.0)]

duration Mean” reallrnd local duration Mean][cluster]

duration Prec real[2]!rnd static output [for i < 2 —Gamma(1.0, 1.0)]

duration Prec” reallrnd local duration Prec[cluster]

duration reallrnd output GaussianFromMeanAndPrecision(duration Mean”, duration Prec™)

Table Indexing: indexs (T, e;,e2)

indexg([],e1,e2) 2]
index((c: T Cinput &) :: T,ey,e;) = (c: T £ input €) :: (indexs(T, ey, e2))
indexg((c: T £vizE) :: T),ey,e;) =
(c:Tlea] Lviz[fori<ey— p(E)]):: (¢: T instlocal c[éy]) :: indexgee (T, e1,€2)
if viz # input, ¢ = static, ~det(T) where
p={d—d[i]|d € dom(o)},i¢fv(E)Ufv(o), ¢ ¢ dom(T)Ufv(T,0,c,e;,e2)
and é; = e if rnd(T'), and &; = ArgMax(infer.Discrete[e;].probs(e;)) if qry(T)

(¢:T tvizo(E)) ::indexs (T, e, e2)
if viz # input and (¢ = inst or det(T'))

Below, we give inductive definitions of reduction relations on schemas, tables,
and model expressions. There are congruence rules, plus (RED INDEX)
and (RED INDEX EXPR) for indexed models, and (RED APPL) for applications. The
latter needs additional operations T A ¢ and T A viz, to adjust the model T of function
body to the level ¢ and visibility viz of the call-site. These operators drop any output
attributes to local, if the callsite is local, and drop any inst-level attributes to static, if
the callsite is static.

— Consider the 2-point lattice static < inst. Let T A ¢ be the outcome of changing
each (c: T L. vizM)in T to (c: T (¢ A€) viz M). Hence, T Ainst is the identity,
while T A static drops inst variables to static variables.

— Consider the 2-point lattice local < output. Let T Aviz be the outcome of changing
each (c¢: T ¢ vize M) in T to (¢ : T ¢ (vize Aviz) M). Hence, T A output is the
identity, while T A local drops output variables to local variables.

Reduction Relations: S — S/, T — T/, M — M’

(RED SCHEMA LEFT) (RED SCHEMA RIGHT)

T—T S—S" Core(T)
t=T)=S—>@E=T)=S (¢=T)=S—>@E=T):¥

(RED MODEL) (RED TABLE RIGHT)
M—M T — T Core(col)

(c:TLlvizM) =T — (c:TLvizM') =T col:: T —col:: T’

Probabilistic Programs as Spreadsheet Queries 11

(RED INDEX INNER) (RED INDEX)

MM Core(T) fv(eindex;esize) N (dom(T)) = &

M[eindex < esize] —M [eindex < esize] (T R) [eindex < esize] — (indexg (Ta eindexvesize)) R
(RED APPL) (for Core(T))

(RED INDEX EXPR) ((TA¢) Aviz) =R ~, Ty

(locals(Ty) Uinputs(Ty)) N (fv(T") Udom(T")) = &

(0:T' Lviz(TR)) =T —T;@T

E[eindex < esize] —E

Tables in core form have no reductions. Moreover, the reduction relation is de-
terministic (we include the Core(T) condition on the rules (RED SCHEMA RIGHT),
(RED TABLE RIGHT), and (RED INDEX) to fix a particular reduction strategy).

By using the above rules to expand out the three function calls and the two model
expressions in the Old Faithful example, we obtain the core model below:

table faithful

cluster V real2]!rnd static output Dirichlet[2]([for i < 2 —1.0])

cluster mod(2)!rnd output Discrete[2](cluster V)

duration Mean real[2]!rnd static output [for i < 2 — GaussianFromMeanAndPrecision(0.0, 1.0)]
duration Mean” real!rnd local duration Mean|[cluster]

duration Prec real[2]!lrnd static output [for i < 2 —Gamma(1.0, 1.0)]

duration Prec” reallrnd local duration Prec[cluster]

duration reallrnd output GaussianFromMeanAndPrecision(duration Mean”, duration Prec™)
time Mean real[2]!rnd static output [for i < 2 — GaussianFromMeanAndPrecision(60.0, 1.0)]
time Mean” reallrnd local time Mean[cluster]

time Prec real[2]!rnd static output [for i < 2 —Gamma(1.0, 1.0)]

time Prec” reallrnd local time Prec|cluster]

time reallrnd output GaussianFromMeanAndPrecision(time Mean”, time Prec™)
assignment mod(2)!qry output ArgMax(infer.Discrete[2].probs(cluster))

Moreover, here are screen shots (best viewed in colour) of the data, model and infer-
ence results in Excel.

A B ¢ | b E F G H | 1
1 faithful
2 [duration time Old Faithful eruption data
3 1 36 79
120
4 2 1.8 54 -
5 3 3.333 74 : o *
80 2.
G 4 2283 62 @ . i
E 60 L) ()
7 5 4.533 85 £ R o %
8 6 2.883 55 4
9 7 47 88 20
10 8 36 85 0
11 9 1.95 51 £ + & = i ? i
b = e = duration
‘I A L B G 2 E

7 |function:CG

20 0 1 2 3 duration 4 s 6

12 A.D. Gordon et al.

7 | posterior_faithful faithful
8 [lit Dirichlet(98.03 176) >
[0] Gaussian(2.036, 0.0009324) Discrete(1=0.999981673477424
9 [1] Gaussian(4.287, 0.001017) 1 0-1.83265225764259E-05) Gaussian.PointMass(3.6) Gaussian.PointMass(79) 1
[0] Gamma(49.51, 0.2231) Discrete(0=1
10 e [1] Gamma(88.49, 0.06344) 2 1-5.99500933746004E-18) Gaussian.PointMass(1.8) Gaussian.PointMass(54) 0
[0] Gaussian(55.97, 0.2679) Discrete(1=0.999217126276896
1l [1] Gaussian(74.65, 0.2673) 3 0-0.000782873723104474) Gaussian.PointMass(3.333) Gaussian.PointMass(74) i
[0] Gamma(49.51, 0.0005689) Discrete(0=0.999999999918014
12 [1] Gamma(88.49, 0.000177) 4 1=8.19860393142277E-11) Gaussian.PointMass(2.283) Gaussian.PointMass(62) 0
Discrete(1=0.999999994867373
280 272 0=5.13262696023921E-09) Gaussian.PointMass(4.467) Gaussian.PointMass(74) 1

5 Dependent Type System and Semantics

5.1 Dependent Type System

The expressions of Tabular are based on the probabilistic language Fun [2]. We signifi-
cantly extend Fun by augmenting its types with the three spaces described in Section 1,
adding value-indexed dependent types including statically bounded integers and sized
arrays, and additional expressions including an operator for inference and operations
for referencing attributes of tables and their instances.

We use fable types Q both for functions and for concrete tables. When used to type a
function Q must satisfy the predicate fun(Q), which requires it to use the distinguished
name ret for the explicit result of the function (its final output). When used to type a
concrete table Q must satisfy the predicate table(Q), which ensures that types do not
depend on the contents of any input table ¢ (except for the sizes of tables). We only need
table(Q) to define a conformance relation on databases and schema types.

Table and Schema Types:

Q = [(c; : T; £; viz;) €11 table type (c; distinct, viz; # local)
Sty = [(t; : Q;) €] schema type (¢; distinct)

fun(Q) iff viz, = output and ¢, = ret.
model(Q) iff fun(Q) and each viz; = output.
table(Q) iff for each i € 1..n, {; = static = rnd(T;) V qry(T;).

Tabular typing environments I" are ordered maps associating variables with their
declared level and type, and table identifiers with their inferred table types. The typing
rules will prevent expressions typed at level static from referencing inst level variables.

Tabular Typing Environments:

r:=o|(Tx:"T)|(Tt:0) environment
y([(ci : T; £ vig;) '€1-7)) & ¢; b T; 1€1n O as an environment

Next, we present the judgments and rules of the type system.

Judgments of the Tabular Type System:

I'ko environment I" is well-formed
re+r in I, type T is well-formed

Probabilistic Programs as Spreadsheet Queries 13

I'Fre: T in I" at level pc, index expression e has type T

o in I', table type Q is well-formed

'Sty in I', schema type Sty is well-formed

rT<:U inI', T is a subtype of U

I'FPCE: T path inI atlevel pc, expression E is a path

I'HPCE:T in I" at level pc, expression E has type T
I'FP°R:Q— Q' R sends function type Q to model type Q' in column o
r=‘m:Q model expression M has model type O

I'FreT:Q table T has type Q

I'ES: Sty schema S has type Sty

The formation rules for types and environments depend mutually on the typing rules
for index expressions. Only index expressions that are det-space and static-level may
occur in types. We write ty(s) for the scalar type S of the scalar s.

Rules for Types, Environments, and Index Expressions: '-o I'=T [©'FP¢e: T

(ENV EMPTY) (ENV VAR) (ENV TABLE) (table(Q)) (TYPE SCALAR)
T x¢dom(I') I'FQ t¢dom(I) I'kFo

ko xTkFo I't:QFo I'FS!spc

(TYPE RANGE) (TYPE ARRAY) (INDEX VAR) (for £ < pc)

[Estaticy intidet T THF@ejntidet o M=L,x: 7,5

I' - mod(e) ! spc I'FTle] 'EPex:T

(INDEX SCALAR) (INDEX MOD) (INDEX SIZEOF)

I'kto S=ty(s) T'kFo 0<n<m I'o I'=I"t:0,T"

I'Hres: Sldet I'FPn:mod(m)!det I FP¢sizeof(r) : int!det

Formation Rules for Table and Schema Types: ' Q I F Sty

(TABLE TYPE []) (TABLE TYPE INPUT) (TABLE TYPE OUTPUT)

o I'~T T,c!TFQ TI'FT T,efTHQ
'] T'k(c:T{linput)::Q Tk (c:T {output)::Q
(SCHEMA TYPE []) (SCHEMA TYPE TABLE)

I'ko I'+Q table(Q) I',r:QF Sty

CE[:] 'k (t:Q):: Sty

Subtyping allows det-space data to be used as rnd-space or gry-space data. The
preorder < on spaces is the least reflexive relation to satisfy det < rnd and det < gry.
The default space is det, so when we write S or mod(e) as a type, we mean S ! det
or mod(e) ! det. We define a commutative partial operation spc V spc’, and lift this
operation to types T V spc to weaken the space of a type.

14 A.D. Gordon et al.

Least upper bound: spc V spc’ (if spc < spc’ or spc’ < spc)

spcVspc=spc detvVrnd=rnd detVqry=qry
(The combination rnd V gry is intentionally not defined.)

Operations on Types and Spaces: T V spc

(S'spc) Vspc = 8! (spcVspe') Tle]Vspe = (T Vspe)le]
(mod(e) ! spc) V spc’ = mod(e) ! (speV spc’)

Given these definitions, we present the rules of subtyping and of typing expressions.
Rules of Subtyping: ' =T <: U

(SUB ARRAY)

(SUB SCALAR) (SuB MoD))
I'ko spey <spe, I Fstatic o s int | det spe; < spe, II: ::Sz;ti Ie(']int et
I'=Stspey <:S'spe, T Fmod(e)!spc; <:mod(e)!spc, FTle] < Ule]

The table below presents the typing rules for Tabular expressions, most of which are
standard modulo the operations on spaces. For instance, in (DEREF INST), the type of
the indexed column needs to be joined with the space of the index, because, for instance,
an expression returning a deterministic value at a random index is random. Similarly, an
expression returning an element of a deterministic array at a random index is random,
hence the join in (INDEX).

Since deterministic parameters of random primitives can occur in the types of ran-
dom arguments and the return type, they have to be substituted out in the (RANDOM)
and (INFER) rules.

(Selected) Typing Rules for Expressions: I' =P E : T path, ' -PCE : T

(VARIABLE PATH) (INDEXED PATH)

CErex:T T EPC py:Tle] path T HP¢ py : mod(e)!det path

I'BP€ x: T path T EP€ py[pa] : T path

(SUBSUM) (INDEX EXPRESSION)

I'+PCE:T THT<U TI'FPe:T (e is an index expression)

I'PCE.U I'rCe:. T (e seen as an expression)

(DEREF STATIC) (DEREF INST)

r=r’::0r" ' FPCE - link(¢) ! spc

0=0@[(c:T staticviz)|]@Q" I'=T"1:0,T" Q=0 @|[(c:T instviz)]@Q"
I'FrPte:T I'FPCE:t.c:TVspc

(RANDOM) (where o(U) £ U{€1/y, } ... {¢/s,, })
Dmd:[_xlle,...,xm:Tm](yl (UL oy 2 Up) =T

Crsetice T Viel.n THCF:o(U;) Yjelan Tho
{2, xm N (Uifv(e) =@ xi#xjfori#j

I =P Dley,....em|(Fi,...,Fy): 0(T)

Probabilistic Programs as Spreadsheet Queries 15

(ITER) (where x ¢ fv(T)) (INDEX)

I FStatic ¢ int | det space(T) < spc

I x:7° (mod(e)!det) FPCF: T THPCE:Tle] I'FPCF:mod(e)!spc
I'refforx <e— F|:Tle] I'HPCE[F]: TV spc

(INFER) (where G(U) 2U{)y} {em), D)

quy [:1,.. m T](U, ayn:Un)‘)T

I pstatic g, . T, Vl €l.m I'HFPCE:o(T)path jel.n
{x],...,xm}ﬂ(U,fv())=9 x #xl fori# j
I' FP¢infer.Diey, ... en].y;(E): o(U))

For an example of (INFER), recall the expression infer.Dirichlet[2].counts(V) from
Section 1. Here m = n = 1, y; = counts and U; = real[N]!qry and ¢ = {2/} and the
result type is o(U;) = real[2]!qry.

Below are the typing rules for function arguments. In (ARG INPUT), the level £ A pc
at which the argument needs to be checked is bounded both by the level pc of the func-
tion aplication and the level £ of the given column of the function. In (ARG OUTPUT),
the level ¢ A pc of the output column of the reduced application is bounded by the level
pc at which the function was applied as well as the level £ of the given column.
Typing Rules for Arguments: I' 5 R: Q — Q'

re"ee:T THYR:Q{¢} — Q'
T'H((c=e)::R): ((c: T Linput):: Q) = Q'
'tT THER:Q{o¢/}—Q c#ret
CFYR:((c: T ¢output):: Q) — ((0 ¢: T ({Apc) output) :: Q')
r-r
T F0“R: (ret: T (output) — (ret: T (£ A pc) output)

(ARG INPUT)
(ARG OUTPUT)

(ARG RET)

For example, if Qc¢piscrere 18 the function type of CDiscrete from Section 1 we can
derive b :**2% real!rnd 5 (N = 2,alpha = b) : Qcpiscrere — Q' Where @', shown in
the grid below, represents the outputs of the function call. Since the inputs N and alpha
of CDiscrete are both static, arguments 2 and b are typed at level static Ainst = static.

Flip V real[2]lrnd static output
ret mod(2)!rnd output

Next, we have rules for assigning a model type Q to a model expression M.
(MODEL INDEXED) needs the following operation Qle] to capture the static effect of
indexing:

Indexing a Table Type: Ql¢]
Ole] £ @
((c: T instviz) :: Q)le] £ (c: T inst viz) :: (Q[e])
((c: T static viz) :: Q)[e] = (c: T static viz) :: (Qle]) if viz = input or det(T)
((c: T static viz) :: Q)[e] = (c: T|e] static viz) :: (Qle]) if viz # input and —det(T)

16 A.D. Gordon et al.

The vectorized ¢ cannot appear in Q when rnd(7'), so Q[e] remains well-formed.
Typing Rules for Model Expressions: I' -5 M : Q

(MODEL EXPRESSION) (MODEL APPL)
TFFPFEE:T reT:Q fun(Q) THYR:Q— (O

T E :[(ret: T pcoutput))] T'HYTR:(Q

(MODEL INDEXED)
TFFYM:Q dom(Q)Niv(esz) =2 T FP€einger : mod(egiz) ! rnd path

r l_gc M[eindex < esize} : Q[esize]

Finally, we complete the system with rules for tables and schemas.
Typing Rules for Tables: I' -7 T : Q

(TABLE [) (TABLE INPUT)
I'kFo [,c:threTreT:Q

CEref]:[] T'HEP(c:TLinpute):T:(c:T ((Apc)input):: Q
(TABLE OUTPUT)

P M Q. @[(ret: T (04 pe) output)] T, y(Qc),c "¢ T HPET : Q
T'EPe(c: T Loutput M) :T:Q.@((c: T ({Apc) output) :: Q)
(TABLE LocAL) (where (dom(Q.) U{c}) Nfv(Q) = @)

P M Q. @[(ret: T (04 pe) output)] T, y(Qc),c:“"Pe T HPET : Q
I'HPe(c:TllocalM)::T:Q

Typing Rules for Schemas: I" - S : Sty

(SCHEMA []) (SCHEMA TABLE)
ko rHrstT:Q table(Q) I',t:QFS:Sty

rH]:]] I'F(@=T):S:(:Q):Sty

5.2 Reduction to Core Tabular

Proposition 1 (Preservation).

(1) T +=S:StyandS — S then ' =S’ : Sty.
) T HT:Qand T — T then ' FP¢T' : Q.
3) IfTFPCM : Qand M — M then T =PC M’ - Q.

Proposition 2 (Progress). If"=7°S: Q either Core(S) or there is S' such that S — S'.
Proposition 3 (Termination). No infinite chain Sy — S| — ... exists.

Algorithm 1. Reducing to Core Schema: CoreSchema(S)

(1) Compute S’ such that S —* S" and Core(S').
(2) Output §'.

Probabilistic Programs as Spreadsheet Queries 17

As a corollary of our three propositions, we obtain:

Theorem 1. [f @ b S : Sty then CoreSchema(S) terminates with a unique schema S'
such that S —* S' and Core(S') and @ + S’ : Sty.

5.3 Semantics of Core Tabular (Sketch)

Following [2], we define a semantics based on measure theory for det and rnd-level
attributes, plus a set of evaluation rules for qry-level variables. For the sake of brevity,
we omit the precise definitions here, and instead sketch the semantics and state the key
theoretical result, illustrating it by example. For full details, see [15].

The denotational semantics of a schema S with respect to an input database §;, is
a measure [defined on the measurable space corresponding to this schema. In order
to evaluate the queries in the schema, we need to compute marginal measures for all
(non-qry) attributes of all tables.

More precisely, our semantics for Tabular factors into an idealised, probabilistic de-
notational semantics (abstracting the details of approximate inference algorithms such
as Infer.NET and other potential implementations) and a mostly conventional opera-
tional semantics.

The denotational semantics interprets well-typed schema as inductively defined mea-
surable spaces, T[[S]]P=, and defines a (mathematical) function interpreting well typed
schemas P[[S]) ?gl 5 € T[[S]|P= as sub-probability measures describing the joint distribu-
tion i of random variables given the observed input database J;,.

The relation 6 b4 S |} 0,4 of our operational semantics takes as input a nested map
o of marginal measures for each column in the database, and the current operational
environment 6 (a nested map from qry and det attributes to values), and a schema. It
returns an (output) database value ,,: a nested map that assigns values to each non-rnd
attribute of the schema.

Algorithm 2. Query Semantics of Core Schema: CoreQuery(S, DB)

(1) Assume core(S) and DB = (8, Psz)-
(2) Let u 2 P[S]] g”‘ (that is, the joint distribution over all rnd-variables).

(3) Let 0 = marginalize(S, psz,).
(4) Return (O, ps;) such that @6 S || Spue-

Theorem 2 below states that, given a well-typed schema and conforming database,
the composition of the denotational semantics and the deterministic evaluation relation
yields a well-typed output database (with the same dimensions). The notation DB ="
Sty means that the database DB is a well-formed input to Sty; dually, DB E=°"* Sty means
that the database DB is a well-formed output of Sty.

Theorem 2. Suppose Core(S) and @ &S : Sty and DB = (8, ps;) and DB =" Sty.
Then algorithm CoreQuery(S,DB) returns DB’ = (8yu, ps;) such that DB’ |=°"t Sty.

To illustrate, consider the Old Faithful schema shown in Section 4, together with an
input database (0, [faithful — 272]) with 272 rows (say) such as the following:

Oin = [faithful — [duration — inst([1.9;4.0;4.9;...)]; time— inst([50;75;80;...])]]

18 A.D. Gordon et al.

The output of the marginalisation algorithm for the only table in this schema is:

[cluster V +— static(Upisichiet[2)(1,1))3
cluster — inst([U20; U213 U225 -]);
duration Mean — static([UGaussian(0,1): MGaussian(0,1)]):
duration Prec + static([Ugamma(1,1)> HGamma(1,1)))
duration — inst([Uso; Us1; Us2s- .-]);
time Mean — static([UGaussian(60.,1)> HGaussian(60,1)])3
time Prec — static([UGamma(1,1)> HGamma(1.1)]);
time — inst([Ugo; Us1; Us2;---])]

The output database is (O, [faithful — 272]) where J,,; contains those entries from
such environments which correspond to non-random attributes (that is, are not mea-
sures). In our example, it is of the form:

Oour = [faithful — [assignment — inst([0;1;1;...]) |]

In this example, all of the inst arrays are of length 272.

6 Examples of Bayesian Decision Analysis in Tabular

To illustrate the value of query-space computations, we illustrate how they express a
range of decision problems. Decisions such as these cannot be expressed in the original
form of Tabular. Other probabilistic programming languages have built in constructs for
decision-making, whereas Tabular does so using ideas of information flow.

We describe how three example decision problems are written as Tabular queries.
The result of Bayesian inference is the posterior belief over quantities of interest, in-
cluding model parameters such as the rnd-space variable V in our coins example. These
inferences reflect a change of belief in light of data, but they are not sufficient for mak-
ing decisions, which requires optimization under uncertainty.

In Bayesian Decision Analysis, the decision making process is based on statistical
inference followed by maximization of expected utility of the outcome. Following Gel-
man et al. [8], Bayesian Decision Analysis can be described as follows:

(1) Enumerate sets D and X of all possible decision options d € D and outcomes x € X.

(2) Determine the probability distribution over outcomes x € X conditional on each
decision option d € D.

(3) Define a utility function U : X — R to value each outcome.

(4) Calculate the expected utility E[U (x)|d] as a function of decision option d and make
the decision with the highest expected utility.

(1) Optimal Betting Decisions. Consider a situation in which to decide whether or not
to accept a given sports bet based on the TrueSkill model for skill estimation [16].
The following code shows the schema Sy,,,sxi;;- Following [13], the tables Players and
Matches generate rnd-space variables for the results of matches between players, by
comparison of their per-match performances, modelled as noisy per-player skills.

Probabilistic Programs as Spreadsheet Queries 19

table Players

Skill real!rnd output Gaussian(25.0,100.0)
table Matches

Playerl link(Players)!det input

Player2 link(Players)!det input

Perfl reallrnd output Gaussian(Player1.Skill,100.0)
Perf2 reallrnd output Gaussian(Player2.Skill,100.0)
Winl bool!rnd output Perfl > Perf2

table Bets

Match link(Matches)!det input

Oddsl1 realldet input

Winl bool!rnd output Match.Winl

p real!qry output infer.Bernoulli[].Bias(Win1)
u real[3]!det output [0.0;—1.0;0dds1 * 1.0]

EU real[2]!qry output [U[0];((1.0 — p)* U[1])+ (p * U[2])]
PlaceBetl mod(2)!qry output ArgMax(EU)

Table Bets represents the decision theoretic part of the code and refers to Matches
together with the odds Odds1 offered for a bet on player 1 winning. Here, the two
decision options in D = {0, 1} are to take the bet (PlaceBet1 = 1) or not (PlaceBet1 =0),
and the three possible outcomes in X = {0, 1,2} are abstain = 0, loss = 1 or win = 2.
The optimal decision depends on the odds: a risky bet may be worth taking if the odds
are good. The utility function U is given by money won for a fixed bet size of, say,
$1, so U((abstain) = 0.0, U(loss) = —$1.0, and U (win) = Odds1 * $1.0. Variable p is
obtained from qry expression infer.Bernoulli.Bias(Win1) and represents the inferred
probability of a positive bet outcome. The qry variable PlaceBet1 is 1 if the expected
utility EU[1] = (1 — p) - (—$1.0) + p- Odds1- $1.0 is greater than EU[0] = 0.0, that is,
betting is better than not betting. The ArgMax operator simply returns the first index (of
type mod(n)) of the maximum value in its array argument (of type real|[n]). It returns
the decision delivering the maximum expected utility.

(2) Classes with Asymmetric Misclassification Costs. Consider the task of n-ary classi-
fication with class-specific misclassification costs. We proceed by defining the schema
for a Naive Bayes classifier (see, for instance, Duda and Hart [7]), in terms of the func-
tion CG (from Section 4) which represents a Gaussian distribution, with static param-
eters assuming natural conjugate prior distributions. (A prior is called conjugate with
respect to a likelihood if it takes the same functional form.)

Hence, we can write down the Naive Bayes model (for a simple gender classification
task) very succinctly as follows (using the indexed model notation from Section 3).

table People

g mod(2)!rnd output CDiscrete(N=2,R=1.0)

height reallrnd output (CG(M=0.0,P=1.0))[g<?2]
weight real!rnd output (CG(M=0.0,P=1.0))[g<?2]
footsize reallrnd output (CG(M=0.0,P=1.0))[g<?2]

Us real[2][2]!qry static output [[0.0;—20.0];[—10.0;0.0]]

action mod(2)!qry output Action(N=2,UPT=Us,class=g)

The first four lines define a Naive Bayes model with Gaussian features height, weight,
and footsize, which are assumed to be distributed as independent Gaussians condi-
tional on knowing gender g. At this point, we could simply return the probability vector
infer.Discrete[2].probs(g): the probabilities that a person has either gender.

However, suppose we need to return a concrete gender decision and that for some
reason the cost of false positives differs from the cost of false negatives. Below we

20 A.D. Gordon et al.

encode how to decide whether to take the action of predicting the gender of 0 (female)
or 1 (male), given that: A false positive (predict 1 but actually 0) costs 20. A false
negative (predict O but actually 1) costs 10. A true positive or true negative costs 0. The
costs, expressed as negative utilities, are in the matrix Us.

The query defined by the model computes an action column, classifying each row,
taking into account the relative costs of false positives and false negatives. (It recom-
mends an action for all rows, even those already labelled with a gender.)

fun Action

N int!det static input

UPT real[N][N]!qry static input

class mod(N)!rnd input

probs real[N]!qry output infer.Discrete[N].probs(class)

EU real[N]!qry output [for p < N —Sum([for t < N — (probs[t] * UPT[p][t])])]
ret mod(N)!qry output ArgMax(EU)

We see that the function evaluates N different expected utilities, one for each decision
option. ArgMax returns the option delivering the maximum expected utility.

In terms of Bayesian Decision Analysis, the outcome space X is all (predicted class
(p), true class (¢)) pairs, whose elements are given utilities by UPT. In the expected
utility (EU) computations, the Action function only sums over the N outcomes that are
consistent with the current p, that is, if the prediction is p, then the probability of any
outcome (p’,r) where p’ # p is 0 and can be dropped.

(3) F1 Score: Optimizing a more complex decision criterion. We introduce another
model, the Bayes Point Machine, and use it to illustrate a more complicated utility
function, namely the F1 score. The F1 score is a measure of accuracy for binary classi-
fication that takes into account both false positives and false negatives.

As can be seen from the Tabular code in Figure 1, in table Data (abbreviated here),
the data schema consists of seven real-valued clinical measurements X0 to X6 and a
Boolean outcome variable Y to be predicted. The model is an instance of the Bayes
Point Machine [21], a Bayesian boolean classifier, in which the prior over the weight
vector W is drawn from a VectorGaussian, and the label Y is generated by thresholding
a noisy score Z which is the inner product between the input vector and the weight
vector W. Attribute ProbTrue records the marginal predictive probability for the label,
obtained by querying the bias of the Bernoulli random variable Y.

The set D of decision options is given in table Ts, which (we assume) enumerates a
number of candidate thresholds Th used to decide the test results by thresholding the
marginal predictive probability of each point against Th. For each threshold Th, at-
tribute Decisions is an array, indexed by data point d, containing the candidate decision
for d obtained by the thresholding expression d.ProbTrue > Th. The columns ETP,
EFP, and EFN evaluate the expected number of true positives, false positives, and false
negatives, respectively, by summing the relevant marginal probabilities over test data,
which is valid due to linearity of the expectation operator. Finally, the approximate ex-
pected F1 score is calculated for each threshold using:

{ 2.-TP] 2-E[TP]
EF]|=E R~ .
2-TP+FP+FN 2-E[TP]+ E[FP] + E[FN]

Probabilistic Programs as Spreadsheet Queries 21

table Data
X0 realldet input
X6 real!det input
Mean vector!det static output VectorFromArray([for i < 7 —0.0])
CoVar PositiveDefiniteMatrix!det static output |dentityScaledBy(7,1.0)
W vector!rnd static output VectorGaussianFromMeanAndVariance(Mean,CoVar)
z real!rnd output InnerProduct(W, VectorFromArray([X0;X1;X2;X3;X4;X5;X6]))
Y bool!rnd output Gaussian(Z,0.1)> 0.0
ProbTrue reallqry output infer.Bernoulli[].Bias(Y)
Train bool!det input
table Ts
Th real!det input
Decisions bool[SizeOf(Data)] output [for d < SizeOf(Data)—d.ProbTrue > Th]
ETP real!qry output Sum([for d < SizeOf(Data)—
if (!d.Train)& Decisions[d] then d.ProbTrue else 0.0])
EFP real!qry output Sum([for d < SizeOf(Data)—
if (!d.Train)& Decisions[d] then 1.0 — d.ProbTrue else 0.0])
EFN real!qry output Sum([for d < SizeOf(Data)—
if (!d.Train)& (!Decisions[d])then d.ProbTrue else 0.0])
EF1 real!qry output (2.0 x ETP)/ ((2.0 * ETP)+ EFP + EFN)
table Decisions
ChosenThID link(Ts)!qry static output ArgMax([for t < SizeOf(Ts)—t.EF1])
ChosenTh reallgry static output ChosenThID.Th
DatalD link(Data)!det input
Decision bool!qry output ChosenThID.Decisions[DatalD]

Fig. 1. F1 computation in Tabular on mammography data

This is an approximation because the F1 score is a non-linear function in TP, FP, and
FN, and is employed here because it allows us to express the expectation in terms of
marginal probabilities which are available from our inference back end. Recent work
by Nowozin [24] has shown that approximations of this form yield good results.

The final table Decisions determines the optimal threshold ChosenTh by finding the
identity of the threshold t that maximises t.EF1. In addition, Decisions outputs, for each
data point DatalD, the labelling Decision obtained with the optimal threshold (assuming
that column DatalD enumerates the keys of table Data).

7 Tabular Excel: Implementing Tabular in a Spreadsheet

Public releases of the Tabular add-in for Excel are available from http://research.
microsoft.com/tabular. The add-in extends Excel with a new task pane for author-
ing models, running inference and setting parameters of Infer. NET. A user authors the
model within a rectangular area of a worksheet. Tabular parses and type-checks the
model in the background, enabling the inference button when the model is well-typed.
Tabular pulls the data schema and data itself from the relational Data Model of Excel
2013. The results of inference and queries are then reported back to the user as aug-
mented Excel tables. Tabular Excel is able to concisely express a wide range of models
beyond those illustrated here (see companion technical report [15]).

Type checking the Tabular schema results in a type-annotated schema. This is elabo-
rated to core form, eliminating all function calls and indexed models. The core schema
is then translated to an InferNET [20] factor graph, constructed dynamically with

http://research.microsoft.com/tabular
http://research.microsoft.com/tabular

22 A.D. Gordon et al.

Infer.NET’s (imperative and weakly typed) modelling API. Our (type-directed) trans-
lation relies on and exploits the fact that all table sizes are known and that discrete
random variables, which may be used to index into arrays, have known support. More-
over, the space of any (explicit or implicit) array indexing expression is used to insert
the requisite Infer.NET switch construct when indexing through a rnd-space index (as
demonstrated in an appendix to technical report [15]). The fruits of Infer. NET inference
are approximate marginal distributions for the rnd-space bindings of the schema. Ex-
pressions in det and qry-space are evaluated by interpretation after inference, binding
input to the concrete data and rnd-level variables to their inferred distributions. Thus
gry-space expressions have access to the inputs, deterministic values and distributions
on which they depend. For compilation, the type system ensures that the value of qry-
space expression cannot depend on the particular value of a rnd-space variable (only its
distribution) and that all rnd-space variables can be inferred prior to qry evaluation.

Users can also extract C# source code to compile and run their models outside Ex-
cel (see [15] for an example). This supports subsequent customization by Infer.NET
experts as well as integration in standalone applications. One of our internal users has
extracted code in this way to perform inference on a large dataset with approximately
42 million entities and 46 million relationships between them. Inference required 7.5
hours of processing time on a 2-core Intel Xenon L5640 server with 96 GB of RAM.
The extracted code is also useful for debugging compilation and applications that need
to separate learning (on training data) from prediction (on new data).

The following is direct comparison between the Tabular Excel form of the Mam-
mography model (Figure 1) with code for the same problem written in C# using In-
fer. NET. We get the same statistical answers in both cases, though there are differences
in code speed. Initially, Tabular queries were (naively) interpreted, not compiled; adopt-
ing simple runtime code generation techniques has allowed us to reduce the qry time
from 1601ms (interpreted) to 29ms (compiled), a 55x fold increase. The handwritten
C# model is slower on inference because it is effectively compiled and run twice, once
for training and another time for prediction.

data (LOC) model (LOC) decisions (LOC) inference (ms) query (ms)
Infer.NET 35 35 45 2968 6
Tabular 0 15 14 1529 1601/29

8 Related Work

Interest in probabilistic programming languages is rising as evinced by recent languages
like Church [10], a Turing-complete probabilistic Scheme with inference based on sam-
pling, and its relatives Anglican [29] (a typed re-imagination of Church) and Venture
[18] (a variant of Church offering programmable inference). Other recent works include
R2 [23], which uses program analysis to optimize MCMC sampling of probabilistic
programming, Uncertain<T> [3], a simple abstraction for embedding probabilistic rea-
soning into conventional programs that handle uncertain data, and Wolfe [27], where
inference is expressed within a host language by providing a small set of primitives for
writing distributons and operations for maximization and summation.

Probabilistic Programs as Spreadsheet Queries 23

To the best of our knowledge, few systems offer explicit support for decision theory.
IBAL’s [25] impressive framework aims to combine Bayesian inference and decision
theory “under a single coherent semantic framework”. IBAL makes use of query in-
formation and only computes the quantities needed to answer specific queries. Other
systems that extend probabilistic languages with dedicated decision theoretic constructs
are described in [6, 4, 22]. The main difference in our approach is that while our post-
processing can be used to implement decision theory strategies, decision theoretic con-
structs are not built into the language. This is a pragmatic choice. In general, decision
theory involves two intractabilities: computing expected utilities, and optimizing over
the decisions. IBAL and DT-ProbLog [4] have some general-purpose approximations,
but often problem-specific approximations are needed as in our F1 optimization exam-
ple or in [24]. It is not clear how these approximations fit into the above frameworks.
Tabular’s free-form post-processing design allows such bespoke approximations.

STAN [28] allows for post-processing of inference results, but only via separately
declared code blocks, rather than being conveniently mingled with the model or ab-
stracted in functions. Although STAN’s facilities are expressive and can include arbi-
trary deterministic and stochastic computations, they are restricted to computing per
sample quantities. In Tabular terms, this would correspond to computations restricted
to rnd-space which prevents the computation of the aggregate qry-space quantities re-
quired for Bayesian decision theory.

Figaro [26] supports post-inference decision-making, but via separate, decision-
specific language features, outside the core modelling language. Tabular, instead, uses
types to distinguish between operations available in different spaces (or phases) (such
as random draws in rnd space, optimization (ArgMax) and moments of distributions in
gry-space). Embedded DSLs such as Infer.NET [20], HANSEI [17] and FACTORIE
[19] enable arbitrary post-processing in the host language, but require knowledge of
both the host and the embedded language, which is typically much simpler.

Tabular is, to our knowledge, the first probabilistic programming language with de-
pendently typed abstractions. STAN and BUGS [9] do have value-indexed types, but
cannot abstract over indexes appearing in types.

We advocate types to help catch errors in probabilistic queries on spreadsheets. There
is a body of work on testing and discovering errors on spreadsheets. For example, Ah-
mad et al. [1] propose unit-based types as a means of catching errors. To the best of our
knowledge, dependent types have not previously been applied to spreadsheets.

9 Conclusions

We recast Tabular as a query language on databases held in spreadsheets.

This paper presents a technical evaluation of the design consisting of theorems about
its metatheory, demonstration of its expressiveness by example, and some numeric com-
parisons with the alternative of writing models directly in Infer. NET. Evaluating the
usability by spreadsheet users is important, but we leave that task for future work.

We have in mind several lines of future development. One limitation of our current
system is that data is modelled by map-style loops over data; to model time-series, it
would be useful to add some form of iterative fold-style loops. Another limitation is that

24 A.D. Gordon et al.

programs involve a single run of the underlying inference system: rnd space determines
the model and its conditioning, and qry space determines how the results are processed.
To support multiple runs of inference we might consider an indexed hierarchy of spaces
where infer moves data from rnd; space to qry; space, and rnd, ;| space can depend on
results computed in gry; space.

Finally, our approach could be applied to add user-defined functions to languages
such as BUGS or Stan, or to design typed forms of universal probabilistic languages
such as those in the Church family.

Acknowledgement. Dylan Hutchison commented on a draft. We thank Natalia Larios
Delgado and Matthew Smith for their feedback on our Excel addin.

References

[1] Ahmad, Y., Antoniu, T., Goldwater, S., Krishnamurthi, S.: A type system for statically de-
tecting spreadsheet errors. In: 18th IEEE International Conference on Automated Software
Engineering (ASE 2003), pp. 174-183 (2003)

[2] Borgstrom, J., Gordon, A.D., Greenberg, M., Margetson, J., Gael, J.V.: Measure trans-
former semantics for Bayesian machine learning. Logical Methods in Computer Science
9(3) (2013) preliminary version at ESOP 2011

[3] Bornholt, J., Mytkowicz, T., McKinley, K.S.: Uncertain<T>: A first-order type for uncer-
tain data. In: Architectural Support for Programming Languages and Operating Systems
(ASPLOS) (March 2014)

[4] Van den Broeck, G., Thon, I., van Otterlo, M., De Raedt, L.: DTProbLog: A decision-
theoretic probabilistic Prolog. In: AAAI (2010)

[5] Cardelli, L.: Typeful programming. Tech. Rep. 52. Digital SRC (1989)

[6] Chen, J., Muggleton, S.: Decision-theoretic logic programs. In: Proceedings of ILP, p. 136
(2009)

[7] Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, New
York (1973)

[8] Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian
Data Analysis, 3rd edn. Chapman & Hall (2014)

[9] Gilks, W.R., Thomas, A., Spiegelhalter, D.J.: A language and program for complex
Bayesian modelling. The Statistician 43, 169-178 (1994)

[10] Goodman, N., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a
language for generative models. In: Uncertainty in Artificial Intelligence (UAI 2008), pp.
220-229. AUAI Press (2008)

[11] Goodman, N.D.: The principles and practice of probabilistic programming. In: Principles
of Programming Languages (POPL 2013), pp. 399-402 (2013)

[12] Gordon, A.D., Aizatulin, M., Borgstrom, J., Claret, G., Graepel, T., Nori, A., Rajamani, S.,
Russo, C.: A model-learner pattern for Bayesian reasoning. In: POPL (2013)

[13] Gordon, A.D., Graepel, T., Rolland, N., Russo, C.V., Borgstrom, J., Guiver, J.: Tabular: a
schema-driven probabilistic programming language. In: POPL (2014a)

[14] Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In:
Future of Software Engineering (FOSE 2014), pp. 167-181 (2014b)

[15] Gordon, A.D., Russo, C., Szymczak, M., Borgstrom, J., Rolland, N., Graepel, T., Tarlow, D.:
Probabilistic programs as spreadsheet queries. Tech. Rep. MSR-TR-2014-135, Microsoft
Research (2014c)

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

Probabilistic Programs as Spreadsheet Queries 25

Herbrich, R., Minka, T., Graepel, T.: TrueSkill'™: A Bayesian skill rating system. In: Ad-
vances in Neural Information Processing Systems, NIPS 2006 (2006)

Kiselyov, O., Shan, C.: Embedded probabilistic programming. In: Conference on Domain-
Specific Languages, pp. 360-384 (2009)

Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order probabilistic programming
platform with programmable inference. arXiv preprint arXiv:1404.0099 (2014)
McCallum, A., Schultz, K., Singh, S.: Factorie: Probabilistic programming via imperatively
defined factor graphs. In: NIPS 2009, pp. 1249-1257 (2009)

Minka, T., Winn, J., Guiver, J., Knowles, D.: Infer. NET 2.5 (2012), Microsoft Research
Cambridge. http://research.microsoft.com/infernet

Minka, T.P.: A family of algorithms for approximate Bayesian inference. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2001)

Nath, A., Domingos, P.: A language for relational decision theory. In: Proceedings of the
International Workshop on Statistical Relational Learning (2009)

Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: An efficient MCMC sampler for
probabilistic programs. In: Conference on Artificial Intelligence, AAAI (July 2014)
Nowozin, S.: Optimal decisions from probabilistic models: the intersection-over-union case.
In: Proceedings of CVPR 2014 (2014)

Pfeffer, A.: The design and implementation of IBAL: A general-purpose probabilistic lan-
guage. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT
Press (2007)

Pfeffer, A.: Figaro: An object-oriented probabilistic programming language. Tech. rep.,
Charles River Analytics (2009)

Riedel, S.R., Singh, S., Srikumar, V., Rocktischel, T., Visengeriyeva, L., Noessner, J.:
WOLEFE: strength reduction and approximate programming for probabilistic programming.
In: Statistical Relational Artificial Intelligence (2014)

Stan Development Team: Stan: A C++ library for probability and sampling, version 2.2
(2014), http://mc-stan.org/

Wood, E., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic program-
ming inference. In: Proceedings of the 17th International conference on Artificial Intelli-
gence and Statistics (2014)

Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types. In: Pro-
ceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation (PLDI), pp. 249-257 (1998)

http://mc-stan.org/

	Probabilistic Programs as Spreadsheet Queries
	1 Spreadsheets and Typeful Probabilistic Programming
	2 Functions and Queries, by Example
	3 Syntax of Tabular Enhanced with Functions and Queries
	4 Reducing Schemas to Core Tabular
	5 Dependent Type System and Semantics
	5.1 Dependent Type System
	5.2 Reduction to Core Tabular
	5.3 Semantics of Core Tabular (Sketch)

	6 Examples of Bayesian Decision Analysis in Tabular
	7 Tabular Excel: Implementing Tabular in a Spreadsheet
	8 Related Work
	9 Conclusions
	References

