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Foreword

ETAPS 2015 was the 18th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established
in 1998, and this year consisted of six constituting conferences (CC, ESOP, FASE,
FoSSaCS, TACAS, and POST) including five invited speakers and two tutorial speakers.
Prior to and after the main conference, numerous satellite workshops took place and
attracted many researchers from all over the world.

ETAPS is a confederation of several conferences, each with its own Program Com-
mittee and its own Steering Committee (if any). The conferences cover various aspects
of software systems, ranging from theoretical foundations to programming language
developments, compiler advancements, analysis tools, formal approaches to software
engineering, and security. Organizing these conferences into a coherent, highly syn-
chronized conference program enables the participation in an exciting event, having the
possibility to meet many researchers working in different directions in the field, and to
easily attend talks at different conferences.

The six main conferences together received 544 submissions this year, 152 of which
were accepted (including 10 tool demonstration papers), yielding an overall acceptance
rate of 27.9%. I thank all authors for their interest in ETAPS, all reviewers for the peer-
reviewing process, the PC members for their involvement, and in particular the PC Co-
chairs for running this entire intensive process. Last but not least, my congratulations to
all authors of the accepted papers!

ETAPS 2015 was greatly enriched by the invited talks by Daniel Licata (Wesleyan
University, USA) and Catuscia Palamidessi (Inria Saclay and LIX, France), both unify-
ing speakers, and the conference-specific invited speakers [CC] Keshav Pingali (Univer-
sity of Texas, USA), [FoSSaCS] Frank Pfenning (Carnegie Mellon University, USA),
and [TACAS] Wang Yi (Uppsala University, Sweden). Invited tutorials were provided
by Daniel Bernstein (Eindhoven University of Technology, the Netherlands and the Uni-
versity of Illinois at Chicago, USA), and Florent Kirchner (CEA, the Alternative Ener-
gies and Atomic Energy Commission, France). My sincere thanks to all these speakers
for their inspiring talks!

ETAPS 2015 took place in the capital of England, the largest metropolitan area in
the UK and the largest urban zone in the European Union by most measures. ETAPS
2015 was organized by the Queen Mary University of London in cooperation with
the following associations and societies: ETAPS e.V., EATCS (European Association
for Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). It was supported by the following sponsors: Semmle, Winton, Facebook,
Microsoft Research, and Springer-Verlag.



VI Foreword

The organization team comprised:

– General Chairs: Pasquale Malacaria and Nikos Tzevelekos
– Workshops Chair: Paulo Oliva
– Publicity chairs: Michael Tautschnig and Greta Yorsh
– Members: Dino Distefano, Edmund Robinson, and Mehrnoosh Sadrzadeh

The overall planning for ETAPS is the responsibility of the Steering Committee. The
ETAPS Steering Committee consists of an Executive Board (EB) and representatives of
the individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board comprises Gilles Barthe (satellite events, Madrid), Hol-
ger Hermanns (Saarbrücken), Joost-Pieter Katoen (Chair, Aachen and Twente), Gerald
Lüttgen (Treasurer, Bamberg), and Tarmo Uustalu (publicity, Tallinn). Other members of
the Steering Committee are: Christel Baier (Dresden), David Basin (Zurich), Giuseppe
Castagna (Paris), Marsha Chechik (Toronto), Alexander Egyed (Linz), Riccardo Focardi
(Venice), Björn Franke (Edinburgh), Jan Friso Groote (Eindhoven), Reiko Heckel (Le-
icester), Bart Jacobs (Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Christof
Löding (Aachen), Ina Schäfer (Braunschweig), Pasquale Malacaria (London), Tiziana
Margaria (Limerick), Andrew Myers (Boston), Catuscia Palamidessi (Paris), Frank
Piessens (Leuven), Andrew Pitts (Cambridge), Jean-Francois Raskin (Brussels), Don
Sannella (Edinburgh), Vladimiro Sassone (Southampton), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Cesare Tinelli (Iowa City),
Luca Vigano (London), Jan Vitek (Boston), Igor Walukiewicz (Bordeaux), Andrzej Wą-
sowski (Copenhagen), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work to make the 18th
edition of ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and to Springer for their support. Finally, many thanks
to Pasquale and Nikos and their local organization team for all their efforts enabling
ETAPS to take place in London!

January 2015 Joost-Pieter Katoen



Preface

It is my distinct pleasure, and honor, to present you with the technical program of
the 24th European Conference on Programming (ESOP) held during April 14–16 in
London, UK as part of the ETAPS confederation. This year’s program consisted of
33 papers selected from 113 submissions on topics ranging from program analysis of
JavaScript to the semantics of concurrency in C11. The paper “A Theory of Name Res-
olution” by Neron, Tolmach, Visser, and Wachsmuth was nominated by the Program
Committee for the ETAPS best paper award.

The process of selecting papers departed from previous years in several important
respects. First, as papers were submitted, the deadline was October 17, 2014. Papers
were checked for formatting, length, quality, and scope. Five papers were desk rejected
at this point for reasons ranging from insufficient quality to double submission. The
remaining papers were assigned a guardian, usually the Committee Member with most
expertise. The guardian’s role was to ensure each paper had at least one expert reviewer
and to write the rejoinder. Each paper was then assigned three Program Committee
reviewers (the guardian being one). External reviewers were invited when additional
expertise was required. In some cases, several external reviewers were needed to give
us confidence that all aspects of the work had been evaluated. Reviews and scores were
forwarded to the authors on December 3. Authors were allowed to submit unlimited-
length rebuttals. After reception of the rebuttals, the guardians wrote rejoinders that
summarized the points for their papers, the main criticisms, and how the rebuttals ad-
dressed them. All rebuttals were thus carefully read and many were discussed among
the reviewers. A live Program Committee meeting was held in London during Decem-
ber 11–12. In the meeting, every paper was presented by its guardian. Decisions were
reached by consensus. Papers authored by committee members were held to a higher
standard (namely, the absence of a detractor). Papers for which I had a conflict were
handled by Peter Thiemann.

A conference such as this one is the product of the effort of many. Let me thank
them, starting with the authors who entrusted us with their work, the external review-
ers who provided much needed expertise, and the Program Committee members who
produced timely reviews and managed to retain a positive attitude throughout. Guiseppe
Castagna was instrumental in securing permission from the ETAPS Steering Committee
to increase the page limit to 25 pages. Alastair Donaldson kindly hosted the committee
meeting at Imperial College and provided tea and cookies. Eddie Kohler let us use the
hosted version of the HotCRP software developed for SIGPLAN. Eelco Visser kindly
donated a website built using Researchr and Elmer van Chastelet provided technical
assistance. Lastly, Northeastern University provided financial support for the program
Committee meeting.

January 2015 Jan Vitek
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Probabilistic Programs as Spreadsheet Queries�

Andrew D. Gordon1,2, Claudio Russo1, Marcin Szymczak2, Johannes Borgström3,
Nicolas Rolland1, Thore Graepel1, and Daniel Tarlow1

1Microsoft Research, Cambridge, United Kingdom
2University of Edinburgh, Edinburgh, United Kingdom

3Uppsala University, Uppsala, Sweden

Abstract. We describe the design, semantics, and implementation of a proba-
bilistic programming language where programs are spreadsheet queries. Given
an input database consisting of tables held in a spreadsheet, a query constructs
a probabilistic model conditioned by the spreadsheet data, and returns an output
database determined by inference. This work extends probabilistic programming
systems in three novel aspects: (1) embedding in spreadsheets, (2) dependently
typed functions, and (3) typed distinction between random and query variables.
It empowers users with knowledge of statistical modelling to do inference simply
by editing textual annotations within their spreadsheets, with no other coding.

1 Spreadsheets and Typeful Probabilistic Programming

Probabilistic programming systems [11, 14] enable a developer to write a short piece of
code that models a dataset, and then to rely on a compiler to produce efficient inference
code to learn parameters of the model and to make predictions. Still, a great many of the
world’s datasets are held in spreadsheets, and accessed by users who are not developers.
How can spreadsheet users reap the benefits of probabilistic programming systems?

Our first motivation here is to describe an answer, based on an overhaul of Tabular
[13], a probabilistic language based on annotating the schema of a relational database.
The original Tabular is a standalone application that runs fixed queries on a relational
database (Microsoft Access). We began the present work by re-implementing Tabular
within Microsoft Excel, with the data and program held in spreadsheets.

The conventional view is that the purpose of a probabilistic program is to define the
random variables whose marginals are to be determined (as in the query-by-missing-
value of original Tabular). In our experience with spreadsheets, we initially took this
view, and relied on Excel formulas, separate from the probabilistic program, for post-
processing tasks such as computing the mode (most likely value) of a distribution, or
deciding on an action (whether or not to place a bet, say). We found, to our surprise,
that combining Tabular models and Excel formulas is error-prone and cumbersome,
particularly when the sizes of tables change, the parameters of the model change, or we
simply need to update a formula for every row of a column.

In response, our new design contributes the principle that a probabilistic program de-
fines a pseudo-deterministic query on data. The query is specified in terms of three sorts

� This work was supported by Microsoft Research through its PhD Scholarship Programme.

c© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 1–25, 2015.
DOI: 10.1007/978-3-662-46669-8_1
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of variable: (1) deterministic variables holding concrete input data; (2) nondeterminis-
tic random variables constituting the probabilistic model conditioned on input data; and
(3) pseudo-deterministic query variables defining the result of the program (instead of
using Excel formulas). Random variables are defined by draws from a set of builtin dis-
tributions. Query variables are defined via an infer primitive that returns the marginal
posterior distributions of random variables. For instance, given a random variable of
Boolean type, infer returns the probability p that the variable is true. In theory, infer is
deterministic—it has an exact semantics in terms of measure theory; in practice, infer
(and hence the whole query) is only pseudo-deterministic, as implementations almost
always perform approximate or nondeterministic inference. We have many queries as
evidence that post-processing can be incorporated into the language.

Our second motivation is to make a case for typeful probabilistic programming in
general, with evidence from our experience of overhauling Tabular for spreadsheets.
Cardelli [5] identifies the programming style based on widespread use of mechanically-
checked types as typeful programming. Probabilistic languages that are embedded DSLs,
such as HANSEI [17], Fun [2], and Factorie [19], are already typeful in that they inherit
types from their host languages, while standalone languages, such as BUGS [9] or Stan
[28], have value-indexed data schemas (but no user-defined functions). Still, we find
that more sophisticated forms of type are useful in probabilistic modelling.

We make two general contributions to typeful probabilistic programming.
(1) Value-indexed function types usefully organise user-defined components, such as
conjugate pairs, in probabilistic programming languages.

We allow value indexes in types to indicate the sizes of integer ranges and of array
dimensions. We add value-indexed function types for user-defined functions, with a
grid-based syntax. The paper has examples of user-defined functions (such as Action
in Section 6) showing their utility beyond the fixed repertoire of conjugate pairs in the
original Tabular. An important difficulty is to find a syntax for functions and their types
that fits with the grid-based paradigm of spreadsheets.
(2) A type-based information-flow analysis usefully distinguishes the stochastic and
deterministic parts of a probabilistic program.

To track the three sorts of variable, each type belongs to a space indicating whether
it is: (det) deterministic input data, (rnd) a non-deterministic random variable defin-
ing the probabilistic model of the data, or (qry) a pseudo-deterministic query-variable
defining a program result. Spaces allow a single language to define both model and
query, while the type system governs flows between the spaces: data flows from rnd to
qry via infer, but to ensure that a query needs only a single run of probabilistic infer-
ence, there are no flows from qry to rnd. There is an analogy between our spaces and
levels in information flow systems: det-space is like a level of trusted data; rnd-space
is like a level of untrusted data that is tainted by randomness; and qry is like a level of
trusted data that includes untrusted data explicitly endorsed by infer.

The benefits of spaces include: (1) to document the role of variables, (2) to slice a
program into the probabilistic model versus the result query, and (3) to prevent acci-
dental errors. For instance, only variables in det-space may appear as indexes in types
to guarantee that our models can be compiled to the finite factor graphs supported by
inference backends such as Infer.NET [20].
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This paper defines the syntax, semantics, and implementation of a new, more typeful
Tabular. Our implementation is a downloadable add-in for Excel. For execution on data
in a spreadsheet, a Tabular program is sliced into (1) an Infer.NET model for inference,
and (2) a C# program to compute the results to be returned to the spreadsheet.

The original semantics of Tabular uses the higher-order model-learner pattern [12],
based on a separate metalanguage. Given a Tabular schema S and an input database DB
that matches S, our semantics consists of two algorithms.

(1) An algorithm CoreSchema(S) applies a set of source-to-source reductions on S to
yield S

′, which is in a core form of Tabular without user-defined functions and some
other features.

(2) An algorithm CoreQuery(S′,DB) first constructs a probabilistic model based on
the rnd-space variables in S

′ conditioned by DB, and then evaluates the qry-space
variables in S

′ to assemble an output database DB′.

Our main technical results about the semantics are as follows.

(1) Theorem 1 establishes that CoreSchema(S) yields the unique core form S
′ of a

well-typed schema S, as a corollary of standard properties of our reduction relation
with respect to the type system (Proposition 1, Proposition 2, and Proposition 3).

(2) Theorem 2 establishes pre- and post-conditions of the input and output databases
when DB′ = CoreQuery(S′,DB).

Beyond theory, the paper describes many examples of the new typeful features of
Tabular, including a detailed account of Bayesian Decision Theory, an important ap-
plication of probabilistic programming, not possible in the original form of Tabular. A
language like IBAL or Figaro allows for rational decision-making, but via decision-
specific language features, rather than in the core expression language. We present a
numeric comparison of a decision theory problem expressed in Tabular versus the same
problem expressed in C# with direct calls to Infer.NET, showing that we pay very little
in performance in return for a much more succinct spreadsheet program.

2 Functions and Queries, by Example

Primer: Discrete and Dirichlet Distributions. To begin to describe the new features
of Tabular, we recall a couple of standard distributions. If array V= [p0; . . . ; pn−1] is a
probability vector (that is, each pi is a probability and they sum to 1) thenDiscrete[n](V)
is the discrete distribution that yields a sample i ∈ 0..n−1 with probability pi. The dis-
tribution Discrete[2]([ 1

2 ; 1
2 ]) models a coin that we know to be fair. If we are uncertain

whether the coin is fair, we need a distribution on probability vectors to represent our
uncertainty. The distribution Dirichlet[n]([c0; . . . ;cn−1]) on a probability vector V repre-
sents our uncertainty after observing a count ci −1 of samples of i from Discrete[n](V)
for i ∈ 0..n− 1. We omit the formal definition, but discuss the case n = 2.

A probability vector V drawn from Dirichlet[2]([t + 1;h+ 1]) represents our un-
certainty about the bias of a coin after observing t tails and h heads. It follows that
V = [1− p; p] where p is the probability of heads. The expected value of p is h+1

t+h+2 ,
and the variance of p diminishes as t and h increase. If t = h = 0, the expected value
is 1

2 and p is uniformly distributed on the unit interval. If t = h = 10 say, the expected
value remains 1

2 but p is much more likely near the middle than the ends of the interval.
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Review: Probabilistic Schemas in Tabular. Suppose we have a table named Coins with
a column Flip containing a series of coin flips and wish to infer the bias of the coin. (The
syntax [for i < 2 →1.0] is an array comprehension, in this case returning [1.0,1.0].)

table Coins (original Tabular)
V real[] static output Dirichlet[2]([for i < 2 →1.0])
Flip int output Discrete[2](V)

The model above (in original Tabular up to keyword renaming) is read as a prob-
abilistic recipe for generating the coin flips from the unknown parameter V, condi-
tioned on the actual dataset. The first line creates a random variable V = [1 − p; p]
from Dirichlet[2]([1;1]), which amounts to choosing the probability p of heads uni-
formly from the unit interval. The second line creates a random variable Flip from
Discrete[n](V) for each row of the table and conditions the variable in each row to equal
the actual observed coin flip, if it is present. Each Tabular variable is either at static- or
inst-level. A static-variable occurs just once per table, whereas an inst-variable occurs
for each row of the table. The default level is inst, so Flip is at inst-level.

Now, suppose the data for the column Flip is [1;1;0]; the prior distribution of V
is updated by observing 2 heads and 1 tails, to yield the posterior Dirichlet[2]([2;3]),
which has mean 3

5 . Given our example model, the fixed queries of this initial form of
Tabular compute the posterior distribution of V, and write the resulting distributions as
strings into the spreadsheet, as shown below. The missing value in cell B6 of the Flip
column is predicted by the distribution in cell M6: 60% chance of 1, 40% chance of 0.
(Cells E2 and E3 show dependent types of our new design, not of the original Tabular.)

New Features of Tabular. Our initial experience with the re-implementation shows that
writing probabilistic programs in spreadsheets is viable but suggests three new language
requirements, explained in the remainder of this section.

(1) User-defined functions for abstraction (to generalize the fixed repertoire of primi-
tive models in the original design).

(2) User-defined queries to control how parameters and predictions are inferred from
the model and returned as results (rather than simply dumping raw strings from
fixed queries).

(3) Value-indexed dependent types (to catch errors with vectors, matrices, and integer
ranges, and help with compilation).

(1) User-Defined Functions. The Coins example shows the common pattern of a dis-
crete distribution with a Dirichlet prior. We propose to write a function for such a pattern
as follows. It explicitly returns the ret output but also implicitly returns the V output.

fun CDiscrete
N int!det static input
R real!rnd static input
V real[N]!rnd static output Dirichlet[N]([for i < N →R])
ret mod(N)!rnd output Discrete[N](V)
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In a table description, input-attributes refer implicitly to fully observed columns in
the input database. On the other hand, a function is explicitly invoked using syntax
like CDiscrete(N = 2;R = 1), and the input-attributes N and R refer to the argument
expressions, passed call-by-value.

(2) User-Defined Queries. To support both the construction of probabilistic models for
inference, and the querying of results, we label each type with one of three spaces:

(1) det-space is for fully observed input data;
(2) rnd-space is for probabilistic models, conditioned by partially observed input data;
(3) qry-space is for deterministic results queried from the inferred marginal distribu-

tions of rnd-space variables.

We organise the three spaces via the least partial order given by det < rnd and
det < qry, so as to induce a subtype relation on types. Moreover, to allow flows from
rnd-space to qry-space, an operator infer.D.yi(E) computes the parameter yi in qry-
space of the marginal distribution D(y1, . . . ,yn) of an input E in rnd-space.

For example, here is a new model of our Coins table, using a call to CDiscrete to
model the coin flips in rnd-space, and to implicitly define a rnd-space variable V for
the bias of the coin. Assuming our model is conditioned by data [1;1;0], the marginal
distribution of V is Dirichlet[2]([2;3]) where [2;3] is the counts-parameter. Hence, the
call infer.Dirichlet[2].counts(V) yields [2;3], and the query returns the mean 3

5 .

table Coins
Flip mod(2)!rnd output CDiscrete(N=2, R=1.0)(∗returns Flip and Flip V∗)
counts real[2]!qry static local infer.Dirichlet[2].counts(Flip V)
Mean real!qry static output counts[1]/(counts[1]+counts[0])

Our reduction relation rewrites this schema to the following core form.

table Coins
R real!rnd static local 1.0
Flip V real[2]!rnd static output Dirichlet[2]( [for i < 2 →R])
Flip mod(2)!rnd output Discrete[2](V)
counts real[2]!qry static local infer.Dirichlet[2].counts(Flip V)
Mean real!qry static output counts[1]/(counts[1]+counts[0])

(3) Simple Dependent Types. Our code has illustrated dependent types of statically-
sized arrays and integer ranges: values of T [e] are arrays of T of size e, while values of
mod(e) are integers in the set 0..(e− 1). In both cases, the size e must be a det-space
int. (Hence, the dependence of types on expressions is simple, and all sizes may be
resolved statically, given the sizes of tables.) The use of dependent types for arrays is
standard (as in Dependent ML [30]); the main subtlety in our probabilitic setting is the
need for spaces to ensure that indexes are deterministic.

Primitive distributions have dependent types:

Distributions: Dspc : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T

Discretespc : [N : int!det](probs : real!spc[N])→mod(N)!rnd
Dirichletspc : [N : int!det](counts : real!spc[N])→ (real!rnd)[N]

User-defined functions have dependent types written as grids, such as the following
type QCDiscrete for CDiscrete:
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N int!det static input
R real!rnd static input
V real[N]!rnd static output
ret mod(N)!rnd output

Finally, the table type for our whole model of the Coins table is the following grid.
It lists the rnd-space variables returned by CDiscrete as well as the explicitly defined
Mean. Attributes marked as local are private to a model or function, are identified up
to alpha-equivalence, and do not appear in types. Attributes marked as input or output
are binders, but are not identified up to alpha-equivalence, and are exported from tables
or functions. Their names must stay fixed because of references from other tables.

V real[2]!rnd static output
Flip mod(2)!rnd output
Mean real!qry static output

3 Syntax of Tabular Enhanced with Functions and Queries

We describe the formal details of our revision of Tabular in this section. In the next,
Section 4, we show how features such as function applications may be eliminated by
reducing schemas to a core form with a direct semantics.

Column-Oriented Databases. Let t range over table names and c range over attribute
names. We consider a database to be a pair DB = (δin,ρsz) consisting of a record of
tables δin = [ti �→ τi

i∈1..n], and a valuation ρsz = [ti �→ szi
i∈1..n] holding the number of

rows szi ∈ N in each column of table ti. Each table τi = [ci �→ ai
j∈1..mi ] is a record of

attributes ai. An attribute is a value V tagged with a level �. An attribute is normally a
whole column inst(V ), where V is an array of length szi and the level inst is short for
“instance”. It may also be a single value, static(V ), a static attribute. The main purpose
of allowing static attributes is to return individual results (such as Mean in our Coins
example) from queries.

Databases, Tables, Attributes, and Values:

δin ::= [ti �→ τi
i∈1..n] whole database

τ ::= [ci �→ ai
i∈1..m] table in database

a ::= �(V ) attribute value: V with level �
V ::= ? | s | [V0, . . . ,Vn−1] nullable value
�, pc ::= static | inst level (static< inst)

For example, the data for our Coins example is DB = (δin,ρsz) where δin = [Coins �→
[Flip �→ inst([1;1;0])]] and ρsz = [Coins �→ 3].

In examples, we assume each table has an implicit primary key ID and that the keys
are in the range 0..szi−1. A value V may contain occurrences of “?”, signifying missing
data; we write known(V ) if V contains no occurrence of ?. Otherwise, a value may be
an array, or a constant s: either a Boolean, integer, or real.

Syntax of Tabular Expressions and Schemas. An index expression e may be a variable
x or a constant, and may occur in types (as the size of an array, for instance). Given a
database DB = (δin,ρsz), sizeof(t) denotes the constant ρsz(t). Attribute names c (but
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not table names) may occur in index expressions as variables. A attribute type T can be
a scalar, a bounded non-negative integer or an array. Each type has an associated space
(which is akin to an information-flow level, but independent of the notion of level in
Tabular, introduced later on). (The type system is discussed in detail in Section 5.)

Index Expressions, Spaces and Dependent Types of Tabular:

e ::= x | s | sizeof(t) index expression
S ::= bool | int | real scalar type
spc ::= det | rnd | qry space
T,U ::= (S ! spc) | (mod(e) ! spc) | T [e] (attribute) type

space(S ! spc)� spc space(T [e])� space(T ) space(mod(e) ! spc)� spc
spc(T )� space(T ) = spc

We write link(t) as a shorthand for mod(sizeof(t)), for foreign keys to table t.
The syntax of (full) expressions includes index expressions, plus deterministic and

random operations. We assume sets of deterministic functions g, and primitive distri-
butions D. These have type signatures, as illustrated for Discrete and Dirichlet in Sec-
tion 2. In D[e1, . . . ,em](F1, . . . ,Fn), the arguments e1, . . . , em index the result type, while
F1, . . . , Fn are parameters to the distribution. The operator infer.D[e1, . . . ,em].y(E) is
described intuitively in Section 2. We write fv(T ) and fv(E) for the sets of variables
occurring free in type T and expression E .

Expressions of Tabular:

E,F ::= expression
e index expression
g(E1, . . . ,En) deterministic primitive g
D[e1, . . . ,em](F1, . . . ,Fn) random draw from distribution D
if E then F1 else F2 if-then-else
[E1, . . . ,En] | E[F ] array literal, lookup
[for x < e → F ] for loop (scope of index x is F)
infer.D[e1, . . . ,em].y(E) parameter y of inferred marginal of E
E : t.c dereference link E to instance of c
t.c dereference static attribute c of t

A Tabular schema is a relational schema with each attribute annotated not just with
a type T , but also with a level �, a visibility viz, and a model expression M.

Tabular Schemas:

S ::= [(t1 = T1); . . . ;(tn = Tn)] (database) schema
T ::= [col1; . . . ;coln] table (or function)
col ::= (c : T � viz M) attribute c declaration
viz ::= input | local | output visibility
M,N ::= ε | E | M[eindex < esize] | T R model expression
R ::= (c1 = e1, . . . ,cn = en) function arguments
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For (c : T � viz M) to be well-formed, viz = input if and only if M = ε . We only
consider well-formed declarations. The visibility viz indicates whether the attribute c is
given as an input, defined locally by the model expression M, or defined as an output
by the model expression M. When omitted, the level of an attribute defaults to inst.

Functions, Models, and Model Expressions. A challenge for this paper was to find a
syntax for functions that is compatible with the grid format of spreadsheets; we do so
by re-interpreting the syntax T for tables as also the syntax of functions. A function is a
table of the form T = [col1; . . . ;coln;(ret : T output E)]. A model is a function where
each coli is a local or an output. A model expression M denotes a model as follows:

– An expression E denotes the model that simply returns E .
– A function application T (c1 = e1, . . . ,cn = en) denotes the function T, but with

each of its inputs ci replaced by ei.
– An indexed model M[eindex < esize] denotes the model for M, but with any rnd
static attribute c replicated esize times, as an array, and with references to c replaced
by the lookup c[eindex].

Formally, functions are embedded within our syntax of function applications T R. In
practice, our implementation supports separate function definitions written as fun f T,
such as CDiscrete in Section 1 and CG in Section 6. A function reference (within a
model expression) is written f R to stand for T R.

Indexed models appear in the original Tabular, while function applications are new.

Binders and Alpha-Equivalence. All attribute names c are considered bound by their
declarations. The names of local attributes are identified up to alpha-equivalence. The
names of input and output attributes are considered as fixed identifiers (like the fields
of records) that export values from a table, and are not identified up to alpha-equivalence,
because changing their names would break references to them.

Let inputs(T) be the input attributes of tableT, that is, the names c in (c : T � input ε).
Let locals(T) be all the local attributes of tableT, that is, the names c in (c : T � localM).
Let outputs(T) be all the output attributes of table T, that is, the names c in
(c : T � outputM) plus outputs(M), where the latter consists of the union of outputs(Ti)
for any applications of Ti within M. Let dom(T) be the union inputs(T)∪ locals(T)∪
outputs(T). Hence, the free variables fv(T) are given by:

fv((c : T � viz M) :: T′)� fv(T )∪ fv(M)∪ (fv(T′)\ ({c}∪outputs(M))) fv([])� {}

4 Reducing Schemas to Core Tabular

We define reduction relations that explain the meaning of function calls and indexed
models by rewriting, and hence transforms any well-typed schema to a core form. The
reduction semantics allows us to understand indexed models, and also function calls,
within the Tabular syntax. Hence, this semantics is more direct and self-contained than
the original semantics of Tabular [13], based on translating to a semantic metalanguage.
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If all the attributes of a schema are simple expressions E instead of arbitrary model
expressions, we say it is in core form:

Core Attributes, Tables, and Schemas:

Core((c : T � input ε)) Core((c : T � local E)) Core((c : T � output E))
Core([col1; . . . ;coln]) if Core(col1), . . . , Core(coln)
Core([ti = Ti

i∈1..n]) if Core(Ti) for each i ∈ 1..n

To help explain our reduction rules, consider the following function definition.

fun CG
M real!det static input
P real!det static input
Mean real!rnd static output GaussianFromMeanAndPrecision(M,P)
Prec real!rnd static output Gamma(1.0,1.0)
ret real!rnd output GaussianFromMeanAndPrecision(Mean,Prec)

The following mixture model, for a dataset consisting of durations and waiting times
for Old Faithful eruptions, uses three function applications and two indexed models.
Each row of the model belongs to one of two clusters, indicated by the attribute cluster;
the indexed models for duration and time give different means and precisions depend-
ing on the value of cluster. Since cluster is an output, Tabular allows missing values
in that column (and indeed they are all missing), but the qry-space assignment returns
the most likely cluster for each row as the result of the query.

table faithful
cluster mod(2)!rnd output CDiscrete(N=2, R=1.0)
duration real!rnd output CG(M=0.0, P=1.0)[cluster < 2]
time real!rnd output CG(M=60.0, P=1.0)[cluster < 2]
assignment mod(2)!qry output ArgMax(infer.Discrete[2].probs(cluster))

The relation T � R �o T1 means that T1 is the outcome of substituting the argu-
ments R for the input attributes of the function T, within an attribute named o. For
example, for the function application in the duration attribute, we have CG � [M =
0.0, p = 1.0]�duration CG1, where CG1 is as follows:

duration Mean real!rnd static output GaussianFromMeanAndPrecision(0.0, 1.0)
duration Prec real!rnd static output Gamma(1.0, 1.0)
duration real!rnd output GaussianFromMeanAndPrecision(duration Mean, duration Prec)

The inductive definition follows. Rule (APPLY INPUT) instantiates an input c with an
argument e; (APPLY SKIP) prefixes localandoutputattributes with o; and (APPLY RET)
turns the ret attribute of the function into name o of the call-site.

Inductive Definition of Function Application: T � R �o T1

(APPLY RET)

[(ret : T � viz E)] � []�o [(o : T � viz E)]

(APPLY INPUT)
T{e/c} � R �o T1 dom(T)∩ fv(e) =∅

(c : T � input ε) :: T � [c = e] :: R �o T1

(APPLY SKIP) (viz ∈ {local,output})
T{o c/c} � R �o T1 c /∈ fv(R)

(c : T � viz E) :: T � R �o (o c : T � viz E) :: T1
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Next, we define indexσ (T,e1,e2) to be the outcome of indexing the static rnd or
qry variables of a core table T, that is, turning each declaration of such a variable into
an array of size e2, and each reference to such a variable into an array access indexed, at
static level, by a local replication index i, or, at instance level, by the random indexing
expression e1 (or its mode at qry level). Both i and e1 are integers bounded by e2.
Variables that require indexing are accumulated in the renaming substitution σ (which
is initially empty). For instance, CG1[cluster < 2] expands to index∅(CG1,cluster,2):

duration Mean real[2]!rnd static output [for i < 2 →GaussianFromMeanAndPrecision(0.0, 1.0)]
duration Meanˆ real!rnd local duration Mean[cluster]
duration Prec real[2]!rnd static output [for i < 2 →Gamma(1.0, 1.0)]
duration Precˆ real!rnd local duration Prec[cluster]
duration real!rnd output GaussianFromMeanAndPrecision(duration Meanˆ, duration Precˆ)

Table Indexing: indexσ (T,e1,e2)

indexσ ([],e1,e2)� []
indexσ ((c : T � input ε) :: T,e1,e2)� (c : T � input ε) :: (indexσ (T,e1,e2))
indexσ ((c : T � viz E) :: T),e1,e2)�
(c : T [e2] � viz [for i < e2 → ρ(E)]) :: (ĉ : T inst local c[ê1]) :: indexσ [c�→ĉ](T,e1,e2)

if viz 	= input, �= static, ¬det(T ) where
ρ = {d �→ d[i] | d ∈ dom(σ)}, i /∈ fv(E)∪ fv(σ), ĉ /∈ dom(T)∪ fv(T,σ ,c,e1,e2)
and ê1 = e1 if rnd(T ), and ê1 = ArgMax(infer.Discrete[e2].probs(e1)) if qry(T )

(c : T � viz σ(E)) :: indexσ (T,e1,e2)
if viz 	= input and (�= inst or det(T ))

Below, we give inductive definitions of reduction relations on schemas, tables,
and model expressions. There are congruence rules, plus (RED INDEX)
and (RED INDEX EXPR) for indexed models, and (RED APPL) for applications. The
latter needs additional operations T∧ � and T∧ viz, to adjust the model T of function
body to the level � and visibility viz of the call-site. These operators drop any output
attributes to local, if the callsite is local, and drop any inst-level attributes to static, if
the callsite is static.

– Consider the 2-point lattice static < inst. Let T∧ � be the outcome of changing
each (c : T �c viz M) in T to (c : T (�c ∧ �) viz M). Hence, T∧ inst is the identity,
while T∧ static drops inst variables to static variables.

– Consider the 2-point lattice local< output. Let T∧viz be the outcome of changing
each (c : T � vizc M) in T to (c : T � (vizc ∧ viz) M). Hence, T∧ output is the
identity, while T∧ local drops output variables to local variables.

Reduction Relations: S→ S
′, T→ T

′, M → M′

(RED SCHEMA LEFT)
T→ T

′

(t = T) :: S→ (t = T
′) :: S

(RED SCHEMA RIGHT)
S→ S

′ Core(T)

(t = T) :: S→ (t = T) :: S′

(RED MODEL)
M → M′

(c : T � viz M) :: T→ (c : T � viz M′) :: T

(RED TABLE RIGHT)
T→ T

′ Core(col)

col :: T→ col :: T′
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(RED INDEX INNER)
M → M′

M[eindex < esize]→ M′[eindex < esize]

(RED INDEX)
Core(T) fv(eindex,esize)∩ (dom(T)) =∅

(T R)[eindex < esize]→ (index∅(T,eindex,esize)) R

(RED INDEX EXPR)

E[eindex < esize]→ E

(RED APPL) (for Core(T))
((T∧ �)∧ viz) � R �o T1

(locals(T1)∪ inputs(T1))∩ (fv(T′)∪dom(T′)) =∅

(o : T ′ � viz (T R)) :: T′ → T1@T
′

Tables in core form have no reductions. Moreover, the reduction relation is de-
terministic (we include the Core(T) condition on the rules (RED SCHEMA RIGHT),
(RED TABLE RIGHT), and (RED INDEX) to fix a particular reduction strategy).

By using the above rules to expand out the three function calls and the two model
expressions in the Old Faithful example, we obtain the core model below:

table faithful
cluster V real[2]!rnd static output Dirichlet[2]([for i < 2 →1.0])
cluster mod(2)!rnd output Discrete[2](cluster V)
duration Mean real[2]!rnd static output [for i < 2 →GaussianFromMeanAndPrecision(0.0, 1.0)]
duration Meanˆ real!rnd local duration Mean[cluster]
duration Prec real[2]!rnd static output [for i < 2 →Gamma(1.0, 1.0)]
duration Precˆ real!rnd local duration Prec[cluster]
duration real!rnd output GaussianFromMeanAndPrecision(duration Meanˆ, duration Precˆ)
time Mean real[2]!rnd static output [for i < 2 →GaussianFromMeanAndPrecision(60.0, 1.0)]
time Meanˆ real!rnd local time Mean[cluster]
time Prec real[2]!rnd static output [for i < 2 →Gamma(1.0, 1.0)]
time Precˆ real!rnd local time Prec[cluster]
time real!rnd output GaussianFromMeanAndPrecision(time Meanˆ, time Precˆ)
assignment mod(2)!qry output ArgMax(infer.Discrete[2].probs(cluster))

Moreover, here are screen shots (best viewed in colour) of the data, model and infer-
ence results in Excel.
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5 Dependent Type System and Semantics

5.1 Dependent Type System

The expressions of Tabular are based on the probabilistic language Fun [2]. We signifi-
cantly extend Fun by augmenting its types with the three spaces described in Section 1,
adding value-indexed dependent types including statically bounded integers and sized
arrays, and additional expressions including an operator for inference and operations
for referencing attributes of tables and their instances.

We use table types Q both for functions and for concrete tables. When used to type a
function Q must satisfy the predicate fun(Q), which requires it to use the distinguished
name ret for the explicit result of the function (its final output). When used to type a
concrete table Q must satisfy the predicate table(Q), which ensures that types do not
depend on the contents of any input table t (except for the sizes of tables). We only need
table(Q) to define a conformance relation on databases and schema types.

Table and Schema Types:

Q ::= [(ci : Ti �i vizi)
i∈1..n] table type (ci distinct, vizi 	= local)

Sty ::= [(ti : Qi)
i∈1..n] schema type (ti distinct)

fun(Q) iff vizn = output and cn = ret.
model(Q) iff fun(Q) and each vizi = output.
table(Q) iff for each i ∈ 1..n, �i = static⇒ rnd(Ti)∨qry(Ti).

Tabular typing environments Γ are ordered maps associating variables with their
declared level and type, and table identifiers with their inferred table types. The typing
rules will prevent expressions typed at level static from referencing inst level variables.

Tabular Typing Environments:

Γ ::=∅ | (Γ ,x :� T ) | (Γ , t : Q) environment
γ([(ci : Ti �i vizi)

i∈1..n])� ci :�i Ti
i∈1..n Q as an environment

Next, we present the judgments and rules of the type system.

Judgments of the Tabular Type System:

Γ �  environment Γ is well-formed
Γ � T in Γ , type T is well-formed
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Γ �pc e : T in Γ at level pc, index expression e has type T
Γ � Q in Γ , table type Q is well-formed
Γ � Sty in Γ , schema type Sty is well-formed
Γ � T <: U in Γ , T is a subtype of U
Γ �pc E : T path in Γ at level pc, expression E is a path
Γ �pc E : T in Γ at level pc, expression E has type T
Γ �pc

o R : Q → Q′ R sends function type Q to model type Q′ in column o
Γ �pc

o M : Q model expression M has model type Q
Γ �pc

T : Q table T has type Q
Γ � S : Sty schema S has type Sty

The formation rules for types and environments depend mutually on the typing rules
for index expressions. Only index expressions that are det-space and static-level may
occur in types. We write ty(s) for the scalar type S of the scalar s.

Rules for Types, Environments, and Index Expressions: Γ �  Γ � T Γ �pc e : T

(ENV EMPTY)

∅ � 

(ENV VAR)
Γ � T x /∈ dom(Γ )

Γ ,x :pc T � 

(ENV TABLE) (table(Q))
Γ � Q t /∈ dom(Γ )

Γ , t : Q � 

(TYPE SCALAR)
Γ � 
Γ � S ! spc

(TYPE RANGE)
Γ �static e : int !det

Γ �mod(e) ! spc

(TYPE ARRAY)
Γ � T Γ �static e : int !det

Γ � T [e]

(INDEX VAR) (for �≤ pc)
Γ �  Γ = Γ1,x :� T,Γ2

Γ �pc x : T

(INDEX SCALAR)
Γ �  S = ty(s)

Γ �pc s : S !det

(INDEX MOD)
Γ �  0 ≤ n < m

Γ �pc n : mod(m) !det

(INDEX SIZEOF)
Γ �  Γ = Γ ′, t : Q,Γ ′′

Γ �pc sizeof(t) : int !det

Formation Rules for Table and Schema Types: Γ � Q Γ � Sty

(TABLE TYPE [])
Γ � 
Γ � [] : []

(TABLE TYPE INPUT)
Γ � T Γ ,c :� T � Q

Γ � (c : T � input) :: Q

(TABLE TYPE OUTPUT)
Γ � T Γ ,c :� T � Q

Γ � (c : T � output) :: Q

(SCHEMA TYPE [])
Γ � 
Γ � [] : []

(SCHEMA TYPE TABLE)
Γ � Q table(Q) Γ , t : Q � Sty

Γ � (t : Q) :: Sty

Subtyping allows det-space data to be used as rnd-space or qry-space data. The
preorder ≤ on spaces is the least reflexive relation to satisfy det≤ rnd and det ≤ qry.
The default space is det, so when we write S or mod(e) as a type, we mean S ! det
or mod(e) ! det. We define a commutative partial operation spc ∨ spc′, and lift this
operation to types T ∨ spc to weaken the space of a type.
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Least upper bound: spc∨ spc′ (if spc ≤ spc′ or spc′ ≤ spc)

spc∨ spc = spc det∨ rnd= rnd det∨qry= qry
(The combination rnd∨qry is intentionally not defined.)

Operations on Types and Spaces: T ∨ spc

(S ! spc)∨ spc′ � S ! (spc∨ spc′) T [e]∨ spc � (T ∨ spc)[e]
(mod(e) ! spc)∨ spc′ �mod(e) ! (spc∨ spc′)

Given these definitions, we present the rules of subtyping and of typing expressions.

Rules of Subtyping: Γ � T <: U

(SUB SCALAR)
Γ �  spc1 ≤ spc2

Γ � S ! spc1 <: S ! spc2

(SUB MOD)
Γ �static e : int !det spc1 ≤ spc2

Γ �mod(e) ! spc1 <: mod(e) ! spc2

(SUB ARRAY)
Γ � T <: U
Γ �static e : int !det

Γ � T [e]<: U [e]

The table below presents the typing rules for Tabular expressions, most of which are
standard modulo the operations on spaces. For instance, in (DEREF INST), the type of
the indexed column needs to be joined with the space of the index, because, for instance,
an expression returning a deterministic value at a random index is random. Similarly, an
expression returning an element of a deterministic array at a random index is random,
hence the join in (INDEX).

Since deterministic parameters of random primitives can occur in the types of ran-
dom arguments and the return type, they have to be substituted out in the (RANDOM)
and (INFER) rules.

(Selected) Typing Rules for Expressions: Γ �pc E : T path, Γ �pc E : T

(VARIABLE PATH)
Γ �pc x : T

Γ �pc x : T path

(INDEXED PATH)
Γ �pc p1 : T [e] path Γ �pc p2 : mod(e)!det path

Γ �pc p1[p2] : T path

(SUBSUM)
Γ �pc E : T Γ � T <: U

Γ �pc E : U

(INDEX EXPRESSION)
Γ �pc e : T (e is an index expression)

Γ �pc e : T (e seen as an expression)

(DEREF STATIC)
Γ = Γ ′, t : Q,Γ ′′
Q = Q′@[(c : T static viz)]@Q′′

Γ �pc t.c : T

(DEREF INST)
Γ �pc E : link(t) ! spc
Γ = Γ ′, t : Q,Γ ′′ Q = Q′@[(c : T inst viz)]@Q′′

Γ �pc E : t.c : T ∨ spc

(RANDOM) (where σ(U)�U{e1/x1} . . .{em/xm})
Drnd : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T
Γ �static ei : Ti ∀i ∈ 1..m Γ �pc Fj : σ(Uj) ∀ j ∈ 1..n Γ � 
{x1, . . . ,xm}∩ (

⋃
i fv(ei)) =∅ xi 	= x j for i 	= j

Γ �pc D[e1, . . . ,em](F1, . . . ,Fn) : σ(T )
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(ITER) (where x /∈ fv(T ))
Γ �static e : int !det
Γ ,x :pc (mod(e) !det) �pc F : T

Γ �pc [for x < e → F] : T [e]

(INDEX)
space(T )≤ spc
Γ �pc E : T [e] Γ �pc F : mod(e) ! spc

Γ �pc E[F] : T ∨ spc

(INFER) (where σ(U)�U{e1/x1} . . .{em/xm})
Dqry : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T
Γ �static ei : Ti ∀i ∈ 1..m Γ �pc E : σ(T ) path j ∈ 1..n
{x1, . . . ,xm}∩ (

⋃
i fv(ei)) =∅ xi 	= x j for i 	= j

Γ �pc infer.D[e1, . . . ,em].y j(E) : σ(Uj)

For an example of (INFER), recall the expression infer.Dirichlet[2].counts(V) from
Section 1. Here m = n = 1, y1 = counts and U1 = real[N]!qry and σ = {2/N} and the
result type is σ(U1) = real[2]!qry.

Below are the typing rules for function arguments. In (ARG INPUT), the level �∧ pc
at which the argument needs to be checked is bounded both by the level pc of the func-
tion aplication and the level � of the given column of the function. In (ARG OUTPUT),
the level �∧ pc of the output column of the reduced application is bounded by the level
pc at which the function was applied as well as the level � of the given column.

Typing Rules for Arguments: Γ �pc
o R : Q → Q′

(ARG INPUT)
Γ ��∧pc e : T Γ �pc

o R : Q{e/c}→ Q′

Γ �pc
o ((c = e) :: R) : ((c : T � input) :: Q)→ Q′

(ARG OUTPUT)
Γ � T Γ �pc

o R : Q{o c/c}→ Q′ c 	= ret

Γ �pc
o R : ((c : T � output) :: Q)→ ((o c : T (�∧ pc) output) :: Q′)

(ARG RET)
Γ � T

Γ �pc
o R : (ret : T � output)→ (ret : T (�∧ pc) output)

For example, if QCDiscrete is the function type of CDiscrete from Section 1 we can
derive b :static real!rnd �inst

Flip (N = 2,alpha= b) : QCDiscrete → Q′ where Q′, shown in
the grid below, represents the outputs of the function call. Since the inputs N and alpha
ofCDiscrete are both static, arguments 2 and b are typed at level static∧ inst= static.

Flip V real[2]!rnd static output
ret mod(2)!rnd output

Next, we have rules for assigning a model type Q to a model expression M.
(MODEL INDEXED) needs the following operation Q[e] to capture the static effect of
indexing:

Indexing a Table Type: Q[e]

∅[e]�∅

((c : T inst viz) :: Q)[e]� (c : T inst viz) :: (Q[e])

((c : T static viz) :: Q)[e]� (c : T static viz) :: (Q[e]) if viz = input or det(T )

((c : T static viz) :: Q)[e]� (c : T [e] static viz) :: (Q[e]) if viz 	= input and ¬det(T )
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The vectorized c cannot appear in Q when rnd(T ), so Q[e] remains well-formed.

Typing Rules for Model Expressions: Γ �pc
o M : Q

(MODEL EXPRESSION)
Γ �pc E : T

Γ �pc
o E : [(ret : T pc output)]

(MODEL APPL)
Γ �pc

T : Q fun(Q) Γ �pc
o R : Q → Q′

Γ �pc
o T R : Q′

(MODEL INDEXED)
Γ �pc

o M : Q dom(Q)∩ fv(esize) =∅ Γ �pc eindex : mod(esize) ! rnd path

Γ �pc
o M[eindex < esize] : Q[esize]

Finally, we complete the system with rules for tables and schemas.

Typing Rules for Tables: Γ �pc
T : Q

(TABLE [])
Γ � 
Γ �pc [] : []

(TABLE INPUT)
Γ ,c :�∧pc T �pc

T : Q

Γ �pc (c : T � input ε) :: T : (c : T (�∧ pc) input) :: Q

(TABLE OUTPUT)
Γ ��∧pc

c M : Qc@[(ret : T (�∧ pc) output)] Γ ,γ(Qc),c :�∧pc T �pc
T : Q

Γ �pc (c : T � output M) :: T : Qc@((c : T (�∧ pc) output) :: Q)

(TABLE LOCAL) (where (dom(Qc)∪{c})∩ fv(Q) =∅)
Γ ��∧pc

c M : Qc@[(ret : T (�∧ pc) output)] Γ ,γ(Qc),c :�∧pc T �pc
T : Q

Γ �pc (c : T � local M) :: T : Q

Typing Rules for Schemas: Γ � S : Sty

(SCHEMA [])
Γ � 
Γ � [] : []

(SCHEMA TABLE)
Γ �inst

T : Q table(Q) Γ , t : Q � S : Sty

Γ � (t = T) :: S : (t : Q) :: Sty

5.2 Reduction to Core Tabular

Proposition 1 (Preservation).

(1) If Γ � S : Sty and S→ S
′ then Γ � S

′ : Sty.
(2) If Γ �pc

T : Q and T→ T
′ then Γ �pc

T
′ : Q.

(3) If Γ �pc M : Q and M → M′ then Γ �pc M′ : Q.

Proposition 2 (Progress). If Γ �pc
S : Q either Core(S) or there is S′ such that S→ S

′.

Proposition 3 (Termination). No infinite chain S0 → S1 → . . . exists.

Algorithm 1. Reducing to Core Schema: CoreSchema(S)

(1) Compute S′ such that S→∗
S
′ and Core(S′).

(2) Output S′.
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As a corollary of our three propositions, we obtain:

Theorem 1. If ∅ � S : Sty then CoreSchema(S) terminates with a unique schema S
′

such that S→∗
S
′ and Core(S′) and ∅ � S

′ : Sty.

5.3 Semantics of Core Tabular (Sketch)

Following [2], we define a semantics based on measure theory for det and rnd-level
attributes, plus a set of evaluation rules for qry-level variables. For the sake of brevity,
we omit the precise definitions here, and instead sketch the semantics and state the key
theoretical result, illustrating it by example. For full details, see [15].

The denotational semantics of a schema S with respect to an input database δin is
a measure μ defined on the measurable space corresponding to this schema. In order
to evaluate the queries in the schema, we need to compute marginal measures for all
(non-qry) attributes of all tables.

More precisely, our semantics for Tabular factors into an idealised, probabilistic de-
notational semantics (abstracting the details of approximate inference algorithms such
as Infer.NET and other potential implementations) and a mostly conventional opera-
tional semantics.

The denotational semantics interprets well-typed schema as inductively defined mea-
surable spaces, T[[S]]ρsz , and defines a (mathematical) function interpreting well typed
schemas P[[S]]δin

(τ,δ ) ∈ T[[S]]ρsz as sub-probability measures describing the joint distribu-

tion μ of random variables given the observed input database δin.
The relation δ �σ S ⇓ δout of our operational semantics takes as input a nested map

σ of marginal measures for each column in the database, and the current operational
environment δ (a nested map from qry and det attributes to values), and a schema. It
returns an (output) database value δout : a nested map that assigns values to each non-rnd
attribute of the schema.

Algorithm 2. Query Semantics of Core Schema: CoreQuery(S,DB)

(1) Assume core(S) and DB = (δin,ρsz).

(2) Let μ � P[[S]]δin
[]

(that is, the joint distribution over all rnd-variables).

(3) Let σ =marginalize(S,ρsz,μ).
(4) Return (δout ,ρsz) such that ∅ �σ S ⇓ δout .

Theorem 2 below states that, given a well-typed schema and conforming database,
the composition of the denotational semantics and the deterministic evaluation relation
yields a well-typed output database (with the same dimensions). The notation DB |=in

Sty means that the database DB is a well-formed input to Sty; dually, DB |=out Sty means
that the database DB is a well-formed output of Sty.

Theorem 2. Suppose Core(S) and ∅ � S : Sty and DB = (δin,ρsz) and DB |=in Sty.
Then algorithm CoreQuery(S,DB) returns DB′ = (δout ,ρsz) such that DB′ |=out Sty.

To illustrate, consider the Old Faithful schema shown in Section 4, together with an
input database (δin, [faithful �→ 272]) with 272 rows (say) such as the following:

δin = [ faithful �→ [ duration �→ inst([1.9;4.0;4.9; . . .)]; time �→ inst([50;75;80; . . . ]) ] ]
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The output of the marginalisation algorithm for the only table in this schema is:

[ cluster V �→ static(μDirichlet[2](1,1));

cluster �→ inst([μ20; μ21; μ22; . . . ]);

duration Mean �→ static([μGaussian(0,1),μGaussian(0,1)]);

duration Prec �→ static([μGamma(1,1),μGamma(1,1)]);

duration �→ inst([μ50; μ51; μ52; . . . ]);

time Mean �→ static([μGaussian(60,1),μGaussian(60,1)]);

time Prec �→ static([μGamma(1,1),μGamma(1,1)]);

time �→ inst([μ80; μ81; μ82; . . . ]) ]

The output database is (δout , [faithful �→ 272]) where δout contains those entries from
such environments which correspond to non-random attributes (that is, are not mea-
sures). In our example, it is of the form:

δout = [ faithful �→ [ assignment �→ inst([0;1;1; . . . ]) ] ]

In this example, all of the inst arrays are of length 272.

6 Examples of Bayesian Decision Analysis in Tabular

To illustrate the value of query-space computations, we illustrate how they express a
range of decision problems. Decisions such as these cannot be expressed in the original
form of Tabular. Other probabilistic programming languages have built in constructs for
decision-making, whereas Tabular does so using ideas of information flow.

We describe how three example decision problems are written as Tabular queries.
The result of Bayesian inference is the posterior belief over quantities of interest, in-
cluding model parameters such as the rnd-space variable V in our coins example. These
inferences reflect a change of belief in light of data, but they are not sufficient for mak-
ing decisions, which requires optimization under uncertainty.

In Bayesian Decision Analysis, the decision making process is based on statistical
inference followed by maximization of expected utility of the outcome. Following Gel-
man et al. [8], Bayesian Decision Analysis can be described as follows:

(1) Enumerate sets D and X of all possible decision options d ∈ D and outcomes x ∈ X .
(2) Determine the probability distribution over outcomes x ∈ X conditional on each

decision option d ∈ D.
(3) Define a utility function U : X → R to value each outcome.
(4) Calculate the expected utility E[U(x)|d] as a function of decision option d and make

the decision with the highest expected utility.

(1) Optimal Betting Decisions. Consider a situation in which to decide whether or not
to accept a given sports bet based on the TrueSkill model for skill estimation [16].
The following code shows the schema STrueSkill . Following [13], the tables Players and
Matches generate rnd-space variables for the results of matches between players, by
comparison of their per-match performances, modelled as noisy per-player skills.
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table Players
Skill real!rnd output Gaussian(25.0,100.0)
table Matches
Player1 link(Players)!det input
Player2 link(Players)!det input
Perf1 real!rnd output Gaussian(Player1.Skill,100.0)
Perf2 real!rnd output Gaussian(Player2.Skill,100.0)
Win1 bool!rnd output Perf1 > Perf2
table Bets
Match link(Matches)!det input
Odds1 real!det input
Win1 bool!rnd output Match.Win1
p real!qry output infer.Bernoulli[].Bias(Win1)
U real[3]!det output [0.0;−1.0;Odds1 ∗ 1.0]
EU real[2]!qry output [U[0];((1.0 − p)∗ U[1])+ (p ∗ U[2])]
PlaceBet1 mod(2)!qry output ArgMax(EU)

Table Bets represents the decision theoretic part of the code and refers to Matches
together with the odds Odds1 offered for a bet on player 1 winning. Here, the two
decision options in D= {0,1} are to take the bet (PlaceBet1= 1) or not (PlaceBet1= 0),
and the three possible outcomes in X = {0,1,2} are abstain = 0, loss = 1 or win = 2.
The optimal decision depends on the odds: a risky bet may be worth taking if the odds
are good. The utility function U is given by money won for a fixed bet size of, say,
$1, so U(abstain) = 0.0, U(loss) = −$1.0, and U(win) = Odds1 ∗ $1.0. Variable p is
obtained from qry expression infer.Bernoulli.Bias(Win1) and represents the inferred
probability of a positive bet outcome. The qry variable PlaceBet1 is 1 if the expected
utility EU [1] = (1− p) · (−$1.0)+ p ·Odds1·$1.0 is greater than EU [0] = 0.0, that is,
betting is better than not betting. The ArgMax operator simply returns the first index (of
type mod(n)) of the maximum value in its array argument (of type real[n]). It returns
the decision delivering the maximum expected utility.

(2) Classes with Asymmetric Misclassification Costs. Consider the task of n-ary classi-
fication with class-specific misclassification costs. We proceed by defining the schema
for a Naive Bayes classifier (see, for instance, Duda and Hart [7]), in terms of the func-
tion CG (from Section 4) which represents a Gaussian distribution, with static param-
eters assuming natural conjugate prior distributions. (A prior is called conjugate with
respect to a likelihood if it takes the same functional form.)

Hence, we can write down the Naive Bayes model (for a simple gender classification
task) very succinctly as follows (using the indexed model notation from Section 3).

table People
g mod(2)!rnd output CDiscrete(N=2,R=1.0)
height real!rnd output (CG(M=0.0,P=1.0))[g<2]
weight real!rnd output (CG(M=0.0,P=1.0))[g<2]
footsize real!rnd output (CG(M=0.0,P=1.0))[g<2]
Us real[2][2]!qry static output [[0.0;−20.0];[−10.0;0.0]]
action mod(2)!qry output Action(N=2,UPT=Us,class=g)

The first four lines define a Naive Bayes model with Gaussian features height, weight,
and footsize, which are assumed to be distributed as independent Gaussians condi-
tional on knowing gender g. At this point, we could simply return the probability vector
infer.Discrete[2].probs(g): the probabilities that a person has either gender.

However, suppose we need to return a concrete gender decision and that for some
reason the cost of false positives differs from the cost of false negatives. Below we
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encode how to decide whether to take the action of predicting the gender of 0 (female)
or 1 (male), given that: A false positive (predict 1 but actually 0) costs 20. A false
negative (predict 0 but actually 1) costs 10. A true positive or true negative costs 0. The
costs, expressed as negative utilities, are in the matrix Us.

The query defined by the model computes an action column, classifying each row,
taking into account the relative costs of false positives and false negatives. (It recom-
mends an action for all rows, even those already labelled with a gender.)

fun Action
N int!det static input
UPT real[N][N]!qry static input
class mod(N)!rnd input
probs real[N]!qry output infer.Discrete[N].probs(class)
EU real[N]!qry output [for p < N →Sum([for t < N →(probs[t] ∗ UPT[p][t])])]
ret mod(N)!qry output ArgMax(EU)

We see that the function evaluates N different expected utilities, one for each decision
option. ArgMax returns the option delivering the maximum expected utility.

In terms of Bayesian Decision Analysis, the outcome space X is all (predicted class
(p), true class (t)) pairs, whose elements are given utilities by UPT. In the expected
utility (EU) computations, the Action function only sums over the N outcomes that are
consistent with the current p, that is, if the prediction is p, then the probability of any
outcome (p′, t) where p′ 	= p is 0 and can be dropped.

(3) F1 Score: Optimizing a more complex decision criterion. We introduce another
model, the Bayes Point Machine, and use it to illustrate a more complicated utility
function, namely the F1 score. The F1 score is a measure of accuracy for binary classi-
fication that takes into account both false positives and false negatives.

As can be seen from the Tabular code in Figure 1, in table Data (abbreviated here),
the data schema consists of seven real-valued clinical measurements X0 to X6 and a
Boolean outcome variable Y to be predicted. The model is an instance of the Bayes
Point Machine [21], a Bayesian boolean classifier, in which the prior over the weight
vector W is drawn from a VectorGaussian, and the label Y is generated by thresholding
a noisy score Z which is the inner product between the input vector and the weight
vector W. Attribute ProbTrue records the marginal predictive probability for the label,
obtained by querying the bias of the Bernoulli random variable Y.

The set D of decision options is given in table Ts, which (we assume) enumerates a
number of candidate thresholds Th used to decide the test results by thresholding the
marginal predictive probability of each point against Th. For each threshold Th, at-
tribute Decisions is an array, indexed by data point d, containing the candidate decision
for d obtained by the thresholding expression d.ProbTrue > Th. The columns ETP,
EFP, and EFN evaluate the expected number of true positives, false positives, and false
negatives, respectively, by summing the relevant marginal probabilities over test data,
which is valid due to linearity of the expectation operator. Finally, the approximate ex-
pected F1 score is calculated for each threshold using:

E[F1] = E

[
2 ·TP

2 ·TP+FP+FN

]

≈ 2 ·E[TP]
2 ·E[TP]+E[FP]+E[FN]

.
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table Data
X0 real!det input

.

.

.
X6 real!det input
Mean vector!det static output VectorFromArray([for i < 7 →0.0])
CoVar PositiveDefiniteMatrix!det static output IdentityScaledBy(7,1.0)
W vector!rnd static output VectorGaussianFromMeanAndVariance(Mean,CoVar)
Z real!rnd output InnerProduct(W,VectorFromArray([X0;X1;X2;X3;X4;X5;X6]))
Y bool!rnd output Gaussian(Z,0.1)> 0.0
ProbTrue real!qry output infer.Bernoulli[].Bias(Y)
Train bool!det input
table Ts
Th real!det input
Decisions bool[SizeOf(Data)] output [for d < SizeOf(Data)→d.ProbTrue > Th]
ETP real!qry output Sum([for d < SizeOf(Data)→

if (!d.Train)& Decisions[d] then d.ProbTrue else 0.0])
EFP real!qry output Sum([for d < SizeOf(Data)→

if (!d.Train)& Decisions[d] then 1.0 − d.ProbTrue else 0.0])
EFN real!qry output Sum([for d < SizeOf(Data)→

if (!d.Train)& (!Decisions[d])then d.ProbTrue else 0.0])
EF1 real!qry output (2.0 ∗ ETP)/ ((2.0 ∗ ETP)+ EFP + EFN)
table Decisions
ChosenThID link(Ts)!qry static output ArgMax([for t < SizeOf(Ts)→t.EF1])
ChosenTh real!qry static output ChosenThID.Th
DataID link(Data)!det input
Decision bool!qry output ChosenThID.Decisions[DataID]

Fig. 1. F1 computation in Tabular on mammography data

This is an approximation because the F1 score is a non-linear function in TP, FP, and
FN, and is employed here because it allows us to express the expectation in terms of
marginal probabilities which are available from our inference back end. Recent work
by Nowozin [24] has shown that approximations of this form yield good results.

The final table Decisions determines the optimal threshold ChosenTh by finding the
identity of the threshold t that maximises t.EF1. In addition, Decisions outputs, for each
data pointDataID, the labellingDecision obtained with the optimal threshold (assuming
that column DataID enumerates the keys of table Data).

7 Tabular Excel: Implementing Tabular in a Spreadsheet

Public releases of the Tabular add-in for Excel are available from http://research.

microsoft.com/tabular. The add-in extends Excel with a new task pane for author-
ing models, running inference and setting parameters of Infer.NET. A user authors the
model within a rectangular area of a worksheet. Tabular parses and type-checks the
model in the background, enabling the inference button when the model is well-typed.
Tabular pulls the data schema and data itself from the relational Data Model of Excel
2013. The results of inference and queries are then reported back to the user as aug-
mented Excel tables. Tabular Excel is able to concisely express a wide range of models
beyond those illustrated here (see companion technical report [15]).

Type checking the Tabular schema results in a type-annotated schema. This is elabo-
rated to core form, eliminating all function calls and indexed models. The core schema
is then translated to an Infer.NET [20] factor graph, constructed dynamically with

http://research.microsoft.com/tabular
http://research.microsoft.com/tabular
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Infer.NET’s (imperative and weakly typed) modelling API. Our (type-directed) trans-
lation relies on and exploits the fact that all table sizes are known and that discrete
random variables, which may be used to index into arrays, have known support. More-
over, the space of any (explicit or implicit) array indexing expression is used to insert
the requisite Infer.NET switch construct when indexing through a rnd-space index (as
demonstrated in an appendix to technical report [15]). The fruits of Infer.NET inference
are approximate marginal distributions for the rnd-space bindings of the schema. Ex-
pressions in det and qry-space are evaluated by interpretation after inference, binding
input to the concrete data and rnd-level variables to their inferred distributions. Thus
qry-space expressions have access to the inputs, deterministic values and distributions
on which they depend. For compilation, the type system ensures that the value of qry-
space expression cannot depend on the particular value of a rnd-space variable (only its
distribution) and that all rnd-space variables can be inferred prior to qry evaluation.

Users can also extract C# source code to compile and run their models outside Ex-
cel (see [15] for an example). This supports subsequent customization by Infer.NET
experts as well as integration in standalone applications. One of our internal users has
extracted code in this way to perform inference on a large dataset with approximately
42 million entities and 46 million relationships between them. Inference required 7.5
hours of processing time on a 2-core Intel Xenon L5640 server with 96 GB of RAM.
The extracted code is also useful for debugging compilation and applications that need
to separate learning (on training data) from prediction (on new data).

The following is direct comparison between the Tabular Excel form of the Mam-
mography model (Figure 1) with code for the same problem written in C# using In-
fer.NET. We get the same statistical answers in both cases, though there are differences
in code speed. Initially, Tabular queries were (naively) interpreted, not compiled; adopt-
ing simple runtime code generation techniques has allowed us to reduce the qry time
from 1601ms (interpreted) to 29ms (compiled), a 55x fold increase. The handwritten
C# model is slower on inference because it is effectively compiled and run twice, once
for training and another time for prediction.

data (LOC) model (LOC) decisions (LOC) inference (ms) query (ms)
Infer.NET 35 35 45 2968 6

Tabular 0 15 14 1529 1601/29

8 Related Work

Interest in probabilistic programming languages is rising as evinced by recent languages
like Church [10], a Turing-complete probabilistic Scheme with inference based on sam-
pling, and its relatives Anglican [29] (a typed re-imagination of Church) and Venture
[18] (a variant of Church offering programmable inference). Other recent works include
R2 [23], which uses program analysis to optimize MCMC sampling of probabilistic
programming, Uncertain<T> [3], a simple abstraction for embedding probabilistic rea-
soning into conventional programs that handle uncertain data, and Wolfe [27], where
inference is expressed within a host language by providing a small set of primitives for
writing distributons and operations for maximization and summation.
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To the best of our knowledge, few systems offer explicit support for decision theory.
IBAL’s [25] impressive framework aims to combine Bayesian inference and decision
theory “under a single coherent semantic framework”. IBAL makes use of query in-
formation and only computes the quantities needed to answer specific queries. Other
systems that extend probabilistic languages with dedicated decision theoretic constructs
are described in [6, 4, 22]. The main difference in our approach is that while our post-
processing can be used to implement decision theory strategies, decision theoretic con-
structs are not built into the language. This is a pragmatic choice. In general, decision
theory involves two intractabilities: computing expected utilities, and optimizing over
the decisions. IBAL and DT-ProbLog [4] have some general-purpose approximations,
but often problem-specific approximations are needed as in our F1 optimization exam-
ple or in [24]. It is not clear how these approximations fit into the above frameworks.
Tabular’s free-form post-processing design allows such bespoke approximations.

STAN [28] allows for post-processing of inference results, but only via separately
declared code blocks, rather than being conveniently mingled with the model or ab-
stracted in functions. Although STAN’s facilities are expressive and can include arbi-
trary deterministic and stochastic computations, they are restricted to computing per
sample quantities. In Tabular terms, this would correspond to computations restricted
to rnd-space which prevents the computation of the aggregate qry-space quantities re-
quired for Bayesian decision theory.

Figaro [26] supports post-inference decision-making, but via separate, decision-
specific language features, outside the core modelling language. Tabular, instead, uses
types to distinguish between operations available in different spaces (or phases) (such
as random draws in rnd space, optimization (ArgMax) and moments of distributions in
qry-space). Embedded DSLs such as Infer.NET [20], HANSEI [17] and FACTORIE
[19] enable arbitrary post-processing in the host language, but require knowledge of
both the host and the embedded language, which is typically much simpler.

Tabular is, to our knowledge, the first probabilistic programming language with de-
pendently typed abstractions. STAN and BUGS [9] do have value-indexed types, but
cannot abstract over indexes appearing in types.

We advocate types to help catch errors in probabilistic queries on spreadsheets. There
is a body of work on testing and discovering errors on spreadsheets. For example, Ah-
mad et al. [1] propose unit-based types as a means of catching errors. To the best of our
knowledge, dependent types have not previously been applied to spreadsheets.

9 Conclusions

We recast Tabular as a query language on databases held in spreadsheets.
This paper presents a technical evaluation of the design consisting of theorems about

its metatheory, demonstration of its expressiveness by example, and some numeric com-
parisons with the alternative of writing models directly in Infer.NET. Evaluating the
usability by spreadsheet users is important, but we leave that task for future work.

We have in mind several lines of future development. One limitation of our current
system is that data is modelled by map-style loops over data; to model time-series, it
would be useful to add some form of iterative fold-style loops. Another limitation is that
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programs involve a single run of the underlying inference system: rnd space determines
the model and its conditioning, and qry space determines how the results are processed.
To support multiple runs of inference we might consider an indexed hierarchy of spaces
where infer moves data from rndi space to qryi space, and rndi+1 space can depend on
results computed in qryi space.

Finally, our approach could be applied to add user-defined functions to languages
such as BUGS or Stan, or to design typed forms of universal probabilistic languages
such as those in the Church family.

Acknowledgement. Dylan Hutchison commented on a draft. We thank Natalia Larios
Delgado and Matthew Smith for their feedback on our Excel addin.
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2 École Normale Supérieure, Paris, France

3 INRIA Paris–Rocquencourt, France
{tie.cheng,xavier.rival}@ens.fr

Abstract. Spreadsheets are widely used, yet are error-prone. In partic-
ular, they use a weak type system, which allows certain operations that
will silently return unexpected results, like comparisons of integer val-
ues with string values. However, discovering these issues is hard, since
data and formulas can be dynamically set, read or modified. We pro-
pose a static analysis that detects all run-time type-unsafe operations
in spreadsheets. It is based on an abstract interpretation of spreadsheet
applications, including spreadsheet tables, global re-evaluation and asso-
ciated programs. Our implementation supports the features commonly
found in real-world spreadsheets. We ran our analyzer on the EUSES
Spreadsheet Corpus. This evaluation shows that our tool is able to auto-
matically verify a large number of real spreadsheets, runs in a reasonable
time and discovers complex bugs that are difficult to detect by code re-
view or by testing.

1 Introduction

Spreadsheet applications are ubiquitous in engineering, statistics, finance and
management. They combine a flexible tabular representation of data in two-
dimensional tables mixing formulas and values with associated programs (or
macros), written in specific languages. For instance, Microsoft Excel includes a
version of Visual Basic for Applications (VBA), whereas Google Spreadsheets
have Google Apps Script and LibreOffice Calc has LibreOffice Basic.

Unfortunately, spreadsheet applications are subject to numerous defects, and
often produce incorrect results that do not match user understanding as shown
in [21,22]. In 2013, the Task Force Report [1] quoted losses of billions of dollars
due to errors in spreadsheet applications used in JPMorgan’s Chief Investment
Office. More generally, spreadsheet defects may cause the release of wrong in-
formation, the loss of money or the taking of wrong decisions, therefore they
now attract increasing attention from users, IT professionals, and from the re-
search community. Approaches proposed so far include new languages [7] and
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enhancements to functional features of spreadsheets with better language de-
sign [19,27] and implementation [24,25], model-driven engineering environments
to allow only safe updates [14], and studies to detect code smells that indi-
cate weak points in spreadsheets [13,17]. Additionally, type systems could be
built [3,4,5,6,9] to capture value meanings such as physical units (e.g., apples,
oranges) or dimensions (e.g., meters, kilometers) and to verify the correctness
of formulas. Most existing works focus on the spreadsheet tables and ignore the
associated programs despite them being a very important component of spread-
sheet applications, which can have a significant impact on spreadsheet contents,
either through function calls from a spreadsheet formula or through an execution
of a subroutine launched by users. They are also massively present in industrial
spreadsheet applications.

Verification Objective. Spreadsheet languages supply basic operators and func-
tions to perform operations on values such as text, number, boolean, date and
time to use in formulas and programs. The type system of spreadsheet languages
is weak and rarely considers a type mismatch an error, even though that means
unexpected or incorrect results may be produced instead. For instance, Microsoft
Excel implicitly converts the empty value to true in expression AND(ε, true),
whereas it converts it to false in expression IF(ε, 1, 0). It will also evaluate com-
parison “” < n to false, yet the empty string does not have an obvious numeric
value. More generally, type mismatches are common and rarely block the execu-
tion with an explicit error message such as #VALUE!. Thus, users develop and
run spreadsheet applications in the environment where program defects can be
hidden. Verifying a spreadsheet application is exempt of any such defect requires
a strong type discipline, and precise typing information about formula operands
should be inferred.

Static Analysis of Spreadsheets with Macros. Existing works focus on the spread-
sheet contents, assume the data in the sheet are fully specified, and do not con-
sider spreadsheet instances with different input data. Yet, industrial spreadsheet
applications often handle non-deterministic or non-statically known input in the
following cases: (1) input data may be left blank when the application is devel-
oped and entered at a later stage (Excel features “Data Validation” for such
cases, which allows to specify restrictions on data before they are entered); (2)
data may be defined dynamically, e.g., using functions generating random val-
ues, inserting values found on the Web or in external databases; (3) formulas and
data edited in non-automatic calculation mode (i.e., when the spreadsheet envi-
ronment does not always recalculate cell depending on the modified zone) may
result in outdated values; (4) data and formulas may be set and manipulated by
associated programs.

Therefore, in this paper, we propose a complete vision of spreadsheet ap-
plications, that includes spreadsheets storing formulas and associated programs
(macros); they receive input data that is unknown at verification time (i.e., non-
deterministic or read at run-time); their execution consists in globally evaluating
spreadsheet formulas or running an associated program.
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We propose a fully automatic and sound analysis, that discovers all type
defects in spreadsheet applications. It features a strong type system, and an
abstract domain that ties properties (like contents types) to zones in spreadsheet
tables. It infers invariants by conservative abstract interpretation of spreadsheet
applications. It either proves type correctness or displays potential issues to
developers. Invariants also give a high-level view of program behaviors. The set
of type-unsafe operations is a parameter of the analysis, so that users can select
which behaviors are deemed unsafe and should be detected. Our analysis has
the following benefits: (1) it unearths errors that dynamic tests may miss, as it
computes an over-approximation of all the states executions can reach even in
the presence of inputs at run-time; (2) it is efficient enough to be run during the
development of a spreadsheet application. In this paper, we make the following
contributions:
– We set up a concrete model for reasoning about spreadsheet applications, to

be used as a basis for the definition and the proof of our analysis (Sect. 3);
– We propose an abstraction for spreadsheet applications, that takes the struc-

ture of formulas into account and is adapted to the type verification (Sect. 4);
– We define a static analysis, that takes into account both the contents of

spreadsheet and the associated programs (Sect. 5), and is able to cope with
global re-evaluation of spreadsheet contents (Sect. 5.2);

– We present our tool (Sect. 6) and report on results of verification of the
EUSES Spreadsheet Corpus by our tool (Sect. 7).

2 Overview

In this section, we consider a realistic application, which silently produces wrong
results that cannot be caught by the weak type system found in spreadsheet en-
vironments. This application is made up of a spreadsheet table shown in Fig. 1(a)
and an associated program displayed in Fig. 1(b). The table contains several
columns storing asset variations and values expressed in two currencies, and
computes the number of weekdays where the total value was greater than a
given amount. The area in the blue rectangle in Columns 1 and 2 is reserved for
input data, which are the day name and the value variation for each weekday (no
variation occurs on the weekend). The associated program shown in Fig. 1(b) and
the spreadsheet formulas in the green rectangle are pre-coded. The associated
program is run, upon user request, to eliminate meaningless empty weekend val-
ues of Column 2, and to populate the sequential list into Column 3. The formulas
in Column 4 convert the variations stored in Column 3 into another currency.
Last, the formulas in Column 5 compute the sequence of meaningful variations,
and the number of weekdays where the total asset value was greater than 150,
in the bottom right cell.
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1 2 3 4 5
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34
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43
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45

Day

Mon
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Sun

Tue

Wed

Fri

Delta

(cur1)

-2

0

0

8

-3

20

Delta

(cur1)

-2

-4

5

20

Delta

(cur 2)

= C[4, 3] ∗ 1.3

= C[9, 3] ∗ 1.3

= C[10, 3] ∗ 1.3

= C[33, 3] ∗ 1.3

= C[34, 3] ∗ 1.3

= C[43, 3] ∗ 1.3

Total

(cur 2)

100

= IF(ISBLANK(C[4, 3]), “”,C[4, 4] + C[3, 5])

= IF(ISBLANK(C[9, 3]), “”,C[9, 4] + C[8, 5])

= IF(ISBLANK(C[10, 3]), “”,C[10, 4] + C[9, 5])

= IF(ISBLANK(C[33, 3]), “”,C[33, 4] + C[32, 5])

= IF(ISBLANK(C[34, 3]), “”,C[34, 4] + C[33, 5])

= IF(ISBLANK(C[43, 3]), “”,C[43, 4] + C[42, 5])

Number of days where asset > 150

= SUM(N(C[4, 5] : C[43, 5] > 150))

(a) Spreadsheet contents

1 Sub Macro() 7 j = 4; 11 i = i+ 1
2 INITIATE; 8 While (j < 44) 12 End;
3 Dim i As Int; 9 If C[j, 1] <> “Sat” 13 j = j+ 1
4 Dim j As Int; And C[j, 1] <> “Sun” 14 End;
5 CLEAR ZONE(4, 3, 43, 3); Then 15 Eval
6 i = 4; 10 C[i, 3] = C[j, 2]; 16 End

(b) Associated program

Fig. 1. Erroneous behaviors in a spreadsheet application

In practice, data are filled either manually, or automatically (e.g., copying
from somewhere else, or using another associated program INITIATE). Then,
users launch the associated program to compute the values in Column 3, which,
in turn, forces the re-evaluation of the formulas stored in Columns 4 and 5 using
statement Eval in Line 15. The input data, their array size may be known only
at run-time, whereas the spreadsheet formulas and the associated program are
pre-coded.

The final result is computed in the bottom right cell. Its value is incor-
rect. We let C[i, j] denote the cell in row i and column j. In Fig. 1(a), the
cells in region C[34, 5] : C[43, 5] evaluate to the empty string, since the cells in
C[34, 3] : C[43, 3] are empty (Function ISBLANK checks whether a cell is empty).
Comparison operator “>” always returns true when applied to a string and
a numeric value, therefore, when cell C[i, 5] is an empty string, the condition
C[i, 5] > 150 evaluates to true. Then, built-in function N converts true into 1.
Therefore, the value produced when evaluating the formula in C[45, 5]
is off by 10.

This incorrect result is produced without a warning, as it passes through the
weak (and incorrect) spreadsheet type checking. Such issues are common in large
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Range of variables: j : [44, 44], i : [4, j]

Zone predicates:

4 5

4

43

44

45

Zf0 :

C[+0,−1] ∗ Float

Zf1 :

IF(ISBLANK(C[+0,−2]),
String,
C[+0,−1] + C[−1,+0])

SUM(N(C[4, 5] : C[43, 5] > Int))

1 2 3 4 5

1

2

3

4

i

i+ 1

43

44

45

String

String String

Float Float Float Float

Zt :

String

String

Float

Fig. 2. Abstract state

applications, and hard to diagnose by non-expert users. In particular, testing is
likely to miss such problems. In this case, any run with a data sample with-
out empty cells in C[4, 3] : C[43, 3] will produce no incorrect result. Therefore,
checking the absence of defects by testing is not possible, especially when input
data are made available at run-time, and detecting all such issues will require a
conservative static analysis that raises a warning whenever an unsafe operation
(such as the comparison of a string with a numeric value) might be executed.
Different users may consider different sets of operations safe, thus the set of
unsafe operations should be a parameter of the analysis.

Analysis of the Example. The properties of the application of Fig. 1 are shown
in Fig. 2. After Line 14 of the associated program executes, j is always equal
to 44, whereas i may take any value in [4, 44] (as 4 ≤ i ≤ j). The diagrams
show properties that always hold for zones in the table: each rectangle accounts
for a set of cells, and is labeled by a property of these cells. Cell properties
consist either in abstract formulas or in types. Abstract formulas may use relative
indexes (e.g., C[+0,−1]) or absolute indexes (e.g., C[4, 5]). The analysis of Eval
at Line 15 will use abstract formulas to infer type Float for zone Zf0 (since the
multiplication of empty value ε and a float value produces float value 0.0 as does
the multiplication of two float values), and then split Zf1 into two sub-zones of
type Float and String. We call the latter Z ′

t. Finally the type of cell C[45, 5]
is inferred, which requires the types in Column 5 including zone Z ′

t, and thus
involves the unsafe comparison (reported by the analysis) of a value of type
String with a value of type Float.

Moreover, the analysis should not reject obviously correct applications. For
instance, a corrected version of the example application would replace formulas
in Column 5 with formulas of the form IF(ISBLANK(C[4, 3]), 0.0,C[4, 4]+C[3, 5]).
Then, all results in Column 5 would have a floating point type, and no unsafe
comparison of a string with a numeric value would occur. The same reasoning
based on zones will allow to establish this.
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x, y, . . . ∈ X v ∈ V

t ::= Bool | Float | Int | String | Empty | Currency | Date
e ::= v | x | C[e, e] | C[±e,±e]

| e⊕ e where ⊕ ∈ {+,−, �, . . .} | F(e, . . . , e) where F is a function symbol
s ::= x = e | C[e, e] = e | C[e, e] = “ = e”

| Eval | If e Then s Else s End | While(e) s End | s; s
a ::= Dim x As t; . . . ;Dim x As t; s

Fig. 3. Syntax: a core spreadsheet language

3 A Core Spreadsheet Language

In this section, we formalize a core language that incorporates both the spread-
sheet table and the runnable code (the analyzer shown in Sections 6 and 7 sup-
ports a much wider feature set). This language has several distinctive features.
First, a spreadsheet application comprises both the two-dimensional spreadsheet
table itself (called for short spreadsheet) and associated programs, which may be
run upon user request. Second, a spreadsheet cell contains both a formula and
a value. The value is usually displayed. Cell formulas can be re-evaluated upon
request. Automatic re-evaluation of the whole spreadsheet after cell modifica-
tion is often deactivated in industrial applications; then, re-evaluation can be
triggered by a specific command or instruction in the associated program (often
used at the end of its execution).

Syntax. A basic value is either an integer n ∈ Vint, a floating point f ∈ Vfloat

or a string s ∈ Vstring. We write V = Vint �Vfloat �Vstring � {ε, Ωe, Ωt}, where ε
stands for value “undefined”, and where Ωe (resp., Ωt) stands for an execution
error (resp., a typing error). We let X = {x, y, . . .} denote a finite set of variables.
A variable or a cell content has a type. We assume a set of pre-defined data-types
such as not only Bool, Float, String, but also Date or Currency (which exist
in real spreadsheet languages). Moreover, ε is the only value of type Empty. The
spreadsheet itself is a fixed size array of dimension two. Rows (resp., columns)
are labeled in a range R = {1, 2, . . . , nR} (resp., C = {1, 2, . . . , nC}). A cell
address is referred to in absolute terms, by a pair (i, j) where i ∈ R and j ∈ C.

An expression e ∈ E may be either a constant, the reading of a variable
or of a cell, or the result of the application of a binary operator or of a built-in
function (such as ISBLANK, IF, SUM, etc.). A statement s may be either a variable
declaration (together with its type), or an assignment, or an evaluation statement
or a control structure (sequence, condition test, loop). Assignments may modify
either the contents of a variable or the contents of a cell. Assignment to a cell
may store either an evaluated expression value as in C[e0, e1] = e2 or a formula
and its currently evaluated value as in C[e0, e1] = “ = e2”: unlike an expression,
a formula may be re-evaluated in the future. Cell reads in spreadsheet formulas
should correspond to constant indexes, but may be relative to the position of the
cell they appear in: for instance, formula C[−1,+0] in cell C[3, 4] corresponds
to cell C[2, 4]. Last, statement Eval causes a global re-evaluation of the all
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formulas in the spreadsheet (real spreadsheet software typically allows a finer-
grained control of re-evaluation, which we do not model here, as its behavior is
similar to our global Eval).

An Excel spreadsheet application comprises a spreadsheet and a set of associ-
ated programs, which may be run either immediately, or upon user request. In
the following, and without a loss in generality, we assume that an application
a is defined by a single program body s that includes the initialization of the
spreadsheet by a series of assignments (and is preceded by the declaration of
the variables used in the body of the program): the example of Sect. 2 would
be represented by a single program filling in the spreadsheet with values and
formulas prior to the body shown in Fig. 1(b). This allows us to describe many
real spreadsheet applications with the core language shown in Fig. 3. Moreover,
our implementation takes into account many additional features of spreadsheet
environments such as data validation or circular references, which will be covered
in Sect. 6.

Example 1 (Simple application). The application below declares one variable; it
then fills in 4 cells, and modifies one (a global re-evaluation takes place in the
middle of the process).

1 Dim x As Int;
2 x = −5;
3 C[1, 1] = 6;

4 C[2, 1] = “ = C[1, 1]”;
5 Eval;
6 C[1, 1] = 24;

7 C[2, 2] = “ = C[1, 1] + 8”;
8 C[3, 2] = “ = C[2, 1] +C[2, 2]”

States. At any time in the execution, the memory is defined by the values of
variables, and the formulas and values stored in the spreadsheet. Thus, a non-
error state consists of a 3-tuple (σX, σSE, σSV) where σX ∈ X → V maps each
variable to its value, σSE ∈ SE = (R × C → E) maps each cell to the formula it
contains and σSV ∈ SV = (R × C → V) maps each cell to the value it contains.
We write Σ for the set of such concrete states. For instance, the evaluation of
the application of Example 1 produces the state shown below as a graphical view
(we show only the results for cells in the first two columns and the first three
rows as the others are empty):

σX :

x �→ −5

21
1
2
3

σSE :

= 24

= C[1, 1] = C[1, 1] + 8

= C[2, 1] +C[2, 2]

σSV : 21
1
2
3

24

6

ε

ε

32

38

Semantics of Expressions. The evaluation of an expression e is defined by its
semantics �e�E : Σ → P(V) (note that an expression may evaluate to several
values in order to account for possible non-determinism and run-time inputs,
which may arise due to calls to RAND, DATE, or other functions reading real-
time data). We let �⊕� : (P(V))2 → P(V) denote the concrete mathematical
function corresponding to operator ⊕, and �F� : (P(V))n → P(V) denote the
mathematical function associated with built-in (n-ary) function F (note that



Static Analysis of Spreadsheet Applications 33

their arguments may also be non-deterministic). Then, �e�E can be defined as
follows, by induction over the syntax:

�v�E(σ) = {v}
�x�E(σ) = {σX(x)}

�C[e0, e1]�E(σ) = {σSV(v0, v1) | ∀i, vi ∈ �ei�E(σ)}
�e0 ⊕ e1�E(σ) = �⊕�(�e0�E(σ), �e1�E(σ))

�F(e1, . . . , en)�E(σ) = �F�(�e0�E(σ), . . . , �en�E(σ))

We remark that this evaluation function uses the last evaluated value when-
ever it reads a cell. In particular, it does not evaluate the formulas of the cells it
reads the value of, nor their ancestors. Therefore, (1) an update of an ancestor of
a cell c will not cause the update of the value in c, which means the value in c may
become “outdated”; (2) when a cell value is outdated, any evaluation function
that uses its value returns a possibly outdated result. For instance, in Example 1,
after the global re-evaluation in Line 5, σSV(2, 1) = 6, since σSV(1, 1) = 6. In Line
6, the value of C[1, 1] changes, then its descendant C[2, 1] becomes outdated. In
Line 8, �C[2, 1] +C[2, 2]�E(σ) = {38} is calculated from the outdated value of
�C[2, 1]�E(σ) = {6}; thus, C[3, 2] is outdated too.

Errors. The evaluation of some expressions may fail to produce a value. A com-
mon case is division by 0, or a cell read with invalid (e.g., negative) row and col-
umn indexes. These errors, represented byΩe, are treated by other techniques and
are not studied in this paper. Instead, we are interested in typing errors that may
arise when applying an operator or a function to arguments whose types do not
match the convention or the expectation of that operator or function. We write
Ωt both for the value produced in case of a typing error and for the corresponding
error state. For instance, as the comparison between a floating point value and a
string is considered unsafe, we have ∀vf ∈ Vfloat, ∀vs ∈ Vstring, �>�(vf , vs) = Ωt.
Moreover, as a value, Ωt has no type.

Semantics of Program Statements. The concrete semantics of a statement, pro-
gram, or program fragment s is a function mapping an initial state to the set of
final states that can be reached after executing it: �s�P : Σ → P(Σ). It can also
be computed by induction over the syntax. For instance:
– �s0; s1�P(σ) =

⋃{�s1�P(σ0) | σ0 ∈ �s0�P(σ)};
– �If e Then s0 Else s1 End�P(σ) = S0 ∪ S1 where S0 = �s0�P(σ) if true ∈

�e�E(σ) and S0 = ∅ otherwise (and the same for S1, w.r.t. the second branch);
– as usual, the semantics of a loop involves a least-fixpoint computation.

Assignment statements (to a variable or to a cell) always trigger immediate
evaluation. The semantics of assignment to a variable is straightforward: �x =
e�P(σ) = {(σX[x ← v], σSE, σSV) | v ∈ �e�E(σ)}. The two forms of assignments to
a cell differ in the fact the formula is preserved only in the formula assignment:
– Assignment of a value to a cell: �C[e0, e1] = e2�P(σ) = {(σX, σSE[(v0, v1) ←

v2], σ
SV[(v0, v1) ← v2]) | ∀i ∈ {0, 1, 2}, vi ∈ �ei�E(σ)}

– Assignment of a formula: �C[e0, e1] = “ = e2”�P(σ) = {(σX, σSE[(v0, v1) ←
e2], σ

SV[(v0, v1) ← v2]) | ∀i ∈ {0, 1, 2}, vi ∈ �ei�E(σ)}
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Semantics of Global Spreadsheet Re-evaluation. The evaluation statement causes
all formulas in all the cells of the spreadsheet to be re-evaluated. Therefore, the
semantics of Eval involves a possibly large number of computation steps, and it
boils down to a fixpoint computation over the whole spreadsheet that recalculates
σSV.

In this section, we consider spreadsheet environments without circular refer-
ences (which will be covered in Sect. 6). Any such spreadsheet has an acyclic
cell dependency graph. By following a topological ordering of the cells, the for-
mulas contained in cells are evaluated one by one. For instance, if we consider
the state shown in Example 1, the dependencies are shown in the left figure
below. Therefore, if we only take into account non-empty cells, total orderings
(1, 1) ≺ (2, 1) ≺ (2, 2) ≺ (3, 2) and (1, 1) ≺ (2, 2) ≺ (2, 1) ≺ (3, 2) can be used for
the computation (a non-total ordering could also be considered). Re-evaluation
using any of these orders produces the state (σX, σSE, σSV

res) where σSV

res is on the
right:

21
1
2
3

�

� �

�

σSV

res : 21
1
2
3

24

24

ε

ε

32

56

As we intend to perform an abstract interpretation based static analysis of
programs, and since abstract interpretation relies on fixpoint transfer theorems
to derive sound analyses from the concrete semantics, we now formalize the
definition of the semantics of Eval as a least-fixpoint. Following the intuitive
calculation scheme defined above, we can define �Eval�P(σ) as a fixpoint where
each iterate computes exactly one cell.

In the following, we let ≺ denote a topological ordering over R×C. A computa-
tion step calculates the lowest cell in ordering ≺ that has not been evaluated yet,
and that can be evaluated. To distinguish cells whose value has been calculated
from cells that remain to be re-evaluated, we introduce an additional ⊥ value.
We formalize this notion of computation step with a binary relation�≺, which is
such that σSV

0 �≺ σSV

1 if and only if: σSV

1 (i, j) ∈ �σSE(i, j)�E(σ
X, σSE, σSV

0 ) when
σSV

0 (i, j) = ⊥ and ∀(i′, j′) ≺ (i, j), σSV

0 (i′, j′) = ⊥; otherwise σSV

1 (i, j) = σSV

0 (i, j).
We remark that σSV �≺ σSV, when σSV is fully computed (i.e., when no uneval-
uated formula remains). Then, the iteration function F≺ : P(SV) → P(SV) is
defined as F≺(S) = {σSV

1 ∈ SV | ∃σSV

0 ∈ S, σSV

0 �≺ σSV

1 }.
We now need to set up a lattice structure where the computation of the

least-fixpoint should take place. As the computation progresses by filling in
more cells, we need an order relation over spreadsheets which captures prop-
erty “σSV

1 has more evaluated cells than σSV

0 and they agree on common eval-
uated cells”, allowing for the value of a cell to move from ⊥ to any other
value. First, we let �V be the relation over the set of values extended by a
constant � (denoting the definition contradiction) defined by the lattice: ∀v ∈
{. . . ,−1, 0, 1, . . . , ε, true, false, . . .}, ⊥ �V v �V �. This relation extends to
sets of spreadsheets: ∀S0,S1 ∈ P(SV), S0 � S1 if and only if ∀σSV

0 ∈ S0, ∃σSV

1 ∈
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S1, ∀(i, j) ∈ R × C, σSV

0 (i, j) �V σSV

1 (i, j). Moreover, we let σSV

⊥ ∈ SV be de-
fined by ∀(i, j), σSV

⊥ (i, j) = ⊥. At this stage, we can define the semantics of the
re-evaluation as the fixpoint of F≺:
Theorem 1 (Definition of �Eval�P). For all pairs of topological orders ≺,≺′

compatible with the dependencies induced by formulas stored in cells (σSE), we
have: lfp{σSV

⊥ }F≺ = lfp{σSV

⊥ }F≺′ =
⊔{(F≺)n({σSV

⊥ }) | n ∈ N}. Thus, we define:

�Eval�P(σ) = {(σX, σSE, σSV

res) | σSV

res ∈ lfp{σSV

⊥ }F≺}
Another property that follows from the absence of circular dependencies is

the fact that value � never arises in the spreadsheets obtained in the set defined
by this fixpoint. Moreover, all values are defined (i.e., not equal to ⊥) and empty
cells (with no formula) contain value ε. We can also remark that the least fixpoint
is obtained after at most nR · nC iterations. Spreadsheet environments typically
use a total topological order, in order to obtain a sequential computation of
the fixpoint. This is not mandatory in Theorem 1, and this definition allows to
perform “parallel computation” (i.e., in the same iterate) of cells that can be
defined in the same time (but each cell is computed exactly once).

Semantics of a Spreadsheet Application. In order to reason about safety prop-
erties for a spreadsheet application a, we need to set up a semantics �a�A ⊆ Σ
which collects all the states (not only final states, as �s�P does) that can be
reached at any point in the execution of the application. The full definition of
�a�A follows from that of �s�P and is based on a trivial fixpoint, starting from
the initial state σi where all variables, formulas, and values are set to ε.

4 Abstraction

We now formalize the abstraction [10] used in our analysis (Sect. 5). It is based on
abstract formulas (Sect. 4.1) that summarize the behavior of formulas depending
on the type of their inputs and on abstract zones [8] that tie abstract predicates
to sets of spreadsheet cells (Sect. 4.2).

4.1 Formula Abstraction

The computation of type information over zones requires the propagation of infor-
mation not only through the associated program, but also through the formulas
contained in the spreadsheet itself, to be able to analyze re-evaluation. Thus, the
effect of formulas should be propagated through the analysis. However, dealing
with all formulas stored in the spreadsheet would be too costly. Therefore, we
propose an abstraction of the semantics of formulas, which expresses their effect
on types, and replaces, e.g., constants with their type:

Definition 1 (Abstract formulas). Abstract formulas are defined by:

e� (∈ E
�) ::= t | C[n, n] | e� ⊕ e� | F(e�, . . . , e�) where n ∈ Vint, t ∈ T

Example 2 (Abstract formulas). Int + Float, Float−C[3, 4], ISBLANK(C[5, 6])
are all abstract formulas. Moreover, we also allow relative indexes in abstract
formulas, as in C[+0,−1] � Float (Fig. 2).
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Semantics of Abstract Formulas. We now give a semantics to abstract formulas,
following a similar scheme as in Sect. 3, and where abstract formulas evaluate into
types. We let a type spreadsheet be a function σT ∈ ST = (R× C → T) mapping
each cell to a type. Spreadsheet contents σSV has type σT (noted σSV : σT) if and
only if ∀(i, j) ∈ R × C, σSV(i, j) : σT(i, j). To define the semantics of abstract
formulas, we let each operator ⊕ (resp., built-in function F) be abstracted by a
partial function �⊕�t : (P(T))2 → (P(T)) (resp., �F�t : (P(T))n → P(T)) that
over-approximates its effect on types. For instance, �+�t({Int}, {Int}) = {Int}
and �∗�t({Int}, {Float}) = {Float}. On the other hand, as noted in Sect. 2,
comparing a string with an integer is unsafe, so �<�t({String}, {Int}) leads
to Ωt, as for all unsafe operations. The semantics of abstract formula e� is a
function �e��T : ST → P(T) mapping spreadsheets into sets of types.

Abstraction of Formulas. A spreadsheet formula can be translated into an ab-
stract formula by replacing, e.g., all constants with types, this process is formal-
ized in the definition of the translation function φ below:

φ(C[i, j]) = C[i, j]
φ(e0 ⊕ e1) = φ(e0)⊕ φ(e1)

φ(v) = t where t is the type of v
φ(F(e1, . . . , en)) = F(φ(e1), . . . , φ(en))

Note that the translation applies only to formulas found in the spreadsheet (i.e.
not to general expressions found in associated programs), thus φ is not defined
for variables or cell accesses of the form C[e0, e1] where e0 or e1 is not a constant.

The intended effect on types is preserved by φ, and it satisfies the soundness
condition: if e ∈ E, σSV ∈ SV and σT ∈ ST are such that ∀(i, j), σSV(i, j) : σT(i, j),
then ∀v ∈ �e�E(σ), ∃t ∈ �φ(e)�T(σ

T), v : t.

Example 3 (Formulas abstraction). We have the abstractions φ(C[4, 4] ∗ 1.3) =
C[4, 3]∗Float, and with relative indexes, φ(C[+0,−1]∗1.3) = C[+0,−1]∗Float.
Simplification of Abstract Formulas. Some type formulas may be simplified,
while still carrying the same information. For instance, the addition of two
floating point values produces a new floating point value, thus type formula
Float + Float can be simplified into Float. The concrete semantics of func-
tions may allow for less trivial formula simplifications. For example, the function
ISERROR checks if a value is of type Error; it always returns a boolean value
whatever the argument is, then formula ISERROR(C[5, 6]) can be simplified into
Bool.

Therefore, we use a simplification function S : E� → E
�, defined by structural

induction over formulas, that applies a set of local rules. It is sound with respect
to the concrete semantics: ∀e� ∈ E

�, �S(e�)�T = �e��T. Potentially unsafe oper-
ations should not be simplified (e.g., simplification rule S(Float > String) =
Bool is not admissible), as they are exactly what our analysis aims at discover-
ing.

4.2 Spreadsheet Abstraction

Spreadsheet Zones Abstraction. To abstract spreadsheets, we need to tie abstract
properties such as types or abstract formulas to table zones. In the following, we
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use the zone abstraction of [8], where a zone describes a set of cells in a compact
manner. A zone abstraction is defined by a numeric abstract domain [10] D�

num

over X (where X contains two special variable names ī and j̄ that cannot be used
in the associated programs and that respectively denote the row and column of
a cell), with a concretization function γnum : D�

num → P(X → V). A set of cell
coordinates S in concrete state (σX, σSE, σSV) is abstracted by zone Z ∈ D

�
num

if and only if ∀(i, j) ∈ S, [σX, ī = i, j̄ = j] ∈ γnum(Z), i.e., the coordinates in
S together with σX satisfy Z. When not considering an associated program, no
other variable than ī, j̄ should appear in Z. In this paper, we employ a variant of
difference bound matrices (DBMs) which was used in [8], and inspired from the
octagon abstract domain [20]. For clarity, we write bounds on ī, j̄ using interval
notation and let the zone defined by ī ∈ [e0, e1] ∧ j̄ ∈ [e2, e3] be denoted by
[e0, e1] × [e2, e3] (where e0, . . . , e3 are linear expressions over the variables or
constants).

Example 4 (Abstract zones). We define a few zones relevant to the example of
Sect. 2. Zone Z0 : ī ∈ [4, 43] ∧ j̄ = 2 (or [4, 43] × [2, 2]) describes a block in
column 2, from row 4 till row 43. Similarly, zone Z1 : [4, i] × [3, 3] describes a
block in column 4, and spanning from row 4 till row ni, where ni denotes the
value of i in the current state. Last, zone Z2 : [4, 43]× [4, 4] describes a block in
column 4.

State Abstraction. An abstract state encloses (i) numerical abstract properties
of variables and (ii) a collection of abstract zone predicates, that is, abstract
predicates that hold true over all cells that can be characterized by an abstract
zone.

An abstract predicate is either a type or an abstract formula. This defines
an abstract domain D

�
c = {⊥,�} ∪ T ∪ E

�. To distinguish an abstract type
formula from a type, we insert “=” before the type (e.g., String ∈ T, whereas
“ = String” ∈ E

�). Concretization function γc : D
�
c → P(E× V) is defined by:

– ∀t ∈ T, γc(t) = {(e, v) ∈ E× V | v : t};
– ∀e� ∈ E

�, γc(e
�) = {(e, v) ∈ E× V | φ(e) = e�}.

We can now define abstract states as follows:

Definition 2 (Abstract zone predicate and abstract state). An abstract
zone predicate is a pair (Z,P) ∈ D

�
z, where D

�
z = D

�
num×D

�
c. The concretization

γz : D
�
z −→ P(Σ) is such that (σX, σSE, σSV) ∈ γz(Z,P) if and only if:

∀(i, j) ∈ R× C, [σX, ī = i, j̄ = j] ∈ γnum(Z) =⇒ (σSE(i, j), σSV(i, j)) ∈ γc(P)

An abstract state is a pair (N �, P �) ∈ D
�
Σ = D

�
num × Pfin(D

�
z). Moreover, con-

cretization function γΣ : D�
Σ → P(Σ) is defined by:

γΣ(N
�, P �) = {(σX, σSE, σSV) | σX ∈ γnum(N

�) ∧ (σX, σSE, σSV) ∈
⋂

p�∈P �

γz(p
�)}

We distinguish zone predicates attached to abstract formulas and zone predi-
cates attached to types: we let F � ∈ Pfin(D

�
z,form) denote the abstract zone pred-

icates for formulas and we let T � ∈ Pfin(D
�
z,type) denote those for types. Thus,
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P � = F � � T �, and (N �, P �) is equivalent to (N �, F � � T �). The construction of
Definition 2 utilizes the reduced product and reduced cardinal power of abstract
domains [11]. It also extends the domain shown in [8] with abstract formulas.

Example 5 (Example 4 continued: abstract predicates over zones). The following
abstract zone predicates are satisfied in the concrete state of Fig. 1(a):

– Zones Z0 and Z1 correspond to values of type Float, which are described
by the predicates (Z0,Float) and (Z1,Float);

– All cells in zone Z2 contain a formula abstracted by C[+0,−1]∗Float, thus
this zone can be described with abstract zone predicate (Z2,C[+0,−1]∗Float).
Likewise, Fig. 2 displays an abstract state made of ten zones bound to types and
three zones bound to abstract formulas.

5 Static Analysis Algorithms

Wenowsetupa fully automatic static analysis,which computes anover-approxima-
tion of the set �a�A or reachable states of an application a, expressed in the abstract
domain defined in Sect. 4. It proceeds by abstract interpretation [10] of the body of
a: the effect of each statement is over-approximated in a sound manner by some
adequate transfer functions, and a widening operator enforces the convergence of
abstract iterates whenever a concrete fixpoint needs to be approximated in the
abstract level. We design two sound abstract semantics. The abstract semantics
�s��

P
: D�

Σ → D
�
Σ of statement s is a function whichmaps an abstract pre-condition

into a conservative abstract post-condition (which is described by abstract states).

The abstract semantics �a��
A
⊆ D

�
Σ of application a is a finite set of abstract states.

We defer the analysis of global re-evaluation to Section 5.2 and handle the others
first in Section 5.1. Some abstract operations are common with [8] whereas others
are deeply different, especially those related to formulas.

5.1 Abstract Interpretation of Basic Statements

Straight Line Code. The core language of Sect. 3 features several, rather similar
forms of assignments (assignment to a variable, of an evaluated expression to a
cell, or of a formula to a cell). Thus, the analysis defines three transfer functions

assign�
X
, assign�

V
, assign�

E
that share the same principles, thus we focus on for-

mula assignment assign�
E
: E × E × E × D

�
Σ → D

�
Σ. Given e0, e1, e2, it should

satisfy:

∀σ� ∈ D
�
Σ , ∀(σX, σSE, σSV) ∈ γΣ(σ

�), ∀vi∈{0,1,2} ∈ �ei�E(σ),

(σX, σSE[(v0, v1) ← e2], σ
SV[(v0, v1) ← v2]) ∈ γΣ(assign

�
E
(e0, e1, e2, σ

�))

To achieve this, both the type and the formula properties of zones may need to
be updated. Information about the overwritten cell should be dropped from the
abstract state, either by removing existing zone predicates, or by splitting zones
into preserved / overwritten areas. Then, new type and formula information
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should be synthesized and attached to a zone corresponding only to the cell
overwritten by the assignment. Type information is obtained by evaluating the
semantics of abstract formulas; when this evaluation fails, a typing error should
be reported.

Example 6 (Abstract assignment). Let us consider abstract state σ� = (i <
n, {([1, i−1]×[2, 2], e�), ([i, n]×[2, 2], “ = String”)}), where e� = Int+C[+0,−1].
Then, assignment C[i, 2] = “ = 24 +C[i, 1]” replaces the constant formula (of
type string) contained in cell C[i, 2] with a formula that can be abstracted by
Int + C[i, 1] (or equivalently Int + C[+0,−1]), and it evaluates that formula,
which returns a value of type Int. Thus, the string constant value that was
previously stored in the cell is replaced, so the topmost cell of zone [i, n]× [2, 2]

should be removed from that zone. Therefore, we obtain abstract state σ�
0 =

(i < n, {([1, i− 1]× [2, 2], e�), (i× [2, 2], e�), ([i+1, n]× [2, 2], “ = String”), (i×
[2, 2], Int)}).

This update operation creates new zones, yet, when several adjacent zones
have the same type and abstract formulas, they could be merged, with no loss
of information. This operation is performed by an operator reduce� : D�

Σ → D
�
Σ

introduced in [8], and that satisfies soundness condition ∀σ� ∈ D
�
Σ, γΣ(σ

�) ⊆
γΣ(reduce

�(σ�)).

Example 7 (Reduction). In abstract state σ�
0 of Example 6, ([1, i− 1]× [2, 2], e�)

and ([i, i]× [2, 2], e�) can be merged into ([1, i]× [2, 2], e�).
As ([4, 4]× [4, 4],C[4, 3]∗Float) is equivalent to ([4, 4]× [4, 4],C[+0,−1]∗Float),
and ([5, 5]×[4, 4],C[5, 3]∗Float) is equivalent to ([5, 5]×[4, 4],C[+0,−1]∗Float),
these two zones can be merged into ([4, 5]× [4, 4],C[+0,−1] ∗ Float).

We can now define the analysis of straight line code (sequences of assign-
ments):

– �s0; s1�
�
P
(σ�) = �s1�

�
P
(�s0�

�
P
(σ�));

– �x = e��
P
(σ�) = reduce�(assign�

X
(x, e, σ�));

– �C[e0, e1] = e2�
�
P
(σ�) = reduce�(assign�

V
(e0, e1, e2, σ

�));

– �C[e0, e1] = “ = e2”�
�
P
(σ�) = reduce�(assign�

E
(e0, e1, e2, σ

�)).

Control Structures. The analysis of control structures requires condition test,
join and widening operators. Condition tests refine information on variable ranges
(hence, refining zone bounds) and on cell types (due to operators testing the
type of cell values, such as ISBLANK). They are analyzed by an operator guard� :

E×D
�
Σ → D

�
Σ that satisfies soundness condition ∀σ ∈ γΣ(σ

�), true ∈ �e�E(σ) ⇒
σ ∈ γΣ(guard

�(e, σ�)). Control flow joins are analyzed by a join operator

�� : D�
Σ × D

�
Σ → D

�
Σ such that ∀σ�

0, σ
�
1 ∈ D

�
Σ , γΣ(σ

�
0) ∪ γΣ(σ

�
1) ⊆ γΣ(σ

�
0 �� σ�

1),
whereas loops require a widening operator ∇�, based on similar algorithms and
that ensures the termination of abstract iterates. These operators generalize
bounds on zones [8], hence play a critical role in the inference of non trivial zone
invariants, such as those shown in Fig. 2:
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Example 8 (Abstract join). Letus consider abstract statesσ�
0 = (x = 2, {(Z0, e

�)})
and σ�

1 = (x = 3, {(Z1, e
�)}), where Z0 = [1, 2]× [2, 2] and Z1 = [1, 3]× [2, 2]. In

both zones, the upper bound on ī is equal to x. Thus,Z0 (resp.,Z1) is semantically

equivalent to Z = [1, x]× [2, 2]. Therefore, σ�
1 �� σ�

0 returns (2 ≤ x ≤ 3, {(Z, e�)}.
We can now define the analysis of condition statements and loops:
– �If e Then s0 Else s1 End��

P
(σ�) = �s0�

�
P
(reduce�(guard�(e, σ�))) ��

�s1�
�
P
(reduce�(guard�(¬e, σ�)));

– �While(e) s End��
P
(σ�) = reduce�(guard�(¬e, lfp�

⊥F
�)) where F �(σ�

0) =

σ� �� �s��
P
(reduce�(guard�(e, σ�

0))) and lfp� computes abstract post-fixpoint,
using classical abstract iteration techniques, using widening operator ∇�.
We recall the abstract post-fixpoint operator is sound in the following sense: if
F : P(Σ) → P(Σ) is continuous and F � : D�

Σ → D
�
Σ , S ⊆ Σ and σ� ∈ D

�
Σ are

such that, F ◦ γΣ ⊆ γΣ ◦ F � and S ⊆ γΣ(σ
�), then lfpSF ⊆ γΣ(lfp

�
σ�F

�).

Applications. The analysis of an application a recursively computes the abstract
semantics of all statements in the body of a from its initial state, and produces
a finite set of abstract states �a��

A
. Our analysis is sound:

Theorem 2 (Soundness). For all statements s ∈ P, �s��
P
is sound: ∀σ� ∈

D
�
Σ , ∀σ ∈ γΣ(σ

�), �s�P(σ) ⊆ γΣ(�s�
�
P
(σ�)). Thus, for all a ∈ A, �a��

A
is sound,

i.e., �a�A ⊆ ⋃
γΣ(�a�

�
A
).

Therefore, the whole analysis catches all typing errors following the definition
given in Sect. 3, corresponding to the operations specified unsafe. In particular,
it catches the error of the example shown in Sect. 2, and proves the fixed version
safe.

5.2 Abstract Interpretation of Global Evaluation

The concrete semantics of Eval boils down to a fixpoint, that re-computes cell
values in the whole spreadsheet while preserving formulas and variables values
(Sect. 3). Thus, we assume σ� = (N �, F ��T �), and show the computation of T �

res

(by fixpoint approximation) so as to let �Eval��(σ�) = (N �, F � � T �
res). We first

show a very basic iteration strategy, and then discuss the analysis of Eval.

Cell-by-Cell Re-evaluation. The concrete semantics of Eval is based on function
F≺, defined by a cell ordering ≺ compatible with formula dependencies. In this
paragraph, we show an abstract counterpart for F≺ under the assumption that
each abstract zone is reduced to a single concrete cell, thus elements of T � (resp.,
F �) are equivalent to functions from R×C into T (resp., E�). Abstract formulas
follow the same dependencies as concrete formulas, thus the topological order ≺
can be retrieved from an abstract state, by topological sorting. Moreover, the
analysis should support “not yet re-evaluated” cells, which are denoted by ⊥:
– To extend type spreadsheets ST, we let ST⊥ = (R×C) → (T� {⊥}), and let

order relation � be defined by ∀t ∈ T, ⊥ � t. As each zone contains exactly
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one cell, an element T � ∈ Pfin(D
�
z,type) is now equivalent to an element of

ST⊥.
– We let T �

⊥ ∈ ST⊥ be defined by ∀(i, j), T �
⊥(i, j) = ⊥.

– Given an abstract formula e�, its abstract semantics �e��t can also be
extended to compute a type (possibly �) for an abstract element of

Pfin(D
�
z,form), using the type information available for each cell in the for-

mula; we still use notation �e��t to denote that extended semantics.

We can now define the abstract counterpart F �
≺ : Pfin(D

�
z,type) → Pfin(D

�
z,type)

of F≺. It is such that for all T �
0 ∈ ST⊥, and for all i, j, F �

≺(T
�
0)(i, j) =

�F �(i, j)�t(T
�
0) when T �

0(i, j) = ⊥ and ∀(i′, j′) ≺ (i, j), T �
0(i

′, j′) = ⊥ (otherwise

F �
≺(T

�
0)(i, j) = T �

0(i, j)). It is sound: for all σ�
0 = (N �, F � � T �

0) ∈ D
�
Σ , and for

all (σX, σSE, σSV

0 ) ∈ γΣ(σ
�
0), we have (σX, σSE,F≺(σSV

0 )) ⊆ γΣ(N
�, F � � F �

≺(T
�
0)).

Therefore, the existence of the fixpoint follows from the continuity of F �
≺ (it

is obtained after at most nR · nC iterations). Soundness is proved by fixpoint
transfer:

Theorem 3 (Abstract interpretation of re-evaluation). �Eval��
P
(N �, F ��

T �) = (N �, F � � T �
res) where T �

res = lfpT �
⊥
F �

≺ =
⊔{(F �

≺)n(T
�
⊥) | n ∈ N} defines a

sound post-condition: ∀σ� ∈ D
�
Σ , ∀σ ∈ γΣ(σ

�), �Eval�P(σ) ⊆ γΣ(�Eval��
P
(σ�).

Moreover, this process will also allow us to prove no typing error (in the sense
of Sect. 3) arises during re-evaluation.

Example 9 (Cell-by-cell re-evaluation). We illustrate this strategy with the ab-
straction of the spreadsheet studied in Sect. 3. The corresponding abstract for-
mulas over zones are shown below, in the left hand side. Then, cells are treated
following topological ordering (1, 1) ≺ (2, 1) ≺ (2, 2) ≺ (3, 2), and the type
obtained for each cell is Int:

21
1
2
3

= Int

= C[1, 1]

= Empty

= Empty

= C[1, 1] + Int

= C[2, 1] +C[2, 2]

21
1
2
3

Int

Int

(Empty)

(Empty)

Int

Int

Zone-by-Zone Strategy. The cell-by-cell strategy abstract interpretation of Eval
would not be efficient in practice, as abstract states usually contain zones which
are bounded, but possibly large and/or of variable size. However, since a whole
zone is attached to a single abstract formula, type information for a whole zone
can often be computed in a single step, which is much faster than cell-by-cell
evaluation.

A zone can be re-evaluated as soon as the two following conditions are satisfied:
(1) its abstract formulas induce no internal dependency, i.e., between its cells (in
the example of Sect. 2, this holds for all zones, except the last column, which
will be discussed in the next paragraph); (2) there exists a topological order
≺ compatible with formula dependencies, according to which all the cells lower
than the cells in that zone have already been evaluated.
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When a zone satisfies these two conditions, the analysis can re-evaluate its
type by applying the abstract formula it corresponds to, since its arguments
have already been re-evaluated. When an argument of the abstract formula may
belong to several zones, it will be necessary to split the zone being re-evaluated.
This will produce a set of zones with type information. The analysis will ap-
ply this efficient scheme whenever the topological ordering induced by abstract
formulas zones allows it:

Example 10 (Zone-by-zone strategy). We assume the following abstract state:

4321
1
i = Float = C[+0,−1] + Int = C[+0,−2] ∗ Float = C[+0,−2] < C[+0,−1]

Z0 Z1 Z2 Z3

Then according to the formula dependencies, the abstract iteration can follow
the order Z0 ≺ Z1 ≺ Z2 ≺ Z3. It terminates after four iterations, and produces
the type zones {(Z0,Float), (Z1,Float), (Z2,Float), (Z3,Bool)}.

Abstract Iteration over Zones, Using Widening. When a zone contains internal
dependencies (i.e., abstract formula using as arguments cell that belong to the
zone itself), the zone-by-zone strategy does not apply. Such a self-reference oc-
curs in the example of Sect. 2 since the evaluation of Column 5 requires types of
Columns 3, 4 and Column 5 itself. Inter-reference among zones may also occur,
e.g., when Z0 needs types of Z1, Z1 needs types of Z2, . . . , and Zn needs types
of Z0.

Zones containing such patterns can be re-evaluated in the abstract level by
simulating a cell-by-cell re-evaluation order, as part of an abstract fixpoint com-
putation. To do this, under the assumption that there is no cycle in formulas
(this case is discussed in Sect. 6), the analysis of Eval will consider a loop that
computes the cells in the zone one-by-one, following the steps below:
1. introducing loop variable k, denoting the number of cells in the abstract

formula zone that have been re-evaluated;
2. determining the first cell in the abstract formula zone dependency order;
3. splitting the abstract formula zones into two zones, respectively for cells that

can be immediately re-evaluated, and for cells that cannot be re-evaluated
yet;

4. iterating Steps 2 and 3 until the abstract formula zones are fully treated,
and applying widening at each step to ensure termination, thanks to lfp�;

5. synthesizing the final abstract state by restricting, when Step 4 produces
stable type zones.

This strategy provides a way to compute the effect of Eval over large zones or
zones of variable size. It does not need the full unrolling of the zone, thanks to
the use of the widening operation over the cells that are generally well structured.
Indeed, it effectively amounts to analyzing a loop with counter k that iterates
over the zone in order to compute abstract types:



Static Analysis of Spreadsheet Applications 43

Example 11 (Abstract iteration over a zone). We consider the abstract formula
zones below (which correspond to an excerpt of the example of Sect. 2), which
define the dependencies shown in the right-hand side:

= Int

= Float

= C[+0,−1] +C[−1,+0]

Z0

Z1

Z2

�

�

�

�

�

�

�

...

The first two iterations of the strategy described above produce the results below:

Int

Float

Float

1

2

n

1st abs. iter.

Int

Float

Float

1

2
3

n

2nd abs. iter., before ∇�

Int

Float

Float

1

2

k+ 1

n

2nd abs. iter., after ∇�

On the third iteration, abstract states are stable. Moreover, the analysis proves
all the formulas evaluate without a typing error and produce a result of type
Float.

Combined Strategies. In general, abstract states require the use of a combination
of the strategies shown above. The zone-by-zone strategy is given priority in our
analysis: it will always try to detect and to re-compute first the zones that can
be evaluated as a whole. This strategy is the most efficient and turns out to be
the most frequently used in practice. Remaining cases are dealt with by widening
based and cell-by-cell strategies. After adding Eval statement to the set of the
statements, the global soundness theorem (Theorem 2) still holds.

6 Implementation of an Excel VBA Analyzer

We have implemented our analysis. Our analyzer handles a large subset of Mi-
crosoft Excel functions and VBA, following the VBA specification [2]. Our tool
consists of a frontend written in VBA, that parses Microsoft Excel spreadsheet
tables (e.g., number formats, types, formulas, buttons) and VBA macros, and
exports them to the static analyzer itself, which undertakes the verification (and
includes 19000 lines of OCaml code). The verification of a spreadsheet applica-
tion proceeds through two steps: (1) the verification of global re-evaluation; (2)
the verification of the execution of any macro it contains, given the initial spread-
sheet abstract state. The verification gradually infers invariants; finally, it either
proves the correctness with regard to our typing system, or raises alarms by point-
ing out the location (e.g., the zone in spreadsheets and/or the line in macros)
and the unsafe typing rule in question. The analyzer can also be launched over a
set of Excel files and return a summary report for the whole set. We will present
the analysis results for the EUSES Spreadsheet Corpus in Sect. 7.



44 T. Cheng and X. Rival

Supported Features. In the previous sections, we formalized the analysis of the
core spreadsheet language, but our analyzer supports many additional spread-
sheet features, to be able to cope with real-world applications, including the
following:
– A workbook may contain several worksheets, and formulas may refer to cells

in another sheet or another workbook.
– Macros may contain interprocedural calls, other user-defined subroutine or

function, with or without arguments.
– Number formats are options that Excel provides for displaying values such

as percentages, currencies, dates, which impact value types in some cases.
Therefore, we also abstract this information (using zones as well) and take
it into account while typing.

Circular References. The spreadsheet environment we have formalized does not
feature circular references among cells, yet Microsoft Excel allows circular refer-
ences under certain circumstances. In particular, a number of iterations can be
set so that a circular computation could terminate. In this case, both the start-
ing cell and the ending cell of the evaluation can be identified. Following this
order, the analyzer iterates the abstract evaluation until it reaches a fixpoint.

Data Validation. Excel users may define constraints on data to be entered in
some areas, such as “empty or only date”, “empty or only time”, “only text of a
certain length”, etc. Such information constrains data to be written in some ar-
eas at run-time; thus, this information can be used in the analysis. Therefore, our
analyzer parses areas with data validation constraints and uses the type informa-
tion they provide in the initial abstract state. This allows a precise verification of
spreadsheets that utilize data unknown at verification time / non-deterministic
data.

Over-approximation of Empty Input Cells. Spreadsheet formulas may refer to
empty cells where values will be entered by users later. If “Data Validation” is
not available for these cells, we can still derive their “expected” type from the
function that is applied to them. For instance, function SUM expects Numeric
arguments, function AND expects Bool arguments, etc. To account for this, the
analyzer will either treat these cells as empty or store a value of that type. This
over-approximation helps better verify formulas / macros using those cells.

7 Experiments and Analysis Results

We evaluated the efficiency of our tool, and focused on the three following ques-
tions: (1) Does the analysis find real defects in spreadsheets & macros ? (2) How
long does the analysis take ? (3) Is the analysis report precise enough ? Is it easy
enough for users to diagnose analysis warnings, and adopt the analysis ?
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Experimental Setup. We chose the EUSES Spreadsheet Corpus [15] as an ex-
perimental subject for two reasons. First, to the best of our knowledge, it is the
largest publicly available sample of real-world spreadsheets. Secondly, it includes
many macros that offer good candidates for evaluating our associated program
analysis. The sizes of the files of the corpus range from several KB to dozens
of MB. In general, the spreadsheets are no longer under development and are
already operational.

A spreadsheet may contain zero, one or several macros. It may also not con-
tain any formula. The following table presents the classification of the EUSES
Spreadsheet Corpus. Category D corresponds to pure data-sheets without any
formulas or macros: they are not meaningful for our analysis, as their analysis
is trivial. Therefore, our sample was the 2120 spreadsheets of Categories A + B
+ C and the 1053 macros inside them.

A # spreadsheets with ≥ 1 formulas & 0 macro 1959
B # spreadsheets with ≥ 1 formulas & ≥ 1 macros 111
C # spreadsheets with 0 formula & ≥ 1 macros 50
D # spreadsheets with 0 formula & 0 macro 2532

We performed the experiments as follows. First, our tool parsed all the spread-
sheets and the macros, and detected 27 macros and 59 spreadsheet tables that
have syntactic bugs or are incomplete (e.g., users put evident annotations such
as “not-available” in their spreadsheet where an analysis would not be relevant).
Next, we launched the analyzer on the rest of the items, and it was able to an-
alyze Eval for 1854 spreadsheets and 858 macros (the reason why 7.8% of the
spreadsheet tables and 16.4% of the macros were not analyzed is due to the fact
our tool currently does not handle all Excel & VBA features and built-in func-
tions, which are quite complex and numerous). Last, we filtered out the items
whose bugs are not type-related (e.g., calls to undefined macros). Our tool de-
tected 15 such spreadsheets and 21 such macros, which is useful but orthogonal
to our purpose. The rest of the analyzed items are either type-related safe or
erroneous, we classify them by Category TypeRSE in the following table, which
summaries the analyses of Eval of spreadsheets in Categories A + B and macros
in spreadsheets of Categories B + C. From now on we shall focus on Category
TypeRSE and discuss the core of the analysis.

Total
Syntactically Syntactically Correct
Erroneous Non- Analyzed

or Incomplete Analyzed Type-Unrelated Erroneous TypeRSE
Eval 59 157 15 1839
Macro 27 168 21 837

Real Defects. The analyzer was set up in such a way that, when an unsafe typing
rule is applied, it raises an alarm and stops the analysis. Therefore, the number of
alarms raised corresponds to the number of spreadsheets / macros in the USES
Corpus that were considered potentially erroneous by our analysis. In total, the
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analyzer raised 69 type-related alarms for Eval and 73 for macros. For each
alarm, the report specified its location (e.g., the zone in spreadsheets and/or
the line in macros), the unsafe typing rule (bug pattern) it encountered, and an
estimate rating of how severe the defect would be. We manually inspected the
spreadsheet / macro for which an alarm was raised, to diagnose its cause and
the consequence of the revealed problem.

The alarms of type-unsafe operations effectively led us to identify real defects
in programs, part of which defects silently produce wrong results. We show some
of them as examples:

Example 1. In “homework\processed\Finalgradebook.xls”, an application
of Function AVERAGE to an Empty zone was detected, whereas all of its other
arguments were Double. We found formula “=AVERAGE(D4;F4;H4;J4;L40)”, was
referring to “L40” although it was an empty cell. This was probably due to a
user’s erroneous typing of “L40” instead of “L4” (which was a Double and should
have been an argument of AVERAGE), whereas Excel considered the formula valid.
This mistake will indeed result in the computation of an incorrect average grade.

Example 2. In “modeling\processed\2-26.xls”, subroutine “do assign” uses
a two-level loop to copy a table of basic parameters into another sheet where
biological simulations are performed. Our tool detected that the whole zone of
the table was Double except the first line, which was Empty. However, this zone
had been assigned to a Double zone in another sheet. Upon investigation, we
noticed a one-line shift between the source table and the target table, because the
range of the loop was wrong. This will result in the target table being incorrectly
filled in (its first line filled in with 0s, the copy result of empty cells), and the
simulations (run 100 times!) based on these parameters will generate incorrect
results.

Example 3. In “homework\processed\pl student2002.xls”, the analyzer de-
tected an application of Function SUM to a String value, whereas all of its other
arguments were Double. Examining the spreadsheet, we observed that the String
value was actually “I”, whereas the other arguments were either 0 or 1. Clearly
users had mistaken “I” and “1”, which are visibly similar. As a result, Excel
considers “I” as 0 by SUM, which leads to a different number from that originally
intended.

As shown by these examples, our tool discovered defects that would be hard
for users to spot. In total, among all the alarms raised by the analyzer, we
identified 25 real defects for Eval and 20 for macros, corresponding to serious
and harmful issues in spreadsheet applications.

Among patterns contributing to spreadsheet defects, we can cite: (1) binary op-
eration on Numeric data and Non-Numeric data (e.g., String) (2) Non-Numeric
data (e.g., String, Empty) among the arguments of SUM or AVERAGE.

Furthermore, the defects found in the programs can be classified into sev-
eral major categories: (1) Formulas or statements are applied to a wrong sheet
area, and consequently take unexpected arguments. In Example 1, it is the ref-
erence of an argument of the formula that is incorrect; in Example 2, the area
of the copied table is wrongly set. This kind of defect typically occurs due to an
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inappropriate manipulation (e.g., mistyping, improper copy-paste). In total, we
found 13 bugs of this category. (2) Formulas or statements have a certain as-
sumption for the types or the values of input data, yet the assumption is not
specified or will not always hold at run-time. For instance, in a macro of “home-
work\processed\RT EvaluationWorkbook.xls”, an addition of a String value and
an Empty cell is involved, and the analyzer realized that the Empty cell (repre-
senting reference of products) could well be set to a number at run-time, which
would block the execution of the macro. We detected 8 defects of this class.

Moreover, we observe that many real defects were found thanks to the ab-
straction of the initial state of the spreadsheets, since this abstraction takes
into account data that will be entered at run-time (Data-Validation areas, func-
tions reading external values, etc.). It is, for instance, the case of the error in
“RT EvaluationWorkbook.xls”, where the over-approximation of an empty cell
covers numeric data at run-time, which is not the current value of the given
spreadsheet. This kind of error would not be discovered by verification tech-
niques that rely on a single spreadsheet state, like testing.

Analysis Time. The analyzer succeeded in verifying 858 macros in 161 spread-
sheets (Categories B + C in Table 7). The size of each macro ranges from a few
LOCs to several hundred LOCs. As one LOC could well involve a complex ab-
stract operation by executing a complex statement or calling another macro, the
size of a macro is just one of the factors that have an impact on its analysis time.
We can list other important factors such as the complexity of the abstract state
(e.g., # formula zones, # type zones, # variables) and the number of complex
abstract operations (e.g., join, widening, reduction, eval). By summarizing all of
the 858 successfully analyzed macros, we observe that the analysis for macros is
fast enough: only 2% of them lasted more than 3 seconds (the longest analysis
takes 10.45 seconds), and 88% of them took less than 0.2 second. We note that
all analyses with fewer than 100 abstract zones and no loop of nesting depth
greater than 2 lasted less than 1.75 seconds.

Figure 4(a) indicates the analysis time for Eval against the number of cells
for non-constant values in initial spreadsheets. We remark that the analyses
were performed in a reasonable time frame: 99% of the analyses took less than 1
second. Thus, the analysis time is acceptable in practice, and the analysis would
integrate in a seamless manner in development.

Additionally, Figure 4(b) shows the analysis time of Eval, against the number
of abstract formula zones for non-constant values in initial spreadsheets. By
comparing it with Fig. 4(a), we remark that the principal attribute for analysis
time is the number of abstract zones, rather than the number of cells. This
observation is consistent with our abstraction mechanism, which is based on a
cardinal power of zone abstractions. Going further, we remark that, on average,
the number of zones we have made is 0.1x as many as the number of cells for a
spreadsheet. The larger a spreadsheet is, the lower this ratio is: for certain large
spreadsheets, this ratio can be less than 0.01. This guarantees that our analysis
based on zones is scalable and especially efficient for large spreadsheets.
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(a) vs. # cells for non-constant
values

(b) vs. # abstract formula
zones for non-constant values

Fig. 4. Analysis time for Eval in seconds

Precision and Diagnostics. With regard to our current typing system, the ana-
lyzer proved that global re-evaluations of 1770 spreadsheet tables in Categories
A + B of Table 7 were correct and that 764 macros were correct.

When it raises an alarm, the analyzer issues a report including the context
information (zone, macro line) and the category of the potential defect. In addi-
tion, Excel & Visual Studio provide an interactive debugging environment where
the states of spreadsheets and program variables are highly visible. Thus, users
can assess the alarm reports interactively with the help of this environment.

Besides the categories of real defects we presented previously, we can list sev-
eral major categories of false alarms: (1) The first category is due to imprecisions
in the analysis: the over-approximation causes the alarms corresponding to un-
safe concrete states that will never be reached. We notice that the majority of
the false alarms in this category come from the imprecisions in the analysis of
certain VBA and Excel built-in functions. Few of the false alarms for Eval are
due to the over-approximation of the initial state of the spreadsheet. This implies
that a technique that relies on the given state of the spreadsheet would not re-
duce these false alarms. (2) The second category of false alarms is indeed related
to type-unsafe operations, that are intended as such by the users. For example,
sometimes users apply Function SUM to a column containing not only data, but
also several titles. In this case, Function SUM will omit the titles and will thus
still produce the correct result, summing the numeric data only. Yet, this pat-
tern will result in false alarms due to Non-Numeric data among the arguments
of SUM.

Therefore, diagnosing an alarm and triaging it as a false alarm or a real defect
is fairly straightforward and typically takes a couple of minutes. We spent no
more than 10 minutes on the most complex alarms. In total, we identified 44
false alarms for Eval and 53 for macros. The following table summarizes the
core analyses.
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TypeRSE (Type-Related Safe or Erroneous)
alarm free raise alarm

real defect false alarm
Eval (1839) 1770 25 44
Macro (837) 764 20 53

Overall, the tool raised 142 alarms from 2676 analyses (Eval + macros), 45
of which alarms (i.e., approximately 30 %) were identified as real defects, which
makes the false alarm number quite acceptable, considering that the defects
found would be hard to spot by simple testing.

Summary. The experiments on the EUSES Corpus show that our analysis suc-
ceeds in detecting type-unsafe operations and can effectively be used to improve
the quality of spreadsheets. It discovers defects that will cause unexpected re-
sults and that will not likely be found by testing. The diagnosis of alarms is not
a tedious process with the guidance of the tool, and the false alarm number is
reasonable. While the zone abstractions of a spreadsheet allows for the verifica-
tion of type properties, it makes the analysis scalable for spreadsheets having a
large number of cells. The analysis is efficient enough to be integrated within a
development environment, as it could either be scheduled as a background task
(e.g., scan systematically before saving), using reasonable resources, or launched
upon user request in an interactive way.

8 Related Work

Unit Verification. The existing projects [3,9,4,5,6] resolve concrete units or di-
mensions with labels, headers and / or other annotations, build typing systems
and reason about the correctness of formulas. We cannot find their experimen-
tal data or precision reports on comparable sets of benchmarks for a practical
comparison with our results. Nevertheless, theoretically, our work is different
from theirs in several ways: (1) we consider classical types in the programming
language point of view, whereas their types refer to the concrete meaning of ob-
jects; thus, the built-in rules or bugs discovered by the two analyses are different;
(2) we verify both the interface level and associated programs that the existing
projects do not consider; (3) we evaluate formulas according to their order of
precedence and thus support spreadsheets where data may be outdated; (4) our
system covers a larger library of spreadsheet functions; (5) our classical types
can always be retrieved from spreadsheets. By contrast, given a spreadsheet,
the concrete meaning of objects are not always clear, and the retrieval of these
meanings relies on annotation, though the analysis can be finer-grained if the
retrieval is successful (e.g., they detect “adding apples and oranges”, which our
analysis does not regard as an error). Actually, combining our work with that of
the existing projects would be a good direction for future work. By substituting
other lattices with the type lattice and merging typing systems, we would be
able to perform finer-grained analyses with various units and types.
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Array Analysis and Zone Domain. Array analyses such as [23,12] also tie ab-
stract properties to array regions; a notion of dependent types has been used to
specify array properties such as array size [28]. One difference of our work is that
we treat bi-dimensional arrays, whereas the existing works study uni-dimensional
arrays.

Cheng and Rival [8] introduce an abstract domain to describe zones in two-
dimensional arrays and apply it to analyze programs in a limited language, with-
out formulas that can be re-evaluated after their inputs change. We aim at verify-
ing real-world spreadsheets, which consist of associated programs and formulas.
To this end, we formalize a larger spreadsheet language which includes formulas,
and propose an abstraction that ties not only types but also abstract formulas to
zones. Therefore, unlike [8], our analysis can cope with the re-evaluation of for-
mulas (in automatic mode, upon user-request or from the associated programs),
which is critical to handle real-world spreadsheets. Last, we evaluate the analysis
and the implementation by analyzing a large set of real-world spreadsheets.

JavaScript, and Languages with Dynamic Evaluation. Thiemann [26] defines a
type system that flags suspicious type conversions in JavaScript programs, which
is a similar verification target to ours, albeit for a different language. Jensen et
al. [18] address the eval function in JavaScript, which dynamically constructs
code from text strings and executes it as if it were regular code in ways that
obstruct existing static analyses. However, spreadsheet languages distinguish
themselves from other scripting and dynamic languages by the way dynamicity
is implemented: formulas are structured and organized in a two-dimensional ar-
ray, whereas the eval function in JavaScript applies to strings and has a very
different semantics. This led us to a very different abstraction based on zone
and abstract formulas, than that of [18]. Moreover, Hammer et al. [16] propose a
demand-driven incremental computation semantics of eval to provide speedups
in spreadsheets, whereas our abstraction is based on the original concrete seman-
tics of Eval in spreadsheets.

9 Conclusion

We have proposed a static analysis which is able to detect a significant class of
subtle spreadsheet defects. It discovers inappropriate applications of operators
and functions to arguments, which may produce unexpected results. To the best
of our knowledge, our analysis is the first that can handle spreadsheet formulas,
global re-evaluation and associated programs. Our evaluation on the EUSES
Corpus has demonstrated that our analysis can effectively run on real-world
spreadsheet applications and can verify a large number of them. It is able to
discover defects that would be beyond the reach of both testing techniques and
static analyses that would ignore the dynamic aspects of spreadsheets.
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Abstract. Many probabilistic programming languages allow programs
to be run under constraints in order to carry out Bayesian inference.
Running programs under constraints could enable other uses such as
rare event simulation and probabilistic verification—except that all such
probabilistic languages are necessarily limited because they are defined or
implemented in terms of an impoverished theory of probability. Measure-
theoretic probability provides a more general foundation, but its gener-
ality makes finding computational content difficult.

We develop a measure-theoretic semantics for a first-order probabilis-
tic language with recursion, which interprets programs as functions that
compute preimages. Preimage functions are generally uncomputable, so
we derive an abstract semantics. We implement the abstract semantics
and use the implementation to carry out Bayesian inference, stochastic
ray tracing (a rare event simulation), and probabilistic verification of
floating-point error bounds.

Keywords: Probability, Semantics, Domain-Specific Languages.

1 Introduction

One key feature usually distinguishes a probabilistic programming language
from general-purpose languages: finding the probabilistic conditions under which
stated constraints are satisfied. Often, a probabilistic program simulates a real-
world random process and the constraints represent observed, real-world out-
comes. Running the program under the constraints infers causes from effects.

Inferring probabilistic causes from observed outcomes is called Bayesian in-
ference, a technique used widely in artificial intelligence. It has been successful
in analyzing phenomena at all scales, from genomes to celestial bodies. Automat-
ing it is one of the primary drivers of probabilistic language development.

One of the simplest probabilistic programs that allows us to demonstrate
Bayesian inference simulates the following process of flipping two coins.
1. Flip a fair coin; call the outcome x.
2. If x is heads, flip another fair coin. If x is tails, flip an unfair coin with heads

probability 0.3 (tails probability 0.7). In either case, call the outcome y.
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The following probabilistic program simulates this process.

let x := flip 0.5
y := flip (if x = heads then 0.5 else 0.3)

in 〈x, y〉

(1)

Here, flip q returns heads with probability q and tails with probability 1 − q.
The meaning of (1) is not the returned random value, but a probability dis-

tribution that describes the likelihoods of all possible returned random values.
For discrete processes, this distribution can always be defined by a probability
mass function: a mapping from possible values to their probabilities. These
probabilities are computed by multiplying the probabilities of intermediate ran-
dom values. For example, the probability of 〈heads, heads〉 is 0.5 ·0.5 = 0.25, and
the probability of 〈tails, heads〉 (i.e. the second flip is unfair) is 0.5 · 0.3 = 0.15.
The meaning of (1) is thus the probability mass function

p :=
[〈heads, heads〉 �→ 0.25, 〈heads, tails〉 �→ 0.25,

〈tails, heads〉 �→ 0.15, 〈tails, tails〉 �→ 0.35
] (2)

Using p, we can answer any question about the process under constraints. For
example, if we do not know x, but constrain y to be heads, what is the probability
that x is also heads? We compute the answer by dividing the probability of the
outcome we are interested in (i.e. 〈x, y〉 = 〈heads, heads〉) by the total probability
of outcomes in the constraint’s corresponding subdomain {heads, tails}×{heads}:

p 〈heads, heads〉
∑

z∈{heads,tails}×{heads} p z = 0.25
0.25 + 0.15

= 0.625 (3)

Qualitatively, y being heads is a bit unusual if the second coin is unfair. Therefore,
we infer that the second coin is most probably fair; i.e. x is most likely heads.

The time complexity of computing p is generally exponential in the number
of random choices, which is intractable for all but the simplest processes. One
popular way to avoid this exponential explosion is to use advanced Monte Carlo
algorithms to sample according to p on the constraint’s corresponding subdomain
without explicitly enumerating that subdomain. The number of samples required
is typically quadratic in the answer’s desired accuracy [7, Sec. 12.2].

Probabilistic languages that are implemented using advanced Monte Carlo
algorithms could be used not just for Bayesian inference, but for simulating rare
events (i.e. very low-probability events) by encoding the events as constraints.

Stochastic ray tracing [30] is one such rare-event simulation task. As illus-
trated in Fig. 1, to carry out stochastic ray tracing, a probabilistic program
simulates a light source emitting a single photon in a random direction, which
is reflected or absorbed when it hits a wall. The program outputs the photon’s
path, which is constrained to pass through an aperture. Millions of paths that
meet the constraint are sampled, then projected onto a simulated sensor array.
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 Light Source  Light Source  Light Source  Light Source  Light Source  Light Source  Light Source  Light Source  Light Source 

 Aperture  Aperture  Aperture  Aperture  Aperture  Aperture  Aperture  Aperture  Aperture 
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.4.4.4.4.4.4.4.4.4
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(a) Simulated photons from a single source,
constrained to pass through an aperture.

(b) Simulated photons constrained to
pass through the aperture, projected
onto a plane and accumulated.

Fig. 1. Ray tracing by constraining the outputs of a probabilistic program

The program’s main loop is a recursive function with two arguments: path, the
photon’s path so far as a list of points, and dir, the photon’s current direction.

simulate-photon path dir :=
case (find-hit (fst path) dir) of
absorb pt −→ 〈pt, path〉
reflect pt norm −→ simulate-photon 〈pt, path〉 (random-half-dir norm)

(4)

Here, find-hit (fst path) dir finds the surface the photon hits. If the photon is
absorbed, find-hit returns a data structure containing just the collision point
pt. Otherwise, find-hit returns a data structure containing the collision point pt
and surface normal norm, which random-half-dir uses to choose a new direction.
Running simulate-photon 〈pt, 〈〉〉 dir, where pt is the light source’s location and
dir is a random emission direction, generates a photon path. The fst of the path
(the last collision point) is constrained to be in the aperture. The remainder of
the program is simple vector math that computes ray-plane intersections.

In contrast, hand-coded stochastic ray tracers, written in general-purpose lan-
guages, are much more complex and divorced from the physical processes they
simulate, because they must interleave the advanced Monte Carlo algorithms
that ensure the aperture constraint is met.

Unfortunately, while many probabilistic programming languages support ran-
dom real numbers, none are capable of running a probabilistic program like (4)
under constraints to carry out stochastic ray tracing. The reason is not lack of
engineering or weak algorithms, but is theoretical at its core: they are all either
defined or implemented using a naive theory of probability.

While probability mass functions cannot define distributions on R that give
positive probability to uncountably many values, there is a near-universal sub-
stitute that can: probability density functions. Density functions map single
values to probability-like quantities, which makes them intuitively appealing and
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apparently simple. Unfortunately, density functions are not general enough to be
used as probabilistic program meanings without imposing severe limitations on
probabilistic languages. In particular, programs whose outputs are deterministic
functions of random values and programs with recursion generally cannot denote
density functions. The program in (4) exhibits both characteristics.

Measure-theoretic probability is a more powerful alternative to this naive
probability theory based on probability mass and density functions. It not only
subsumes naive probability theory, but is capable of defining any computable
probability distribution, and many uncomputable distributions. But while even
the earliest work [15] on probabilistic languages is measure-theoretic, the theory’s
generality has historically made finding useful computational content difficult.

We show that measure-theoretic probability can be made computational by
1. Using measure-theoretic probability to define a compositional, denotational

semantics that gives a valid denotation to every program.
2. Deriving an abstract semantics, which allows computing answers to questions

about probabilistic programs to arbitrary accuracy.
3. Implementing the abstract semantics and efficiently solving problems.

In fact, our primary implementation, Dr. Bayes, produced Fig. 1b by running a
probabilistic program like (4) under an aperture constraint.

The rest of this paper is organized as follows.
– Section 2 demonstrates why density functions are insufficient for interpreting

probabilistic programs. It shows how measure-theoretic probability defines
probability distributions using set-valued inverses, or preimage functions.

– Section 3 presents the categorical tools we use to derive many semantics from
a single standard semantics in a way that makes them easy to prove correct.

– Section 4 defines the semantics of nonrecursive, nonprobabilistic programs,
which interprets programs as preimage functions.

– Section 5 lifts this semantics to recursive, probabilistic programs.
– Section 6 derives a sound, implementable abstract semantics.
– Section 7 describes our implementations and gives examples, including prob-

abilistic verification of floating-point error bounds.
In short, we show why and how to run probabilistic programs under constraints
by computing preimage functions—that is, by running programs backwards.

2 Background

2.1 Probability Density Functions

Some distributions of real values can be defined by probability density func-
tions: integrable functions p : Rn → [0,∞) that integrate to 1.

The simplest nontrivial probabilistic program is random, which returns a uni-
formly random value in the interval [0, 1]. The meaning of random is a probability
distribution that can be defined by the density
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p : R → [0,∞) p x :=
{

1 if x ∈ [0, 1]
0 otherwise

(5)

Though p x for any x indicates x’s relative frequency, p x is not a probabil-
ity. Probabilities are obtained by integration. For example, the probability that
random returns a value in [0, 0.5] is

∫ 0.5

0
(p x) dx =

∫ 0.5

0
1 dx =

[
x
]0.5

0
= 0.5 − 0 = 0.5 (6)

Similarly, the probability of [0.5, 0.5] or any other singleton set is zero. In fact,
every probability density function integrates to zero on singleton sets.

This fact makes it trivial to write a probabilistic program whose distribu-
tion cannot be defined by a density. For example, consider max 〈0.5, random〉,
where max 〈a, b〉 returns the greater of the pair 〈a, b〉. This program evaluates
to 0.5 whenever random returns a number in [0, 0.5]. In other words, the value
of max 〈0.5, random〉 is in [0.5, 0.5] with probability 0.5. But if its distribution is
defined by a density, then [0.5, 0.5] must have probability zero—not 0.5.

A probabilistic language without the max function can still be useful. It is
fairly easy to compute densities for the outputs of single-argument functions
that happen to have differentiable inverses, such as exponentiation and square
root. But two-argument functions such as addition and multiplication require
evaluating integrals, which generally do not have closed-form solutions.

Perhaps the most constricting limitation of probability density functions is
that the number of dimensions must be finite and fixed. This limitation rules
out recursive data types, and makes recursion so difficult that few probabilistic
languages attempt to allow it.

2.2 Measures, and Measures of Preimages

Measure-theoretic probability gains its expressive power by mapping sets directly
to probabilities. Functions that do so are called probability measures. For
example, the distribution of random is defined by the probability measure

P : P [0, 1] ⇀ [0, 1] P [a, b] = b− a (7)

where P [0, 1] is the powerset of [0, 1] and ‘⇀’ denotes a partial mapping.
Though (7) apparently defines P only on intervals, it is regarded as defining
P additionally on countable unions of intervals, their complements, countable
unions of such, and so on. The resulting domain includes almost every subset of
[0, 1] that can be written down.

Probability measures can be defined on any domain, including domains with
variable and infinite dimension. They can also map singleton sets to nonzero
probabilities, which we will demonstrate shortly by deriving a probability mea-
sure for max 〈0.5, random〉.
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Measure-theoretic probability takes great pains to separate random effects
from the pure logic of mathematics. It does so in the same way Haskell and other
purely functional programming languages allow random effects: by interpreting
probabilistic processes as deterministic functions that operate on an assumed-
random source. The probabilities of sets of outputs are uniquely determined by
the probabilities of the corresponding sets of inputs.

Suppose we interpret max 〈0.5, random〉 as the deterministic function

f := λ r ∈ [0, 1].max 〈0.5, r〉 (8)

and assume that r is its uniform random source; i.e. that its distribution is P as
defined in (7). To compute the probability that max 〈0.5, random〉 evaluates to
0.5, we apply P to the set of all r for which f r ∈ [0.5, 0.5], and get, as expected,

P {r ∈ [0, 1] | f r ∈ [0.5, 0.5]} = P [0, 0.5] = 0.5 − 0 = 0.5 (9)

For any f and B, the set {a ∈ domain f | f a ∈ B} is called the preimage of B
under f. Functions that compute preimages are often denoted f−1 to emphasize
that they are a sort of generalized inverse function. However, we find this nota-
tion confusing: inverse functions operate on values and may not be well-defined,
whereas preimage functions operate on sets and are always well-defined.1 Thus,
we denote f’s preimage function by preimage f. The probability that f outputs a
value in B is therefore P ((preimage f) B), or P (preimage f B).

Though the distribution of max 〈0.5, random〉, or the output of f, has no
probability density function, its probability measure is defined by

Pf : P [0.5, 1] ⇀ [0, 1] Pf [a, b] = P (preimage f [a, b]) (10)

An equivalent, more elegant definition is

Pf := P ◦ (preimage f) (11)

which clearly shows that Pf is factored into a part P that quantifies randomness,
and a deterministic part preimage f that runs f backwards on sets of outputs.

This factorization confers the flexibility to interpret probabilistic programs
by choosing any P and f for which P ◦ (preimage f) is the correct measure. For
P, we choose uniform measures on cartesian products of [0, 1] (e.g. [0, 1]N) and
interpret each random as a projection. Thus, for the remainder of this paper, we
can concentrate solely on computing preimage f.

Because preimage f is deterministic, techniques to compute it have applica-
tions outside of probabilistic programming; for example, constraint-functional
languages, type inference, and verification. More immediately, its determinism
means that, for the bulk of this paper, readers do not need to know anything
about probability, let alone measure theory—only basic set theory.

1 If f−1 b is undefined, then the preimage of {b} under f is simply ∅.
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2.3 Preimage Semantics

Several well-known identities suggest that preimages can be computed compo-
sitionally, which would make it possible to define a denotational semantics that
interprets programs as preimage functions. For example, we have

preimage id = id
preimage (f2 ◦ f1) = (preimage f1) ◦ (preimage f2)

preimage 〈f1, f2〉 (B1 × B2) = (preimage f1 B1) ∩ (preimage f2 B2)
(12)

where 〈f1, f2〉 = λa ∈ (domain f1) ∩ (domain f2). 〈f1 a, f2 a〉 constructs pairing
functions and id is the identity function.

It might seem we can easily use identities like those in (12) directly to de-
fine a semantic function �·�pre that interprets programs as preimage functions.
Unfortunately, our task is not that simple, for the following reasons.
1. The preimage function requires its argument to have an observable domain.

This includes extensional functions, which are sets of intput/output pairs
(i.e. possibly infinite hash tables), but not intensional functions, which are
syntactic rules for computing outputs from inputs (e.g. lambdas).2

2. We must ensure preimage f B is always in the domain of the chosen prob-
ability measure P. (Recall that probability measures are partial functions.)
If this is true, we say f is measurable. Proving measurability is difficult,
especially if f may not terminate.

3. The function app : (X → Y) × X → Y, when restricted to measurable func-
tions, is not generally measurable if we want good approximation proper-
ties [2]. This makes interpreting higher-order application difficult.

Implementing a language based on preimage semantics is complicated because
4. Ordinary set-based mathematics is unlike any implementation language.
5. It requires running programs written in a Turing-equivalent language back-

wards, efficiently, on possibly uncountable sets of outputs.
We address 1 and 4 by developing our semantics using λZFC [29], an untyped,

call-by-value λ-calculus with infinite sets, real numbers, extensional functions
such as λ r ∈ [0, 1].max 〈0.5, r〉, intensional functions such as λ r.max 〈0.5, r〉, a
computable sublanguage, and an operational semantics. It is essentially ordinary
mathematics extended with lambdas and general recursion, or equivalently a
lambda calculus extended with uncountably infinite sets and set operations.

We have addressed difficulty 2 by proving that all programs’ interpretations
as functions are measurable if language primitives are measurable, including
uncomputable primitives such as limits and real equality, regardless of nonter-
mination. The proof interprets programs as extensional functions and applies
well-known theorems from measure theory such as the identities in (12). Unfor-
tunately, the required machinery does not fit in this paper; see the first author’s
dissertation [28] for the entire development.
2 The lambda λ r.max 〈0.5, r〉 is intensional, but λ r ∈ [0, 1].max 〈0.5, r〉 constructs an

extensional function by pairing every r ∈ [0, 1] with its corresponding max 〈0.5, r〉.
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We avoid difficulty 3 for now by interpreting a language with first-order func-
tions and recursion. We address 5 by deriving and implementing a conservative
approximation of the preimage semantics, and using its approximations to com-
pute measures of preimages with arbitrary accuracy.

2.4 Abstract Interpretation, Categorically
We interpret nonrecursive, nonprobabilistic programs three different ways, using
1. A standard semantics �·�⊥ that interprets programs that may raise errors

(e.g. divide-by-zero) as intensional functions.
2. A concrete semantics �·�pre that interprets programs as preimage func-

tions, which operate on uncountable sets, and are thus unimplementable.
3. An abstract semantics �·�p̂re that interprets programs as abstract preimage

functions, which operate only on overapproximating, finite representations
of uncountable sets, and thus are implementable.

Of course, we must prove for any program p, that �p�pre correctly computes
preimages under �p�⊥, and that �p�p̂re is sound with respect to �p�pre.

For recursive, probabilistic programs, we define three more semantic functions
analogous to �·�⊥, �·�pre and �·�p̂re, that have analogous proof obligations. We also
prove that they correctly interpret nonrecursive, nonprobabilistic programs.

In the full development [28], two more semantic functions interpret programs
as extensional functions, which are used to prove measurability. Another seman-
tic function collects information needed for advanced Monte Carlo algorithms.
In all, we have 9 related semantic functions, each defined by 11 or 12 rules, whose
correctness and relationships must be proved by structural induction. Doing so
is tedious and error-prone. We need a way to parameterize one semantic function
on many meanings, where each “meaning” is simpler than a semantic function
and ideally has exploitable properties.

Moggi [22] introduced monads as a categorical “metalanguage” for interpret-
ing programs. Wadler [31] showed how to use monad categories in pure functional
programming to encode and hide side effects such as mutation and randomness.
Haskell programmers now primarily encode programs with side effects using
do-notation, which is transformed into any monad. Essentially, Haskell has a
built-in semantic function parameterized on a monad.

Other researchers have identified arrows [10] and idioms [19] as useful kinds of
categories. Different kinds of categories are good for encoding different kinds of
effects, and have different levels of expressiveness [16]. Arrows are good categories
for interpreting first-order languages. We therefore interpret programs 9 different
ways by parameterizing a semantic function on one of 9 arrow categories.

In our formulation, an arrow category consists of a type constructor and five
combinators; each is thus half as complicated as the semantic function. Their
categorical properties also allow two drastic simplifications. First, they allow
proving the correctness of a semantic function �·�b with respect to �·�a by proving
a simple theorem about arrows a and b. Second, they allow us to derive all the
arrows for recursive, probabilistic programs at once, by lifting the arrows for
nonrecursive, nonprobabilistic programs.
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2.5 Types and Notation

Because some arrows carry out uncountably infinite computations, we must de-
fine their combinators in a sufficiently powerful λ-calculus. We use λZFC [29].

Though λZFC is untyped, it helps to use a manually checked, auxiliary type
system. For example, the types of some of λZFC’s primitives are those of mem-
bership (∈) : x → Set x → Bool, powerset P : Set x → Set (Set x), big union⋃

: Set (Set x) → Set x, and the map-like image : (x → y) → Set x → Set y. We
allow sets to be used as types, as in max : 〈R,R〉 → R.

More precisely, types are characterized by these rules:
– x → y is the type of intensional, partial functions from type x to type y.
– 〈x, y〉 is the type of pairs of values with types x and y.
– Set x is the type of sets whose members have type x.
– An uppercase type variable such as X represents a set used as a type.

Because the inhabitants of the type Set X and P X (i.e. subsets of the set X) are
the same, they are equivalent types. Similarly, 〈X,Y〉 is equivalent to X × Y.

Type constructors are defined using ‘::=’; e.g. X�⊥ Y ::= X → (Y ∪ {⊥}).
The set XJ contains all extensional, total functions from set J to set X; i.e.

vectors of X indexed by J. We use adjacency (i.e. f a) to apply both intensional
and extensional functions. For example, the first element of f : [0, 1]N is f 0.

Proofs, which we elide to save space, are in the first author’s dissertation [28].

3 Arrows and First-Order Semantics

This section presents the categorical tools we use to derive many semantics from
a single standard semantics in a way that makes them easy to prove correct.

Arrows [10], like monads [31], thread effects through computations in a way
that imposes structure. But arrow computations are always

– Function-like. The type constructor for arrow a is written x �a y to connote
this. In fact, the function arrow’s type constructor is x � y ::= x → y.

– First-order. There is no way to derive the higher-order application combina-
tor app : 〈x �a y, x〉 �a y from the combinators that define arrow a.

The first property makes arrows a good fit for a compositional translation from
expressions to pure functions that operate on random sources. The second prop-
erty makes arrows a good fit for the semantics of a first-order language.

3.1 Arrow Combinators and Laws

Arrows factor computation into the following tasks: (1) referring to pure, primi-
tive functions, (2) applying primitive or first-order functions, (3) binding values
to local variables and creating data structures, and (4) branching based on the
results of prior computations. The first four arrow combinators correspond re-
spectively with each of these tasks. A fifth combinator allows lazy branching in
a call-by-value language such as λZFC.

For laziness, we need a singleton type for thunks. We use the set 1 := {0}.
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Definition 1 (Arrow3). A binary type constructor (�a) and the combinators

arra : (x → y) → (x �a y) lift
(>>>a) : (x �a y) → (y �a z) → (x �a z) compose
(&&&a) : (x �a y) → (x �a z) → (x �a 〈y, z〉) pair
iftea : (x �a Bool) → (x �a y) → (x �a y) → (x �a y) if-then-else
lazya : (1 → (x �a y)) → (x �a y) laziness

define an arrow if certain monoid, homomorphism, and other laws hold [10].

For example, the function arrow is defined by the type constructor x �
y ::= x → y and the combinators

arr f := f
(f1 >>> f2) a := f2 (f1 a)
(f1 &&& f2) a := 〈f1 a, f2 a〉
ifte f1 f2 f3 a := if f1 a then f2 a else f3 a

lazy f a := f 0 a

(13)

To demonstrate compositionally interpreting probabilistic programs as arrow
computations, we interpret max 〈0.5, random〉 as a function arrow computation
f : [0, 1] � R. For any random source r ∈ [0, 1], the interpretation of 0.5 should
return 0.5, so 0.5 means λ r. 0.5, or const 0.5 where const v := λ . v. Assuming
r ∈ [0, 1] is uniformly distributed, random means λ r. r, or id. We use (&&&) to
apply each of these interpretations to the random source to create a pair, and
(>>>) to send the pair to max. Thus, max 〈0.5, random〉, interpreted as a function
arrow computation, is f := ((const 0.5) &&& id) >>> max.

By substituting the definitions of const, id, (&&&) and (>>>), we would find
that f is equivalent to λ r.max 〈0.5, r〉, similar to the interpretation in (8).

Only the function arrow can so cavalierly use pure functions as arrow com-
putations. In any other arrow a, pure functions must be lifted using arra, to
allow the arrow to manage any state or effects. Therefore, the interpretation of
max 〈0.5, random〉 as an arrow a computation fa : [0, 1] �a R is

fa := (arra (const 0.5) &&&a arra id) >>>a arra max (14)

So far, we have ignored the many arrow laws, which ensure that arrows are
well-behaved (e.g. effects are correctly ordered) and are useful in proofs of the-
orems that quantify over arrows (i.e. nothing else is known about them). For-
tunately, we can prove all the laws for an arrow b by defining it in terms of an
arrow a for which the laws hold, and proving two properties about the lift from
a to b. The first property is that the lift from a to b is distributive.
3 These are actually arrows with choice, which are typically defined using firsta and
lefta instead of (&&&a) and iftea. We find iftea more natural for semantics than lefta,
and (&&&a) better matches the pairing preimage identity in (12).
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p ::≡ f := e; ... ; e
e ::≡ let e e | env n | if e then e else e | 〈e, e〉 | f e | δ e | v
f ::≡ (first-order function names)
δ ::≡ (primitive function names)
v ::≡ 〈v, v〉 | 〈〉 | true | false | (other first-order constants)

�f := e; ... ; eb�a :≡ f := �e�a ; ... ; �eb�a
�let e eb�a :≡ (�e�a &&&a arra id) >>>a �eb�a

�env 0�a :≡ arra fst
�env (n + 1)�a :≡ arra snd >>>a �env n�a

�
if ec then et else ef

�
a :≡ iftea �ec�a (lazya λ0. �et�a) (lazya λ0.

�
ef

�
a)

�〈e1, e2〉�a :≡ �e1�a &&&a �e2�a

�f e�a :≡ �〈e, 〈〉〉�a >>>a f
�δ e�a :≡ �e�a >>>a arra δ

�v�a :≡ arra (const v)

where const v := λ . v
id := λv. v

subject to �p�a : 〈〉 �a y for some y

Fig. 2. Interpretation of a let-calculus with first-order definitions and De-Bruijn-
indexed bindings as arrow a computations. Here, ‘::≡’ denotes definitional extension
for grammars and ‘:≡’ denotes definitional extension for syntax.

Definition 2 (Arrow Homomorphism). liftb : (x �a y) → (x �b y) is an
arrow homomorphism from a to b if these distributive laws hold:

liftb (arra f) ≡ arrb f (15)
liftb (f1 >>>a f2) ≡ (liftb f1) >>>b (liftb f2) (16)
liftb (f1 &&&a f2) ≡ (liftb f1) &&&b (liftb f2) (17)

liftb (iftea f1 f2 f3) ≡ ifteb (liftb f1) (liftb f2) (liftb f3) (18)
liftb (lazya f) ≡ lazyb λ0. liftb (f 0) (19)

where “≡” is an arrow-specific equivalence relation.

The second property is that the lift is right-invertible (i.e. surjective).

Theorem 1 (Right-invertible Homomorphism Implies Arrow Laws). If
liftb : (x �a y) → (x �b y) is a right-invertible homomorphism from a to b and
the arrow laws hold for a, then the arrow laws hold for b.

3.2 First-Order Let-Calculus Semantics

Figure 2 defines a semantic function �·�a that interprets first-order programs as
arrow computations for any arrow a. A program is a sequence of function defi-
nitions separated by semicolons (or line breaks), followed by a final expression.
Function definitions may be mutually recursive because they are interpreted as
definitions in a metalanguage in which mutual recursion is supported. (We thus
do not need an explicit fixpoint operator.) Unlike functions, local variables are
unnamed: we use De Bruijn indexes, with 0 referring to the innermost binding.

The result of applying �·�a is a λZFC program in environment-passing style
where the environment is a stack. The final expression has type 〈〉 �a y, where
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y is the type of the program’s output and 〈〉 denotes the empty stack. A let
expression uses pairing (&&&a) to push a value onto the stack and composition
(>>>a) to pass the resulting stack to its body. First-order functions have type
〈x, 〈〉〉 �a y where x is the argument type and y is the return type. Application
passes a stack containing just an x using pairing and composition.

Using De Bruijn indexes, g x := g x is written g := g (env 0), which �·�a
interprets as g := �〈env 0, 〈〉〉�a >>>a g. To disallow such circular definitions, and
ill-typed expressions like max 〈0.5, 〈〉〉, we require programs to be well-defined.

Definition 3 (Well-defined). An expression (or program) e is well-defined
under arrow a if �e�a terminates and �e�a : x �a y for some x and y.

Well-definedness guarantees that recursion is guarded by if expressions, as
�if ec then et else ef �a wraps �et�a and �ef �a in thunks. It does not guarantee
that running an interpretation always terminates. For example, the program
g := if true then g (env 0) else 0; g 0 is well-defined under the function arrow,
but applying its interpretation to 〈〉 does not terminate. Section 5 deals with
such programs by defining arrows that take finitely many branches, or return ⊥.

Most of our semantic correctness results rely on the following theorem.

Theorem 2 (Homomorphisms Distribute Over Expressions). Let liftb :
(x �a y) → (x �b y) be an arrow homomorphism. For all e, �e�b ≡ liftb �e�a.

Much of our development proceeds in the following way.
1. Define an arrow a to interpret programs using �·�a.
2. Define liftb : (x �a y) → (x �b y) from arrow a to b with the property that

if f : x �a y, then liftb f is correct.
3. Prove liftb is a homomorphism; therefore �e�b is correct (Theorem 2).
4. Prove liftb is right-invertible; therefore b obeys the arrow laws (Theorem 1).

In shorter terms, if b is defined in terms of a right-invertible homomorphism
from arrow a to b, then �·�b is correct with respect to �·�a.

4 The Bottom and Preimage Arrows

The following commutative diagram shows the relationships between the arrows
X�⊥ Y and X�pre Y for interpreting nonrecursive, nonprobabilistic programs,
and X�⊥* Y and X�pre* Y for interpreting recursive, probabilistic programs.

X�⊥ Y liftpre−−−−→ X�pre Y
η⊥∗

⏐
⏐
�

⏐
⏐
�ηpre∗

X�⊥* Y −−−−→
liftpre∗

X�pre* Y
(20)

In this section, we define the top row.
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X�⊥ Y ::= X → Y⊥

arr⊥ f a := f a
(f1 >>>⊥ f2) a := case f1 a of

⊥ −→ ⊥
b −→ f2 b

lazy⊥ f a := f 0 a

ifte⊥ f1 f2 f3 a := case f1 a of
true −→ f2 a
false −→ f3 a
⊥ −→ ⊥

(f1 &&&⊥ f2) a := case 〈f1 a, f2 a〉 of
〈⊥, 〉 −→ ⊥
〈 ,⊥〉 −→ ⊥
〈b1, b2〉 −→ 〈b1, b2〉

Fig. 3. Bottom arrow definitions

4.1 The Bottom Arrow

To use Theorem 2 to prove correct the interpretations of expressions as preimage
arrow computations, we need to define the preimage arrow in terms of a simpler
arrow with easily understood behavior. The function arrow (13) is an obvious
candidate. However, we will need to represent possible nontermination as an
error value, so we need a slightly more complicated arrow.

Fig. 3 defines the bottom arrow, which is similar to the function arrow but
propagates the error value ⊥. Its computations have type X�⊥ Y ::= X → Y⊥,
where Y⊥ ::= Y ∪ {⊥}.

To prove the arrow laws, we need coarse enough notion of equivalence.

Definition 4 (Bottom Arrow Equivalence). Two computations f1 : X�⊥ Y
and f2 : X�⊥ Y are equivalent, or f1 ≡ f2, when f1 a ≡ f2 a for all a ∈ X.

Using bottom arrow equivalence, it is easy to show that (�⊥) is isomorphic
to the Maybe monad’s Kleisli arrow. By Theorem 1, the arrow laws hold.

4.2 The Preimage Function Type and Operations

Before defining the preimage arrow, we need a type of preimage functions.
Set Y → Set X would be a good candidate, except that the (>>>pre) combi-
nator will require preimage functions to have observable domains, but instances
of Set Y → Set X are intensional functions. We therefore define

X⇀pre Y ::= 〈Set Y, Set Y → Set X〉 (21)

as the type of preimage functions. Fig. 4 defines the necessary operations on
them. Operations 〈·, ·〉pre and (◦pre) return preimage functions that compute
preimages under pairing and composition, and are derived from the preimage
identities in (12); (∪pre) computes unions and is used to define iftepre.

Fig. 4 also defines image⊥ and preimage⊥ to operate on bottom arrow com-
putations: image⊥ f A computes f’s range (with domain A), and preimage⊥ f A
returns a function that computes preimages under f restricted to A. Together,
they can be used to convert bottom arrow computations to preimage functions:

pre : (X�⊥ Y) → Set X → (X⇀pre Y)
pre f A := 〈image⊥ f A, preimage⊥ f A〉 (22)
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X⇀pre Y ::= 〈Set Y, Set Y → Set X〉

pre : (X�⊥ Y) → Set X → (X⇀pre Y)
pre f A := 〈image⊥ f A, preimage⊥ f A〉

∅pre := 〈∅,λB.∅〉

appre : (X⇀pre Y) → Set Y → Set X
appre 〈B′, p〉 B := p (B ∩ B′)

rangepre : (X⇀pre Y) → Set Y
rangepre 〈B′, p〉 := B′

〈·, ·〉pre : (X⇀pre Y1) → (X⇀pre Y2) → (X⇀pre〈Y1,Y2〉)
〈〈B′

1, p1〉, 〈B′
2, p2〉〉pre :=

let B′ := B′
1 × B′

2
p := λB.

⋃

〈b1,b2〉∈B

(p1 {b1}) ∩ (p2 {b2})

in 〈B′, p〉

(◦pre) : (Y⇀pre Z) → (X⇀pre Y) → (X⇀pre Z)
〈C′, p2〉 ◦pre h1 := 〈C′,λC. appre h1 (p2 C)〉

(∪pre) : (X⇀pre Y) → (X⇀pre Y) → (X⇀pre Y)
〈B′

1, p1〉 ∪pre 〈B′
2, p2〉 :=

〈B′
1 ∪ B′

2,λB. appre 〈B′
1, p1〉 B ∪ appre 〈B′

2, p2〉 B〉

image⊥ : (X�⊥ Y) → Set X → Set Y
image⊥ f A := (image f A)\{⊥}

preimage⊥ : (X�⊥ Y) → Set X → Set Y → Set X
preimage⊥ f A B := {a ∈ A | f a ∈ B}

Fig. 4. Preimage functions and operations

X�pre Y ::= Set X → (X⇀pre Y)

arrpre := liftpre ◦ arr⊥
(h1 >>>pre h2) A := let h′

1 := h1 A
h′
2 := h2 (rangepre h′

1)
in h′

2 ◦pre h′
1

(h1 &&&pre h2) A := 〈h1 A, h2 A〉pre

iftepre h1 h2 h3 A :=
let h′

1 := h1 A
h′
2 := h2 (appre h′

1 {true})
h′
3 := h3 (appre h′

1 {false})
in h′

2 ∪pre h′
3

lazypre h A := if A = ∅ then ∅pre else h 0 A
liftpre := pre

Fig. 5. Preimage arrow definitions

Lastly, the appre function in Fig. 4 applies a preimage function to a set.
Preimage arrow correctness depends on appre and pre behaving like preimage⊥.

Theorem 3 (appre of pre Computes Preimages). Let f : X�⊥ Y. For all
A ⊆ X and B ⊆ Y, appre (pre f A) B ≡ preimage⊥ f A B.

4.3 The Preimage Arrow

If we define the preimage arrow type constructor as

X�pre Y ::= Set X → (X⇀pre Y) (23)

then we already have a lift liftpre : (X�⊥ Y) → (X�pre Y) from the bottom arrow
to the preimage arrow: pre. If liftpre is pre, then by Theorem 3, lifted bottom arrow
computations compute correct preimages, exactly as we should expect them to.

Fig. 5 defines the preimage arrow in terms of the preimage function operations
in Fig. 4. For these definitions to make liftpre a homomorphism, preimage arrow
equivalence must mean “computes the same preimages.”

Definition 5 (Preimage Arrow Equivalence). Two preimage arrow com-
putations h1 : X�pre Y and h2 : X�pre Y are equivalent, or h1 ≡ h2, when
appre (h1 A) B ≡ appre (h2 A) B for all A ⊆ X and B ⊆ Y.
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Theorem 4 (Preimage Arrow Correctness). liftpre is a homomorphism.

Corollary 1 (Semantic Correctness). For all e, �e�pre ≡ liftpre �e�⊥.

In other words, �e�pre always computes correct preimages under �e�⊥.
Inhabitants of type X�pre Y do not always behave intuitively; e.g.

unruly : Bool�pre Bool
unruly A := 〈Bool\A,λB.B〉 (24)

So appre (unruly {true}) {false} = {false}∩(Bool\{true}) = {false}—a “preimage”
that does not even intersect the given domain {true}. Other examples show that
preimage computations are not necessarily monotone, and lack other desirable
properties. Those with desirable properties obey the following law.

Definition 6 (Preimage Arrow Law). Let h : X�pre Y. If there exists an
f : X�⊥ Y such that h ≡ liftpre f, then h obeys the preimage arrow law.

By homomorphism of liftpre, preimage arrow combinators preserve the preim-
age arrow law. From here on, we assume all h : X�pre Y obey it. By Definition 6,
liftpre has a right inverse; by Theorem 1, the arrow laws hold.

5 The Bottom* and Preimage* Arrows

This section lifts the prior semantics to recursive, probabilistic programs.
We have defined the top of our roadmap:

X�⊥ Y liftpre−−−−→ X�pre Y
η⊥∗

⏐
⏐
�

⏐
⏐
�ηpre∗

X�⊥* Y −−−−→
liftpre∗

X�pre* Y
(25)

so that liftpre is a homomorphism. Now we move down each side and connect the
bottom, in a way that makes every morphism a homomorphism.

Probabilistic functions that may not terminate, but terminate with probability
1, are common. For example, suppose random retrieves numbers in [0, 1] from
an implicit random source. The following probabilistic function defines the well-
known geometric distribution by counting the number of times random < p:

geometric p := if random < p then 0 else 1 + geometric p (26)
For any p > 0, geometric p may not terminate, but the probability of not termi-
nating (i.e. always taking the “else” branch) is (1 − p) · (1 − p) · (1 − p) · · · · = 0.

Suppose we interpret geometric p as h : R�pre N, a preimage arrow computa-
tion from random sources to N, and we have a probability measure P : Set R →
[0, 1]. The probability of N ⊆ N is P (appre (h R) N). To compute this, we must

– Ensure each r ∈ R contains enough random numbers.
– Determine how random indexes numbers in r.
– Ensure appre (h R) N terminates even though there are random sources in R

for which geometric p does not terminate.
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AStore s (x �a y) ::= J → (〈s, x〉 �a y)
x �a∗ y ::= AStore s (x �a y)

arra∗ := ηa∗ ◦ arra
(k1 >>>a∗ k2) j := (arra fst &&&a k1 (left j)) >>>a k2 (right j)
(k1 &&&a∗ k2) j := k1 (left j) &&&a k2 (right j)

iftea∗ k1 k2 k3 j :=
iftea (k1 (left j))

(k2 (left (right j)))
(k3 (right (right j)))

lazya∗ k j := lazya λ0. k 0 j
ηa∗ f j := arra snd >>>a f

Fig. 6. AStore (associative store) arrow transformer definitions

The last task is the most difficult, but doing the first two will provide structure
that makes it much easier.

5.1 Threading and Indexing

We need bottom and preimage arrows that thread a random source. To ensure
random sources contain enough numbers, they should be infinite.

In a pure λ-calculus, random sources are typically infinite streams, threaded
monadically: each computation receives and produces a random source. A little-
used alternative is for the random source to be an infinite tree, threaded ap-
plicatively: each computation receives, but does not produce, a random source.
Combinators split the tree and pass subtrees to subcomputations.

With either alternative, for arrows, the resulting definitions are large, con-
ceptually difficult, and hard to manipulate. Fortunately, it is relatively easy to
assign each subcomputation a unique index into a tree-shaped random source
and pass the random source unchanged. For this, we need an indexing scheme.

Definition 7 (Binary Indexing Scheme). Let J be the set of finite lists of
Bool. Define j0 := 〈〉 as the root node’s index, and left : J → J; left j := 〈true, j〉
and right : J → J; right j := 〈false, j〉 to construct left and right child indexes.

We define random-source-threading variants of both the bottom and preimage
arrows at the same time by defining an arrow transformer: an arrow parame-
terized on another arrow. The AStore arrow transformer type constructor takes
a store type s and an arrow x �a y:

AStore s (x �a y) ::= J → (〈s, x〉 �a y) (27)

Reading the type, we see that computations receive an index j ∈ J and produce
a computation that receives a store as well as an x. Lifting extracts the x from
the input pair and sends it on to the original computation, ignoring j:

ηa∗ : (x �a y) → AStore s (x �a y)
ηa∗ f j := arra snd >>>a f

(28)

Fig. 6 defines the remaining combinators. Each subcomputation receives left j,
right j, or some other unique binary index. We thus think of programs interpreted
as AStore arrows as being completely unrolled into an infinite binary tree, with
each expression labeled with its tree index.



Running Probabilistic Programs Backwards 69

5.2 Recursive, Probabilistic Programs

To interpret probabilistic programs, we put infinite random trees in the store.
Of all the ways to represent infinite binary trees whose nodes are labeled with

values in [0, 1], the way most compatible with measure theory is to flatten them
into vectors of [0, 1] indexed by J. The set of all such vectors is [0, 1]J.

Definition 8 (Random Source). Define R := [0, 1]J, the set of infinite binary
trees whose node labels are in [0, 1]. A random source is any r ∈ R.

To interpret recursive programs, we need to ensure termination. One ulti-
mately implementable way is to have the store dictate which branch of each con-
ditional, if any, is taken. If the store dictates that all but finitely many branches
cannot be taken, well-defined programs must terminate (see Definition 3).

Definition 9 (Branch Trace). A branch trace is any t ∈ (Bool⊥)J such that
t j = true or t j = false for no more than finitely many j ∈ J.

Let T ⊂ (Bool⊥)J be the set of all branch traces.

Let X �a∗ Y ::= AStore 〈R,T〉 (X �a Y) denote the AStore arrow type that
threads both random sources and branch traces through another arrow a. Thus,
the type constructors for the bottom* and preimage* arrows are

X�⊥* Y ::= AStore 〈R,T〉 (X�⊥ Y)
X�pre* Y ::= AStore 〈R,T〉 (X�pre Y)

(29)

For probabilistic programs, we define a combinator randoma∗ that returns the
number at its tree index in the random source, and extend �·�a∗ for arrows a∗:

randoma∗ : X �a∗ [0, 1]
randoma∗ j := arra fst >>>a arra fst >>>a arra (π j)

�random�a∗ :≡ randoma∗

(30)
where π : J → XJ → X, defined by π j f := f j, produces projection functions.

For recursive programs, we define a combinator that reads branch traces, and
a new if-then-else combinator that yields ⊥ when its test expression does not
agree with the branch trace at its tree index:

brancha∗ : X �a∗ Bool
brancha∗ j := arra fst >>>a arra snd >>>a arra (π j)

ifte⇓a∗ : (x �a∗ Bool) → (x �a∗ y) → (x �a∗ y) → (x �a∗ y)

ifte⇓a∗ k1 k2 k3 j := iftea ((k1 (left j) &&&a brancha∗ j) >>>a arra agrees)
(k2 (left (right j)))
(k3 (right (right j)))

(31)

where agrees 〈b1, b2〉 := if b1 = b2 then b1 else ⊥. We define a new semantic
function �·�⇓a∗ by replacing the if rule in �·�a∗ :

�if ec then et else ef �⇓a∗ :≡ ifte⇓a∗ �ec�⇓a∗ (lazya∗ λ0. �et�⇓a∗) (lazya∗ λ0. �ef�⇓a∗)
(32)
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Suppose f := (�p�⇓⊥∗ j0) : X′ �⊥ Y and h := (�p�⇓pre∗ j0) : X′ �pre Y, where
X′ = (R × T) × X. For each 〈〈r, t〉, a〉 ∈ X′, we assume that only r is chosen
randomly. Thus, the probability of B ⊆ Y is

P (image (fst ◦ fst) (preimage⊥ f X′ B))
= P (image (fst ◦ fst) (appre (h X′) B))

(33)

if f and h always terminate and �·�⇓pre∗ is correct with respect to �·�⇓⊥∗ .

5.3 Correctness and Termination

The proofs in this section require AStore arrow equivalence to be a little coarser.

Definition 10 (AStore Arrow Equivalence). Two AStore arrow computations
k1 and k2 are equivalent, or k1 ≡ k2, when k1 j ≡ k2 j for all j ∈ J.

Proving �·�⊥∗ and �·�pre∗ correct with respect to �·�⊥ and �·�pre, for programs
without random, only requires proving ηa∗ homomorphic, using the arrow laws.

Theorem 5 (Pure AStore Arrow Correctness). ηa∗ is a homomorphism.

Corollary 2 (Pure Semantic Correctness). For all pure e, �e�a∗ ≡ ηa∗ �e�a.

We use a homomorphic lift to prove �·�⇓pre∗ correct with respect to �·�⇓⊥∗ If we
define it in terms of liftb : (x �a y) → (x �b y) as

liftb∗ : (x �a∗ y) → (x �b∗ y)
liftb∗ f j := liftb (f j)

(34)

then we need only use the fact that a and b are arrows to prove the following.

Theorem 6 (Effectful AStore Arrow Correctness). If liftb is an arrow ho-
momorphism from a to b, then liftb∗ is an arrow homomorphism from a∗ to b∗.

Corollary 3 (Effectful Semantic Correctness). For all e, �e�pre∗ ≡ liftpre∗
�e�⊥∗ and �e�

⇓
pre∗ ≡ liftpre∗ �e�

⇓
⊥∗ .

For termination, we need to define the largest domain on which �e�
⇓
a∗ and �e�a∗

computations should agree.

Definition 11 (Maximal Domain). Let f : X�⊥* Y. Its maximal domain
is the largest A∗ ⊆ (R× T)× X for which A∗ = {a ∈ A∗ | f j0 a �= ⊥}.

Because f j0 a �= ⊥ implies termination, all inputs in A∗ are terminating.

Theorem 7 (Correct Termination Everywhere). Let �e�
⇓
⊥∗ : X�⊥* Y have

maximal domain A∗, and X′ := (R× T)× X. For all a ∈ X′, A ⊆ X′ and B ⊆ Y,

�e�⇓⊥∗ j0 a = if a ∈ A∗ then �e�⊥∗ j0 a else ⊥
appre (�e�⇓pre∗ j0 A) B = appre (�e�pre∗ j0 (A ∩ A∗)) B

(35)

In other words, �·�⇓pre∗ computations always terminate, and the sets they yield
are correct preimages.
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6 Abstract Semantics

This section derives a sound, implementable abstract semantics. Most preim-
ages of uncountable sets are uncomputable. We therefore define a semantics for
approximate preimage computation by
1. Choosing abstract set types that can be finitely represented, and operations

that overapproximate concrete set operations.
2. Replacing concrete set types and operations with abstract set types and

operations in the definitions of the preimage and preimage* arrows.
3. Proving termination, soundness, and other desirable properties.

In a sense, this is typical abstract interpretation. However, not having a fixpoint
operator in the language means there is no abstract fixpoint to compute, and
abstract preimage arrow computations actually apply functions.

6.1 Abstract Sets

We use the abstract domain of rectangles with an atypical extension to represent
rectangles of XJ (i.e. infinite binary trees of X).

Definition 12 (Rectangular Sets). For a type X of language values, Rect X
denotes the type of rectangular sets of X: a bounded lattice of sets in Set X
ordered by (⊆); i.e. it contains ∅ and X, and is closed under meet (∩) and join
(�). Rectangles of cartesian products are defined by

Rect 〈X1,X2〉 ::= {A1 × A2 | A1 : Rect X1,A2 : Rect X2} (36)

Rectangles of infinite binary trees (i.e. products indexed by J) are defined by

Rect XJ ::=
⋃

J′⊂J finite

{∏
j∈J Aj

∣
∣
∣ Aj : Rect X, j �∈ J′ ⇐⇒ Aj = X

}
(37)

i.e. for A : Rect XJ, only finitely many axes of A are proper subsets of X. Joins
of products are defined by

(A1 × A2) � (B1 × B2) = (A1 � B1)× (A2 � B2) (38)
(
∏

j∈J Aj) � (
∏

j∈J Bj) =
∏

j∈J(Aj � Bj) (39)

The lattice properties imply that (�) overapproximates (∪); i.e. A ∪ B ⊆
A�B. For non-product types X, Rect X may be any bounded sublattice of Set X.
Interpreting conditionals requires {true} and {false}; thus Rect Bool ::= Set Bool.

Intervals in ordered spaces can be implemented as pairs of endpoints. Products
in Rect 〈X1,X2〉 can be implemented as pairs of type 〈Rect X1,Rect X2〉. By (37),
products in Rect XJ have only finitely many axes that are proper subsets of X,
so they can be implemented as finite binary trees. All operations on products
proceed by simple structural recursion.
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X⇀p̂re Y ::= 〈Rect Y,Rect Y → Rect X〉

∅p̂re := 〈∅,λB.∅〉

app̂re : (X⇀p̂re Y) → Rect Y → Rect X
app̂re 〈Y′, p〉 B := p (B ∩ Y′)

rangep̂re : (X⇀p̂re Y) → Rect Y
rangep̂re 〈Y′, p〉 := Y′

〈·, ·〉p̂re : (X⇀p̂re Y1) → (X⇀p̂re Y2)
→ (X⇀p̂re〈Y1,Y2〉)

〈〈Y′
1, p1〉, 〈Y′

2, p2〉〉p̂re :=
〈Y′

1 × Y′
2,λB. p1 (proj1 B) ∩ p2 (proj2 B)〉

(◦p̂re) : (Y⇀p̂re Z) → (X⇀p̂re Y) → (X⇀p̂re Z)
〈Z′, p2〉 ◦p̂re h1 := 〈Z′,λC. app̂re h1 (p2 C)〉

(∪p̂re) : (X⇀p̂re Y) → (X⇀p̂re Y) → (X⇀p̂re Y)
〈Y′

1, p1〉 ∪p̂re 〈Y′
2, p2〉 :=

〈Y′
1 � Y′

2,λB. app̂re 〈Y′
1, p1〉 B � app̂re 〈Y′

2, p2〉 B〉

(a) Definitions for abstract preimage functions, which compute rectangular covers.

X�p̂re Y ::= Rect X → (X⇀p̂re Y)

(h1 >>>p̂re h2) A := let h′
1 := h1 A

h′
2 := h2 (rangep̂re h′

1)
in h′

2 ◦p̂re h′
1

(h1 &&&p̂re h2) A := 〈h1 A, h2 A〉p̂re

iftep̂re h1 h2 h3 A :=
let h′

1 := h1 A
h′
2 := h2 (app̂re h′

1 {true})
h′
3 := h3 (app̂re h′

1 {false})
in h′

2 ∪p̂re h′
3

lazyp̂re h A := if A = ∅ then ∅p̂re else h 0 A

(b) Abstract preimage arrow, defined using abstract preimage functions.

idp̂re A := 〈A,λB.B〉
fstp̂re A := 〈proj1 A, unproj1 A〉
sndp̂re A := 〈proj2 A, unproj2 A〉

proj1 := image fst
proj2 := image snd
unproj1 A B := A ∩ (B× proj2 A)
unproj2 A B := A ∩ (proj1 A× B)

constp̂re b A := 〈{b},λB. if B = ∅ then ∅ else A〉
πp̂re j A := 〈proj j A, unproj j A〉

proj : J → Set XJ → Set X
proj j A := image (π j) A

unproj : J → Set XJ → Set X → Set XJ

unproj j A B := A ∩ ∏
i∈J if j = i then B else proj j A

(c) Explicit instances of arrp̂re f (e.g. arrp̂re id) needed to interpret probabilistic pro-
grams.

X�p̂re* Y ::= AStore 〈R,T〉 (X�p̂re Y)

randomp̂re∗ : X�p̂re* [0, 1]
randomp̂re∗ j :=

fstp̂re >>>p̂re fstp̂re >>>p̂re πp̂re j

branchp̂re∗ : X�p̂re* Bool

branchp̂re∗ j :=
fstp̂re >>>p̂re sndp̂re >>>p̂re πp̂re j

fstp̂re∗ := ηp̂re∗ fstp̂re; · · ·

ifte⇓p̂re∗ : (X�p̂re* Bool) → (X�p̂re* Y) → (X�p̂re* Y)
→ (X�p̂re* Y)

ifte⇓p̂re∗ k1 k2 k3 j :=
let 〈Ck, pk〉 := k1 (left j) A

〈Cb, pb〉 := branchp̂re∗ j A
C2 := Ck ∩ Cb ∩ {true}
C3 := Ck ∩ Cb ∩ {false}
A2 := pk C2 ∩ pb C2
A3 := pk C3 ∩ pb C3

in if Cb = {true, false}
then 〈Y,λB.A2 � A3〉
else k2 (left (right j)) A2 ∪p̂re k3 (right (right j)) A3

(d) Abstract preimage* arrow combinators for probabilistic choice and guaranteed
termination. Fig. 6 defines ηp̂re∗ , (>>>p̂re∗), (&&&p̂re∗), iftep̂re∗ and lazyp̂re∗ .

Fig. 7. Implementable arrows that approximate preimage arrows
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6.2 Abstract Arrows

To define the abstract preimage arrow, we start by defining abstract preimage
functions, by replacing set types in (⇀pre) with abstract set types:

X⇀p̂re Y ::= 〈Rect Y,Rect Y → Rect X〉 (40)

Fig. 7a defines the necessary operations on abstract preimage functions by re-
placing set operations with abstract set operations—except for 〈·, ·〉p̂re, which is
greatly simplified by the fact that preimage distributes over pairing and prod-
ucts (12). (Compare Fig. 4.) Similarly, Fig. 7b defines the abstract preimage
arrow by replacing preimage function types and operations in the preimage ar-
row’s definition with abstract preimage function types and operations. (Compare
Fig. 5.) The lift arrp̂re : (X → Y) → (X�p̂re Y) exists, but arrp̂re f is not always
unique (because by definition, Rect XJ is an incomplete lattice) nor computable.

Fortunately, implementing �·�p̂re as defined in Fig. 2 requires lifting only a few
pure functions: id, fst, snd, const v for any literal constant v, and primitives δ.
According to (30) and (31), implementing the extended semantics �·�⇓p̂re∗ , which
supports random choice and guarantees termination, requires lifting only π j for
any j ∈ J. Fig. 7c gives explicit definitions for idp̂re, fstp̂re, sndp̂re, constp̂re and πp̂re.

Fig. 7d defines the abstract preimage* arrow using theAStore arrow transformer
(see Fig. 6), in terms of the abstract preimage arrow, and defines randomp̂re∗ and
branchp̂re∗ using the manual lifts in Fig. 7c.

Guaranteeing termination requires some care. The definition of ifte⇓p̂re∗ in
Fig. 7d is obtained by expanding the definition of ifte⇓pre∗ , and changing the
case in which the set of branch traces allows both branches. Instead of taking
both branches, it takes neither, and returns a loose but sound approximation.

6.3 Correctness and Termination

Let h := �e�
⇓
pre∗ : X�pre* Y and ĥ := �e�

⇓
p̂re∗ : X�p̂re* Y for some expression e.

Theorem 8 (Terminating, Monotone, Sound and Decreasing). For all
A : Rect 〈〈R,T〉,X〉 and B : Rect Y,

– app̂re (ĥ j0 A) B terminates.
– λA′. app̂re (ĥ j0 A′) B and λB′. app̂re (ĥ j0 A) B′ are monotone.
– appre (h j0 A) B ⊆ app̂re (ĥ j0 A) B ⊆ A (i.e. sound and decreasing).

Given these properties, we might try to compute preimages of B by computing
preimages restricted to the parts of increasingly fine discretizations of A.

Definition 13 (Preimage Refinement Algorithm). Let B : Rect Y. Define

refine : Rect 〈〈R,T〉,X〉 → Rect 〈〈R,T〉,X〉
refine A := app̂re (ĥ j0 A) B

(41)
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Define partition : Rect 〈〈R,T〉,X〉 → Set (Rect 〈〈R,T〉,X〉) to produce positive-
measure, disjoint rectangles, and define

refine∗ : Set (Rect 〈〈R,T〉,X〉) → Set (Rect 〈〈R,T〉,X〉)
refine∗ A := image refine

(⋃
A∈A partition A

) (42)

For any A : Rect 〈〈R,T〉,X〉, iterate refine∗ on {A}.

Monotonicity ensures refining a partition of A never does worse than refining
A itself, decreasingness ensures refine A ⊆ A, and soundness ensures the preimage
of B is covered by the partition refine∗ returns. Ideally, the algorithm would be
complete, in that covering partitions converge to a set that overapproximates by
a measure-zero subset. Unfortunately, convergence fails on some examples that
terminate with probability less than one. We leave completeness conditions for
future work, and for now, use algorithms that depend only on soundness.

7 Implementations and Examples

This section describes our implementations and gives examples, including prob-
abilistic verification of floating-point error bounds.

We have three implementations: two direct implementations of the abstract
semantics, and a less direct but more efficient one called Dr. Bayes. All of them
can be found at https://github.com/ntoronto/drbayes.

Given a library for operating on rectangular sets, the abstract preimage arrows
defined in Figs. 6 and 7 can be implemented with few changes in any practical
λ-calculus. We have done so in Typed Racket [27] and Haskell [1]. Both imple-
mentations are almost line-for-line transliterations from the figures.

Dr. Bayes is written in Typed Racket. It includes �·�a∗ (Fig. 2), its extension
�·�⇓a∗ , the bottom* arrow (Figs. 3 and 6), the abstract preimage and preimage*
arrows (Figs. 7 and 6), and other manual lifts to compute abstract preimages
under real functions such as arithmetic, sqrt and log. The abstract preimage
arrows operate on a monomorphic rectangular set data type, which includes
tagged rectangles and disjoint unions for ad-hoc polymorphism, and floating-
point intervals to overapproximate real intervals.

Definition 13 outlines preimage refinement, a discretization algorithm that
repeatedly shrinks and repartitions a program’s domain. Dr. Bayes does not
use this algorithm directly because it is inefficient: good accuracy requires fine
discretization, which is exponential in the number of discretized axes. Instead of
enumerating covering partitions of the random source, Dr. Bayes samples parts
from the covering partitions and then samples a point from each sampled part,
with time complexity linear in the number of samples and discretized axes. It
applies bottom* arrow computations to the random source samples to get output
samples, rejecting those outside the requested output set.

In short, Dr. Bayes uses preimage refinement only to reduce the rate of rejec-
tion when sampling under constraints, and thus relies only on its soundness.

https://github.com/ntoronto/drbayes
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We have tested Dr. Bayes on a variety of Bayesian inference tasks, includ-
ing Bayesian regression and model selection [28]. Some of our Bayesian infer-
ence tests use recursion and constrain the outputs of deterministic functions,
suggesting that Dr. Bayes and future probabilistic languages like it will allow
practitioners to model real-world processes more expressively and precisely.

Recent work in probabilistic verification recasts it as a probabilistic inference
task [9]. Given that Dr. Bayes’s runtime is designed to sample efficiently under
low-probability constraints, using it to probabilistically verify that a program
does not exhibit certain errors is fairly natural. To do so, we
1. Encode the program in a way that propagates and returns errors.
2. Run the program with the constraint that the output is an error.

Sometimes, Dr. Bayes can determine that the preimage of the constrained output
set is ∅, which is a proof that the program never exhibits an error. Otherwise,
the longer the program runs without returning samples, the likelier it is that the
preimage has zero probability or is empty; i.e. that an error does not occur.

As an extended example, we consider verifying floating-point error bounds.
While Dr. Bayes’s numbers are implemented by floating-point intervals, se-

mantically, they are real numbers. We therefore cannot easily represent floating-
point numbers in Dr. Bayes—but we do not want to. We want abstract floating-
point numbers, each consisting of an exact, real number and a bound on the
relative error with which it is approximated. We define the following two struc-
tures to represent abstract floats.

(struct/drbayes float-any ())
(struct/drbayes float (value error))

An abstract value (float v e) represents every float between (∗ v (- 1 e)) and
(∗ v (+ 1 e)) inclusive, while (float-any) represents NaN and other catas-
trophic error conditions. Abstract floating-point functions such as flsqrt com-
pute exact results and use input error to compute bounds on output error:

(define/drbayes (flsqrt x)
(if (float-any? x)

x
(let ([v (float-value x)]

[e (float-error x)])
(cond [(negative? v) (float-any)] ; NaN

[(zero? v) (float 0 0)] ; exact case
[else ; v is positive
(float (sqrt v) ; exact square root

(+ (- 1 (sqrt (- 1 e))) ; relative error
(∗ 1/2 epsilon)))])))) ; rounding error

We have similarly implemented abstract floating-point arithmetic, comparison,
exponentials, and logarithms in Dr. Bayes.

Suppose we define an abstract floating-point implementation of the geometric
distribution’s inverse CDF using the formula (log u)/(log (1 − p)):

(define/drbayes (flgeometric-inv-cdf u p)
(fl/ (fllog u) (fllog (fl- (float 1 0) p))))
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We want the distribution of 〈u, p〉 in (0, 1)× (0, 1) with the value of

(float-error (flgeometric-inv-cdf (float u 0) (float p 0)))

constrained to (3 ·ε,∞), where ε ≈ 2.22 ·10−16 is floating-point epsilon for 64-bit
floats. That is, we want the distribution of inputs for which the floating-point
output may be more than 3 epsilons away from the exact output.

Dr. Bayes returns samples of 〈u, p〉 within about (0, 1)×(ε, 0.284), a fairly large
domain on which error is greater than 3 epsilons. Realizing that the rounding
error in 1 − p is magnified by log’s relative error when p is small, we define

(define/drbayes (flgeometric-inv-cdf u p)
(fl/ (fllog u) (fllog1p (flneg p))))

where fllog1p (abstractly) computes log (1 + x) with high accuracy. Dr. Bayes
reports that the preimage of (3 · ε,∞) is ∅. In fact, the preimage of (1.51 · ε,∞)
is ∅, so flgeometric-inv-cdf introduces error of no more than 1.51 epsilons.

We have used this technique to verify error bounds on the implementations
of hypot, sqrt1pm1 and sinh in Racket’s math library.

8 Related Work

Probabilistic languages can be approximately placed into two groups: those de-
fined by a semantics, and those defined by an implementation.

Kozen’s seminal work [15] on probabilistic semantics defines two measure-
theoretic, denotational semantics, in two different styles: a random-world se-
mantics [18] that interprets programs as deterministic functions that operate
on a random source, and a distributional semantics that interprets programs
as probability measures. It seems that all semantics work thereafter is in one of
these styles. For example, Hurd [11] develops a random-world semantics in HOL
and uses it to formally verify randomized algorithms such as the Miller-Rabin
primality test. Ours is also a random-world semantics.

Jones [12] defines the probability monad as a categorical metatheory for inter-
preting probabilistic programs as distributions. Ramsey and Pfeffer [25] reformu-
late it in terms of Haskell’s return and ‘>>=’, and use it to define a distributional
semantics for a probabilistic lambda calculus. They implement the probability
monad using probability mass functions, show that computing certain queries is
inefficient, and devise an equivalent semantics that is more amenable to efficient
implementation, for programs with finite probabilistic choice.

To put Infer.NET [21] on solid footing, Borgström et al. [4] define a distri-
butional semantics for a first-order probabilistic language with bounded loops
and constraints, by transforming terms into arrow-like combinators that produce
measures. But Infer.NET interprets programs as probability density functions,4
so they develop a semantics that does the same and prove equivalence.

4 More precisely, as factor graphs, which represent probability density functions.
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The work of Borgström et al. and Ramsey and Pfeffer exemplify a larger
trend: while defining probabilistic languages can be done using measure the-
ory, implementing them to support more than just evaluation (such as allowing
constraints) has seemed hopeless enough to necessitate using a less explanatory
theory of probability that has more obvious computational content. Indeed, the
distributional semantics of Pfeffer’s IBAL [24] and Nori et al.’s R2 [23] are de-
fined in terms of probability mass and density functions in the first place. R2
lifts some of the resulting restrictions and speeds up sampling by propagating
constraints toward the random values they refer to.

Some languages defined by an implementation are probabilistic Scheme [14],
BUGS [17], BLOG [20], BLAISE [3], Church [8], and Kiselyov’s embedded lan-
guage for OCaml [13]. Recently, Wingate et al. [32] define nonstandard semantics
that enable efficient inference, but do not define the languages. All of these lan-
guages are implemented in terms of probability mass or density functions.

Our work is similar in structure to monadic abstract interpretation [26,6],
which also parameterizes a semantics on categorical meanings.

Cousot’s probabilistic abstract interpretation [5] is a general framework for
static analyses of probabilistic languages. It considers only random-world seman-
tics, which is quite practical: because programs are interpreted as deterministic
functions, many existing analyses easily apply. Our random-world semantics fits
in this framework, but the concrete domain of preimage functions does not ap-
pear among Cousot’s many examples, and we do not compute fixed points.

9 Conclusions and Future Work

To allow arbitrary constraints and recursion in probabilistic programs, we com-
bined the power of measure theory with the unifying elegance of arrows. We
(a) defined a transformation from first-order programs to arbitrary arrows, (b)
defined the bottom arrow as a standard translation target, (c) derived the un-
computable preimage arrow as an alternative target, and (d) derived a sound,
computable approximation of the preimage arrow, and enough computable lifts
to transform programs. We implemented the abstract semantics and carried out
Bayesian inference, stochastic ray tracing, and probabilistic verification.

In the future, we intend to add expressiveness by adding lambdas (possibly
via closure conversion), explore ways to use static or dynamic analyses to speed
up Monte Carlo algorithms, and explore preimage computation’s connections
to type checking and type inference. More broadly, we hope to advance proba-
bilistic inference by providing a rich modeling language with an efficient, correct
implementation, which allows general recursion and arbitrary constraints.
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Abstract. Bhat et al. developed an inductive compiler that computes
density functions for probability spaces described by programs in a prob-
abilistic functional language. We implement such a compiler for a modi-
fied version of this language within the theorem prover Isabelle and give
a formal proof of its soundness w. r. t. the semantics of the source and
target language. Together with Isabelle’s code generation for inductive
predicates, this yields a fully verified, executable density compiler. The
proof is done in two steps: First, an abstract compiler working with ab-
stract functions modelled directly in the theorem prover’s logic is defined
and proved sound. Then, this compiler is refined to a concrete version
that returns a target-language expression.

1 Introduction

Random distributions of practical significance can often be expressed as prob-
abilistic functional programs. When studying a random distribution, it is often
desirable to determine its probability density function (PDF). This can be used
to e. g. determine the expectation or sample the distribution with a sampling
method such as Markov-chain Monte Carlo (MCMC).

Bhat et al. [5] presented a compiler that computes the probability density
function of a program in the probabilistic functional language Fun. Fun is a small
functional language with basic arithmetic, Boolean logic, product and sum types,
conditionals, and a number of built-in discrete and continuous distributions. It
does not support lists or recursion. They evaluated the compiler on a number
of practical problems and concluded that it reduces the amount of time and
effort required to model them in an MCMC system significantly compared to
hand-written models. A correctness proof for the compiler is sketched.

Bhat et al. [4] stated that their eventual goal is the formal verification of
this compiler in a theorem prover. We have verified such a compiler for a similar
probabilistic functional language in the interactive theorem prover Isabelle/HOL
[18, 19]. Our contributions are the following:

– a formalisation of the source language, target language (whose semantics
had previously not been given precisely), and the compiler on top of a foun-
dational theory of measure spaces

– a formal verification of the correctness of the compiler
– executable code for the compiler using Isabelle’s code generator

c© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 80–104, 2015.
DOI: 10.1007/978-3-662-46669-8_4
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In the process, we uncovered an incorrect generalisation of one of the compiler
rules in the draft of an extended version of the paper by Bhat et al. [6].

The complete formalisation is available online [13].
In this paper, we focus entirely on the correctness proof; for more motivation

and applications, the reader should consult Bhat et al. [5].

1.1 Related Work

Park et al. [20] developed a probabilistic extension of Objective CAML called
λ©. While Bhat et al. generate density functions of functional programs, Park
et al. generate sampling functions. This approach allows them to handle much
more general distributions, even recursively-defined ones and distributions that
do not have a density function, but it does not allow precise reasoning about
these distributions (such as determining the exact expectation). No attempt at
formal verification is made.

Several formalisations of probabilistic programs already exist. Hurd [16] for-
malises programs as random variables on infinite streams of random bits. Hurd
et al. [17] and Cock [8, 9] both formalise pGCL, an imperative programming
language with probabilistic and non-deterministic choice. Audebaud and Paulin-
Mohring [1] verify probabilistic functional programs in Coq [3] using a shallow
embedding based on the Giry monad on discrete probability distributions. All
these program semantics support only discrete distributions – even the frame-
work by Hurd [16], although it is based on measure theory.

Our work relies heavily on a formalisation of measure theory by Hölzl [15] and
some material developed for the proof of the Central Limit Theorem by Avigad
et al. [2].

1.2 Outline

Section 2 explains the notation and gives a brief overview of the mathematical
basis. Section 3 defines the source and target language. Section 4 defines the
abstract compiler and gives a high-level outline of the soundness proof. Section 5
explains the refinement of the abstract compiler to the concrete compiler and
the final correctness result and evaluates the compiler on a simple example.

2 Preliminaries

2.1 Typographical Notes

We will use the following typographical conventions in mathematical formulæ:

– Constants, functions, datatype constructors, and types will be set in slanted
font.

– Free and bound variables (including type variables) are set in italics.
– Isabelle keywords are set in bold font: lemma, datatype, etc.
– σ-algebras are set in calligraphic font: A, B, M, etc.
– File names of Isabelle theories are set in a monospaced font:

PDF Compiler.thy.
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2.2 Isabelle/HOL Basics

The formalisations presented in this paper employ the Isabelle/HOL theorem
prover. We will aim to stay as close to the Isabelle formalisation syntactically
as possible. In this section, we give an overview of the syntactic conventions we
use to achieve this.

The term syntax follows the λ-calculus, i.e. function application is juxtapo-
sition as in f t. The notation t :: τ means that the term t has type τ . Types
are built from the base types bool, nat (natural numbers), real (reals), ereal
(extended reals, i.e. real ∪ {+∞,−∞}), and type variables (α, β, etc) via the
function type constructor α → β or the set type constructor α set. The constant
undefined :: α describes an arbitrary element for each type α. There are no fur-
ther axioms about it, expecially no defining equation. f ‘X is the image set of
X under f : {f x | x ∈ X}. We write 〈P 〉 for the indicator of P : 1 if P is true, 0
otherwise.

Because we represent variables by de Bruijn indices [7], variable names are nat-
ural numbers and program states are functions of type nat → α. As HOL func-
tions are total, we use undefined to fill in the unused places, e.g. (λx. undefined)
describes the empty state. Prepending an element x to a state ω :: nat → α is
written as x •ω, i.e. (x •ω) 0 = x and (x •ω) (n+1) = ω n. The function merge
merges two states with given domains:

merge V V ′ (ρ, σ) =

⎧
⎪⎨

⎪⎩

ρ x if x ∈ V

σ y if x ∈ V ′ \ V
undefined otherwise

Notation. We use Γ to denote a type environment, i. e. a function from variable
names to types, and σ to denote a state.

The notation t • Γ (resp. v • σ) denotes the insertion of a new variable with
the type t (resp. value v) into a typing environment (resp. state). We use the
same notation for inserting a new variable into a set of variables, shifting all
other variables, i. e.: 0 • V = {0} ∪ {y + 1 | y ∈ V }

2.3 Measure Theory in Isabelle/HOL

We use Isabelle’s measure theory, as described in [15]. This section gives an
introduction of the measure-theoretical concepts used in this paper. The type
α measure describes a measure over the type α. Each measure μ is described by
the following three projections: space μ :: α set is the space, sets μ :: α set set
are the measurable sets, and measure μ :: α set → ereal is the measure func-
tion valid on the measurable sets. The type α measure guarantees that the
measurable sets are a σ-algebra and that measure μ is a non-negative and
σ-additive function. In the following we will always assume that the occuring
sets and functions are measurable. We also provide integration over measures:



A Verified Compiler for Probability Density Functions 83

∫
:: (α → ereal) → α measure → ereal, we write

∫
x. f x ∂μ. This is the non-

negative Lebesgue integral ; for this integral, most rules do not require integrable
functions – measurability is enough.

We write (A,A, μ) for a measure with space A, measurable sets A and the
measure function μ :: α set → ereal. If we are only intersted in the measurable
space we write (A,A). When constructing a measure in this way, the measure
function is the constant zero function.

Sub-probability Spaces. A sub-probability space is a measure (A,A, μ) with
μ A ≤ 1. For technical reasons, we also assume A 	= ∅ . This is required later in
order to define the bind operation in the Giry monad in a convenient way within
Isabelle. This non-emptiness condition will always be trivially satisfied by all the
measure spaces used in this work.

Constructing Measures. The semantics of our language will be given in terms
of measures. We have the following functions to construct measures:

Counting: measure (count A) X = |X |
Lebesgue-Borel: measure borel [a; b] = b− a

With density: measure (density μ f) X =
∫
x. f x · 〈x ∈ X〉∂μ

Push-forward: measure (distr μ ν f) X = measure μ {x | f x ∈ X}
Product: measure (μ⊗ ν) (A×B) = measure μ A ·measure ν B

Indexed product: measure (
⊗

i∈I μi) (×i∈IAi) =
∏

i∈I measure μi Ai

Embedding: measure (embed μ f) X = measure μ {x | f x ∈ X}
The push-forward measure and the embedding of a measure have different mea-
surable sets. The σ-algebra of the push-forward measure distr μ ν f is given
by ν. The measure is only well-defined when f is μ-ν-measurable. The σ-algebra
of embed μ f is generated by the sets f [A] for A μ-measurable. The embedding
measure is well-defined when f is injective.

2.4 Giry Monad

The category theory part of this section is based mainly on a presentation by
Ernst-Erich Doberkat [11]. For a more detailed introduction, see his textbook [10]
or the original paper by Michèle Giry [14]. Essentially the Giry monad is a monad
on measures.

The category Meas has measurable spaces as objects and measurable maps
as morphisms. This category forms the basis on which we will define the Giry
monad. In Isabelle/HOL, the objects are represented by the type measure, and
the morphism are represented as regular functions. When we mention a measur-
able function, we explicitly need to mention the measurable spaces representing
the domain and the range.

The sub-probability functor S is an endofunctor on Meas. It maps a measur-
able space A to the measurable space of all sub-probabilities on A. Given a
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measurable space (A,A), we consider the set of all sub-probability measures on
(A,A):

M = {μ | μ is a sub-probability measure on (A,A)}
The measurable space S(A,A) is the smallest measurable space on M that fulfils
the following property:

For all X ∈ A, (λμ. measure μ X) is S(A,A)-Borel-measurable

A M-N -measurable function f is mapped with S(f) = λμ. distr μ N f , where
all μ are sub-probability measures on M.

The Giry monad naturally captures the notion of choosing a value according to
a (sub-)probability distribution, using it as a parameter for another distribution,
and observing the result.

Consequently, return yields a Dirac measure, i. e. a probability measure in
which all the “probability” lies in a single element, and bind (or �=) integrates
over all the input values to compute one single output measure. Formally, for
measurable spaces (A,A) and (B,B), a measure μ on (A,A), a value x ∈ A, and
a A-S(B,B)-measurable function f :

return :: α → α measure

return x := λX.

{
1 if x ∈ X

0 otherwise

bind :: α measure → (α → β measure) → β measure

μ �= f := λX.

∫

x. f(x)(X) ∂μ

The actual definitions of return and bind in Isabelle are slightly more compli-
cated due to Isabelle’s simple type system. In informal mathematics, a function
typically has attached to it the information of what its domain and codomain
are and what the corresponding measurable spaces are; with simple types, this
is not directly possible and requires some tricks in order to infer the carrier set
and the σ-algebra of the result.

The “do” Syntax. For better readability, we employ a Haskell-style “do no-
tation” for operations in the Giry monad. The syntax of this notation is defined
recursively, where M stands for a monadic expression and 〈text〉 stands for ar-
bitrary “raw” text:

do {M} =̂ M do {x ← M ; 〈text〉} =̂ M �= (λx. do {〈text〉})

3 Source and Target Language

The source language used in the formalisation was modelled after the language
Fun described by Bhat et al. [5]; similarly, the target language is almost identical
to the target language used by Bhat et al. However, we have made the following
changes in our languages:
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– Variables are represented by de Bruijn indices.

– No sum types are supported. Consequently, the match-with construct is
replaced with an IF-THEN -ELSE. Furthermore, booleans are a primitive
type rather than represented as unit+ unit.

– The type double is called real and it represents a real number with absolute
precision as opposed to an IEEE 754 floating point number.

In the following subsections, we give the precise syntax, typing rules, and
semantics of both our source language and our target language.

3.1 Types, Values, and Operators

The source language and the target language share the same type system and the
same operators. Figure 1 shows the types and values that exist in our languages.1

Additionally, standard arithmetical and logical operators exist.
All operators are total, meaning that for every input value of their parameter

type, they return a single value of their result type. This requires some non-
standard definitions for non-total operations such as division, the logarithm, and
the square root. Non-totality could also be handled by implementing operators in
the Giry monad by letting them return either a Dirac distribution with a single
result or, when evaluated for a parameter on which they are not defined, the null
measure. This, however, would probably complicate many proofs significantly.

To increase readability, we will use the following abbreviations:

– TRUE and FALSE stand for BoolVal True and BoolVal False, respectively.

– RealVal, IntVal, etc. will be omitted in expressions when their presence is
implicitly clear from the context.

datatype pdf type =

UNIT | B | Z | R | pdf type× pdf type

datatype val =

UnitVal | BoolVal bool | IntVal int | RealVal real | <|val, val |>
datatype pdf operator =

Fst | Snd | Add | Mult | Minus | Less | Equals | And | Or | Not | Pow |
Fact | Sqrt | Exp | Ln | Inverse | Pi | Cast pdf type

Fig. 1. Types and values in source and target language

1 Note that bool, int, and real stand for the respective Isabelle types, whereas B, Z,
and R stand for the source-/target-language types.
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Table 1. Auxiliary functions

Function Description

op sem op v semantics of operator op applied to v

op type op t result type of operator op for input type t

dist param type dst parameter type of the built-in distribution dst

dist result type dst result type of the built-in distribution dst

dist measure dst x built-in distribution dst with parameter x

dist dens dst x y density of the built-in distribution dst w. parameter x at value y

type of Γ e the unique t such that Γ � e : t

val type v the type of value v, e. g. val type (IntVal 42) = INTEG

type universe t the set of values of type t

countable type t True iff type universe t is a countable set

free vars e the free variables in the expression e

e det True iff e does not contain Random or Fail

extract real x returns y for x = RealVal y (analogous for int, pair, etc.)

return val v return (stock measure (val type v)) v

null measure M measure with same measurable space as M , but 0 for all sets

3.2 Auxiliary Definitions

A number of auxiliary definitions are used in the definition of the semantics;
Table 1 lists some simple auxiliary functions. Additionally, the following two
notions require a detailed explanation:

Stock Measures. The stock measure for a type t is the “natural” measure on
values of that type. This is defined as follows:

– For the countable types UNIT, B, Z: the count measure over the correspond-
ing type universes

– For type R: the embedding of the Lebesgue-Borel measure on R with RealVal
– For t1 × t2: the embedding of the product measure

stock measure t1 ⊗ stock measure t2

with λ(v1, v2). <|v1, v2 |>
Note that in order to save space and increase readability, we will often write∫

x. f x ∂t instead of
∫
x. f x ∂ stock measure t in integrals.

State Measure. Using the stock measure, we construct a measure on states in
the context of a typing environment Γ . A state σ is well-formed w. r. t. to V and
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Γ if it maps every variable x ∈ V to a value of type Γ x and every variable /∈ V
to undefined. We fix Γ and a finite V and consider the set of well-formed states
w. r. t. V and Γ . Another representation of these states are tuples in which the
i-th component is the value of the i-th variable in V . The natural measure that
can be given to such tuples is the finite product measure of the stock measures
of the types of the variables:

state measure V Γ :=
⊗

x∈V

stock measure (Γ x)

3.3 Source Language

datatype expr =

Var nat | Val val | LET expr IN expr | pdf operator $ expr | <expr, expr> |
Random pdf dist | IF expr THEN expr ELSE expr | Fail pdf type

Fig. 2. Source language expressions

Figure 2 shows the syntax of the source language. It contains variables (de
Bruijn), values, LET-expressions (again de Bruijn), operator application, pairs,
sampling a parametrised built-in random distribution, IF-THEN -ELSE and fail-
ure. We omit the constructor Val when its presence is obvious from the context.

Figures 3 and 4 show the typing rules and the monadic semantics of the source
language.

Γ � Val v : val type v Γ � Var x : Γ x Γ � Fail t : t

Γ � e : t op type op t = Some t′

Γ � op $ e : t′
Γ � e1 : t1 Γ � e2 : t2

Γ �<e1, e2> : t1× t2

Γ � b : B Γ � e1 : t Γ � e2 : t

Γ � IF b THEN e1 ELSE e2 : t

Γ � e1 : t1 t1 • Γ � e2 : t2

Γ � LET e1 IN e2 : t2

Γ � e : dist param type dst

Γ � Random dst e : dist result type dst

Fig. 3. Typing rules of the source language
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expr sem :: state → expr → val measure

expr sem σ (Val v) = return val v

expr sem σ (Var x) = return val (σ x)

expr sem σ (LET e1 IN e2) =

do {v ← expr sem σ e1; expr sem (v • σ) e2}
expr sem σ (op $ e) =

do {v ← expr sem σ e; return val (op sem op v)}
expr sem σ <e1, e2> =

do {v1 ← expr sem σ e1; v2 ← expr sem σ e2;

return val <|v1, v2 |>}
expr sem σ (IF b THEN e1 ELSE e2) =

do {b′ ← expr sem σ b;

expr sem σ (if b′ = TRUE then e1 else e2)}
expr sem σ (Random dst e) =

do {p ← expr sem σ e; dist measure dst p}
expr sem σ (Fail t) = null measure (stock measure t)

Fig. 4. Semantics of the source language

Figure 5 shows the built-in distributions of the source language, their parame-
ter types and domains, the types of the random variables they describe, and their
density functions in terms of their parameter. When given a parameter outside
their domain, they return the null measure. We support the same distributions
as Bhat et al., except for the Beta and Gamma distributions (merely because
we have not formalised them yet).

3.4 Deterministic Expressions

We call an expression e deterministic (written as “e det”) if it contains no occur-
rence of Random or Fail. Such expressions are of particular interest: if all their
free variables have a fixed value, they return precisely one value, so we can define
a function expr sem rf2 that, when given a state σ and a deterministic expression
e, returns this single value. This function can be seen as a non-monadic analogue
to expr sem and its definition is therefore analogous and is not shown here. The

2 In Isabelle, the expression randomfree is used instead of deterministic, hence the “rf”
suffix. This is in order to emphasise the syntactical nature of the property. Note that
a syntactically deterministic expression is not truly deterministic if the variables it
contains are randomised over, which can be the case.
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Distribution Param. Domain Type Density function

Bernoulli R p ∈ [0; 1] B λx.

{
p for x = TRUE

1− p for x = FALSE

UniformInt Z× Z p1 ≤ p2 Z λx.
〈x ∈ [p1; p2]〉
p2 − p1 + 1

UniformReal R× R p1 < p2 R λx.
〈x ∈ [p1; p2]〉

p2 − p1

Gaussian R× R p2 > 0 R λx.
1√
2πp22

· exp
(
− (x− p1)

2

2p22

)

Poisson R p ≥ 0 Z λx.

{
exp (−p) · px/x! for x ≥ 0

0 otherwise

Fig. 5. Built-in distributions of the source language.
The density functions are given in terms of the parameter p, which is of the type given
in the column “parameter type”. If p is of a product type, p1 and p2 stand for the two
components of p.

function expr sem has the following property (assuming that e is deterministic
and well-typed and σ is a valid state):

expr sem σ e = return (expr sem rf σ e)

This property will enable us to convert deterministic source-language expressions
into “equivalent” target-language expressions.

3.5 Target Language

The target language is again modelled very closely after the one by Bhat et al.
[5]. The type system and the operators are the same as in the source language.
The key difference is that the Random construct has been replaced by an integral.
As a result, while expressions in the source language return a measure space,
expressions in the target language always return a single value.

Since our source language lacks sum types, so does our target language. Addi-
tionally, our target language differs from the one by Bhat et al. in the following
respects:

– Our language has no function types; since functions only occur as integrands
and as final results (as the compilation result is a density function), we can
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simply define integration to introduce the integration variable as a bound
variable and let the final result contain a single free variable with de Bruijn
index 0, i. e. there is an implicit λ abstraction around the compilation result.

– Evaluation of expressions in our target language can never fail. In the lan-
guage by Bhat et al., failure is used to handle undefined integrals; we, on the
other hand, use the convention of Isabelle’s measure theory library, which
returns 0 for integrals of non-integrable functions. This has the advantage of
keeping the semantics simple, which makes proofs considerably easier.

– Our target language does not have LET-bindings, since, in contrast to the
source language, they would be semantically superfluous here. However, they
are still useful in practice since they yield shorter expressions and can avoid
multiple evaluation of the same term; they could be added with little effort.

Figures 6, 7, and 8 show the syntax, typing rules, and semantics of the target
language.

The matter of target-language semantics in the papers by Bhat et al. is some-
what unclear. In the 2012 POPL paper [4], the only semantics given for the target
language is a vague denotational rule for the integral. In the 2013 TACAS pa-
per [5], no target-language semantics is given at all; it is only said that “standard
CBV small-step evaluation” is used. The extended version of this paper currently
submitted for publication [6] indeed gives some small-step evaluation rules, but
only for simple cases. In particular, none of these publications give the precise
rules for evaluating integral expressions. It is quite unclear to us how small-step
evaluation of integral expressions is possible in the first place. Another issue is
how to handle evaluation of integral expressions where the integrand evaluates
to ⊥ for some values.3

Converting deterministic expressions. The auxiliary function expr rf to cexpr,
which will be used in some rules of the compiler that handle deterministic
expressions, is of particular interest. We mentioned earlier that deterministic
source-language expressions can be converted to equivalent target-language ex-
pressions.4 This function does precisely that. Its definition is mostly obvious,
apart from the LET case. Since our target language does not have a LET con-
struct, the function must resolve LET-bindings in the source-language expression
by substituting the bound expression.

expr rf to cexpr satisfies the following equality for any deterministic source-
language expression e:

cexpr sem σ (expr rf to cexpr e) = expr sem rf σ e

3 We do not have this problem since in our target language, as mentioned before,
evaluation cannot fail.

4 Bhat et al. say that a deterministic expression “is also an expression in the target
language syntax, and we silently treat it as such” [5]
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datatype cexpr =

CVar nat | CVal val | pdf operator $c cexpr | <cexpr, cexpr>c |
IFc cexpr THEN cexpr ELSE cexpr | ∫

c
cexpr∂pdf type

Fig. 6. Target language expressions

Γ �c CVal v : val type v Γ �c CVar x : Γ x

Γ �c e : t op type op t = Some t′

Γ �c op $c e : t′
Γ �c e1 : t1 Γ �c e2 : t2

Γ �c <e1, e2>c : t1× t2

Γ �c b : B Γ �c e1 : t Γ �c e2 : t

Γ �c IFc b THEN e1 ELSE e2 : t

t • Γ �c e : R

Γ �c

∫
c
e ∂t : R

Fig. 7. Typing rules for target language

cexpr sem :: state → cexpr → val

cexpr sem σ (CVal v) = v

cexpr sem σ (CVar x) = σ x

cexpr sem σ <e1, e2>c = <|cexpr sem σ e1, cexpr sem σ e2 |>
cexpr sem σ op $c e = op sem op (cexpr sem σ e)

cexpr sem σ (IFc b THEN e1 ELSE e2) =

(if cexpr sem σ b = TRUE then cexpr sem σ e1 else cexpr sem σ e2)

cexpr sem σ (
∫
c
e∂t) =

RealVal (
∫
x. extract real (cexpr sem (x • σ) e) ∂ stock measure t)

Fig. 8. Semantics of target language
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4 Abstract Compiler

The correctness proof is done in two steps using a refinement approach: first, we
define and prove correct an abstract compiler that returns the density function
as an abstract mathematical function. We then define an analogous concrete
compiler that returns a target-language expression and show that it is a refine-
ment of the abstract compiler, which will allow us to lift the correctness result
from the latter to the former.

4.1 Density Contexts

First, we define the notion of a density context, which holds the context data the
compiler will require to compute the density of an expression. A density context
is a tuple Υ = (V, V ′, Γ, δ) that contains the following information:

– The set V of random variables in the current context. These are the variables
that are randomised over.

– The set V ′ of parameter variables in the current context. These are variables
that may occur in the expression, but are not randomised over but treated
as constants.

– The type environment Γ
– A density function δ that returns the common density of the variables V

under the parameters V ′. Here, δ is a function from space (state measure (V ∪
V ′) Γ ) to the extended real numbers.

A density context (V, V ′, Γ, δ) describes a parametrised measure on the states
on V ∪ V ′. Let ρ ∈ space (state measure V ′ Γ ) be a parameter state. We write

dens ctxt measure (V, V ′, Γ, δ) ρ

for the measure obtained by taking state measure V Γ , transforming it by merg-
ing a given state σ with the parameter state ρ and finally applying the density
δ on the resulting image measure. The Isabelle definition of this is:

dens ctxt measure :: dens ctxt → state → state measure

dens ctxt measure (V, V ′, Γ, δ) ρ = density (distr (state measure V Γ )

(state measure (V ∪ V ′) Γ ) (λσ. merge V V ′ (σ, ρ))) δ

Informally, dens ctxt measure describes the measure obtained by integrating
over the variables {v1, . . . , vm} = V while treating the variables {v′1, . . . , v′n} =
V ′ as parameters. The evaluation of an expression e with variables from V ∪ V ′

in this context is effectively a function

λv′1 . . . v′n.
∫

v1. . . .

∫

vm. expr sem (v1, . . . , vm, v′1, . . . , v
′
n) e ·

δ (v1, . . . , vm, v′1, . . . , v
′
n) ∂Γ v1 . . . ∂Γ vm .

A density context is well-formed (predicate density context in Isabelle) if:
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– V and V ′ are finite and disjoint
– δ σ ≥ 0 for any σ ∈ space (state measure (V ∪ V ′) Γ )
– δ is Borel-measurable w. r. t. state measure (V ∪ V ′) Γ
– the measure dens ctxt measure (V, V ′, Γ, δ) ρ is a sub-probability measure

for any ρ ∈ space (state measure V ′ Γ )

4.2 Definition

As a first step, we have implemented an abstract density compiler as an inductive
predicate Υ �d e ⇒ f , where Υ is a density context, e is a source-language
expression and f is a function of type val state → val → ereal . Its first parameter
is a state that assigns values to the free variables in e and its second parameter
is the value for which the density is to be computed. The compiler therefore
computes a density function that is parametrised with the values of the non-
random free variables in the source expression.

The compilation rules are very similar to those by Bhat et al. [5], except for
the following adaptations:

– Bhat et al. handle IF-THEN -ELSE with the “match” rule for sum types. As
we do not support sum types, we have a dedicated rule for IF-THEN -ELSE.

– The use of de Bruijn indices requires shifting of variable sets and states
whenever the scope of a new bound variable is entered; unfortunately, this
makes some rules somewhat technical.

– We do not provide any compiler support for deterministic LET-bindings.
They are semantically redundant, as they can always be expanded without
changing the semantics of the expression. In fact, they have to be unfolded
for compilation, so they can be regarded as a feature that adds convenience,
but no expressivity.

The following list shows the standard compilation rules adapted from Bhat
et al., plus a rule for multiplication with a constant.5 The functions marg dens
and marg dens2 compute the marginal density of one and two variables by “in-
tegrating away” all the other variables from the common density δ. The function
branch prob computes the probability of being in the current branch of execution
by integrating over all the variables in the common density δ.

hd val

countable type (val type v)

(V, V ′, Γ, δ) �d Val v ⇒ λρ x. branch prob (V, V ′, Γ, δ) ρ · 〈x = v〉

hd var

x ∈ V

(V, V ′, Γ, δ) �d Var x ⇒ marg dens (V, V ′, Γ, δ) x

5 Additionally, three congruence rules are required for technical reasons. These rules
are required because the abstract and the concrete result may differ on a null set
and outside their domain.
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hd pair

x ∈ V y ∈ V x �= y

(V, V ′, Γ, δ) �d<Var x,Var y>⇒ marg dens2 (V, V ′, Γ, δ) x y

hd fail

(V, V ′, Γ, δ) �d Fail t ⇒ λρ x. 0

hd let

(∅, V ∪ V ′, Γ, λx. 1) �d e1 ⇒ f
(0 • V, {x+ 1 | x ∈ V ′}, type of Γ e1 • Γ,
λρ. f (λx. ρ (x+ 1)) (ρ 0) · δ (λx. ρ (x+ 1))) �d e2 ⇒ g

(V, V ′, Γ, δ) �d LET e1 IN e2 ⇒ λρ. g (undefined • ρ)

hd rand

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d Random dst e ⇒
λρ y.

∫
x. f ρ x · dist dens dst x y ∂dist param type dst

hd rand det

e det free vars e ⊆ V ′

(V, V ′, Γ, δ) �d Random dst e ⇒
λρ x. branch prob (V, V ′, Γ, δ) ρ · dist dens dst (expr sem rf ρ e) x

hd if

(∅, V ∪ V ′, Γ, λρ. 1) �d b ⇒ f (V, V ′, Γ, λρ. δ ρ · f TRUE) �d e1 ⇒ g1
(V, V ′, Γ, λρ. δ ρ · f FALSE) �d e2 ⇒ g2

(V, V ′, Γ, δ) �d IF b THEN e1 ELSE e2 ⇒ λρ x. g1 ρ x+ g2 ρ x

hd if det

b det
(V, V ′, Γ, λρ. δ ρ · 〈expr sem rf ρ b = TRUE〉) �d e1 ⇒ g1
(V, V ′, Γ, λρ. δ ρ · 〈expr sem rf ρ b = FALSE〉) �d e2 ⇒ g2

(V, V ′, Γ, δ) �d IF b THEN e1 ELSE e2 ⇒ λρ x. g1 ρ x+ g2 ρ x

hd fst

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d fst e ⇒ λρ x.
∫
y. f ρ <|x, y |> ∂ type of Γ (snd e)

hd snd

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d snd e ⇒ λρ y.
∫
x. f ρ <|x, y |> ∂ type of Γ (fst e)

hd op discr

countable type (type of (op $ e)) (V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d op $ e ⇒ λρ y.
∫
x. 〈op sem op x = y〉 · f ρ x ∂ type of Γ e

hd neg

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d −e ⇒ λρ x. f ρ (−x)
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hd addc

e′ det free vars e′ ⊆ V ′ (V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d e+ e′ ⇒ λρ x. f ρ (x− expr sem rf ρ e′)

hd multc

c �= 0 (V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d e ·Val (RealVal c) ⇒ λρ x. f ρ (x/c) / |c|

hd add

(V, V ′, Γ, δ) �d<e1, e2>⇒ f

(V, V ′, Γ, δ) �d e1 + e2 ⇒ λρ z.
∫
x. f ρ <|x, z − x |> ∂ type of Γ e1

hd inv

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d e−1 ⇒ λρ x. f ρ (x−1) / x2

hd exp

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d exp e ⇒ λρ x. if x > 0 then f ρ (lnx) / x else 0

Consider the following simple example program:

IF Random Bernoulli 0.25 THEN 0 ELSE 1

Applying the abstract compiler yields the following HOL function:

branch prob (∅, ∅, Γ, λρ. branch prob (∅, ∅, Γ, λρ. 1) ρ ∗
dist dens Bernoulli 0.25 True) ρ · 〈x = 0〉+

branch prob (∅, ∅, Γ, λρ. branch prob (∅, ∅, Γ, λρ. 1) ρ ∗
dist dens Bernoulli 0.25 False) ρ · 〈x = 1〉

Since the branch prob in this example is merely the integral over the empty set
of variables, this simplifies to:

λρ x. dist dens Bernoulli 0.25 ρ True · 〈x = 0〉+
dist dens Bernoulli 0.25 ρ False · 〈x = 1〉

4.3 Soundness Proof

We proved the following soundness result for the abstract compiler:6

6 Note that since the abstract compiler returns parametrised density functions, we
need to parametrise the result with the state λx. undefined, even if the expression
contains no free variables.



96 M. Eberl, J. Hölzl, and T. Nipkow

lemma expr has density sound:

assumes (∅, ∅, Γ, λρ. 1) �d e ⇒ f and Γ � e : t and free vars e = ∅
shows has subprob density (expr sem σ e) (stock measure t) (f (λx. undefined))

where has subprob density M N f is an abbreviation for the following four
facts: applying the density f to N yields M , M is a sub-probability measure, f
is N -Borel-measurable, and f is non-negative on its domain.

The lemma above follows easily from the following generalised lemma:

lemma expr has density sound aux:

assumes (V, V ′, Γ, δ) �d e ⇒ f and Γ � e : t and

density context V V ′ Γ δ and free vars e ⊆ V ∪ V ′

shows has parametrized subprob density (state measure V ′ Γ )

(λρ. do {σ ← dens ctxt measure (V, V ′, Γ, δ) ρ; expr sem σ e})
(stock measure t) f

where has parametrized subprob density R M N f means that f is Borel-
measurable w. r. t. R⊗N and that for any parameter state ρ fromR, the predicate
has subprob density (M ρ) N (f ρ) holds.

The proof is by induction on the definition of the abstract compiler. In many
cases, the monad laws for the Giry monad allow restructuring the induction goal
in such a way that the induction hypothesis can be applied directly; in the other
cases, the definitions of the monadic operations need to be unfolded and the goal
is essentially to show that two integrals are equal and that the output produced
is well-formed.

The proof given by Bhat et al. [6] (which we were unaware of while working
on our own proof) is analogous to ours, but much more concise due to the fact
that side conditions such as measurability, integrability, non-negativity, and so
on are not proven explicitly and many important (but uninteresting) steps are
skipped or only hinted at.

It should be noted that in the draft of an updated version of their 2013
paper [6], Bhat et al. added a scaling rule for real distributions similar to our
hd multc rule. However, in the process of our formal proof, we found that
their rule was too liberal: while our rule only allows multiplication with a fixed
constant, their rule allowed multiplication with any deterministic expression,
even expressions that may evaluate to 0, but multiplication with 0 always yields
the Dirac distribution, which does not have a density function. In this case, the
compiler returns a PDF for a distribution that has none, leading to unsoundness.
This shows the importance of formal proofs.
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5 Concrete Compiler

5.1 Approach

The concrete compiler is another inductive predicate, modelled directly after the
abstract compiler, but returning a target-language expression instead of a HOL
function. We use a standard refinement approach to relate the concrete compiler
to the abstract one. We thus lift the soundness result on the abstract compiler
to an analogous result on the concrete compiler. This shows that the concrete
compiler always returns a well-formed target-language expression that represents
a density for the sub-probability space described by the source language.

The concrete compilation predicate is written as

(vs , vs ′, Γ, δ) �c e ⇒ f

Here, vs and vs ′ are lists of variables, Γ is a typing environment, and δ is a
target-language expression describing the common density of the random vari-
ables vs in the context. It may be parametrised with the variables from vs ′.

5.2 Definition

The concrete compilation rules are, of course, a direct copy of the abstract ones,
but with all the abstract HOL operations replaced with operations on target-
language expressions. Due to the de Bruijn indices and the lack of functions as
explicit objects in the target language, some of the rules are somewhat compli-
cated – inserting an expression into the scope of one or more bound variables
(such as under an integral) requires shifting the variable indices of the inserted
expression correctly. For this reason, we do not show the rules here; they can be
found in the Isabelle theory file PDF Compiler.thy [13].

5.3 Refinement

The refinement relates the concrete compilation

(vs , vs ′, Γ, δ) �c e ⇒ f

to the abstract compilation

(set vs, set vs′, Γ, λσ. expr sem σ δ) �c e ⇒ λρ x. cexpr sem (x • ρ) f
In words: we take the abstract compilation predicate and

– the variable sets are refined to variable lists
– the typing context and the source-language expression remain unchanged
– the common density in the context and the compilation result are refined

from HOL functions to target-language expressions (by applying the target
language semantics)
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The main refinement lemma states that the concrete compiler yields a result
that is equivalent to that of the abstract compiler, modulo refinement. Informally,
the statement is the following: if e is ground and well-typed under some well-
formed concrete density context Υ and Υ �c e ⇒ f , then Υ ′ �d e ⇒ f ′, where
Υ ′ and f ′ are the abstract versions of Υ and f .

The proof for this is conceptually simple – induction over the definition of
the concrete compiler; in practice, however, it is quite involved. In every single
induction step, the well-formedness of the intermediary expressions needs to be
shown, the previously-mentioned congruence lemmas for the abstract compiler
need to be applied, and, when integration is involved, non-negativity and inte-
grability have to be shown in order to convert non-negative Lebesgue integrals to
general Lebesgue integrals and integrals on product spaces to iterated integrals.

Combining this main refinement lemma and the abstract soundness lemma,
we can now easily show the concrete soundness lemma:

lemma expr has density cexpr sound:

assumes ([], [], Γ, 1) �c e ⇒ f and Γ � e : t and free vars e = ∅
shows has subprob density (expr sem σ e) (stock measure t)

(λx. cexpr sem (x • σ) f)
Γ ′ 0 = t =⇒ Γ ′ �c f : REAL

free vars f ⊆ {0}

Informally, the lemma states that if e is a well-typed, ground source-language
expression, compiling it with an empty context will yield a well-typed,
well-formed target-language expression representing a density function on the
measure space described by e.

5.4 Final Result

We will now summarise the soundness lemma we have just proven in a more
concise manner. For convenience, we define the symbol e : t ⇒c f (read “e
with type t compiles to f”), which includes the well-typedness and groundness
requirements on e as well as the compilation result:7

e : t ⇒c f ←→
(λx. UNIT) � e : t ∧ free vars e = ∅ ∧ ([], [], λx. UNIT, 1) �c e ⇒ f

The final soundness theorem for the compiler, stated in Isabelle syntax:8

7 In this definition, the choice of the typing environment is completely arbitrary since
the expression contains no free variables.

8 The lemma statement in Isabelle is slightly different: for better readability, we un-
folded one auxiliary definition here and omitted the type cast from real to ereal.
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lemma expr compiles to sound:

assumes e : t ⇒c f

shows expr sem σ e = density (stock measure t) (λx. cexpr sem (x • σ′) f)
∀x∈ type universe t. cexpr sem (x • σ′) f ≥ 0

Γ � e : t

t • Γ ′ �c f : REAL

free vars f ⊆ {0}

In words, this result means the following:

Theorem

Let e be a source-language expression. If the compiler determines that e is
well-formed and well-typed with type t and returns the target-language
expression f , then:

– the measure obtained by taking the stock measure of t and using the
evaluation of f as a density is the measure obtained by evaluating e

– f is non-negative on all input values of type t
– e has no free variables and indeed has type t (in any type context Γ )
– f has no free variable except the parameter (i. e. the variable 0) and is

a function from t to REAL9

5.5 Evaluation

Isabelle’s code generator allows us to execute our inductively-defined verified
compiler using the values command10 or generate code in one of the target
languages such as Standard ML or Haskell. As an example on which to test the
compiler, we choose the same expression that was chosen by Bhat et al. [5]:11

LET x = Random UniformReal <0, 1> IN

LET y = Random Bernoulli x IN

IF y THEN x + 1 ELSE x

9 Meaning if its parameter variable has type t, it is of type REAL.
10 Our compiler is inherently non-deterministic since it may return zero, one, or many

density functions, seeing as an expression may have no matching compilation rules
or more than one. Therefore, we must use the values command instead of the value
command and receive a set of compilation results.

11 Val and RealVal were omitted for better readability and symbolic variable names
were used instead of de Bruijn indices.
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We abbreviate this expression with e. We can then display the result of the
compilation using the following Isabelle command:

values ”{(t, f) | t f. e : t ⇒c f}”
The result is a singleton set which contains the pair (REAL, f), where f is a
very long and complicated expression. Simplifying constant subexpressions and
expressions of the form fst <e1, e2> and again replacing de Bruijn indices with
symbolic identifiers, we obtain:∫

b. (IF 0 ≤ x− 1 ∧ x− 1 ≤ 1 THEN 1 ELSE 0) · (IF 0 ≤ x− 1 ∧ x− 1 ≤ 1 THEN

IF b THEN x− 1 ELSE 1− (x− 1) ELSE 0) · 〈b〉 +∫
b. (IF 0 ≤ x ∧ x ≤ 1 THEN 1 ELSE 0) · (IF 0 ≤ x ∧ x ≤ 1 THEN

IF b THEN x ELSE 1− x ELSE 0) · 〈¬ b〉

Further simplification yields the following result:

〈1 ≤ x ≤ 2〉 · (x− 1) + 〈0 ≤ x ≤ 1〉 · (1− x)

While this result is the same as that which Bhat et al. have reached, our
compiler generates a much larger expression than the one they printed. The
reason for this is that they β-reduced the compiler output and evaluated constant
subexpressions. While such simplification is very useful in practice, we have not
automated it yet since it is orthogonal to the focus of our work, the compiler.

6 Conclusion

6.1 Effort

The formalisation of the compiler took about three months and roughly 10000
lines of Isabelle code (definitions, lemma statements, proofs, and examples) dis-
tributed as follows:

Type system and semantics 2900 lines
Abstract compiler 2600 lines
Concrete compiler 1400 lines
General measure theory 3400 lines

As can be seen, a sizeable portion of the work was the formalisation of results
from general measure theory, such as integration by substitution and measure
embeddings.

6.2 Difficulties

The main problems we encountered during the formalisation were:
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Missing background theory. As mentioned in the previous section, a sizeable
amount of measure theory and auxiliary notions had to be formalised. Most
notably, the existing measure theory library did not contain integration by sub-
stitution. We proved this, using material from a formalisation of the Central
Limit Theorem by Avigad et al. [2].

Proving side conditions. Many lemmas from the measure theory library require
measurability, integrability, non-negativity, etc. In hand-written proofs, this is
often “hand-waved” or implicitly dismissed as trivial; in a formal proof, proving
these can blow up proofs and render them very complicated and technical. The
measurability proofs in particular are ubiquitous in our formalisation. The mea-
sure theory library provides some tools for proving measurability automatically,
but while they were quite helpful in many cases, they are still work in progress
and require more tuning.

Lambda calculus. Bhat et al. use a simply-typed λ-calculus-like language with
symbolic identifiers as a target language. For a paper proof, this is the obvious
choice. We chose de Bruijn indices instead; however, this makes handling target
language terms less intuitive and requires additional lemmas. Urban’s nominal
datatypes [21] would have allowed us to work with a more intuitive model, but
we would have lost executability of the compiler, which was one of our aims.

6.3 Summary

We formalised the semantics of a probabilistic functional programming language
with predefined probability distributions and a compiler that returns the prob-
ability distribution that a program in this language describes. These are mod-
elled very closely after those given by Bhat et al. [5]. Then we formally verified
the correctness of this compiler w. r. t. the semantics of the source and target
languages.

This shows not only that the compiler given by Bhat et al. is correct (apart
from the problem with the scaling rule we discussed earlier), but also that a
formal correctness proof for such a compiler can be done with reasonable effort
and that Isabelle/HOL in general and its measure theory library in particular
are suitable for it. A useful side effect of our work was the formalisation of the
Giry Monad, which is useful for formalisations of probabilistic computations in
general.

Possible future work includes support for sum types, which should be possible
with little effort, and a verified postprocessing stage to automatically simplify
the density expression would be desirable.
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Appendix

Notation Name /Description Definition

f x function application f(x)

f ‘X image set f(X) or {f(x) | x ∈ X}
λx. e lambda abstraction x �→ e

undefined arbitrary value

Suc successor of a natural number +1

case nat x f y case distinction on natural number

{
x if y = 0

f(y − 1) otherwise

[] Nil empty list

x#xs Cons prepend element to list

xs @ ys list concatenation

map f xs applies f to all list elements [f(x) | x ← xs ]

merge V V ′ (ρ, σ) merging disjoint states

⎧⎪⎨
⎪⎩
ρ x if x ∈ V

σ y if x ∈ V ′

undefined otherwise

y • f add de Bruijn variable to scope see Sect. 2.2

〈P 〉 indicator function 1 if P is true, 0 otherwise∫
x. f x ∂μ Lebesgue integral on non-neg. functions

Meas category of measurable spaces see Sect. 2.4

S sub-probability functor see Sect. 2.4

return monadic return (η) in the Giry monad see Sect. 2.4

�= monadic bind in the Giry monad see Sect. 2.4

do { . . . } monadic “do” syntax see Sect. 2.4

density M f measure with density result of applying density f to M

distr M N f push-forward/image measure (B, B, λX. μ(f−1(X))) for

M = (A,A, μ), N = (B,B, μ′)



Segment Abstraction for Worst-Case Execution

Time Analysis�
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Abstract. In the standard framework for worst-case execution time
(WCET) analysis of programs, the main data structure is a single in-
stance of integer linear programming (ILP) that represents the whole
program. The instance of this NP-hard problem must be solved to find an
estimate for WCET, and it must be refined if the estimate is not tight. We
propose a new framework for WCET analysis, based on abstract segment
trees (ASTs) as the main data structure. The ASTs have two advantages.
First, they allow computing WCET by solving a number of independent
small ILP instances. Second, ASTs store more expressive constraints,
thus enabling a more efficient and precise refinement procedure. In or-
der to realize our framework algorithmically, we develop an algorithm
for WCET estimation on ASTs, and we develop an interpolation-based
counterexample-guided refinement scheme for ASTs. Furthermore, we
extend our framework to obtain parametric estimates of WCET. We ex-
perimentally evaluate our approach on a set of examples from WCET
benchmark suites and linear-algebra packages. We show that our anal-
ysis, with comparable effort, provides WCET estimates that in many
cases significantly improve those computed by existing tools.

1 Introduction

Worst-case execution time (WCET) analysis [18] is important in many classes
of applications. For instance, real-time embedded systems have to react within a
fixed amount of time. For another example, consider computer algebra libraries
that provide different implementations for the most heavily-used methods. Users
have to choose the most suitable method for their particular system architecture.
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In both cases, a tool that soundly and tightly approximates the WCET of a
program on a given architecture would thus be very helpful.

State of the Art. Most state of the art WCET estimation tools proceed in
three phases (see for instance the survey [18]):

– First phase: Architecture-independent flow analysis, which computes invari-
ants, loop bounds, and finds correlations between the number of times dif-
ferent basic blocks in the program are executed. Such facts are called flow
facts in the WCET literature, and the analysis is called flow analysis.

– Second phase: Architecture-dependent low-level analysis, which finds WCET
for each basic block, using a model of a particular architecture, and abstract
interpretation over domains that model for instance caches and pipelines.

– Third phase: Path analysis, which combines the results of the previous two
phases. The commonly-used algorithm is called Implicit Path Enumeration
Technique (IPET) [15]. It constructs an Integer Linear Programming (ILP)
problem using WCET estimates for each basic block and constraints arising
from flow facts to rule out some infeasible paths.

Recently, several approaches to refining WCET estimates were proposed.
These works [14,3] use an approach named “WCET squeezing” in [14], which
adds constraints to the ILP problem arising from IPET.

The main data structure used is a single ILP problem for the whole program.
We make two observations about the standard approach: first, flow facts (gath-
ered in the first phase, or obtained by refinement) lead to global constraints in
the ILP constructed in the third phase. Hence, the ILP problem (an instance of
an NP-hard problem) cannot be decomposed into smaller problems. Second, the
current approaches to refinement add constraints to the ILP; and in this way
eliminate only one path at a time.

Our Thesis. The main thesis of this paper is that hierarchical segment abstrac-
tion [8] is the right framework for WCET analysis. Segments are sequences of
program instructions. Segment abstractions are those where an abstract state
represents a set of segments, rather than set of concrete states. We represent hi-
erarchical segment abstraction in a data structure called abstract segment trees
(ASTs). The concept of segment abstraction [8] and its quantitative version [6]
were introduced only very recently. We believe that WCET analysis is a prime
application for segment abstraction.

We give two main arguments in support of the thesis. First, hierarchical seg-
ment abstraction allows us to compute the WCET by solving a number of inde-
pendent ILP problems, instead of one large global ILP problem. This is because
ASTs allow storing constraints locally. Second, hierarchical segment abstraction
enables us to develop a more precise and efficient refinement procedure. This is
because ASTs store more expressive constraints than ILP.

Algorithm. In order to substantiate our thesis, we develop an algorithm for
producing increasingly tight WCET estimates. There are three key ingredients
to the algorithm. First, we define an abstraction of programs that contains
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quantitative information necessary to estimate WCET. Second, we develop an
algorithm for WCET estimation on ASTs. Third, we develop counterexample-
guided refinement for segment abstraction based on interpolation.

Abstractions for WCET: Abstract Segment Trees. The main idea of hi-
erarchical segment abstraction is that an abstract state corresponds to a set of
concrete segments, rather than to a set of concrete states, as in state-based ab-
stractions. Reasoning about segments is suitable for WCET estimation, where
the analysis needs, for example, to distinguish execution times for different paths
through a loop body, and store the relative number of times these paths are
taken. Consider a simple example of a loop through which there are two paths,
P1 and P2. Let us assume that the path P1 takes a long time to execute, but is
taken only once every 4 iterations of the loop; otherwise, a cheaper path P2 is
taken. To obtain a precise estimate of WCET, we thus need to store two types
of numerical facts: the first one is the current estimates of execution time of P1

and P2, and the second fact is that an iteration taking path P1 is followed by
3 iterations taking path P2. We show that both these facts about paths can be
stored locally if the basic object in the representation is a set of segments. To
contrast with the standard approach to WCET analysis, note that the second
quantitative fact is stored as a global constraint in the ILP.

The abstraction is hierarchical in order to capture the hierarchical nature of
traces of structured programs with loops and procedures. For example, we split
the set of traces through a nested loop into repeated iterations of the outer loop,
and each outer loop iteration is split into repeated inner loop iterations. The
hierarchical abstraction is represented by an abstract segment tree.

Each node of the abstract segment tree represents a set of segments. The
nodes in our abstract segment trees contain quantitative information so that the
WCET of the program can be estimated using only the abstraction.

Evaluation of WCET on Abstractions. After constructing the abstraction
of the program (an AST), the next step is to evaluate the WCET on the AST.
The AST is a hierarchical structure. Each node of the AST gives rise to a problem
that can be solved using an ILP encoding. The key difference to the standard
IPET approach is that IPET constructs one global ILP problem for the whole
program, and the ILP cannot be decomposed due to global constraints. segment
abstractions and the hierarchical nature of ASTs enable us to decompose the
solving into smaller problems, with one such problem for each node.

We propose a new encoding of the constraint-solving problem that arises at
each node into ILP. The problem at each node could be reduced to ILP by a
technique presented in [16], but this would lead to a possibly exponential number
of constraints, whereas our encoding produces linear number of constraints.

Abstraction-Refinement for WCET. After evaluating the WCET on ASTs,
we obtain a witness trace, that is, a trace through the AST that achieves the
WCET. It might be that the trace is feasible in the current abstraction but is
infeasible in the program. Hence, we need a refinement as the next phase, in order
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to obtain a more precise WCET estimate. The algorithm refines the abstraction
based on the current WCET estimate and the corresponding worst-case path.

We use the classical abstraction-refinement loop approach, adapted to ASTs.
If the witness trace is feasible in the original program, the current WCET es-
timate is tight and we report it. Otherwise, we refine the abstraction using a
novel interpolation-based approach for refinement of segment predicates. The
refinements are monotonic w.r.t. WCET estimates, i.e., they are monotonically
decreasing. Having expressive constraints (relational predicates) stored in ASTs
allows us to perform more efficient and more precise refinement than state-of-
the-art WCET refinement techniques that add constraints to the ILP problem.
Our refinement is more efficient, as we can potentially eliminate many traces
at a time, and it is more precise, as the constraints that determine how the set
represented by abstract nodes can be combined are more expressive than the
constraints in ILP.

Parameters. Furthermore, we extend our framework to provide parametric es-
timates of WCET, following [4,1]. In many cases, a single number as a WCET
estimate is a pessimistic over-estimate. For instance, for a program that trans-
poses a n × n matrix, a single numeric WCET is the WCET for the largest
possible value of n. We adapt our evaluation algorithm to compute parametric
WCET estimates as disjunctive linear-arithmetic expressions.

Experimental Evaluation. Our goal was to evaluate the idea of using ASTs
as the basic data structure for WCET estimation. We built a tool IBART for
computing (parametric) WCET estimates for C programs. For obtaining WCET
estimates for basic blocks of programs, we used two low-level analyzers from ex-
isting frameworks, r-TuBound [13] and OTAWA [2]. The low-level analyzers Cal-
cWCET167 and owcet included in r-TuBound and OTAWA respectively provide
basic block WCET estimates for the Infineon C167 processor and the LPC2138
ARM7 processor. We re-used the low-level analyzers of these frameworks, and
show that our high-level analyzer provides more precise constraints that our
solver uses to compute tighter WCET estimates than these two frameworks.

We evaluated IBART on challenging examples from WCET benchmark suites
and open-source linear algebra packages. These examples were parametric (with
parameters such as array sizes and loop bounds), and our tool provided paramet-
ric estimates. All the examples we considered were solved under 20 seconds. To
compare our estimates with the non-parametric results provided by r-TuBound
and OTAWA, we instantiated the parameters to a number of sample values.

The results show that IBART provides better WCET estimates, though based
on the same low-level analyzers. This demonstrates that our segment algorithm
improves WCET estimates independently of the low-level analyzer. We thus
expect that ASTs and our framework could be used by other WCET tools.

2 Illustrative Examples

This section illustrates our approach toWCET computation.We use Example 1 to
demonstrate themaindifferences betweenour approachand the standardapproach
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for (i=0;i<1000;i++)

if ((i mod 4) == 0)

logValues() cost=50
work1() cost=3

else

work2() cost=3

Fig. 1. Example 1

l1 l2 l3 l4 l5

l6

l7

l8

ϕ9

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ6 ϕ7ϕ8

Fig. 2. CFG of Example 1

toWCETanalysis.We thenuseExample 2to present themain steps of ourmethod:
segment abstraction, estimation of WCET on ASTs, and counterexample-guided
abstraction refinement with interpolation.

Example 1. The program in Figure 1 performs operation work() (of execution
cost 3 time units) within a loop. Every 3 loop iterations, it logs some values into
a file, by using operation logValue whose execution takes 50 time units.

Consider the CFG of Example 1 in Figure 2 where edges have been marked by
instructions. For instance, the edge labels ϕ4, ϕ5, and ϕ7 correspond to instruc-
tions logValues(), work1(), and work2(), respectively. The standard IPET al-
gorithm would construct an ILP as follows. For each instruction ϕi, the variable
Xi represents the number of times the instruction is executed in the worst-case
path. The objective function for the ILP is to maximize

∑
i Xi · cost(ϕi), where

cost(ϕi) is the time taken to execute ϕi. The ILP constraints correspond to either
conservation of flow, for instance, X7 +X5 = X9 and X2 +X9 = X3 +X6 +X8,
or loop bounds, for instance 1000X2 = X3 + X6. Solving the ILP gives a way
to estimate the WCET. However, the estimate would be imprecise, as it would
find a solution that takes the expensive branch every time.

We could add a constraint specifying that the expensive branch is taken once,
every 4 iterations: 3X3 = X6. However, two important points are to be noted:
– First, this type of constraint that relates edges in different branches of the

program is non-local. In general, the two branches that need to be related,
can be far apart in the CFG. This makes decomposing the single large ILP
(representing the whole program) into smaller problems hard, and to the
best of our knowledge, no existing tool attempts this.

– Second, consider a version where the if-condition is replaced by ((i mod 30)

== 0). We cannot use the constraint 29X3 = X6, as this would not have a
solution: the number of iterations (1000) is not divisible by 30. Alternatively,
we could use less precise constraints like 29X3 ≥ X6 ≥ 29(X3 − 1). Most
current WCET tools would not handle the example precisely.

Consider in contrast how we obtain local bounds by reasoning about hierar-
chies of sets of segments. Let B2 be the set of segments representing a single
iteration of the loop. For example, B2 contains segments that start at l3, and go
through l4, l5, l7 (see Figure 2). This represents an iteration that goes through the
expensive branch. The set of segments B2 is represented by the regular expres-
sion l3(l4l5 ∨ l6)l7. Let B1 denote a set of segments through the loop - the set of
segments that start at l3 and exit the loop. The set B1 can be over-approximated
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if (a<b)

for (i=0;i<n;i++)

if (i<�n/2�)
op1(); cost=10

else

op2(); cost=1
else

op3(); cost=50

l1: if (*)

assume a<b; (ϕ1)
l2: i:=0; (ϕ2)
l3: while (*)

assume (i<n); (ϕ3)
l4: if (*)

assume i<�n/2�; (ϕ4)
l5: op1(); (ϕ5), cost=10

else

assume i≥�n/2�; (ϕ6)
l6: op2(); (ϕ7), cost=1
l7: i:=i+1; (ϕ8)

assume (i≥n); (ϕ9)
else

assume a≥ b; (ϕ10)
l8: op3(); (ϕ11), cost=50

Fig. 3. Example 2 (above); written in a while-language (right)

by B∗
2 . We also store the loop bound with B1, and thus the over-approximation

effectively becomes B1000
2 .

The counterexample-guided refinement will then refine the segment set of B2,
by splitting B2 into two sets: the set (B

t
2) where the formula ((i mod 4) = 0) holds

(the expensive iteration), and the set (Bf
2 ) where the formula ((i mod 4) = 0)

does not hold (the cheap iteration). The set of segments Bt
2 is represented by

the regular expression l3l4l5l7, and the set of segments Bt
2 is represented by

the regular expression l3l6l7. The over-approximation B1 will therefore become
((Bt

2)
1(Bf

2 )
3)∗. Note that this keeps the information locally: it says that one

expensive iteration is followed by 3 cheap iterations. The node B2 is hence refined
into 1 iteration of Bt

2, followed by 3 iterations of Bf
2 . The loop bound of 1000

would still be stored locally with B1, requiring the total number of calls to Bt
2

and Bf
2 be 1000. This information is enough to obtain a precise WCET estimate.

The same approach would work for the variant considered above.

Example 2 (Running example). We now explain our approach in detail using
the program in Figure 3, which will be our running example through the paper.
Program blocks op1(), op2(), and op3() are operations whose executions take
10, 1, and 50 time units, respectively (these costs are derived from a low-level
timing analysis tool). In this example, we assume that program conditionals and
simple assignments take 1 time unit.

It is not hard to see that for small values of the loop bound n, the WCET path
of this program visits the outermost else branch containing op3() – when n is
small, the execution cost of op3() dominates the cost of the loop. However, for
larger values of n, the WCET path visits the then branch of the outermost if
and the for-loop. The WCET of this example thus depends on n. Our approach
discovers this fact, and infers the WCET of the program as a function of n as
follows: if n ≤ 5 ; 51 else 3+4n+9�n/2�. The computation proceeds as follows.
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Control-flow graph. We construct the control-flow graph (CFG) of the pro-
gram in Figure 3. First, for clarity of presentation, we transform the program in a
while-loop language with assume statements — see Figure 3 (right column). We
have labeled the assumptions and the transition relations (i.e. transition predi-
cates) of instructions. For example, (ϕ1) denotes the assumption a < b; and (ϕ8)
represents the transition predicate i′ = i + 1 of the assignment i := i+ 1.

Hierarchical segment-base abstraction. We next apply segment abstraction
on the CFG of Figure 4. The initial abstraction is given by the abstract segment
tree (AST) (Figure 5). The tree structure arises from the hierarchical nature
of the CFG. Nodes of the tree (denoted by Ak) represent a set of execution
segments, i.e., parts of program executions. Each node stores a shape predicate
(denoted Shape) describing the paths of the segments through the CFG, and a
transition predicate (denoted Trans) characterizing the transition relation of the
segments. A shape predicate is an extended regular expression over either the
children of the node, or over the CFG nodes. It is an extended regular expression,
as it may contain symbolic exponents obtained, for example, from loop bounds.
The transition predicate is a formula over the values of program variables at the
beginning and end of segments. Note that in the formal definitions, the shape is
a transition system rather than a regular expression and the nodes store more
detailed information. Here, we use a regular expression for better readability.

We describe node A2 in more detail—the other nodes are constructed simi-
larly. The construction of A2 in the initial abstraction is done syntactically. Node
A2 represents all segments corresponding to the then-branch of the outermost
if. It is split into three sets of segments: (a) node A3 denoting the set of seg-
ments before the loop, i.e., segments through the CFG nodes l1l2l3; (b) node A4

denoting the set of segments given by the loop of the CFG; and (c) node A5

representing the set of segments after the loop of the CFG. Take n as the bound
on the number of loop iterations in the CFG. For building A4 we use node A6

describing all segments in one iteration of the loop in the CFG. The segments in
A6 can be concatenated to cover all segments in A4. For computing loop bounds,
we use [13]. The loop bound n is noted in the shape predicate of A4.

WCET estimation on ASTs. For each node in Figure 5, we next calculate the
cost of the segments represented by it, i.e., its WCET. As each node is defined
in terms of its children, we traverse the tree bottom-up. The root contains then
a WCET estimate of the complete set of segments, and hence of the program.

In order to evaluate WCET on an AST, we need to supply an ILP at each node
of the AST. Here, instead of presenting each ILP and solving it, we give only a
simple explanation tailored to the example under consideration. To estimate the
WCET of a node, we consider the graph represented by the node. The vertices
in this graph correspond to children of the node. We use the shape predicate of
the node to construct the graph, and use the WCET of the children nodes to
estimate the cost of the node. For example, for node A2, we construct a graph
with three nodes, with directed edges from A3 to A4 and from A4 to A5. For
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l1 l2 l3 l4 l5

l6 l7

ϕ1 ϕ2 ϕ3 ϕ4

ϕ6 ϕ5

ϕ7

ϕ8

l8 l9

ϕ10 ϕ9

ϕ11

Fig. 4. CFG of Example 2

Name: A0

Shape: A1 ∨A2

Trans: true

Name: A1

Shape: l1l8l9
Trans: true

Name: A2

Shape: A3A4A5

Trans: true

Name: A4

Shape: An
6

Trans: true

Name: A3

Shape: l1l2l3
Trans: true

Name: A5

Shape: l3l9
Trans: true

Name: A6

Shape: l3l4(l5 ∨ l6)l7l3
Trans: true

Fig. 5. Initial abstraction for Example 2

Name: A4

Shape: A
�n/2�
6f A

n−�n/2�
6t

Trans: i = 0

Name: A6f

Shape: l3l4l5l7l3
Trans: i′ = i+ 1 ∧ i < �n/2�

Name: A6t

Shape: l3l4l6l7l3
Trans: i′ = i+ 1 ∧ i ≥ �n/2�

Fig. 6. Partial structure of the
refined tree of Figure 5

node A4, we obtain a graph with one node (A6) that can repeat at most n times.
The costs of the AST nodes are calculated as:
– cost(A6) = cost(ϕ3)+max(cost(ϕ4)+cost(ϕ5), cost(ϕ6+cost(ϕ7))+cost(ϕ8) = 13
– cost(A4) = n · A6 = 13n
– cost(A3) = cost(ϕ1) + cost(ϕ2) = 2
– cost(A5) = cost(ϕ9) = 1
– cost(A2) = cost(A3) + cost(A4) + cost(A5) = 3 + 13n
– cost(A1) = cost(ϕ10) + cost(ϕ11) = 51
– cost(A0) = max(cost(A1), cost(A2)) = max(51, 3+13n) = if n ≤ 3 ; 51 else 3+13n

TheWCET estimate of our running example is given by cost(A0), and depends
on the value of n, i.e., when 0 ≤ n ≤ 3 the WCET is different than in the case
when n > 3. To ensure that the computed WCET estimate is precise, we need to
ensure that our abstraction did not use an infeasible program path to derive the
current WCET estimate. We therefore pick a concrete value of n for each part
of the WCET estimate, and check whether the corresponding witness worst-case
path is feasible. If it is, the derived WCET estimate is actually reached by the
program and we are done. Otherwise, we need to refine our AST. In our example,
we thus have the following two cases:

• Case 1: n ≤ 3. We pick n = 1. The WCET estimate of A0 is then 51. Here,
the witness trace is l1l8l9. This trace is a feasible trace of Figure 3.

• Case 2: n > 3. We pick n = 4 and the witness trace is l1l2 (l3l4l5l7)
4l3l9, which

is infeasible, and we proceed to the refinement step.



Segment Abstraction for Worst-Case Execution Time Analysis 113

Counterexample-guided refinement using interpolation. We refine the
AST of Figure 5 using the infeasible trace. We traverse the tree top-down to refine
each node of the counterexample. We refine the children of the node correspond-
ing to a node in the counterexample with new context information obtained
from the counterexample, via interpolation. We detail our refinement approach
only for A4, the rest of the nodes are refined in a similar way. By analyzing the
predecessor segments of A4 in the counterexample, we derive i = 0 as a useful
property for our refinement. This property is obtained using the same refinement
process that we now describe for A4.

To refine A4, we analyze its children, that is n repetitions (i.e., iterations)
of A6. In what follows, we denote by ik the value of the variable i after the
k-th iteration of A6, for 0 ≤ k ≤ n. Let i0 denote the value of i before A4. We
compute the property i1 = i0+1 summarizing the first iteration of A6, where the
summarization process includes interpolation-based refinement. Similarly, from
the second iteration of A6 we compute i2 = i1+1. Hence, at the second iteration
of A6 the formula i0 = 0 ∧ i1 = i0 + 1 ∧ i2 = i1 + 1 ∧ n = 4 is a valid property
of the witness trace; let us denote this formula by A (recall that we fixed n = 4
above). However, after the second iteration of A6 we have (i2 < n)∧(i2 < �n/2�)
as a valid property of the witness trace; we denote this formula by B. Observe
that A ∧ B is unsatisfiable, providing hence a counterexample to the feasibility
of the current witness trace. From the proof of unsatisfiability of A∧B, we then
compute an interpolant I such that A =⇒ I, I ∧B is unsatisfiable, and I uses
only symbols common to both A and B. We derive i2 ≥ �n/2� as the interpolant
of A and B.

We now use the interpolant i2 ≥ �n/2� to refine the segment abstraction of
A6, as follows. The interpolant i2 ≥ �n/2� is mapped to the predicate i ≥ �n/2�
over the program variables. We then split A6 into two nodes: node A6f denoting
segments where i ≥ �n/2� does not hold, and node A6t describing segments
where i ≥ �n/2� holds. The interpolants i1 = i0 + 1 and i2 = i1 + 1 computed
from the first and second iteration of A6 yield the transition predicate i′ = i+1;
this formula holds for every segment in A6, and hence also in A6f and A6t. The
transition predicates of A6t and A6f are then used to compute the new shape

predicate A
�n/2�
6f A

n−�n/2�
6t for A4. The resulting (partial) refined AST is given in

Figure 6. This refined AST yields the WCET estimate if n ≤ 5 ; 51 else 3 +
4n+ 9�n/2�, which is a precise WCET estimate for the program in Figure 3.

3 Problem Statement

Instruction and Predicate Language. We express program instructions,
predicates, and assertions using standard first-order logic. Let F(X) represent
the set of linear integer arithmetic formulae over integer variables X . We rep-
resent an instruction of a program as a formula from F(V ∪ V ′). Intuitively, a
variable v ∈ V and its primed version v′ ∈ V ′ represent the values of the program
variable v before and after the execution of the instruction, respectively. For ex-
ample, an instruction i := i + j in a C-like language would be represented as
i′ = i + j.
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Program Model. We model programs with assignments, conditionals, and
loops, over a finite set of scalar integer variables V . While we do not handle
procedure calls, our techniques can be generalized to non-recursive procedure
calls. We represent programs by their control-flow graphs. A control-flow graph
(CFG) is a graph G = 〈C, E, V,Δ, ι0, init , F 〉, where (a) C is a set of nodes
(representing control-flow locations); (b) E ⊆ C × C is a set of edges; (c) V
is the set of program variables; (d) ι0 ∈ C is an initial control-flow location;
(e) init ∈ F(V ) is an initial condition on variables; (f) F ⊆ C is a set of final
program locations; and (g) Δ : E → F(V ∪ V ′) maps edges to the instruction
that is executed when the edge is taken. We denote program states by pairs of
the form (l, σ) where l ∈ C and σ is a valuation of program variables V .

Semantics. The semantics �G� of a CFG G is the set of finite sequences of
program states (called traces) (l0, σ0) . . . (lk, σk) such that: (a) l0 = ι0 and σ0 |=
init , (b) lk ∈ F , and (c) ∀0 ≤ i < k.(li, li+1) ∈ E ∧ (σi, σi+1) |= Δ((li, li+1)).
Note that we assume that the program represented by G is terminating.

Cost Model. We assume a simple cost model for instructions given by a func-
tion cost : E → N where cost((l1, l2)) is the maximum execution time of the
instruction from l1 to l2. We also refer to costs as weights. The weight cost(π) of
a trace π = (l0, σ0) . . . (lk, σk) is Σk−1

i=0 cost((li, li+1)). In practice, costs of edges
are obtained from a low-level architecture dependent analyzer. Note that even
this simple cost model can already capture some information about the context
of an instruction’s execution such as some cache hit/miss information. For ex-
ample, if the low-level analysis determines that an instruction will always be a
cache hit, it can provide a lower cost accordingly.

Problem Statement. The worst-case execution time WCET (G) of a CFG G
is defined by WCET (G) = maxπ∈�G� cost(π). The task of the WCET estimation
problem is: Given a CFG G, compute a number e such that e ≥ WCET (G). The
additional aim is to compute an estimate e that is tight, i.e., close to WCET (G).

The rest of this paper describes the main steps of our approach to solving
this problem: segment abstraction (Section 4), WCET estimation for segment
abstractions (Section 5), and counterexample-guided refinement (Section 6). We
summarize our algorithm in Section 7, describe the parametric extension in Sec-
tion 8, and present our tool and experimental results in Section 9.

4 Segment Abstraction for Flow Analysis

Our abstraction technique for flow analysis is based on the hierarchical segment
abstraction of [8,6]. We adapt the definitions of hierarchical segment abstraction
from [6] to the setting of worst-case execution time analysis.

Let us fix a CFG G = 〈C, E, V,Δ, ι0, init , F 〉. A segment is a finite sequence
of program states (i.e., pairs of control-flow locations and variable valuations).

Abstract Segment Trees (ASTs). An abstract segment tree T is a rooted
tree, where each node represents a set of segments. Intuitively, the segments of
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each node are composed from the segments of its children. Each node is a tuple
(segPred , children , shape, Init ,Exit , slMin , slMax , gMax ) where:

– segPred ∈ F(V ∪V ′) is a relational predicate satisfied by the initial and final
variable valuations of all the segments represented by the current node;

– For internal nodes, the set children is the set of its children in T , and for
leaf nodes, children is a subset of the control-flow edges E of the CFG G;

– shape ⊆ children × children is a transition relation on children — for leaf
nodes, where children ⊆ E, we have that ((l0, l1), (l2, l3)) ∈ shape if l1 = l2;

– Init ,Exit ⊆ children are a set of initial child nodes and exit child nodes;
– gMax ∈ N ∪ {∞} is a bound on the maximal number of segments of child

nodes in a segment of the current node; and
– slMin , slMax : children → N ∪ {∞} are functions that map each child to

the minimum and maximum possible consecutive repetitions of segments
represented by the child in a segment represented by the current node.

Table 1. Definition of ASTs

Component Value in A1 (Fig. 5) Value in A4 (Fig. 6)
segPred true i = 0
children {A1, A2} {A6t, A6f}
shape ∅ {(A6f , A6f ), (A6f , A6t),

(A6t, A6t)}
Init {A1, A2} {A6f}
Exit {A1, A2} {A6t}
gMax 1 4

slMax
slMax (A1) = 1 slMax (A6f ) = 2
slMax (A2) = 1 slMax (A6t) = 2

slMin
slMin(A1) = 1 slMin(A6f ) = 2
slMin(A2) = 1 slMin(A6t) = 2

We use the functions
gMax , slMin , and
slMax to store infor-
mation about bounds
on the number of
times certain itera-
tions of a loop can be
repeated. In practice,
these are computed
using standard loop
bound computation
techniques.

Remark 1. Note that
the quantitative in-
formation stored in
the AST, i.e., slMin ,

slMax , and gMax , is different from the quantitative information in [6]. In [6],
the interest was in limit-average estimation where storing bounds on segment
length is useful; while here, bounds on the number of segments is more useful.

Example 3. We clarify the definition of ASTs using Figures 5 and 6. In node
A0 from Figure 5 and node A4 from Figure 6 (with parameter n = 4), the AST
representation is in Table 1. In Figure 5 and Figure 6, the components shape ,
Init , Exit , slMin , and slMax have been combined into one regular expression.

AST Semantics. We define �A� for a node A in terms of its children. The
semantics �T � of the AST T is then the semantics of the root node. AST T is
a sound abstraction for a CFG G if �G� ⊆ �T �. We need two notions to aid
the definition. Let s1 = (l10, σ

1
0) . . . (l

1
n, σ

1
n) and s2 = (l20, σ

2
0) . . . (l

2
m, σ2

m) be two
segments.
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– the function form(s1) represents the serial composition of formulas
Δ((li, li+1)) for 0 ≤ i < k, i.e., it is the relation on the initial and final
program states of s1 implied by the instructions of s1; and

– the segment s1 ⊕ s2 is the concatenation of s1 and s2 where the
last state of s1 is substituted for the first state of s2, i.e., s1 ⊕ s2 =
(l10, σ

1
0) . . . (l

1
n, σ

1
n)(l

2
1, σ

2
1) . . . (l

2
m, σ2

m).

Let A = (children , shape , segPred , Init ,Exit , slMin , slMax , gMax ) be a node
in T . Segment s is in �A� iff s = s0⊕ . . .⊕ sn and there exist c0, . . . cn such that:

(a) for each i, si ∈ �ci� where ci ∈ children—for leaf nodes, ci is a control-flow
edge (say (li, lj)) and we let ((li, σi), (lj , σj)) ∈ �ci� if (σi, σj) |= Δ((li, lj));

(b) for all 0 ≤ i < n, we have that (ci, ci+1) ∈ shape ;
(c) initial and final variable valuations of s satisfy segPred : form(s)⇒segPred ;
(d) c0 ∈ Init and cn ∈ Exit , and for each maximal contiguous sequence

cpcp+1 . . . cq of the same child, slMin(cp) ≤ q − p+ 1 ≤ slMax (cp), and
(e) n ≤ gMax .

Example 4. Consider the CFG from Figure 4, and its AST in Figure 5. A segment
π passing through locations l1l2l3l4l5l7l3l9 is in the semantics of the node A2,
as it can be split into three segments: (a) the prefix π1 through l1l2l3; (b) the
middle π2 through l3l4l5l7l3; and (c) the suffix π3 through l3l9. As π1 is in �A3�,
π2 is in �A4�, and π3 is in �A5�, we have that π ∈ �A2�.

Reducibility of CFGs and the Initial Abstraction. We assume that CFGs
are reducible, i.e., that every loop has a unique entry. This assumption holds for
programs in high-level programming languages. The function InitAbs(G) takes a
CFG an input, and constructs an AST T such that �G� ⊆ �T �. The construction
is simple (see, for example, Figure 5). The main point to note is that each
maximal strongly connected component (i.e., a loop) corresponds to a node
with just one child. The child represents segments corresponding to individual
iterations. The segPred predicate for each node is initially set to true.

Proposition 1. Let G be a CFG. If T = InitAbs(G), we have that �G� ⊆ �T �.

5 Evaluating WCET on ASTs

In the previous section, we discussed segment abstractions (ASTs). Here, we
present a method to compute WCET estimates from ASTs. Given an AST T , let
WCET (T ) = supπ∈�T � cost(π). If T is a sound abstraction of G, �T � ⊇ �G� and
hence, WCET (T ) ≥ WCET (G). Therefore, if an AST T is a sound abstraction
of a CFG G, WCET (T ) is an over-approximation of WCET (G).

5.1 Maximum-Weight Length-Constrained Paths

We take a recursive approach to computing WCET (T ) for an AST T . The
WCET of each node is computed using the WCET values of its children by re-
ducing the problem to the the length-constrained maximum-weight path problem.
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Let 〈V,E〉 be a graph with vertices V and edges E. Given initial and final
vertices vin and vout, cost function cost : V → N, global length bound gmax ∈
(N ∪ {∞}), and local bounds lmin, lmax : V → N ∪ {∞}, the length-constrained
maximum-weight path problem asks for the maximum weight path: (a) starting
at vin and ending at vout; (b) of length at most gmax; and (c) with every maximal
contiguous repetition of a vertex v in the path having length at least lmin(v) and
at most lmax(v). Without loss of generality, we assume that vin �= vout and that
vin and vout have only outgoing and incoming edges, respectively.

Reduction. Given a node A = (children , shape , segPred , Init ,Exit , slMin ,
slMax , gMax ), we define a graph with vertices being children ∪{vin, vout}, edges
being shape ∪ {(vin, v) | v ∈ Init} ∪ {(v, vout) | v ∈ Exit}, starting and end-
ing vertices being vin and vout, and the global bound being gMax , respec-
tively. For a child c, we have cost(c) = WCET (c), lmin(c) = slMin(c), and
lmax(c) = slMax (c). We call this graph with the corresponding functions the
semantic structure graph for A and denote it by Gr(A).

Theorem 1. For each node A in an AST, WCET (A) is equal to the weight of
the length-constrained maximum-weight path in Gr(A).

Hardness. The length-constrained maximum-weight path problem is at least as
hard as Unambiguous-SAT. Hence, a Ptime algorithm implies that Np = Rp,
i.e., non-deterministic and randomized polynomial time are the same. However,
considering gmax as a parameter, the problem is fixed parameter tractable Fpt.

5.2 Encoding Optimal Paths

We first discuss the standard technique used in WCET tools to find optimal
paths in graphs—the implicit path enumeration technique (IPET) [15,16]. We
emphasize that the graph in standard techniques for WCET estimation is the
control-flow graph (i.e., a syntactic object), while in our technique it is the se-
mantic structure graph. However, similar principles apply for the graph problem
in both cases and we briefly recall the IPET approach as a starting point.

Implicit Path-Enumeration Technique. IPET encodes paths in a graph as
an integer linear program (ILP). The encoding uses variables Xv and X(u,v) to
represent the number of times vertex v and edge (u, v) occur in the path.

Objective function. The weight of a path is given by
∑

v∈V cost(v) ·Xv. Hence,
the objective of the ILP is to maximize

∑
v∈V cost(v) ·Xv.

Kirchhoff’s law. To ensure that Xv and X(u,v) values correspond to a real path,
we have: for each v ∈ V , we haveXv =

∑
(u,v) Xu,v+startv =

∑
(v,w) Xv,w+endv

where startv = 1 (resp. endv = 1) for v = vin (resp. v = vout); otherwise,
startv = 0 (resp. endv = 0). Intuitively, for each vertex, the number of incoming
edges is equal to the number of outgoing edges, except for vin and vout.

Connectivity. However, Kirchhoff’s laws are not sufficient to ensure that the
values for Xv and X(u,v) form a feasible path. This is because the disconnected
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components problem, i.e., the values may correspond to a feasible path along
with additional cycles that are disconnected from the path.

Example 5. Consider a graph with vertices {vin, vout, v1, v2} and edges
{(vin, vout), (vin, v1), (v1, v2), (v2, v1)}. The values Xvin = Xvout = 1, Xv1 =
Xv2 = 10, X(vin,vout) = 1, X(vin,v1) = 0, and X(v1,v2) = X(v2,v1) = 10 satisfy the
Kirchhoff’s law. However, these values do not correspond to a path as the cycle
(v1 → v2 → v1) is disconnected from the rest of the path.

Standard IPET formulations overcome this problem through loop bounds—
constraints are added to ensure that a loop is executed at most a constant
multiple of times an edge to enter the loop is taken. In Example 5, we would add
X(v1,v2) ≤ c ·X(vin,v1) where c is the loop bound for the cycle v1 → v2 → v1. For
structured (reducible) graphs, this approach works very well as each cycle has
a unique entry. However, for irreducible graphs, a cycle may not have a unique
entry—instead, we need to write such constraints for each subset of vertices
which may form a cycle, and each entry to such a cycle, adding an exponential
number of constraints just to ensure connectivity (see, for example, [16]).

Semantic Structure of Loops. While the IPET approach works well in the
standard WCET analysis framework even for irreducible graphs, the simple loop
bound approach to handling connectivity does not work directly as the vertices
in the semantic structure graph may represent not only instructions, but also
more complex segments (such as different iterations of a loop).

– While CFGs and graphs arising from real programs may be irreducible in
the IPET approach, the “degree of irreducibility” is usually low, i.e., only
a few additional constraints are necessary to ensure connectivity. On the
other hand, since the graphs arising from AST correspond to the semantic
structure of loops, they may be highly irreducible (for example, a clique)
and an exponential number of additional constraints may be necessary.

– A further reason why an IPET-like approach is not possible for semantic
graphs is that there may not exist bounds on cycles in the semantic graphs.

Example 6. Consider the logging example from Section 2 with the modification
of the if condition from i mod 4 == 0 to i mod 4 == 0 ∧ started logging.
The boolean variable started logging is set to false initially, and is non-
deterministically set to true at some point during the execution of the loop.
Now, consider the three segments sets corresponding to the iterations where the
following hold: (a) ¬started logging (say I1), (b) started logging ∧ i%4 == 0
(say I2), and (c) started logging ∧ i%4 �= 0 (say I3). In the semantic structure
graph, there is a cycle containing vertices corresponding to I2 and I3; and an
entry to this cycle from the vertex corresponding to I1. However, there is no
bound on the number of times this cycle can be executed in terms of the number
of times the entry is taken.

The LC-IPET Encoding. We now present our ILP encoding for the length-
constrained maximum-weight path problem. This encoding works for (a) firstly,



Segment Abstraction for Worst-Case Execution Time Analysis 119

irreducible graphs with only linearly many constraints; and (b) secondly, no
bounds on the execution of cycles are required. Hence, this encoding is of interest
for WCET analysis independent of the rest of our framework. Given a graph G,
we denote the encoding into ILP by LC-IPET(G).

Objective and Kirchhoff’s laws. The objective function and Kirchhoff’s law con-
straints are as in the classical IPET approach.

Global and local bounds. The global bound and the local bounds can be ensured
using

∑
v∈V Xv ≤ gmax and lmin(v) ·

∑
u|(u,v)∧v 	=u X(u,v) ≤ Xv ≤ lmax(v) ·∑

u|(u,v)∧v 	=u X(u,v) for each vertex v in the graph.

Connectivity flow. We ensure connectivity of the path generated by ILP using
an auxiliary flow that goes through only the edges in the path. Intuitively, we
ensure that some flow is lost at each visited vertex (i.e., it is a partial sink)
except the start vertex which may generate flow (i.e., only the start vertex can
be a source). Hence, flow in a component of the path is feasible if and only if
it is connected to the start vertex. We use the variables F(u,v) to represent the
auxiliary flow through an edge. We have the following:

– Flow is non-negative only in visited edges: for all edges, F(u,v) ≥ 0 and for
all edges, |V |X(u,v) ≥ F(u,v). Hence, if X(u,v) is zero, we have F(u,v) = 0.

– Every visited vertex other than the start vertex loses some flow: for all
vertices v �= vin,

∑
(u,v) F(u,v) −

∑
(v,w) F(v,w) ≥ Xv. If Xv is positive (i.e., v

is visited), (
∑

(u,v) F(u,v) −
∑

(v,w) F(v,w)) is positive, i.e., the incoming flow
to v is greater than the outgoing flow from v.

Theorem 2. Given graph G, initial and final vertices, and local and global
length bounds, the optimal value of LC-IPET(G) is the cost of the length-
constrained maximum weight path in G.

Proof. Clearly, the objective function of LC-IPET(G) corresponds exactly to the
weight of a set of nodes in the graph. Hence, it is sufficient to show that every
feasible solution of LC-IPET(G) corresponds to a feasible path in G, and vice
versa. That every feasible solution of LC-IPET(G) encodes at least one path
that follows the local and global bounds is easy to check.

Given a solution to LC-IPET(G), we show that the Xv and X(u,v) values form
a path. By Kirchhoff’s laws, the value of Xv and X(u,v) consist of a path along
with some possibly disconnected components of visited vertices. We show that
there cannot be any disconnected components using the auxiliary flow. Suppose
V and E are the subset of vertices and subset of edges which form a discon-
nected component. Now, we have that for each vertex v ∈ V ,

∑
(u,v) F(u,v) −∑

(v,w) F(v,w) > 0. Hence, we have
∑

v∈V (
∑

(u,v) F(u,v) −
∑

(v,w) F(v,w)) > 0

or equivalently,
∑

v∈V

∑
(u,v) F(u,v) −

∑
v∈V

∑
(v,w) F(v,w) > 0 However, note

that for edges (u, v) or (v, w) that enter or leave the component we have
F(u,v) = 0 as the flow is positive if and only if (u, v) is visited. Therefore, we
have that both

∑
v∈V

∑
(u,v) F(u,v) and

∑
v∈V

∑
(v,w) F(v,w) are equal to the

sum of flow through all edges in E. This leads to a contradiction as we need∑
v∈V

∑
(u,v) F(u,v) −

∑
v∈V

∑
(v,w) F(v,w) > 0.
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Now, given a length-constrained path π in G, we provide a satisfying assign-
ment to the variables in LC-IPET(G). Clearly, the Xv and X(u,v) variables are
assigned to the number of times v and (u, v) are visited in π, respectively. We
need to find satisfying assignments for F(u,v). For this, we construct separate
simple paths πv from vin to v for each visited vertex v through edges in π. We
let F(x,y) =

∑
v Xv · πv[(x, y)] where πv[(x, y)] is equal to 1 if (x, y) occurs is πv

and 0 otherwise. It is easy to see that these F(u,v) values satisfy the auxiliary
flow constraints. Intuitively, the auxiliary flow is composed of separate flows of
magnitude Xv going from vin to v; call each such flow the flow to v. Now, for
every v′ �= v, the flow to v′ enters and leaves v in the same magnitude. However,
the flow to v stops at v, ensuring that the incoming flow to each visited vertex
is greater than the outgoing flow by 1.

Given an optimal solution to LC-IPET(Gr(A)) the worst-case path can be
computed using an algorithm for finding Eulerian paths in multi-graphs. Summa-
rizing the approach, given an AST T , we compute the WCET of each node (using
its children’s WCET values) by reducing to the length-constrained maximum-
weight problem. This problem is then solved through the LC-IPET encoding,
and the worst-case path can be computed from the solution to the ILP.

Optimizations and Practicality. The semantic structure graphs that arise in
practice often allow us to avoid the flow variables in the LC-IPET encoding.

The first case where we can avoid the flow variables is the case where we have
no global bound. In our methodology, global bounds arise due to loop bounds in
the input program and hence, in each AST node that does not deal with loops,
there is no global bound (gmax = ∞). In this case, either no cycle is reachable in
the graph Gr(A), or the worst-case path has weight ∞. Hence, in this case, one
can avoid solving the ILP and instead use simpler polynomial time algorithms.

If we have a global bound, we are analyzing different kinds of iterations of a
loop, i.e., branches through a loop. While the semantic structure of the loops may
be arbitrarily complicated, most of the programs generate semantic structures
that fall into several common easily analyzable patterns:

– Progressive phases: These are cases where the execution of the loop is di-
vided into phases, i.e., in each phase only one particular branch through the
loop is taken, and this branch is never taken after the completion of the
phase. For example, the loop from Example 2 instantiated with n = 10 is
divided into two phases, one for i < 5 and one for i ≥ 5. The evaluation
is easy in such cases as the semantic structure graph is a directed acyclic
graph and there cannot be any disconnected cycles. A large number of loops
in practice fall into this class (see [17] for an empirical study).

– Cyclic phases: These are cases where the execution of the loop is divided
into phases, which repeat in a cycle. For example, the loop in the program
from Example 1 is divided into two phases, one for (i % 4 == 0) and one for
(i % 4 �= 0). Again, in such cases, auxiliary flow variables are unnecessary as
there is exactly one cycle in the semantic structure graph.
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6 Interpolation for AST Refinement

Once the WCET path is computed from an AST, we check if the computed
worst-case path is feasible in the CFG. If such a path is infeasible, we call
it an infeasible witness trace. Formally, a witness trace (wit) is a sequence of
CFG nodes that witnesses the current WCET estimate. It is obtained from the
techniques presented above. We now describe our interpolation-based AST ab-
straction refinement algorithm for an infeasible witness trace.

AST Refinement Algorithm. The main idea of Algorithm 1 is to trace the
infeasible witness trace (wit) through the abstract segment tree (AST), and
refine the AST nodes touched by wit . For each node N , we discover the segment
predicates that are important at the interface of the subtree rooted at N and
the rest of the AST. When processing an AST node, we split each child (visited
by the wit) with some new “context” information, obtained via interpolation.
Algorithm 1 takes four inputs: (a) an AST T , (b) a node N in T , (c) an infeasible
witness trace wit that is a segment in N , and (d) a formula SumAbove that
summarizes the part of the original witness trace wit outside of the subtree
rooted at N . Initially, the algorithm is called with N being the root of the AST,
and the formula SumAbove is set to true.

Algorithm 1. Procedure Refine

Input: AST T , node N in T , witness trace wit and formula SumAbove
Output: Refined AST T
1: s ← TraceWit(N ,wit)
2: for all i ∈ {0, . . . , |s|} do
3: context ← SumAbove ∧ SumLR(s,wit,N) ∧ segPred (N)
4: child ← form(projection(wit ,si))
5: I ← Interpolate(child,context) � context ∧ child unsat
6: rt ← addToTree(si,I); rf ← addToTree(si,¬I)
7: Refine(T , rt, I∧ segPred(si), projection(wit ,si)) � Recursively refine.
8: StrengthenDown(rf)
9: RemoveFromTree(T ,si)

10: StrengthenUp(N)

Refinement Procedure. We now detail the Refine procedure of Algorithm 1
and illustrate it on our running example. For a node N , the procedure Refine
obtains a sequence s = s0s1 . . . sk of children of N that the witness trace wit
passes through (line 1 of Alg. 1). Note that a child can be repeated in s. The wit
can be split into segments, where the i-th segment wit i of wit belongs to the i-th
child si. Recall that the infeasible wit of Example 2 was wit = l1l2 (l3l4l5l7)

4l3l9
for n = 4. The CFG of Example 2 is Figure 4, and its AST is in Figure 5.
Consider the node A4 in Figure 5 as the node N . The node A4 represents a loop
and the node A6 a single iteration. The sequence s is then A4

6.
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Algorithm 2. Precision Refinement for WCET

1: Input: Program P ; Output: WCET of P
2: Build the CFG G of P ;
3: Construct the AST T corresponding to G; // Abstraction
4: for each node A in T (post-order traversal) do // Evaluation
5: construct the LC-IPET(Gr(A));
6: WCET (A) ← optimum of LC-IPET(Gr(A));

7: wi ← witness trace corresponding to WCET (T )
8: if wi is infeasible then
9: Refine(T ,wi,root(T ),true) (Algorithm 1) // Refinement
10: go to line 4;

11: return WCET (T ).

Next, each child si is refined using wit i (loop at line 2). The variable context
stores a formula that summarizes what we know about wit outside of si (line 3).
It is obtained as a conjunction of the formula SumAbove, the segment predi-
cate of N , and the information computed by the function SumLR(). The func-
tion SumLR() computes information about the trace wit as it passes through
the children of N other than si. When refining si, SumLR() returns a formula
∧k<|s|∧(k 	=i)Jk, where Jk is form(witk) and witk is the part of the wit going
through the node sk. (form was defined in Section 4.) The variable child stores
a formula that summarizes what we know about the wit inside of si (line 4).
It is computed as form(wit i), where wit i was obtained by the projection of wit
to the node si. For our running example, consider the third iteration of A6. In
this case, the value of context is i0 = 0 ∧∧1

k=0 ik+1 = ik + 1 (we show only the
relevant part of the formula) and the value of child is i2 < 4 ∧ i2 < 2 (4 and 2
are n and n/2, respectively).

Note that child ∧ context is unsatisfiable, as (a) the original wit is infeasible,
and (b) context and child summarize the wit . We hence can use interpolation
to infer a predicate explaining the infeasibility at the boundary of the subtree
of child si and the rest of the AST. We compute an interpolant I from the
proof of unsatisfiability context ∧ child (line 5) such that context =⇒ I and
child ∧ I =⇒ ⊥, where I is over only those variables that are common to both
context and child . In our running example, we obtain the interpolant i2 ≥ 2.

Using the computed interpolant I, we next replace the node si by two nodes
rt and rf (line 6). The node rt is like si (in terms of its children in the AST), but
has a transition predicate equal to segPred(si) ∧ I. Similarly, for rf we take its
transition predicate segPred(rf ) as segPred(si) ∧ ¬I. In this way, each of these
nodes has more information about its context than si had. We can further refine
these two nodes and use them in the AST T instead of si.

Observe that for rt we added the predicate I to its transition predicate. As
child ∧ I is unsatisfiable, the trace wit is not represented in rt. The node rt
can thus be refined by a recursive call to the Refine procedure (line 7). As
child ∧ ¬I is satisfiable, for rf there is nothing more to learn from the wit . We
simply strengthen the node, that is, propagate the new predicate, ¬I, to the
children of rf . This is done by calling the StrengthenDown() function (line 8),
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which propagates the new information ¬I to the children t of the node rf . To
this end, it checks whether it finds a segment in the node t which is excluded
from the node by ¬I, and then calls the Refine procedure to perform refinement
with the discovered segment used as a witness trace. In our running example rf
corresponds to A6f and rt is A6t. Finally, the function StrengthenUp() uses the
information discovered during the refinement process for the children of a node
N , and strengthens the segPred predicate of N (line 10).

7 WCET Computation Algorithm

Algorithm 2 describes our approach to computing precise WCET estimates.
Given a program P , we first construct its CFG (line 2), and build the corre-
sponding initial AST T (line 3). For the AST T , we compute the WCET (T )
(lines 4-6), using the LC-IPET approach detailed in Section 5. The WCET is
precise if a feasible program path exhibits the WCET. We therefore check if the
witness trace exhibiting the WCET is indeed feasible (line 8). If not, we refine
our current AST using Algorithm 1 (line 9).

8 Parametric WCET Computation

We now extend our techniques to handle parametric programs and return a
parametric WCET estimate, i.e., one that may depend on the parameter values.

Parameters. Program parameters P ⊆ V are program variables whose values
do not change in any execution. Given a valuation val (P ) : P → N of P , the
CFG Gval(P ) is obtained by replacing variables in P by their values given by
val(P ).

Solution Language. Let A(P ) be the set of arithmetic expressions over P . The
language of disjunctive expressions E(P ) consists of sets of pairs W = {D0 �→
N0, . . . , Dk �→ Nk}i where Di and Ni are boolean and arithmetic expressions
over P , respectively; and we have

∨
iDi = true and ∀i �= j.Di ∧ Dj =⇒ ⊥.

Intuitively, the value of W is Ni when Di holds. Given a valuation val (P ), we
write W [val (P )] for the explicit integer value of Ni[P ] where Di(val (P )) holds.

It is easy to define standard arithmetic, comparison, and max operators over
E(V ). For example, if W 1 = {Di �→ Ni}i and W 2 = {Dj �→ Nj}j, then W 1 +
W 2 =

⋃
i,j{(Di ∧Dj �→ Ni+Nj)}, and max(W 1,W 2) = {Di∧Dj ∧Ni > Nj �→

Ni} ∪ {Di ∧Dj ∧Ni ≤ Nj �→ Nj}.
Problem Statement. A parametric WCET estimate WCET p(G,P ) of a CFG
G is an expression in E(P ), such that for all valuations val(P ) of parameters,
WCET p(G,P )[val (P )] ≥ WCET (Gval(P )). The parametric WCET estimate,
WCET p(G,P ), is an over-approximation WCET (Gval(P )) for each valuation
val(P ). The task of our parametric WCET estimation problem is: Given a CFG
G and a set of parameters P , compute WCET p(G,P ), the parametric WCET.

The Parametric Framework. We describe the changes necessary to adapt
our WCET estimation framework to the parametric case.
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Abstraction. A parametric AS T is similar to an AST, except that that for each
node, gMax has type A(P ), and slMax and slMin have type children → A(P ).

Evaluation. The evaluation of WCET (T ) for a parametric AST is more involved
than for a standard AST. This procedure is detailed in Section 8.1.

Refinement. The refinement procedure from Section 6 can be used directly in the
parametric framework. However, an important aspect is that the procedure works
best if the interpolants generated are independent of the parameter valuations. In
our implementation, the theorem prover was tuned to produce such interpolants.

The Parametric WCET Estimation Algorithm. The parametric WCET estima-
tion algorithm follows Algorithm 2 with the major difference being the feasibility
checking of worst-case paths. As parametric WCET estimates are disjunctive, we
generate worst-case paths for each disjunct by choosing appropriate parameter
valuations and use them for feasibility analysis and refinement as in Algorithm 2.

8.1 Parametric Maximum-Weight Length-Constrained Paths

For evaluating the WCET of parametric ASTs, we proceed recursively as in
the non-parametric case. At each level, we reduce the problem to the paramet-
ric version of the length-constrained maximum-weight paths in a graph. Let
〈V,E〉, vin, and vout be as in the non-parametric case. Given a cost function
cost : V → E(P ), a global bound expression gmax ∈ A(P ), and local bound
functions lmin, lmax : V → A(P ), the parametric length-constrained maximum-
weight path problem asks for an expression W ∈ E(P ) such that for every valu-
ation of parameters val(P ), we have that W [val (P )] is equal to the cost of the
length-constrained maximum-weight path in the graph where cost , gmax, lmin,
and lmax have been instantiated with val (P ).

Restrictions. The problem is hard even in the case where lmin, lmax and gmax

range over polynomial expressions. Hence, we place restrictions on the expres-
sions and assume that gmax, lmin, and lmax are all linear expressions over a single
parameter. Further, we present our techniques for the case where cost(v) is a
numeric value instead of a disjunctive expression. The algorithm where cost(·)
yields disjunctive expressions is similar with all max and + operations over in-
tegers being replaced by max and + operations over E(P ). Note that restricting
lmin, lmax, and gmax to expressions in one parameter does not restrict the CFG
and the AST to one parameter—multiple parameters may appear in different
nodes of the AST. Before we present our algorithm for the parametric length-
constrained maximum-weight path problem, we need the following lemmata.

Lemma 1 (One non-extremal node). For every parametric length-
constrained maximum-weight problem and val(P ), there is an optimal path
π = vk0

0 vk1
1 . . . vkn

n such that lmin(vi) < ki < lmax(vi) for at most one i.

The lemma holds as for any path having two non-extremal nodes (say vi1 and
vi2 with cost(vi1 ) ≥ cost(vi2)), we can build another path of equal or greater
weight where vi1 is taken more number of times and vi2 fewer times.
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While the previous lemma bounds the number of repetitions of self-loops
we need to consider, the next one does the same for other cycles. The cycle
decomposition of a path π is given by 〈σ, (L0, n0), (L1, n1) . . . , (Lk, nk)〉 where:
(a) σ is a simple path from vin to vout; (b) each Li is a simple cycle; (c) together,
the multi-set of visited nodes in σ and the cycles Li’s each taken ni times is the
same as the visited nodes in π. Note that Li’s are not self-loops and that the
classification “simple” does not take into account self-loops. Every path has a
cycle decomposition and further, for every cycle decomposition where the simple
path and simple cycles are connected, there is a path for which it is a cycle
decomposition. In any worst-case path, the heaviest cycle is taken most often.

Lemma 2 (One heavy loop). For every parametric length-constrained
maximum-weight problem and val(P ), there exists an optimal path π with cy-
cle decomposition 〈σ, (L0, n0), (L1, n1), . . . , (Lk, nk)〉 such that for all i > 0:
(a) cost(L0)/|L0| ≥ cost(Li)/|Li|; and (b) ni|Li| < lcm(|L0|, |Li|).

The Algorithm. We describe the algorithm for the restricted version of the
parametric length-constrained maximum weight problem. Intuitively, the algo-
rithm considers cycle decompositions 〈σ, (L0, n0), (L1, n1), . . . (Lk, nk)〉 where n0

is a linear expression in A(P ), and each ni < lcm(|L0|, |Li|)/|Li| is an integer
for i > 0, and a non-extremal node v and builds the disjunctive expression
{cond �→ wt,¬cond �→ 0} where cond and wt are explained below. The solution
is the maximum of such disjunctive expressions. Note that σ and Li’s can be
restricted to sequences where vertices only occur either lmax or lmin times; and
further, it can be assumed that |L0| is not a parametric expression, but an inte-
ger. The expression wt is the expression over the parameters P obtained as the
sum of weights in the guessed path, i.e., cost(σ)+

∑
i ni ·cost(Li). The condition

cond expresses that 〈σ, (L0, n0), (L1, n1), . . . (Lk, nk)〉 is a valid cycle decompo-
sition that respects Lemma 2, and that the total length is less than gmax. The
correctness of the algorithm depends on the above lemmata and the fact that
there are only a finite number of such parametric cycle decompositions.

Theorem 3. The restricted parametric length-constrained maximum-weight
problem can be solved in Expspace in the size of the inputs on a computing
model where operations on disjunctive expressions have constant cost.

Practical Cases. As in the non-parametric case, we provide efficient algorithms
for the most commonly occurring practical cases.

– No global bounds. If the graph has gmax = ∞, we can use the standard
dynamic programming longest-path algorithm for DAGs with the integer
max and + operations being replaced by max and + operations over E(P ).

– Progressive phases. In the progressive phases case, the same maximum-
weight longest-path algorithm can be used with the modification of accumu-
lating the length of the path along with the weight, and then constraining the
final result with the condition that the length is at most the global bound.
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9 Experimental Evaluation

We implemented our approach in a tool called IBART. It takes C programs (with
no procedure calls) as input, and returns a parametric WCET estimate.

Low-Level Analysis. IBART analyzesn:=0;

while(n < iters)

if(health==round0)

HighVoltageCurrent(health)

UpdatePeriod(temp, 5)

if(hit trigger flag==0)

ResetPeakDetector()

if(health==round1)

...

if(health==round4)

LowVoltageCurrent()

. . .
if(health!=0)

health--

else

health=9

n++

Fig. 7. from ex2 from Debie suite

WCET for Infineon C167 and LPC2138
ARM7 processors, using CalcWcet167 [12]
and owcet [2] respectively, as low-level an-
alyzers to compute basic block execution
costs. These costs are then mapped from the
binary to the source level and used in our
analysis. Thus, IBART is platform-aware; it
can be easily extended to other architectures
by supplying the architecture-dependent ba-
sic block execution times on source level.
However, we note that due to this approach,
we cannot refine the WCET estimates in the
case the infeasibility is due to caching or
pipeline effects between basic blocks, and are
beyond what is analyzable with the low-level
tools. This is an orthogonal issue, as we fo-
cus on better estimates of WCET by having

a better approximation of feasible paths. However, in the future, we plan to alle-
viate this issue by using our framework to automatically discovering predicates
about caches and pipelines, and by performing the loop unrolling on-demand to
aid the low-level analyzers.

Dependent Loops. We implement a slight extension of the parametric algo-
rithm presented in Section 8 to handle dependent loops. Consider two loops
for(i=0;i<n;i++) for(j=0;j<i;j++){...}. The worst-case cost of an outer
loop iteration is n · k (where k is the cost of an iteration of the inner loop).
Using this worst-case cost, we get that the worst-case cost of the outer loop is
n2 · k. However, the inner-loop costs only k · i in the ith iteration. In this case,
we incorporate the precise cost of the child node while computing the cost of the
parent node, i.e., the more precise estimate for the outer loop is

∑n−1
i=0 i · k. In-

tuitively, when the child node costs a polynomial (say p(i)) in the ith repetition,
we can compute the more precise estimate as

∑n
i=1 p(i). Note that this extension

is equivalent to considering the loop counter of the outer loop a parameter while
evaluating the inner loop.

Benchmarks. We evaluated IBART on 10 examples (examples 2 to 11 in Ta-
ble 2) taken from WCET benchmark suites and open-source linear algebra pack-
ages. Of the 10 examples, 3 are small functions with less than 30 lines of code;
the remaining 7 have between 34 and 109 lines of code. While small, the exam-
ples were chosen to be challenging for WCET analysis, due to two features: (a)
branching statements within loops, leading to iterations with different costs, and
(b) nested loops, whose inner loops linearly depend on the outer loops.
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Table 2. Parametric WCET computation for the C167 architecture

Ex Source/File Parametric WCET (C167)
ex1 Section 2, Figure 3 n ≤ 5 �→ 24940,

n ≥ 6 �→ 5040 + 2800�n/2� + 1900n
ex2 Debie/ n ≤ 0 �→ 2620,

health n > 0 �→ 2620 + �n/10�59100 + (n%10) ∗ 6800
ex3 Mälardalen/ dlt 	= 0 �→ 4180 + 5060n,

adpcm dlt = 0 �→ 4260 + 2500n
ex4 Mälardalen/ jrev > 0 �→ 5560 + 3860len,

crc jrev ≤ 0 �→ 4320 + 3380len
ex5 Mälardalen/ len ≥ −1 ∧ init = 0 �→ 7800 + 3840len,

crc init 	= 0 �→ 3060
ex6 Mälardalen/ n ≥ 0 �→ 1740 + 2460n,

lcdnum n < 0 �→ 1740
ex7 Jampack/ 2 > n ∧ n ≥ 0 �→ 13540 + 6420n,

Inv 0 > n �→ 13380,
n > 2 �→ 13380 − 3100n + 9480n2

ex8 Jampack/ nc ≤ nr ∧ r ≥ c �→ 3840,
Zsvd nc > nr ∧ c > r > b �→ 18260 + 18820(r − b),

nc ≤ nr ∧ c < r �→ 3920
...

ex9 JAMA/ 1 = n �→ 44880,
Cholesky- 1 > n �→ 14260,
Decomposition n > 1 �→ 14260 + 15447n + 13419n2 + 1754n3

ex10 JAMA/ 1 > n �→ 11780,
Eigenvalue-Decomposition n ≥ 1 �→ −11784 + 17602n − 5146n2 + 11108n3

ex11 Jampack / n < 0 �→ 25460,
Eigenvalue-Decomposition n ≥ 0 �→ 25460 + 28400n + 9500n2 + 11220n3

WCET Benchmark Suites. We used the Debie and the Mälardalen bench-
mark suite from the WCET community [18], which are commonly used for eval-
uating WCET tools. We analyzed one larger example (109 lines) from the Debie
examples (ex2 in Table 2) and 4 programs from the Mälardalen suite. The para-
metric timing behavior of these examples comes from the presence of symbolic
loop bounds. An excerpt from the Debie example is shown in Figure 7.

Note that in Figure 7, different paths in the loop have different execution
times. Moreover, every conditional branch is revisited at every tenth iteration of
the loop. Computing the WCET of the program by taking the most expensive
conditional branch at every loop iteration would thus yield a pessimistic over-
estimate of the actual WCET. Our approach derives a tight parametric WCET
by identifying the set of feasible program paths at each loop iteration.

Linear Algebra Packages. We used 5 examples from the open-source Java
linear algebra libraries JAMA and Jampack. These packages provide user-level
classes for matrix operations including inverse calculation (ex7), SVD (ex8),
triangularization (ex9), and eigenvalue decomposition (ex10, ex11) of matrices.
We manually translated them to C. These benchmarks contain nested loops,
often with conditionals, and with inner loops linearly depending on outer loops.
Results. We evaluated IBART for parametric WCET computation, and com-
pared IBART with state-of-the-art WCET analyzers. All experiments were run
on a 2.2 GHz Intel Core i7 CPU with 8 GB RAM and took less than 20 seconds.

IBART Results. Our results are summarized in Table 2. Column 3 shows the
parametric WCET (in the solution language of Section 8) calculated by IBART
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with basic block execution times provided by CalcWCET167. In all cases, the
number of refinements needed was between 2 and 6.

Comparison with WCET Tools. We compared the precision of IBART to r-
TuBound [13] supporting the Infineon C167 processor and OTAWA, supporting
the LPC2138 processor. Note that r-TuBound and OTAWA can only report a
single numeric value as a WCET estimate. Therefore, to allow a fair comparison
of the WCET results we use the basic block execution times of the respective
low-level analyzer in IBART, and instantiate the symbolic parameters in the flow
facts with concrete values when analyzing the WCET with r-TuBound, respec-
tively OTAWA. To this end, parameters were supplied to OTAWA by means of
(high-level) input annotations. r-TuBound does not support input annotations,
therefore parameters were encoded directly in the ILP, if possible.

Our results, summarized in Table 3, show that IBART provides significantly
better WCET estimates than the respective framework. For larger values of
parameters, the difference increases rapidly. This is because r-Tubound and
OTAWA over-approximate each iteration much more than IBART; so if the
number of iterations increases, the difference grows. Column 2 lists the values
of parameters. Columns 3 and 4 show the WCET computed by IBART and
r-TuBound for the C167 architecture, while columns 5 and 6 show the WCET
computed by IBART and OTAWA for the LPC2138 architecture. Note that
Columns 3 and 4 are in nanoseconds, while Columns 5 and 6 are in cycles.

IBART reports a parametric formula instead of a single number. Instantiating
with concrete parameter values (see Table 3), often gives a tighter WCET esti-
mate. In cases when the WCET estimate of IBART overlaps with the estimate
of r-TuBound or OTAWA, IBART usually allows to infer tighter estimates for
specific parameter configurations. For example, for ex4, in both architectures
the estimates are identical when jrev < 0. IBART automatically discovers the
predicate jrev ≥ 0 to specialize cases where a tighter estimate is possible. On
the other hand, this information cannot be used in r-TuBound, while OTAWA
fails to exploit the supplied input-annotations leading to over-estimation.

10 Related Work

We briefly summarize the large body of related work here.

Segment abstraction. Segment abstraction was introduced in [8] and was shown
to subsume a large class of program analysis techniques. In [6], it was extended
to quantitative properties. This paper brings a key contribution: a systematic
way for computing WCET using computation of local ILPs at each node of AST,
instead of one large global ILP. Furthermore, (a) we adapt segment abstraction
for the timing analysis by using global and local bound functions; (b) we re-
fine using a novel interpolation based technique (c) we propose the LC-IPET
encoding, and (d) the parametric bounds are novel.

Asymptotic analysis. Computing bounds automatically was explored (e.g., [9]).
Ourwork differs both conceptually andmethodologically from these aswe compute
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Table 3. WCET comparisons for the C167 and the LPC2138

Ex Parameter assignments IBART r-TuBound IBART OTAWA
C167 (ns) LPC2138 (cycles)

ex1 n = 5 22,300 26,060 393 393
n = 100 388,040 48,0160 6,888 8,338

ex2 n = 10 62,020 124,920 2,115 2,258
n = 50 298,420 612,920 10,435 11,098
n = 200 1184,920 2442,920 41,635 44,248

ex3 n = 6, dlt = 0 19,260 345,040 246 295
n = 0, dlt 	= 0 4,180 4,260 56 56
n = 0, dlt = 0 4,260 4,260 55 56

ex4 len = 5, jrev < 0 24,860 24,860 520 520
len = 5, jrev ≥ 0 21,220 24,860 447 520
len = 0, jrev ≥ 0 4,320 5,560 112 140

ex5 init = 0, len = 255 987,000 987,000 18,534 18,534
init = 1, len = 255 2,920 987,000 102 18,534

ex6 n = 10 21,660 26,340 349 404
n = 5 13,960 13,960 214 214

ex7 n = 5 243,880 519,280 2,123 2,538
n = 1 19,760 19,960 263 346

ex8 r = 4, c = 5, 93,540 100,480 837 880
nr < nc, b = 0

ex9 n = 5 646,220 1545,760 2,902 6,993
n = 1 44,880 44,880 317 357

ex10 n = 5 1335,920 2606,180 6,059 23,089
n = 0 11,620 11,620 209 445

ex11 n = 5 1799,620 1799,620 6,371 22,946
n = 1 74,580 74,580 582 582

the worst-case execution time rather than asymptotic complexity, and we infer
predicates using interpolation rather than using template-based methods.

Static WCET analysis. Most state-of-the-art static WCET tools, see e.g. [13,2],
compute a constant WCET, requiring numeric upper bounds for all loops. Our
parametric WCET is computed only once and replacing parameters with their
values yields the precise WCET for each set of concrete values, without rerunning
the WCET analysis as in [13,2]. These and other WCET tools use ILP as the
basic data structure. Our basic data structure is ASTs, which leads to more
efficient, and more precise, algorithms. All these approaches to WCET estimation
(including ours) are dependent on low-level analysis developed for modelling
timing related features of architectures. For a survey of techniques in this area,
see [18].

Parametric WCET estimates. Parametric WCET calculation is also described
in [5,1,10], where polyhedra-based abstract interpretation is used to derive inte-
ger constraints on program executions. These constraints are solved as paramet-
ric integer linear programming problem, and a parametric WCET is obtained.
In [10], various heuristics are applied in order to approximate program paths
by small linear expressions over execution frequencies of program blocks. In [4],
the authors describe an efficient, but approximate method of solving paramet-
ric constraints—in contrast, our approach solves parametric constraints exactly.
Compared to [5,10], our segment abstraction lets us to reason about the WCET
as a property of a sequence of instructions rather than a state property.
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Refinement for WCET. We are aware of two recent works for refining WCET
estimates [14,3]. WCET squeezing [14] is based on learning ILP constraints from
infeasible paths—the constraints learned are based purely on syntactic methods.
The recent work [3] also automatically discovers additional ILP constraints using
minimal unsatisfiable cores of infeasible paths. These approaches have the disad-
vantage of being susceptible to requiring many refinements to eliminate related
infeasible paths that can be eliminated with one segment predicate.

Symbolic Execution based WCET analysis. The most relevant work to our ap-
proach is [7]. In [7], the authors use symbolic execution to explore the program
as a tree, and find and merge segments that have similar timing properties (for
example, different loop iterations). More precisely, by merging segments gener-
ated by symbolic execution, one can obtain trees equivalent to ASTs (generated
in our approach by splitting nodes in the initial tree). However, the cost of gener-
ating these objects can be significantly different. The key difference is that parts
of the tree that do not occur in the worst-case path can be analyzed quickly
in our case (we do not need to split nodes when even the over-approximation
shows that it is not part of WCET path). On the other hand, in the symbolic
execution case, even the parts of the tree not occurring in the worst-case path
have to be explicitly explored and merged. However, if all paths have similar
execution times, symbolic execution has an advantage as in our case the tree
will eventually be split up completely. However, many of the advantages such as
having locality of constraints also apply in the case of [7].

11 Conclusion

Our approach to WCET analysis is based on the hypothesis that segment ab-
straction is the ideal framework for WCET estimation. This is intuitively clear,
as WCET is a property that accumulates over segments, i.e., sequences of in-
structions, and is not a state property, and therefor not being fully amenable
to standard state-based abstractions. Our approach based on abstract segment
trees provides two clear advantages. First, ASTs allow us to decompose the
problem into multiple smaller ones. In particular, it allows us to decompose the
integer linear program (ILP) for path analysis to multiple smaller integer linear
programs. Second, it allows us to compute more precise refinements compared
to existing techniques. This is because ASTs can encode more expressive con-
straints than ILPs.

A possible direction for future work is to explore is to extend our techniques to
additional cost models—including aspects such as cache-persistence [18] (where
only the first access to a location is a cache-miss). In fact, the segment abstraction
is rich enough to incorporate hard constraints such as scoped persistence [11].
Further, segment abstraction and refinement can be used to refine the low-level
timing analysis—segment abstractions can be used to drive CFG transformations
to enhance the precision of low-level timing analysis. Extending our method
with interpolation in first-order theories, e.g., the theory of arrays, could yield
transition predicates over data structures. Finally, estimating WCET could be
used in synthesis of optimal programs.
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Abstract. Static analysis of the evaluation cost of programs is an exten-
sively studied problem that has many important applications. However,
most automatic methods for static cost analysis are limited to sequential
evaluation while programs are increasingly evaluated on modern multi-
core and multiprocessor hardware. This article introduces the first auto-
matic analysis for deriving bounds on the worst-case evaluation cost of
parallel first-order functional programs. The analysis is performed by a
novel type system for amortized resource analysis. The main innovation
is a technique that separates the reasoning about sizes of data structures
and evaluation cost within the same framework. The cost semantics of
parallel programs is based on call-by-value evaluation and the standard
cost measures work and depth. A soundness proof of the type system
establishes the correctness of the derived cost bounds with respect to
the cost semantics. The derived bounds are multivariate resource poly-
nomials which depend on the sizes of the arguments of a function. Type
inference can be reduced to linear programming and is fully automatic.
A prototype implementation of the analysis system has been developed
to experimentally evaluate the effectiveness of the approach. The experi-
ments show that the analysis infers bounds for realistic example programs
such as quick sort for lists of lists, matrix multiplication, and an imple-
mentation of sets with lists. The derived bounds are often asymptotically
tight and the constant factors are close to the optimal ones.

Keywords: Functional Programming, Static Analysis, Resource Con-
sumption, Amortized Analysis.

1 Introduction

Static analysis of the resource cost of programs is a classical subject of computer
science. Recently, there has been an increased interest in formally proving cost
bounds since they are essential in the verification of safety-critical real-time and
embedded systems.

For sequential functional programs there exist many automatic and semi-
automatic analysis systems that can statically infer cost bounds. Most of them
are based on sized types [1], recurrence relations [2], and amortized resource anal-
ysis [3, 4]. The goal of these systems is to automatically compute easily-understood
arithmetic expressions in the sizes of the inputs of a program that bound resource
cost such as time or space usage. Even though an automatic computation of cost
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bounds is undecidable in general, novel analysis techniques are able to efficiently
compute tight time bounds for many non-trivial programs [5–9].

For functional programs that are evaluated in parallel, on the other hand,
no such analysis system exists to support programmers with computer-aided
derivation of cost bounds. In particular, there are no type systems that derive
cost bounds for parallel programs. This is unsatisfying because parallel evalu-
ation is becoming increasingly important on modern hardware and referential
transparency makes functional programs ideal for parallel evaluation.

This article introduces an automatic type-based resource analysis for deriving
cost bounds for parallel first-order functional programs. Automatic cost analysis
for sequential programs is already challenging and it might seem to be a long shot
to develop an analysis for parallel evaluation that takes into account low-level
features of the underlying hardware such as the number of processors. Fortu-
nately, it has been shown [10, 11] that the cost of parallel functional programs
can be analyzed in two steps. First, we derive cost bounds at a high abstrac-
tion level where we assume to have an unlimited number of processors at our
disposal. Second, we prove once and for all how the cost on the high abstraction
level relates to the actual cost on a specific system with limited resources.

In this work, we derive bounds on an abstract cost model that consists of
the work and the depth of an evaluation of a program [10]. Work measures the
evaluation time of sequential evaluation and depth measures the evaluation time
of parallel evaluation assuming an unlimited number of processors. It is well-
known [12] that a program that evaluates to a value using work w and depth
d can be evaluated on a shared-memory multiprocessor (SMP) system with p
processors in time O�max�w�p, d�� (see Section 2.3). The mechanism that is used
to prove this result is comparable to a scheduler in an operating system.

A novelty in the cost semantics in this paper is the definition of work and
depth for terminating and non-terminating evaluations. Intuitively, the non-
deterministic big-step evaluation judgement that is defined in Section 2 expresses
that there is a (possibly partial) evaluation with work n and depth m. This state-
ment is used to prove that a typing derivation for bounds on the depth or for
bounds on the work ensures termination.

Technically, the analysis computes two separate typing derivations, one for the
work and one for the depth. To derive a bound on the work, we use multivariate
amortized resource analysis for sequential programs [13]. To derive a bound
on the depth, we develop a novel multivariate amortized resource analysis for
programs that are evaluated in parallel. The main challenge in the design of
this novel parallel analysis is to ensure the same high compositionality as in
the sequential analysis. The design and implementation of this novel analysis
for bounds on the depth of evaluations is the main contribution of our work.
The technical innovation that enables compositionality is an analysis method
that separates the static tracking of size changes of data structures from the
cost analysis while using the same framework. We envision that this technique
will find further applications in the analysis of other non-additive cost such as
stack-space usage and recursion depth.
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We describe the new type analysis for parallel evaluation for a simple first-
order language with lists, pairs, pattern matching, and sequential and parallel
composition. This is already sufficient to study the cost analysis of parallel pro-
grams. However, we implemented the analysis system in Resource Aware ML
(RAML), which also includes other inductive data types and conditionals [14]. To
demonstrate the universality of the approach, we also implemented NESL’s [15]
parallel list comprehensions as a primitive in RAML (see Section 6). Similarly,
we can define other parallel sequence operations of NESL as primitives and cor-
rectly specify their work and depth. RAML is currently extended to include
higher-order functions, arrays, and user-defined inductive types. This work is
orthogonal to the treatment of parallel evaluation.

To evaluate the practicability of the proposed technique, we performed an
experimental evaluation of the analysis using the prototype implementation in
RAML. Note that the analysis computes worst-case bounds instead of average-
case bounds and that the asymptotic behavior of many of the classic examples
of Blelloch et al. [10] does not differ in parallel and sequential evaluations. For
instance, the depth and work of quick sort are both quadratic in the worst-
case. Therefore, we focus on examples that actually have asymptotically different
bounds for the work and depth. This includes quick sort for lists of lists in
which the comparisons of the inner lists can be performed in parallel, matrix
multiplication where matrices are lists of lists, a function that computes the
maximal weight of a (continuous) sublist of an integer list, and the standard
operations for sets that are implemented as lists. The experimental evaluation
can be easily reproduced and extended: RAML and the example programs are
publicly available for download and through an user-friendly online interface [16].

In summary we make the following contributions.
1. We introduce the first automatic static analysis for deriving bounds on the

depth of parallel functional programs. Being based on multivariate resource
polynomials and type-based amortized analysis, the analysis is compositional.
The computed type derivations are easily-checkable bound certificates.

2. We prove the soundness of the type-based amortized analysis with respect
to an operational big-step semantics that models the work and depth of
terminating and non-terminating programs. This allows us to prove that
work and depth bounds ensure termination. Our inductively defined big-step
semantics is an interesting alternative to coinductive big-step semantics.

3. We implemented the proposed analysis in RAML, a first-order functional
language. In addition to the language constructs like lists and pairs that are
formally described in this article, the implementation includes binary trees,
natural numbers, tuples, Booleans, and NESL’s parallel list comprehensions.

4. We evaluated the practicability of the implemented analysis by performing
reproducible experiments with typical example programs. Our results show
that the analysis is efficient and works for a wide range of examples. The de-
rived bounds are usually asymptotically tight if the tight bound is expressible
as a resource polynomial.

The full version of this article [17] contains additional explanations, lemmas,
and details of the technical development.
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2 Cost Semantics for Parallel Programs

In this section, we introduce a first-order functional language with parallel and
sequential composition. We then define a big-step operational semantics that for-
malizes the cost measures work and depth for terminating and non-terminating
evaluations. Finally, we prove properties of the cost semantics and discuss the
relation of work and depth to the run time on hardware with finite resources.

2.1 Expressions and Programs

Expressions are given in let-normal form. This means that term formers are
applied to variables only when this does not restrict the expressivity of the
language. Expressions are formed by integers, variables, function applications,
lists, pairs, pattern matching, and sequential and parallel composition.

e, e1, e2 ::� n � x � f�x� � �x1, x2� �� matchxwith �x1, x2� � e

� nil � cons�x1, x2� � matchxwith �nil� e1 � cons�x1, x2� � e2�

� letx � e1 in e2 � par x1 � e1 andx2 � e2 in e

The parallel composition par x1 � e1 andx2 � e2 in e is used to evaluate e1 and
e2 in parallel and bind the resulting values to the names x1 and x2 for use in e.

In the prototype, we have implemented other inductive types such as trees,
natural numbers, and tuples. Additionally, there are operations for primitive
types such as Booleans and integers, and NESL’s parallel list comprehensions [15].
Expressions are also transformed automatically into let normal form before the
analysis. In the examples in this paper, we use the syntax of our prototype
implementation to improve readability.

In the following, we define a standard type system for expressions and pro-
grams. Data types A,B and function types F are defined as follows.

A,B ::� int � L�A� � A 	B F ::� A
 B

Let A be the set of data types and let F be the set of function types. A signature
Σ : FID � F is a partial finite mapping from function identifiers to function
types. A context is a partial finite mapping Γ : Var � A from variable identifiers
to data types. A simple type judgement Σ;Γ � e : A states that the expression
e has type A in the context Γ under the signature Σ. The definition of typing
rules for this judgement is standard and we omit the rules.

A (well-typed) program consists of a signature Σ and a family �ef , yf �f�dom�Σ�

of expressions ef with a distinguished variable identifier yf such that Σ; yf :A �
ef :B if Σ�f� � A
 B.

2.2 Big-Step Operational Semantics

We now formalize the resource cost of evaluating programs with a big-step op-
erational semantics. The focus of this paper is on time complexity and we only
define the cost measures work and depth. Intuitively, the work measures the time
that is needed in a sequential evaluation. The depth measures the time that is
needed in a parallel evaluation. In the semantics, time is parameterized by a
metric that assigns a non-negative cost to each evaluation step.
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V,H
M

e1 � � � �w, d�

V,H
M

let x � e1 in e2 � � � �M let�w,M let�d�
(E:Let1) (E:Abort)

V,H
M

e � � � �0, 0�

V,H
M

e1 � ��,H
�� � �w1, d1� V �x 	
 ��,H � M

e2 � ρ � �w2, d2�

V,H
M

let x � e1 in e2 � ρ � �M let�w1�w2,M
let�d1�d2�

(E:Let2)

V,H
M

e1 � ρ1 � �w1, d1� V,H
M

e2 � ρ2 � �w2, d2� ρ1� � �ρ2��

V,H
M

parx1 � e1 andx2 � e2 in e � � � �MPar�w1�w2,M
Par�max�d1, d2��

(E:Par1)

(E:Par2)

V,H
M

e1 � ��1,H1� � �w1, d1� �w�, d����MPar�w1�w2�w,MPar�max�d1, d2��d�

V,H
M

e2 � ��2, H2� � �w2, d2� V �x1 	
�1, x2 	
�2�, H1H2
M

e � ��,H �� � �w, d�

V,H � M
parx1 � e1 andx2 � e2 in e � ��,H

�� � �w�, d��

Fig. 1. Interesting rules of the operational big-step semantics

Motivation. A distinctive feature of our big-step semantics is that it models
terminating, failing, and diverging evaluations by inductively describing finite
subtrees of (possibly infinite) evaluation trees. By using an inductive judgement
for diverging and terminating computations while avoiding intermediate states, it
combines the advantages of big-step and small-step semantics. This has two ben-
efits compared to standard big-step semantics. First, we can model the resource
consumption of diverging programs and prove that bounds hold for terminating
and diverging programs. (In some cost metrics, diverging computations can have
finite cost.) Second, for a cost metric in which all diverging computations have
infinite cost we are able to show that bounds imply termination.

Note that we cannot achieve this by step-indexing a standard big-step seman-
tics. The available alternatives to our approach are small-step semantics and
coinductive big-step semantics. However, it is unclear how to prove the sound-
ness of our type system with respect to these semantics. Small-step semantics
is difficult to use because our type-system models an intentional property that
goes beyond the classic type preservation: After performing a step, we have to
obtain a refined typing that corresponds to a (possibly) smaller bound. Coinduc-
tive derivations are hard to relate to type derivations because type derivations
are defined inductively.

Our inductive big-step semantics can not only be used to formalize resource
cost of diverging computations but also for other effects such as event traces. It is
therefore an interesting alternative to recently proposed coinductive operational
big-step semantics [18].

Semantic Judgements. We formulate the big-step semantics with respect to
a stack and a heap. Let Loc be an infinite set of locations modeling memory
addresses on a heap. A value v ::� n � ��1, �2� � �cons, �1, �2� � nil  Val is either
an integer n  Z, a pair of locations ��1, �2�, a node �cons, �1, �2� of a list, or nil.

A heap is a finite partial mappingH : Loc � Val that maps locations to values.
A stack is a finite partial mapping V : Var � Loc from variable identifiers to
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locations. Thus we have boxed values. It is not important for the analysis whether
values are boxed.

Figure 1 contains a compilation of the big-step evaluation rules (the full ver-
sion contains all rules). They are formulated with respect to a resource metric
M . They define the evaluation judgment

V,H M e � ρ � �w, d� where ρ ::� ��,H� � � .

It expresses the following. In a fixed program �ef , yf �f�dom�Σ�, if the stack V
and the initial heap H are given then the expression e evaluates to ρ. Under the
metric M , the work of the evaluation of e is w and the depth of the evaluation
is d. Unlike standard big-step operational semantics, ρ can be either a pair of a
location and a new heap, or � (pronounced busy) indicating that the evaluation
is not finished yet.

A resource metric M : K 
 Q
�
0 defines the resource consumption in each

evaluation step of the big-step semantics with a non-negative rational number.
We write Mk for M�k�.

An intuition for the judgement V,H M e � � � �w, d� is that there is a partial
evaluation of e that runs without failure, has work w and depth d, and has not
yet reached a value. This is similar to a small-step judgement.

Rules. For a heap H , we write H, � �
 v to express that � � dom�H� and to
denote the heap H � such thatH ��x� � H�x� if x  dom�H� and H ���� � v. In the
rule E:Par2, we write H1 �H2 to indicate that H1 and H2 agree on the values
of locations in dom�H1� � dom�H2� and to a combined heap H with dom�H� �
dom�H1��dom�H2�. We assume that the locations that are allocated in parallel
evaluations are disjoint. That is easily achievable in an implementation.

The most interesting rules of the semantics are E:Abort, and the rules
for sequential and parallel composition. They allow us to approximate infinite
evaluation trees for non-terminating evaluations with finite subtrees. The rule
E:Abort states that we can partially evaluate every expression by doing zero
steps. The work w and depth d are then both zero (i.e., w � d � 0).

To obtain an evaluation judgement for a sequential composition letx � e1 in e2
we have two options. We can use the rule E:Let1 to partially evaluate e1 using
work w and depth d. Alternatively, we can use the rule E:Let2 to evaluate e1
until we obtain a location and a heap ��,H �� using work w1 and depth d1. Then
we evaluate e2 using work w2 and depth d2. The total work and depth is then
given by M let�w1�w2 and M let�d1�d2, respectively.

Similarly, we can derive evaluation judgements for a parallel composition
par x1 � e1 andx2 � e2 in e using the rules E:Par1 and E:Par2. In the rule
E:Par1, we partially evaluate e1 or e2 with evaluation cost �w1, d1� and �w2, d2�.
The total work is then MPar�w1�w2 (the cost for the evaluation of the parallel
binding plus the cost for the sequential evaluation of e1 and e2). The total depth
is MPar�max�d1, d2� (the cost for the evaluation of the binding plus the maxi-
mum of the cost of the depths of e1 and e2). The rule E:Par2 handles the case
in which e1 and e2 are fully evaluated. It is similar to E:Let2 and the cost of
the evaluation of the expression e is added to both the cost and the depth since
e is evaluated after e1 and e2.
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2.3 Properties of the Cost-Semantics

The main theorem of this section states that the resource cost of a partial eval-
uation is less than or equal to the cost of an evaluation of the same expression
that terminates.

Theorem 1. If V,H M e � ��,H �� � �w, d� and V,H M e � � � �w�, d�� then
w� � w and d� � d.

Theorem 1 can be proved by a straightforward induction on the derivation of
the judgement V,H M e � ��,H �� � �w, d�.

Provably Efficient Implementations. While work is a realistic cost-model
for the sequential execution of programs, depth is not a realistic cost-model for
parallel execution. The main reason is that it assumes that an infinite number of
processors can be used for parallel evaluation. However, it has been shown [10]
that work and depth are closely related to the evaluation time on more realistic
abstract machines.

For example, Brent’s Theorem [12] provides an asymptotic bound on the
number of execution steps on the shared-memory multiprocessor (SMP) machine.
It states that if V,H M e � ��,H �� � �w, d� then e can be evaluated on a p-
processor SMP machine in time O�max�w�p, d��. An SMP machine has a fixed
number p of processes and provides constant-time access to a shared memory.
The proof of Brent’s Theorem can be seen as the description of a so-called
provably efficient implementation, that is, an implementation for which we can
establish an asymptotic bound that depends on the number of processors.

Classically, we are especially interested in non-asymptotic bounds in resource
analysis. It would thus be interesting to develop a non-asymptotic version of
Brent’s Theorem for a specific architecture using more refined models of concur-
rency [11]. However, such a development is not in the scope of this article.

Well-Formed Environments and Type Soundness. For each data type A
we inductively define a set �A� of values of type A. Lists are interpreted as lists
and pairs are interpreted as pairs.

�int� � Z �A 	B� � �A�� �B�

�L�A�� � ��a1, . . . , an� � n  N, ai  �A��

If H is a heap, � is a location, A is a data type, and a  �A� then we write
H � � �
 a :A to mean that � defines the semantic value a  �A� when pointers
are followed in H in the obvious way. The judgment is formally defined in the
full version of the article.

We writeH � � :A to indicate that there exists a, necessarily unique, semantic
value a  �A� so that H � � �
 a :A . A stack V and a heap H are well-formed
with respect to a context Γ if H � V �x� :Γ �x� holds for every x  dom�Γ �. We
then write H � V : Γ .

Simple Metrics and Progress. In the reminder of this section, we prove a
property of the evaluation judgement under a simple metric. A simple metric M
assigns the value 1 to every resource constant, that is, M�x� � 1 for every x  K.
With a simple metric, work counts the number of evaluation steps.
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Theorem 2 states that, in a well-formed environment, well-typed expressions
either evaluate to a value or the evaluation uses unbounded work and depth.

Theorem 2 (Progress). Let M be a simple metric, Σ;Γ � e : B, and H �
V : Γ . Then V,H M e � ��,H �� � �w, d� for some w, d  N or for every n  N
there exist x, y  N such that V,H M e � � � �x, n� and V,H M e � � � �n, y�.

A direct consequence of Theorem 2 is that bounds on the depth of programs
under a simple metric ensure termination.

3 Amortized Analysis and Parallel Programs

In this section, we give a short introduction into amortized resource analysis for
sequential programs (for bounding the work) and then informally describe the
main contribution of the article: a multivariate amortized resource analysis for
parallel programs (for bounding the depth).

Amortized Resource Analysis. Amortized resource analysis is a type-based
technique for deriving upper bounds on the resource cost of programs [3]. The
advantages of amortized resource analysis are compositionality and efficient type
inference that is based on linear programming. The idea is that types are deco-
rated with resource annotations that describe a potential function. Such a poten-
tial function maps the sizes of typed data structures to a non-negative rational
number. The typing rules ensure that the potential defined by a typing context
is sufficient to pay for the evaluation cost of the expression that is typed under
this context and for the potential of the result of the evaluation.

The basic idea of amortized analysis is best explained by example. Consider
the function mult : int 	 L�int� 
 L�int� that takes an integer and an integer list
and multiplies each element of the list with the integer.

mult(x,ys) = match ys with | nil 
 nil

| (y::ys’) 
 x*y::mult(x,ys’)

For simplicity, we assume a metric M� that only counts the number of multipli-

cations performed in an evaluation in this section. Then V,H M�

mult�x, ys� �
��,H �� � �n, n� for a well-formed stack V and heap H in which ys points to a list
of length n. In short, the work and depth of the evaluation of mult�x, ys� is �ys�.

To obtain a bound on the work in type-based amortized resource analysis, we
derive a type of the following form.

x:int, ys:L�int�;Q M�

mult�x, ys� : �L�int�, Q��

Here Q and Q� are coefficients of multivariate resource polynomials pQ : �int 	
L�int�� 
 Q

�
0 and pQ� : �L�int�� 
 Q

�
0 that map semantic values to non-

negative rational numbers. The rules of the type system ensure that for every
evaluation context (V,H) that maps x to a number m and ys to a list a, the
potential pQ�m, a� is sufficient to cover the evaluation cost of mult�x, ys� and
the potential pQ��a�� of the returned list a�. More formally, we have pQ�m, a� �

w � pQ��a�� if V,H M�

mult�x, ys� � ��,H �� � �w, d� and � points to the list a�

in H �.
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In our type system we can for instance derive coefficients Q and Q� that
represent the potential functions

pQ�n, a� � �a� and pQ��a� � 0 .

The intuitive meaning is that we must have the potential �ys� available when
evaluating mult�x, ys�. During the evaluation, the potential is used to pay for the
evaluation cost and we have no potential left after the evaluation.

To enable compositionality, we also have to be able to pass potential to the
result of an evaluation. Another possible instantiation of Q and Q� would for
example result in the following potential.

pQ�n, a� � 2��a� and pQ��a� � �a�

The resulting typing can be read as follows. To evaluate mult�x, ys� we need the
potential 2�ys� to pay for the cost of the evaluation. After the evaluation there
is the potential �mult�x, ys�� left to pay for future cost in a surrounding program.
Such an instantiation would be needed to type the inner function application in
the expression mult�x,mult�z, ys��.

Technically, the coefficients Q and Q� are families that are indexed by sets
of base polynomials. The set of base polynomials is determined by the type of
the corresponding data. For the type int 	 L�int�, we have for example Q �

�q��,���, q��,����, q��,��,���, . . .� and pQ�n, a� � q��,����q��,������a��q��,��,����
�
	a	
2

�
�

. . .. This allows us to express multivariate functions such as m � n.
The rules of our type system show how to describe the valid instantiations of

the coefficients Q and Q� with a set of linear inequalities. As a result, we can
use linear programming to infer resource bounds efficiently.

A more in-depth discussion can be found in the literature [3, 19, 7].

Sequential Composition. In a sequential composition letx � e1 in e2, the
initial potential, defined by a context and a corresponding annotation �Γ,Q�,
has to be used to pay for the work of the evaluation of e1 and the work of the
evaluation of e2. Let us consider a concrete example again.

mult2(ys) = let xs = mult(496,ys) in

let zs = mult(8128,ys) in (xs,zs)

The work (and depth) of the evaluation of the expression mult2�ys� is 2�ys� in
the metric M�. In the type judgement, we express this bound as follows. First,
we type the two function applications of mult as before using

x:int, ys:L�int�;Q M�

mult�x, ys� : �L�int�, Q��

where pQ�n, a� � �a� and pQ��a� � 0. In the type judgement

ys:L�int�;R M�

mult2�ys� : �L�int� 	 L�int�, R��

we require that pR�a� � pQ�a� � pQ�a�, that is, the initial potential (defined by
the coefficientsR) has to be shared in the two sequential branches. Such a sharing
can still be expressed with linear constraints. such as r��� � q��,���� � q��,����. A
valid instantiation of R would thus correspond to the potential function pR�a� �
2�a�. With this instantiation, the previous typing reflects the bound 2�ys� for the
evaluation of mult2�ys�.
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A slightly more involved example is the function dyad : L�int� 	 L�int� 

L�L�int�� which computes the dyadic product of two integer lists.

dyad (u,v) = match u with | nil 
 nil

| (x::xs) 
 let x’ = mult(x,v) in

let xs’ = dyad(xs,v) in x’::xs’;

Using the metric M� that counts multiplications, multivariate resource analysis
for sequential programs derives the bound �u���v�. In the cons branch of the
pattern match, we have the potential �xs���v� � �v� which is shared to pay for the
cost �v� of mult�x, v� and the cost �xs���v� of dyad�xs, v�.

Moving multivariate potential through a program is not trivial; especially in
the presence of nested data structures like trees of lists. To give an idea of the
challenges, consider the expression e that is defined as follows.

let xs = mult(496,ys) in

let zs = append(ys,ys) in dyad(xs,zs)

The depth of evaluating e in the metric M� is bounded by �ys� � 2�ys�2. Like in
the previous example, we express this in amortized resource analysis with the
initial potential �ys� � 2�ys�2. This potential has to be shared to pay for the cost
of the evaluations of mult�496, ys� (namely �ys�) and dyad�xs, zs� (namely 2�ys�2).
However, the type of dyad requires the quadratic potential �xs���zs�. In this sim-
ple example, it is easy to see that �xs���zs� � 2�ys�2. But in general, it is not
straightforward to compute such a conversion of potential in an automatic anal-
ysis system, especially for nested data structures and super-linear size changes.
The type inference for multivariate amortized resource analysis for sequential
programs can analyze such programs efficiently [7].

Parallel Composition. The insight of this paper is that the potential method
works also well to derive bounds on parallel evaluations. The main challenge in
the development of an amortized resource analysis for parallel evaluations is to
ensure the same compositionality as in sequential amortized resource analysis.

The basic idea of our new analysis system is to allow each branch in a par-
allel evaluation to use all the available potential without sharing. Consider for
example the previously defined function mult2 in which we evaluate the two
applications of mult in parallel.

mult2par(ys) = par xs = mult(496,ys)

and zs = mult(8128,ys) in (xs,zs)

Since the depth of mult�n, ys� is �ys� for every n and the two applications of mult
are evaluated in parallel, the depth of the evaluation of mult2par�ys� is �ys� in
the metric M�.

In the type judgement, we type the two function applications of mult as in
the sequential case in which

x:int, ys:L�int�;Q M�

mult�x, ys� : �L�int�, Q��

such that pQ�n, a� � �a� and pQ��a� � 0. In the type judgement

ys:L�int�;R M�

mult2par�ys� : �L�int� 	 L�int�, R��

for mult2par we require however only that pR�a� � pQ�a�. In this way, we express
that the initial potential defined by the coefficients R has to be sufficient to
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cover the cost of each parallel branch. Consequently, a possible instantiation of
R corresponds to the potential function pR�a� � �a�.

In the function dyad, we can replace the sequential computation of the inner
lists of the result by a parallel computation in which we perform all calls to the
function mult in parallel. The resulting function is dyad par.

dyad_par (u,v) = match u with | nil 
 nil

| (x::xs) 
 par x’ = mult(x,v)

and xs’ = dyad_par(xs,v) in x’::xs’;

The depth of dyad par is �v�. In the type-based amortized analysis, we hence start
with the initial potential �v�. In the cons branch of the pattern match, we can
use the initial potential to pay for both, the cost �v� of mult�x, v� and the cost �v�
of the recursive call dyad�xs, v� without sharing the initial potential.

Unfortunately, the compositionality of the sequential system is not preserved
by this simple idea. The problem is that the naive reuse of potential that is
passed through parallel branches would break the soundness of the system. To
see why, consider the following function.

mult4(ys) = par xs = mult(496,ys)

and zs = mult(8128,ys) in (mult(5,xs), mult(10,zs))

Recall, that a valid typing for xs � mult�496, ys� could take the initial potential
2�ys� and assign the potential �xs� to the result. If we would simply reuse the
potential 2�ys� to type the second application of mult in the same way then we
would have the potential �xs� � �zs� after the parallel branches. This potential
could then be used to pay for the cost of the remaining two applications of mult.
We have now verified the unsound bound 2�ys� on the depth of the evaluation of
the expression mult4�ys� but the depth of the evaluation is 3�ys�.

The problem in the previous reasoning is that we doubled the part of the
initial potential that we passed on for later use in the two parallel branches of
the parallel composition. To fix this problem, we need a separate analysis of the
sizes of data structures and the cost of parallel evaluations.

In this paper, we propose to use cost-free type judgements to reason about
the size changes in parallel branches. Instead of simply using the initial potential
in both parallel branches, we share the potential between the two branches but
analyze the two branches twice. In the first analysis, we only pay for the resource
consumption of the first branch. In the second, analysis we only pay for resource
consumption of the second branch.

A cost-free type judgement is like any other type judgement in amortized
resource analysis but uses the cost-free metric cf that assigns zero cost to every
evaluation step. For example, a cost-free typing of the function mult�ys� would
express that the initial potential can be passed to the result of the function. In
the cost-free typing judgement

x:int, ys:L�int�;Q cf mult�x, ys� : �L�int�, Q��

a valid instantiation of Q and Q� would correspond to the potential

pQ�n, a� � �a� and pQ��a� � �a� .

The intuitive meaning is that in a call zs � mult�x, ys�, the initial potential �ys�
can be transformed to the potential �zs� of the result.
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Using cost-free typings, we can now correctly reason about the depth of the
evaluation of mult4. We start with the initial potential 3�ys� and have to consider
two cases in the parallel binding. In the first case, we have to pay only for resource
cost of mult�496, ys�. So we share the initial potential and use 2�ys�: �ys� to pay
the cost of mult�496, ys� and �ys� to assign the potential �xs� to the result of the
application. The reminder �ys� of the initial potential is used in a cost-free typing
of mult�8128, ys� where we assign the potential �zs� to the result of the function
without paying any evaluation cost. In the second case, we derive a similar typing
in which the roles of the two function calls are switched. In both cases, we start
with the potential 3�ys� and end with the potential �xs� � �zs�. We use it to pay
for the two remaining calls of mult and have verified the correct bound.

In the univariate case, using the notation from [3, 19], we could formulate
the type rule for parallel composition as follows. Here, the coefficients Q are
not globally attached to a type or context but appear locally at list types such
as Lq�int�. The sharing operator Γ � �Γ1, Γ2, Γ3� requires the sharing of the
potential in the context Γ in the contexts Γ1,Γ2 and Γ3. For instance, we have
x:L6�int� ��x:L2�int�, x:L3�int�, x:L1�int��.

Γ ��Δ1, Γ2, Γ
�� Γ ��Γ1, Δ2, Γ

�� Γ1
M e1 : A1 Δ2

cf e2 : A2

Δ1
cf e1 : A1 Γ2

M e2 : A2 Γ �, x1:A1, x2:A2
M e : B

Γ M par x1 � e1 andx2 � e2 in e : B

In the rule, the initial potential Γ is shared twice using the sharing operator �.
First, to pay the cost of evaluating e2 and e, and to pass potential to x1 using the
cost-free type judgement Δ1

cf e1 : A1. Second, to pay the cost of evaluation
e1 and e, and to pass potential to x2 via the judgement Δ2

cf e2 : A2.
This work generalizes the idea to multivariate resource polynomials for which

we also have to deal with mixed potential such as �x1���x2�. The approach features
the same compositionality as the sequential version of the analysis. As the exper-
iments in Section 7 show, the analysis works well for many typical examples.

The use of cost-free typings to separate the reasoning about size changes of
data structures and resource cost in amortized analysis has applications that go
beyond parallel evaluations. Similar problems arise in sequential (and parallel)
programs when deriving bounds for non-additive cost such as stack-space usage
or recursion depth. We envision that the developed technique can be used to
derive bounds for these cost measures too.
Other Forms of Parallelism. The binary parallel binding is a simple yet
powerful form of parallelism. However, it is (for example) not possible to directly
implement NESL’s model of sequences that allows to perform an operation for
every element in the sequence in constant depth. The reason is that the parallel
binding would introduce a linear overhead.

Nevertheless it is possible to introduce another binary parallel binding that is
semantically equivalent except that it has zero depth cost. We can then analyze
more powerful parallelism primitives by translating them into code that uses this
cost-free parallel binding. To demonstrate such a translation, we implemented
NESL’s [15] parallel sequence comprehensions in RAML (see Section 6).
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4 Resource Polynomials and Annotated Types

In this section, we introduce multivariate resource polynomials and annotated
types. Our goal is to systematically describe the potential functions that map
data structures to non-negative rational numbers. Multivariate resource poly-
nomials are a generalization of non-negative linear combinations of binomial
coefficients. They have properties that make them ideal for the generation of
succinct linear constraint systems in an automatic amortized analysis. The pre-
sentation might appear quite low level but this level of detail is necessary to
describe the linear constraints in the type rules.

Two main advantages of resource polynomials are that they can express more
precise bounds than non-negative linear-combinations of standard polynomials
and that they can succinctly describe common size changes of data that appear
in construction and destruction of data. More explanations can be found in the
previous literature on multivariate amortized resource analysis [13, 7].

4.1 Resource Polynomials

A resource polynomial maps a value of some data type to a nonnegative ratio-
nal number. Potential functions and thus resource bounds are always resource
polynomials.

Base Polynomials. For each data type A we first define a set P�A� of functions
p : �A� 
 N that map values of type A to natural numbers. These base polyno-
mials form a basis (in the sense of linear algebra) of the resource polynomials
for type A. The resource polynomials for type A are then given as nonnegative
rational linear combinations of the base polynomials. We define P�A� as follows.

P�int� � �a �
 1� P�A1 	A2� � ��a1, a2� �
 p1�a1� � p2�a2� � pi  P�Ai��

P�L�A�� � �ΣΠ�p1, . . . , pk� � k  N, pi  P�A��

We have ΣΠ�p1, . . . , pk���a1, . . . , an�� �
�

1
j1�����jk
n

�
1
i
k pi�aji�. Every

set P�A� contains the constant function v �
 1. For lists L�A� this arises for
k � 0 (one element sum, empty product).

For example, the function � �

�
	�	
k

�
is in P�L�A�� for every k  N; simply take

p1 � . . . � pk � 1 in the definition of P�L�A��. The function ��1, �2� �

�
	�1	
k1

�
�

�
	�2	
k2

�
is in P�L�A�	L�B�� for every k1, k2  N and ��1, . . . , �n� �


�
1
i�j
n

�
	�i	
k1

�
�

�
	�j 	
k2

�
 P�L�L�A��� for every k1, k2  N.

Resource Polynomials. A resource polynomial p : �A�
 Q
�
0 for a data type A

is a non-negative linear combination of base polynomials, i.e., p �
�

i1,...,m qi �pi
for qi  Q

�
0 and pi  P�A�. R�A� is the set of resource polynomials for A.

An instructive, but not exhaustive, example is given by Rn � R�L�int� 	 � � � 	
L�int��. The set Rn is the set of linear combinations of products of binomial
coefficients over variables x1, . . . , xn, that is, Rn � �

�m
i1 qi

�n
j1

�
xj

kij

�
� qi 

Q
�
0 ,m  N, kij  N�. Concrete examples that illustrate the definitions follow in

the next subsection.
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4.2 Annotated Types

To relate type annotations in the type system to resource polynomials, we intro-
duce names (or indices) for base polynomials. These names are also helpful to
intuitively explain the base polynomials of a given type.

Names For Base Polynomials. To assign a unique name to each base polyno-
mial we define the index set I�A� to denote resource polynomials for a given data
type A. Essentially, I�A� is the meaning of A with every atomic type replaced
by the unit index �.

I�int� � ��� I�A1 	A2� � ��i1, i2� � i1  I�A1� and i2  I�A2��

I�L�A�� � ��i1, . . . , ik� � k � 0, ij  I�A��
The degree deg�i� of an index i  I�A� is defined as follows.

deg��� � 0 deg�i1, i2� � deg�i1� � deg�i2�

deg��i1, . . . , ik�� � k � deg�i1� � � � � � deg�ik�

Let Ik�A� � �i  I�A� � deg�i� � k�. The indices i  Ik�A� are an enumeration
of the base polyonomials pi  P�A� of degree at most k. For each i  I�A�, we
define a base polynomial pi  P�A� as follows: If A � int then p��v� � 1 . If
A � �A1 	A2� is a pair type and v � �v1, v2� then p�i1,i2��v� � pi1�v1� �pi2�v2�. If
A � L�B� is a list type and v  �L�B�� then p�i1,...,im��v� � ΣΠ�pi1, . . . , pim��v�.
We use the notation 0A (or just 0) for the index in I�A� such that p0A�a� � 1 for
all a. We have 0int � � and 0�A1�A2� � �0A1 , 0A2� and 0L�B� � ��. If A � L�B�
for a data type B then the index �0, . . . , 0�  I�A� of length n is denoted by just
n. We identify the index �i1, i2, i3, i4� with the index �i1, �i2, �i3, i4���.

Examples. First consider the type int. The index set I�int� � ��� only contains
the unit element because the only base polynomial for the type int is the constant
polynomial p� : Z
 N that maps every integer to 1, that is, p��n� � 1 for all n 
Z. In terms of resource-cost analysis this implies that the resource polynomials
can not represent cost that depends on the value of an integer.

Now consider the type L�int�. The index set for lists of integers is I�L�int�� �
���, ���, ��, ��, . . .�, the set of lists of unit indices �. The base polynomial p�� :
�L�int�� 
 N is defined as p����a1, . . . , an�� � 1 (one element sum and empty
product). More interestingly, we have p�����a1, . . . , an�� �

�
1
j
n 1 � n and

p��,����a1, . . . , an�� �
�

1
j1�j2
n 1 �
�
n
2

�
. In general, if ik � ��, . . . , �� is as list

with k unit indices then pik��a1, . . . , an�� �
�

1
j1�����jk
n 1 �
�
n
k

�
. The intu-

ition is that the base polynomial pik��a1, . . . , an�� describes a constant resource
cost that arises for every ordered k-tuple �aj1 , . . . , ajn�.

Finally, consider the type L�L�int�� of lists of lists of integers. The correspond-
ing index set is I�L�L�int��� � ���� � ��i� � i  I�L�int��� � ��i1, i2� � i1, i2 
I�L�int��� � � � � . Again we have p�� : �L�L�int��� 
 N and p����a1, . . . , an�� � 1.
Moreover we also get the binomial coefficients again: If the index ik � ���, . . . , ���
is as list of k empty lists then pik��a1, . . . , an�� �

�
1
j1�����jk
n 1 �

�
n
k

�
. This

describes a cost that would arise in a program that computes something of con-
stant cost for tuples of inner lists (e.g., sorting with respect to the smallest head
elements). However, the base polynomials can also refer to the lengths of the



146 J. Hoffmann and Z. Shao

inner lists. For instance, we have p���, �����a1, . . . , an�� �
�

1
i
n

�
	ai	
2

�
, which

represents a quadratic cost for every inner list (e.g, sorting the inner lists).
This is not to be confused with the base polynomial p��,����a1, . . . , an�� ��

1
i�j
n �ai��aj�, which can be used to account for the cost of the comparisons
in a lexicographic sorting of the outer list.

Annotated Types and Potential Functions. We use the indices and base
polynomials to define type annotations and resource polynomials. We then give
examples to illustrate the definitions.

A type annotation for a data type A is defined to be a family

QA � �qi�i�I�A� with qi  Q
�
0

We say QA is of degree (at most) k if qi � 0 for every i  I�A� with deg�i� � k.
An annotated data type is a pair �A,QA� of a data type A and a type annotation
QA of some degree k.

Let H be a heap and let � be a location with H � � �
a :A for a data type A.
Then the type annotation QA defines the potential ΦH��:�A,QA�� �

�
i�I�A� qi �

pi�a�. If a  �A� and Q is a type annotation for A then we also write Φ�a : �A,Q��
for

�
i qipi�a�.

Let for example, Q � �qi�i�L�int� be an annotation for the type L�int� and let
q�� � 2, q��� � 2.5, q��,�,�� � 8, and qi � 0 for all other i  I�L�int��. The we

have Φ��a1, . . . , an� : �L�int�, Q�� � 2� 2.5n� 8
�
n
3

�
.

The Potential of a Context. For use in the type system we need to extend
the definition of resource polynomials to typing contexts. We treat a context like
a tuple type. Let Γ � x1:A1, . . . , xn:An be a typing context and let k  N. The
index set I�Γ � is defined through I�Γ � � ��i1, . . . , in� � ij  I�Aj��.

The degree of i � �i1, . . . , in�  I�Γ � is defined through deg�i� � deg�i1� �
� � � � deg�in�. As for data types, we define Ik�Γ � � �i  I�Γ � � deg�i� � k�. A
type annotation Q for Γ is a family Q � �qi�i�Ik�Γ � with qi  Q

�
0 . We denote a

resource-annotated context with Γ ;Q. Let H be a heap and V be a stack with
H � V : Γ where H � V �xj��
axj : Γ �xj� .

The potential of an annotated context Γ ;Q with respect to then environment
H and V is ΦV,H�Γ ;Q� �

�
�i1,...,in��Ik�Γ �

q�ı
�n

j1 pij �axj �. In particular, if Γ �

 then Ik�Γ � � ���� and ΦV,H�Γ ; q��� � q��. We sometimes also write q0 for q��.

5 Type System for Bounds on the Depth

In this section, we formally describe the novel resource-aware type system. We
focus on the type judgement and explain the rules that are most important
for handling parallel evaluation. The full type system is given in the extended
version of this article [17].

The main theorem of this section proves the soundness of the type system with
respect to the depths of evaluations as defined by the operational big-step se-
mantics. The soundness holds for terminating and non-terminating evaluations.



Automatic Static Cost Analysis for Parallel Programs 147

Type Judgments. The typing rules in Figure 2 define a resource-annotated
typing judgment of the form

Σ;Γ ; �Q1, . . . , Qn�
M e : �A,Q��

where M is a metric, n  �1, 2�, e is an expression, Σ is a resource-annotated
signature (see below), �Γ ;Qi� is a resource-annotated context for every i 
�1, . . . , n�, and �A,Q�� is a resource-annotated data type. The intended mean-
ing of this judgment is the following. If there are more than Φ�Γ ;Qi� resource
units available for every i  �1, . . . , n� then this is sufficient to pay for the depth
of the evaluation of e under the metric M . In addition, there are more than
Φ�v:�A,Q��� resource units left if e evaluates to a value v.

In outermost judgements, we are only interested in the case where n � 1 and
the judgement is equivalent to the similar judgement for sequential programs [7].
The form in which n � 2 is introduced in the type rule E:Par for parallel
bindings and eliminated by multiple applications of the sharing rule E:Share
(more explanations follow).

The type judgement is affine in the sense that every variable in a context
Γ can be used at most once in the expression e. Of course, we have to also
deal with expressions in which a variable occurs more than once. To account for
multiple variable uses we use the sharing rule T:Share that doubles a variable
in a context without increasing the potential of the context.

As usual Γ1, Γ2 denotes the union of the contexts Γ1 and Γ2 provided that
dom�Γ1� � dom�Γ2� �  . We thus have the implicit side condition dom�Γ1� �
dom�Γ2� �  whenever Γ1, Γ2 occurs in a typing rule. Especially, writing Γ �
x1:A1, . . . , xk:Ak means that the variables xi are pairwise distinct.

Programs with Annotated Types. Resource-annotated first-order types have
the form �A,Q� 
 �B,Q�� for annotated data types �A,Q� and �B,Q��. A
resource-annotated signature Σ is a finite, partial mapping of function identi-
fiers to sets of resource-annotated first-order types. A program with resource-
annotated types for the metric M consists of a resource-annotated signature Σ
and a family of expressions with variables identifiers �ef , yf �f�dom�Σ� such that

Σ; yf :A;Q
M ef : �B,Q�� for every function type �A,Q� 
 �B,Q��  Σ�f�.

Sharing. Let Γ, x1:A, x2:A;Q be an annotated context. The sharing operation
�Q defines an annotation for a context of the form Γ, x:A. It is used when the
potential is split between multiple occurrences of a variable. Details can be found
in the full version of the article.

Typing Rules. Figure 2 shows the annotated typing rules that are most rel-
evant for parallel evaluation. Most of the other rules are similar to the rules
for multivariate amortized analysis for sequential programs [13, 20]. The main
difference it that the rules here operate on annotations that are singleton sets
�Q� instead of the usual context annotations Q.

In the rules T:Let and T:Par, the result of the evaluation of an expression e
is bound to a variable x. The problem that arises is that the resulting annotated
context Δ,x:A,Q� features potential functions whose domain consists of data
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Σ;Γ1, Γ2;R
M

e1 � Γ2, x:A;R�

Σ; , Γ2, x:A; �R��
M

e2 : �B,Q�� Q � R�M let

Σ;Γ1, Γ2; �Q�
M

let x � e1 in e2 : �B,Q��
(T:Let)

Σ;Γ1, Γ2,Δ;P
cf

e1 � Γ2,Δ, x1:A1;P
�

Σ;Γ2,Δ, x1:A1;P
� M

e2 � Δ,x1:A1, x2:A2;R

Σ;Γ2,Δ, x1:A1;Q
� cf

e2 � Δ,x1:A1, x2:A2;R

Σ;Γ1, Γ2,Δ;Q
M

e1 � Γ2,Δ, x1:A1;Q
� Σ;Δ,x1:A1, x2:A2;R

M
e : �B,R��

Σ;Γ1, Γ2,Δ; �Q�MPar, P �MPar�
M

par x1 � e1 andx2 � e2 in e : �B,R��

(T:Par)

Σ;Γ, x1:A, x2:A; �P1, . . . , Pm�
M

e : �B,Q�� �i �j : Qj��Pi

Σ;Γ, x:A; �Q1, . . . , Qn�
M

e�x�x1, x�x2� : �B,Q��
(T:Share)

� � �

�j � I�Δ�: j��0 �� Σ;Γ ;πΓ
j �Q�

M
e : �A,πx:A

j �Q���

j��0 �� Σj ;Γ ;πΓ
j �Q�

cf
e : �A, πx:A

j �Q���

Σ;Γ,Δ;Q
M

e � Δ,x:A;Q�

(B:Bind)

Fig. 2. Selected novel typing rules for annotated types and the binding rule for multi-
variate variable binding

that is referenced by x as well as data that is referenced by Δ. This potential
has to be related to data that is referenced by Δ and the free variables in e.

To express the relations between mixed potentials before and after the evalu-
ation of e, we introduce a new auxiliary binding judgement of the from

Σ;Γ,Δ;Q M e � Δ,x:A;Q�

in the rule B:Bind. The intuitive meaning of the judgement is the following.
Assume that e is evaluated in the context Γ,Δ, that FV�e�  dom�Γ �, and
that e evaluates to a value that is bound to the variable x. Then the initial
potential Φ�Γ,Δ;Q� is larger than the cost of evaluating e in the metric M plus
the potential of the resulting context Φ�Δ,x:A;Q��.

The rule T:Par for parallel bindings parx1 � e1 andx2 � e2 in e is the main
novelty in the type system. The idea is that we type the expressions e1 and
e2 twice using the new binding judgement. In the first group of bindings, we
account for the cost of e1 and derive a context Γ2, Δ, x1:A1;P

�
1 in which the

result of the evaluation of e1 is bound to x1. This context is then used to bind
the result of evaluating e2 in the context Δ,x1:A1, x2:A2;R without paying for
the resource consumption. In the second group of bindings, we also derive the
context Δ,x1:A1, x2:A2;R but pay for the cost of evaluating e2 instead of e1.
The type annotations Q1 and Q2 for the initial context Γ � Γ1, Γ2, Δ establish
a bound on the depth d of evaluating the whole parallel binding: If the depth
of evaluating e1 is larger than the depth of evaluating e2 then Φ�Γ ;Q1� � d.
Otherwise we have Φ�Γ ;Q2� � d. If the parallel binding evaluates to a value v
then we have additionally that max�Φ�Γ ;Q1�, Φ�Γ ;Q2�� � d� Φ�v:�B,Q���.
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It is important that the annotations Q1 and Q2 of the initial context Γ1, Γ2, Δ
can defer. The reason is that we have to allow a different sharing of potential in
the two groups of bindings. If we would require Q1 � Q2 then the system would
be too restrictive. However, each type derivation has to establish the equality
of the two annotations directly after the use of T:Par by multiple uses of the
sharing rule T:Share. Note that T:Par is the only rule that can introduce a
non-singleton set �Q1, Qn� of context annotations.

T:Share has to be applied to expressions that contain a variable twice (x in
the rule). The sharing operation �P transfers the annotation P for the context
Γ, x1:A, x2:A into an annotationQ for the context Γ, x:A without loss of potential
. This is crucial for the accuracy of the analysis since instances of T:Share are
quite frequent in typical examples. The remaining rules are affine in the sense
that they assume that every variable occurs at most once in the typed expression.

T:Share is the only rule whose premiss allows judgements that contain a
non-singleton set �P1, . . . , Pm� of context annotations. It has to be applied to
produce a judgement with singleton set �Q� before any of the other rules can
be applied. The idea is that we always have n � m for the set �Q1, . . . , Qn� and
the sharing operation � i is used to unify the different Pi.

Soundness. The operational big-step semantics with partial evaluations makes
it possible to state and prove a strong soundness result. An annotated type judg-
ment for an expression e establishes a bound on the depth of all evaluations of
e in a well-formed environment; regardless of whether these evaluations diverge
or fail.Moreover, the soundness theorem states also a stronger property for ter-
minating evaluations. If an expression e evaluates to a value v in a well-formed
environment then the difference between initial and final potential is an upper
bound on the depth of the evaluation.

Theorem 3 (Soundness). If H � V :Γ and Σ;Γ ;Q � e:�B,Q�� then there
exists a Q  Q such that the following holds.
1. If V,H M e � ��,H �� � �w, d� then d � ΦV,H�Γ ;Q� ! ΦH���:�B,Q���.
2. If V,H M e � ρ � �w, d� then d � ΦV,H�Γ ;Q�.

Theorem 3 is proved by a nested induction on the derivation of the evaluation
judgment and the type judgment Γ ;Q � e:�B,Q��. The inner induction on the
type judgment is needed because of the structural rules. There is one proof for
all possible instantiations of the resource constants.

The proof of most rules is very similar to the proof of the rules for multivariate
resource analysis for sequential programs [7]. The main novelty is the treatment
of parallel evaluation in the rule T:Par which we described previously.

If the metric M is simple (all constants are 1) then it follows from Theorem
3 that the bounds on the depth also prove the termination of programs.

Corollary 1. Let M be a simple metric. If H � V :Γ and Σ;Γ ;Q � e:�A,Q��
then there are w  N and d � ΦV,H�Γ ;Q� such that V,H M e � ��,H �� � �w, d�
for some � and H �.

Type Inference. In principle, type inference consists of four steps. First, we
perform a classic type inference for the simple types such as nat array. Second,
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we fix a maximal degree of the bounds and annotate all types in the derivation of
the simple types with variables that correspond to type annotations for resource
polynomials of that degree. Third, we generate a set of linear inequalities, which
express the relationships between the added annotation variables as specified by
the type rules. Forth, we solve the inequalities with an LP solver such as CLP.
A solution of the linear program corresponds to a type derivation in which the
variables in the type annotations are instantiated according to the solution.

In practice, the type inference is slightly more complex. Most importantly,
we have to deal with resource-polymorphic recursion in many examples. This
means that we need a type annotation in the recursive call that differs from the
annotation in the argument and result types of the function. To infer such types
we successively infer type annotations of higher and higher degree. Details can be
found in previous work [21]. Moreover, we have to use algorithmic versions of the
type rules in the inference in which the non-syntax-directed rules are integrated
into the syntax-directed ones [7]. Finally, we use several optimizations to reduce
the number of generated constraints. See [7] for an example type derivation.

6 Nested Data Parallelism

The techniques that we describe in this work for a minimal function language
scale to more advanced parallel languages such as Blelloch’s NESL [15].

To describe the novel type analysis in this paper, we use a binary binding
construct to introduce parallelism. In NESL, parallelism is introduced via built-in
functions on sequences as well as parallel sequence comprehension that is similar
to Haskell’s list comprehension. The depth of all built-in sequence functions such
as append and sum is constant in NESL. Similarly, the depth overhead of the
parallel sequence comprehension is constant too. Of course, it is possible to define
equivalent functions in RAML. However, the depth would often be linear since
we, for instance, have to sequentially form the resulting list.

Nevertheless, the user definable resource metrics in RAML make it easy to
introduce built-in functions and language constructs with customized work and
depth. For instance we could implement NESL’s append like the recursive append
in RAML but use a metric inside the function body in which all evaluation steps
have depth zero. Then the depth of the evaluation of append�x, y� is constant
and the work is linear in �x�.

To demonstrate this ability of our approach, we implemented parallel list
comprehensions, NESL’s most powerful construct for parallel computations. A
list comprehension has the form � e : x1 in e1 ; . . . ; xn in en � eb �. where e is
an expression, e1, . . . , en are expressions of some list type, and eb is a boolean
expression. The semantics is that we bind x1, . . . , xn successively to the elements
of the lists e1, . . . , en and evaluate eb and e under these bindings. If eb evaluates
to true under a binding then we include the result of e under that binding in the
resulting list. In other words, the above list comprehension is equivalent to the
Haskell expression � e � �x1, . . . , xn� " zipn e1 . . . en , eb �.

The work of evaluating � e : x1 in e1 ; . . . ; xn in en � eb � is sum of the cost
of evaluating e1, . . . , en�1 and en plus the sum of the cost of evaluating eb
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Table 1. Compilation of Computed Depth and Work Bounds

Function Name / Computed Depth Bound / Run Time Asym. Behav.

Function Type Computed Work Bound

dyad 10m� 10n� 3 0.19 s O�n�m�
L�int��L�int� � L�L�int�� 10mn� 17n� 3 0.20 s O�nm�

dyad all 1.6̄n3�4n2�10nm�14.6̄n�5 1.66 s O�n2�m�

L�L�int�� � L�L�L�int��� 1.3̄n3�5n2m2�8.5n2m� . . . 0.96 s O�n3�n2m2�
m mult1 15xy � 16x� 10n� 6 0.37 s O�xy�
L�L�int���L�L�int�� � L�L�int�� 15xyn� 16nm� 18n� 3 0.36 s O�xyn�
m mult pairs [M : L�L�int��] 4n2�15nmx�10nm�10n�3 3.90 s O(nm + mx)

L�M��L�M� � L�M� 7.5n2m2x�7n2m2�n2mx . . . 6.35 s O�n2m2x�
m mult2 [M : L�L�int��] 35u� 10y � 15x� 11n� 40 2.75 s O�z�x�n�

�M�nat���M�nat��M 3.5u2y�uyz�14.5uy� . . . 2.99 s O�nx�z�y��

quicksort list 12n2 � 16nm� 12n� 3 0.67 s O�n2�m�
L�L�int�� � L�L�int�� 8n2m�15.5n2�8nm�13.5n�3 0.51 s O�n2m�

intersection 10m� 12n� 3 0.49 s O�n�m�
L�int��L�int� � L�int� 10mn� 19n� 3 0.28 s O�nm�
product 8mn� 10m� 14n � 3 1.05 s O�nm�
L�int��L�int� � L�int�int� 18mn� 21n� 3 0.71 s O�nm�
max weight 46n� 44 0.39 s O�n�
L�int� � int�L�int� 13.5n2 � 65.5n � 19 0.30 s O�n2�

fib 13n� 4 0.09 s O�n�
nat � nat � nat ��� 0.12 s O�2n�

dyad comp 13 0.28 s O�1�
L�int��L�int� � L�L�int�� 6mn� 5n� 2 0.13 s O�nm�
find 12m� 29n� 22 0.38 s O�m�n�
L�int��L�int� � L�L�int�� 20mn� 18m� 9n � 16 0.41 s O�nm�

and e with the successive bindings to the elements of the results of the eval-
uation of e1, . . . , en. The depth of the evaluation is sum of the cost of evaluating
e1, . . . , en�1 and en plus the maximum of the cost of evaluating eb and e with
the successive bindings to the elements of the results of the ei.

7 Experimental Evaluation

We implemented the developed automatic depth analysis in Resource Aware
ML (RAML). The implementation consists mainly of adding the syntactic form
for the parallel binding and the parallel list comprehensions together with the
treatment in the parser, the interpreter, and the resource-aware type system.
RAML is publically available for download and through a user-friendly online
interface [16]. On the project web page you also find the source code of all
example programs and of RAML itself.

We used the implementation to perform an experimental evaluation of the
analysis on typical examples from functional programming. In the compilation
of our results we focus on examples that have a different asymptotic worst-case
behavior in parallel and sequential evaluation. In many other cases, the worst-
case behavior only differs in the constant factors. Also note that many of the
classic examples of Blelloch [10]—like quick sort—have a better asymptotic aver-
age behavior in parallel evaluation but the same asymptotic worst-case behavior
in parallel and sequential cost.
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Table 1 contains a representative compilation of our experimental results. For
each analyzed function, it shows the function type, the computed bounds on the
work and the depth, the run time of the analysis in seconds and the actual asymp-
totic behavior of the function. The experiments were performed on an iMac with
a 3.4 GHz Intel Core i7 and 8 GB memory. As LP solver we used IBM’s CPLEX
and the constraint solving takes about 60% of the overall run time of the prototype
on average. The computed bounds are simplified multivariate resource polynomi-
als that are presented to the user by RAML. Note that RAML also outputs the
(unsimplified) multivariate resource polynomials. The variables in the computed
bounds correspond to the sizes of different parts of the input. As naming conven-
tion we use the order n,m, x, y, z, u of variables to name the sizes in a depth-first
way: n is the size of the first argument, m is the maximal size of the elements of
the first argument, x is the size of the second argument, etc.

All bounds are asymptotically tight if the tight bound is representable by a
multivariate resource polynomial. For example, the exponential work bound for
fib and the logarithmic bounds for bitonic sort are not representable as a resource
polynomial. Another example is the loose depth bound for dyad all where we
would need the base function max1
i
n mi but only have

�
1
i
n mi.

Matrix Operations. To study programs that use nested data structures we
implemented several matrix operations for matrices that are represented by lists
of lists of integers. The implemented operations include, the dyadic product
from Section 3 (dyad), transposition of matrices (transpose, see [16]), addition of
matrices (m add, see [16]), and multiplication of matrices (m mult1 andm mult2).

To demonstrate the compositionality of the analysis, we have implemented two
more involved functions for matrices. The function dyad all computes the dyadic
product (using dyad) of all ordered pairs of the inner lists in the argument. The
function m mult pairs computes the products M1 �M2 (using m mult1) of all pairs
of matrices such that M1 is in the first list of the argument and M2 is in the
second list of the argument.

Sorting Algorithms. The sorting algorithms that we implemented include
quick sort and bitonic sort for lists of integers (quicksort and bitonic sort, see [16]).

The analysis computes asymptotically tight quadratic bounds for the work and
depth of quick sort. The asymptotically tight bounds for the work and depth
of bitonic sort are O�n logn� and O�n log2 n�, respectively, and can thus not be
expressed by polynomials. However, the analysis computes quadratic and cubic
bounds that are asymptotically optimal if we only consider polynomial bounds.

More interesting are sorting algorithms for lists of lists, where the comparisons
need linear instead of constant time. In these algorithms we can often perform
the comparisons in parallel. For instance, the analysis computes asymptotically
tight bounds for quick sort for lists of lists of integers (quicksort list, see Table 1).

Set Operations. We implemented sets as unsorted lists without duplicates.
Most list operations such as intersection (Table 1), difference (see [16]), and union
(see [16]) have linear depth and quadratic work. The analysis finds these asymp-
totically tight bounds.
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The function product computes the Cartesian product of two sets. Work and
depth of product are both linear and the analysis finds asymptotically tight bounds.
However, the constant factors in the parallel evaluation are much smaller.

Miscellaneous. The functionmax weight (Table 1) computes themaximalweight
of a (connected) sublist of an integer list. The weight of a list is simply the sum of
its elements. The work of the algorithm is quadratic but the depth is linear.

Finally, there is a large class of programs that have non-polynomial work
but polynomial depth. Since the analysis can only compute polynomial bounds
we can only derive bounds on the depth for such programs. A simple example
in Table 1 is the function fib that computes the Fibonacci numbers without
memoization.

Parallel List Comprehensions. The aforementioned examples are all imple-
mented without using parallel list comprehensions. Parallel list comprehensions
have a better asymptotic behavior than semantically-equivalent recursive func-
tions in RAML’s current resource metric for evaluation steps.

A simple example is the function dyad comp which is equivalent to dyad and
which is implemented with the expression ��x 	 y : y in ys� : x in xs�. As listed in
Table 1, the depth of dyad comp is constant while the depth of dyad is linear.
RAML computes tight bounds.

A more involved example is the function find that finds a given integer list
(needle) in another list (haystack). It returns the starting indices of each occur-
rence of the needle in the haystack. The algorithm is described by Blelloch [15]
and cleverly uses parallel list comprehensions to perform the search in parallel.
RAML computes asymptotically tight bounds on the work and depth.

Discussion. Our experiments show that the range of the analysis is not reduced
when deriving bounds on the depth: The prototype implementation can always
infer bounds on the depth of a program if it can infer bounds on the sequential
version of the program. The derivation of bounds for parallel programs is also
almost as efficient as the derivation of bounds for sequential programs.

We experimentally compared the derived worst-case bounds with the measured
work and depth of evaluations with different inputs. In most cases, the derived
bounds on the depth are asymptotically tight and the constant factors are close
or equal to the optimal ones. As a representative example, the full version of the
article contains plots of our experiments for quick sort for lists of lists.

8 Related Work

Automatic amortized resource analysis was introduced by Hofmann and Jost for
a strict first-order functional language [3]. The technique has been applied to
higher-order functional programs [22], to derive stack-space bounds for functional
programs [23], to functional programs with lazy evaluation [4], to object-oriented
programs [24, 25], and to low-level code by integrating it with separation logic [26].
All the aforementioned amortized-analysis–based systems are limited to linear
bounds. The polynomial potential functions that we use in this paper were intro-
duced by Hoffmann et al. [19, 13, 7]. In contrast to this work, none of the previous
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works on amortized analysis considered parallel evaluation. The main technical in-
novation of this work is the new rule for parallel composition that is not straightfor-
ward. The smooth integration of this rule in the existing framework ofmultivariate
amortized resource analysis is a main advantages of our work.

Type systems for inferring and verifying cost bounds for sequential programs
have been extensively studied. Vasconcelos et al. [27, 1] described an automatic
analysis system that is based on sized-types [28] and derives linear bounds for
higher-order sequential functional programs.Dal Lago et al. [29, 30] introduced lin-
ear dependent types to obtain a complete analysis system for the time complexity
of the call-by-name and call-by-value lambda calculus. Crary andWeirich [31] pre-
sented a type system for specifying and certifying resource consumption. Daniels-
son [32] developed a library, based on dependent types and manual cost annota-
tions, that can be used for complexity analyses of functional programs.We are not
aware of any type-based analysis systems for parallel evaluation.

Classically, cost analyses are often based on deriving and solving recurrence
relations. This approach was pioneered by Wegbreit [33] and has been exten-
sively studied for sequential programs written in imperative languages [6, 34]
and functional languages [35, 2].

In comparison, there has been little work done on the analysis of parallel
programs. Albert et al. [36] use recurrence relations to derive cost bounds for
concurrent object-oriented programs. Their model of concurrent imperative pro-
grams that communicate over a shared memory and the used cost measure is
however quite different from the depth of functional programs that we study.

The only article on using recurrence relations for deriving bounds on parallel
functional programs that we are aware of is a technical report by Zimmermann [37].
The programs that were analyzed in this work are fairly simple and more involved
programs such as sorting algorithms seem to be beyond its scope. Additionally, the
technique does not provide the compositionality of amortized resource analysis.

Trinder et al. [38] give a survey of resource analysis techniques for parallel and
distributed systems. However, they focus on the usage of analyses for sequential
programs to improve the coordination in parallel systems. Abstract interpretation
based approaches to resource analysis [5, 39] are limited to sequential programs.

Finally, there exists research that studies cost models to formally analyze
parallel programs. Blelloch and Greiner [10] pioneered the cost measures work
and depth that we use in this work. There are more advanced cost models that
take into account caches and IO (see, e.g., Blelloch and Harper [11]), However,
these works do not provide machine support for deriving static cost bounds.

9 Conclusion

We have introduced the first type-based cost analysis for deriving bounds on the
depth of evaluations of parallel function programs. The derived bounds are mul-
tivariate resource polynomials that can express a wide range of relations between
different parts of the input. As any type system, the analysis is naturally com-
positional. The new analysis system has been implemented in Resource Aware
ML (RAML) [14]. We have performed a thorough and reproducible experimental
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evaluation with typical examples from functional programming that shows the
practicability of the approach.

An extension of amortized resource analysis to handle non-polynomial bounds
such as max and log in a compositional way is an orthogonal research question
that we plan to address in the future. A promising direction that we are currently
studying is the use of numerical logical variables to guide the analysis to derive
non-polynomial bounds. The logical variables would be treated like regular vari-
ables in the analysis. However, the user would be responsible for maintaining
and proving relations such as a � logn where a is a logical variable an n is
the size of a regular data structure. In this way, we would gain flexibility while
maintaining the compositionality of the analysis.

Another orthogonal question is the extension of the analysis to additional
language features such as higher-order functions, references, and user-defined
data structures. These extensions have already been implemented in a prototype
and pose interesting research challenges in there own right. We plan to report
on them in a forthcoming article.
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Abstract. We present a sound verification approach for verifying in-
put/output properties of programs. Our approach supports defining high-
level I/O actions on top of low-level ones (compositionality), defining
input/output actions without taking into account which other actions
exist (modularity), and other features. As the key ingredient, we devel-
oped a separation logic over Petri nets. We also show how with the same
specification style we can elegantly modularly verify “I/O-like” code that
uses the Template Pattern. We have implemented our approach in the
VeriFast verifier and applied it to a number of challenging examples.

1 Introduction

Many software verification approaches are based on Hoare logic. A Hoare triple [6]
consists of a precondition, a program, and a postcondition. If a Hoare triple is
true, then every execution of the program starting from any state satisfying the
precondition results (if it terminates) in a state satisfying the postcondition.
Hoare logic has been extended to support various features, e.g. aliasing and con-
currency. But a certain limitation is often left untackled. Indeed, the pre- and
postcondition of a Hoare triple typically constrain the behavior of a program
by only looking at the initial and final state of memory. This makes it possible
to prove e.g. that a quicksort implementation sorts properly, but it does not
prevent that e.g. an incorrect result is printed on the screen. For the user of a
program, the proofs about the state of memory of a program are useless if the
result visible on the screen is incorrect. In the end, the performed input/output
must be correct, a problem typically left untouched.

There are some conceptual differences between verifying memory state and
verifying I/O behavior. One difference is that, when verifying memory state,
we only care about the final state. Indeed, if the function that sorts has an
intermediate state that looks like garbage, but then cleans up and still gives a
correctly sorted output, we are happy. In contrast, when verifying input/output
we do care about the intermediary state. If e.g. the calculator displays the wrong
output on the screen and then the right output, this is a bad calculator, even
though the final image displayed on the screen is correct.

Another difference is that termination is usually a desired property of pro-
grams not performing I/O, but often undesired for programs performing I/O.
For example, a quicksort implementation should always terminate, but a text
editor should not.
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However, just verifying I/O properties is not the interesting challenge itself.
The interesting challenges are the side constraints such as compositionality and
modularity:

Modularity. A programmer of a library typically does not consider all possible
other libraries that might exist. Still, a programmer of an application can use
multiple libraries in his program, even though these libraries do not know of each
other’s existence. Similarly, we want to write specifications of a library without
keeping in mind existence of other libraries.

Compositionality. In regular software development, a programmer typically does
not call the low-level system calls. Instead, he calls high-level libraries, which
might be implemented in terms of other libraries, themselves implemented on
top of yet other libraries, and so on. This is the concept of compositionality. The
verification approach for I/O should support programs written in a compositional
manner. Furthermore, it should be possible to write the formal I/O specifications
themselves in a compositional manner, i.e. in terms of other libraries’ I/O actions
instead of in terms of the low-level system calls.

Other. Besides compositionality and modularity, the I/O verification should also

– be static, i.e. detecting errors at compile time, not at run time.

– be sound, i.e. not searching for most bugs, but proving absence of bugs.

– blend in well with existing verification techniques that solve other problems
like aliasing

– support non-deterministic behavior (e.g. operations can fail, or return un-
specified values, like reading user input)

– support impricise specifications (e.g. the specifications describe two possi-
bilities and the implementor can choose freely). The number of possibilities
can be large, e.g. “print a number less than 0”.

– support arguments for operations (e.g. when writing to a file, the content
and the filename are arguments that should be part of the specifications)

– support unspecified ordering of operations. If the order is unimportant, the
specification should not fix them such that the implementor can choose freely.

– support specifying ordering of operations, also if the operations are specified
and implemented by independent teams. For example, it might be necessary
that the put-shield-on operation happens before the start-explosion opera-
tion.

– support both non-terminating and terminating programs: a non-terminating
program can still only do the allowed I/O operations in the allowed order, and
a terminating program is only allowed to terminate after it has performed
all desired I/O operations.

– support operations that depend on the outcome of the previous operation,
e.g. a specification like “read a number, and then print a number that is one
higher than the read number”.
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This paper proposes an elegant way to perform input/output verification
based on separation logic. It supports all the requirements explained above.
We consider soundness, compositionality, and modularity the more interesting
properties.

This paper does not include an approach to prove liveness properties. For
both non-terminating and terminating programs, the approach presented in this
paper allows to prove that all performed I/O is correct and in the correct order,
but for non-terminating programs it does not provide a way to prove that any
I/O happens. For terminating programs, the approach allows to prove that the
intended I/O has happened upon termination.

The remainder of this paper is organized as follows. Section 2 defines a basic
programming language supporting I/O. Section 3 uses this language to explain
the verification approach. Section 4 proves soundness of this approach. Section 5
gives some examples. Section 6 provides a quick look at what is different and
common in verifying I/O behavior and memory state. Section 8 concludes and
points out future work.

2 The Programming Language

We define a simple programming language that supports performing I/O.
v ∈ VarNames, n, r ∈ Z, bio ∈ BioNames, f ∈ FuncNames

e ::= n | v | e+ e | e− e | head(e) | nil | e :: e | e++ e | tail(e) | true | ¬ e | e = e
| e ∧ e | e < e

c ::= skip | v := e | c; c | if e then c else c | while e do c | v := bio(e) |
v := f(e)

For lists, we use the infix functions ++ for concatenation and :: for cons.
We write the empty list as nil. We frequently notate lists with overline, e.g. e
denotes a list of expressions. We leave the technical parts implicit, e.g. when two
lists are expected to have the same length. Sometimes we use such a list as a
set. We use simple mathematical functions for lists with their expected meaning,
e.g. tail and distinct.

The language is standard except that it supports doing Basic Input Output
actions (BIOs). A BIO can be thought of as a system call, but for readability
we use names (bio ∈ BioNames) as their identifiers instead of numbers. The
arguments of a BIO can be considered as data that is output to the outside
world, while the return-value can be considered as data that is input from the
outside world. This way, a BIO allows doing both input and output.

We define Commands as the set of commands creatable by the grammar
symbol “c” and quantify over it with c. Stores = VarNames ⇀ (Z ∪ Z

∗),
quantified over by s. Here, Z∗ denotes the set of lists of integers. The partial
function Stores maps the program variables to their current value.

We assume a set FuncDefs ⊂ {(f, v, c) | f ∈ FuncNames ∧ v ∈ VarNames∗ ∧
c ∈ Commands ∧ mod(c) ∩ v = ∅ ∧ distinct(v)}. Here, mod(c) returns the set
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Assign

s, v := e ⇓ s[v := �e�s], nil,done

IfThen
�e�s = true s, cthen ⇓ s′, τ, κ

s, if e then cthen else celse ⇓ s′, τ, κ

IfElse
�e�s �= true s, celse ⇓ s′, τ, κ

s, if e then cthen else celse ⇓ s′, τ, κ

WhileIn
�e�s = true s, c ;while e do c ⇓ s′, τ, κ

s,while e do c ⇓ s′, τ, κ

WhileOut
�e�s �= true

s, while e do c ⇓ s, nil,done

Skip

s, skip ⇓ s, nil,done

Seq
s1, c1 ⇓ s2, τ2,partial

s1, c1; c2 ⇓ s2, τ2,partial

Seq2
s1, c1 ⇓ s2, τ1,done s2, c2 ⇓ s3, τ2, κ

s1, c1; c2 ⇓ s3, τ1 ++ τ2, κ

Empty

s, c ⇓ s, nil,partial

Bio
i ∈ Z

s, v := bio(e) ⇓ s[v := i], bio(�e�s, i) :: nil,done

FuncCall
∅[v := �e�s], c ⇓ sf , τ, κ (f, v, c) ∈ FuncDefs

s, v := f(e) ⇓ s[v := �result�sf ], τ, κ

Fig. 1. Step semantics

of variables that command c writes to. FuncDefs represents the functions of the
program under consideration. Note that we disallow functions for which the body
assigns to a parameter of the function. We also disallow overlap in parameter
names. For simplicity, we only consider functions and programs without (mutual)
recursion.

For better readability,we use abbreviationswith the expectedmeaning, e.g. e1 �=
e2 means ¬(e1 = e2) and f(e) means v := f(e) for a fresh v.

Evaluation of the expression e using store s is written as �e�s. We write �e� as
�e�. Evaluation of the expressions consisting of a variable is defined as �v�s = s(v)
(if v defined in s, otherwise unspecified). Evaluation of the other expressions is
defined as �op(e)�s = op(�e�s) where op is an operator with zero arguments
(for constants, e.g. true, 2, or nil) or more. For example, �tail(e)�s = tail(�e�s),
�e1 + e2�s = �e1�s + �e2�s and �2�s = 2. Expressions that are not well-typed
evaluate to an unspecified value, e.g. head(0) can evaluate to nil and to true.

Step Semantics. We define Traces as the set of lists over the set {bio(n, r) | bio ∈
BioNames ∧ n ∈ Z

∗ ∧ r ∈ Z}. An element of the list, bio(n, r), expresses the
BIO bio has happened with arguments n and return value r. The order of the
items in the list expresses the order in time in which they happened. We quantify
over Traces with τ .
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Continuations = {partial,done}, quantified over by κ.
Figure 1 shows the step semantics, relating a store and a command to a new

store, a trace and a continuation. In Figure 1, f [a := b] denotes the (partial)
function obtained by updating the (partial) function f :

f [a := b] = { (x, y) | (x �= a ∧ x ∈ dom(f) ∧ y = f(x))
∨ (x = a ∧ y = b) }

Note that the step semantics do not only support terminating runs, but also
partial runs. This allows us to verify the input/output behavior of programs that
do not always terminate, e.g. a server.

3 Verification Approach

We present an approach to verify input/output-related properties of programs.
The first subsection gives an informal intuition of how the approach works.
Subsection 3.2 defines the approach formally.

3.1 Informal Introduction

This subsection describes an intuitive understanding of the I/O verification ap-
proach using simple examples.

t1

beep(0)

t2

beep(0)

t3

laser on(0)

t4

(a)

t2

beep(0)

t3

laser on(0)

t4

(b)

Fig. 2. Visual representation of a heap and one execution step thereof

Figure 2a shows a Petri net. The circles are called places, the black bars ac-
tions1, and the dots in a circle are called tokens. This figure expresses that the
program can beep twice, and afterwards (not earlier) turn on a laser beam. In-
stead of a graphical notation, we can describe the same as a multiset: {[token(t1),
beep(t1, 0, t2), beep(t2, 0, t3), laser on(t3, 0, t4)]}. We call such a multiset a heap.
The Petri nets in this subsection are graphical representation of heaps. You can
ignore the zeroes for now.

In general, an assertion describes constraints. The assertion x > 10 constrains
the program variable x to be greater than 10. Therefore, it constrains the store
which maps program variables to values. Besides the store, an assertion also
constrains the heap.

1 In Petri net terminology actions are called transitions.
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token(T1) ∗ beep(T1, , T2) ∗ beep(T2, , T3) ∗ laser on(T3, , T4) is an
assertion satisfied by the heap given earlier (together with a store and an inter-
pretation mapping the logical variable T1 to the place t1, T2 to t2 and so on).
You can ignore the underscore arguments for now.

Let’s look at how we use an assertion. We write it in a Hoare triple as follows:

{
token(T1) ∗ beep(T1, , T2) ∗ beep(T2, , T3) ∗ laser on(T3, , T4)

}

beep();
beep();
laser on(){
token(T4)

}

One might be surprised that the intended I/O behavior is written in the pre-
condition, while in the mindset of verifying memory state we have the habit
of writing what the program does in the postcondition. Programs performing
I/O are relatively often not intended to always terminate, and thus do not
always reach the postcondition. You can consider the subassertions such as
beep(T2, , T3) as permissions: a permission to execute an action under certain
constraints.

You could associate with each point during execution of a program a heap, a
store and an interpretation that describe the state of the program: e.g. if before
the instruction x := x + 1, the store is {(x, 0)}, then after that instruction the
store is {(x, 1)}. We do not use a heap during concrete execution of a program,
but you can apply the same reasoning for the heap: after executing an I/O
action, the permission to do so disappears from the heap2, the token disappears,
and a new token appears; see Figure 2b. After completely executing the example
program starting from the example heap, the heap is thus {[token(t4)]}. Now look
at the postcondition: it exactly constrains this to be the heap. In other words,
the program is only allowed to terminate after having performed the actions.

Consider a program that reads one byte, and then outputs the same byte.
Two of the many possible heaps that describe this behavior are {[token(t1),
read(t1, ‘x’, t2),write(t2, ‘x’, 0, t3)]} and {[token(t1), read(t1, ‘y’, t2),write(t2, ‘y’, 0,
t3)]}. Since the world or environment can “return” different bytes when reading
a byte, multiple heaps are required to describe all possible behaviors of the
program.

The precondition token(T1) ∗ read(T1, ‘x’, T2) ∗ write(T2, ‘x’, , T3) con-
strains the byte read to be ‘x’, and the byte written to be ‘x’. Of the heaps given
in the previous paragraph, only the first one models this precondition. Asser-
tions can constrain the environment or the program, or both. read(T1, ‘x’, T2)
constrains the value read from the world will be ‘x’. This constrains the world or
the environment. write(T2, ‘x’, , T3) states that the program must write value
‘x’. This constrains the program. In both heaps and assertions, the last argument
(that is not a place) of an action constrains the environment (input argument)

2 This differs from the standard way of executing Petri nets where one usually does
not remove parts of the Petri net during execution.
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and the others constrain the program (output arguments). In the previous ex-
amples, the arguments with value zero in heaps and the arguments written as
underscores in assertions were input arguments we were not interested in.

While constraining the environment can be useful, it is undesired in this ex-
ample. A precondition that describes the intended behavior of the program that
reads one byte and then prints that byte is: token(T1) ∗ read(T1, X, T2) ∗
write(T2, X, , T3). In assertions, arguments of I/O actions can be any expres-
sion, and expressions in assertions can refer to program variables and logical
variables such as X .

Quite often, the behavior of programs depends on the behavior of the environ-
ment. It is possible to write preconditions that take this into account, for exam-
ple: token(T1) ∗ read(T1, X, T2) ∗ if X > 10 then write(T2, X+1, , T3) else
T3 = T2. This assertion specifies the behavior of a program that reads a number
and outputs one number higher if the number read is greater than ten. Note that
writing this assertion is more convenient than writing or drawing all intended
heaps.

For most nontrivial preconditions, a large (possibly infinite) number of heaps
satisfy the precondition. This is necessary, because when thinking of the heaps as
something executable, we will not know which of these heaps we will execute: it
depends on the behavior of the environment, which we do not know in advance.

Let us try to write a contract for a program that reads a whole file. It needs
read-permissions until end of file (EOF) has been read. Reading a negative num-
ber indicates reading EOF. We do not want the program to read past EOF,
so we should not give more read-permissions than necessary. How many read-
permissions we should write in the precondition thus depends on the behavior
of the environment. We can write such a contract by defining a high-level I/O
action as follows:

predicate reads(T1,Text, T3) = ∃R.∃T2.
read(T1, R, T2) ∗
if R < 0 then Text = nil ∗ T3 = T2

else (reads(T2, Sub, T3) ∗ Text = R :: Sub)

Note that this definition uses recursion. As we will see in the formal expla-
nation, we allow infinite recursion (contrary to [10]), which is useful for e.g. a
program that reads temperature sensor values forever.

Low-level actions that are not defined on top of other actions are called BIO
actions. When verifying a program that uses an unverified library, the BIO ac-
tions can be actions provided by that library. If all libraries are verified but the
kernel is not, BIO actions are system calls to the kernel.

In a contract both can be used, so
{
token(T1) ∗ reads(T1,Text, T2)

}
c
{
token(T2)

}

is a valid contract. In heaps only BIO actions are present. So {[token(t1), read(t1,
‘x’, t2), read(t2,−1, t3)]} is a valid heap for the precondition of this contract (to-
gether with an interpretation mapping T1 to t1, T2 to t3 and Text to the list
‘x’ :: −1 :: nil).
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t1

split

ta1 beep(0) ta2 write(‘a’, 0) ta3

tb1 write(‘b’, 0) tb2 write(‘c’, 0) tb3

join

t2

Fig. 3. Interleaving of actions

t1

write(‘a’, 0)

write(‘b’, 0)

t2

Fig. 4. Underspecifica-
tion for actions

Figure 4 allows underspecification of actions: it
allows to write ‘a’ and ‘b’ (but not both). A pre-
condition of which this is a heap is token(T1) ∗
write(T1, ‘a’, , T2) ∗ write(T1, ‘b’, , T2). It simply
contains both permissions.

Instead of two write permissions, we can also write
a contract with a write permission and a “dummy”
I/O permission no op, like this: token(T 1) ∗
no op(T 1, T 2) ∗write(T 1, ‘a’, , T 2). This precondi-
tion expresses the program is allowed to write ‘x’ or
terminate without performing any I/O.

Figure 3 allows arbitrary interleavings of beeping
and writing ‘a’, and, writing ‘b’ and ‘c’. The transition labeled split does not
perform I/O. When executing this heap, the split transition splits the token of
place t1 into two tokens: one for ta1 and one for tb1. Both tokens can then be
used to execute a transition. This allows interleaving of actions3. The transition
labeled join does the inverse of split: it merges two tokens into one. It only does
this when both ta3 and tb3 have a token.

A Hoare triple with a precondition of which Figure 3 is a model is:
⎧
⎪⎪⎨

⎪⎪⎩

token(T1) ∗ split(T1, Ta1, Tb1)
∗ beep(Ta1, , Ta2) ∗ write(Ta2, ‘a’, , Ta3)
∗ write(Tb1, ‘b’, , Tb2) ∗ write(Tb2, ‘c’, , Tb3)
∗ join(Ta3, Tb3, T2)

⎫
⎪⎪⎬

⎪⎪⎭

write(‘b’);
beep();
write(‘c’);
write(‘a’){
token(T2)

}

The following is an incorrect program for the contract of the Hoare triple:
write(‘b’);write(‘a’);write(‘c’); beep().

You might have noticed the precondition of the above contract can also be
written without split and join by writing all possible interleavings by hand.

3 It is also worth mentioning that split and join allow one to write contracts for
multi-threaded programs.
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However, split and join are very useful in combination with high-level I/O
actions. Suppose we want to write a contract for Unix’s cat, a program that
reads a file and writes what it reads. We do not want to force cat to read the
whole file before it starts writing, and we also do not want to enforce a fixed buffer
size. If we define a high-level I/O action writes, similar to reads, we can write the
precondition of cat as token(T1) ∗ split(T1, Tr1, Tw1) ∗ reads(Tr1, Xs, Tr2) ∗
writes(Tw1, Xs, Tr2) ∗ join(Tr1, Tw1, T2).

3.2 The Verification Approach from a Formal Point of View

Heaps We use countably infinite multisets where an element can have a count-
ably infinite number of occurrences. We define NatInf = N∪ {∞}. We represent
a multiset of a set X as X → NatInf. This allows infinitely many occurrences of
items in the multiset. We define addition of any elements a and b in NatInf as
follows (+N denotes addition of natural numbers):

a+ b =

{
a+N b if a �= ∞∧ b �= ∞
∞ otherwise

For multisets A and B, A + B yields the multiset such that (A + B)(x) =
A(x) +B(x). Example: {[1, 1, 2]}+ {[1, 2, 3]} = {[1, 1, 1, 2, 2, 3]}

Let X be a multiset of multisets. We define the union of X , written ΣX , as
follows.

(ΣX)(y) =

{∑
u∈X u(y) if |{u ∈ X |u(y) > 0}| ∈ N ∧ ∀u ∈ X.u(y) ∈ N

∞ otherwise

We associate with each point during the execution of the program a multiset
of permissions which we call the program’s heap at that point. Such a permission
is e.g. a permission to write to a file. For simplicity, the programming language
used in this paper does not support dynamic memory allocation, so we do not
use the heap for memory footprint or for the state of memory and the concrete
execution does not use a heap. If desired, support for dynamic memory allocation
with classic separation logic can easily be integrated.

We consider a set Places containing an infinite number of places.
We define Chunks as {token(t) | t ∈ Places} ∪ {join(t1, t2, t3) | t1, t2, t3 ∈

Places} ∪ {split(t1, t2, t3) | t1, t2, t3 ∈ Places} ∪ {bio(t1, n, r, t2) | bio ∈
BioNames ∧ n ∈ Z

∗ ∧ r ∈ Z ∧ t1, t2 ∈ Places} and Heaps as Chunks → NatInf.
The intuitive meaning of a heap is given in Sec. 3.1.

Assertions. Assertions, P , and assertion expressions, E, are written in the
following grammar:

V ∈ LogicalVarNames, p ∈ PredNames.
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E ::= n | v | V | E + E | E − E | head(E) | E++E | E :: E | tail(E) | true |
nil | E = E | ¬E | E < E

P,Q,R ::= E | emp | P ∗ P | bio(E,E,E,E) | split(E,E,E) | join(E,E,E) |
no op(E,E) | token(E) | p(E) | P ∨ P | ∃V. P | �V ∈ZP | �V ∈Z∗P

Assertions can refer to both program variables and logical variables. Logical
variables do not appear in programs and remain constant. An interpretation
maps logical variables to their value, similar to a store for program variables,
but a value can also be a place in Places.

Interpretations = LogicalVarNames ⇀ (Z ∪ Places ∪ Z
∗). We quantify over

interpretations with i. We start logical variable names with a capital.
�v�s,i = s(v) and �V �s,i = i(V ) (unspecified if s and i does not contain v

and V respectively). Evaluation of the other assertion expressions is defined as
�op(e)�s,i = op(�e�s,i) where op is an operator with zero or more arguments.

For a formula P , P [e/v] is the formula obtained by replacing all free occur-
rences of the variable v with the expression e. We write P [e/v] for multiple
simultaneous replacements. We also use this notation for replacing logical vari-
ables with logical expressions.

We use underscore, , for assertion expressions we are not interested in; the
meaning of P [ /V ] is ∃V.P .

We write assertions of the form if E then P else Q ∗ R; this is shorthand
notation for ((E ∗ P ) ∨ (¬E ∗Q)) ∗R. We abbreviate multiple existential quan-
tifications, e.g. ∃A,B is shorthand for ∃A.∃B. We use standard abbreviations
for boolean expressions with their expected meaning, e.g. E1 > E2 ∨E1 = E2 is
abbreviated as E1 ≥ E2, and ¬(E1 = E2) as E1 �= E2.

Assertions constrain the store, the heap and the interpretation. Figure 5 for-
mally defines the semantics of assertions. It uses addition and union of multisets
as defined in Sec. 3.2 (p. 166).

emp asserts that the heap is empty and ∗ is the separating conjunction [12].
The meaning of token, BIO, no op, split and join assertions is explained

in Sec. 3.1.

Predicates. We use predicates based on and similar to [10]. A predicate can
be considered as a named parameterized assertion, but the assertion can contain
predicate names, including the name of the predicate itself. They are used for
defining new input/output actions on top of BIO actions, other predicates, and
the predicate itself. As example of a predicate definition that defines the action
of reading repeatedly until an error or end of file is encountered is given in
Section 3.1 (p. 164). Our definition of predicates is nonstandard, as we will see
later, and allows infinite recursion.

We write PredDefs for the set of predicate definitions for the program under
consideration. This is the set of definitions for (the contracts of) a particu-
lar program, not the set of all possible definitions. PredDefs ⊂ PredNames ×
LogicalVarNames∗ × P.
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I, s, h, i |= E ⇐⇒ �E�s,i = true ∧ h = {[ ]}
I, s, h, i |= bio(E1, E,Er, E2) ⇐⇒ h = {[bio(�E1, E, Er, E2�s,i)]}
I, s, h, i |= join(E1, E2, E3) ⇐⇒ h = {[join(�E1, E2, E3�s,i)]}
I, s, h, i |= split(E1, E2, E3) ⇐⇒ h = {[split(�E1, E2, E3�s,i)]}
I, s, h, i |= no op(E1, E2) ⇐⇒ h = {[no op(�E1, E2�s,i)]}

I, s, h, i |= token(E) ⇐⇒ h = {[token(�E�s,i)]}
I, s, h, i |= emp ⇐⇒ h = {[ ]}
I, s, h, i |= P ∗Q ⇐⇒ ∃h1, h2 . h1 + h2 = h ∧ I, s, h1, i |= P ∧

I, s, h2, i |= Q

I, s, h, i |= p(E) ⇐⇒ (p, (�E�s,i), h) ∈ I

I, s, h, i |= P ∨Q ⇐⇒ (I, s, h, i |= P ) ∨ (I, s, h, i |= Q)

I, s, h, i |= ∃V. P ⇐⇒ ∃x ∈ Z ∪ Z
∗ ∪ Places. I, s, h, i |= P [x/V ]

I, s, h, i |= �V ∈ZP ⇐⇒ ∃f : Z → Heaps . h = Σn∈Zf(n) ∧ ∀n ∈
Z . I, s, f(n), i |= P [n/V ]

I, s, h, i |= �V ∈Z∗P ⇐⇒ ∃f : Z
∗ → Heaps . h = Σl∈Z∗f(l) ∧ ∀l ∈

Z
∗ . I, s, f(l), i |= P [l/V ]

Fig. 5. Satisfaction relation of assertions

We define J as PredNames × (Z ∪ Z
∗ ∪ Places)∗ × Heaps. For predicates,

we define a context Ifix ⊆ J which expresses, for a given predicate name and
argument values, the heap chunks a predicate assertion covers.

Let us define Ifix. Consider the function f :

f : P(J) → P(J) : j �→ { (p, (x), h) ∈ J | ∃V , P. (p, (V ), P ) ∈ PredDefs ∧
j, ∅, h, ∅ |= P [x/V ] }

We will prove that f has a greatest fixpoint and define Ifix as the greatest
fixpoint of f . The reason we take the greatest fixpoint instead of the least, is
such that we can specify I/O behavior of programs that do not have a condition
(such as: user clicks exit button) to terminate. Consider for example the following
predicate definition: predicate inf print(T 1, X) = ∃T 2 . print(T 1, X, , T 2) ∗
inf print(T 2, X + 1). In case we use the greatest fixpoint, this expresses the
action of printing a sequence of numbers (e.g. 1, 2, 3, . . . ). If we would have
chosen to take the least fixpoint, the predicate inf print would be equivalent to
false, and we would not be able to specify the I/O behavior of this never ending
program.

To prove that the greatest fixpoint of f exist, we will apply Knaster-Tarski’s
theorem which states that any monotone function on a complete lattice has a
greatest and a least fixpoint.

We consider the partial order relation ⊆. Note that J,⊆ is a complete lattice.
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We have to show that f is monotone, i.e. that for any j1, j2 ∈ J such that
j1 ⊆ j2, then f(j1) ⊆ f(j2). Take such a j1 and j2. Let y ∈ f(j1) (in case this is
impossible, i.e. f(j1) = ∅, it immediately follows that f(j1) ⊆ f(j2)). Because y ∈
f(j1), y ∈ {(p, (x), h) | ∃V , P. (p, (V ), P ) ∈ PredDefs ∧ j1, ∅, h, ∅ |= P [x/V ]}. It
suffices to show that ∀j1, j2, s, h, i, P. j1 ⊆ j2 ⇒ j1, s, h, i |= P ⇒ j2, s, h, i |= P .
This can easily be proven by induction on P . Note that negation of assertions is
syntactically disallowed.

Big Star. The big star operator, �, allows to easily express an infinite number
of permissions. If one would accept ‘. . .’ in formulae, we could write �V ∈ZP as
P [0/V ] ∗ P [1/V ] ∗ P [−1/V ] ∗ P [2/V ] ∗ P [−2/V ] ∗ . . .. The following example
expresses the permission to print any number greater than 20.

token(T 1) ∗ �V ∈Z (if V > 20 then print(T 1, V, , T 2) else emp)

Besides the big star operator, predicates also allow us to express an infinite
number of permissions. The big star operator therefore does not increase expres-
siveness, but it increases convenience.

Validity of Hoare Triples. Intuitively, the Hoare triple {P} c {Q} expresses
that the program c satisfies the contract with precondition P and postcondition
Q. We give a simple example of a Hoare triple:
{
token(T 1) ∗ print(T 1, 1, , T 2) ∗ print(T 2, 2, , T 3)

}

print(1); print(2){
token(T 3)

}

The contract of this program states that the program can write the numbers
1 and 2 in this order. If the program terminates, it has performed these actions.

Note that a program that satisfies the contract cannot perform any other I/O
operations, cannot do them in another order, cannot do them more than once,
etc. For more interesting examples, see Section 5.

We define a relation traces ⊂ (Heaps× Traces× (Heaps ∪ {⊥})) in Figure 6.{
h
}
τ
{
g
}
denotes (h, τ, g) ∈ traces.

A heap expresses a permission to execute a (potentially infinite) sequence
of BIO actions (with certain arguments). Multiple sequences of actions can be
allowed by a heap. (h, τ, g), where g �= ⊥, expresses that h allows to perform the
sequence of actions τ followed by a sequence of actions allowed by the heap g.

An element in the heap can make a prediction about the environment, e.g.
bio(t1, n, r, t2) predicts performing the BIO bio with arguments n (starting at
place t1) will have return-value r. If a programs performs a BIO where the
environment violates a prediction, the program can then perform any sequence
of BIOs. In that case, we write (h, τ,⊥). This expresses the sequence of actions
τ is allowed by h: τ will consists of a (potentially empty) list of allowed actions
where the environment did not break a prediction, followed by an action where
the environment broke a prediction, followed by any (finite, infinite or empty)
sequence of actions.
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TraceBio{{[token(t1), bio(t1, n, r, t2)]}} bio(n, r) :: nil
{{[token(t2)]}}

TraceNil{{[ ]}} nil
{{[ ]}}

TraceFrame{
h
}
τ1

{
h′}{

h+ hr

}
τ1

{
h′ + hr

}
TraceComposition{
h
}
τ1

{
h0

} {
h0

}
τ2

{
h′}{

h
}
τ1 ++ τ2

{
h′}

TraceLeak{
h
}
τ
{
h′ + hr

}
{
h
}
τ
{
h′}

TraceSplit{{[token(t1), split(t1, t2, t3)]}} nil
{{[token(t2), token(t3)]}}

TraceJoin{{[token(t1), token(t2), join(t1, t2, t3)]}} nil
{{[token(t3)]}}

TraceContradict
r �= r′

{
h1

}
τ1 ++ bio(n, r) :: τ2

{
h2

}
{
h1

}
τ1 ++ bio(n, r′) :: τ3

{⊥}

Fig. 6. Definition of the traces relation. h quantifies over Heaps, not Heaps ∪ ⊥.

Also note that a heap can contradict itself, e.g. {[token(t1), somebio(t1, 2,
t2), somebio(t1, 3, t2)]}. It contradicts itself because it says performing the BIO
somebio (starting at place t1) will return 2 and will return 3.

We define validity of a Hoare triple. Intuitively, it expresses that any execution
starting from a state (a store s, a heap h and an interpretation i) that satisfies
the precondition, results in a trace that is allowed by the heap h. In case the
execution is a finished one (i.e. the program terminated) and the environment
did not violate a prediction expressed in h, the state at termination must satisfy
the postcondition.

∀P, c,Q. |= {P} c {Q} ⇐⇒
∀s, h, i. Ifix, s, h, i |= P ⇒
∀s′, τ, κ. s, c ⇓ s′, τ, κ ⇒
∃g ∈ Heaps ∪ {⊥}. {h} τ {g}∧
(κ = done ∧ g �= ⊥ ⇒ Ifix, s

′, g, i |= Q)

In case you expected a universal quantifier for g, note that the concrete exe-
cution does not use a heap. If it would use a heap, g would be introduced in the
universal quantification together with s′, τ and κ.

Proof Rules. The proof rules are listed in Figure 7. Here, fpv(E) and fpv(P )
returns the set of free program variables of the expression E and formula P
respectively. The Frame rule is copied from separation logic [12].

Note that the programming language does not support recursive function
calls. The structure of the proof tree is similar to the structure of the call graph.
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Assignment

{P [e/v]} v := e {P}

While
{e ∗ P} c {P}

{P}while e do c {¬e ∗ P}

Composition
{P1} c1 {P2} {P2} c2 {P3}

{P1} c1; c2 {P3}

Consequence
P1 ⇒ P2 {P2} c {P3} P3 ⇒ P4

{P1} c {P4}

If
{P ∗ e} cthen {Q} {P ∗ ¬e} celse {Q}

{P} if e then cthen else celse {Q}

Skip

{P} skip {P}

Disjunction
{P1} c {Q} {P2} c {Q}

{P1 ∨ P2} c {Q}

Substitution
{P} c {Q} fpv(E) ∩mod(c) = ∅

{P [E/V ]} c {Q[E/V ]}

NoOp
{P ∗ token(Vt1) ∗ no op(Vt1, Vt2)} c {Q}

{P ∗ token(Vt2)} c {Q}

Leak
{P} c {Q ∗R}
{P} c {Q}

Split
{P ∗ token(Vt2) ∗ token(Vt3)} c {Q}

{P ∗ token(Vt1) ∗ split(Vt1, Vt2, Vt3)} c {Q}

Join
{P ∗ token(Vt3)} c {Q}

{P ∗ token(Vt1) ∗ token(Vt2) ∗ join(Vt1, Vt2, Vt3)} c {Q}

Bio
v /∈ fpv(Er)

{bio(Vt1, e, Er, Vt2) ∗ token(Vt1)} v := bio(e) {v = Er ∗ token(Vt2)}

Frame
{P} c {Q} fpv(R) ∩mod(c) = ∅

{P ∗R} c {Q ∗ R}

Exists
{P} c {Q}

{∃V. P} c {∃V. Q}

FuncCall
{P} c {Q} fpv(P ) ⊆ v fpv(Q) ⊆ v ∪ {result}

v /∈ fpv(e) (f, (v), c) ∈ FuncDefs

{P [e/v]} v := f(e) {Q[e, v/v, result]}

Fig. 7. Proof rules

We say a Hoare triple {P} c {Q} is derivable, written � {P} c {Q}, if it can
be derived using these proof rules.

For the Consequence rule, we define implication of assertions as

∀P,Q . P ⇒ Q ⇐⇒ ∀s, h, i . Ifix, s, h, i |= P ⇒ Ifix, s, h, i |= Q

Note that�V ∈ZP ⇒ P [E/V ]∗�V ∈Z(if V = E then emp else P ) if V /∈ fv(E),
where fv(E) returns the set of free variables of E.
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4 Soundness

Theorem 1 (Soundness). ∀P, c,Q. � {P} c {Q} ⇒ |= {P} c {Q}.
Proof. Due to space limits, we only outline some cases of the induction on
� {P} c {Q} which is nested in an induction on s, c ⇓ s′, τ, κ. In these cases
we know Ifix, s, h, i |= P .

– Bio: Because of the Bio proof rule, we know there is some Er, v, bio, Vt1, e,
Er, Vt2 such that P = bio(Vt1, e, Er, Vt2) ∗ token(Vt1), c = v := bio(e), and
Q = (v = Er ∗ token(Vt2)).
We consider the case where the step rule that applies is Bio (the other case,
where the step rule is Empty, is trivial). We know s, c ⇓ s′, τ, κ. Thus there
is some n such that τ = bio(�e�s, n) :: nil.
If n �= �Er�s,i we need to prove that there is some g such that

{
h
}
τ
{
g
}
.

Note that κ = partial. Let g = ⊥. By applying the TraceBio and the
TraceContradict rule, we obtain

{
h
}
τ
{
g
}
.

If n = �Er�s,i, we know h = {[bio(�Vt1�s,i, �e�s, n, �Vt2�s,i), token(�Vt1�s,i)]}.
Let g = {[token(�Vt2�s,i)]}. Because of the TraceBio rule, we obtain

{
h
}
τ
{
g
}
,

which we wanted to prove. Because of the Bio step rule we know κ = done.
Ifix, s

′, g, i |= Q follows from the equalities of Q and g given above, and from
s′ = s[v := n], which we know because of the Bio step rule.

– Frame: Because of the Frame proof rule, there is some P0, Q0, R such that
P = P0 ∗ R, Q = Q0 ∗ R and � {P0} c {Q0}. Because P = P0 ∗ R and
Ifix, s, h, i |= P , there is some h0, hr such that h0 + hr = h ∧ Ifix, s, h0, i |=
P0 ∧ Ifix, s, hr, i |= R.
Because of the induction hypothesis, we know |= {P0} c {Q0}. Thus for some
h′
0, it holds that

{
h0

}
τ
{
h′
0

}
and κ = done ⇒ Ifix, s

′, h′
0, i |= Q0.

Let g = h′
0 + hr. By applying the TraceFrame rule, we obtain

{
h
}
τ
{
g
}
,

which is what we wanted to prove.
If κ = done, we need to prove that Ifix, s

′, g, i |= Q.
Because fpv(R) ∩ mod(c) = ∅ and s, c ⇓ s′, τ, κ and Ifix, s, hr, i |= R, we
obtain Ifix, s

′, hr, i |= R.
Combined with Ifix, s

′, h′
0, i |= Q0 we know Ifix, s

′, g, i |= Q by definition of
∗.

– Split: Because of the Split proof rule, there is some P1, Vt1, Vt2, Vt3 such that
P =P1∗token(Vt1)∗split(Vt1, Vt2, Vt3). LetP0 = P1∗token(Vt2)∗token(Vt3).
We know h = hp1 + {[token(�Vt1�s,i), split(�Vt1, Vt2, Vt3�s,i)]} for some hp1.
Let h0 = hp1 + {[token(�Vt2�s,i), token(�Vt3�s,i)]}.
Because of the induction hypothesis,|= {P0} c {Q}. Combined with Ifix, s, h0, i
|= P0, we obtain there is some g such that

{
h0

}
τ
{
g
}
.

By using the TraceSplit and TraceFrame rule, we know
{
h
}
nil

{
h0

}
. Now we

can apply the TraceComposition rule to obtain
{
h
}
τ
{
g
}
, which we wanted

to prove.
Because |= {P0} c {Q} and Ifix, s, h0, i |= P0, we know κ=done⇒ Ifix, s

′, g, i
|= Q.
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5 Examples

We give some examples of contracts.

5.1 Tee

Figure 8 lists the implementation and specification of a program that reads from
standard input (until end-of-file), and writes what it reads to both standard
output and standard error. The contract is written in a compositional manner: an
action tee out represents the action of writing to both standard output (stdout)
and standard error (stderr). The action that represents the whole program, tee,
is built upon the tee out action. The specifications allow a read-buffer of any
size. The implementation chooses a read-buffer of size 2. The reads predicate
defined in Section 3.1 (p. 164) is used.

Figure 9 gives a proof outline for the tee out function and the main function.

5.2 Read Files Mentioned in a File

The specification of Figure 10 allows the program to read a file, “f”, which
contains filenames (of length one character). The files mentioned in this file are
read. The program prints to standard output the contents of these files in order.
To make the example more interesting, the specifications allow the program to
choose whether to output a read character as soon as possible or postpone it, and
whether to read a file as soon as possible or postpone it after or while reading
“f”. Filenames that consist of the zero character or non 7bit-ASCII are ignored.

predicate tee out(T 1, C, T 2) = ∃T p1, T p2, T r1, T r2.
split(T 1, T p1, T r1)
∗ stdout(T p1, C, , T p2)
∗ stderr(T r1, C, , T r2)
∗ join(T p2, T r2, T 2)

function tee out(c) ={
token(T 1) ∗ tee out(T 1, c, T 2)

}
stdout(c);
stderr(c){
token(T 2)

}

predicate tee outs(T 1,Text, T 2) = ∃T out.
if Text = nil then T 2 = T 1 else (

tee out(T 1, head(Text), T out)
∗ tee outs(T out, tail(Text), T 2) )

predicate tee(T 1,Text, T 2) = ∃T r1, Tw1, T r2, Tw2.
split(T 1, T r1, Tw1)

∗ reads(T r1,Text, T r2)
∗ tee outs(Tw1,Text, Tw2)
∗ join(T r2, Tw2, T 2)

function main() ={
token(T 1) ∗ tee(T 1,Text, T 2)

}
c2 := 0;
while c2 ≥ 0 do (

c1 := read();
if c1 ≥ 0 then

c2 := read();
tee out(c1);
if c2 ≥ 0 then

tee out(c2)
else skip

else
c2 := −1 ){

token(T 2)
}

Fig. 8. Specification and implementation of the Tee program
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function tee out(c) ={
token(T 1) ∗ tee out(T 1, c, T 2)

}
⎧⎨
⎩

token(T p1 ∗ stdout(T p1, c, , T p2)
∗ token(T r1) ∗ stderr(T r1, c, , T r2)
∗ join(T p2, T r2, T 2)

⎫⎬
⎭

stdout(c);⎧⎨
⎩

token(T p2) ∗ token(T r1)
∗ stderr(T r1, c, , T r2)
∗ join(T p2, T r2, T 2)

⎫⎬
⎭

stderr(c){
token(T p2) ∗ token(T r2)
∗ join(T p2, T r2, T 2)

}
{
token(T 2)

}

predicate invariant(C2, T 2) =
∃T r1, T r2, Tw1, Tw2.

if C2 ≥ 0 then
token(T r1)
∗ reads(T r1,Text, T r2)
∗ token(Tw1)
∗ tee outs(Tw1,Text, Tw2)
∗ join(T r2, Tw2, T 2)

else token(T 2)

function main() ={
token(T 1) ∗ tee(T 1,FullText, T 2)

}
c2 := 0;{
invariant(c2, T 2)

}
while c2 ≥ 0 do ({

invariant(c2, T 2)
}

c1 := read();
if c1 ≥ 0 then (⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

token(T rb1)
∗ reads(T rb1,Sub, T r2)
∗ token(Tw1)
∗ tee outs(Tw1, c1 :: Sub, Tw2)
∗ join(T r2, Tw2, T 2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

c2 := read();⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

token(T rb2) ∗ token(Tw1)
∗ if c2 ≥ 0 then

reads(T rb2,SubSub, T r2)
∗ tee outs(Tw1,

c1 :: c2 :: SubSub, Tw2)
else (

T r2 = T rb2

∗ tee outs(Tw1, c1 :: nil, Tw2) )
∗ join(T r2, Tw2, T 2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

tee out(c1);
if c2 ≥ 0 then (⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

token(T rb2)
∗ reads(T rb2,SubSub, T r2)
∗ token(Twb1)
∗ tee outs(Twb1, c2 :: SubSub, Tw2)
∗ join(T r2, Tw2, T 2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

tee out(c2){
invariant(c2, T 2)

}
) else ({

c2 < 0 ∗ token(T 2)
}

){
invariant(c2, T 2)

}
) else ({

token(T 2)
}

c2 := −1;{
invariant(c2, T 2)

}
){
invariant(c2, T 2)

}
){
token(T 2)

}

Fig. 9. Proof outline of the tee out and main function of the tee program
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predicate freads(T 1, F,Text, T end) =
∃C,Sub, T 2.

fread(T 1, F, C, T 2)
∗ if C ≥ 0 then

freads(T 2, F,Sub, T end)
∗ Text = C :: Sub

else (
T end = T 2

∗ Text = nil)

predicate get file(T 1,Name,Text,
T end) =
∃Handle, T 2, T 3.

fopen(T 1,Name,Handle, T 2)
∗ freads(T 2,Handle,Text, T 3)
∗ fclose(T 3,Handle, , T end)

predicate prints(T 1,Text, T end) =
∃T 2.

if Text = nil then
T end = T 1

else (
print(T 1, head(Text), , T 2)
∗ prints(T 2, tail(Text), T end))

predicate get files(T 1,FNames,
Text, T end) =
∃Text1,Text2, T 2,Fname,SubNames.

if FNames = nil then
T end = T 1

∗ Text = nil
else (

get file(T 1,Fname :: nil,Text1, T 2)
∗ get files(T 2,SubNames,Text2, T end)
∗ Fnames = Fname :: SubNames
∗ Text = Text1++Text2)

predicate read fname list(T 1,Handle,
FNames, T end) =
∃C, T 2,Sub.

fread(T 1,Handle, C, T 2)
∗ if C ≥ 0 then

read fname list(T 2,Handle,Sub, T end)
∗ if C > 0 ∧ C ≤ 127 then

FNames = C :: Sub
else

FNames = Sub
else (

T end = T 2

∗ FNames = nil)

predicate main(T 1,Fname, T end) =
∃T 2, Tmeta, T rw,FNames, Tmeta2, T r, Tw,
Tmeta3, T r2, Tw2, T rw2,Handle .

fopen(T 1,Fname,Handle, T 2)
∗ split(T 2, Tmeta, T rw)

∗ read fname list(Tmeta,Handle,
FNames, Tmeta2)

∗ fclose(Tmeta2,Handle, Tmeta3)
∗ split(T rw, T r, Tw)

∗ get files(T r,FNames,Text, T r2)
∗ prints(Tw,Text, Tw2)

∗ join(T r2, Tw2, T rw2)
∗ join(Tmeta3, T rw2, T end)

function main() ={
token(T 1) ∗main(T 1, ‘f’ :: nil, T 2)

}
. . .{
token(T 2)

}

Fig. 10. Specification of a program that prints the contents of all files whose filenames
are in a given list. This list is not static, it is read from a file “f”.
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The predicates representing actions are written on top of standard library
actions like fopen for opening a file. These could be BIOs, but they can also be
predicates built on top of lower-level actions, e.g. system calls.

The implementation is left out. As mentioned earlier, a verified implementa-
tion is shipped as an example with VeriFast.

5.3 Print Any String of the Grammar of Matching Brackets

predicate brackets(T 1, T 2) =
∃T open, T center, T close.

no op(T 1, T 2)
∗ print(T 1, ‘(’, , T open)
∗ brackets(T open, T center)
∗ print(T center, ‘)’, , T close)
∗ brackets(T close, T 2)

function main() ={
token(T 1) ∗ brackets(T 1, T 2)

}
print(‘(’);
print(‘)’){
token(T 2)

}

Fig. 11. Specification of a program that is allowed to output any string of the matching
brackets grammar

The specification of Figure 11 states that the program is only allowed to
output a string of the grammar of matching brackets. Note that the specifications
do not specify which string: any string of the grammar is allowed. The grammar
under consideration is clearly visible in the specification, and is as follows:

B ::= (B)B | ε

Here, ε denotes the empty string. In the specification, ‘(’ and ‘)’ are shorthand
for 40 and 41 respectively (the ASCII number of these characters).

5.4 Turing Machine

This example’s only purpose is to illustrate the expressiveness of the contracts,
i.e. it is not an example of a typical contract. It is possible to define a predicate

predicate tm(T 1,EncodingOfTM, InitialState,TapeLeft,TapeRight, T 2)

that expresses that the allowed I/O actions are the actions a Turing machine,
given as second argument, performs. In other words, the program under con-
sideration is allowed to perform the I/O actions that the Turing machine (TM)
performs. The TM is encoded as a list of integers by serializing the table represen-
tation of the TM’s transition function. The states and symbols are represented
using integers.

Normally, the transition function of a TM maps the state and the symbol read
from the tape, to the symbol to write on the tape, a new state, and an action:
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whether the TM’s tape should move left, right, or not move. Typically, a TM
accepts an input if the machine ends in an accepting state when launched from
the full input on its tape. To make it more interactive, we add one input and one
output action. The output action prints (i.e. writes to the world) the symbol on
the tape without moving the tape. The tape does not move. The input action
reads a symbol from the world and puts it on the tape at the current position.

A benefit of this approach is that it supports nonterminating programs nat-
urally. The TM does not have to terminate. If the program terminates, it must
have performed all the I/O actions the TM does (otherwise it will not obtain its
postcondition token(T 2)), and the TM must have terminated as well.

Besides interactive and nonterminating I/O we also want underspecified in-
put/output. The specifications should thus allow multiple behaviors. This is easy
to deal with by making the TM non deterministic.

The code of this example is left out to save space, but an annotated C version
is shipped with VeriFast (see next section).

5.5 Mechanical Verification of the Examples

C versions of all examples in this paper have been mechanically verified using
the VeriFast [7] tool. This increases confidence that the approach is usable in
practice and not only on paper. The input of VeriFast is the C source code of the
program, the contracts of the functions, and extra annotations. With this input,
VeriFast outputs whether it is “convinced” the C implementation conforms to
the contracts. In case VeriFast says yes, we are sure the implementation is free
of bugs violating the contract (and basic properties like memory safety). Note
that this is not just detecting bugs: it proves absence of bugs.

The examples in this paper are included in the directory examples/io in
the VeriFast distribution. VeriFast is available from http://distrinet.cs.

kuleuven.be/software/VeriFast/.
VeriFast only performs very limited automated proof; non-trivial proof steps

must be explicitly specified in annotations. In particular, VeriFast does not en-
code predicates as SMT solver axioms; the user must explicitly fold and unfold
predicates through ‘open’ and ‘close’ annotations. Therefore, VeriFast typically
has a high annotation overhead and a short execution time. This is also the case
with the presented examples:

Example LoC Lines of annotations Time (ms)

Tee 24 54 192

Read files mentioned in a file 20 90 101

Matching brackets 4 20 96

Turing machine 7 58 103

Template method (Sec. 6) 39 77 60

http://distrinet.cs.kuleuven.be/software/VeriFast/
http://distrinet.cs.kuleuven.be/software/VeriFast/
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The reported timings are using the Redux SMT solver on a Intel Core i5 CPU
(max value of 10 runs).

6 Verifying Memory State Using I/O Style Verification

One might wonder whether there really is a difference between verifying I/O
behavior and verifying memory-state. For example, we could consider writing
to a file both as I/O and as performing memory operations. If the filesystem is
in memory, and we consider not only the process that writes the file but also
the kernel, then we are only manipulating memory. Therefore, verifying I/O and
verifying memory state can be considered as another point of view, and not
necessarily as technically different.

abstract class A {
void template() {
m1();
m2();

}
abstract void m1();
abstract void m2();

}

Fig. 12. Minimalistic example
of the Template Method de-
sign pattern (in Java)

The regular approach for verification using the
memory-state point of view can be insufficient for
verifying applications for which the I/O behav-
ior point of view is “natural”. For example, the
memory-state point of view usually only cares
about the state when the program has reached
the postcondition. This is insufficient for veri-
fying I/O behavior. First, for I/O applications,
nontermination is common and often not unde-
sired, hence it is normal that the postcondition is
never reached. Second, by looking only at (mem-
ory) state when the program has reached the
postcondition, we ignore intermediate state. For
I/O applications intermediate state is important:
for a movie player, not only the last frame but
all frames of the movie should be displayed cor-
rectly.

While the memory-state point of view can be insufficient from an I/O style
point of view, one might wonder what happens when we try the other way
around: what if we want to verify an application for which the memory-based
point of view is expected at first sight, from an I/O point of view.

This section will take a quick look at this question, by looking at one example
or use case: the Template Method design pattern.

Template Method [5] is an object-oriented design pattern in which an abstract
class has a method implementing an algorithm of which a number of steps are
delegated to subclasses. This delegation happens by calling abstract methods,
which subclasses can implement.

How can we write the contract of this template method? The method must
perform what the subclass’s hook methods (m1 and m2 in Figure 12) will do,
but we do not know what that will be. Furthermore, we do not want to change
the contract or perform verification again of the template method when new
subclasses are added. In this section, we will write an easy contract for the
template method using the approach of this paper.
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predicate token(A;T 1) = emp
predicate m1 io(A;T 1, T 2) = true
predicate m2 io(A;T 1, T 2) = true
class A =

method A.template() =⎧⎨
⎩

token(this;T 1)
∗ m1 io(this;T 1, T 2)
∗ m2 io(this;T 2, T 3)

⎫⎬
⎭

m1();
m2(){
token(this;T 3)

}

method A.m1() ={
token(this;T 1)
∗ m1 io(this;T 1, T 2)

}
{
token(this;T 2)

}
method A.m2() ={

token(this;T 1)
∗ m2 io(this;T 1, T 2)

}
{
token(this;T 2)

}

Fig. 13. A template method and its hook methods, with I/O style contracts. m1 io,
m2 io and token are predicate families. For a subclass with implementation of m1 and
m2, see Figure 14.

The language described so far does not support object-oriented programming,
so we extend the language in a standard way to support object field access,
method calls, casts, writing to object fields, object allocation and object deallo-
cation. We assume a set Classes quantified over with C, and set MethodNames
quantified over with m.

e ::= . . . | this
c ::= . . . | v := e.v | v := v.m(e) | v := (C)v | e.v := e | v := new(C) |

dispose(v)

We assume a set MethodDefs ⊂ C ×m× v × c and AbstractMethodDecls ⊂
C×m×v that describe the methods and abstract methods of the program under
consideration. We only consider valid sets: there is no overlap in arguments (v),
an (abstract) method cannot appear twice in the same class, and a method
cannot write to its arguments. We assume a partial function from Classes to
Classes expressing inheritance. We only support non-circular single inheritance.

The step semantics is extended as expected. Note that it will need a con-
crete heap, to keep track of (1) the values of object fields to support memory
(de)allocation and field access, and (2) the dynamic type of objects to support
dynamic binding of method calls.

The assertion language needs to be extended to support assertions describing
the fields of objects. We also need predicate families, i.e. predicates indexed by
class. This allows multiple versions of a predicate. For the semantics of predicate
families and proof rules, we refer to [10]. Furthermore, the assertions can describe
that an object is an instance of a class C (not a subclass of C). We drop the
keyword “token”. We drop support for split and join.

E ::= . . . | this
P ::= . . . | E.v �→ E | p(E;E) | E : C
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predicate token(B;T 1) = this.x �→ T 1

predicate m1 io(B;T 1, T 2) = T 2 = T 1 + 1
predicate m2 io(B;T 1, T 2) = T 2 = T 1 + 10
class B extends A =

field B.x

method B.m1() =⎧⎨
⎩

token(this, T 1)
∗ this : B
∗ m1 io(this;T 1, T 2)

⎫⎬
⎭

y := this.x;
this.x := y + 1{
token(this;T 2)

}

method B.m2() =⎧⎨
⎩

token(this;T 1)
∗ this : B
∗ m2 io(this;T 1, T 2)

⎫⎬
⎭

y := this.x;
this.x := y + 10{
token(this; T 2)

}
method B.getValue() ={

token(this; T 1)
}

result := this.x{
token(this; T 1) ∗ result = T 1

}

Fig. 14. A subclass implementing hook methods m1 and m2

Figure 13 shows how the contract of the template method can then be written.
Figure 14 shows an example of a subclass.

This section presented an approach for verifying memory, while Sec. 3 pre-
sented an approach for verifying I/O properties. Both are instantiations of the
same specification style. Note that the approach of Sec. 3 supports some more
features: nondeterminism/underspecification and interleaving.

An annotated Java version of the example of this section is shipped with
VeriFast.

7 Related Work

Approaches for verifying input/output behavior and case studies doing so have
been developed and performed before.

The Verisoft email client [1] has a verified fullscreen text-based user interface.
The approach identifies points in the main loop of the program, and restricts I/O
to the screen to only these points. This approach is elegant but does not scale.
A program of reasonable size typically uses libraries that also perform I/O.
A contribution of our approach is compositional I/O verification. This allows
verified libraries to perform I/O.

The heaps (not the assertions) of the approach described by this paper can
be represented using Petri nets. The assertions are more expressive by using
features such as using actions composed out of other actions. These features are
also present in coloured Petri nets [8], which is a generalization of Petri nets
where tokens are represented as data values. By modeling the contracts as a
coloured Petri net, one could analyse the contracts using techniques to analyze
coloured Petri nets. Note that the goal of our contribution is not just to model
input/output behavior, but to verify input/output behavior of programs.

Nakata and Uustalu [9] define a Hoare logic for a programming language with
tracing semantics. The assertion language is inspired by interval temporal logic.
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The programming language is defined using big step semantics, but relates a
program and a state to a trace, instead of to a state as is usually done. An asser-
tion can express properties of this (potentially infinite) trace. The paper rather
provides a framework to build upon than proposing a final assertion language.
In every example of the paper, the assertion language is extended to support
the example. Using such an extension it is possible to prove liveness properties,
which our approach does not support. The paper uses Coq and not a verifica-
tion tool specialized for software verification. It is unclear how well the approach
blends in with solutions for other problems, e.g. aliasing.

Linear Time Calculus (LTC) provides a methodology for modeling dynamic
systems in general in an extension of first order logic. In LTC, an action has an
argument which represents a point in (linear) time when the action happens.
Such a point in time is a natural number and is clearly before or after another
point in time. This differs from our approach where an action has two argu-
ments, each representing a place. A place is not always clearly before or after
another place. LTC is a generic approach, while our approach focuses on soft-
ware verification. For an explanation of LTC we refer to [2], which also shows
many tool-supported practical applications.

Model checking [3,11,4] allows checking whether properties written in a tem-
poral language such as LTL and CTL hold for a model. Such models can be
created automatically from the software subject to verification. Expressing tem-
poral properties in temporal languages is natural, making it a good candidate for
expressing input/output-related properties. Furthermore, liveness properties can
be expressed. The approach suffers from the state explosion problem, a problem
that remains after major improvements made in the last three decades [4].

Wisnesky, Malecha, and Morrisett [13] verify I/O properties by constraining
the list of performed actions in the postcondition, but this approach does not
seem to prevent nonterminating programs to perform undesired I/O.

8 Conclusions and Future Work

We identified several requirements for approaches that verify the input/output
behavior of computer programs, including modularity, compositionality, sound-
ness and non-determinism of the environment. We created a verification ap-
proach that meets these requirements.

Because the approach is designed to work compositionally and modularly, we
hope the approach works well for bigger applications, but to confirm this, a real-
world case study of considerable size should be carried out. Such a case study is
future work.
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discussions. This work was funded by Research Fund KU Leuven and by EU
FP7 FET-Open project ADVENT under grant number 308830.
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Arguments for Bit-Vector Programs�
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Abstract. Proving program termination is typically done by finding a
well-founded ranking function for the program states. Existing termina-
tion provers typically find ranking functions using either linear algebra
or templates. As such they are often restricted to finding linear rank-
ing functions over mathematical integers. This class of functions is in-
sufficient for proving termination of many terminating programs, and
furthermore a termination argument for a program operating on mathe-
matical integers does not always lead to a termination argument for the
same program operating on fixed-width machine integers. We propose
a termination analysis able to generate nonlinear, lexicographic rank-
ing functions and nonlinear recurrence sets that are correct for fixed-
width machine arithmetic and floating-point arithmetic. Our technique
is based on a reduction from program termination to second-order sat-
isfaction. We provide formulations for termination and non-termination
in a fragment of second-order logic with restricted quantification which
is decidable over finite domains [1]. The resulting technique is a sound
and complete analysis for the termination of finite-state programs with
fixed-width integers and IEEE floating-point arithmetic.

Keywords: Termination, Non-Termination, Lexicographic Ranking Func-
tions, Bit-vector Ranking Functions, Floating-Point Ranking Functions.

1 Introduction

The halting problem has been of central interest to computer scientists since
it was first considered by Turing in 1936 [2]. Informally, the halting problem is
concerned with answering the question “does this program run forever, or will
it eventually terminate?”

Proving program termination is typically done by finding a ranking function
for the program states, i.e. a monotone map from the program’s state space to
a well-ordered set. Historically, the search for ranking functions has been con-
strained in various syntactic ways, leading to incompleteness, and is performed
over abstractions that do not soundly capture the behaviour of physical comput-
ers. In this paper, we present a sound and complete method for deciding whether
a program with a fixed amount of storage terminates. Since such programs are

� Supported by UK EPSRC EP/J012564/1 and ERC project 280053.

c© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 183–204, 2015.
DOI: 10.1007/978-3-662-46669-8_8



184 C. David, D. Kroening, and M. Lewis

necessarily finite state, our problem is much easier than Turing’s, but is a better
fit for analysing computer programs.

When surveying the area of program termination chronologically, we observe
an initial focus on monolithic approaches based on a single measure shown to
decrease over all program paths [3,4], followed by more recent techniques that
use termination arguments based on Ramsey’s theorem [5,6,7]. The latter proof
style builds an argument that a transition relation is disjunctively well founded
by composing several small well-foundedness arguments. The main benefit of
this approach is the simplicity of local termination measures in contrast to global
ones. For instance, there are cases in which linear arithmetic suffices when using
local measures, while corresponding global measures require nonlinear functions
or lexicographic orders.

One drawback of the Ramsey-based approach is that the validity of the termi-
nation argument relies on checking the transitive closure of the program, rather
than a single step. As such, there is experimental evidence that most of the
effort is spent in reachability analysis [7,8], requiring the support of powerful
safety checkers: there is a trade-off between the complexity of the termination
arguments and that of checking their validity.

As Ramsey-based approaches are limited by the state of the art in safety check-
ing, recent research shifts back to more complex termination arguments that are
easier to check [8,9]. Following the same trend, we investigate its extreme: un-
restricted termination arguments. This means that our ranking functions may
involve nonlinearity and lexicographic orders: we do not commit to any particu-
lar syntactic form, and do not use templates. Furthermore, our approach allows
us to simultaneously search for proofs of non-termination, which take the form
of recurrence sets.

Figure 1 summarises the related work with respect to the restrictions they
impose on the transition relations as well as the form of the ranking functions
computed. While it supports the observation that the majority of existing ter-
mination analyses are designed for linear programs and linear ranking functions,
it also highlights another simplifying assumption made by most state-of-the-art
termination provers: that bit-vector semantics and integer semantics give rise
to the same termination behaviour. Thus, most existing techniques treat fixed-
width machine integers (bit-vectors) and IEEE floats as mathematical integers
and reals, respectively [7,10,3,11,12,8].

By assuming bit-vector semantics to be identical to integer semantics, these
techniques ignore the wrap-around behaviour caused by overflows, which can be
unsound. In Section 2, we show that integers and bit-vectors exhibit incompa-
rable behaviours with respect to termination, i.e. programs that terminate for
integers need not terminate for bit-vectors and vice versa. Thus, abstracting
bit-vectors with integers may give rise to unsound and incomplete analyses.

We present a technique that treats linear and nonlinear programs uniformly
and it is not restricted to finding linear ranking functions, but can also com-
pute lexicographic nonlinear ones. Our approach is constraint-based and relies
on second-order formulations of termination and non-termination. The obvious
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issue is that, due to its expressiveness, second-order logic is very difficult to rea-
son in, with many second-order theories becoming undecidable even when the
corresponding first-order theory is decidable. To make solving our constraints
tractable, we formulate termination and non-termination inside a fragment of
second-order logic with restricted quantification, for which we have built a solver
in [1]. Our method is sound and complete for bit-vector programs – for any pro-
gram, we find a proof of either its termination or non-termination.

Program
Ranking argument Rationals/Integers Reals Bit-vectors Floats

L NL L NL L NL L NL

Linear lexicographic [13,4,9,3] – [14] – � � � �
Linear non-lexicographic [10,7,15,11,12,8] [12] [14] – � [16] � [16] � �
Nonlinear lexicographic – – – – � � � �
Nonlinear non-lexicographic [12] [12] – – � � � �
Legend: �= we can handle; – = no available works; L = linear; NL = nonlinear

Fig. 1. Summary of related termination analyses

The main contributions of our work can be summarised as follows:

– We rephrased the termination and non-termination problems as second-order
satisfaction problems. This formulation captures the (non-)termination prop-
erties of all of the loops in the program, including nested loops. We can use
this to analyse all the loops at once, or one at a time. Our treatment handles
termination and non-termination uniformly: both properties are captured in
the same second-order formula.

– We designed a bit-level accurate technique for computing ranking functions
and recurrence sets that correctly accounts for the wrap-around behaviour
caused by under- and overflows in bit-vector and floating-point arithmetic.
Our technique is not restricted to finding linear ranking functions, but can
also compute lexicographic nonlinear ones.

– We implemented our technique and tried it on a selection of programs han-
dling both bit-vectors and floats. In our implementation we made use of a
solver for a fragment of second-order logic with restricted quantification that
is decidable over finite domains [1].

Limitations. Our algorithm proves termination for transition systems with fi-
nite state spaces. The (non-)termination proofs take the form of ranking func-
tions and program invariants that are expressed in a quantifier-free language.
This formalism is powerful enough to handle a large fragment of C, but is not
rich enough to analyse code that uses unbounded arrays or the heap. Similar to
other termination analyses [9], we could attempt to alleviate the latter limitation
by abstracting programs with heap to arithmetic ones [17]. Also, we have not
yet added support for recursion or goto to our encoding.
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2 Motivating Examples

Figure 1 illustrates the most common simplifying assumptions made by existing
termination analyses:

(i) programs use only linear arithmetic.
(ii) terminating programshave termination arguments expressible in linear arith-

metic.
(iii) the semantics of bit-vectors and mathematical integers are equivalent.
(iv) the semantics of IEEE floating-point numbers and mathematical reals are

equivalent.

To show how these assumptions are violated by even simple programs, we draw
the reader’s attention to the programs in Figure 2 and their curious properties:

– Program (a) breaks assumption (i) as it makes use of the bit-wise & operator.
Our technique finds that an admissible ranking function is the linear function
R(x) = x, whose value decreases with every iteration, but cannot decrease
indefinitely as it is bounded from below. This example also illustrates the
lack of a direct correlation between the linearity of a program and that of
its termination arguments.

– Program (b) breaks assumption (ii), in that it has no linear ranking function.
We prove that this loop terminates by finding the nonlinear ranking function
R(x) = |x|.

– Program (c) breaks assumption (iii). This loop is terminating for bit-vectors
since x will eventually overflow and become negative. Conversely, the same
program is non-terminating using integer arithmetic since x > 0 → x+1 > 0
for any integer x.

– Program (d) also breaks assumption (iii), but “the other way”: it terminates
for integers but not for bit-vectors. If each of the variables is stored in an
unsigned k-bit word, the following entry state will lead to an infinite loop:

M = 2k − 1, N = 2k − 1, i = M, j = N − 1

– Program (e) breaks assumption (iv): it terminates for reals but not for floats.
If x is sufficiently large, rounding error will cause the subtraction to have no
effect.

– Program (f) breaks assumption (iv) “the other way”: it terminates for floats
but not for reals. Eventually x will become sufficiently small that the nearest
representable number is 0.0, at which point it will be rounded to 0.0 and the
loop will terminate.

Up until this point, we considered examples that are not soundly treated
by existing techniques as they don’t fit in the range of programs addressed by
these techniques. Next, we look at some programs that are handled by existing
termination tools via dedicated analyses. We show that our method handles
them uniformly, without the need for any special treatment.
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while ( x > 0) {
x = (x − 1) & x ;

}

(a) Taken from [16]

while ( x != 0) {
x = −x / 2 ;

}

(b)

while ( x > 0) {
x++;

}

(c)

while ( i<M | | j<N) {
i = i + 1 ;
j = j + 1 ;

}

(d) Taken from [18]

f l oat x ;

while ( x > 0 . 0 ) {
x −= 1 . 0 ;

}

(e)

f loat x ;

while ( x > 0 . 0 ) {
x ∗= 0 . 5 ;

}

(f)

while ( x != 0) {
i f ( x > 0)

x−−;
else

x++;
}

(g) Taken from [9]

y = 1 ;

while ( x > 0) {
x = x − y ;

}

(h)

while (x>0 && y>0 && z>0){
i f ( y > x) {

y = z ;
x = nondet ( ) ;
z = x − 1 ;

} else {
z = z − 1 ;
x = nondet ( ) ;
y = x − 1 ;

}
}

(i) Taken from [19]

Fig. 2. Motivational examples, mostly taken from the literature
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– Program (g) is a linear program that is shown in [9] not to admit (with-
out prior manipulation) a lexicographic linear ranking function. With our
technique we can find the nonlinear ranking function R(x) = |x|.

– Program (h) illustrates conditional termination. When proving program ter-
mination we are simultaneously solving two problems: the search for a ter-
mination argument, and the search for a supporting invariant [20]. For this
loop, we find the ranking function R(x) = x together with the supporting
invariant y = 1.

– For program(i) we find a nonlinear lexicographic ranking functionR(x, y, z) =
(x < y, z).1 We are not aware of any linear ranking function for this program.

As with all of the termination proofs presented in this paper, the ranking func-
tions above were all found completely automatically.

3 Preliminaries

Given a program, we first formalise its termination argument as a ranking func-
tion (Section 3.1). Subsequently, we discuss bit-vector semantics and illustrate
differences between machine arithmetic and integer arithmetic that show that
the abstraction of bit-vectors to mathematical integers is unsound (Section 3.2).

3.1 Termination and Ranking Functions

A program P is represented as a transition system with state space X and
transition relation T ⊆ X ×X . For a state x ∈ X with T (x, x′) we say x′ is a
successor of x under T .

Definition 1 (Unconditional termination). A program is said to be uncon-
ditionally terminating if there is no infinite sequence of states x1, x2, . . . ∈ X
with ∀i. T (xi, xi+1).

We can prove that the program is unconditionally terminating by finding a
ranking function for its transition relation.

Definition 2 (Ranking function). A function R : X → Y is a ranking func-
tion for the transition relation T if Y is a well-founded set with order > and R
is injective and monotonically decreasing with respect to T . That is to say:

∀x, x′ ∈ X.T (x, x′) ⇒ R(x) > R(x′)
1 This termination argument is somewhat subtle. The Boolean values false and true
are interpreted as 0 and 1, respectively. The Boolean x < y thus eventually decreases,
that is to say once a state with x ≥ y is reached, x never again becomes greater than
y. This means that as soon as the “else” branch of the if statement is taken, it will
continue to be taken in each subsequent iteration of the loop. Meanwhile, if x < y
has not decreased (i.e., we have stayed in the same branch of the “if”), then z does
decrease. Since a Boolean only has two possible values, it cannot decrease indefinitely.
Since z > 0 is a conjunct of the loop guard, z cannot decrease indefinitely, and so R
proves that the loop is well founded.
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Definition 3 (Linear function). A linear function f : X → Y with dim(X) =
n and dim(Y ) = m is of the form:

f(x) = Mx

where M is an n×m matrix.

In the case that dim(Y ) = 1, this reduces to the inner product

f(x) = λ·x+ c .

Definition 4 (Lexicographic ranking function). For Y = Zm, we say that
a ranking function R : X → Y is lexicographic if it maps each state in X to
a tuple of values such that the loop transition leads to a decrease with respect
to the lexicographic ordering for this tuple. The total order imposed on Y is the
lexicographic ordering induced on tuples of Z’s. So for y = (z1, . . . , zm) and
y′ = (z′1, . . . , z

′
m):

y > y′ ⇐⇒ ∃i ≤ m.zi > z′i ∧ ∀j < i.zj = z′j

We note that some termination arguments require lexicographic ranking func-
tions, or alternatively, ranking functions whose co-domain is a countable ordinal,
rather than just N.

3.2 Machine Arithmetic vs. Peano Arithmetic

Physical computers have bounded storage, which means they are unable to per-
form calculations on mathematical integers. They do their arithmetic over fixed-
width binary words, otherwise known as bit-vectors. For the remainder of this
section, we will say that the bit-vectors we are working with are k-bits wide,
which means that each word can hold one of 2k bit patterns. Typical values for
k are 32 and 64.

Machine words can be interpreted as “signed” or “unsigned” values. Signed
values can be negative, while unsigned values cannot. The encoding for signed
values is two’s complement, where the most significant bit bk−1 of the word is
a “sign” bit, whose weight is −(2k − 1) rather than 2k − 1. Two’s complement
representation has the property that ∀x.− x = (∼x) + 1, where ∼(•) is bitwise
negation. Two’s complement also has the property that addition, multiplication
and subtraction are defined identically for unsigned and signed numbers.

Bit-vector arithmetic is performed modulo 2k, which is the source of many of
the differences between machine arithmetic and Peano arithmetic2. To give an
example, (2k − 1)+1 ≡ 0 (mod 2k) provides a counterexample to the statement
∀x.x + 1 > x, which is a theorem of Peano arithmetic but not of modular
arithmetic. When an arithmetic operation has a result greater than 2k, it is said

2 ISO C requires that unsigned arithmetic is performed modulo 2k, whereas the over-
flow case is undefined for signed arithmetic. In practice, the undefined behaviour is
implemented just as if the arithmetic had been unsigned.
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to “overflow”. If an operation does not overflow, its machine-arithmetic result is
the same as the result of the same operation performed on integers.

The final source of disagreement between integer arithmetic and bit-vector
arithmetic stems from width conversions. Many programming languages allow
numeric variables of different types, which can be represented using words of
different widths. In C, a short might occupy 16 bits, while an int might occupy
32 bits. When a k-bit variable is assigned to a j-bit variable with j < k, the
result is truncated mod 2j . For example, if x is a 32-bit variable and y is a 16-bit
variable, y will hold the value 0 after the following code is executed:

x = 65536 ;
y = x ;

As well as machine arithmetic differing from Peano arithmetic on the opera-
tors they have in common, computers have several “bitwise” operations that are
not taken as primitive in the theory of integers. These operations include the
Boolean operators and, or, not, xor applied to each element of the bit-vector.
Computer programs often make use of these operators, which are nonlinear when
interpreted in the standard model of Peano arithmetic3.

4 Termination as Second-Order Satisfaction

The problem of program verification can be reduced to the problem of finding
solutions to a second-order constraint [21,22]. Our intention is to apply this ap-
proach to termination analysis. In this section we show how several variations of
both the termination and the non-termination problem can be uniformly defined
in second-order logic.

Due to its expressiveness, second-order logic is very difficult to reason in, with
many second-order theories becoming undecidable even when the corresponding
first-order theory is decidable. In [1], we have identified and built a solver for
a fragment of second-order logic with restricted quantification, which we call
second-order SAT (see Definition 5).

Definition 5 (Second-Order SAT).

∃S1 . . . Sm.Q1x1 . . .Qnxn.σ

Where the Si’s range over predicates, the Qi’s are either ∃ or ∀, the xi’s range
over Boolean values, and σ is a quantifier-free propositional formula whose free
variables are the xi’s. Each Si has an associated arity ar(Si) and Si ⊆ B

ar(Si).
Note that Q1x1 . . .Qnxn.σ is the special case of a propositional formula with
first-order quantification, i.e. QBF.

We note that by existentially quantifying over Skolem functions, formulae
with arbitrary first-order quantification can be brought into the synthesis frag-
ment [23], so the fragment is semantically less restrictive than it looks.

3 Some of these operators can be seen as linear in a different algebraic structure,
e.g. xor corresponds to addition in the Galois field GF(2k).
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In the rest of this section, we show that second-order SAT is expressive enough
to encode both termination and non-termination.

4.1 An Isolated, Simple Loop

We will begin our discussion by showing how to encode in second-order SAT the
(non-)termination of a program consisting of a single loop with no nesting. For
the time being, a loop L(G, T ) is defined by its guard G and body T such that
states x satisfying the loop’s guard are given by the predicate G(x). The body
of the loop is encoded as the transition relation T (x, x′), meaning that state x′

is reachable from state x via a single iteration of the loop body. For example,
the loop in Figure 2a is encoded as:

G(x) = {x | x > 0}
T (x, x′) = {〈x, x′〉 | x′ = (x− 1)& x}

We will abbreviate this with the notation:

G(x) � x > 0

T (x, x′) � x′ = (x − 1)& x

Unconditional Termination. We say that a loop L(G, T ) is uncondition-
ally terminating iff it eventually terminates regardless of the state it starts in.
To prove unconditional termination, it suffices to find a ranking function for
T ∩ (G×X), i.e. T restricted to states satisfying the loop’s guard.

Theorem 1. The loop L(G, T ) terminates from every start state iff formula
[UT] (Definition 6, Figure 3) is satisfiable.

As the existence of a ranking function is equivalent to the satisfiability of the
formula [UT], a satisfiability witness is a ranking function and thus a proof of
L’s unconditional termination.

Returning to the program from Figure 2a, we can see that the correspond-
ing second-order SAT formula [UT] is satisfiable, as witnessed by the function
R(x) = x. Thus, R(x) = x constitutes a proof that the program in Figure 2a is
unconditionally terminating.

Note that different formulations for unconditional termination are possible.
We are aware of a proof rule based on transition invariants, i.e. supersets of the
transition relation’s transitive closure [21]. This formulation assumes that the
second-order logic has a primitive predicate for disjunctive well-foundedness. By
contrast, our formulation in Definition 6 does not use a primitive disjunctive
well-foundedness predicate.

Non-termination. Dually to termination, we might want to consider the non-
termination of a loop. If a loop terminates, we can prove this by finding a ranking
function witnessing the satisfiability of formula [UT]. What then would a proof
of non-termination look like?
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Definition 6 (Unconditional Termination Formula [UT]).

∃R.∀x, x′.G(x) ∧ T (x, x′) → R(x) > 0 ∧R(x) > R(x′)

Definition 7 (Non-Termination Formula – Open Recurrence Set
[ONT]).

∃N,x0.∀x.∃x′.N(x0) ∧
N(x) → G(x) ∧
N(x) → T (x, x′) ∧N(x′)

Definition 8 (Non-Termination Formula – Closed Recurrence Set
[CNT]).

∃N,x0.∀x, x′.N(x0) ∧
N(x) → G(x) ∧
N(x) ∧ T (x, x′) → N(x′)

Definition 9 (Non-Termination Formula – Skolemized Open Recurrence
Set [SNT]).

∃N,C, x0.∀x.N(x0) ∧
N(x) → G(x) ∧
N(x) → T (x,C(x)) ∧N(C(x))

Fig. 3. Formulae encoding the termination and non-termination of a single loop

Since our program’s state space is finite, a transition relation induces an infi-
nite execution iff some state is visited infinitely often, or equivalently ∃x.T+(x, x).
Deciding satisfiability of this formula directly would require a logic that includes
a transitive closure operator, •+. Rather than introduce such an operator, we
will characterise non-termination using the second-order SAT formula [ONT]
(Definition 7, Figure 3) encoding the existence of an (open) recurrence set, i.e. a
nonempty set of states N such that for each s ∈ N there exists a transition to
some s′ ∈ N [24].

Theorem 2. The loop L(G, T ) has an infinite execution iff formula [ONT]
(Definition 7) is satisfiable.

If this formula is satisfiable, N is an open recurrence set for L, which proves
L’s non-termination. The issue with this formula is the additional level of quan-
tifier alternation as compared to second-order SAT (it is an ∃∀∃ formula). To
eliminate the innermost existential quantifier, we introduce a Skolem function C
that chooses the successor x′, which we then existentially quantify over. This
results in formula [SNT] (Definition 9, Figure 3).
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Theorem 3. Formula [ONT] (Definition 7) and formula [SNT] (Definition 9)
are equisatisfiable.

This extra second-order term introduces some complexity to the formula,
which we can avoid if the transition relation T is deterministic.

Definition 10 (Determinism). A relation T is deterministic iff each state x
has exactly one successor under T :

∀x.∃x′.T (x, x′) ∧ ∀x′′.T (x, x′′) → x′′ = x′

In order to describe a deterministic program in a way that still allows us to
sensibly talk about termination, we assume the existence of a special sink state s
with no outgoing transitions and such that ¬G(s) for any of the loop guards G.
The program is deterministic if its transition relation is deterministic for all
states except s.

When analysing a deterministic loop, we can make use of the notion of a closed
recurrence set introduced by Chen et al. in [25]: for each state in the recurrence
set N , all of its successors must be in N . The existence of a closed recurrence
set is equivalent to the satisfiability of formula [CNT] in Definition 8, which is
already in second-order SAT without needing Skolemization.

We note that if T is deterministic, every open recurrence set is also a closed
recurrence set (since each state has at most one successor). Thus, the non-
termination problem for deterministic transition systems is equivalent to the
satisfiability of formula [CNT] from Figure 3.

Theorem 4. If T is deterministic, formula [ONT] (Definition 7) and formula
[CNT] (Definition 8) are equisatisfiable.

So if our transition relation is deterministic, we can say, without loss of gener-
ality, that non-termination of the loop is equivalent to the existence of a closed
recurrence set. However, if T is non-deterministic, it may be that there is an open
recurrence set but not closed recurrence set. To see this, consider the following
loop:

while ( x != 0) {
y = nondet ( ) ;
x = x−y ;

}
It is clear that this loop has many non-terminating executions, e.g. the ex-

ecution where nondet() always returns 0. However, each state has a successor
that exits the loop, i.e. when nondet() returns the value currently stored in x.
Thus, this loop has an open recurrence set, but no closed recurrence set and
hence we cannot give a proof of its non-termination with [CNT] and instead
must use [SNT].

4.2 An Isolated, Nested Loop

Termination. If a loop L(G, T ) has another loop L′(G′, T ′) nested inside it, we
cannot directly use [UT] to express the termination of L. This is because the
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single-step transition relation T must include the transitive closure of the inner
loop T ′∗, and we do not have a transitive closure operator in our logic. Therefore
to encode the termination of L, we construct an over-approximation To ⊇ T and
use this in formula [UT] to specify a ranking function. Rather than explicitly
construct To using, for example, abstract interpretation, we add constraints to
our formula that encode the fact that To is an over-approximation of T , and that
it is precise enough to show that R is a ranking function.

As the generation of such constraints is standard and covered by several other
works [21,22], we will not provide the full algorithm, but rather illustrate it
through the example in Figure 4. For the current example, the termination
formula is given on the right side of Figure 4: To is a summary of L1 that
over-approximates its transition relation; R1 and R2 are ranking functions for
L1 and L2, respectively.
Non-termination. Dually to termination, when proving non-termination, we
need to under-approximate the loop’s body and apply formula [CNT]. Under-
approximating the inner loop can be done with a nested existential quantifier,
resulting in ∃∀∃ alternation, which we could eliminate with Skolemization. How-
ever, we observe that unlike a ranking function, the defining property of a recur-
rence set is non relational – if we end up in the recurrence set, we do not care
exactly where we came from as long as we know that it was also somewhere in
the recurrence set. This allows us to cast non-termination of nested loops as the
formula shown in Figure 6, which does not use a Skolem function.

L1 :
while ( i<n){

j = 0 ;

L2 :
while ( j≤ i ){

j = j + 1 ;
}

i = i + 1;
}

∃To, R1, R2.∀i, j, n, i′, j′, n′.

i < n → To(〈i, j, n〉, 〈i, 0, n〉) ∧
j ≤ i ∧ To(〈i′, j′, n′〉, 〈i, j, n〉) → R2(i, j, n) > 0 ∧

R2(i, j, n) > R2(i, j + 1, n) ∧
To(〈i′, j′, n′〉, 〈i, j + 1, n〉) ∧

i < n ∧ S(〈i, j, n〉, 〈i′, j′, n′〉) ∧ j′ > i′ → R1(i, j, n) > 0 ∧
R1(i, j, n) > R1(i+ 1, j, n)

Fig. 4. A program with nested loops and its termination formula

Definition 11 (Conditional Termination Formula [CT]).

∃R,W.∀x, x′.I(x) ∧G(x) → W (x) ∧
G(x) ∧W (x) ∧ T (x, x′) → W (x′) ∧R(x) > 0 ∧R(x) > R(x′)

Fig. 5. Formula encoding conditional termination of a loop
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If the formula on the right-hand side of the figure is satisfiable, then L1 is
non-terminating, as witnessed by the recurrence set N1 and the initial state x0

in which the program begins executing. There are two possible scenarios for L2’s
termination:

– If L2 is terminating, then N2 is an inductive invariant that reestablished N1

after L2 stops executing: ¬G2(x) ∧N2(x) ∧ P2(x, x
′) → N1(x

′).
– If L2 is non-terminating, then N2 ∧G2 is its recurrence set.

4.3 Composing a Loop with the Rest of the Program

Sometimes the termination behaviour of a loop depends on the rest of the pro-
gram. That is to say, the loop may not terminate if started in some particular
state, but that state is not actually reachable on entry to the loop. The program
as a whole terminates, but if the loop were considered in isolation we would not
be able to prove that it terminates. We must therefore encode a loop’s interac-
tion with the rest of the program in order to do a sound termination analysis.

Let us assume that we have done some preprocessing of our program which
has identified loops, straight-line code blocks and the control flow between these.
In particular, the control flow analysis has determined which order these code
blocks execute in, and the nesting structure of the loops.

Conditional Termination. Given a loop L(G, T ), if L’s termination depends
on the state it begins executing in, we say that L is conditionally terminating.
The information we require of the rest of the program is a predicate I which
over-approximates the set of states that L may begin executing in. That is to
say, for each state x that is reachable on entry to L, we have I(x).

Theorem 5. The loop L(G, T ) terminates when started in any state satisfying
I(x) iff formula [CT] (Definition 11, Figure 5) is satisfiable.

If formula [CT] is satisfiable, two witnesses are returned:

L1 :
while (G1 ) {

P1 ;

L2 :
while (G2 ) {

B2 ;
}

P2 ;
}

∃N1, N2, x0.∀x, x′.

N1(x0)∧
N1(x) → G1(x)∧

N1(x) ∧ P1(x, x
′) → N2(x

′)∧
G2(x) ∧N2(x) ∧B2(x, x

′) → N2(x
′)∧

¬G2(x) ∧N2(x) ∧ P2(x, x
′) → N1(x

′)

Fig. 6. Formula encoding non-termination of nested loops
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– W is an inductive invariant of L that is established by the initial states I if
the loop guard G is met.

– R is a ranking function for L as restricted by W – that is to say, R need only
be well founded on those states satisfying W ∧ G. Since W is an inductive
invariant of L, R is strong enough to show that L terminates from any of its
initial states.

W is called a supporting invariant for L and R proves termination relative
to W . We require that I ∧G is strong enough to establish the base case of W ’s
inductiveness.

Conditional termination is illustrated by the program in Figure 2h, which is
encoded as:

I(〈x, y〉) � y = 1

G(〈x, y〉) � x > 0

T (〈x, y〉, 〈x′, y′〉) � x′ = x− y ∧ y′ = y

If the initial states I are ignored, this loop cannot be shown to terminate, since
any state with y = 0 and x > 0 would lead to a non-terminating execution.

However, formula [CT] is satisfiable, as witnessed by:

R(〈x, y〉) = x

W (〈x, y〉) � y = 1

This constitutes a proof that the program as a whole terminates, since the
loop always begins executing in a state that guarantees its termination.

4.4 Generalised Termination and Non-termination Formula

At this point, we know how to construct two formulae for a loop L: one that
is satisfiable iff L is terminating and another that is satisfiable iff it is non-
terminating. We will call these formulae φ and ψ, respectively:

∃PT .∀x, x′.φ(PT , x, x
′)

∃PN .∀x.ψ(PN , x)

We can combine these:

(∃PT .∀x, x′.φ(PT , x, x
′)) ∨ (∃PN .∀x. ψ(PN , x))

Which simplifies to:

Definition 12 (Generalised Termination Formula [GT]).

∃PT , PN .∀x, x′, y. φ(PT , x, x
′) ∨ ψ(PN , y)

Since L either terminates or does not terminate, this formula is a tautology
in second-order SAT. A solution to the formula would include witnesses PN and
PT , which are putative proofs of non-termination and termination respectively.
Exactly one of these will be a genuine proof, so we can check first one and then
the other.
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4.5 Solving the Second-Order SAT Formula

In order to solve the second-order generalised formula [GT], we use the solver
described in [1]. For any satisfiable formula, the solver is guaranteed to find a
satisfying assignment to all the second-order variables.

In the context of our termination analysis, such a satisfying assignment re-
turned by the solver represents either a proof of termination or non-termination,
and takes the form of an imperative program written in the language L. An
L-program is a list of instructions, each of which matches one of the patterns
shown in Figure 7. An instruction has an opcode (such as add for addition) and
one or more operands. An operand is either a constant, one of the program’s
inputs or the result of a previous instruction. The L language has various arith-
metic and logical operations, as well as basic branching in the form of the ite

(if-then-else) instruction.

Integer arithmetic instructions:
add a b sub a b mul a b div a b

neg a mod a b min a b max a b

Bitwise logical and shift instructions:
and a b or a b xor a b

lshr a b ashr a b not a

Unsigned and signed comparison instructions:
le a b lt a b sle a b

slt a b eq a b neq a b

Miscellaneous logical instructions:
implies a b ite a b c

Floating-point arithmetic:
fadd a b fsub a b fmul a b fdiv a b

Fig. 7. The language L

5 Soundness, Completeness and Complexity

In this section, we show that L is expressive enough to capture (non-)termination
proofs for every bit-vector program. By using this result, we then show that our
analysis terminates with a valid proof for every input program.

Lemma 1. Every function f : X → Y for finite X and Y is computable by a
finite L-program.

Proof. Without loss of generality, let X = Y = N
k
b the set of k-tuples of natural

numbers less than b. A very inefficient construction which computes the first
coordinate of the output y is:
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t1 = f(0)

t2 = v1 == 1

t3 = ITE(t2, f(1), t1)

t4 = v1 == 2

t5 = ITE(t4, f(2), t3)

...

Where the f(n) are literal constants that are to appear in the program text.
This program is of length 2b − 1, and so all k co-ordinates of the output y are
computed by a program of size at most 2bk − k.

Corollary 1. Every finite subset A ⊆ B is computable by a finite L-program by
setting X = B, Y = 2 in Lemma 1 and taking the resulting function to be the
characteristic function of A.

Theorem 6. Every terminating bit-vector program has a ranking function that
is expressible in L.
Proof. Let v1, . . . , vk be the variables of the program P under analysis, and let
each be b bits wide. Its state space S is then of size 2bk. A ranking function
R : S → D for P exists iff P terminates. Without loss of generality, D is
a well-founded total order. Since R is injective, we have that ‖D‖ ≥ ‖S‖. If
‖D‖ > ‖S‖, we can construct a function R′ : S → D′ with ‖D′‖ = ‖S‖ by just
setting R′ = R|S , i.e. R′ is just the restriction of R to S. Since S already comes
equipped with a natural well ordering we can also construct R′′ = ι ◦ R′ where
ι : D′ → S is the unique order isomorphism from D′ to S. So assuming that P
terminates, there is some ranking function R′′ that is just a permutation of S.
If the number of variables k > 1, then in general the ranking function will be
lexicographic with dimension ≤ k and each co-ordinate of the output being a
single b-bit value.

Then by Lemma 1 withX = Y = S, there exists a finite L-program computing
R′′.

Theorem 7. Every non-terminating bit-vector program has a non-termination
proof expressible in L.
Proof. A proof of non-termination is a triple 〈N,C, x0〉 where N ⊆ S is a (finite)
recurrence set and C : S → S is a Skolem function choosing a successor for each
x ∈ N . The state space S is finite, so by Lemma 1 both N and C are computed
by finite L-programs and x0 is just a ground term.

Theorem 8. The generalised termination formula [GT] for any loop L is a
tautology when PN and PT range over L-computable functions.

Proof. For any P, P ′, σ, σ, if P |= σ then (P, P ′) |= σ ∨ σ′.
By Theorem 6, if L terminates then there exists a termination proof PT ex-

pressible in L. Since φ is an instance of [CT], PT |= φ (Theorem 5) and for any
PN , (PT , PN ) |= φ ∨ ψ.
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Similarly if L does not terminate for some input, by Theorem 7 there is a
non-termination proof PN expressible in L. Formula ψ is an instance of [SNT]
and so PN |= ψ (Theorem 3), hence for any PT , (PT , PN ) |= φ ∨ ψ.

So in either case (L terminates or does not), there is a witness in L satisfying
φ ∨ ψ, which is an instance of [GT].

Theorem 9. Our termination analysis is sound and complete – it terminates
for all input loops L with a correct termination verdict.

Proof. By Theorem 8, the specification spec is satisfiable. In [1], we show that the
second-order SAT solver is semi-complete, and so is guaranteed to find a satisfying
assignment for spec. If L terminates then PT is a termination proof (Theorem 5),
otherwise PN is a non-termination proof (Theorem 3). Exactly one of these pur-
ported proofs will be valid, and since we can check each proof with a single call to
a SAT solver we simply test both and discard the one that is invalid.

6 Experiments

To evaluate our algorithm, we implemented a tool that generates a termination
specification from a C program and calls the second-order SAT solver in [1] to ob-
tain a proof. We ran the resulting termination prover, named Juggernaut, on
47 benchmarks taken from the literature and SV-COMP’15 [26]. We omitted ex-
actly those SV-COMP’15 benchmarks that made use of arrays or recursion.We do
not have arrays in our logic and we had not implemented recursion in our frontend
(although the latter can be syntactically rewritten to our input format).

To provide a comparison point, we also ran ARMC [27] on the same bench-
marks. Each tool was given a time limit of 180 s, and was run on an unloaded
8-core 3.07GHz Xeon X5667 with 50GB of RAM. The results of these experi-
ments are given in Figure 8.

It should be noted that the comparison here is imperfect, since ARMC is
solving a different problem – it checks whether the program under analysis would
terminate if run with unbounded integer variables, while we are checking whether
the program terminates with bit-vector variables. This means that ARMC’s
verdict differs from ours in 3 cases (due to the differences between integer and
bit-vector semantics). There are a further 7 cases where our tool is able to find
a proof and ARMC cannot, which we believe is due to our more expressive
proof language. In 3 cases, ARMC times out while our tool is able to find a
termination proof. Of these, 2 cases have nested loops and the third has an
infinite number of terminating lassos. This is not a problem for us, but can be
difficult for provers that enumerate lassos.

On the other hand, ARMC is much faster than our tool. While this differ-
ence can partly be explained by much more engineering time being invested in
ARMC, we feel that the difference is probably inherent to the difference in the
two approaches – our solver is more general than ARMC, in that it provides
a complete proof system for both termination and non-termination. This comes
at the cost of efficiency: Juggernaut is slow, but unstoppable.
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ARMC Juggernaut
Benchmark Expected Verdict Time Verdict Time

loop1.c � � 0.06 s � 1.3 s
loop2.c � � 0.06 s � 1.4 s
loop3.c � � 0.06 s � 1.8 s
loop4.c � � 0.12 s � 2.9 s
loop5.c � � 0.12 s � 5.3 s
loop6.c � � 0.05 s � 1.2s
loop7.c [20] � ? 0.05 s � 8.3 s
loop8.c � ? 0.06 s � 1.3 s
loop9.c � � 0.11 s � 1.6 s
loop10.c � � 0.05 s � 1.3 s
loop11.c � � 0.05 s � 1.4 s
loop43.c [9] � � 0.07 s � 1.5 s
loop44.c [9] � ? 0.05 s � 10.5 s
loop45.c [9] � � 0.12 s � 4.3 s
loop46.c [9] � ? 0.05 s � 1.5 s
loop47.c � � 0.10 s � 1.8 s
loop48.c � � 0.06 s � 1.4 s
loop49.c � ? 0.05 s � 1.3 s
svcomp1.c [28] � � 0.11 s � 2.3 s
svcomp2.c � � 0.05 s � 1.5 s
svcomp3.c [19] � � 0.15 s � 146.4 s
svcomp4.c [4] � � 0.09 s � 2.1 s
svcomp5.c [29] � � 0.38 s – T/O
svcomp6.c [20] � – T/O � 29.1 s
svcomp7.c [20] � � 0.09 s � 5.5 s
svcomp8.c [30] � ? 0.05 s – T/O
svcomp9.c [9] � � 0.10 s � 1.5 s
svcomp10.c [9] � � 0.11 s � 4.5 s
svcomp11.c [9] � � 0.20 s � 14.6 s
svcomp12.c [31] � – T/O � 10.9 s
svcomp13.c � ? 0.07 s � 35.1 s
svcomp14.c [32] � – T/O � 30.8 s
svcomp15.c [33] � ? 0.12 s – T/O
svcomp16.c [33] � � 0.06 s � 2.2 s
svcomp17.c [8] � � 0.05 s – T/O
svcomp18.c [34] � ? 0.27 s – T/O
svcomp25.c � ? 0.05 s – T/O
svcomp26.c � � 0.26 s � 3.2 s
svcomp27.c [18] � � 0.11 s – T/O
svcomp28.c [18] � � 0.13 s – T/O
svcomp29.c [3] � ? 0.05 s – T/O
svcomp37.c � � 0.16 s � 2.1 s
svcomp38.c � � 0.10 s – T/O
svcomp39.c � � 0.25 s – T/O
svcomp40.c [35] � ? 0.07 s � 25.5 s
svcomp41.c [35] � ? 0.07 s � 25.5 s
svcomp42.c � � 0.22 s – T/O

Correct 28 35
Incorrect for bit-vectors 3 0
Unknown 13 0
Timeout 3 12

Key: � = terminating, � = non-terminating, ? = unknown (tool terminated with an
inconclusive verdict)

Fig. 8. Experimental results
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Of the 47 benchmarks, 2 use nonlinear operations in the program (loop6 and
loop11), and 5 have nested loops (svcomp6, svcomp12, svcomp18, svcomp40,
svcomp41). Juggernaut handles the nonlinear cases correctly and rapidly. It
solves 4 of the 5 nested loops in less than 30 s, but times out on the 5th.

In conclusion, these experiments confirm our conjecture that second-order
SAT can be used effectively to prove termination and non-termination. In par-
ticular, for programs with nested loops, nonlinear arithmetic and complex ter-
mination arguments, the versatility given by a general purpose solver is very
valuable.

7 Conclusions and Related Work

There has been substantial prior work on automated program termination anal-
ysis. Figure 1 summarises the related work with respect to the assumptions they
make about programs and ranking functions. Most of the techniques are spe-
cialised in the synthesis of linear ranking functions for linear programs
over integers (or rationals) [7,15,10,3,11,4,9,8]. Among them, Lee et al. make
use of transition predicate abstraction, algorithmic learning, and decision proce-
dures [15], Leike and Heizmann propose linear ranking templates [14], whereas
Bradley et al. compute lexicographic linear ranking functions supported by in-
ductive linear invariants [4].

While the synthesis of termination arguments for linear programs over integers
is indeed well covered in the literature, there is very limited work for programs
over machine integers. Cook et al. present a method based on a reduction to
Presburger arithmetic, and a template-matching approach for predefined classes
of ranking functions based on reduction to SAT- and QBF-solving [16]. Similarly,
the only work we are aware of that can compute nonlinear ranking functions for
imperative loops with polynomial guards and polynomial assignments is [12].
However, this work extends only to polynomials.

Given the lack of research on termination of nonlinear programs, as well as
programs over bit-vectors and floats, our work focused on covering these areas.
One of the obvious conclusions that can be reached from Figure 1 is that most
methods tend to specialise on a certain aspect of termination proving that they
can solve efficiently. Conversely to this view, we aim for generality, as we do not
restrict the form of the synthesised ranking functions, nor the form of the input
programs.

As mentioned in Section 1, approaches based on Ramsey’s theorem compute a
set of local termination conditions that decrease as execution proceeds through
the loop and require expensive reachability analyses [5,6,7]. In an attempt to
reduce the complexity of checking the validity of the termination argument,
Cook et al. present an iterative termination proving procedure that searches for
lexicographic termination arguments [9], whereas Kroening et al. strengthen the
termination argument such that it becomes a transitive relation [8]. Following
the same trend, we search for lexicographic nonlinear termination arguments
that can be verified with a single call to a SAT solver.
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Proving program termination implies the simultaneous search for a termina-
tion argument and a supporting invariant. Brockschmidt et al. share the same
representation of the state of the termination proof between the safety prover
and the ranking function synthesis tool [20]. Bradley et al. combine the gen-
eration of ranking functions with the generation of invariants to form a single
constraint solving problem such that the necessary supporting invariants for the
ranking function are discovered on demand [4]. In our setting, both the ranking
function and the supporting invariant are iteratively constructed in the same
refinement loop.

While program termination has been extensively studied, much less research
has been conducted in the area of proving non-termination. Gupta et al. dynam-
ically enumerate lasso-shaped candidate paths for counterexamples, and then
statically prove their feasibility [24]. Chen et al. prove non-termination via re-
duction to safety proving [25]. Their iterative algorithm uses counterexamples to
a fixed safety property to refine an under-approximation of a program. In order
to prove both termination and non-termination, Harris et al. compose several
program analyses (termination provers for multi-path loops, non-termination
provers for cycles, and global safety provers) [33]. We propose a uniform treat-
ment of termination and non-termination by formulating a generalised second-
order formula whose solution is a proof of one of them.
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Abstract. We describe a language-independent theory for name binding
and resolution, suitable for programming languages with complex scop-
ing rules including both lexical scoping and modules. We formulate name
resolution as a two-stage problem. First a language-independent scope
graph is constructed using language-specific rules from an abstract syn-
tax tree. Then references in the scope graph are resolved to correspond-
ing declarations using a language-independent resolution process. We
introduce a resolution calculus as a concise, declarative, and language-
independent specification of name resolution. We develop a resolution
algorithm that is sound and complete with respect to the calculus. Based
on the resolution calculus we develop language-independent definitions
of α-equivalence and rename refactoring. We illustrate the approach us-
ing a small example language with modules. In addition, we show how
our approach provides a model for a range of name binding patterns in
existing languages.

1 Introduction

Naming is a pervasive concern in the design and implementation of programming
languages. Names identify declarations of program entities (variables, functions,
types, modules, etc.) and allow these entities to be referenced from other parts
of the program. Name resolution associates each reference to its intended decla-
ration(s), according to the semantics of the language. Name resolution underlies
most operations on languages and programs, including static checking, trans-
lation, mechanized description of semantics, and provision of editor services in
IDEs. Resolution is often complicated, because it cuts across the local inductive
structure of programs (as described by an abstract syntax tree). For example,
the name introduced by a let node in an ML AST may be referenced by an
arbitrarily distant child node. Languages with explicit name spaces lead to fur-
ther complexity; for example, resolving a qualified reference in Java requires first
resolving the class or package name to a context, and then resolving the member
name within that context. But despite this diversity, it is intuitively clear that
the basic concepts of resolution reappear in similar form across a broad range of
lexically-scoped languages.

In practice, the name resolution rules of real programming languages are usu-
ally described using ad hoc and informal mechanisms. Even when a language
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is formalized, its resolution rules are typically encoded as part of static and
dynamic judgments tailored to the particular language, rather than being pre-
sented separately using a uniform mechanism. This lack of modularity in lan-
guage description is mirrored in the implementation of language tools, where the
resolution rules are often encoded multiple times to serve different purposes, e.g.,
as the manipulation of a symbol table in a compiler, a use-to-definition display
in an IDE, or a substitution function in a mechanized soundness proof. This rep-
etition results in duplication of effort and risks inconsistencies. To see how much
better this situation might be, we need only contrast it with the realm of syntax
definition, where context-free grammars provide a well-established declarative
formalism that underpins a wide variety of useful tools.

Formalizing Resolution. This paper describes a formalism that we believe can
help play a similar role for name resolution in lexically-scoped languages. It con-
sists of a scope graph, which represents the naming structure of a program, and
a resolution calculus, which describes how to resolve references to declarations
within a scope graph. The scope graph abstracts away from the details of a pro-
gram AST, leaving just the information relevant to name resolution. Its nodes
include name references, declarations, and “scopes,” which (in a slight abuse of
conventional terminology) we use to mean minimal program regions that behave
uniformly with respect to name resolution. Edges in the scope graph associate
references to scopes, declarations to scopes, or scopes to “parent” scopes (corre-
sponding to lexical nesting in the original program AST). The resolution calculus
specifies how to construct a path through the graph from a reference to a decla-
ration, which corresponds to a possible resolution of the reference. Hiding of one
definition by a “closer” definition is modeled by providing an ordering on reso-
lution paths. Ambiguous references correspond naturally to multiple resolution
paths starting from the same reference node; unresolved references correspond
to the absence of resolution paths. To describe programs involving explicit name
spaces, the scope graph also supports giving names to scopes, and can include
“import” edges to make the contents of a named scope visible inside another
scope. The calculus supports complex import patterns including transitive and
cyclic import of scopes.

This language-independent formalism gives us clear, abstract definitions for
concepts such as scope, resolution, hiding, and import. We build on these con-
cepts to define generic notions of α-equivalence and valid renaming. We also give
a practical algorithm for computing conventional static environments mapping
bound identifiers to the AST locations of the corresponding declarations, which
can be used to implement a deterministic, terminating resolution function that
is consistent with the calculus. We expect that the formalism can be used as
the basis for other language-independent tools. In particular, any tool that relies
on use-to-definition information, such as an IDE offering code completion for
identifiers, or a live variable analysis in a compiler, should be specifiable using
scope graphs.

On the other hand, the construction of a scope graph from a given program is
a language-dependent process. For any given language, the construction can be
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specified by a conventional syntax-directed definition over the language gram-
mar; we illustrate this approach for a small language in this paper. We would
also like a more generic binding specification language which could be used to
describe how to construct the scope graph for an arbitrary object language. We
do not present such a language in this paper. However, the work described here
was inspired in part by our previous work on NaBL [16], a DSL that provides
high-level, non-algorithmic descriptions of name binding and scoping rules suit-
able for use by a (relatively) naive language designer. The NaBL implementation
integrated into the Spoofax Language Workbench [14] automatically generates
an incremental name resolution algorithm that supports services such as code
completion and static analysis. However, the NaBL language itself is defined
largely by example and lacks a high-level semantic description; one might say
that it works well in practice, but not in theory. Because they are language-
independent, scope graphs can be used to give a formal semantics for NaBL
specifications, although we defer detailed exploration of this connection to fur-
ther work.

Relationship to Related Work. The study of name binding has received a great deal
of attention, focused in particular on two topics. The first is how to represent (al-
ready resolved) programs in a way that makes the binding structure explicit and
supports convenient program manipulation “modulo α-equivalence” [7,20,3,10,4].
Compared to this work, our system is novel in several significant respects. (i) Our
representation of program binding structure is independent of the underlying
language grammar and program AST, with the benefits described above. (ii) We
support representation of ill-formed programs, in particular, programs with am-
biguous or undefined references; such programs are the normal case in IDEs and
other front-end tools. (iii) We support description of binding in languages with ex-
plicit name spaces, such as modules or OO classes, which are common in practice.

A second well-studied topic is binding specification languages, which are usu-
ally enriched grammar descriptions that permit simultaneous specification of
language syntax and binding structure [22,8,13,23,25]. This work is essentially
complementary to the design we present here.

Specific Contributions.

– Scope Graph and Resolution Calculus : We introduce a language-independent
framework to capture the relations among references, declarations, scopes,
and imports in a program. We give a declarative specification of the res-
olution of references to declarations by means of a calculus that defines
resolution paths in a scope graph (Section 2).

– Variants : We illustrate the modularity of our core framework design by de-
scribing several variants that support more complex binding schemes (Sec-
tion 2.5).

– Coverage: We show that the framework covers interesting name binding pat-
terns in existing languages, including various flavors of let bindings, qualified
names, and inheritance in Java (Section 3).
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– Scope graph construction: We show how scope graphs can be constructed
for arbitrary programs in a simple example language via straightforward
syntax-directed traversal (Section 4).

– Resolution algorithm: We define a deterministic and terminating resolution
algorithm based on the construction of binding environments, and prove that
it is sound and complete with respect to the calculus (Section 5).

– α-equivalence and renaming: We define a language-independent characteri-
zation of α-equivalence of programs, and use it to define a notion of valid
renaming (Section 6).
The extended version of this paper [19] presents the encoding of additional
name binding patterns and the details of the correctness proof of the reso-
lution algorithm.

2 Scope Graphs and Resolution Paths

Defining name resolution directly in terms of the abstract syntax tree leads to
complex scoping patterns. In unary lexical binding patterns, such as lambda
abstraction, the scope of the bound variable is the subtree dominated by the
binding construct. However, in name binding patterns such as the sequential
let in ML, or the variable declarations in a block in Java, the set of abstract
syntax tree locations where the bindings are visible does not necessarily form
a contiguous region. Similarly, the list of declarations of formal parameters of
a function is contained in a subtree of the function definition that does not
dominate their use positions. Informally, we can understand these name binding
patterns by a conceptual mapping from the abstract syntax tree to an underlying
pattern of scopes. However, this mapping is not made explicit in conventional
descriptions of programming languages.

We introduce the language-independent concept of a scope graph to capture
the scoping patterns in programs. A scope graph is obtained by a language-
specific mapping from the abstract syntax tree of a program. The mapping col-
lapses all abstract syntax tree nodes that behave uniformly with respect to name
resolution into a single ‘scope’ node in the scope graph. In this paper, we do not
discuss how to specify such mappings for arbitrary languages, which is the task
of a binding specification language, but we show how it can be done for a par-
ticular toy language, first by example and then systematically. We assume that
it should be possible to build a scope graph in a single traversal of the abstract
syntax tree. Furthermore, the mapping should be syntactic; no name resolution
should be necessary to construct the mapping.

Figures 1 to 3 define the full theory. Fig. 1 defines the structure of scope
graphs. Fig. 2 defines the structure of resolution paths, a subset of resolution
paths that are well-formed, and a specificity ordering on resolution paths. Finally,
Fig. 3 defines the resolution calculus, which consists of the definition of edges
between scopes in the scope graph and their transitive closure, the definition of
reachable and visible declarations in a scope, and the resolution of references to
declarations. In the rest of this section we motivate and explain this theory.



A Theory of Name Resolution 209

References and declarations

– xDi :S: declaration with name x at
position i and optional associated
named scope S

– xRi : reference with name x at posi-
tion i

Scope graph

– G: scope graph
– S(G): scopes S in G
– D(S): declarations xDi :S

′ in S
– R(S): references xRi in S
– I(S): imports xRi in S
– P(S): parent scope of S

Well-formedness properties

– P(S) is a partial function
– The parent relation is well-founded
– Each xRi and xDi appears in exactly

one scope S

Fig. 1. Scope graphs

Resolution paths

s := D(xDi ) | I(xRi , xDj :S) | P
p := [] | s | p · p

(inductively generated)
[] · p = p · [] = p

(p1 · p2) · p3 = p1 · (p2 · p3)
Well-formed paths

WF(p) ⇔ p ∈ P∗ · I(_,_)∗

Specificity ordering on paths

D(_) < I(_,_)
(DI)

I(_,_) < P
(IP )

D(_) < P
(DP )

s1 < s2
s1 · p1 < s2 · p2 (Lex1)

p1 < p2
s · p1 < s · p2 (Lex2)

Fig. 2. Resolution paths, well-formedness
predicate, and specificity ordering

Edges in scope graph
P(S1) = S2

I � P : S1 −→ S2
(P )

yRi ∈ I(S1) \ I I � p : yRi �−→ yDj :S2

I � I(yRi , y
D
j :S2) : S1 −→ S2

(I)

Transitive closure

I � [] : A � A
(N)

I � s : A −→ B I � p : B � C

I � s · p : A � C
(T )

Reachable declarations

xDi ∈ D(S′) I � p : S � S′ WF(p)
I � p ·D(xDi ) : S � xDi

(R)

Visible declarations

I � p : S � xDi ∀j, p′(I � p′ : S � xDj ⇒ ¬(p′ < p))

I � p : S �−→ xDi
(V )

Reference resolution

xRi ∈ R(S) {xRi } ∪ I � p : S �−→ xDj

I � p : xRi �−→ xDj
(X)

Fig. 3. Resolution calculus
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program = decl∗

decl = module id { decl∗ } | import qid | def id = exp
exp = qid | fun id { exp } | fix id { exp }

| let bind∗ in exp | letrec bind∗ in exp | letpar bind∗ in exp
| exp exp | exp ⊕ exp | int

qid = id | id . qid
bind = id = exp

Fig. 4. Syntax of LM

2.1 Example Language

To illustrate the scope graph framework we use the toy language LM, defined in
Fig. 4, which contains a rather eclectic combination of features chosen to exhibit
both simple and challenging name binding patterns. LM supports the following
constructs for binding variables:

– Lambda and mu: The functional abstractions fun and fix represent lambda
and mu terms, respectively; both have basic unary lexically scoped bindings.

– Let: The various flavors of let bindings (sequential let, letrec, and letpar)
challenge the unary lexical binding model.

– Definition: A definition (def) declares a variable and binds it to the value
of an initializing expression. The definitions in a module are not ordered (no
requirement for ‘def-before-use’), giving rise to mutually recursive definitions.

Most programming languages have some notion of module to divide a program
into separate units and a notion of imports that make elements of one module
available in another. Modules change the standard lexical scoping model, since
names can be declared either in the lexical parent or in an imported module.
The modules of LM support the following features:

– Qualified names: Elements of modules can be addressed by means of a qual-
ified name using conventional dot notation.

– Imports: All declarations in an imported module are made visible without
the need for qualification.

– Transitive imports: The definitions imported into an imported module are
themselves visible in the importing module.

– Cyclic imports: Modules can (indirectly) mutually import each other, leading
to cyclic import chains.

– Nested modules: Modules may have sub-modules, which can be accessed
using dot notation or by importing the containing module.

In the remainder of this section, we use LM examples to illustrate the basic
features of our framework. In Section 3 and Appendix A of [19] we explore the
expressive power of the framework by applying it to a range of name binding
patterns from both LM and real languages. Section 4 shows how to construct
scope graphs for arbitrary LM programs.
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2.2 Declarations, References, and Scopes

We now introduce and motivate the various elements of the name binding frame-
work, gradually building up to the full system described in Figures 1 to 3. The
central concepts in the framework are declarations, references, and scopes. A dec-
laration (also known as binding occurrence) introduces a name. For example, the
def x = e and module m { .. } constructs in LM introduce names of vari-
ables and modules, respectively. (A declaration may or may not also define the
name; this distinction is unimportant for name resolution—except in the case
where the declaration defines a module, as discussed in detail later.) A reference
(also known as applied occurrence) is the use of a name that refers to a declara-
tion with the same name. In LM, the variables in expressions and the names in
import statements (e.g. the x in import x) are references. Each reference and
declaration is unique and is distinguished not just by its name, but also by its
position in the program’s AST. Formally, we write xR

i for a reference with name
x at position i and xD

i for a declaration with name x at position i.
A scope is an abstraction over a group of nodes in the abstract syntax tree

that behave uniformly with respect to name resolution. Each program has a
scope graph G, whose nodes are a finite set of scopes S(G). Every program has
at least one scope, the global or root scope. Each scope S has an associated
finite set D(S) of declarations and finite set R(S) of references (at particular
program positions), and each declaration and reference in a program belongs
to a unique scope. A scope is the atomic grouping for name resolution: roughly
speaking, each reference xR

i in a scope resolves to a declaration of the same
variable xD

j in the scope, if one exists. Intuitively, a single scope corresponds to
a group of mutually recursive definitions, e.g., a letrec block, the declarations
in a module, or the set of top-level bindings in a program. Below we will see that
edges between nodes in a scope graph determine visibility of declarations in one
scope from references in another scope.

Name Resolution. We write R(G) and D(G) for the (finite) sets of all references
and all declarations, respectively, in the program with scope graph G. Name
resolution is specified by a relation �−→ ⊆ R(G)×D(G) between references and
corresponding declarations in G. In the absence of edges, this relation is very
simple:

xR
i ∈ R(S) xD

j ∈ D(S)

xR
i �−→ xD

j

(X0)

That is, a reference xR
i resolves to a declaration xD

j , if the scope S in which xR
i

is contained also contains xD
j . We say that there is a resolution path from xR

i to
xD
j . We will see soon that paths will grow beyond the one step relation defined

by the rule above.

Scope Graph Diagrams. It can be illuminating to depict a scope graph graphi-
cally. In a scope graph diagram, a scope is depicted as a circle, a reference as a
box with an arrow pointing into the scope that contains it, and a declaration as
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1
b2

a1

b5

c4

d7

a3 1 a1a3

1
b2

b5
b6b6

c8

1 c8c4

1d7

def a1 = 0
def b2 = a3 + c4
def b5 = b6 + d7
def c8 = 0

Fig. 5. Declarations and references in global scope

a box with an arrow from the scope that contains it. Fig. 5 shows an LM pro-
gram consisting of a set of mutually-recursive global definitions; its scope graph;
the resolution paths for variables a, b, and c; and an incomplete resolution path
for variable d. In concrete example programs and scope diagrams we write both
xR
i and xD

i as xi, relying on context to distinguish references and declarations.
For example, in Fig. 5, all occurrences bi denote the same name b at different
positions. In scope diagrams, the numbers in scope circles are arbitrarily chosen,
and are just used to identify different scopes so that we can talk about them.

Duplicate Declarations. It is possible for a scope to contain multiple references
and/or declarations with the same name. For example, scope 1 in Fig. 5 has
two declarations of the variable b. While the existence of multiple references is
normal, multiple declarations may give rise to multiple resolutions. For example,
the b6 reference in Fig. 5 resolves to each of the two declarations b2 and b5.

Typically, correct programs will not declare the same identifier at two different
locations in the same scope, although some languages have constructs (e.g. or-
patterns in OCaml [17]) that are most naturally modeled this way. But even
when the existence of multiple resolutions implies an erroneous program, we
want the resolution calculus to identify all these resolutions, since IDEs and other
front-end tools need to be able to represent erroneous programs. For example, a
rename refactoring should support consistent renaming of identifiers, even in the
presence of ambiguities (see Section 6). The ability of our calculus to describe
ambiguous resolutions distinguishes it from systems, such as nominal logic [4],
that inherently require unambiguous resolution of references.

2.3 Lexical Scope

We model lexical scope by means of the parent relation on scopes. In a well-
formed scope graph, each scope has at most one parent and the parent relation
is well-founded. Formally, the partial function P(_) maps a scope S to its parent
scope P(S). Given a scope graph with parent relation we can define the notion
of reachable and visible declarations in a scope.

Fig. 6 illustrates how the parent relation is used to model common lexical
scope patterns. Lexical scoping is typically presented through nested regions in
the abstract syntax tree, as illustrated by the nested boxes in Fig. 6. Expressions
in inner boxes may refer to declarations in surrounding boxes, but not vice versa.
Each of the scopes in the program is mapped to a scope (circle) in the scope
graph. The three scopes correspond to the global scope, the scope for fix f2, and
the scope for fun n3. The edges from scopes to scopes correspond to the parent
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n4

n7n5
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3f6

def f1 = 
  fix f2 {
    fun n3 { 
      ifz n4 then 1
      else n5*f6(n7-1)
    }
  }
def n8 = f9 5

Fig. 6. Lexical scoping modeled by edges between scopes in the scope graph with
example program, scope graph, and reachability paths for references

relation. The resolution paths on the right of Fig. 6 illustrate the consequences
of the encoding. From reference f6 both declarations f1 and f2 are reachable,
but from reference f9 only declaration f1 is reachable. In languages with lexical
scoping, the redeclaration of a variable inside a nested region typically hides the
outer declaration. Thus, the duplicate declaration of variable f does not indicate
a program error in this situation because only f2 is visible from the scope of f6.

Reachability. The first step towards a full resolution calculus is to take into
account reachability. We redefine rule (X0) as follows:

xR
i ∈ R(S1) p : S1 � S2 xD

j ∈ D(S2)

p : xR
i �−→ xD

j

(X1)

That is, xR
i in scope S1 can be resolved to xD

j in scope S2, if S2 is reachable from
S1, i.e. if S1 � S2. Reachability is defined in terms of the parent relation as
follows:

P(S1) = S2

P : S1 −→ S2 [] : A � A

s : A −→ B p : B � C

s · p : A � C

The parent relation between scopes gives rise to a direct edge S1 −→ S2 between
child and parent scope, and A�B is the reflexive, transitive closure of the direct
edge relation. In order to reason about the different ways in which a reference
can be resolved, we record the resolution path p. For example, in Fig. 6 reference
f6 can be resolved with path P to declaration f2 and with path P ·P to f1.

Visibility. Under lexical scoping, multiple possible resolutions are not problem-
atic, as long as the declarations reached are not declared in the same scope. A
declaration is visible unless it is shadowed by a declaration that is ‘closer by’.
To formalize visibility, we first extend reachability of scopes to reachability of
declarations :

xD
i ∈ D(S′) p : S � S′

p ·D(xD
i ) : S � xD

i

(R2)
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That is, a declaration xD
i in S′ is reachable from scope S (S � xD

i ), if scope S′

is reachable from S.
Given multiple reachable declarations, which one should we prefer? A reach-

able declaration xD
i is visible in scope S (S �−→ xD

i ) if there is no other declaration
for the same name that is reachable through a more specific path:

p : S � xD
i ∀j, p′(p′ : S � xD

j ⇒ ¬(p′ < p))

p : S �−→ xD
i

(V2)

where the specificity ordering p′ < p on paths is defined as

D(_) < P
s1 < s2

s1 · p1 < s2 · p2
p1 < p2

s · p1 < s · p2
That is, a path with fewer parent transitions is more specific than a path with
more parent transitions. This formalizes the notion that a declaration in a
“nearer” scope shadows a declaration in a “farther” scope.

Finally, a reference resolves to a declaration if that declaration is visible in
the scope of the reference.

xR
i ∈ R(S) p : S �−→ xD

j

p : xR
i �−→ xD

j

(X2)

Example. In Fig. 6 the scope (labeled 3) containing reference f6 can reach two
declarations for f: P ·D(fD2 ) : S3 � fD2 and P ·P ·D(fD1 ) : S3 � fD1 . Since the
first path is more specific than the second path, only f2 is visible, i.e. P ·D(fD2 ) :
S3 �−→ fD2 . Therefore f6 resolves to f2, i.e. P ·D(fD2 ) : f

R
6 �−→ fD2 .

Scopes, Revisited. Now that we have defined the notions of reachability and
visibility, we can give a more precise description of the sense in which scopes
“behave uniformly” with respect to resolution. For every scope S:

– Each declaration in the program is either visible at every reference in R(S)
or not visible at any reference in R(S).

– For each reference in the program, either every declaration in D(S) is reach-
able from that reference, or no declaration in D(S) is reachable from that
reference.

– Every declaration in D(S) is visible at every reference in R(S).

2.4 Imports

Introducing modules and imports complicates the name binding picture. Decla-
rations are no longer visible only through the lexical context, but may be visible
through an import as well. Furthermore, resolving a reference may require first
resolving one or more imports, which may in turn require resolving further im-
ports, and so on.

We model an import by means of a reference xR
i in the set of imports I(S) of a

scope S. (Imports are also always references and included in some R(S′), but not
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b9 b11
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2 3 4a4

b5 c6 B3 C8 c12

2c6 B3 C10 c124B7 3 C8

c1

b13

B7B3 12 C8 C1013

1 c1

def c1 = 4
module A2 {  
  import B3
  def a4 = b5 + c6
}
module B7 {
  import C8
  def b9 = 0
}
module C10 {
  def b11 = 1
  def c12 = b13
}

Fig. 7. Modules and imports with example program, scope graph, and reachability
paths for references

necessarily in the same scope in which they are imports.) We model a module by
associating a scope S with a declaration xD

i :S. This associated named scope (i.e.,
named by x) represents the declarations introduced by, and encapsulated in, the
module. (We write the :S only in rules where it is required; where we omit it, the
declaration may or may not have an associated scope.) Thus, importing entails
resolving the import reference to a declaration and making the declarations in
the scope associated with that declaration available in the importing scope.

Note that ‘module’ is not a built-in concept in our framework. A module is
any construct that (1) is named, (2) has an associated scope that encapsulates
declarations, and (3) can be imported into another scope. Of course, this can be
used to model the module systems of languages such as ML. But it can be applied
to constructs that are not modules at first glance. For example, a class in Java
encapsulates class variables and methods, which are imported into its subclasses
through the ‘extends’ clause. Thus, a class plays the role of module and the
extends clause that of import. We discuss further applications in Section 3.

Reachability. To define name resolution in the presence of imports, we first
extend the definition of reachability. We saw above that the parent relation on
scopes induces an edge S1 −→ S2 between a scope S1 and its parent scope S2

in the scope graph. Similarly, an import induces an edge S1 −→ S2 between a
scope S1 and the scope S2 associated with a declaration imported into S1:

yRi ∈ I(S1) p : yRi �−→ yDj :S2

I(yRi , y
D
j :S2) : S1 −→ S2

(I3)

Note the recursive invocation of the resolution relation on the name of the im-
ported scope.

Figure 7 illustrates extensions to scope graphs and paths to describe imports.
Association of a name to a scope is indicated by an open-headed arrow from the
name declaration box to the scope circle. (For example, scope 2 is associated to
declaration A2.) An import into a scope is indicated by an open-headed arrow
from the scope circle to the import name reference box. (For example, scope 2
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imports the contents of the scope associated to the resolution of reference B3;
note that since B3 is also a reference within scope 2, there is also an ordinary
arrow in the opposite direction, leading to a double-headed arrow in the scope
graph.) Edges in reachability paths representing the resolution of imported scope
names to their definitions are drawn dashed. (For example, reference B3 resolves
to declaration B7, which has associated scope 3.) The paths at the bottom right
of the figure illustrate that the scope (labeled 2) containing reference c6 can
reach two declarations for c: P ·D(cD1 ) : S2 � cD1 and I(BR3 , BD7 :S3) · I(CR8 , CD10:
S4) ·D(cD12) : S2 � cD12, making use of the subsidiary resolutions BR3 �−→ BD7 and
CR8 �−→ CD10.

def a1 = ...
module A2 {

def a3 = ...
def b4 = ...

}
module C5 {

import A6
def b7 = a8
def c9 = b10

}

Fig. 8. Parent vs
Import

def a1 = ...
module B2 {
}
module C3 {

def a4 = ...
module D5 {

import B6
def e7 = a8

}
}

Fig. 9. Parent of
import

Visibility. Imports cause new kinds of ambiguities in resolu-
tion paths, which require extension of the visibility policy.

The first issue is illustrated by Fig. 8. In the scope of ref-
erence b10 we can reach declaration b7 with path D(bD7 ) and
declaration b4 with path I(AR

6 , A
D
2 :SA) · D(bD4 ) (where SA

is the scope named by declaration A2). We resolve this con-
flict by extending the specificity order with the rule D(_) <
I(_,_). That is, local declarations override imported declara-
tions. Similarly, in the scope of reference a8 we can reach dec-
laration a1 with path P ·D(aD1 ) and declaration a3 with path
I(AR

6 , A
D
2 :SA) · D(aD3 ). We resolve this conflict by extending

the specificity order with the rule I(_,_) < P. That is, res-
olution through imports is preferred over resolution through
parents. In other words, declarations in imported modules
override declarations in lexical parents.

The next issue is illustrated in Fig. 9. In the scope of ref-
erence a8 we can reach declaration a4 with path P · D(aD4 )
and declaration a1 with path P · P · D(aD1 ). The specificity
ordering guarantees that only the first of these is visible,
giving the resolution we expect. However, with the rules as
stated so far, there is another way to reach a1, via the path
I(BR6 , BD2 :SB)·P·D(aD1 ). That is, we first import module B, and
then go to its lexical parent, where we find the declaration. In other words, when
importing a module, we import not just its declarations, but all declarations in
its lexical context. This behavior seems undesirable; to our knowledge, no real
languages exhibit it. To rule out such resolutions, we define a well-formedness
predicate WF(p) that requires paths p to be of the form P∗ ·I(_,_)∗, i.e. forbid-
ding the use of parent steps after one or more import steps. We use this predicate
to restrict the reachable declarations relation by only considering scopes reach-
able through a well-formed path:

xD
i ∈ D(S′) p : S � S′ WF(p)

p ·D(xD
i ) : S � xD

i

(R3)
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AD
2 :SA2 ∈ D(SA1)

AR
4 ∈ I(Sroot)

AR
4 ∈ R(Sroot) AD

1 :SA1 ∈ D(Sroot)

AR
4 �−→ AD

1 :SA1

Sroot −→ SA1 (∗)
Sroot � AD

2 :SA2

AR
4 ∈ R(Sroot) Sroot �−→ AD

2 :SA2

AR
4 �−→ AD

2 :SA2

Fig. 10. Derivation for AR
4 �−→ AD

2 :SA2 in a calculus without import tracking

The complete definition of well-formed paths and specificity order on paths is
given in Fig. 2. In Section 2.5 we discuss how alternative visibility policies can
be defined by just changing the well-formedness predicate and specificity order.

module A1 {
module A2 {

def a3 = ...
}

}
import A4
def b5 = a6

Fig. 11. Self im-
port

module A1 {
module B2 {

def x3 = 1
}

}
module B4 {
module A5 {

def y6 = 2
}

}
module C7 {
import A8
import B9
def z10 = x11

+ y12
}

Fig. 12. Anoma-
lous resolution

Seen Imports. Consider the example in Fig. 11. Is declaration
a3 reachable in the scope of reference a6? This reduces to the
question whether the import of A4 can resolve to module
A2. Surprisingly, it can, in the calculus as discussed so far,
as shown by the derivation in Fig. 10 (which takes a few
shortcuts). The conclusion of the derivation is that AR

4 �−→
AD

2 :SA2 . This conclusion is obtained by using the import at A4
to conclude at step (*) that Sroot −→ SA1 , i.e. that the body
of module A1 is reachable! In other words, the import of A4
is used in its own resolution. Intuitively, this is nonsensical.

To rule out this kind of behavior we extend the calculus
to keep track of the set of seen imports I using judgements
of the form I � p : xR

i �−→ xD
j . We need to extend all rules to

pass the set I, but only the rules for resolution and import
are truly affected:

xR
i ∈ R(S) {xR

i } ∪ I � p : S �−→ xD
j

I � p : xR
i �−→ xD

j

(X)

yRi ∈ I(S1) \ I I � p : yRi �−→ yDj :S2

I � I(yRi , y
D
j :S2) : S1 −→ S2

(I)

With this final ingredient, we reach the full calculus in
Fig. 3. It is not hard to see that the resolution relation is
well-founded. The only recursive invocation (via the I rule)
uses a strictly larger set I of seen imports (via the X rule); since the set R(G)
is finite, I cannot grow indefinitely.

Anomalies. Although the calculus produces the desired resolutions for a wide
variety of real language constructs, its behavior can be surprising on corner cases.
Even with the “seen imports” mechanism, it is still possible for a single derivation
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to resolve a given import in two different ways, leading to unintuitive results.
For example, in the program in Fig. 12, x11 can resolve to x3 and y12 can resolve
to y6. (Derivations left as an exercise to the curious reader!) In our experience,
phenomena like this occur only in the presence of mutually-recursive imports; to
our knowledge, no real language has these (perhaps for good reason). We defer
deeper exploration of these anomalies to future work.

2.5 Variants

The resolution calculus presented so far reflects a number of binding policy
decisions. For example, we enforce imports to be transitive and local declarations
to be preferred over imports. However, not every language behaves like this. We
now present how other common behaviors can easily be represented with slight
modifications of the calculus. Indeed, the modifications do not have to be done
on the calculus itself (the −→, � , � and �−→ relations) but can simply be
encoded in the WF predicate and the < ordering on paths.

Reachability policy. Reachability policies define how a reference can access a
particular definition, i.e. what rules can be used during the resolution. We can
change our reachability policy by modifying the WF predicate. For example, if
we want to rule out transitive imports, we can change WF to be

WF(p) ⇔ p ∈ P∗ · I(_,_)?

where ? denotes the at most one operation on regular expressions. Therefore, an
import can only be used once at the end of the chain of scopes.

For a language that supports both transitive and non-transitive imports, we
can add a label on references corresponding to imports. If xR is a reference
representing a non-transitive import and xTR a reference corresponding to a
transitive import, then the WF predicate simply becomes:

WF(p) ⇔ p ∈ P∗ · I(_TR,_)∗ · I(_R,_)?

module A1 {
def x2 = 3

}
module B3 {

include A4;
def x5 = 6;
def z6 = x7

}

Fig. 13. Include

Now no import can occur after the use of a non-transitive one.
Similarly, we can modify the rule to handle the Export dec-

laration in Coq, which forces transitivity (a resolution can
always use an exported module even after importing from a
non-transitive one). Assume xR is a reference representing a
non-transitive import and xER a reference corresponding to an
export; then we can use the following predicate:

WF(p) ⇔ p ∈ P∗ · I(_R,_)? · I(_ER,_)∗

Visibility policy. We can modify the visibility policy, i.e. how resolutions shadow
each other, by changing the definition of the specificity ordering. For example,
we might want imports to act like textual inclusion, so the declarations in the
included module have the same precedence as local declarations. This is similar
to Standard ML’s include mechanism. In the program in Fig. 13, the reference
x7 should be treated as having duplicate resolutions, to either x5 or x2; the
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c12a10 b11

c5

b9

a7

c8

def a1 = 0
def b2 = 1
def c3 = 2

letpar 
 a4 = c5
 b6 = a7
 c8 = b9
in 
 a10+b11+c12

1

b2a1 c3

a4

b6

c12a10 b11

c5

b9

a7

c8

2

def a1 = 0
def b2 = 1
def c3 = 2

letrec 
 a4 = c5
 b6 = a7
 c8 = b9
in 
 a10+b11+c12

1

b2a1 c3

a4

b6

c12a10 b11

c5

b9

a7

c8

2

4

3

def a1 = 0
def b2 = 1
def c3 = 2

let 
 a4 = c5
 b6 = a7
 c8 = b9
in 
 a10+b11+c12

Fig. 14. Example LM programs with sequential, recursive, and parallel let, and their
encodings as scope graphs

former should not hide the latter. To handle this situation, we can drop the rule
D(_) < I(_,_) so that definitions and references will get the same precedence,
and a definition will not shadow an imported definition. To handle both include

and ordinary imports, we can once again differentiate the references, and define
different ordering rules depending on the reference used in the import step.

3 Coverage

To what extent does the scope graph framework cover name binding systems that
live in the world of real programming languages? It is not possible to prove com-
plete coverage by the framework, in the sense of being able to encode all possi-
ble name binding systems that exist or may be designed in the future. (Indeed,
given that these systems are typically implemented in compilers with algorithms in
Turing-complete programming languages, the framework is likely not to be com-
plete.) However, we believe that our approach handles many lexically-scoped lan-
guages. The design of the framework was informed by an investigation of a wide
range of name binding patterns in existing languages, their (attempted) formal-
ization in the NaBL name binding language [14,16], and their encoding in scope
graphs. In this section, we discuss three such examples: let bindings, qualified
names, and inheritance in Java. This should provide the reader with a good sense
of how name binding patterns can be expressed using scope graphs. Appendix A of
[19] provides further examples, including definition-before-use, compilation units
and packages in Java, and namespaces and partial classes in C#.

Let Bindings. The several flavors of let bindings in languages such as ML,
Haskell, and Scheme do not follow the unary lexical binding pattern in which the
binding construct dominates the abstract syntax tree that makes up its scope.
The LM language from Fig. 4 has three flavors of let bindings: sequential,
recursive, and parallel let, each with a list of bindings and a body expression.
Fig. 14 shows the encoding into scope graphs for each of the constructs and
makes precise how the bindings are interpreted in each flavour. In the recursive
letrec, the bindings are visible in all initializing expressions, so a single scope
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1

2

3 5c3

f7

B1

C2 D6

D4

4 f5

module B1 {
  module C2 {
    def c3 = D4.f5(3)
  }
  module D6 {
    def f7 = ...
  }
}

Fig. 15. Example LM program with
partially-qualified name

3

2

1

C4

C1

4

D3
E7

D8

f2

g5

f6

f9

g10f12 h11

class C1 { 
  int f2 = 42;
}
class D3 extends C4 {
  int g5 = f6; 
}
class E7 extends D8 {
  int f9  = g10;
  int h11 = f12; 
}

Fig. 16. Class inheritance in Java modeled
by import edges

suffices for the whole construct. In the sequential let, each binding is visible in
the subsequent bindings, but not in its own initializing expression. This requires
the introduction of a new scope for each binding. In the parallel letpar, the
variables being bound are not visible in any of the initializing expressions, but
only in the body. This is expressed by means of a single scope (2) in which the
bindings are declared; any references in the initializing expressions are associated
to the parent scope (1).

Qualified Names. Qualified names refer to declarations in named scopes outside
the lexical scoping. They can be either used as simple references or as imports.
For example, fully-qualified names of Java classes can be used to refer to (or
import) classes from other packages. While fully-qualified names allow navigating
named scopes from the root scope, partially-qualified names give access to lexical
subscopes, which are otherwise hidden from lexical parent scopes.

The LM program in Fig. 15 uses a partially-qualified name D.f to access
function f in submodule D. We can model this pattern using an anonymous
scope (4), which is not linked to the lexical context. The relative name (f5) is a
reference in the anonymous scope. We add the qualifying scope name (D4) as an
import in the anonymous scope.

Inheritance in Java. We can model inheritance in object-oriented languages
with named scopes and imports. For example, Fig. 16 shows a hierarchy of three
Java classes. Class C declares a field f. Class D extends C and inherits its field
f. Class E extends D, inheriting the fields of C and D. Each class name is a
declaration in the same package scope (1), and associated with the scope of its
class body. Inheritance is modeled with imports: a subclass body scope contains
an import referring to its super class, making the declarations in the super class
reachable from the body. In the example, the scope (4) representing the body
of class E contains an import referring to its super class D. Using this import,
g10 correctly resolves to g5 . Since local declarations hide imported declarations,
f12 also refers correctly to the local declaration f9, which hides the transitively
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[[ds]]prog := let S := new⊥ in [[ds]]recdS

[[d ds]]recdS := [[d]]decS ; [[ds]]recdS

[[]]recdS := ()

[[module xi{ds}]]
dec
S := let S′ := newS in D(S) += xDi :S

′; [[ds]]recdS′

[[import xs]]decS := [[xs]]rqidS ; [[xs]]iqidS

[[def xi = e]]decS := D(S) += xDi ; [[e]]
exp
S

[[xs]]expS := [[xs]]rqidS

[[(fun | fix) xi{e}]]
exp
S := let S′ := newS in D(S′) += xDi ; [[e]]

exp
S′

[[letrec bs in e]]expS := let S′ := newS in [[bs]]recbS′ ; [[e]]expS′
[[letpar bs in e]]expS := let S′ := newS in [[bs]]parb(S,S′); [[e]]

exp
S′

[[let bs in e]]expS := let S′ := [[bs]]seqbS in [[e]]expS′
[[e1 e2]]

exp
S := [[e1]]

exp
S ; [[e2]]

exp
S

[[e1 ⊕ e2]]
exp
S := [[e1]]

exp
S ; [[e2]]

exp
S

[[n]]expS := ()

[[xi.xs]]
rqid
S := R(S) += xRi ; let S

′ := new⊥ in I(S′) += xRi ; [[xs]]
rqid
S′

[[xi]]
rqid
S := R(S) += xRi

[[xi.xs]]
iqid
S := [[xs]]iqidS

[[xi]]
iqid
S := I(S) += xRi

[[xi = e; bs]]recbS := D(S) += xDi ; [[e]]
exp
S ; [[bs]]recbS

[[]]recbS := ()

[[xi = e; bs]]parb
(S,S′) := D(S′) += xDi ; [[e]]

exp
S ; [[bs]]parb

(S,S′)
[[]]parb(S,S′) := ()

[[xi = e; bs]]seqbS := [[e]]expS ; let S′ := newS in D(S′) += xDi ; ret(S
′)

[[]]seqbS := ret(S)

Fig. 17. Scope graph construction for LM via syntax-directed AST traversal

imported f2. Note that since a scope can contain several imports, encoding
multiple inheritance uses exactly the same principle.

4 Scope Graph Construction

The preceding sections have illustrated scope graph construction by means of
examples corresponding to various language features. Of course, to apply our
formalism in practice, one must be able to construct scope graphs systemati-
cally. Ultimately, we would like to be able to specify this process for arbitrary
languages using a generic binding specification language such as NaBL [16], but
that remains future work. Here we illustrate systematic scope graph construction
for arbitrary programs in a specific language, LM (Fig. 4), via straightforward
syntax-directed traversal.

Figure 17 describes the construction algorithm. For clarity of presentation, the
algorithm traverses the program’s concrete syntax; a real implementation would
traverse the program’s AST. The algorithm is presented in an ad hoc imperative
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language, explained here. The traversal is specified as a collection of (potentially)
mutually recursive functions, one or more for each syntactic class of LM. Each
function f is defined by a set of clauses [[pattern]]fargs. When f is invoked on
a term, the clause whose pattern matches the term is executed. Functions may
also take additional arguments args. Each clause body consists of a sequence
of statements separated by semicolons. Functions can optionally return a value
using ret(). The let statement binds a metavariable in the remainder of the clause
body. An empty clause body is written ().

The algorithm is initiated by invoking [[_]]prog on an entire LM program. Its
net effect is to produce a scope graph via a sequence of imperative operations.
The construct newP creates a new scope S with parent P (or no parent if p =⊥)
and empty sets D(S), R(S), and I(S). These sets are subsequently populated
using the += operator, which extends a set imperatively. The program scope
graph is simply the set of scopes that have been created and populated when
the traversal terminates.

5 Resolution Algorithm

The calculus of Section 2 gives a precise definition of resolution. In principle, we
can search for derivations in the calculus to answer questions such as “Does this
variable reference resolve to this declaration?” or “Which variable declarations
does this reference resolve to?” But automating this search process is not trivial,
because of the need for back-tracking and because the paths in reachability
derivations can have cycles (visiting the same scope more than once), and hence
can grow arbitrarily long.

In this section we describe a deterministic and terminating algorithm for com-
puting resolutions, which provides a practical basis for implementing tools based
on scope graphs, and prove that it is sound and complete with respect to the
calculus. This algorithm also connects the calculus, which talks about resolu-
tion of a single variable at a time, to more conventional descriptions of binding
which use “environments” or “contexts” to describe all the visible or reachable
declarations accessible from a program location.

For us, an environment is just a set of declarations xD
i . This can be thought

of as a function from identifiers to (possible empty) sets of declaration positions.
(In this paper, we leave the representation of environments abstract; in practice,
one would use a hash table or other dictionary data structure.) We construct an
atomic environment corresponding to the declarations in each scope, and then
combine atomic environments to describe the sets of reachable and visible dec-
larations resulting from the parent and import relations. The key operator for
combining environments is shadowing, which returns the union of the declara-
tions in two environments restricted so that if a variable x has any declarations
in the first environment, no declarations of x are included from the second envi-
ronment. More formally:

Definition 1 (Shadowing). For any environments E1, E2, we write:
E1 � E2 := E1 ∪ {xD

i ∈ E2 | � xD
i′ ∈ E1}
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Res[I](xRi ) := {xDj | ∃S s.t. xRi ∈ R(S) ∧ xDj ∈ EnvV [{xRi } ∪ I, ∅](S)}
EnvV [I, S](S) := EnvL[I, S](S) � EnvP [I, S](S)
EnvL[I, S](S) := EnvD[I, S](S) � EnvI [I, S](S)

EnvD[I, S](S) :=

{
∅ if S ∈ S

D(S)

EnvI [I, S](S) :=

⎧⎨
⎩

∅ if S ∈ S⋃{
EnvL[I, {S} ∪ S](Sy) | yRi ∈ I(S) \ I ∧ yDj :Sy ∈ Res[I](yRi )

}

EnvP [I, S](S) :=

{∅ if S ∈ S

EnvV [I, {S} ∪ S](P(S))

Fig. 18. Resolution algorithm

Figure 18 specifies an algorithm Res[I](xR
i ) for resolving a reference xR

i to a set of
corresponding declarations xD

j . Like the calculus, the algorithm avoids trying to
use an import to resolve itself by maintaining a set I of “already seen” imports.
The algorithm works by computing the full environment EnvV [I, S](S) of decla-
rations that are visible in the scope S containing xR

i , and then extracting just
the declarations for x. The full environment, in turn, is built from the more basic
environments EnvD of immediate declarations, EnvI of imported declarations,
and EnvP of lexically enclosing declarations, using the shadowing operator. The
order of construction matches both the WF restriction from the calculus, which
prevents the use of parent after an import, and the path ordering <, which
prefers immediate declarations over imports and imports over declarations from
the parent scope. (Note that the algorithm does not work for the variants of WF
and < described in Section 2.5.) A key difference from the calculus is that the
shadowing operator is applied at each stage in environment construction, rather
than applying the visibility criterion just once at the “top level” as in calculus
rule V . This difference is a natural consequence of the fact that the algorithm
computes sets of declarations rather than full derivation paths, so it does not
maintain enough information to delay the visibility computation.

Termination The algorithm is terminating using the well-founded lexicographic
measure (|R(G) \ I|, |S(G) \ S|). Termination is straightforward by unfolding the
calls to Res in EnvI and then inlining the definitions of EnvV and EnvL: this
gives an equivalent algorithm in which the measure strictly decreases at every
recursive call.

5.1 Correctness of Resolution Algorithm

The resolution algorithm is sound and complete with respect to the calculus.

Theorem 1. ∀ I, xR
i , j, (x

D
j ∈ Res[I](xR

i )) ⇐⇒ (∃p s.t. I � p : xR
i �−→ xD

j ).

We sketch the proof of this theorem here; details of the supporting lemmas
and proofs are in Appendix B of [19]. To begin with, we must deal with the
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Transitive closure
I, S � [] : A � A

(N ′)

I � s : A −→ B B �∈ S I, {B} ∪ S � p : B � C

I, S � s · p : A � C
(T ′)

Reachable declarations

xDi ∈ D(S′) S �∈ S I, {S} ∪ S � p : S � S′ WF(p)
I, S � p ·D(xDi ) : S � xDi

(R′)

Visible declarations

I, S � p : S � xDi ∀j, p′(I, S � p′ : S � xDj ⇒ ¬(p′ < p))

I, S � p : S �−→ xDi
(V ′)

Reference resolution

xRi ∈ R(S) {xRi } ∪ I, ∅ � p : S �−→ xDj

I � p : xRi �−→ xDj
(X ′)

Fig. 19. “Primed” resolution calculus with “seen scopes” component

fact that the calculus can generate reachability derivations with cycles, but the
algorithm does not follow cycles. In fact, visibility derivations cannot have cycles:

Lemma 1. If I � p : xR
i �−→ xD

j then p is cycle-free.

We therefore begin by defining an alternative version of the calculus that prevents
construction of cyclic paths. This alternative calculus consists of the original rules
(P ), (I) from Figure 3 together with the new rules (N ′), (T ′), (R′), (V ′), (X ′)
from Figure 19. The new rules describe transitions that include a “seen scopes”
component S which is used to enforce acyclicity of paths. By inspection, this
is the only difference between the “primed” system and original one. Thus, by
Lemma 1, we have

Lemma 2. ∀I, S, xD
i , (∃p s.t. I � p : S �−→ xD

i ) ⇐⇒ (∃p s.t. I, ∅ � p : S �−→ xD
i ).

Hereinafter, we can work with the primed system.
Next we define a family of sets P of derivable paths in the (primed) calculus.

Definition 2 (Path Sets).

PD[I, S](S) := {p | ∃ xD
i s.t. p = D(xD

i ) ∧ I, S � p : S � xD
i }

PP [I, S](S) := {p | ∃ p′ xD
i s.t. p = P · p′∧

I, S � p : S � xD
i ∧ I, {S} ∪ S � p′ : P(S) �−→ xD

i }
PI [I, S](S) := {p | ∃ p′ xD

i yRj yDj′:S
′ s.t. p = I(yRj , yDj′:S′) · p′∧

I, S � p : S � xD
i ∧ I, {S} ∪ S � p′ : S′ �−→ xD

i }
PL[I, S](S) := {p | ∃ xD

i s.t. I, S � p : S �−→ xD
i ∧ p ∈ I(_,_)∗ ·D(_)}

PV [I, S](S) := {p | ∃ xD
i s.t. I, S � p : S �−→ xD

i }
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These sets are designed to correspond to the various classes of environments
EnvC . PD, PP , and PI contain all reachability derivations starting with a D(_),
P, or I(_,_) respectively, with the further condition that the tail of each deriva-
tion is a visibility derivation (i.e. is most specific among all reachability deriva-
tions). PV describes the set of all visibility derivations. (PL is similar, but omits
paths including P steps, because well-formedness prevents using these steps af-
ter an import step.) For compactness, we state the key result uniformly over all
classes of sets:

Definition 3. For any path p, δ(p) := xD
i iff ∃p′ s.t. p = p′ ·D(xD

i ) and for any
set of paths P , Δ(P ) := {δ(p) | p ∈ P}.
Lemma 3. For each class C ∈ {V, L,D, I, P}:

∀ I S S,Envc[I, S](S) = Δ(PC [I, S](S))

Proof. We first prove two auxiliary lemmas about reachability and visibility after
one step:

∀ I S s p S xD
i , (I, S � s · p ·D(xD

i ) : S � xD
i =⇒ I, {S}∪S � s : S −→ S′ =⇒

I, {S} ∪ S � p ·D(xD
i ) : S

′ � xD
i ) (♦)

∀ I S s p S xD
i , (I, S � s · p : S �−→ xD

i =⇒ I, {S} ∪ S � s : S −→ S′ =⇒
I, {S} ∪ S � p : S′ �−→ xD

i ) (�)

Then we proceed by three nested inductions, the outer one on I (or, more strictly,
on |R(G) \ I|, the number of references not in I), the second one on S (more
strictly, on |S(G) \ S|, the number of scopes not in S) and the third one on the
class C with the order V > L > P, I,D. Then we conclude using ♦ and � and a
number of other technical results. Details are in Appendix B of [19]. ��

With these lemmas in hand we proceed to prove Theorem 1.

Proof. Fix I, xR
i , and j. Given S, the (unique) scope such that xR

i ∈ R(S):
xD
j ∈ Res[xR

i ](I) ⇔ xD
j ∈ EnvV [{xR

i } ∪ I, ∅](S)
By the V case of Lemma 3 and the definition of PS , this is equivalent to

∃p s.t. {xR
i } ∪ I, ∅ � p : S �−→ xD

j

which, by Lemma 2 and rule X , is equivalent to ∃p s.t. I � p : xR
i �−→ xD

j . ��

6 α-equivalence and Renaming

The choice of a particular name for a bound identifier should not affect the
meaning of a program. This notion of name irrelevance is usually referred to as
α-equivalence, but definitions of α-equivalence exist only for some languages and
are language-specific. In this section we show how the scope graph and resolution
calculus can be used to specify α-equivalence in a language-independent way.
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Free variables. A free variable is a reference that does not resolve to any decla-
ration (xR

i is free if � j, p s.t. I � p : xR
i �−→ xD

j ); a bound variable has at least
one declaration. For uniformity, we introduce for each possibly free variable x a
program-independent artificial declaration xD

x̄ with an artificial position x̄. These
declarations do not belong to any scope but are reachable through a particular
well-formed path �, which is less specific than any other path, according to the
following rules:

I � � : S � xD
x̄

p �= �
p < �

This path representing the resolution of a free reference is shadowed by any
existing path leading to a concrete declaration; therefore the resolution of bound
variables is unchanged.

6.1 α-Equivalence

We now define α-equivalence using scope graphs. Except for the leaves represent-
ing identifiers, two α-equivalent programs must have the same abstract syntax
tree. We write P � P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are similar then we compare how identifiers be-
have in these programs. Since two potentially α-equivalent programs are similar,
the identifiers occur at the same positions. In order to compare the identifiers’
behavior, we define equivalence classes of positions of identifiers in a program:
positions in the same equivalence class are declarations of, or references to, the
same entity. The abstract position x̄ identifies the equivalence class correspond-
ing to the free variable x.

Given a program P, we write P for the set of positions corresponding to refer-
ences and declarations and PX for P extended with the artificial positions (e.g.
x̄). We define the P∼ equivalence relation between elements of PX as the reflexive
symmetric and transitive closure of the resolution relation.

Definition 4 (Position equivalence).

I � p : xR
i �−→ xD

i′

i
P∼ i′

i′ P∼ i

i
P∼ i′

i
P∼ i′ i′ P∼ i′′

i
P∼ i′′ i

P∼ i

In this equivalence relation, the class containing the abstract free variable dec-
laration cannot contain any other declaration. So the references in a particular
class are either all free or all bound.

Lemma 4 (Free variable class). The equivalence class of a free variable does
not contain any other declaration, i.e. ∀ xD

i , i
P∼ x̄ =⇒ i = x̄

Proof. Detailed proof is in appendix B of [19]. We first prove:
∀ xR

i , (I � � : xR
i �−→ xD

x̄ ) =⇒ ∀ p i′, I � p : xR
i �−→ xD

i′ =⇒ i′ = x̄ ∧ p = �
and then proceed by induction on the equivalence relation.
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The equivalence classes defined by this relation contain references to or decla-
rations of the same entity. Given this relation, we can state that two programs
are α-equivalent if the identifiers at identical positions refer to the same entity,
that belong to the same equivalence class:

Definition 5 (α-equivalence). Two programs P1 and P2 are α-equivalent (de-
noted P1

α≈ P2) when they are similar and have the same ∼-equivalence classes:

P1
α≈ P2 � P1 � P2 ∧ ∀ i i′, i

P1∼ i′ ⇔ i
P2∼ i′

Remark 1.
α≈ is an equivalence relation since � and ⇔ are equivalence relations.

Free variables. The P∼ equivalence classes corresponding to free variables x also
contain the artificial position x̄. Since the equivalence classes of two equivalent
programs P1 and P2 have to be exactly the same, every element equivalent to
x̄ (i.e. a free reference) in P1 is also equivalent to x̄ in P2. Therefore the free
references of α-equivalent programs have to be identical.

Duplicate declarations. The definition allows us to also capture α-equivalence of
programs with duplicate declarations. Assume that a reference xR

i1 resolves to
two definitions xD

i2
and xD

i3
; then i1, i2 and i3 belong to the same equivalence

class. Thus all α-equivalent programs will have the same ambiguities.

6.2 Renaming

Renaming is the substitution of a bound variable by a new variable throughout
the program. It has several practical applications such as rename refactoring in
an IDE, transformation to a program with unique identifiers, or as an interme-
diate transformation when implementing capture-avoiding substitution.

A valid renaming should respect α-equivalence classes. To formalize this idea
we first define a generic transformation scheme on programs that also depends
on the position of the sub-term to rewrite:

Definition 6 (Position dependent rewrite rule). Given a program P, we
denote by (ti → t′ | F ) the transformation that replaces the occurrences of the
sub-term t at positions i by t′ if the condition F is true. (T )P denotes the appli-
cation of the transformation T to the program P.

Given this definition we can now define the renaming transformation that re-
places the identifier corresponding to an entire equivalence class:

Definition 7 (Renaming). Given a program P and a position i corresponding
to a declaration or a reference for the name x, we denote by [xi:=y]P the program
P’ corresponding to P where all the identifiers x at positions P∼-equivalent to i
are replaced by y:

[xi := y]P � (xi′ → y | i′ P∼ i)P
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However, not every renaming is acceptable: a renaming might provoke variable
captures and completely change the meaning of a program.

Definition 8 (Valid renamings). Given a program P, renaming [xi := y] is
valid only if it produces an α-equivalent program, i.e. [xi := y]P

α≈ P

Remark 2. This definition prevents the renaming of free variables since α-
equivalent programs have exactly the same free variables.

Intuitively, valid renamings are those that do not accidentally “capture” vari-
ables. Since the capture of a reference resolution also depends on the seen-import
context in which this resolution occurs, a precise characterization of capture in
our general setting is complex and we leave it for future work.

7 Related Work

Binding-sensitive Program Representations. There has been a great deal of work
on representing program syntax in ways that take explicit note of binding struc-
ture, usually with the goal of supporting program transformation or mechanized
reasoning tools that respect α-equivalence by construction. Notable techniques
include de Bruijn indexing [7], Higher-Order Abstract Syntax (HOAS) [20], lo-
cally nameless representations [3], and nominal sets [10]. (Aydemir, et al. [2] give
a survey in the context of mechanized reasoning.) However, most of this work
has concentrated on simple lexical binding structures, such as single-argument
λ-terms. Cheney [4] gives a catalog of more interesting binding patterns and
suggests how nominal logic can be used to describe many of them. However, he
leaves treatment of module imports as future work.

Binding Specification Languages. The Ott system [22] allows definition of syn-
tax, name binding and semantics. This tool generates language definitions for
theorem provers along with a notion of α-equivalence and functions such as
capture-avoiding substitution that can be proven correct in the chosen proof
assistant modulo α-equivalence. Avoiding capture is also the basis of hygienic
macros in Scheme. Dybvig [8] gives an algorithmic description of what hygiene
means. Herman and Wand [13,12] introduce static binding specifications to for-
malize a notion of α-equivalence that does not depend on macro expansion.
Stansifer and Wand’s Romeo system [23] extends these specifications to some-
what more elaborate binding forms, such as sequential let. Unbound [25] is
another recent domain specific language for describing bindings that supports
moderately complex binding forms. Again, none of these systems treat modules
or imports.

Language Engineering. In language engineering approaches, name bindings are
often realized using a random-access symbol table such that multiple analysis
and transformation stages can reuse the results of a single name resolution pass
[1]. Another approach is to represent the result of name resolution by means
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of reference attributes, direct pointers from the uses of a name to its definition
[11]. However these representations are usually built using an implementation
of a language-specific resolution algorithm. Erdweg, et al. [9] describe a system
for defining capture-free transformations, assuming resolution algorithms are
provided for the source and target languages. The approach represents the result
of name resolution using ‘name graphs’ that map uses to definitions (references
to declarations in our terminology) and are language independent. This notion
of ‘name graph’ inspired our notion of ‘scope graph’. The key difference is that
the results of name resolution generated by the resolution calculus are paths that
extend a use-def pair with the language-independent evidence for the resolution.

Semantics Engineering. Semantics engineering approaches to name binding vary
from first-order representation with substitution [15], to explicit or implicit en-
vironment propagation [21,18,6], to HOAS [5]. Identifier bindings represented
with environments are passed along in derivation rules, rediscovering bindings
for each operation. This approach is inconvenient for more complex patterns
such as mutually recursive definitions.

8 Conclusion and Future Work

We have introduced a generic, language-independent framework for describing
name binding in programming languages. Its theoretical basis is the notion of
a scope graph, which abstracts away from syntax, together with a calculus for
deriving resolution paths in the graph. Scope graphs are expressive enough to
describe a wide range of binding patterns found in real languages, in particular
those involving modules or classes. We have presented a practical resolution
algorithm, which is provably correct with respect to the resolution calculus. We
can use the framework to define generic notions of α-equivalence and renaming.

As future work, we plan to explore and extend the theory of scope graphs,
in particular to find ways to rule out anomalous examples and to give precise
characterizations of variable capture and substitution. On the practical side, we
will use our formalism to give a precise semantics to the NaBL DSL, and verify
(using proof and/or testing) that the current NaBL implementation conforms to
this semantics.

Our broader vision is that of a complete language designer’s workbench that in-
cludes NaBL as the domain-specific language for name binding specification and
also includes languages for type systems and dynamic semantics specifications. In
this setting, we also plan to study the interaction of name resolution and types,
including issues of dependent types and name disambiguation based on types.
Eventually we aim to derive a complete mechanized meta-theory for the languages
defined in this workbench and to prove the correspondence between static name
binding and name binding in dynamics semantics as outlined in [24].
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Abstract. XML processing languages can be classified according to
whether they extract XML data by paths or patterns. The strengths
of one category correspond to the weaknesses of the other. In this work,
we propose to bridge the gap between these two classes by considering
two languages, one in each class: XQuery (for path-based extraction) and
�Duce (for pattern-based extraction). To this end, we extend �Duce so as
it can be seen as a succinct core λ-calculus that captures XQuery 3.0. The
extensions we consider essentially allow �Duce to implement XPath-like
navigational expressions by pattern matching and precisely type them.
The elaboration of XQuery 3.0 into the extended �Duce provides a for-
mal semantics and a sound static type system for XQuery 3.0 programs.

1 Introduction

With the establishment of XML as a standard for data representation and ex-
change, a wealth of XML-oriented programming languages have emerged. They
can be classified into two distinct classes according to whether they extract XML
data by applying paths or patterns. The strengths of one class correspond to the
weaknesses of the other. In this work, we propose to bridge the gap between
these classes and to do so we consider two languages each representing a distinct
class: XQuery and �Duce.

XQuery [23] is a declarative language standardized by the W3C that relies
heavily on XPath [21,22] as a data extraction primitive. Interestingly, the latest
version of XQuery (version 3.0, very recently released [25]) adds several func-
tional traits: type and value case analysis and functions as first-class citizens.
However, while the W3C specifies a standard for document types (XML Schema
[26]), it says little about the typing of XQuery programs (the XQuery 3.0 recom-
mendation goes as far as saying that static typing is “implementation defined”
and hence optional). This is a step back from the XQuery 1.0 Formal Semantics
[24] which gives sound (but sometime imprecise) typing rules for XQuery.

In contrast, �Duce [4], which is used in production but issued from academic
research, is a statically-typed functional language with, in particular, higher-
order functions and powerful pattern matching tailored for XML data. Its key
characteristic is its type algebra, which is based on semantic subtyping [10] and
features recursive types, type constructors (product, record, and arrow types)
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XQuery code

1 declare function get_links($page, $print) {

2 for $i in $page/descendant::a[not(ancestor::b)]
3 return $print($i)
4 }

5 declare function pretty($link) {

6 typeswitch($link)
7 case $l as element(a)

8 return switch ($l/@class)
9 case "style1"

10 return <a href={$l/@href}><b>{$l/text()}</b></a>
11 default return $l
12 default return $link
13 }

�Duce code

14 let get_links (page: <_>_) (print: <a>_ -> <a>_) : [ <a>_ * ] =

15 match page with

16 <a>_ & x -> [ (print x) ]

17 | < (_\‘b) > l -> (transform l with (i & <_>_) -> get_links i print)
18 | _ -> [ ]

19 let pretty (<a>_ -> <a>_ ; Any\<a>_ -> Any\<a>_)

20 | <a class="style1" href=h ..> l -> <a href=h>[ <b>l ]

21 | x -> x

Fig. 1. Document transformation in XQuery 3.0 and �Duce

and general Boolean connectives (union, intersection, and negation of types) as
well as singleton types. This type algebra is particularly suited to express the
types of XML documents and relies on the same foundation as the one that un-
derpins XML Schema: regular tree languages. Moreover, the �Duce type system
not only supports ad-hoc polymorphism (through overloading and subtyping)
but also has recently been extended with parametric polymorphism [5,6].

Figure 1 highlights the key features as well as the shortcomings of both lan-
guages by defining the same two functions get_links and pretty in each language.
Firstly, get_links (i) takes an XHTML document $page and a function $print as
input, (ii) computes the sequence of all hypertext links (a-labelled elements) of
the document that do not occur below a bold element (b-labelled elements), and
(iii) applies the print argument to each link in the sequence, returning the se-
quence of the results. Secondly, pretty takes anything as argument and performs
a case analysis. If the argument is a link whose class attribute has the value
"style1", the output is a link with the same target (href attribute) and whose
text is embedded in a bold element. Otherwise, the argument is unchanged.

We first look at the get_links function. In XQuery, collecting every “a” element
of interest is straightforward: it is done by the XPath expression at Line 2:

$page/descendant::a[not(ancestor::b)]
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In a nutshell, an XPath expression is a sequence of steps that (i) select sets
of nodes along the specified axis (here descendant meaning the descendants
of the root node of $page), (ii) keep only those nodes in the axis that have
a particular label (here “a”), and (iii) further filter the results according to a
Boolean condition (here not(ancestor::b) meaning that from a candidate “a”
node, the step ancestor::b must return an empty result). At Lines 2–3, the
for_return expression binds in turn each element of the result of the XPath
expression to the variable $i, evaluates the return expression, and concatenates
the results. Note that there is no type annotation and that this function would
fail at runtime if $page is not an XML element or if $print is not a function.

In clear contrast, in the �Duce program, the interface of get_links is fully
specified (Line 14). It is curried and takes two arguments. The first one is page
of type <_>_, which denotes any XML element (_ denotes a wildcard pattern
and is a synonym of the type Any, the type of all values, while <s>t is the
type of an XML element with tag of type s and content of type t). The second
argument is print of type <a>_→ <a>_, which is the type of functions that take
an “a” element (whose content is anything) and return an “a” element. The final
output is a value of type [ <a>_* ], which denotes a possibly empty sequence
of “a” elements (in �Duce’s types, the content of a sequence is described by
a regular expression on types). The implementation of get_links in �Duce is
quite different from its XQuery counterpart: following the functional idiom, it is
defined as a recursive function that traverses its input recursively and performs
a case analysis through pattern matching. If the input is an “a” element (Line
16), it binds the input to the capture variable x, evaluates print x, and puts the
result in a sequence (denoted by square brackets). If the input is an XML element
whose tag is not b (“\” stands for difference, so _\‘b matches any value different
from b)1, it captures the content of the element (a sequence) in l and applies
itself recursively to each element of l using the transform_with construct whose
behavior is the same as XQuery’s for. Lastly, if the result is not an element (or
it is a “b” element), it stops the recursion and returns the empty sequence.

For the pretty function (which is inspired from the example given in §3.16.2
of the XQuery 3.0 recommendation [25]), the XQuery version (Lines 5–13) first
performs a “type switch”, which tests whether the input $link has label a. If so,
it extracts the value of the class attribute using an XPath expression (Line 8)
and performs a case analysis on that value. In the case where the attribute is
"style1", it re-creates an “a” element (with a nested “b” element) extracting the
relevant part of the input using XPath expressions. The �Duce version (Lines
19–21) behaves in the same way but collapses all the cases in a single pattern
matching. If the input is an “a” element with the desired class attribute, it
binds the contents of the href attribute and the element to the variables h and l,
respectively (the “..” matches possible further attributes), and builds the desired
output; otherwise, the input is returned unchanged. Interestingly, this function
is overloaded. Its signature is composed of two arrow types: if the input is an “a”
element, so is the output; if the input is something else than an “a” element, so

1 In �Duce, one has to use ‘b in conjunction with \ to denote XML tag b.
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is the output (& in types and patterns stands for intersection). Note that it is
safe to use the pretty function as the second argument of the get_links function
since (<a>_→<a>_) & (Any\<a>_→Any\<a>_) is a subtype of <a>_→<a>_ (an
intersection is always smaller than or equal to the types that compose it).

Here we see that the strength of one language is the weakness of the other:
�Duce provides static typing, a fine-grained type algebra, and a pattern match-
ing construct that cleanly unifies type and value case analysis. XQuery provides
through XPath a declarative way to navigate a document, which is more concise
and less brittle than using hand-written recursive functions (in particular, at
Line 16 in the �Duce code, there is an implicit assumption that a link cannot
occur below another link; the recursion stops at “a” elements).

Contributions. The main contribution of the paper is to unify the navigational
and pattern matching approaches and to define a formal semantics and type
system of XQuery 3.0. Specifically, we extend �Duce so as it can be seen as a
succinct core λ-calculus that can express XQuery 3.0 programs as follows.

First, we allow one to navigate in �Duce values, both downward and upward.
A natural way to do so in a functional setting is to use zippers à la Huet [18] to
annotate values. Zippers denote the position in the surrounding tree of the value
they annotate as well as its current path from the root. We extend �Duce not
only with zipped values (i.e., values annotated by zippers) but also with zipped
types. By doing so, we show that we can navigate not only in any direction in a
document but also in a precisely typed way, allowing one to express constraints
on the path in which a value is within a document.

Second, we extend �Duce pattern matching with accumulating variables that
allow us to encode recursive XPath axes (such as descendant and ancestor).
It is well known that typing such recursive axes goes well beyond regular tree
languages and that approximations in the type system are needed. Rather than
giving ad-hoc built-in functions for descendant and ancestor, we define the
notion of type operators and parameterize the �Duce type system (and dynamic
semantics) with these operators. Soundness properties can then be shown in
a modular way without hard-coding any specific typing rules in the language.
With this addition, XPath navigation can be encoded simply in �Duce’s pattern
matching constructs and it is just a matter of syntactic sugar definition to endow
�Duce with nice declarative navigational expressions such as those successfully
used in XQuery or XSLT.

The last (but not least) step of our work is to define a “normal form” for
XQuery 3.0 programs, extending both the original XQuery Core normal form of
[24] and its recent adaptation to XQuery 3.0 (dubbed XQH) proposed by Benedikt
and Vu [3]. In this normal form, navigational (i.e., structural) expressions are
well separated from data value expressions (ordering, node identity testing, etc.).
We then provide a translation from XQuery 3.0 Core to �Duce extended with
navigational patterns. The encoding provides for free an effective and efficient
typechecking algorithm for XQuery 3.0 programs (described in Figure 9 of Sec-
tion 5.1) as well as a formal and compact specification of their semantics. Even
more interestingly, it provides a solid formal basis to start further studies on the
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Pre-values w ::= c | (w,w) | μf (t→t;...;t→t)(x).e
Zippers δ ::= • | L (w)δ · δ | R (w)δ · δ
Values v ::= w | (v, v) | (w)δ
Expressions e ::= v | x | ẋ | (e, e) | (e)• | o(e, . . . , e)

| match e with p → e| p → e

Pre-types u ::= b | c | u× u | u → u | u ∨ u | ¬u | �

Zipper types τ ::= • | � | L (u)τ · τ | R (u)τ · τ | τ ∨ τ | ¬τ
Types t ::= u | t× t | t → t | t ∨ t | ¬t | (u)τ

Pre-patterns q ::= t | x | ẋ | (q, q) | q|q | q&&& q | (x := c)
Zipper patterns ϕ ::= τ | L p · ϕ | R p · ϕ | ϕ|ϕ
Patterns p ::= q | (p, p) | p|p | p&&& p | (q)ϕ

Fig. 2. Syntax of expressions, types, and patterns

definition of XQuery 3.0 and its properties. A minima, it is straightforward to
use this basis to add overloaded functions to XQuery (e.g., to give a precise type
to pretty). More crucially, the recent advances on polymorphism for semantic
subtyping [5,6,7] can be transposed to this basis to provide a polymorphic type
system and type inference algorithm both to XQuery 3.0 and to the extended
�Duce language defined here. Polymorphic types are the missing ingredient to
make higher-order functions yield their full potential and to remove any residual
justification of the absence of standardization of the XQuery 3.0 type system.

Plan. Section 2 presents the core typedλ-calculus equipped with zipper-annotated
values, accumulators, constructors, recursive functions, and pattern matching.
Section 3 gives its semantics, type system, and the expected soundness property.
Section 4 turns this core calculus into a full-fledged language using several syntac-
tic constructs and encodings. Section 5 uses this language as a compilation target
for XQuery. Lastly, Section 6 compares our work to other related approaches and
concludes. Proofs and some technical definitions are given in an online appendix
available at http://www.pps.univ-paris-diderot.fr/~gc/.

2 Syntax

We extend the �Duce language [4] with zippers à la Huet [18]. To ensure the
well-foundedness of the definition, we stratify it, introducing first pre-values
(which are standard �Duce values) and then values, which are pre-values possibly
indexed by a zipper; we proceed similarly for types and patterns. The definition
is summarized in Figure 2. Henceforth we denote by V the set of all values and
by Ω a special value that represents runtime error and does not inhabit any type.
We also denote by E and T the set of all expressions and all types, respectively.

2.1 Values and Expressions

Pre-values (ranged over by w) are the usual �Duce values without zipper an-
notations. Constants are ranged over by c and represent integers (1, 2, . . . ),

http://www.pps.univ-paris-diderot.fr/~gc/
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characters (’a’, ’b’, . . . ), atoms (‘nil, ‘true, ‘false, ‘foo, . . . ), etc. A value
(w,w) represents pairs of pre-values. Our calculus also features recursive func-
tions (hence the μ binder instead of the traditional λ) with explicit, overloaded
types (the set of types that index the recursion variable, forming the interface of
the function). Values (ranged over by v) are pre-values, pairs of values, or pre-
values annotated with a zipper (ranged over by δ). Zippers are used to record
the path covered when traversing a data structure. Since the product is the only
construct, we need only three kinds of zippers: the empty one (denoted by •)
which intuitively denotes the starting point of our navigation, and two zippers
L (w)δ · δ and R (w)δ · δ which denote respectively the path to the left and right
projection of a pre-value w, which is itself reachable through δ. To ease the writ-
ing of several zipper related functions, we chose to record in the zipper the whole
“stack” of values we have visited (each tagged with a left or right indication),
instead of just keeping the unused component as is usual.

Example 1. Let v be the value ((1, (2, 3)))•. Its first projection is the value
(1)L ((1,(2,3)))•·• and its second projection is the value ((2, 3))R ((1,(2,3)))•·•, the
first projection of which being (2)L ((2,3))R ((1,(2,3)))•·•·R ((1,(2,3)))•·•

As one can see in this example, keeping values in the zipper (instead of pre-
values) seems redundant since the same value occurs several times (see how δ is
duplicated in the definition of zippers). The reason for this duplication is purely
syntactic: it makes the writing of types and patterns that match such values
much shorter (intuitively, to go “up” in a zipper, it is only necessary to extract
the previous value while keeping it un-annotated —i.e., having Lw · δ in the
definition instead of L (w)δ · δ— would require a more complex treatment to
reconstruct the parent). We also stress that zipped values are meant to be used
only for internal representation: the programmer will be allowed to write just
pre-values (not values or expressions with zippers) and be able to obtain and
manipulate zippers only by applying �Duce functions and pattern matching (as
defined in the rest of the paper) and never directly.

Expressions include values (as previously defined), variables (ranged over by
x , y, . . . ), accumulators (which are a particular kind of variables, ranged over
by ẋ , ẏ , . . . ), and pairs. An expression (e)• annotates e with the empty zipper
•. The pattern matching expression is standard (with a first match policy) and
will be thoroughly presented in Section 3. Our calculus is parameterized by a set
O of built-in operators ranged over by o. Before describing the use of operators
and the set of operators defined in our calculus (in particular the operators for
projection and function application), we introduce our type algebra.

2.2 Types

We first recall the �Duce type algebra, as defined in [10], where types are in-
terpreted as sets of values and the subtyping relation is semantically defined by
using this interpretation (i.e., �t� = {v | � v : t} and s ≤ t

def⇐⇒ �s� ⊆ �t�).
Pre-types u (as defined in Figure 2) are the usual �Duce types, which are

possibly infinite terms with two additional requirements:
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1. (regularity) the number of distinct subterms of u is finite;
2. (contractiveness) every infinite branch of u contains an infinite number of

occurrences of either product types or function types.

We use b to range over basic types (int, bool, . . . ). A singleton type c denotes
the type that contains only the constant value c. The empty type � contains
no value. Product and function types are standard: u1 × u2 contains all the
pairs (w1, w2) for wi ∈ ui, while u1 → u2 contains all the (pre-)value functions
that when applied to a value in u1, if such application terminates then it re-
turns a value in u2. We also include type connectives for union and negation
(intersections are encoded below) with their usual set-theoretic interpretation.
Infiniteness of pre-types accounts for recursive types and regularity implies that
pre-types are finitely representable, for instance, by recursive equations or by
the explicit μ-notation. Contractiveness [2] excludes both ill-formed (i.e., un-
guarded) recursions such as μX.X as well as meaningless type definitions such
as μX.X ∨X or μX.¬X (unions and negations are finite). Finally, subtyping is
defined as set-theoretic containment (u1 is a subtype of u2, denoted by u1≤u2,
if all values in u1 are also in u2) and it is decidable in EXPTIME (see [10]).

A zipper type τ is a possibly infinite term that is regular as for pre-types and
contractive in the sense that every infinite branch of τ must contain an infinite
number of occurrences of either left or right projection. The singleton type • is
the type of the empty zipper and 
 denotes the type of all zippers, while L (u)τ ·τ
(resp., R (u)τ · τ) denotes the type of zippers that encode the left (resp., right)
projection of some value of pre-type u. We use τ1 ∧ τ2 to denote ¬(¬τ1 ∨ ¬τ2).

The type algebra of our core calculus is then defined as pre-types possibly
indexed by zipper types. As for pre-types, a type t is a possibly infinite term
that is both regular and contractive. We write t ∧ s for ¬(¬t ∨ ¬s), t \ s for
t ∧ ¬s, and � for ¬�; in particular, � denotes the super-type of all types (it
contains all values). We also define the following notations (we use ≡ both for
syntactic equivalence and definition of syntactic sugar):

– �prod ≡ �× � the super-type of all product types
– �fun ≡ � → � the super-type of all arrow types
– �basic ≡ � \ (�prod∨�fun∨(�)�) the super-type of all basic types
– �NZ ≡ μX.(X ×X)∨(�basic ∨ �fun) the type of all pre-values (i.e., Not Zipped)

It is straightforward to extend the subtyping relation of pre-types (i.e., the one
defined in [10]) to our types: the addition of (u)τ corresponds to the addition of a
new type constructor (akin to → and ×) to the type algebra. Therefore, it suffices
to define the interpretation of the new constructor to complete the definition
of the subtyping relation (defined as containment of the interpretations). In
particular, (u)τ is interpreted as the set of all values (w)δ such that � w : u
and � δ : τ (both typing judgments are defined in Appendix B.1). From this we
deduce that (�)� (equivalently, (�NZ)�) is the type of all (pre-)values decorated
with a zipper. The formal definition is more involved (see Appendix A) but the
intuition is simple: a type (u1)τ1 is a subtype of (u2)τ2 if u1 ≤ u2 and τ2 is a
prefix (modulo type equivalence and subtyping) of τ1. The prefix containment
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translates the intuition that the more we know about the context surrounding a
value, the more numerous are the situations in which it can be safely used. For
instance, in XML terms, if we have a function that expects an element whose
parent’s first child is an integer, then we can safely apply this function to an
element whose type indicates that its parent’s first child has type (a subtype of)
integer and that its grandparent is, say, tagged by a.

Finally, as for pre-types, the subtyping relation for types is decidable in EX-
PTIME. This is easily shown by producing a straightforward linear encoding
of zipper types and zipper values in pre-types and pre-values, respectively (the
encoding is given in Definition 16 in Appendix A).

2.3 Operators and Accumulators

As previously explained, our calculus includes accumulators and is parameterized
by a set O of operators. These have the following formal definitions:

Definition 2 (Operator). An operator is a 4-tuple (o, no,
o
�,

o→) where o is
the name (symbol) of the operator, no is its arity, o

� ⊆ Vno × E ∪ {Ω} is its
reduction relation, and o→ : T no → T is its typing function.

In other words, an operator is an applicative symbol, equipped with both a
dynamic (�) and a static (→) semantics. The reason for making o

� a relation
is to account for non-deterministic operators (e.g., random choice). Note that an
operator may fail, thus returning the special value Ω during evaluation.

Definition 3 (Accumulator). An accumulator ẋ is a variable equipped with
a binary operator Op(ẋ ) ∈ O and initial value Init(ẋ ) ∈ V.

2.4 Patterns

Now that we have defined types and operators, we can define patterns. Intu-
itively, patterns are types with capture variables that are used either to extract
subtrees from an input value or to test its “shape”. As before, we first recall the
definition of standard �Duce patterns (here called pre-patterns), enrich them
with accumulators, and then extend the whole with zippers.

A pre-pattern q, as defined in Figure 2, is either a type constraint t, or a cap-
ture variable x , or an accumulator ẋ , or a pair (q1, q2), or an alternative q1|q2, or
a conjunction q1&&& q2, or a default case (x := c). It is a possibly infinite term that
is regular as for pre-types and contractive in the sense that every infinite branch
of q must contain an infinite number of occurrences of pair patterns. Moreover,
the subpatterns forming conjunctions must have distinct capture variables and
those forming alternatives the same capture variables. A zipper pattern ϕ is a
possibly infinite term that is both regular and contractive as for zipper types.
Finally, a pattern p is a possibly infinite term with the same requirements as
pre-patterns. Besides, the subpatterns q and ϕ forming a zipper pattern (q)ϕ
must have distinct capture variables. We denote by Var(p) the set of capture
variables occurring in p and by Acc(p) the set of accumulators occurring in p.
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E ::= [ ] | (E, e) | (e, E) | (E)• | match E with p1 → e1| p2 → e2 | o(e, ..., E, ..., e)

(v1, . . . , vno)
o
� e

o(v1, . . . , vno) � e

{ẋ �→ Init(ẋ ) | ẋ ∈ Acc(p1)};� � v/p1 � σ, γ

match v with p1 → e1| p2 → e2 � e1[σ; γ]

{ẋ �→ Init(ẋ ) | ẋ ∈ Acc(p1)};� � v/p1 � Ω {ẋ �→ Init(ẋ ) | ẋ ∈ Acc(p2)};� � v/p2 � σ, γ

match v with p1 → e1| p2 → e2 � e2[σ; γ]

e � e′

E [e] � E [e′] e � Ω

(
if no other rule applies
and e is not a value

)

Fig. 3. Operational semantics (reduction contexts and rules)

3 Semantics

In this section, the most technical one, we present the operational semantics and
the type system of our calculus, and state the expected soundness properties.

3.1 Operational Semantics

We define a call-by-value, small-step operational semantics for our core calculus,
using the reduction contexts and reduction rules given in Figure 3, where Ω is
a special value representing a runtime error.

Of course, most of the actual semantics is hidden (the careful reader will
have noticed that applications and projections are not explicitly included in the
syntax of our expressions). Most of the work happens either in the semantics
of operators or in the matching v/p of a value v against a pattern p. Such a
matching, if it succeeds (i.e., if it does not return Ω), returns two substitutions,
one (ranged over by γ) from the capture variables of p to values and the other
(ranged over by δ) from the accumulators to values. These two substitutions are
simultaneously applied (noted ei[σ; γ]) to the expression ei of the pattern pi that
succeeds, according to a first match policy (v/p2 is evaluated only if v/p1 fails).
Before explaining how to derive the pattern matching judgments “_ � v/p � _”
(in particular, the meaning of the context on the LHS of the turnstile “�”), we
introduce a minimal set of operators: application, projections, zipper erasure,
and sequence building (we use sans-serif font for concrete operators). We only
give their reduction relation and defer their typing relation to Section 3.2.

Function application: the operator app(_,_) implements the usual β-reduction:

v, v′
app
� e[v/f ; v

′
/x] if v = μf (...)(x).e

and v, v′
app
� Ω if v is not a function. As customary, e[v/x] denotes the capture-

avoiding substitution of v for x in e, and we write e1 e2 for app(e1, e2).

Projection: the operator π1(_) (resp., π2(_)) implements the usual first (resp.,
second) projection for pairs:

(v1, v2)
πi
� vi for i ∈ {1, 2}

The application of the above operators returns Ω if the input is not a pair.
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Zipper erasure: given a zipper-annotated value, it is sometimes necessary to
remove the zipper (e.g., to embed this value into a new data structure). This is
achieved by the following remove rm(_) and deep remove drm(_) operators:

(w)δ
rm
� w

v
rm
� v if v �≡ (w)δ

w
drm
� w

(w)δ
drm
� w

(v1, v2)
drm
� (drm(v1), drm(v2))

The former operator only erases the top-level zipper (if any), while the latter
erases all zippers occurring in its input.

Sequence building: given a sequence (encoded à la Lisp) and an element, we define
the operators cons(_) and snoc(_) that insert an input value at the beginning
and at the end of the input sequence:

v, v′ cons
� (v, v′) v, ‘nil

snoc
� (v, ‘nil)

v, (v′, v′′) snoc
� (v′, snoc(v, v′′))

The applications of these operators yield Ω on other inputs.

To complete our presentation of the operational semantics, it remains to de-
scribe the semantics of pattern matching. Intuitively, when matching a value v
against a pattern p, subparts of p are recursively applied to corresponding sub-
parts of v until a base case is reached (which is always the case since all values
are finite). As usual, when a pattern variable is confronted with a subvalue, the
binding is stored as a substitution. We supplement this usual behavior of pattern
matching with two novel features. First, we add accumulators, that is, special
variables in which results are accumulated during the recursive matching. The
reason for keeping these two kinds of variables distinct is explained in Section 3.2
and is related to type inference for patterns. Second, we parameterize pattern
matching by a zipper of the current value so that it can properly update the
zipper when navigating the value (which should be of the pair form).

These novelties are reflected by the semantics of pattern matching, which is
given by the judgment σ; δ? � v/p � σ′, γ, where v is a value, p a pattern, γ a
mapping from Var(p) to values, and σ and σ′ are mappings from accumulators
to values. δ? is an optional zipper value, which is either δ or a none value � (we
consider (v)� to be v). The judgment “returns” the result of matching the value
v against the pattern p (noted v/p), that is, two substitutions: γ for capture
variables and σ′ for accumulators. Since the semantics is given compositionally,
the matching may happen on a subpart of an “outer” matched value. Therefore,
the judgment records on the LHS of the turnstile the context of the outer value
explored so far: σ stores the values already accumulated during the matching,
while δ? tracks the possible zipper of the outer value (or it is � if the outer value
has no zipper). The context is “initialized” in the two rules of the operational
semantics of match in Figure 3, by setting each accumulator of the pattern to
its initial value (function Init()) and the outer zipper to �.

Judgments for pattern matching are derived by the rules given in Figure 4.
The rules pat-acc, pat-pair-zip, and zpat-* are novel, as they extend pattern
matching with accumulators and zippers, while the others are derived from [4,9].
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( � v : t)

σ; δ? � v/t � σ,∅
pat-type

σ; δ? � v/ẋ � σ[ Op(ẋ)(vδ? , σ(ẋ))/̇x ],∅
pat-acc

σ; δ? � v/x � σ, {x �→ vδ?}
pat-var

σ; δ? � v/(x := c) � σ, {x �→ c} pat-def

σ;� � v1/p1 � σ′, γ1 σ′;� � v2/p2 � σ′′, γ2
σ;� � (v1, v2)/(p1, p2) � σ′′, γ1 ⊕ γ2

pat-pair

σ; L (w1, w2)δ · δ � w1/p1 � σ′, γ1 σ′;R (w1, w2)δ · δ � w2/p2 � σ′′, γ2

σ; δ � (w1, w2)/(p1, p2) � σ′′, γ1 ⊕ γ2
pat-pair-zip

σ; δ? � v/p1 � σ′, γ

σ; δ? � v/p1| p2 � σ′, γ
pat-or1

σ; δ? � v/p1 � Ω σ; δ? � v/p2 � σ′, γ

σ; δ? � v/p1| p2 � σ′, γ
pat-or2

σ; δ? � v/p1 � σ′, γ1 σ′; δ? � v/p2 � σ′′, γ2

σ; δ? � v/p1&&& p2 � σ′′, γ1 ⊕ γ2
pat-and

σ; δ � w/q � σ′, γ1 σ′ � δ/ϕ � σ′′, γ2
σ;� � (w)δ/(q)ϕ � σ′′, γ1 ⊕ γ2

pat-zip
( � δ : τ )

σ � δ/τ � σ,∅
zpat-type

σ;� � (w)δ/p � σ′, γ1
σ′ � δ/ϕ � σ′′, γ2 γ = γ1 ⊕ γ2

σ � L (w)δ · δ/L p · ϕ � σ′′, γ
zpat-left

σ;� � (w)δ/p � σ′, γ1
σ′ � δ/ϕ � σ′′, γ2 γ = γ1 ⊕ γ2

σ � R (w)δ · δ/R p · ϕ � σ′′, γ
zpat-right

σ � δ/ϕ1 � σ′, γ

σ � δ/ϕ1|ϕ2 � σ′, γ
zpat-or1

σ � δ/ϕ1 � Ω σ � δ/ϕ2 � σ′, γ

σ � δ/ϕ1|ϕ2 � σ′, γ
zpat-or2

(otherwise)

σ; δ? � v/p � Ω
pat-error

(otherwise)

σ � δ/ϕ � Ω
zpat-error

where γ1 ⊕ γ2
def
= {x �→ γ1(x ) | x ∈ dom(γ1)\dom(γ2)}
∪ {x �→ γ2(x ) | x ∈ dom(γ2)\dom(γ1)}
∪ {x �→ (γ1(x), γ2(x)) | x ∈ dom(γ1) ∩ dom(γ2)}

Fig. 4. Pattern matching

There are three base cases for matching: testing the input value against a type
(rule pat-type), updating the environment σ for accumulators (rule pat-acc),
or producing a substitution γ for capture variables (rules pat-var and pat-def).
Matching a pattern (p1, p2) only succeeds if the input is a pair and the matching
of each subpattern against the corresponding subvalue succeeds (rule pat-pair).
Furthermore, if the value being matched was below a zipper (i.e., the current
zipper context is a δ and not—as in pat-pair— �), we update the current zipper
context (rule pat-pair-zip); notice that in this case the matched value must be a
pair of pre-values since zipped values cannot be nested. An alternative pattern
p1|p2 first tries to match the pattern p1 and if it fails, tries the pattern p2 (rules
pat-or1 and pat-or2). The matching of a conjunction pattern p1&&& p2 succeeds if
and only if the matching of both patterns succeeds (rule pat-and). For a zipper
constraint (q)ϕ, the matching succeeds if and only if the input value is annotated
by a zipper, e.g., (w)δ , and both the matching of w with q and δ with ϕ succeed
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(rule pat-zip). It requires the zipper context to be � since we do not allow nested
zipped values. When matching w with q, we record the zipper δ into the context
so that it can be updated (in the rule pat-pair-zip) while navigating the value.

The matching of a zipper pattern ϕ against a zipper δ (judgments σ � δ/ϕ �

σ′, γ derived by the zpat-* rules) is straightforward: it succeeds if both ϕ and δ are
built using the same constructor (either L or R) and the componentwise matching
succeeds (rules zpat-left and zpat-right). If the zipper pattern is a zipper type,
the matching tests the input zipper against the zipper type (rule zpat-type),
and alternative zipper patterns ϕ1|ϕ2 follow the same first match policy as
alternative patterns. If none of the rules is applicable, the matching fails (rules
pat-error and zpat-error). Note that initially the environment σ contains Init(ẋ)
for each accumulator ẋ in Acc(p) (rules for match in Figure 3).

Intuitively, γ is built when returning from the recursive descent in p, while σ is
built using a fold-like computation. It is the typing of such fold-like computations
that justifies the addition of accumulators (instead of relying on plain functions).
But before presenting the type system of the language, we illustrate the behavior
of pattern matching by some examples.

Example 4. Let v ≡ (2, (‘true, (3, ‘nil))), Init(ẋ ) = ‘nil, Op(ẋ ) = cons, and
σ ≡ {ẋ �→ ‘nil}. Then, we have the following matchings:
1. σ;� � v/(int, (x ,_)) � ∅, {x �→ ‘true}
2. σ;� � v/μX.((x &&& int|_, X)|(x := ‘nil)) � ∅, {x �→ (2, (3, ‘nil))}
3. σ;� � v/μX.((ẋ , X)|‘nil) � {ẋ �→ (3, (‘true, (2, ‘nil)))},∅

In the first case, the input v (the sequence [2 ‘true 3] encoded à la Lisp)
is matched against a pattern that checks if the first element has type int (rule
pat-type), binds the second element to x (rule pat-var), and ignores the rest of
the list (rule pat-type, since the anonymous variable “_” is just an alias for �).

The second case is more involved since the pattern is recursively defined.
Because of the first match policy of rule pat-or1, the product part of the pattern
is matched recursively until the atom ‘nil is reached. When that is the case, the
variable x is bound to a default value ‘nil. When returning from this recursive
matching, since x occurs both on the left and on the right of the product (in
x &&& int and in X itself), a pair of the binding found in each part is formed (third
set in the definition of ⊕ in Figure 4), thus yielding a mapping {x �→ (3, ‘nil)}.
Returning again from the recursive call, only the “_” part of the pattern matches
the input ‘true (since it is not of type int, the intersection test fails). Therefore,
the binding for this step is only the binding for the right part (second case of
the definition of ⊕). Lastly, when reaching the top-level pair, x &&& int matches 2
and a pair is formed from this binding and the one found in the recursive call,
yielding the final binding {x �→ (2, (3, ‘nil))}.

The third case is more intuitive. The pattern just recurses the input value,
calling the accumulation function for ẋ along the way for each value against
which it is confronted. Since the operator associated with ẋ is cons (which builds
a pair of its two arguments) and the initial value is ‘nil, this has the effect of
computing the reversal of the list.
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Note the key difference between the second and third case. In both cases,
the structure of the pattern (and the input) dictates the traversal, but in the
second case, it also dictates how the binding is built (if v was a tree and not
a list, the binding for x would also be a tree in the second case). In the third
case, the way the binding is built is defined by the semantics of the operator
and independent of the input. This allows us to reverse sequences or flatten tree
structures, both of which are operations that escape the expressiveness of regular
tree languages/regular patterns, but which are both necessary to encode XPath.

3.2 Type System

The main difficulty in devising the type system is to type pattern matching and,
more specifically, to infer the types of the accumulators occurring in patterns.

Definition 5 (Accepted input of an operator). The accepted input of an
operator (o, n,

o
�,

o→) is the set �(o), defined as:
�(o) = {(v1, ..., vn)∈Vn | (((v1, ..., vn) o

�e) ∧ (e�∗v)) ⇒ v �=Ω}
Definition 6 (Exact input). An operator o has an exact input if and only if
�(o) is (the interpretation of) a type.

We can now state a first soundness theorem, which characterizes the set of all
values that make a given pattern succeed:

Theorem 7 (Accepted types). Let p be a pattern such that for every ẋ
in Acc(p), Op(ẋ ) has an exact input. Then, the set of all values v such that
{ẋ �→ Init(ẋ ) | ẋ ∈ Acc(p)};� � v/p �� Ω is a type. We call this set the accepted
type of p and denote it by �p�.

We next define the type system for our core calculus, in the form of a judgment
Γ � e : t which states that in a typing environment Γ (i.e., a mapping from
variables and accumulators to types) an expression e has type t. This judgment
is derived by the set of rules given in Figure 10 in Appendix. Here, we show only
the most important rules, namely those for accumulators and zippers:

Γ � ẋ : Γ (ẋ)

� w : t � δ : τ t ≤ �NZ

Γ � (w)δ : (t)τ

� e : t t ≤ �NZ

Γ � (e)• : (t)•

which rely on an auxiliary judgment � δ : τ stating that a zipper δ has zipper
type τ . The rule for operators is:

∀i = 1..no, Γ � ei : ti t1, . . . , tno

o→ t

Γ � o(e1, . . . , eno) : t
for o ∈ O

which types operators using their associated typing function. Last but not least,
the rule to type pattern matching expressions is:

t ≤ �p1� ∨ �p2�
t1 ≡ t ∧ �p1� t2 ≡ t ∧ ¬�p1�
Σi ≡ {ẋ �→ Init(ẋ ) | ẋ ∈ Acc(pi)}

Γ � e : t
Γi ≡ � ti/pi Γ ′

i ≡ Σi;� ti�pi
Γ ∪ Γi ∪ Γ ′

i � ei : t
′
i

Γ � match e with p1 → e1| p2 → e2 :
∨

{i | ti ���}
t′i

(i = 1, 2)
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This rule requires that the type t of the matched expression is smaller than
�p1� ∨ �p2� (i.e., the set of all values accepted by any of the two patterns),
that is, that the matching is exhaustive. Then, it accounts for the first match
policy by checking e1 in an environment inferred from values produced by e and
that match p1 (t1 ≡ t ∧ �p1�) and by checking e2 in an environment inferred
from values produced by e and that do not match p1 (t2 ≡ t ∧ ¬�p1�). If one of
these branches is unused (i.e., if ti � � where � denotes semantic equivalence,
that is, ≤ ∩ ≥), then its type does not contribute to the type of the whole
expression (cf. §4.1 of [4] to see why, in general, this must not yield an “unused
case” error). Each right-hand side ei is typed in an environment enriched with the
types for capture variables (computed by � ti/pi) and the types for accumulators
(computed by Σi;� ti�pi). While the latter is specific to our calculus, the former
is standard except it is parameterized by a zipper type as for the semantics
of pattern matching (its precise computation is described in [9] and already
implemented in the �Duce compiler except the zipper-related part: see Figure 11
in Appendix for the details). As before, we write τ? to denote an optional zipper
type, i.e., either τ or a none type �, and consider (t)� to be t.

To compute the types of the accumulators of a pattern p when matched against
a type t, we first initialize an environment Σ by associating each accumulator
ẋ occurring in p with the singleton type for its initial value Init(ẋ) (Σi ≡ {ẋ �→
Init(ẋ) | ẋ ∈ Acc(pi)}). The type environment is then computed by generating a
set of mutually recursive equations where the important ones are (see Figure 12
in Appendix for the complete definition):

Σ; τ? t�ẋ = Σ[s/̇x ] if (t)τ? , Σ(ẋ)
Op(ẋ)→ s

Σ; τ? t�p1| p2 = Σ; τ? t�p1 if t ≤ �p1�

Σ; τ? t�p1| p2 = Σ; τ? t�p2 if t ≤ ¬�p1�

Σ; τ? t�p1| p2 = (Σ; τ? (t ∧ �p1�)�p1)
⊔
(Σ1; τ

? (t ∧ ¬�p1�)�p2) otherwise

When an accumulator ẋ is matched against a type t, the type of the accumulator
is updated in Σ, by applying the typing function of the operator associated with
ẋ to the type (t)τ? and the type computed thus far for ẋ , namely Σ(ẋ). The other
equations recursively apply the matching on the subcomponents while updating
the zipper type argument τ? and merge the results using the “�” operation. This
operation implements the fact that if an accumulator ẋ has type t1 in a subpart
of a pattern p and type t2 in another subpart (i.e., both subparts match), then
the type of ẋ is the union t1 ∨ t2.

The equations for computing the type environment for accumulators might be
not well-founded. Both patterns and types are possibly infinite (regular) terms
and therefore one has to guarantee that the set of generated equations is finite.
This depends on the typing of the operators used for the accumulators. Before
stating the termination condition (as well as the soundness properties of the type
system), we give the typing functions for the operators we defined earlier.
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Function application: it is typed by computing the minimum type satisfying
the following subtyping relation: s, t

app→ min{t′ | s ≤ t → t′}, provided that
s ≤ t → � (this min always exists and is computable: see [10]).

Projection: to type the first and second projections, we use the property that
if t ≤ � × �, then t can be decomposed in a finite union of product types (we
use Πi to denote the set of the i-th projections of these types: see Lemma 19 in
Appendix B for the formal definition): t

πi→ ∨
s∈Πi(t)

s, provided that t ≤ �×�.
Zipper erasure: the top-level erasure rm→ simply removes the top-level zipper
type annotation, while the deep erasure drm→ is typed by recursively removing
the zipper annotations from the input type. Their precise definition can be found
in Appendix B.4.

Sequence building: it is typed in the following way:

t1, ‘nil
cons→ μX.((t1 ×X) ∨ ‘nil)

t1, μX.((t2 ×X) ∨ ‘nil)
cons→ μX.(((t1 ∨ t2)×X) ∨ ‘nil)

t1, ‘nil
snoc→ μX.((t1 ×X) ∨ ‘nil)

t1, μX.((t2 ×X) ∨ ‘nil)
snoc→ μX.(((t1 ∨ t2)×X) ∨ ‘nil)

Notice that the output types are approximations: the operator “cons(_)” is less
precise than returning a pair of two values since, for instance, it approximates
any sequence type by an infinite one (meaning that any information on the length
of the sequence is lost) and approximates the type of all the elements by a single
type which is the union of all the elements (meaning that the information on the
order of elements is lost). As we show next, this loss of precision is instrumental
in typing accumulators and therefore pattern matching.

Example 8. Consider the matching of a pattern p against a value v of type t:

p ≡ μX.((ẋ &&&(‘a|‘b))|‘nil|(X,X))
v ≡ (‘a, ((‘a, (‘nil, (‘b, ‘nil))), (‘b, ‘nil)))
t ≡ μY.((‘a× (Y × (‘b× ‘nil))) ∨ ‘nil)

where Op(ẋ ) = snoc and Init(ẋ ) = ‘nil. We have the following matching and
type environment:

{ẋ �→ ‘nil};� � v/p � {ẋ �→ (‘a, (‘a, (‘b, (‘b, ‘nil))))},∅
{ẋ �→ ‘nil};� t�p = {ẋ �→ μZ.(((‘a ∨ ‘b)× Z) ∨ ‘nil)}

Intuitively, with the usual sequence notation (precisely defined in Section 4),
v is nothing but the nested sequence [[[‘a [[[ ‘a [[[ ]]] ‘b ]]] ‘b ]]] and pattern matching
just flattens the input sequence, binding ẋ to [[[ ‘a ‘a ‘b ‘b ]]]. The type environ-
ment for ẋ is computed by recursively matching each product type in t with
the pattern (X,X), the singleton type ‘a or ‘b with ẋ &&&(‘a|‘b), and ‘nil
with ‘nil. Since the operator associated with ẋ is snoc and the initial type is
‘nil, when ẋ is matched against ‘a for the first time, its type is updated to
μZ.((‘a× Z) ∨ ‘nil). Then, when ẋ is matched against ‘b, its type is updated
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to the final output type which is the encoding of [[[ (‘a ∨ ‘b)∗ ]]]. Here, the approx-
imation in the typing function for snoc is important because the exact type of ẋ
is the union for n∈� of [[[ ‘an ‘bn ]]], that is, the sequences of ‘a’s followed by the
same number of ‘b’s, which is beyond the expressivity of regular tree languages.

We conclude this section with statements for type soundness of our calculus
(see Appendix C for more details).

Definition 9 (Sound operator). An operator (o, n,
o
�,

o→) is sound if and
only if ∀v1, . . . , vno ∈ V such that � v1 : t1, . . . , � vno : tno , if t1, . . . , tno

o→ s

and v1, . . . , vno

o
� e then � e : s.

Theorem 10 (Type preservation). If all operators in the language are sound,
then typing is preserved by reduction, that is, if e � e′ and � e : t, then � e′ : t.
In particular, e′ �= Ω.

Theorem 11. The operators app, π1, π2, drm, rm, cons, and snoc are sound.

4 Surface Language

In this section, we define the “surface” language, which extends our core calculus
with several constructs:

• Sequence expressions, regular expression types and patterns
• Sequence concatenation and iteration
• XML types, XML document fragment expressions
• XPath-like patterns

While most of these traits are syntactic sugar or straightforward extensions, we
took special care in their design so that: (i) they cover various aspects of XML
programming and (ii) they are expressive enough to encode a large fragment of
XQuery 3.0.

Sequences: we first add sequences to expressions

e ::= . . . | [[[ e · · · e ]]]

where a sequence expression denotes its encoding à la Lisp, that is, [[[ e1 · · · en ]]]
is syntactic sugar for (e1, (. . ., (en, ‘nil))).

Regular expression types and patterns: regular expressions over types and pat-
terns are defined as

(Regexp. over types) R ::= t | R|R | RR | R∗ | ε
(Regexp. over patterns) r ::= p | r|r | r r | r∗ | ε

with the usual syntactic sugar: R? ≡ R|ε and R+ ≡ RR∗ (likewise for regexps
on patterns). We then extend the grammar of types and patterns as follows:

t ::= . . . | [[[R ]]] p ::= . . . | [[[ r ]]]

Regular expression types are encoded using recursive types (similarly for reg-
ular expression patterns). For instance, [[[ int∗ bool? ]]] can be rewritten into the
recursive type μX.‘nil ∨ (bool× ‘nil) ∨ (int×X).
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Sequence concatenation is added to the language in the form of a binary infix
operator _@_ defined by:

‘nil, v
@
� v

(v1, v2), v
@
� (v1, v2 @ v)

[[[R1 ]]], [[[R2 ]]]
@→ [[[R1R2 ]]]

Note that this operator is sound but cannot be used to accumulate in patterns
(since it does not guarantee the termination of type environment computation).
However, it has an exact typing.

Sequence iteration is added to iterate transformations over sequences without
resorting to recursive functions. This is done by a family of “transform”-like
operators trsp1,p2,e1,e2(_), indexed by the patterns and expressions that form
the branches of the transformation (we omit trs’s indexes in trs

� ):

‘nil
trs
� ‘nil

(v1, v2)
trs
� (match v1 with p1 → e1| p2 → e2) @ trsp1,p2,e1,e2(v2)

Intuitively, the construct “transform e with p1 → e1| p2 → e2” iterates all the
“branches” over each element of the sequence e. Each branch may return a se-
quence of results which is concatenated to the final result (in particular, a branch
may return “‘nil” to delete elements that match a particular pattern).

XML types, patterns, and document fragments: XML types (and thus patterns)
can be represented as a pair of the type of the label and a sequence type rep-
resenting the sequence of children, annotated by the zipper that denotes the
position of document fragment of that type. We denote by <t1>t2τ the type
(t1 × t2)τ , where t1 ≤ �basic, t2 ≤ [[[ �∗ ]]], and τ is a zipper type. We simply write
<t1>t2 when τ = 
, that is, when we do not have (or do not require) any in-
formation on the zipper type. The invariant that XML values are always given
with respect to a zipper must be maintained at the level of expressions. This is
ensured by extending the syntax of expressions with the construct:

e ::= . . . | <e>e

where <e1>e2 is syntactic sugar for (e1, drm(e2))•. The reason for this encoding
is best understood with the following example:

Example 12. Consider the code:

1 match v with
2 ( <a>[[[ _ x _∗ ]]] )� -> <b>[[[ x ]]]
3 | _ -> <c>[[[ ]]]

According to our definition of pattern matching, x is bound to the second XML
child of v and retains its zipper (in the right-hand side, we could navigate from
x up to v or even above if v is not the root). However, when x is embedded
into another document fragment, the zipper must be erased so that accessing
the element associated with x in the new value can create an appropriate zipper
(with respect to its new root <b>[[[ . . . ]]]).
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self0{x | t} ≡ ẋ &&& t |

self{x | t} ≡ (self0{x | t})�
child{x | t} ≡ (< >[[[ (self0{x | t})∗ ]]] | )�

desc-or-self0{x | t} ≡ μX.(self0{x | t}&&& < >[[[X∗ ]]]) |
desc-or-self{x | t} ≡ (desc-or-self0{x | t})�

desc{x | t} ≡ (< >[[[ (desc-or-self0{x | t})∗ ]]] | )�
foll-sibling{x | t} ≡ ( )L ( , [[[ (self0{x | t})∗ ]]])�·�

parent{y | t} ≡ ( )L · μX.((R (ẏ &&& t| )�· (L ·�|•)) | R ·X) |

prec-sibling{y | t} ≡ ( )L · μX.(R (ẏ &&& t, )�·X) | (R ·(L ·�|•)) |

anc{y | t} ≡ ( )L · μX.μY.((R (ẏ &&& t| )�·(L ·X|•)) | R ·Y ) |

anc-or-self{y | t} ≡ (self{y | t}&&& anc{y | t}) |

where Op(ẋ ) = snoc, Init(ẋ) = ‘nil, Op(ẏ) = cons, and Init(ẏ) = ‘nil

Fig. 5. Encoding of axis patterns

XPath-like patterns are one of the main motivations for this work. The syntax
of patterns is extended as follows:

(Patterns) p ::= . . . | axis{x | t}
(Axes) axis ::= self | child | desc | desc-or-self | foll-sibling

| parent | anc | anc-or-self | prec-sibling
The semantics of axis{x | t} is to capture in x all fragments of the matched docu-
ment along the axis that have type t. We show in Appendix D how the remaining
two axes (following and preceding) as well as “multi-step” XPath expressions can
be compiled into this simpler form. We encode axis patterns directly using recur-
sive patterns and accumulators, as described in Figure 5. First, we remark that
each pattern has a default branch “ . . .| ” which implements the fact that even if
a pattern fails, the value is still accepted, but the default value ‘nil of the accu-
mulator is returned. The so-called “downward” axes —self, child, desc-or-self, and
desc— are straightforward. For self, the encoding checks that the matched value
has type t using the auxiliary pattern self0, and that the value is annotated with
a zipper using the zipper type annotation (_)�. The child axis is encoded by
iterating self0 on every child element of the matched value. The recursive axis
desc-or-self is encoded using the auxiliary pattern desc-or-self0 which matches
the root of the current element (using self0) and is recursively applied to each
element of the sequence. Note the double recursion: vertically in the tree using a
recursive binder and horizontally at a given level using a star. The non-reflexive
variant desc evaluates desc-or-self0 on every child element of the input.

The other axes heavily rely on the binary encoding of XML values and are
better explained on an example. Consider the XML document and its binary
tree representation given in Figure 6. The following siblings of a node (e.g., <c>)
are reachable by inspecting the first element of the zipper, which is necessarily
an L one. This parent is the pair representing the sequence whose tail is the
sequence of following siblings (R3 and R2 in the figure). Applying the self{x | t}
axis on each element of the tail therefore filters the following siblings that are
sought (<d> and <e> in the figure). The parent axis is more involved. Consider



250 G. Castagna et al.

<>
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L4

( , )

<>

b

( , )

<>
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‘nil

( , )

<>

d

‘nil

( , )

<>

e

( , )

<>

f

‘nil
L1

‘nil
R1L2

‘nil
R2R3R4L3

‘nil
R5

Fig. 6. A binary tree representation of an XML document
doc = <a>[ <b>[ <c>[ ] <d>[ ] <e>[ <f>[ ] ] ] ]

for instance node <e>. Its parent in the XML tree can be found in the zipper
associated with <e>. It is the last R component of the zipper before the next
L component (in the figure, the zipper of <e> starts with L2, then contains its
previous siblings reachable by R2 and R3, and lastly its parent reachable by R4

(which points to node <b>). The encoding of the parent axis reproduces this walk
using a recursive zipper pattern, whose base case is the last R before the next L,
or the last R before the root (which has the empty zipper •). The prec-sibling axis
uses a similar method and collects every node reachable by Rs and stops before
the parent node (again, for node <e>, the preceding siblings are reached by R2

and R3). The anc axis simply iterates the parent axis recursively until there is
no L zipper anymore (i.e., until the root of the document has been reached). In
the example, starting from node <f>, the zippers that denote the ancestors are
the ones starting with an R, just before L2, L3, and L4 which is the root of the
document. Lastly, anc-or-self is simply a combination of anc and self.

For space reasons, the encoding of XPath into the navigational patterns is
given in Appendix D. We just stress that, with that encoding, the �Duce version
of the “get_links” function of the introduction becomes as compact as in XQuery:

let get_links (page: <_>_) (print: <a>_ -> <a>_) : [ <a>_ * ] =
transform page/desc::a[not(anc::b)] with x -> [ (print x) ]

As a final remark, one may notice that patterns of forward axes use snoc (i.e.,
they build the sequence of the results in order), while reverse axes use cons
(thus reversing the results). The reason for this difference is to implement the
semantics of XPath axis steps which return elements in document order.

5 XQuery 3.0

This section shows that our surface language can be used as a compilation target
for XQuery 3.0 programs. We proceed in two steps. First, we extend the XQuery
1.0 Core fragment and XQH defined by Benedikt and Vu [3] to our own XQuery
3.0 Core, which we call XQ+

H . As with its 1.0 counterpart, XQ+
H

1. can express all navigational XQuery programs, and
2. explicitly separates navigational aspects from data value ones.
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query ::= () | c | <l>query</l> | query, query | x | x/axis::test
| for x in query return query | some x in query statisfies query

| query(query, . . . ,query) | fun x1 : t1 , . . . , xn : tn as t. query

| switch query
case c return query
default return query

| typeswitch query
case t as x return query
default return query

test ::= node() | text() | l (node test)

where t ranges over types and l ranges over element names.

Fig. 7. Syntax of XQ+
H

We later use the above separation in the translation to straightforwardly map
navigational XPath expressions into extended �Duce pattern matching, and to
encode data value operations (for which there can be no precise typing) by built-
in �Duce functions.

5.1 XQuery 3.0 Core

Figure 7 shows the definition of XQ+
H , an extension of XQH. To the best of our

knowledge, XQH was the first work to propose a “Core” fragment of XQuery
which abstracts away most of the idiosyncrasies of the actual specification while
retaining essential features (e.g., path navigation). XQ+

H differs from XQH by the
last three productions (in the yellow/gray box): it extends XQH with type and
value cases (described informally in the introduction) and with type annotations
on functions (which are only optional in the standard). It is well known (e.g.,
see [24]) that full XPath expressions can be encoded using the XQuery fragment
in Figure 7 (see Appendix E for an illustration).

Our translation of XQuery 3.0, defined in Figure 8, thus focuses on XQ+
H and

has following characteristics. If one considers the “typed” version of the standard,
that is, XQuery programs where function declarations have an explicit signature,
then the translation to our surface language (i) provides a formal semantics and
a typechecking algorithm for XQuery and (ii) enjoys the soundness property
that the original XQuery programs do not yield runtime errors. In the present
work, we assume that the type algebra of XQuery is the one of �Duce, rather
than XMLSchema. Both share regular expression types for which subtyping is
implemented as the inclusion of languages, but XMLSchema also features nom-
inal subtyping. The extension of �Duce types with nominal subtyping is beyond
the scope of this work and is left as future work.

In XQuery, all values are sequences: the constant “42” is considered as the
singleton sequence that contains the element “42”. As a consequence, there are
only “flat” sequences in XQuery and the only way to create nested data structures
is to use XML constructs. The difficulty for our translation is thus twofold:
(i) it needs to embed/extract values explicitly into/from sequences and (ii) it
also needs to disambiguate types: an XQuery function that takes an integer as
argument can also be applied to a sequence containing only one integer.
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�()�X� = ‘nil

�c�X� = [[[ c ]]]

�<l>q</l>�X� = [[[ <l>�q�X� ]]]

�q1, q2�X� = �q1�X� @ �q2�X�
�$x �X� = x

�

�
switch q1
case c return q2
default return q3

�

�

X�

=
match �q1�X� with
[[[ c ]]] → �q2�X�

| _ → �q3�X��

�
typeswitch q1
case t as $x return q2
default return q3

�

�

X�

=
match �q1�X� with
x &&& seq(t) → �q2�X�

|_ → �q3�X�

�$x/axis::test�X� = transform x with axis{y | t(test)} → y

�for $x in q1 return q2�X� = transform �q1�X� with x → �q2�X�
�some $x in q1 statisfies q2�X� = match ( transform �q1�X� with

x → match �q2�X� with
[[[ ‘true ]]] → [[[ ‘dummy ]]]

| [[[ ‘false ]]] → [[[ ]]] )
with ‘nil → [[[ ‘false ]]] | _ → [[[ ‘true ]]]

�fun $x1 : t1 , . . . , $xn : tn as t. q�X� = μ_seq(t1)×...×seq(tn)→seq(t)(x0).
match x0 with (x1, (. . . , xn)) → �q�X�

�q(q1, . . . , qn)�X� = �q�X� (�q1�X� , (. . . , �qn�X�))

where seq(t) ≡ (t ∧ [[[�∗ ]]]) ∨ ([[[ t \ [[[�∗ ]]] ]]])
and t(node()) ≡ �, t(text()) ≡ String, t(l) ≡ <l>�

Fig. 8. Translation of XQ+
H into �Duce

The translation is defined by a function �_�X� that converts an XQuery query
into a �Duce expression. It is straightforward and ensures that the result of a
translation �q�X� always has a sequence type. We assume that both languages
have the same set of variables and constants. An empty sequence is translated
into the atom ‘nil, a constant is translated into a singleton sequence contain-
ing that constant, and similarly for XML fragments. The sequence operator is
translated into concatenation. Variables do not require any special treatment.
An XPath navigation step is translated into the corresponding navigational pat-
tern, whereas “for in” loops are encoded similarly using the transform construct
(in XQuery, an XPath query applied to a sequence of elements is the concatena-
tion of the individual applications). The “switch” construct is directly translated
into a “match with” construct. The “typeswitch” construct works in a similar way
but special care must be taken with respect to the type t that is tested. Indeed,
if t is a sequence type, then its translation returns the sequence type, but if
t is something else (say int), then it must be embedded into a sequence type.
Interestingly, this test can be encoded as the �Duce type seq(t) which keeps
the part of t that is a sequence unchanged while embedding the part of t that
is not a sequence (namely t \ [[[ �∗ ]]]) into a sequence type (i.e., [[[ t \ [[[ �∗ ]]] ]]]). The
“some $x in q1 statisfies q2” expression iterates over the sequence that is the result
of the translation of q1, binding variable x in turn to each element, and evaluates
(the translation of) q2 in this context. If the evaluation of q2 yields the single-
ton sequence true, then we return a dummy non-empty sequence; otherwise,
we return the empty sequence. If the whole transform yields an empty sequence,
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Γ �xq q : s s ≤ t

Γ �xq q : t

Γ �xq q1 : [[[ s∗ ]]] Γ, x : [[[ s ]]] �xq q2 : t t ≤ [[[�∗ ]]]
Γ �xq for $x in q1 return q2 : t

{ẏ �→‘nil};� s�axis{y | t(test)} = {ẏ �→ t}
Γ �xq x : [[[ s∗ ]]] t ≤ [[[�∗ ]]] t′ = min{t′ | t ≤ [[[ t′∗ ]]]}

Γ �xq $x/axis::test : [[[ t′∗ ]]] typ-path

Γ �xq q : t

{
t �≤ ¬[[[ c ]]] ⇒ Γ �xq q1 : s
t �≤ [[[ c ]]] ⇒ Γ �xq q2 : s

Γ �xq

switch q
case c return q1
default return q2

: s

t1 = s ∧ seq(t) Γ, x : t1 �xq q1 : t′1
Γ �xq q : s t2 = s ∧ ¬seq(t) Γ �xq q2 : t′2

Γ �xq

typeswitch q
case t as $x return q1
default return q2

:
∨

{i | ti ���} t
′
i

Γ �xq q1 : [[[ s∗ ]]] Γ, x : [[[ s ]]] �xq q2 : [[[ bool ]]]

Γ �xq some $x in q1 statisfies q2 : [[[ bool ]]]

Γ, x1 : seq(t1), · · · , xn : seq(tn) �xq q : seq(t)

Γ �xq fun $x1 : t1 , . . . , $xn : tn as t. q : seq(t1)× · · · × seq(tn) → seq(t)

Γ �xq q : t1 × · · · × tn → t Γ �xq qi : ti (i = 1..n)

Γ �xq q(q, . . . , q) : t

Fig. 9. Typing rules for XQ+
H

it means that none of the iterated elements matched satisfied the predicate q2
and therefore the whole expression evaluates to the singleton false, otherwise
it evaluates to the singleton true. Abstractions are translated into �Duce func-
tions, and the same treatment of “sequencing” the type is applied to the types of
the arguments and type of the result. Lastly, application is translated by building
nested pairs with the arguments before applying the function.

Not only does this translation ensure soundness of the original XQuery 3.0
programs, it also turns �Duce into a sandbox where one can experiment various
typing features that can be readily back-ported to XQuery afterwards.

5.2 Toward and beyond XQuery 3.0

We now discuss the salient features and address some shortcomings of XQ+
H . First

and foremost, we can define a precise and sound type system directly on XQ+
H

as shown in Figure 9 (standard typing rules are omitted and for the complete
definition, see Appendix E). While most constructs are typed straightforwardly
(the typing rules are deduced from the translation of XQ+

H into �Duce) it is in-
teresting to see that the rules match those defined in XQuery Static Semantics
specification [24] (with the already mentioned difference that we use �Duce types
instead of XMLSchema). Two aspects however diverge from the standard. Our
use of �Duce’s semantic subtyping (rather than XMLSchema’s nominal subtyp-
ing), and the rule typ-path where we use the formal developments of Section 3
to provide a precise typing rule for XPath navigation. Deriving the typing rules
from our translation allows us to state the following theorem:

Theorem 13. If Γ �xq query : t, then Γ � �query�X� : t.
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A corollary of this theorem is the soundness of the XQ+
H type system (since the

translation of a well-typed XQ+
H program yields a well-typed �Duce program

with the same type).
While the XQ+

H fragment we present here is already very expressive, it does
not account for all features of XQuery. For instance, it does not feature data
value comparison or sorting (i.e., the order by construct of XQuery) nor does
it account for built-in functions such as position(), node identifiers, and so
on. However, it is known that features such as data value comparison make
typechecking undecidable (see for instance [1]). We argue that the main point
of this fragment is to cleanly separate structural path navigation from other
data value tests for which we can add built-in operators and functions, with an
hardcoded, ad-hoc typing rule.

Lastly, one may argue that, in practice, XQuery database engines do not
rely on XQuery Core for evaluation but rather focus on evaluating efficiently
large (multi-step, multi-predicate) XPath expressions in one go and, therefore,
that normalizing XQuery programs into XQ+

H programs and then translating the
latter into �Duce programs may seem overly naive. We show in Appendix D
that XPath expressions that are purely navigational can be rewritten in a single
pattern of the form: axis{x | t} which can then be evaluated very efficiently
(that is, without performing the unneeded extra traversals of the document that
a single step approach would incur).

6 Related Work and Conclusion

Our work tackles several aspects of XML programming, the salient being: (i)
encoding of XPath or XPath-like expressions (including reverse axes) into regular
types and patterns, (ii) recursive tree transformation using accumulators and
their typing, and (iii) type systems and typechecking algorithms for XQuery.

Regarding XPath and pattern matching, the work closest to ours is the im-
plementation of paths as patterns in XTatic. XTatic [11] is an object-oriented
language featuring XDuce regular expression types and patterns [16,17]. In [12],
Gapeyev and Pierce alter XDuce’s pattern matching semantics and encode a
fragment of XPath as patterns. The main difference with our work is that they
use a hard-coded all-match semantics (a variable can be bound to several sub-
terms) to encode the accumulations of recursive axes, which are restricted by
their data model to the “child” and “descendant” axes. Another attempt to use
path navigation in a functional language can be found in [19] where XPath-like
combinators are added to Haskell. Again, only child or descendant-like naviga-
tion is supported and typing is done in the setting of Haskell which cannot readily
be applied to XML typing (results are returned as homogeneous sequences).

Our use of accumulators is reminiscent of Macro Tree Transducers (MTTs,
[8]), that is, tree transducers (tree automata producing an output) that can also
accumulate part of the input and copy it in the output. It is well known that
given an input regular tree language, the type of the accumulators and results
may not be regular. Exact typing may be done in the form of backward type
inference, where the output type is given and a largest input type is inferred [20].
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It would be interesting to use the backward approach to type our accumulators
without the approximation introduced for “cons” for instance.

For what concerns XQuery and XPath, several complementary works are of
interest. First, the work of Genevès et al. which encodes XPath and XQuery in
the μ-calculus ([14,15] where zippers to manage XPath reverse axes were first
introduced) supports our claim. Adding path expressions at the level of types
is not more expensive: subtyping (or equivalently satisfiability of particular for-
mulæ of the μ-calculus which are equivalent to regular tree languages) remains
EXPTIME, even with upward paths (or in our case, zipper types). In contrast,
typing path expressions and more generally XQuery programs is still a challeng-
ing topic. While the W3C’s formal semantics of XQuery [24] gives a polynomial
time typechecking algorithm for XQuery (in the absence of nested “let” or “for”
constructs), it remains far too imprecise (in particular, reverse axes are left un-
typed). Recently, Genevès et al. [13] also studied a problem of typing reverse
axes by using regular expressions of μ-calculus formulæ as types, which they call
focused-tree types. Since, as our zipped types, focused-tree types can describe
both the type of the current node and its context, their type system also gives
a precise type for reverse axis expressions. However, while focused-tree types
are more concise than zipper types, it is difficult to type construction of a new
XML document, and thus their type system requires an explicit type annotation
for each XML element. Furthermore, their type system does not feature arrow
types. That said, it will be quite interesting to combine their approach with ours.

We are currently implementing axis patterns and XPath expressions on top
of the �Duce compiler. Future work includes extensions to other XQuery con-
structs as well as XMLSchema, the addition of aggregate functions by associating
accumulators to specific operators, the inclusion of navigational expressions in
types so as to exploit the full expressivity of our zipped types (e.g., to type
functions that work on the ancestors of their arguments), and the application of
the polymorphic type system of [5,6] to both XQuery and navigational �Duce
so that for instance the function pretty defined in the introduction can be given
the following, far more precise intersection of two arrow types:

(<a class="style1" href=β ..>γ -> <a href=β>[<b>γ])
& (α\<a class="style1" href=_ ..>_ -> α\<a class="style1" href=_ ..>_ )

This type (where α, β, and γ denote universally quantified type variables) pre-
cisely describes, by the arrow type on the first line, the transformation of the
sought links, and states, by the arrow on the second line, that in all the other
cases (i.e., for every type α different from the sought link) it returns the same
type as the input. This must be compared with the corresponding type in Fig-
ure 1, where the types of the attribute href, of the content of the a element, and
above all of any other value not matched by the first branch are not preserved.
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Abstract. A fundamental aspect of object-oriented languages is how recursive
functions are defined. One semantic approach is to use simple record types and
explicit recursion (i.e. fix) to define mutually recursive units of functionality.
Another approach is to use records and recursive types to describe recursion
through a “self” parameter. Many systems rely on both semantic approaches
as well as combinations of universally quantified types, existentially quantified
types, and mixin operators to encode patterns of method reuse, data encapsula-
tion, and “open recursion” through self. These more complex mechanisms are
needed to support many important use cases, but they often lack desirable theo-
retical properties, such as decidability, and can be difficult to implement, because
of the equirecursive interpretation that identifies mu-types with their unfoldings.
Furthermore, these systems do not apply to languages without explicit recursion
(such as JavaScript, Python, and Ruby). In this paper, we present a statically
typed calculus of functional objects called ISOLATE that can reason about a pat-
tern of mixin composition without relying on an explicit fixpoint operation. To
accomplish this, ISOLATE extends a standard isorecursive type system with a
mechanism for checking the “mutual consistency” of a collection of functions,
that is, that all of the assumptions about self are implied by the collection itself.
We prove the soundness of ISOLATE via a type-preserving translation to a cal-
culus with F-bounded polymorphism. Therefore, ISOLATE can be regarded as a
stylized subset of the more expressive calculus that admits an interesting class of
programs yet is easy to implement. In the future, we plan to investigate how other,
more complicated forms of mixin composition (again, without explicit recursion)
may be supported by lightweight type systems.

1 Introduction

Researchers have studied numerous foundational models for typed object-oriented pro-
gramming in order to understand the theoretical and practical aspects of these languages.
Many of these models are based on the lambda-calculus extended with combinations
of explicit recursion, records, prototype delegation, references, mixins, and traits. Once
the dynamic semantics of the language has been set, various type theoretic constructs
are then employed in order to admit as many well-behaved programs as possible. These
mechanisms include record types and recursive types [7], bounded universal quantifi-
cation [9], bounded existential quantification [30], F-bounded polymorphism [6,2], and
variant parametric types [20,34]. A classic survey by Bruce et al. [5] compares many
of the core aspects of these systems.
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A fundamental aspect of an object calculus is how recursive functions are defined.
One option is to include explicit recursion on values (i.e. fix) as a building block. The
evaluation rule

fix (λ f .e) ↪→ e[(fix λ f .e)/ f ] where e = λ x.e′

repeatedly substitutes the entire expression as needed, thus realizing the recursion. Ex-
plicit recursion is straightforward to reason about: the expression fix e has type S → T
as long as e has type (S → T )→ (S → T ). Similar evaluation and typechecking rules
can be defined for recursive non-function values, such as records, using simple syn-
tactic restrictions (see, for example, the notion of statically constructive definitions in
OCaml [24]). This approach can be used to define objects of (possibly mutually) recur-
sive functions. For example, the following simple object responds to the “message” f

by multiplying increasingly large integers ad infinitum:

o1= fix (λthis.{f=λn.n * this.f(n + 1)})

o1.f(1) ↪→∗ 1 * o1.f(2) ↪→∗ 1 * 2 * o1.f(3) ↪→∗ ·· ·
On the other hand, in a language without explicit recursion on values, recursive com-

putations can be realized by passing explicit “self” (or “this”) parameters through func-
tion definitions and applications. The following example demonstrates this style:

o2= {f=λ(this,n).n * this.f (this,n + 1)}

o2.f (o2,1) ↪→∗ 1 * o2.f (o2,2) ↪→∗ 1 * 2 * o2.f (o2,3) ↪→∗ ·· ·
Notice that occurrences of this, substituted by o2, do not require any dedicated evalua-
tion rule to “tie the knot” because the record is explicitly passed as an argument through
the recursive calls.

Object encodings using either of the two approaches above — explicit recursion or
self-parameter passing — can be used to express many useful programming patterns of
“open recursion,” including: (1) the ability to define methods independently of their host
objects (often referred to as premethods) that later get mixed into objects in a flexible
way; and (2) the ability to define wrapper functions that interpose on the invocation of
methods that have been previously defined.

Compared to explicit recursion, however, the self-parameter-passing approach is sig-
nificantly harder for a type system to reason about, requiring a combination of equire-
cursive types, subtyping, and F-bounded polymorphism (where type variable bounds
are allowed to be recursive). Such combinations often lack desirable theoretical proper-
ties, such as decidability [28,2], and pose implementation challenges due to the equire-
cursive, or “strong,” interpretation of mu-types. Nevertheless, mainstream languages
like Java and C# incorporate these features, but this complexity is not suitable for all
language designs. For example, the popularity of dynamically typed scripting languages
(such as JavaScript, Python, Ruby, and PHP) has sparked a flurry of interest in designing
statically typed dialects (such as TypeScript and Hack). It is unlikely that heavyweight
mechanisms like F-bounded polymorphism will be easily adopted into such language
designs. Instead, it would be useful to have a lightweight type system that could reason
about some of the programming patterns enabled by the more complicated systems.
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Contributions. The thesis of this paper is that the two patterns of open recursion under
consideration do not require the full expressive power of F-bounded polymorphism and
equirecursive types. To substantiate our claim, we make two primary contributions:

– We present a statically typed calculus of functional objects called ISOLATE, which
is a simple variation and extension of isorecursive types (with only a very limited
form of subtyping and bounded quantification). We show that ISOLATE is able to
admit an interesting class of recursive programs yet is straightforward to imple-
ment. The key feature in ISOLATE is a typing rule that treats records of premethods
specially, where all assumptions about the self parameter are checked for mutual
consistency.

– To establish soundness of the system, we define a type-preserving translation of
well-typed ISOLATE programs into a more expressive calculus with F-bounded
polymorphism. As a result, ISOLATE can be regarded as a stylized subset of the
traditional, more expressive system.

In languages without fix and where the full expressiveness of F-bounded polymor-
phism is not needed, the approach in ISOLATE provides a potentially useful point in the
design space for supporting recursive, object-oriented programming patterns. In future
work, we plan to investigate supporting additional forms of mixin composition (beyond
what ISOLATE currently supports) and applying these techniques to statically typed
dialects of popular scripting languages, which often do not include a fixpoint operator.

Outline. Next, in §2, we provide background on relevant typing mechanisms and iden-
tify the kinds of programming patterns we aim to support in ISOLATE. Then, in §3,
we provide an overview of how ISOLATE reasons about these patterns in a relatively
lightweight way. After defining ISOLATE formally, we describe its metatheory in §4.
We conclude in §5 with discussions of related and future work.

2 Background

In this section, we survey how several existing typing mechanisms can be used to de-
fine objects of mutually recursive functions, both with and without explicit recursion.
We start with a simply-typed lambda-calculus and then extend it with operations for
defining records, isorecursive folding and unfolding, and parametric polymorphism. We
identify aspects of these systems that motivate our late typing proposal. This section is
intended to provide a self-contained exposition of the relevant typing mechanisms; ex-
pert readers may wish to skip ahead to §2.3.

Core Language Features and Notation. In Figure 1, we define the expression and
type languages for several systems that we will compare in this section. We assume
basic familiarity with the dynamic and static semantics for all of these features [29]. In
our notation, we define the language L to be the simply-typed lambda-calculus. We
use B to range over some set of base types (int, unit, str, etc.) and c to range over
constants (not, (*), (++), etc.).
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Base Language L :

e ::= c | λx.e | x | e1 e2 T ::= B | T1 → T2

Extensions to Expression Language (Denoted by Subscripts):

Lfix e ::= · · · | fix e

L{} e ::= · · · | { f = e } | e.f

Liso e ::= · · · | fold e | unfold e

LΛ e ::= · · · | ΛA.e | e[T]

Extensions to Type Language (Denoted by Superscripts):

L {} T ::= · · · | { f:T }

L μ T ::= · · · | A | μA.T

L ∀ T ::= · · · | A | ∀A. T

L ∀A<:T T ::= · · · | A | ∀A<:T. T ′ | top

L ∀A<:T(A) T ::= · · · | A | ∀A<:T (A). T ′ | top

Comparison of Selected Language Extensions:

LANGFIXSUB � L {},<:,∀
{},fix,Λ LANGMU � L

{},μ,∀
{},iso,Λ FSUBREC � L

{},μ=,∀A<:T(A)
{},Λ

fix Property A Property B Property C Property D “Simplicity”

LANGFIXSUB Y � � � � �
LANGMU N � � × � �
ISOLATE N � � � �− �

FSUBREC N � � � �− ×

Fig. 1. Core Languages of Expressions and Types

We define several extensions to the expression and type languages of L . Our nota-
tional convention is to use subscripts to denote extensions to the language of expres-
sions and superscripts for extensions to the language of types. In particular, we write
Lfix, L{}, Liso, and LΛ to denote extensions of the base language, L , with the usual
notions of fixpoint, records, fold and unfold operators for isorecursive types, and type
abstraction and application, respectively. We write L {} to denote the extension of the
base type system with record types, L μ for isorecursive types, L μ= for equirecursive
types, L ∀ for (unbounded) universal quantification, L ∀A<:T for bounded quantifica-
tion, and L ∀A<:T (A) for F-bounded quantification (where type bounds can recursively
refer to type variables). We attach multiple subscripts or superscripts to denote multiple
extensions. For example, L {}

{},fix denotes the statically typed language with records and
a fixpoint operator.

In addition to the syntactic forms defined in Figure 1, we freely use syntactic sugar
for common derived forms. For example, we often write let x= e1 in e2 instead of
(λ x.e2) e1 and we often write let f x y= e1 in e2 instead of let f =λ x.λ y.e1 in e2.
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We assume the presence of primitive if-expressions, which we write as e1 ? e2 : e3. We
also write val x :: T as a way to ascribe an expected type to a let-bound expression.

Comparison of Systems. We define aliases in Figure 1 for three systems to which we
will pay particular attention. We write LANGFIXSUB to refer to the language of records,
explicit recursion, and subtyping; LANGMU to refer to the language of records and
isorecursive mu-types; and FSUBREC to refer to the language of records, equirecursive
mu-types, and F-bounded polymorphism. In addition, each of these systems has univer-
sal quantification, which is unbounded in LANGFIXSUB and LANGMU and F-bounded
in FSUBREC. Notice that LANGMU and FSUBREC do not include explicit recursion,
indicated by the absence of fix in the subscripts. The name FSUBREC is a mnemonic
to describe the often-called System Fsub extended with recursive bounds and recursive
types.

Next, we will compare these three languages. The table at the bottom of Figure 1
summarizes their differences along a number of dimensions that we will discuss. Prop-
erties A through D are four programming patterns that are of interest for this paper, and
“Simplicity” informally refers to implementation and metatheoretic challenges that the
type system presents. Then, in §3, we will explain how our ISOLATE calculus identifies
a new point in the design space that fits in between LANGMU and FSUBREC.

2.1 LANGFIX and LANGFIXSUB: Recursion with fix

We will start with the language LANGFIX � L {}
{},fix of records and explicit recursion

(without subtyping), in which mutually recursive functions can be defined as follows:

Ticker � { tick:int→ str; tock:int→ str }

val ticker0 :: Ticker

let ticker0 = fix \this.

let f n = n > 0 ? "tick " ++ this.tock (n) : "" in

let g n = n > 0 ? "tock " ++ this.tick (n-1) : "" in

{ tick = f; tock = g }

ticker0.tick 2 -- "tick tock tick tock "

As mentioned in §1, typechecking expressions of the form fix e is simple. We will
build on this example to demonstrate several programming patterns of interest.

[Property A] Defining Premethods Separately. In the program above, all components
of the mutually recursive definition appear together (i.e. syntactically adjacent) inside
the fixpoint expression. For reasons of organization, the programmer may want to in-
stead structure the component definitions separately and then combine them later:

val tick, tock :: Ticker -> int -> str

let tick this n = n > 0 ? "tick " ++ this.tock (n) : ""

let tock this n = n > 0 ? "tock " ++ this.tick (n-1) : ""
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let ticker1 = fix \this.

let f n = tick this n in

let g n = tock this n in

{ tick = f; tock = g }

ticker1.tick 2 -- "tick tock tick tock "

Furthermore, if the programmer wants to define a second quieter ticker that does not
emit the string “tock”, defining the component functions separately avoids the need to
duplicate the implementation of tick:

val tock’ :: Ticker -> int -> str

let tock’ this n = this.tick (n-1)

let ticker2 = fix \this.

let f n = tick this n in

let g n = tock’ this n in

{ tick = f; tock = g }

ticker2.tick 2 -- "tick tick "

Notice that the implementations of tick, tock, and tock’ lay outside of the recursive
definitions ticker1 and ticker2 and are each parameterized by a this argument.
Because these three functions are not inherently tied to any record, we refer to them
as premethods. In contrast, we say that the functions f and g in ticker1 (respectively,
ticker2) are methods of ticker1 (respectively, ticker2) because they are tied to that
particular object.1 The method definitions are eta-expanded to ensure that the recursive
definitions are syntactically well-founded (e.g. [24]).

[Property B] Intercepting Recursive Calls. Another benefit of defining premethods
separately from their eventual host objects is that it facilitates “intercepting” recursive
calls in order to customize behavior. For example, say the programmer wants to define
a louder version of the ticker that emits exclamation points in between each “tick” and
“tock”. Notice that the following reuses the premethods tick and tock from before:

let ticker3 = fix \this.

let f n = "! " ++ tick this n in

let g n = "! " ++ tock this n in

{ tick = f; tock = g }

ticker3.tick 2 -- "! tick ! tock ! tick ! tock ! "

1 The term premethod is sometimes used with a slightly different meaning, namely, for a lambda
that closes over an implicit receiver variable rather than than explicitly taking one as a parame-
ter. We use the term premethod to emphasize that the first (explicit) function argument is used
to realize recursive binding.
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[Property C] Mixing Premethods into Different Types. Having kept premethod def-
initions separate, the programmer may want to include them into objects with various
types, for example, an extended ticker type that contains an additional boolean field to
describe whether or not its volume is loud:

TickerVol � { tick:int→ str; tock:int→ str; loud:bool }

Intuitively, the mutual requirements between the tick and tock’ premethods are inde-
pendent of the presence of the loud field, so we would like the type system to accept
the following program:

let quietTicker = fix \this.

let f n = tick this n in

let g n = tock’ this n in

{ tick = f; tock = g; loud = false }

This program is not type-correct in LANGFIX, because the types derived for tick and
tock’ pertain to Ticker rather than TickerVol. Extending LANGFIX with the usual
notion of record subtyping, resulting in a system called LANGFIXSUB, addresses the
problem, however.

In addition, LANGFIXSUB can assign the following less restrictive types to the same
premethods from before: tick :: Tock→ int→ str, tock :: Tick→ int→ str, and
tock’ :: Tick→ int→ str. Notice that the types of the this arguments are described
by the following type abbreviations, rather than Ticker, to require only those fields
used by the definitions:

Tick � { tick:int→ str } Tock � { tock:int→ str }

[Property D] Abstracting Over Premethods. The last scenario that we will consider
using our running example is abstracting over premethods. For example, the follow-
ing wrapper functions avoid duplicating the code to insert exclamation points in the
definition of ticker3 from before:

val wrap :: all A,B,C,C’. (C->C’) -> (A->B->C) -> (A->B->C’)

let wrap g f x y = g (f x y)

val exclaim :: all A,B. (A -> B -> str) -> (A -> B -> str)

let exclaim = wrap _ _ _ _ (\s. "! " ++ s)

let ticker3’ = fix \this.

let f n = (exclaim _ _ tick) this n in

let g n = (exclaim _ _ tock) this n in

{ tick = f; tock = g }

ticker3’.tick 2 -- "! tick ! tock ! tick ! tock ! "

The two calls to exclaim (and, hence, wrap) are made with two different premethods
as arguments. Because these premethods have different types in LANGFIXSUB, (un-
bounded) parametric polymorphism is required for typechecking. Note that we write
underscores where type instantiations can be easily inferred.
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“Open” vs. “Closed” Objects. As we have seen throughout the previous examples, the
type of a record-of-premethods differs from that of a record-of-methods. We refer to
the former kind of records as open objects and the latter as closed objects. Once closed,
there is no way to extract a method to be included into a closed object of a different
type. The following example highlights this distinction, where the makeLouderTicker
function takes a record of two premethods and wraps them before creating a closed
Ticker object:

PreTicker � { tick:Tock→ int→ str; tock:Tick→ int→ str }

val makeLouderTicker :: PreTicker -> Ticker

let makeLouderTicker openObj = fix \closedObj.

let f n = (exclaim _ _ openObj.tick) closedObj n in

let g n = (exclaim _ _ openObj.tock) closedObj n in

{ tick = f; tock = g }

let (ticker4, ticker5) =

( makeLouderTicker { tick = tick; tock = tock }

, makeLouderTicker { tick = exclaim _ _ tick; tock = tock } )

ticker4.tick 2 -- "! tick ! tock ! tick ! tock ! "

ticker5.tick 2 -- "! ! tick ! tock ! ! tick ! tock ! ! "

The first row of the table in Figure 1 summarizes that LANGFIXSUB supports the
four programming scenarios outlined in the previous section. Next, we will consider
how the same scenarios manifest themselves in languages without an explicit fix. Such
encodings may be of theoretical interest as well as practical interest for object-oriented
languages such as JavaScript, in which the semantics does not include fix.

2.2 LANGMU: Recursion with Mu-Types

We will consider the language LANGMU of records, isorecursive mu-types, and un-
bounded universal quantification. The standard rules for isorecursive types are:

T = μA.S Γ � e : S[T/A]

Γ � fold T e : T

T = μA.S Γ � e : T

Γ � unfold e : S[T/A]

We define the syntactic sugar e$ f(e′) � (unfold e).f(e)(e′) to abbreviate the com-
mon pattern of unfolding a recursive record, reading a method stored in one of its fields,
and then calling the method with the (folded) record as the receiver (first argument) to
the method.

[Properties A and B]. Defining premethods separately and interposing on recursive
calls are much the same in LANGMU as they are in LANGFIXSUB. Using the type-
checking rules for isorecursive types above, together with the usual rule for function
application, we can write the following in LANGMU:
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Ticker � μA.{ tick:A → int→ str; tock:A → int→ str }

val tick, tock, tock’ :: Ticker -> int -> str

let tick this n = n > 0 ? "tick " ++ this$tock(n) : ""

let tock this n = n > 0 ? "tock " ++ this$tick(n-1) : ""

let tock’ this n = this$tick(n-1)

let wrap g f x y = g (f x y)

let exclaim = wrap (\s. "! " ++ s)

let (ticker1, ticker2, ticker3) =

( fold Ticker { tick = tick ; tock = tock }

, fold Ticker { tick = tick ; tock = tock’ }

, fold Ticker { tick = exclaim tick ; tock = exclaim tock })

ticker1$tick(2) -- "tick tock tick tock "

ticker2$tick(2) -- "tick tick "

ticker3$tick(2) -- "! tick ! tock ! tick ! tock ! "

[Property D]. As in LANGFIXSUB, unbounded universal quantification in LANGMU

can be used to give general types to functions, such as wrap and exclaim above, that
abstract over premethods.

[Property C]. Premethods in LANGMU cannot be folded into different mu-types than
the ones specified by the annotations for their receiver arguments. Consider the follow-
ing example that attempts to, as before, define an extended ticker type that contains an
additional boolean field:

TickerVol � μA.{ tick:A → int→ str; tock:A → int→ str; loud:bool }

let quietTicker =

fold TickerVol { tick = tick ; tock = tock’ ; loud = false }

The problem is that the record type

{ tick,tock:Ticker→ int→ str; loud:bool }

does not equal the unfolding of TickerVol

{ tick,tock:TickerVol→ int→ str; loud:bool }

as required by the typing rule for fold. In particular, Ticker �= TickerVol. Unlike
for LANGFIX, simply adding subtyping to the system does not address this difficulty.
In the above record type comparison, the contravariant occurrence of the mu-type would
require that TickerVolbe a subtype of Ticker, which seems plausible by record width
subtyping. However, the standard “Amber rule”

Γ , A1 <: A2 � T1 <: T2

Γ � μA1.T1 <: μA2.T2



266 R. Chugh

for subtyping on mu-types requires that the type variable vary covariantly [8,29]. As
a result, TickerVol �<: Ticker which means that the code snippet fails to typecheck
even in LANGMU extended with subtyping.

The only recourse in LANGMU is to duplicate premethods multiple times, one for
each target mu-type. The second row of the table in Figure 1 summarizes the four pro-
gramming scenarios in the context of LANGMU, using an × to mark that Property C
does not hold.

2.3 FSUBREC: Recursion with F-bounded Polymorphism

Adding subtyping to LANGMU is not enough, on its own, to alleviate the previous lim-
itation, but it is when combined with a more powerful form of universal quantification.
In particular, the system we need is FSUBREC, which contains (1) F-bounded polymor-
phism, where a bounded universally quantified type ∀A<:S. T allows its type bound S
to refer to the type variable A being constrained; and (2) equirecursive, or “strong” re-
cursive, types where a mu-type μA.T is considered definitionally equal to its unfolding
T [(μA.T )/A] in all contexts. That means that there are no explicit fold and unfold op-
erations in FSUBREC as there are in languages with isorecursive, or “weak” recursive,
types like LANGMU.

To see why “weak recursion is not a good match for F-bounded quantification,” as
described by Baldan et al. [2], consider the type instantiation rule

Γ � e : ∀A<:S. T Γ � S′ <: S[S′/A]

Γ � e[S′] : T [S′/A]

which governs how bounded universals can be instantiated. Notice that the particular
type parameter S′ must be a subtype of the bound S where all (recursive) occurrences
of A are replaced with S′ itself. A recursive type can satisfy an equation like this only
when it is considered definitionally equal to its unfolding, because the structure of the
types S and S′ simply do not match (in all of our examples, S′ is a mu-type but S is a
record type).

[Properties A and C]. Having explained the motivation for including equirecursive
types in FSUBREC, we return to our example starting with premethod definitions:

Tick(A) � { tick:A → int→ str }

Tock(A) � { tock:A → int→ str }

TickPre(B,C) � (∀A<:Tick(A). A → B →C)

TockPre(B,C) � (∀A<:Tock(A). A → B →C)

val tick :: TockPre (int, str)

val tock, tock’ :: TickPre (int, str)

let tick this n = n > 0 ? "tick " ++ this.tock(this)(n) : ""

let tock this n = n > 0 ? "tock " ++ this.tick(this)(n-1) : ""

let tock’ this n = this.tick(this)(n-1)
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There are two aspects to observe. First, the premethod types, which use F-bounded
universals, require that the this parameters have only the fields used by the definitions
(like in LANGFIXSUB). Second, the implementations of tick, tock, and tock’ do not
include unfold expressions (unlike in LANGMU), because the type system implicitly
folds and unfolds equirecursive types as needed.

We can now mix the premethods into various target mu-types, such as Ticker and
TickerVol as defined in LANGMU, by instantiating the F-bounded universals appro-
priately. In the following, we use square brackets to denote the application, or instanti-
ation, of an expression to a particular type.

let (normalTicker, quietTicker) =

( { tick=tick[TickerVol]; tock=tock [TickerVol]; loud=false }

, { tick=tick[TickerVol]; tock=tock’[TickerVol]; loud=false } )

normalTicker.tick(normalTicker)(2) -- "tick tock tick tock "

quietTicker.tick(quietTicker)(2) -- "tick tick "

[Property B]. Interposing on recursive calls in FSUBREC is much the same as before:

val ticker3 :: Ticker

let ticker3 =

let f this n = "! " ++ tick [Ticker] this n in

let g this n = "! " ++ tock [Ticker] this n in

{ tick = f; tock = g }

ticker3.tick 2 -- "! tick ! tock ! tick ! tock ! "

[Property D]. Abstracting over premethods in FSUBREC, however, comes with a caveat.
Symptoms of the issue appear in the definitions of f and g in ticker3 above: notice that
the tick and tock premethods are instantiated to a particular type and then wrapped.
As a result, f and g are methods tied to the Ticker type rather than premethods that
can work with various host object types. We can abstract the wrapper code in ticker3

as in LANGFIXSUB and LANGMU, but the fact remains that wrap and exclaim below
operate on methods rather than premethods:

val wrap :: all A,B,C,C’. (C->C’) -> (A->B->C) -> (A->B->C’)

let wrap g f x y = g (f x y)

let exclaim = wrap _ _ (\s. "! " ++ s)

let loudTicker =

{ tick = exclaim _ _ (tick [TickerVol])

; tock = exclaim _ _ (tock [TickerVol])

; loud = true }

loudTicker.tick(loudTicker)(2)

-- "! tick ! tock ! tick ! tock ! "
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If we wanted to define a function exclaim’ that truly abstracts over premethods (that
is, which could be called with the uninstantiated tick and tock values), the type of
exclaim’ must have the form

∀R. (∀A<:R. A → int→ str)→ (∀A<:R. A → int→ str)

so that the type variable R could be instantiated with Tock(A) or Tick(A) as needed at
each call-site. This kind of type cannot be expressed in FSUBREC, however, because
these type instantiations need to refer to the type variable A which is not in scope.

As a partial workaround, the best one can do in FSUBREC is to define wrapper
functions that work only for particular premethod types and then duplicate definitions
for different types. In particular, we can specify two versions of the type signatures

wrapTick :: ∀B,C,C′. TickPre(B,C)→ TickPre(B,C′)
wrapTock :: ∀B,C,C′. TockPre(B,C)→ TockPre(B,C′)

exclaimTick :: TickPre(int,str)→ TickPre(int,str)

exclaimTock :: TockPre(int,str)→ TockPre(int,str)

and then define two versions of the wrappers as follows:

let wrapTick B C C’ g f x y = \A. g (f[A] x y)

let wrapTock B C C’ g f x y = \A. g (f[A] x y)

let exclaimTick = wrapTick _ _ _ (\s. "! " ++ s)

let exclaimTock = wrapTock _ _ _ (\s. "! " ++ s)

let loudTicker’ =

{ tick = (exclaimTock tick) [TickerVol]

; tock = (exclaimTick tock) [TickerVol]

; loud = true }

loudTicker’.tick(loudTicker’)(2)

-- "! tick ! tock ! tick ! tock ! "

With this approach, the wrapper functions take premethods as inputs and return premeth-
ods as outputs. This code duplication is undesirable, of course, so in the FSUBREC row
of the table in Figure 1 we qualify the check mark for Property D with a minus sign.

Undecidability of FSUBREC. Equirecursive types and F-bounded polymorphism are
powerful, indeed, which is why they are often used as the foundation for object cal-
culi, sometimes with additional constructs like type operators and bounded existential
types [5]. This power comes at a cost, however, both in theory and in practice. Sub-
typing for System Fsub (i.e. bounded quantification) is undecidable, even when type
bounds are not allowed to be recursive [28], and the addition of equirecursive types
poses challenges for the completeness of the system [16,2]. There exist decidable frag-
ments of System Fsub that avoid the theoretically problematic cases without affecting
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many practical programming patterns. However, mainstream languages (e.g. Java and
C#) include features beyond generics and subtyping such as variance, and the sub-
tle interaction between these features is an active subject of research (e.g. [23,17]).
Furthermore, an equirecursive treatment of mu-types demands more work by the type
checker — treating recursive types as graphs and identifying equivalent unfoldings —
than does isorecursive types, where the recursive type operator is “rigid” and, thus, easy
to support [29]. As a result of these complications, we mark the “Simplicity” column
for FSUBREC in Figure 1 with an ×. In settings where the full expressive power of
these features is needed, then the theoretical and practical hurdles that accompany them
are unavoidable. But for other settings, ideally we would have a more expressive system
than LANGMU that is much simpler than FSUBREC.

3 The ISOLATE Calculus

We now present our calculus, ISOLATE, that aims to address this goal. Our design
is based on two key observations about the FSUBREC encodings from the previous
section: first, that the record types used to describe self parameters mention only those
fields actually used by the function definitions; and second, that when creating an object
out of a record of premethods, each premethod is instantiated with the mu-type that
describes the resulting object.

The ISOLATE type system includes special support to handle this common program-
ming pattern without providing the full expressive power, and associated difficulties,
of FSUBREC. Therefore, as the third row of the table in Figure 1 outlines, ISOLATE

satisfies the same Properties A through D as FSUBREC but fares better with respect to
“Simplicity,” in particular, because it is essentially as easy as LANGMU to implement.

3.1 Overview

Before presenting formal definitions, we will first work through an ISOLATE example
split across Figure 2, Figure 3, and Figure 4.

Premethods. Let us first consider the premethod definitions of tick, tock, and tock’

on lines 1 through 8, which bear many resemblances to the versions in FSUBREC. The
special pre-type (A :S) ⇒ T in ISOLATE is interpreted like the type ∀A<:S. A → T
in FSUBREC. Values that are assigned pre-types are special functions called premeth-
ods ςx :A<: S.e, which are treated like polymorphic function values ΛA<: S.λ x :A.e
in FSUBREC. A notational convention that we use in our examples is that the identifier
this signifies that the enclosing function desugars to a premethod rather than an ordi-
nary lambda. Notice that the types Tick(A) and Tock(A) describe only those fields that
are referred to explicitly in the definitions. A simple rule for unfolding self parameters
allows the definitions of tick, tock, and tock’ to typecheck.

Closing Open Records. ISOLATE provides special support for sending messages to
records of premethods. To keep subsequent definitions more streamlined, in ISOLATE

we require that all premethods take two arguments (in curried style). Therefore, instead
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1 type Tick(A) = { tick: A -> int -> str }

2 type Tock(A) = { tock: A -> int -> str }

3

4 val tick :: (A:Tock(A)) => int -> str

5 val tock, tock’ :: (A:Tick(A)) => int -> str

6 let tick this n = n > 0 ? "tick " ++ this$tock(n) : ""

7 let tock this n = n > 0 ? "tock " ++ this$tick(n-1) : ""

8 let tock’ this n = this$tick(n-1)

9

10 val const :: bool -> (A:{}) => unit -> bool

11 let const b this () = b

12 let (true_, false_) = (const true, const false)

13

14 let normalTicker = { tick = tick ; tock = tock ; loud = false_ }

15 let quietTicker = { tick = tick ; tock = tock’ ; loud = false_ }

16

17 normalTicker # tick(2) -- "tick tock tick tock "

18 quietTicker # tick(2) -- "tick tick "

Fig. 2. ISOLATE Example (Part 1)

of using boolean values true and false to populate a loud field of type bool, on
line 12 we define premethods true_ and false_ of the following type, where the type
Bool � (A :{ }) ⇒ unit→ bool imposes no constraints on its receivers.

Having defined the required premethods, the expressions on lines 14 through 18
show how to build and use records of premethods. The definitions of normalTicker
and quietTicker create ordinary records described by the record type

R0 � OpenTickerVol � { tick:PreTick; tock:PreTock; loud:Bool }

where we make use of abbreviations PreTick � (A :Tock(A)) ⇒ int→ str and
PreTock � (A :Tick(A)) ⇒ int→ str. We refer to these two records in ISOLATE

as “open” because they do not yet form a coherent “closed” object that can be used
to invoke methods. The standard typing rule for fold e expressions does not apply to
these open records, because the types of their receivers do not match (as was the diffi-
culty in our LANGMU example). To use open objects, ISOLATE provides an additional
expression form close e and the following typing rule:

Γ � e : R GuarA(R)⊇ RelyA(R) T = μA.Coerce(GuarA(R))

Γ � close e : T

The rule checks that an open record type R of premethods is mutually consistent (the
second premise) and then freezes the type of the resulting record to be exactly what is
guaranteed (the third premise). To define mutual consistency of a record R, we introduce
the notions of rely-set and guarantee-set for each pre-type (A :R j) ⇒ S j → Tj stored
in field f j:
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– the rely-set contains the field-type pairs ( f ,T ) corresponding to all bindings f :T
in the record type R j, where R j may refer to the variable A, and

– the guarantee-set is the singleton set {{( f j, A → S j → Tj)}}, where A stands for
the entire record type being checked for consistency.

The procedures Rely and Guar compute sets of field-type pairs by combining the rely-
set and guarantee-set, respectively, from each premethod in R. An open record type
R is consistent if GuarA(R) contains all of the field-type constraints in RelyA(R). The
procedure Coerce converts a set of field-type pairs into a record type in the obvious
way, as long as each field is mentioned in at most one pair.

Using this approach, close normalTicker and close quietTicker have type

μA.{ tick:IS(A); tock:IS(A); loud:A → unit→ bool }

where IS(S) � S → int→ str, because the following set containment is valid:

GuarA(R0) = {(tick, IS(A)),(tock, IS(A)),(loud,A → unit→ bool)}
⊇ RelyA(R0) = {(tick, IS(A)),(tock, IS(A))}

Notice that the use of set containment, rather than equality, in the definition of con-
sistency allows an open record to be used even when it stores additional premethods
than those required by the recursive assumptions of others. Informally, we can think of
the consistency computation as a form of record width and permutation subtyping that
treats constraints on self parameters specially.

Late Typing. Once open records have been closed into ordinary mu-types, typecheck-
ing method calls can proceed as in LANGMU using standard typing rules for unfolding,
record projection, and function application. A common pattern in ISOLATE is to close
an open record “late” (right before a method is invoked) rather than “early” (immedi-
ately when a record is created). We introduce the following abbreviation, used on lines
17 and 18, to facilitate this pattern (note that we could use a let-binding for the close

expression, if needed, to avoid duplicating effects):

e# f(e′) � (unfold (close e)).f(close e)(e′)

We refer to this pattern of typechecking method invocations as “late typing,” hence, the
name ISOLATE to describe our extension of a standard isorecursive type system. The
crucial difference between ISOLATE and LANGMU is the close expression, which
generalizes the traditional fold expression while still being easy to implement. The
simple set containment computation can be viewed as a way of inferring the mu-type
instantiations that are required in the FSUBREC encodings of our examples. As a result,
ISOLATE is able to make do with isorecursive types while still allowing premethods to
be loosely mixed together.

Extension: Unbounded Polymorphism. The operation for closing records of premeth-
ods constitutes the main custom typing rule beyond LANGMU. For convenience, our
formulation also includes (unbounded) parametric polymorphism. In particular, lines
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19 val wrap :: all A,B,C,C’. (C->C’) -> (A->B->C) -> (A->B->C’)

20 let wrap A B C C’ g f this x = g (f this x)

21

22 type OpenTickerVol =

23 { tick: (A:Tock(A)) => int -> str

24 ; tock: (A:Tick(A)) => int -> str

25 ; loud: (A:{}) => unit -> bool }

26

27 type TickerVol =

28 mu A. { tick, tock : A -> int -> str ; loud : A -> unit -> bool }

29

30 val louderClose :: OpenTickerVol -> TickerVol

31 let louderClose ticker =

32 let exclaim s = "! " ++ s in

33 let o1 = close normalTicker in

34 let o2 = unfold o1 in

35 fold TickerVol

36 { tick = wrap _ _ exclaim (o2.tick)

37 ; tock = wrap _ _ exclaim (o2.tock)

38 ; loud = \_. \_. true }

39

40 louderClose(quietTicker) $ tick(2) -- "! tick ! ! tick ! ! "

41 louderClose(normalTicker) $ tick(2) -- "! tick ! tock ! tick ! tock ! "

Fig. 3. ISOLATE Example (Part 2)

19 and 20 of Figure 3 show how to use parametric polymorphism to define a generic
wrap function, like we saw in FSUBREC.

The rest of the example in Figure 3 demonstrates a noteworthy aspect of combin-
ing late typing with message interposition. Recall that in FSUBREC, premethods had
to be instantiated with particular mu-types before wrapping (cf. the ticker3 definition
in §2.3). Using only ordinary unbounded universal quantification, however, there is no
way to instantiate a pre-type in ISOLATE. If trying to wrap record of mutually consis-
tent premethods, the same result can be achieved by first closing the open object into a
closed one described by a mu-type (line 33), unfolding it (line 34), and then using un-
bounded polymorphism to wrap its methods (lines 35 through 38). The louderClose

function abstracts over these operations, taking an open ticker object as input and pro-
ducing a closed ticker object as output. Therefore, we use unfold rather than close

(signified by $ rather than #) to use the resulting objects on lines 40 and 41.

Extension: Abstracting over Premethods. The previous example demonstrates how
to wrap methods using unbounded polymorphism and late typing, but as with the cor-
responding examples in FSUBREC, the approach does not help with truly wrapping
premethods. If we wish to do so, we can extend ISOLATE with an additional rule that
allows pre-types, rather than just universally quantified types, to be instantiated with
type arguments. As we will discuss, this rule offers a version of the FSUBREC rule
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42 val wrapTick :: all B,C,C’. (C -> C’) ->

43 ((A:Tick(A)) => B -> C) -> ((A:Tick(A)) => B -> C’)

44 val wrapTock :: all B,C,C’. (C -> C’) ->

45 ((A:Tock(A)) => B -> C) -> ((A:Tock(A)) => B -> C’)

46

47 let wrapTick B C C’ g f this x = g (f[A] this x)

48 let wrapTock B C C’ g f this x = g (f[A] this x)

49

50 val louder :: OpenTickerVol -> OpenTickerVol

51 let louder ticker =

52 let exclaim s = "! " ++ s in

53 { tick = wrapTock _ _ _ exclaim (ticker.tick)

54 ; tock = wrapTick _ _ _ exclaim (ticker.tock)

55 ; loud = true_ }

56

57 let (t1, t2, t3) = (louder quietTicker, louder normalTicker, louder t2)

58

59 t1 # tick(2) -- "! tick ! ! tick ! ! "

60 t2 # tick(2) -- "! tick ! tock ! tick ! tock ! "

61 t3 # tick(2) -- "! ! tick ! ! tock ! ! tick ! ! tock ! ! "

Fig. 4. ISOLATE Example (Part 3)

for type instantiations that is limited to type variables and, hence, does not require a
separate subtyping relation and equirecursive treatment types in order to reason about.

The extended system allows abstracting over premethods but requires code duplica-
tion, as in FSUBREC, for different pre-types. Notice that in the definitions of wrapTick
and wrapTock (lines 42 through 48 of Figure 4), the extended system allows the
premethod arguments f to be instantiated with the type arguments A. Making use of
these wrapper functions allows us to define a louder function (lines 50 through 55)
that, unlike louderClose, returns open objects. As a result, the expressions on lines
59 through 61 use the late typing form of method invocation.

Remarks. It is worth noting that the two extensions discussed, beyond the close ex-
pression, enable open object update in ISOLATE. Recall that closed objects correspond
to ordinary mu-types, so traditional examples of closed object update work in ISOLATE

as they do in LANGMU and the limited fragment of FSUBREC that ISOLATE supports.
Open objects are not a substitute for closed objects, rather, they provide support for
patterns of programming with mutually recursive sets of premethods.

As we will see next, our formulation of ISOLATE is designed to support the FSUBREC

examples from §2.3 without offering all the power of the full system. Therefore, the third
row of the table in Figure 1 summarizes that ISOLATE fares as well as FSUBREC with
respect to the four properties of our running examples. A prototype implementation of
ISOLATE that typechecks the running example is available on the Web.2

2 https://github.com/ravichugh/late-types

https://github.com/ravichugh/late-types
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Expressions e ::= unit | x | λx :T .e | e1 e2 | ΛA.e | e[T]

| { f = e } | e.f | unfold e | fold T e

premethod and close | ςx :A<: T .e | close e

Types R,S,T ::= unit | { f:T } | S → T | A | μA.T | ∀A. T

pre-type | (A :S) ⇒ T

Type Environments Γ ::= − | Γ , x :T | Γ , A | Γ , A<: T

Fig. 5. ISOLATE Syntax

3.2 Syntax and Typechecking

We now present the formal definition of ISOLATE. Figure 5 defines the syntax of ex-
pressions and types, and Figure 6 defines selected typing rules; [10] provides addi-
tional definitions. We often write overbars (such as f :T ) to denote sequences (such as
{ f1:T1; . . . ; fn:Tn }).

Expressions. Expressions include the unit value, variables, lambdas, function applica-
tion, type abstractions, type application, record literals, and record projection. The type
abstraction and application forms are typical for a polymorphic lambda-calculus, where
type arguments have no computational significance. Expressions also include isorecur-
sive fold and unfold expressions that are semantically irrelevant, as usual. Unique
to ISOLATE are the premethod expression ςx :A<: T .e and the close e expression,
which triggers consistency checking in the type system but serves no computational
purpose. If we consider premethods to be another form of abstraction and close as a
more general form of fold, then, in the notation from earlier sections, the syntax of
ISOLATE programs can be regarded as a subset of L{},iso,Λ , the expression language
of LANGMU. The intended meaning of each expression form is standard. Instead of an
operational semantics, we will define an elaboration semantics for ISOLATE in §4.

Types. Types include the unit type, record types, function types, mu-types, univer-
sally quantified types, and type variables A, B, etc. Custom to ISOLATE is the pre-type
(A :S) ⇒ T used to describe premethods, where the type A of the self parameter is
bound in S (as defined by the type well-formedness rules in [10]). Type environments
including bounds A<: S for type variables that correspond to premethods and their pre-
types. By convention, we use the metavariable R to describe record types.

The typechecking judgment Γ � e : T concludes that expression e has type T in an
environment Γ where variables x1, . . . ,xn have types T1, . . . ,Tn, respectively. In addition
to standard typechecking rules defined in [10], Figure 6 defines four custom ISOLATE

rules that encode a restricted form of F-bounded polymorphism.
The T-PREMETHOD rule derives the pre-type (A :S) ⇒ T for ςx :A<: S.e by com-

bining the reasoning for type and value abstractions. The T-UNFOLDSELF rules allows
a self parameter, which is described by bounded type variables A, to be used at its upper
bound T . This allows premethod self parameters to be unfolded as if they were de-
scribed by mu-types (cf. lines 6, 7, and 8 of Figure 2). In order to facilitate abstracting
over premethods, the T-PREAPP rule allows a premethod to be instantiated with type
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Type Checking (custom rules) Γ � e : T

Γ , A<: S, x :A � e : T

Γ � ςx :A<: S.e : (A :S) ⇒ T
[T-PREMETHOD]

A<: T ∈ Γ Γ � e : A

Γ � unfold e : T
[T-UNFOLDSELF]

Γ � e : (A :S) ⇒ T B<: S[B/A] ∈ Γ
Γ � e[B] : B → T [B/A]

[T-PREAPP]

Γ � e : R GuarA(R)⊇ RelyA(R)

Γ � close e : μA.Coerce(GuarA(R))
[T-CLOSE]

GuarA({ f : (A :R) ⇒ S → T }) = ∪i {( fi, A → Si → Ti)}
RelyA({ f : (A :R) ⇒ S → T }) = ∪i RelyThisA(Ri)

RelyThisA({ f : A → S → T }) = ∪i {( fi, A → Si → Ti)}

Fig. 6. ISOLATE Typing

variable argument B if it has the same bound S (after substitution) as the type variable
A of the premethod. The effect of these two rules is to provide some of the subtypings
derived by the full subtyping relation of FSUBREC.

The premises of T-CLOSE require that (1) the types of all fields fi bound in R have
the form (A :Ri) ⇒ Si → Ti and (2) the set GuarA(R) contains all of the field-type pairs
in RelyA(R). The guarantee-set contains pairs of the form {( fi, A → Si → Ti)}, which
describes the type of the record assuming that all of the mutual constraints on self
are satisfied. The rely-set collects all of these mutual constraints by using the helper
procedure RelyThis to compute the constraints from each particular self type Ri.

To understand the mechanics of this procedure, let us consider a few examples. We
define three self types

S0 � { } S1(A) � { f:A → unit→ int } S2(A) � { f:A → unit→ bool }

that impose zero or one constraints on the receiver and three types that refer to them:

Rf � { f:(A :S1(A)) ⇒ unit→ int }

Rfg � { f:(A :S1(A)) ⇒ unit→ int; g:(A :S2(A)) ⇒ unit→ bool }

Rfh � { f:(A :S1(A)) ⇒ unit→ int; h:(A :S0) ⇒ unit→ str }

The first record, Rf, is consistent because its guarantee-set matches its rely-set exactly:

GuarA(Rf) = RelyA(Rf) = {(f,A → unit→ int)}

The second, Rfg, is inconsistent because the guarantee-set does not contain the rely-set:

GuarA(Rfg) = {(f,A → unit→ int),(g,A → unit→ bool)}
�⊇ RelyA(Rfg) = {(f,A → unit→ int),(f,A → unit→ bool)}
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In particular, the second constraint in the rely-set is missing from the guarantee-set.
In fact, the self types S1 and S2 can never be mutually satisfied, because they require
different return types for the same field. The last record, Rfh, is consistent because the
guarantee-set is allowed to contain fields beyond those required:

GuarA(Rfh) = {(f,A → unit→ int),(h,A → unit→ str)}
⊇ RelyA(Rfh) = {(f,A → unit→ int)}

As noted earlier, the consistency computation resembles a form of record width and
permutation subtyping implemented as set containment. In §4, we will make the con-
nection between this approach and proper subtyping in FSUBREC.

Object Update. ISOLATE can derive, for any record type R, the judgment

(ςthis :Self<: R.let y= e in this) :: (Self :R) ⇒ Self

for a premethod that, after some well-typed expression e, returns the original self param-
eter. Because ISOLATE provides no analog to T-UNFOLDSELF for folding and because
ISOLATE uses an isorecursive treatment of mu-types, the this variable is, in fact, the
only expression that can be assigned the type Self. As a result, traditional (closed)
object update examples require the use of mu-types, rather than pre-types, in ISOLATE.

4 Metatheory

We now show how to translate, or elaborate, ISOLATE source programs into the more
expressive target language FSUBREC. Our soundness theorem establishes that well-
typed programs in the source language translate to well-typed programs in the tar-
get language. The decidability of ISOLATE is evident; the primary difference beyond
LANGMU is the T-CLOSE rule, which performs a straightforward computation.

4.1 The FSUBREC Calculus

We saw several examples of programming in FSUBREC in §2.3. In [10], we formally
define the language and its typechecking rules. Our formulation closely follows stan-
dard presentations of equirecursive types [29] and F-bounded polymorphism [2], so we
keep the discussion here brief. The language of FSUBREC expressions is standard. No-
tice that there are no expressions for folding and unfolding recursive types, and there is
no close expression. The operational semantics can be found in the aforementioned
references. The language of FSUBREC types replaces the isorecursive mu-types of
ISOLATE with equirecursive mu-types, and adds bounded universal types ∀A<:S. T ,
where A is bound in S (in addition to T ). To reason about bounded type variables, type
environments Γ record assumptions A<: S. These assumptions are used by the subtyp-
ing rule S-TVAR that relates a type variable to its bound. The definitional equality of
recursive types and their unfoldings is crucial for discharging the subtyping obligation
in the second premise of the T-TAPP rule. As the soundness proof for the translation
makes clear, the ISOLATE rules T-UNFOLDSELF and T-TAPP are restricted versions
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Elaboration of Types �Γ � � T �

�− � = − (1)

�Γ , x :T � = �Γ �, x :� T � (2)

�Γ , A � = �Γ �, A<:top (3)

�Γ , A<: T � = �Γ �, A<: � T � (4)

� unit � = unit (5)

� { . . . ; fi:Ti; . . . } � = { . . . ; fi:� Ti �; . . . } (6)

� (A :S) ⇒ T � = ∀A<:� S �. A → � T � (7)

� S → T � = � S � → � T � (8)

� μA.T � = μA.� T � (9)

�∀A. T � = ∀A<:top. � T � (10)

� A � = A (11)

Fig. 7. Translation of Environments and Types

of these two FSUBREC rules. Our soundness proof does not appeal to subtyping for
function, recursive, or universal types. We include the rules S-ARROW, S-AMBER, and
S-KERNEL-ALL for handling these constructs anyway, however, for reference. Part of
the appeal of ISOLATE is that this extra machinery need not be implemented.

4.2 Elaboration from ISOLATE to FSUBREC

The translation from ISOLATE expressions and typing derivations to FSUBREC pro-
grams is mostly straightforward. Figure 7 defines the translation of ISOLATE types and
type environments recursively, where ISOLATE pre-types are translated to FSUBREC

bounded universals.
We write D :: Γ � e : T to give the name D to an ISOLATE derivation of the given

judgment. In Figure 8, we define a function �D � that produces an expression e′ in
the target language, FSUBREC. We use this translation to define the semantics for the
source language, rather than specifying an operational semantics directly. Most of the
translation rules are straightforward, recursively invoking translation on subderivations.
Because the expression unfold e (respectively, fold T e) is intended to reduce directly
to e, as usual, a derivation by the T-UNFOLD (respectively, T-FOLD) rule is translated
to �D1 �, the translation of the derivation of e.

The key aspects of the translation relate to the custom ISOLATE rules. Premethods
correspond to polymorphic functions in the target calculus (T-PREMETHOD), so ap-
plying them to type variable arguments corresponds to type instantiation (T-PREAPP).
Self parameters are described by bounded type variables in the target, so unfolding them
has no computational purpose (T-UNFOLDSELF). The last noteworthy aspect is how to
translate T-CLOSE derivations of expressions close e. Motivated by the FSUBREC en-
codings from §2, the idea is to create a closed record of methods by instantiating all of
the (universally quantified) functions in the (translated) record with the type parameter
μA.Coerce(GuarA(�R �)), a mu-type that corresponds to the (converted and translated)
guarantee-set of the record. Notice that every time an open record is used in a method
invocation expression e# f(e′), a new closed record is created in the target program.
This captures the essence of late typing in ISOLATE.
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Elaboration from ISOLATE to FSUBREC � D :: Γ � e : T � = e′

[T-UNIT]
� D :: Γ � unit : unit � = unit

[T-VAR]
x :T ∈ Γ

� D :: Γ � x : T � = x

[T-RECD]
for 1 ≤ i ≤ n, Di :: Γ � ei : Ti

� D :: Γ � { f = e } : { f:T } � = { f1 = � D1 �; · · · ; fn = � Dn � }

[T-PROJ]
D1 :: Γ � e : { . . . ; f:T ; . . . }

� D :: Γ � e.f : T � = � D1 �.f

[T-FUN]
D1 :: Γ , x :S � e : T

� D :: Γ � λx :S.e : S → T � = λx :S.� D1 �

[T-APP]
D1 :: Γ � e1 : S → T D2 :: Γ � e2 : S

� D :: Γ � e1 e2 : T � = � D1 � � D2 �

[T-TFUN]
D1 :: Γ , A � e : T

� D :: Γ � ΛA.e : ∀A. T � = ΛA.� D1 �

[T-TAPP]
D1 :: Γ � e : ∀A. T

� D :: Γ � e[S] : T [S/A] � = � D1 �[� S �]

[T-FOLD]
T = μA.S D1 :: Γ � e : S[T/A]

� D :: Γ � fold T e : T � = � D1 �

[T-UNFOLD]
T = μA.S D1 :: Γ � e : T

� D :: Γ � unfold e : S[T/A] � = � D1 �

[T-UNFOLDSELF]
A<: T ∈ Γ D1 :: Γ � e : A

� D :: Γ � unfold e : T � = � D1 �

[T-PREMETHOD]
D1 :: Γ , A<: S, x :A � e : T

� D :: Γ � ςx :A<: S.e : (A :S) ⇒ T � = ΛA.λx :A.� D1 �

[T-PREAPP]
D1 :: Γ � e : (A :S) ⇒ T B<: S[B/A] ∈ Γ

� D :: Γ � e[B] : B → T [B/A] � = � D1 �[B]

[T-CLOSE]

D1 :: Γ � e : R GuarA(R)⊇ RelyA(R)
T = μA.Coerce(GuarA(R))

� D :: Γ � close e : T � = { f1 = (� D1 �.f1)[� T �]; . . . }

Fig. 8. Elaboration Semantics for ISOLATE
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4.3 Soundness

We now justify the correctness of our translation. Notice that because the syntactic
forms of ISOLATE are so similar to those in FSUBREC, there is little value in defining
an operational semantics for ISOLATE directly and then “connecting” it to FSUBREC.
Instead, we use the translation to define the semantics for ISOLATE. As a result, the
correctness theorem we prove needs only to state that the result of translating valid
ISOLATE derivations are well-typed FSUBREC programs.

Theorem 1 (Type Soundness). If D :: Γ � e : T , then �Γ � � �D � : �T �.

Proof. We provide the full details of the proof in [10]. Many of the cases proceed by
straightforward induction. The case for T-CLOSE, which converts open records into
closed records described by ordinary mu-types, is the most interesting. As discussed
in §3, the key observation is that rely- and guarantee-sets can be interpreted as record
types. The fact that the guarantee-set contains the rely-set can be used to argue how, with
the help of definitional equality of equirecursive types, the necessary record subtypings
hold via the record subtyping rule, S-RECD. As mentioned earlier, the reasoning for
rules T-UNFOLDSELF and T-PREAPP appeal to T-SVAR and T-TAPP, respectively, in
FSUBREC, providing a limited form of F-bounded polymorphism in ISOLATE.

5 Discussion

Our formulation of ISOLATE is a restricted version of FSUBREC that enables simple
typechecking for loosely coupled premethods in a setting without explicit recursion. To
conclude, we first discuss some related work that has not already been mentioned, and
then we describe several ways in which future work might help to further extend the
expressiveness of our system.

5.1 Related Work

Mixin and Recursive Modules. F-bounded polymorphism employs several traditional
type theoretic constructs and is widely used to encode object-oriented programming
patterns. Somewhat different mechanisms for combining and reusing implementations
include traits, mixins, and mixin modules, which have been studied in both untyped
(e.g. [4]) and typed (e.g. [14,1,19,15]) settings. Generally, these approaches distinguish
expressions either as components that may get mixed in to other objects and objects
which are constructed as the result of such operations. Various approaches are then used
to control when it is safe to combine functionality with combinators such as sum, delete,
rename, and override. Yet more expressive systems combine these approaches with full-
fledged module systems and explicit recursion as found in ML (e.g. [33,13,32,21]).

Although all of the above approaches are more expressive than ISOLATE (which
supports only sum), they rely on semantic features beyond those found in a strict lambda-
calculus with records. For example, the CMS calculus [1] relies on call-by-name se-
mantics to avoid ill-founded recursive definitions. The mixin operators of CMS can
be brought to a call-by-value setting, but this requires tracking additional information
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(in the form of dependency graphs) in mixin signatures [19]. In contrast, ill-founded
recursion is not a concern for (call-by-value) ISOLATE; because late typing is restricted
to premethods in records, the function types of these fields establish that they bind
syntactic values (namely, functions). Furthermore, the target of the translation in [19]
(Boudol’s recursive records [3]) explicitly includes letrec and uses non-standard se-
mantics for records. In contrast, the (standard) semantics of FSUBREC does not include
recursive definitions. Instead, our translation relies on F-bounded quantification to tie
the knot. As a result, our formulation of mixin composition can be applied to languages
without explicit recursion (such as JavaScript, Python, and Ruby). In the future, we plan
to investigate whether additional mixin operators can be supported for such languages.

Row Polymorphism. Row polymorphism [35,18,31] is an alternative to record sub-
typing where explicit type variables bind extra fields that are not explicitly named. By
ensuring disjointness between named fields in a record and those described by a type
variable, row polymorphism allows functions to be mixed in to different records using
record concatenation operators. It is not clear how row polymorphism on its own would
help, however, in a language without fix. We might start by writing

tick :: ∀ρ1.μA.{tock:A → int→ str; ρ1 }→ int→ str

(and similarly for other premethods), but ρ1 cannot be instantiated with a type that
mentions A, as required for mutual recursion, because it is not in scope. The fact that
row polymorphism is often used as an alternative to subtyping notwithstanding, simply
adding F-bounded polymorphism to this example does not seem to help matters either.

Coeffects. Our special treatment of premethods can be viewed as function types that
impose constraints on the context (in our case, self parameters) using a specification
language besides that of the object type language. Several proof theories have been
proposed to explicitly constrain the behavior of a program with respect to its context,
for example, using modal logics [26] and coeffects [27]. These systems provide rather
general mechanisms for defining and describing the notions of context, and they have
been applied to dynamic binding structure, staged functional programming, liveness
tracking, resource usage, and tracking cache requirements for dataflow programs. It
would be interesting to see whether these approaches can be applied to our setting of
objects and mutually recursive definitions.

Closed Recursion. Whereas we have focused on patterns of recursion for a language
without fix, other researchers have studied systems with closed recursion. In particu-
lar, there have been several efforts to admit more well-behaved programs than allowed
by ML-style let-polymorphism [11]. The system of polymorphic recursion [25] allows
recursive calls to be instantiated nonuniformly, but the additional expressive power re-
sults in a system that is only semi-decidable. In between these two systems is Trevor
Jim’s proposal based on principal typings [22]. Because the notion of principal typings
views the typing environment as an output of derivations, rather than an input, one can
think of the environment as a set of constraints for the derived type of an expression. It
could be interesting to see whether this approach can be adapted to a lambda-calculus
extended with records.
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5.2 Future Work and Conclusion

Our formulation is meant to emphasize that a small, syntactic variation on isorecursive
mu-types can capture a set of desired usage patterns. In the future, we plan to study how
additional language features — beyond the core of lambdas and records in ISOLATE —
interact with late typing. Important features include reference types, existential types,
type operators for supporting user-defined types and interfaces [29], and record con-
catenation à la Wand, Remy, Mitchell, et al. [18].

Similar to how mutually recursive functions can be combined through self, recursive
functions can also be combined through the heap. This pattern, sometimes referred
to as “backpatching” or “Landin’s knot,” appears in imperative languages as well as
module systems for functional languages [12,13]. We are studying how to adapt the
idea of late typing to the setting of lambdas and references with the goal of, as in this
paper, typechecking limited patterns of mutual recursion with relatively lightweight
mechanisms. Overall, because languages support various kinds of (implicit) recursion
through the heap and through self parameters, we believe that late typing may be useful
for typechecking common programming patterns in a relatively lightweight way.
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Abstract. Despite decades of research, we do not have a satisfactory
concurrency semantics for any general-purpose programming language
that aims to support concurrent systems code. The Java Memory Model
has been shown to be unsound with respect to standard compiler opti-
misations, while the C/C++11 model is too weak, admitting undesirable
thin-air executions.

Our goal in this paper is to articulate this major open problem as
clearly as is currently possible, showing how it arises from the combi-
nation of multiprocessor relaxed-memory behaviour and the desire to
accommodate current compiler optimisations. We make several novel
contributions that each shed some light on the problem, constraining
the possible solutions and identifying new difficulties.

First we give a positive result, proving in HOL4 that the existing
axiomatic model for C/C++11 guarantees sequentially consistent se-
mantics for simple race-free programs that do not use low-level atomics
(DRF-SC, one of the core design goals). We then describe the thin-air
problem and show that it cannot be solved, without restricting current
compiler optimisations, using any per-candidate-execution condition in
the style of the C/C++11 model. Thin-air executions were thought to
be confined to programs using relaxed atomics, but we further show
that they recur when one attempts to integrate the concurrency model
with more of C, mixing atomic and nonatomic accesses, and that also
breaks the DRF-SC result. We then describe a semantics based on an
explicit operational construction of out-of-order execution, giving the
desired behaviour for thin-air examples but exposing further difficulties
with accommodating existing compiler optimisations. Finally, we show
that there are major difficulties integrating concurrency semantics with
the C/C++ notion of undefined behaviour.

We hope thereby to stimulate and enable research on this key issue.

1 Introduction

Context. Shared-memory concurrent machines are now ubiquitous, but, despite
decades of research, we still do not have a satisfactory concurrency semantics
for any general-purpose programming language that aims to support concurrent
systems code. The basic tension is between implementability and usability: to
be efficiently implementable, such a semantics must admit the relaxed-memory
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behaviours that are permitted by multiprocessor architectures, and those that
are introduced by compiler optimisations, but it must also provide sufficiently
strong guarantees for concurrent algorithms to work correctly. It is important
also for the semantics to be mathematically rigorous, as informal reasoning is
particularly error-prone here, it should be as intuitive as possible, it should
support testing of implementations and of concurrent algorithms, and it should
support compositional reasoning.

There have been two major attempts to develop concurrency semantics for
such languages, for Java and C/C++. For Java, the original language specifi-
cation [20] was shown by Pugh [31] to be flawed in both directions: too strong
to be implementable and too weak for some concurrent programming idioms.
A new specification [25] was developed in JSR-133, and incorporated into Java
5.0, but that too has been shown to be unsound with respect to standard com-
piler optimisations, by Cenciarelli et al. [16] and Ševčík and Aspinall [34]. This
remains unresolved.

For C and C++, an effort as part of the C++0X standardisation process led
to a specification incorporated into the C++11 and C11 standards [9,2]. The ba-
sic design was outlined by Boehm and Adve [13], and Batty et al. [8] developed a
formal semantics in the latter stages of the standardisation process, identifying
various flaws in the draft standard and feeding back into the ratified standards
and later defect reports. C/C++11 concurrency has been supported by GCC
and Clang since versions 4.9 and 3.2 respectively, and the model by Batty et
al. has been used for many purposes, including correctness proofs for compila-
tion schemes to x86, by Batty et al. [8], and to IBM Power, by Batty et al. [7]
and Sarkar et al. [32]; compiler testing via a theory of sound optimisations, by
Morisset et al. [29]; model checking, by Norris and Demsky [30]; compositional
library abstraction, by Batty et al. [6]; and program logics, by Vafeiadis and
Narayan [39] and by Turon et al. [37]. Elements of the model have also been
incorporated into OpenCL 2.0. The C/C++11 concurrency model is the best-
developed currently in existence, but it also suffers from major problems. The
model is known to admit undesirable “thin-air” executions which actual imple-
mentations are not thought to exhibit, and it has become clear that these make
informal reasoning, formal compositional reasoning, and compiler optimisation
very difficult [14,6,39,38]. This too is unresolved.

Without a semantics, programmers currently have to program against their
folklore understanding of what the Java and C/C++ implementations provide,
and research on verification, compilation, or testing for such languages is on
shaky foundations.

Contributions. Our goal in this paper is to highlight and articulate this major
open problem as clearly as is currently possible, explaining the difficulties with
the design of concurrency semantics for shared-memory programming languages
in general and for C/C++-like languages (and Java-like, albeit in less depth)
languages in particular. We make several novel contributions that each shed
some light on the problem, constraining the possible solutions and identifying
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new challenges. We begin (§2) by recalling some basic design constraints and
choices, to make this paper as self-contained as possible.

Our first new contribution is a positive result: we describe a machine-checked
proof, in HOL4 [21], that (for programs without loops or recursion) the model
of Batty et al. satisfies one of the core design goals for C/C++11 concurrency:
programs that do not use the low-level atomics of the language, and that are
race-free in a sequentially consistent (SC) semantics, only exhibit sequentially
consistent behaviour (§3). This DRF-SC property gives a relatively simple se-
mantics for programmers using that fragment of the language.

We then consider thin-air reads (§4). This is a long-standing open problem
in the design of the semantics for C/C++11 relaxed atomics: accesses for which
races are permitted but where one does not wish to pay the cost of any barriers
or other hardware instructions beyond normal reads and writes. The question
is how one can define an envelope that permits current compiler optimisations
and hardware behaviour, while excluding particular example executions that it
is agreed should be forbidden: those with self-satisfying conditional cycles or
values appearing out of thin air (this is also closely related to the difficulties
with Java). Here we give an instructive negative result: the C/C++11 model is
expressed in terms of candidate executions, defining which candidate executions
are consistent, but we show that thin-air executions cannot be forbidden in a
per-execution style by any adaptation of the C/C++11 consistency predicate
that uses the same notion of candidate execution.

In §5 we identify a new problem that arises when one tries to integrate
C/C++11 concurrency with semantics for more of the C language. Thin-air
executions have previously been thought to be a problem only for programs us-
ing the relaxed atomics (intended only for expert use) of C/C++11, but that
turns out not to be the case. The model of Batty et al. presupposes an up-front
distinction between atomic and non-atomic locations, but that is not present in
C, where (for example) one should be able to reuse malloc’d regions to store
atomics and then nonatomics, or use char pointers to read the representation
bytes of an atomic. We show that the thin-air problem essentially recurs in this
setting, even in the absence of relaxed atomics, and that also breaks the DRF-SC
result.

Moving away from per-candidate-execution semantics, we explore an out-of-
order operational semantics construction (§6); this gives the desired behaviour for
the thin-air examples of §4 but exposes further difficulties with accommodating
existing compiler optimisations.

Finally we identify additional new difficulties that arise when integrating con-
currency semantics with the C/C++ notion of undefined behaviour (§7). We
conclude briefly in §8.

Our HOL4 proof script and the associated Lem definitions are available
at www.cl.cam.ac.uk/~pes20/esop2015-supplementary-material. We introduce
aspects of the C/C++11 model as required, but it is not possible to recap the
whole model here; for a full description we refer to [8].

www.cl.cam.ac.uk/~pes20/esop2015-supplementary-material
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2 Background: An Introduction to the Design Space

Sequential Consistency. The most obvious shared-memory concurrency se-
mantics is sequential consistency (SC), in which, as articulated by Lamport [23],
any execution has a total order over all memory writes and reads, with each read
reading from the most recent write to the same location. This is attractively sim-
ple from a theoretical point of view, and it has been the underlying assumption
for much research on shared-memory concurrency verification. But it does not
capture the concurrency behaviour of typical current systems: multiprocessors
exhibit non-SC behaviour, compilers perform optimisations that violate SC, and
for C/C++-like languages the language-level memory accesses cannot reason-
ably be implemented as atomic machine-level accesses. We briefly summarise
each of these points in turn.

Non-SC Multiprocessor Behaviour. The behaviour of Intel/AMD x86, IBM
Power, and ARM multiprocessors has been clarified by a series of recent pa-
pers [35,33,32,26,4]. For x86, normal memory accesses have a Total Store Order-
ing (TSO) semantics, similar to SPARC TSO [1] — as if there were a FIFO write
buffer (with a readback path) for each hardware thread, above a single memory.
This allows the SB behaviour on the left below, but little other relaxed behaviour
(in these execution diagrams x and y are shared locations, initially 0, po denotes
program order, and rf denotes the reads-from relation). Power and ARM are much
more relaxed, with programmer-visible out-of-order and speculative execution.
For example, the MP behaviour on the right below is allowed, as the writes to
different locations might be committed out-of-order, the writes might propagate
out-of-order to other threads, and the reads might be satisified out of order.

Test SB: Allowed on x86, Power, and ARM

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

Test MP: Allowed on Power and ARM

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Moreover, Power and ARM are not multi-copy atomic: writes to different lo-
cations can propagate to multiple other threads in different orders, as in the
WRC+addrs example below (pulling the a write of MP to a third thread). The
address dependencies prevent local reordering, but the fact that Thread 0’s write
of x propagates to Thread 1 before its write of y can be committed does not
guarantee that the write of x has propagated to Thread 2 before the write of y
is propagated to Thread 2.

Test WRC+addrs: Allowed on Power and ARM

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
addr

rf
addrrf
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One can recover SC in each architecture, but at nontrivial cost: without sophis-
ticated analysis, for x86 one needs an MFENCE barrier between shared stores
and loads, while for Power, Sarkar et al. [7] prove that one needs a heavyweight
sync barrier between each pair of shared memory accesses.

SC-violating Compiler Optimisations. Just as hardware optimisations can result
in non-SC behaviour, compiler optimisations can too. The simplest example here
is Common Subexpression Elimination (CSE): if two subexpressions are identi-
cal, e.g. perhaps just reads of the same location, typical compilers will sometimes
retain the value of the first in a register for use instead of the second, effectively
hoisting the second read above whatever memory accesses to other locations are
in between. This is one of the ways in which the Java Memory Model is un-
sound with respect to (e.g.) the HotSpot implementation: the implementation
does that, but the semantics (unintentionally) disallows it [16,34]. We return to
other compiler optimisations in §4 and §6.

Atomicity Problems. Finally, as highlighted by Boehm [10], there is an atom-
icity mismatch between the language-level memory operations of C/C++-like
languages and those that can be implemented reasonably in a concurrent set-
ting. For example, C lets one access a bitfield or a byte within a larger struct,
but that might have to be compiled into machine operations that also read or
write some of the adjacent memory.

All this means that SC is not viable for current languages, compiler implemen-
tations, and hardware (though some authors argue that SC could be achieved
at reasonable cost with modified compilers and hardware, e.g. [27,36]). It is
also highly debatable whether SC is desirable: for example, McKenney argues
that it does not match the intuitive programming models of those who imple-
ment high-performance concurrent algorithms, and notes that the “Linux kernel
makes heavy use of weak ordering” [28].

TSO as a Language Semantics. As the hardware models are now tolera-
bly well-understood, one can imagine lifting them to the programming language
level, limiting compiler optimisations to those that are sound w.r.t. the hard-
ware model. The CompCertTSO verified compiler of Ševčík et al. [41] does this
for a C-like language (without bitfield accesses), and Demange et al. propose
their BMM model for Java-like languages [17]. Both use TSO, which makes for
simple implementation on x86 processors but would require expensive fences or
sophisticated analysis on Power or ARM machines. This can be reasonable in
particular circumstances, especially as x86 is very common, but it is not viable
for a general-purpose language intended to support portable high-performance
concurrent code.

DRF-SC or Catch Fire. The compiler optimisation and atomicity prob-
lems with SC described above are only an issue for programs in which multiple
threads might be accessing the same location concurrently. Exploiting this fact,
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Adve and Hill [3] and Gharachorloo et al. [19] proposed language-level models
in which programs that are free of such data races (in any SC execution) are
guaranteed to have only SC behaviours (DRF-SC), while other programs have
completely undefined behaviour. This model is simple to explain and to imple-
ment, and it allows a wide range of compiler optimisations (c.f. Ševčík [40] and
Morisset et al. [29]). It has two disadvantages: first, giving wholely undefined be-
haviour to racy programs, while perhaps acceptable for C/C++-like languages
(which already have undefined behaviour for other reasons, many of which are
not statically decidable), is not acceptable for Java-like languages, which aim to
provide memory safety guarantees for arbitrary well-typed code (that led to the
complexities of the JSR-133 Java Memory Model [25]). It also begs the question
of how one can debug code, and indeed whether there are any large programs
that are actually race-free. Second, it requires heavier synchronisation than one
wants in some concurrent algorithms.

The C/C++11 Model. The C/C++11 model [13,8,2,9] aims to support DRF-
SC for simple programs (those using only locks and SC atomics), but also pro-
vides a range of low-level atomics that provide less synchronisation but without
the cost of restoring full SC: release/acquire write/read pairs for message-passing
synchronisation, relaxed atomics that should be implementable just with single
machine-level loads and stores, and release/consume pairs to expose some de-
pendency preservation guarantees of the hardware to make them available in the
language. As we shall see, the semantics of all these remains problematic.

3 DRF-Sc: Sequential Consistency for Race-Free Programs

The design of the C/C++11 model could not simply adopt DRF-SC/catch-fire
as its definition, due to the need to provide low-level atomics, but it aimed to pro-
vide a DRF-SC property (for programs that do not use those) as a consequence
of its actual definition. We now report on a proof that, for the first time, estab-
lishes DRF-SC for the full C/C++11 concurrency model: for programs that do
not use low-level atomics and that are race-free in an SC semantics (and subject
to conditions detailed below), the full model permits only SC executions. The
proof is mechanised in HOL4 and is included in the supplementary material (ap-
prox. 23k lines of proof script, including additional model equivalence results).
For a more complete account of the proof, see Batty’s thesis [5]. Recalling that
the prose ISO standards for C++11 and C11 [9,2] and the mathematical for-
malisation of the model by Batty et al. [8] correspond closely, this is effectively
a mechanised proof of a key metatheoretic property of a mainstream language
definition.

There have been two previous results along these lines, but both were pre-
liminary: Boehm and Adve [13] give a hand proof for a preliminary model that
omits many features, while Batty et al. [7, Thm. 5] give a hand proof based on
an earlier version of their formal model that uses that model’s notion of races
for the SC semantics. This is a major simplification: the point of a DRF-SC
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theorem is to let programmers in the DRF fragment reason solely in terms of
an SC semantics, but that result required users to grapple with the full model
complexity to understand whether their program contained races. In contrast,
the result we present here uses the straightforward SC notion of race based on
identifying two conflicting adjacent actions. The mechanisation of the current
proof adds assurance, particularly desirable for a fundamental result about an
industry-standard model of this intricacy.

To state DRF-SC, we first define a memory model for C/C++ executions, the
total model, that is manifestly sequentially consistent. We start with a graph over
memory accesses, called a pre-execution [8], that captures the syntactic struc-
ture of the program with a relation for parent-to-child thread ordering and an-
other (sequenced-before) for program order. The total model and C/C++11 differ
in the relations added to the pre-execution to form their candidate-executions:
C/C++11 represents the dynamic behaviour of memory with many partial or-
ders (modification order, lock order and SC order), whereas the total model has
only a single total order over all memory accesses in the pre-execution. Reads
must read from the immediately preceding write to the same location in the
total order, and two accesses race if they access the same location, at least one
is a write, they are not both atomic, and they are adjacent in the total order.

The theorem requires that the program ensures that atomic initialisation hap-
pens before all atomic accesses for each location. To simplify the proof, we also
restrict its statement to programs that satisfy a strong finiteness condition: there
must be a finite bound on the size of the pre-executions allowed by the thread-
wise semantics (this lets us use a simple form of induction). This means it does
not apply to programs with recursion or loops. However, intuitively those are
orthogonal to the concurrency semantics; we do not know of any reason why
including them might affect the truth of the theorem.

Theorem 1. For programs whose pre-executions (i) use only mutex, non-atomic
and SC-atomic accesses, (ii) have atomic initialisations ordered by sequenced-
before and parent-to-child thread synchronisation before all atomic accesses at
the same location, and (iii) are bounded in size by some N , either both the
C/C++11 model and the total model give undefined behaviour, or the sets of
consistent executions in each, projected down to the pre-execution and the reads-
from relation, are equal.

Proof Outline The proof first involves several steps of simplifying the
C/C++11 model for programs that do not use low-level atomics. The remaining
proof can be split into one part for race-free programs and another for racy ones.
For race-free programs there are two cases.

Given a consistent execution in the C/C++11 model, we must construct a
consistent execution in the total model with the same pre-execution and reads-
from relation. The union of happens-before and SC order is acyclic, so we extend
this to a total order and show that that is consistent according to the total
model. In the other direction, given a consistent execution in the total model,
we project partial relations from the total relation that serve as modification
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order, SC order and lock order in a C/C++11 candidate execution, and then
show that it is consistent.

Given a racy execution in one model, e.g. the execution in the total model
on the left below, we construct a (potentially different) racy execution in the
other, e.g. the C/C++11 execution on the right. As one might expect, given
a race in the C/C++11 model, constructing a consistent racy execution in the
total model is quite involved, and this execution might be very different to its
progenitor. Perhaps surprisingly, the other direction is similar: a direct transla-
tion, with identical read values, of a consistent execution in the total model is
not necessarily consistent in C/C++11. Take the execution on the left below:
reads-from would violate the C/C++11 non-atomic reads-from condition that
requires the write to happen before the read, so we have to construct a different
execution with a race.

Thread 0 Thread 1
a:WNA x=1

b:WNA x=2

c:RNA x=2

...
A racy execution
in the total model

tot

sbdrtot,rf

tot sb

prefix

fringe

Thread 0 Thread 1
a:WNA x=1

b:WNA x=2

c:RNA x=2

...
The bare

pre-execution

sb

sb

prefix

fringe

Thread 0 Thread 1
a:WNA x=1

b:WNA x=2

c:RNA x=1

...
Extended racy execution
in the C/C++11 model

sbrf
dr

sb
extended prefix

To build the execution, we rely on several definitions and an assumption about
the thread-local semantics : the part of the semantics that enumerates the pre-
executions of a particular program. We illustrate these on the example executions
above. We define a prefix as a part of an execution where every sequenced-
before or thread-synchronisation predecessor of any action within the part is
also included: e.g. all nodes above the “prefix” lines in the executions above.
The fringe actions of a prefix are all actions that are not in the prefix, but are
immediate sequenced-before or thread-synchronisation successors of an action in
the prefix, e.g. precisely c in the left and central executions above. The central
diagram above is just the pre-execution of the consistent execution on the left,
and hence is allowed by the thread-local semantics. We must assume that the
thread-local semantics is receptive: for any read or lock in the fringe of a prefix
of a pre-execution, allowed by the thread-local semantics, e.g. c in the centre
above, and for every other value or lock outcome, there exists a pre-execution
with the same prefix, but where the fringe action is changed accordingly, e.g. c
in the underlying pre-execution of the right-hand diagram.

Given a racy execution in the total model, we find the first race according
to the total relation, e.g. b and c above left, and take the prefix made up of
all strict predecessors of the later action (c) with respect to the total order.
The prefix is consistent and race free, so we can translate it to a consistent
prefix in the C/C++11 memory model with the same set of fringe actions. We
extend this to a consistent prefix containing the second racy action, appealing
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to receptiveness to change its value if necessary for consistency, producing the
execution on the right above, and we show that there is a race in the extended
prefix, again between b and c. This is all inside an induction on the size of the
prefix: we show that for each larger finite prefix size, n, either there exists a racy
consistent execution, or a racy consistent prefix with at least n actions. Finally,
we appeal to the boundedness of executions to establish that there is a racy
consistent execution of the program in the C/C++11 memory model.

Given a racy execution in the C/C++11 model, the steps involved in the
proof are similar, but finding the first race differs. For each race in the execution,
we identify the set containing the racy actions and all of their happens-before
predecessors. The execution is finite, so the set of all such sets is finite, and
the subset relation is acyclic over them, so we can find a subset-minimal set
made up of a pair of racing actions and their happens-before predecessors. We
identify one of the racy actions and the happens-before predecessors of both as
a race-free prefix. This prefix is consistent, so we can translate it to a consistent
prefix in the total model. We then add the previously-racy fringe action to the
prefix, and establish that it is consistent and racy, appealing to receptiveness, if
necessary for consistency. In a similar fashion to the previous case, we complete
the consistent racy prefix to get a consistent racy execution in the total model.

4 The Thin-Air Problem has No Per-candidate-execution
Solution

The question of “thin-air” reads is a longstanding issue in the design of memory
models for C and C++, specifically for C/C++11 relaxed atomics: accesses for
which races are permitted but which should be implemented with normal load
and store instructions, without the cost of additional barriers or synchronisation
instructions. Related questions arise in the semantics of C as used in the Linux
Kernel (for ACCESS_ONCE accesses), and for normal accesses in Java [25].

The C++11 standard [9] included text intended to forbid thin-air executions
(29.3p9), and it says explicitly (29.3p10) that that text forbids the LB+data
example below, but the text was already recognised as flawed: a non-normative
note in the standard (29.3p11) observed that “The requirements do allow [the
LB+ctrldata+ctrl-single example below]. However, implementations should not
allow such behavior.”. Batty et al. identified further problems [8, §4], and their
formal model does not attempt to capture that text or to exclude thin-air execu-
tions in any other way. The current proposal [12] for C++14 acknowledges diffi-
culties with the C++11 version and proposes a deliberately vague placeholder as
an interim replacement: “Implementations should ensure that no “out-of-thin-air”
values are computed that circularly depend on their own computation.”.

There is not a precise definition of what it means for a read to be “out of thin
air” (if there were, the problem would be solved, as the semantics could simply
exclude those). Rather, there are some example executions for which there is a
consensus that the language should forbid them, and that current hardware and
compiler optimisations do not exhibit. This is a high-level-language specification
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problem: there is no suggestion that thin-air executions occur in practice with
current compilers and hardware; the problem is rather how to exclude them
without preventing desired compiler optimisations.

In this section, we describe the thin-air problem via a series of examples,
and we show that thin-air executions cannot be forbidden without restricting
current compiler optimisations by any per-candidate-execution condition using
the C/C++11 notion of candidate executions.

For each example we identify a particular execution by specifying the values
read, and discuss whether it should be allowed by the semantics or not.

Example LB (language must allow)

r1=loadrlx(x) //reads 42

storerlx(y,42)

r2=loadrlx(y) //reads 42
storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42

sbsb
rfrf

Here r1 and r2 are thread-local variables (which do not have memory actions in
the model), while x and y are shared variables; initially all are 0. This execution
(the dual of the first example of §2) is permitted by the ARM and IBM POWER
architectures (presuming the code is compiled in the obvious way into machine
load and store instructions): the actions of the each thread are to manifestly
different addresses and so can be done out of order; it is moreover experimentally
observable on current ARM multiprocessors [33]. Hence, the language semantics
must allow it for relaxed atomics.

Example LB+datas (language can and should forbid)

r1=loadrlx(x) //reads 42
storerlx(y,r1)

r2=loadrlx(y) //reads 42

storerlx(x,r2)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,dd sb,dd

There are two paradigmatic kinds of thin-air execution, the thin-air read value
executions like this one, in which a value (here 42) “appears out of thin air”,
and the self-satisfying conditional example we discuss below. This example is
architecturally forbidden on current hardware (x86, ARM, and IBM POWER),
we do not expect future hardware to adopt the load-value prediction that would
be required to make it observable, and to the best of our knowledge it cannot
be exhibited by any reasonable current compiler optimisation combined with
current hardware. Hence, the language semantics could forbid it.

Moreover, it is clearly desirable to forbid it, to make the language semantics as
intuitive as possible. Boehm and Demsky [14] give examples where programming
with relaxed atomics that permit thin-air values would be problematic, and in
languages that aim to preserve implementation invariants at some types (such
as that all pointer values point to allocated memory) it would be essential.
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As for how it might be forbidden, the example suggests that one might simply
forbid candidate executions with cycles in the union of the reads-from and depen-
dency relations (the model has a data dependency relation shown as dd above).
But the next two examples show that a combination of hardware behaviour and
compiler optimisations make that infeasible.

Example LB+ctrldata+po (language must allow)

r1=loadrlx(x) //reads 42

if (r1 == 42)
storerlx(y,r1)

r2=loadrlx(y) //reads 42

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sbsb,dd,cd

This is architecturally allowed on ARM and Power (for the same reason as LB),
and likewise observable on ARM, hence the language must allow it.

Example LB+ctrldata+ctrl-double (language must allow)

r1=loadrlx(x) //reads 42

if (r1 == 42)
storerlx(y,r1)

r2=loadrlx(y) //reads 42

if (r2 == 42)

storerlx(x,42)
else

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,cdsb,dd,cd

This is forbidden on hardware if compiled naively, as the architectures respect
read-to-write control dependencies, but in practice compilers will collapse con-
ditionals like that of the second thread, removing the control dependencies from
the read of y to the writes of x and making the code identical to the previous
example. As that example is allowed and observable on hardware (and we pre-
sume that it would be impractical to outlaw such optimisation for C or C++),
the language must also allow this execution. But this execution has a cycle in
the union of reads-from and dependency, so we cannot simply exclude all those.

Then one might hope for some other adaptation of the C/C++11 model, but
the following example shows at least that there is no per-candidate-execution
solution.

Example LB+ctrldata+ctrl-single (language can and should forbid)

r1=loadrlx(x) //reads 42
if (r1 == 42)

storerlx(y,r1)

r2=loadrlx(y) //reads 42

if (r2 == 42)
storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,cdsb,dd,cd
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This is the paradigmatic “self-satisfying conditional” example. It is forbidden on
hardware if compiled naively (both ARM and POWER architectures prevent
speculative writes becoming visible to other threads), and applying reasonable
thread-local compiler optimisation does not change that. Hence, the language
could forbid it. Moreover, it is problematic for informal and formal compositional
reasoning [14,6,39], so the language should forbid it.

But the candidate execution that we want to forbid here is identical to the
execution of the previous example that we have to allow. This immediately gives:

Theorem 2. No adaptation of the C/C++11 per-candidate-execution definition
that uses the same notion of candidate execution can give the desired behaviour
for both of these examples.

The basic point here is that compiler optimisations (such as the collapse of the
LB+ctrldata+ctrl-double conditional) are operating over a representation of the
program, covering all its executions, while the C/C++11 definition of candidate
execution and consistency for those considers each candidate execution indepen-
dently (it ignores the set of all executions); it is not able to capture the fact that the
conditional is unnecessary because the two candidate executions corresponding to
taking the two branches are equivalent. We develop this observation in §6.

Restricting optimisation involving relaxed atomics?. One might think that it
would be feasible to restrict just compiler optimisations involving relaxed atom-
ics, e.g. requiring that the compiler should respect all dependencies between
relaxed atomic operations, while permitting more optimisation elsewhere. But
(as observed by Boehm [11]) dependencies can be via functions in other com-
pilation units that only involve non-atomic accesses, e.g. as in the version of
LB+ctrldata+ctrl-double below, where the second thread’s conditional is fac-
tored out into a function f() that does not involve atomics and that is in a dif-
ferent compilation unit. When compiling f() the compiler cannot tell whether it
might be used in a dependency chain between atomic accesses, and so it would
have to preserve all such dependencies. The cost of that is unknown, and worth
investigating experimentally, but we suspect it to be unacceptable.

// in one compilation unit
void f(int ra, int*rb) {

if (ra==42)

*rb = 42;
else

*rb = 42; }

// in another compilation unit

r1=loadrlx(x) //reads 42 r2=loadrlx(y) //reads 42
if (r1 == 42) f(r2,&r3)

storerlx(y,r1) storerlx(x,r3)
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In practice, GCC (checked with 4.6.3 on x86) does optimise away the control
dependency in f(), at O1, O2, or O3.

Preventing load-store reordering. If one relaxes the requirement that relaxed
atomics must be implementable with simple machine accesses, one might re-
strict all shared-variable load-to-store reordering, as proposed by Boehm and
Demsky [12,14], adding barriers and somewhat restricting compiler optimisa-
tion. The cost has not yet been quantitatively assessed. For C/C++ it might
be viable due to the small number of relaxed atomics (though if practitioners
resorted to in-line assembly instead, that would defeat the purpose). But for
normal Java accesses on ARM or Power, the cost seems likely to be prohibitive.

5 Integrating Non-atomics and Atomics Leads Back to
Thin Air

We now show that the thin-air problem is not confined to relaxed atomics. The
C++11 standard prose refers to “atomic objects” as if they are quite different
from non-atomic objects, and the mathematical model of Batty et al. [8] for the
C++11 and C11 concurrency primitives followed suit by imposing a simple type
discipline: a location kind map in each candidate execution partitioned locations
into atomic, nonatomic, and mutex locations. The definition of consistent execu-
tion permitted atomic accesses only at atomic locations, and the only nonatomic
accesses allowed at atomic locations were atomic initialisations1.

However, when one considers generalising that semantics for the concurrency
primitives to cover more of C, it becomes clear that an up-front location-kind
distinction is unrealistic, for several reasons:

1. In C it is permitted to reuse a region of allocated storage (e.g. from malloc)
at a new type, simply by overwriting the bytes of memory with a new value.
Restricting that to prevent strong updates from atomic to nonatomic (or
v.v.) would not give a usable language.

2. In C one can inspect the representation bytes of a value by casting a pointer
to (char *), or by type-punning via a union.

3. In C one can copy a value by copying its representation bytes, e.g. us-
ing memcpy. This could perhaps be deemed illegal for structures containing
atomic values (indeed, it would have to be if atomic values had to be regis-
tered somewhere in the implementation), but it would be preferable, and in
keeping with the rest of the language, to permit it.

4. In C11 one can construct atomic versions of structure and union types (with
_Atomic(type-name) or the _Atomic qualifier), but their members can be
accessed only via a non-atomic object which is assigned to or from the atomic
object, not directly [2, 6.5.2.3p5].

1 It is desirable to have nonatomic initialisations so that they do not require fences, but
then to obtain a DRF-SC result initialisation had to be limited to be happens-before
all other accesses, and without reinitialisation.
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Hence, contrary to [8], we have to allow mixtures of atomic and nonatomic
accesses at the same location, at least where the nonatomic accesses do not race
with each other or with any atomic accesses.

But what should the semantics be for these? The standard text does not di-
rectly address these mixtures, but for the entirely nonatomic and entirely atomic
cases it and the formal model [8] are clear:

– for the non-atomic case, the definition of consistent execution requires, in
consistent_non_atomic_rf , the read to read from the most recent happens-
before-visible write to the same location; while

– for the atomic case, the analogous consistent_atomic_rf lets the read read
from any write that is not after it in happens-before (subject to the other
predicates of the model).

Neither of these predicates are suitable to govern mixtures of atomic and non-
atomic accesses, as the following two examples show. Our first example program
uses memcpy to mix atomic and non-atomic accesses at the same location. The
C/C++11 memory model as it stands suggests that the mixed accesses would
be governed by consistent_atomic_rf , because the location has an atomic type.
However, this breaks DRF-SC: the example program is race-free in every SC
execution, but it has racy executions in the C/C++11 memory model:

// parent thread

size_t s = sizeof(atomic_int)

atomic_int x = 0
atomic_int y = 0

atomic_int a = 1

int r1 = loadsc(x)

if(r1 != 0)

memcpy(&y,&a,s)
int r2 = loadsc(y)

if (r2 != 0)

memcpy(&x,&a,s)

b:WNA y=1 d:WNA x=1

a:RSC x=1 c:RSC y=1

sbsb
rfrf

sc

dr dr

In the execution above, each atomic load reads from the non-atomic write im-
plicit in the memcpy of the other thread. The execution is consistent and has data
races. Breaking DRF-SC makes consistent_atomic_rf unsuitable to govern non-
atomic reads from atomic writes. By swapping the atomics and non-atomics in
the example, we see that it is also not suitable to govern atomic reads from
non-atomic writes.

Our second example establishes that we also cannot use the
consistent_non_atomic_rf predicate for mixtures. In the program be-
low, there is a reading thread that spins until it sees the other thread’s writes
of z and y, and then reads from x twice: once with acquire memory order and
once with consume. After the loop, there are two memcpy’s of location x:
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// parent thread
size_t s = sizeof(atomic_int)

atomic_int n=0, x=0, y=0, z=0

storerlx(x,1)

storerel(z,1)

storerlx(x,2)
storerel(y,&x)

do { r1 = loadacq(z)

r2 = loadcon(y)}
while (r1==0 || r2==0)

memcpy(&n,r2,s)
memcpy(&n,&x,s)

a:WRLX x=1

b:WREL z=1

c:WRLX x=2

e:RACQ z=1

d:WREL y=x

g:RNA x=2

h:RNA x=1

f:RCON y=&x

sb

sb

sb

sb

sb

dob,rf
rf

dob

rf

sw,rf

rf
sb,dd

mo

In the candidate execution on the right above, the loop exits (we elide the implicit
write of the memcpy’s, and the initialisation writes). The first memcpy happens
after all atomic writes of x, but before the write implicit in the second memcpy,
so according to consistent_non_atomic_rf , it must read write c. The second
memcpy reads a pointer provided by the consume read, creating a dependency and
forcing it to read a, but this execution, shown above, contains a CoRR coherence
violation between accesses a, c, g and h, making the execution inconsistent,
so the only behaviour that the model allows of this program is spinning on
the conditional of the loop (similar executions arise if we swap atomics with
non-atomics and vice versa), when in fact the program contains a race. Using
consistent_non_atomic_rf for the mixtures cuts out executions we need to
allow: it can make reasonable executions of race-free programs inconsistent and
remove racy executions from racy programs, making them race-free and well-
defined.

Vafeiadis et al. provide another alternative semantics for non-atomic
reads [38]: modification order and coherence are extended to cover all locations
(including non-atomics), atomic reads use the existing condition for reads at
atomic locations, and the condition on non-atomic reads is replaced with a re-
quirement that a new relation, the union of happens-before and rf edges to or
from non-atomic accesses, is acyclic. This semantics provides the desired be-
haviour in the examples above, but, as noted by Vafeiadis et al., it forbids com-
piler optimisations from reordering loads followed by stores. Morisset et al. ob-
serve that this sort of reordering results from loop invariant code motion [29],
an optimisation performed by both GCC and LLVM [18,24], so this attractive
semantics comes with the unacceptable cost of forbidding routine compiler op-
timisations over blocks of non-atomic code.

We have seen that using consistent_nonatomic_rf to govern the behaviour of
non-atomic reads at locations accessed atomically removes too many behaviours;
we cannot use consistent_atomic_rf to govern such reads either (that would
break DRF-SC); and the suggestion of Vafeiadis et al. comes at too high a cost.
It is not clear what the semantics of non-atomic reads should be in C11.
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6 An Out-of-order Operational Construction

The examples of §4 showed that, for relaxed atomics, the language semantics has
to admit reorderings that are enabled by removals of syntactic control depen-
dencies, where those removals can be justified only by examination of multiple
control-flow paths (not just inspection of a single candidate execution). For ex-
ample, consider again the second thread of LB+ctrldata+ctrl-double:

r2=loadrlx(x)
compiler−−−−−→ r2=loadrlx(y)

h/w−−→ storerlx(x,42)

if (r2 == 42) storerlx(x,42) r2=loadrlx(y)

storerlx(x,42)
else

storerlx(x,42)

The key fact here is that the storerlx(x,42) is possible on all control-flow paths
of this thread, and a sufficiently “smart” compiler can detect that and then
remove the control dependency from the read of y. In this section we generalise
this observation: we give a semantics for relaxed and nonatomic accesses (and
locks and fences) that correctly accounts for all the thin-air examples of §4
in an interesting and reasonably clean way. But those examples only involve
reorderings; in §6.2 we use this semantics to highlight difficulties with other
common optimisations.

6.1 The Semantics for Reorderings

We start from a standard labelled transition system (LTS) semantics for each
thread in isolation, describing its interactions with memory by transitions la-
belled a:R x=v and b:Wx=v for a read or write of value v at location x. This
thread-local base semantics does not constrain the values read from memory in
any way; it simply has a transition for each possible read value. For example,
looking at some of the threads from the §4 tests, we have:

LB’s first thread LB+datas’s first thread
r1=loadrlx(x)

storerlx(y,42)

r1=loadrlx(x)

storerlx(y,r1)

a:R x=0  ... c:R x=42 

 b:W y=42  ...  d:W y=42 

a:R x=0  ... c:R x=42 

 b:W y=0  ...  d:W y=42 

In LB’s first thread, there is a write of 42 to y in all branches of the LTS, and
we will allow the thread to write 42 before reading, letting both threads read
42. On the other hand, in LB+datas’s first thread, it is not the case that a write
of 42 is available in all branches, so it will have to do the read first, preventing
LB+datas from exhibiting out-of-thin-air behaviour.



The Problem of Programming Language Concurrency Semantics 299

We capture this by constructing a derived out-of-order labelled transition
system for each thread. Its states are copies of the entire base in-order LTS
with some edges ticked. The initial state is the base LTS with no edge ticked.
For example, part of the out-of-order LTS for LB’s first thread is shown below.
From now on, we only show the branches for some interesting values; in reality
there is one branch per possible value, as we assume the base LTS is receptive.

a:R x=0 c:R x=42 

 b:W y=42  d:W y=42 

a:R x=0 c:R x=42 

 b:W y=42  d:W y=42

a:R x=0 c:R x=42 

 b:W y=42  d:W y=42 

W y=42

{b,d}

R x=0 {a}

The transitions are labelled with the same memory actions as the base se-
mantics; each transition of the derived LTS corresponds to ticking a set of base
transitions. But the base transitions can be performed out-of-order, when they
are not blocked (as defined below) in any branch by coherence or fences. Specifi-
cally: a set of edges can be ticked iff it forms a frontier, that is, (1) it is non-empty,
(2) the edges are not ticked, (3) the edges have the same memory action label,
(4) each non-discarded path either has a single edge in the frontier, or becomes
discarded by this ticking, and (5) no edge is blocked (see below). Here an edge
is discarded if it has a ticked sibling, and a path is discarded if it contains a
discarded edge.

For example, the horizontal transition above is justified by the frontier on the
left below consisting of all the W y=42 edges (b, d, and all the similar edges in
elided paths), while the vertical transition is justified by the frontier on the right
below consisting just of a (and there is a similar transition, not shown, for each
base transition with a different read value).

a:R x=0 c:R x=42 

 b:W y=42  d:W y=42 

a:R x=0 c:R x=42 

 b:W y=42  d:W y=42 

An edge is blocked by another if its action cannot be reordered before the
other’s. To maintain coherence (the fact that execution respects a per-location
total order over writes to each location, consistent with program order, as guar-
anteed by standard hardware and by C11 relaxed atomics), actions to the same
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location cannot be reordered. Fences cannot be reordered before or after actions,
so that all the actions before the fence have to be ticked before the fence can
be ticked, and all the actions before the fence and the fence itself have to be
ticked before actions after the fence can be ticked. Unlock and lock actions can-
not be reordered before and after actions, respectively, but can in some cases be
reordered the other way around, to allow for roach motel reordering.

Handling nonatomics. Non-atomic accesses can be executed out-of-order, like
relaxed accesses, but in addition, they can also cause races, which the semantics
has to be able to detect.

Non-multi-copy-atomic memory. For two-thread examples, one can combine the
derived LTS of each thread with an underlying sequentially consistent shared
memory (and that is what we have done for the testing described below). But in
general the language semantics must also admit the lack of multi-copy atomicity
permitted by the Power and ARM architectures, as described in §2. This can be
handled by taking the parallel composition of the thread subsystems given by
the derived LTSs with a storage subsystem following that of Sarkar et al. [33],
which provides a generic non-multi-copy-atomic memory by keeping track of (a)
the coherence commitments made among write events, and (b) the lists of writes
and barriers propagated to each thread. The storage and thread subsystems are
then synchronised on write requests, read requests and responses, etc.

This semantics gives the desired behaviour for each of the thin-air examples of
§4: it is liberal enough to allow the reordering (introduced by compiler or hard-
ware) that gives rise to the “must be allowed” examples, and restrictive enough
to prevent the “should be forbidden” examples, ruling out thin-air executions
basically by executing along a totally ordered trace of the derived LTS, with
reads reading from previous writes in that trace. We have a precise Lem defi-
nition of the out-of-order semantics, and have built a tool that lets one explore
the semantics of small examples, based on OCaml code generated from the Lem
and integrated with an underlying SC memory. It has several good features:

– It is operational and relatively concrete, which makes it easier to understand
than (say) the C11 axiomatic memory model.

– The construction is independent from the language syntax and thread-local
operational semantics, which is highly desirable for tackling a complex lan-
guage like C. This contrasts with explicit-speculation calculi, e.g. [15,22].

– For entirely thread-local computation, as thread-local variables do not create
memory events, optimisations are already factored into the computation of
the thread-local LTS.

– It does not involve syntactic notions of dependency, which are difficult for
optimising compilers to preserve.

However, this semantics does not allow behaviour that is introduced by many
other common compiler optimisations. Looking at these other optimisations
highlights some subtle issues that any semantics for a C-like language will have
to tackle.
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6.2 Optimisations Beyond Reordering

In contrast to hardware semantics, there is (to date) no good characterisation of
the envelope of all compiler optimisations normally performed in practice. The
syntactic optimisations that are performed by compilers are numerous (GCC
and Clang each have of the order of 100 passes) and they have unclear effects
and interactions. Ševčík [40] and Morisset et al. [29] consider some abstract
classes of optimisations, but these are only thread-local. In this section we give
a preliminary discussion of some optimisations that go beyond reordering, in the
context of the out-of-order semantics.

Elimination of subsumed memory actions. Many common compiler optimisa-
tions, like constant propagation and common subexpression elimination (CSE),
can be explained in terms of eliminations of individual memory accesses [40]:
read after read, read after write, write after read, and overwritten write elimi-
nation, which consist in conflating actions when the effect of one subsumes that
of the others. For example, in the following program, the second read of x can
be merged into the first as a very simple instance of CSE (by a read after read
elimination); then, both branches of the conditional write 1 to x, so this write
can be executed out-of-order, so there is an execution where both r1 and r3
are 1.

r1=loadrlx(x) r3=loadrlx(y)
if (r1 == 1) storerlx(x,r3)

r2=loadrlx(x)

storerlx(y,r2)
else

storerlx(y,1)

a:R x=0 c:R x=1 

b:W y=1 d:R x=0 f:R x=1 

e:W y=0 g:W y=1 

We conjecture that the notion of frontier can be relaxed to deal with these,
e.g. with extended frontiers as below. We interleave optimisations (extended fron-
tiers) with execution (ticking) on purpose to account for adaptive optimisations.
When compilers perform this kind of optimisation, they effectively identify ex-
tended frontiers, and collapse them into elementary frontiers, but work on finite
foldings of the LTSs, like SSA.

a:R x=0 c:R x=1 

 b:W y=1  d:W y=1 

 e:W y=1 
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These optimisations need information about multiple paths, but only in a
limited way: they only need the existence of particular actions (in a non-blocked
path context) in each path. However, this is not the case for all optimisations,
as we show next.

Irrelevant read elimination. Intuitively, irrelevant read elimination consists in
removing a read action when its result does not affect the thread’s behaviour:
for example, if the branches of a read have identical subtrees, it is certainly
irrelevant. But in general a read is irrelevant if its subtrees are in some sense
semantically equivalent, where equivalence is up to optimisations, including re-
ordering, eliminations, and irrelevant read elimination. For example, in the fol-
lowing program, the read of x is irrelevant only up to reordering of the writes to
y and z, overwritten write elimination of the first write to z in the else branch,
and irrelevant read elimination of the read of w. This suggests a recursive con-
struction of the memory model, but it is not clear at what level: thread-local
read-irrelevance, whole-program read irrelevance, etc.

r1=loadrlx(x)

if (r1 == 1) {

storerlx(y,1)
storerlx(z,1)

r2=loadrlx(w)

} else {
storerlx(z,42)

storerlx(z,1)
storerlx(y,1)

}

a:R x=0 e:R x=1 

b:W z=42 f:W y=1 

c:W z=1 

d:W y=1 

g:W z=1 

h:R w=0 i:R w=1 

Inter-thread optimisations. The previous optimisations were all thread-local.
Inter-thread optimisations (alias analysis, pointer analysis, ...) turn out to be
even more challenging. The out-of-order construction makes no assumption
about what values can be read, and thread-local LTSs thus have a branch for
every value of each read. Identifying a value restriction amounts to discarding
some “impossible” branches of the LTS. This can create more valid frontiers, and
hence permit more out-of-order behaviour. For example, in the LTS below, if, by
looking at all the writes to x by all the threads, the compiler determines that x

can only contain values 0 and 1, then it can discard the branch where the value
2 is read, which makes {b, d} into a frontier, which allows the write to y to be
executed before the read from x:

r1=loadrlx(x)

if (r1 == 2)
storerlx(y,0)

else

storerlx(y,1)

a:R x=0  c:R x=1 e:R x=2 

 b:W y=1  d:W y=1  f:W y=0 

a:R x=0  c:R x=1 e:R x=2 

 b:W y=1  d:W y=1  f:W y=0 
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Moreover, some optimisations restrict behaviour, which creates more opportuni-
ties for inter-thread analyses, so inter-thread optimisations cannot be separated
to an initial phase, but have to be intertwined with the other optimisations. This
again suggests a recursive construction of the memory model. For example, in the
following program, the second read of x can be merged into the first (by read
after read elimination); value-range analysis can then remove the conditional,
which allows additional behaviour: r1 and r3 can be 42.

r1=loadrlx(x) r3=loadrlx(y)
r2=loadrlx(x) storerlx(x,r3)

if (r1 == r2)

storerlx(y,42)
else

storerlx(y,43)

The additional behaviour introduced by the analysis can invalidate it, or enable
more optimisations that can invalidate it, so the semantics cannot be defined by
a naive fixpoint.

Thread-local and shared variables. Finally, the out-of-order semantics is defined
over a calculus that has a syntactic distinction between thread-local variables
and potentially-shared variables. This distinction is important, as the semantics
does not need to consider interference on thread-local variables, and thread-local
optimisations on them are built into the base LTS construction, and can be much
more aggressive. For example, in the following program, if x is determined to
be thread-local, then constant propagation (in our framework, read after write
elimination) can be done across the synchronisation.

x = 7
unlock(l)

...

lock(l)
r1 = x

However, C does not have such a distinction, and whether a variable behaves
thread-locally depends on the dynamic behaviour of the program, which in turn
depends on which variables behave thread-locally.

7 Concurrency and Undefined Behaviour

For our final contribution, we observe that there is a fundamental mismatch
between the concurrency models of C/C++11 and the treatment of undefined
behaviour in their preexisting specifications.

The C and C++ standards impose many constraints on programs by attribut-
ing undefined behaviour to programs that exhibit them (for C these are collected
in [2, J.2]). Some of these are static properties (e.g. programs should define a
main function) but many are dynamic, e.g. there should be no division by zero or
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out-of-bounds array access (OOBAA). For programs with undefined behaviour,
the standard does not say that execution fails or behaves arbitrarily at that
point. Instead, the compiler is completely unconstrained in the code it produces
for the whole program [2, §3.4.3#1]:

NOTE Possible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during translation
or program execution in a documented manner characteristic of the en-
vironment (with or without the issuance of a diagnostic message), to
terminating a translation or execution (with the issuance of a diagnostic
message).

This is important because optimisations can involve significant code motion.
For example, in an execution in which x=0, the following reaches a division-
by-zero after the puts, both in the sequential execution model of the standard
and in a non-optimising implementation. But an optimising compiler that does
loop-invariant code motion might well hoist the 1/x before the loop, reaching
the division-by-zero error before the puts. That code motion is made legal in
general by giving this program entirely undefined behaviour.

for(int i=0; i<5; i++) {

puts("foo\n");
ret += i + 1/x;

}

Integrating the concurrency model into the language changes things. There
are new sources of undefined behaviour: any program with a data race has unde-
fined behaviour, which (for example) licenses the conventional implementation
of bitfield operations mentioned in §2. But the overall form of the semantics
also changes: instead of that simple sequential execution model (used to dis-
cover the division-by-zero on a reachable path) the definition calculates the set
of candidate complete executions (essentially graphs like the examples shown
in §4 and §5) that satisfy the consistency predicate of the concurrency model;
if none of those contains a data race, then they are the allowable behaviour of
the program (otherwise the program is undefined). There is a tension between
this global completed-execution structure and the implicit use of the sequential
execution model to discover the earlier forms of undefined behaviour.

For example, the C standard says that out-of-bounds array access is undefined
behaviour [2, §6.5.6#8 (for an access from one-past an array)]. In the sequential
setting (or indeed in an SC concurrent setting) there is a clear notion of execution
prefix, and to identify such an undefined behaviour one only has to consider
such a prefix leading up to it. But in the concurrency model, LB-like tests show
that parts of a candidate complete execution that follow (in program order)
the offending access might influence whether it is performed; we cannot restrict
attention to simple prefixes. Consider the following example, where x and y are
atomic integers initialised to 0, and a is an integer array with two elements:
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r1 = loadrlx(x)
r3 = a[r1]

storerlx(y,2)

r2 = loadrlx(y)

storerlx(x,r2)

In any sequentially consistent execution of the program, the first thread loads 0
from x, and there is no OOBAA. But with the intended implementation of re-
laxed atomics above the ARM or Power architectures, there can be an execution
where the second thread loads the store of 2 to y then writes to x, and the first
thread loads 2 from x and then performs an OOBAA2. As a consequence, the
language must provide this program with undefined behaviour.

But to identify this undefined behaviour, we need to consider executions that
go past it in program order, and that means we need to choose some semantics
for the out-of-bounds array access, and the other sources of undefined behaviour,
to provide a context for the subsequent execution. This leads to a great many
questions about the semantics of constructs that might introduce undefined be-
haviour. Taking out-of-bounds array access as an example, what should the
semantics of an out-of-bounds load be, what if control flow is decided by the
result of the load, what if the access is a store, or if the access loads or stores a
function pointer? In each of these cases, it is unclear what the semantics should
be. The point of undefined behaviour in the C and C++ semantics is to cover
cases where the language semantics cannot easily reflect what an implementation
might do, so one would prefer not to have to answer such questions.

8 Conclusion

The C/C++11 concurrency model remains the state of the art for the semantics
of a general-purpose shared-memory concurrent programming languages; it is,
to the best of our knowledge, sound with respect to the compiler optimisation
behaviour of implementations [29] (in contrast to the JMM [16,34]), it is provably
compilable to relaxed hardware models [8,7,32], and our work here establishes a
machine-checked DRF-SC theorem. But the thin-air problem shows that it allows
too many behaviours, and we have seen here that that cannot be solved in a
simple per-candidate-execution way, that the problem is not specific to relaxed
atomics, that, while an operational solution for those examples is possible, it
brings other difficulties, and that there are further problems with undefined
behaviour.

Disturbingly, 40+ years after the first relaxed-memory hardware was intro-
duced (the IBM 370/158MP), the field still does not have a credible proposal for
the concurrency semantics of any general-purpose high-level language that in-
cludes high-performance shared-memory concurrency primitives. This is a major
open problem for programming language semantics.
2 Note that this is not a thin-air execution, just a normal LB shape, with the reads and

writes to x and y related by program order on the first thread and a data dependency
on the second, extended just by using the read value of the first thread in an array
access.
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Abstract. We present a method for automatic fence insertion in con-
current programs running under weak memory models that provides the
best known trade-off between efficiency and optimality. On the one hand,
the method can efficiently handle complex aspects of program behaviors
such as unbounded buffers and large numbers of processes. On the other
hand, it is able to find small sets of fences needed for ensuring correctness
of the program. To this end, we propose a novel notion of correctness,
called persistence, that compares the behavior of the program under the
weak memory semantics with that under the classical interleaving (SC)
semantics. We instantiate our framework for the Total Store Ordering
(TSO) memory model, and give an algorithm that reduces the fence in-
sertion problem under TSO to the reachability problem for programs
running under SC. Furthermore, we provide an abstraction scheme that
substantially increases scalability to large numbers of processes. Based
on our method, we have implemented a tool and run it successfully on a
wide range benchmarks.

1 Introduction

Most modern processor architectures implement weak (relaxed) memory models
for performance reasons [2,15]. However, this comes at a price since a program
may exhibit behaviors that deviate substantially from its behaviors under the
usual Sequentially Consistent (SC) semantics. The standard way to eliminate
the undesired behaviors is to insert memory fence instructions that typically
prevent reordering of instructions issued before and after the fence. The most
common model corresponds to TSO (for Total Store Ordering) that is adopted
by Sun’s SPARC multiprocessors and x86 multiprocessors [25,26].

Challenge. An important problem in concurrent programming is to find sets of
fences that ensure program correctness without compromising efficiency. Manual
fence placement is time-consuming and error-prone due to complex behaviors
introduced by weak memory models. The challenge then is to develop methods

� An open source tool with all the experimental data are publicly available at
https://github.com/PhongNgo/persistence
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for automatic fence placement. A fence insertion algorithm requires an underlying
verification algorithm that checks the correctness of the program for a given set
of fences. This is necessary in order to be able to decide whether the current
set of fences is sufficient, or whether additional fences are needed to achieve
correctness. Designing such an algorithm is hard since we face a crucial trade-off
between two criteria, namely:

• Efficiency. The algorithm needs to be able to carry out efficient analysis of
complex program behaviors that arise due to intricate reorderings of program
events. This complexity is for instance reflected by the fact that standard oper-
ational definitions for weak memory models [25,26] use unbounded store-buffer
semantics, thus giving rise to an infinite state space even in the case where the
original program is finite-state. Furthermore, since we are dealing with concur-
rent programs, the algorithm should scale well when increasing the number of
processes and the number of variables.

• Optimality. The algorithm should derive sets of fences that are as close to
optimal as possible. More precisely, we are required to avoid under-fencing, i.e.,
inserting too few fences since this would result in unsound program behaviors;
and avoid over-fencing, i.e., inserting too many fences since this would result in
a degradation of program performance (see e.g., [3,14,9,13], for descriptions of
the high cost of fences on CPU-intensive concurrent programs).

In this context, identifying “good correctness properties” is crucial since a
given property represents a particular choice in the trade-off between efficiency
and optimality. For instance, at one extreme, we may require that the program
is data race free (Drf) under SC (e.g. [24,22]). However, this will cause over-
fencing, and hence failing the optimality criterion (see §2). In fact, some data
races are in reality not harmful. For example, two racy implementations of a
work-stealing queue [23,19] perform well under TSO without requiring fences.
At the other extreme, we may consider SC properties such as safety and liveness
properties. This would result in smaller sets of fences than in the previous case,
but the verification problem becomes significantly harder (a non-primitive recur-
sive lower-bound) or even undecidable [6,7], thus failing the efficiency criterion.
Between these two extremes, the works in [11,5,9] consider the robustness (called
also stability) property, i.e., checking whether a program generates the same set
of traces à la Shasa and Snir [27] under weak memory and SC semantics. Robust-
ness represents a correctness criterion between Drf property and SC properties
since it is a weaker condition than the former and hence it would generate smaller
sets of fences, while it could be more efficient than the latter since its verification
problem belongs to a lower complexity class for finite-state programs under TSO
(Pspace-Complete [10]). Robustness can be checked through a reduction to
the reachability problem for a set of target programs under SC [9]. However,
checking robustness causes state space explosion (see an explanation in the re-
lated work, §2), and furthermore, robustness may insert unnecessary fences as
demonstrated by our experimental results.
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Contribution. In this paper, we present a tool for automatic fence insertion in
concurrent programs running under TSO that gives a good trade-off between
efficiency and optimality. To this end, we make the following contributions.

• Persistence: We introduce a novel notion of correctness, called persistence,
that as demonstrated by our experimental data provides a good trade-off be-
tween efficiency and optimality. Persistence considers the traces of a program
and extracts two parameters, namely (i) program order: the order in which in-
structions are executed within the same process; and (ii) store order: the order in
which different write operations hit the shared memory. The program is deemed
to be persistent if it generates the same program and store orders under the
TSO and SC semantics. If a program is persistent then it reaches identical sets
of configurations (a configuration is a global state of the program) under TSO
and SC. In particular, if the program is correct wrt. a given safety property
under SC, then it will also be correct wrt. the same property under TSO.

• Pattern: We present an algorithm that automatically reduces the problem of
checking persistence to the problem checking whether a given program exhibits a
certain behavior pattern under SC . Despite the high complexity of the proof, the
definition of the pattern is extremely simple. Crucially, from the efficiency point
of view: (i) we need only to perform one reachability analysis query on a single
target program, and (ii) there is no explosion in the size of the target program,
since it contains the same number of processes, and only two extra variables
compared to the original program (regardless of the number of processes).

• Fence Insertion: We present an algorithm that produces a minimal set of
fences needed to ensure the program is persistent. The set is minimal in the sense
that removing any fence in the set makes the program non-persistent. The algo-
rithm is counter-example-guided, using counter-examples that are produced by
the persistence checking algorithm. The fact that we reduce checking persistence
to reachability analysis of SC programs allows using existing tools for program
verification (we use Spin [16] in the current implementation of our tool).

• Abstraction: We present a general abstraction framework that is compati-
ble with the notion of persistence, in the sense that persistence of the abstract
program implies persistence of the concrete program. We instantiate the frame-
work by defining an abstraction function that allows to reduce the number of
variables, thus significantly limiting the state space explosion problem.

• Tool: We have implemented an open-source and publicly available tool,
called Persist, that we use to evaluate our framework on a wide range of bench-
marks. Persist uses Spin as a backend tool for checking reachability queries for
programs under SC. Since Spin runs on finite-state programs, our experiments
are carried out only on such programs. We do an extensive comparison with
state-of-the-art tools, such as Trencher [9], Memorax [1], Remmex [20] , and
Musketeer [3]. Our data shows that persistence indeed provides a good trade-off
between efficiency and optimality.
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2 Related Work

Fig. 1 shows the relevant correctness criteria ordered according to their strength.
In this paper, we consider the Persistence condition (Per). The strongest condi-
tion is Data Race Freedom (Drf) [24,22] where the program is declared incorrect
in case it contains a trace with a data race. The main drawback of this approach
is over-fencing. In view of this, more precise techniques, based on weaker condi-
tions, have been developed to uncover real violations.

In [24], triangular race freedom (Trf) is introduced where a program is con-
sidered to be correct if the traces of the program under TSO and SC agree on (i)
program order, (ii) store order, and (iii) the source relation (in some works, called
the read-from relation). Condition (iii) records the write operation from which
a given read operation fetches its value. The main limitation of Trf approach
is that it does not come with a method for checking program correctness w.r.t.
Trf. Our approach is a weakening of Trf in the sense that we have removed
the source relation, and therefore using Trf will cause over-fencing compared
to our method. Observe that the pattern for checking persistence (despite the
high complexity of the proof) is similar to the pattern for checking Trf. Hence,
we can remove the read-from relation from TRF without paying a huge cost.

Drf

[24,22]

Trf

[24]

Rob

[27,9]

Per

this paper

SeqCon[21]

Reach[1]

Fig. 1. Correctness criteria

Another weakening of the Trf condition is Robust-
ness (Rob) (known also as stability) [27,11,12,5,9],
where the store order condition is replaced by a
weaker condition, namely variable store order (some-
times called coherence order). The latter considers
the order of memory updates performed on each
variable individually. In [9], a tool (called Trencher)
is provided for exact checking of the robustness cri-
terion. Our approach offers two advantages over this
approach: (i) Efficiency: In [9], the robustness prob-
lem for TSO is reduced to the reachability problem
for a set of target programs under the SC semantics.
However, the number of reachability queries issued, i.e., the size of the set of
target programs, is quadratic in the size of the original program (this number is
given by the number of pairs of instructions that can be reordered). Furthermore,
the reduction triples the number of variables in each target program compared to
the original program. In contrast, we reduce the persistence problem to a single
reachability query for a program under SC which contains only 2 additional
variables compared the original program (regardless of its number of variables
or processes). This means that checking robustness is much more sensitive to the
state space explosion problem than checking persistence (which is also visible
in our experimental results, where we use the same backend tool Spin). (ii)
Optimality: Although the approaches are incomparable in general from the point
of view of optimality (robustness-based analysis may insert fewer or more fences
than persistence-based analysis), the absence of the source relation implies,
in almost all examples, that we insert at most the same number of fences. In fact,
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in several examples, we insert a strict subset of the set of fences inserted by
Trencher. Finally, no abstraction techniques are known for checking robustness.

Tools have been developed for approximate analysis of robustness (e.g.,
[11,12,5,3]). For instance, Musketeer [3] is based on static detection of critical
cycles (that may violate robustness) in the control-flow graph of the program.
The tool scales well to large programs but may cause over-fencing. In all exam-
ples we consider, we insert a subset of the set of fences inserted by Musketeer.

Liu et al. [21] consider even weaker conditions. One of them is Sequential Con-
sistence (SeqCon) (called state-based robustness in [9]), i.e., checking whether
there are any states of the program that are reachable under the weak memory
semantics, but not under SC. The weakest condition is considered in [1], where
the method checks Reach, i.e., whether a given state of the program is reachable
under the weak memory semantics. The latter approach is used to implement
Memorax which is a sound and complete tool for correcting finite-state programs
under TSO wrt. safety properties. In contrast to our approach, checking the con-
ditions SeqCon and Reach have non-primitive recursive complexities even for
finite-state programs (as shown in [6,1]). This is reflected in our experimentation
by the number of cases in which Memorax runs out of time/memory.

Several approximate tools have been developed for checking SC properties
for programs (e.g., [21,8,17,20,4,18]). For instance, Remmex [20] is a state-space
exploration tool with acceleration techniques. Remmex suffers from the state-
space explosion problem as shown by our experimental data (see §11).

3 Overview

program simple vars x,y,z,t procs

process p1

regs $r1 init q1

begin

q1: t=1; goto q2

q2: x=2; goto q2

q2: z=1; goto q3

q3: $r1=x; goto q4

end

process p2

regs $r2 init s1

begin

s1: t=1; goto s2

s2: y=1; goto s3

s3: $r2=t; goto s4

s4: x= $r2; goto s5

end

Fig. 2. A simple running example

We will give an overview of the
main ingredients of our framework,
illustrating the definitions and algo-
rithms through a simple toy example.
We present our model for describ-
ing concurrent programs, and then
introduce the notions of runs and
traces using them to define the notion
of persistence. A non-persistent pro-
gram is said to be fragile. We solve
the problem of checking whether a
given program is persistent (or fragile) in two steps. First, we show that any
fragile program has a run containing a certain fragility pattern. Second, we re-
duce the problem of checking the existence of runs with fragility patterns in a
given program P to the reachability problem under SC for a target programs that
we derive automatically from P . Then, we present our counter-example guided
fence insertion procedure. Finally, we introduce our abstraction technique.

Model. Fig. 2 shows an example of a toy program, named simple, consist-
ing of two concurrent processes (threads), called p1 and p2. Communication
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between processes is performed through four shared variables t, x, y, and
z to which the processes can read and write. The processes have one reg-
ister each, namely $r1 and $r2. The registers and shared variables are al-
lowed to range over infinite domains (here they range over set of integers).

x = 0
y = 0
z = 0
t = 1

t=1x=2x=2z=1

y=1

q3: $r1=x

p1

s3: $r2=t

p2

rd(x
,2)

rd(t
, 1)

Fig. 3. Store buffers and the shared memory of
a program under TSO

The behavior of a process is de-
fined by a list of assembly-like in-
structions, each consisting of a la-
bel and a statement such as a
read or write statement (see §5 for
the full list of statements). For in-
stance, at q1, process p1 performs
a write statement in which it as-
signs the value 1 to the shared
variable t. Notice that there are
two instructions in p1 labeled with q2. This means that, once p1 has executed
the instruction labeled with q1, it may non-deterministically choose to move to
any of the two instructions labeled with q2. This allows to encode conditional
branching, iteration, and non-determinism, all using the same light syntax.

ρ1 :

persis-
tent

wr(t,1)

wr(t,1)

wr(y,1)

ud(t,1)

ud(t,1)

rd(t,1)

wr(x,2)

wr(z,1)

ud(y,1)

rd(x,2)

ud(x,2)

ud(z,1)

ρ2 :

SC

wr(t,1)

ud(t,1)

wr(t,1)

ud(t,1)

wr(y,1)

ud(y,1)

wr(x,2)

ud(x,2)

rd(t,1)

wr(z,1)

ud(z,1)

rd(x,2)

ρ3 :

fragile

wr(t,1)

ud(t,1)

wr(t,1)

wr(y,1)

ud(t,1)

rd(t,1)

wr(x,2)

wr(x,1)

wr(z,1)

ud(y,1)

rd(x,2)

ud(x,2)

ud(x,1)

ud(z,1)

Fig. 4. Runs from configura-
tion d of Fig. 9

To define the runs of the program, we will use
the operational semantics for TSO given in [25,26].
Conceptually, the model adds a FIFO buffer,
called a store buffer, between each process and the
main memory (cf. Fig. 3). The buffer is used to
store the write operations performed by the pro-
cess. A process executing a write instruction in-
serts it into its store buffer and immediately con-
tinues executing subsequent instructions. Memory
updates are performed by non-deterministically
choosing a process and by executing the oldest
write operation in its buffer (the right-most ele-
ment in the buffer). If a process p performs a read
operation on a variable x then there are two possi-
ble scenarios. More precisely, if the buffer contains
some write operations on x, then the read value
must correspond to the value of the most recent
such a write operation (the one that lies closest to
the entry of the buffer). Otherwise, the value is
fetched from the memory. Essentially, this means
that a read operation on a variable x may overtake a sequence of write operations
stored in its own buffer provided that all these operations concern variables that
are different from x. For example, in the given configuration of Fig. 3, p1 can read
the value 2 from x, and p2 can read the value 1 from t. A fence means that the
buffer of the process must be flushed before the program can continue beyond
the fence. The store buffers of processes are unbounded since there is a priori no
limit on the number of write operations that can be issued by a process before a
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memory update occurs. For instance, in the program of Fig. 2 the loop labeled
by q2 in process p1 may generate an unbounded number of write operations, and
hence create an unbounded number of elements in the buffer of p1.

Runs. Consider the program of Fig. 2. In Fig. 4 we depict three typical runs
ρ1, ρ2, ρ3 of the program. A run consists of a sequence of events. We define the
notion of an event formally in §5. In this section, it is sufficient to think of an
event as an instruction executed by the process. The runs start from the initial
configuration d of the program (depicted in Fig. 9). A configuration represents
the (global) state of the program. In the configuration d, the processes are about
to execute the instructions labeled by q1 and s1, and the values of all the shared
variables and registers are equal to 0, while the store buffers are empty.

We describe ρ1 below. To simplify the presentation, we identify an event with
the operation that the process performs. For instance, we write the first step
of process p1 in ρ1 as wr(t, 1) since p1 will perform a write operation in which
it assigns 1 to x. First, three write events are issued by the processes, namely
wr(t, 1) by p1, and wr(t, 1), wr(y, 1) by p2. The new values are stored inside
the corresponding buffers. Next, the two update events ud(t, 1) and ud(t, 1) are
performed by the processes after which the value of t in the memory will be
equal to 1, and the read event rd(t, 1) can be performed by p2, where $r2 will be
assigned the value 1. After the next three events wr(x, 2),wr(z, 1), ud(y, 1), the
buffer of p1 contains two write events wr(x, 2) and wr(z, 1), which means that p1
can read the value 2 for x from the buffer. Finally, the last two update events
will be performed and both buffers will now be empty.

wr(t,1)

wr(x,2)

wr(z,1)

rd(x,2)

wr(t,1)

wr(y,1)

rd(t,1)

po

po
so

po

po

po

so

so

so

Fig. 5. The trace
of ρ1 and ρ2 in
Fig. 4

Traces. The trace of a run π, records (i) the program or-
der, i.e., the order of the read and write events executed
by each process in π. The program order of ρ1 in Fig. 4
is given by wr(t, 1)wr(x, 2)wr(z, 1)rd(x, 2) for p1 and by
wr(t, 1)wr(y, 1)rd(t, 1) for p2. (ii) the store order is the se-
quence of memory updates performed during the run. This
is equal to ud(t, 1)ud(t, 1)ud(y, 1)ud(x, 2)ud(z, 1) for ρ1. The
trace of ρ1 is depicted in Fig. 5. Arrows labeled by po in-
dicate the program order, e.g., the arrow from wr(y, 1) to
rd(t, 1). Arrows labeled by so indicate the store order. For
instance, the arrow from wr(y, 1) to wr(x, 2) means that the
event ud(y, 1) corresponding to wr(y, 1) occurs before the
event ud(x, 2) corresponding to wr(x, 2).

Persistence. A run is Sequentially Consistent (SC) if every write event is imme-
diately followed by the corresponding update. Intuitively, this means that write
events are atomic. An example is the run ρ2 in Fig. 4. A run π is persistent if
there is an SC run π′ such that the traces of π and π′ are identical, otherwise
we say that π is fragile. For instance, in Fig. 4, the run ρ1 is persistent since its
trace is identical to that of ρ2 (namely the trace shown in Fig. 5). We argue that
the run ρ3 in Fig. 4 is fragile. If not, there is an SC run ρ, with a trace identical
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to the one in Fig. 6. From the equality of store orders of ρ and ρ3 and the fact
that the update events, ud(x, 2), ud(x, 1), and ud(z, 1), occur in that order in
ρ3, it follows that the corresponding write events, wr(x, 2), wr(x, 1), and wr(z, 1),
will occur in the same order in ρ. From the equality of program orders it follows
that rd(x, 2) will occur after wr(z, 1) (and hence also after wr(x, 1)) in ρ. Then
ρ contains the sequence wr(x, 2)wr(x, 1)wr(z, 1)rd(x, 2) which is not possible.

wr(t,1)

wr(x,2)

wr(z,1)

rd(x,2)

wr(t,1)

wr(y,1)

rd(t,1)

wr(x,1)

po

po

po

po

po

po

so

so

so

so

so

Fig. 6. The trace
of ρ3 in Fig. 4

A program is persistent if all runs from its initial configu-
ration are persistent, otherwise it is fragile. In the persistence
problem, we check whether a given program is persistent or
fragile. Notice that a persistent program reaches the same
set of configurations under TSO and SC, and hence it sat-
isfies the same safety properties under SC and TSO (see §6,
paragraph on Safety Properties).

Patterns. We reduce the persistence problem to the problem
of checking the existence of a certain type of runs, called runs
of type � (see Theorem 1). A run of of type � is defined with
respect to one of the processes, called the pivot of the run (the other processes are
called fringe processes). Fig. 7 shows an example of such a run for the program
of Fig. 2, ρ∗, where the pivot is p1 and the (only) fringe process is p2. A run π
of type � is the concatenation π1 · π2 · π3 · π4 of four parts. In addition to being
SC, π satisfies a number of conditions. We do not place any constraints on the
first part π1 (except that is it SC). The second part π2, consists of two events
performed by the pivot, namely a write event e1 followed by the matching update
event u1. In our example, p1 writes the value 1 to the variable z in π2. The third
part π3 (which is empty in our example) consists only of events performed by the
pivot, although it is not allowed to perform any write, update, atomic-read-write,
or fence events. The fourth part π4, consists of two events performed by the
fringe process, namely a write event e2 followed by the matching update event
u2. Furthermore, the variable updated here should be different from the variable
updated in π2. In our example, p2 writes the value 1 to the variable x (which
is different from z). Finally, there should be a read event e of the pivot (the
event corresponding to the instruction labeled q3 in our example), called the
complementary event of π, such that the following properties hold: (i) e should
be enabled after π1 ·π2 ·π3. In our example, the event labeled q3 is enabled after
π1 · wr(z, 1)ud(z, 1). (ii) In e, the process reads a value from the same variable
as the one updated in π4. In our example, this variable is x. (iii) The value read
during e (i.e., the value of the read variable in the memory after π1 · π2 · π3)
should be different from the value assigned to it in π4. In our example, the value
of x in the memory after π1 ·wr(z, 1)ud(z, 1) is equal to 2 (which is different form
the value 1 assigned to x in π4).

The proof of existence of runs of type � is highly non-trivial. However,
once done, it allows to define a surprisingly simple pattern for detecting fragile
runs. More precisely, we can derive the fragile run π1 · e1 · π3 · e · e2 · u2 · u1,
which we call the witness. In the above example, the witness is given by
π1 · wr(z, 1)rd(x, 2)wr(x, 1)ud(x, 1)ud(z, 1).
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ρ∗ : type
�

π1 :

wr(t,1)

ud(t,1)

wr(t,1)

ud(t,1)

wr(y,1)

ud(y,1)

rd(t,1)

wr(x,2)

ud(x,2)

π2 :

wr(z,1)

ud(z,1)

π3 :
ε

π4 :

wr(x,1)

ud(x,1)

rd(x,2)

Fig. 7. Run of type �
from d of Fig. 9

Pattern Detection. Given a program P we generate a new
target program Q such that P contains a witness iff Q can
reach a given set of states under SC. The program Q will
run in three phases 0, 1, 2, and find the existence of a
witness (as described above). Recall that such a witness
is derived from a type � run π = π1 · π2 · π3 · π4 which is
defined wrt. pivot. In phase 0 (see Fig. 10),Q simulates π1,
and hence all the processes will simulate their moves in P .
At the end of phase 0 (see Fig. 11), one of the processes
will non-deterministically decide to play the role of the
pivot. At the same time, it records the variable on which
it performs a write event in π2 (in the above example, this
variable is z). In our construction we do this by assigning a
special value c1 to the variable z. In phase 1 (see Fig. 12),
Q simulates π3 in which only the pivot is active. At the
end of phase 1 (see Fig. 13), the pivot ensures the existence
of the complementary event. This is done by (i) choosing
an enabled read event, (ii) ensuring that the involved variable is different from
the one that was updated during π2 (at the end of phase 0). This can be done by
checking that its value is different from c1. (iii) It records the read event of the
complementary event by copying the value of the variable x to a new variable
new and announcing the variable x to the fringe processes by assigning to it
a new value c2. Finally, in phase 2 (see Fig. 14), a fringe process verifies the
existence of π4, by finding the (only) variable whose value is c2 and check that
it can indeed assign to it a different value from the one that was assigned by the
complementary event (by comparing with the value stored in new).

An important aspect of our scheme is that Q contains only two additional
variables compared to P , namely the variable new, and a variable with a small
domain that we use to record the current simulation phase. This holds regardless
of the number of variables in P . Thus, the verification problem for the target
program is as efficient as that for the source program (when run under SC).

Fence Insertion. A naive way to find the minimal set of fences is to simply try out
all combinations. Obviously, such an algorithm would not work in practice due
to the large number of possible combinations. Instead, we use counter-examples
analysis, where we use witnesses provided by our persistence detection algorithm.
A witness of the form shown above is fragile since complementary event overtakes
the event e1. Therefore, inserting a fence somewhere along e1 · π3 · e2 · u2 · u1

is both necessary and sufficient to disable the witness. This allows to derive a
set of fences by repeatedly calling the pattern detection algorithm, each time
inserting a new fence, until the program becomes persistent. Notice that when
the program becomes persistent the pattern detection algorithm declares that no
witnesses exists any more. The derived set is optimal since each of the inserted
is necessary to eliminate a witness, and hence removing any of them would make
the program fragile. In the program of Fig. 2, our algorithm would put a fence
after the second instruction labeled by q2 in p1, making the program persistent.
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Abstraction. We develop an abstraction framework, called observation abstrac-
tion, that exploits the fact that persistence is not sensitive to the source relation.
A process needs only to know the value of a variable in its own buffer or in the
memory. It does not need to figure out the process (or instruction) that produced
this value. The idea is to reason about the memory view of each process p: Each
process can only observe the memory changes due to its own instructions on
shared variables or the changes caused by the other processes over the set vari-
ables that p can read from. We abstract the rest of the processes, in a way that
p has at least the same sequences of memory views as in the original program
P . This ensures that the persistence of the abstract program implies persistence
of P . We instantiate our framework by defining an abstraction function, called
Flattening (see Fig. 15), that can be used for efficient checking of persistence.

4 Preliminaries

We use N to denote the set of natural numbers. For sets A and B, we use
f : A �→ B to denote that f is a function that maps A to B. For a ∈ A
and b ∈ B, we use f [a ←↩ b] to denote the function f ′ where f ′(a) = b and
f ′(a′) = f(a′) for all a′ �= a. Let A be a finite set. We use |A| to denote its size.
We use A∗ (resp. A+) to denote the set of words (resp. non-empty words) over
A; and ε to denote the empty word. Consider a word w = a1a2 · · ·an ∈ A∗. We
define |w| := n and last (w) := an. For i : 1 ≤ i ≤ n, we define w[i] := ai. For
a ∈ A, we write a ∈ w if a appears in w, i.e., a = w[i] for some i : 1 ≤ i ≤ |w|.
For B ⊆ A, we define w 	 B := ai1ai2 · · · aim to be the maximal subword of w
such that aij ∈ B for all j : 1 ≤ j ≤ m, i.e., we keep the elements that belong
to B; and define w ⊗B := i1i2 · · · im, i.e., it gives the sequence of indices of the
elements that belong to B.

5 Concurrent Programs

〈prog〉 ::= program 〈progid〉
vars 〈var〉∗ procs 〈proc〉∗

〈proc〉 ::= process 〈procid〉 regs 〈reg〉∗
init 〈label〉 begin 〈inst〉∗ end

〈inst〉 ::= 〈label〉 : 〈stmt〉 ; goto 〈label〉
〈stmt〉 ::= 〈var〉= 〈exp〉 | 〈reg〉 = 〈var〉

| 〈reg〉= 〈exp〉 | fence
| arw( 〈var〉 , 〈exp〉 , 〈exp〉 )
| skip | assume 〈exp〉

〈exp〉 ::= 〈fun〉 ( 〈reg〉∗ )

Fig. 8. Syntax of a concurrent program

We define the syntax and the semantics
we use for concurrent processes commu-
nicating through shared memory. More-
over, we define SC computations as a
subclass of TSO ones. Finally, we intro-
duce the reachability problem.

Syntax. The syntax of a program is
given in Fig. 8. In the following, we as-
sume a program with name P , a set
of shared variables X, and a set of
processes ProcSet. Each process p ∈
ProcSet has a list of registers Rp and
a list of assembly-like instructions Ip. Each process starts from a statement with
initial label initp. We let Qp be the set of labels that occur in the instructions of



318 P.A. Abdulla, M.F. Atig, and T.-P. Ngo

process p, and assume w.l.o.g. that the sets of labels and also the sets of regis-
ters of the different processes are disjoint. We define the sets R := ∪p∈ProcSetRp,
I := ∪p∈ProcSetIp, and Q := ∪p∈ProcSetQp. Sometimes, we represent a program
P by a tuple 〈X,ProcSet,Q, I, init〉, where X is the set of instructions, ProcSet
is the set of processes, Q is the set of labels, I is the set of instructions, and
init : ProcSet �→ Q is mapping such that init(p) = initp for all p ∈ ProcSet.

The registers and shared variables range over some (potentially) infinite do-
main V . Here, we assume w.l.o.g. that V is the set of integers. An instruction ins
is of the form q1 : s; goto q2 , where q1, q2 are labels, and s is a statement. After

the program has executed the statement s it jumps to an instruction labeled
with q2. If several instructions are labeled with q2, the process chooses one of
them non-deterministically. If none exists, the process terminates. We assume
that a program comes with a set F of functions. Our method is not dependent
on the particular set of functions that occur in the programs, and therefore we
will not specify the set precisely in the grammar. The set may include all the
standard functions, such as addition, subtraction, multiplication, division, etc.
An expression e is either a constant (a member of V ), register $r, or of the form
f(e1, . . . , en) where f ∈ F is a function and e1, . . . , en are expressions. A state-
ment s is one of the following forms: (i) wr (write statement): x = e writes the
value of the expression e to the shared variable x. This value will be stored in
the buffer of the process. (ii) rd (read statement): $r = x reads the value of the
shared variable x (either from the buffer of the process or from the memory), and
stores it in the register $r. (iii) arw (atomic-read-write statement): arw(x, e1, e2)
checks atomically whether the value of the shared variable x is equal to the
value of e1; if true it assigns the value of e2 to x, otherwise the execution of the
instruction is blocked. (iv) fn (fence statement): flushes the buffer of the pro-
cess. (v) skip statement: is the empty statement. (vi) asgn (assign statement):
$r = e assigns the value of the expression e to the register $r. (vii) asm (assume
statement): assume e checks whether e evaluates to true. If not, the execution
of the instruction is blocked. We use source (ins), stmt (ins), and target (ins), to
denote q1, s, and q2 respectively. We classify instructions according to the forms
of their statements. First, for a process p, and i ∈ {wr, rd, arw, fn, skip, asgn, asm},
we define Iip to be the set of instructions in Ip with an i statement. For instance,
I
wr
p consists of the instructions ins ∈ Ip with write statements, i.e., stmt (ins) is
of the form x = e for some x and e. Furthermore, for i ∈ {wr, rd, arw}, and a
variable x ∈ X we define I

i,x
p to be the set of instructions in I

i
p that operate

on the variable x. For instance, Iwr,xp consists of the instructions ins ∈ Ip such
that stmt (ins) is of the form x = e for some e. In the program of Fig. 2, the
instruction labeled with q1 is a member of Iwr,tp1

.

d :
q1

s1

x=0 y=0

z=0 t=0

$r1 = 0

$r2 = 0

ε

ε

Fig. 9. Initial configuration d

Configurations. To define configurations, we in-
troduce the following concepts. A label definition
q : ProcSet �→ Q is a function such that q(p) ∈ Qp

for each p ∈ ProcSet. Intuitively, for a process
p ∈ ProcSet, q(p) gives the label of the instruc-
tion that p will execute in its next step. A register
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state is a function r : R �→ V . For a register $r ∈ R, the value of r($r) is the con-
tent of $r. A buffer state is a function b : ProcSet �→ (X× V )

∗
. The value of b(p)

is the content of the buffer belonging to p. This buffer contains a sequence of write
operations, where each write operation is defined by a pair, namely a variable x
and a value v that is assigned to x. In our model, messages will be appended to
the buffer from the left, and fetched from the right. A memory state is a function
mem : X �→ V that defines the value of each variable in the memory. A configura-
tion c is a tuple

〈
q, r, b,mem

〉
where q is a label definition, r is a register state, b

is a buffer state, andmem is a memory state. We use LabelOf (c), BuffersOf (c),
RegsOf (c), and MemoryOf (c) to denote q, r, b, and mem respectively. We de-
fine EmptyBuffer to be the buffer state such that EmptyBuffer(p) = ε for all
processes p ∈ ProcSet. We say that c is plain if BuffersOf (c) = EmptyBuffer.
The initial configuration cinit is defined by 〈qinit , rinit ,EmptyBuffer,mem init 〉
where rinit ($r) = 0 for all $r ∈ R, qinit (p) = initp for all p ∈ ProcSet, and
meminit (x) = 0 for all x ∈ X. In other words, to start with, each process is
in the initial label, all buffers are empty, and all registers and shared variables
have value 0. We use C to denote the set of all configurations. For a configura-
tion c and an expression e, we define the evaluation c(e) of e in c inductively by
c($r) := RegsOf (c) ($r), and c(f(e1, . . . , en)) := f(c(e1), . . . , c(en)) (we regard
a constant expression as a function with zero arguments). Fig. 9 illustrates an
initial configuration d of the program in Fig. 2.

Events. We introduce the notion of events that describe two aspects of process
behavior, namely the internal actions of a process and its interaction with the
memory. The former consists of fence, skip, assign, and assume events, while
the latter consists of write, read, and atomic-read-write events. For these three
types of events we will also record the variable involved together with its value.
Formally, we define the set of events Δ as follows. Let p ∈ ProcSet be a process.
For i ∈ {fn, skip, asgn, asm}, we define the set Δi

p := I
i
p, i.e., for internal events,

we define the set simply to be the set of instructions. For a variable x ∈ X,
a value v ∈ V , and i ∈ {wr, rd, arw}, we define Δi,x,v

p := I
i,x
p × {v}, i.e., the

event is a pair including the instruction (whose statement operates on x) and
the used value v. We define the sets Δi,x

p := ∪v∈V Δ
i,x,v
p , Δi

p := ∪x∈XΔ
i,x
p , Δp :=

∪i∈{wr,rd,arw,fn,skip,asgn,asm}Δi
p, and Δ := ∪p∈ProcSetΔp. For an event e ∈ Δ of the

form ins or the form 〈ins, i〉, we define source (e) := source (ins), stmt (e) :=
stmt (ins), and target (e) := target (ins). Together with the above sets of events
(that are induced by the instructions of the processes), we define an additional
type of events, namely update events as follows. For a process p ∈ ProcSet, a
variable x ∈ X and value v ∈ V , we define an event udp(x, v). We will use this
event in the semantics to update the memory using the oldest message (x, v)
in the buffer of process p. We define the sets Δud,x,v

p := {udp(x, v)}, Δud,x
p :=

{udp(x, v) | v ∈ V }, Δud
p := ∪x∈XΔ

ud,x
p , and Δud := ∪p∈ProcSetΔ

ud
p . Furthermore,

we define Δ•
p := Δp ∪Δud

p and Δ• := Δ ∪Δud. In Fig. 2, let ins1 (resp. ins2) be
the instruction labeled by q1 (resp. s3) in p1 (resp. p2). Then, 〈ins1, 1〉 ∈ Δwr,t,1

p1
,

and 〈ins2, 1〉 ∈ Δrd,t,1
p2

. Furthermore, udp1(x, 2) ∈ Δud,x,2
p1

.
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Transition Relation. We define the transition relation−→⊆ C×Δ•×C as follows.

For configurations c =
〈
q, r, b,mem

〉
, c′ =

〈
q′, r′, b

′
,mem ′

〉
, p ∈ ProcSet, and

e ∈ Δ•
p, we write c

e−→ c′ to denote that one of the following conditions holds:

• skip: e ∈ Δskip
p , q(p) = source (e), q′ = q [p ←↩ target (e)], r′ = r, b

′
= b, and

mem ′ = mem . The process jumps to a statement with the target label, while
the register, buffer, and memory contents remain unchanged.

• write: e ∈ Δwr,x,v
p , stmt (e) is of the form x = e with c(e) = v, q(p) =

source (e), q′ = q [p ←↩ target (e)], r′ = r, b
′
= b

[
p ←↩ (x, v) · b(p)], and

mem ′ = mem .
• update: e ∈ Δud,x,v

p , q′ = q, r′ = r, b = b
′ [
p ←↩ b

′
(p) · (x, v)

]
, and mem ′ =

mem [x ←↩ v].
• read: e ∈ Δrd,x,v

p , stmt (e) is of the form $r = x, q(p) = source (e), q′ =

q [p ←↩ target (e)], r′ = r [$r ←↩ v], b
′
= b, mem ′ = mem , and one of the

following conditions holds:
- read-own-write: There is an i : 1 ≤ i ≤ |b(p)| s.t. b(p)[i] = (x, v), and
there are no 1 ≤ j < i and v′ ∈ V s.t. b(p)[j] = (x, v′). If there is a write
on x in the buffer of p then we consider the most recent of such a write
(the left-most one in the buffer). This operation should assign v to x.

- read-memory: (x, v′) �∈ b(p) for all v′ ∈ V and mem(x) = v. If there is no
write operation on x in the buffer of p then the value v of x is fetched
from the memory.

• fence: e ∈ Δfn
p , q(p) = source (e), q′ = q [p ←↩ target (e)], r′ = r, b(p) = ε,

b
′
= b, and mem ′ = mem. A fence operation may be performed by a process

only if its buffer is empty.
• arw: e ∈ Δarw,x,v

p , stmt (e) is of the form arw(x, e1, e2) with c(e2) = v, q(p) =

source (e), q′ = q [p ←↩ target (e)], r′ = r, b(p) = ε, b
′
= b, mem(x) = c(e1),

and mem ′ = mem [x ←↩ v]. The arw operation is performed by a process only
if its buffer is empty. The operation checks whether the value of x is equal
to the evaluation of e1 in c. In such a case, it changes that value to v.

• assume: e ∈ Δasm
p , stmt (e) is of the form asm e with c(e) = true, q(p) =

source (e), q′ = q [p ←↩ target (e)], r′ = r, b
′
= b, and mem ′ = mem. The

instruction can be performed only if e evaluates to true in c.
• assign: e ∈ Δasgn

p , stmt (e) is of the form $r = e, q(p) = source (e), q′ =

q [p ←↩ target (e)], r′ = r [$r ←↩ c(e)], b
′
= b, and mem ′ = mem . The content

of $r is updated to the value of e.

A event e ∈ Δ• is said to be enabled from a configuration c if there is a
configuration c′ with c

e−→ c′. If e is enabled from c, then we use e(c) to denote

the unique c′ such that c
e−→ c′. We define −→:= ∪e∈Δ•

e−→, and use
∗−→ to

denote the reflexive transitive closure of −→.

Runs. A run π in P is a sequence of events e1e2 · · · en ∈ (Δ•)∗. We generalize the
notion of enabledness to runs, and say that π is enabled from a configuration c
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(or simply π is a run from c) if c0
e1−→ c1

e2−→ · · · en−→ cn for some configurations
c0, c1, . . . , cn with c0 = c. In such a case, we define π(c) := cn (notice that cn
is unique given the configuration c and the run π). We write c

π−→ c′ to denote

that π(c) = c′. Notice that, for configurations c and c′, we have that c
∗−→ c′ iff

c
π−→ c′ for some run π. For a run π, we define the relation match (π) ⊆ N × N

such that match (π) (j, k) (1 ≤ j < k ≤ |π|) holds if and only if there is a process
p ∈ ProcSet and � ∈ N where

(
π ⊗Δwr

p

)
[�] = j, and

(
π ⊗Δud

p

)
[�] = k. In other

words ej is the �th write operation performed by p, and ek is the (matching)
�th update operation performed by p. We use Π to denote the set of all runs,
and use Π(c) to denote the set of runs from c. For a set Π ′ ⊆ Π , we define
Π ′(c) := Π(c) ∩Π ′, i.e., it is the subset of runs in Π ′ that are enabled from c.
For a set of runsΠ ′ ⊆ Π and a set of eventsΔ′ ⊆ Δ, we useΠ ′(Δ′) := Π ′∩(Δ′)∗,
i.e., it is the subset of π′ that uses only events from Δ′. For instance, Π

(
Δrd

p

)

is the set of all runs consisting only of read events performed by p, Π
(
Δrd

p

)
(c)

is the subset of the latter enabled from c, and Π
(¬Δrd

p

)
is the set of all runs

that do not contain read events performed by p. We say that π is complete if
|π	Δwr| = |π	Δud|, i.e., the numbers of write and update events in π are equal.
We use ΠComplete (c) to denote the set of runs from c that are complete. Notice
that if c is plain and π ∈ ΠComplete (c) then π(c) is plain.

Fig. 4 depicts different runs from the configuration d of Fig. 9 in the program
simple of Fig. 2. All these runs are complete. To simplify the presentation of the
runs in Fig. 4, we represent an event in Δwr,x,v by the triple wr(x, v), and an event
in Δrd,x,v by the triple rd(x, v). This does not introduce any ambiguity, since each
instruction in the program simple has a unique statement. For instance, the event
wr(t, 1) corresponds to the process p1 performing the event labeled by q1.

SC Semantics. We will define SC runs as special cases of TSO runs. For a process
p ∈ ProcSet, a run π ∈ Π is said to be Sequentially Consistent (or SC for short)

wrt. p if whenever π[j] ∈ Δwr,x,v
p then 1 ≤ j < |π| and π[j+1] ∈ Δ

ud,x,v
p . In other

words, any write operation of the process p should be immediately followed by
the matching update operation from the same process. We use ΠSC

p to denote the
set of runs that are SC wrt. p. We say that π is SC if it is SC wrt. all processes
p ∈ ProcSet. We use ΠSC to denote the set of SC runs. We say that π is singly
TSO wrt. p ∈ ProcSet if π ∈ ΠSC

r for all processes r ∈ ProcSet − {p}, i.e., π is
SC wrt. all processes except (possibly) p. We use ΠSinglyTSO

p to denote the set
of runs that are singly TSO wrt. p. In Fig. 4, the run ρ2 is SC, while ρ1 is not
singly TSO wrt. p1 or p2 (it is not SC wrt. p1 or p2).

Reachability Problem. An instance of the reachability problem is defined by a
program and a finite set of label definitions Final. The question is whether
there is a configuration c such that cinit

∗−→ c for some configuration c with
LabelOf (c) ∈ Final. Recall that cinit

∗−→ c is equivalent to whether cinit
π−→ c

for some run π ∈ Π (cinit ). In the SC reachability problem, we restrict the pro-

gram to SC runs, and ask whether there is a configuration c s.t. cinit
π−→ c for

some c with LabelOf (c) ∈ Final and π ∈ ΠSC (cinit ).
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6 Persistence

We formulate the persistence problem by first introducing our notion of traces,
and then comparing the set of traces of the program under TSO and SC. We
explain the relation between persistence and correctness wrt. safety properties.

Traces. For a run π, we define the program order ProgOrder (π) : ProcSet �→
Δ∗ by ProgOrder (π) (p) := π 	 (

Δwr
p ∪Δrd

p ∪Δarw
p

)
for each p ∈ ProcSet. In

other words it extracts, for each process p, the sequence of write, read, and
atomic-read-write events performed by the process. We define the store order by
StoreOrder (π) := π 	 (

Δud ∪Δarw
)
, i.e., it extracts the sequence of update and

atomic-read-write events of all processes from π. Observe that, in the store order
definition, we keep the two events that modify the memory. We define Trace (π)
as 〈ProgOrder (π) , StoreOrder (π)〉. Fig. 5 depicts a trace.

Persistence. Consider a plain configuration c and a complete run π ∈
ΠComplete (c). We say that π is persistent from c if there is an SC run π′ ∈ ΠSC (c)
with Trace (π) = Trace (π′); otherwise we say that π is fragile from c. We use
ΠPersistent (c) and ΠFragile (c) to denote the set of persistent and fragile runs from
c respectively. A plain configuration c is said to be persistent if each complete
run from c is persistent from c (i.e., ΠPersistent (c) ⊆ ΠComplete (c)); otherwise it
is called fragile. An instance of the persistence problem defined on a program P
asks whether the initial configuration cinit is persistent or not. In Fig. 4, the run
ρ1 is persistent from the configuration d (of Fig. 9), while ρ3 is fragile from d.

Safety Properties. We can show that if a program is persistent then it is strongly
persistent. This means that, for any plain configuration c and run π, it is the

case that cinit
π−→ c iff cinit

π′−→ c from some π′ ∈ ΠSC. In other words, c is
reachable from cinit under TSO iff it is reachable under SC. It is well-known
that checking safety properties can be expressed as reachability of sets of (plain)
configurations. This implies that a persistent program satisfies the same safety
properties under SC and TSO.

7 Fragility Pattern

We perform the first step in solving the persistence problem. We show that the
persistence problem can be reduced to searching for runs of a special form More
precisely, for a given plain configuration c, there is a fragile run from c iff there
is another run from c that will follow a certain fragility pattern.

Fix a program P = 〈X,ProcSet,Q, I, init〉. For a plain configuration c, a pro-
cess p ∈ ProcSet, a variable x ∈ X, and a value v ∈ V , we define Π�

p,x,v (c) to be
the set of runs π such that π = π1 · π2 · π3 · π4, and the following conditions are
satisfied: (i) π ∈ ΠSC (c). (ii) π2 = e1 · u1, where e1 ∈ Δwr,y

p and u1 ∈ Δud,y
p for

some y �= x. (iii) π3 ∈ Π
(
Δp −

(
Δwr

p ∪Δud
p ∪Δarw

p ∪Δfn
p

))
, i.e., π3 consists only

of events performed by p excluding write, update, atomic-read-write, and fence



The Best of Both Worlds 323

events. (iv) π4 = e2 · u2, where e2 ∈ Δwr,x,v′
r and u2 ∈ Δud,x,v′

r for some r �= p
and v′ �= v. (v) There is an event e ∈ Δrd,x,v

p , called the complementary event
of π, such that π1 · π2 · π3 · e ∈ Π (c), i.e., if we replace π4 by e, then it results
in a run from c. We call the process p the pivot of π, and call the rest of the
processes the fringe processes of π. In §3, we motivate why ρ∗ ∈ Π�

p1,x,2
(d). We

define Π� (c) := ∪p∈ProcSet ∪x∈X ∪v∈V Π
�
p (c), and call Π� (c) the set of runs of

type � from c. We can show:

Theorem 1. Π� (c) = ∅ iff ΠFragile (c) = ∅.
In other words, to check whether c is fragile, we need only to check whether
there is a run of type � from c. Although a run π of type � is SC, its existence
together with the complementary event e show the fragility of c. More precisely,
we define the witness run Witness (π) := π1 · e1 · π3 · e · e2 · u2 · u1, and observe
that Witness (π) ∈ ΠFragile (c). The run Witness (π) is TSO since e overtakes e1.
However, it is not persistent since there is no SC run with the same program
and store order. In §3, we give the witness run corresponding to ρ∗.

Theorem 1 holds for any program respecting the syntax of §5. In particular,
the program may contain any number of variables, and the variables may range
over unbounded data domains (see §3, Model).

8 Pattern Detection

We perform the second step in solving the persistence problem. We translate
the persistence problem for programs running under TSO to the SC reachability
problem. We exploit Theorem 1 which shows that the persistence problem is
reducible to the problem of checking whether the initial configuration has a type
� run. Consider an instance of the persistence problem, defined by a program
P = 〈X,ProcSet,Q, I, init〉 and its initial configuration cinit . We will translate
the problem of whether P has a run in Π� (cinit ) to an instance of the SC reach-

ability problem defined on a new program Q =
〈
X

Q,ProcSetQ,QQ, IQ, initQ
〉
.

We define ProcSetQ := ProcSet, and initQ := init , i.e., Q uses the same set
of processes as P and the processes start from identical initial labels. Each
process p in Q will simulate the corresponding process in P . Recall that a
run π ∈ Π�

p,x,v (c) is of the form π = π1 · e1 · u1 · π3 · e2 · u2, and it is de-
fined in terms of a pivot p, and a complementary event e. We know that π
induces a witness (fragile run) Witness (π) = π1 · e1 · π3 · e · e2 · u2 · u1. A
run of Q is divided into three phases: 0, 1, 2, where each phase will accom-
plish a particular task in the simulation of Witness (π). To carry out the sim-
ulation we add two new constants, c1 and c2 to the domain V , and add two
new variables, ph with domain {−1, 0, 1, 2}, and new with domain V to the
set of variables. In other words, we define X

Q := X ∪ {ph, new}. Furthermore,
we define Q

Q := Q ∪ {q′ | q ∈ Q} ∪ {finalp | p ∈ ProcSet} ∪ Q
tmp, and define

Final := ∪p∈ProcSet {c | LabelOf (c) (p) = finalp}. Intuitively, for each label q in
P , we create a copy q′ (that will be used to simulate the moves of the pivot).
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Furthermore, we provide each process with an additional label that marks its
“accepting state”. Finally, Qtmp contains a set of “temporary labels”, each of
which is either of the form q.i or q′.i, where q ∈ Q, and i ∈ N. To simplify
the definition of Q, we will extend the set of expressions (see §5) by allowing
the use of shared variables in expressions. Since the program Q runs under the
SC semantics, the evaluation c(x) of a shared variable x in a configuration c is
straightforward (it is given by MemoryOf (c) (x)).

q1: arw(ph,0,-1); goto q1.1

q1.1: s; goto q1.2

q1.2: ph=0; goto q2

Fig. 10. Phase 0

Phase 0. Phase 0 corresponds to simulating π1.
During this phase, the processes will run the same
code as in P . A process needs to make sure that
the program is currently running in phase 0. This
is accomplished as follows. For each process p ∈
ProcSet, and each instruction q1: s; goto q2 in Ip,

we add the instructions of Fig. 10 to I
Q
p . First, the process changes the phase to

−1 (thus blocking the moves of all other processes). In the next step, the process
simulates the given instruction, after which it puts the phase back to 0 (thus
unblocking the rest of the processes).

q1: arw(ph,0,-1); goto q1.3

q1.3: y=c1; goto q1.4

q1.4: ph=1; goto q’2

Fig. 11. Change to phase 1

At any point where a process p is about to exe-
cute a write event (on a variable y), it may decide
to declare the event to be e1. In this case, p will
play the role of the pivot for the rest of the run,
while deeming the other processes to become fringe
processes. This signals the end of phase 0, and the
phase is changed to 1. At the same time, we assign the value c1 to y. The value
of y will not be changed in the rest of the run, and y will be the only variable
whose value is equal to c1. Notice that, by definition of a type � run, y will not
be used again in the rest of the run and therefore it is safe to change its value
to c1. To carry out the above steps, we add, for each write instruction ins ∈ Ip,

of the form q1: y=e; goto q2 the instructions shown in Fig. 11 to I
Q
p .

q’1: assume ph=1; goto q’1.1

q’1.1: s; goto q’2

Fig. 12. Phase 1

Phase 1. The purpose of phase 1 is to simu-
late the π3. Since π3 consists only of events per-
formed by the pivot, only this process is active
during phase 1. Furthermore, the pivot only per-
forms read, skip, assignment, and assume events.
For each instruction in I

rd
p ∪ I

skip
p ∪ I

asgn
p ∪ I

asm
p , of the form q1: s; goto q2 , we

add the instructions of Fig. 12 to I
Q
p . Notice that, since only p is active during

this phase, we need not lock the variable ph.
At any point where the pivot is about to execute a read event, it may

decide to verify the existence of the complementary event e. Recall that
e ∈ Δrd,x,v

p , where x �= y. For each read instruction ins ∈ I
rd,x
p , of the form

q1: $r=x; goto q2 , we add the instructions shown in Fig. 13 to I
Q
p . The in-

struction at q’1.2 checks that the read variable is different from y. Recall that
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y is the only variable whose value is c1. At q’1.3, we store the current value of
x in new (this will be used in phase 2). At q’1.4, the value c2 is stored in x.

q’1: assume ph=1; goto q’1.2

q’1.2: assume !(x=c1); goto q’1.3

q’1.3: new=x; goto q’1.4

q’1.4: x=c2; goto q’1.5

q’1.5: ph=2; goto q’2

Fig. 13. Change to phase 2

Notice that x is now the only variable whose
value is c2. By this assignment, the pivot
has declared (i) that it was about to per-
form a read on x; and (ii) that the value it
was about to read is stored in new. At this
point, the pivot changes the phase to 2. This
is the last instruction executed by the pivot.
Observe that the process does not execute
the instruction ins itself, but it marks its existence through the instructions of
Fig. 13.

q1: assume ph=2; goto q1.5
q1.5: assume z=c2; goto q1.6

q1.6: assume !(new=e); goto finalp

Fig. 14. Phase 2

Phase 2. In phase 2, only the fringe pro-
cesses are active. The purpose of this phase
is to verify the existence of the event e2.
This event is performed by a fringe pro-
cess and it should write a value different
from c2 to x. A process that is about to
execute a write event, may verify that this event corresponds to e2. The process
recognizes the variable x, since x is the only variable carrying the value c2. For
each write instruction of the form q1: z=e; goto q2 in I

wr
p , we add the instruc-

tions shown in Fig. 14 to I
Q
p . The test z = c2 ensures that z and x are identical.

The test !(new = e) ensures that the current instruction assigns a value different
from the value of x during the complementary event. In such a case, a witness
has been found and the process moves to the accepting label finalp.

Remarks. Notice that Q contains only two additional variables, namely new and
ph, compared to P ; and that we increase the variable domain V by two elements,
namely c1 and c2.

9 Fence Insertion

In this section we describe our fence insertion procedure that finds a minimal
set of fences sufficient for making the program persistent. The algorithm builds
a set of fences successively using fragile runs generated by the pattern detection
algorithm. First, we define the fence insertion operation, and then show how to
use a type � run generated by the pattern detection algorithm of §8 to derive a
set of fences such that the insertion of at least one element of the set is necessary
in order to eliminate the run from the behavior of the program. Based on that,
we introduce the fence insertion algorithm.

Fence Insertion. We define the operation of inserting a fence in a program.
Intuitively, we identify the instruction after which we insert the fence. For a
program P = 〈X,ProcSet,Q, I, init〉 and an instruction f ∈ I, we use P ⊕ f to
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denote the program we get by inserting a fence instruction just after f in P .
Formally, let f ∈ I be of the form q1 : s; goto q2 . Then, P ⊕ f is the program we

get by replacing f by the following two instructions (where q′ �∈ Q is a unique new

label): q1 : s; goto q′ , and q′ : fn; goto q2 (recall from §5 that fn is the fence

statement). For a set F = {f1, . . . fn} ⊆ I, we define P ⊕ F := P ⊕ f1 · · · ⊕ fn.
We say F is minimal wrt. P if (i) P ⊕ F is persistent, and (ii) P ⊕ (F \ {f}) is
fragile for all f ∈ F . That is, removing any fence from F makes P fragile.

Fence Inference. Let p ∈ ProcSet, and let π be a type � run generated by apply-
ing an arbitrary SC reachability analysis algorithm on the program Q defined
in §8. Recall from §7, that from π, we can derive a new run Witness (π) of the
form π1 ·e1 ·π3 ·e ·e2 ·u2 ·u1, then Witness (π) ∈ ΠFragile (c), where e overtakes e1.
Let π3 be of the form e′1e′2 · · · e′n, and define NewFences(π) := {e1, e′1, e′2, . . . , e′n}.
Intuitively, inserting a fence after one of the instructions in NewFences(π) is both
necessary and sufficient to prevent e from overtaking e1, and hence eliminating
the run π from the behavior of the program.

Algorithm 1. Fence Insertion.

input : A concurrent program P
output: A minimal set of fences

1 W ← {∅};
2 while true do
3 Pick and remove a set F from

W;
4 if ∃π : π ∈ Π�

p (cinit ) in
P ⊕ F then

5 N ← NewFences(π);
6 foreach f ∈ N do
7 F ′ ← F ∪ {f};
8 if

∃F ′′ ∈ W : F ′′ ⊆ F ′

then discard F ′ else
W ← W ∪ {F ′}

9 else
10 return F ;

Algorithm. We present our fence inser-
tion algorithm (Algorithm 1). It takes
a concurrent program P and returns a
minimal set of fences that is sufficient to
make P persistent. The algorithm uses
a set of sets of fences, namely W for
sets of fences that have been partially
constructed (but not yet large enough
to make the program persistent). During
each iteration, a set F is picked and re-
moved from W . We use the construction
of §8, together with an SC reachability
analysis algorithm, to check whether the
set F is sufficient to make the program
persistent. If yes, we return F as a possi-
ble set of minimal fences. If no, we com-
pute the set of fences N such that insert-
ing a member of N is sufficient and nec-
essary to eliminate the generated type �
run π. For each f ∈ N we add F ′ = F ∪ {f} back to W unless there is already a
subset of F ′ in the set W .

Theorem 2. If each call to the pattern detection algorithm (line 4) returns,
then Algorithm 1 terminates and returns a minimal set of fences wrt. P.

In particular, Theorem 2 implies that Algorithm 1 terminates when P is a finite-
state program.

In the program of Fig. 2, our algorithm would insert a single fence, replacing
the instruction q2. z=1; goto q3 in p1 by the instructions q2. z=1; goto q5

and q5. fn; goto q3 .
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10 Observation Abstraction

In this section, we present a general abstraction framework, called observa-
tion abstraction, that is compatible with the notion of persistence (compat-
ibility means that persistence of the abstract program implies persistence of
the concrete program). The abstraction considers a process p and captures the
sequences of events that can be observed from p. We instantiate observation
abstraction by defining an abstraction function, namely Flattening, whose effi-
ciency is demonstrated in the experimental results (see §11). Let us fix a program
P = 〈X,ProcSet,Q, I, init〉 and a process p ∈ ProcSet. Let R := ProcSet \ {p}.

Notation. We define ReadFromp :=
{
x ∈ X | (Δrd,x

p ∪Δarw,x
p

) �= ∅}, i.e., it is the
set of shared variables on which p may perform read or atomic-read-write events.
We define a new type of events, namely MemEvent(x, v), where x ∈ X and
v ∈ V , that we use to abstract update and atomic-read-write events. The event
records changes in the state of the memory (changing the value of x to v), while
hiding the identity of the process performing the event. For a variable x ∈ X,
a value v ∈ V , an event e ∈ Δarw,x,v ∪ Δud,x,v, and a process p ∈ ProcSet, we
will write [e]p to describe “how much of e can be observed by p”. Formally: (i)
[e]p := e if e ∈ Δp, i.e., we keep the event if it is performed by p (p can observe

its own events). (ii) [e]p := MemEvent(x, v) if e ∈ Δarw,x,v
r ∪ Δud,x,v

r , for some
r �= p and x ∈ ReadFromp. If the event is performed by another process on a
variable in ReadFromp then p can observe the change in memory although it
cannot see the process making the change. (iii) [e]p := ε if e ∈ Δarw,x

r ∪ Δud,x
r ,

for some r �= p and x �∈ ReadFromp. The event is not observed by p in case
it is performed by another process on a variable not in ReadFromp. For a run

π = e1e2 · · · en ∈ (
Δarw,x ∪Δud,x

)∗
, we define [π]p := [e1]p [e2]p · · · [en]p.

Framework. In addition to (the concrete program) P with initial configuration

cinit , we consider an abstract programAp =
〈
X

Ap ,ProcSetAp ,QAp , IAp , initAp

〉
,

with initial configuration c
Ap

init . We assume that the following conditions hold: (i)
X

Ap = X, i.e., P and Ap operate on the same set X of shared variables. (ii) The

process p is in ProcSetAp . (iii) Ip = I
Ap
p , i.e., the process p executes the same code

in P and Ap. We say that Ap is an observation abstraction of P wrt. p, denoted

P �p Ap, if for every run π ∈ Πp (cinit ) in P , there is a run π′ ∈ Πp

(
c
Ap

init

)
in

Ap such that the following two conditions are satisfied: (i) ProgOrder (π) (p) =
ProgOrder (π′) (p). (ii) [StoreOrder (π)]p = [StoreOrder (π′)]p. In other words, the
programs P and Ap agree on the “parts of runs” that are observable by p: on the
one hand, p observes all events it performs itself; on the other hand, it observes
modifications of the memory performed by other processes provided that they
concern variables from which it can read (in the latter case, the actual identity
of the process performing the event is not relevant).

The next theorem shows that persistence can be established by analyzing the
abstract programs.
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Theorem 3. For every p ∈ ProcSet, let Ap be an abstract program such that
P �p Ap. If Ap is persistent for all p ∈ ProcSet then P is persistent.

process p1
regs init s
begin

q1. t=1; goto q2

q2. skip; goto q2

q2. skip; goto q3

q3. skip; goto q4
end

Fig. 15. Flattening ab-
straction of the pro-
gram of Fig. 2 wrt. p2

Flattening. We define a family of functions that build
observation abstractions Ap of P wrt. p for k ∈ N. Flat-
tening keeps all processes in P applying abstraction in-
dividually on each process. Although the number of pro-
cesses remains the same, the abstraction simplifies the
behavior of each process, again limiting the state explo-
sion problem. The precision of the abstraction increases
with increasing the value of k. More precisely, we keep
the behavior of a process r during its first k steps af-
ter which we replace each statement, except write and
atomic-read-write statements on variables in ReadFromp,
by the empty statement. Flattening abstraction is pre-
cise in the sense that it does not add extra fences (com-
pared to the set of fences that would be added to the concrete program). In our
experiments, no additional fences are added when applying this abstraction.

11 Experimental Results

Tool. We have implemented our techniques from §8-§10 in an open-source tool
called Persist. The syntax of the input language of Persist is defined by the gram-
mar of Fig. 8 in §5. Persist uses Spin [16] as backend model-checker to solve the
SC reachability queries for programs under SC. Since Spin is a finite-state model
checker, all the programs in our experiments are finite-state. We compare our
method with state-of-the-art tools1: Trencher [9] (a sound and complete tool
for robustness analysis of finite-state programs under TSO, that uses Spin as
backend tool), Memorax [1] (a sound and complete tool for the correctness anal-
ysis of finite-state programs under TSO wrt. safety properties), Remmex [20] (a
tool based on state-space exploration with acceleration, for correctness analysis
of programs under TSO wrt. to safety properties), and Musketeer [3] (a static
analysis tool for correctness analysis of programs under weak memory models
wrt. robustness). We perform the comparisons based on two aspects, namely the
number of fences (and their placement) and the running time. The experiments
are performed on an Intel x86-32 Core2 2.4 Ghz machine and 4GB of RAM. To
insert the fences,Memorax and Remmex require a safety property as an additional
input which is not always given; while Persist, Trencher, and Musketeer are fully
automatic. Notice that both persistence and robustness guarantee SeqCon.

In the following, we present two sets of results. The first set concerns the com-
parison of Persist (without the abstraction) with the other tools (see Table 1).
The second set shows the scalability of Persist (with/without abstraction) com-
pared to Musketeer and Trencher when increasing the number of processes (see

1 Except Dfence [21] which requires a special manual specification encoding for each
example.
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Fig. 16). In all experiments, we set up the time out to 2400 seconds, and k = 2
for abstraction. Our examples are from [21,9,1,20,3].

Table 1. Experimental results. Per, Tre, Mus, Mem, and
Rem stand for Persist, Trencher, Musketeer, Memorax,
and Remmex, respectively. The columns #P, #F, and
#T give the number of processes, number of fences, and
running time in seconds, respectively. If a tool runs out
of time (resp. memory), we put “TO” (resp. “OM”) in
the #T column, and • in #F column. We use “−” when
a tool is not tested due to a missing specification.

Program #P
Per Tre Mus Mem Rem

#F #T #F #T #F #T #F #T #F #T
SimDekker 4 4 4 4 163 8 1 • OM • OM
Dekker 4 8 14 • TO 16 783 • OM • OM
Peterson 4 4 223 • TO • TO • OM • OM
LamBak 3 6 104 • TO 18 110 • OM 6 372
LamBak 4 8 286 • TO • TO • OM • OM
Dijkstra 4 8 30 • TO • TO • OM • OM
Dc-Lock 6 0 7 0 139 0 1 • TO 0 5
SpinLock 2 0 1 0 1 0 1 0 1 0 1
TSpinLock 2 0 1 0 1 0 1 • OM 0 4
InlinePgsql 8 0 8 0 426 • TO • OM 0 42
Burns 5 9 119 • TO • TO • OM • TO
Szymaski 2 8 3 8 642 11 1 3 1 3 4
Szymaski 4 16 88 • TO • TO • OM • TO
LamFast2 2 8 6 4 48 15 1 4 136 4 6
LamFast2 3 12 10 • TO • TO • OM 6 108
CLH Lock 4 4 176 4 674 • TO • OM • OM
Parker 6 1 76 1 425 3 1 • OM • OM
Pgsql 6 7 26 7 260 7 1 • OM • TO
AltenatingBit 2 4 2 4 5 5 1 0 4 0 3
IncSequence 6 0 21 0 194 0 1 • OM • TO
TaskSchedule 10 0 5 0 418 0 1 • TO • OM
NBW W WR 2 0 18 1 595 6 1 • OM • TO
NBW W 5R 6 0 3 0 514 0 1 • OM • TO
SeqLock 4 0 63 0 364 0 1 • OM • TO
write+r 5 0 2 4 7 4 1 • OM • TO
r+detour 5 0 1 3 3 3 1 • OM • TO
r+detours 5 0 1 3 1 3 1 • OM • TO
write+r+co 6 0 7 4 38 4 1 • OM • TO
sb+detours 6 2 3 5 3 5 1 • OM • TO
sb+detour+co 6 0 1 4 3 4 1 • OM • TO
Cilk WSQ 2 2 3 2 107 3 1 − − − −
CL WSQ 2 1 2 1 796 1 1 − − − −
FIFO iWSQ 2 1 2 1 354 1 1 − − − −
LIFO iWSQ 2 1 7 1 558 1 1 − − − −
Anchor iWSQ 2 1 2 1 20 1 1 − − − −

Performance of Per-
sist without abstraction.
The results are given
in Table 1. Below, we
summarise the main
observations: (i) Persist
manages to return for all
the benchmarks. Trencher
and Musketeer fail to
answer for 8 out of 35
examples within 2400 sec-
onds. Memorax (Remmex)
manages to return for only
4 (9) out of 30 examples
within 2400 seconds. For
the comparison among
tools, we compute the
average of the ratio of
the running times over
examples where the tools
terminate. On average
Persist is 51 times faster
than Trencher and 2.48
times faster than Muske-
teer. (ii) Persist returns 54
fences while Musketeer re-
turns 119 fences for all the
examples where Musketeer
terminates within 2400
seconds (and thus, Persist
inserts 54% less fences
in total). Furthermore,
Persist returns 44 fences
while Trencher returns 62
fences for all the examples
where Trencher terminates within 2400 seconds (and thus, Persist inserts 30%
less fences in total).

Scalability wrt. the number of processes. We compare the scalability of Trencher,
Musketeer, Persist, and our abstraction Flattening) while increasing the number
of processes in several examples. In all these examples, no additional fences
are added due to flattening abstraction (compared to the case of Persist without
abstraction). The results are given in Fig. 16. We observe that: (i) Persist without
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Fig. 16. Persist with/without abstraction compared with Trencher and Musketeer. The
x axis is number of processes, the y axis is running time in seconds.

abstraction always scales better than Trencher for all the examples. Furthermore,
Persist without abstraction scales better than Musketeer in 4 out of 8 examples
(Partial Dekker, Burns, Dijkstra, Szymanski). (ii) Persist with the abstraction
always performs better than Persist without the abstractions while inserting no
extra fences. (iii) Persist with the abstraction outperformsMusketeer in 4 out of 8
examples (Partial Dekker, Burns, Dijkstra, Szymanski) while having comparable
running time for the rest.

In all the reported results (Table 1 and Fig. 16), except Lamport Fast 2 with
two processes (LamFast2), the set of fences returned by Persist is a subset of
the ones returned by Trencher and Musketeer. Hence, Persist presents a good
trade-off between efficiency and optimality.

12 Conclusion, Discussion, and Future Work

RobPer

PoVsoopen

Poopen

SeqCon

Fig. 17. Relevant cor-
rectness criteria

We have presented a framework for automatic fence in-
sertion under TSO that provides an excellent trade-off
between efficiency and optimality. We have implemented
our framework in a tool and evaluated it on a wide range
of benchmarks. The correctness criteria of Fig. 1, namely
Data Race Freedom (Drf), Triangular Race Freedom
(Trf), Robustness (Rob), Persistence (Per), Sequential
Consistence (SeqCon), and state Reachability (Reach)
can be seen as “stability conditions”, in the sense that
they measure how stable the behaviors of the program is
under TSO compared to SC. Only a small number of stability conditions are
relevant, since each condition corresponds to relaxing one of three parameters:
program order, source, and (variable) store order. A stability condition should
imply that the program under SC and TSO have the same reachable (control)
states, and that they satisfy the same safety properties (see §1, Persistence;
and §6, Safety Properties). We believe that our work is an important step in this
investigation. There are several open and hard questions to consider in future
work (see Fig. 17). This includes studying two remaining important stability con-
ditions, namely PoVso where a program is considered to be correct if the traces



The Best of Both Worlds 331

of the program under TSO and SC agree on (i) program order, and (ii) variable
store (coherence) order. PoVso gives an entirely different stability condition
compared to persistence (in fact, PoVso is a weakening of both robustness and
persistence). Checking PoVso (e.g., through finding appropriate patterns) is an
important (and difficult) open problem. Notice that, if persistence and PoVso

were equivalent, then robustness would be stronger than persistence which is
not the case (they are incomparable). Another open problem is checking the
condition Po, a weakening of PoVso, where the program is considered if its
TSO and SC traces need only to agree on program order. Finally, it is important
to develop frameworks that allow checking the different stability conditions for
other weak memory models, as done in [4].
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Abstract. We present a lightweight approach to Hoare-style specifications for
fine-grained concurrency, based on a notion of time-stamped histories that ab-
stractly capture atomic changes in the program state. Our key observation is that
histories form a partial commutative monoid, a structure fundamental for represen-
tation of concurrent resources. This insight provides us with a unifying mechanism
that allows us to treat histories just like heaps in separation logic. For example, both
are subject to the same assertion logic and inference rules (e.g., the frame rule).
Moreover, the notion of ownership transfer, which usually applies to heaps, has an
equivalent in histories. It can be used to formally represent helping—an important
design pattern for concurrent algorithms whereby one thread can execute code on
behalf of another. Specifications in terms of histories naturally abstract away the
internal interference, so that sophisticated fine-grained algorithms can be given the
same specifications as their simplified coarse-grained counterparts, making them
equally convenient for client-side reasoning. We illustrate our approach on a num-
ber of examples and validate all of them in Coq.

1 Introduction
For sequential programs and data structures, Hoare-style specifications (or specs) in the
form of pre- and postconditions are a declarative way to express a program’s behavior.
For example, an abstract specification of stack operations can be given as follows:

{ s �→ xs } push(x) { s �→ x :: xs }

{ s �→ xs } pop()

{
res = None∧ xs = nil ∧ s �→ nil ∨
res = Some x ∧ ∃xs′, xs = x :: xs′ ∧ s �→ xs′

}
(1)

where s is an “abstract pointer” to the data structure’s logical contents, and the logical
variable xs is universally quantified over the spec. The result res of pop is either Some x,
if x was on the top of the stack, or None if the stack was empty. The spec (1) is usually
accepted as canonical for stacks: it hides the details of method implementation, but
exposes what is important about the method behavior, so that a verification of a stack
client does not need to explore the implementations of push and pop.

The situation is much more complicated in the case of concurrent data structures.
In the concurrent setting, the spec (1) is of little use for implementations with server-
side locking, as the interference of the threads executing concurrently may invalidate
the assertions about the stack. For example, a call to pop may encounter an empty
stack, and decide to return None, but by the time it returns, the stack may be filled by
the other threads, thus invalidating the postcondition of pop in (1). To soundly reason
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about concurrent data structures, one has to devise specs that are stable (i.e., invariant
under interference), but this may require trade-offs with respect to the specifications’
expressivity and precision for the client’s needs.

Reasoning about concurrent data structures is further complicated by the fact that
their implementations are often fine-grained. Striving for better performance, they avoid
explicit locking, and implement sophisticated synchronization patterns that deliberately
rely on interference. For reasoning purposes, however, it is desirable that the clients can
perceive such fine-grained implementations as if they were coarse-grained; that is, as
if the effects of their methods take place atomically, at singular points in time. The
standard correctness criteria of linearizability [16] establishes that a fine-grained data
structure implementation contextually refines a coarse-grained one [10]. One can make
use of a refined, fine-grained, implementation for efficiency in programming, but then
soundly replace it with a more abstract coarse-grained implementation to simplify the
reasoning about clients.

Semantically, one program linearizes to another if the histories of the first program
(i.e., the sequence of actions it executed) can be transformed, in a suitable sense, into
the histories of the second. Thus, histories are an essential ingredient in specifying fine-
grained concurrent data structures. However, while a number of logical methods exist
for establishing the linearizability relation between two programs, for a class of data
structures [7, 20, 24, 33], in general, it is a non-trivial property to prove and use. First,
in a setting that employs Hoare-style reasoning, showing that a fine-grained structure
refines a coarse-grained one is not an end in itself. One still needs to ascribe a stable
spec to the coarse-grained version [20, 31]. Second, the standard notion of lineariz-
ability does not directly account for modern programming features, such as ownership
transfer of state between threads, pointer aliasing, and higher-order procedures. The-
oretical extensions required to support these features are a subject of active ongoing
research [4, 13]. Finally, being a relation on two programs, deriving linearizability by
means of logical inference inherently requires a relational program logic [20,31], even
though the spec one is ultimately interested in may be expressed using a Hoare triple
that operates over a single program.

In this paper, we propose a novel method to specify and verify fine-grained programs
by directly reasoning about histories in the specs of an elementary Hoare logic. We
propose using timestamped histories, which carry information about the atomic changes
in the abstract state of the program, indexed by discrete timestamps, and tracking the
history of a program as a form of auxiliary state.

While using histories in Hoare-style specs is a simple and natural idea, and has been
used before [1, 11, 12], in our paper it comes with two additional novel observations.

First, timestamped histories are technically very similar to heaps, as both satisfy the
algebraic properties of a partial commutative monoid (PCM). A PCM is a set U with an
associative and commutative join operation • and unit element �. Both heaps and his-
tories (considered as sets of actions with distinct timestamps, correspondingly) form a
PCM with disjoint union and empty heap/history as the unit. Also, a singleton history
t �→ a is similar to the singleton heap x �→ v containing only the pointer x with value v.
We emphasize the connection by using the same notation for both. The common PCM
structure makes it possible to reuse for histories the ideas and results developed for heaps
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in the work on separation logic [3]. In particular, in this paper, we make both heaps and
histories subject to the same assertion logic, the same rules of inference (e.g., the frame
rule), and thus the same style of local reasoning. Moreover, concepts such as ownership
transfer, well-studied for heaps, apply to histories as well. For example, in Section 5,
we use ownership transfer on histories to formalize the important design pattern of help-
ing [14], whereby a concurrent thread may execute a task on behalf of other threads. That
helping corresponds to a kind of ownership transfer (though not on histories, but on aux-
iliary commands) has been noticed before [20, 32]. However, commands do not form a
PCM, while histories do—a fact that makes our development simple and uniform.

Second, we argue that precise history-based specs have to differentiate between the
actions that have been performed by the specified thread, from the actions that have
been performed by the thread’s concurrent environment. Thus, our specs will range over
two different history-typed variables, capturing the timestamped actions of the specified
thread (self ) and its environment (other), respectively. This split between self and other
will provide us with a novel and very direct way of relating the functional behavior of
a program to the interference of its environment, leading to specs that have a similar
canonical “feel” in the concurrent setting, as the specs (1) have in the sequential one.

The self/other dichotomy required of histories is a special case of the more general
specification pattern of subjectivity, observed in the recent related work on Subjective
and Fine-grained Concurrent Separation Logic (FCSL) [19,22]. That work generalized
Concurrent Separation Logic (CSL) [23] to apply not only to heaps, but to any ab-
stract notion of state (real or auxiliary) satisfying the PCM properties. We thus reuse
FCSL [22] off-the-shelf, and instantiate it with histories, without any additions to the
logic or its meta-theory. Surprisingly, the FCSL style of auxiliary state is sufficient to
enable expressive history-based proofs of realistic fine-grained algorithms, including
those with helping.

Specifications with histories also allow the clients of a fine-grained data structure to
pretend, for the sake of simplifying their own reasoning, that they are using a coarse-
grained version of the data structure. In this sense, we consider a program logically
atomic (irrespective of the physical granularity of its implementation), if its specifica-
tion is a singleton history t �→ a, containing only an abstract action a time-stamped
with t. This spec provides an abstraction that the effect a of the program takes place at a
singular point in time t, as if the program were coarse-grained, thus providing a uniform
way to reason about coarse- and fine-grained programs.1

We show how a number of well-known algorithms can be proved logically atomic,
and illustrate how the specs with histories facilitate client-side reasoning. We con-
sider an atomic pair snapshot data structure [20, 26] (Section 2), a Treiber stack [30]
along with its clients (Section 4), and Hendler et al.’s flat combining algorithm [14],
a non-trivial example employing first-class functions and helping (Section 5). All our
proofs, including the theory of histories, have been checked mechanically in Coq, and
the sources are available online [27].

1 An orthogonal aspect of granularity abstraction is the ability of a logical framework to express
synchronized changes to auxiliary state that is spread across several shared data structures. We
do not consider such abstraction in this paper, but elaborate in Section 6 on how to extend
FCSL to support it, as well as on related approaches [5, 17, 28, 29].
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2 Overview: Specifying Snapshots with Histories

In this section, we illustrate history-based specifications by applying them to the fine-
grained atomic pair snapshot data structure [20, 26]. This data structure contains a pair
of pointers, x and y, pointing to tuples (cx, vx) and (cy, vy), respectively. The components
cx and cy of type A represent the accessible contents of x and y, that may be read and
updated by the client. The components vx and vy are nts, encoding “version numbers”
for x and y. They are internal to the structure and not directly accessible by the client.

Fig. 1. Atomic pair snapshot
1 readPair(): A × A {
2 (cx, vx) <- readX();
3 (cy, _) <- readY();
4 (_, tx) <- readX();
5 if vx == tx
6 then return (cx, cy);
7 else readPair();}

The data structure interface exports three meth-
ods: readPair, writeX, and writeY. readPair is
the main method, and the focus of the section. It
returns the snapshot of the data structure, i.e., the
accessible contents of x and y as they appear to-
gether at the moment of the call. However, while
x and y are being read by readPair, other threads
may change them, by invoking writeX or writeY.
Thus, a naïve implementation of readPair which
first reads x, then y, and returns the pair (cx, cy)
does not guarantee that cx and cy ever appeared
together in the structure. One may have readPair first lock x and y to ensure exclusive
access, but here we consider a fine-grained implementation which relies on the version
numbers to ensure that readPair returns a valid snapshot.

The idea is that writeX(cx) (and symmetrically, writeY(cy)), changes the logical
contents of x to cx, while incrementing the internal version number, simultaneously.
Since the operation involves changes to the contents of a single pointer, in this paper we
assume that it can be performed atomically (e.g., by some kind of read-modify-write
operation [15, §5.6]). We also assume atomic operations readX and readY for reading
from x and y respectively. Then the implementation of readPair (Figure 1) reads from
x and y in succession, but makes a check (line 5) to compare the version numbers for x
obtained before and after the read of y. If x’s version has changed, the procedure restarts.

We want to specify and prove that such an implementation of readPair is correct;
that is, if it returns a pair (cx, cy), then cx and cy occurred simultaneously in the structure.
To do so, we use histories as auxiliary state of every method of the structure. Histories,
ranged over by τ, are finite maps from the natural numbers to pairs of elements of some
type S ; i.e., hist S =̂ nt ⇀ S × S .2 The natural numbers represent the moments in
time, and the pairs represent the change of state. Thus, a singleton history t �→ (s1, s2)
encodes an atomic change from abstract state s1 to abstract state s2 at the time moment
t. We will only consider continuous histories, for which t �→ (s1, s2) and t+1 �→ (s3, s4)
implies s2 = s3. We use the following abbreviations to work with histories:

τ[t] =̂ s, such that ∃s′, τ(t) = (s′, s)
τ ≤ t =̂ ∀t′ ∈ dom(τ), t′ ≤ t
τ � τ′ =̂ τ is a subset of τ′

(2)

Similarly to heaps, histories form a PCM under the operation ·∪ of disjoint union, with
the empty history as the unit. The type S can be chosen arbitrarily, depending on the

2 Other sets for time-stamping are possible besides nt, as will be mentioned in Section 6.
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application, to capture whichever logical aspects of the actual physical state are of in-
terest. For the snapshot structure, we take S = A × A × nt. That is, the entries in the
histories for pair snapshot will be of the form

t �→ (〈cx, cy, vx〉, 〈c′x, c′y, v′x〉). (3)

The entry encodes that at time moment t, the contents of x, y, and the version of x
have changed from (cx, cy, vx) to (c′x, c

′
y, v
′
x). We ignore vy, as it does not factor in the

implementation of readPair (even though it is present for the sake of symmetry).
All the threads working over the pair snapshot structure respect a protocol on his-

tories consisting of the following three properties. We explain in Section 3 how these
are formally specified and enforced, but for now simply assume them. They will be
important in the proof outline for readPair.
(i) Whenever a thread modifies x or y (e.g., by calling writeX or writeY), its history

gets augmented by an entry such as (3), where the timestamp t is chosen afresh.
Thus, histories only grow, and only by adding valid snapshots (i.e., snapshots cor-
responding to values of x and y, simultaneously present in the data structure).

(ii) Whenever the contents of x is changed in a history, its version number changes too.
In contrapositive form, if τ[t1] = 〈c1,−, v〉 and τ[t2] = 〈c2,−, v〉, then c1 = c2.

(iii) Version numbers in a history grow monotonically. That is, if τ[t1] = 〈−,−, v1〉 and
τ[t2] = 〈−,−, v2〉 and t1 ≤ t2, then v1 ≤ v2.

Specification. We now describe an FCSL spec for readPair and explain how it captures
that its result is a valid snapshot of x and y.

{
∃τO . � s�→ empty ∧ � o�→ τO ∧ τ � τO

}
readPair(){

∃τO t. � s�→ empty ∧ � o�→ τO ∧ τ � τO ∧ τ ≤ t ∧ τO[t] = 〈res.1, res.2,−〉
} (4)

First, note the label �, which serves as an “abstract pointer” that differentiates the in-
stance of the pair snapshot structure from any other structure that may exist in the pro-
gram. In particular, � identifies the histories of concern to readPair. Each thread keeps
track of two such histories: the self-history, describing the operations that the thread
itself has executed, and the other-history for the operations executed by all the other
threads combined. They are captured by the assertions � s�→ τ and � o�→ τ, respectively.

Thus, the precondition in (4) requires that readPair starts with the empty self-
history, i.e., the calling thread has not performed any updates to x or y. We show in
Section 3 that the frame rule can be used to relax the requirement, so that readPair
can be invoked by threads with an arbitrary self history. The precondition allows an
arbitrary initial other-history τO. As τO is bound locally in the precondition, we use the
logical variable τ and a conjunct τ � τO to propagate the information about τO into
the postcondition. Because τ and τO are related by inclusion, the precondition is stable
under growth of τO due to interfering threads, according to (i).

The postcondition states that readPair does not perform any changes to x and y; it is
a pure method, thus its self-history remains empty. The main novelty of the specifica-
tion is that the postcondition directly relates the result of readPair to the interference of
the environment, i.e., to the value of τO. This is in contrast to the extant logics, which do
not keep track of the other component, and hence cannot specify readPair as directly.
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In particular, the postcondition says that τO[t] = 〈res.1, res.2,−〉, i.e., that the compo-
nents of the returned pair res appear in the environment history. Since according to the
property (i) above, the histories only store valid snapshots, the resulting pair must be a
valid snapshot too. In other words, readPair behaves as if it read x and y atomically, at
time t. Moreover, τ ≤ t, i.e., the read occurred after readPair was invoked.

The specification pattern whereby a logical variable τ names the initial history of the
environment is very common, so we streamline it by introducing the following notation.

� ↪→ (τS , τO , τ) =̂ �
s�→ τS ∧ � o�→ τO ∧ τ � τS ·∪ τO (5)

Proof outline. Figure 2 contains the proof outline for readPair, which we discuss next.
The relation τ � τO is folded into the definition of � ↪→ (empty, τO, τ). Lines 1 and 3
abbreviate the precondition in (4). The readX method has the following spec:
{
� ↪→ (empty,−, τ)

}
readX()

{
∃τO t. � ↪→ (empty, τO , τ) ∧ τ ≤ t ∧ τO[t] = 〈res.1,−, res.2〉

}

Since the “initial” other-history is bounded by τ in the precondition, and the “final” τO
may only grow, we require τ ≤ t in the postcondition to ensure that we will not get a
value from the history, which has “expired” before the call to readX. Thus in line 5 of
the proof, we infer the existence of the history τ1 and time stamp t1 ≥ τ, such that the
cx and vx appear in τ1 at the time t1. Similarly, readY has the spec:
{
� ↪→ (empty,−, τ)

}
readY()

{
∃τO t. � ↪→ (empty, τO , τ) ∧ τ ≤ t ∧ τO[t] = 〈−, res.1,−〉

}

Fig. 2. Proof outline for readPair

1 { � ↪→ (empty,−, τ) }
2 readPair():A × A {
3 { � ↪→ (empty,−, τ) }
4 (cx, vx) <- readX();

5
{
� ↪→ (empty, τ1, τ) ∧ τ ≤ t1 ∧ τ1[t1] = 〈cx,−, vx〉

}
6 (cy, _) <- readY();

7

⎧⎪⎪⎨⎪⎪⎩
� ↪→ (empty, τ2, τ) ∧ τ ≤ t1 ≤ t2 ∧ vx ≤ v ∧
τ2[t1] = 〈cx,−, vx〉 ∧ τ2[t2] = 〈c, cy, v〉

⎫⎪⎪⎬⎪⎪⎭
8 (_, tx) <- readX();

9

⎧⎪⎪⎨⎪⎪⎩
� ↪→ (empty, τ3, τ) ∧ τ ≤ t1 ≤ t2 ≤ t3 ∧ vx ≤ v ≤ tx ∧
τ3[t1] = 〈cx,−, vx〉 ∧ τ3[t2] = 〈c, cy, v〉 ∧ τ3[t3] = 〈−,−, tx〉

⎫⎪⎪⎬⎪⎪⎭
10 if vx == tx

11
{
� ↪→ (empty, τ3, τ) ∧ τ ≤ t2 ∧ cx = c ∧ τ3[t2] = 〈cx, cy, v〉

}
12 then return (cx, cy);

13 { ∃τO t. � ↪→ (empty, τO , τ) ∧ τ ≤ t ∧ τO[t] = 〈res.1, res.2,−〉 }
14 else readPair();}

15 { ∃τO t. � ↪→ (empty, τO , τ) ∧ τ ≤ t ∧ τO[t] = 〈res.1, res.2,−〉 }

To obtain line 7, instantiate τ with
τ1 in the spec of readY. This de-
rives the existence of τ2, t2, c and
v, such that � ↪→ (empty, τ2, τ1),
τ1 ≤ t2, and τ2[t2] = 〈c, cy, v〉.
Because t1 ∈ dom(τ1), it must
be that t1 ≤ t2. Moreover, be-
cause τ � τ1 � τ2, we further
obtain � ↪→ (empty, τ2, τ), and
τ ≤ t2, and lifting from line 5,
τ2[t1] = 〈cx,−, vx〉. Because t1, t2
appear in the same history τ2, with
versions vx and v, respectively, by
property (iii), vx ≤ v. Similarly,
instantiating τ in the spec of readX
with τ2, and invoking (iii), derives
line 9 of the proof outline, and in
particular vx ≤ v ≤ tx.

From this property, if vx = tx

in the conditional on line 10, it
must be that vx = v, and thus by
(ii), cx = c. Substituting c by cx in line 9 gives us τ3[t2] = 〈cx, cy, v〉, which, af-
ter (cx, cy) are returned in res, obtains the postcondition of readPair. Otherwise, if
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vx � tx in the conditional 10, we perform the recursive call to readPair. The precondi-
tion for the call is � ↪→ (empty,−, τ), which is clearly met in line 9, so the postcondition
immediately follows.

Monolithic histories. We compare the spec (4) with an alternative spec where the his-
tory is not split into self/other portions, but is kept monolithically as a joint (or shared)
state. We use the predicate � j�→ τ to specify such state:

{
∃τO . �

j�→ τO ∧ τ � τO
}
readPair()

{
∃τO t. �

j�→ τO ∧ τ � τO ∧
τ ≤ t ∧ τO[t] = 〈res.1, res.2,−〉

}
(6)

Note that the spec (6) imposes no restrictions on the growth of τO (unlike (4) which
keeps the self history empty). Thus, (6) is weaker than (4), as it allows more behaviors.
In particular, it can be ascribed to any program which, in addition to calling readPair,
also modifies x and y. This substantiates our claim from Section 1 that the self/other
dichotomy is required to prevent history-based specs from losing precision. We provide
further evidence for this claim in Section 4, where we show that subjective specs for
stacks generalize the sequential canonical ones (1). The latter can be derived from the
former by restricting τO to be the empty history. Such a restriction is not possible if the
history is kept monolithic.

3 Background: A Review of FCSL

In this section we review the relevant aspects of the previous work on Fine-grained
Concurrent Separation Logic (FCSL) [22]. We explain FCSL by showing how it can be
specialized to our novel contribution of specifying concurrent objects by means of his-
tories. FCSL has been previously implemented as a shallow embedding in Coq; thus our
assertions will freely use Coq’s higher-order logic and datatype definition mechanism.

FCSL is a Hoare logic, generalizing CSL, hence its assertions are predicates on state.
But unlike in CSL where state is a heap, in FCSL state may consist of a number of
labeled components (sometimes dubbed as “regions” or “islands” in the literature [6,
28,31]), each of which may represent state by a different type. If the type used by some
label is non-heap, then that label encodes auxiliary state, used for logical specification,
but erased at run time. For example, histories are an auxiliary state identified by the
label � in the atomic snapshot example. If we had a program which used two different
atomic snapshot structures, we may label these by �1 and �2, etc.

3.1 Subjectivity

The state recorded in labels is further divided across another orthogonal axis – owner-
ship. Each label identifies three different chunks of state: self, joint and other portion.
The self portion is private to the specified thread, and cannot be accessed by the other
threads. Dually, other is private to the environment threads, and cannot be accessed by
the one being specified. Finally, the joint section is shared and can be accessed by ev-
eryone. The self and other portions of any given label have to belong to a common PCM
(the joint portion, though, is not required to be a PCM element, as it is not a subject of a
split between threads, as we will see below), and are often combined together by means
of the • operation of that PCM. Of course, different labels can use different PCMs, and,
therefore, the points-to assertions are implicitly parametrized with a PCM type.
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The FCSL assertions reflect the division across these axes. We have already illus-
trated the assertions � s�→ v, � j�→ v and � o�→ v, which identify the self/joint/other compo-
nent stored in the label � of the state. These three basic assertions, constraining only
one state component correspondingly (and leaving the two other unconstrained), can
be, therefore, combined by the usual propositional connectives, such as ∧ and ∨, as we
have already shown in Section 2. FCSL further provides two connectives that generalize
the separating conjunction ∗ from separation logic, along the two axes of state splitting.
We next illustrate the subjective separating conjunction �, and defer the discussion of
the resource separating conjunction ∗ until additional technical material has been intro-
duced. The formal definitions of all the connectives can be found in [27, Appendix A].
The subjective conjunction � models the division of state between concurrent threads
upon forking and joining. In particular, the parallel composition rule of FCSL is:

{p1} c1 {q1}@U {p2} c2 {q2}@U
{p1 � p2} c1 ‖ c2 {q1 � q2}@U

(7)

IgnoringU and the result types of c1 and c2 for now, we describe how � works. In this
rule, it splits the pre-state of c1 ‖ c2 into two parts, satisfying p1 and p2 respectively. The
parts contain the same labels, and equal joint portions, but the self and other portions
are recombined to match the thread-relative views of c1 and c2. Concretely, in the case
of one label �, with a PCM U and values a, b, c ∈ U, we have the following implication.

� s�→ a • b ∧ � o�→ c =⇒ (� s�→ a ∧ � o�→ b • c) � (� s�→ b ∧ � o�→ a • c) (8)

Thus, if before the fork, the self-state of the parent thread contained a•b, and the other-
state contained c, then after the fork, the children will have self-states a and b, and the
other-states b • c and a • c, respectively. In the opposite direction:

(� s�→ a ∧ � o�→ c1) � (� s�→ b ∧ � o�→ c2) =⇒
∃c. c1 = b • c ∧ c2 = a • c ∧ � s�→ a • b ∧ � o�→ c

(9)

That is, if the state can be subjectively split between two child threads so that their
other-views are c1, c2 (with self-views a, b), then there exists a common c—the other-
view of the parent thread—such that c1 = b • c and c2 = a • c. In this sense, the rule
for parallel composition models the important effect that upon a split, c1 becomes an
environment thread for c2, and vice-versa.

There are a few further equations that illustrate the interaction between the different
assertions. First, every label contains all three of the self/joint/other components. Thus:

�
s�→ a ⇐⇒ �

s�→ a ∧ � j�→ − ∧ � o�→ − (10)

and similarly for � j�→ a and � o�→ a. Also:

�
s�→ a • b ⇐⇒ �

s�→ a � � s�→ b (11)

which is provable from (8), (9) and (10).
FCSL also provides a frame rule, obtained as a special case of parallel composition

when c2 is the idle thread, and p2 = q2 = r is a stable predicate, as usual in fine-grained
logics [6, 8, 33].

{p} c {q}@U
{p � r} c {q � r}@U r stable underU (12)
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We illustrate the frame rule by deriving from the readPair spec (4) a relaxed spec
which allows readPair to apply when the calling thread has non-trivial self history τS:

{ � ↪→ (τS ,−, τ) } readPair()
{
∃τO t. � ↪→ (τS , τO , τ) ∧ τ ≤ t ∧

(τS ·∪ τO)[t] = 〈res.1, res.2,−〉

}
(13)

Note that (13), when compared to (4), changes the self component from empty to τS,
but also τO[t] changes into (τS ·∪ τO)[t]. The latter accounts for the possibility that the
returned snapshot may have been recorded in τS as a consequence of the thread itself
changing x or y, immediately before invoking readPair.

The spec (13) derives from (4) by framing with the predicate r = � s�→ τS. r is trivially
stable, as it describes self-state, which is inaccessible to the interfering threads. We only
show how to weaken the framed postcondition of (4) to the postcondition in (13); the
preconditions can be strengthened similarly. Abbreviating τ � τO ∧ τ ≤ t ∧ τO[t] =
〈res.1, res.2,−〉 by P(τO), which is a label-free (i.e., pure) assertion, and thus commutes
with �, we get:

(� s�→ empty ∧ � o�→ τO ∧ P(τO)) � (� s�→ τS) =⇒ by (10) and P-pure
(� s�→ empty ∧ � o�→ τO) � (� s�→ τS ∧ � o�→ −) ∧ P(τO) =⇒ by (9)
∃τ′O . τO = τS ·∪ τ′O ∧ �

s�→ τS ∧ � o�→ τ′O ∧ P(τO) =⇒ by substituting τO
∃τ′O . � ↪→ (τS , τ′O , τ) ∧ τ ≤ t ∧ (τS ·∪ τ′O)[t] = 〈res.1, res.2,−〉.

Intuitively, in (13) the frame history τS is “subtracted” from the other-history τO of (4),
and moved to the self-history, illustrating one important difference between the frame
rule of FCSL and that of CSL. In FCSL, the frame is always subtracted from the other
component, whereas in CSL it simply materializes out of nowhere. On the flip side, CSL
does not consider the other component, and cannot easily express a spec such as (4).

3.2 Concurroids

We now turn to the componentU of the FCSL specs, which is called concurroid. Con-
curroids are responsible for enforcing the invariants on the evolution of the state. For
example, the properties (i)–(iii) in Section 2 will be enforced by defining an appropriate
concurroid to govern the pair-snapshot structure. Thus, concurroids formally represent
concurrent data structures, over which the programs operate.

A concurroid is (a form of) a state transition system (STS). It is a quadruple U =
(L,W, I, E) where: (1) L is a set of labels, identifying different data structures; (2) W is
a set of admissible states (alternatively, an FCSL assertion); (3) I is the set of internal
transitions on W; (4) E is a set of pairs (α, ρ), where α is a heap-acquiring and ρ is
a heap-releasing transition, collectively called external transitions. The internal transi-
tions are relations on states, describing how a state of the STS evolves in one atomic
step. The external transitions serve for transfer of state ownership. The concurroids
thus bound the moves of the concurrent programs that operate on a data structure, and
therefore represent a structured form of rely/guarantee transitions from Rely/Guarantee
logics [8, 9, 18, 33, 34]. We next illustrate concurroids by example.

Pair-snapshot concurroid. Given a label �, pointers x, y, and the type A of the ac-
cessible contents of x and y, the concurroid for the pair-snapshot structure is S =
({�},WS, {wrx,wry, id}, ∅). The set of states WS is described below. We assume that
τS, τO are histories, cx, cy : A and vx, vy : nt, and are implicitly existentially quantified.



342 I. Sergey, A. Nanevski, and A. Banerjee

WS =̂ �
s�→ τS ∧ �

j�→ (x �→ (cx, vx) ·∪ y �→ (cy, vy)) ∧ � o�→ τO ∧
τS , τO satisfy (ii) − (iii), τS ·∪ τO is continuous, and
if t = lst(τS ·∪ τO), then (τS ·∪ τO)[t] = (cx, cy, vx)

A state in WS consists of the auxiliary part, which are histories in the self and other
components, and concrete part, which is a joint heap, storing pointers x and y, with
accessible contents cx, cy, and version numbers vx, vy, respectively.3 It requires several
additional properties of the auxiliary histories. First, the combined history τS ·∪ τO is
continuous; that is, adjacent timestamps have matching states. Second, the last time-
stamp in τS ·∪ τO correctly reflects what is stored in x and y. Finally, WS also bakes
in the properties (ii) − (iii) required in the proof outline of readPair, so the specifica-
tion (4) and its proof were, in fact, carried out in the concurroid context @S, which was
omitted.

The internal transitions wrx and wry synchronize the changes to x and y with histo-
ries. The transitions operate only on self and joint portions of the state, and the other-
portion, τO, is fixed (cf. notation (10)). That is, the transitions essentially define the
concurroid’s Guarantee. In both transitions, tτS

·∪τO
fresh is the smallest timestamp unused by

τS and τO.

wrx =̂ �
j�→ (x �→ (cx, vx) ·∪ y �→ (cy, vy)) ∧ � s�→ τS �

�
j�→ (x �→ (c′x, vx + 1) ·∪ y �→ (cy, vy) ∧ � s�→ τS ·∪ tτS

·∪τO
fresh �→ (〈cx , cy, vx〉, 〈c′x, cy, vx + 1〉)

wry =̂ �
j�→ (x �→ (cx, vx) ·∪ y �→ (cy, vy)) ∧ � s�→ τS �

�
j�→ (x �→ (cx, vx) ·∪ y �→ (c′y, vy + 1) ∧ � s�→ τS ·∪ tτS ·∪τOfresh �→ (〈cx , cy, vx〉, 〈cx, c′y, vx〉)

The first conjunct after� in wrx (and wry is similar) allows that the version number
of x can only increase by 1 in an atomic step. The second conjunct shows that simul-
taneously with the change of x, the snapshot of the changed state is committed to the
self-history of the invoking thread. Together, wrx and wry ensure that histories only
grow, and only by adding valid snapshots; i.e., precisely the property (i) from Section 2.
U also contains the identity transition id, whose presence enables programs that

do not modify the state at all. In the pair-snapshot example, these are the readX and
readY actions, and the readPair method. The pair-snapshot example does not involve
ownership transfer, so S has no external transitions, but these will be important in the
forthcoming examples.

Entanglement and private heaps. Larger concurroids may be constructed out of smaller
ones. A particularly common construction is entanglement [22]. Given concurroidsU
andV, the entanglementU�V is a concurroid whose state space is the Cartesian prod-
uct WU ×WV, and the transitions allow theU portion to perform aU transition, while
the V portion remains idle, and vice-versa. Additionally,U and V portions can com-
municate to transfer a heap between themselves, by having one take a heap-acquiring,
and the other simultaneously taking a heap-releasing transition.

The most common is the entanglement with the concurroid P of private heaps [27,
Appendix B]. Entangling with P lets the concurroids temporarily move heaps to a
private section, via the communication discussed above, where threads may then per-
form the customary operations of reading, writing, allocating, and deallocating pointers,

3 Notice the overloading of the �→ notation for singleton heaps and histories.
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without interference.4 P comes with a dedicated label pv. As an illustration, the follow-
ing assertion may describe one possible state in the state space of the entanglement
P � S with the snapshot concurroid.

pv s�→ (z �→ 0) ∗ � j�→ (x �→ (cx, vx) ·∪ y �→ (cy, vy))

The � j�→ − portion describes the part of the state coming from S, which is joint, con-
taining pointers x and y, as explained before. The pv s�→ (z �→ 0) describes the part of the
state coming from P. In this case, it contains a heap with a single pointer z. The heap is
private, i.e., owned by the self thread, so z cannot be modified by other threads. Notice
that the assertions about pv and � are separated by the resource separating conjunction
∗, which splits the state into portions with disjoint labels and heaps. In this particular
case, it signifies that the labels pv and � are distinct, as are the pointers z, x and y.

3.3 Extending and Hiding Concurroids

Concurroids represent concurrent data structures; thus it is important to be able to intro-
duce and eliminate them. FCSL provides two programming constructors (both no-ops
operationally), and corresponding inference rules for that purpose. For completeness,
we introduce them here, but postpone the illustration until Section 4.

The injection rule shows that if a program is proved correct with respect to a smaller
concurroidU, then it can be extended toU �V, without invalidating the proof.

{p} c {q}@U
{p ∗ r} [c] {q ∗ r}@U �V r ⊆ WV stable underV (14)

This is a form of framing rule, along the axis of adding new resources. The operator
∗ splits the state into portions with disjoint labels, and the side-condition that r ⊆ WV
forces r to remove the labels of the concurroidV, so that c is verified wrt. the labels of
U. The program constructor [−] is a coercion fromU toU �V.

Hiding is the ability to introduce a concurroidV, i.e., install it in a private heap, for
the scope of a thread c. The children forked by c can interfere onV’s state, respecting
V’s transitions, but V is hidden from the environment of c, To the environment, V’s
state changes look like changes of the private heap of c. Upon termination of c, V is
deinstalled.

{pv s�→ h ∗ p} c {pv s�→ h′ ∗ q}@(P �U) �V
{Ψ g h ∗ (Φ (g)−−∗ p)} hideΦ,g c {∃g′.Ψ g′ h′ ∗ (Φ (g′)−−∗ q)}@P �U

where Ψ g h = ∃k:hep. pv s�→ h ·∪ k ∧Φ (g) erases to k (15)

Since installing V consumes a chunk of private heap, the rule requires the overall
concurroid to support private heaps, i.e., to be an entanglement of P with an arbitrary
U. In programs, we use the coercion hide c to indicate the change from (P �U) �V
to P �U. IfU is of no interest, one can take it to be the empty concurroid E, which is
a right unit for � [27, Appendix B.4].

4 Our Coq proofs actually use two different concurroids, one for reading/writing, another for
allocation/deallocation, which we entangle to provide all four operations. For simplicity, here
we assume a monolithic implementation.
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The annotationΦ is a predicate; it describes an invariant that holds within the scope
of hide, parametrized by an argument. It is subject to a number of conditions [27, Ap-
pendix D.3]. g is the initial argument, so Φ(g) holds in the initial state into which
V is placed upon installation. The rule guarantees that the ending state of c satisfies
∃g′. Φ(g′). The surrounding connectives ∗ and −−∗ merely mediate between U, V, and
the erasure ofV to heaps. We explain the precondition, and the postcondition is similar.

In the precondition, ∗ separates private heaps from U, and Ψ requires that every
state in Φ(g) obtains the same private heap when the auxiliary fields are erased. −−∗ is
inherited from separation logic. Φ(g)−−∗ p says that if the initial state (which is in WU)
is extended with a state from Φ(g) (which is in WV), then the result is a state satisfying
p. In other words, if a state satisfying Φ(g) is installed in the initial state of c, while its
heap footprint is removed from the private heaps, then c’s precondition is satisfied.

4 Treiber Stack and Its Client

In this section we illustrate how histories can be used to specify and verify the fine-
grained data structure of Treiber stack [30]. We also show how the specs can be used
by clients, where they provide an abstraction that facilitates client reasoning as if the
structure were coarse-grained.

Fig. 3. Treiber stack methods

1 push(e : A): Unit {
2 p <- alloc();
3 fix loop() {
4 p1 <- readSentinel();
5 write(p, (e, p1));
6 ok <- tryPush(p1, p);
7 if ok then return ();
8 else loop();}();
9 }

1 pop(): option A {
2 p <- readSentinel();
3 if p == null
4 then return None;
5 else {
6 (e,p1) <- readNode(p);
7 ok <- tryPop(p,p1);
8 if ok then return Some e;
9 else pop();}}

The Treiber stack works as follows. Physically,
the stack is kept as a singly-linked list in the heap,
with a sentinel pointer snt pointing to the stack top
p1. The call to push(e) allocates a node p that is sup-
posed to go to the top of stack, and attempts to link
the node into the stack, by changing the sentinel to
p. Clearly, this operation should not succeed if some
interfering thread has in the meantime changed the
top by pushing or popping elements. Thus push ap-
plies a CAS read-modify-write operation [15], which
atomically reads snt, compares its contents with p1,
and if the two are equal (i.e., if the stack’s top has not
changed), writes p into snt, thus en-linking the new
top. Otherwise, push is restarted. pop() behaves sim-
ilarly. It reads the first node p, pointed to by snt, and
obtains its value e and pointer p1 to the next node.
Then it tries to de-link p, by changing the sentinel
to p1 using a CAS to identify interference. Note that
pop does not deallocate the de-linked node p (this is
enforced by the design of the appropriate concurroid as we will soon see), which thus
remains in the data structure as garbage. This is by design, to prevent the ABA prob-
lem [15, §10]: if p is deallocated, then some other push may allocate it again, and place
it back on top of the stack. A procedure that observed p on top of the stack, but has not
performed its CAS yet may thus be fooled as follows. Its CAS may encounter p on top
of the stack, and proceed as if the stack had not changed, producing invalid results.

The described code of the Treiber stack operations is given in Figure 3, where we
used descriptive names for the atomic operations. Instead of CAS, we used tryPush and
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tryPop, and instead of pointer read, we used readSentinel and readNode. The reason for
the descriptive names is that the atomic operations in FCSL operate not only on concrete
heap pointers, but on auxiliary state as well. In the particular case of Treiber, the aux-
iliary state will be histories, which tryPush and tryPop change in different ways, even
though they both operationally perform a CAS. Similarly, readSentinel and readNode
deduce different facts about the histories, even though they both simply read from a
pointer. We elide here any further discussion on how the atomic operations are spec-
ified and verified in FCSL (it can be found in [22] and [27, Appendix C]). Instead,
whenever needed, we simply state the Hoare specs for the atomics and proceed to use
them in proof outlines, as if the atomics were ordinary procedures. Of course, our Coq
files contain proofs that all such Hoare triples are valid.

Treiber concurroid. Given a label tb, the sentinel pointer snt, and the type A of the stack
elements, the state space of the Treiber concurroid T is described as follows. Its aux-
iliary self/other components are histories τS and τO that store mathematical sequences
l corresponding to the logical contents of the stack at various timestamps. The joint
component contains a heap hs storing a sentinel snt pointing to a linked list, a heap h
implementing the list, and a garbage section grb of de-linked nodes.

WT =̂ ∃τS τO hs . tb
s�→ τS ∧ tb o�→ τO ∧ tb

j�→ hs ∧ I (τS ·∪ τO) hs

I τ hs =̂ ∃p h grb l. hs = (snt �→ p) ·∪ h ·∪ grb ∧ list(p, l, h) ∧
complete(τ) ∧ continos(τ) ∧ stcklike(τ) ∧ τ[lst(τ)] = l

(16)

The auxiliary predicates are:

list(p, l, h) =̂ p = null ∧ l = nil ∧ h = empty ∨
∃e p′ l′ h′. l = e :: l′ ∧ h = p �→ (e, p′) ·∪ h′ ∧ list(p′, l′, h′)

complete(τ) =̂ ∃l0. τ(0) = (l0, l0) ∧ ∀t. t < |dom(τ)| ⇒ t ∈ dom(τ)

stcklike(τ) =̂ ∀t ∈ dom(τ). t > 0 ⇒ ∃l e. τ(t) = (l, e :: l) ∨ τ(t) = (e :: l, e)

In particular: (1) the overall history τS ·∪ τO is complete, i.e. no gaps exist between
timestamps (this property was irrelevant for the pair snapshot structure, but essential
for stacks to ensure the absence of the ABA-problem); (2) aside from the initialization
in timestamp 0, the history only stores events corresponding to pushing or popping,
and (3) the last recorded state in the history captures the current contents of the stack.
For simplicity, we disable reasoning about the structure’s inherent memory leak by not
relating histories to grb in (16).

The transitions of T allow for popping and pushing only.

pop =̂ tb
j�→ snt �→ p ·∪ h ·∪ grb ∧ tb

s�→ τS ∧ h = (p �→ (e, p′) ·∪ h′) ∧ list(p, (e :: l), h) �
tb

j�→ snt �→ p′ ·∪ h′ ·∪ (p �→ (e, p′) ·∪ grb) ∧ tb s�→ τS ·∪ tτS ·∪τOfresh �→ (e :: l, l)

pushp′ ,e,p =̂ tb
j�→ snt �→ p ·∪ h ·∪ grb ∧ tb s�→ τS ∧ list(p, l, h) �

tb
j�→ snt �→ p′ ·∪ (p′ �→ (e, p) ·∪ h) ·∪ grb ∧ tb s�→ τS ·∪ tτS ·∪τOfresh �→ (l, e :: l)

In pop, the sentinel pointer is swapped from used-to-be head p to its next one, p′,
whereas (p �→ −) logically joins the garbage. The transition push describes how a heap
of the shape p′ �→ (e, p), describing the node to be pushed, is acquired and placed at the
top of the stack. It is an external transition, which means it only fires when entangled



346 I. Sergey, A. Nanevski, and A. Banerjee

with a concurroid from which the heap p′ �→ (e, p) can be taken away. In our case,
that will be the concurroidP for private state. Indeed, both transitions preserve the state
invariant I (16). Importantly,T does not have a release transition; once a memory chunk
is in the joint state, it never leaves, capturing that T does not allow deallocation.

Method specs. We give the following history-based specs.

{
pv s�→ empty ∗

tb ↪→ (empty,−, τ)

}
push(e)

{
∃t l. pv s�→ empty ∗

tb ↪→ (t �→ (l, e :: l),−, τ) ∧ τ < t

}
@P � T

{
tb ↪→ (empty,−, τ)

}
pop(){

∃e t l. res = Some e ∧ tb ↪→ (t �→ (e :: l, l),−, τ) ∧ τ < t ∨
∃τO t. res = None ∧ tb ↪→ (empty, τO , τ) ∧ τO[t] = nil

}
@T

(17)

Fig. 4. A proof outline of Treiber’s push method

1 { pv s�→ empty ∗ tb ↪→ (empty,−, τ) }
2 p <- [alloc()];
3 { pv s�→ p �→ − ∗ tb ↪→ (empty,−, τ) }
4 fix loop() {
5 { pv s�→ p �→ − ∗ tb ↪→ (empty,−, τ) }
6 p1 <- [readSentinel()];
7 { pv s�→ p �→ − ∗ tb ↪→ (empty,−, τ) }
8 [write(p, (e, p1))];
9 { pv s�→ p �→ (e, p1) ∗ tb ↪→ (empty,−, τ) }

10 ok <- tryPush(p1, p);

11

{
ok ∧ ∃t l. pv s�→ empty ∗ tb ↪→ (t �→ (l, e :: l),−, τ) ∧ τ < t ∨
¬ok ∧ pv s�→ p �→ (e, p1) ∗ tb ↪→ (empty,−, τ)

}

12 if ok then return ();
13 { ∃t l. pv s�→ empty ∗ tb ↪→ (t �→ (l, e :: l),−, τ) ∧ τ < t }
14 else
15 { pv s�→ p �→ − ∗ tb ↪→ (empty,−, τ) }
16 loop();}();
17 { ∃t l. pv s�→ empty ∗ tb ↪→ (t �→ (l, e :: l),−, τ) ∧ τ < t }

A call to push runs with empty pri-
vate heap and history, thus by fram-
ing, it can run with any private heap
and history. After termination, the
self history is incremented by a sin-
gleton exposing that a push event
has been executed at a time stamp t;
τ < t indicates that the push event
appeared strictly after the events
preceding the call. The spec for pop
is slightly more complicated as pop

checks for stack emptiness, but ulti-
mately proceeds in the similar man-
ner. push works over the entangled
concurroid P � T , as it needs to al-
locate memory; pop works over T
only, as it does not deallocate.

Verification of push and pop im-
plementations relies on the specifications of the atomic actions alloc and write, which
are specific to the P concurroid.

{ pv s�→ empty } alloc() { pv s�→ res �→ − }@P
{ pv s�→ x �→ − } write(x, e) { pv s�→ x �→ e }@P (18)

In Figure 4, we present the proof outline for push (the proof for pop can be found in
the Coq files). It is mostly self-explanatory, so we only point out a few technicalities.
The actions alloc and write have to be explicitly injected into P � T , by means of the
coercion [−], introduced in Section 3. Similarly for readSentinel, whose concurroid is
T . Somewhat surprisingly, the call to readSentinel in line 6 is irrelevant for the (partial)
correctness of tryPush; thus, line 7 does not say anything about p1.5 The proof rule for

5 Though, taking a random p1 here will affect liveness, as push will keep looping until it finds
the chosen p1 at the top of the stack.
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fix allows assuming the spec of a procedure in the proof of the body, and is presented
in [27, Appendix D]. The tryPush action appears in the proof outline with its precise
specification; that is, line 9 contains its precondition, and 11 contains the postcondition,
describing that a successful outcome of tryPush removed a heap from P, moved it to
the joint heap of T , and updated the history, following the push transition.

Recovering sequential specifications. We next show that the subjective spec (17) is a
generalization of the canonical sequential spec (1). In particular, if there is no inter-
ference from other threads, (17) can be reduced to (1). The mechanism for achieving
the reduction relies on the self/other dichotomy, thus substantiating our point that the
dichotomy is important for precise reasoning with histories.

Fig. 5. Proof of sequential spec for push.

1 {∃p h. pv s�→ (snt �→ p ·∪ h) ∧ list(p, l, h)}
2 {Ψ empty empty ∗ (Φ(empty)−−∗ tb ↪→ (0 �→ (l, l),−,−))}
3 hideΦ,empty {
4 { pv s�→ empty ∗ tb ↪→ (0 �→ (l, l),−,−) }
5 push(e);

6

{
∃t l′ . pv s�→ empty ∗
tb ↪→ (0 �→ (l, l) ·∪ t �→ (l′ , e :: l′),−,−)

}
}

7

{
∃τ. Ψ τ empty ∗
(Φ(τ)−−∗∃t l′ . tb ↪→ (0 �→ (l, l) ·∪ t �→ (l′ , e :: l′),−,−))

}

8

{
∃t l′ τ. τ = 0 �→ (l, l) ·∪ t �→ (l′ , e :: l′) ∧
complete(τ) ∧ continos(τ) ∧ Ψ τ empty

}

9 { ∃τ. τ = 0 �→ (l, l) ·∪ 1 �→ (l, e :: l) ∧ Ψ τ empty}
10 { ∃p′ h. pv s�→ (snt �→ p′ ·∪ h ·∪ −) ∧ list(p′ , e :: l, h) }

To this end, we use the hide construc-
tor from Section 3. It introduces a concur-
roid in a delimited scope, and prohibits
the environment threads from interfering
on it. The heap for the introduced con-
curroid is appropriated from the private
heap. In the case of push, we will appro-
priate a heap storing the sentinel and the
linked list of the stack, install the T con-
curroid over this heap, perform push with
interference disabled, then return the heap
back to private heaps. We will derive the
following specification, which is essen-
tially an elaborated version of (1), modulo
the memory leak inherent to Treiber stack
(hence grb in the postcondition).

{ ∃p h. pv s�→ (snt �→ p ·∪ h) ∧ list(p, l, h) }
hideΦ,empty { push(e); }

{ ∃p h grb. pv s�→ (snt �→ p ·∪ h ·∪ grb) ∧ list(p, e :: l, h) }@P
(19)

The self/other dichotomy affords explicit access to other-owned histories, so that we
can define the following predicate Φ stating that other-histories remain empty within
the scope of hide.

Φ(τ) =̂ ∃l. tb s�→ ((0 �→ (l, l)) ·∪ τ) ∧ tb
o�→ empty ∧WT (20)

Inside hide, the stack is initialized (the history contains the singleton 0 �→ (l, l)), there
is no interference (tb o�→ empty), and the state is a valid one for T (i.e., it is captured
by the definition (16)).

One can prove that if the histories are erased from any state in Φ(τ), the remaining
concrete heap consists of snt and the stack. Moreover, the contents of the stack is the
last entry of τ (or l if τ is empty). In other words, using Ψ (15), defined in Section 3:

Ψ τ empty ⇐⇒ ∃p h. pv s�→ (snt �→ p ·∪ h ·∪ −) ∧ list(p, l′, h) (21)

where l′ = τ[lst(τ)] (or l′ = l if τ is empty).
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Fig. 6. A parallel stack-based producer/consumer program
1 produce(n: nt, i: nt) {
2 if i == n
3 then return ();
4 else {
5 e <- ap[i];
6 pushtb(e);
7 produce(i + 1);
8 }
9 }

1 consume(n: nt, i: nt) {
2 if i == n
3 then return ();
4 else {
5 r <- poptb();
6 if r == Some e
7 then {
8 ac[i] := e;
9 consume(i + 1);}

10 else consume(i);}}

1 exchange(n: nt): Unit {
2 hideΦ,empty {
3 produce(n, 0); || consume(n, 0);
4 }
5 }

The derivation is in Figure 5, and we comment on the main points. In line 2, the right
conjunct uses the property inherent in Ψ , that Φ(empty) erases to the heap storing l.
Thus, this is the l that appears in the consequent of −−∗. In line 7, the second conjunct
implies that the history τ, whose existence obtains from the rule for hiding (15), must
be the self-history returned by push. Hence, it is equal to 0 �→ (l, l) ·∪ t �→ (l′, e :: l′) for
some t and l′. But, we also know that τmust be complete (no gaps between timestamps)
and continuous. Hence t = 1 and l′ = l in line 9, which derives the postcondition by (21).

A stack client. We next illustrate how the specs (17) are exploited by the concurrent
clients of Treiber stack to abstract from the fine-grained nature of Treiber’s implemen-
tation. The example code in Figure 6 presents two procedures, produce and consume,
that communicate via a common Treiber stack tb. produce pushes onto the stack the
elements of its array ap in order, whereas consume pops from the stack, to fill its array
ac. Both arrays are of equal size n. The procedure exchange runs produce and consume

concurrently. We will prove that after exchange terminates, ap has been copied to ac,
modulo element permutation. The inference will only use the specs (17) but not the code
of stack methods, thus obtaining a coarse-grained view of effects provided by histories.

We use several auxiliary predicates. First, Arrn(a, l, h) defines an array of size n as
a sequence of consecutive pointers in the heap h, starting from pointer a, and storing
elements of the list l:

Arrn(a, l, h) =̂ | l | = n ∧ h = ·
⋃

i<n(a + i) �→ l(i) (22)

Next, the predicates Pshed and Popped extract the lists of pushed and popped elements
from a stack history τ.

Pshed(τ, l) =̂ l =/mset {{e | ∃t l. t �→ (l, e :: l) ∈ τ ∨ 0 �→ (l, l) ∈ τ ∧ e ∈ l}}
Popped(τ, l) =̂ l =/mset {{e | ∃t l. t �→ (e :: l, l) ∈ τ}}

(23)

The notation {{−}} stands for multisets, and =/mset is multiset equality, which we con-
flate with list equality modulo permutation. We can now ascribe the following specs to
produce and consume:{

Pr(hp, l<i) ∧ Arrn(ap, l, hp)
}
produce(n, i)

{
Pr(hp, l) ∧ Arrn(ap, l, hp)

}
{
∃hc l. Cn(hc, l<i) ∧ Arrn(ac, l, hc)

}
consume(n, i)

{
∃hc l. Cn(hc, l) ∧ Arrn(ac, l, hc)

} (24)

both over the P � T concurroid. Pr and Cn are defined as follows:

Pr(hp, l) =̂ pv s�→ hp ∗ tb s�→ τS ∧ Pshed(τS , l) ∧ Popped(τS, nil)

Cn(hc, l) =̂ pv s�→ hc ∗ tb s�→ τS ∧ Pshed(τS, nil) ∧ Popped(τS , l),
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so they essentially describe the producer/consumer loop invariants; l<i is a prefix of l
for elements with indices less than i. The specs (24) show that produce pushes all the
elements from ap, and consume fills ac with elements of some sequence of the length n.
The proofs of both specs (available in our Coq development) derive easily from (17)
after these are framed to allow running in arbitrary initial self heap and history.

The interesting part of the example is proving exchange, where we compose produce

and consume in parallel, and then use hiding to infer that the ap and ac arrays in the end
contain the same elements, modulo permutation. The proof outline is in Figure 7, and
it relies on the following important lemmas about histories.

Lemma 1. Pshed(τ1, l1) ∧ Popped(τ1, nil) ∧ Popped(τ2, l2) ∧ Pshed(τ2, nil) =⇒
Pshed(τ1 ·∪ τ2, l1) ∧ Popped(τ1 ·∪ τ2, l2).

Lemma 2. If complete(τ) and stcklike(τ) then Pshed(τ, l1) ∧ Popped(τ, l2) ∧
|l1| = |l2| =⇒ l1 =/mset l2.

Fig. 7. Proof outline for producer/consumer

{
pv s�→ hp ·∪ hc ·∪ snt �→ null ∧ Arrn(ap, l, hp) ∧ Arrn(ac,−, hc)

}
hideΦ,empty {{

pv s�→ hp ·∪ hc ∧ Arrn(ap, l, hp) ∧ Arrn(ac,−, hc) ∗
tb s�→ 0 �→ (nil, nil) ∧ tb o�→ empty

}
{(

pv s�→ hp ∧ Arrn(ap, l, hp)
∗ tb s�→ 0 �→ (nil, nil)

)
�
(
pv s�→ hc ∧ Arrn(ac,−, hc)

∗ tb s�→ empty

)}
{
Pr(hp , l<0) ∧ Arrn(ap, l, hp)

} {
∃l′ . Cn(hc , l′<0) ∧ Arrn(ac, l′ , hc)

}
produce(n, 0); consume(n, 0);{

Pr(hp, l) ∧ Arrn(ap, l, hp)
} {∃h′c l′ . Cn(hc , l′) ∧ Arrn(ac, l′ , h′c)

}
{(
Pr(hp, l) ∧ Arrn(ap, l, hp)

)
�
(
∃h′c l′. Cn(hc , l′) ∧ Arrn(ac, l′, h′c)

)}
{

∃h′c l′ . pv s�→ hp ·∪ hc ∧ Arrn(ap, l, hp) ∧ Arrn(ac, l′ , h′c)
∗ ∃τS, tb s�→ τS ∧ Pshed(τS , l) ∧ Popped(τS , l′) ∧ tb o�→ empty

}
}{

∃h′c l′. pv s�→ hp ·∪ h′c ·∪ (snt �→ −) ·∪ − ∧
Arrn(ap, l, hp) ∧ Arrn(ac, l′, h′c) ∧ l =/mset l′

}

The proof outline in Figure 7
starts in the concurroid P, which
extends to P � T in the scope
of hide. The invariant Φ of hide
is the one we already used, de-
fined in (20). It introduces a Treiber
stack structure with an initial his-
tory 0 �→ (nil, nil). Also, the heaplet
snt �→ null with the sentinel
pointer has been donated to the
state space of the Treiber stack, so
it is removed from the private heap.
Next, the self-heap and history are
split via �; the parts are given to
produce and consume, respectively,
according to the parallel compo-
sition rule (7). Next, we reason
out of specifications (24) for pro-
ducer/consumer and combine the
subjective views back via � upon
joining of the parallel threads: we thus derive that the contents of ap and ac, are l
and l′ respectively. By unfolding the definitions of Pr and Cn, and using Lemma 1, we
derive Pshed(τS, l) ∧ Popped(τS, l′), where τS is the combined history of produce and
consume. Finally, τS is complete and stack-like (since other-history is provably empty
thanks to hiding). Moreover, both l and l′ have size n, as ensured by the assertion Arrn
constraining both of them. Thus, in the last assertion, we can use Lemma 2 to obtain the
desired equality of l and l′ modulo permutation. Note also that the sentinel pointer is
returned back to the private heap, along with the garbage heap (existentially abstracted
by the − placeholder).
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5 Flat Combining
This section shows how PCMs in general, and histories in particular, can formalize the
concurrent algorithm design pattern of helping, whereby one concurrent thread may
execute code on behalf of another. We use Hendler et al.’s flat combining algorithm as
an example [14]. Unlike other proofs of this algorithm [4, 31], we do not require any
additional logical infrastructure aside from ordinary auxiliary state, represented by a
PCM [19, 22]. We verify the algorithm wrt. a generic PCM, and then instantiate with
the PCM of histories. Thus, our proof is usable even in examples where the specs do
not rely on histories.

The flat combiner structure (FC) generalizes a coarse-grained lock [22,23,25]. In the
case of a lock, threads acquire exclusive access to the shared resource protected by the
lock, in succession. With the flat combiner, threads register the work that they want to
perform over the shared resource. The lock-acquiring thread (aka. the combiner) then
executes all the registered work, so the other threads do not need to compete for the
lock anymore. This reduces the contention on the lock, and improves performance.

Fig. 8. Flat combining algorithm.
1 flatCombine(f: A→ B, x: A): B {
2 reqHelp(tid, f, x);
3 fix loop() {
4 locked <- tryLock();
5 if locked then {
6 for i∈{0, . . . , n − 1} {
7 req <- readReq(i);
8 if req == Req fi xi then {
9 w <- fi(xi);

10 doHelp(i, w);
11 }}
12 unlock();}
13 rc <- tryCollect(tid);
14 if rc == Some w
15 then return w;
16 else loop();}();}

The higher-order flatCombine procedure
(Figure 8) works as follows.6 It takes as input a
sequential function f and argument x, and regis-
ters the invoking thread for help with executing
f x over the shared resource. It does so by stor-
ing Req f x into the shared publication array, at
index tid (line 2), where tid is the id of the invok-
ing thread. It next enters the main loop (line 3) and
tries to acquire the lock to the shared heap (line 4).
The acquiring thread becomes a combiner (line 5);
it traverses the publication array, where the global
variable n bounds the number of threads, check-
ing for help requests (lines 6–11). For each request
found (which can arrive even while the combiner
holds the lock), the combiner executes the appro-
priate function with the provided arguments (line 9) over the shared heap. It informs the
requesting thread i of the result w, by writing Resp w into the slot i of the publication
array (line 10). After the traversal, the combiner releases the lock (line 12). Finally, the
thread (combiner or otherwise), checks the publication array to see if it has been helped
(line 13). If so, it extracts the result w from its slot in the publication array, and fills the
slot with nit (all line 13). The result of the help, if one exists, is returned in line 15.
Otherwise, the thread loops for help again.

To supply the intuition behind the spec for FC, we first review how ordinary locks
work with auxiliary state, in the subjective setting of FCSL [22]. In CSL [23], and the
Owicki-Gries method [25], a lock comes with a resource invariant I that restricts the
heap of the shared resource. Such restriction implicitly assumes a presence of “hard-
coded” auxiliary state, describing the contents of the corresponding shared heap (the

6 For simplicity, we consider a modified version of the original algorithm. In particular, (a) we
use an array rather than a priority queue for registration of help requests, and (b) we do not
expunge help requests that have not been served for sufficiently long time.
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explicit parametrization over the auxiliary state, which we make use of here, is ex-
plained in the introduction of [19]). When the lock is not taken, the shared heap satisfies
I. When the lock is taken, the heap is in the exclusive possession of the acquiring thread,
which can invalidate I, but has to restore it before releasing the lock. The subjective set-
ting is similar, except the values of the auxiliary state are drawn from a PCM U, and
specs keep track of two values gS and gO, describing how much the thread (self ) and
its environment (other) have contributed to the resource, respectively. When the lock is
free, the heap of the shared resource satisfies I(gS • gO). When the lock is released by
a thread, the thread may update its gS by some value gΔ, reflecting that its contribution
to the resource changed. Thus, if before locking, the resource satisfied I(gS • gO), after
unlocking it will satisfy I(gS • gΔ • gO), as shown by examples in Section 3 of [22].

The setup of the flat combiner is similar, but in addition to gS and gO, FC also keeps
an array gp storing a U-value for each thread. The entry gp[i] signifies how much the
thread i has been helped by the combiner. If gp[i] = gΔ is non-unit, i can collect the help
by joining gΔ to its own gS, and setting gp[i] to the unit � of U, after which it can ask
for help again. Thus, the overall relation between the auxiliary state and the resource
heap, when the lock is free, is captured by the invariant I (

⊙n
i=1 gp[i] • gS • gO).

5.1 Flat Combiner State and Transitions

The states of the FC concurroid F are described by the assertion:

WF =̂ fc s�→ (tS,mS , gS) ∧ fc o�→ (tO,mO, gO) ∧ fc
j�→ 〈lk �→ b ·∪ hp ·∪ hr , gp〉 ∧ ∃lp. Arrn(ap, lp, hp)

The auxiliary state in the self/other components consists of the following. tS and tO are
sets of thread ids, which form a PCM under disjoint union.7 mS and mO are elements
of the mutual exclusion set O = {���Own,Own} [19, 22] and record whether the lock lk is
owned by the thread, or the environment. O is a PCM under the operation defined as
x •���Own =���Own • x = x, with Own • Own undefined. The unit element is���Own, and the
undefinedness of Own • Own means that two threads cannot simultaneously own the
lock. gS and gO are elements of a generic PCM U, as described above. The self/other
triples form a PCM with component-wise lifted joins and units.

The joint component of F contains a concrete heap, and the auxiliary array gp. The
concrete heap keeps the pointer lk �→ b, which stands for the lock, with the boolean b
representing the lock status. It also stores the publication array with the origin pointer
ap into the heaplet hp (see notation (22)). The array stores elements of type Stt =̂
nit | Req f x | Resp w, as already apparent from Figure 8. We abuse the notation and
refer to the array represented by hp as ap. The heap hr is the resource protected by the
FC lock. Upon locking it moves to the exclusive ownership of the combiner.

We further assume the following properties of WF :
(i) for any tid, if gp[tid] � �, then ap[tid] = Resp w for some w;

(ii) if b is tre then hr = empty and mS • mO = Own; otherwise mS • mO =���Own and
I (
⊙n

i=1 gp[i] • gS • gO) hr.
Property (i) ensures that the auxiliary array gp holds a pending contribution in a cell
tid only if the corresponding entry in the publication array ap points to the response

7 One thread may hold many thread id’s, which it distributes between its children upon forking.
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with some (uncollected) result. Property (ii) formally relates the auxiliary state to the
resource heap hr, as already described.

Flat combiner concurroid’s external transitions intuitively correspond to locking and
unlocking the heap hr, thus moving it from the joint to private state, and vice-versa. We
do not present them formally, as they are similar to the transitions in CSL [22]. The
internal transitions req, help and coll synchronously change the contents of ap and gp

for a particular thread id i (one at a time) as the following diagram illustrates.
gp[i] gp[i]

Req f x

gp[i]

Resp w gΔ

i ∈ tS

mS = Owni ∈ tS
f � x w gall gΔ

ap[i] ap[i]

ap[i]

req

gS •= gΔ
coll help

Init

The transition req can be taken only by a thread holding the thread id i; it changes
the value of ap[i] from nit to Req f x for some f and x. The transition help can be
performed by any thread that owns the lock (not necessarily the one with the id i); it
replaces the contents of ap[i] and gp[i] with an appropriate result w and an auxiliary
delta gΔ, respectively. The two are valid wrt. the input x and the cumulative auxiliary
gall, as ensured by the constraint f �. Finally, coll is invoked by the thread with id i; it
flushes the contents of gp[i], into the self-contribution gS and puts nit into ap[i].

5.2 Flat Combiner Specification

We now provide a spec for flatCombine in terms of the concurroid F . We assume
f : A→ B, x : A, and f comes with the following spec.8

{ ∃h. pv s�→ h ∧ I g h } f (x) { ∃h′ gΔ. pv
s�→ h′ ∧ I (g • gΔ) h′ ∧ f � x res g gΔ }@P (25)

The spec allows the input heap h to change to h′. The resource invariant I has to be
preserved, up to a change of the auxiliary state, from g to g • gΔ. f � is a client-supplied
predicate which specifies f . We call it validity predicate; it is functional with respect
to gΔ, and relates the input value v, the result value res, the initial auxiliary state g and
the “auxiliary delta” gΔ resulting from the invocation of f . For instance, if f were a
sequential push operation on stacks, with g and gΔ being set to histories τ and τΔ, we
might choose the following validity predicate:

push� x res τ τΔ =̂ res = () ∧ τΔ = tτfresh �→ (l, x :: l), (26)

where l = τ[lst(τ)]. That is, push� fixes the result of push to be unit and its effect to be
the singleton history describing the action of pushing.

For the flatCombine spec, we need two auxiliary predicates. NoReq indicates that
the thread tid does not request help. · ↪→ (·), generalizes (5) from histories to PCM U.

NoReq(tid) =̂ fc
s�→ ({tid},��Own,−) ∧ ap[tid] = nit

fc ↪→ (gS, gO, g) =̂ fc
s�→ (−,−, gS) ∧ fc

o�→ (−,−, gO) ∧ g �
⊙n

i=1 gp[i] • gS • gO

(27)

8 Thus, we do not require f to be sequential (i.e., in addition to just manipulating the privately-
owned state, f can also allocate new concurroids via hiding, and fork children threads), but
every sequential function can be given a spec in P.
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Here, the partial order � on PCM elements is defined as g1 � g2 =̂ ∃g, g2 = g1 • g. It
generalizes the relation � from histories to the PCM U, and in the specs captures that
the value g1 was “current” before g2.

The spec for flatCombine is given wrt. a specific thread id tid.

{
pv s�→ empty ∗ fc ↪→ (�,−, g) ∧ NoReq(tid)

}
flatCombine( f , x) : B{

∃g′ gΔ. pv s�→ empty ∗ fc ↪→ (gΔ,−, g′) ∧ NoReq(tid) ∧ g � g′ ∧ f � x res g′ gΔ
}
@P � F

(28)

A call to flatCombine starts and ends in a state in which the thread tid does not request
the help (NoReq), and in which g names the sum total of the contributions. It does
not change the privately-owned heap, but increases self-contribution by amount of an
auxiliary delta gΔ. The mediating value g′ is a sum-total of the contributions at the
moment when the thread received help; thus, f � x res g′ gΔ. As g′ is current sometime
after the initial g, the spec postulates g � g′. Due to space limitations, we omit a
detailed discussion on verification of the spec (28) of the flat combiner (it can be found
in [27, Appendix E] or in the accompanying Coq files).

To strengthen the analogy with coarse-grained CSL-style locks, let us note that
if one were to implement a procedure coarseGrainedCombine( f , x) = {lock(); f (x);
unlock()}, its specification would be the same as (28), modulo the NoReq conjunct and
the join with all gp[i] components in (27), which would not be present in the coarse-
grained case, as they are artefacts of the helping machinery.9

5.3 Instantiating the Flat Combiner for Stacks

To illustrate that the abstract spec for the flat combiner follows the expected intuition,
we consider an instance where gS, gO, gp are histories, and f is the sequential push

method for stacks, satisfying the generic sequential spec (25) with the validity predicate
push� defined by (26) and the stack invariant (16). So by instantiating (28), after some
simplification, we obtain:

{
pv s�→ empty ∗ fc ↪→ (empty,−, τ) ∧ NoReq(tid)

}
flatCombine(push, e) : Unit{

∃t l. pv s�→ empty ∗ fc ↪→ (t �→ (l, e :: l),−, τ) ∧ τ < t ∧ NoReq(tid)
} (29)

Note that (29) is very similar to the spec (17) for Treiber push; the only difference,
again, is in the FC-specific components such as thread id’s, the NoReq predicate, and
the lock status views used in the definition of NoReq. Thus, the spec (28) is adequate.
A similar derivation can be done for an FC-specification of pop.

6 Related and Future Work
Histories are a recurring idea in the semantics of shared-memory concurrency, in one
form or another. For example, the classical Brookes’ semantics [2] uses traces to give a
model for CSL. Traces are similar to histories, but do not contain time stamps. The ex-
plicit time-stamping makes it straightforward to define a merge (i.e., join) for histories,

9 To provide truly the same specs, we need abstract predicates to hide these artefacts. As abstract
predicates are easily available in Coq, we omit the further discussion.
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and endows them with PCM structure. While Brookes uses traces in the semantics, we
use histories in the specs.

Temporal reasoning about shared-memory concurrent programs has also been em-
ployed before. For example, O’Hearn et al. [24] advocate hindsight lemmas to directly
and elegantly capture the intuition about linearizability of a class of concurrent data
structures. In this paper, we put histories to use in ordinary Hoare-style specs. This
avoids the relational reasoning about permuting traces of two programs, as required by
linearizability, but is strong enough to provide Hoare logic specs that are expressive, and
capable of abstracting granularity. In our experience, deriving history-based specs very
much resembles reasoning by hindsight (e.g., verifying locate [24] and readPair).

HLRG by Fu et al. is a Hoare logic for concurrency that admits history-based as-
sertions [11]. However, their histories are hard-coded into the logic. In contrast, our
histories are just a specific PCM, that one can use to instantiate the general framework
of FCSL. This affords greater flexibility: if history-based specifications are not needed
(e.g., the incrementation example [22]), they do not have to be used. HLRG defines
separating conjunction ∗ over histories as follows: conjoined histories must have equal
length, and their corresponding entry heaps are merged via disjoint union. In contrast,
our histories are not required to have heaps in the codomain. One can choose an arbi-
trary datatype to capture what is important for an example at hand.

Bell et al. use a variant of concurrent separation logic augmented with a monoid of
sets of histories to reason about programs with asynchronous communication via chan-
nels [1]. Their logic is tailored for producer/consumer pattern (similar to the example
we have considered in Section 4), and it features dedicated produce/consume predicates
PHist and CHist defined for a particular channel and a set of histories. However, with-
out time-stamping, Bell et al.’s sets of histories do not enjoy the unifomity with heaps,
hence, they are a subject of a series of dedicated inference rules.

Gotsman et al. use temporal reasoning to verify several concurrent memory reclama-
tion algorithms using the notion of grace period [12]. Their logic extends RGSep [34]
with a very specific notion of histories, which live in the shared state. In contrast, we use
histories not as shared, but as private auxiliary state, following the self/other dichotomy.
This enables us to directly reuse the frame rule and other logical infrastructure from the
separation logic FCSL, without any extensions.

Several recent approaches, such as Turon et al.’s CaReSL [31] (which also verifies
the flat combiner), and the logic of Liang and Feng (L&F) [20] support granularity
abstraction by unifying Hoare-style reasoning with linearizability and contextual re-
finement. In contrast, in this paper, we argue that a form of granularity abstraction
achieved by these works can already be obtained without relying on linearizability. In-
stead, by using histories, one obtains Hoare-style specs which hide the fine-grained
nature of the underlying programs. This can be done in a simple Hoare logic (and we
reuse FCSL off-the-shelf), whereas CaReSL and L&F require significant additional log-
ical infrastructure [21, 32], as linearizability is a stronger property than our specs. One
example of the additional infrastructure has to do with helping (e.g., in the flat com-
biner), where these logics consider the refined effectful commands as resources, and
make them subject to ownership transfer [31]. While on the surface there is a similarity
between commands-as-resources and histories-as-resources, there are also significant
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differences. Commands-as-resources are about executing specification-level programs
(and an effectful abstract program, once executed, cannot be “re-executed”, since it has
reached a value), while histories are about what has transpired. Unlike commands-as-
resources, histories also contain information about the order in which something hap-
pened in the form of timestamps, thus enabling temporal reasoning by hindsight [24].
Histories have a PCM structure, whereas commands-as-resources do not. Hence, his-
tories in FCSL are subject to the same set of inference rules as heaps, in contrast to
commands-as-resources which requires a number of dedicated inference rules.

Many of our history-based proofs are very close in spirit to proofs of linearizability
(e.g., the proofs of Treiber stack in Section 4 compared to the proofs in L&F [20]), since
adding an entry to a self-history can be seen as linearizing an effectful operation. How-
ever, we obtain some simplification in the proofs of pure methods such as readPair.
In particular, L&F and related logics require prophecy variables [26] (or, equivalently,
speculations [20, 32]) in their proofs of readPair, but we do not. We do expect, how-
ever, that prophecy variables will be required in examples where the shape of the event
to be inserted into the history cannot be fully determined at the moment when it logi-
cally takes place (e.g., Harris et al.’s MCAS [33]). We plan to address such examples
in the future work, by choosing another history-based PCM; that of branching-time
histories, in contrast to the linear-time ones used here.

In this work, we argued for the abstraction of granularity via the singleton histories of
the form t �→ (s1, s2), which describe the atomic changes in the abstract state, although
other ways are possible to express what it means for a program to behave “like an atomic
one” in a setting of a Hoare-style logic.

In particular, a different approach to express atomicity abstraction is suggested by da
Rocha Pinto et al.’s logic TaDA [5] (a successor of the Concurrent Abstract Predicates
framework (CAP) [6]) using the notion of an “atomic Hoare triple” of the form 〈p〉 c 〈q〉,
where the precondition p is required to be stable, whereas q is not. TaDA proposes a
make_atomic command and a number of related inference rules, which allow one to
specify synchronized changes of auxiliary resources across several shared regions. The
changes themselves do not have to be physically atomic; it is sufficient that they appear
atomic from the point of view of specs. TaDA’s assertions range over atomic track-
ing resources, similar to the operations-as-resources [20, 31]. Unlike histories, these
resources do not have the PCM structure, and thus require special treatment in TaDA’s
metatheory. The atomic tracking resources are not subject of ownership transfer, which
is why TaDA currently does not support reasoning about helping.

Yet another view of atomicity abstraction and canonical concurrent specifications,
which also bypasses linearizability, is advocated by Svendsen et al. in a series of papers
on Higher-Order and Impredicative Concurrent Abstract Predicates [28, 29]. Both HO-
CAP and iCAP leverage the idea, originated by Jacobs and Piessens [17], of parametriz-
ing specs of concurrent data types by a user-provided auxiliary code. Such auxiliary
code can be seen as a callback, which, when invoked at some point during the execu-
tion of a specified method, changes the values of auxiliary resources in several regions
simultaneously. Thus, when proving a parametrized spec, one should locate a right mo-
ment to invoke the provided auxiliary code, so its precondition would be ensured and
the postcondition handled properly, a reasoning similar to locating a linearization point.
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The use of the first-class auxiliary code can introduce circularity in the domain underly-
ing the logic—the issue tackled in HOCAP by means of indirection via “region types”
and resolved in iCAP by providing a (non-elementary) model in the topos of trees. One
difference between iCAP and TaDA is that make_atomic in TaDA presents a more lo-
calized view of atomicity, whereas the specs in iCAP have to predict the uses of the data
structure, and provide hooks for callbacks. The hooks lead to somewhat indirect specs,
and propagate client-side information into the reasoning about the structure.

We have not considered either of these two ways of exploiting abstract atomicity
in the current paper, but plan to add make_atomic to FCSL in the future work. The
challenge will be to generalize make_atomic to work with different notions of histories
(e.g., branching-time histories may be useful, as mentioned above). We believe that the
PCM approach (together with subjectivity), neither of which is exploited by TaDA and
iCAP, will be beneficial in that respect. In particular, we plan to use PCMs to generalize
the notion of logical atomicity afforded by histories, that we explored in this paper.
Given a PCM U, the element x ∈ U is prime if it cannot be represented as x = x1•x2, for
non-unit x1, x2. For example, in the PCM of heaps, the prime elements are the singleton
heaps. In the PCM of natural numbers with multiplication, the prime elements are the
prime numbers. In the PCM of histories, the prime elements are the singleton histories
t �→ a. A program can be considered logically atomic if it augments the self-owned
portion of its state by a prime element, or by a unit. According to this definition, all the
examples presented in this paper are atomic. We expect it should be possible to soundly
apply make_atomic to programs that are atomic in this logical sense.

7 Conclusion

In this work we proposed using specifications over auxiliary state in the form of histo-
ries as means of providing general and expressive specifications for fine-grained con-
current data structures in a separation style logic.

Histories satisfy the algebraic properties of PCMs, and thus can directly reuse the
underlying infrastructure from an employed separation logic, such as its assertion logic
and frame rule, enabling a separation logic style of local reasoning about histories that
has usually been reserved for heaps. Moreover, as we illustrated with the formalization
of the flat combiner Section 5, the concept of ownership transfer from separation logic,
when specialized to the PCM of histories, captures the design pattern of helping.

In addition to the flat combiner, we have verified a number of benchmark fine-grained
structures, such as the pair snapshot structure, and the Treiber stack. The novelty of the
specs and the proofs is that they all rely in an essential way on the subjective dichotomy
between self and other auxiliary state, in order to directly relate the result of a program
execution with the interference of other threads. Such explicit dichotomy provides for
what we consider very concise proofs, as demonstrated by our implementation in Coq.
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Abstract. Datatypes and codatatypes are useful for specifying and reasoning
about (possibly infinite) computational processes. The Isabelle/HOL proof as-
sistant has recently been extended with a definitional package that supports both.
We describe a complete procedure for deriving nonemptiness witnesses in the
general mutually recursive, nested case—nonemptiness being a proviso for intro-
ducing types in higher-order logic.

1 Introduction

Proof assistants, or interactive theorem provers, are becoming increasingly popular as
vehicles for formalizing the metatheory of logical systems and programming languages.
Such developments often involve datatypes and codatatypes in various constellations.
For example, Lochbihler’s formalization of the Java memory model represents possibly
infinite executions using a codatatype [26]. Codatatypes are also useful for capturing
lazy data structures, such as Haskell’s lists.

A popular and expanding family of proof assistants, heavily used in software and
hardware verification, are those based on higher-order logic (HOL)—examples include
HOL4 [37], HOL Light [16], HOL Zero [3], Isabelle/HOL [30], and ProofPower–HOL
[4]. They are traditionally built on top of a trusted inference kernel through which all
theorems are generated. Various definitional packages reduce high-level specifications
to primitive inferences; characteristic theorems are derived rather than postulated. This
reduces the amount of code that must be trusted. We recently extended Isabelle/HOL
with a definitional package for mutually recursive, nested (co)datatypes [8, 39]. While
some proof assistants support codatatypes (notably, Agda, Coq, Matita, and PVS), Isa-
belle is the first to provide a definitional implementation.

In this paper, we focus on a fundamental problem posed by any HOL development
that extends the type infrastructure: proofs of, or “witnesses” for, the nonemptiness of
newly introduced types. Besides its importance to formal logic engineering, the problem
also enjoys theoretical relevance, since it essentially amounts to the decision problem
for the nonemptiness of open-ended, mutual, nested (co)datatypes. Furthermore, our
modular witness generation algorithm is relevant outside the proof assistant world, in
areas such as program synthesis [15].

Our starting point is the nonemptiness requirement on HOL types. This is a well-
known design decision connected to the presence of Hilbert choice in HOL [13, 31]. In
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all HOL-based provers, the following inductive specification of “finite streams” must
be rejected because it would lead to an empty datatype:

datatype α fstream = FSCons α (α fstream)

While checking nonemptiness appears to be an easy reachability test, nested recur-
sion complicates the picture, as shown by this attempt to define infinitely branching
trees with finite branches by nested recursion via a codatatype of (infinite) streams:

codatatype α stream = SCons α (α stream)

datatype α tree = Node α ((α tree) stream)

The second definition should fail: To get a witness for α tree, we would need a
witness for (α tree) stream, and vice versa. Replacing streams with finite lists should
make the definition acceptable, because the empty list stops the recursion. Even though
final coalgebras are never empty (except in trivial cases), here the datatype provides a
better witness (the empty list) than the codatatype (which requires an α tree to build an
(α tree) stream). Mutual, nested datatype specifications can be arbitrarily complex:

datatype (α, β) tree = Leaf β | Branch ((α+(α, β) tree) stream)

codatatype (α, β) ltree = LNode β ((α+(α, β) ltree) stream)

datatype t1 = T11 (((t1, t2) ltree) stream) | T12 (t1 × (t2 + t3) stream)
and t2 = T2 ((t1 × t2) list) and t3 = T3 ((t1, (t3, t3) tree) tree)

The definitions are legitimate, but the last group should be rejected if t2 is replaced by
t3 in the constructor T11.

What makes the problem interesting is our open-endedness assumption: The type
constructors handled by the (co)datatype package are not syntactically predetermined.
In particular, they are not restricted to polynomial functors—the user can register new
type constructors in the package database after establishing a few semantic properties.

Our solution exploits the package’s abstract, functorial view of types. Each (co)data-
type, and more generally each functor (type constructor) that participates in a definition,
carries its own witnesses together with soundness proofs. Operations such as functorial
composition, initial algebra, and final coalgebra derive their witnesses from those of
the operands. Each computational step performed by the package is certified in HOL.
The solution is complete: Given precise information about the functors participating in
a definition, all nonempty datatypes are identified as such.

We start by recalling the package’s abstract layer, which is based on category theory
(Section 2). Then we look at a concrete instance: a variation of context-free grammars
acting on finite sets and their associated possibly infinite derivation trees (Section 3).
The example supplies precious building blocks to the nonemptiness proofs (Section 4).
It also displays some unique characteristics of the package, such as support for nested
recursion through nonfree types. Other features and user conveniences are described
elsewhere [8, 11]. The formalization covering the results presented here is publicly
available [9]. It employs similar notations to this text but presents more details. The
implementation is part of Isabelle [30] (Section 5).
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Conventions. We work informally in a mathematical universe S of sets but adopt
many conventions from higher-order logic and functional programming. Function ap-
plication is normally written in prefix form without parentheses (e.g., f x y). Sets are
ranged over by capital Roman letters (A, B, . . .) and Greek letters (α, β, . . .). For n-ary
functions, we often prefer the curried form f : α1 → ··· → αn → β to the tuple form
f : α1 × ·· · ×αn → β but occasionally pass tuples to curried functions. Polymorphic
operators are regarded as families of higher-order constants indexed by sets.

Operators on sets are normally written in postfix form: α set is the powerset of α,
consisting of sets of elements of α; α fset is the set of finite sets over α. Given f : α→ β,
A ⊆ α, and B ⊆ β, image f A, or f • A, is the image of A through f , and f− B is the
inverse image of B through f . The set unit contains a single element (), and [n] =
{1, . . . , n}. Prefix and postfix operators bind more tightly than infixes, so that α×β set
is read as α× (β set) and f • g x as f • (g x).

The notation an, or simply a, denotes the tuple (a1, . . . , an). Given am and bn, (a, b)
denotes the flat tuple (a1, . . . , am, b1, . . . , bn). Given n m-ary functions f1, . . . , fn, the
notation f a stands for ( f1 a, . . . , fn a), and similarly α F= (α F1, . . . , α Fn). Depending
on the context, αn F either denotes the application of F to α or merely indicates that F
is an n-ary set operator.

2 The Category Theory behind the Package

User-specified (co)datatypes and their characteristic theorems are derived from underly-
ing constructions adapted from category theory. The central concept is that of bounded
natural functors, a well-behaved class of functors with additional structure.

2.1 Functors and Functor Operations

We consider operators F on sets, which we call set constructors. We are interested in
set constructors that are functors on the category of sets and functions, i.e., that are
equipped with an action on morphisms commuting with identities and composition.
This action is a polymorphic constant Fmap : (α1 → β1)→ ··· → (αn → βn)→ α F→
β F that satisfies Fmap id = id and Fmap (g1 ◦ f1) . . . (gn ◦ fn) = Fmap g ◦ Fmap f .
Formally, functors are pairs (F, Fmap). Basic instances are presented below.

Identity functor (ID, id). The identity maps any set and any function to itself.

(n, α)-Constant functor (Cn,α, Cmapn,α). The (n, α)-constant functor (Cn,α,Cmapn,α)
is the n-ary functor consisting of the set constructor β Cn,α = α and the action Cmapn,α

f1 . . . fn = id. We write Cα for C1,α.

Sum functor (+,⊕). The sum α1 +α2 consists of a copy Inl a1 of each element a1 : α1

and a copy Inr a2 of each element a2 : α2. Given f1 : α1 → β1 and f2 : α2 → β2, let
f1 ⊕ f2 : α1 +α2 → β1 + β2 be the function sending Inl a1 to Inl ( f1 a1) and Inr a2 to
Inr ( f2 a2).

Product functor (×,⊗). Let fst : α1 ×α2 → α1 and snd : α1 × α2 → α2 denote the
two projection functions from pairs. Given f1 : α→ β1 and f2 : α→ β2, let 〈 f1, f2〉 :
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α→ β1 × β2 be the function λa. ( f1 a, f2 a). Given f1 : α1 → β1 and f2 : α2 → β2, let
f1 ⊗ f2 : α1 ×α2 → β1 ×β2 be 〈 f1 ◦ fst, f2 ◦ snd〉.
α-Function space functor (funcα, compα). Given a set α, let β funcα = α→ β. For all
g : β→ γ, let compα g : β funcα→ γ funcα be compα g f = g ◦ f .

Powerset functor (set, image). For all f : α→ β, the function image f : α set→ β set
sends each subset A of α to the image of A through the function f : α→ β.
Bounded k-powerset functor (setk, image). Given an infinite cardinal k, for all sets α,
the set α setk carves out from α set only those sets of cardinality less than k. The finite
powerset functor fset corresponds to setℵ0 .

Functors can be composed to form complex functors. Composition requires the func-
tors F j to take the same type arguments α in the same order. The operations of permuta-
tion and lifting, together with the identity and (n, α)-constant functors, make it possible
to compose functors freely. Let Funcn be the collection of n-ary functions.

Composition. Given α F j for j ∈ [n] and βn G, the functor composition G ◦ F is defined
as (α F)G on objects and similarly on morphisms.

Permutation. Given F ∈ Funcn and i, j ∈ [n] with i < j, the (i, j)-permutation of F,
written F(i, j) ∈ Funcn, is defined on objects as α F(i, j) = (α1, . . . , αi−1, α j, αi+1, . . . , α j−1,
αi, α j+1, . . . , αn)F and similarly on morphisms.

Lifting. Given F ∈ Funcn, the lifting of F, written F↑ ∈ Funcn+1, is defined on objects
as (αn, αn+1)F↑= αnF and similarly on morphisms. In other words, F↑ is obtained from
F by adding a superfluous argument αn+1.

Datatypes are defined by taking the initial algebra of a set of functors and codatatypes
by taking the final coalgebra. Both operations are partial.

Initial algebra. Given n (m+n)-ary functors (αm, βn)F j, their (mutual) initial algebra
consists of n m-ary functors α IF j that satisfy the isomorphism α IF j

∼= (α, α IF) F j

minimally (i.e., as the least fixpoint). The variables α are the passive parameters, and β
are the fixpoint variables. The functors IF j are characterized by

• n polymorphic folding bijections (constructors) ctorj : (α, α IF)F j → α IF j and
• n polymorphic iterators foldj :

(
∏ k∈[n] (α, β)Fk → βk

)→ α IF j → β j

and subject to the following properties (for all j ∈ [n]):

• Iteration equations: fold j s ◦ ctor j = sj ◦ Fmap id (fold s).
• Unique characterization of iterators: Given β and s, the only functions fj : α IF j →
β j satisfying fj ◦ ctorj = sj ◦ Fmap id f are fold j s.

The functorial actions IFmap j for IF j are defined by iteration in the standard way.

Final coalgebra. The final coalgebra operation is categorically dual to initial algebra.
Given n (m+ n)-ary functors (αm, βn)F j, their (mutual) final coalgebra consists of n
m-ary functors α JF j that satisfy the isomorphism α JF j

∼= (α, α JF)F j maximally (i.e.,
as the greatest fixpoint). The functors JF j are characterized by



Witnessing (Co)datatypes 363

• n polymorphic unfolding bijections (destructors) dtor j : α JF j → (α, α JF)F j and
• n polymorphic coiterators unfold j :

(
∏ k∈[n] βk → (α, β)Fk

)→ β j → α JF j

and subject to the following properties:

• Coiteration equations: dtor j ◦ unfoldj s = Fmap id (unfold s) ◦ sj.
• Unique characterization of coiterators: Given β and s, the only functions fj : β j →
α JF j satisfying dtorj ◦ fj = Fmap id f ◦ sj are unfold j s.

The functorial actions JFmap j for JF j are defined by coiteration in the standard way.

2.2 Bounded Natural Functors

The (co)datatype package is based on a class B of functors, called bounded natural
functors (BNFs). The particular axioms defining B are described in previous papers
[8, 39]. The class B contains all the basic functors except for unbounded powerset and
is closed under the operations described in Section 2.1.

Unlike the (co)datatype specification mechanisms of other proof assistants, in our
package the involved types are not syntactically predetermined by a fixed grammar. B
includes the class of polynomial functors but is additionally open-ended in the sense
that users can register further functors as members of B.

Besides closure under functor operations, another important question for theorem
proving is how to state induction and coinduction abstractly, irrespective of the shape
of the functor. We know how to state induction on lists, or trees, but how about initial
algebras of arbitrary functors?

The answer we propose enriches the structure of functors αn F with additional data:
For each i ∈ [n], BNFs must provide a natural transformation Fseti : α F→ αi set that
gives, for x ∈ α F, the set of αi-atoms that take part in x. For example, if (α1, α2)F =
α1 ×α2, then Fset1 (a1, a2) = {a1} and Fset2 (a1, a2) = {a2}; if α F = α list (the list
functor, obtained as minimal solution to β∼= unit+α×β), then Fset (= Fset1) applied
to a list x gives all the elements appearing in x.1 The abstract (co)induction principles
can be massaged to account for multiple curried constructors (Appendices B and C).

Given j ∈ [n], the elements of Fsetm+k
j x (for k ∈ [n]) are the recursive components

of ctorj x. (Notice that subscripts select functors F j in the tuple F, whereas superscripts
select Fset operators for different arguments of F j.) The explicit modeling of the re-
cursive components makes it possible to state induction and coinduction abstractly for
arbitrary BNFs (Appendix A).

Briefly, the registration process is as follows. The user provides a type constructor F
and its associated BNF structure (in the form of polymorphic HOL constants), including
the Fmap functorial action on objects. Then the user establishes the BNF properties
(e.g., that (F, Fmap) is indeed a functor). After this, the new BNF is integrated and can
appear nested in future (co)datatype definitions. Following this procedure, Isabelle users

1 This Fset has similarities with Pierce’s notion of support from his account of (co)inductive
types [33] and with Abel and Altenkirch’s urelement relation from their framework for strong
normalization [1]. A distinguishing feature of our notion is the consideration of categorical
structure [39].
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have already introduced the BNF α bag of finite bags (multisets) over α and the BNF
α pmf of probability mass functions with domain α. Other nonstandard BNFs can be
produced by using the quotient package [22,23] and the nonfree datatype package [36].

As an example, the type constructor α bag is registered as a BNF by the following
command:

bnf α bag
map: bmap : (α→ β)→ α bag→ β bag
sets: bset : α bag→ α set
bd: ℵ0 : (nat×nat) set
wits: {#} : α bag
rel: brel : (α→ β→ bool)→ α bag→ β bag→ bool

The command provides the necessary infrastructure that makes α bag a BNF, consisting
of various previously introduced constants (whose definitions are not shown here):

• the functorial action (bmap);
• the natural transformation (bset);
• a cardinal bound represented as minimal well-order relations [10] (here, that of

natural numbers, ℵ0);
• a witness term (the empty bag {#});
• a custom relator (brel).

The user is then requested to discharge the BNF assumptions [8, Section 2]:

bmap id= id bmap ( f ◦ g) = bmap f ◦ bmap g ∀x. x ∈ bset xs ⇒ f x = g x

bmap f xs = bmap g xs|bset xs| ≤o ℵ0 bset ◦ bmap f = image f ◦ bset
brel R x y ⇐⇒ ∃z. bset z ⊆ {(x, y) | R x y} ∧ bmap fst z = x ∧ bmap snd z = y

brel R �•�• brel S � brel (R �•�• S)

(The operator≤o is a well-order on ordinals [10], � denotes implication lifted to binary
predicates, and �•�• denotes the relational composition of binary predicates.) In addition,
the user is invited to discharge the nonemptiness witness property bset {#}= {}.

3 Coinductive Derivation Trees

Before turning to the nonemptiness witnesses, we first study a concrete codatatype de-
finable with our package. It consists of derivation trees for a context-free grammar,
where we perform the following changes to the usual setting: Trees are possibly infi-
nite and the generated words are not lists, but finite sets. The Isabelle formalization of
this example [9] lays at the heart of the results presented in the next section. Indeed,
this particular codatatype will provide the infrastructure for tracking nonemptiness of
arbitrary (co)datatypes.

We take a few liberties with Isabelle notations to lighten the presentation; in partic-
ular, until Section 4, we always ignore the distinction between sets and types.

Definition of Derivation Trees. We fix a set T of terminals and a set N of nonterminals.
The command

codatatype dtree = Node (root: N) (cont: (T+dtree) fset)
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introduces a constructor Node : N→ (T+dtree) fset→ dtree and two selectors root :
dtree→ N, cont : dtree→ (T+dtree) fset. A tree has the form Node n as, where n is
a nonterminal (the tree’s root) and as is a finite set of terminals and trees (its continua-
tion). The codatatype keyword indicates that this tree formation rule may be applied
an infinite number of times.

Given the above definition of dtree, the package first composes the input BNF to
the final coalgebra operation pre_dtree= (×) ◦ (CN, fset ◦ ((+) ◦ (CT, ID))) from the
constants N and T, identity, sum, product, and finite set. In the sequel, we prefer the
more readable notation α pre_dtree = N× (T+ α) fset. Then it constructs the final
coalgebra dtree (= JF) from pre_dtree (= F).

The unfolding bijection dtor : dtree→ dtree pre_dtree is decomposed in two selec-
tors: root = fst ◦ dtor and cont = snd ◦ dtor. The constructor Node is defined as the
inverse of the unfolding bijection. The basic properties of constructors and selectors
(e.g., injectivity, distinctness) are derived from those of sums and products.

After some massaging that involves splitting according to the indicated destructors,
the abstract coiterator from Section 2.2 leaves the stage to the dtree coiterator unfold :
(β→ N) → (β→ (T+ β) fset) → β→ dtree characterized as follows: For all sets β,
functions r : β→ N, c : β→ (T+β) fset, and elements b ∈ β,

root (unfold r c b) = r b cont (unfold r c b) = (id⊕unfold r c) • c b

Intuitively, the coiteration contract reads as follows: Given a set β, to define a function
f : β→ dtree we must indicate how to build a tree for each b∈ β. The root is given by r,
and its continuation is given corecursively by c. Formally, f = unfold r c.

A Variation of Context-Free Grammars. We consider a variation of context-free gram-
mars, acting on finite sets instead of sequences. We assume that the previously fixed
sets T and N, of terminals and nonterminals, are finite and that we are given a set of
productions P ⊆ N×(T+N) fset. The triple Gr = (T,N,P) forms a (set) grammar,
which is fixed for the rest of this section. Both finite and infinite derivation trees are of
interest. The codatatype dtree constitutes a suitable universe for defining well-formed
trees as a coinductive predicate.

Fixpoint (or Knaster–Tarski) (co)induction is provided in Isabelle/HOL by a sepa-
rate package [32]. Fixpoint induction relies on the minimality of a predicate (the least
fixpoint); dually, fixpoint coinduction relies on maximality (the greatest fixpoint). It is
well known that datatypes interact well with definitions by fixpoint induction. For co-
datatypes, both fixpoint induction and fixpoint coinduction play an important role—the
former to express safety properties, the latter to express liveness.

Well-formed derivation trees for Gr are defined coinductively as the greatest predicate
wf : dtree→ bool such that, for all t ∈ dtree,

wf t ⇐⇒ (root t, (id⊕ root) • cont t) ∈ P ∧ root is injective on Inr−(cont t) ∧
∀t′ ∈ Inr−(cont t). wf t′

Each nonterminal node of a well-formed derivation tree t represents a production. This
is achieved by three conditions: (1) the root of t forms a production together with the
terminals constituting its successor leaves and the roots of its immediate subtrees; (2) no
two immediate subtrees of t have the same root; (3) properties 1 and 2 also hold for the
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immediate subtrees of t. The definition’s coinductive nature ensures that these properties
hold for arbitrarily deep subtrees of t, even if t has infinite depth.

In contrast to well-formedness, the notions of subtree, interior (the set of nontermi-
nals appearing in a tree), and frontier (the set of terminals appearing in a tree) require
inductive definitions. The subtree relation subtr : dtree → dtree → bool is defined in-
ductively as the least predicate satisfying the rules

subtr t t
subtr t t′′ ∧ Inr t′′ ∈ cont t′ ⇒ subtr t t′

We write Subtr t for the set of subtrees of t. The interior Itr : dtree→ N set is defined
inductively by the rules

root t ∈ Itr t
Inr t1 ∈ cont t ∧ n ∈ Itr t1 ⇒ n ∈ Itr t

The frontier Fr : dtree→ N set is defined inductively by

Inl t ∈ cont t ⇒ t ∈ Fr t
Inr t1 ∈ cont t ∧ t ∈ Fr t1 ⇒ t ∈ Fr t

The language generated by the grammar Gr from a nonterminal n ∈ N (via possibly
infinite derivation trees) is defined as LGr(n) = {Fr t | wf t ∧ root t = n}.

Regular Derivation Trees. A derivation tree is regular if each subtree is uniquely
determined by its root. Formally, we define regular t as the existence of a function
f : N→ Subtr t such that ∀t′ ∈Subtr t. f (root t′) = t′. The regular language of a non-
terminal is defined as L r

Gr(n) = {Fr t | wf t ∧ root t = n ∧ regular t}.
Given a possibly nonregular derivation tree t0, a regular cut of t0 is a regular tree

rcut t0 such that Fr (rcut t0)⊆ Fr t0. Here is one way to perform the cut:

1. Choose a subtree of t0 for each interior node n ∈ Itr t0 via a function pick : Itr t0 →
Subtr t0 with ∀n∈ Itr t0. root (pick n) = n.

2. Traverse t0 and substitute pick n for each subtree with root n. Perform this substitu-
tion hereditarily, i.e., also in the emerging subtree pick n.

This substitution task is elegantly achieved by the corecursive functionH : Itr t0 → dtree
defined as unfold r c, where r : Itr t0 → N and c : Itr t0 → (T+ Itr t0) fset are specified
as follows: r n = n and c n = (id⊕ root) • cont (pick n). The function H is therefore
characterized by the corecursive equations root (H n) = n and cont (H n) = (id⊕ (H ◦
root)) • cont (pick n). It is not hard to prove the following by fixpoint coinduction:

Lemma 1. For all n ∈ Itr t0, H n is regular and Fr (H n) ⊆ Fr t0. Moreover, H n is
well-formed provided t0 is well-formed.

Proof. H n is regular by construction: If a subtree of it has root n′, then it is equal to
H n′. The frontier inclusion Fr (H n)⊆ Fr t0 follows by routine fixpoint induction on the
definition of Fr (since at each node n′ ∈ Itr (H n) we only have the immediate leaves
of pick n′, which is a subtree of Fr t0). Finally, assume that t0 is well-formed. Then the
well-formedness of H n follows by routine fixpoint coinduction on the definition of wf
(since, again, at each n′ ∈ Itr (H n) we have the production of pick n′). ��
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n1

n2 �
n1 n2

t1 t2

n1

n2 �

Fig. 1. A derivation tree (left) and a minimal regular cut (right)

We define rcut t0 to be H (root t0). Figure 1 shows a derivation tree and a minimal
regular cut. The bullets denote terminals, and t1 and t2 are arbitrary trees with roots n1

and n2. The loop indicates an infinite tree that is its own subtree.

4 Computing Nonemptiness Witnesses

In the previous two sections, we referred to the codatatype dtree and other collections
of elements as sets, ignoring an important aspect of HOL. While for most purposes sets
and types can be identified in an abstract treatment of the logic, empty types are not
allowed. The main primitive way to define custom types in HOL is to specify from an
existing type α a nonempty subset A : α set that is isomorphic to the desired type. Hence,
to register a collection of elements as a HOL type (and take advantage of the associated
convenience, notably static type checking), it is necessary to prove it nonempty.

Datatype definitions are an instance of the above scenario, with the additional re-
quirement that nonemptiness should be discharged automatically. When producing the
relevant nonemptiness proofs, the package must take into consideration arbitrary com-
binations of basic and user-defined BNFs, datatypes, and codatatypes.

A first idea would be to follow the traditional approach of HOL datatype packages
[6, 14]: Unfold all the definitions of the involved nested datatypes, inlining them as
additional components of the mutual definition, until only sums of products remain,
and then perform a reachability analysis. However, this approach is problematic in our
framework. Due to open-endedness, there is no fixed set of basic types. Delving into
nested types requires reproving nonemptiness facts, which scales poorly. Moreover, it
is not clear how to unfold datatypes nested in codatatypes or vice versa.

By relying on all specifications being eventually reducible to the fixed situation of
sums of products, the traditional approach needs to consider nonemptiness only at the
point of a datatype definition. Here, we look for a prophylactic solution instead, trying to
prepare the BNFs for future nonemptiness checks involving them. To this end, we ask:
Given a mutual datatype definition involving several n-ary BNFs, what is the relevant
information we need to know about their nonemptiness without knowing what they look
like (hence, with no option to delve into them)? To answer this, we use a generalization
of pointed types [20,25], by maintaining witnesses that assert conditional nonemptiness
for combinations of arguments. We introduce the solution by examples.

4.1 Introductory Examples

We start with the simple cases of products and sums. For α×β, the proof is as follows:
Assuming α �= /0 and β �= /0, we construct the witness (a, b) ∈ α×β for some a ∈ α and
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b ∈ β. For α+ β, two proofs are possible: Assuming α �= /0, we can construct Inl a for
some a ∈ α; alternatively, assuming β �= /0, we can construct Inr b for some b ∈ β.

With each BNF α F, we associate a set of witnesses, each of the form Fwit : αi1 →
··· → αik → α F for a subset {i1, . . . , ik} ⊆ [n]. From a witness, we can construct a
set-theoretic proof by following its signature, in the spirit of the Curry–Howard corre-
spondence. Accordingly, Inr : β→ α+β can be read as the following contract: Given a
proof that β is nonempty, Inr yields a proof that α+β is nonempty.

When BNFs are composed, so are their witnesses. The two possible witnesses for
the list-defining functor (α, β) pre_list = unit+ α× β are wit_pre_list1 = Inl () and
wit_pre_list2 a b = Inr (a, b). The first witness subsumes the second one, because it
unconditionally shows the collection nonempty, regardless of the potential emptiness
of α and β. From this witness, we obtain the witness list_ctor wit_pre_list1 (i.e., Nil).

Because they can store infinite objects, codatatype set constructors are never empty
provided their arguments are nonempty. Compare the following:

datatype α fstream = FSCons α (α fstream)

codatatype α stream = SCons α (α stream)

The datatype definition fails because the optimal witness has a circular signature: α→
α fstream → α fstream. In contrast, the codatatype definition succeeds and produces
the witness (λa. μs. SCons a s) : α→ α stream, namely the (unique) stream s such that
s = SCons a s for a given a ∈ α. This stream is easy to define by coiteration.

Let us now turn to a pair of examples involving nesting:

datatype (α, β) tree = Leaf β | Branch ((α+(α, β) tree) stream)

codatatype (α, β) ltree = LNode β ((α+(α, β) ltree) stream)

In the tree definition, the two constructors hide a sum BNF, giving us some flexi-
bility. For the Leaf constructor, all we need is a witness b ∈ β, from which we con-
struct Leaf b. For Branch, we can choose the left-hand side of the nested +, com-
pletely avoiding the recursive right-hand side: From a witness a ∈ α, we construct
Branch (μs. SCons (Inl a) s).

For the ltree functor, the two arguments to LNode are hiding a product, so the ltree-
defining functor is (α, β, γ) pre_ltree= β×(α+γ) stream with γ representing the core-
cursive component. Composition yields two witnesses for pre_ltree:

wit_pre_ltree1 a b = (b, μs. SCons (Inl a) s)
wit_pre_ltree2 b c = (b, μs. SCons (Inr c) s)

These can serve to build infinitely many witnesses for ltree. Fig. 2 enumerates the possi-
ble combinations, starting with wit_pre_ltree1. This witness requires only the noncore-
cursive components α and β to be nonempty, and hence immediately yields a witness
wit_ltree1 : α→ β→ (α, β) ltree (by applying the constructor LNode). The second wit-
ness wit_pre_ltree2 requires both β and the corecursive component γ to be nonempty;
it effectively “consumes” another ltree witness through γ. The consumed witness can
again be either wit_pre_ltree1 orwit_pre_ltree2, and so on. At the limit, wit_pre_ltree2
is used infinitely often. The corresponding witness wit_ltree2 : β→ (α, β) ltree can be
defined by coiteration as λb. μt. wit_pre_ltree2 b t. It subsumes wit_ltree1 and all the
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wit_pre_ltree1

α β

wit_pre_ltree2

β wit_pre_ltree1

α β

wit_pre_ltree2

β wit_pre_ltree2

β wit_pre_ltree1

α β

· · ·
wit_pre_ltree2

β

Fig. 2. Derivation trees for ltree witnesses

other finite witnesses. But had ltree been defined as a datatype instead of a codatatype,
wit_ltree1 would have been its optimal witness.

4.2 A General Solution

The nonemptiness problem for an n-ary set constructor F and a set of indices I ⊆ [n]
can be stated as follows: Is α F �= /0 whenever ∀i ∈ I. αi �= /0, for all sets αn? We call F
I-witnessed if the answer is yes. Thus, set sum (+) is {1}-, {2}-, and {1, 2}-witnessed;
set product (×) is {1, 2}-witnessed; and α list is /0- and {1}-witnessed. This leads to the
following notion of soundness: Given an n-ary functor F, a set I ⊆ [n] set is (witness-)
sound for F if F is I-witnessed for all I ∈I .

The next question is: When is such a set I also complete, in that it covers all wit-
nesses? Clearly, if I1 ⊆ I2, then I1-witnesshood implies I2-witnesshood. Therefore, we
are interested in retaining the witnesses completely only up to inclusion of sets of in-
dices. A set I ⊆ [n] set is (witness-)complete for F if for all J ⊆ [n] such that F is
J-witnessed, there exists I ∈ I such that I ⊆ J; (witness-)perfect for F if it is both
sound and complete.

Here are perfect sets IF for basic BNFs:

• Identity: Iα ID = {{α}}
• Constant: ICn,α = { /0} (α �= /0)
• Sum: Iα+β = {{α}, {β}}
• Product: Iα×β = {{α, β}}
• Function space: Iβ funcα = {{β}} (α �= /0)
• Bounded k-powerset: Iα setk = { /0}

Parameters α j are identified with their indices j to improve readability.
Perfect sets must be maintained across BNF operations. Let us start with composi-

tion, permutation, and lifting.

Theorem 1. Let H=G ◦Fn, whereG∈Funcn has a perfect set J and each F j ∈ Funcm

has a perfect set I j. Then {⋃ j∈J Ij | J ∈J ∧ (Ij) j∈J ∈ ∏ j∈J I j} is a perfect set for H.

Proof sketch. Let K = {⋃ j∈J Ij | J ∈J ∧ (Ij) j ∈ ∏ j∈J I j}. We first prove that K is
sound for H. Let K ∈K and αm be such that ∀i∈K. αi �= /0. By the definition of K , we
obtain J ∈J and (Ij) j∈J such that (1) K =

⋃
j∈J Ij and (2) ∀ j∈ J. Ij ∈I j. Using (1),

we have ∀ j∈ J. ∀i∈ Ij. αi �= /0. Hence, since each I j is sound for F j, ∀ j∈ J. α F j �= /0.
Finally, since J is sound for G, we obtain α F G �= /0, i.e., α H �= /0.
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We now prove that K is complete for H. Let K ⊆ [m] be such that H is K-witnessed.
Let βn be defined as β j = unit if j ∈ K and /0 otherwise, and let J = { j ∈ [n] | β F j �= /0}.
Since H is K-witnessed, we obtain that β H �= /0, i.e., (3) β F G �= /0.

We show that (4) G is J-witnessed. Let γn such that ∀ j∈ J. γ j �= /0. Thanks to the
definition of J, we have ∀ j∈ [n].Fj �= /0 ⇒ γ j �= /0, and therefore we obtain the functions
( fj : β F j → γ j)i∈[n]. With Gmap f : β F G→ γ G, by (3) we obtain γ G �= /0.

From (4), since J is complete for G, we obtain J1 ∈J such that J1 ⊆ J. Let j ∈ J1.
By the definition of J, we have β F j �= /0, making β F j K-witnessed (by definition of β);
hence, since I j is F j-complete, we obtain Ij ∈I j such that Ij ⊆ K. Then K1 =

⋃
j∈J1

Ij

belongs to K and is included in K. ��
Theorem 2. Let I ⊆ [n] set be a perfect set for F. Then I and I (i, j) are perfect sets
for F↑ and F(i, j), respectively, where I (i, j) is I with i and j exchanged in each of its
elements.

Theorems 1 and 2 hold not only for functors but also for plain set constructors (with
a further cardinality-monotonicity assumption needed for the completeness part of The-
orem 1). The most interesting cases are the genuinely functorial ones of initial algebras
and final coalgebras. Witnesses for initial algebras and final coalgebras are essentially
obtained by repeated compositions of the witnesses of the involved BNFs and the fold-
ing bijections, inductively in one case and coinductively in the other. The derivation
trees from Section 3 turn out to be perfectly suited for recording the combinatorics of
these compositions, so that both soundness and completeness follow easily.

For the rest of this subsection, we fix n (m+ n)-ary functors β F j and assume each
F j has a perfect set K j. We start by constructing a (set) grammar Gr = (T,N,P) with
T = [m], N= [n], and P= {( j, cp(K)) | K ∈K j}, where, for each K ⊆ [m+ n], cp(K)
is its copy to [m]+ [n] defined as Inl • ([m] ∩ K) ∪ Inr • {k ∈ [n] | m+ k ∈ K}.

The intuition is as follows. A mutual datatype definition introduces n isomorphisms
α IF j

∼= (α, α IF j, . . . , α IFn)F j. We are looking for conditions that guarantee nonempti-
ness of the functors IF j. To this end, we traverse these isomorphisms from left to right,
reducing nonemptiness of α IF j to that of (α, α IF1, . . . , α IFn)F j. Nonemptiness of the
latter can be reduced to nonemptiness of some αi1 , . . . , αip and some α IF j1 , . . . , α IF jq ,
via a witness for F j of the form {i1, . . . , ip,m+ j1, . . . ,m+ jq}. This yields a grammar
production j →{Inl i1, . . . , Inl ip, Inr j1, . . . , Inr jq}, where the ik’s are terminals and the
jl’s are, like j, nonterminals. The ultimate goal is to reduce the nonemptiness of α IF j to
that of components of α alone, i.e., to terminals. This precisely corresponds to deriva-
tions in the grammar of terminal sets. It should be intuitively clear that by considering
finite derivations, we obtain sound witnesses for IF j. We actually prove more: For initial
algebras, finite derivations are also witness-complete; for final coalgebras (substituting
JF for IF), accepting infinite derivations is sound and also required for completeness.

Theorem 3. Assume that the final coalgebra of F exists and consists of n m-ary functors
αm JF j (cf. Section 2.1). Then L r

Gr( j) is a perfect set for JF j, for j ∈ [n].

To prove soundness, we define a nonemptiness witness to α JF j corecursively (by
abstract JF-corecursion). Showing completeness is more interesting: We define a func-
tion to dtree corecursively (by concrete tree corecursion), obtaining a derivation tree,
from which we then cut a regular derivation tree by exploiting Lemma 1.
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Fig. 3. A finite derivation tree (left), a regular cut (middle), and a finite regular cut (right)

Proof sketch. Let j0 ∈ [n]. We first show that L r
Gr( j0) is sound. Let t0 be a well-formed

regular derivation tree with root j0. We must prove that F j0 is Fr t0-witnessed. For this,
we fix αm such that ∀i∈Fr t0. αi �= /0, and aim to show that α JF j0 �= /0.

For each j ∈ Itr t0, let tj be the corresponding subtree of t0. (It is well-defined, since
t0 is regular.) Note that t0 = t j0 . For each K such that ( j, cp(K)) ∈ P, since K ∈K j and
K j is sound for F j, we obtain a K-witness for F j, i.e., a function wj,K : (γk)k∈K → γ F j

(polymorphic in γ).
Let βn be defined as β j = unit if j ∈ Itr t0 and /0 otherwise. We build a coalgebra

structure on β, (sj : β j → (α, β)F j) j∈[n], as follows: If j /∈ Itr t0, then sj is the unique
function from /0. Otherwise, let sj () = wj,K (ai)i∈K∩[m] ()

|K∩[m+1,m+n]|, where cp(K) is
the right-hand side of the top production of tj, i.e., (id⊕root) • cont tj. For each j∈ Itr t0,
unfoldj s : unit→ α JF j ensures the nonemptiness of α JF j. In particular, α JF j0 �= /0.

We now show that L r
Gr( j0) is complete. Let I ⊆ [m] such that JF j0 is I-witnessed.

We must find I1 ∈L r
Gr( j0) such that I1 ⊆ I. Let αm be defined as αi = unit if i ∈ I and

/0 otherwise. Let J = { j | α F j �= /0}. We define c : J → ([m]+ J) fset by c j = cp(Kj),
where Kj is such that ( j, cp(Kj)) ∈ P and Kj ⊆ I ∪ {m+ j | j ∈ J}.

Now let g : J → dtree be unfold id c. Thus, for all j∈ J, root (g j) = j and cont (g j) =
(id⊕ g) • c j = Inl • (Kj ∩ I) ∪ Inr • {g j | m+ j ∈ Kj}. Taking t0 = g j0 and using
Lemma 1, we obtain the regular well-formed tree t1 such that Fr t1 ⊆ Fr t0 ⊆ I. Hence
Fr t1 is the desired index set I1. ��

The above completeness proof provides an example of self-application of codata-
types: A specific codatatype, of infinite derivation trees, arises in the metatheory of
general codatatypes. And this may well be unavoidable: While for soundness the regu-
lar trees are replaceable by some equivalent (finite) inductive items, it is not clear how
completeness could be proved without first considering arbitrary infinite derivation trees
and then cutting them down to regular trees.

An analogous result holds for initial algebras. For each i ∈ N, let L rf
Gr(i) be the lan-

guage generated by i by means of regular finite derivation trees for grammar Gr. Since
N is finite, these can be described more directly as trees for which every nonterminal
path has no repetitions.

In the following proofs, we exploit an embedding of datatypes as finite codatatypes.
Using this embedding, we can transfer the recursive definition and structural induction
principles from IF to finite elements of JF, and in particular from a datatype fdtree of
finite trees (Appendix C) to finite trees in dtree.

The regular cut of a tree works well with respect to the metatheory of codatatypes,
but for datatypes it has the disadvantage that it may produce infinite trees out of finite
ones, as depicted in Fig. 3 (left and middle). We need a slightly different concept for
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datatypes: the finite regular cut (right). Let t0 be a finite derivation tree. We define the
function fpick : Itr t0 → Subtr t0 similarly to pick from Section 3, but making sure that
the choice of the subtrees fpick n is minimal, in that fpick n does not have n in the
interior of a proper subtree (and hence does not have any proper subtree of root n).
Such a choice is possible owing to the finiteness of t0. We define the finite regular cut
of t0, rfcut t0, analogously to rcut t0, using fpick instead of pick.

Lemma 2. Assume t0 is a finite derivation tree. Then:

(1) The statement of Lemma 1 holds if we replace rcut by rfcut.
(2) rfcut t0 is finite.

Proof. (1) Similar to the proof of Lemma 1. (2) By routine induction on t0. ��
Theorem 4. Assume that the initial algebra of F exists and consists of n m-ary functors
αm IF j (cf. Section 2.1). Then L rf

Gr( j) is a perfect set for IF j, for j ∈ [n].

Proof. Let j0 ∈ [n]. We first show that L rf
Gr( j0) is sound. Let t0 be a well-formed finite

regular derivation tree with root j0. We must prove that F j0 is Fr t0-witnessed. For this,
we fix αm such that ∀i∈Fr t0. αi �= /0, and aim to show that α IF j0 �= /0.

For each j ∈ Itr t0, let tj be the corresponding subtree of t0. (It is well-defined, since
t0 is regular.) Note that t0 = t j0 . For each K such that ( j, cp(K)) ∈ P, since K ∈K j and
K j is sound for F j, we obtain a K-witness for F j, i.e., a function wj,K : (αk)k∈K → α F j.

We verify the following fact by induction on the finite derivation tree t: If ∃ j ∈
Itr t0. t = tj, then α IF j �= /0. The induction step goes as follows: Assume t = tj has the
form Node j as, and let J be the set of all roots of the immediate subtrees of t, namely,
root • (Inr− (cont t)). By the induction hypothesis, α IF j′ �= /0 (say, b j′ ∈ α IF j′ ) for all
j′ ∈ J. Then wj,K (ai)i∈Inl− t (b j′) j′∈J ∈ α IF j, making α IF j nonempty. In particular,
α JF j0 �= /0.

We now show that L rf
Gr( j0) is complete. Let I ⊆ [m] such that IF j0 is I-witnessed. We

must find I1 ∈L rf
Gr( j0) such that I1 ⊆ I. Let αm be defined as αi = unit if i ∈ I and /0

otherwise. We verify, by structural IF-induction on b, that for all j ∈ [n] and b ∈ α IF j,
there exists a finite well-formed derivation tree t such that root t = j and Fr t ⊆ I.
For the inductive step, assume ctorj x ∈ α IF j, where x ∈ (α, α IF) F j. By the induction
hypotheses, we obtain the finite well-formed derivation trees tn such that root tj = j and
Fr tj ⊆ I for all j∈ [n]. Let J = { j′ ∈ [n] |α IF j′ �= /0}. Then F j is (I ∪ J)-witnessed, hence
by the F j-completeness of K j we obtain K ∈K j such that K ⊆ I ∪ {m+ j′ | j′ ∈ J}.
We take t to have j as root, I ∩ K as leaves and (t j′) j′∈J as immediate subtrees; namely,
t = Node j (Inl • I ∪ Inr • {t j′ | j′ ∈ J})).

Let t0 be a tree as above corresponding to j0 (since α IF j0 �= /0). Then, by Lemma 2,
t1 = rcut t0 is a well-formed finite derivation tree such that Fr t1 ⊆ Fr t0 ⊆ I. Thus,
taking I1 = Fr t1, we obtain I1 ∈L rf

Gr( j0) and I1 ⊆ I. ��
Let us see how Theorems 1 to 4 can be combined in establishing or refuting non-

emptiness for some of our motivating examples from Sections 1 and 4.1.
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• I(α, β) pre_list = { /0} by Theorem 1; Iα list = { /0} by Theorem 4
• I(α, β) pre_fstream= {{α, β}}; Iα fstream= /0 by Theorem 4 (i.e.,α fstream is empty)
• I(α, β) pre_stream = {{α, β}}; Iα stream = {{α}} by Theorem 3

• I(α, β, γ) pre_ltree = {{α, β}, {β, γ}} by Theorem 1;
I(α, β) ltree = {{β}} by Theorem 3

• I(α, β, γ) pre_t1
= {{β}, {α, γ}}, I(α, β, γ) pre_t2

= { /0}, and
I(α, β, γ) pre_t3

= {{α}, {γ}} by Theorem 1; Iti = { /0} by Theorem 4

Since we have maintained perfect sets throughout all the BNF operations, we obtain
the following central result.

Theorem 5. Any BNF built from other BNFs endowed with perfect sets of witnesses
(in particular all basic BNFs discussed in this paper) by repeated applications of the
composition, initial algebra, and final coalgebra operations has a perfect set defined as
indicated in Theorems 1 to 4.

Corollary 1. The nonemptiness problem is decidable for arbitrarily nested, mutual
(co)datatypes.

Consequently, a procedure implementing Theorems 1 to 4 will preserve enough non-
emptiness witnesses to ensure that all specifications describing nonempty datatypes are
accepted. The next subsection presents such a procedure.

4.3 Computational Aspects

Theorem 3 reduces the computation of perfect sets for final coalgebras to that ofL r
Gr(n).

The use of infinite regular trees in the definition of L r
Gr(n) allows a simple proof of

soundness, and the only natural proof of completeness we could think of, relating the
coinductive nature of arbitrary mutual codatatypes with that of infinite trees. However,
from a computational point of view, the use of infinite trees is excessive.

In fact, LGr(n) and L f
Gr(n), the nonregular versions of the generated languages, are

computable by fixpoint iteration on finite sets. It is not hard to show that LGr and L f
Gr

are the greatest and least solutions of the following fixpoint equation, involving the
variable X : N→ ((T+N) set) set, where the order is componentwise inclusion:

X n =
{
Inl−ss ∪ ⋃

n′ ∈ Inr−ss Kn′
∣
∣ (n, ss) ∈ P ∧ K ∈ ∏ n′ ∈ Inr−ss X n′

}

The equation simply states the expected closure under the grammar productions, famil-
iar from formal language theory. But since the “words” are finite sets and not lists, a
fixpoint is reached after at most card N iterations.

However, it is easier to settle this computational aspect by working with the regular
versions L r

Gr(n) and L rf
Gr(n), whose structure nicely exhibits boundedness. Namely, we

prove for these languages a bounded version of the above fixpoint equation, featuring a
decumulator that witnesses the finite convergence of the computation.

First, we relativize the notion of frontier to that of “frontier through ns,” Fr ns t,
containing the leaves of t accessible by paths of nonterminals from ns ⊆ N. We also
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define the corresponding ns-restricted regularly generated language L r
Gr ns n. Thus,

what used to be denoted by Fr t and L r
Gr n now becomes Fr N t and L r

Gr N n.
In what follows, by “word” we mean “finite set of terminals.” We can think of a

generated word as being more precise than another provided the former is a subword
(subset) of the latter. This leads us to defining, for languages (sets of words), the notions
of word-inclusion subsumption,2 ≤, by L ≤ L′ iff ∀w∈L. ∃w′ ∈L′. w′ ⊆ w, and equiv-
alence, ≡, by L ≡ L′ iff L ≤ L′ and L′ ≤ L. It is easy to see that any set ≡-equivalent to
a perfect set is again perfect. Note also that Lemma 1 implies L r

Gr(n)≡LGr(n), which
qualifies regular trees as a generated-language optimization of arbitrary trees.

We compute L r
Gr ns n up to word-inclusion equivalence ≡ by recursively applying

available productions whose source nonterminals are in ns, removing each time from ns
the expanded nonterminal. Thus, if n is in ns, L r

Gr ns n calls L r
Gr ns′ n′ recursively with

ns′ = ns\{n′} for each nonterminal n′ in the chosen production from n, and so on, until
the current node is no longer in the decumulator ns:

Theorem 6. For all ns ⊆ N and n ∈ N, L r
Gr ns n ≡

{{ /0} if n /∈ ns{
Inl−ss ∪ ⋃

n′∈Inr−ss Kn′
∣
∣ (n, ss)∈P ∧ K ∈∏ n′∈Inr−ss L

r
Gr (ns \ {n}) n′

}
otherwise

Proof sketch. L r
Gr ns n ⊆ { /0}, since Fr ns t = /0 for all t such that root t = n. It remains

to show that /0∈L r
Gr ns t, i.e., to find a derivation tree with root n. Using the assumption

that there are no unused nonterminals, we can build a “default derivation tree” deftr n for
each n as follows. We pick, for each n, a set S n ∈ (T+N) fset such that (n, S n) ∈ P.
Then we define deftr : N → dtree corecursively as deftr = unfold id S, i.e., such that
root (deftr n) = n and cont (deftr n) = (id ⊕ deftr) • S n. It is easy to prove by fixpoint
coinduction that deftr n is a derivation tree for each n.

Now assume n /∈ ns, and let ns′ = ns \ {n}. For the left-to-right direction, we prove
more than ≤, namely, actual inclusion betweenL r

Gr ns n and the righthand side. Assume
t is a well-formed regular derivation tree of root n. We must find ss ∈ (T+N) fset
and U : Inr− ss → dtree such that, for all n′ ∈ Inr− ss, U n′ is a well-formed regular
derivation tree of root n′ and Fr ns t = Inl−ss∪⋃

n′∈Inr− ss Fr ns′ (U n′). Clearly, ss should
be the right-hand side of the top production of t. As for U, the immediate subtrees of t
would appear to be suitable candidates; however, these do not work, since our goal is to
have Fr ns t covered by (Inl− ss in conjunction with) Fr ns′ (U n′), while the immediate
subtrees only guarantee this property with respect to Fr ns (U n′), i.e., allowing paths
to go through n as well. A correct solution is again offered by a corecursive definition:
We build the tree t0 from t by substituting hereditarily each subtree with root n by t.
Formally, we take t0 = unfold r c, where r t′ = root t′ and c t′ = cont t if root t′ = n
and c t′ = cont t′ otherwise. It is easy to prove that t0, like t, is a regular derivation tree.
Thus, we can define U to give, for any n′, the corresponding immediate subtree of t0.

To prove the right-to-left direction, let ss∈ (T+N) fset and K ∈∏ n′∈Inr− ss L
r
Gr ns′ n′

such that ts = Inl−ss ∪ ⋃
n′∈Inr− ss Kn′ . Unfolding the definition of L r

Gr, we obtain U :
Inr− ss → dtree such that, for all n′ ∈ Inr− ss, U n′ is a regular derivation tree of root
n′ such that Kn′ ∈ Fr ns′ (U n′). Then the tree of immediate leafs Inl−ss and immediate

2 This is in effect the Smyth preorder extension [38] of the subword relation.
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subtrees {U n′ | n′ ∈ Inr− ss}, namely, Node n ((id⊕U) • ss), is the desired regular
derivation tree whose frontier is included ts. ��

Theorem 6 provides an alternative, recursive definition of L r
Gr ns n. The definition

terminates because the argument ns is finite and decreases strictly in the recursive case.
This shows that the height of the recursive call stack is bounded by the number of non-
terminals, which corresponds to the number of simultaneously introduced codatatypes.

Here is how the above recursion operates on the ltree example. We have T= {α, β},
N = {γ}, and P = {p1, p2}, where p1 = (γ, {Inl α, Inl β}) and p2 = (γ, {Inl β, Inr γ}).
Note that

• Inl−ss = {α, β} and Inr−ss = /0 for (n, ss) = p1
• Inl−ss = {β} and Inr−ss = {γ} for (n, ss) = p2

The computation has one single recursive call, yielding

L r
Gr γ =L r

Gr {γ} γ
≡ {{α, β} ∪ /0} ∪ {{β} ∪ ⋃

n′∈{γ} Kn′ | K ∈ ∏ n′∈{γ}L r
Gr /0 n′}

= {{α, β}} ∪ {{β} ∪ Kγ | Kγ ∈L r
Gr /0 γ}

= {{α, β}} ∪ {{β} ∪ /0}
= {{α, β}, {β}}
≡ {{β}}

For datatypes, the computation of L rf
Gr is achieved analogously to Theorem 6, defining

L rf
Gr ns n as a generalization of L rf

Gr n.
In what follows, nl ranges over lists of nonterminals and the centered dot operator (·)

denotes list concatenation. If n is a nonterminal, n also denotes the n-singleton list.
The predicate path nl t, stating that nl is a path in t (starting from the root), is defined
inductively as follows:

path (root t) t
Inr t′ ∈ cont t ∧ path nl t′ ⇒ path ((root t) ·nl) t′

Lemma 3. Let t be a finite regular derivation tree. Then t has no paths that contain
repetitions.

Proof. Assume, by absurdity, that a path nl in t contains repetitions, i.e., has the form
nl1 ·n ·nl2 ·n, and let t1 and t2 be the subtrees corresponding to the paths nl1 ·n and nl,
respectively. Then t2 is a proper subtree of t1; on the other hand, by the regularity of t,
we have t1 = t2, which is impossible since t1 and t2 are finite. ��
Theorem 7. The statement of Theorem 6 still holds if we substitute L rf

Gr for L r
Gr and

/0 for { /0}.

Proof. By Lemma 3 and the properties of regular cuts, we have (1)L rf
Grns′ n≡L pf

Gr ns′ n,

whereL pf
Gr ns′ n is the language defined likeL rf

Gr ns′ n but replacing “regular” with “hav-
ing no paths that contain repetitions.” Moreover, it is easy to see that (2) the desired facts
hold if we replace L rf

Gr ns′ n with L pf
Gr ns′ n and ≡ with equality. The result follows from

(1) and (2). ��
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5 Implementation in Isabelle

The package maintains nonemptiness information for producing nonemptiness proofs
arising when defining datatypes. The equations from Theorems 6 and 7 involve only
executable operations over finite sets of numbers, sums, and products. Since the de-
scriptions of Theorems 1 and 2 are also executable, the implementation task emerges
clearly: Store a perfect set with each basic BNF, and have each BNF operation compute
witnesses from those of its operands.

However, as it stands, I-witnesshood cannot be expressed in HOL because types are
always nonempty: How can we state that (α, β) tree �= /0 conditionally on α �= /0 or β �= /0,
in the context of α and β being assumed nonempty in the first place? The solution is to
work not with operators αF on HOL types directly but rather with their internalization
to sets, expressed as a polymorphic function Fin : α1 set → ··· → αn set → (α F) set
defined as Fin A = {x | ∀i∈ [n]. Fseti x ⊆ Ai}. I-witnesshood is then expressible as
(∀i∈ I. Ai �= /0)⇒ Fin A �= /0.

For each n-ary BNF F, the package stores a set of sets I of numbers in [n] (the
perfect set) and, for each set I ∈I , a polymorphic constant wI : (αi)i∈I → α F and an
equivalent formulation of I-witnesshood: ∀i∈ I. Fseti (wI (aj) j∈I) �= /0.

Due to the logic’s restricted expressiveness, we cannot prove the theorems presented
in this paper in their most general form for arbitrary functors and have the package
instantiate them for specific functors. Instead, the package proves the theorems dynam-
ically for the specific functors involved in the datatype definitions. Only the sound-
ness part of the theorems is needed. Completeness is desirable, because in its absence
some legitimate definitions would be rejected. To paraphrase Krauss and Nipkow [24],
completeness belongs to the realm of metatheory and is not required to obtain actual
nonemptiness proofs—it merely lets you sleep better.

A HOL definitional package bears the burden of computing terms and certifying the
computation, i.e., ensuring that certain terms are theorems. The combinatorial computa-
tion of witnessing sets of indices described in Theorems 6 and 7 would be expensive if
performed through Isabelle, that is, by executing the equations stated in these theorems
as term rewriting in the logic. Instead, we perform the computation outside the logic,
employing a Standard ML datatype aimed at efficiently representing the finite and the
regular derivation trees inhabiting the Isabelle type dtree from Section 3:

datatype wit_tree = Wit_Leaf of int
| Wit_Node of (int ∗ int ∗ int list) ∗ wit_tree list

Here, Wit_Node ((i, j, is), ts) stores the root nonterminal i, a numeric identifier of the
used production j, and the continuation consisting of the terminals is and the further
nonterminal expanded trees ts. Moreover, Wit_Leaf i stores, in the case of regular infi-
nite trees, the nonterminal where a regularity loop occurs, i.e., such that it has a previous
occurrence on the path to the root.

From this tree datatype, we produce witnesses represented as Isabelle constants of
appropriate types (the wI’s described above), by essentially mimicking the (co)recursive
definitions employed in the proofs of the soundness parts of Theorems 3 and 4. We
certify the witnesses by producing the relevant Isabelle proof goals and discharging
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them by mirroring the corresponding (co)inductive arguments from the aforementioned
proofs. In summary: The witnesses are computed outside the logic, but they are verified
by Isabelle’s kernel. After introducing a BNF, redundant witnesses are silently removed.

The development devoted to the production and certification of witnesses amounts
to about 1000 lines of Standard ML [9].

6 Related Work

Coinductive (or coalgebraic) datatypes have become popular in recent years in the study
of infinite behaviors and nonterminating computation. Whereas inductive datatypes are
well studied and widely available in most programming languages and proof assistants,
coinductive types are still not mainstream, and their integration into existing systems
poses many challenges.

In the context of theorem proving, much research has been done in the past few years
on how to add coinductive types or improve support of coinductive proofs, notably in
Agda [2], CIRC [27], and Coq [7, 29]. The work described in this paper is in line with
this research. The results are applicable to other proof assistants from the HOL family.

In HOL-based systems, other definitional packages must also prove nonemptiness
of newly defined types, but typically the proofs are easy. For example, Homeier’s quo-
tient package for HOL4 [19] exploits the observation that quotients of nonempty sets
are nonempty, and Huffman’s (co)recursive domain package for Isabelle/HOLCF [21]
can rely on a minimal element ⊥. For the traditional datatype packages introduced by
Melham [28], and implemented in Isabelle/HOL by Berghofer and Wenzel [6], prov-
ing nonemptiness is nontrivial, but by reducing nested definitions to mutual definitions,
they could employ a standard reachability analysis [6, § 4.1]. To our knowledge, the
completeness of the analysis has not been proved (or even formulated) for these.

Obviously, our overall approach to (co)datatypes is heavily inspired by category-
theory developments [5, 12, 17, 18, 35]—this is discussed in detail in a previous pa-
per [39], which puts forward a program for integrating insight from category theory
in proof assistants based on higher-order logic, to achieve better structure and func-
tionality. A similar program is pursed on a larger scale in the context of homotopy
type theory [40], targeting proof assistants based on type theory, notably Agda and
Coq. Our nonemptiness witness maintenance is similar to the preservation of enriched
types along various constructions—for example, initial algebras and final coalgebras of
pointed functors are also pointed [20]. However, existing analysis techniques are only
concerned with soundness (not completeness) results.

7 Conclusion

We presented a complete solution to the nonemptiness problem for open-ended, mutual,
nested codatatypes. This problem arose in the context of Isabelle’s new (co)datatype
package and has broad practical applicability in terms of the popularity of HOL-based
provers. The problem and its solution also enjoy an elegant metatheory, which itself is
best expressed in terms of codatatypes. Our solution, like the rest of the definitional
package, is part of the latest edition of Isabelle.
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A Abstract (Co)induction

Using the atomic infrastructure described in Section 2.2, the induction principle can be
expressed abstractly for the mutual initial algebra IF of functors F as follows for sets α
and predicates ϕ j : α IF j → bool:

∧n
j=1∀x∈ (α, α IF)F j. (

∧n
k=1∀b∈Fsetm+k

j x. ϕk b)⇒ ϕ j (ctorj x)
∧n

j=1∀b∈α IF j. ϕ j b

For lists, this instantiates to

∀x∈unit+α×α list. (∀b∈Fset2x. ϕ b)⇒ ϕ (ctor x)

∀b∈α list. ϕ b

which, by taking Nil = ctor (Inl ()) and Cons a b = ctor (Inr (a, b)), can be recast into
the familiar rule

ϕ Nil ∀a∈α. ∀b∈α list. ϕ b ⇒ ϕ (Cons a b)

∀b∈α list. ϕ b

Moving to coinduction, we need a further well-known assumption: that our functors
preserve weak pullbacks, or, equivalently, that they induce relators [34]. For a functor
αn F, we lift its action Fmap : (α1 → β1)→ ··· → (αn → βn)→ α F→ β F on functions
to an action Frel : (α1 → β1 → bool)→·· ·→ (αn → βn → bool)→ (α F→ β F→ bool),
the relator, defined as follows:

Frel ϕ x y ⇐⇒ ∃z. Fmap fst z = x ∧ Fmap snd z = y ∧
∧n

i=1 ∀(a, b)∈Fseti z. ϕi a b

http://homotopytypetheory.org/book/
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Structural coinduction can also be expressed abstractly, for the mutual final coalgebra
JF of functors F:

∧n
j=1∀a b∈ (α, αJF)F j. θ j a b ⇒ Frel j (=)m θ (dtor j a) (dtorj b)

∧n
j=1 ∀a b. θ j a b ⇒ a = b

for sets αn and binary predicates θ j ∈ α JF j → α JF j → bool. The rule is parameterized
by predicates θ j : α JF j → α JF j → bool required by the antecedent to form an F-bisim-
ulation. The principle effectively states that equality is the largest F-bisimulation [35].

B Concrete Coiteration and Coinduction

Coiteration. The abstract coiteration principle described in Section 2.1 relies on a co-
iterator unfold : (β→ β pre_dtree)→ β→ dtree such that dtor ◦ unfold s =map_pre_
dtree (unfold s) ◦ s. Writing s as 〈r, c〉 for r : β→ N and c : β→ (T+ α) fset and
recasting the equation in pointful form yields dtor (unfold 〈r, c〉 b) = map_pre_dtree
(unfold s)(rb,cb) This can be further improved by unfolding the definition ofmap_pre_
dtree, expressing dtor as 〈root, cont〉, and splitting the result into a pair of equations:
root (unfold 〈r, c〉 b) = r b and cont (unfold 〈r, c〉 b) = (id ⊕ unfold 〈r, c〉) • c b. The
coiteration rule of Section 2.1 emerges by replacing unfold with the curried unfold′ :
(β→ N)→ (β→ (T+β) fset)→ β→ dtree defined as unfold′ r c = unfold 〈r, c〉.
Coinduction. The abstract coinduction principle of Appendix A is customized into the
following concrete coinduction for dtree:

∀t1 t2. θ t1 t2 ⇒ root t1 = root t2 ∧ fset_rel (sum_rel (=) θ) (cont t1) (cont t2)

θ t1 t2 ⇒ t1 = t2

where the predicate fset_rel (sum_rel (=) θ) is an instance of the abstract Frel: It
gives the componentwise extension of θ to (T+dtree) fset. Unfolding the characteristic
theorems for fset_rel and sum_rel yields the antecedent

∀t1 t2. θ t1 t2 ⇒ root t1 = root t2 ∧
Inl−(cont t1) = Inl−(cont t2) ∧
∀t′1 ∈ Inr−(cont t1). ∃t′2 ∈ Inr−(cont t2). θ t′1 t′2 ∧
∀t′2 ∈ Inr−(cont t2). ∃t′1 ∈ Inr−(cont t1). θ t′1 t′2

where Inl−(cont t) is the set of t’s successor leaves and Inr−(cont t) is the set of its
immediate subtrees. Informally: If two trees are in relation θ, then they have the same
root and the same successor leaves and for each immediate subtree of one, there exists
an immediate subtree of the other in relation θ with it.

C Concrete Iteration and Induction

Finite trees can be defined by

datatype fdtree = FNode (froot : N) (fcont : (T+dtree) fset)



382 J.C. Blanchette, A. Popescu, and D. Traytel

This produces the operations FNode, froot, and fcont, with the same constructor–
selector properties as Node, root and cont from the codatatype dtree introduced in
Section 3. The differences concern (co)induction and (co)recursion.

Iteration. The general principle described in Section 2.1 employs in the unary case
an iterator fold of (polymorphic) type (β pre_fdtree → β) → fdtree → β, for which it
yields ∀s : β pre_fdtree→ β. fold s ◦ ctor= s ◦map_pre_fdtree (fold s), that is,

∀s : β pre_fdtree→ β. ∀k. fold s (ctor k) = s (map_pre_fdtree (fold s) k)

The fdtree-defining BNF coincides with the dtree-defining BNF: β pre_fdtree = N×
(T+β) fset and map_pre_fdtree f = id⊗ (image (id⊕ f )).

The above characterization needs some customization. Using the FNode instead of
ctor and unfolding the definition of map_pre_fdtree, we obtain ∀s : N× (T+β) fset→
β. ∀n as. fold s (FNode n as) = s (map_pre_fdtree (fold s) (n, as)). By unfolding the
definition of map_pre_fdtree, we obtain

∀s : N× (T+β) fset→ β. ∀n as. fold s (FNode n as) = s (n, (id⊕ fold s) • as)

Finally, replacing fold with its more convenient curried version fold′ : (N→ (T+β) fset
→ β)→ fdtree→ β defined as fold′ s = fold (λ(n, as). s n as), we obtain the following
customized iteration principle, where we write fold instead of fold′: For all sets β, func-
tions s : N→ (T+β) fset→ β and elements n ∈ N and as ∈ (T+ fdtree) fset, it holds
that fold s (FNode n as) = s n ((id⊕ fold s) • as).

Induction. The induction principle from Section A yields for ϕ : α fdtree→ bool

∀k∈α pre_fdtree. (∀t∈Fset k. ϕ t)⇒ ϕ (ctor k)

∀t∈α fdtree. ϕ t

i.e., using the curried variation FNode of dtor,

∀n as. (∀t∈Fset (n, as). ϕ t)⇒ ϕ (FNode n as)

∀t∈α fdtree. ϕ t

Unfolding the definition of Fset, namely, Fset (n, as) = Inr− as, we obtain the end-
product customized induction for finite trees:

∀n as. (∀t∈ Inr−as. ϕ t)⇒ ϕ (FNode n as)

∀t∈α fdtree. ϕ t
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Abstract. This paper presents a generic method for randomly generating well-
typed expressions. It starts from a specification of a typing judgment in PLT Re-
dex and uses a specialized solver that employs randomness to find many different
valid derivations of the judgment form.

Our motivation for building these random terms is to more effectively falsify
conjectures as part of the tool-support for semantics models specified in Redex.
Accordingly, we evaluate the generator against the other available methods for
Redex, as well as the best available custom well-typed term generator. Our results
show that our new generator is much more effective than generation techniques
that do not explicitly take types into account and is competitive with generation
techniques that do, even though they are specialized to particular type-systems
and ours is not.

1 Introduction

Redex (Felleisen et al. 2010) employs property-based testing to help semantics engi-
neers uncover bugs in their models. Semantics engineers write down properties that
should hold of their models (e.g., type soundness) and Redex can randomly generate
example expressions in an attempt to falsify those properties. Until recently, Redex
used a naive generation strategy: it simply randomly picks productions from the gram-
mar of the language to build a term and then checks to see if that falsifies the property of
interest. For untyped models, or when the model author writes a “fixing” function that
makes expressions more likely to type-check (e.g., by writing a post-processing func-
tion that binds free variables), this naive technique is effective (Klein 2009; Klein et al.
2012; Klein et al. 2013). With typed models, however, such randomly generated terms
rarely type check and so the testing process spends most of its time rejecting ill-typed
terms instead of actually testing the model.

To make testing more effective, we built a solver that randomly generates solutions to
problems involving a subset of first-order logic with equality and inequality constraints,
and we use that to transform a Redex specification of a type-system into a random
generator of well-typed terms.

We evaluate our generator on a benchmark suite of buggy Redex models and show
that it is far more effective than the naive approach and less effective than the fixing
function approach, but still competitive. We also evaluate our generator against the best
known, hand-tuned generator for random well-typed terms (Pałka et al. 2011). This
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generator handles only a language closely matched to the GHC Haskell compiler in-
termediate language, but is better than our generic generator, overall. We compared the
two generators by searching for counterexamples to two properties using a buggy ver-
sion of GHC. A straightforward translation into Redex using our generator is able to
find one bug infrequently, and to investigate the difficulties we refined that translation
into a non-polymorphic model that was much more effective, demonstrating how poly-
morphism can be a difficult issue to tackle with random testing. We carefully explore
why and discuss the issues in section 4.

Section 2 works through the generation process for a specific model in order to ex-
plain our method. Section 3 gives a small, formal model of our generator. Section 4
explains the evaluation of our generator. Section 5 discusses related work and section 6
concludes.

2 Example: Generating a Well-Typed Term

This section gives an overview of our method for generating well-typed terms by work-
ing through the generation of an example term. We will build a derivation satisfying the
judgment form definition in figure 1, a typing judgment for simply-typed lambda cal-
culus with a single base type of natural numbers. We begin with a goal pattern, which
we will want the conclusion of the generated derivation to match.

Our goal pattern will be the following:

stating that we would like to generate an expression with arbitrary type in the empty type
environment. We then randomly select one of the type rules. This time, the generator
selects the abstraction rule, which requires us to specialize the values of and in
order to agree with the form of the rule’s conclusion. To do that, we first generate a new
set of variables to replace the ones in the abstraction rule, and then unify our conclusion
with the specialized rule. We put a super-script on these variables to indicate that they
were introduced in the first step of the derivation building process, giving us this partial
derivation.

Fig. 1. Grammar and type system for the simply-typed lambda calculus used in the example
derivation



Making Random Judgments: Automatically Generating Well-Typed Terms 385

The abstraction rule has added a new premise we must now satisfy, so we follow the
same process with the premise. If the generator selects the abstraction rule again and
then the application rule, we arrive at the following partial derivation, where the super-
scripts on the variables indicate the step where they were generated:

Application has two premises, so there are now two unfinished branches of the deriva-
tion. Working on the left side first, suppose the generator chooses the variable rule:

To continue, we need to use the metafunction, whose definition is shown on
the left-hand side of figure 2. Unlike judgment forms, however, Redex metafunction
clauses are ordered, meaning that as soon as one of the left-hand sides matches an input,
the corresponding right-hand side is used for the result. Accordingly, we cannot freely
choose a clause of a metafunction without considering the previous clauses. Internally,
our method treats a metafunction as a judgment form, however, adding premises to
reflect the ordering.

Fig. 2. Lookup as a metafunction (left), and the corresponding judgment form (right)
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For the lookup function, we can use the judgment form shown on the right of figure 2.
The only additional premise appears in the bottom rule and ensures that we only recur
with the tail of the environment when the head does not contain the variable we’re
looking for. The general process is more complex than suggests and we return
to this issue in section 3.1.

If we now choose that last rule, we have this partial derivation:

The generator now chooses ’s first clause, which has no premises, thus com-
pleting the left branch.

Because pattern variables can appear in two different premises (for example the ap-
plication rule’s appears in both premises), choices in one part of the tree affect the
valid choices in other parts of the tree. In our example, we cannot satisfy the right
branch of the derivation with the same choices we made on the left, since that would
require .

This time, however, the generator picks the variable rule and then picks the first
clause of the , resulting in the complete derivation:
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To finish the construction of a random well-typed term, we choose random values
for the remaining, unconstrained variables, e.g.:

We must be careful to obey the constraint that and are different, which was in-
troduced earlier during the derivation, as otherwise we might not get a well-typed term.
For example, is not well-typed but is an otherwise
valid instantiation of the non-terminals.

3 Derivation Generation in Detail

This section describes a formal model1 of the derivation generator. The centerpiece of
the model is a relation that rewrites programs consisting of metafunctions and judgment
forms into the set of possible derivations that they can generate. Our implementation has
a structure similar to the model, except that it uses randomness and heuristics to select
just one of the possible derivations that the rewriting relation can produce. Our model
is based on Jaffar et al. (1998)’s constraint logic programming semantics.

Fig. 3. The syntax of the derivation generator model

The grammar in figure 3 describes the language of the model. A program consists

of definitions , which are sets of inference rules , here written horizontally
with the conclusion on the left and premises on the right. (Note that ellipses are used
in a precise manner to indicate repetition of the immediately previous expression, in
this case , following Scheme tradition. They do not indicate elided text.) Definitions
can express both judgment forms and metafunctions. They are a strict generalization of
judgment forms, and metafunctions are compiled into them via a process we discuss in
section 3.1.

The conclusion of each rule has the form , where is an identifier naming the
definition and is a pattern. The premises may consist of literal goals or dis-
equational constraints . We dive into the operational meaning behind disequational
constraints later in this section, but as their form in figure 3 suggests, they are a dis-
junction of negated equations, in which the variables listed following are universally

1 The corresponding Redex model is available from this paper’s website (listed after the conclu-
sion), including a runnable simple example that may prove helpful when reading this section.
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Fig. 4. Reduction rules describing generation of the complete tree of derivations

quantified. The remaining variables in a disequation are implicitly existentially quanti-
fied, as are the variables in equations.

The reduction relation shown in figure 4 generates the complete tree of derivations
for the program with an initial goal of the form , where is the identifier of some
definition in and is a pattern that matches the conclusion of all of the generated
derivations. The relation is defined using two rules: and . The

states that the relation acts on are of the form , where represents
a stack of goals, which can either be incomplete derivations of the form , indicat-
ing a goal that must be satisfied to complete the derivation, or disequational constraints
that must be satisfied. A constraint store is a set of simplified equations and disequa-
tions that are guaranteed to be satisfiable. The notion of equality we use here is purely
syntactic; two ground terms are equal to each other only if they are identical.

Each step of the rewriting relation looks at the first entry in the goal stack and rewrites
to another state based on its contents. In general, some reduction sequences are ulti-
mately doomed, but may still reduce for a while before the constraint store becomes
inconsistent. In our implementation, discovery of such doomed reduction sequences
causes backtracking. Reduction sequences that lead to valid derivations always end with
a state of the form , and the derivation itself can be read off of the reduction
sequence that reaches that state.

When a goal of the form is the first element of the goal stack (as is the root case,
when the initial goal is the sole element), then the rule applies. For every rule

of the form in the program such that the definition’s id agrees with the
goal’s, a reduction step can occur. The reduction step first freshens the variables in the
rule, asks the solver to combine the equation with the current constraint store,
and reduces to a new state with the new constraint store and a new goal state. If the
solver fails, then the reduction rule doesn’t apply (because returns instead of a

). The new goal stack has all of the previously pending goals as well as the new ones
introduced by the premises of the rule.

The rule covers the case where a disequational constraint is the
first element in the goal stack. In that case, the disequational solver is called with the
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current constraint store and the disequation. If it returns a new constraint store, then the
disequation is consistent and the new constraint store is used.

The remainder of this section fills in the details in this model and discusses the cor-
respondence between the model and the implementation in more detail. Metafunctions
are added via a procedure generalizing the process used for in section 2, which
we explain in section 3.1. Section 3.2 describes how our solver handles equations and
disequations. Section 3.3 discusses the heuristics in our implementation and section 3.4
describes how our implementation scales up to support features in Redex that are not
covered in this model.

3.1 Compiling Metafunctions

The primary difference between a metafunction, as written in Redex, and a set of
clauses from figure 3 is sensitivity to the ordering of clauses. Specifically,

when the second clause in a metafunction fires, then the pattern in the first clause must
not match, in contrast to the rules in the model, which fire regardless of their relative or-
der. Accordingly, the compilation process that translates metafunctions into the model
must insert disequational constraints to capture the ordering of the cases.

As an example, consider the metafunction definition of on the left and some exam-
ple applications on the right:

The first clause matches any two-element list, and the second clause matches any pattern
at all. Since the clauses apply in order, an application where the argument is a two-
element list will reduce to and an argument of any other form will reduce to . To
generate conclusions of the judgment corresponding to the second clause, we have to
be careful not to generate anything that matches the first.

Applying the same idea as in section 2, we reach this incorrect translation:

This is wrong because it would let us derive , using for and for
in the premise of the right-hand rule. The problem is that we need to disallow all

possible instantiations of and , but the variables can be filled in with just specific
values to satisfy the premise.

The correct translation, then, universally quantifies the variables and :

Thus, when we choose the second rule, we know that the argument will never be able
to match the first clause.
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In general, when compiling a metafunction clause, we add a disequational constraint
for each previous clause in the metafunction definition. Each disequality is between the
left-hand side patterns of one of the previous clauses and the left-hand side of the current
clause, and it is quantified over all variables in the previous clause’s left-hand side.

3.2 The Constraint Solver

The constraint solver maintains a set of equations and disequations that captures in-
variants of the current derivation that it is building. These constraints are called the
constraint store and are kept in the canonical form , as shown in figure 3, with the
additional constraint that the equational portion of the store can be considered an idem-
potent substitution. That is, it always equates variables with with s and, no variable
on the left-hand side of an equality also appears in any right-hand side. Whenever a
new constraint is added, consistency is checked again and the new set is simplified to
maintain the canonical form.

Figure 5 shows , the entry point to the solver for new equational constraints. It
accepts an equation and a constraint store and either returns a new constraint store that
is equivalent to the conjunction of the constraint store and the equation or , indicating
that adding is inconsistent with the constraint store. In its body, it first applies the
equational portion of the constraint store as a substitution to the equation. Second, it
performs syntactic unification (Baader and Snyder 2001) of the resulting equation with
the equations from the original store to build a new equational portion of the constraint.
Third, it calls , which simplifies the disequational constraints and checks their
consistency. Finally, if all that succeeds, returns a constraint store that combines

the results of and . If either or fails, then returns .
Figure 6 shows , the disequational counterpart to . It applies the equa-

tional part of the constraint store as a substitution to the new disequation and then calls
. It returns , then the disequation was already guaranteed in the cur-

rent constraint store and thus does not need to be recorded. If returns then the
disequation is inconsistent with the current constraint store and thus itself re-

turns . In the final situation, returns a new disequation, in which case
adds that to the resulting constraint store.

The function exploits unification and a few cleanup steps to determine if the
input disequation is satisfiable. In addition, is always called with a disequation
that has had the equational portion of the constraint store applied to it (as a substitution).

The key trick in this function is to observe that since a disequation is always a dis-
junction of inequalities, its negation is a conjuction of equalities and is thus suitable as
an input to unification. The first case in covers the case where unification fails.
In this situation we know that the disequation must have already been guaranteed to be
false in constraint store (since the equational portion of the constraint store was applied
as a substitution before calling ). Accordingly, can simply return to
indicate that the disequation was redundant.

Ignoring the call to in the second case of for a moment, con-
sider the case where returns an empty conjunct. This means that ’s argu-
ment is guaranteed to be true and thus the given disequation is guaranteed to be false.
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Fig. 5. The Solver for Equations

Fig. 6. The Solver for Disequations
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Fig. 7. Metafunctions used to process disequational constaints

In this case, we have failed to generate a valid derivation because one of the negated
disequations must be false (in terms of the original Redex program, this means that
we attempted to use some later case in a metafunction with an input that would have
satisfied an earlier case) and so must return .

But there is a subtle point here. Imagine that returns only a single clause of
the form where is one of the universally quantified variables. We know that in

that case, the corresponding disequation is guaranteed to be false because
every pattern admits at least one concrete term. This is where comes in. It
cleans up the result of by eliminating all clauses that, when negated and placed
back under the quantifier would be guaranteed false, so the reasoning in the previous
paragraph holds and the second case of behaves properly.

The last case in covers the situation where composed with
returns a non-empty substitution. In this case, we do not yet know if the disequation is
true or false, so we collect the substitution that returned back into a disequation
and return it, to be saved in the constraint store.

This brings us to , in figure 7. Its first argument is a unifier, as produced
by a call to to handle a disequation, and the second argument is the universally
quantified variables from the original disequation. Its goal is to clean up the unifier by
removing redundant and useless clauses.

There are two ways in which clauses can be false. In addition to clauses of the form
where is one of the universally quantified variables, it may also be the case that

we have a clause of the form and, as before, is one of the universally quantified
variables. This clause also must be dropped, according to the same reasoning (since is
symmetric). But, since variables on the right hand side of an equation may also appear
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elsewhere, some care must be taken here to avoid losing transitive inequalities. The
function (not shown) handles this situation, constructing a new set of clauses
without but, in the case that we also have , adds back the equation . For
the full definition of and a proof that it works correctly, we refer the reader to the
first author’s masters dissertation (Fetscher 2014).

Finally, we return to , shown in figure 7, which is passed the updated dise-
quations after a new equation has been added in (see figure 5). It verifies the
disequations and maintains their canonical form, once the new substitution has been
applied. It does this by applying to any non-canonical disequations.

3.3 Search Heuristics

To pick a single derivation from the set of candidates, our implementation must make
explicit choices when there are differing states that a single reduction state reduces to.
Such choices happen only in the rule, and only because there may be multiple

different clauses, , that could be used to generate the next reduction state.
To make these choices, our implementation collects all of the candidate cases for the

next definition to explore. It then randomly permutes the candidate rules and chooses
the first one of the permuted rules, using it as the next piece of the derivation. It then
continues to search for a complete derivation. That process may fail, in which case the
implementation backtracks to this choice and picks the next rule in the permuted list. If
none of the choices leads to a successful derivation, then this attempt is failure and the
implementation either backtracks to an earlier such choice, or fails altogether.

There are two refinements that the implementation applies to this basic strategy. First,
the search process has a depth bound that it uses to control which production to choose.
Each choice of a rule increments the depth bound and when the partial derivation ex-
ceeds the depth bound, then the search process no longer randomly permutes the can-
didates. Instead, it simply sorts them by the number of premises they have, preferring
rules with fewer premises in an attempt to finish the derivation off quickly.

Fig. 8. Density functions of the distributions used for the depth-dependent rule ordering, where
the depth limit is 4 and there are 4 rules
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The second refinement is the choice of how to randomly permute the list of candi-
date rules, and the generator uses two strategies. The first strategy is to just select from
the possible permutations uniformly at random. The second strategy is to take into ac-
count how many premises each rule has and to prefer rules with more premises near
the beginning of the construction of the derivation and rules with fewer premises as
the search gets closer to the depth bound. To do this, the implementation sorts all of the
possible permutations in a lexicographic order based on the number of premises of each
choice. Then, it samples from a binomial distribution whose size matches the number
of permutations and has probability proportional to the ratio of the current depth and
the maximum depth. The sample determines which permutation to use.

More concretely, imagine that the depth bound was 4 and there are also 4 rules avail-
able. Accordingly, there are 24 different ways to order the premises. The graphs in
figure 8 show the probability of choosing each permutation at each depth. Each graph
has one x-coordinate for each different permutation and the height of each bar is the
chance of choosing that permutation. The permutations along the x-axis are ordered
lexicographically based on the number of premises that each rule has (so permutations
that put rules with more premises near the beginning of the list are on the left and per-
mutations that put rules with more premises near the end of the list are on the right).
As the graph shows, rules with more premises are usually tried first at depth 0 and rules
with fewer premises are usually tried first as the depth reaches the depth bound.

These two permutation strategies are complementary, each with its own drawbacks.
Consider using the first strategy that gives all rule ordering equal probability with the
rules shown in figure 1. At the initial step of our derivation, we have a 1 in 4 chance of
choosing the type rule for numbers, so one quarter of all expressions generated will just
be a number. This bias towards numbers also occurs when trying to satisfy premises of
the other, more recursive clauses, so the distribution is skewed toward smaller deriva-
tions, which contradicts commonly held wisdom that bug finding is more effective when
using larger terms. The other strategy avoids this problem, biasing the generation to-
wards rules with more premises early on in the search and thus tending to produce
larger terms. Unfortunately, our experience testing Redex program suggests that it is
not uncommon for there to be rules with large number of premises that are completely
unsatisfiable when they are used as the first rule in a derivation (when this happens there
are typically a few other, simpler rules that must be used first to populate an environ-
ment or a store before the interesting and complex rule can succeed). For such models,
using all rules with equal probability still is less than ideal, but is overall more likely to
produce terms at all.

Since neither strategy for ordering rules is always better than the other, our imple-
mentation decides between the two randomly at the beginning of the search process
for a single term, and uses the same strategy throughout that entire search. This is the
approach the generator we evaluate in section 4 uses.

Finally, in all cases we terminate searches that appear to be stuck in unproductive or
doomed parts of the search space by placing limits on backtracking, search depth, and a
secondary, hard bound on derivation size. When these limits are violated, the generator
simply abandons the current search and reports failure.
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3.4 A Richer Pattern Language

The model we present in section 3 uses a much simpler pattern language than Redex
itself. The portion of Redex’s internal pattern language supported by the generator2

is shown in figure 9. We now discuss briefly the interesting differences between this
language and the language of our model and how we support them in Redex’s imple-
mentation.

Fig. 9. The subset of Redex's pattern language supported by the generator. Racket symbols are
indicated by s, and c represents any Racket constant.

Named patterns of the form correspond to variables x in the simplified
version of the pattern language from figure 3, except that the variable is paired with
a pattern . From the matcher’s perspective, this form is intended to match a term with
the pattern and then bind the matched term to the name . The generator pre-processes
all patterns with a first pass that extracts the attached pattern and attempts to update
the current constraint store with the equation , after which can be treated as a
logic variable.

The and non-terminals are built-in patterns that match subsets of Racket values.
The productions of are straightforward; , for example, matches any Racket
integer, and matches any Racket s-expression. From the perspective of the unifier,

is a term that may be unified with any integer, the result of which is the integer
itself. The value of the term in the current substitution is then updated. Unification of
built-in patterns produces the expected results; for example unifying and
produces , whereas unifying and fails.

The productions of match Racket symbols in varying and commonly useful ways;
, for example, matches any symbol that is not used

as a literal elsewhere in the language. These are handled similarly to the patterns of the
non-terminal within the unifier.
Patterns of the from match the pattern with the constraint

that two occurrences of the same name may never match equal terms. These are
straightforward: whenever a unification with a mismatch takes place, disequations are

2 The generator is not able to handle parts of the pattern language that deal with evaluation
contexts or “repeat” patterns (ellipses).
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added between the pattern in question and other patterns that have been unified with the
same mismatch pattern.

Patterns of the form refer to a user-specified grammar, and match a term if it
can be parsed as one of the productions of the non-terminal of the grammar. It is less
obvious how such non-terminal patterns should be dealt with in the unifier. To unify two
such patterns, the intersection of two non-terminals should be computed, which reduces
to the problem of computing the intersection of tree automata, for which there is no
efficient algorithm (Comon et al. 2007). Instead a conservative check is used at the time
of unification. When unifying a non-terminal with another pattern, we attempt to unify
the pattern with each production of the non-terminal, replacing any embedded non-
terminal references with the pattern . We require that at least one of the unifications
succeeds. Because this is not a complete check for pattern intersection, we save the
names of the non-terminals as extra information embedded in the constraint store until
the entire generation process is complete. Then, once we generate a concrete term, we
check to see if any of the non-terminals would have been violated (using a matching
algorithm). This means that we can get failures at this stage of generation, but it tends
not to happen very often for practical Redex models.3

4 Evaluating the Generator

We evaluate the generator in two ways. First, we compare its effectiveness against the
standard Redex generator on Redex’s benchmark suite. Second, we compare it against
the best known hand-tuned typed term generator.

4.1 The Redex Benchmark

Our first effort at evaluating the effectiveness of the derivation generator compares it
to the existing random expression generator included with Redex (Klein and Findler
2009), which we term the “ad hoc” generation strategy in what follows. This generator
is based on the method of recursively unfolding non-terminals in a grammar.

To compare the two generators, we used the Redex Benchmark (Findler et al. 2014),
a suite of buggy models developed specifically to evaluate methods of automated testing
for Redex. Models included in the benchmark define a soundness property and come in
a number of different versions, each of which introduces a single bug that can violate
the soundness property into the model. Most models are of programming languages
and most soundness properties are type-soundness. For each version of each model, we
define one soundness property and two generators, one using the method explained in
this paper and one using Redex’s ad hoc generation strategy. For a single test run, we
pair a generator with its soundness property and repeatedly generate test cases using the
generator, testing them with the soundness property, and tracking the intervals between
instances where the test case causes the soundness property to fail, exposing the bug.

3 To be more precise, on the Redex benchmark (see section 4.1) such failures occur on all
“delim-cont” models 2.9±1.1% of the time, on all “poly-stlc” models 3.3±0.3% of the time,
on the “rvm-6” model 8.6±2.9% of the time, and are not observed on the other models.
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Fig. 10. Performance results by individual bug on the Redex Benchmark

For this study, each run continued for either 24 hours4 or until the uncertainty in the
average interval between such counterexamples became acceptably small.

This study used 6 different models, each of which has between 3 and 9 different bugs
introduced into it, for a total of 40 different bugs. The models in the benchmark come
from a number of different sources, some synthesized based on our experience for the
benchmark, and some drawn from outside sources or pre-existing efforts in Redex. The
latter are based on Appel et al. (2012)’s list machine benchmark, the model of contracts
for delimited continuations developed by Takikawa et al. (2013), and the model of the
Racket virtual machine from Klein et al. (2013). Detailed descriptions of all the models
and bugs in the benchmark can be found in Findler et al. (2014).

Figure 10 summarizes the results of the comparison on a per-bug basis. The y-axis is
time in seconds, and for each bug we plot the average time it took each generator to find
a counterexample. The bugs are arranged along the x-axis, sorted by the average time
for both generators to find the bug. The error bars represent 95% confidence intervals
in the average, and in all cases the errors are small enough to clearly differentiate the
averages. The two blank columns on the right are bugs that neither generator was able
to find. The vertical scale is logarithmic, and the average time ranges from a tenth of a
second to several hours, an extremely wide range in the rarity of counterexamples.

To depict more clearly the relative testing effectiveness of the two generation meth-
ods, we plot our data slightly differently in figure 11. Here we show time in seconds

4 With one exception: we ran the derivation generator on “rvm-3” for a total of 32 days of
processor time to reduce its uncertainty.
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Fig. 11. Random testing performance of the derivation generator vs. ad hoc random generation
on the Redex Benchmark

on the x-axis (the y-axis from figure 10, again on a log scale), and the total number of
bugs found for each point in time on the y-axis. This plot makes it clear that the deriva-
tion generator is much more effective, finding more bugs more quickly at almost every
time scale. In fact, an order of magnitude or more on the time scale separates the two
generators for almost the entire plot.

While the derivation generator is more effective when it is used, it cannot be used
with every Redex model, unlike the ad hoc generator. There are three broad categories
of models to which it may not apply. First, the language may not have a type system,
or the type system’s implementation might use constructs that the generator fundamen-
tally cannot handle (like escaping to Racket code to run arbitrary computation). Second,
the generator currently cannot handle ellipses (aka repetition or Kleene star); we hope
to someday figure out how to generalize our solver to support those patterns, however.
And finally, some judgment forms thwart our termination heuristics. Specifically, our
heuristics make the assumptions that the cost of completing the derivation is propor-
tional to the size of the goal stack, and that terminal nodes in the search space are
uniformly distributed. Typically these are safe assumptions, but not always; the bench-
mark’s “let-poly” model, for example, is a CPS-transformed type judgment, embedding
the search’s continuation in the model, and breaking the first assumption.

4.2 Testing GHC: A Comparison with a Specialized Generator

We also compared the derivation generator we developed for Redex to a specialized
generator of typed terms. This generator was designed to be used for differential testing
of GHC, and generates terms for a specific variant of the lambda calculus with poly-
morphic constants, chosen to be close to the compiler’s intermediate language. The
generator is implemented using Quickcheck (Claessen and Hughes 2000), and is able
to leverage its extensive support for writing random test case generators. Writing a
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generator for well-typed terms in this context required significant effort, essentially im-
plementing a function from types to terms in Quickcheck. The effort yielded significant
benefit, however, as implementing the entire generator from the ground up provided
many opportunities for specialized optimizations, such as variations of type rules that
are more likely to succeed, or varying the frequency with which different constants are
chosen. Pałka (2012) discusses the details.

Generator Terms/Ctrex. Gen. Time (s) Check Time (s) Time/Ctrex. (s)
Property 1
Hand-written (size: 50) 25K 0.007 0.009 413.79
Hand-written (size: 70) 16K 0.009 0.01 293.06
Hand-written (size: 90) 12K 0.011 0.01 260.65
Redex poly (depth: 6) ∞ 0.361 0.008 ∞
Redex poly (depth: 7) ∞ 0.522 0.009 ∞
Redex poly (depth: 8)* 4000K 0.63 0.008 2549K
Redex non-poly (depth: 6)* 500K 0.038 0.008 23K
Redex non-poly (depth: 7) 668 0.082 0.01 61.33
Redex non-poly (depth: 8) 320 0.076 0.01 27.29
Property 2
Hand-written (size: 50) 100K 0.005 0.007 1K
Hand-written (size: 70) 125K 0.007 0.008 2K
Hand-written (size: 90) 83K 0.009 0.009 2K
Redex poly (depth: 6) ∞ 0.306 0.005 ∞
Redex poly (depth: 7) ∞ 0.447 0.005 ∞
Redex poly (depth: 8) ∞ 0.588 0.005 ∞
Redex non-poly (depth: 6) ∞ 0.059 0.005 ∞
Redex non-poly (depth: 7) ∞ 0.17 0.01 ∞
Redex non-poly (depth: 8) ∞ 0.142 0.008 ∞
Redex non-poly (depth: 10)* 4000K 0.196 0.01 823K

Fig. 12. Comparison of the derivation generator and a hand-written typed term generator. ∞
indicates runs where no counterexamples were found. Runs marked with * found only one coun-
terexample, which gives low confidence to their figures.

Implementing this language in Redex was easy: we were able to port the formal
description in Pałka (2012) directly into Redex with little difficulty. Once a type sys-
tem is defined in Redex we can use the derivation generator immediately to generate
well-typed terms. Such an automatically derived generator is likely to make some per-
formance tradeoffs versus a specialized one, and this comparison gave us an excellent
opportunity to investigate those.

We compared the generators by testing two of the properties used in Pałka (2012),
and using same baseline version of the GHC (7.3.20111013) that was used there. Prop-
erty 1 checks whether turning on optimization influences the strictness of the compiled
Haskell code. The property fails if the compiled function is less strict with optimization
turned on. Property 2 observes the order of evaluation, and fails if optimized code has
a different order of evaluation compared to unoptimized code.
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Fig. 13. Histograms of the sizes (number of internal nodes) of terms produced by the different
runs. The vertical scale of each plot is one twentieth of the total number of terms in that run.

Counterexamples from the first property demonstrate erroneous behavior of the com-
piler, as the strictness of Haskell expressions should not be influenced by optimization.
In contrast, changing the order of evaluation is allowed for a Haskell compiler to some
extent, so counterexamples from the second property usually demonstrate interesting
cases of the compiler behavior, rather than bugs.

Figure 12 summarizes the results of our comparison of the two generators. Each row
represents a run of one of the generators, with a few varying parameters. We refer to
Pałka (2012)’s generator as “hand-written.” It takes a size parameter, which we varied
over 50, 70, and 90 for each property. “Redex poly” is our initial implementation of
this system in the Redex, the direct translation of the language from Pałka (2012). The
Redex generator takes a depth parameter, which we vary over 6,7,8, and, in one case, 10.
The depths are chosen so that both generators target terms of similar size.5 (Figure 13
compares generated terms at targets of size 90 and depth 8). “Redex non-poly” is a
modified version of our initial implementation, the details of which we discuss below.
The columns show approximately how many tries it took to find a counterexample,
the average time to generate a term, the average time to check a term, and finally the
average time per counterexample over the entire run. Note that the goal type of terms
used to test the two properties differs, which may affect generation time for otherwise
identical generators.

A generator based on our initial Redex implementation was able to find counterex-
amples for only one of the properties, and did so and at significantly slower rate than
the hand-written generator. The hand-written generator performed best when targeting
a size of 90, the largest, on both properties. Likewise, Redex was only able to find coun-

5 Although we are able to generate terms of larger depth, the runtime increases quickly with
the depth. One possible explanation is that well-typed terms become very sparse as term size
increases. Grygiel and Lescanne (2013) show how scarce well-typed terms are even for simple
types. In our experience polymorphism exacerbates this problem.
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terexamples when targeting the largest depth on property one. There, the hand-written
generator was able to find a counterexample every 12K terms, about once every 260
seconds. The Redex generator both found counterexamples much less frequently, at
one in 4000K, and generated terms several orders of magnitude more slowly. Property
two was more difficult for the hand-written generator, and our first try in Redex was
unable to find any counterexamples there.

Comparing the test cases from both generators, we found that Redex was producing
significantly smaller terms than the hand-written generator. The left two histograms in
figure 13 compare the size distributions, which show that most of the terms made by
the hand-written generator are larger than almost all of the terms that Redex produced
(most of which are clumped below a size of 25). The majority of counterexamples we
were able to produce with the hand-written generator fell in this larger range.

Digging deeper, we found that Redex’s generator was backtracking an excessive
amount. This directly affects the speed at which terms are generated, and it also causes
the generator to fail more often because the search limits discussed in section 3.3 are
exceeded. Finally, it skews the distribution toward smaller terms because these failures
become more likely as the size of the search space expands. We hypothesized that the
backtracking was caused by making doomed choices when instantiating polymorphic
types and only discovering that much later in the search, causing it to get stuck in
expensive backtracking cycles. The hand-written generator avoids such problems by
encoding model-specific knowledge in heuristics.

To test this hypothesis, we built a new Redex model identical to the first except with
a pre-instantiated set of constants, removing polymorphism. We picked the 40 most
common instantiations from a set of counterexamples to both models generated by the
hand-written generator. Runs based on this model are referred to as “Redex non-poly”
in both figure 12 and figure 13.

As figure 13 shows, we get a much better size distribution with the non-polymorphic
model, comparable to the hand-written generator’s distribution. A look at the second
column of figure 12 shows that this model produces terms much faster than the first try
in Redex, though still slower than the hand-written generator. This model’s counterex-
ample rate is especially interesting. For property one, it ranges from one in 500K terms
at depth 6 to, astonishingly, one in 320 at depth 8, providing more evidence that larger
terms make better test cases. This success rate is also much better than that of the hand-
written generator, and in fact, it was this model that was most effective on property 1,
finding a counterexample approximately every 30 seconds, significantly faster than the
hand-written generator. Thus, it is interesting that it did much worse on property 2, only
finding a counterexample once every 4000K terms, and at very large time intervals. We
don’t presently know how to explain this discrepancy.

Overall, our conclusion is that our generator is not competitive with the hand-tuned
generator when it has to cope with polymorphism. Polymorphism, in turn, is problem-
atic because it requires the generator to make parallel choices that must match up, but
where the generator does not discover that those choices must match until much later
in the derivation. Because the choice point is far from the place where the constraint
is discovered, the generator spends much of its time backtracking. The improvement
in generation speed for the Redex generator when removing polymorphism provides
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evidence for our explanation of what makes generating these terms difficult. The ease
with which we were able to implement this language in Redex, and as a result, conduct
this experiment, speaks to the value of a general-purpose generator.

5 Related Work

We first address work which our constraint solver draws on, and then related work in
the field of random testing.

5.1 Disequations

Colmerauer (1984) is the first to introduce a method of solving disequational constraints
of the type we use, but his work handles only existentially quantified variables. Like
him, we too use the unification algorithm to simplify disequations.

Comon and Lescanne (1989) address the more general problem of solving all first
order logical formulas where equality is the only predicate, which they term “equa-
tional problems,” of which our constraints are a subset. They present a set of rules as
rewrites on such formulas to transform them into solved forms. We believe our solver
is essentially a way of factoring a stand-alone unifier out of their rules.

Byrd (2009) notes that a related form of disequality constraints has been available
in many Prolog implementations and constraint programming systems since Prolog II.
Notably, miniKanren (Byrd 2009) and cKanren (Alvis et al. 2011) implement them in a
way similar to us, using unification as a subroutine. However, as far as we know, none
of these systems supports the universally quantified constraints we require.

We are currently investigating extending our solver to handle Redex’s repeat pat-
terns. In this area, we note Kutsia (2002)’s work on sequence unification, which handles
patterns similar to Redex’s.

5.2 Random Testing

The most closely related work to ours is Claessen et al. (2014)’s typed term generator.
Their work addresses specifically the problem of generating well-formed lambda terms
based an implementation of a type-checker (in Haskell). They measured their approach
against property 1 from section 4.2 and it performs better than Redex’s ’poly’ generator,
but they are working from a lower-level specification of the type system than we are.
Also, their approach observes the order of evaluation of the predicate, and prunes the
search space based on that; it does not use constraint solving.

Quickcheck (Claessen and Hughes 2000) is a widely-used library for random test-
ing in Haskell. It provides combinators supporting the definition of testable properties,
random generators, and analysis of results. Although Quickcheck’s approach is much
more general than the one taken here, it has been used to implement a random generator
for well-typed terms robust enough to find bugs in GHC (Pałka 2012). This generator
provides a good contrast to the approach of this work, as it was implemented by hand,
albeit with the assistance of a powerful test framework. Significant effort was spent on
adjusting the distribution of terms and optimization, even adjusting the type system in
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clever ways. Our approach, on the other hand, is to provide a straightforward way to
implement a test generator. The relationship to Pałka’s work is discussed in more detail
in section 4.2.

Random program generation for testing purposes is not a new idea and goes back
at least to Hanford (1970), who details the development and application of the “syn-
tax machine”, a generator of random program expressions. The tool was intended for
testing compilers, a common target for this type of random generation. Other uses of
random testing for compiler testing throughout the years are discussed in Bourjarwah
and Saleh (1997)’s survey.

In the area of random testing for compilers, of special note is Csmith (Yang et al.
2011), a highly effective tool for generating C programs for compiler testing. Csmith
generates C programs that avoid undefined or unspecified behavior. These programs
are then used for differential testing, where the output of a given program is compared
across several compilers and levels of optimization, so that if the results differ, at least
one of test targets must contain a bug. Csmith represents a significant development
effort at 40,000+ lines of C++ and the programs it generates are finely tuned to be
effective at finding bugs based on several years of experience. This approach has been
effective, finding over 300 bugs in mainstream compilers as of 2011.

Efficient random generation of program terms has seen some interesting advances in
previous years, much of which focuses on enumerations. Feat (Duregard et al. 2012),
or “Functional Enumeration of Algebraic Types,” is a Haskell library that exhaustively
enumerates a datatype’s possible values. The enumeration is made very efficient by
memoising cardinality metadata, which makes it practical to access values that have
very large indexes. The enumeration also weights all terms equally, so a random sample
of values can in some sense be said to have a more uniform distribution. Feat was
used to test Template Haskell by generating AST values, and compared favorably with
Smallcheck in terms of its ability to generate terms above a certain size. (QuickCheck
was excluded from this particular case study because it was “very difficult” to write
a QuickCheck generator for “mutual recursive datatypes of this size”, the size being
around 80 constructors. This provides some insight into the effort involved in writing
the generator described in Pałka (2012).)

Another, more specialized, approach to enumerations was taken by Grygiel and
Lescanne (2013). Their work addresses specifically the problem of enumerating well-
formed lambda terms. (Terms where all variables are bound.) They present a variety
of combinatorial results on lambda terms, notably some about the extreme scarcity of
simply-typable terms among closed terms. As a by-product they get an efficient gen-
erator for closed lambda terms. To generate typed terms their approach is simply to
filter the closed terms with a typechecker. This approach is somewhat inefficient (as
one would expect due to the rarity of typed terms) but it does provide a uniform distri-
bution.

Instead of enumerating terms, Kennedy and Vytiniotis (2012) develop a bit-coding
scheme where every string of bits either corresponds to a term or is the prefix of some
term that does. Their approach is quite general and can be used to encode many different
types. They are able to encode a lambda calculi with polymorphically-typed constants
and discuss its possible extension to even more challenging languages such as System-
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F. This method cannot be used for random generation because only bit-strings that have
a prefix-closure property correspond to well-formed terms.

6 Conclusion

As this paper demonstrates, random test-case generation is an effective tool for find-
ing bugs in formal models. Even better, this work demonstrates how to build a generic
random generator that is competitive with hand-tuned generators. We believe that em-
ploying more such lightweight techniques for debugging formal models can help the re-
search community more effectively communicate research results, both with each other
and with the wider world. Eliminating bugs from our models makes our results more
approachable, as it means that our papers are less likely to contain frustrating obstacles
that discourage newcomers.
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Abstract. With recent advances, programs can be compiled to effi-
ciently respond to incremental input changes. However, there is no
language-level support for reasoning about the time complexity of in-
cremental updates. Motivated by this gap, we present CostIt, a higher-
order functional language with a lightweight refinement type system for
proving asymptotic bounds on incremental computation time. Type re-
finements specify which parts of inputs and outputs may change, as well
as dynamic stability, a measure of time required to propagate changes to
a program’s execution trace, given modified inputs. We prove our type
system sound using a new step-indexed cost semantics for change prop-
agation and demonstrate the precision and generality of our technique
through examples.

1 Introduction

Many applications operate on data that change over time: compilers respond to
source code changes by recompiling as necessary, robots interact with the phys-
ical world as it naturally changes over time, and scientific simulations compute
with objects whose properties change over time. Although it is possible to de-
velop such applications using ad hoc algorithms and data structures to handle
changing data, such algorithms can be challenging to design even for problems
that are simple in the batch/static setting where changes to data are not al-
lowed. A striking example is the two-dimensional convex hull problem, whose
dynamic (incremental) version required decades of more research [30,7] than its
static version (e.g., [17]). The field of incremental computation aims at deriv-
ing software that can respond automatically and efficiently to changing data.
Earlier work investigated techniques based on static dependency graphs [14,38]
and memoization [32,21]. More recent work on self-adjusting computation intro-
duced dynamic dependency graphs [3] and a way to integrate them with a form
of memoization [2,4]. Several flavors of self-adjusting computation have been im-
plemented in programming languages such as C [19], Haskell [8], Java [34] and
Standard ML [27,10].

However, in all prior work on incremental computation, the programmer must
reason about the time complexity of incremental execution, which we call dy-
namic stability, by direct analysis of the cost semantics of programs [26]. While
this analytical technique makes efficient design possible, dynamic stability is
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a difficult property to establish because it requires reasoning about execution
traces, which can be viewed as graphs of computations and their (run-time)
data and control dependencies.

Therefore, we are interested in designing static techniques to help a program-
mer reason about the dynamic stability of programs. As a first step in this
direction, we equip a higher-order functional programming language with a re-
finement type system for establishing the dynamic stability of programs. Our
type system, called CostIt, soundly approximates the dynamic stability of a
program as an effect. CostIt builds on index refinement types [37] and type an-
notations to track which program values may change after an update and which
may not [11]. To improve precision, we add subtyping rules motivated by co-
monadic types [28]. Together, these give enough expressive power to perform
non-trivial, asymptotically tight analysis of dynamic stability of programs.

We provide an overview of CostIt’s design, highlighting some challenges and
our solutions. First, dynamic stability is a function of changes to a program’s
inputs and, hence, analysis of dynamic stability requires knowing which of its
free variables and, more generally, which of its subexpressions’ result values may
change after an update. To differentiate changeable and unchangeable values
statically, we rely on refinement type annotations from Chen et al.’s work on
implicit self-adjusting computation [11]:1 (τ)S ascribes values of type τ which
cannot change whereas (τ)C ascribes all values of type τ . Second, the dynamic
stability of a program is often a function of the length of an input list or the
number of elements of the list that may change. To track such attributes of
inputs in the type system, we add standard index refinement types in the style
of Xi and Pfenning’s DML [37] or Gaboardi et al.’s DFuzz [16].

Centrally, our type system treats dynamic stability as an effect [29]. Expres-
sion typing has the form e :κ τ , where κ is an upper bound on the cost of
propagating changes through any trace of e. Similarly, if changes to any trace of
a function can be propagated in time at most κ, we give the function a type of
the form τ1

κ−→ τ2. The cost κ may depend on refinement parameters (e.g., list
lengths) that are shared with τ1. For example, the usual higher-order list map-
ping function map : (τ1 → τ2) → list τ1 → list τ2 can be given the following
refined type: (τ1

κ−→ τ2) 0−→ ∀n, α. list [n]α τ1
α·κ−−→ list [n]α τ2. Roughly, the

type says that if each application of the mapping function can be updated in
time κ and at most α elements of the mapped list change, then the entire map
can be updated in time α · κ. (This refined type is approximate; the exact type
is shown later.)

Change propagation has the inherent property that if the inputs to a com-
putation do not change, then propagation on the trace of the computation is
bypassed and, hence, incurs zero cost. Often, this property must be taken into
account in reasoning about dynamic stability. A key insight in CostIt is that
this property corresponds to a co-monadic reasoning principle in the type sys-
tem: If all free variables of an expression have types of the form (·)S, then that

1 Nearly identical annotations are also used for other purposes, e.g., binding-time
analysis [29] and information flow analysis [31].
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expression’s dynamic stability is 0 and its result type can also be annotated (·)S,
irrespective of what or how the expression computes. Thus, (τ)S can be treated
like the co-monadic type �τ [28]. A novelty in CostIt is that whether a type’s
label is (·)S or (·)C may depend on index refinements (this flexibility is essen-
tial for inductive proofs of dynamic stability in many of our examples). Hence,
co-monadic rules are represented in an expanded subtyping relation, which, as
usual, takes index refinements into account.

We prove that any dynamic stability derived in our type system is an upper
bound on the actual cost of trace update (i.e., that our type system is sound).
To do this, we develop an abstract cost semantics for trace update. The cost
semantics is formalized using a novel syntactic class called bi-expression, which
simultaneously represents the original expression and the modified expression,
and indicates (syntactically) where the two differ. We interpret types using a
step-indexed logical relation over bi-expressions (i.e. relationally) with a stip-
ulated change propagation semantics. Bi-expressions are motivated by largely
unrelated work in analysis of security protocols [6].

In summary, we make the following contributions. 1) We develop the first type
system for establishing dynamic stability of programs. 2) We combine lightweight
dependent types, immutability annotations and co-monadic reasoning principles
to facilitate static proofs of dynamic stability. 3) We prove the type system
sound relative to a new cost semantics for change propagation. 4) We demon-
strate the precision and generality of our technique on several examples. An
online appendix, available from the authors’ homepages, includes parametric
polymorphism, many additional examples, higher-order sorts that are needed to
type some of the additional examples, proofs of theorems and several inference
rules that are omitted from this paper.

Scope. This paper focuses on laying the foundations of type-based analysis of
dynamic stability. The issue of implementing CostIt’s type system is beyond the
scope of this paper. We comment on an ongoing implementation in Section 7.

2 Types for Dynamic Stability by Example

Dynamic stability. Suppose a program e has been executed with some input
v and, subsequently, we want to re-run the program with a slightly different
input v′. Dynamic stability measures the amount of time needed for the second
execution, given the entire trace of the first execution. The advantage of using the
first trace for the second execution is that the runtime can reuse parts of the first
trace that are not affected by changes to the input; for parts that are affected,
it can selectively propagate changes [2]. This can be considerably faster than a
from-scratch evaluation. Consider the program (1+(2+. . .+10))+x. Suppose the
input x is 0 in the first run and 1 in the second. A naive evaluation of the second
run requires 10 additions. However, if a trace of the first execution is available,
then the runtime can reuse the result of the first 9 of these additions, which
involve unchanged constants. Assuming that an addition takes exactly 1 unit of
time (and, for simplicity, that no other runtime operation incurs a cost), the cost
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of the re-run or the dynamic stability of this program would be 1 unit of time.
Abstractly, dynamic stability is a property of two executions of a program and
is dependent on a specification of the language’s change propagation semantics.
For instance, our conclusion that (1 + (2 + . . . + 10)) + x has dynamic stability 1
assumes that change propagation directly reuses the result of the first 9 additions
during the second run. If change propagation is naive, the program might be re-
run in its entirety, resulting in a dynamic stability of 10, not 1.

Change propagation. We assume a simple, standard change propagation seman-
tics. We formalize the semantics in Section 4, but explain it here intuitively.
During the first execution of a program expression, we record the expression’s
execution trace. The trace is a tree, a reification of the big-step derivation of the
expression’s execution. For the second execution, we allow updates to some of
the values embedded in the expression (some of the trace’s leaves). Change prop-
agation recomputes the result of the modified expression by propagating changes
upward through the trace, starting at the modified leaves. Pointers to modified
leaves are an input to change propagation and finding them incurs zero cost.
Primitive functions (like +, −, etc.) on the trace whose arguments change are
recomputed, but large parts of the trace may not be recomputed from scratch,
which makes change propagation asymptotically faster than from-scratch evalu-
ation in many cases. The maximum amount of work done in change propagation
of an expression’s trace (given assumptions on allowed changes to the expres-
sion’s leaves) is called the expression’s dynamic stability. CostIt helps establish
this dynamic stability statically.

If the shape of the execution trace of an updated expression is different from
the shape of the trace of the original expression (i.e., if the control flow of the
execution changes), then change propagation must, in general, construct some
parts of the new trace by evaluating subexpressions from scratch. Analysis of
dynamic stability in such cases requires also an analysis of worse-case execution
time complexity. In this paper, we disallow (through our type system) control
flow dependence on data that may change. This simplifying choice mirrors prior
work like DFuzz [16] and still allows us to type several interesting programs like
sorting and matrix algorithms. In Section 7, we comment on a CostIt extension
that can handle control flow changes.

During change propagation, only re-execution of primitive functions incurs a
non-zero cost. Although this may sound counter-intuitive, prior work has shown
that by storing values in modifiable reference cells and updating them in-place
during change propagation, the cost for structural operations like pairing, pro-
jection and list consing can be avoided during change propagation [2,11]. The
details of such implementations are not important here; readers only need to be
aware that our change propagation incurs a cost only for re-executing primitive
functions of the language.

Type system overview. We build on a λ-calculus with lists. The simple types of
our language are real, unit, τ1 × τ2, list τ and τ1 −→ τ2. Since the dynamic
stability of an expression depends on sizes of input lists as well as knowledge of
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which of its free variables (inputs) may change, we add type refinements. First,
we refine the type list τ to list [n]α τ , which specifies lists of length exactly n,
of which at most α elements are allowed to change before the second execution.
Technically, n and α are natural numbers in an index domain, over which types
may quantify. Second, any type τ may be refined to (τ)μ where μ belongs to an
index sort with two values, S and C. (τ)S specifies those values of type τ that
will not change in the second execution (S is read “stable”). (τ)C specifies all
values of type τ (C is read “potentially changeable”). τ and (τ)C are subtypes
of each other. Our typing judgment takes the form Γ � e :κ τ . Here, κ is an
upper bound on the dynamic stability of the expression e. (For simplicity, we
omit several contexts from the typing judgment in this section.)

Example 1 (Warm-up). Assume that computing a primitive operation like ad-
dition from scratch costs 1 unit of time. Consider the expression x + 1 with one
input x. This expression can be typed in at least two ways: x : (real)S � x+1 :0
(real)S and x : (real)C � x + 1 :1 (real)C. When x : (real)S, x cannot change.
So change propagation bypasses the expression x+ 1 and its cost is 0. Moreover,
the value of x+1 does not change. This justifies the first typing judgment. When
x : (real)C, change propagation may incur a cost of 1 to recompute the addition
in x + 1 and the value of x + 1 may change. This justifies the second judgment.

Example 2 (List map). The CostIt type τ1
κ−→ τ2 specifies a function whose body

has a change propagation cost upper-bounded by κ and whose type is τ1 → τ2.
For instance, based on Example 1, the function λx.(x + 1) can be given either
of the types (real)S 0−→ (real)S and (real)C 1−→ (real)C. Consider the standard
list map function of simple type (τ1 → τ2) → list τ1 → list τ2.

fix map(f). λl. caseL l of nil → nil | cons(h, tl) → cons(f h, map f tl)

Suppose that the mapping function f has dynamic stability κ, i.e., its type is
τ1

κ−→ τ2 and that the list l has type list [n]α τ1 (exactly n elements of which
at most α may change). What can we say about the type of the result and
the dynamic stability of map? If we know that f will not change, then change
propagation will reapply f at most α times (because at most α list elements will
change), so the total cost can be bounded by α ·κ. Moreover, at most α elements
of the output will change, so we can give map the following type.2

map : (τ1
κ−→ τ2)S −→ ∀n. ∀α. list [n]α τ1

α·κ−−→ list [n]α τ2 (1)

If f may change, then change propagation may have to remap every element
of the list and all elements in the output may change. This yields a dynamic
stability of n · κ and the following type.

map : (τ1
κ−→ τ2)C −→ ∀n. ∀α. list [n]α τ1

n·κ−−→ list [n]n τ2 (2)
2 If κ is omitted from τ1

κ−→ τ2, then it is treated as 0. Our expressions (Section 3)
have explicit annotations for introducing and eliminating universal and existential
quantifiers (Λ. e, e[], pack e, unpack e1 as x in e2). We omit those annotations from
our examples for better readability.
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We explain how the type in (1) is derived as it highlights our co-monadic
reasoning principle. The interesting part of the typing is establishing the change
propagation cost of the cons(h, tl) branch in the definition of map. We are trying
to bound this cost by α · κ. We know from l’s type that at most α elements in
cons(h, tl) will change in the second run. However, we do not know whether h
is one of those elements. So, our case analysis rule (Section 3, Figure 4) has two
premises for the cons branch (a total of three premises, including the premise for
nil). In the first of these two premises, we assume that h may change, so h : τ1
and tl : list [n − 1]α−1

τ2. In the second premise, we assume that h cannot
change, so h : (τ1)S and tl : list [n − 1]α τ2. Analysis of the first premise is
straightforward: (f h) incurs cost κ (from f ’s type (τ1

κ−→ τ2)S) and, inductively,
(map f tl) incurs cost (α−1) ·κ, for a total cost κ+(α−1) ·κ = α ·κ. Analysis of
the second premise requires nonstandard reasoning. Here, tl : list [n − 1]α τ2,
so the inductive cost of (map f tl) is already α·κ. Hence, we must show that (f h)
has 0 change propagation cost. For this, we rely on our co-monadic reasoning
principle: If all of an expression’s free variables have types of the form (·)S (i.e.,
their substitutions will not change), then the expression’s change propagation
cost is 0. Since we know that f : (τ1

κ−→ τ2)S and h : (τ1)S, we can immediately
conclude that (f h) has 0 change propagation cost.

The same reasoning cannot be applied to the second premise in type (2),
where f : (τ1

κ−→ τ2)C. Instead, we can show only that (f h) incurs cost κ. This
results in a dynamic stability of n · κ. Note that in both the types above, the
dynamic stability depends on attributes of the input list (α and n, respectively).
This demonstrates the importance of index refinements in CostIt.
Example 3 (Balanced list fold). Standard list fold operations (foldl and foldr)
can be typed easily in CostIt but are uninteresting for incremental computation
because they have linear traces and, hence, have O(n) dynamic stability even
for single element changes to the input list (n is the list’s length). A more in-
teresting operation is what we call the balanced fold. Given an associative and
commutative binary function f of simple type τ × τ → τ , a list of simple type
(list τ) can be folded by splitting it into two nearly equal sized lists, folding
the sublists recursively and then applying f to the two results. This results in
a balanced tree-like trace, whose depth is �log2(n)�. A single change to the list
causes �log2(n)� recomputations of f . So, if f has dynamic stability κ, the dy-
namic stability with one change to the list is O(κ · log2(n)). More generally, it
can be shown that if α changes are allowed to the list, then the dynamic stability
is O(κ · (α + α · log2(n/α))). This simplifies to O(κ · n) when α = n (entire list
may change) and O(κ ·log2(n)) when α = 1. In the following we implement such
a balanced fold operation, bfold, and derive its dynamic stability in CostIt.

Our first ingredient is the function bsplit, which splits a list of length n
into two lists of lengths

⌈
n
2

⌉
and

⌊
n
2

⌋
. This function is completely standard. Its

CostIt type, although easily established, is somewhat interesting because it uses
an existential quantifier to split the allowed number of changes α into the two
split lists. The dynamic stability of bsplit is 0 because bsplit uses no primitive
functions (cf. discussion earlier in this section).
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bsplit : ∀n. ∀α. list [n]α τ
0−→ ∃β. (list

[⌈
n
2

⌉]β
τ × list

[⌊
n
2

⌋]α−β
τ)

fix bsplit(l). caseL l of
nil → (nil, nil)

| cons(h1, tl1) → caseL tl1 of nil → ([h1], nil)
| cons(h2, tl2) → let (z1, z2) = bsplit tl2 in

(cons(h1, z1), cons(h2, z2))
Using bsplit we define the balanced fold function, bfold. The function ap-

plies only to non-empty lists (reflected in its type later), so the nil case is
omitted.

fix bfold(f). λl. caseL l of
nil → . . .

| cons(h1, tl1) → caseL tl1 of
nil → h1

| cons(_, _) → let (z1, z2) = (bsplit l) in
f (bfold f z1, bfold f z2)

We first derive a type for bfold informally, and then show how the type is
established in CostIt. Assume that the argument l has type list [n]α τ . We count
how many times change propagation may have to reapply f in updating bfold’s
trace, which is a nearly balanced tree of height H = �log2(n)�. Counting levels
from the deepest leaves upward (leaves have level 0), the number of applications
of f at level k in the trace is at most 2H−k. If α leaves change, at most α of
these applications must be recomputed. Consequently, the maximum number of
recomputations of f at level k is min(α, 2H−k). If the dynamic stability of f is

κ, the dynamic stability of bfold is P (n, α, κ) =
�log2(n)�∑

k=0
κ ·min(α, 2�log2(n)�−k).

So, in principle, we should be able to give bfold the following type.

bfold : (τ × τ
κ−→ τ)S −→ ∀n > 0. ∀α. list [n]α τ

P (n,α,κ)−−−−−−→ τ

The expression P (n, α, κ) may look complex, but it is in O(κ·(α+α·log2(n/α))).
(To prove this, split the summation in P (n, α, κ) into two: one for k ≤ �log2(n)�−
�log2(α)� and the other for k > �log2(n)� − �log2(α)�. Our appendix has the
details.) Although the type above is correct, we will see soon that in typing the
recursive calls in bfold, we need to know that bfold’s type is annotated (·)S.
Hence, the actual type we assign to bfold is stronger.

bfold : ((τ × τ
κ−→ τ)S −→ ∀n > 0. ∀α. list [n]α τ

P (n,α,κ)−−−−−−→ τ)S (3)

We explain how bfold’s type is established in CostIt. The interesting case starts
where bsplit is invoked. From the type of bsplit, we know that variables
z1 and z2 in the body of bfold have types list

[⌈
n
2

⌉]β
τ and list

[⌊
n
2

⌋]α−β
τ ,

respectively for some β. Inductively, the change propagation costs of (bfold f z1)
and (bfold f z2) are P (

⌈
n
2

⌉
, β, κ) and P (

⌊
n
2

⌋
, α − β, κ), respectively. Hence,

the change propagation cost of the whole body of bfold is κ + P (
⌈

n
2

⌉
, β, κ) +
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P (
⌊

n
2

⌋
, α − β, κ). The additional κ accounts for the only application of f in the

body of bfold (non-primitive operations have zero cost and bsplit also has zero
cost). Hence, to complete the typing, we must establish the following inequality.

κ + P (
⌈n

2

⌉
, β, κ) + P (

⌊n

2

⌋
, α − β, κ) ≤ P (n, α, κ) (4)

This is an easily established arithmetic tautology (our online appendix has a
proof), except when α

.= 0. When α
.= 0, the right side of the inequality is 0 but

we don’t necessarily have κ ≤ 0. So, in order to proceed, we consider the cases
α

.= 0 and α > 0 separately. This requires a typing rule for case analysis on the
index domain, which poses no theoretical difficulty. The α > 0 case succeeds as
described above. For α

.= 0, we use our co-monadic reasoning principle. With α
.=

0, the types of z1 and z2 are equivalent (formally, via subtyping) to list
[⌈

n
2

⌉]0
τ

and list
[⌊

n
2

⌋]0
τ , respectively. Since, no elements in these lists can change,

we use another subtyping rule to promote the types to (list
[⌈

n
2

⌉]0
τ)S and

(list
[⌊

n
2

⌋]0
τ)S, respectively. At this point, the type of every variable occurring

in the expression f (bfold f z1, bfold f z2), including the variable bfold, has
annotation (·)S. By our co-monadic reasoning principle, the change propagation
cost of this expression and, hence, the body of bfold, must be 0, which is trivially
no more than P (n, α, κ). This completes our argument.

Observe that the inference of the annotation (·)S on the types of z1 and z2 is
conditional on the constraint α

.= 0. Subtyping, which is aware of constraints,
plays an essential role in determining these annotations and in making our co-
monadic reasoning principle useful. Also, the fact that we have to consider the
cases α

.= 0 and α > 0 separately is not as surprising as it may seem. The case
α

.= 0 corresponds to a sub-trace whose leaves have not changed. Since change
propagation is a bottom-up procedure, it will bypass this sub-trace completely,
incurring no cost. This is exactly what our analysis for α

.= 0 establishes.
Using the type (3) of bfold, we can show that for f : (τ × τ

κ−→ τ)S and
l : list [n]α τ , the dynamic stability of (bfold f l) is in O(log2(n)) when
α ∈ O(1) and in O(n) when α ∈ O(n), assuming κ constant. This dynamic
stability is asymptotically tight.

Example 4 (Merge sort). The analysis of Example 3 generalizes to other divide-
and-conquer algorithms. We illustrate this generalization using merge sort as
a second example; our appendix describes a generic template for establishing
the dynamic stability of divide-and-conquer algorithms. Abstractly, the trace of
merge sort on a list of length n is a tree of height �log2(n)�, where each node
receives a list (a sublist of the original list) as input, partitions the list into two
nearly equal length sublists, recursively sorts the sublists and then merges the
sorted sublists. During change propagation, cost is incurred at a node only in
merging the sorted sublists. In the worst case, this cost is O(m), where m is
the length of the list being sorted at that node because merging is a linear-time
operation. Counting levels from the deepest leaves upward to the root, at level
k, m ≤ 2k. If a single element of the list changes, change propagation might re-
merge at each node on the path from this changed element to the root. Hence, the
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cost is upper-bounded by 1+2+4+ . . .+2�log2(n)� ∈ O(n). If all elements of the
list may change, the change propagation cost is O(n · log2(n)). More generally,
as we prove below, if α elements of the list change, then change propagation cost
is bounded by O(n ·(1+log2(α))). Importantly, this calculation does not require
an analysis of the change propagation cost of the merge function: A completely
pessimistic assumption that all merges on any path from a changed element to
the root must be re-executed from scratch yields these bounds. Accordingly, we
assume that we have a merge function with the most pessimistic bounds. Using
this function, we can define the merge sort function, msort.

merge : (∀n, m, α, β. (list [n]α real × list [m]β real)
n+m−−−→ list [n + m]n+m real)S

fix msort(l). caseL l of
nil → nil

| cons(h1, tl1) → caseL tl1 of
nil → cons(h1, nil)

| cons(_, _) → let (z1, z2) = (bsplit l) in
merge (msort z1, msort z2)

Almost exactly as for bfold, msort can be given the following type:

msort : (∀n. ∀α. list [n]α τ
Q(n,α)−−−−→ list [n]n τ)S

where for Q(n, α) =
�log2(n)�∑

k=0
2k · min(α, 2�log2(n)�−k). Q(n, α) is in O(n · (1 +

log2(α))). Using this type for msort, we can show that for l : list [n]α τ ,
(msort l) has dynamic stability in O(n) for α ∈ O(1) and in O(n · log2(n)) for
α ∈ O(n). This dynamic stability is asymptotically tight.

Note that the syntactic cumbersomeness of the expressions P (n, α, κ) (Ex-
ample 3, bfold) and Q(n, α) (Example 4, msort) is inherent to the dynamic
stability of the two algorithms. It is not an artifact of CostIt. We tried to find
simpler expressions that would support inductive proofs. For bfold, the simpler
form P (n, α, κ) = κ · (α − 1 + α · (�log2(n)� − log2(α))) for α > 0 can be used,
but the constraint corresponding to (4) is more difficult to establish and requires
real analysis. We do not know of a useful simpler form for Q(n, α).

Other examples. Our appendix contains several other examples. We briefly list
some of these with their asymptotic CostIt-established dynamic stability for
single element changes in parenthesis: list append (1), list pair zip (1), matrix
transpose (1), dot product (log2(n)) and matrix multiplication (n · log2(n)).
The matrix examples demonstrate that CostIt can establish asymptotically tight
bounds on dynamic stability even when the latter depends on the sizes of nested
inner lists.

We note that the dynamic stability proved using CostIt is asymptotically tight
for all the examples in this section and our appendix. Nonetheless, like other type
systems, CostIt abstracts over concrete program values and, hence, we cannot
expect CostIt’s analysis to be asymptotically tight on all programs.
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Types τ ::= real | τ1 × τ2 | list [n]α τ | τ1
κ−→ τ2 | ∀i

κ:: S. τ | ∃i. τ |
unit | C → τ | C ∧ τ | (τ )μ

Sorts S ::= N | R+ | V
Index terms I, μ, κ, ::= i | S | C | 0 | I + 1 | I1 + I2 | I1 − I2 | I1

I2
| I1 · I2 |

n, α �I� | �I	 | log2(I) | II2
1 | min(I1, I2) | max(I1, I2) |

In∑

k=I1

I

Constraints C ::= I1
.= I2 | I1 < I2 | ¬ C

Constraint env. Φ ::= ∅ | C | Φ1 ∧ Φ2
Sort env. Δ ::= ∅ | Δ, i :: S
Type env. Γ ::= ∅ | Γ, x : τ

Primitive env. Υ ::= ∅ | Υ, ζ : ∀ti. τ1
κ−→ τ2

Fig. 1. Syntax of types

3 Syntax and Type System

This section describes CostIt’s language, types and type system. Section 4 defines
CostIt’s dynamic semantics. CostIt is a refinement type system on a call-by-value
λ-calculus with lists, similar to DFuzz [16]. The syntax of CostIt’s types and type
refinements is listed in Figure 1.

Index terms and constraints. CostIt’s types are refined by index terms, denoted
I, μ, κ, n, α, etc. Index terms are sorted as follows: (a) natural numbers, N, which
are used to specify list lengths and number of changes allowed in a list, (b) non-
negative real numbers, R+, that show up in logarithmic expressions in change
propagation costs, and (c) the two-valued sort variation, V = {S,C}, used as
a type refinement to specify whether a value may change or not from the first
to the second execution. The syntax of index terms includes various arithmetic
operators, with their usual meanings. Most operators are overloaded for the sorts
R

+ and N and there is an implicit coercion from N to R
+. A standard sorting

judgment Δ � I :: S assigns sort S to index term I. The sort environment Δ,
assigns sorts to index variables, i, t. We use different letters for index terms in
different roles: n for list lengths, α for the number of allowed changes in a list,
μ for terms of sort V, κ for change propagation costs and I for generic terms.

Propositions over index terms are called constraints, denoted C. For our ex-
amples, we only need comparison and negation. Constraints are collected in a
context called the constraint environment, denoted Φ. As usual, logical entail-
ment over constraints is defined by the black-box judgment Δ; Φ |= C, which is
assumed to embody the usual algebraic laws of arithmetic. Constraints are also
subject to standard syntactic sorting rules, which we omit.

Types. CostIt types refine types of the simply typed λ-calculus. The list type
list [n]α τ contains two index refinements — n and α — which specify, respec-
tively, the precise length of the list and the maximum number of elements of
the list that may be updated before change propagation. The cost annotation κ
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Values v ::= r | (v1, v2) | nil | cons(v1, v2) | fix f(x). e | Λ. e | pack v | ()

Expressions e, f ::= x | r | (e1, e2) | fst e | snd e | nil | cons(e1, e2) |
caseL e of nil → e1 | cons(h, tl) → e2 |
fix f(x). e | e1 e2 | Λ. e | e[] | pack e | unpack e as x in e′ |
let x = e1 in e2 | () | ζ e

Fig. 2. Syntax of expressions and values

in function types τ1
κ−→ τ2 and universally quantified types ∀i

κ::S. τ is an upper
bound on the change propagation cost of closures contained in the type. The
type C → τ reads “τ if constraint C is true, else every expression”. Any type τ
may be annotated with a variation term μ, written (τ)μ. (τ)S specifies values of
type τ that cannot change (in our relational interpretation, (τ)S is the diagonal
relation on τ). (τ)C is equivalent (via subtyping) to τ . There is one representa-
tive, unrefined base type real. Other refined and unrefined base types can be
added, as in our appendix. We note that it is not obvious how refinements may be
extended to algebraic datatypes beyond lists, because needed refinements vary
by application. In the case of lists, the refinements length and the number of al-
lowed changes suffice for many applications, so we adopt them. CostIt supports
standard type quantification (parametric polymorphism). Type quantification
does not interact with our technical development in any significant way, so we
defer its details to the appendix.

Expressions. Figure 2 shows the grammar of CostIt values and expressions.
The syntax is mostly standard. r denotes constants of type real. ζ denotes a
primitive function and ζ e is application of the function to e. Primitive functions
have a special role in our dynamic semantics because only they incur a non-zero
cost during change propagation. The construct caseL is case analysis on lists.

Our expressions do not mention index terms or index variables. For instance,
the introduction and elimination forms for the universal quantifier are Λ. e and
e[] instead of the more common and more elaborate forms Λi. e and e [I]. Index
terms are absent from expressions for a reason. As explained in Section 2, the list
case analysis rule has two premises for the cons(·, ·) branch. Often, universally
quantified terms must be instantiated differently in the two premises, which
means that if index terms were included in expressions, we would have to write
two expressions for the cons(·, ·) branch. This would be cumbersome at best,
so we do not include index terms in expressions. If necessary, the two separate
fully annotated expressions can be created by elaboration after type-checking.

Subtyping. Like all other index refinement type systems, CostIt relies heavily
on subtyping. Selected rules of our subtyping judgment Δ; Φ � τ1 
 τ2 are
shown in Figure 3. The judgment τ1 
 τ2 means that τ1 is a subtype of τ2 and
τ1 ≡ τ2 is shorthand for (τ1 
 τ2 and τ2 
 τ1). The rule → 2 defines standard
subtyping for function types, covariant in the result and contravariant in the
argument. Additionally, function subtyping is covariant in the cost κ, because
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Δ; Φ |= τ1 � τ2 τ1 is a subtype of τ2

Δ; Φ |= (τ1
κ−→ τ2)μ � (τ1)μ κ−→ (τ2)μ

→ 1

Δ; Φ |= τ ′
1 � τ1 Δ; Φ |= τ2 � τ ′

2
Δ; Φ |= κ ≤ κ′

Δ; Φ |= τ1
κ−→ τ2 � τ ′

1
κ′
−→ τ ′

2

→ 2

Δ; Φ |= (τ1 × τ2)μ ≡ (τ1)μ × (τ2)μ ×1
Δ; Φ |= (list [n]α τ )μ ≡ list [n]α (τ )μ l1

Δ; Φ |= μ
.= S

Δ; Φ |= (list [n]α τ )μ ≡ list [n]0 τ
l2

Δ; Φ |= n
.= n′ Δ; Φ |= α ≤ α′

Δ; Φ |= τ � τ ′

Δ; Φ |= list [n]α τ � list
[
n′]α′

τ ′
l4

Δ; Φ |= (∀t
κ:: S. τ )μ ≡ ∀t

κ:: S. (τ )μ
∀2

Δ; Φ |= (τ )μ � τ
T

Δ; Φ |= τ � (τ )C
I

Fig. 3. Selected subtyping rules

κ is an upper bound on the dynamic stability. Rule l4 makes list subtyping
invariant in the list size n and covariant in the number α of elements allowed to
change (because the former is exact but the latter is an upper-bound).

The remaining subtyping rules shown in Figure 3 mention variation annota-
tions (τ)μ. These rules are best understood separately for the cases μ

.= S and
μ

.= C. Rules T and I imply that (τ)C ≡ τ (expressions are allowed to change un-
less specified, so the annotation (·)C provides no additional information). Given
this observation, the remaining rules state obvious identities for the case μ

.= C.
We describe the rules for the case μ

.= S. As expected, (τ)S 
 τ (rule T), but
the converse is not true in general. Rule → 1 says that (τ1

κ−→ τ2)S 
 (τ1)S κ−→
(τ2)S. This can be read as follows: If a function will not change and it is given an
argument that will not change, then the result will not change. The converse is
not true: If given a non-changing argument, a function’s result will not change,
this does not imply that the function itself will not change (e.g., some dead code
in the function may change). Rule l2 implies that (list [n]α τ)S ≡ list [n]0 τ .
This equivalence is justified as follows: The annotation 0 in the type on the right
forbids changes to any elements of the list and its length is fixed at n, so the list
cannot change. This rule is critical to typing Examples 3 and 4 of Section 2.

Readers familiar with co-monadic types or constructive modal logic will notice
that our subtyping rules for (τ)S mirror rules for a co-monad �τ : �τ 
 τ (but
not the converse), �(τ1 −→ τ2) 
 (�τ1 −→ �τ2) and �(τ1 × τ2) ≡ (�τ1 × �τ2).

Typing rules. Our typing judgment has the form Δ; Φ; Γ � e :κ τ . Here, κ is an
upper bound on the dynamic stability of e. It is treated as an effect. Important
typing rules are shown in Figure 4. Technically, all rules include a fourth context
Υ that specifies the types of primitive functions ζ, but this context does not
change in the rules, so we exclude it from the presentation. The rules follow
some general principles. First, if an expression contains subexpressions, then the
change propagation costs (κ’s) of subexpressions are added to obtain the change
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Δ; Φ; Γ � e :κ τ expression e has type τ and dynamic stability at most κ

Δ; Φ; Γ, x : τ � x :0 τ
var

Δ; Φ; Γ � r :0 (real)S
real

Δ; Φ; Γ � nil :0 list [0]0 τ
nil

Δ; Φ; Γ � e1 :κ1 (τ )S Δ; Φ; Γ � e2 :κ2 list [n]α τ

Δ; Φ; Γ � cons(e1, e2) :κ1+κ2 list [n+1]α τ
cons1

Δ; Φ; Γ � e1 :κ1 τ Δ; Φ; Γ � e2 :κ2 list [n]α−1 τ Δ; Φ |= α > 0
Δ; Φ; Γ � cons(e1, e2) :κ1+κ2 list [n + 1]α τ

cons2

Δ; Φ; Γ � e :κ list [n]α τ Δ; Φ ∧ n
.= 0; Γ � e1 :κ′ τ ′

i :: ι, Δ; Φ ∧ n
.= i + 1; h : (τ )S, tl : list [i]α τ, Γ � e2 :κ′ τ ′

i :: ι, β :: ι, Δ; Φ ∧ n
.= i + 1 ∧ α

.= β + 1; h : (τ )C, tl : list [i]β τ, Γ � e2 :κ′ τ ′

Δ; Φ; Γ � caseL e of nil → e1 | cons(h, tl) → e2 :κ+κ′ τ ′ caseL

Δ; Φ; x : τ1, f : τ1
κ−→ τ2, Γ � e :κ τ2

Δ; Φ; Γ � fix f(x). e :0 τ1
κ−→ τ2

fix1

Δ; Φ; Γ � e1 :κ1 τ1
κ−→ τ2

Δ; Φ; Γ � e2 :κ2 τ1

Δ; Φ; Γ � e1 e2 :(κ1+κ2+κ) τ2
app

t :: S, Δ; Φ; Γ � e :κ τ

Δ; Φ; Γ � Λ. e :0 ∀t
κ:: S. τ

∀I Δ; Φ; Γ � e :κ ∀t
κ′
:: S. τ Δ � I :: S

Δ; Φ; Γ � e[] :κ+κ′{I/t} τ{I/t} ∀E

Δ; Φ; Γ � e :κ τ Δ; Φ |= τ � τ ′ Δ; Φ |= κ ≤ κ′

Δ; Φ; Γ � e :κ′ τ ′ �

Υ (ζ) = ζ : ∀ti::Si. τ1
κ−→ τ2 Δ � Ii :: Si Δ; Φ; Γ � e :κe τ1[Ii/ti]

Δ; Φ; Γ � ζ e :
κe+κ[Ii/ti]

τ2[Ii/ti]
primApp

Δ; Φ; Γ � e :κ τ ∀y ∈ Γ. Δ; Φ |= Γ (y) � (Γ (y))S

Δ; Φ; Γ, Γ ′ � e :0 (τ )S
nochange

Δ; Φ; x : τ1, f : (τ1
κ−→ τ2)S, Γ � e :κ τ2 ∀y ∈ Γ. Δ; Φ |= Γ (y) � (Γ (y))S

Δ; Φ; Γ, Γ ′ � fix f(x). e :0 (τ1
κ−→ τ2)S

fix2

Fig. 4. Selected typing rules. The context Υ carrying types of primitive functions is
omitted from all rules.
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propagation cost of the expression. This is akin to accumulation of effects in a
type and effect system. Second, values incur 0 change propagation cost because
they are either updated before change propagation starts or by earlier steps of
change propagation (which account for the cost of their update).

Variables represent values, so they have κ = 0 (rule var). All primitive con-
stants like r can be given the type annotation (·)S as in the rule real. (Modifiable
constants can be modeled as variables with types without the (·)S annotation
and given two different substitutions in the two runs. This is standard in rela-
tional semantics and should be clear in Section 5.) This also applies to the empty
list nil, but in its typing (rule nil) we do not explicitly write the annotation (·)S
because this annotation can be established through the subtyping rule l2. The
term cons(e1, e2) can be typed at list [n + 1]α τ using one of two rules (cons1
and cons2) depending on whether e1 may change or not. If e1 cannot change
(it has type (τ)S), then e2 is allowed α changes (rule cons1). If e1 may change,
then e2 is allowed α − 1 changes (rule cons2). The elimination rule for a list
expression e : list [n]α τ has three premises for the case branches (rule caseL).
The first of these premises applies when e evaluates to nil. In this premise, we
assume that the size of the list n and the number of allowed changes α are both
0. The remaining two premises correspond to the two typing rules for cons. In
one premise, we assume that the head of the list (variable h) cannot change,
so it has type (τ)S and the tail may have α changes. In the other premise, we
assume that the head may change, so it has type τ , but the tail may have only
α − 1 changes (α − 1 is denoted by a new index variable β in the rule).

Rules fix1 and app type recursive functions and function applications, re-
spectively. A function is a value, so κ = 0 in rule fix1. In rule app, we add
the function’s change propagation cost κ to the cost of the application, as ex-
pected. Rule 
 allows weakening an ascribed type to any supertype and also
allows weakening the change propagation cost upper-bound κ. Rule primApp
types primitive function applications. This rule eliminates both ∀ and → from
the type of the primitive function. Ii denotes a vector of index terms.

The rule nochange embodies our co-monadic reasoning principle. It says: If
e :κ τ in some context Γ (first premise) and the type of every variable in type Γ
is a subtype of the same type annotated with (·)S (second premise), then we can
also give e the type (τ)S and change propagation cost 0. In other words, if an
expression depends only on unchanging variables, then its result cannot change
and no change propagation is required. This rule is a strict generalization of the
introduction rule for the type �τ in co-monadic type systems like [28]: If e : τ and
all of e’s free variables have types of the form �τ ′, then e : �τ . The generalization
here is that whether or not a variable in context has annotation (·)S can depend
on the constraints in Φ (via subtyping). We showed an application of this general
rule in Example 3 of Section 2. Finally, we need an additional rule to type some
recursive functions with annotation (·)S (an example is the function bfold of
Section 2). This rule, fix2, has the same condition on the function’s free variables
as the rule nochange. In typing the body of the recursive function, fix2 allows
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us to assume that the function itself has a type annotated (·)S. This rule cannot
be derived using the rules fix1 and nochange.

4 Dynamic Semantics

We define a tracing evaluation semantics and a cost-counting change propagation
semantics for our language (Sections 4.1 and 4.2, respectively). We then prove
our type system sound relative to the change propagation semantics (Section 5).

4.1 Evaluation Semantics and Traces

Our big-step, call-by-value evaluation judgment has the form e ⇓ v, T where
e is the evaluated program, value v is the result of evaluating e and T is a
reification of the big-step derivation tree, called a trace. The trace is used for
change propagation after e has been modified. Traces have the following syntax.

Traces T ::= r | () | (T1, T2) | fst T | snd T | nil | cons(T1, T2) |
casenil(T, T ′) | casecons(T, T ′) | fix f(x).e | app(T1, T2, Tr) |
Λ.e | iApp(T, Tr) | pack T | unpack T as x in T ′ |
let x = T1 in T2 | primApp(T, vr, ζ)

This syntax has one constructor for every evaluation rule and is largely self-
explanatory. The trace of a value is the value itself. The trace of a primitive
function application ζ e has the form primApp(T, vr, ζ), where T is the trace of e
and vr is the result of the application. Recording vr is important: During change
propagation, if the argument to the primitive function has not changed, then we
simply reuse vr, without re-computing the primitive function.

Selected evaluation rules are shown in Figure 5. The rules are self-explanatory,
given the description of traces above. In the rule primapp, ζ̂ denotes the se-
mantic interpretation of the primitive ζ. For every value v, ζ̂(v) is a pair (cr, vr),
where vr is the result of evaluating the primitive ζ with argument v and cr is
the cost of this primitive evaluation.

4.2 Cost-counting Change Propagation Semantics

Change propagation takes as input the trace of an expression and a modified
expression, and computes the trace of the modified expression by propagating
changes through the original trace. This begs two questions: First, what kinds
of expression modifications we allow and, second, how do we specify the modi-
fications. The answer to the first question is that changes stem from replacing
primitive values of a base type like real with other primitive values of the same
type. Because our language contains closures and lists, changes lift to higher
types, e.g., if a function receives the function λx.(x+1) as argument in the orig-
inal execution, it may receive λx.(x + 2) after modification. However, it is not
possible to receive λx.(x+1) as argument in the original execution and λx.(x+x)
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e ⇓ v, T Expression e evaluates to value v with trace T

r ⇓ r, r
r

e1 ⇓ v1, T1 e2 ⇓ v2, T2

cons(e1, e2) ⇓ cons(v1, v2), cons(T1, T2)
cons

fix f(x). e ⇓ fix f(x). e, fix f(x).e
fix

e ⇓ v, T ζ̂(v) = (cr, vr)
ζ e ⇓ vr, primApp(T, vr, ζ)

primapp

e1 ⇓ fix f(x). e, T1 e2 ⇓ v2, T2 e[v2/x, (fix f(x). e)/f ] ⇓ vr, Tr

e1 e2 ⇓ vr, app(T1, T2, Tr)
app

Fig. 5. Selected evaluation rules

Bi-values vv ::= keep(r) | repl(r, r′) | (vv1, vv2) | nil | cons(vv1, vv2) |
fix f(x).ee | Λ.ee | pack vv | ()

Bi-expr. ee ::= x | keep(r) | repl(r, r′) | (ee1, ee2) | fst ee | snd ee |
nil | fix f(x).ee | ee1 ee2 | Λ.ee | ee[] | pack ee |
unpack ee as x in ee′ | let x = ee1 in ee2 | ζ ee | () |
cons(ee1, ee2) | (caseL ee of nil → ee1 | cons(h, tl) → ee2)

Fig. 6. Syntax of bi-values and bi-expressions

after modification. Similarly, the list [1, 2, 3] may be modified to [2, 2, 4], but be-
cause the refined list type mentions a statically determined length, it is not
possible to modify the length of a list.

To specify expression changes and to prove soundness of our type system,
we find it convenient to define a new syntactic category called a bi-expression,
denoted ee. A bi-expression represents two nearly identical expressions (the orig-
inal and the modified) that differ only in some primitive constants. The functions
L(ee) and R(ee) project out the left and right (original and modified) expres-
sions from ee. The syntax of bi-expressions, shown in Figure 6, is identical to that
of expressions, except that instead of primitive constants r, we have the forms
keep(r) and repl(r, r′). Roughly, keep(r) means that the original constant r
has not been modified, whereas repl(r, r′) means that the original constant r
has been replaced by the constant r′. Analogous to bi-expressions, we define
bi-values, denoted vv, that represent pairs of values differing only in primitive
constants. As an example, if the original value fix f(x). (x + 1) is modified to
fix f(x). (x+2), then the two values can be represented together as the bi-value
fix f(x). (x + repl(1, 2)). The left and right projections of a bi-expression/bi-
value are defined as the homomorphic lifting of the following definitions.

L(keep(r)) = r R(keep(r)) = r
L(repl(r, r′)) = r R(repl(r, r′)) = r′

Bi-values and bi-expressions are typed as shown in Figure 7. The judgment
Δ; Φ; Γ � vv  τ means that the bi-value vv represents two (related) values
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Δ; Φ; Γ � vv � τ and Δ; Φ; Γ � ee �κ τ Bi-value and bi-expression typing

Δ; Φ; Γ � keep(r) � (real)S
keep

Δ; Φ; Γ � repl(r, r′) � (real)C
repl

Δ; Φ; x : τ1, f : τ1
κ−→ τ2, Γ � ee �κ τ2

Δ; Φ; Γ � fix f(x). ee � τ1
κ−→ τ2

fix1

Δ; Φ; Γ � vv � τ ∀z ∈ Γ. Δ; Φ |= Γ (z) � (Γ (z))S stable(vv)
Δ; Φ; Γ, Γ ′ � vv � (τ )S

nochange

Δ; Φ; x : τ1, f : (τ1
κ−→ τ2)S, Γ � ee �κ τ2

∀z ∈ Γ. Δ; Φ |= Γ (z) � (Γ (z))S stable(ee)
Δ; Φ; Γ, Γ ′ � fix f(x). ee � (τ1

κ−→ τ2)S
fix2

Δ; Φ; Γ � vv � τ
Δ; Φ |= τ � τ ′

Δ; Φ; Γ � vv � τ ′ �

Δ; Φ; Γ � vvi � τi Δ; Φ; xi : τi, Γ � e :κ τ

Δ; Φ; Γ � �e�[vvi/xi] �κ τ
exp

Fig. 7. Selected typing rules for bi-values and bi-expressions

of type τ . Its rules mirror those of value typing, mostly. The bi-value keep(r)
has the type (real)S, whereas the bi-value repl(r, r′) has the type (real)C,
reflecting the difference between the refinements (·)S and (·)C. Rules fix2 and
nochange are analogous to their homonyms from expression typing and intro-
duce the annotation (·)S. In these rules, we have to additionally check that the
bi-value being typed contains no syntactic occurrences of repl(·, ·) because the
annotation (·)S means absence of syntactic change. This is formalized by the
proposition stable(ee), which means that ee has no occurrences of repl(·, ·).

The judgment Δ; Φ; Γ � ee κ τ means that ee represents two related expres-
sions of type τ and that the trace of any one of those expressions can be change
propagated for the other expression, incurring cost at most κ. This judgment is
defined by only one rule, exp, that relies on the typing judgments for expressions
and bi-values. Let �e� denote the bi-expression obtained by replacing all occur-
rences of r in e with keep(r). It is easy to see that every bi-expression ee can
be written as �e�[vvi/xi] for some expression e and some sequence of bi-values
vvi. The rule exp types ee by typing e (using the expression typing rules) and
vvi (using the bi-value typing rules). Setting up bi-expression typing this way is
primarily for technical convenience in proving the soundness of our type system.
An equivalent type system is obtained by mirroring all the expression typing
rules for bi-expressions.

Change Propagation. We formalize change propagation abstractly by the judg-
ment 〈T, ee〉 � vv′, T ′, c′, which has inputs T and ee and outputs vv′, T ′ and c′.
The input T must be the trace of the original expression L(ee). The output vv′

represents two values, L(vv′) and R(vv′), which are the results of evaluating the
original and modified expressions, respectively. The output T ′ is the trace of the
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〈T, ee〉 � vv′, T ′, c′ Change propagation with cost-counting

stable(ee)
〈primApp(T, vr, ζ), ζ ee〉 � �vr�, primApp(T, vr, ζ), 0

r-prim-s

¬stable(ee) 〈T, ee〉 � vv′, T ′, c′ ζ̂(R(vv′)) = (c′
r, v′

r)
〈primApp(T, vr, ζ), ζ ee〉 � merge(vr, v′

r), primApp(T ′, v′
r, ζ), c′ + c′

r

r-prim

〈r, keep(_)〉 � keep(r), r, 0
r-keep 〈r, repl(_, r′)〉 � repl(r, r′), r′, 0

r-repl

〈T1, ee1〉 � vv′
1, T ′

1, c′
1 〈T2, ee2〉 � vv′

2, T ′
2, c′

2

〈cons(T1, T2), cons(ee1, ee2)〉 � cons(vv′
1, vv′

2), cons(T ′
1, T ′

2), c′
1 + c′

2
r-cons

〈T, ee〉 � nil, T ′, c′ 〈T1, ee1〉 � vv′
1, T ′

1, c′
1

〈casenil(T, T1), caseL ee of nil → ee1 | cons(h, tl) → ee2〉 �

vv′
1, casenil(T ′, T ′

1), c′ + c′
1

r-case-nil

〈T, ee〉 � cons(vvh, vvtl), T ′, c′ 〈T2, ee2[vvh/h, vvtl/tl]〉 � vv′
2, T ′

2, c′
2

〈casecons(T, T1), caseL ee of nil → ee1 | cons(h, tl) → ee2〉 �

vv′
2, casecons(T ′, T ′

2), c′ + c′
2

r-case-cons

Fig. 8. Selected Replay Rules

modified expression. Most importantly, c′ is the total cost incurred in change
propagation. The output vv′ is an artifact of our formalization and important for
an inductive proof of our soundness theorem. Actual implementations of change
propagation never construct it and, hence, we do not count any cost for con-
structing or analyzing it during change propagation. As part of our soundness
theorem, we show that � is a total function on well-typed programs.

Rules defining the judgment � case analyze the input trace T . Representative
rules are shown in Figure 8. To change propagate the trace primApp(T, vr, ζ) for
the primitive function application bi-expression ζ ee, we case analyze whether
the original expression in ee changed or not. If stable(ee), then the argument
to ζ has not changed (stable(ee) implies L(ee) = R(ee)). So we simply reuse
the result vr stored in the original trace. The output bi-value is �vr� (which
represents vr paired with itself). The output trace is the same as the input trace
and the cost is 0. This is summarized in the rule r-prim-s. If, on the other hand,
¬stable(ee) (rule r-prim), then the argument to ζ has changed, so we change
propagate through the argument (second premise) and reapply the primitive
function ζ to the updated argument (third premise). The bi-value in the output is
obtained by merging the original result vr with the new result v′

r. Merge is defined
as follows: If L(vv) = vr and R(vv) = v′

r, then merge(vr, v′
r) = vv. In general, merge

is a partial function. But, if the primitive function’s interpretation lies in the
semantic interpretation of its type (semantic interpretations are defined in the
next section), then the merge must be defined. The cost of change propagation
is the sum of the cost c′ of change propagating the argument of ζ and the cost
c′

r of evaluating ζ on the new argument. This rule is the only source of non-zero
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costs during change propagation. All other rules either incur zero cost, or simply
aggregate costs from the premises.

The trace of a primitive constant r is change propagated using rules r-keep
and r-repl. If the constant has not changed (rule r-keep) then the trace does
not change and no cost is incurred. If the constant has changed, the resulting
trace is the new value of the constant (rule r-repl). Even in this case, no cost
is incurred, because in an implementation of change propagation, the trace and
the expression can share a pointer to the constant so the update to the ex-
pression (which happens before change propagation starts) implicitly updates
the trace [11]. At constructors like cons, change propagation simply recurses
on argument sub-traces and adds the costs (rule cons). Elimination forms like
caseL are handled similarly. Because control flow changes are forbidden, the
original trace determines the branch of the case analysis to which changes must
be propagated (rules r-case-nil and r-case-cons).

Implementation. The relation � formalizes change propagation and its cost ab-
stractly. An obvious question is whether change propagation can be implemented
with the costs stipulated by �. The answer is affirmative. Prior work on libraries
and compilers for self-adjusting computation already shows how to implement
change propagation with these costs using imperative traces, leaf-to-root traver-
sals and in-place update of values [1,10]. Since values are updated in-place, no
cost is incurred for structural operations like pairing, projection, consing, etc;
cost is incurred only for re-evaluating primitive functions on paths starting in
updated leaves, exactly as in the judgment �. To double-check, we implemented
most of our examples on an existing library, AFL [1], and observed exactly the
costs stipulated by �. Due to lack of space, we omit the experimental results.

5 Soundness

We prove our type system sound in two ways: (a) Trace propagation is total
and produces correct results on typed expressions, and (b) The cost of change
propagation (determined by �) on a typed expression is no more than the cost κ
estimated in the expression’s typing judgment. We combine these two statements
together in the following theorem. This theorem considers an expression e with
one free variable x, which receives two potentially different substitutions (the
two projections of a bi-value vv) in the original and modified execution. A more
general theorem with any number of free variables (and, hence, any number of
independent changes) holds as well, but we skip it here to improve readability.

Theorem 1 (Type soundness). Suppose that (a) x : τ � e :κ τ ′; (b) � vv 
τ ; and (c) e[L(vv)/x] ⇓ v′, T . Then the following hold for some T ′, vv′ and c:
(1) 〈T, �e�[vv/x]〉 � vv′, T ′, c; (2) e[R(vv)/x] ⇓ R(vv′), T ′; and (3) c ≤ κ.
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In words, the theorem says that if expression e types with dynamic stability κ
and we execute e with an initial substitution L(vv)/x to obtain a trace T , then
we can successfully change propagate T with a new substitution R(vv)/x in e
(statement 1) to obtain the correct new output and trace (statement 2) with
cost c of change propagation no more than the statically estimated dynamic
stability κ (statement 3). Briefly, (1) states totality of change propagation for
typed programs, (2) states its functional correctness, and (3) shows that our
type system estimates dynamic stability conservatively. Note that this theorem
models changes to expressions as different substitutions to the expression’s free
variable. Syntactic constants in e cannot change, which explains why we can
type constants with annotation (·)S in Figure 4.

�τ�v ⊆ Step index × Bi-values and �τ�κ
ε ⊆ Step index × Bi-expressions

�(τ )S�v = {(m, vv) | (m, vv) ∈ �τ�v ∧ stable(vv)}
�(τ )C�v = �τ�v

�real�v = {(m, keep(r)) | �} ∪ {(m, repl(r, r′)) | �}
�list [0]α τ�v = {(m, nil) | �}
�list [n+1]α τ�v = {(m, cons(vv1, vv2)) | ((m, vv1) ∈ �(τ )S�v ∧ (m, vv2) ∈ �list [n]α τ�v)

∨ ((m,vv1) ∈ �τ�v ∧ (m,vv2) ∈ �list [n]α−1 τ�v ∧ α > 0)}
�τ1

κ−→ τ2�v = {(m, fix f(x).ee) |
∀j < n, ∀vv (j, vv) ∈ �τ1�v ⇒ (j, ee[fix f(x).ee/f ][vv/x]) ∈ �τ2�

κ
ε }

�∀t
κ:: S. τ�v = {(m, Λ.ee) | ∀I I :: S (m, ee) ∈ �τ [I/t]�κ[I/t]

ε }
�∃t. τ�v = {(m, pack vv) | ∃I.I :: S ∧ (m, vv) ∈ �τ [I/t]�v}
�τ1 × τ2�v = {(m, (vv1, vv2)) | (m, vv1) ∈ �τ1�v ∧ (m,vv2) ∈ �τ2�v}

�τ�κ
ε = {(m, ee) | ∀j < n. L(ee) ⇓ v, T ∧ j = |T | ⇒ ∃ v′, T ′, ee′, c′ :

1. 〈T, ee〉 � vv′, T ′, c′

2. c′ ≤ κ

3. (m − j, vv′) ∈ �τ�v

4. R(ee) ⇓ v′, T ′

5. v′ = R(vv′) ∧ v = L(vv′)}

D�·�, G�·� = {∅}
D�Δ, t :: S� = {σ[t �→ I ] | σ ∈ D�Δ� ∧ I :: S}
G�Γ, x : τ� = {(m, θ[x �→ vv]) | (m,θ) ∈ G�Γ � ∧ (m,vv) ∈ �τ�v}

Fig. 9. Step-indexed interpretation of selected types

To prove this theorem, we build a relational model of types interpreted as sets
of bi-values and bi-expressions. To handle recursive functions, we step-index our
model [5]. The index counts trace size in our model. Trace size is proportional
to the number of steps in complete reductions of small-step semantics. The size
|T | of a trace T is defined as follows: Primitive constants and functions have size
0 and each trace constructor adds 1 to the size.



426 E. Çiçek, D. Garg, and U. Acar

For every closed type τ we define a value interpretation �τ�v and an expression
interpretation �τ�κ

ε . The value interpretation �τ�v is a set of pairs of the form
(m, vv), where m is a step index. The expression interpretation �τ�κ

ε is a set of
pairs of the form (m, ee), where change propagating the trace of L(ee) with ee
costs no more than κ if the size of that trace is less than m. The two interpre-
tations of types, shown in Figure 9, are defined simultaneously by induction on
τ . In the definition of the value interpretation of the list type list [n]α τ , we
subinduct on n. Our definitions are unsurprising but we mention a few salient
points. First, �(τ)C�v = �τ�v and �(τ)S�v ⊆ �τ�v . Moreover, (m, vv) ∈ �(τ)S�v im-
plies stable(vv), as expected. The value interpretation of list [n+1]α τ has two
clauses corresponding to the two typing rules for cons. Most importantly, the
expression interpretation �τ�κ

ε captures enough invariants about change propa-
gation to enable us to prove the soundness theorem above. Figure 9 also shows
the definitions of semantic substitutions σ and θ for the contexts Δ and Γ , re-
spectively. As usual, the substitution for each variable in Γ must lie in the value
interpretation of the variable’s type.

We prove the following fundamental theorem for our type interpretations. The
theorem consists of three statements for three different syntactic classes: expres-
sions, bi-values and bi-expressions (in that order). The statement for expressions
is established by an induction on expression typing, with a subinduction on step-
indices for recursive functions. The other two statements follow by simultaneous
induction on bi-value and bi-expression typing. The theorem relies on the as-
sumption that the interpretation of every primitive function lies in the interpre-
tation of the function’s type. The formal statement of this assumption and the
proof of the theorem are in our online appendix. Type soundness, Theorem 1, is
an immediate corollary of the first two statements of this theorem.

Theorem 2 (Fundamental Theorem). 1. If Δ; Φ; Γ � e :κ τ and σ ∈ D�Δ�
and (m, θ) ∈ G�σΓ � and |= σΦ, then (m, θ�e�) ∈ �στ�σκ

ε .

2. If Δ; Φ; Γ � vv  τ and σ ∈ D�Δ� and (m, θ) ∈ G�σΓ � and |= σΦ, then
(m, θvv) ∈ �στ�v .

3. If Δ, Φ, Γ � ee κ τ and σ ∈ D�Δ� and (m, θ) ∈ G�σΓ � and |= σΦ, then
(m, θ(ee)) ∈ �στ�σκ

ε .

6 Related Work

Incremental and self-adjusting computation. Incremental computation has been
studied extensively in the last three decades (reduction in the lambda calculus [15],
graph algorithms [24], attribute grammars [14], programming languages [8] etc.).
While most work focuses on efficient data-structures and memoization techniques
for incremental computation, recent work develops type-directed techniques for
automatic incrementalization of batch programs [10]. Ley-Wild et al. propose a
cost semantics for program execution and bound the change propagation time of
self-adjusting programs using a metric of trace distances [26]. Their analysis only
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yields that change propagation is no slower than from-scratch evaluation, asymp-
totically. Although they are able to prove tight bounds for some benchmark pro-
grams, this analysis requires comparing trace distances by hand for each change.
Unlike our work, no existing approach provides a general, static technique for es-
tablishing tight asymptotic dynamic stability.

Chen et al. [11] use variation annotations similar to CostIt’s, but do not address
the problem of estimating dynamic stability. Instead, they focus on compiling a
higher-order functional language to AFL, a language with change propagation se-
mantics. Their translation is facilitated by types annotated (·)S and (·)C, which
CostIt uses for a different purpose. In turn, Chen et al. borrow these type anno-
tations from Simonet and Pottier’s work on type inference for information flow
analysis [31].

In contrast to our co-monadic interpretation of (τ)S and identification of (τ)C
with τ , a significant amount of prior work on implementation of incremental
programs equates (τ)S to τ and gives a monadic interpretation to the type
(τ)C [1,8,11]. Although a deeper study of the connection between these two
approaches is necessary, the choice so far seems to be motivated by the task at
hand. For executing programs, it is natural to confine changes (and change prop-
agation) to a monad, whereas for reasoning about dynamic stability it is often
necessary to conclude by looking at an expression’s inputs that the expression’s
result cannot change, which is easier in our co-monadic interpretation.

Continuity and program sensitivity. Also closely related to our work in concept,
but not in the end-goal, is work on analysis of program continuity. There, the
goal is to prove that the outputs of two runs of a program are closely related if
the inputs are. Program continuity does not account for dynamic stability. Our
type system also proves a limited form of program continuity, as an intermedi-
ate step in establishing dynamic stability. Reed and Pierce present a linear type
system called Fuzz for proving continuity [33], as an intermediate step in verify-
ing differential privacy properties. Gaboardi et al. extend Fuzz with lightweight
dependent types in a type system called DFuzz [16]. DFuzz’s syntax and use of
lightweight dependent types influenced our work significantly. A technical dif-
ference from DFuzz (and Fuzz) is that our types capture where two values differ
whereas in DFuzz, the “distance” between related values is not explicit in the
type, but only in the relational model. As a result, our type system does not need
linearity, which DFuzz does. Unlike CostIt and DFuzz, Chaudhuri et al.’s static
analysis can prove program continuity even with control flow changes as long as
perturbations to the input result in branches that are close to each other [9].

Static computation of resource bounds/complexity analysis. The programming
languages community is rife with work on static computation of resource bounds,
particularly worse-case execution time complexity, using different techniques
such as abstract interpretation [18,35], linear dependent types [13], amortized
resource analysis [22] and sized types [12,25,36]. A common denominator of
these techniques is that they all reason about a single execution of a program. In
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contrast, our focus — dynamic stability — is a two-trace property. It requires a
relational model of execution which accounts for change propagation, as well as
a relational model of types to track what parts of values can change across the
executions, both of which we develop in this paper.

We mention some type-theoretic approaches to inferring and verifying resource
usage bounds in programs. Dal Lago et al. present a complete time complexity
analysis for PCF [13]. They use linear types to statically limit the number of
times a function may be applied by the context. This allows reasoning about
the time complexity of recursive functions precisely. We could adopt a similar
approach in our work, although we have not found this necessary so far. Hoff-
mann et al. [23,22] infer polynomial-shaped bounds on resource usage of RAML
(Resource Aware ML) programs. A significant advantage of their technique is
automation. A similar analysis for dynamic stability may be possible although
the compatibility of logarithmic functions (which are necessary to state the dy-
namic stability of interesting programs) with Hoffmann et al.’s approach remains
an open problem.

We use sized types [25] for lists. Sized types are often used in termination
checking and analysis of heap and stack space [35]. Our types are precise on list
lengths, unlike conventional uses where the size in the type is an upper-bound.
For the number of allowed changes, our types specify upper-bounds.

7 Conclusion and Future Work

Existing work on incremental computation has been very successful at improving
efficiency of incremental runs of a program, but does not consider the equally
important question of developing static tools to analyze dynamic stability. Our
work, CostIt, takes a first step in this direction by equipping a higher-order
functional language with a type system to analyze dynamic stability of programs.
We find that index refinements, immutability annotations, co-monadic reasoning
and constraint-aware subtyping are useful in analyzing dynamic stability. Our
type system is sound relative to a cost semantics for change propagation. We
demonstrate the expressiveness and precision of CostIt on several examples.

Our ongoing work builds on the content of this paper in three ways. First,
we are working on a prototype implementation of CostIt using bidirectional
type-checking. We reduce type-checking and type inference to constraint satis-
fiability as in Dependent ML [37]. There is no new conceptual difficulty, but
the constraint domain is largely intractable, as demonstrated by the occurrence
of logarithmic and exponential functions in Examples 3 and 4. Consequently,
we are exploring the possibility of using a combination of automatic and semi-
automatic constraint solving (Dal Lago et al. use a similar approach in the
context of worse-case execution time complexity analysis [13]).

Second, in work done after the review of this paper, we have extended CostIt’s
type system, relational model and soundness theorem to cover situations where
program control flow may change with input changes. This is a nontrivial ex-
tension, beyond the scope of this paper. Briefly, we extend the type system with
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a standard worse-case execution time complexity analysis for branches which
might execute from scratch during change propagation. The resulting type sys-
tem is a significant refinement of the pure fragment of Pottier and Simonet’s
(simple) information flow type system for ML [31] (in contrast, the work in
this paper corresponds to the special case where Pottier and Simonet’s program
counter or pc is always “low” or unchanging).

Finally, motivated by recent work on demand-driven incremental computa-
tion [20], we are planning to work on a version of CostIt for lazy evaluation
semantics.
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Abstract. Gradual typing enables both static and dynamic typing in
the same program and makes it convenient to migrate code regions be-
tween the two typing disciplines. One goal of gradual typing is to pro-
vide all the benefits of static typing, such as efficiency, in statically-typed
regions. However, this goal is elusive: the standard approach to muta-
ble references imposes run-time overhead in statically-typed regions and
alternative approaches are too conservative, either statically or at run-
time. In this paper we present a new semantics called monotonic refer-
ences which imposes none of the run-time overhead of dynamic typing in
statically typed regions. With this design, casting a reference may cause
a heap cell to become more statically typed (but not less). Retaining
type safety is challenging with strong updates to the heap. Nevertheless,
we have a mechanized proof of type safety. Further, we present blame
tracking for monotonic references and prove a blame theorem.

1 Introduction

Static and dynamic type systems have well-known strengths and weaknesses.
Static type systems provide machine-checked documentation, catch bugs early,
and enable efficient code. Dynamic type systems provide the flexibility often
needed during prototyping and enable powerful features such as reflection. Over
the years, many languages blurred the boundary between static and dynamic typ-
ing, such as type hints in Lisp and the addition of a dynamic type to otherwise
statically typed languages (Abadi et al., 1989). But the seamless and sound inte-
gration of static and dynamic typing remained problematic until two pieces fell
into place: the gradual type system of Siek and Taha (2006) and the blame the-
orems of Tobin-Hochstadt and Felleisen (2006) and Wadler and Findler (2009).

However, there are challenges regarding the efficiency of gradual typing. One
issue concerns mutable references in statically-typed regions of code. Consider
the following statically-typed function f that dereferences its parameter x.

let f = λx:Ref Int. !x in

f(ref 4);
f(ref (4 as �))
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In the first application of f , a normal reference to an integer flows into f . For the
second application, we allocate a reference of type Ref � (� is the dynamic type)
then implicitly cast it to Ref Int before applying f . According to the semantics
of Herman et al. (2007), this cast wraps the reference in a proxy which performs
dynamic checks on reads and writes. Thus code generated for the dereference
in the body of f must inspect the reference to find out whether it is a normal
reference or a proxied reference, and in the proxied case, apply a coercion.

Before discussing solutions to this problem, we recall the gradual guarantee
of Boyland (2014) and Siek et al. (2015), an important property of the standard
semantics for mutable references, and of gradual typing in general. The gradual
guarantee promises that removing type annotations, or changing type annota-
tions to be less precise, does not affect the behavior of a program: it should still
type check and the result should be the same modulo proxies. (Adding or making
type annotations more precise, on the other hand can sometimes induce static
type errors and runtime cast errors.) Consider the statically-typed program on
the left that allocates a reference to an integer and then dereferences it from
within a function. In the code on the right, we change the annotation on h from
RefInt to Ref �, but the program still type checks and the result remains 42.

let r = ref42 in

let f = λh:RefInt. !h
in f(r)

=⇒
let r = ref42 in

let f = λh:Ref � . !h
in f(r)

Wrigstad et al. (2010) address the efficiency problem by introducing a distinc-
tion between like types and concrete types. Concrete types are the usual types of
a statically-typed language and incur zero run-time overhead, but dynamically-
typed values cannot flow into concrete types. Like types, on the other hand, may
refer to dynamically-typed values but incur run-time overhead. The distinction
between like types and concrete types achieves the efficiency goals, but the re-
strictions in their type system mean that removing concrete type annotations,
as in the above example, can trigger a static type error.

In this paper we investigate this run-time overhead problem in the context
of the gradually-typed lambda calculus with mutable references. We propose a
semantics,monotonic references, that enables the compilation of statically-typed
regions to machine code that is free of any of the indirection or run-time checking
associated with dynamic typing, like boxing or bit tags. Monotonic references
allow dynamically-typed values to flow into code with (concrete) static types.
When a reference flows through a cast, the cast may coerce its underlying heap
cell to become more statically typed. In general, this means that values in the
heap may evolve monotonically with respect to the precision relation (Section 2).
The idea for monotonic references came out of our work on implementing and
evaluating gradual typing for Python (Vitousek et al., 2014).

Monotonic references preserve a global invariant that a value in the heap is at
least as precise as any reference that points to it. Thus, a static reference always
points to a value of the same type, so there is no overhead associated with reading
or writing through the reference: the reads and writes may be implemented
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as machine loads and stores. By a static reference we mean that there are no
occurrences of the dynamic type � in the pointed-to type of the reference, such
as RefInt and Ref (Int × Bool). Reads and writes to references that are not
static, such as Ref� and Ref (�× Bool), still require casts: the dynamic regions
of code have to pay their own way. The intermediate representation that we
compile to contains different instructions for fast, static loads and stores versus
non-static loads and stores that require casts.

Swamy et al. (2014) and Rastogi et al. (2014) integrate static and dynamic
typing in the context of TypeScript with the TS� and Safe TypeScript languages.
Both use a notion of monotonicity in the heap, but with respect to subtyping,
treating � as a universal supertype, instead of with respect to the precision rela-
tion. Because these languages compile to JavaScript, they inherit the overhead
of dynamic typing, whereas with monotonic references, the overhead of dynamic
typing occurs only in dynamically-typed code. In the example above, making
the type annotation on h less precise causes TS� to halt the program with a cast
error at the implicit cast from Ref Int to Ref�. TS� does not allow casts from
one mutable reference type to a different one because its references are invariant
with respect to subtyping. Thus, TS� does not satisfy the gradual guarantee.

In gradually-typed languages with higher-order features such as first-class
functions and objects, blame tracking plays an important role in providing mean-
ingful error messages when casts fail. Blame tracking enables fine-grained guar-
antees, via a blame theorem, regarding which regions of the code are statically
type safe. In this paper we present blame tracking for monotonic references and
prove a blame theorem. Our design uses the labeled types of Siek and Wadler
(2010) as run-time type information (RTTI), together with three new operations
on labeled types: a bidirectional cast operator that captures the dual read/write
nature of mutable references, a merge operator that models how casts on sepa-
rate aliases to the same heap cell interact over time, and an operator that casts
heap cells between labeled types.

To summarize, this paper presents a new semantics for gradually-typed muta-
ble references that delivers guaranteed efficiency for the statically-typed parts of
a program, maintains type safety, and provides blame tracking, while continuing
to enable fine-grained migration between static and dynamic code. This paper
makes the following technical contributions:

1. We define the semantics of monotonic references (Sections 3 and 5).
2. We discuss our proof of type safety, mechanized in Isabelle (Section 4).
3. We augment monotonic references with blame tracking and prove the blame-

subtyping theorem (Section 6).

We review the gradually-typed lambda calculus with references in Section 2
and discuss the run-time overhead associated with mutable references. We ad-
dress an implementation concern regarding strong updates in Section 7. The
paper concludes in Section 9.
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2 Background and Problem Statement

Figure 1 reviews the syntax and static semantics of the gradually-typed lambda
calculus with references. The primary difference between gradual typing and
static typing is that uses of type equality are replaced with consistency (aka.
compatibility), also defined in Figure 1. The consistency relation enables im-
plicit casts to and from �. (In contrast, an object-oriented language only allows
implicit casts to the top Object type.) This consistency relation is a congruence,
even for reference types (Herman et al., 2007), which differs from the original
treatment of references as invariant (Siek and Taha, 2006). The more flexible
treatment of references enables the passing of references between more and less
dynamically typed regions of code, but is also the source of the difficulties that
we solve in this paper. The precision relation, which says whether one type is
more or less dynamic than another, is also defined in Figure 1, and is closely
related to consistency. Two types are consistent when there exists a greatest
lower bound with respect to the precision relation. This relation is also known
as näıve subtyping (Wadler and Findler, 2009).

All of the types, except for �, classify unboxed values. So, for example, Int
is the type for native integers (e.g. 64-bit integers). The auxiliary relations
fun, pair , and ref , defined in Figure 1, implement pattern matching on types,
enabling a more concise presentation of the typing rules compared to prior pre-
sentations of gradual type systems. Labels � represent source code locations that
are captured during parsing.

The dynamic semantics of the gradually-typed lambda calculus is defined by
a type-directed translation to the coercion calculus (Henglein, 1994), using the
standard semantics for mutable references due to Herman et al. (2007).

Each use of consistency between types T1 and T2 in the type system, and
each use of one of the auxiliary relations, becomes an explicit cast from T1 to
T2. The coercion calculus expresses casts in terms of combinators that say how
to cast from one type to another. Figure 2 gives the compilation of casts into
coercions, written (T ⇒� T ) = c. The compilation of gradually-typed terms
into the coercion-based calculus is otherwise straightforward, so we give just the
function application rule as an example:

Γ � e1 � e′1 : T1 Γ � e2 � e′2 : T2

fun(T1, T11, T12) T2 ∼ T11

(T1 ⇒� T11 → T12) = c1 (T2 ⇒� T11) = c2

Γ � (e1 e2)
� � e′1〈c1〉 e′2〈c2〉 : T12

Figures 3 and 4 define the coercion-based calculus. We highlight the parts of
the definition related to references, as they are of particular interest here. We
review the coercion calculus in the context of discussing the run-time overhead
problem in the next subsection. For an introduction to the coercion calculus, we
refer to Henglein (1994).
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Syntax
Base types B ::= Int | Bool
Types T ::= B | T → T | T × T | RefT | �
Labels �
Operators op ::= plus | minus | is | · · ·
Expressions e ::= k | op�(�e) | x | λx:T. e | (e e)� | e as� T |

(e, e) | fst �e | snd �e | ref e | !�e | e :=� e

λx. e ≡ λx: � . e
Consistency T ∼ T

� ∼ T T ∼ � B ∼ B

T1 ∼ T2

RefT1 ∼ Ref T2

T1 ∼ T3 T2 ∼ T4

T1 → T2 ∼ T3 → T4

T1 ∼ T3 T2 ∼ T4

T1 × T2 ∼ T3 × T4

Precision T � T

T � � B � B
T1 � T2

RefT1 � RefT2

T1 � T3 T2 � T4

T1 → T2 � T3 → T4

T1 � T3 T2 � T4

T1 × T2 � T3 × T4

Expression typing Γ � e : T

k : B
Γ � k : B

Γ � �e : �T op : �B → B �T ∼ �B

Γ � op�(�e ) : B

Γ � e : T1 T1 ∼ T2

Γ � e as� T2 : T2

Γ (x) = T

Γ � x : T

Γ (x �→ T1) � e : T2

Γ � λx:T1. e : T1 → T2

Γ � e1 : T1 Γ � e2 : T2

fun(T1, T11, T12) T2 ∼ T11

Γ � (e1 e2)
� : T12

Γ � e1 : T1 Γ � e2 : T2

Γ � (e1, e2) : T1×T2

Γ � e : T
pair(T, T1, T2)

Γ � fst �e : T1

Γ � e : T
pair(T, T1, T2)

Γ � snd �e : T2

Γ � e : T
Γ � ref e : Ref T

Γ � e : T ref (T, T ′)

Γ � !�e : T ′

Γ � e1 : T1 Γ � e2 : T2

ref (T1, T
′
1) T2 ∼ T ′

1

Γ � e1 :=� e2 : T1

Type matching

fun(T11 → T12, T11, T12) fun(�, �, �)

pair(T11 × T12, T11, T12) pair(�, �, �)

ref (RefT, T ) ref (�, �)

Fig. 1. Gradually-typed λ calculus with mutable references
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(T ⇒� T ) = c

(B ⇒� B) = ι

(� ⇒� �) = ι

(I ⇒� �) = I !

(� ⇒� I) = I?�

(T1→T2) ⇒� (T ′
1→T ′

2) = (T ′
1 ⇒� T1)→(T2 ⇒� T ′

2)

(T1 × T2) ⇒� (T ′
1 × T ′

2) = (T1 ⇒� T ′
1)× (T2 ⇒� T ′

2)

Ref T ⇒�
RefT ′ = Ref (T ⇒� T ′) (T ′ ⇒� T )

Fig. 2. Compile casts to coercions

Expressions e ::= k | op(�e) | x | λx. e | e e | (e, e) | fst e | snd e |
ref e | !e | e := e | e〈c〉 | blame �

Injectibles I ::= B | T → T | T × T | RefT
Coercions c ::= ι | I?� | I ! | c → c | c× c | c ; c | Ref c c

Values v ::= k | λx. e | (v, v) | v〈I !〉 | a | v〈Ref c c〉
Heap μ ::= ∅ | μ(a �→ v)
Heap Typing Σ ::= ∅ | Σ(a �→ T )
Frames F ::= op(�v,�, �e) | � e | v � | (�, e) | (v,�) | fst� | snd� |

ref� | !� | � := e | v := � | �〈c〉
Fig. 3. Syntax for the coercion-based calculus with mutable references

2.1 Run-Time Overhead in Fully-Static Code

Recall the example in Section 1 in which the dereference of a statically-typed
reference must first check whether the reference is proxied or not.

let f = λx:Ref Int. !x in

f(ref 4);
let r = ref (4 as �) in f(r)

The overhead can be seen in the dynamic semantics (Figure 4), where there
are two reduction rules for dereferencing: (Deref) and (DerefCast), and two
reduction rules for updating references: (Update) and (UpdateCast). Another
way to look at this problem is that there are two canonical forms of type Ref Int,
a plain address a and also a value wrapped in a reference coercion, v〈Ref c1 c2〉,
so operations on values of this type need to dispatch on which form occurs at
runtime. To eliminate this overhead we need a design with only a single canonical
form for values of reference type.

The run-time overhead for references affects every read and write to the heap
and is particularly detrimental in tight loops over arrays. When adding support
for contracts to mutable data structures in Racket, Strickland et al. (2012, Fig-
ure 9) measured this overhead at approximately 25% for fully-typed code on a
bubble-sort microbenchmark.
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Coercion typing c : T ⇒ T

ι : T ⇒ T

c1 : T3 ⇒ T1 c2 : T2 ⇒ T4

c1 → c2 : (T1 → T2) ⇒ (T3 → T4)

I?� : � ⇒ I

c1 : T1 ⇒ T3 c2 : T2 ⇒ T4

c1 × c2 : (T1 × T2) ⇒ (T3 × T4)

I ! : I ⇒ �

c1 : T1 ⇒ T2 c2 : T2 ⇒ T3

c1 ; c2 : T1 ⇒ T3

c1 : T1 ⇒ T2 c2 : T2 ⇒ T1

Ref c1 c2 : RefT1 ⇒ RefT2

Expression typing Γ ;Σ � e : T

· · · Σ(a) = T

Γ ;Σ � a : T

Γ ;Σ � e : T1 c : T1 ⇒ T2

Γ ;Σ � e〈c〉 : T2

Reduction rules for functions, primitives, and pairs e −→ e

(λx. e) v −→ [x := v]e

op(�k) −→ δ(op,�k)

fst (v1, v2) −→ v1
snd (v1, v2) −→ v2

Cast reduction rules e −→c e

v〈ι〉 −→c v

v〈I1!〉〈I2?�〉 −→c v〈I1 ⇒� I2〉 if I1 ∼ I2

v〈I1!〉〈I2?�〉 −→c blame � if I1 
∼ I2

v〈c1 → c2〉 −→c λx. v (x〈c1〉)〈c2〉
(v1, v2)〈c1 × c2〉 −→c (v1〈c1〉, v2〈c2〉)

v〈c1 ; c2〉 −→c v〈c1〉〈c2〉

Reference reduction rules e, μ −→r e, μ

ref v, μ −→r a, μ(a �→ v) if a /∈ dom(μ) (AllocRef)

!a, μ −→r μ(a), μ (Deref)

!(v〈Ref c1 c2〉), μ −→r (!v)〈c1〉, μ (DerefCast)

a := v, μ −→r a, μ(a �→ v) (Update)

v1〈Ref c1 c2〉 := v2, μ −→r v1 := v2〈c2〉, μ (UpdateCast)

State reduction rules

e −→ e′

e, μ −→ e′, μ
e −→c e′

e, μ −→ e′, μ

e, μ −→r e′, μ′

e, μ −→ e′, μ′

e, μ −→ e′, μ′

F [e], μ −→ F [e′], μ′ F [blame �], μ −→ blame �, μ

Fig. 4. Coercion-based calculus with mutable references
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2.2 Non-determinism in Multi-threaded Code

This standard semantics for mutable references produces an error only if type
inconsistency is witnessed by some read or write to a particular reference, so in a
non-deterministic multi-threaded program, whether a check will fail at run-time
is difficult to predict.

The contract system in Racket implements the standard semantics
(Flatt and PLT, 2014). For example, the following program sometimes fails and
blames b1, sometimes fails and blames b2, and sometimes succeeds, as explained
below.

#lang racket

(define b (box #f))

(define/contract b1 (box/c integer?) b)

(define/contract b2 (box/c string?) b)

(thread (lambda ()

(for ([i 2])

(set-box! b1 5)

(sleep 0.000000001)

(add1 (unbox b1)))))

(thread (lambda ()

(for ([i 2])

(set-box! b2 "hello")

(sleep 0.000000001)

(string-append "world" (unbox b2)))))

The program creates a single heap cell b, and accesses it through two distinct
proxies, b1 and b2, each with its own dynamic check. When the two threads
do not interleave, the program succeeds, but if the second thread changes b2 to
contain a string between the set-box! and unbox calls for b1, the system halts,
blaming one of the parties.

In contrast, if box/c implemented monotonic references, then an error would
deterministically occur when define/contract is used for the second time.

3 Monotonic References Without Blame

Figures 5 and 6 define the syntax and semantics of our new coercion calculus
with monotonic references, but without blame. Figure 8 defines the compilation
of casts to monotonic coercions, also without blame. The addition of blame adds
considerable complexity, so we postpone its treatment to Section 5. Typical of
gradually-typed languages, there is a value form for values that have been boxed
and injected to �, which is v〈I!〉. The I plays the role of a tag that records
the type of v. The values at all other types are unboxed, as they would be in a
statically-typed language.

With monotonic references, only one kind of value has reference type: normal
addresses.When a cast is applied to a reference, instead of wrapping the reference
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with a cast, we cast the underlying value on the heap. To make sure that the
new type of the value is consistent with all the outstanding references, we require
that a cast only make the type of the value more precise (Figure 1). Otherwise
the cast results in a run-time error. Thus, we maintain the heap invariant that
the type of each reference in the program is less or equally precise as the type of
the value on the heap that it points to, as captured in the typing rule (WTRef).

One might wonder why our heap invariant uses the precision relation instead
of subtyping. Could we obtain the same efficiency goals using subtyping instead?
Consider the following program in which a function of type �→Int is referenced
from the static type Int→Int. (We have � → Int <: Int → Int.)

let r1 = ref (λx : �. x as Int) in
let r2 = (r1 as Ref (Int → Int)) in
!r2 42

The dereference of r2 should not require overhead, but we have a function of
type �→Int that is to be applied to an integer, and the conversion from Int to
� requires boxing in our setting. Thus, the dereference of r2 is not simply a load
instruction, but it must handle the casting from �→Int to Int→Int. (Other
systems, such as Reticulated Python and TS�, box all values. In these systems,
upcasts on dereferences are unnecessary, but instead overhead is incurred in
nearly every operation.) In general, given a reference of type RefT2, even when
T2 is a static type, there are many types T1 such that T1 <: T2 and T1 �= T2.

The syntax of the monotonic calculus differs from the standard calculus in that
there are two kinds of dereference and update expressions. Programmers need not
worry about choosing which of the two dereference or update expressions to use
because this choice is type-directed and therefore is handled during compilation
from the source language to the coercion calculus. We reserve the forms !e
and e1 := e2 for situations in which the reference type is fully static. In these
situations we know that the value in the heap has the same type as the reference.
Thus, if a reference has a fully static type, such as Ref Int, the corresponding
value on the heap must be an actual integer (and not an injection to �), so we
need only one reduction rule for dereferencing a fully-static reference (DerefM),
and one rule for updating a fully-static reference (UpdM).

For expressions of reference type that are not fully-static, we introduce the
syntactic forms !e@T and e1 := e2@T for dereference and update, respectively.
The type annotation T records the compile-time type of e, that is, e has type
RefT . For example, T could be �, � × �, or � × Int. Because the value on the
heap might be more precise than T , a cast is needed to mediate between T and
the run-time type of the heap cell.

The reduction rule (DynDerefM) casts from the addresses’ run-time type,
which we store next to the heap cell, to the compile-time type T . We write
μ(a)rtti for the run-time type information for reference a and we write μ(a)val for
the value in the heap cell. The reduction rule (DynUpdM) casts the incoming
value v from T to the address’s run-time type, so the new content of the cell
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Expressions e ::= .. | refT e | !e@T | e := e@T | error
Coercions c ::= ι | I? | I ! | c→c | c× c | c ; c | RefT
Values v ::= k | λx. e | (v, v) | v〈I !〉 | a
Casted Values cv ::= v | v〈c〉 | (cv, cv)
Heap μ ::= ∅ | μ(a �→ v : T )
Evolving Heap ν ::= ∅ | ν(a �→ cv : T )
Frames F ::= .. | !�@T | � := e@T | v := �@T

Fig. 5. Syntax for monotonic references without blame

is cv = v〈T ⇒ μ(a)rtti〉. This cv is not a value yet, so storing it in the heap is
unusual. In earlier versions of the semantics we tried to reduce cv to a value before
storing it in the heap, but there are complications that force this design, which
we discuss later in this section . To summarize our treatment of dereference and
update, we present efficient semantics for the fully-static dereference and update
but have slightly increased the overhead for dynamic dereferences and updates.
This is a price we are willing to pay to have dynamic typing “pay its own way”.

The crux of the monotonic semantics is in the reduction rules that apply a
reference coercion to an address: (CastRef1), (CastRef2), and (CastRef3).
In (CastRef1) we have an address that maps to cv of type T1 and we cast cv
so that it is no more dynamic than (i.e. at least as static as) both the target
type T2 and all of the existing references to the cell. To accomplish this, we take
the greatest lower bound T3 = T1 � T2 (Figure 7) to be the new type of the
cell, so the new contents is cv′ = cv〈T1 ⇒ T3〉. There are two side conditions on
(CastRef1): T1 � T2 must be defined and T3 �= T1. If T1 � T2 is undefined, or
equivalently, if T1 �∼ T2, we instead signal an error, as handled by (CastRef3).
If T3 = T1, then there is no need to cast cv, which is handled by (CastRef2).

The last coercion reduction rule (PureCast) imports the reduction rules
from the standard semantics (Figure 4) though here we ignore blame, i.e., replace
blame � with error, I2?

� with I2?, and I1 ⇒� I2 with I1 ⇒ I2.
The meet function defined in Figure 7 computes the greatest lower bound

with respect to the precision relation.
To motivate our organization of the heap, we present two examples that

demonstrate why we store run-time type information and casted values, not
just values, on the heap.

Cycles and termination. The first complication is that there can be cycles in the
heap and we need to make sure that when we apply a cast to an address in a
cycle, the cast terminates. Consider the following example in which we create a
pair whose second element is a reference back to itself.

let r1 = ref (42, 0 as �) in
r1 := (42, r1 as �);
let r2 = r1 as Ref (Int× Ref�)in
fst !r2

Once the cycle is established, we cast r1 from type Ref (Int× �) to Ref (Int×
Ref�). The presence of the nested Ref � in the target type means that the cast
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Expression typing Γ ;Σ � e : T

Γ ;Σ � e : Ref T
static T

Γ ;Σ � !e : T

Γ ;Σ � e1 : RefT
Γ ;Σ � e2 : T static T

Γ ;Σ � e1 := e2 : Ref T

Γ ;Σ � e : Ref T

Γ ;Σ � !e@T : T

Γ ;Σ � e1 : RefT Γ ;Σ � e2 : T

Γ ;Σ � e1 := e2@T : Ref T
· · · Σ(a) � T2

Γ ;Σ � a : T2
(WTRef)

Cast reduction rules e, ν −→cr e, ν

e −→c e′

e, ν −→cr e′, ν
(PureCast)

ν(a) = cv : T1 T3 = T1 � T2

T3 
= T1 cv′ = cv〈T1⇒T3〉
a〈Ref T2〉, ν −→cr a, ν(a �→ cv′ : T3)

(CastRef1)

ν(a) = cv : T1 T1 = T1 � T2

a〈RefT2〉, ν −→cr a, ν
(CastRef2)

ν(a) = cv : T1 T1 
∼ T2

a〈RefT2〉, ν −→cr error, ν
(CastRef3)

Program reduction rules e, μ −→e e, ν

e, μ −→e e′, μ if e −→ e′

refT v, μ −→e a, μ(a �→ v : T ) if a /∈ dom(μ)

!a, μ −→e μ(a)val, μ (DerefM)

!a@T, μ −→e μ(a)val〈μ(a)rtti ⇒ T 〉, μ (DynDerefM)

a := v, μ −→e a, μ(a �→ v : μ(a)rtti) (UpdM)

a := v@T, μ −→e a, μ(a �→ cv : μ(a)rtti) (DynUpdM)

where cv = v〈T ⇒ μ(a)rtti〉
For X ∈ {cr, e}:

e, ν −→X e′, ν′

F [e], ν −→X F [e′], ν′ F [error], ν −→X error, ν

State reduction rules e, ν −→ e, ν

e, μ −→X e′, ν X ∈ {cr, e}
e, μ −→ e′, ν

ν(a) = cv : T cv, ν −→cr cv′, ν′

ν′(a)rtti = T

e, ν −→ e, ν′(a �→ cv′ : T )
(HCast)

ν(a) = cv : T cv, ν −→cr error, ν′

e, ν −→ error, ν′

ν(a) = cv : T cv, ν −→cr cv′, ν′

ν′(a)rtti 
= T

e, ν −→ e, ν′

(HDrop)

Fig. 6. Monotonic references without blame
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T � T = T

� � T = T

T � � = T

B �B = B

(T1 × T2) � (T3 × T4) = (T1 � T3)× (T2 � T4)

(T1 → T2) � (T3 → T4) = (T1 � T3) → (T2 � T4)

Fig. 7. The meet function (greatest lower bound)

on r1 will trigger another cast on r1. The correct result of this program is 42
but a näıve dynamic semantics would diverge. Our semantics avoids divergence
by checking whether the new run-time type is equal to the old run-time type; in
such cases the heap cell is left unchanged (see rule (CastRef2)).

Casted values in the heap. Consider the following example in which we create a
triple of type �× �× � whose third element is a reference back to itself.

let r0 = ref (42 as �, 7 as �, 0 as �)in
r0 := (42 as �, 7 as �, r0 as �);
let r1 = r0 as Ref (Int× �× Ref (Int× Int× �))in
fst (fst!r1)

Suppose a0 is the address created in the allocation on the first line. On line three
we cast a0 in such a way that we trigger two casts on a0. Consider the action of
these casts on just the first two elements of the triple, we have:

�× � ⇒ Int× � ⇒ Int× Int

The second cast occurs while the first is still in progress. Now, suppose we delayed
updating the heap cell until we finished reducing to a value. At the moment when
we apply the second cast, we would still have the original value, of type � × �,
in the heap. This is problematic because our next step would be to apply a cast
from Int×� ⇒ Int×Int to this value, but the value’s type and the source type
of the cast don’t match! In fact, in this example the result would be incorrect;
we would get 42〈Int!〉 instead of 42.

There are several solutions to this problem, and they all require storing more
information on the heap or as a separate map. Here we take the most straight-
forward approach of immediately updating the heap with casted values, that is,
with values that are in the process of being cast.

We walk through the execution of the above example, explaining our rules for
reducing casted values in the heap and showing snapshots of the heap. We use
the following abbreviations.

T0 = �× �× �

T1 = Int× �× RefT2

T2 = Int× Int× �

c = Int?× ι× (RefT2)?



444 J.G. Siek et al.

The first line of the program allocates a triple.

a0 �→ (42〈Int!〉, 7〈Int!〉, 0〈Int!〉) : T0

The second line sets the third element to be a reference to itself.

a0 �→ (42〈Int!〉, 7〈Int!〉, a0〈(RefT0)!〉) : T0

The third line casts the reference to RefT1 via (CastRef1).

a0 �→ (42〈Int!〉, 7〈Int!〉, a0〈(RefT0)!〉)〈c〉 : T1

We have a casted value in the heap that needs to be reduced. We apply (HCast)
and (PureCast) to get

a0 �→ (42, 7〈Int!〉, a0〈RefT2〉) : T1

We cast address a0 again, this time to T1�T2, via rule (HDrop) and (CastRef1).

a0 �→ (42, 7〈Int!〉, a0)〈ι × Int?× RefT2〉 : Int× Int× RefT2

A few reductions via (HCast) and (PureCast) give us

a0 �→ (42, 7, a0〈RefT2〉) : Int× Int× RefT2

The final cast applied to a0 is a no-op because the run-time type is already more
precise than T2. So we reduce via (HCast) and (CastRef2) to:

a0 �→ (42, 7, a0) : Int× Int× RefT2

Even though we allow casted values on the heap, we require the normalization
of all such casts before returning to the execution of the program. We distinguish
between normal heaps of values, μ, and evolving heaps, ν, that may contain both
values and casted values. Normal heaps are a subset of the evolving heaps.

Encoding permissive references. The monotonic discipline and its run-time
invariant-enforcement seems to restrict how developers can formulate their pro-
grams. It is natural to ask whether monotonic references are compatible with
the flexibility that is expected in dynamic languages. In this section we show
that the monotonic discipline admits permissive references through a syntactic
discipline that can be conveniently provided to programmers.

Consider the following program that uses an allocated reference cell at two
incompatible types, Int and Bool.

let x = ref (4 as �) in
let y = (x as Ref Int) in
let z = (x as Ref Bool) in
!y;
z := true;
!z
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Under the standard reference semantics, this program runs without incident,
but under monotonic references it fails in the cast to Ref Bool. We can regain this
flexibility under monotonic references via a disciplined use of � typed reference
cells. Consider the following rewrite of this program:

let x = ref (4 as �) in
let y = x in // treat y like Ref Int

let z = x in // treat z like RefBool

(!y) as Int;
(z := (true) as �) as Bool;
(!z) as Bool

In this encoding, all references have type Ref�, and typing is enforced only
at dereferences and updates, using ascriptions. This program runs successfully
under the monotonic semantics, but it would be tedious and error prone to insert
these ascriptions by hand.

Luckily there is no need: we codify this permissive reference discipline by
introducing a surface language that makes this convenient. We extend the ex-
pressions with permissive references r̃ef e, and the types with a corresponding
type R̃efT . Consistency is extended so that permissive references have the same
consistency properties as monotonic references, but permissive references are not
consistent with monotonic references.

Finally we introduce a type-directed transformation Γ � e : T � e that
translates permissive references to monotonic references. The interesting cases
are presented below.

x : R̃efT ∈ Γ

Γ � x : R̃efT � x

Γ � e : T � e′

Γ � r̃ef e : R̃efT � ref (e′ as �)

Γ � e : R̃efT � e′

Γ �!e : T � (!e′) as T

Γ � e1 : R̃efT1 � e′1 Γ � e2 : T2 � e′2
T1 ∼ T2

Γ � e1 := e2 : T1 � (e′1 := (e′2 as �)) as T1

Note that the static semantics for permissive references enforces type consis-
tency at assignments, even though the assigned value is ultimately cast to �.
Furthermore, reference values translate to themselves, so object identity is pre-
served. However cast overhead is introduced at each dereference and update, so
permissive references pay their own way with respect to performance.

If we revisit the initial example in this section and replace ref with r̃ef and
Ref with R̃ef , then this judgment translates the first program above into the
second.

Proposition 1 (Translation). If Γ � e : T � e′ then |Γ | � e′ : |T |, Where |·|
is the compatible extension of the equation |R̃efT | = Ref �.

This syntactic extension gives programmers access to both permissive refer-
ences and monotonic references as desired.
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(T ⇒ T ) = c

(B ⇒ B) = ι
(� ⇒ �) = ι

(I ⇒ �) = I !
(� ⇒ I) = I?

(T1→T2) ⇒ (T ′
1→T ′

2) = (T ′
1 ⇒ T1)→(T2 ⇒ T ′

2)

(T1 × T2) ⇒ (T ′
1 × T ′

2) = (T1 ⇒ T ′
1)× (T2 ⇒ T ′

2)

Ref T ⇒ Ref T ′ = Ref T ′

Fig. 8. Compile casts to monotonic coercions (without blame)

Permissive references are a useful abstraction for the programmer and provide
strong guarantees. However, such guarantees are provided only as long as per-
missive references do not flow into monotonic references. Consider the program
above (with permissive references) where the following code comes after the let
statements.

letw1 = (x as �) in
letw2 = (w1 as RefBool) in
w2 := true;

The program places us in a same situation as the original program that the
monotonic semantics could not run without error. This example shows an im-
portant syntactic discipline for programmers that want to employ the mono-
tonic paradigm for gradual references: permissive references should not flow into
monotonic references.

4 Type Safety for Monotonic References

We present the high-points of the type safety proof here. The full proof is mech-
anized in Isabelle 2013 and available on arxiv (Siek and Vitousek, 2013). The
semantics in the mechanized version differs from the semantics presented here in
that it uses an abstract machine instead of a reduction semantics, as we found the
mechanized proof easier to carry out on an abstract machine while the reduction
semantics is more approachable.

We begin by lifting the precision relation to heap typings.

Definition 1 (Precision relation on heap typings). Σ′ 
 Σ iff dom(Σ′) =
dom(Σ) and Σ(a) = T implies Σ′(a) = T ′ where T ′ 
 T .

Our first lemma below is important: expression typing is preserved when moving
to a more precise heap typing.

Lemma 1 (Strengthening wrt. the heap typing). If Γ ;Σ � e : T and
Σ′ 
 Σ, then Γ ;Σ′ � e : T .
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Proof (Proof sketch). The interesting case is for addresses. We have

Σ(a) 
 T

Γ ;Σ � a : T

From Σ′ 
 Σ and transitivity of 
, we have Σ′(a) 
 T . Therefore Γ ;Σ′ � a : T .

The definition of well-typed heaps is standard.

Definition 2 (Well-typed heaps). A heap ν is well-typed with respect to heap
typing Σ, written Σ � ν, iff ∀a T. Σ(a) = T implies ν(a) = cv : T and ∅;Σ �
cv : T for some cv.

From the strengthening lemma, we have the following corollary.

Corollary 1 (Monotonic heap update). If Σ � ν and Σ(a) = T and T ′ 
 T
and ∅;Σ � cv : T ′, then Σ(a �→ T ′) � ν(a �→ cv : T ′).

Proof (sketch). Let Σ′ = Σ(a �→ T ′). From T ′ 
 T we have Σ′ 
 Σ, so by
Lemma 1 we have ∅;Σ′ � cv : T ′ and Σ′ � ν. Thus, Σ(a �→ T ′) � ν(a �→ cv : T ′).

Lemma 2 (Progress and Preservation). Suppose ∅;Σ � e : T and Σ � ν.
Exactly one of the following holds:

1. (a) e is a value, or
(b) e = error, or
(c) e, ν −→ e′, ν′ for some e′ and ν′.

2. for all e′, ν′, if e, ν −→ e′, ν′ then ∅;Σ′ � e′ : T and Σ′ � ν′ and Σ′ 
 Σ for
some Σ′.

Theorem 1 (Type Safety). Suppose ∅;Σ � e : T and Σ � ν. Exactly one of
the following holds:

1. e, ν −→∗ v, ν′ and ∅;Σ′ � v : T for some Σ′, or
2. e, ν −→∗ error, ν′, or
3. e diverges.

Proof. If e diverges we immediately conclude the proof. Otherwise, suppose e
does not diverge. Then e, ν −→∗ e′, ν′ and e′ cannot reduce. We proceed by
induction on the length e, ν −→∗ e′, ν′, and use Lemma 2 to conclude.

5 Monotonic References with Blame

We turn to the challenge of designing blame tracking for monotonic references,
presenting several examples that motivate and provide intuitions for the design.
The later part of this section presents the dynamic semantics of monotonic ref-
erences with blame tracking.

Consider the following example in which we allocate a reference of dynamic
type and then, separately, cast from Ref� to Ref Int and to Ref Bool.
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B <: B T <: � Ref T <: RefT

T ′
1 <: T1 T2 <: T ′

2

T1 → T2 <: T ′
1 → T ′

2

T1 <: T ′
1 T2 <: T ′

2

T1 × T2 <: T ′
1 × T ′

2

Fig. 9. Subtyping relation

let r0 = ref (42 as�1 �) in
let r1 = r0 as�2 Ref Intin

let r2 = r0 as�3 Ref Boolin

!r2

With monotonic references, the cast at �3 triggers an error, because Int and
Bool are inconsistent. But what blame labels should the error message include?
Is it only the fault of �3? Not really; because �3 would not cause an error if
it were not for the cast at �2. The casts at �2 and �3 disagree with each other
regarding the type of the heap cell, so we blame both. The result of this program
is blame{�2, �3}.

Next consider an example in which we allocate a reference at type Ref Int,
cast it to Ref �, and then attempt to write a Boolean.

let r0 = ref42 in
let r1 = r0 as�1 Ref � in

r1 :=�3 (true as�2 �)

The update on the third line triggers an error, and we have three possible lo-
cations to blame: �1, �2, and �3. The cast at �2 is from Bool to �, which is
harmless. There is no cast at �3, we are just writing a value of type � to a ref-
erence of type Ref �. The real culprit here is �1, which casts from Ref Int to
Ref�, thereby opening up the potential for the later cast error. Näıvely, this
looks like an upcast, but a proper treatment of subtyping for references makes
references invariant. So we have RefInt �<: Ref� and the result of this program
is blame{�1}. Figure 9 presents the subtyping relation.

We consider a pair of examples below that differ only on the fourth line. We
allocate a reference to a pair at type Ref (�×�) then cast it to Ref (Int×�) and
to Ref (�× Int). In the first example, we update through the original reference,
writing a Boolean and integer, whereas in the second example we write an integer
and a Boolean. Here is the first example:

let r0 = ref (1 as�1 �, 2 as�2 �)in
let r1 = r0 as�3 Ref (Int× �)in
let r2 = r0 as�4 Ref (�× Int)in
r0 := (true as�5 �, 2 as�6 �);
fst !r0

and here is the second example, just showing the fourth line:
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· · ·
r0 := (1 as�7 �, true as�8 �);
· · ·

The first example should produce blame{�3} while the second example should
produce blame{�4}, but the challenge is how can we associate multiple blame
labels with the same heap cell?

We take inspiration from Siek and Wadler (2010) and use labeled types for our
run-time type information. With a labeled type, each type constructor within
the type can be labeled with a type. Figure 10 gives the syntax of labeled types
and operations on them, which we shall explain later in this section. In the above
examples, the run-time type information for the heap cell evolves as follows:

(� ×∅ �) ⇒ (Int�3 ×∅ �) ⇒ (Int�3 ×∅ Int�4)

In the first example, when we write true into the first element of the pair, the
cast to Int fails and blames �3, as desired. In the second example, when we write
true into the second element, the cast to Int fails and blames �4, as desired.

Our next example brings up a somewhat ambiguous situation. We allocate a
reference at type Ref�, cast it to Ref Int twice, then write a Boolean.

let r0 = ref (42 as�1 �)in
let r1 = r0 as�2 RefIntin

let r2 = r0 as�3 RefIntin

r0 := (true as�4 �)

Should we blame �2 or �3? In some sense, they are both just as guilty and the
ideal would be to blame them both. On the other hand, maintaining potentially
large sets of blame labels would induce some space overhead. Our design instead
blames the first cast with respect to execution order, in this case �2.

For our final example, we adapt the above example to have a function in the
heap cell so that we can consider the behavior to the left of the arrow.

let r0 = ref (λx: � . true)in
let r1 = r0 as�1 Ref (Int → Bool)in
let r2 = r0 as�2 Ref (Int → Bool)in
r0 := λx:Int. zero?(x);
!r0 (true as�3 �)

The run-time type information for the heap cell evolves in the following way:

(� →∅ Bool∅) ⇒ (Int�1 →∅ Bool∅) ⇒ (Int�1 →∅ Bool∅)

The function application on the last line of the example triggers a cast error,
with the blame going to �1, again because we wish to blame the first cast with
respect to execution order. However, to obtain this semantics some care must be
taken. On the second cast, we merge the labeled type for the second cast with
the current run-time type information:

(Int�1 →∅ Bool∅) � (Int�2 →∅ Bool∅)
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If we were to use the composition function from Siek and Wadler (2010), the re-
sult would be Int�2 →∅ Bool∅ because that composition function is contravariant
for function parameters. Here we instead want to be covariant on function pa-
rameters, so the result is Int�1 →∅ Bool∅. We define a new function for merging
labeled types, �, in Figure 10.

5.1 Semantics of Monotonic References with Blame

Armed with the intuitions from the above examples, we discuss the semantics of
monotonic references with blame, defined in Figures 12 and 13. The semantics
is largely similar to the semantics without blame except that the run-time type
information is represented as labeled types and we replace the functions, such as
meet (�) that operate on types, with functions such as merge (�) that operate
on labeled types.

Proposition 2 (Meet is the erasure of merge)
If |P1| ∼ |P2|, then |P1 � P2| = |P1| � |P2|.
If |P1| �∼ |P2|, then P1 � P2 = ⊥L for some L.

As discussed with the example above, the definition of P1 � P2 takes into
account that P1 is temporally prior to P2 and should therefore take precedence
with respect to blame responsibility. We use the auxiliary function p � q to
choose between two optional labels, returning the first if it is present and the
second otherwise.

When we cast a reference via rule (CastR1B), we need to update the heap
cell from labeled type P1 to P3. We accomplish this with a new operator P1 ⇒ P3

that produces a coercion. The most interesting line of its definition is for reference
types. There we use a different operator, P ⇔ Q, that produces a labeled type
and captures the bidirectional read/write nature of mutable references.

The definitions of �, ⇒, and ⇔ need to percolate errors, which we write as
⊥L where L is a set of blame labels. We use “smart” constructors →̂, ×̂, and
ˆRef that return ⊥L if either argument is ⊥L (with precedent to the left if both

arguments are errors), but otherwise act like the underlying constructor.
In the rule for allocation, we initialize the RTTI to T ∅. (Figure 11 defines

converting a type to a labeled type.) In the rule for a dynamic dereference,
(DynDrfMB), we cast from the reference’s run-time labeled type to T by pro-
moting T to the labeled type T ∅ and then applying the ⇒ function to cast be-
tween labeled types, so we have μ(a)rtti ⇒ T ∅. Suppose that μ(a)rtti is Ref Int

�

and T is Ref �. Then the coercion we apply during the dereference is Int�!;
so our injection coercions contain labeled types. The rule for dynamic update,
(DynUpdMB), is dual: we perform the cast T ∅ ⇒ μ(a)rtti.

Because our injection and projection coercions contain labeled types, the
(Collapse) rule becomes

v〈P1!〉〈P2?〉 −→c v〈P1 ⇒ P2〉 if |P1| ∼ |P2|
We make similar changes to the (Conflict) rule.
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Optional labels p, q ::= ∅ | {�}
Label sets L ::= ∅ | {�} | {�1, �2}
Labeled types P,Q ::= Bp | P→pP | P×pP | Ref pP | �

Erase labels |P | = T

|Bp| = B |P →p Q| = |P | → |Q| |P ×p Q| = |P | × |Q| |Ref pP | = Ref |P | | � | = �

Top label lab(P ) = L

lab(Bp) = p lab(P →p Q) = p lab(P ×p Q) = p lab(Ref pP ) = p lab(�) = ∅

Merge optional labels p � p = p

{�} � q = {�} ∅ � q = q

Merge labeled types P � P = P or ⊥L

Bp � Bq = Bp�q

P � � = P � � Q = Q

(P →p P ′) � (Q →q Q′) = (P � Q)→̂p�q(P ′ � Q′)

(P ×p P ′) � (Q×q Q′) = (P � Q)×̂p�q
(P ′ � Q′)

Ref
pP � Ref

qQ = ˆRef
p�q

(P � Q)

P � Q = ⊥lab(P )∪lab(Q) otherwise

Bidirectional cast between labeled types P ⇔ P = P or ⊥L

Bp ⇔ Bq = B∅

P ⇔ � = P � ⇔ Q = Q

(P →p P ′) ⇔ (Q →q Q′) = (P ⇔ Q)→̂∅(P ′ ⇔ Q′)

(P ×p P ′) ⇔ (Q×q Q′) = (P ⇔ Q)×̂∅
(P ′ ⇔ Q′)

Ref
pP ⇔ Ref

qQ = ˆRef
∅
(P ⇔ Q)

P ⇔ Q = ⊥lab(P )∪lab(Q) otherwise

Cast between labeled types P ⇒ P = c or ⊥L

Bp ⇒ Bq = ι � ⇒ � = ι

P ⇒ � = P ! � ⇒ Q = Q?

(P →p P ′) ⇒ (Q →q Q′) = (Q ⇒ P )→̂(P ′ ⇒ Q′)

(P ×p P ′) ⇒ (Q×q Q′) = (P ⇒ Q)×̂(P ′ ⇒ Q′)

Ref
pP ⇒ Ref

qQ = ˆRef (P ⇔ Q)

P ⇒ Q = ⊥lab(P )∪lab(Q) otherwise

Fig. 10. Labeled types and their operations
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(T ⇒� T ) = c

(B ⇒� B) = ι

(� ⇒� �) = ι
(T ⇒� �) = T ∅!
(� ⇒� T ) = T �?

(T1→T2) ⇒� (T ′
1→T ′

2) = (T ′
1 ⇒� T1)→(T2 ⇒� T ′

2)

(T1 × T2) ⇒� (T ′
1 × T ′

2) = (T1 ⇒� T ′
1)× (T2 ⇒� T ′

2)

RefT1 ⇒�
RefT2 = Ref (T �

1 ⇔ T �
2 )

Add labels to a type T � = P

B� = B� (T1 → T2)
� = T �

1 →� T �
2 (T1 × T2)

� = T �
1 ×� T �

2

(RefT )� = Ref
�T � �� = �

Fig. 11. Compile casts to monotonic coercions (with blame)

Expressions e ::= · · · | blameL
Coercions c ::= ι | P ? | P ! | c→c | c×c | c ; c | RefP
Values v ::= k | λx. e | (v, v) | v〈P !〉 | a
Heap μ ::= ∅ | μ(a �→ v : P )
Evolving Heap ν ::= ∅ | ν(a �→ cv : P )

Fig. 12. Syntax for monotonic references with blame

Figure 11 defines the compilation of casts to monotonic coercions. Compared
to the compilation without blame (Figure 8), there are three differences. The
first two concern injection and projection coercions: instead of only having a
blame label on projections we have labeled types inside both injections and
projections, as noted above. In the compilation of a cast labeled �, we generate
a labeled type for the injection from T by adding the empty label to T , and for
the projection to T by adding � to T . The third difference is in the formation
of the reference coercion. Instead of simply taking the target type, we use the
bidirectional operator ⇔. Recall the second example of this section in which we
blamed the cast from Ref Int to Ref�. By using ⇔, the resulting coercion is
RefInt�1 instead of Ref �.

6 The Blame-Subtyping Theorem

The blame-subtyping theorem pin-points the source of cast errors in gradually-
typed programs. The blame-subtyping theorem states that if a program results in
a cast error, blameL, then the blame labels in L identify the location of implicit
casts that did not respect subtyping. That is, the blame labels that occur in a
safe implicit cast, T1 ⇒ T2 where T1 <: T2, can never be blamed.

We prove the blame-subtyping theorem via a preservation-style proof in which
we preserve the e safe � predicate (Wadler and Findler, 2009). This proof is
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Coercion typing c : T ⇒ T

P ? : � ⇒ |P | P ! : |P | ⇒ �
· · ·

Pure cast reduction rules e −→c e

· · · v〈P1!〉〈P2?〉 −→c v〈P1 ⇒ P2〉 if |P1| ∼ |P2| (Collapse)

v〈P1!〉〈P2?〉 −→c blameL if P1 ⇒ P2 = ⊥L (Conflict)

Cast reduction rules e, ν −→cr e, ν

e −→c e′

e, ν −→cr e′, ν
(PCastB)

ν(a) = cv : P1 P3 = P1 � P2

|P3| 
= |P1| cv′ = cv〈P1⇒P3〉
a〈RefP2〉, ν −→cr a, ν(a �→ cv′ : P3)

(CastR1B)

ν(a) = cv : P1 P1 = P1 � P2

a〈RefP2〉, ν −→cr a, ν
(CastR2B)

ν(a) = cv : P1 P1 � P2 = ⊥L

a〈RefP2〉, ν −→cr blameL, ν
(CastR3B)

Program reduction rules e, μ −→e e, μ

refT v, μ −→e a, μ(a �→ v : T ∅) if a /∈ dom(μ)

!a, μ −→e μ(a)val, μ (DerefMB)

!a@T, μ −→e μ(a)val〈μ(a)rtti ⇒ T ∅〉, μ (DynDrfMB)

a := v, μ −→e a, μ(a �→ v : μ(a)rtti) (UpdMB)

a := v@T, μ −→e a, μ(a �→ cv : μ(a)rtti) (DynUpdMB)

where cv = v〈T ∅ ⇒ μ(a)rtti〉
For X ∈ {cr, e}:

e, ν −→X e′, ν′

F [e], ν −→X F [e′], ν′ F [blameL], ν −→X blameL, ν

State reduction rules e, ν −→ e, ν

e, μ −→X e′, ν X ∈ {cr, e}
e, μ −→ e′, ν

ν(a) = cv : P cv, ν −→cr blameL, ν′

e, ν −→ blameL, ν′

ν(a) = cv : P cv, ν −→cr cv′, ν′ |ν′(a)rtti| = |P |
e, ν −→ e, ν′(a �→ cv′ : P )

ν(a) = cv : P cv, ν −→cr cv′, ν′ |ν′(a)rtti| 
= |P |
e, ν −→ e, ν′

Fig. 13. Monotonic references with blame
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conducted on the coercion calculus, so to relate the result back to the gradually-
typed λ-calculus, we need a theorem concerning the relationship between sub-
typing and coercion blame safety, Theorem 2. Recall that subtyping is defined
in Figure 9 and compilation to coercions is defined in Figure 11.

Theorem 2 (Blame-Subtyping Theorem for coercion calculus). For all
T1, T2, and �, it holds that T1 <: T2 iff (T1 ⇒� T2) safe �.

Lemma 3 (Preservation of blame safety)
For all e, e′, ν, ν′, and �, if e, ν safe � and e, ν −→ e′, ν′ then e′, ν′ safe �.

We now move away from the coercion calculus and prove these important
results on the gradually typed λ calculus with references. This latter language is
indeed the one that programmers are expected to use. The following definitions
will help to recast the results into the setting of the gradually typed language.

Definition 3 (Casts for a label in an expression). Let e be an expression
and � a label, we say that e contains the cast T1 ⇒ T2 for � whenever, in the
derivation of Γ � e � e′ : T , there is the creation of a coercion via T1 ⇒� T2.

Definition 4 (Blamesafety for gradually-typed expressions).Agradually-
typed expression e is safe for � if all the casts contained in e labeled � respect
subtyping.

We now have all the ingredients to state and prove one of the main contribu-
tions of the paper, i.e. the Blame-Subtyping Theorem for the gradually-typed λ
calculus with references.

Lemma 4 (Translation preserves blame safety). If e safe � and Γ � e �
e′ : T , then e′ safe �.

Proof. The proof is a straightforward induction on Γ � e � e′ : T .

Theorem 3 (Blame-Subtyping Theorem). For all e, e′, T1, T2, �, if ∅ �
e � e′ : T , e safe �, and e′, ∅ −→ blameL, ν, then � �∈ L.

Proof. From the assumptions we have e′ safe � by Lemma 4. Then we conclude
by applying the Blame-Subtyping Theorem for the coercion calculus.

7 Implementation Concerns w.r.t. Strong Updates

The monotonic semantics for references performs in-place updates to the heap
with values of different type. In languages where values have uniform size, like
many functional and object-oriented languages, this does not pose a problem.
However, for languages where values may have different sizes, in-place updates
pose a problem. This issue can be addressed using an approach inspired by
garbage collection techniques. When the semantics is to update a cell with a
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larger value than the current one, the implementation allocates a new piece
of memory and places a forwarding pointer in the old location. When read-
ing and writing through dynamic references, the implementation must check for
and follow the forwarding pointers. However, when reading and writing through
fully-static references, the implementation does not need to consider forward-
ing pointers because fully-static heap cells never move. Then during a garbage
collection, the implementation can collapse sequences of forwarding pointers to
reduce overhead in subsequent execution.

8 Related Work

Here we mention related work that is not discussed in the introduction or else-
where in the paper.

The casts and coercions studied in this paper bear many similarities with
contracts (Findler and Felleisen, 2002). Racket (Flatt and PLT, 2014) provides
contracts for mutable values in the form of impersonators (Strickland et al.,
2012), which, for our purposes, can be viewed as implementing the standard
semantics of Herman et al. (2007), as we saw in Section 2.

Fähndrich and Leino (2003) introduce a technique similar to monotonic refer-
ences with their monotonic typestate. In this design, objects may flow from less
restrictive to more restrictive typestates, but not vice versa. Unlike monotonic
references, which require runtime checks due to the existence of dynamically-
typed regions of code, their system enforces monotonicity statically.

Gradual typing was added to C� with the addition of the dynamic type.
Bierman et al. (2010) define a formal model of C�, named FC�

4, and present an
operational semantics. The semantics is similar to that of Swamy et al. (2014) in
that they use an RTTI-based approach and subtype checks to implement casts.

9 Conclusion

We have presented a new design for gradually-typed mutable references, called
monotonic references, the first to incur zero-overhead for reference accesses in
statically typed code while maintaining the full expressiveness of a gradual type
system. We defined a dynamic semantics for monotonic references and presented
a mechanized proof of type safety. Further, we defined blame tracking based
on using labeled types in the run-time type information and proved the blame-
subtyping theorem.
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Abstract. We prove that all valid Herbrand equalities can be inter-
procedurally inferred for programs where all assignments are taken into
account whose right-hand sides depend on at most one variable. The
analysis is based on procedure summaries representing the weakest pre-
conditions for finitely many generic post-conditions with template vari-
ables. In order to arrive at effective representations for all occurring
weakest pre-conditions, we show for almost all values possibly computed
at run-time, that they can be uniquely factorized into tree patterns and
a terminating ground term. Moreover, we introduce an approximate no-
tion of subsumption which is effectively decidable and ensures that finite
conjunctions of equalities may not grow infinitely. Based on these tech-
nical results, we realize an effective fixpoint iteration to infer all inter-
procedurally valid Herbrand equalities for these programs.

How can we infer that an equality such as x .= y holds at some program point,
if the operators by which the program variables x and y are computed, do not
satisfy obvious algebraic laws? This is the case, e.g., when either very high-
level operations such as sqrt, or very low-level operations such as bit-shift are
involved or, generally, for floating-point calculations. Still, the equality x .= y
can be inferred, if x and y are computed by means of syntactically identical
terms of operator applications. The equality then is called Herbrand equality.
The problem of inferring valid Herbrand equalities dates back to [1] where it
was introduced as the famous value numbering problem. Since quite a while,
algorithms are known which, in absence of procedures, infer all valid Herbrand
equalities [11,21]. These algorithms can even be tuned to run in polynomial
time, if only invariants of polynomial size are of interest [7]. Surprisingly little is
known about Herbrand equalities if recursive procedure calls are allowed. In [17]
it has been observed that the intra-procedural techniques can be extended to
programs with local variables and functions – but without global variables. The
ideas there are strong enough to generally infer all Herbrand constants in pro-
grams with procedures and both local and global variables, i.e., invariants of the
form x .= t where t is ground. Another tractable case of invariants is obtained if
only assignments are taken into account whose right-hand sides have at most one
occurrence of a variable [18]. Thus, assignment x = f(y, a); is considered while
assignments such as x = f(y, y); or x = f(y, z); are approximated with x = ?;,
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i.e., by an assignment of an unknown value to x. The idea is to encode ground
terms as numbers. Then Herbrand equalities can be represented as polynomial
equalities with a fixed number of variables and of bounded degree. Accordingly,
techniques from linear algebra are sufficient to infer all valid Herbrand equalities
for such programs. As a special case, Petter’s class of programs from [18] sub-
sumes those programs where only unary operators are involved. Such programs
have been considered by [8]. Interestingly, the latter paper arrives at decidability
by a completely different line of argument, namely, by exploiting properties of
the free monoid generated from the unary operators. Another avenue to decid-
ability is to restrict the control structure of programs to be analyzed. In [5], the
restricted class of Sloopy Programs is introduced where the format of loop as
well as recursion is drastically restricted. For this class an algorithm is not only
provided to decide arbitrary equalities between variables but also disequalities.

On the other hand, when only affine numerical expressions as well as affine
program invariants are of concern, the set of valid invariants at a program point
form a vector space which can be effectively represented. This observation is
exploited in [14] to apply methods from linear algebra to infer all valid affine
program invariants. These methods later have been adapted to the case where
values of variables are not from a field, but where integers will overflow at some
power of 2, i.e., are taken from a modular ring. Note that in the latter struc-
ture, some number different from 0 may be a zero divisor and thus does not
have a multiplicative inverse [15]. For some applications, an analysis of general
equalities is not necessary. In applications such as coalescing of registers [16]
or detection of local variables in low-level code [4], it suffices to infer equali-
ties involving two variables only. In the affine case, algorithms for inferring all
two-variable equalities can be constructed which have better complexities as the
corresponding algorithms for general equalities [4].

The question whether or not all inter-procedurally valid Herbrand equalities
can be inferred, is still open. Here, we consider the case of Herbrand equalities
containing two variables only. These are equalities such as x .= f(g(y), y, a), i.e.,
right-hand sides of equalities may contain only a single variable, but this multiple
times. Accordingly, in programs only assignments are taken into account whose
right-hand sides contain (arbitrarily many) occurrences of at most one variable.
Our main result is that under this provision, all inter-procedurally valid two-
variable Herbrand equalities can be inferred.

Our novel analysis is based on calculating weakest pre-conditions for all occur-
ring post-conditions. Since there may be infinitely many potential post-conditions
for a called procedure, we rely on generic post-conditions to obtain finite repre-
sentations of procedure summaries. In a generic post-condition second-order vari-
ables are used as place-holders for yet unknown relationships between
program variables. In the generic post-condition

A(x) .= B(y)

the second-order variables A and B take as values terms with (possibly multiple
occurrences of) holes (which we call templates). To realize our algorithm for
inferring all inter-procedurally valid two-variable equalities, we thus require
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– a method to finitely represent all occurring conjunctions of equalities,
– a method for proving that one conjunction subsumes another conjunction,

i.e., a method to detect when the greatest fixpoint computation has
terminated;

– a guarantee that the fixpoint ever will be reached.

Note here that the equalities occurring during the weakest pre-condition compu-
tation of a generic post-condition may contain occurrences of second-order vari-
ables. Thus, subsumption between conjunctions of equalities is subtly related to
second-order unification [6]. Second-order unification asks whether a conjunction
of equalities possibly containing second-order variables is satisfiable. Since long,
it is known that generally, second-order unification is undecidable. Undecidabil-
ity of second-order unification even holds if only a single unary second-order
variable is involved [12]. In contrast, the problem of context unification, i.e., the
variant of second-order unification where second-order variables range over terms
with single occurrences of holes only, has recently been proven to be decidable
[10]. It is worth mentioning that neither of the two cases directly applies to our
application, since we consider unary second-order variables (as context unifica-
tion) but let variables range over terms with one or multiple occurrences of holes
(differently from context unification). To the best of our knowledge, decidability
of satisfiability is still open for our case.

In this paper, we will not solve the satisfiability problem for the given unifica-
tion problem. Instead, we introduce two novel ideas to circumvent this problem
and still infer all inter-procedurally valid two-variable Herbrand equalities. First,
we introduce a notion of approximate subsumption. This means that our algo-
rithm does not allow to prove implications between all conjunctions of equalities
— but at least sufficiently many so that accumulation of infinite conjunctions
is ruled out. Second, we note that subsumption is not required for arbitrary
valuations of program variables. Instead it suffices to consider values which may
possibly be constructed by the program at run-time. For programs where every
right-hand side of assignments contain occurrences of single variables only, we
observe that the ground terms possibly occurring at run-time, have a specific
structure, which allows for a unique factorization of these terms into irreducible
templates — at least, if these ground terms are sufficiently large. Our factoriza-
tion result applied to these kind of values, enables us to make use of the monoidal
methods of [8]. This approach, which works for sufficiently large terms, then is
complemented with a dedicated treatment of finitely many exceptional cases. By
that, we ultimately succeed to construct an effective approximative subsump-
tion algorithm which allows us to restrict the number of equalities in occurring
conjunctions and to determine all valid two-variable Herbrand equalities.

In order to arrive at our key result, namely an algorithm to infer all valid inter-
procedural two-variable Herbrand equalities, we thus build on the following two
novel technical constructions:
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– a method to uniquely factorize the kind of values possibly occuring at run-
time (except finitely many) of a given program;

– a notion of approximative subsumption which is decidable and still guaran-
tees that every occurring conjunction of equalities is effectively equivalent to
a finite conjunction.

Subsequently, we sketch how not only all two-variable equalities, but all inter-
procedurally valid Herbrand equalities can be inferred, if only all right-hand
sides in assignments each contain occurrences of at most one variable.

Our paper is organized as follows. Section 1 briefly introduces our program-
ming model. Section 2 presents our basic WP based approach of inferring all
valid program invariants. In Section 3, we provide general background on the
cancellation and factorization properties of terms and prove a first compactness
result for equalities with template variables but no occurrences of program vari-
ables. In Section 4 we then provide an algorithm for inferring all two-variable
equalities — at least, for programs which are initialization-restricted (see Section
4 for a precise definition of this restriction). Technically, this restriction implies
that all occurring terms can be uniquely factorized into irreducible terms. In or-
der to arrive at an algorithm for programs which are not initialization-restricted,
we complement this approach in Section 5 with a dedicated treatment of values
where a unique factorization is not possible. Finally, Section 6 indicates how our
methods can be extended to general Herbrand equalities.

1 Programs

For the purpose of this paper, we consider imperative programs which consist of
a finite set P of procedures such as:

0: Herbrand x, y;
1: main() { 6: p() {
2: x = a; 7: if (∗) {
3: y = a; 8: x = f(x, x);
4: p(); 9: p();
5: } 10: y = f(y, y);

11: }
12: }

Instead of operating on the syntax of programs, we prefer to represent each
procedure by a (non-deterministic) control flow graph. Figure 1 shows, e.g., the
control flow graphs for the given example program. Formally, the control flow
graph for a procedure p consists of:

– A finite set Np of program points where sp, rp ∈ Np represent the start and
return point of the procedure p;

– A finite set Ep of edges (u, s, v) where u, v ∈ Np are program points and s
denotes a basic statement.
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x = f(x,x)
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y = f(y,y)

Fig. 1. The corresponding CFGs for the example program

For simplicity, we proceed in the style of Sharir/Pnueli in [20] and consider pa-
rameterless procedures which operate on global variables only. In the following,
X denotes the finite set of program variables. As values, we consider uninter-
preted operator expressions only. Thus, values are constructed from atomic val-
ues by means of (uninterpreted) operator applications. Let Ω denote a signature
containing a non-empty set of atomic values Ω0 and sets Ωk,k > 0, of construc-
tors of rank k. Then TΩ denotes the set of all possible (ground) terms over Ω,
and TΩ(X) the set of all possible terms over Ω and (possibly) occurrences of pro-
gram variables from X. In general, we will omit brackets around the argument
of unary symbols. Thus, we may, e.g., write hx instead of h(x).

As basic statements, we only consider assignments and procedure calls. An
assignment x = ? non-deterministically assigns any value to the program variable
x, whereas an assignment x = t assigns the value constructed according to
the right-hand side term t ∈ TΩ(X). A procedure call is of the form p() for a
procedure name p.

In this paper, we only consider assignments whose right-hand sides contain
occurrences of at most one variable. The assignments occurring in the example
program from Figure 1 have this property. Note that this program does not fall
into Petter’s class, since the right-hand sides of assignments contain more than
one occurrence of a variable. In general programs with arbitrary assignments,
the assignments with right-hand sides not conforming to the given restriction
may, e.g., be abstracted by the non-deterministic assignment of any value.

2 Computing Weakest Pre-conditions

In order to prove a given assertion or infer all valid invariants, we would like
to calculate weakest pre-conditions, to determine for every program point the
assumptions to be met for the queried assertion to hold at the given program
point. Since the program model makes use of non-deterministic branching, we
may assume w.l.o.g. that every program point is reachable. In particular, this
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implies that no procedure is definitely non-terminating, i.e., that for every pro-
cedure p, there is at least one execution path from the start point of p reaching
the end point of p.

Example 1. Consider the program from Figure 1. At program exit, the invariant
x .= y holds. In a proof of this fact by means of a WP computation, weakest
pre-conditions must be provided for procedure p and all assertions x .= tk, k ≥ 0,
where t0 = y and for k > 0, tk = f(tk−1, tk−1). This set of post-conditions is not
only infinite, but also makes use of an ever increasing number of variable occur-
rences. Thus, an immediate encoding, e.g., into bounded degree polynomials as
in [18] is not obvious. ��
In order to summarize the effect of a procedure for multiple but similar post-
conditions, we tabulate the weakest pre-conditions for generic post-conditions
only. Generic post-conditions are assertions which contain template variables
which later may be instantiated differently in different contexts for arriving post-
conditions. This idea has been applied, e.g., for affine equalities [14,16,4], for
polynomial equalities [13,18], or for Herbrand equalities with unary operators
[8]. The generic post-conditions which are of interest here, are of the forms

Ax .= C or Ax .= By

where x, y are program variables, the ground template variable C is meant to
receive a constant value, and the template variables A, B take templates as val-
ues, i.e., terms over the ranked alphabet Ω and having at least one occurrence of
the (fresh) place holder variable •. Computing weakest pre-conditions operates
on assertions where an assertion is a (possibly infinite) conjunction of equalities.
The equalities occurring during weakest pre-condition calculations are of the
forms:

As
.= C or As

.= Bt

where s, t are terms possibly containing a program variable, i.e., s, t ∈ TΩ(X).
Consider a mapping σ which assigns appropriate values to the program vari-

ables from X as well as to the (non-ground or ground) template variables A, B, C.
This means that σ assigns ground terms to the variables in X∪{C} and templates
to A, B. Such a mapping is called variable assignment. The variable assignment
σ satisfies the equality s

.= t (σ |= (s .= t) for short) iff σ∗(s) = σ∗(t) where
σ∗ is the natural tree homomorphism corresponding to σ, which is the identity
on all operators in Ω. The homomorphism σ∗ maps, e.g., the application At of
the template variable A to the term t into σ(A)[σ∗(t)/•], i.e., the substitution
of the term σ∗(t) into the occurrences of the dedicated variable • in the tem-
plate σ(A). Substitution into the dedicated variable • is an associative binary
operation where the neutral element is the template consisting of • alone. In the
following, we denote this operation by juxtaposition.

Consider, e.g., an assignment σ with σ(A) = h(•, •), and σ(B) = •, and
σ(x) = a. Then

σ∗(Ax) = h(•, •) a = h(a, a) = • h(a, a) = σ∗(Bh(x, a))
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holds. Therefore, σ satisfies the equality Ax .= Bh(x, a). In the following, we
will no longer distinguish between σ and σ∗.

The variable assignment σ satisfies the conjunction φ of equalities (σ |= φ for
short), iff σ |= e for all equalities e ∈ φ.

In our application, it will be convenient not to consider arbitrary variable
assignments, but only those which map program variables to reasonable values
as shown in the following. For a subset T ⊆ TΩ of ground terms, we call a
variable assignment σ a T -assignment, if σ maps program variables x to values
σ(x) ∈ T only.

The conjunction φ then is called T -satisfiable if there is some T -assignment σ
with σ |= φ. Otherwise, it is T -unsatisfiable. Conjunctions φ, φ′ are T -equivalent
if for every T -assignment σ, σ |= φ iff σ |= φ′. Obviously, an empty conjunction
is satisfied by every variable assignment and therefore equal to 	 (true), while
all T -unsatisfiable conjunctions are T -equivalent. As usual, these are denoted by
⊥ (false). Finally, a conjunction φ′ is T -subsumed by a conjunction φ, if φ is
T -equivalent to φ ∧ φ′.

If the set T by which we have relativized the notions of satisfiability, equiv-
alence and subsumption equals the full set TΩ , we may also drop the prefixing
with T . In particular, we have for any T that satisfiability, equivalence and
subsumption imply T -satisfiability, T -equivalence and T -subsumption, while the
reverse implication may not necessarily hold.

In the following, we recall the ingredients of weakest pre-condition computa-
tion for assignments as well as for procedure calls as provided, e.g. in [9] or [2].
The weakest pre-condition of φ w.r.t. assignments are given by:

�x = t�T φ = φ[t/x]
�x = ?�T φ = ∀ x. φ

Thus, the weakest pre-condition for an assignment x = t is given by substitu-
tion of the term t into all occurrences of the variable x in the post-conditions,
while the weakest pre-condition for a non-deterministic assignment x = ? of
any value is given by universal quantification. For Herbrand equalities, universal
quantification can be computed as follows. Recall that universal quantification
commutes with conjunction. Therefore, it suffices to consider single equalities e.
If x does not occur in e, then ∀ x. e is equivalent to e. If x occurs only on one
side of e, then ∀ x. e = ⊥. Now assume that x occurs on both sides of e. If e is of
the form sx .= tx for templates s, t (no template variables), then either s = t and
hence e as well as ∀ x. e is equivalent to 	, or s = t, in which case ∀ x. e equals
⊥. If e is of the form Asx .= Btx for templates s, t, then ∀ x. e is equivalent to
As

.= Bt.
Every transformation f which is specified for generic post-conditions to con-

junctions of pre-conditions, can be uniquely extended to a transformation f̄ of
arbitrary post-conditions by

f̄(
∧

E) =
∧

e∈E f̄(e)
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where the transformation f̄ for an arbitrary equality e is defined as follows:

f̄(s .= t) =

⎧
⎪⎪⎨

⎪⎪⎩

f(Ax .= By)[s′/A, t′/B] if s = s′x, t = t′y
f(Ax .= C)[s′/A, t/C] if s = s′x, t ground
f(Ax .= C)[s/C, t′/A] if t = t′x, s ground
s

.= t otherwise

Subsequently, the extended function f̄ is denoted by f as well. The procedure
summaries are then characterized by the constraint system S:

�rp�T =⇒ Id for each procedure p

�u�T =⇒ �sp�T ◦ �v�T for each (u, p(), v) ∈ E

�u�T =⇒ �s�T ◦ �v�T for each (u, s, v) ∈ E,
s assignment

where ◦ means the composition of the weakest pre-condition transformers and
Id is the identity transformer. Thus, accumulation of weakest pre-conditions for
a generic post-condition e at procedure exit rp with e and then propagates its
pre-conditions backward to the start point of p by applying the transformations
corresponding to the traversed edges. Here, the subsumption relation =⇒ as
defined for conjunction of equalities, has silently been raised to the function
level. Thus, f =⇒ g if f(e) subsumes g(e) for all generic post-conditions e.

W.r.t. the ordering � given by =⇒ , the WP transformer of procedure p
then is obtained as the value for the variable corresponding to the start point sp

in the greatest solution to the constraint system S.
The WP transformers for all program points are characterized by the greatest

solution of the constraint system R:

[smain]T =⇒ Id
[sp]T =⇒ [u]T for each (u, p(), _) ∈ E

[v]T =⇒ [u]T ◦ �sp�T for each (u, p(), v) ∈ E

[v]T =⇒ [u]T ◦ �s�T for each (u, s, v) ∈ E,
s assignment

The value for [v]T for program point v is meant to transform every assertion
at program point v, into the corresponding weakest pre-condition at the start
point of the program. Note that the constraint system for characterizing these
functions makes use of the weakest pre-condition transformers of procedures as
characterized by the constraint system S.

Assume that we are somehow given the greatest solution of the constraint
system R where [v]T is the corresponding transformation for program point v.
In order to determine all one- or two-variable equalities which are valid when
reaching the program point v, we conceptually proceed as follows:

One-variable Equality. For a program variable x, let ψ denote the universal
closure of [v]T(Ax .= C). If ψ = ⊥, then program variable x does not receive
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a constant value at program point v. Otherwise ψ is equivalent to an equality
As

.= C where s is ground, i.e., x .= s is an invariant at v.

Two-variable Equality. For distinct program variables x and y, let ψ denote
the universal closure of [v]T(Ax .= By). If ψ = ⊥, then no equality between
x and y holds. Otherwise, ψ equals a conjunction of equalities Asi

.= Bti,
i ∈ I, for some index set I where for each i ∈ I, si, ti are both ground. Then
r1x .= r2y is an invariant at v iff r1si

.= r2ti for all i, i.e., any assignment σ
with σ(A) = r1, σ(B) = r2 satisfies the conjunction.

Here, the universal closure of a conjunction φ is given by ∀ x1 . . . ∀ xn.φ, if the
set of program variables equals X = {x1, . . . , xn}.

Example 2. Consider the main procedure of the program in Section 1, as defined
by the control flow graph in Figure 1. The WP transformer [3]T for the endpoint
3 of the main program is given by:

[3]T = �x = a�T ◦ �y = a�T ◦ �4�T

where 4 is the entry point of the procedure p. Assume that

�4�T(Ax .= By) = (Ax .= By) ∧ (Af(x, x) .= Bf(y, y))

holds. For the program variables x, y, we therefore obtain:

[3]T(Ax .= By) = (Ax .= By)[a/y][a/x] ∧ (Af(x, x) .= Bf(y, y))[a/y][a/x]
= (Aa

.= Ba) ∧ (Af(a, a) .= Bf(a, a))

This assertion does not contain occurrences of the program variables x, y. There-
fore, it is preserved by universal quantification over program variables. Since
A = B = • is a solution, x .= y holds whenever program point 3 is reached. ��
In order to turn these definitions into an effective analysis algorithm, several
obstacles must be overcome. So, it is not clear how general subsumption, as
required in our characterization of the WP transformers, can be decided in
presence of template variables. We observe, however, that instead of general
subsumption, it suffices to rely on T -subsumption only — for a well-chosen
subset T ⊆ TΩ. Note that the smaller the set T is, the coarser is the subsumption
relation. In particular for T = ∅, all conjunctions are T -equivalent. Since every
assertion expresses a property of reaching program states, it suffices for our
application to choose T as a superset of all run-time values of program variables.

The following wish list collects properties which enable us to construct an
effective inter-procedural analysis of all two-variable Herbrand equalities:

T -Compactness. Every occurring conjunction φ is T -subsumed by a conjunc-
tion of a finite subset of equalities in φ.

Effectiveness of Subsumption. T -subsumption for finite conjunctions can be
effectively decided.

Solvability of Ground Equalities. The set of solutions of finite systems of
equalities with template variables only, i.e., without occurrences of program
variables can be explicitly computed.
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By the first assumption, a standard fixpoint iteration for the constraint systems
S and R will terminate after finitely many iterations (up to T -equivalence). By
the second assumption, termination can effectively be detected, while the third
assumption guarantees that for every program point and every program variable
(pair of program variables) the set of all valid invariants can be extracted out
of the greatest solution of R. In total, we arrive at an effective algorithm for
inferring all valid two-variable equalities.

The assumption on decidability of T -subsumption can be further relaxed.
Instead, we provide an approximate notion of T -subsumption which is decid-
able. Our approximate T -subsumption implies T -subsumption. Moreover, it is
still strong enough to guarantee that every occurring conjunction of equalities
is approximately T -subsumed by a finite subset of the equalities. Notions for
approximate T -subsumption will be introduced in Sections 4 and 5.

In the upcoming section, we recall basic properties of the set of terms, possibly
containing the variable •. These properties will allow us to deal with conjunctions
of equalities where template variables are applied to ground terms only, i.e., the
case of ground equalities.

3 Factorization of Terms

Let TΩ(•) denote the set of terms constructed from the symbols in Ω, possibly
together with the dedicated variable •. In [3], Engelfriet presents the following
cancellation and factorization properties for terms in TΩ(•):

Bottom Cancellation
Assume that t1 = t′

1 . Then s1t1 = s2t1 and s1t′
1 = s2t′

1 implies s1 = s2.
Top Cancellation

Assume • occurs in s. Then st1 = st2 implies t1 = t2.
Factorization

Assume ti = t′
i for i = 1, 2. Then s1t1 = s2t2 and s1t′

1 = s2t′
2 implies that

s1r1 = s2r2 for some r1, r2 each containing • where at least one of the ri

equals •. In that case (by top cancellation), we furthermore have that both
r2t1 = r1t2 and r2t′

1 = r1t′
2.

Using these cancellation properties, we obtain a complete method for dealing
with equalities without occurrences of program variables.

For one-variable equalities alone, we have the following results concerning
subsumption and compactness:

Theorem 1

1. A single equality As
.= C for some ground term s has exactly one solution

where A = •.
2. Consider the conjunction As1

.= C ∧ As2
.= C for terms s1 = s2 containing

the same variable x. If the conjunction is satisfiable, then the value of x is
uniquely determined.
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Proof. We only prove the second assertion. The conjunction As1
.= C ∧As2

.= C
is equivalent to the conjunction As1

.= C ∧ s1
.= s2. The most general unifier of

s1, s2 maps x to a ground subterm of s1, s2 if the conjunction is satisfiable. ��
As a consequence, we obtain:

Corollary 1. Consider finite conjunctions of equalities of the form As
.= C.

1. Subsumption for these is decidable.
2. Every satisfiable conjunction is equivalent to a conjunction of at most n + 1

equalities where n is the number of program variables.

Since the weakest pre-condition of a generic one-variable equality consists of
equalities of the form As

.= C only, Corollary 1 suffices to infer all inter-
procedurally valid one-variable equalities. In the following, we therefore con-
centrate on the two-variable case where the weakest pre-condition consists of
conjunctions of equalities of the form As

.= Bt. First, we observe:

Theorem 2

1. A single equality As
.= Bt for ground terms s, t has only finitely many solutions

A = r1, B = r2 with templates r1, r2 of which at least one equals •.
2. Consider the conjunction As1

.= Bt1 ∧ As2
.= Bt2 for ground terms s1 = s2

and t1 = t2. Then it has either no solution or there are templates r1, r2
of which at least one equals • such that the conjunction is equivalent to
Ar1

.= Br2. In the latter case, A = r2, B = r1 is the single solution where
at least one of the templates equals •.

3. Consider the (finite) conjunction
∧k

i=1(Asi
.= Bti) for ground terms si, ti.

Then the set of all solutions where either the template for A or for B equals
•, can be effectively computed.

Proof For a proof of the first statement, w.l.o.g. assume that s is at least as large
as t. Then for size reasons, r1 = •. This means that s = r2t must hold. If t is not a
subterm of s, there is no solution at all. Otherwise, i.e., if s contains occurrences
of t, then every solution r2 is obtained from s by replacing a non-empty set of
occurrences of t with •.

Now consider the second statement. If the pair of equalities is satisfiable then
by factorization, there are templates r1, r2 of which at least one equals • such
that Ar1

.= Br2 holds. Since at the same time r2si
.= r1ti holds, the equality

Ar1
.= Br2 is equivalent to the conjunction. Moreover, there is exactly one

solution A = r′
1, B = r′

2 where at least one of the templates r′
i equals •, namely,

r′
1 = r2, r′

2 = r1.
Finally, consider the third statement. If k = 1, the assertion follows from

statement 1. Therefore now let k > 1. First assume that for some i, j, si = sj

and ti = tj . Then by statement 2, the conjunction is unsatisfiable or there is
exactly one pair r1, r2 of templates one of which equals •, such that A = r1, B =
r2 is a solution of the conjunction Asi

.= Bti ∧ Asj
.= Btj . If in the latter



468 S. Schulze Frielinghaus, M. Petter, and H. Seidl

case, r1sl
.= r2tl for all l, we have obtained a single solution. Otherwise, the

conjunction is unsatisfiable. Now assume that no such i, j exists. Then either
the conjunction is unsatisfiable or all equalities are syntactically equal. ��
Example 3 Consider the two equalities:

Af(a, gb, gb) .= Bgb Af(a, gc, gb) .= Bgc

Then A = • and B = f(a, •, gb) is the only solution for A, B where at least one
of the templates equals •. ��
Applying the arguments which we used to prove Theorem 2, we obtain:

Corollary 2. Consider a conjunction
∧n

i=1 Asi
.= Bti with ground terms si, ti.

1. If it is satisfiable, it is equivalent to the conjunction of at most two conjuncts.
2. If it is unsatisfiable, there are at most three conjuncts whose conjunction is

unsatisfiable.

By Theorem 2, the assumption solvability of ground equalities from Section
2 is met. Thus, it remains to solve the constraint systems S and R, i.e., to con-
struct an approximate T -subsumption relation which is both effective and guar-
antees that every conjunction is approximately T -subsumed by the conjunction
of a finite subset of equalities. In order to construct such a relation, we require
stronger insights into the structure of templates and their compositions. Let CΩ

denote the subset of all terms in TΩ(•) which contain at least one occurrence
of •, i.e., CΩ = TΩ(•) \ TΩ. The terms in CΩ have also been called templates.
The set CΩ, equipped with substitution, is a free monoid with neutral element
•. This monoid is infinitely generated from the irreducible elements in CΩ. As
usual, we call an element t irreducible if t cannot be non-trivially decomposed
into a product, i.e., t = uv implies that t = u with v = • or t = v with u = •.

While templates can be uniquely factored, this is no longer the case for ground
terms, i.e., terms without variable occurrences.

Example 4. Consider the ground term t = h(f(h(1), h(1))), together with the
templates s1 = h(f(•, h(1))), s2 = h(f(h(1), •)) and s3 = h(f(•, •)). All these
three templates are distinct. Still,

t = s1 h(•) 1 = s2 h(•) 1 = s3 h(•) 1 ��
Thus, unique factorization of arbitrary ground terms cannot be hoped for. Still,
we observe that unique factorization can be obtained — at least up to any fixed
finite set of ground terms. Let G denote a finite set of ground terms which is
closed by subterms.

Let MG denote the sub-monoid of all templates m ∈ CΩ whose ground sub-
terms all are contained in G. Then we have:

Theorem 3. Assume that S ⊆ TΩ which is closed by subterms. If G ⊆ S, then
every ground term t ∈ TΩ \ S, can be uniquely factored into t = mx such that
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(A) m ∈ MG and x ∈ S;
(B) x is minimal with property (A).

Example 5. Consider the term

t = f(h(f(2, h(1))), h(f(2, h(1))))

and assume that the set G of forbidden ground subterms is given by G =
{h(1), 1} and S = G. Then t can be decomposed into:

f(•, •) h(•) f(•, h(1)) 2

If on the other hand, S = G = {2}, we obtain the decomposition:

f(•, •) h(•) f(2, •) h(•) 1

If finally, S and G are empty, the term x of Theorem 3 is the minimal subterm
such that the occurrences of x contains all ground leaves of t. This means that
x = f(2, h(1)), and we obtain the decomposition:

f(•, •) h(•) f(2, h(1)) ��
The unique decomposition of the ground term t claimed by Theorem 3, is con-
structed as follows. Let X denote the set of minimal subterms x′ of t such that
x′ ∈ G. Then we construct the least subterm x ∈ S of t such that all occurrences
of subterms x′ ∈ X in t are contained in some occurrence of x. This subterm is
uniquely determined. Then define m as the term obtained from t by replacing all
occurrences of x with •. This term m is also uniquely determined with t = mx.
Moreover by construction, all ground subterms of m are contained in G.

Example 6. Consider the program from example 1. In this program, no non-
ground right-hand side contains ground subterms. Accordingly, the set G is
empty. Since the only ground right-hand side equals the atom a, the decom-
position Theorem 3 allows to uniquely decompose all run-time values of this
program into right-hand sides of assignments. ��
Theorem 3 allows to extend the monoidal techniques of Gulwani et al. [8] for
unary operators to programs where all run-time values can be uniquely factor-
ized into right-hand sides. This extension is given in Section 4. For complete-
ness reasons, we also present simplified versions of the algorithms for monoidal
equalities from [8] in Appendix A. The general case where unique factorization
of all run-time values can no longer be guaranteed, subsequently is presented in
Section 5.

4 Initialization-Restricted Programs

Assume that R is the set of ground right-hand sides of assignments, and G is
the set of ground subterms of non-ground right-hand sides of assignments of our
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program. Then generally, each value x possibly constructed at run-time by the
program is of the form x = x′r where r ∈ R and x′ ∈ MG. This means that for
pre-conditions φ possibly occurring in a WP calculation for a program invari-
ant, we are only interested in variable assignments σ which map each program
variable x to a possible run-time value for x, i.e., to a value from the set MGR.
Henceforth, we therefore no longer consider general satisfiability, equivalence
and subsumption, but only T -satisfiability, T -equivalence and T -subsumption
for T = MGR. This restriction is crucial for the generalization of the monoidal
techniques from [8]. In the following, we first consider the sub-class of programs
p where set R of ground right-hand sides of p satisfies the two properties:

1. R ∩ G = ∅.
2. The elements in R are mutually incomparable ground terms, i.e., for r1, r2 ∈

R, r1 is a subterm of r2 iff r1 = r2.

The program p then is called initialization-restricted (or IR for short).

Example 7. Assume that the non-ground right-hand sides of assignments of
the program are f(x, h(1)) and f(2, h(y)). Then the set G is given by G =
{1, h(1), 2}. A suitable set R of ground right-hand sides might be, e.g., R =
{0, a}. ��
Our condition here is not as restrictive as it might seem. Programs where
each variable is initialized by a non-deterministic assignment, are all IR. The
same holds true for programs where all non-ground right-hand sides of assign-
ments do not contain ground terms, and variables are initialized with atoms
only. The latter property is met by our example 1. By suitably massaging vari-
able initializations, it also comprises all programs using monadic operators only
(as in [8]).

We distinguish between two-variable equalities of the following formats:

[Fx,y] Asx .= Bty where s, t ∈ MG

[F·,x] As
.= Btx where s ∈ T and t ∈ MG

[Fx,·] Atx .= Bs where s ∈ T and t ∈ MG

For each format separately, we observe:

Theorem 4

T -subsumption. For finite sets E, E′ of two-variable equalities of the same
format it is decidable whether

∧
E T -subsumes

∧
E′ or not.

T -compactness. Every T -satisfiable conjunction of a set E of two-variable
equalities of the same format is T -subsumed by a conjunction of a subset
of at most three equalities in E.

For a proof see Appendix B. It relies on the unique factorization property to-
gether with the monoidal techniques from Section A. Since T -subsumption is
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decidable, at least for equalities of the same format, we define an approximate
T -subsumption relation

∧
E =⇒�

∧
E′ for conjunctions of equalities as follows.

Let EF and E′
F denote the subsets of equalities of the same format F in E and

E′, respectively. Then
∧

E =⇒�
∧

E′ holds iff
∧

EF T -subsumes
∧

E′
F for all

formats F . Hence, by Theorem 4, we obtain:

Corollary 3. Assume that n is the number of program variables.

Approximate T -subsumption. For finite sets E, E′ of two-variable equali-
ties, it is decidable whether

∧
E approximately T -subsumes

∧
E′ or not.

Approximate T -compactness. Every T -satisfiable conjunction of a set E of
two-variable equalities is approximately T -subsumed by a conjunction of a
subset of at most O(n2) equalities in E.

Overall, we therefore conclude for IR programs:

Theorem 5. Assume that p is an IR program. Then for every program point
u, the set of all two-variable equalities can be determined that are valid when
reaching program point u.

Proof. By Corollary 3, the greatest solutions of the constraint systems S and R
can be effectively computed. Let [u]T, u program point, denote the greatest solu-
tion of the system R. Then the set of valid equalities sx .= ty between program
variables x, y is given by the set of solutions to a system of ground equalities
which are obtained by universal quantification over all program variables of the
conjunction of equalities [u]T(Ax .= By). By Theorem 2, a representation of the
set of solutions for the template variables A, B in this conjunction can be explic-
itly computed. Likewise, the set of valid equalities x

.= t for program variable
x and ground term t can be extracted from the universal quantification over all
program variables of the conjunction of equalities [u]T(Ax .= C). The resulting
conjunction may either equal ⊥ (no constant value for x) or contain only the
variable C. Consequently, the possible constant value for x and program point
u can also be effectively computed. This completes the proof. ��
Example 8. According to our constructions in Section 2 and Theorem 2, the
set of all inter-procedurally valid assertions can be obtained from the great-
est solutions to the constraint systems S and R. Consider, e.g., the constraint
system R for the recursive procedure p from Section 1, as defined by the con-
trol flow graph of Figure 1. If Round-Robin iteration is applied to calculate
the transformers �u�T for the program points u = 4, 5, 6, 7, we obtain for the
generic post-condition Ax .= By the result depicted by Table 1 where in the
ith column, we have only displayed pre-conditions which have additionally been
attained in the ith iteration for the program points 7, 6, 5 and 4, respectively.
For convenience, we have displayed the terms in equalities according to their
unique factorizations. For program point 4, the two equalities after the second
iteration, imply:
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Af(•, •)A− .= Bf(•, •)B−

The second equality for program point 4 together with this identity imply that

Af(•, •)A−Af(•, •)x .= Bf(•, •)B−Bf(•, •)y

from which the third equality for program point 4 as provided by the third iter-
ation follows. Thus, Round-Robin fixpoint iteration reaches the greatest fixpoint
after the third iteration. ��

Table 1. Round-Robin iteration for the procedure p from Figure 1

1 2 3
7 Ax .= By
6 Ax .= Bf(•, •)y
5 � Ax .= Bf(•, •)y Af(•, •)x .= Bf(•, •)f(•, •)y
4 Ax .= By Af(•, •)x .= Bf(•, •)y Af(•, •)f(•, •)x .= Bf(•, •)f(•, •)y

5 Unrestricted Programs
Our analysis of IR programs relied on the fact that all run-time values of program
variables can be uniquely factorized. This was made possible since in IR programs
the “bottom end” of values can be uniquely identified by means of the ground
right-hand sides from R. In general, though, ground right-hand sides could very
well also occur as subterms of other right-hand sides in the program. In this
case, we can no longer assume that R serves as such a handy set of end marker
terms. At first sight, therefore, the monoidal method seems no longer applicable.
A second look, however, reveals that the monoidal method essentially fails only,
where program variables take small values. Again, let R and G denote the set
of all ground right-hand sides and the set of all ground subterms of non-ground
right-hand sides of assignments in the program, respectively. We call a term
t ∈ MGR small if it is a ground subterm of a right-hand side of an assignment.
Let us denote the (finite) set of all small terms by S. The terms in MGR which
are not small, are called large. Let R̄ be the set of minimal elements in MGR
which are large, i.e., not contained in S. Then by Theorem 3, every large term t,
i.e., every term t ∈ L can be uniquely factored such that t = mr where m ∈ MG

and r ∈ R̄. For small terms, i.e., for terms in S, on the other hand, we cannot
hope for unique factorizations. Since there are finitely many small terms only,
we take care of small terms by two means:

– We restrict the formats [Fx,·] and [F·,x] from the last section to the case
where the occurring ground terms are large and introduce dedicated sub-
formats [Fx,s] and [Fs,x] for each small term s in the equalities.

– For T -subsumption, we single out the case of subsumption w.r.t. assignments
of large terms only and treat subsumption w.r.t. assignments assigning small
terms separately.



Inter-procedural Two-Variable Herbrand Equalities 473

Thus, we now consider the following formats of two-variable equalities:

[Fx,y] Asx .= Bty where s, t ∈ MG

[F·,x] As
.= Btx where s ∈ L and t ∈ MG

[Fs,x] As
.= Btx where s ∈ S and t ∈ MG

[Fx,·] Atx .= Bs where s ∈ L and t ∈ MG

[Fx,s] Atx .= Bs where s ∈ S and t ∈ MG

In the following, let us call a substitution σ of program variables small, if for
every program variable x, σ(x) either equals x or is a small ground term. The
notions of satisfiability, equivalence and subsumption restricted to the set T can
be inferred by means of the corresponding notions restricted to the set L of large
terms only. We have:

– A conjunction φ of equalities is T -satisfiable iff there is a small substitution
σ such that σ(φ) is L-satisfiable.

– A conjunction φ T -subsumes an equality e, iff for every small substitution
σ, σ(φ) L-subsumes σ(e).

According to this observation, it seems plausible to consider the analogue of
Theorem 4 for L-subsumption and L-compactness only. We obtain:

Theorem 6

L-subsumption. For finite sets E, E′ of two-variable equalities of the same
format it is decidable whether

∧
E L-subsumes

∧
E′ or not.

L-compactness. Every L-satisfiable conjunction of a set E of two-variable
equalities of the same format is L-subsumed by a conjunction of a subset
of at most three equalities in E.

Proof For equalities of the formats [Fx,y], [Fx,·], [F·,x] the proofs are analogous
to the corresponding proofs for Theorem 4 where the set T is replaced with the
set L = MGR̄, i.e., instead of the set R we rely on the set R̄. Therefore now
consider equalities of the format [Fs,x] for a small term s ∈ S.

W.l.o.g., let As
.= Btx and As

.= Bt′x be two equalities of this format. If
t = t′, then their conjunction is either contradictory, or tx, t′x have a ground
unifier which maps x to a value from G — in contradiction to the assumption
that x takes values from L only.

Therefore, each conjunction of a set E of equalities of the format [Fs,x] either
is L-equivalent to ⊥ or to a single equality in E, and the assertion of the theorem
follows. The same argument also applies for the format [Fx,s]. ��
Given that L-subsumption is decidable, at least for equalities of the same format,
and that also L-compactness holds, we define an approximate T -subsumption
relation

∧
E =⇒�

∧
E′ as follows. Let EF and E′

F denote the subsets of
equalities of format F , in E and E′, respectively. Then

∧
E =⇒�

∧
E′ holds iff

for all small substitutions σ,
∧

σ(EF ) L-subsumes
∧

σ(E′
F ) for all formats F .

As a consequence of Theorem 6, we obtain:
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Theorem 7. Assume that n is the number of program variables and m is the
cardinality of the set S of small terms.

Approximate T -subsumption. For finite sets E, E′ of two-variable equali-
ties, it is decidable whether

∧
E approximately T -subsumes

∧
E′ or not.

Approximate T -compactness. Every T -satisfiable conjunction of a set E of
two-variable equalities is approximately T -subsumed by a conjunction of a
subset of at most O(n2 · m2) equalities in E.

A proof is provided in the long version of this paper [19]. Due to Theorem 7,
representations of the greatest solutions of the constraint systems S and R can
be effectively computed. By that, we arrive at our main result:

Theorem 8. Assume that all right-hand sides of assignments in an arbitrary
program contain at most one variable. Then all valid inter-procedurally two-
variable Herbrand equalities can be inferred.

The proof is analogous to the proof of Theorem 5 — only that Theorem 7 is
used instead of Corollary 3.

Example 9. Consider a variant of the program from Section 1 where the non-
ground assignments are given by:

x = f(x, a, x) and y = f(y, a, y)

The set of small terms then is given by S = {a}, while the set of smallest large
terms is given by R̄ = {f(a, a, a)}.

Now consider the constraint system R for the recursive procedure p as de-
fined by the control flow graph of Figure 1 with the modified assignments. Let
us concentrate on the start point 4 of p. Round-Robin iteration for the trans-
former �4�T for the generic post-condition Ax .= By, successively will produce
the equalities depicted by Table 2, where in the ith column, we again only have
displayed pre-conditions which have additionally been attained in the ith iter-
ation for the program points 7, 6, 5 and 4, respectively. For program point 4,
we can argue as in Example 8 in order to verify that the first two equalities
L-subsume the third one. Therefore, it remains to consider the given iteration
for any small assignment to the program variables x, y.

If x = y = a, then A = B must hold and the third equality is implied. If
x = a, but y is bound to large terms, then the first equality is of the format

Table 2. Round-Robin iteration of Example 9

1 2 3
7 Ax .= By
6 Ax .= Bf(y, a,y)
5 � Ax .= Bf(y, a,y) Af(x, a,x) .= Bf(f(y, a,y), a, f(y, a,y))
4 Ax .= By Af(x, a,x) .= Bf(y, a,y) Af(f(x, a,x), a, f(x, a,x)) .= Bf(f(y, a,y), a, f(y, a,y))
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[Fa,y] while the subsequent equalities are of the format [F·,y]. Accordingly, the
first equality must be kept separately. For the second and third equalities the
techniques from Theorem 6 again allow to derive the monoidal equality:

Af(•, a, •)A− .= Bf(•, a, •)B−

implying that the equality provided in the fourth iteration will be subsumed.
A similar argument applies to the case where y = a while x is bound to large
values only. Thus, Round-Robin fixpoint iteration reaches the greatest fixpoint
after the fourth iteration. ��

6 Multi-variable Equalities

In this section, we extend our methods to arbitrary equalities such as

x .= f(gy, z)

where, w.l.o.g., the left-hand side is a plain program variable while the right-
hand side is a term possibly containing occurrences of more than one variable.
Still, we consider programs where each right-hand side contains occurrences of
at most one variable only. Here, we indicate how for any program point v and
any given candidate Herbrand equality x .= s, we verify whether or not the
equality is valid whenever v is reached. There are only constantly many candidate
equalities of this form, namely, all equalities which hold for a variable assignment
σv computed by a single run of the program reaching v. Since such a single run
can be effectively computed before-hand, we conclude:

Theorem 9. Assume that all right-hand sides of assignments in an arbitrary
program contain at most one variable. Then all inter-procedurally valid Herbrand
equalities can be inferred.

Now consider the single Herbrand equality x .= s, where s contains occurrences of
the program variables y1, . . . , yr. Then we construct new generic post-conditions
as follows. First, we consider all substitutions σ which map each variable yi

in s either to a fresh template variable Ci or an expression Aiy′
i for a fresh

template variable Ai and any program variable y′
i. Then the new generic post-

conditions are of the form x′ .= s′ where x′ is any program variable, and s′

is a subterm of sσ. Note that this set may be large but is still finite. In a
practical implementation, we may, however, tabulate for each procedure the
weakest pre-conditions only for those post-conditions which are really required.
Since we envision that for realistic programs, only few of these equalities for each
procedure will be necessary to prove the queried assertion et at target point ut,
the potential exponential blow-up will still be not an obstacle.

Example 10. Assume the equality we are interested in is x .= f(gy, z), then, e.g.,

x .= f(gA1y, A2z) y .= f(gA1x, A2z)

are new generic post-conditions to be considered, as well as

z .= f(gC, Ay) y .= f(gAz, C) ��
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Starting from a new generic post-condition x .= p, repeatedly computing weakest
pre-conditions w.r.t. assignments may result in conjunctions of equalities which
can be simplified to one of the following forms:

– s
.= Ci or s

.= Aiti where s and ti contain occurrences of at most one program
variable each;

– y .= p′, i.e., the left-hand side is a plain program variable, and the right-hand
side p′ is obtained from a subterm of p by substituting each occurrence of
a program variable yi with some term ti containing occurrences of at most
one program variable each.

Example 11. Consider, e.g., the generic post-condition x .= f(gA1y, A2z). Then

�x = f(x, hx)�T(x .= f(gA1y, A2z)) = f(x, hx) .= f(gA1y, A2z)
= (x .= gA1y) ∧ (hx .= A2z)

which means that we equivalently obtain two two-variable equalities. Likewise,
for an assignment to one of the program variables on the right, we have:

�y = f(b, y)�T(x .= f(gA1y, A2z)) = x .= f(gA1f(b, y), A2z)

which is an equality of the form described in the second item. ��
The equalities from the first item contain at most program variable on each
side. They can be dealt with in the same way as we did for plain two-variable
equalities. They are even somewhat simpler, in that only one template variable
occurs (instead of two). The equalities of the second item, on the other hand, we
may group into equalities which agree in the variable on the left as well as in the
constructor applications outside the template variables Ai. Of each such group it
suffices to keep exactly one equality. Any conjunction with another equality from
the same group will allow us to simplify the second equality to a conjunction of
equalities with at most one program variable on each side.

Example 12. Assume that we are given the conjunction of the two equalities:

x .= f(gA1y, A2z) x .= f(gA3hy, A4gz)

This conjunction is equivalent to the first equality together with:

f(gA1y, A2z) .= f(gA3hy, A4gz)

The latter equality, now, is equivalent to the conjunction of:

A1y .= A3hy A2z .= A4gz

which is a finite conjunction of two-variable equalities. ��
Thus, in the course of WP computation for any of the new generic post-conditions,
we obtain conjunctions which (up to finitely many exceptions) consists of two-
variable equalities only, to which we can apply our methods from Section 5. In
summary, we thus find that it can be effectively checked whether or not a general
Herbrand equality is inter-procedurally valid at a given program point v.
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7 Conclusion

We provided an analysis which infers all inter-procedurally valid Herbrand equal-
ities for programs where all assignments are taken into account whose right-hand
sides depend on at most one variable. The novel analysis is based on three main
ideas. First, we restricted general satisfiability, subsumption and equivalence to
satisfiability, subsumption and equivalence w.r.t. a set of values subsuming all
possible run-time values of a given program. Together with our factorization
theorem, this allowed us to apply the monoidal methods from [8] to effectively
infer all inter-procedurally valid two-variable Herbrand equalities, at least for
programs, which we called initialization-restricted. In the second step, we aban-
doned this restriction by introducing the extra distinction between large values
(which can be uniquely factored) and small ones (of which there are only finitely
many). Finally, we showed how general Herbrand equalities could be handled.
For convenience, we presented the construction for programs with global vari-
ables only. The techniques, however, can be extended to programs with both
local and global variables as provided in the long version of this paper [19]. In
addition we show in the long version of this paper that an implementation of
the analysis can be provided which runs in polynomial time.
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A Equalities over a Free Monoid

Consider a free monoid MΣ with set of generators Σ. As usual, the neutral
element of MΣ is denoted by ε. Let FΣ be the corresponding free group. FΣ can
be considered as the free monoid generated from Σ ∪ Σ− (where Σ− = {a− |
a ∈ Σ} is the set of formal inverses of elements in Σ with Σ ∩ Σ− = ∅) modulo
exhaustive application of the cancellation rules a · a− = a− · a = ε for all a ∈ Σ.
In particular, the neutral element of FΣ is given by ε, and the inverse g−1 of
an element g = a1 . . . ak, ai ∈ Σ ∪ Σ−, is given by g−1 = a−1

k . . . a−1
1 where

x−1 = x− and (x−)−1 = x for x ∈ Σ.
For every w ∈ MΣ∪Σ− , the balance |w| is the difference between the number of

occurrences of positive and negative letters in w, respectively. Thus, |aba−b−c| =
1 and |a−b| = 0. Note that the balance stays invariant under application of the
cancellation rules. Also, |uv| = |u| + |v| and |u−1| = −|u|. Accordingly, the
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balance | · | : FΣ → Z is a group homomorphism. Furthermore, we call w non-
negative if |w′| ≥ 0 for all prefixes w′ of w. This property is also preserved by
cancellation and concatenation but not by inverses. Instead, we have:

Lemma 1. If both u and v are non-negative, and |u| ≥ |v| then also uv−1 is
non-negative.

Proof. Consider a prefix x of uv−1. If x is a prefix of u, |x| ≥ 0 since u is non-
negative. Otherwise, x = uv′−1 for some suffix v′ of v. Then |v′| ≤ |v|, since v is
non-negative. Therefore, |uv′−1| = |u| − |v′| ≥ |u| − |v| ≥ 0. ��
We consider equations of the form:

AuA−1 = Bu′B−1 (1)

where A, B are variables which take values in MΣ and u, u′ are maximally can-
celed. If the equation is satisfiable, then necessarily |u| = |u′| holds. Assume
from now on that u, u′ are maximally canceled, and |u| = |u′|. Furthermore, we
assume that |u| ≥ 0 and u, u′ are both non-negative. We then have:

Lemma 2. If |u| = |u′| = 0, then the equation (1) either is trivial, is equiva-
lent to an equation As = B or an equation A = Bs for some s ∈ MΣ or is
contradictory.

Proof. Assume u = ε. Then B = Bu′. Thus either u′ = ε and the equation is
trivial, or u′ = ε and the equation is contradictory.

Therefore, assume that u = ε = u′. Then u and u′ must be of the form
u = xyz−1, u′ = x′y′z′−1 for maximal x, x′, z, z′ ∈ MΣ, i.e., y, y′ each are either
equal to ε or of the form a−wb for some a, b ∈ Σ. Then all x, x′, z, z′ are different
from ε. Then equation (1) is equivalent to:

Ax = Bx′ ∧ y = y′ ∧ Az = Bz′

By bottom cancellation, these three equations either are equivalent to one fixed
relation between As = B or A = Bs for some s ∈ MΣ, or to a contradiction. ��
Example 13. Consider the equation

Affg−1f−1A−1 .= Bfg−1B−1

which is, according to Lemma 2, equivalent to

Aff
.= Bf ∧ ε

.= ε ∧ Afg
.= Bg

By bottom cancellation, we conclude that the conjunction is equivalent to a
solved equation Af

.= B. ��
Now assume that there is another equation:

AvA−1 = Bv′B−1 (2)

with non-negative v, v′ where |v| = |v′|.
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Theorem 10. The two equations (1) and (2) are effectively equivalent either to
one solved equation, or to a single equation of the form (1) or are contradictory.

Proof. We perform an induction on the sum of balances |u|+|v|. W.l.o.g., assume
that |u| ≥ |v|. If |v| = 0, then the assertion follows from Lemma 2. Therefore, as-
sume that |v| > 0, and r ≥ 1 is the maximal number such that |vr| = r · |v| ≤ |u|.
Then we construct the elements uv−r and u′v′−r, which are both non-negative
by Lemma 1. Let w, w′ be obtained from uv−r and u′v′−r by exhaustively ap-
plying the cancellation rules. By construction, these are non-negative as well.
Then we consider the equation:

AwA−1 = Bw′B−1 (3)

which is implied by the two equations (1) and (2).
If w = ε, then either w′ = ε holds and the equation (3) is trivial, or w′ = ε

and equation (3) is contradictory. In the first case, the equation (2) is implied
by equation (1), while in the second case the two given equations (1) and (2)
are contradictory. The same argument applies when w′ = ε with the roles of
A, B exchanged. Therefore now assume that w = ε = w′. Otherwise, the pair of
equations (1) and (2) is equivalent to the pair of equations (2) and (3), where
the sum of balances |w| + |v| ≤ |w| + r · |v| = |u| < |u| + |v| has decreased. For
these, the claim follows by inductive hypothesis. ��
In [8] a similar argument is presented. The argument there together with the
resulting algorithm has been significantly simplified by introducing the extra
notion of non-negativity.

B Proof of Theorem 4

In order to prove the theorem we show that every T -satisfiable conjunction of
equalities of the same format is effectively T -subsumed by a conjunction of at
most three equalities. Furthermore, the proof indicates that, given three equali-
ties, it can be effectively decided whether or not a fourth equality is T -subsumed
or not. We consider one case of the assertion of the theorem after the other.

Same Variable on Both Sides. Consider the two distinct equalities

As1x .= Bt1x As2x .= Bt2x

where si, ti ∈ MG, and assume that the conjunction of them is T -satisfiable.
We claim that then s1x = s2x and t1x = t2x. For that, we convince ourselves
first that s1 = s2 and t1 = t2 must hold. Then for a contradiction, assume that
s1x .= s2x. Since s1 = s2, their unifier must map x to a ground term of s1
and s2. These ground terms are all contained in G, whereas we only consider
values for x in MGR, which is disjoint from G. A similar argument also shows
that t1x = t2x holds. Thus by factorization, Ar1

.= Br2 must hold for some
r1, r2 ∈ MG of which at least one equals •. Due to unique factorization, we then
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may cancel x on both sides, resulting in the equalities As1
.= Bt1 and As2

.= Bt2.
These can be simplified to one equality Ar1

.= Br2 for some r1, r2 ∈ MG where
ri = • for at least one i. Hence, the second equality is T -subsumed by the first
one.

One-Sided Single Variable. Consider the three distinct equalities

As1
.= Bt1x As2

.= Bt2x As3
.= Bt3x

where si ∈ MGR and ti ∈ MG, and assume that the conjunction of them is T -
satisfiable. Again, we argue that all si must be distinct as well as all tix. Then
again by factorization, Ar1

.= Br2 for some templates r1, r2 of which at least
one equals •. By unique factorization, s1 = s′

1r for some s′
1 ∈ MG and r ∈ R.

Therefore, again by unique factorization, the value for x also must terminate
in the term r, i.e., is of the form x = x′r for some x′ ∈ MG. Accordingly, also
s2, s3 can be factored as si = s′

ir for suitable s′
i ∈ MG. Canceling out the ground

terms r, we obtain the monoid equalities:

As′
1

.= Bt1x′ As′
2

.= Bt2x′ As′
3

.= Bt3x′

Assume w.l.o.g., that the balance of s1 is less or equal to the balances of s2 and
s3. Then the conjunction of the three equalities is T -equivalent to:

As′
1

.= Bt1x′ As′
2s′

1
−1

A−1 .= Bt2t−1
1 B−1 As′

3s′
1

−1
A−1 .= Bt3t−1

1 B−1

where s′
2s′

1
−1

, t2t−1
1 , s′

3s′
1

−1
, t3t−1

1 all are non-negative. According to Theorem 10,
the two last equalities are either T -equivalent to each other, which means that
the initial conjunction is T -equivalent to the conjunction of the two equalities

As1
.= Bt1x As2

.= Bt2x

and the assertion follows. Otherwise, they are T -equivalent to an equality Ar1
.=

Br2 for templates r1, r2 of which at least one equals •. A fourth equality is then
either T -subsumed or falsifies the conjunction of equalities. A similar argument
applies to equalities of the form Atix

.= Bsi.

Different Variables on Both Sides. Consider the three distinct equalities

As1x .= Bt1y As2x .= Bt2y As3x .= Bt3y

for distinct program variables x, y where si, ti ∈ MG, and assume that the
conjunction of them is T -satisfiable. As before, we argue that six = sjx, tiy =
tjy for all i = j must hold. Then by factorization, A is a prefix of B or vice
versa. But then, due to unique factorization, also As1 is a prefix of Bt1 or vice
versa. This means that there are u, v ∈ MG of which one equals • such that
As1u .= Bt1v, which (by top cancellation) implies that vx = uy holds. From
that, we conclude that Asiu

.= Btiv for all i. Assume again w.l.o.g. that the
balance of s1 is less or equal to the balances of s2 and s3. We then proceed as
in the last case to obtain the T -equivalent three equalities:

As1u .= Bt1v As2s−1
1 A−1 .= Bt2t−1

1 B−1 As3s−1
1 A−1 .= Bt3t−1

1 B−1
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where s2s−1
1 , t2t−1

1 , s3s−1
1 , t3t−1

1 all are non-negative. According to Theorem 10,
the latter two equalities again are T -equivalent to an equality Ar1

.= Br2 for
templates r1, r2 of which at least one equals •, or are T -equivalent to each other,
and the assertion of the theorem follows. This completes the proof. ��
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Abstract. Dynamic language library developers face a challenging problem:
ensuring that their libraries will behave correctly for a wide variety of client
programs without having access to those client programs. This problem stems
from the common use of two defining features for dynamic languages: callbacks
into client code and complex manipulation of attribute names within objects. To
remedy this problem, we introduce two state-spanning abstractions. To analyze
callbacks, the first abstraction desynchronizes a heap, allowing partitions of the
heap that may be affected by a callback to an unknown function to be frozen
in the state prior to the call. To analyze object attribute manipulation, building
upon an abstraction for dynamic language heaps, the second abstraction tracks
attribute name/value pairs across the execution of a library. We implement these
abstractions and use them to verify modular specifications of class-, trait-, and
mixin-implementing libraries.

1 Introduction

“Don’t Repeat Yourself!” This DRY mantra leads JavaScript developers to minimize
the code that they write and thus minimize the number of places bugs can occur. As
a result, there is a proliferation of generic libraries and code reuse in the JavaScript
community. Unfortunately, even though library authors would like to know that their
libraries work correctly with any client, current verification techniques cannot verify
this because they do not also follow the DRY mantra – they require reverifying libraries
along with each and every client [15, 17–19, 27]. This paper brings the DRY mantra to
automatic dynamic language verification by modularly verifying libraries without the
presence of client code.

While there are many kinds of libraries for many dynamic languages, this paper fo-
cuses on meta-feature libraries for JavaScript. Meta-feature libraries add functionality
that is commonly built-in to languages, such as mixins, traits, classes, and memoization.
These features are not first-class features of the JavaScript language, but they aid soft-
ware engineering, so nearly every program includes them in some form or another. For
example, the ubiquitous jQuery, Prototype, and MooTools libraries all include imple-
mentations of mixins. Similarly, MooTools, Prototype, and the Microsoft Ajax Library
include class implementations. What makes these libraries unique is their use of open
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1 var Class = function(cfg) { //make class
2 var copy = function(src,exc) {...};
3 var attrs = copy(cfg,{});
4 var init = cfg.init;
5 return function(args) { //make instance
6 var result = copy(attrs,{init:null});
7 init(result, args);
8 return result;
9 };

10 }

function(args) { //make instance
var result = copy(attrs,{init:null});
init(result, args);
return result;

};

Fig. 1. Class implements a simple version of classes. The class is essentially allocated by the
call to copy on line 3. The instance is allocated by the call to copy on line 6. Line 7 calls the
initialization function on the instance.

object manipulation, functions, and encapsulation to implement language features as
libraries.

For example, while JavaScript does not contain classes, a simple version of classes
can be implemented with the few lines shown in Figure 1. These few lines implement
classes by constructing a class instantiation function (highlighted) that is responsible
for creating new instances of the class. This class instantiation function is derived from
a configuration object cfg that describes not only a template for the instance object,
but an initialization function init. The init function is run on each newly created
instance, completing the initialization of the new object using arguments passed to the
instantiation function. Note that because JavaScript allows the attributes of objects to
be mutated (i.e. objects are open), it is necessary to copy the configuration object twice
to create an instance. The first copy (underlined) creates a backup that ensures that if
the configuration object is mutated, already constructed classes are not mutated as well.
The second copy (line 6) creates the instance object.

A key challenge of verifying library implementations is that developers specify li-
braries in terms of input/output behaviors. If a particular kind of input is given, a partic-
ular, but related kind of output is given. For example, in Class, the object generated
by instantiating a class is related to the cfg object that was passed in to Class. This
means inputs to a library must be treated as unknowns that can be related to the outputs
of that library — even when the inputs are unknown functions or objects with unknown
attribute name/value relationships.

The core problem with unknown functions (such as init) as input to a library is that
they may be called by the library. If they are, they may have wide-reaching effects on the
state of the program. However, developers are not stymied by these function calls when
reading code because the effects are usually well contained by the surrounding code.
Developers use conventions such as copying into local, non-escaping variables (like
attrs and init) to ensure that certain parts of the program’s state cannot be affected
by calls to unknown functions. Therefore, when developers are reasoning about this
code, they optimistically assume that when a call to one of these unknown functions
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occurs, there are two parts of the program memory: (1) the part unaffected by the call,
which may be freely accessed and modified after the call and (2) the part affected by
the call, which, over the remainder of the function is solely described as “the result of
calling the function on whatever that part was before the call.” In this paper, we observe
that analyses that are designed for such library code can optimistically split the heap
into two parts, where the analysis can proceed on the unaffected part and the affected
part can be saved along with the function that affected it until that function is known.

Furthermore, existing analyses have problems with input objects that have unknown
attribute name/value relationships. Most analyses represent containers by partitioning
them. However only using partitions, it is not possible to represent the fact that at-
tribute/value pairs are often preserved. For example, when cfg is copied to attrs, it
is clear that every attribute/value pair is copied and therefore, all attribute/value pairs
are preserved as-is across this computation. As Halbwachs and Péron [14] discovered
for arrays, it is beneficial to capture relations between individual attributes and values
and to share those relations between multiple containers. However, these relations can
be generalized beyond arrays to any container and can be extended to relate partitions
across multiple states. This allows proving that attrs is equal to what cfg was at the
beginning of the class creation.

To verify modular specifications of JavaScript libraries, even when client code is
absent, and thus enabling reuse of specifications, and improving library reliability, we
make the following contributions:

– To abstract open objects and containers with unknown attribute name/value rela-
tionships, we introduce attribute/value trackers that extend existing container and
open-object abstractions with the ability to perform fully precise partitioning when
attributes and values are copied. Trackers represent a form of parametric polymor-
phism for attribute/value relationships that can be applied across multiple abstract
heaps to relate unknown input objects to unknown output objects.

– For the analysis of a call to an unknown function, we introduce desynchronized sep-
aration, which splits off a region of the heap by representing it as an old analysis
state along with the code required to synchronize that portion of the state with the
rest of the analysis. This creates a form of assume-guarantee reasoning that mim-
ics the programmer intuition for simple, well-contained callbacks, while enabling
automatic analysis.

– We extend the heap with open objects abstraction (HOO) with attribute/value track-
ers and desynchronized separation and evaluate these additions to HOO by auto-
matically verifying specifications written for JavaScript meta-feature libraries. We
analyze the core functionality of libraries that implement mixins, traits, classes,
and memoization. By utilizing HOO along with both desynchronization and at-
tribute/value trackers, we are able to fully precisely analyze these library cores,
even without any knowledge of specific attribute names used in input objects or
code for client-supplied callbacks.

2 Overview

In this section we demonstrate the power of attribute/value trackers and desynchronized
separation applied to HOO (the Heap with Open Objects Abstraction [8]) by showing
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[
I obj V V = {undefined}

]

I

var obj = {fld1: 1, fld2: 2};[

II
A

F ρ

obj V′ F = {f1} ∪ {f2} ∧ f1 = 'fld1' ∧ f1 = 'fld2'
∧V′ = {v1} ∪ {v2} ∧ v1 = 1 ∧ v2 = 2 ∧A = {a}

]

I

Fig. 2. The HOO abstract domain represents a heap of open objects using a combination of a heap
graph and pure side constraints

key parts of the analysis of instantiating a class created by the Class library intro-
duced in Figure 1. First we show how attribute/value trackers enhance open-object and
container abstractions with the analysis of the copy function used by Class. Then,
we show how desynchronization allows analysis of calls to unknown functions.

2.1 Preliminaries

Before we explain attribute/value trackers and desynchronized separation, we introduce
the basics of the HOO abstraction. HOO is a separation-logic-based abstraction for dy-
namic language heaps that supports reasoning about open objects, which behave like con-
tainers mapping strings representing attribute names to values. HOO supports the basic
requirements for both attribute/value trackers and desynchronization. It partitions open
objects by the attributes (as most container abstractions do) and it supports partitioning
the heap (as all separation-logic-based abstractions do). What makes HOO unique is its
use of a set abstraction to relate partitions to one another. However, this functionality is
not strictly required to make use of trackers and desynchronized separation.

Because we are concerned with input/output relationships, Figure 2 shows a simple
program annotated with two-state HOO invariants. The first invariant I shows the ini-
tial heap containing the variable obj pointing to the value undefined. The input heap
is indicated with its program point in the lower right hand corner of an invariant. In the
case of I , the input heap is the same as the heap shown in brackets at I . The current
heap, relative to that input heap is shown in the brackets along with a constraint on the
logic variables used in both heaps. This constraint is represented and manipulated by an
abstract domain for sets.

This program creates a new object pointed to by obj that has two attributes: 'fld1'
corresponds to the value 1 and 'fld2' corresponds to the value 2. The abstract state II

highlights the important parts of the abstraction. The heap part in brackets shows an
abstract object that is represented as a table. The shaded top row is the set symbol A for
the base address of objects. If this is not a singleton set, the object is a summary. On the
right, A is constrained to be a singleton set of addresses and thus it is not a summary
object. Below the shaded top row are rows each describing a partition of attribute names
for that object. Here we have decided to represent these two attribute names 'fld1' and
'fld2' using a single partition that conflates the two attribute names. This partition is
represented with the set symbol F, where it is equated to the union of two singleton sets
with attribute names fi. Additionally, this partition has been assigned the attribute/value
tracker ρ, which can keep track of specific attribute/value pairs from the beginning of
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[

1
{a1}

F1 ρ1

attrs V

]

1

var exc = {init:1};
var result = {};
for(var a in attrs) {
if(attrs.hasOwnProperty(a) && !exc.hasOwnProperty(a)) {

result[a] = attrs[a];
}

}
[

2
{a1}

F1 ρ1

attrs {a2}
F2 ρ1

result V
F2 = F1 \ {'init'}

]

1

Fig. 3. Analysis of class instantiation uses attribute/value trackers to maintain precision when
attributes are copied

the function to the end, as will be demonstrated in next section. Finally, the partition
points to a set of values that is made up of individual values vi. Note that this is not
the most precise abstraction because the two attributes have been summarized into a
single partition. An alternative abstraction would construct a separate partition for each
known attribute name.

In this paper we will often use a shorthand notation where instead of showing a set
symbol such as A in the heap, we will show instead a singleton set in brackets, such as
{a}. This is equivalent to having a set symbol and then constraining that set symbol to
be equal to the singleton set. This is useful for improving the readability of the notation,
but formally all symbols in the heap are set symbols.

2.2 Attribute/Value Trackers

At the start of the analysis of the class instantiation function (the highlighted part of
Figure 1), the first code that the analysis encounters is the call to the copy function.
Figure 3 shows the body of the copy function after it has been inlined into the context
of the class instantiation. This function iteratively copies one open object attrs to an-
other open object result by first checking if the attribute name that is being copied is
in the exclusion object exc. Accompanying the copy function are pre/postconditions
that show a portion of heap that is relevant to this function.

An abstraction such as HOO does a nice job of incrementally inferring the rela-
tionship that forms between the result object and the attrs object. While, as a
two-state abstraction, HOO can relate initial objects to final objects, it still conflates all
of the attributes and values that may have been in that object into a single partition. This
means that while HOO can prove that the result object has a subset of the attributes
of the initial attrs object, it cannot prove by itself that the attribute/value relationship
was maintained for everything that was copied. This is where attribute/value trackers
come in.

An attribute/value tracker is an uninterpreted symbol for some relationship between
attributes and values. When a tracker is applied to a particular partition and corresponding
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{a1}
F1 ρ1

attrs V {a1}
F′
1

ρ1

attrs V

{f} ρ1

F1 = F′
1 � {f}⇒

Fig. 4. Materialization maintains the attribute/value tracker ρ1

values, it uses that “global” relationship to constrain exactly which values can possibly
correspond to which attributes that are described by the partition. The most important
aspect of an attribute/value tracker is that it is “global” in the sense that the symbol is
shared between the two-states of the invariant. A tracker’s meaning is consistent across
these two abstract heaps.

Throughout this analysis, there is only one attribute/value tracker ρ1. In the precon-
dition the attribute/value tracker ρ1 can be automatically added, as at that point the true
relationship between attributes and values is unknown. But in the postcondition, the
fact that ρ1 is used for two partitions means not only that attrs and result have the
same attribute and value relationship after the loop, but that the relationship is the same
one that existed before the loop.

Critically, once a tracker is associated with a partition, that tracker can be reused with
any other partition that is a subset of that initial, associated partition. Here, we see that
the same tracker ρ1 is used in the F2 partition of the object at address a2. Even though
the F2 partition is a subset of F1 used in the object at address a1, the same tracker can
be used. As a result, this constraint says that the result object is exactly the same as
the attrs object except that the 'init' attribute has been removed if it was present.
Materialization with Attribute/Value Trackers: In the loop body, before the object
pointed to by attrs can be read, the single attribute that will be read must be ma-
terialized in that object. This ensures strong updates occur. An example materialization
is shown in Figure 4. On the left is the object at address a1 before materialization and
on the right is the same object after materialization. Here, we assume that the particular
attribute is represented by the symbol f, and while f is not explicitly constrained, it is
known that f is one of the attributes from F1.

What is special about attribute/value trackers is that rather than requiring a new de-
scription of the partition when a materialization occurs; here they can be duplicated. On
the right the tracker ρ1 occurs in both partitions F′

1 and {f}. This is because the tracker
only restricts the values that correspond to those in the partition. Since the partition has
been refined, the same restriction can be applied to both new partitions.
Transfer of Attribute/Value Trackers: As part of analyzing code like copy above, there
is a transfer of an attribute/value pair from one object to another. This transfer maintains
the relationship between attributes and values. When transfer occurs, the attribute/value
tracker can be transfered along with the attribute and value. Therefore, even if the par-
ticular attribute and particular value cannot be identified from their sets, the tracker
maintains whatever the original relationship was and allows it to be transfered to other
objects.

Here this property of trackers ensures that ρ1 is transfered from the attrs object
to the results object. Since the transfer occurs whenever the attribute/value pair is
copied, the tracker can be unconditionally copied. However, because the resulting par-
tition F2 is restricted, this simply limits the scope of where the tracker can be applied.
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[

a
{a1}

F1 ρ1

attrs {a2}
F2 ρ1

result V F2 = F1 \ {'init'}· · ·
]

1

init(result, args);
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b

{a1}
F1 ρ1

attrs

{a2}
F2 ρ1

result

V

F2 = F1 \ {'init'}V {a2}

· · ·

· · ·

call {init_fun}({a2}, . . .)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

1

Fig. 5. Desynchronized terms are introduced by function calls to unresolvable functions

While we have not demonstrated the use of summaries generated by this analysis,
attribute/value trackers are critical to this application. With the use of attribute/value
trackers, a general precondition can be specialized for a particular calling context, es-
sentially a form of parametric polymorphism. That is, partitions can be more finely
specified corresponding to the actual objects passed into library functions. This very
same partitioning can be applied to postcondition, allowing precision that was made
available well after the analysis was completed to be preserved by the analysis.

2.3 Desynchronized Separation

When analysis reaches the call to the client-supplied initializer that is shown in Figure 5,
there is a problem. The actual function that is called is an input to the class library and
as a result it is unknown to the analysis. However, despite the fact that this function is
unknown, developers might optimistically reason about what this class library does as
follows: attrs is protected by lexical scoping, so it should not change, and result
is initialized by the copy and then the return value is whatever result is after running
the client-supplied initializer init on it. Desynchronized separation is a means for
capturing this kind of optimistic reasoning in a sound manner using a form of assume-
guarantee reasoning.

Immediately before the call to the initializer, there are two objects shown: a1 is the
attrs object, which is the backup copy of the cfg object that was passed in to Class
and a2 is the result object that is the class instance that is currently in the process of
being constructed. The relationship between F1 and F2 carries over from the copy as
before. Other parts of the heap are not shown, as they are not necessary for explaining
desynchronized separation.

When the analysis reaches the call to init, desynchronized separation optimisti-
cally splits the heap into two separate parts: (1) the part that shall not be used by the
client-supplied initializer and (2) the part that shall be used by the client-supplied initial-
izer. In our algorithm, we make this split based on reachability: optimistically assuming
the post-call code in the caller does not use anything reachable from the arguments to
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the call. Thus for the unused portion, there is no change and thus it is directly repre-
sented in the post-state b . For the used portion, the function call may have changed it
and thus it is desynchronized. Desynchronization represents the resulting heap as a term
that stores the used portion of the heap before the call and the function that is applied.

The desynchronization process introduces a desynchronized term, written
�H� call V(. . .), where H is the portion of the heap that is desynchronized and
call V(. . .) is the function called and the arguments passed to it. By introducing this
desynchronized term, the post-state of the call can be written in such a way that, when
the client-supplied initializer becomes known, such as when a function summary gener-
ated by HOO is reused, the now known function can convert the desynchronized portion
back into a normal, “synchronized” heap formula.

In b we can see that the heap has been split so that a2 has been desynchronized.
Because it may have been modified by the call, it is “locked” in a state from before
the function call. That is, we guarantee in the analysis that the post-call code does not
access desynchronized sub-heaps by ensuring the analysis gets stuck (raises a warn-
ing) if accessing desynchronized memory. Desynchronization is different from simply
separating the two parts of the heap because the desynchronized region represents the
portion of the heap that results from calling the desynchronized function on the desyn-
chronized part of the heap. In this way it soundly abstracts calls to unknown functions
by explicitly representing the precondition to the call and implicitly representing the
postcondition of the call.

A significant part of implementing desynchronized separation is the operation used
to split the heap into the desynchronized and non-desynchronized parts. In this paper we
outline a simple means of splitting the heap based on reachability as in [25] that exploits
the fact that JavaScript developers, by convention, protect regions of the heap using
closures for encapsulation. Here, attrs is protected in such a way. Consequently, the
heap split that is automatically inferred leaves a1 and all local variables outside the
desynchronized term and places a2 inside the desynchronized term. With this split, it
is possible to verify that attrs is unmodified by class instantiation, which means that
classes are immutable and it is possible to verify that the object built in the class is the
one returned by the class after calling the client-supplied initializer on it starting from
elements copied from attrs.

3 Abstracting Callbacks and Objects with Multi-State Abstraction

In this section we define attribute/value trackers and desynchronization as an extension
to the heap with open objects (HOO) abstract domain [8]. First we present attribute/-
value trackers and how they are added to HOO. Then we present desynchronized sepa-
ration, also adding it to HOO.

Throughout these sections we utilize the following symbols in the definitions.

Address ⊆ Value d ⊆ Attribute

Attribute ⊆ Value o ∈ Object = Attribute ⇀ Value

v ∈ Value σ ∈ State = Address ⇀ Object

f ∈ Attribute
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Address is the set of all concrete addresses,Attribute is the set of all concrete attributes
(strings), and Value is the set of all values including addresses and attributes. Object is
the set of partial functions from attributes to values, where unmapped attributes are not
attributes in the object. Similarly concrete states are a partial function from addresses
to objects. Individual concrete values v, attributes f , and object domains d are used in
defining semantics.

3.1 Attribute/Value Trackers on HOO

Attribute/value trackers extend an existing domain for containers that supports strong
updates. Attribute/value trackers significantly increase the precision of the existing con-
tainer domains by precisely keeping track of the relationship between individual at-
tributes and individual values, even when the container has summarized many attributes
and values into a single partition. An attribute/value tracker is an uninterpreted partial
function ρ that is optionally added to each container partition in an existing abstract
domain for containers.

HOO is a separation-logic-based approximation of a heap that is restricted by an
abstraction for sets of values. This abstraction for sets restricts relationships between
symbols each representing a set:

{a}, {f}, {v},A,F,V ∈ Symbol

where A represents a set of addresses, F represents a set of attributes, and V represents
a set of values. The {a}, {f}, and {v} sets are the respective singleton forms.

Definition 1 (Attribute/Value Trackers with HOO). The heap with open objects ab-
stract domain, when extended with attribute/value trackers, is represented with the fol-
lowing logical syntax:

Ĥeap � H ::=H1 ∗H2 | A · 〈O〉 | EMP | TRUE

Ôbject � O ::= O1;O2 | F : ρ �→ V | F : – �→ V | NONE

D̂omain � D ::=D1 ∨D2 | [H2]H1
�P

An abstract state D is either a disjunction of abstract states, or a triple [H2]H1
�P

representing an initial heap H1 and a current heap H2 restricted by a domain instance
P for sets. The domain responsible for representing P is a parameter to this abstraction
and unspecified. An individual heap H is a standard separation logic heap consisting
of two disjoint parts combined with separating conjunction, a set of objects A · 〈O〉 at
addresses described by A with structure O, or the empty EMP or unknown TRUE heap.
Objects are a form of container, which is represented by a number of disjoint partitions
of the attributes. A single partition is represented as either F : ρ �→ V or F : – �→ V
depending on whether the attribute/value tracker ρ is present or not. Partitions are
joined together into objects using another form of separating conjunction ; whose unit
is the empty object NONE.

Figure 6 shows that an instance of HOO concretizes to a set of pairs of concrete states
along with a valuation. The σ0 state represents a starting state for a library function and
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γ : Ôbject → P (
Valuation ×TrackerMap ×Object× P (

Attribute
))

γ(O1;O2) =

{
η, μ, o, d

∣∣∣∣ ∃o1, o2, d1, d2. (η, μ, o1, d1) ∈ γ(O1) ∧ (η, μ, o2, d2) ∈ γ(O2)
∧ o = o1 ∪ o2 ∧ d = d1 � d2 ∧Dom (o1) ∩ Dom(o2) = ∅

}

γ(F : ρ 
→ V)=

{
η, μ, o, d

∣∣∣∣ d = η(F) ∧ ∀f ∈ η(F).
o(f) ∈ η(V) ∧ μ(ρ)(f) = o(f)

}
γ(F : – 
→ V)=

{
η, μ, o, d

∣∣ d = η(F) ∧ ∀f ∈ η(F). o(f) ∈ η(V)
}

γ(NONE) ={ η, μ, [], ∅ }

γ : Ĥeap → P (
Valuation× TrackerMap × State

)
γ(H1 ∗H2)=

{
η, μ, σ

∣∣∣∣ ∃σ1, σ2. (η, μ, σ1) ∈ γ(H1) ∧ (η, μ, σ2) ∈ γ(H2)
∧ σ = σ1 ∪ σ2 ∧Dom (σ1) ∩Dom (σ2) = ∅

}

γ(A · 〈O〉) =

{
η, μ, σ

∣∣∣∣ ∀a ∈ η(A). ∃o, d.
σ(a) = o ∧ (η, μ, o, d) ∈ γ(O) ∧Dom (o) = d

}
γ(EMP) ={ η, μ, [] }
γ(TRUE) =Valuation× TrackerMap× State

γ : D̂omain → P (
Valuation× State× State

)
γ(D1 ∨D2) =

{
η, σ1, σ2

∣∣ (η, σ1, σ2) ∈ γ(D1) ∨ (η, σ1, σ2) ∈ γ(D2)
}

γ([H2]H1
�P )=

{
η, σ1, σ2

∣∣∣∣ ∃μ. (η, μ, σ1) ∈ γ(H1)
∧ (η, μ, σ2) ∈ γ(H2) ∧ η ∈ γ(P )

}

Fig. 6. Concretization of HOO abstract states along with attribute/value trackers

the σ1 state represents the current state relative to σ0. The valuation maps each symbol
that occurs in the heap formula, including those representing sets of addresses, attributes
and values to a set of concrete addresses, attributes, or values:

η : Valuation = Symbol → P (
Value

)

The valuation ensures that symbols map to consistent values throughout a concretiza-
tion, even if the symbol is used multiple times. The concretization of P produces a set
of these valuations as must be defined by the abstraction for sets. The concretization for
any instance of the abstraction for sets must have the following type.

P ∈ Ŝets γP : Ŝets → P (
Valuation

)

For the concretization of heaps and objects, there is an additional value that is re-
turned besides the valuation η and the state σ. The attribute/value tracker map μ binds
trackers to their corresponding partial functions:

ρ ∈ TrackSym

μ ∈ TrackerMap = TrackSym ⇀ Attribute ⇀ Value
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An element μ ∈ TrackerMap maps a tracker symbol to a partial function from at-
tributes to values. The domain of that function is fixed when the tracker is introduced
(Section 4.2).

Example 1 (Attribute/Value Trackers with HOO). In the following state, there are two
abstract heaps and a single pure domain instance.

[{a} · 〈F′ : ρ �→ {v}〉]{a}·〈F:ρ�→{v}〉 �F′ ⊆ F

This constrains the relationship between the pre-state and the current state so that they
both refer to the same object because they use the same symbol {a} and the number of
attributes has been possibly reduced: some attributes may have been deleted. All other
attributes remain the same and no attributes can have been observably added (added and
then later removed is acceptable).

Additionally, the attribute/value tracker ensures that the partition F′ is exactly the
same as F except for the elements that are removed.

3.2 Desynchronized Separation

Desynchronized separation is an extension to a separation logic that adds a desynchro-
nized term to the logical formulas. It is useful for representing different parts of the
heap from different times during an analysis. As a result, it allows a meaningful repre-
sentation of the heap after a call to an unknown function has been made.

Example 2 (Desynchronization). To demonstrate the power of desynchronization, Fig-
ure 7 shows the process of desynchronization pictorially. The program being considered
has four separate regions of memory A, B, C, and D that are entirely self contained (no
pointers between regions) and the program is about to evaluate three function calls
whose bodies are unknown in sequence: fun1(D); fun2(B); fun3(C,D). Figures 7 (a),
(b), and (c) show the state of desynchronization after each of these calls. Initially, at
time 1, all memory is synchronized and represented at time 1.

When analyzing the call to fun1(D), the body is unknown and thus the analysis
cannot continue. However, because the function can only affect the memory region D, it
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Fig. 7. Three separate desynchronizations after calling three successive functions on four regions
of memory. In (c), A is the current analysis state where as regions B, C, and D have all been
desynchronized. The D region has been desynchronized twice.
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is possible to proceed if we desynchronize the heap. The result of the desynchronization
is shown in Figure 7a. Regions A, B, and C are allowed to proceed on to time 2, but
region D stays locked at time 1 and becomes inaccessible. This inaccessibility is critical
because any of that memory in region D may have been mutated by the call to fun1,
and without any knowledge of what fun1 did, it is impossible to say what the effect of
accessing such memory would be.

Even though D has been desynchronized, we can still know a lot about the region
after the function has been evaluated. Specifically, we can save which function was
supposed to be evaluated, thus we know not only the state of the program before the
function call, but we know the function call. With this information, if the function body
were provided later, we could resynchronize D with A, B, and C by applying the anal-
ysis to that function body starting from D.

In Figure 7b we show the result after the call to fun2(B). The only accessible re-
gion is B and thus it is desynchronized from the A and C regions. Because D is still
inaccessible, it just becomes farther in time from being synchronized, but it is no more
challenging to resynchronize it. Because B and D are completely distinct regions, there
is no affect on B (or A or C) when resynchronizing D and thus even though B and D
were desynchronized at different times, the resynchronization is no different.

Finally, in Figure 7c we show the result after the call to fun3(C,D). Because it is
possible that the result of region D is accessed here, the same region must be desyn-
chronized again. We show this nested desynchronization in the dashed box. Both C and
D are desynchronized from A, which D is also now desynchronized from C.

To resynchronize everything after Figure 7c, the three functions must be evalu-
ated. However, the order in which the functions are evaluated is irrelevant. Evaluating
fun1(D) first would resynchronize D with C (but not with A). Evaluating fun2(B) first
would resynchronize B with A. Evaluating fun3(C,D) first would resynchronize C with
A and would allow D to be resynchronized with A by only evaluating fun1(D).

Definition 2 (Desynchronized Separation). Desynchronized separation extends the
logic presented in HOO with a desynchronizing term, an extra kind of heap H that
represents a desynchronized portion of the heap along with the function to call and the
arguments to pass to resynchronize that portion of the heap with the surrounding heap.
The heap H now has the following grammar:

Ĥeap � H ::= �H� call Vf (V1, . . . ,Vn) | . . .
To define the concretization of a desynchronized term, concrete values must be ex-

tended with functions. We do not give any specific semantics to these functions, but we
do assume that while they can mutate the heap, they can only mutate the portion of the
heap reachable from global variables, local variables or any closed variables. Essen-
tially, the functions adhere to the standard framing conditions of separation logic [24].
The evaluation of a function is described by the relation

〈σ〉call v(v1, . . . , vn)〈σ′〉
which evaluates a call to the function v starting from state σ, passing arguments v1
to vn and results in state σ′. Note that we assume all variables have been resolved to
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values before evaluating this function and thus no environment is necessary to express
this computation. This minimizes the reachable heap, which may reduce the footprint
of the desynchronized term.

The concretization of HOO with desynchronization is defined as an extension to the
concretization of HOO. Because the signature of the function is not required to change,
we only define the concretization of the new desynchronized terms:

γ(�H� call Vf (V1, . . . ,Vn))
def
=

⎧
⎨

⎩
η, μ, σ

∣
∣
∣
∣
∣
∣

(η, μ, σo) ∈ γ(H) ∧ v ∈ η(Vf )
∧ (v1, . . . , vn) ∈ η(V1)× . . .× η(Vn)
∧ 〈σo〉call v(v1, . . . , vn)〈σ〉

⎫
⎬

⎭

The γ function concretizes the embedded heap H to a pre-state σo and its corresponding
valuation. Then for each possible concrete value of the function and each argument, the
state σ is the result of evaluating that function on those arguments starting from σo. Of
course, what makes it possible to reason about applying a function to a portion of the
heap is separating conjunction. This dictates that the portion of the heap σo was disjoint
from the rest of the heap when the desynchronization was created and thus, after this
call to a possibly unknown function, σ must be disjoint from the rest of the heap as well.

4 Analysis Using Multi-State Abstraction

In this section we formalize analysis using HOO with desynchronized separation and
attribute/value trackers. Because most of the JavaScript language has little effect on
desynchronization or attribute value trackers, we focus on the analysis of two core com-
mands. Other commands are either critical to HOO (loops and branches) and docu-
mented in [8] or are not critical to any of these analyses. The two core commands are:

c ::= call x(y1, . . . , yn) | x1[x2] := x3[x4]

The first command is a call to a function, where the function has been closure con-
verted. We assume the corresponding closure and the global object are passed as argu-
ments. The second command is responsible for copying an attribute/value pair from one
object to another (handling missing attributes appropriately).

Analysis using HOO is standard abstract interpretation [7]. It infers invariants for
each point in the program. Because HOO is a heap abstraction, each command in the
language mutates the heap graph, but does not mutate the pure set abstraction P . De-
structive updates are achieved by swinging pointers to fresh symbols and constraining
those fresh symbols in P .

HOO’s inclusion checking, join, and widening algorithms involve an object matching
procedure where variables are matched, then objects pointed to by those variables are
correspondingly matched. Within each of those objects, partitions are matched. This
matching process proceeds summarizing objects from the same allocation site until all
objects are matched (and summarized).
Inclusion checking: When performing an inclusion check such as the following, there
are two kinds of mappping. The address mapping M : Symbol → Symbol maps
each object symbol from the left-hand side to an object symbol from the right-hand
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side. Whereas the attribute mapping J : P (P (
Symbol

)× Symbol
)

is a set of sets
of attribute partitions from the left-hand side and the corresponding attribute partition
from the right-hand side.

H �P �J
M H ′ �P ′

For each matched partition (F̄,F) ∈ J if each Fi ∈ F̄ is included in F, the inclusion
check can hold. Otherwise it fails. Similarly, for each A1 �→ A2 ∈ M , if A1 is included
in A2, the inclusion check can hold.
Join and widening: When performing join or widening the underlying operation is
similar. The objects must be matched. The difference between the two algorithms is
that the widening algorithm makes use of the underlying widening algorithm for pure
operations and may produce different matchings in order to ensure analysis conver-
gence. There are three kinds of matching for the following join: (1) M1 : Symbol →
Symbol is a mapping from the left-hand side to the result object; (2) M2 : Symbol →
Symbol is a mapping from the right-hand side to the result object; and (3)
J : P (P (

Symbol
)× P (

Symbol
)× Symbol

)
, which is a set of mappings where

each mapping contains a set of attribute partitions from the left-hand side and a set
of attribute partitions from the right-hand side to a single partition in the join result.

H �P �J
M1,M2

H ′ �P ′ = H ′′ �P ′′

For each matched partition (F̄1, F̄2,F
′) ∈ J , F′ must over-approximate

⋃
F̄1 and

⋃
F̄2.

Similarly, for each pair Ai �→ A′ in M1 and M2, A′ in the output of the join must over-
approximateAi in the appropriate input to the join. The algorithm for the join is detailed
in [8].

4.1 Desynchronized Separation

Desynchronized terms can be introduced at any function call. They are automatically
derived by evaluating all of the arguments to symbols, possibly eliminating already ex-
isting desynchronized terms to do so. Once this has been completed, a special function
reach is used to determine the desynchronized region.

reach : P (
Symbol

)× Ĥeap → Ĥeapu × Ĥeapr

The function reach returns a partitioning (Hu, Hr) of the passed heap. The partition
Hr is the part possibly reachable from the arguments of the function, including the
global object and any closed variables. The partition Hu is the part unreachable from
the arguments of the function. With reach, a frame Hu is inferred. The introduction of
desynchronization is given with a transfer function judgment and relies on an abstract
environment Ê to map variables to abstract addresses and then relates a pre abstract
state D1 to a post abstract state D2 via a command c:
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Ê � [D1] c [D2]

DESYNC-INTRO

Ê(x) = Vf

Ê(y1) = V1 · · · Ê(yn) = Vn reach({Vf ,V1, . . . ,Vn}, H) = (Hu, Hr)
H ′ = Hu ∗ �Hr� call Vf (V1, . . . ,Vn)

Ê � [H �P ] call x(y1, . . . , yn) [H ′ �P ]

The splitting of the heap into the function frame Hu and the function footprint Hr is
heuristic. For the analysis to be successful on resynchronization, the footprintHr should
over-approximate all memory that could be accessed by any function to which this call
could resolve. But then this desynchronized memory Hr is no longer accessible in the
analysis of the code after this call (i.e., when accessed, a warning will be raised). Thus,
it may be that with an imprecise reach(), the analysis cannot proceed either on the code
after the call or on resynchronization. In our implementation, we define reach to yield
Hr as the entire reachable heap from the arguments [25], so we allow any function be
used for later resynchronization.

Example 3 (Desynchronization introduction). In Figure 5 there is a call to the client-
supplied initialization function. This is a function that originated outside the class li-
brary and thus is necessarily undefined. When this call occurs, we introduce a desyn-
chronized term representing the effects of this constructor. We use an “arrow-following”
reach() function that determines that one (shown) object is reachable from the argu-
ments and thus in Hr at a : {a2}. This leaves the objects pointed to by attrs in Hu.
The resulting introduced desynchronized term is shown in b .

In other abstract domain operations such as transfer functions, join, widening, or
inclusion checking on a domain constructed with desynchronized separation, desyn-
chronized terms must be treated as unknown, but separate portions of the heap. As a
consequence desynchronized memory is inaccessible as part of transfer functions and
any transfer function that must access it may not proceed:

DESYNC-FRAME

Ê � [H �P ] c [H ′ �P ]

Ê � [H ∗ �Hd� call Vf (V1, . . . ,Vn) �P ] c [H ′ ∗ �Hd� call Vf (V1, . . . ,Vn) �P ]

This DESYNC-FRAME rule is a special case of the separation logic frame rule that
frames out the desynchronized part of memory and applies the transfer function to the
remainder of memory. If this is not well defined because memory in the result of the
desynchronized term must be accessed, either a different definition of reach() should
be used or the code must be changed to ensure that the needed memory is not in a
desynchronized region.

Similar rules apply for join, widening, and inclusion checking. Desynchronized
regions can be joined or widened if they syntactically match, producing the same
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desynchronized region. Otherwise, without employing a variety of precondition gener-
alization, a join or widening can only be completed if the logic supports TRUE, in which
case all precision for this region is lost. Similarly for inclusion checking, only if there
is a syntactic match does it return true for desynchronized regions.
Introduction heuristics and elimination: For the purposes of analyzing JavaScript li-
braries, we use a simple introduction heuristic for desynchronized terms: if a function
call can be resolved to a known function, a desynchronized term should not be intro-
duced. This policy has the effect that desynchronized terms only represent unknown
functions and thus we do not want to eliminate these terms from the heap. In fact, they
nicely represent the callback behavior that occurs in the library in the library’s inferred
postcondition.

However, there are circumstances where such a simple heuristic may be non-optimal,
and it may be desirable to introduce desynchronized terms even when the code for a
called function is available. For example, sufficiently surjective functions [28] are func-
tions where after a number of recursions the effect of continued recursion does not mat-
ter. In these situations desynchronization can represent the behavior of the unbounded
number of recursive calls without actually evaluating all of those calls. Another situ-
ation where desynchronization can benefit is in speeding up the analysis when known
functions may take too long to analyze but where they do not affect the result in any
meaningful way. In these situations, the postcondition includes a desynchronized term
that refers to the known function, but the result of that function has not been evaluated.

If desynchronized terms are introduced anywhere, it may be necessary that due to
access of desynchronized memory, the term that describes that memory has to be elim-
inated. This can be done if, for example, the synchronizing function’s code is available.
The resynchronization process takes advantage of the separation logic frame rule by run-
ning the analysis on the synchronizing function starting from the desynchronized term:

DESYNC-ELIM

· � [Hd �P ] call Vf (V1, . . . ,Vn) [H ′
d �P ] Ê � [H ∗H ′

d �P ] c [H ′ �P ]

Ê � [H ∗ �Hd �P � call Vf (V1, . . . ,Vn)] c [H ′ �P ]

With such an elimination rule it is possible to eagerly introduce desynchronized terms
on every function call and then lazily eliminate them as portions of the heap are needed.

When employing such an elimination rule, it is possible to consider the variety of
ways in which the · � [Hd �P ] call Vf (. . .) [H ′

d �P ] judgment could be satisfied.
One way is if each function in Vf can be resolved to known code. In this case the
analyzer can be run on each resolvent and a disjunction of postconditions considered.
Alternatively, the formula H could carry the information to satisfy this judgment in the
form of a nested Hoare triple [26].

Example 4 (Desynchronization elimination). A region of the heap can be resynchro-
nized by eliminating a desynchronized term:
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Here, the region C is resynchronized with B by analyzing the call to fun1(C) starting
from the memory state C resulting in memory state C′. Note that this resynchronization
does not require analyzing fun2(B,C

′). This combined region can stay desynchronized
if none of the desynchronized memory is required to proceed with the analysis.

Theorem 1 (Soundness of desynchronization introduction). Desynchronization in-
troduction is sound because the following property holds: for all E, Ê, σ, σ′, H,H ′, P .
E � 〈σ〉call x(y1, . . . , yn)〈σ′〉 and Ê � [H �P ] call x(y1, . . . , yn) [H ′ �P ] and
(η, σ) ∈ γ(H �P ) implies that there exists η′ such that (η′, σ′) ∈ γ(H ′ �P ).

4.2 Attribute/Value Trackers

The primary benefit of attribute/value trackers occurs when they can be preserved from
one abstract state to the next. To do so requires extending HOO transfer functions for
the multi-state abstractions. The extension is trivial by appending the abstract heap from
the precondition to each state in the transfer functions:

Ê � [H �P ] c [H ′ �P ]

Ê � [
[H ]H1

�P ]
c
[
[H ′]H1

�P ]

To utilize attribute/value trackers, they must be introduced and managed appropri-
ately. The goal is to reuse the same tracker whenever it is possible to do so and to only
introduce fresh trackers when it is otherwise impossible. A key aspect of trackers is that
the domain of a tracker is determined by the corresponding attribute set F at the point
of introduction and thus the same tracker can be applied to any attribute set F′ such that
F′ ⊆ F if the values also match appropriately.

There are three key steps in managing this behavior of attribute/value trackers. First,
materialization is responsible for splitting a singleton set off of a summary. In doing so,
trackers can be preserved, even when the partition tied to a particular tracker is split.
Second, trackers can be transfered along with attributes and values when an attribute/-
value pair is copied from one object to another. Finally, trackers can be introduced when
not otherwise available.
Materializing with attribute/value trackers: Since JavaScript does not have operations
that allow many attributes and values to be copied or manipulated at once, a key op-
eration for maintaining precision with attribute/value trackers is preserving them when
splitting summarized objects/attributes/values so that there is a single attribute/value
pair from a single object to be copied to another object. This operation is materializa-
tion and is described in Figure 8 in three parts.
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D1 ⇒ D2

MAT-VALUE
v is fresh P ′ = P ∧ {v} ⊆ V

[H2 ∗{a} · 〈O; {f} : ρ 
→ V〉]H1
�P ⇒ [H2 ∗{a} · 〈O; {f} : ρ 
→ {v}〉]H1

�P ′

MAT-ATTR
F′ is fresh P ′ = P ∧ {f} � F′ = F P ′′ = P ∧ {f} ∩ F = ∅

[H2 ∗{a} · 〈O; F : ρ 
→ V〉]H1
�P ⇒[

H2 ∗{a} · 〈O; F′ : ρ 
→ V; {f} : ρ 
→ V〉]
H1

�P ′ ∨ [H2 ∗{a} · 〈O; F : ρ 
→ V〉]H1
�P ′′

MAT-ADDR
A′ is fresh P ′ = P ∧ {a} �A′ = A P ′′ = P ∧ {a} ∩A = ∅

[H2 ∗A · 〈O〉]H1
�P ⇒ [

H2 ∗{a} · 〈O〉 ∗A′ · 〈O〉]
H1

�P ′ ∨ [H2 ∗A · 〈O〉]H1
�P ′′

Fig. 8. Materialization of all of the parts of objects never produces fresh attribute/value trackers.
It reuses existing trackers.

Each materialization rule is of the form D1 ⇒ D2 and thus intended to be used
with the rule of consequence from Hoare logic [16] to allow a future rule to be ap-
plied. For example, rules for assignment (next section) can only be applied to singleton
object addresses, singleton attributes, and often singleton values. By applying materi-
alization correctly, an abstract heap element that consists of summary object addresses,
summary attributes, and summary values can be converted to the appropriate singleton
form without loss of precision, assuming a precise pure domain.

The first rule for materialization MAT-VALUE materializes a single value from a
summary value, assuming that the object address, and attribute are already material-
ized. Because the object address and attribute are singletons, it must be that there is
a singleton value {v} and thus it can be materialized from the summary V. Doing so
produces the additional constraint that {v} is a subset of V. Because the materialized
value {v} is a fresh variable, this added constraint does not affect soundness.

The second rule for materialization is the primary rule for materializing attribute/-
value trackers. The MAT-ATTR rule splits an attribute set F into two attribute sets F′ and
{f}. There are two possible outcomes of this split. Either {f} was already a subset of F,
in which case the materialization can proceed, or {f} is disjoint from F, in which case
there is no materialization. In the case that the materialization proceeds, when the set F
is split into two, both new partitions can be assigned the same tracker as was present in
the original partition. This is because such a split does not require an extension of the
domain of the tracker.

This second rule is applied whenever an object is being read. The attribute that is
being read must be materialized from each partition of the object that may contain
the attribute in question. Therefore, the read operation must consider a case where the
attribute is in each partition of the object. The resulting pure constraints of MAT-ATTR

may thus produce conflicts, causing such cases to be dropped.
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A-OVERWRITE-DISTINCT

Ê(x1) = a1 Ê(y) = f Ê(x2) = a2

Ê �

[[
H1 ∗{a1} · 〈O1; {f} : ρ1 �→ V1〉 ∗{a2} · 〈O2; {f} : ρ2 �→ {v2}〉

]
H0

�P]

x1[y] := x2[y][[
H1 ∗{a1} · 〈O1; {f} : ρ2 �→ {v2}〉 ∗{a2} · 〈O2; {f} : ρ2 �→ {v2}〉

]
H0

�P]

Fig. 9. Example abstract transfer function for assignment where the attribute/value tracker ρ2 is
transfered from the object at a2 to the object at a1

The third rule for materialization MAT-ADDR also manipulates attribute/value track-
ers, but less directly than the previous rule. This rule materializes a particular address
{a} from a summary of addresses A. Like the previous rule, if {a} is a subset of A,
the summary can be split. When this split occurs, the whole object definition is dupli-
cated. Consequently each tracker is also duplicated. In the event that the materialization
cannot occur, this constraint is added to indicate in the future that such an attempt was
already considered.

Example 5 (Materializing a summary). Consider the heap abstraction
[A · 〈F : ρ �→ V〉]H1

�{a} ⊆ A ∧ {f} ⊆ F. If the analysis needs to read from a[f], this
must be materialized. To achieve the following heap abstraction first the MAT-ADDR

rule is applied, then the MAT-ATTR rule is applied to the result, then the rule MAT-
VALUE is applied:

[
A′ · 〈F : ρ �→ V〉 ∗
{a} · 〈F′ : ρ �→ V; {f} : ρ �→ {v}〉

]

H1

� {a} � A′ = A
∧ {f} � F′ = F
∧ {v} ⊆ V

Transfering attribute/value trackers: Attribute/value trackers are transfered from one
object to another by assignment. For simplicity, we assume here that all assignments
between objects are transformed into the form of a simultaneous read from an object
and a write to another object. When the attribute being read and written matches so that
an attribute/value pair is being copied, there is an opportunity to transfer that attribute/-
value pair from one object to the other. When this transfer happens, the attribute/value
tracker can be transfered as well.

Figure 9 shows one of the transfer functions that enables an attribute/value tracker
transfer. The A-OVERWRITE-DISTINCT rule uses the abstract environment Ê to map
variables onto addresses and then if the same attribute exists in two distinct objects the
transfer occurs, in this case replacing ρ1 with ρ2.
Introducing attribute/value trackers: Attribute/value trackers should be introduced at
chosen program points where the first of the paired states is selected. For example, when
constructing an initial abstract state, it would be reasonable to express it as [H ]H �P
where the two described heaps are identical. In this instance, fresh attribute/value track-
ers should be introduced for each partition in H . This establishes the initial relationship
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between the initial abstract state and the current abstract state and then any attribute/-
value trackers that are preserved strengthen the relationship between the two states.

Additionally, attribute/value trackers can be introduced at other times. The benefits
of doing so are less significant as freshly introduced trackers cannot relate objects from
one time to another, but instead are limited to relating multiple objects in the same time.
However as trackers are incomparable unless they are equal, freely introducing fresh
trackers will prevent inclusion checking from succeeding and prevent the analysis from
terminating. In the current implementation, we avoid this problem by only introducing
absent trackers – after the precondition.
Other domain operations: Other domain operations such as join, widening, and inclu-
sion check are largely the same as with HOO. Attribute/value trackers form a partition-
by-partition lattice where any tracker ρ � –. Join, widening, and inclusion follow from
this: identical trackers can be matched and maintained through join and widening. Dif-
fering trackers must be replaced with –.

Theorem 2 (Soundness of tracker materialization). Tracker materialization is sound
because the following property holds:
For all D,D′, η, σ1, σ2. D ⇒ D′ and (η, σ1, σ2) ∈ γ(D) implies that (η, σ1, σ2) ∈
γ(D′).

Theorem 3 (Soundness of transfer functions). Transfer functions including desyn-
chronization introduction, elimination, framing, and attribute/value tracker transfer are
sound because the following property holds:
For all D,D′, σ, σ′, σ0, η. E � 〈σ〉c〈σ′〉 and Ê � [D] c [D′] and (η, σ0, σ) ∈ γ(D)
implies that there exists a η′ such that (η′, σ0, σ

′) ∈ γ(D′)

5 Empirical Evaluation

In this section, we evaluate the use of desynchronized separation and attribute/value
trackers on JavaScript meta-feature libraries – libraries that add language features to
JavaScript through the use of object manipulation and callbacks. To do so, we test two
hypotheses: (1) Does desynchronization provide the necessary precision for analyzing
libraries that call unknown functions. (2) Do attribute/value trackers provide necessary
precision for analyzing libraries that manipulate objects with unknown attribute/value
relationships.

To evaluate these hypotheses, we identified several classes of meta-feature libraries
that are available in JavaScript: classes, traits1, mixins2, and memoization3. From each
of these candidates, we selected a small, but complex core (Table 1a) and annotated
that functionality with preconditions. These preconditions indicate aliasing in the heap
as well as give names to sets of attributes. Then, on each library, we compared expected
postconditions against those generated by the JSAna analyzer for JavaScript, which is
based on HOO with desynchronized separation and attribute value trackers.

1 Extracted from http://soft.vub.ac.be/˜tvcutsem/traitsjs/
2 Extracted from http://prototypejs.org/ 3 Extracted from
https://developers.google.com/closure/library/

http://soft.vub.ac.be/~tvcutsem/traitsjs/
http://prototypejs.org/
https://developers.google.com/closure/library/
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Table 1. Results of running HOO with desynchronized separation and attribute/value trackers on
JavaScript meta-feature libraries

(a) Test Library Code: Stmts is the
number of statements in the pro-
gram after preprocessing and lower-
ing. Vars is the peak number of pure
symbols used in the analysis. JP is the
number of join points.

Test Stmts Vars JP Time (s)

Mixin 33 52 1 0.16
Traits 131 111 1 7.20
Memo 149 179 0 0.24
Class 128 118 1 8.13

(b) Properties: HOO is a property proven solely by
HOO. D is HOO with desynchronized separation. T is
HOO with attribute/value trackers. D+T is HOO with
both enhancements.

Test Property HOO D T D+T

Traits Conflict managed ✓ ✓ ✓ ✓

Memo In table ✓ ✓ ✓ ✓
Class Constructor Call ✗ ✓ ✗ ✓

Memo Call saved ✗ ✓ ✗ ✓

Mixin Object extended ✗ ✗ ✓ ✓
Traits Object extended ✗ ✗ ✓ ✓

Class Resulting Object ✗ ✗ ✗ ✓

The results of these experiments are shown in Table 1b. The first two properties are
able to be proven solely with HOO. In the Traits example, which combines two objects
into one, when the same attribute is present in both source objects, a single, global
conflict value is used in the place of either source value. Because it is a single value,
partitioning is sufficient to distinguish it. Similarly, in Memo, while Memo makes a
call to an unknown function, if the precondition indicates that the call has already been
memoized, that function call never happens and thus HOO’s object-level reasoning,
given a sufficiently precise set domain, is fully precise.

The second two properties actually require analyzing calls to unknown functions. In
Class, this is the call to the initializer, and in Memo, this is the call to the memoized
function. In both cases, the reachability analysis identifies suitable heap regions to al-
low the analysis to be fully precise. By comparison HOO, without desynchronization,
cannot handle these calls and thus cannot prove the desired property.

The two object extended properties reason about the precise extension of objects
that occurs in mixins and traits. In Mixin, an existing object has a number of attributes
and corresponding values that may be overwritten by adding attributes and values from
another object into it. Similarly, the Traits adds attribute and values from two different
objects. Maintaining exact relationships between attributes and values is impossible
without the use of attribute/value trackers, which allow the inferred postconditions for
these analyses to be fully precise.

The last property, which checks that the instance created by the class is correct
requires both attribute/value trackers and desynchronization to be precise. Because
it uses both object manipulations and calls to the initializer, this indicates that these
two additions are complementary and necessary for analyzing meta-feature libraries in
JavaScript.

While it is not a goal to highly optimize for performance at this time, the results
suggest that the analysis time is dependent on the number of pure symbols (Vars) and
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the number of join points (JP). When the number of variables increases (as long as there
are join points), the overall analysis slows down. As in [8], nearly all of the cost can be
attributed to the exponential set domain, which is implemented using binary decision
diagrams. On top of this, the overhead of adding desynchronization and attribute/value
trackers is negligible.

6 Discussion

In this section, we discuss the features and limitations of the analysis by considering two
of the benchmarks in more detail. Additionally, we give some perspective on situations
where the analysis loses precision.

6.1 Case Study: Class

The class benchmark is similar to the function Class presented in the introduction
and the overview. Here we examine the similarities between the theory presented in the
overview and what occurs in practice. We use program points from the overview for
reference to the code used in the benchmark (which is complicated by more complete
JavaScript support).

The analysis of the copy function proceeded exactly as shown in the overview. On
each iteration of the analysis, a tracker was duplicated via materialization. That tracker
was transfered to the result object. Consequently, the postcondition 2 of copy was
fully precise.

The desynchronization also works as expected. Critically, reachability identifies that
a1 and the local variable result are both outside the desynchronized region. This
means that these things are unmodified by the call to the client-supplied initializer.
Consequently, the resulting postcondition shows that the result object is the object cre-
ated by the constructor and that constructor always produces exactly the same object
attributes and values prior to the call to the client-supplied initializer regardless of how
many times it is called.

6.2 Case Study: Memoization

The Memo benchmark transforms a function into a memoized version of that function.
To accomplish this, it first translates the arguments array into a unique identifier by
calling a uid() function passing it the entire arguments object. Then it determines if
that unique identifier is already in the memoization table. If so, it returns the value from
the table. Otherwise it calls the function to be memoized, f, passing it arguments (via
JavaScript’s apply functionality) and then memoizing the result.

Each of the function calls is challenging. The uid() function is essentially a hash
function. It is responsible for converting data of any type into a unique string suitable
for use in indexing into an object. Because hash functions are typically hard to analyze
and this is a hash function that hashes to strings, this function presents a problem for
analysis. Even if we had the code for it, it would be undesirable to analyze it.
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Fig. 10. Desynchronization phases of the memoization example

The second function call is also challenging because it is a callback into client-
supplied code. The behavior of the function could be anything. It could have side-effects
or it could be pure. Its only restriction is from JavaScript being memory safe (it cannot
create pointers to previously unreachable parts of the heap).

Both of these problems are addressed by desynchronization as shown in Figure 10.
Figure 10 shows as representation of the postcondition of the library function. In it we
can see that not only was the callback to the client-supplied function f() desynchro-
nized, but the call to uid() was desynchronized. Additionally, because the arguments
object may have been modified by the uid() function, it is necessary to nest the desyn-
chonizations to represent the result.

Nested desynchronization allows continuation-like behavior to be analyzed over parts
of the program. Here the arguments object was possibly modified by the uid function
before being possibly modified by the callback. The benefit of this nested structure is
even if there is a sequence of functions that all touch the same memory, analysis can
proceed by nesting all of these individual functions.

6.3 Boundaries of Analysis and Future Improvements

While our results suggest that both desynchronization and attribute/value trackers can
be effective on JavaScript code, there are limitations to the precision. The most signif-
icant limitation is that attribute/value trackers are dropped when direct copies are not
used. In particular, complex, nested copies are not currently supported by these trackers.
For example, the following code wraps each value inside a newly allocated object.

result[a] = {value: attrs[a]};

Without the ability to reason about intermediary objects, full precision cannot be main-
tained and such abstractions fall back to what HOO can do. However, this behavior does
not appear to occur in most libraries and thus may not be a significant issue. Adding
support for this particular case is another form of tracker, but the inference of such
trackers remains challenging.

While we find that reachability is a suitable heuristic for the analysis of many li-
braries, it may be overly pessimistic. In certain situations developers intentionally make
portions of libraries globally mutable, but mutation is still not the common case.

7 Related Work

JavaScript specification and analysis: JuS [12] is an abduction-based inference tool
for JavaScript targeted at the prototype and the scope chain. It is based on a detailed
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model of JavaScript semantics [2, 11] and thus automation is limited to resolving vari-
able lookup through a prototype and scope chain. DJS [5, 6], which is a specification
language and a dependent refinement type system for JavaScript, by comparison is more
restricted in its support of JavaScript and thus offers more automation in that straight-
line code can be reliably analyzed (loops and functions require annotations). The work
presented in this paper automates discovery of loop invariants and callback summaries.
This is significantly more automation than is provided by existing systems without sac-
rificing language features.

TAJS [17, 18], WALA [27], JSAI [15, 19], and SAFE [1, 21] are whole-program
JavaScript analyses. Unlike the above systems, they require no annotations at all and are
highly automated. However, they are ill suited to analyzing partial programs as is the
case when verifying libraries. Because whole-program analysis has extensive context
information, including object attributes and function bodies, there is less complexity
involved in handling first-class functions (the function body can usually be resolved) or
open objects (the attribute names are often fully known) and thus the abstractions used
by these analyzers are incomparable to those that we employ.

The idea of attribute/value trackers comes from correlation tracking [27], which is
implemented in both WALA and TAJS. Correlation tracking uses context sensitivity
to exactly determine the constant attribute/symbolic value pairs needed for loops. At-
tribute/value trackers generalize this to symbolic attribute/symbolic value pairs that are
each elements of summaries.
Higher-order separation logic and contracts: Desynchronized separation is closely
tied to the concept of nested Hoare triples [26] and higher-order separation logic [20].
However, there are several key differences.

The goal of desynchronized separation is fundamentally different from that of nested
Hoare triples. Unlike desynchronized separation, nested Hoare triples are intended to be
used in program logics and not for automated inference. While there are efforts to au-
tomate some amount of reasoning [4], current techniques require significant annotation
overhead and perform no inference, only inclusion checking.

The other significant difference is that nested Hoare triples strive for complete gen-
erality. A desynchronized term carries the following correspondence with nested Hoare
triples:

�H1� call Vf (V1, . . .Vn) ∗Ho ⇒ ∃H2. [H1] call Vf (V1, . . .Vn) [H2] ∧H2 ∗Ho

where an equivalence holds if an appropriate H2 is chosen. The additional heap Ho

is here to illustrate the key differentiating factor. A nested Hoare triple is a pure part of
a formula that describes a value whereas a desynchronized term describes a heap that
results from calling a function. The ∗Ho illustrates which parts of the description are
heap and which are pure.

The process of inference using desynchronization is significantly simpler than using
nested Hoare tripes. This is due to the fact that desynchronization is less expressive than
nested Hoare triples. There are fewer existentially quantified variables, and there is no
need to treat portions of the heap that are simply passed through the unknown function
call as separate portions of the heap that are manipulated. As a result, it is possible to
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(1) easily adapt existing separation-logic-based analyses to certain higher-order tasks
and (2) easily perform necessary heap splits during the analysis because there are two
possible ways the heap can be split.

The key idea of nested Hoare triples is also similar to static contract checking for
higher order languages [23, 29], which requires a pure specification of any callback’s
behavior up front. It is also similar to [22], except that it relies on separation logic and
is applied to a stronger heap abstraction.

The goal of desynchronized separation is to not require a specification for callbacks
at all, if the developer is judicious with built-in language protection mechanisms. In
the event that memory is insufficiently protected, or the reachability analysis is too
coarse, our analysis could be extended with nested Hoare triple specifications. In such
a scenario, the nested Hoare triple is essentially the same as a resolvable function call.
However, it is possible to imagine a simpler specification where only a footprint for the
unknown function is specified. In this case, desynchronization would be required, but it
would be applied to specified footprint (instead of using heap reachability to determine
the split).
Container analysis: A significant part of HOO resembles an analysis for containers.
Keeping track of object attribute names and values is similar to what is required for rea-
soning about mapping containers. The analysis in [10] also uses uninterpreted functions.
However, the purpose of their uninterpreted functions is not to keep track of unknown
attribute/value relationships, but instead to handle the sparsity problem of containers.
Instead, they use uninterpreted functions to map a elements of a key/attribute type to a
natural number that is the array index containing the value. The value arrays are then
represented and manipulated using fluid updates [9].
Uninterpreted functions: There are several analyses [3, 13] that use uninterpreted func-
tions to combine multiple abstract domains. While this work is also used for object and
heap abstractions, the purpose of uninterpreted functions is different from attribute/-
value trackers. The uninterpreted functions in [3, 13] are used to transfer information
between multiple abstract domains, whereas attribute/value trackers disambiguate indi-
vidual symbolic elements of summaries across an analysis.

8 Conclusion

In this paper, we presented two multi-state abstractions that build upon abstract do-
mains for heaps like HOO. Desynchronized separation gives a means for automatically
reasoning about callbacks to unknown functions, while attribute/value trackers improve
upon the partitioning of object attributes performed by HOO by maintaining consistent
relationships between symbolic attribute names and symbolic values that are both mem-
bers of summaries. Collectively these multi-state abstractions enable precise analysis of
several core routines in JavaScript libraries.
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Abstract. Even though their architecture relies on robust security prin-
ciples, it is well-known that poor programming practices may expose
browser extensions to serious security flaws, leading to privilege escala-
tions by untrusted web pages or compromised extension components. We
propose a formal security analysis of browser extensions in terms of a fine-
grained characterization of the privileges that an active opponent may
escalate through the message passing interface and we discuss to which
extent current programming practices take this threat into account. Our
theory builds on a formal language that embodies the essential features
of JavaScript, together with few additional constructs dealing with the
security aspects specific to the browser extension architecture. We then
present a flow logic specification estimating the safety of browser exten-
sions modelled in our language against the threats of privilege escalation
and we prove its soundness. Finally, we show the feasibility of our ap-
proach by means of Chen, a prototype static analyser for Google Chrome
extensions based on our flow logic specification.

1 Introduction

Browser extensions customize and enhance the functionalities of standard web
browsers by intercepting and reacting to a number of events triggered by naviga-
tion, page rendering or updates to specific browser data structures. While many
extensions are simple and just installed to customize the navigation experience,
other extensions serve security-critical tasks and have access to powerful APIs,
providing access to the download manager, the cookie jar, or the navigation his-
tory of the user. Hence, the security of the web browser (and the assets stored
therein) ultimately hinges on the security of the installed browser extensions.
Just like browsers, extensions typically interact with untrusted and potentially
malicious web pages: thus, all modern browser extension architectures rely on
robust security principles, such as privilege separation [31].

Browser Extension Architecture. Privilege separated software architectures re-
quire programmers to structure their code in separated modules, running with
different privileges. In the realm of browser extensions, privilege separation is
implemented by structuring the extension in two different types of components:
a privileged background page, which has access to the browser APIs and runs
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isolated from web pages; and a set of unprivileged content scripts, which are
injected into specific web pages, interact with them and are at a higher risk of
attacks [4,10]. The permissions available to the background page are defined at
installation time in a manifest file, to limit the dangers connected to the com-
promise of the background page. Content scripts interacting with different web
pages are isolated one from each other by the same-origin policy of the browser,
while process isolation protects the background page. The message passing inter-
face available to extensions only allows the exchange of serialized JSON objects1

between different components, hence pointers cannot cross trust boundaries.

Language Support for Privilege Separation. We are interested here in under-
standing to which extent current browser extension development frameworks,
such as the Google Chrome extension APIs, naturally support privilege sep-
aration and comply with the underlying security architecture. Worryingly, we
notice that in these frameworks a single privileged module typically offers a uni-
fied entry point to security-sensitive functionalities to all the other extension
components, even though not all the components need to access the same func-
tionalities and different trust relationships exist between different components.

To make matters worse, current programming patterns adopted in browser
extensions do not safeguard the programmer against compromised components,
even though the underlying privilege separated architecture was designed with
compromise in mind. Compromise adds another layer of complexity to security-
aware extension development, since corrupted extension components may get
access to surprisingly powerful privileges.

1.1 Motivating Example

We illustrate our argument with a simple, but realistic example, inspired by
one of the many cookie managers available in the Chrome Web Store (e.g.,
EditThisCookie). Consider an extension which allows users to add, delete or
modify any cookie stored in the browser through an intuitive user interface. Ad-
ditionally, it allows web pages to specify a set of security policies for the cookies
they register: these client-side security policies are enforced by the extension and
can be used to significantly strengthen web authentication [6,7].

The extension is composed of three components: two content scripts C and O,
and a background pageB. The background page is given the cookies permission,
which grants it access to the browser cookie jar. The content script O is injected
in the options.html page packaged with the extension and it provides facilities
for cookie editing; when the user is done with his changes, O sends B a message
and instructs it to update the cookie jar. The content script C, instead, is injected
in the DOM of any HTTPS web page P opened by the browser: it is essentially a
proxy, which forwards to B the security policies specified by P using the message
passing interface. The messages sent by P are extended by C with an additional
information: the website which specified the security policy.

1 http://json.org
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A possible run involving the described components is the following, where the
last message is triggered by a user click:

P → C : {tag: "policy", spec: "read-only"}
C → B : {tag: "policy", site: "paypal.com", spec: "read-only"}
O → B : {tag: "upd", ck: {dom: "a.com", name: "res", value: "1440x900"}}

Using the Google Chrome extension API, the components are programmed in
JavaScript, typically by registering appropriate listeners for incoming messages.
For instance, the content script C can be programmed as follows:

1 window.addEventListener ("message", function (event) {

2 /* Accept only internal messages */

3 if (event.source != window) { return; }

4 /* Get the payload of the message */

5 var obj = event.data;

6 /* Extend the message with the site and forward it */

7 obj.site = window.location .hostname;

8 chrome.runtime.sendMessage (obj);

9 }, false);

Web pages can communicate with C by using the window.postMessage

method available in JavaScript, thus opting-in to custom client-side protection.
The background page B, instead, is typically programmed as follows:

1 chrome.runtime.onMessage .addListener (

2 function (msg , sender , sendResp ) {

3 /* Handle the reception of new policies */

4 if (msg.tag == "policy") {

5 /* Store a new (valid) policy for the site */

6 if (is_valid (msg.spec))

7 localStorage .setItem (msg.site , msg.spec);

8 else console.log ("Invalid policy");

9 }

10 /* Handle requests for cookie updates */

11 else if (msg.tag == "upd") {

12 chrome.cookies.set (msg.ck);

13 }

14 else console.log ("Invalid message");

15 });

This tag-based coding style featuring a single entry point to the background
page is very popular, since it is easy to grasp and allows for fast prototyping,
but it also fools programmers into underestimating the attack surface against the
extensions they write. In this example, a malicious web page can compromise the
integrity of the cookie jar by exploiting the poorly programmed content script
C through the following method invocation:

window.postMessage ({tag: "upd", ck: {dom: "google.com",

name: "SID", value: "aQe73ajs..."}});
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This allows the web page to carry out dangerous attacks, like session fixation
or login CSRF on arbitrary websites [7]. The issue can be rectified by including
a sanitization in the code of C and by ensuring that only messages with the
"policy" tag are delivered to the background page.

The revised code is more robust than the original one and it safeguards the
extension against the threats posed by malicious (or compromised) web pages.
Unfortunately, it does not yet protect the background page against a compro-
mised content script: if an attacker is able to exploit a code injection vulnerability
in C, he may force the content script into deviating from the intended commu-
nication protocol. Specifically, an attacker with scripting capabilities in C may
forge arbitrary messages to the background page and taint the cookie jar.

A much more robust solution then consists in introducing two distinct com-
munication ports for C and O, and dedicating these ports to the reception of
the two different message types (see Section 5). This is relatively easy to do in
this simple example, but, in general, decoupling the functionalities available to
the background page to shield it against privilege escalation is complex, since n
different content scripts or extensions may require access to m different, possibly
overlapping sets of privileged functionalities.

1.2 Contributions

Our contributions can be summarized as follows:

1. we model browser extensions in a formal language that embodies the essential
features of JavaScript, together with a few additional constructs dealing with
the security aspects specific to the browser extension architecture;

2. we formalize a fine-grained characterization of the privileges which can be
escalated by an active opponent through the message passing interface, as-
suming the compromise of some untrusted extension components;

3. we propose a flow logic specification estimating the safety of browser exten-
sions against the threats of privilege escalation and we prove its soundness,
despite the best efforts of an active opponent. We show how the static anal-
ysis works on the example above and supports its secure refactoring;

4. we presentChen (CHrome Extension aNalyser), a prototype tool that imple-
ments our flow logic specification, providing an automated security analysis
of existing Google Chrome extensions. The tool opens the way to an au-
tomatic security-oriented refactoring of existing extensions. We show Chen

at work on ShareMeNot [30], a real extension for Google Chrome, and we
discuss how the tool spots potentially dangerous programming practices.

2 Related Work

Browser Extension Security. Carlini et al. performed a security evaluation of the
Google Chrome extension architecture by means of a manual review of 100 pop-
ular extensions [10]. Liu et al. further analysed the Google Chrome extension
architecture, highlighting that it is inadequate to provide protection against
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malicious extensions [21]. Guha et al. [15] proposed a methodology to write
provably secure browser extensions, based on refinement typing; the approach
requires extensions to be coded in Fine, a dependently-typed ML dialect. Karim
et al. developed Beacon, a static detector of capability leaks for Firefox exten-
sions [20]. A capability leak happens when a component exports a pointer to a
privileged piece of code. These leaks violate the desired modularity of Firefox
extensions, but they cannot be directly exploited by content scripts, since the
message passing interface prevents the exchange of pointers. Finally, information
flow control frameworks have been proposed for browser extensions [13,3].

Privilege Escalation Attacks. Privilege escalation attacks have been extensively
studied in the context of Android applications, starting with [12,29]. Fragkaki
et al. formalized protection against privilege escalation in Android applications
as a noninterference property, which is then enforced by a dynamic reference
monitor [14]. Bugliesi et al. presented a stronger security notion and discussed a
static type system for Android applications, which provably enforces protection
against privilege escalation [8]. The present paper generalizes both these pro-
posals, by providing a fine-grained view of the privileges leaked to an arbitrarily
powerful opponent. Akhawe et al. [2] pointed out severe limitations in how priv-
ilege separation is implemented in browser extension architectures. Their work
has been very inspiring for the present paper, which provides a formal counter-
part to many interesting observations contained therein. For instance, [2] defines
bundling as the collection of disjoint functionalities inside a single module run-
ning with the union of the privileges required by each functionality. Our formal
notion of privilege leak captures the real dangers of permission bundling.

Formal Analysis of JavaScript. Maffeis et al. formalized the first detailed op-
erational semantics for JavaScript [22] and used it to verify the (in)security of
restricted JavaScript subsets [23]. Jensen et al. proposed an abstract interpre-
tation framework for JavaScript in the realm of type analysis [18]. Guha et al.
defined λJS as a relatively small core calculus based on a few well-understood
constructs, where the numerous quirks of JavaScript can be encoded with a rea-
sonable effort [16]. The adequacy of the semantics has been assessed by extensive
automatic testing. The calculus has been used to support static analyses to de-
tect type errors in JavaScript [17] and to verify the correctness of JavaScript
sandboxing [28]. We also develop our flow analysis on top of λJS , extending it
to reason about browser extension security. An alternate solution would have
been to base our work on S5 [27]. This approach would have allowed to analyse
browser extensions using ECMA5-specific features, but at the cost of significantly
complicating the formal development.

3 Modelling Browser Extensions

Our language embodies the essential features of JavaScript, formalized as in
λJS [16], up to a number of changes needed to deal with the security aspects
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specific to the browser extension architecture. In our model, several expressions
run in parallel with different permissions and are isolated from each other: com-
munication is based on asynchronous message exchanges.

3.1 Syntax

We assume disjoint sets of channel names N (a, b,m, n) and variables V (x, y, z).
We let r range over a set of references R, and we assume a lattice of permissions
(P ,�), letting ρ range over P . The syntax of the language is given below:

Constants c ::= num | str | bool | unit | undefined,
Values v ::= n | x | c | r� | λx.e | {−−−−−→stri : vi}
Expressions e ::= v | let x = e in e | e e | op(−→ei ) | while (e) { e }

| if (e) { e } else { e } | e; e | e[e] | e[e] = e
| delete e[e] | ref � e | deref e | e := e
| e〈e � ρ〉 | exercise(ρ)

Systems s ::= μ;h; i Memories μ ::= ∅ | μ, r� ρ�→ v

Handlers h ::= ∅ | h, a(x � ρ : ρ′).e Instances i ::= ∅ | i, a{|e|}ρ
All the value forms are standard, we just note that references r� bear a label

�, taken from a set of labels L. Labels identify the program point where refer-
ences are created: this is needed for the static analysis and plays no role in the
semantics. As usual, the lambda abstraction λx.e binds x in e.

As to expressions, the first three lines correspond to standard constructs in-
herited from λJS , including function applications, basic control-flow operators,
and the usual operations on records (field selection, field update/creation, field
deletion) and references (allocation, dereference and update). As anticipated, ref-
erence allocation comes with an annotation �. We leave unspecified the precise
set of primitive operations op. The expression let x = e in e′ binds x in e′.

The last line of the productions includes the new constructs added to λJS .
The expression a〈v � ρ〉 sends the value v on channel a. In order for the sender
to protect the message, the expression specifies that the value can be received
by any handler with at least permission ρ that is listening on a. The expression
exercise(ρ) exercises the privilege ρ. This construct uniformly abstracts any
security-sensitive operation, such as the call to a privileged API, which requires
the permission ρ to successfully complete the task.

We let h range over multisets of handlers of the form a(x � ρ : ρ′).e. The
handler a(x � ρ : ρ′).e listens for messages on the channel a. When a value v
is sent over a, a new instance of the handler is spawned to run the expression
e with permission ρ′, with the bound variable x replaced by v. The handler
protects its body against untrusted senders by specifying that only instances
with permission ρ can be granted access. Intuitively, the body of a handler
corresponds to the function passed as a parameter to the addListenermethod of
chrome.runtime.onMessage. Different handlers can listen on the same channel:
in this case, only one handler is non-deterministically dispatched. We often refer
to a handler with the name of the channel where it is registered.
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Table 1. Small-step operational semantics of systems (s
α−→ s′)

(R-Sync)

h = h′, b(x � ρs : ρb).e ρs � ρa ρr � ρb v serializable

μ;h; a{|E〈b〈v � ρr〉〉|}ρa
〈a:ρa,b:ρb〉−−−−−−−→ μ; h; a{|E〈unit〉|}ρa , b{|e[v/x]|}ρb

(R-Set)

μ;h; i
α−→ μ′;h′; i′

μ;h; i, i′′ α−→ μ′;h′; i′, i′′

(R-Exercise)

ρ � ρa

μ;h; a{|E〈exercise(ρ)〉|}ρa a:ρa�ρ−−−−−→ μ;h; a{|E〈unit〉|}ρa

(R-Internal)

μ; e ↪→ρ μ′; e′

μ;h; a{|e|}ρ ·−→ μ′;h; a{|e′|}ρ

E ::= • | let x = E in e | E e | v E | op(−→vi , E,−→ej ) | if (E) { e } else { e }
| E[e] | v[E] | E[e] = e | v[E] = e | v[v] = E | E; e | E〈e � ρ〉 | v〈E � ρ〉
| delete E[e] | delete v[E] | ref � E | deref E | E := e | v := E.

We let i range over multisets of running instances of the form a{|e|}ρ. The
instance a{|e|}ρ is a running expression e, which is granted permission ρ. The
instance is annotated with the channel name a corresponding to the handler
which spawned it.

We let μ range on memories, i.e., sets of bindings of the form r�
ρ�→ v. A

memory is a partial map from (labelled) references to values. The annotation ρ
on the arrow records the permission of the instance that created the reference,
and at the same time tracks the permissions required to have read/write access

on the reference. Given a memory μ, we let dom(μ) = {r | r� ρ�→ v ∈ μ}.
Finally, a system is defined as a triple s = μ;h; i. Intuitively, a system evolves

by letting running instances (i) communicate through the memory μ when they
are granted exactly the same permissions, (ii) spawn new instances by sending
messages to handlers in h, and (iii) perform internal computations.

3.2 Semantics

The small-step operational semantics of the calculus is defined in terms of a
labelled reduction relation between systems s

α−→ s′. Labels play no role in the
semantics of systems: they are just used to track useful information that is needed
in the proofs. The syntax of labels α is defined as follows:

α ::= · | a:ρa 	 ρ | 〈a:ρa, b:ρb〉.

The label a:ρa 	 ρ records the exercise of the privilege ρ by an instance a
running with permissions ρa. The send label 〈a:ρa, b:ρb〉 records that an instance
a with permissions ρa is sending a message to a handler b with permissions ρb.
Finally, the empty label · tracks no information. We denote traces by −→α and we

write
−→α
=⇒ for the reflexive-transitive closure of

α−→. Table 1 collects the reduction
rules for systems and the definition of evaluation contexts. We write E〈e〉 when
the hole • in E is filled with the expression e.
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Table 2. Small-step operational semantics of expressions (μ; e ↪→ρ μ′; e′)

(JS-Expr)

e1 ↪→ e2

μ; e1 ↪→ρ μ; e2

(JS-Ref)

r /∈ dom(μ) μ′ = μ, r�
ρ�→ v

μ; ref � v ↪→ρ μ′; r�

(JS-Deref)

μ = μ′, r�
ρ�→ v

μ;deref r� ↪→ρ μ; v

(JS-SetRef)

μ = μ′, r�
ρ�→ v′

μ; r� := v ↪→ρ μ′, r�
ρ�→ v; v

(JS-Context)

μ; e1 ↪→ρ μ′; e2
μ;E〈e1〉 ↪→ρ μ′;E〈e2〉

Rule (R-Sync) implements a security cross-check between the sender a and
the receiver b: by specifying a permission ρr on the send expression, the instance
a requires the handler b to have at least ρr, while by specifying a permission ρs
in its definition, the handler b requires the instance a to have at least ρs. If the
security check succeeds, a new instance of b is created and the sent value v is
substituted to the bound variable x in the body of the handler. Communication
is restricted to serializable values, according to the following definition.

Definition 1 (Serializable Value). A value v is serializable iff either (1) v

is a name n or a constant c; or (2) v = {−−−−−→stri : vi} and each vi is serializable.

This restriction is consistent with the browser extension security architecture,
which prevents the exchange of pointers between different components [10].

Rule (R-Exercise) reduces the expression exercise(ρ). Reduction takes place
only when the expression runs in an instance a which is granted permission
ρa � ρ. Rule (R-Set) allows for reducing any of the parallel instances running
in a system, while rule (R-Internal) performs an internal reduction step based
on the auxiliary transition relation μ; e ↪→ρ μ′; e′, annotated with the permission
ρ granted to the instance. The internal reduction relation is defined in Table 2;
it relies on a basic reduction e ↪→ e′, which is directly inherited from λJS and
lifted to the internal reduction by rule (JS-Expr). The definition of the basic
reduction is standard and given in the full version [9].

A reference is allocated by means of rule (JS-Ref). According to this rule, two
references may have the same label (e.g., when reference allocation occurs inside
a program loop) but each reference is guaranteed to have a distinct name. Since
read/write operations on memory ultimately depend on the reference name, this
ensures that labels on references do not play any role at runtime.

Finally, rules (JS-SetRef) and (JS-Deref) deal with reference update and
dereference. Observe that, according to these rules, both read and write access
to memory requires exactly the permission ρ annotated on the reference. In
other words, instances with different privileges cannot communicate through
the memory. This corresponds to the heap separation policy implemented in
modern browser extension architectures.
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3.3 Privilege Leak

We now define the notion of privilege leak, which dictates an upper bound to
the privileges which can be escalated by an opponent when interacting with the
system. We start by defining when a system exercises a given permission.

Definition 2 (Exercise). Given a system s, we say that s exercises ρ iff there

exist s′ and −→α such that s
−→α
=⇒ s′ and a:ρa 	 ρ ∈ {−→α }.

In our threat model, an opponent can mount an attack against the system by
registering new handlers, which may intercept messages sent to trusted compo-
nents, and/or by spawning new instances, which may tamper with the system
by writing in shared memory cells and by using the message passing interface.

Formally, an opponent is defined as a pair (h, i), with an upper bound ρ for
the permissions granted to h and i. For technical reasons, we assume that the
set of variables V is partitioned into the sets Vt and Vu (trusted and untrusted
variables). We stipulate that all the variables occurring in the system are drawn
from Vt, while all the variables occurring in the opponent code belong to Vu.

Definition 3 (Opponent). A ρ-opponent is a closed pair (h, i) where

– for any handler a(x � ρ : ρ′).e ∈ h, we have ρ′ � ρ;
– for any instance a{|e|}ρ′ ∈ i, we have ρ′ � ρ;
– for any x ∈ vars(h) ∪ vars(i), we have x ∈ Vu.

Definition 4 (Privilege Leak). A (initial) system s = μ;h; ∅ leaks ρ against
ρ′ (with ρ � ρ′) iff, for any ρ′-opponent (ho, io), the system s′ = μ;h, ho; io
exercises at most ρ.

Our security property is given over initial systems, that is systems with no
running instances, since we are interested in understanding the interplay be-
tween the exercised permissions and the communication interface exposed by
the handlers in the system. Intuitively, a system s is “more secure” than another
system s′ if it leaks fewer privileges than s′ against any possible ρ.

3.4 Encoding the Example

To illustrate, we encode in our formal language the example in Section 1.1.
Consider the system s = μ;hc, ho, hb; ∅, where the handlers hc, ho and hb encode
the two content scripts and the background page. The memory μ encodes the
private memory of the background page, and it is used to store library functions.
We grant the background page two different permissions: MemB to access the
references under its control and Cookies to access the cookie jar.

Let B = MemB � Cookies, we let μ = lib�
B�→ obj, where:

obj = {“set” : λx.exercise(Cookies); set/update the cookie x,

“is valid” : λx.check validity of policy x,

“store” : λx.λy.exercise(MemB); bind policy y to site x,

“log” : λx.print message x}
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We omit the internal logic of the functions, we just observe that we put in place
the exercise expressions corresponding to the usage of the required privileges.
The definition of the handler hb modelling the background page is given below,
where C and O are the permissions granted to the two content scripts in order
to let them contact B through the message passing interface.

hb � b(x � C �O : B).
let mylib = deref lib� in
if (x[“tag”] == “policy”) {
if (mylib[“is valid”] (x[“spec”])) {
(mylib[“store”] (x[“site”])) (x[“spec”])

}
else { mylib[“log”] “invalid policy” }

}
else {
if (x[“tag”] == “upd”) { (mylib[“set”]) (x[“ck”]) }
else { mylib[“log”] “invalid message” }

}

The handler can be accessed by both C and O, as modelled by the guard C�O.
A simplified encoding of the content scripts, corresponding to the handlers

hc and ho respectively, is given below. This simple encoding will be enough to
explain the most important aspects of the flow analysis in Section 4.3.

hc � c(y � P : C).let y′ = (y[“site”] = . . .) in b〈y′ � B〉
ho � o(z �� : O).let z′ = {“tag” : “upd”, “ck” : . . .} in b〈z′ � B〉

The only notable point here is that ho is protected with permission �, since it
is injected in the trusted options page of the extension, while hc is protected
with permission P, modelling access to the window.postMessage method used
to communicate with C from a web page. As a consequence, any P-opponent
has the ability to activate hc through the message passing interface.

Based on the encoding, we estimate the robustness against privilege escalation
attacks. It turns out that the system s leaks B against P, since a P-opponent
can force hc into forwarding an arbitrary (up to the choice of the “site” field)
message to hb, hence all the privileges available to hb may be escalated.

Assume then that hc is replaced by a new handler h′
c, defined as follows:

h′
c � c(y � P : C). let ynew = {“tag” : “policy”, “site” : . . .} in

let y′ = (ynew[“spec”] = y[“spec”]) in b〈y′ � B〉

The new system stag = μ;h′
c, ho, hb; ∅ leaks MemB against P, since a P-opponent

can only communicate with hb through the proxy h′
c, which ensures that only

messages tagged with “policy” are delivered to the background page and the
integrity of the cookie jar is preserved. However, stag leaks B against C, since a
C-opponent can send arbitrary messages to hb and thus escalate all the available
privileges.
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3.5 Fixing the Example

The key observation here is that there is no good reason to let C and O share
the same entry point to B, since they request distinct functionalities. We can
then split the logic of hb into two different handlers: hb1 protected by permission
C, and hb2 protected by permission O.

b1(x � C : B). b2(x � O : B).

let mylib = deref lib� in let mylib = deref lib� in

if (x[“tag”] == “policy”) { ... } if (x[“tag”] == “upd”) { ... }
else {mylib[“log”] “invalid policy”} else {mylib[“log”] “invalid message”}
Clearly, the code of hc and ho must also be changed to communicate on the

new channels b1 and b2 respectively: call these new handlers ĥc and ĥo. Now the
handler hb1 is only accessible by ĥc, while the handler hb2 can only be accessed

by ĥo, hence, if O is not compromised, the integrity of the cookie jar is preserved.
Unfortunately, the current extension architecture does not support a fine-

grained assignment of permissions to different portions of the background page
[2], hence we are forced to violate the principle of least privilege and assign to
both hb1 and hb2 the full set of permissions B = MemB�Cookies available to the
original hb, even though hb1 and hb2 only require a subset of these permissions.

Still, the system schan = μ; ĥc, ĥo, hb1 , hb2 ; ∅ only leaks MemB against C.
Notice that this refactoring can be performed on existing Google Chrome

extensions by using the chrome.runtime.connectAPI for the dynamic creation
of communication ports towards the background page.

4 Security Analysis: Flow Logic

To precisely reason about privilege escalation, it is crucial to statically capture
the interplay between the format of the exchanged messages and the exercised
privileges: we then resort to the flow logic framework [24]. The main judgement of
our flow analysis is E � s despite ρ, meaning that the environment E represents
an acceptable analysis estimate for s, even when s interacts with a ρ-opponent.
This implies that any ρ-opponent will at most escalate privileges up to an upper
bound which can be immediately computed from E (see Theorem 1).

4.1 Analysis Specification

Abstract Values. We let V̂ stand for the set of abstract values v̂, defined as sets
of abstract pre-values (we often omit brackets around singletons):

Abstract pre-values û ::= n | ĉ | � | λxρ | 〈|−−−−−→stri : vi|〉E,ρ
Abstract values v̂ ::= {û1, . . . , ûn}.

Channel names n are abstracted into themselves. The abstract pre-value ĉ stands
for the abstraction of the constant c. We dispense from listing all the abstract
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pre-values corresponding to the constants of our calculus, but we assume that
they include at least true, false, unit and undefined.

A reference r� is abstracted into the label �. A function λx.e is abstracted
into the simpler representation λxρ, keeping track of the privileges ρ exercised
by the expression e. The abstract pre-value 〈|−−−−−→stri : vi|〉E,ρ is the abstract repre-

sentation of the concrete record {−−−−−→stri : vi} in the environment E , assuming that
the record is created in a context with permission ρ. We do not fix any apriori
abstract representation for records, e.g., both field-sensitive and field-insensitive
representations are admissible.

We associate to each concrete operation op an abstract counterpart ôp on

abstract values. We also assume three abstract operations ĝet, ŝet and d̂el, mir-
roring the standard get field, set field and delete field operations on records.
Finally, we assume that abstract values are ordered by a pre-order � containing
set inclusion, with the intuition that smaller abstract values are more precise (we
overload the symbol used to order permissions, to keep the notation lighter). All
the abstract operations and the abstract value pre-order can be chosen arbitrar-
ily, as long as they satisfy some relatively mild and well-established conditions
needed in the proofs. For instance, we require abstract operations to be mono-
tonic and to soundly over-approximate their concrete counterparts (see the full
version [9] for details).

Abstract Environments. The judgements of the analysis are specified relative to
an abstract environment E = Υ̂ ; Φ̂; Γ̂ ; μ̂, consisting of the following four compo-
nents, where Λ = {λx | x ∈ V} is used to store the abstract return value for
lambdas:

Abstract variable environment Γ̂ : V ∪ Λ → V̂

Abstract memory μ̂ : L× P → V̂

Abstract stack Υ̂ : N ×P → P × P
Abstract network Φ̂ : N ×P → V̂ .

Abstract variable environments are standard: they associate abstract values to
variables and to functions, corresponding to the abstraction of their return value.
Abstract memories are also standard: they associate abstract values to labels
denoting references. Specifically, if μ̂(�, ρ) = v̂, then v̂ is a sound abstraction of
any value stored in a reference labelled with � and protected with permission ρ.

Abstract stacks are novel and are central to the privilege escalation analysis.
This part of the environment is used to keep track of the permissions required
to get access to each handler and the privileges which are exercised (also tran-
sitively, i.e., by communicating with other components) by the handlers them-
selves. Specifically, if Υ̂ (a, ρa) = (ρs, ρe), then the handler a with permission ρa
can be accessed by any component with permission ρs and it will be able to
exercise privileges up to ρe, possibly by calling other handlers in the system.

Finally, abstract networks are adapted from flow logic specifications for pro-
cess calculi [26] and they are used to keep track of the messages sent to the
handlers in the system. For instance, if we have Φ̂(a, ρa) = v̂, then v̂ is a sound
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Table 3. Flow analysis for values

(PV-Name)

n ∈ v̂

E �ρ n � v̂

(PV-Var)

EΓ̂ (x) � v̂

E �ρ x � v̂

(PV-Cons)

{ĉ} � v̂

E �ρ c � v̂

(PV-Ref)

� ∈ v̂

E �ρ r� � v̂

(PV-Fun)

λxρe ∈ v̂ E �ρ e : v̂′ � ρ′ v̂′ � EΓ̂ (λx) ρ′ � ρe

E �ρ λx.e � v̂

(PV-Rec)

{〈|−−−−−→stri : vi|〉E,ρ} � v̂

E �ρ {−−−−−→stri : vi} � v̂

abstraction of any message received by the handler a with permission ρa. Given
an abstract environment E , we denote by EΓ̂ , Eμ̂, EΥ̂ , EΦ̂ its four components.

Flow Analysis for Values and Expressions. The flow analysis for values and
expressions consists of two mutually inductive judgements: E �ρ v � v̂ and
E �ρ e : v̂ 	 ρ′. The first judgement means that, assuming permission ρ, the
concrete value v is mapped to the abstract value v̂ in the abstract environment
E . The judgement E �ρ e : v̂ 	 ρ′ means that in the context of a handler
(or an instance) with permission ρ, and under the abstract environment E , the
expression e may evaluate to a value abstracted by v̂ and exercise at most ρ′.

The rules to derive E �ρ v � v̂ are collected in Table 3. Most of these rules
are straightforward. The only rule worth commenting on here is (PV-Fun),
which can be explained as follows: to abstract λx.e into v̂, we first analyse the
function body e to compute an approximation v̂′ of the value it may evaluate
to and an upper bound ρ′ for the exercised privileges. Then, we check that
λxρe ∈ v̂ for some ρe � ρ′, i.e., we ensure that the exercised privileges are over-
approximated in v̂. Finally, we check that v̂′ � EΓ̂ (λx), i.e., we guarantee that
the abstract variable environment correctly over-approximates the return value
of the function.

The analysis rules for expressions are collected in Table 4. We comment on
some representative rules below. Rule (PE-Let) can be explained as follows: to
analyse let x = e1 in e2, we first analyse e1 to compute an approximation v̂1 of
the value it may evaluate to and an upper bound ρ1 for the exercised privileges.
We then ensure that the abstract variable environment EΓ̂ (x) contains an over-
approximation of v̂1 for the bound variable x, and we analyse e2 to approximate
its value as v̂2 and the exercised privileges as ρ2. The analysis is acceptable if
the abstract value v̂ given to the let expression is an over-approximation of v̂2
and the estimated exercised privileges ρ are an upper bound for ρ1 � ρ2.

Rule (PE-App) deals with function applications: it states that, to analyse
e1 e2, we first analyse the ei’s to compute the approximations v̂i of the value
they may evaluate to and the upper bounds ρi for the exercised privileges. We
then focus on each λxρe contained in v̂1 and we check that: (1) the abstract
variable environment binds x to an over-approximation of the abstraction of the
actual argument of the function, (2) the abstract value v̂ given to the application
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Table 4. Flow analysis for expressions

(PE-Val)

E �ρs v � v̂

E �ρs v : v̂ � ρ

(PE-Let)

E �ρs e1 : v̂1 � EΓ̂ (x) � ρ1 � ρ
E �ρs e2 : v̂2 � v̂ � ρ2 � ρ

E �ρs let x = e1 in e2 : v̂ � ρ

(PE-App)

E �ρs e1 : v̂1 � ρ1 � ρ
E �ρs e2 : v̂2 � ρ2 � ρ

∀λxρe ∈ v̂1. v̂2 � EΓ̂ (x) ∧ EΓ̂ (λx) � v̂ ∧ ρe � ρ

E �ρs e1 e2 : v̂ � ρ

(PE-Seq)

E �ρs e1 : v̂1 � ρ1 � ρ
E �ρs e2 : v̂2 � v̂ � ρ2 � ρ

E �ρs e1; e2 : v̂ � ρ

(PE-Op)

∀i. E �ρs ei : v̂i � ρi � ρ ôp(
−→̂
vi) � v̂

E �ρs op(−→ei ) : v̂ � ρ

(PE-Cond)

E �ρs e0 : v̂0 � ρ0 � ρ
true ∈ v̂0 ⇒ E �ρs e1 : v̂1 � v̂ � ρ1 � ρ
false ∈ v̂0 ⇒ E �ρs e2 : v̂2 � v̂ � ρ2 � ρ

E �ρs if (e0) { e1 } else { e2 } : v̂ � ρ

(PE-While)

E �ρs e1 : v̂1 � ρ1 � ρ
true ∈ v̂1 ⇒ E �ρs e2 : v̂2 � ρ2 � ρ

false ∈ v̂1 ⇒ undefined ∈ v̂

E �ρs while (e1) { e2 } : v̂ � ρ

(PE-GetField)

E �ρs e1 : v̂1 � ρ1 � ρ
E �ρs e2 : v̂2 � ρ2 � ρ

̂get(v̂1, v̂2) � v̂

E �ρs e1[e2] : v̂ � ρ

(PE-SetField)

E �ρs e0 : v̂0 � ρ0 � ρ
E �ρs e1 : v̂1 � ρ1 � ρ
E �ρs e2 : v̂2 � ρ2 � ρ

̂set(v̂0, v̂1, v̂2) � v̂

E �ρs e0[e1] = e2 : v̂ � ρ

(PE-DelField)

E �ρs e1 : v̂1 � ρ1 � ρ
E �ρs e2 : v̂2 � ρ2 � ρ

̂del(v̂1, v̂2) � v̂

E �ρs delete e1[e2] : v̂ � ρ

(PE-Ref)

E �ρs e : v̂
′ � ρ

′ � ρ
v̂′ � Eμ̂(�, ρs) � ∈ v̂

E �ρs ref � e : v̂ � ρ

(PE-Deref)

E �ρs e : v̂′ � ρ′ � ρ

∀� ∈ v̂
′
. Eμ̂(�, ρs) � v̂

E �ρs deref e : v̂ � ρ

(PE-SetRef)

E �ρs e1 : v̂1 � ρ1 � ρ
E �ρs e2 : v̂2 � v̂ � ρ2 � ρ

∀� ∈ v̂1. v̂2 � Eμ̂(�, ρs)

E �ρs e1 := e2 : v̂ � ρ

(PE-Send)

E �ρs e1 : v̂1 � ρ1 � ρ′

E �ρs e2 : v̂2 � ρ2 � ρ′

∀m ∈ v̂1.∀ρm � ρ. EΥ̂ (m, ρm) = (ρr , ρe) ∧ ρr � ρs ⇒ ρe � ρ
′ ∧ v̂2 � EΦ̂(m, ρm) ∧ unit ∈ v̂

E �ρs e1〈e2 	 ρ〉 : v̂ � ρ
′

(PE-Exercise)

ρ � ρs ⇒ ρ � ρ′ ∧ unit ∈ v̂

E �ρs exercise(ρ) : v̂ � ρ′
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is an over-approximation of the abstract return value of the function EΓ̂ (λx), and
(3) the exercised privileges ρ1 � ρ2 � ρe are bounded above by the privileges ρ
assigned to the application.

The rules in the central portion of the table should be relatively easy to
understand. Notice that the rules for control flow operators, i.e., (PE-Cond)
and (PE-While), allow for excluding from the static analysis some program
branches which are never reached at runtime. The rules for references use the in-
formation ρs annotated on the turnstile, corresponding to the privileges granted
to the handler/instance that is accessing the reference. These rules ensure that
any value stored in a reference is correctly over-approximated by the abstract
memory; and dually, that any value retrieved from a reference is abstracted
with an over-approximation of the content of the abstract memory. This ensures
that any value which is first stored in a reference and then retrieved from it is
over-approximated correctly by the flow logic.

Rule (PE-Send) first analyses e1 and e2 to compute the approximations of
the recipient (v̂1) and the sent message (v̂2). Then, the last premise enforces two
invariants: (1) the privileges ρe escalated by communicating with other handlers
in the system are bounded above by the privileges ρ′ assigned to the send expres-
sion, and (2) the abstraction of the sent message v̂2 is over-approximated by the
information in the abstract network for each possible recipient. We also check
that unit is included in the abstract value assigned to the expression, accordingly
to the operational semantics of the send construct. Finally, rule (PE-Exercise)
ensures that, whenever an instance with permission ρs exercises ρ � ρs, then ρ
is bounded above by the privileges ρ′ assigned to the expression.

Flow Analysis for Systems. Finally, we extend the flow analysis to systems by
defining the main judgement E � s despite ρ, which follows from similar judge-
ments for memories, handlers and instances. The definition is given in Table 5.

In the rules for memories we just need to ensure (cf. rule (PM-Single)) that,
whenever a value v is stored in a reference r� protected with permission ρr, then
v can be abstracted to some v̂ over-approximated by the abstract memory entry
Eμ̂(�, ρr). As for instances, rule (PI-Single) computes an approximation of the
privileges ρe exercised by the running expression. Then, if the instance is granted
permission ρa � ρ, i.e., if it is not compromised, we check that the abstract
stack correctly approximates with ρe the privileges exercised by the instance
body. This check is not enforced for instances that might be under the control
of the opponent, according to the idea that any opponent must be accepted by
a sufficiently weak abstract environment. This is needed to prove an opponent
acceptability result (Lemma 2), which allows for a convenient soundness proof
technique for the analysis [1,5].

Handlers are accepted by rule (PH-Single), which states that, to analyse
a(x � ρs : ρa).e despite ρ-opponents, we first lookup the abstract stack Υ̂ : let
Υ̂ (a, ρa) = (ρ′s, ρ′e). If we are not analysing a (possibly) compromised handler,
i.e., if ρa � ρ, we ensure that the permission ρ′s in the abstract stack matches
the permission ρs guarding access to the handler. We then lookup the abstract
network Φ̂: if Φ̂(a, ρa) = ∅, no instance of the system will ever communicate
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Table 5. Flow analysis for systems

(PM-Empty)

E � ∅ despite ρ

(PM-Single)

E �ρr v � v̂
v̂ � Eμ̂(�, ρr)

E � r�
ρr�→ v despite ρ

(PM-Many)

E � μ1 despite ρ
E � μ2 despite ρ

E � μ1, μ2 despite ρ

(PH-Empty)

E � ∅ despite ρ

(PH-Many)

E � h despite ρ
E � h′ despite ρ

E � h, h′ despite ρ

(PH-Single)

EΥ̂ (a, ρa) = (ρ′s, ρ
′
e) ρa 
� ρ ⇒ ρ′s = ρs

EΦ̂(a, ρa) 
= ∅ ⇒ EΓ̂ (x) � EΦ̂(a, ρa) ∧ E �ρa e : v̂ � ρe ∧ (ρa 
� ρ ⇒ ρ′e = ρe)

E � a(x � ρs : ρa).e despite ρ

(PI-Empty)

E � ∅ despite ρ

(PI-Single)

E �ρa e : v̂ � ρe
ρa 
� ρ ⇒ ∃ρs. EΥ̂ (a, ρa) = (ρs, ρe)

E � a{|e|}ρa despite ρ

(PI-Many)

E � i despite ρ
E � i′ despite ρ

E � i, i′ despite ρ

(PS-Sys)

E � μ despite ρ E � h despite ρ
E � i despite ρ E is ρ-conservative

E � μ; h; i despite ρ

with the handler and we can skip the analysis of its body. Otherwise, we en-
sure that the abstract variable environment maps the bound variable x to an
over-approximation of the incoming message, abstracted by Φ̂(a, ρa), and we
analyse the body of the handler, to detect the exercised privileges ρe. If we are
not analysing the opponent, we further ensure that ρe matches the permissions
ρ′e annotated in the abstract stack, i.e., we guarantee that the abstract stack
contains reliable information.

Finally, rule (PS-Sys) states that a system s = μ;h; i is acceptable for E only
whenever μ, h and i are all acceptable for E , and E is a ρ-conservative abstract
environment. This notion corresponds to the informal idea of “sufficiently weak
abstract environment” needed to prove the opponent acceptability result. In
order to define ρ-conservativeness, we first define the notion of static leak for an
abstract environment.

Definition 5 (Static Leak). We define the static leak of E against ρ as:
SLeakρ(E) =

⊔
ρe∈L ρe, where L = {ρe | ∃a, ρa, ρs. EΥ̂ (a, ρa) = (ρs, ρe)∧ρs � ρ}.

Intuitively, SLeakρ(E) is the upper bound of all the permissions ρe that can be
(transitively) exercised by any handler that can be called by a ρ-opponent. We
then define the set Vρ(E) of the opponent-controlled variables as:
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Vρ(E) = Vu ∪ {x | ∃ρe, �, ρr � ρ. λxρe ∈ Eμ̂(�, ρr)}.
The set contains all the variables Vu occurring in the opponent code, together
with all the variables bound in lambda abstractions stored in references under
the control of the opponent. All these variables can be instantiated at runtime
with values chosen by the opponent. We use this set of variables also to define a
sound abstraction of any value which can be generated by/flow to the opponent.

Definition 6 (Canonical Disclosed Abstract Value). Given an abstract
environment E and a permission ρ, the canonical disclosed abstract value is
defined as: v̂ρ(E) = {û | vars(û) ⊆ Vρ(E)}.
The canonical disclosed abstract value is a canonical representation of any ab-
stract value under the control of a ρ-opponent in a system accepted by E . It is
the set of all the pre-values which contain only opponent-controlled variables.

Based on the notions above, we define ρ-conservativeness.

Definition 7 (ρ-Conservative Abstract Environment). An abstract envi-
ronment E is ρ-conservative if and only if all the following conditions hold true:

1. ∀n ∈ N , ∀ρ′ � ρ. EΥ̂ (n, ρ′) = (⊥, SLeakρ(E));
2. ∀n ∈ N , ∀ρ′ � ρ. EΦ̂(n, ρ′) = v̂ρ(E);
3. ∀n ∈ N , ∀ρn, ρs, ρe. EΥ̂ (n, ρn) = (ρs, ρe) ∧ ρs � ρ ⇒ EΦ̂(n, ρn) = v̂ρ(E);
4. ∀� ∈ L, ∀ρ′ � ρ. Eμ̂(�, ρ′) = v̂ρ(E);
5. ∀x ∈ Vρ(E). EΓ̂ (x) = EΓ̂ (λx) = v̂ρ(E).
In words, an abstract environment is ρ-conservative whenever: (1) any handler
that can be under the control of the opponent is in fact assumed to be accessible
by the opponent and to escalate up to the static leak; (2) any handler that
can be under the control of the opponent, or (3) that can be contacted by the
opponent, is assumed to receive the canonical disclosed abstract value v̂ρ(E); (4)
any reference possibly under the control of the opponent is assumed to contain
v̂ρ(E); and (5) the argument of any function which can be called by the opponent
is assumed to contain the canonical disclosed abstract value v̂ρ(E) and similarly
these functions are assumed to return v̂ρ(E).

4.2 Formal Results

Our main formal result defines an upper bound for the privileges which can be
escalated by the opponent in a system accepted by the flow analysis. Complete
proofs are in the full version [9]; here, we start proving the soundness of the flow
logic specification by means of a subject reduction result, which ensures that the
acceptability of the analysis is preserved upon reduction.

Lemma 1 (Subject Reduction). If E � s despite ρ and s
α−→ s′, then E �

s′ despite ρ.
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The next lemma states that any ρ-opponent is accepted by a ρ-conservative
abstract environment. Intuitively, the combination of this result with subject
reduction ensures that the acceptability of the analysis is preserved at runtime,
even when the analysed system interacts with the opponent.

Lemma 2 (Opponent Acceptability). If (h, i) is a ρ-opponent and E is ρ-
conservative, then E � h despite ρ and E � i despite ρ.

Moreover, proving the safety theorem requires to explicitly track the call
chains carried out by the system reduction, to collect the privileges transitively
exercised by system components. The next lemma then relies on the following
definition of call chain to prove that the abstract stack contains a static approx-
imation of the privileges which are exercised by each system component either
directly or by communicating with other components.

Definition 8 (Call Chain). A call chain (−→α , a:ρa 	 ρ′) is a trace of length
(n+ 1) such that:

1. the trace −→α = 〈a1:ρa1 , b1:ρb1〉, . . . , 〈an:ρan , bn:ρbn〉 is a sequence of send la-
bels where the sender occurring in each label is the receiver occurring in the
previous label, i.e., ∀i ∈ [1, n−1]. ai+1 = bi ∧ ρai+1 = ρbi , and

2. the component exercising the privilege ρ′ at the end of the call chain corre-
sponds to the last receiver, i.e., bn = a ∧ ρbn = ρa.

A trace
−→
β includes a call chain −→α iff −→α is a sub-trace of

−→
β .

According to the intuition given above, proving the soundness of the abstract
stack amounts to showing that, given a call chain leading to the exercise of some
privilege ρ′ not available to the opponent, the abstract stack EΥ̂ approximates the
privileges exercised by any component involved in the chain with a permission
greater than or equal to ρ′. The proof uses the subject reduction result.

Lemma 3 (Soundness of the Abstract Stack). If E � s despite ρ and

s
−→
β
=⇒ s′ for a trace

−→
β including the call chain (−→α , a:ρa 	 ρ′) for some ρ′ � ρ,

then for each label αj = 〈aj :ρaj , bj:ρbj 〉 ∈ {−→α } we have EΥ̂ (bj , ρbj ) = (ρsbj , ρebj )

with ρ′ � ρebj and EΥ̂ (aj , ρaj ) = (ρsaj
, ρeaj

) with ρ′ � ρeaj
.

Theorem 1 (Flow Safety). Let s= μ;h; ∅. If E � s despite ρ, then s leaks
SLeakρ(E) against ρ.

Proof. By contradiction. Let ŝ be the system obtained by composing s with a
ρ-opponent and assume that ŝ eventually reaches a state s′ such that s′ exercises
privileges ρbad, with ρbad � ρ and ρbad � SLeakρ(E).

By inverting rule (PS-Sys) on the hypothesis E � s despite ρ, we have that
E is ρ-conservative. Using Lemma 2 (Opponent Acceptability), we show that
E � ŝ despite ρ. Given that ρbad � ρ, the privileges ρbad cannot be directly
exercised by the opponent, hence there must exist a call chain leading to ρbad
from ŝ. Let ai range over the components in the call chain and ρi range over
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their corresponding permissions. Consider now the first sender a1 in the call
chain: given that the original system s does not have running instances, it turns
out that a1 must be the opponent, hence ρ1 � ρ. Since E is ρ-conservative and
ρ1 � ρ, we have EΥ̂ (a1, ρ1) = (⊥, SLeakρ(E)). By Lemma 3 (Soundness of the
Abstract Stack), for each component ai with permissions ρi occurring in the call
chain we must have EΥ̂ (ai, ρi) = (ρsi , ρei) for some ρsi and some ρei � ρbad. But
then we get ρbad � SLeakρ(E), which is contradictory.

4.3 Analysing the Example

We now show the analysis at work on our running example in its three variants,
namely the systems s, stag and schan introduced in Section 3. We assume that the
abstract domain for strings includes all the string literals syntactically occurring
in the program code, plus the distinguished symbol * to represent all the other
strings (or any string which we cannot statically reconstruct). We let ŝtr range
over elements of this abstract domain and we assume that ŝtr � ∗ for any ŝtr.

As to records, we choose the field-sensitive representation 〈|
−−−−−→
ŝtri : v̂i|〉 where both

the field names and contents are inductively abstracted. In the following we
mostly focus on the intuitions behind the analysis: additional details, including
the formal definitions of the expected abstract record operations and the abstract
value pre-order, are given in the full version [9].

The Original System. We start by studying the robustness of the original system
s against a P-opponent, i.e., an opponent with the only ability to dispatch the
content script C attached to untrusted web pages. We have that E � s despite P,
where E = Γ̂ ; μ̂; Υ̂ ; Φ̂ satisfies the following assumptions:

Φ̂(c,C) = v̂P(E) Φ̂(o,O) = ∅ Φ̂(b,B) = {〈|“site” : v̂P(E), ∗ : v̂P(E)|〉}
Υ̂ (c,C) = (P,B) Υ̂ (o,O) = (�,⊥) Υ̂ (b,B) = (C � O,B)

Since C can be accessed by the opponent, the value of Φ̂(c,C) must be equal to
v̂P(E) to ensure the P-conservativeness of E . Conversely, O can never be accessed
by the opponent or by any other component in the system, hence Φ̂(o,O) = ∅. By
rule (PH-Single), this implies that there is no need to analyse the body of O,
which allows for ignoring the format of the messages sent by O: this explains why
the value of Φ̂(b,B) includes just one element, corresponding to the message sent
by C. Indeed, observe that ŝet(v̂P(E), “site”, str) � {〈|“site” : v̂P(E), ∗ : v̂P(E)|〉}
for any str to accept the send expression in the body of C.

Now observe that {“policy”, “upd”} � ĝet(〈|“site” : v̂P(E), ∗ : v̂P(E)|〉, “tag”),
hence both branches of the conditional in the body of B are reachable and the
conditional expression may exercise B; we then let Υ̂ (b,B) = (C � O,B) by rule
(PH-Single). Given that C communicates with B, the privileges exercised by
C must be greater or equal than B by rule (PE-Send), and propagated into
Υ̂ (c,C) by rule (PH-Single). Since SLeakP(E) = B, we know that the system s
leaks B against P by Theorem 1.
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The System with Tags. Let us focus now on the system stag and a P-opponent.

We have that E � stag despite P, where E = Γ̂ ; μ̂; Υ̂ ; Φ̂ is such that:

Φ̂(c,C) = v̂P(E) Φ̂(o,O) = ∅
Φ̂(b,B) = {〈|“tag” : “policy”, “site” : ∗, “spec” : v̂P(E)|〉}
Υ̂ (c,C) = (P,MemB) Υ̂ (o,O) = (�,⊥) Υ̂ (b,B) = (C � O,MemB)

Based on this information, rule (PE-Cond) allows for analysing only the pro-
gram branch of B corresponding to the processing of a message with tag “policy”,
which only exercises the privilege MemB: this motivates the precise choice of
Υ̂ (b,B). Since SLeakP(E) = MemB, the system leaks MemB against P.

Assume now an opponent with permission C, then we have E ′ � stag despite C,

where E ′ = Γ̂ ′; μ̂′; Υ̂ ′; Φ̂′ is such that:

Φ̂′(c,C) = v̂C(E ′) Φ̂′(o,O) = ∅ Φ̂′(b,B) = v̂C(E ′)

Υ̂ ′(c,C) = (⊥,B) Υ̂ ′(o,O) = (�,⊥) Υ̂ ′(b,B) = (C � O,B)

With respect to the previous scenario, the abstract network entry for B contains
v̂C(E ′), abstracting all the values which may be generated by a C-opponent:
this is needed for C-conservativeness. The consequence is that all the program
branches of B are reachable, hence B may exercise its full set of privileges B.
Since SLeakC(E ′) = B, the system leaks B against C by Theorem 1.

The System with Channels. We are able to prove E � schan despite C for an
abstract environment E = Γ̂ ; μ̂; Υ̂ ; Φ̂ such that:

Φ̂(c,C) = v̂C(E) Φ̂(o,O) = ∅ Φ̂(b1,B) = v̂C(E) Φ̂(b2,B) = ∅
Υ̂ (c,C)=(⊥,MemB) Υ̂ (o,O)=(�,⊥) Υ̂ (b1,B)=(C,MemB) Υ̂ (b2,B)=(O,⊥)

For the new abstract environment E we have SLeakC(E) = MemB, which ensures
that the new system only leaks MemB against C. Since the privilege Cookies
cannot be escalated by a compromised C anymore, there is no way to corrupt
the cookie jar without compromising the background pageB itself (or the options
page O). Interestingly, this is a formal characterization of the dangers connected
to the development of bundled browser extensions in a realistic setting [2].

5 Implementation: Chen

Chen is a prototype Google Chrome extension analyser written in F#. Given
a Chrome extension, Chen translates it into a corresponding system in our for-
malism and computes an acceptable flow analysis estimate by constraint solving.
Chen can be used by programmers to evaluate the robustness of their extensions
against privilege escalation attacks and to support their security refactoring.
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5.1 Flow Logic Implementation

Implementing the flow logic specification amounts to defining an algorithm that,
given a system s and a permission ρ characterizing the power of the opponent,
computes an abstract environment E such that E � s despite ρ. Following a
standard approach [25], we first define a verbose variant of the flow logic, which
associates an analysis estimate to each sub-expression of s, and then we devise
a constraint-based formulation of the analysis. Any solution of the constraints
is an abstract environment E which accepts s.

We initially implemented in Chen a simple worklist algorithm for constraint
solving. However, consistently with what has been reported by Jensen et al. in
the context of JavaScript analysis [19], we observed that this solution does not
scale, taking hours to perform the analysis even on small examples. Therefore,
in our implementation we use a variant of the worklist algorithm where most of
the constraint generation is performed on demand during the solving process.
Even though this approach does not allow us to reuse existing solvers, it leads
to a dramatic improvement in the performances of the analysis.

The current prototype implements a context-insensitive analysis, which is
enough to capture the privileges escalated by the content scripts, provided
that some specific library functions introduced by the desugaring process from
JavaScript to λJS (see below) are inlined. The choice of the abstract pre-values
for constants is standard: in the current implementation, we represent numbers
with their sign and we approximate strings with finite prefixes [11]. The rep-
resentation of records is field-sensitive, but we collapse into a single label * all
the entries bound to approximate labels (string prefixes). As to the ordering,
we consider a standard pre-order �p on abstract pre-values, and we lift it to
abstract values using a lower powerset construction, i.e., we let v̂ � v̂′ if and
only if ∀û ∈ v̂. ∃û′ ∈ v̂′. û �p û′.

5.2 Using Chen to Assess Google Chrome Extensions

Given an extension, Chen takes as an input a sequence of component names,
along with the JavaScript files corresponding to their implementation. Compo-
nents represent isolation domains, in that different components must be able to
communicate only using the message passing interface. Different content scripts
which may injected in the same web page should be put inside the same compo-
nent, since Google Chrome does not separate their heaps. The background page
should be put in a separate component, since it runs in an isolated process2.

From JavaScript to the Model. Let c be a component name and f1, . . . , fn the
corresponding JavaScript files: our tool concatenates f1, . . . , fn into a single file
f , which is desugared into a closed λJS expression using an existing tool [16].
The adequacy of the translation from JavaScript to λJS has been assessed by
extensive automatic testing, hence safety guarantees for JavaScript programs can
be provided just by analysing their λJS translation; see [16] for further details.

2 An appropriate mapping of JavaScript files to components can be derived from the
manifest file of the extension, but the current prototype does not support this feature.
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The obtained λJS expression is then transformed into a set of handlers: more
precisely, for any function λx.e′ passed as an argument to the addListener

method of chrome.runtime.onMessage, we introduce a new handler on a chan-
nel with the same name of the component, whose body is obtained by closing
e′ with the introduction of all the bindings defined before the registration of
the listener. For each component we introduce a unique permission for memory
access, granted to each handler in the component; handlers corresponding to the
background page are also given the permissions specified in the manifest of the
extension. Any invocation of chrome.runtime.sendMessage in the definition of
a content script is translated to a send expression over a channel with the name
of the component corresponding to the background page.

Notice that Chen exploits an existing tool to translate JavaScript to λJS ,
but our target language has two new constructs: message sending and privi-
lege exercise. In JavaScript, both operations correspond to function calls to the
Chrome extension API, hence, to introduce the syntactic forms corresponding
to them in the translation to our formalism, we extend the JavaScript code
to redefine the functions of interest in the Chrome API with stubs. For in-
stance, chrome.cookies.set is redefined to a function including the special tag
"#Cookies#", which is preserved when desugaring JavaScript to λJS : we then
post-process the λJS expression to replace this tag with exercise(Cookies).

Running the Analysis. The tool supports two analyses. The option -compromise

instructs Chen to analyse the privileges which may be escalated by an opponent
assuming the full compromise of an arbitrary content script, i.e., it estimates the
safety of the system despite the permission that protects the background page.
If the background page requests some permission ρ intended for internal use,
but ρ is available to some content script according to the results of the analysis,
then the developer is recommended to review the communication interface.

Alternatively, the option -target n allows to get an approximation of the
privileges available to the content scripts in the component n in absence of
compromise. We model absence of compromise by considering a ⊥-opponent as
the threat model, since this opponent cannot directly communicate with the
background page: if the option -target n is specified, Chen transforms the
system by protecting with permission ⊥ all the handlers included in n, and
computes a permission ρ such that the system is ρ-safe despite ⊥. This allows to
estimate which privileges are enabled by messages sent from n, so as to identify
potential room for a security refactoring, as we discuss below.

Both the analyses additionally support the option -flag p, which allows to
define a dummy permission p assigned to the background page. The programmer
may then annotate specific program points with the tag "#p#, corresponding to
the exercise of this dummy permission; by checking the presence of the flag
among the escalated privileges, Chen can be used to implement an opponent-
aware reachability analysis on the extension code.

Supporting a Security Refactoring. To exemplify, we analyse with Chen our mo-
tivating example. By first specifying the option -target O, the tool detects that
the options page O is only accessing the privilege Cookies as part of its standard
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functionalities, even though the background page B is given the permissions
MemB � Cookies. To support least privilege, the developer is thus recommended
to introduce a distinct communication port for B. Notably, the permission gap
arises from the presence in the code of B of program branches which are never
triggered by messages sent by O in absence of compromise: in principle, Chen

could then automatically introduce the new port, replicate the code from the
handler of the background page, and improve its security against compromise
by eliminating the dead branches, even though the current prototype does not
implement this feature.

Then, by using the option -target C, the tool outputs that the privilege
MemB � Cookies can be escalated by the content script C. Hence, no automated
refactoring is possible, but the output of the analysis is still helpful for a careful
developer, who realizes that C should not be able to access the Cookies privi-
lege. Based on the output of the analysis, the developer may opt for a manual
reviewing and refactoring of the extension.

Current Limitations. Being a proof-of-concept implementation, the current ver-
sion of Chen lacks a full coverage of the Chrome extension APIs. Moreover,
Chen cannot analyse extensions which use ports to communicate: in our model,
ports are just channels and do not pose any significant problem to the analysis.
Unfortunately, the current Chrome API makes it difficult to support the analy-
sis of extensions using ports, since the underlying programming patterns make
massive usage of callbacks. Based on our experience and a preliminary investi-
gation, however, ports are not widely used in practice, hence many extensions
can still be analysed by Chen.

5.3 Case Study: ShareMeNot

ShareMeNot [30] is a popular privacy-enhancing extension developed at the Uni-
versity of Washington. The extension looks for social sharing buttons in the web
pages and replaces them with dummy buttons: only when the user clicks one
of these buttons, its original version is loaded and the cookies registered by the
corresponding social networks are sent. This means that the social network can
track the user only when the user is willing to share something.

ShareMeNot consists of four components: a content script, a background page,
an option page and a popup, for a total of approximately 1,500 lines of JavaScript
code. The background page offers a unique entry point to all the other exten-
sion components and handles seven different message types. Interestingly, one of
these messages allows to unblock all the trackers in an arbitrary tab, by invok-
ing the unblockAllTrackersOnTab function: this message should only be sent
by the popup page. We then put a flag in the body of the function and we
performed the analysis of ShareMeNot with the -compromise option, observing
that the flag is reachable: hence, a compromised content script could entirely
deactivate the extension. The analysis took around 150 seconds on a standard
commercial machine.

We then ran the analysis with the -target C option, where C is the name
of the component including only the content script, and we observed that the
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flag was not reachable. This means that C does not need to access the function
unblockAllTrackersOnTab as part of its standard functionalities, hence the
code should be refactored to comply with the principle of the least privilege and
prevent a potential security risk. The analysis took around 210 seconds on the
same machine.

6 Conclusions

We presented a core calculus to reason about browser extensions security and we
proposed a flow analysis aimed at detecting which privileges may be leaked to
an opponent which compromises some (arbitrarily chosen) untrusted extension
components. The analysis has been proved sound and it has been implemented in
Chen, a prototype static analyser for Google Chrome extensions. We discussed
how Chen can assist developers in writing more robust extensions.

As future work, we plan to further engineer Chen, to make it support more
sophisticated communication patterns used in Google Chrome extensions. We
ultimately plan to evolve Chen into a compiler, which automatically refactors
the extension code to make it more secure, by unbundling functionalities based
on their exercised permissions. Based on a preliminary investigation, this will
require a non-trivial programming effort.
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Abstract. Asynchronous event-driven programming has become a central model
for building responsive and efficient software systems, from low-level kernel
modules, device drivers, and embedded systems, to consumer application on plat-
forms such as .Net, Android, iOS, as well as in the web browser. Being fundamen-
tally concurrent, such systems are vulnerable to subtle and elusive programming
errors which, in principle, could be systematically discovered with automated
techniques such as model checking. However, current development of such auto-
mated techniques are based on formal models which make great simplifications
in the name of analysis decidability: they ignore event-based synchronization,
and they assume concurrent tasks execute serially. These simplifications can ulti-
mately lead to false positives, in reporting errors which are infeasible considering
event-based synchronization, as well as false negatives, overlooking errors which
arise due to interaction between concurrent tasks.

In this work, we propose a formal model of asynchronous event-driven pro-
grams which goes a long way in bridging the semantic gap between programs and
existing models, in particular by allowing the dynamic creation of concurrent tasks,
events, task buffers, and threads, and capturing precisely the interaction between
these quantities. We demonstrate that (1) the analogous program analysis problems
based on our new model remain decidable, and (2) that our new model is strictly
more expressive than the existing Petri net based models. Our proof relies on a
class of high-level Petri nets called Data Nets, whose tokens carry names taken
from an infinite and linearly ordered domain. This result represents a significant
expansion to the decidability frontier for concurrent program analyses.

1 Introduction

The asynchronous event-driven programming model has emerged as a common
approach to building responsive and efficient software. Rather than assigning each com-
puting task to a dedicated thread which becomes blocked as the task polls for some
condition, the system maintains lightweight sets of events on which tasks are pend-
ing, buffers of tasks whose events have been triggered, and worker threads to execute
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idle
threads

events

pending 
tasks

task 
buffers

Fig. 1. In asynchronous event-driven programs,
pending tasks (drawn as triangles) are moved to
their designated task buffers (drawn as boxes)
once their designated events (drawn as circles)
are triggered. Threads (drawn as diamonds) ex-
ecute buffered tasks to completion, such that no
two tasks from the same buffer (drawn with the
same color) execute in parallel.

s ::= s; s | skip
| assume e | assert e
| x := e
| if e then s else s
| while e do s
| call x := p e | return e
| x := (rep) task p e Y z
| y := new event
| y := event
| z := new buffer
| z := buffer
| cancel x | wait Y | sync y

Fig. 2. The grammar of program statements.
Here x, y, z ∈ Vars ∪ {⊥} range over program
variables or ⊥, Y ⊆ Vars over sets of program
variables, e over expressions, and p over proce-
dure names. We assume ⊥ does not appear on
the left-hand side of assignment.

buffered tasks; Figure 1 illustrates the architecture. Besides the possibility of using
events for synchronization between tasks, the task buffers themselves provide another
means of orchestration: the system can allow tasks from distinct buffers to execute in
parallel while ensuring that tasks from the same buffer execute serially. Delegating the
management of events, tasks, buffers, and threads to the system generally increases
efficiency.

High-performance asynchronous event-driven programs require subtle management
of concurrent tasks [1], increasing the possibility of anomalous behavior due to unfore-
seen task schedules. One important research direction is the development of static pro-
gram analyses for these programs. Indeed, such analyses have been developed, based
on the formal models of multi-set pushdown systems (MPDS) [2] and Petri nets [3]. Led
by decidability considerations, MPDSs (and Petri nets) model systems with, effectively,
just one thread and task buffer, and without events. However, multiple threads, buffers,
and events are fundamental to the use of many, if not most, systems; consider the most
basic libevent API [4] function

event new(buff,fd,flags,proc,arg),

which returns a new task destined for buffer buff pending an event on the file descriptor
fd, or the most basic libdispatch API [5] functions

dispatch source create(ty,fd,flags,buff),

which returns a new event whose attached tasks are destined to buffer buff, and

dispatch source set handler(evt,proc),
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which attaches to event evt a task to execute procedure proc. Accordingly, MPDS-
based analyses may report false positives due to abstraction of event-based synchro-
nization, as well as false negatives due to the restriction to executions in which all tasks
are executed serially, by one single thread.

We propose a formal model of event-driven asynchronous programs which captures
event-based synchronization and task-buffer partitioning precisely, and yet retains a ba-
sis for decidable program analyses. Besides task creation, our model allows event cre-
ation and task-buffer creation as primitive operations. Each newly-created task has a set
of events on which it is pending, and a task buffer in which it resides once activated by
the triggering of any such event. An active task can be dispatched to run on any idle
thread until it completes its execution, possibly blocking its thread by waiting for some
other set of events. Alternatively, in the spirit of asynchronous event-driven program-
ming, tasks can also create more tasks to continue their work once certain events are
triggered, rather than blocking their execution threads. Our model also permits tasks to
trigger events and to cancel previously-created tasks. This allows our model to capture
many intricate aspects of existing languages and libraries supporting asynchronous pro-
gramming. We show that these features make our model strictly more expressive1 than
usual models for asynchronous programs [2,3].

Our main result is that decidability of safety verification is retained despite such
heightened modeling precision. While verification expectedly becomes undecidable
once tasks can execute concurrently and call recursive procedures [6], or when task
buffers are FIFO-ordered [7], even if data is abstracted into finite domains, we demon-
strate that with only non-recursive procedures and unordered buffers, the decidability
boundary can be stretched unexpectedly far to include unbounded dynamic creation of
tasks and events.

We prove our result by a reduction to the coverability (or control-state reachability)
problem of Data nets, an extension of Petri nets [8]. In standard Petri nets each place
may contain an arbitrary number of identical (black) tokens. These tokens may be con-
sumed from the so-called preconditions of transitions and created in postconditions. In
the paradigm of colored Petri nets, tokens are distinguishable (colored), and their color
is relevant for the semantics of the net. Data Nets [9] are a class of colored Petri nets in
which tokens carry names taken from an infinite, linearly-ordered, and dense domain.
In particular, only the relative order among these names is relevant for the semantics
of nets. This reduction essentially works by modeling program tasks as tokens in a
Data Net, whose event identifiers are encoded by names, and whose task identifiers,
buffer identifiers, and local variable valuations are all encoded by the places of the Data
Net. Even if Data Nets can represent unboundedly many names in a configuration, they
cannot represent unboundedly many sets of names. Therefore, the challenge in the simu-
lation is to represent unboundedly-many tasks that are pending on multiple events, even
if we cannot directly represent such sets. We use the linear order to specify the order in
which events can take place in the future.

The main contributions and outline of this work are:
§2 A formal model of event-driven asynchronous programs which captures event-based

synchronization and task-buffer partitioning.

1 With respect to the control-state reachability problem.
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identifiers i, j, k ∈ IDs, J ⊆ (IDs \ {⊥})
valuations g, � : Vars→ Vals
statements s ∈ Stmts
frames f = 〈�, s〉 ∈ Frames
frame sequences f ∈ Frames∗

task pools m ∈ M[Tasks]
configurations c = 〈g,m〉 ∈ Configs

statement context S = 
;s1;s2; . . . ;sn

task context F = 〈�, S 〉 · f
task pool context M = m ∪ {�〈F,⊥, j, k〉�}
configuration context C = 〈g,M〉

completed
〈ε,⊥, j, k〉

running
〈 f f ,⊥, j, k〉

Complete

waiting
〈 f f ,⊥, J, k〉

Sync

Wait

active
〈 f f , i, j, k〉

Dispatch

pending
〈 f f , i, J, k〉

Sync

Fig. 3. Syntactic conventions and the task-state transition diagram. Note that i � ⊥ and J � ∅.

§4 The decidability of the control-state reachability problem for this formal model.
§5 A hardness result for the control-state reachability problem.

2 Asynchronous Programs with Event-Based Synchronization

We fix the sets Procs of procedure names, Vars of variables, Vals of values, and IDs ⊆
Vals of resource identifiers, such that ⊥ ∈ IDs and true, false ∈ Vals. A procedure
p ∈ Procs is a sequence of parameter and local variable declarations, along with a state-
ment sp representing the body of p. A program P is a sequence of global variable and
procedure declarations; we write Stmts to denote the finite set of statements included
in the grammar of Figure 2, restricted to those which appear2 in P. While the syntax of
program expressions is mostly unimportant for our concurrency-centric considerations,
we do suppose that program expressions are statically typed with distinct types for task,
buffer, and event identifiers, and the type of ⊥ is polymorphic, e.g., as null in Java.
We also include the nullary nondeterministic choice operator �, which can evaluate to
any value of (Vals \ IDs), in order to model programs in which data values have been
abstracted [10].

Intuitively, the y � new event and z � new buffer statements store a fresh iden-
tifier in variable y, resp., z, which is later used to refer to an event or buffer. The
x � (rep) task p e Y z statement stores in x the identifier of a new (repeating) task
to execute procedure p with argument e, which is to be placed in the buffer identi-
fied by z once (resp., each time) any of the events identified by Y are triggered; the
cancel x statement discards any task(s) identified by x. The sync y statement triggers
the event identified by y. The wait Y statement suspends its executing thread until any
of the events identified by Y are triggered. We suppose that local variables do not store
identifiers; otherwise, as Appendix B demonstrates, the program analysis problems we
consider in this work would become undecidable.

A (procedure) frame f = 〈�, s〉 ∈ Frames is a (finite) valuation � : Vars → Vals to
the procedure local variables, along with a statement s ∈ Stmts describing the entire

2 See Appendix A for the precise meaning of appear in P.
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body of a procedure that remains to be executed, initially set to sp. A task 〈 f , i, j, k〉 or
〈 f , i, J, k〉 is a procedure frame sequence f ∈ Frames∗, along with a repeating or non-
repeating task identifier i ∈ IDs, an event identifier j ∈ IDs or non-empty set of event
identifiers J ⊆ (IDs \ {⊥}), and a buffer identifier k ∈ IDs. The set of tasks is denoted
Tasks. A task 〈 , i, , 〉 is repeating when i is a repeating task identifier. A task 〈 f , , , 〉
is completed when f = ε.3 A non-completed task 〈 , i, J, 〉 is pending when i � ⊥, and
waiting when i = ⊥. A non-completed task 〈 , i, j, 〉 is active when i � ⊥, and running
when i = ⊥. Note that we only write capital J for waiting and pending tasks, and
lowercase j ∈ IDs for active and running tasks. A task pool is a finite-support4 multiset
m ∈ M[Tasks]. A configuration c = 〈g,m〉 ∈ Configs is a valuation g : Vars → Vals
to the global variables, along with a task pool m. Figure 3 summarizes our syntactic
conventions, and the transitions between the various task states.

The (nondeterministic) evaluation e(g, �) ⊆ Vals is the set of values to which the
program expression e can evaluate, given the variable valuations g and �. While we
are mostly agnostic to the meaning of program expressions, we assume that �(g, �) =
(Vals \ IDs), and that evaluation of each IDs-typed expression e is deterministic,
i.e., e(g, �) = {i} for some i ∈ IDs; accordingly, we treat e(g, �) as an element of IDs
rather than as a subset of IDs.

To reduce clutter in the operational program semantics, we introduce a notion of
context. A statement context S is a term derived from the grammar S ::= 
 | S ;s, where
s ∈ Stmts. We write S [s] for the statement obtained by substituting a statement s for
the unique occurrence of 
 in S . Intuitively, a context filled with s, e.g., S [s], indicates
that s is the next statement to execute in the statement sequence S [s]. Similarly, a task
context F = 〈�, S 〉· f is a frame sequence in which the first frame’s statement is replaced
with a statement context, and we write F[s] to denote the frame sequence 〈�, S [s]〉 · f .
A task pool context M = m ∪ {�〈F,⊥, j, k〉�} is a task pool in which the frame sequence
of one running task is replaced by a context, and we write M[s] to denote the task
pool m ∪ {�〈F[s],⊥, j, k〉�}. A configuration context C = 〈g,M〉 is a configuration in
which the task pool is replaced by a task pool context, and we write C[s] to denote the
configuration 〈g,M[s]〉. We overload expression evaluation to contexts, writing e(g, F),
e(g,M), or e(C) for the evaluation e(g, �) using the global valuation g and the local
valuation � of the selected task’s first frame.

Figure 4 defines the program transition relation → as a set of operational steps on
configurations. The New rule simply stores a freshly-allocated identifier, which can be
subsequently used to identify events or buffers. The Dispatch rule makes some active
task running, so long the number of running and waiting tasks does not exceed the
number T ∈ (N∪{ω}) of threads,5 nor does the number of running tasks from any given
buffer k exceed the buffer’s concurrency limit Tk ∈ (N ∪ {ω}). While our semantics is
indifferent, the most common use case sets Tk = 1. The Complete rule turns a running
task with no statements but skip to execute into a completed task. The Task rule adds a
newly-created task to the task pool, while the Cancel rule removes any task identified

3 We write “ ” to denote irrelevant entities, and “ε” for the empty sequence.
4 A multiset m has finite support when m(x) > 0 for only finitely many x ∈ dom(m).
5 While we consider for simplicity a fixed number T of threads, we claim our theoretical results

continue to hold if the number of threads can be changed dynamically, e.g., by the program.
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New

i is fresh g2 = g1(y �→ i)

〈g1,M[y � new ]〉 → 〈g2,M[skip]〉

Dispatch

i � ⊥ |{�〈 f f , i′, , 〉 ∈ m : i′ = ⊥�}| < T
|{�〈 f f , i′, , k′〉 ∈ m : i′ = ⊥ and k′ = k�}| < Tk

〈g,m ∪ {�〈 f , i, j, k〉�}〉 → 〈g,m ∪ {�〈 f ,⊥, j, k〉�}〉

Complete
f = 〈 , skip〉

〈g,m ∪ {�〈 f ,⊥, j, k〉�}〉 → 〈g,m ∪ {�〈ε,⊥, j, k〉�}〉

Task
i is a fresh (repeating) task ID g2 = g1(x �→ i)
� ∈ e(g1,M) m = {�〈〈�, sp〉, i,Y(g1,M), z(g1,M)〉�}
〈g1,M[x � (rep) task p e Y z]〉 → 〈g2,M[skip] ∪m〉

Cancel
g2 = g1(x �→ ⊥)

m = {�〈 , i, , 〉 ∈ M : i = x(g1,M) � ⊥�}
〈g1,M[cancel x]〉 → 〈g2,M[skip] \m〉

Wait

m1 = {�〈F[wait Y],⊥, , k〉�}
m2 = {�〈F[skip],⊥,Y(g,M), k〉�}
〈g,m ∪ m1〉 → 〈g,m ∪m2〉

Sync
j = y(g,M1) m ∈ {�〈 , , J, 〉 ∈ M1 : j ∈ J�}

m′ = {�〈 , i, , 〉 ∈ m : i is not a repeating task ID�}
M2 = (M1 \ m′) ∪ {�〈 f , i, j, k〉 : 〈 f , i, , k〉 ∈ m�}

〈g,M1[sync y]〉 → 〈g,M2[skip]〉

Current-Event
m1 = {�F[y � event],⊥, j, k�}

m2 = {�〈F[skip],⊥, j, k〉�} g2 = g1(y �→ j)

〈g1,m ∪ m1〉 → 〈g2,m ∪m2〉

Current-Buffer
m1 = {�〈F[z � buffer],⊥, j, k〉�}

m2 = {�〈F[skip],⊥, j, k〉�} g2 = g1(z �→ k)

〈g1,m ∪ m1〉 → 〈g2,m ∪m2〉

Fig. 4. Rules defining the program transition relation →. The variables i, j, k ∈ IDs range over
task, event, and buffer identifiers respectively, and J ⊆ (IDs\{⊥}) over non-empty event-identifier
sets. We write Y(g,M) in the Task and Wait rules for the set {y(g,M) ∈ IDs : y ∈ Y} \ {⊥} of
identifiers referred to by Y , interpreting Y(g,M) as ⊥ when Y(g,M) = ∅. We denote irrelevant
values with “ ” and write {� · �}, ∪, and \ to denote the multiset constructor, union, and difference
operators.

by x. The Wait rule makes waiting one running task. The Sync rule makes active or
running all pending or waiting tasks whose event sets contain the event identified by y.
The Current-Buffer and Current-Event rules allow to recover and store in a variable
the buffer to which the task belongs and the event that activated the task, respectively.
The transition rules for the usual sequential program statements are standard, and are
included in Appendix A; those rules modify the state of exactly one running task at a
time.

The initial configuration c0 = 〈g0,m0〉 of a program P is the valuation g0 mapping
each global variable to ⊥, along with the task pool m0 containing a single running
task 〈〈�0, smain〉,⊥,⊥,⊥〉 such that �0 maps each variable of the main procedure to ⊥.
An execution of P to c j is a configuration sequence c0c1 . . . c j such that ci → ci+1 for
0 ≤ i < j. The control-state reachability problem asks, given a procedure p of a program
P, whether p can be executed in some execution of P, i.e. whether there is a reachable
configuration 〈g,m〉 with 〈〈 , sp〉 f ,⊥, , 〉 ∈ m for some f ∈ Frames∗. Typical safety
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var x: int

var b1, b2: buffer id

var t1, t2: task id

proc main

s1 : x := 1000;

s2 : b1 := new buffer;
s3 : b2 := new buffer;
s4 : t1 := task p(1000) {} b1;

s5 : t2 := task p(1) {} b2

end

proc p(var y: int)

var z: int

s6 : z := x - y;

s7 : x := z

end

Fig. 5. A program which executes two tasks
from different buffers to subtract a value
from global variable x

var x: int

var e: event id

var t1, t2: task id

proc main

s1 : e := new event;
s2 : t1 := task p1() {} ⊥;
s3 : t2 := rep task p2() {e} ⊥

end

proc p1()

s4 : x := 1;

s5 : sync e

end

proc p2()

s6 : assert x > 0

end

Fig. 6. A program using synchronization

verification questions (e.g., program assertions, mutual exclusion properties) can be
reduced to this problem.

Example 1. Consider an execution from the initial configuration

〈⎛⎜⎜⎜⎜⎜⎜⎝
x �→ ⊥
b1 �→ ⊥, b2 �→ ⊥
t1 �→ ⊥, t2 �→ ⊥

⎞⎟⎟⎟⎟⎟⎟⎠ , {� 〈〈∅, s1;s2;s3;s4;s5〉,⊥,⊥,⊥〉 �}
〉

of the program listed in Figure 5. By applying the Assign and New rules to the first
three program statements s1–s3, and advancing past reduced skip statements via the
Skip rule, we arrive to the configuration

〈⎛⎜⎜⎜⎜⎜⎜⎝
x �→ 1000
b1 �→ b1, b2 �→ b2

t1 �→ ⊥, t2 �→ ⊥

⎞⎟⎟⎟⎟⎟⎟⎠ , {� 〈〈∅, s4;s5〉,⊥,⊥,⊥〉 �}
〉

in which buffer identifiers b1 and b2 have been created and stored in variables b1 and
b2. Now applying the Task rule to statement s4 creates a fresh task identified by t1 to
execute p(1000) from buffer b1

〈⎛⎜⎜⎜⎜⎜⎜⎝
x �→ 1000
b1 �→ b1, b2 �→ b2

t1 �→ t1, t2 �→ ⊥

⎞⎟⎟⎟⎟⎟⎟⎠ , {� 〈〈∅, s5〉,⊥,⊥,⊥〉
〈〈[y �→ 1000, z �→ ⊥], s6;s7〉, t1,⊥, b1〉 �}

〉
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and subsequently applying the Task rule to statement s5 creates a fresh task identified
by t2 to execute p(1) from buffer b2

〈⎛⎜⎜⎜⎜⎜⎜⎝
x �→ 1000
b1 �→ b1, b2 �→ b2

t1 �→ t1, t2 �→ t2

⎞⎟⎟⎟⎟⎟⎟⎠ , {� 〈ε,⊥,⊥,⊥〉〈〈[y �→ 1000, z �→ ⊥], s6;s7〉, t1,⊥, b1〉
〈〈[y �→ 1, z �→ ⊥], s6;s7〉, t2,⊥, b2〉 �}〉

resulting in the completion of the initially-running task, by subsequently applying the
Complete rule. Supposing that Task t2 executes statement s6 before t1 executes, via the
Dispatch and Assign rules, we arrive at the configuration

〈⎛⎜⎜⎜⎜⎜⎜⎝
x �→ 1000
b1 �→ b1, b2 �→ b2

t1 �→ t1, t2 �→ t2

⎞⎟⎟⎟⎟⎟⎟⎠ , {� 〈ε,⊥,⊥,⊥〉〈〈[y �→ 1000, z �→ ⊥], s6;s7〉, t1,⊥, b1〉
〈〈[y �→ 1, z �→ 999], s7〉,⊥,⊥, b2〉 �}〉 .

Since Task t1 executes from a different buffer than t2, it may execute to completion
before t2 makes another move, by applying the Dispatch, Assign, and Complete rules,
arriving at the configuration

〈⎛⎜⎜⎜⎜⎜⎜⎝
x �→ 0
b1 �→ b1, b2 �→ b2

t1 �→ t1, t2 �→ t2

⎞⎟⎟⎟⎟⎟⎟⎠ , {� 〈ε,⊥,⊥,⊥〉〈ε,⊥,⊥, b1〉
〈〈[y �→ 1, z �→ 999], s7〉,⊥,⊥, b2〉 �}

〉

in which t1 has subtracted 1000 from x, yet t2 has yet to complete its subtraction of 1
from 1000. Allowing t1 to execute to completion, via the Assign and Complete rules,
we arrive at the configuration

〈⎛⎜⎜⎜⎜⎜⎜⎝
x �→ 999
b1 �→ b1, b2 �→ b2

t1 �→ t1, t2 �→ t2

⎞⎟⎟⎟⎟⎟⎟⎠ , {� 〈ε,⊥,⊥,⊥〉〈ε,⊥,⊥, b1〉
〈ε,⊥,⊥, b2〉 �}

〉

in which both subtraction tasks have completed, yet only the second’s effects are ac-
counted for in the global state. Note that this global state would not be admitted were
both tasks to execute serially.

Example 2. Consider an execution from the initial configuration

〈(
x �→ ⊥, e �→ ⊥
t1 �→ ⊥, t2 �→ ⊥

)
, {� 〈〈∅, s1;s2;s3〉,⊥,⊥,⊥〉 �}

〉

of the program listed in Figure 6. By applying the New and Task rules for the first three
program statements s1–s3 we arrive to the configuration

〈(
x �→ ⊥, e �→ e1

t1 �→ t1, t2 �→ t2

)
, {� 〈ε,⊥,⊥,⊥〉〈〈∅, s4;s5〉, t1,⊥,⊥〉
〈〈∅, s6〉, t2, {e1},⊥〉 �}

〉

in which Task t1 is active and t2 is pending. Note that neither would have been able to
execute before the initial task had completed, since all three tasks are executed from
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the same buffer, identified by ⊥. Now applying Dispatch, which is the only enabled
transition, and executing t1 to completion, we arrive to the configuration

〈(
x �→ 1, e �→ e1

t1 �→ t1, t2 �→ t2

)
, {� 〈ε,⊥,⊥,⊥〉〈ε,⊥,⊥,⊥〉
〈〈∅, s6〉, t2, {e1},⊥〉
〈〈∅, s6〉, t2, e1,⊥〉

�}〉
in which event e1 has been triggered, and variable x set to 1. Since t2 is a repeating
task, a pending copy of it remains in the task pool in addition to the newly-activated
copy. Now the Dispatch rule can apply to the active copy, which can be executed to
completion, succeeding the assertion of statement s6, resulting in the configuration

〈(
x �→ 1, e �→ e1

t1 �→ t1, t2 �→ t2

)
, {� 〈ε,⊥,⊥,⊥〉〈ε,⊥,⊥,⊥〉
〈〈∅, s6〉, t2, {e1},⊥〉
〈ε,⊥, e1,⊥〉

�}〉 .
Had we abstracted the event-based synchronization from our formal model, it would
have been possible to violate the assertion of statement s6, which is not possible in the
program as it is written.

While our general model of asynchronous programs gives semantics to arbitrary pro-
grams with infinite data domains, our decidability arguments in the following sections
rely on the following key assumptions/restrictions:

1. The set (Vals \ IDs) of non-identifier values is finite.
2. Procedures are not recursive: two frames of the same procedure cannot appear on

the same procedure stack.
3. Identifiers are not stored in local variables (previously mentioned).
4. Buffer identifiers and repeating task identifiers (other than ⊥) are stored in global

variables from the time they are created.

Assumption 1 is a standard assumption in model checking [11] and data-flow analy-
sis [12], which is obtained, e.g., by predicate abstraction [10]; allowing general-purpose
infinite data domains quickly leads to undecidability. Assumption 2 avoids a well-
established undecidable class, in which concurrent threads with unbounded procedure
stacks (only 2 threads are required) can synchronize (e.g., through global variables) [6].
Assumption 4 together with 1, essentially limits the number of task buffers and repeat-
ing tasks (prohibiting unbounded dynamic creation), since their identifiers are always
stored among a finite number of global variables. While Appendix B shows Assump-
tion 3 cannot be relaxed, we do not know whether Assumption 4 can be weakened.
We believe that it is reasonable to assume that programs keep references to their re-
peating tasks, in order to eventually cancel them, and do not create unboundedly-many
task buffers. Note that these assumptions do not preclude an unbounded number of
dynamically-created events correlating tasks in the task pool.

Though we model repeating tasks explicitly in order to describe their semantics
precisely, and to stipulate Assumption 4, they can be simulated with regular tasks.
Essentially, each sync action triggering events on which a repeating task is waiting is
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augmented to create active copies of triggered repeating tasks. The required bookkeep-
ing is possible since the number of repeating task identifiers is bounded via Assump-
tion 4 by the number of global variables: for each repeating task i, additional global
variables are added to store the identifiers of i’s buffer, and events on which i waits.

3 Data Nets

In this section we present basic facts about Petri Data Nets (PDN) [9], which extend
the classical model of Petri nets [8] with identity-carrying tokens. Despite the fact that
PDNs are strictly-more expressive than Petri nets, their coverability problem remains
decidable [9]. In Section 4, we show a reduction from the control-state reachability
problem of asynchronous programs to the coverability problem on PDNs.

We denote the null tuple (0, . . . , 0) ∈ Nk (for any k) as 0, and for x = (a1, . . . , ak) we
write x(i) = ai. We denote as (Nk)∗ set of finite words over Nk. For a word w = x1 · · · xn

we write |w| = n and w(i) = xi. Formally, a Petri Data Net is a Petri net where each
token carries an identity from a linearly ordered and dense domain D.

Petri Data Nets. A k-dimensional Petri Data Net (PDN) is a tuple N = (P,T, F,H),
where:

– P = {p1, . . . , pk} is a finite set of places,
– T is a finite set of transitions, disjoint from P,
– for every t ∈ T, Ft and Ht are finite sequences in (Nk)∗ with |Ft| = |Ht| = n (for

some n specific to t), and we say t has arity n.

Every transition t is endowed with two sequences Ft and Ht of the same length of (pos-
sibly null) vectors; Ft(i) specifies the tokens carrying the i-th identity that are consumed
and analogously, Ht(i) specifies the tokens of that identity that are produced, when tran-
sition t is taken.

Markings. A marking m of a PDN can be seen as a mapping m that maps every place
p to a multiset of identities. This will be the intuition that will guide our graphical nota-
tions. However, in the formal exposition, we use a different representation of markings,
guided by the two following observations:

1. A marking m only has finitely many tokens, carrying some identities d1 < · · · < dn.
For each i, we can gather all the tokens carrying the name di in m, thus obtaining
assuming k places a non-null vector vi ∈ Nk (the j-th component of vi standing for
the number of tokens in the j-th place carrying the name di). Therefore, m can be
written as (d1, v1) · · · (dn, vn).

2. The concrete identities di are irrelevant, and only their relative order is useful with
respect to the semantics of PDN. Thus, m can be safely abstracted as the sequence
v1 · · · vn in (N|P| \ 0)∗.

Formally, a marking of a k-dimensional PDN is a word in (Nk \ 0)∗. We say a marking
m = x1 · · · xn marks pi if x j(i) > 0 for some j ∈ {1, . . . , n}.

Prior to formally defining the transition relation, we start with some intuition. Con-
sider a marking m ∈ (Nk \0)∗. In order to fire a transition t with arity n, the net nondeter-
ministically selects n identities, consumes some tokens with these identities as specified



Analysis of Asynchronous Programs with Event-Based Synchronization 545

a

x < y < z

b

p1

p2

p3

x

z
y

→

a

x < y < z

b

c

p1

p2

p3

x

z
y

Fig. 7. Firing of a PDN transition (assuming a < c < b)

by Ft, and produces new tokens with the identities specified by Ht. In order to deal with
identities that are not present in m, or identities that are removed due to the firing of t,
we introduce/remove null vectors where needed. We say m′ ∈ (Nk)∗ is a 0-extension of
a marking m (or m is the 0-contraction of m′) if m is obtained by removing every tuple
0 from m′.

Transition Relation of PDN. Let m,m′ be two markings and t ∈ T with arity n. We say
t can be fired in m, reaching m′ if:

1. there exists a 0-extension u0x1u1 · · · un−1xnun of m with ui ∈ (Nk)∗ for i ∈ {0, . . . , n}
and xi ∈ Nk for i ∈ {1, . . . , n},

2. xi ≥ Ft(i) for i ∈ {1, . . . , n},
3. and taking yi = (xi − Ft(i)) + Ht(i), m′ is the 0-contraction of u0y1u1 · · ·un−1ynun.

We write m → m′ if m′ can be reached from m by firing some transition t ∈ T, and
denote→∗ the reflexive and transitive closure of→. We assume an initial marking m0,
and say a marking m is reachable if m0 →∗ m.

We rely on the often-used graphical depiction for PDN and use pictures of Petri nets
where arcs connected to a transition t are labelled with bags of variables that must be
instantiated by ordered identities. The number of these variables is exactly the arity of t
and the ordering of the corresponding identities is carried by the transition.

Using these graphical conventions, Figure 7 depicts a PDN with a single transition
t given by Ft = (1, 0, 0)(0, 0, 0)(0, 1, 0) and Ht = (0, 0, 0)(0, 0, 1)(0, 0, 0) (where places
are ordered by their index). The marking shown in the left of the figure is given by the
word m = (1, 0, 0)(0, 1, 0), where the first tuple represents the identity a (that appears
only in p1) and the second tuple represents the identity b (that appears only in p2).
Since the transition has arity 3, we need to have three tuples in our marking, for which
we can add a 0-tuple, thus obtaining the 0-expansion m′′ = (1, 0, 0)(0, 0, 0)(0, 1, 0).
Notice that m′′(i) ≥ Ft(i) for i = 1, 2, 3. After subtracting Ft and adding Ht we obtain
m′′′ = (0, 0, 0)(0, 0, 1)(0, 0, 0),which is 0-contracted to the marking m′ = (0, 0, 1) shown
in the right of Figure 7.

For brevity and readability, we allow variables that are not totally ordered, which
stands for a choice among all possible linearizations. Also, we will allow the labelling
of some arcs by an expression of the form min{x1, . . . , xn}, which is replaced in each
linearization by the minimum variable. For instance, we can simulate a transition t in
which two unrelated variables x and y appear, by a non-deterministic choice between
three transitions, the first one assuming x < y (and replacing min{x, y} by x), the second
one assuming y < x (replacing min{x, y} by y) and the last one assuming x = y (with
y and min{x, y} replaced by x). Analogously, a transition with variables x and y so that
x ≤ y, can be simulated by two transitions, assuming x < y and x = y, respectively.
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Fig. 8. Firing of a PDN transition t with extra features (with a < b, and c and d unrestricted)

Additionally, we shall use the following features in Section 4. Abdulla et al. [13]
prove that each of these features, not present in the basic PDN model, can be simulated
by the basic model.

Fresh Name Creation. In the PDN definition a new name may be created whenever
some Ft(i) is the null tuple, but freshness is not guaranteed. Abdulla et al. [13] give a
construction that guarantees some name is created fresh. In pictures we will represent
fresh name creation by labeling some postarc of a transition t by a special variable ν,
that can only be instantiated to names not appearing in the marking that enables t.

Transfers and Renamings. In our simulation we will need to transfer every token
carrying a given name from one place to another. We represent transfers in our pictures
by having double arcs labelled by some variable. If a transition has several transfers, we
will distinguish them in pictures by numbering them. Moreover, if the variables in the
prearc and the postarc of a transfer do not coincide, then the names in the precondition
are renamed accordingly in the postcondition.

Figure 8 shows an example that illustrates all the extra features we will need in our
simulation. In the firing of t the variables x and y are instantiated to a and b, respectively
(we are assuming a < b). After the firing of the transition (i) a and b are removed from
p1, (ii) a fresh name d is put in p1, (iii) every a-token is transfered from p3 to p4 (transfer
arc labelled by x/2), and (iv) every a-token in p2 is transfered to p4, and renamed to the
same fresh name d (transfer labelled by x/1 and ν/1). Notice that the transition specifies
a partial order x < y over the set of variables {x, y, ν}, so that the position of the fresh
name in the order is left unspecified.

We define the control-state reachability problem, that given a PDN N, an initial
marking m0, and a subset S of places of N, asks whether some marking reachable from
m0 in N marks some place p ∈ S . This problem is proved to be decidable in [9].

In Sect. 5, we show a reduction from a subclass of Data Nets in which names are un-
ordered, and in which transfers are disallowed. This class is referred to as ν-PN in
the literature [14]. The control-state reachability problem for ν-PN is known to be
Ackermann-hard [14].

4 Simulation

We now demonstrate a reduction from the control-state reachability problem for asyn-
chronous programs to the control-state reachability problem of Petri Data Nets. Our re-
duction models program tasks as tokens in a PDN, whose event identifiers are encoded
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by identities, and whose task identifiers, buffer identifiers, and local variable valuations
are all encoded by the places of the PDN. We demonstrate that the runs of the PDN
NP constructed from a program P simulate the executions of P, transition for transition,
such that a given procedure p of P can be executed if and only if one of NP’s reachable
markings marks a place which can only be marked when some task executing p is dis-
patched. For presentational simplicity, we give our simulation result assuming the only
program variables have buffer- or event-identifier type, respectively denoted Varsb and
Varse. This assumption implies that

– together with Assumption 3, there are no local variables, hence the valuation com-
ponent from Frames always equals ∅;

– because there are no local variables, there are no local assignments. Thus, the state-
ment call x � p e is simply replaced by call p and x � task p e Y z is replaced by
x := task p Y z;

– because there are no variables storing task identifiers x � task p Y z is further
simplified to task p Y z; further, there are no cancel statements.

We start by describing the encoding of the global valuations for the variables Varsb

and Varse. Notice that, because of Assumption 4, the set of buffers identifiers is limited
to |Varsb| + 1 distinct values. Define IDsB to be the set buffer identifiers given by {⊥} ∪
{1, . . . , |Varsb|}.

The PDN NP simulating the program P has a set of places given by

{pb(z, k) | z ∈ Varsb, k ∈ IDsB}
∪{pe(y) | y ∈ Varse}
∪{pt( f , q, k) | f ∈ Frames≤F , q ∈ {A,P,W,R}, k ∈ IDsB}
∪{ptlim} ∪ {pblim(k) | k ∈ IDsB} ∪ {pa}

Intuitively, a token in pb(z, k) means that variable z stores the buffer identifier k. A token
in pe(y) with identity j means that variable y stores the event identifier j. This differ-
ence of encoding for event typed variable and buffer typed variable stems from the fact
that the number of buffer identifiers is bounded across all executions of P (Assump-
tion 4), whereas the number of event identifiers is not. For each variable z ∈ Varsb,
the simulation will enforce that if pb(z, k) and pb(z, k′) are marked then k = k′. In-
tuitively, this is because a buffer typed variable stores exactly one buffer identifier.
Also no variables pe(y) contains more than 1 token. The places pt( f , q, k) are meant
to encode the task buffer. In concordance with Assumption 1, we assume a finite set
Frames≤F def

= { f ∈ Frames∗ : | f | ≤ F} of bounded frame sequences for some F ∈ N,
and we assume the procedure frame sequence of each task belongs to Frames≤F . Re-
call that (i) it follows from the previous developments that a frame f consists of an
empty valuation and a statement s ∈ Stmts describing the entire body of a procedure p
that remains to be executed; and that (ii) the set Stmts is finite as explained in §2.
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A token in pt( f , q, k) with identity j encodes a task given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 f ,⊥, j, k〉 if q = R(unning)

〈 f ,⊥, { j}, k〉 if q = W(aiting)

〈 f , , j, k〉 if q = A(ctive)

〈 f , , { j}, k〉 if q = P(ending)

Observe that, since no variable can store a task identifier, they become irrelevant.
This is why in the third and fourth case, the component identifying a task is left unspec-
ified (but different from ⊥).

We remark that the set of places of NP can be effectively built, since all the finite
sets appearing in the definition are not only finite, but they can be statically obtained.
This is clearly the case for Varsb, Varse and IDsB, which can be obtained by a simple
inspection of the program P, but also for Frames≤F because of Assumptions 1 to 3.

The initial configuration of P defines the initial marking of NP, in particular all the
variables are initialized to ⊥.

The encoding of pending tasks, using places pt( f , q, k), disallows more than one
event in their event set. The single event case (i.e., the case in which tasks are pending
on a single event) is a special case of the general case, in which tasks are pending
on multiple events. Next, we will see how we overcome what seems to be a loss of
generality. Since this is the most delicate point in our simulation of programs using
PDN, let us start by explaining some intuitions (formal developments will follow).

In the simulation using PDN, the event set of a task is limited to single events because
tokens in PDN carry only a single identity.6 So our goal is to simulate a program where
tasks are pending on multiple events using, instead, tasks that are pending on a single
event.

We first observe that although tasks are pending on multiple events, only one of
them activates the task. At the task creation time, it is not possible to know which event
from the set Y will activate the task. However, at creation time, one could guess the
event which will activate the task. The non-determinism which is inherent in the model
covers all possible such guesses of the event that will eventually activate the task.

However, this is not correct because guesses have to be consistent with the order in
which events are triggered along the computation. To see this, consider the following
scenario: a task t is created as pending on events {e1, e2}, and every computation triggers
first e2 and then e1. In this case, the guess which associates to t the single event e1

wrongly yields a computation with no counterpart in the original program, that in which
e1 and not e2 activates t.

This example shows that these arbitrary guesses yield a loss of precision by introduc-
ing new behaviors. When creating a task, the event that has to be chosen is determined
by the ordering in which events are triggered in the future of the computation.

Instead of guessing at task creation time which event will activate the task, we will
guess at event creation time when this event will be triggered. Formally, this order in the

6 Similar models in which multiple values can be carried by tokens are undecidable [15], and
only become decidable when extra semantic restrictions are added [16], which are too restric-
tive for us.
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Fig. 9. Widget simulating event creation
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Fig. 10. Widget simulating task creation

triggering of events is given by the linear order on identities in the PDN. When creating
a task pending on multiple events, the event chosen to activate the task is thus given by
the minimal one with respect to that linear order.

Back to the example, since first e2 and then e1 are triggered, we have that e2 < e1 in
the PDN. Hence, when the task t is created, only e2 = min{e1, e2} can be chosen as the
single event associated with t.

Summing up, event identities will be ordered in the simulation according to the
(guessed) order in which they are triggered. Then, the simulation needs to guarantee
that this order is correct, i.e., that the current computation is consistent with that order.
For that purpose, we use a place pa that holds a token whose identity is the next event
that can be triggered, thus separating past events from future events. Also, this token
will be used to guarantee that past events (those below the identity in pa in the linear
order) are no longer used. In our example, if the computation guesses e1 < e2, so that
e1 should first be triggered, and a sync over e2 is attempted, then the simulation blocks.

Finally, ptlim is a budget place for the number of threads. Its content corresponds to
the number of threads available to execute a task. It initially contains T − 1 tokens (the
−1 accounts for the thread running main). The simulation of Dispatch will remove a
token from ptlim while the simulation of Complete will add a token into it. Optionally,
the budget can vary along the execution. Moreover, for each k ∈ {⊥} ∪ {1, . . . , |Varsb|}
pblim(k) is a budget place (one per buffer). As above pblim(k) accounts for the remaining
concurrency limit for buffer k. Initially, it is set to the value T j by putting T j tokens at
buffer creation time, and it is modified as for ptlim.

Let us next see the simulation of each type of instructions. At the end of the sec-
tion, we will discuss how to encode our programs when we relax the assumptions on
variables so that we allow variables to store finite data and task identifiers.

New Event. An instruction y � new event is simply simulated by replacing the name in
pe(y) by a fresh name. The newly created name must be inserted at an arbitrary position
in the linear order of identities of the PDN, so that the variable νmust be left unrestricted.

The widget of Figure 9 simulates event creation. For every place pt( f ,R, k) where
f = F[y � new event], there is a transition tr such that:

– tr moves a token from pt( f ,R, k) to pt( f ′,R, k) where f ′ = F[skip]. It does so
preserving the identity, j1, carried by the token.

– tr replaces the token in pe(y) with one whose identity is fresh.
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Fig. 11. Widget simulating task buffer creation
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Fig. 12. Widget simulating waiting

New Task. We first treat the case in which the set Y is not empty (the other case is much
simpler). The instruction task p {y1, . . . , yn} z selects the minimum event in places
pe(y1), . . . , pe(yn) and puts this name in the place representing the initial state of p (in
the buffer given by z), so that the new task is pending on the first event to be triggered.

The widget of Figure 10 simulates task creation. For every place pt( f ,R, k1) where
f = F[task p Y z], Y = {y1, . . . , yn}, for every k2 ∈ IDsB, there is a transition tr such
that:

– tr moves a token from pt( f ,R, k1) to pt( f ′,R, k1) where f ′ = F[skip]. It does so
preserving the identity, j0, carried by the token.

– tr reads n identities stored in the places pe(y1) to pe(yn).
– tr tests whether the place pb(z, k2) is marked.
– tr adds a token with identity j into pt(〈∅, sp〉,P, k2) where j is given by the mini-

mum among the identities stored in the places {pe(y1), . . . , pe(yn)}.

For the case Y = ∅, it is enough to test the place pb(z, k2), move the token with
identity j0 and add a token with constant identity ⊥ to pt(〈∅, sp〉,A, k2) instead (the task
is already active).

New buffer. For the simulation of the creation of buffers, we mostly have to deal with
the places of the form pb(z, k) that contain the valuation of buffer variables.

The widget of Figure 11 simulates task buffer creation. For every place pt( f ,R, k)
where f = F[zi � new buffer], buffer identifier k2 � ⊥ and valuation gb of the buffer
typed variables whose range excludes k2 there is a transition tr such that:

– tr moves a token from pt( f ,R, k1) to pt( f ′,R, k1) where f ′ = F[skip]. It does so
preserving the identity, j, carried by the token.

– tr tests that no buffer variables stores k2. It does so by checking whether pb(z, gb(z))
is marked for every buffer typed variable z.

– tr moves the token from pb(zi, gb(zi)) to pb(zi, k2).

Sync. The simulation of a sync y is perhaps the most involved. On the one hand, we
need to guarantee that the triggered event is legal according to the guessed linear order
of events. For that purpose, the identity j2 in pe(y) must coincide with that in pa. Also,
all the tokens carrying j2 in each place of the form pt( f , P/W, k) must be transferred to
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p1, . . . , pn an enumeration of {pt( f ,P, k), pt( f ,W, k), f ∈ Frames, k ∈ IDsB}
and p̂ = pt( f , A/R, k) where p = pt( f , P/W, k)

j3 > j2
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Fig. 13. Widget simulating synchronization

the corresponding place pt( f , A/R, k), because every task that is pending (waiting) on
that name becomes active (running). Then an identity greater than j2, say j3, is chosen
so as to correspond to the next event to be triggered, by replacing, in pa, j2 by j3. Finally,
in order to be able to repeat a sync over j2 we should move j2 in the linear order to
a later position. This is not possible (we cannot change the linear order), but we can
replace every j2 token by a fresh one, which is created at an arbitrary position.

The widget of Figure 13 simulates synchronization. Formally, for every place
pt( f ,R, k) where f = F[sync y], there is a transition tr such that:

– tr moves a token from pt( f ,R, k) to pt( f ′,R, k) where f ′ = F[skip]. It does so
preserving the identity, j1, carried by the token.

– tr tests that the identity of the token in pa coincides with that of pe(y).
– tr transfers, for each place pt( f1,P, k1) all the tokens whose identity coincide with

j2, the identity of the token in place pe(y), into pt( f1,A, k1).
– tr transfers similarly from places pt( f1,W, k1) into pt( f1,R, k1).
– tr replace the identity j2 of the token from pa with an identity j3 > j2.
– tr replaces the identity j2 of the token from pe(y) with a new, fresh name, ν.
– tr also renames all the tokens in the PDN carrying the old name j2 with this new

fresh name ν.

Let us remark that when choosing the next event to be triggered (by instantiating j3 to
a name greater than the instance of j2) we may choose an event which is different from
the one which immediately follows the instance of j2 in the linear order.7 For example,
if e1 < e2 < e3 is the current order of events and pa contains e1, the firing of tr may
replace e1 by e3 in pa. This means that in that execution e2 can no longer be triggered,
which only implies a loss of behaviour that preserves control-state reachability.

Wait. The simulation of this instruction is similar to the creation of tasks. The widget
of Figure 12 simulates waiting. For every place pt( f ,R, k) where f = F[wait Y], Y =
{y1, . . . , yn}, there is a transition tr such that:

7 If we allow that operation in PDN the model becomes Turing-complete.
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Fig. 15. Widget simulating task completion

– tr removes a token with some identity from pt( f ,R, k).
– tr reads n identities stored in the places pe(y1) to pe(yn).
– tr adds a token with identity j to pt( f ′,W, k) where f ′ = F[skip] and j is given by

the minimum among the identities stored in the places {pe(y1), . . . , pe(yn)}.

Dispatch. The widget of Figure 14 simulates task dispatch. For every place pt( f ,A, k),
there is a transition tr that: moves a token from pt( f ,A, k) to pt( f ,R, k) while preserving
its identity j, removes one token from ptlim, the budget place for threads, and also from
pblim(k), the budget place for concurrency limit of buffer k.

Complete. The widget of Figure 15simulates task completion. For every place pt( f ,R, k)
where f = 〈∅, skip〉, there is a transition tr that removes a token form pt( f ,R, k), and
adds one token into ptlim and one into pblim(k).

Current-Buffer. For every place pt( f ,R, k) where f = F[z � buffer] and k1 ∈ IDsB,
there is a transition tr that: moves a token from pt( f ,R, k) to pt( f ′,R, k) where f ′ =
F[skip]. It does so preserving the identity carried by the token. Transition tr also re-
moves a token from pb(z, k1) and adds one into pb(z, k).

Current-Event. For every place pt( f ,R, k) where f = F[y � event], there is a transi-
tion tr that moves a token from pt( f ,R, k) to pt( f ′,R, k) where f ′ = F[skip]. It does so
preserving the identity j carried by the token. It also replaces the identity of the token
from pe(y) with j.

At this point, it should be easy for the reader to define the widgets for the remaining
statements. They present no particular difficulty.

Variables Over Finite Data Domain. At the beginning of this section we made the
simplifying assumptions that there were no other variables than buffer or event typed
variables. Let us now explain, how we simulate variables ranging over a finite set Vals
of values. They are simulated similarly to the buffer typed variables, namely there is a
place in the PDN for each pair variable-value. The presence of a token in such a place
means the variable currently holds the value. The rest is tedious but follows easily.

Variables Over Task Identifiers. Variables storing task identifiers are trickier to simu-
late. This is because, although we have a fixed number of them, they store values from
the unbounded domain of task identifers. This situation is similar to that of variables
storing event identifers with an important difference: there is no comparable mecanism
like the x � event statement that allows to recover an event identifer stored in no vari-
ables. It follows that, for task identifers, once no variable stores it, its precise value
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does not matter anymore. Rather than the actual identifiers, our encoding stores sym-
bolic identifiers. If we call Varst the set of task typed variables then define IDsT to be
the set {⊥,�} ∪ {id1, id2, . . . , id|Varst |} of symbolic identifiers. The encoding keeps track
of the symbolic identifers currently in use. Since this information is finite and can be
statically obtained, it is easily encoded in the PDN. The execution of a x � task p e Y z
statement requires a symbolic identifer, not currently in use, to be stored in x. Two sit-
uations can occur: either there is a symbolic identifer among {id1, id2, . . . , id|Varst|} not
in use; or not. However, in the latter case, the symbolic identifier, call it id j, already
stored in x can be re-used as long as all the pending or active tasks with identifier id j

are updated with the symbolic identifier �. Intuitively, a task t with symbolic identifier
� means no program variables storing a task identifier refers to t, hence t cannot be
canceled. Furthermore, the set {pt( f , q, k) | f ∈ Frames≤F , q ∈ {A,P,W,R}, k ∈ IDsB}
of places encoding the task pool is extended with the information about symbolic iden-
tifiers. Hence each place pt( f , q, k) is replaced by the set {pt( f , i, q, k) | i ∈ IDsT }. This
enables the precise simulation of the cancel x statement.

The preceding encoding into PDN and the decidability of coverability for PDN im-
plies the following main result.

Theorem 3. The control-state reachability problem is decidable for asynchronous event-
driven programs satisfying Assumptions 1 through 4.

5 Hardness of Control State Reachability

We now show that the control state reachability problem for asynchronous programs is
Ackermann-hard by showing that asynchronous programs can simulate ν-PN, for which
the control state reachability problem is Ackermann-hard [14]. Notice that the usual
models of asynchronous programs [2,3] are equivalent to Petri nets and therefore have
an EXPSPACE-complete coverability problem. Our model is strictly more expressive
than these models.

Theorem 4. The control state reachability problem for asynchronous programs satis-
fying Assumptions 1 through 4 is Ackermann-hard, even if no tasks are pending on
multiple events.

We simulate a ν-PN as follows. For each place p, we define a different procedure
place-p (see Figure 17), so that a task executing place-p simulates a token in place
p. Furthermore, the procedure main schedules the firing of transitions. This scheduler
uses boolean global variables remove-p and done-p for each place p, in order to syn-
chronize with the rest of the tasks. Furthermore, we consider two global event variables,
current and aux, for name matching (whenever a variable labels more than one prearc).
Figure 18 shows the general scheme of the scheduler, with an infinite loop that non-
deterministically selects the transition that is fired next. Whenever the scheduler decides
to fire a transition that is not enabled, the system blocks (notice that this preserves control-
state reachability). Instead of showing how it orchestrates the firing of an arbitrary tran-
sition, Figure 18 shows the simulation of the transition in Fig. 16 that (i) removes two
tokens carrying the same name from p1 and p2, (ii) puts a token with that same name
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in p3, and (iii) puts a fresh token in p4. For that purpose it first signals that a token
from p1 should be removed (by setting remove-p1 := true) and blocks until some
task executing place-p1 is done (instruction assume done-p1). Notice that this task
is done only after putting its own event name in the global variable aux, and then it is
completed. Then the scheduler does the same with p2, but it also checks that both events
coincide. Then it creates a new task executing place-p3, activated by that same event,
and finally it creates a fresh event that is used to create and activate the task executing
place-p4. The general case follows these ideas, but is more tedious.

We are assuming in the reduction that the number of threads and the concurrency
limit of the only buffer ⊥ is 2 (T = T⊥=2), since the task executing main must be
executed in parallel at each time with at most one task of the form place-p. The simu-
lation of a transition completes and creates the tasks that represent the tokens involved
in the firing of a transition. Therefore, every task of the form place-p can be active
(not running), except one that has to be completed, which must be dispatched, only to
be immediately completed. Notice that if a task that cannot be completed (one with its
remove-p set to false) is dispatched, then the system blocks with that task blocked
on assume remove-p and main blocked on assume done-p.

This simulation preserves control-state reachability, that is, a place p in the ν-PN can
be marked iff some reachable configuration contains a pending task executing place-p.

p1 x

p2

x

p3

x

p4
ν

Fig. 16. Simple ν-PN transition

var remove-p1, done-p1: bool

...

var current, aux: event id

proc place-p()

assume remove-p;

remove-p := false;
aux := event;
done-p := true

end

Fig. 17. Global variables and procedure
modelling a place

proc main

while true do
if � then //transition t1

remove-p1 := true;
assume done-p1;

done-p1 := false;
current := aux;

remove-p2 := true;
assume done-p2 && current = aux;

done-p2 := false;
_ := task place-p3() {current} ⊥;
sync current;

current := new event;
_ := task place-p4() {current} ⊥;
sync current

else if � then //transition t2

...

end

Fig. 18. Scheduler

6 Related Work

Existing decidable models of asynchronous event-driven programs are based on multi-
set pushdown systems (MPDS) [2], a model with unbounded task creation and recursion,
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yet without events, without multiple task buffers, without multiple threads, and without
task cancellation. Sen and Viswanathan showed that control-state reachability in MPDS
is decidable [2], and Ganty and Majumdar showed that control-state reachability is equiv-
alent to Petri net coverability [3]. Chadha and Viswanathan, Cai and Ogawa generalize
these results to show that coverability for well-structured transition systems with one
unbounded procedure stack remains decidable, so long as decreasing transitions only
occur from a bounded set of configurations [17,18]. Others have shown decidable exten-
sions to MPDS, e.g., with task cancellation [3], or task priorities [19]. While the Actor
Communicating Systems (ACS) of D’Osualdo et al. do capture multiple task buffers and
threads [20] (albeit without recursion, which is modeled in MPDS), they do not model
events, and their task buffers are addressed only imprecisely: rather than sending a task
to a particular task buffer, tasks are sent to an arbitrary member of a set of equivalent task
buffers. Consequently, control-state reachability in ACS is also equivalent to Petri net cov-
erability, and thus to control-state reachability in MPDS. Similarly, while Geeraerts et
al. consider multithreaded asynchronous programs with FIFO-ordered task buffers, they
show decidability for the case of “concurrent queues,” in which arbitrarily-many tasks
from the same buffer can run concurrently [21]. Effectively, the order in which tasks are
added to buffers becomes irrelevant, and their control-state reachability problem is, again,
equivalent to Petri net coverability. In contrast, Theorem 4 rules out the possibility of a
polynomial time reduction to Petri nets.

Departing from MPDS, Babic and Rakamaric consider an expressive decidable class
of asynchronous systems which leverages the decidable properties of visibly pushdown
languages [22], equipping visibly pushdown processes with ordered, visibly pushdown,
task/message buffers [23]. Kochems and Ong consider a relaxation of MPDS which
allows concurrent and recursive tasks at the expense of a stack-shape restriction [24].
Bouajjani and Emmi consider decidable subclasses of a hierarchical generalization of
MPDS, without communication between concurrent threads [25]. While Atig et al. and
Emmi et al. consider MPDSs with multiple buffers and threads [26,27], their algorithms
are only under-approximate, analyzing only up to a context-bound [28]. None of these
works model events, nor propose sound and complete analysis algorithms in the pres-
ence of dynamic creation of threads, events, and buffers.
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A Sequential Program Semantics

The finite set Stmts of statements appearing in a program P, with finite sets Procs of
procedures and Vals of values, is defined formally by the inference rules of Figure 19.
These rules are defined with respect to the notion of context of Section 2, which we
define here to avoid circularity: a context S is a term derived from the grammar S ::= 
 |
S ;s. We write S [s] for the object obtained by substituting s for the unique occurrence
of 
 in S . Intuitively, a context filled with s, e.g., S [s], indicates that s is the first object
in a sequence separated by “;”.

The transition rules for the sequential program statements complementing those of
Figure 4 in Section 2 are listed in Figure 20.

B Storing Unboundedly-Many Identifiers

The ability to store an unbounded number of identifiers, e.g., using the local variables
of unboundedly-many running tasks, makes coverability undecidable. In essence, those
stored identifiers allow point-to-point communication between arbitrarily many running
tasks. While we give an undecidability proof for when event identifier storage is un-
bounded, very similar proofs are carried out using unbounded buffer or task identifier
storage as well. Furthermore, while we assume unlimited threads and buffer concur-
rency (T = Tk = ω) in what follows, a similar construction is possible with only one
thread and one running task per buffer (T = Tk = 1), by continuously creating new tasks.
Note that we assume an alternate program semantics, in which the Current-Event rule
of Figure 4 allows local-variable storage.

p ∈ Procs

sp ∈ Stmts

S [ ] ∈ Stmts

S [skip] ∈ Stmts

S [skip;s] ∈ Stmts

S [s] ∈ Stmts

S [if e then s1 else s2] ∈ Stmts

S [s1] ∈ Stmts

S [if e then s1 else s2] ∈ Stmts

S [s2] ∈ Stmts

S [while e do s] ∈ Stmts

S [s;while e do s] ∈ Stmts

v ∈ Vals S [call x � ] ∈ Stmts

S [x � v] ∈ Stmts

Fig. 19. Rules defining the finite set of statements appearing in a program with procedures Procs.
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Skip

C[skip;s]→ C[s]

Assume

true ∈ e(C)

C[assume e]→ C[skip]

If-Then
true ∈ e(C)

C[if e then s1 else s2]→ C[s1]

If-Else
false ∈ e(C)

C[if e then s1 else s2]→ C[s2]

Loop-Do

true ∈ e(C)

C[while e do s]→ C[s;while e do s]

Loop-End
false ∈ e(C)

C[while e do s]→ C[skip]

Assign-Global

x ∈ dom(g) v ∈ e(g,M)

〈g,M[x � e]〉 → 〈g(x �→ v),M[skip]〉

Assign-Local
f1 = 〈�, S [x � e]〉 x ∈ dom(�)

v ∈ e(g, �) f2 = 〈�(x �→ v), S [skip]〉
〈g,m ∪ {�〈 f1 f ,⊥, j, k〉�}〉 → 〈g,m ∪ {�〈 f2 f ,⊥, j, k〉�}〉

Call
f 1 = F[call x � p e]

� ∈ e(g, F) f2 = 〈�, sp〉
〈g,m ∪ {�〈 f 1,⊥, j, k〉�}〉 → 〈g,m ∪ {�〈 f2 f 1,⊥, j, k〉�}〉

Return
f1 = 〈�1, S 1[return e]〉 v ∈ e(g, �1)
f 2 = F[call x � ] f ′2 = F[x � v]

〈g,m ∪ {�〈 f1 f 2,⊥, j, k〉�}〉 → 〈g,m ∪ {�〈 f ′2,⊥, j, k〉�}〉

Fig. 20. The semantics for sequential program statements. In the Call rule, we suppose that the
valuation � is obtained by assigning the call arguments of e to the parameters of procedure p.

Theorem 5. The coverability problem for event-driven asynchronous programs (with
unbounded identifier storage) is undecidable.

Proof. By reduction from the language emptiness problem for Turing machines: given
a Turing machineM, we construct the program PM of Figure 22 which simulates PM
according to Figure 21: for each tape cell we have one running task which executes the
procedure cell; we assume no limit on the maximum number of threads, T = ω, nor on
the running tasks per buffer, Tk = ω. The initial condition dictates that one active task
executing cell begins with state set to the initial state q0 ∈ Q of PM. By answering
whether the procedure reached (whose code is irrelevant and therefore not given) can
be executed in some execution of PM, we thus answer whether q f is reachable inM.

��
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left

right

cell

sym: a1

left

right

cell

sym: a2

left

right

cell

sym: ai-1

left

right

cell

sym: ai

left

right

cell

sym: ai+1

left

right

cell

sym: an

... ...

Fig. 21. Encoding a Turing machine tape. Several waiting cell tasks, drawn as rectangles, main-
tain two event variables, left and right. Arrows depict references to event identifiers, which
are drawn as circles; bold arrows originate from tasks waiting on a given event, while dashed
arrows denote an otherwise-stored event identifier. The only non-waiting cell task is the one
pointed to by the tape head; cells to the left (resp., right) wait for their right (resp., left) event
to be signaled.

1 proc cell ()

2 var symbol: Σ
3 var left, right: IDs
4

5 // initialize this cell,

6 // and its left neighbor

7 symbol := �;
8 right := event;
9 if � then

10 left := new event;
11 _ := task cell() {left} ⊥;
12 sync left;

13 wait {left};

14 else left := ⊥
15

16 while true do
17 // test reachability

18 if state = qf then
19 call _ := reached();

20 // choose a transition

21 ...

22 // make the transition

23 ...

24 return

25 // TM-state stored in

26 // a global variable

27 var state: Q
28

29 // code to choose

30 // an enabled transition

31 let q1,q2: Q, a,b: Σ, d: {L,R} in
32 assume TX(q1,a,d,q2,b);

33 assume state = q1;

34 assume symbol = a;

35

36 // code to make the

37 // chosen transition

38 state := q2;

39 symbol := b;

40 if d = L then
41 sync left;

42 wait {left};

43 else
44 sync right;

45 wait {right};

Fig. 22. The program PM simulating a Turing machine M = 〈Q, Σ, q0, qf , δ〉 with states Q and
alphabet Σ. The predicate TX(q1, a, d, q2, b) holds for 〈q1, a, d, q2, b〉 ∈ δ. The assignment on
Line 8 (described in Appendix A) assigns the event identifier on which the current task was
activated. Note that here we assume a few trivial syntactic extensions, e.g., let .. in, for clarity;
they are easily encoded into the rigid syntax of Section 2.
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Abstract. Session types provide a static guarantee that concurrent pro-
grams respect communication protocols. Recently, Caires, Pfenning, and
Toninho, and Wadler, have developed a correspondence between proposi-
tions of linear logic and session typed π-calculus processes. We relate the
cut-elimination semantics of this approach to an operational semantics
for session-typed concurrency in a functional language. We begin by pre-
senting a variant of Wadler’s session-typed core functional language, GV.
We give a small-step operational semantics for GV. We develop a suitable
notion of deadlock, based on existing approaches for capturing deadlock
in π-calculus, and show that all well-typed GV programs are deadlock-
free, deterministic, and terminating. We relate GV to linear logic by
giving translations between GV and CP, a process calculus with a type
system and semantics based on classical linear logic. We prove that both
directions of our translation preserve reduction; previous translations
from GV to CP, in contrast, failed to preserve β-reduction. Furthermore,
to demonstrate the modularity of our approach, we define two extensions
of GV which preserve deadlock-freedom, determinism, and termination.

1 Introduction

Frommassively distributed programs running across entire data centres, to hand-
held apps reliant on remote services for functionality, concurrency has become
a critical aspect of modern programs, and thus a central problem in program
correctness. Assuring correct concurrent behaviour requires reasoning not just
about the types of data communicated, but the order in which the communica-
tion takes place. For example, the messages between an SMTP client and server
are all strings, but a client that sends the recipient’s address before the sender’s
address is in violation of the protocol despite sending the correct type of data.

Session types, originally proposed by Honda [13], provide a mechanism to
reason about the state of channel-based communication. The type of a channel
captures the expected behaviour of a process communicating on that channel.
For example, we might express a simplified session type for an SMTP client as:

!FromAddress .!ToAddress .!Message.end

where !T .S is the type of a channel that sends a value of type T , then continues
with behaviour specified by S . An important feature of session types is duality:
the session type of an SMTP server is the dual of the session type of the client:

?FromAddress .?ToAddress .?Message.end

c© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 560–584, 2015.
DOI: 10.1007/978-3-662-46669-8_23
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where ?T .S is the type of a channel that sends a value of type T , then con-
tinues with behaviour specified by S . Honda originally defined session types for
process calculi; recent work [10, 25] has investigated the use of session types for
concurrency in functional languages.

Session type systems are necessarily substructural—if processes can freely
discard or duplicate channels, then the type system cannot guarantee that ob-
servable messages on channels match their expected types. Recent work seeks to
establish a correspondence between session types and linear logic, an archetypal
substructural logic for reasoning about state. Caires and Pfenning [5] develop a
correspondence between cut elimination in intuitionistic linear logic and process
reduction in a session-typed process calculus. Wadler [26] adapts their approach
to classical linear logic, emphasising the role of duality in typing; the semantics
of his system is given directly by the cut elimination rules of classical linear logic.
He gives a type-preserving translation from a simple functional calculus (GV),
inspired by Gay and Vasconcelos [10], to a process calculus (CP), inspired by
Caires and Pfenning [5]. However, he gives no semantics for GV other than by
translation to CP.

In this paper, we develop a session-typed functional core calculus, also called
GV. (Our language shares most of the distinctive features of Wadler’s, although
it differs in some details.) We present a small-step operational semantics for
GV, factored into functional and concurrent portions following the approach of
Gay and Vasconcelos [10]. The functional portion of our semantics differs from
standard presentations of call-by-value reduction only in that we adopt a weak
form of explicit substitution to enable a direct correspondence with cut reduc-
tion. The concurrent portion of our semantics includes the typical reductions
and equivalences of π-calculus-like process calculi.

Ultimately, our goal is to build and reason about functional programming
languages extended with session types. Thus GV is a natural fit. Indeed, we
are currently implementing an asynchronous variant of GV as part of the Links
web programming language [8]. Developing a direct semantics for GV provides
a number of benefits over relying on the translation to CP.

– It provides a simple semantic characterisation of deadlock. Unlike Wadler’s
proof of deadlock freedom, ours does not depend on normalisation, and thus
extends to non-terminating processes.

– The proof technique itself is modular: as illustrated by the extensions, the
same technique can be applied to practical (sometimes non-logical) exten-
sions of the language.

– Compared to cut-elimination in CP, the GV semantics is much closer to
something one might actually want to implement in practice, as witnessed
by our Links implementation.

We believe in modularity, and so re-use as much of the standard linear lambda
calculus machinery as possible, while limiting non-standard extensions. The pa-
per proceeds as follows.

– We define a core linearly-typed functional language, GV, by extending lin-
ear lambda calculus with session-typed communication primitives (§2.1).
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Session types S ::= !T .S | ?T .S | end! | end? | S �

Types T ,U ::= S | 1 | T × U | 0 | T +U | T � U
Terms L,M ,N ::= x | K M | λx .M | M N

| (M ,N ) | let (x , y) = M in N
| inlM | inrM | caseM {inl x �→ N ; inr x �→ N }
| () | let () = M in N | absurdM

Constants K ::= send | receive | fork | wait | link

Fig. 1. Syntax of GV Terms and Types

We present an (untyped) synchronous operational semantics for GV (§2.2).
We characterise deadlock and normal forms; we show that typed terms are
deadlock-free, that closed typed terms evaluate to normal forms (§2.3), and
that evaluation is deterministic and terminating (§2.4).

– We connect GV to the interpretation of session types as linear logic propo-
sitions, by establishing a correspondence between the semantics of GV and
that of CP. We begin by introducing CP (§3.1). We show that we can sim-
ulate CP reduction in GV (§3.2), and GV reduction in CP (§3.3). (As π-
calculus-like process calculi provide substitution only for names, not entire
process expressions, the latter depends crucially on the use of weak explicit
substitutions in the semantics of GV lambda abstractions.)

– We consider two extensions of GV: one which has a single self-dual type for
closed channels, harmonising the treatment of closed channels with that of
other session-typed calculi (§4.1), and another which adds unlimited types
and replicated behaviour (§4.2). We show that these extensions preserve the
essential meta theoretic properties of the core language.

We conclude by discussing related (§5) and future (§6) work.

2 A Session-Typed Functional Language

2.1 Syntax and Typing

Figure 1 gives the syntax of GV types and terms. The types T include nullary
(0) and binary (T + U ) linear sums, nullary (1) and binary (T × U ) linear
products, and linear implication (T � U ). We frequently write M ;N as the
elimination form of 1 in place of the more verbose let () = M in N . Session types
S include input (?T .S ), output (!T .S ), and closed channels (end!, end?). We also
include a type S � of channels; values of channel type cannot be used directly in
terms, but will appear in the typing of thread configurations. The terms are
the standard λ-calculus terms, augmented with constructs for pairs and sums.
Figure 2 gives both typing rules and type schemas for the constants. Note that
core GV judgements are linear, i.e., not subject to weakening or contraction.

Concurrency. Concurrent behaviour is provided by the constants. Communi-
cation is provided by send and receive. For example (assuming an extension of
our core language with numbers and arithmetic operators), a program M that
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Typing rules

T �= S �

x : T � x : T

K : T � U Γ � M : T

Γ � K M : U

Γ, x : T � M : U

Γ � λx .M : T � U

Γ � M : T � U Γ ′ � N : T

Γ, Γ ′ � M N : U

Γ � M : T Γ ′ � N : U

Γ,Γ ′ � (M ,N ) : T × U

Γ � M : T ×T ′ Γ ′, x : T , y : T ′ � N : U

Γ, Γ ′ � let (x , y) = M in N : U

Γ � M : T

Γ � inlM : T + U

Γ � M : T + T ′ Γ ′, x : T � N : U Γ ′, x : T ′ � N ′ : U

Γ, Γ ′ � caseM {inl x �→ N ; inr x �→ N ′} : U

� () : 1

Γ � M : 1 Γ ′ � N : T

Γ, Γ ′ � let () = M in N : T

Γ � M : 0

Γ, Γ ′ � absurdM : T

Type schemas for constants

send : T × !T .S � S receive : ?T .S � T × S fork : (S � end!) � S

wait : end? � 1 link : S × S � end!

Duality

!T .S = ?T .S ?T .S = !T .S end! = end? end? = end!

Fig. 2. GV Typing Rules

receives a pair of numbers along channel z and then sends their sum along the
same channel can be expressed as

M � let ((x , y), z ) = receive z in send (x + y, z )

(where the interpretation of nested patterns by sequences of bindings is stan-
dard). Channels are treated linearly in GV. Thus, receive returns not only the
received value (the pair of x and y) but also a new copy of the channel used
for receiving z ; similarly, send returns a copy of the channel used for sending.
Thus, the term above is well-typed in the context z : ?(Int × Int).!Int .S , and
evaluates to a channel of type S . Session initiation is provided by fork. If f is
a function from a channel of type S to a closed channel (of type end!), then
fork f forks a new thread in which f is applied to a fresh channel of type S ,
and returns a channel of type S in order to communicate with the thread. For
example, the term fork (λz .M ) returns a channel of type !(Int × Int).?Int .end?.
Given a thread created by fork f , the channel returned from f is closed by fork,
whereas the other end of the channel must be closed by calling wait. A client of
the process M can be defined as follows:

N � let z = send ((6, 7), z ) in let (x , z ) = receive z in wait z ; x
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The combined process let x = fork (λz .M ) in N evaluates to 13. The expression
link (x , y) forwards messages sent on x to be received on y and vice versa. We
choose to include it as a primitive as it corresponds to the axiom rule of linear
logic, which is standard in logical accounts of session types.

Choice. In addition to input and output, typical session type systems also
provide session types representing internal (S1 ⊕ S2) and external (S1 � S2)
choice (also known as selection and branching, respectively). For example, we
might write a process that can either sum two numbers or negate one:

offer z { inl z �→ let ((x , y), z ) = receive z in send (x + y, z )
inr z �→ let (x , z ) = receive z in send (−x , z ) }

This term initially requires z : (?(Int × Int).!Int .S) � (?Int .!Int .S). A client of
this process begins by choosing which branch of the session to take; for example,
we can extend the preceding example as follows:

let z = select inl z in let z = send ((6, 7), z ) in let (x , z ) = receive z in wait z ; x

While we would expect a surface language to include selection and branching,
we omit them from our core calculus. Instead, we show that they are macro-
expressible using the linear sum type. The intuition is that selection is imple-
mented by sending a suitably tagged process, while branching is implemented
by a term-level branch on a received value. Concretely, we define the types by:

S1 ⊕ S2 � !(S1 + S2).end! S1 � S2 � ?(S1 + S2).end?

Note that we have the expected duality relationship: S1 ⊕ S2 = S1 � S2. We
implement select and offer as follows (where � ranges over {inl, inr}):

select �M � fork(λx .send (� x ,M ))

offerM {inl x �→ P ; inr x �→ Q} � let (x , y) = receiveM in
wait y; case x {inl x �→ P ; inr x �→ Q}

Correspondingly, nullary choice and selection are encoded using the 0 type:

⊕{} � !0.end! � {} � ?0.end?

offerM {} � let (x , y) = receiveM in wait y; absurd{}

2.2 Semantics

Following Gay and Vasconcelos [10], we factor the semantics of GV into a (de-
terministic) reduction relation on terms (called −→V) and a (non-deterministic)
reduction on configurations of processes (called −→). Figure 3 gives the syntax
of values, configurations, and evaluation and configuration contexts.

Terms. To preserve a close connection between the semantics of our term lan-
guage and cut-reduction in linear logic, we define term reduction using weak
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Values V ,W ::= x | λσx .M
| () | (V ,W ) | inlV | inrV

Substitutions σ ::= {V1/x1, . . . ,Vn/xn}
where the xi are pairwise distinct

Evaluation contexts E ::= [ ] | E M | V E | K E | let () = E in M
| (E ,M ) | (V ,E ) | let (x , y) = E in M
| inlE | inrE | case E {inl x �→ N ; inr x �→ N ′}

F ::= φE
Configurations C ,D ::= φM | C ‖ C ′ | (νx)C
Configuration contexts G ::= [ ] | G ‖ C | (νx)G
Flags φ ::= ◦ | •

Fig. 3. Syntax of Values, Configurations, and Contexts

explicit substitutions [18]. In this approach, we intercept substitutions at λ-
terms rather than immediately applying them to the body of the term. Thus,
our language of terms includes closures λσx .M , where σ provides the intercepted
substitution. We extend the typing judgement to include closures, as follows:

Γ, x : T � Mσ : U dom(σ) = (fv(M ) \ {x})
Γ � λσx .M : T � U

The free variables of a closure λσx .M are the free variables of the range of
σ, not the free variables of M . The capture avoiding substitution Mσ of σ
applied to M is defined as usual on the free variables of M . Note that the side
condition on the domain of σ is preserved under substitution. We implicitly
treat plain lambda abstractions λx .M as closures λσx .M , where σ is a renaming
substitution restricted to the free variables of M less {x}; concretely:

λx .M � λσx .(Mσ′)
where fv(M ) \ {x} = {x1, . . . , xn} y1, . . . , yn are fresh variables

σ = {x1/y1, . . . , xn/yn} σ′ = {y1/x1, . . . , yn/xn}
We lift the typing judgement on terms pointwise to substitutions:

Γ1 � σ(x1) : Δ(x1) · · ·Γk � σ(xk ) : Δ(xk ) dom(σ) = dom(Δ)

Γ1, . . . , Γk � σ : Δ

Configurations. The grammar of configurations includes the usual π-calculus
forms for composition and name restriction. However, because functional com-
putations return values (which may, in turn, contain channels), we distinguish
between the “main” thread •M (which returns a value) and the threads ◦M
created by fork (which do not).

Reduction. Reduction rules for terms and configurations, and equivalences
for configurations, are given in Figure 4. Term reduction (−→V) implements
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Term reduction

(λσx .M )V −→V M ({V /x} � σ)
();M −→V M

let (x , y) = (V ,V ′) in M −→V M {V /x ,V ′/y}
case (inlV ) {inl x �→ N ; inr x �→ N ′} −→V N {V /x}

E [M ] −→V E [M ′] if M −→V M ′

Configuration equivalence

F [link (x , y)] ≡ F [link (y , x )] C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E

C ‖ (νx )D ≡ (νx )(C ‖ D) if x �∈ fv(C ) G[C ] ≡ G[D ] if C ≡ D

Configuration reduction

Send

(νx )(F [send (V , x )] ‖ F ′[receive x ]) −→ (νx )(F [x ] ‖ F ′[(V , x )])

Lift
C −→ C ′

G[C ] −→ G[C ′]

Fork
x is a fresh channel name

F [fork (λσy .M )] −→ (νx )(F [x ] ‖ M ({x/y} � σ)

Wait

(νx )(F [wait x ] ‖ φx ) −→ F [()]

Link
x ∈ fv(M )

(νx )(F [link (x , y)] ‖ F ′[M ]) −→ (νx )(F [x ] ‖ F ′[wait x ;M {y/x}])

LiftV
M −→V M ′

G[M ] −→ G[M ′]

Fig. 4. Reduction Rules and Equivalences for Terms and Configurations

call-by-value, left-to-right evaluation. Configuration equivalence (≡) is standard.
Communication is provided by Send and session initiation by Fork. Rule Wait
combines synchronisation of closed channels with garbage collection of the as-
sociated name restriction. Rule Link is complicated by the need to produce a
channel of type end!; the inserted wait synchronises with the produced channel.

Relation Notation. We write RR′ for sequential composition and R ∪ R′ for
union of R and R′. We write R+ for transitive closure and R� for the reflexive,
transitive closure of R.

Configuration Typing. Our syntax of configurations permits various forms of
deadlocked configurations. For example, if we define the terms M and N by

M � let (z , y) = receive y in
let x = send (z , x ) in M ′

N � let (z , x ) = receive x in
let y = send (z , y) in N ′

given suitable terms M ′ and N ′, then it is apparent that configurations such as
(νxy)M , (νxy)(M ‖ M ) and (νxy)(M ‖ N ) cannot reduce further, even though
M and N can be individually well-typed. To exclude such cases, we provide
a type discipline for configurations (Figure 5). It is based on type systems for
linear π-calculus [17], but with two important differences.
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Configuration typing

Γ � M : T T �= end!

Γ �• •M
Γ � M : end!

Γ �◦ ◦M
Γ, x : S � �φ C

Γ �φ (νx)C

Γ, x : S �φ C Γ ′, x : S �φ′
C ′

Γ, Γ ′, x : S � �φ+φ′
C ‖ C ′

Combination of flags

◦+ ◦ = ◦ ◦+ • = • •+ ◦ = • •+ • undefined

Fig. 5. Configuration Typing

– First, we seek to assure that there is at most one main thread. This constraint
is enforced by the flags (• and ◦) on the derivations: a derivation Γ �• C
indicates that configuration C contains the main thread, while Γ �◦ C
indicates that C does not contain the main thread. We write Γ � C to
abbreviate ∃φ.Γ �φ C , that is, C may include a main thread.

– Second, we require that exactly one channel is shared at each composition
of processes. This is more restrictive than standard type systems for linear
π-calculus, which allow an arbitrary number of channels (including none) to
be shared at a composition of processes.

Notice that the above stuck examples are ill-typed in this system: (νxy)M be-
cause y must have a type S � in M ; (νxy)(M ‖ M ) because there is no type
S � such that both S and S are of the form ?T .S ′, as required by receive; and,
(νxy)(M ‖ N ) because both x and y must be shared between M and N , but the
typing rule for composition only allows one channel to be shared.

Now we can show that reduction preserves typing. We begin with terms.

Lemma 1. If Γ � M : T and M −→V M ′, then Γ � M ′ : T

The proof is by induction on M ; the cases are all standard. We now extend this
result to configurations.

Theorem 2. If Γ � C and C −→ C ′ then Γ � C ′.

The proof is by induction on the derivation of C −→ C ′.

Typing and Configuration Equivalence. Alas, our notion of typing is not
preserved by configuration equivalence. For example, assume that Γ � (νxy)(C ‖
(D ‖ E )), where x ∈ fv(C ), y ∈ fv(D), and x , y ∈ fv(E ). We have that C ‖ (D ‖
E ) ≡ (C ‖ D) ‖ E , but Γ � (νxy)((C ‖ D) ‖ E ), as both x and y must be
shared between the processes C ‖ D and E . However, we can show that starting
from a well-typed configuration, we need never rely on an ill-typed equivalent
configuration to expose possible reductions.
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Theorem 3. If Γ � C, C ≡ C ′ and C ′ −→ D ′, then there exists D such that
D ≡ D ′, and Γ � D.

Proof. Observe that if Γ � C , then for any pair of terms M1,M2 appearing in
C , there are environments Γ1, Γ2 and types T1,T2 such that Γ1 � M1 : T1, Γ2 �
M2 : T2, and (because of the typing rule for composition) Γ1 and Γ2 share at
most one variable. By examination of the reduction rules, we can conclude that
there are well-typed C0,D0 such that C ′ = G[C0], C0 −→ D0 and D ′ = G[D0].
The result then follows by structural induction on C , examining the possible
equivalences in each case. �
We extend Theorem 3 to sequences of reductions, defining =⇒ as (≡−→≡)�.

Corollary 4. If Γ � C and C =⇒ D, then there exists D ′ such that D ≡ D ′,
and Γ � D ′.

2.3 Deadlock and Its Absence

In the previous section, we saw examples of deadlocked terms which were re-
jected by our type system. We now present a general account of deadlock: we
characterise deadlocked configurations, and show that well-typed configurations
do not evaluate to deadlocked configurations.

We begin by observing that many examples of stuck configurations are already
excluded by existing session-typing disciplines: in particular, those configurations
in which either too many or too few threads attempt to synchronise on a given
channel, or those with inconsistent use of channels. The cases of interest to us
are those in which the threads individually obey the session-typing discipline,
but the order of synchronisation in the threads creates deadlock. We say that a
thread M is blocked on a channel x , written blocked(x ,M ), if M has evaluated
to some context surrounding a communication primitive applied to x :

blocked(x ,M )
def⇐⇒ ∃N .M = E [send (N , x )]∨M = E [receive x ]∨M = E [wait x ]

In such a case, M can only reduce further in composition with another thread
blocked on x , and any communication on other channels in M will be delayed
until a communication on x has occurred. We abstract over the property that y
depends on x in M , abbreviated depends(x , y,M ); in other words, M is blocked
on x , but has y as one of its (other) free variables. We extend this notion of
dependency from single threads to configurations of threads, with the observa-
tion that in a larger configuration intermediate channels may participate in the
dependency.

depends(x , y,E [M ])
def⇐⇒ blocked(x ,M ) ∧ y ∈ fv(E [M ])

depends(x , y,C )
def⇐⇒ (C ≡ G[M ] ∧ depends(x , y,M )) ∨ (C ≡ G[D ‖ D ′]

∧ (∃z .depends(x , z ,D) ∧ depends(z , y,D ′)))

We now define deadlocked configurations as those with cyclic dependencies:

deadlocked(C )
def⇐⇒ C ≡ G[D ‖ D ′]∧ ∃x , y.depends(x , y,D)∧ depends(y, x ,D ′)
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Because the definition of dependency permits intermediate channels, this defini-
tion encompasses cycles involving an arbitrary number of channels. We say that a
configuration C is deadlock free if, for all D such that C =⇒ D , ¬deadlocked(D).
Observe that if C ≡ D , deadlocked(C ) ⇐⇒ deadlocked(D).

At this point, we can observe that in any deadlocked configuration there must
be a composition of configurations that shares more than one channel. This is
precisely the situation that is excluded by our configuration type system.

Lemma 5. If Γ � C, and C = G[D ‖ D ′], then fv(D)∩ fv(D ′) = {x} for some
variable x .

Proof. By structural induction on the derivation of Γ � C ; the only interesting
case is for parallel composition, where the desired result is assured by the par-
titioning of the environment. �

To extend this observation to deadlock freedom, we must take equivalence
into account. While it is true that equivalence need not preserve typing, there
are no equivalence rules that affect the free variables of individual threads. Thus,
cycles of dependent channels are preserved by equivalence.

Lemma 6. If Γ � C then ¬deadlocked(C ).

Proof. By contradiction. Suppose deadlocked(C ), then by expanding the def-
inition of deadlocked we know that there must exist variables x1, . . . , xn and
processes M1, . . . ,Mn in C such that:

depends(x1, x2,M1) ∧ depends(x2, x3,M2) ∧ · · · ∧ depends(xn , x1,Mn)

Either n = 1, which violates linearity, or configuration C must partition the
cycle. However, any cut of the cycle is crossed by at least two channels, so C
must be ill-typed by Lemma 5. �

Finally, we can combine the previous result with preservation of typing to
show that well-typed terms never evaluate to deadlocked configurations.

Theorem 7. If Γ � M : T, then •M is deadlock-free.

Proof. If Γ � M : T , then Γ � •M , and so ¬deadlocked(•M ) and, for any
D such that •M =⇒ D , we know that there is a well-typed D ′ ≡ D , and so
¬deadlocked(D). �

Progress and Canonical Forms. We conclude this section by describing a
canonical form for configurations, and characterising the stuck terms resulting
from the evaluation of well-typed terms. One might hope that evaluation of
a well-typed term would always produce a value; however, this is complicated
because terms may return channels. For a simple example, consider the term:

• fork (λx .let (y, x ) = receive x in send (y, x ))
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This term spawns a thread (which simply echoes once), and then returns the
resulting channel; thus, the result of evaluation is a configuration equivalent to:

(νx )(• x ‖ ◦ let (y, x ) = receive x in send (y, x ))

Clearly, no more evaluation is possible, even though the configuration still con-
tains blocked threads. However, it turns out that we can show that evaluation of
terms that do not return channels must always produce a value (Corollary 12).

Definition 8. A process C is in canonical form if there is some sequence of
variables x1, . . . , xn−1 and terms M1, . . . ,Mn such that:

C = (νx1)(◦M1 ‖ (νx2)(◦M2 ‖ · · · ‖ (νxn−1)(◦Mn−1 ‖ φMn ) . . . ))

Note that canonical forms need not be unique. For example, consider the
configuration � (νxy)(C ‖ D ‖ E ) where x ∈ fv(C ), y ∈ fv(D), and x , y ∈
fv(E ). Both (νx )(C ‖ (νy)(D ‖ E )) and (νy)(D ‖ (νx )(C ‖ E )) are canonical
forms of the original configuration. We can show that any well-typed term must
be equivalent to a term in canonical form; again, the key insight is that captured
by Lemma 5: if any two sub-configurations share at most one channel, then we
can order the threads by the channels they share.

Lemma 9. If Γ � C, then there is some C ′ ≡ C such that Γ � C ′ and C ′ is
in canonical form.

The proof is by induction on the count of bound variables.
We can now state some progress results. We begin with open configurations:

each thread must be blocked on either a free variable or a ν-bound variable.

Theorem 10. Let Γ � C, C �−→ and let C ′ = (νx1)(◦M1 ‖ (νx2)(◦M2 ‖ · · · ‖
(νxn−1)(◦Mn−1 ‖ φMn ) . . . )) be a canonical form of C . Then:

1. For 1 ≤ i ≤ n − 1 either blocked(xj ,Mi) where j ≤ i or blocked(y,Mi ) for
some y ∈ dom(Γ ); and,

2. Either Mn is a value or blocked(y,Mn ) for some y ∈ {xi | 1 ≤ i ≤ n − 1} ∪
dom(Γ ).

Proof. By induction on the derivation of Γ � C ′, using the definition of −→. �
We can strengthen the result significantly when we move to configurations

without free variables. To see why, consider just the first two threads of a con-
figuration (νx1)(M1 ‖ (νx2)(M2 ‖ . . . )). As there are no free variables, thread
M1 can only be blocked on x1. Now, from the previous result, thread M2 can
be blocked on either x1 or x2. But, were it blocked on x1, it could reduce with
thread M1; we can conclude it is blocked on x2. Generalising this observation
gives the following progress result.

Theorem 11. Let � C, C �−→ and let C ′ = (νx1)(◦M1 ‖ (νx2)(◦M2 ‖ · · · ‖
(νxn−1)(◦Mn−1 ‖ φMn ) . . . )) be a canonical form of C . Then:
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1. For 1 ≤ i ≤ n − 1, blocked(xi ,Mi); and,
2. Mn is a value.

Proof. By induction on the derivation of � C ′, relying on Theorem 10. �
Finally, observe that some subset of the variables x1, . . . , xn must appear in the
result V . Therefore, if the original expression returns a value that does not
contain any channels, it will evaluate to a configuration with no blocked threads
(i.e., a single value).

Corollary 12. Let � C, C �−→ and C ′ be a canonical form of C such that the
value returned by C ′ contains no channels, then C ′ = φV for some value V .

2.4 Determinism and Termination

It is straightforward to show that GV is deterministic. In fact, GV enjoys a
strong form of determinism, called the diamond property [2].

Theorem 13. If Γ � C, C ≡−→≡ D1, and C ≡−→≡ D2, then either D1 ≡ D2

or there exists D3 such that D1 ≡−→≡ D3, and D2 ≡−→≡ D3.

Proof. First, observe that −→V is deterministic, and furthermore configuration
reductions always treat −→V redexes linearly. This means we need only con-
sider the interaction between different configuration reductions. Linear typing
ensures that two configuration reductions cannot overlap. Furthermore, each
configuration reduction is linear in the existing redexes, so we can straightfor-
wardly perform the reductions in either order. �
It is not hard to see that the system remains deterministic if we extend the
functional part of GV with any well-typed confluent reduction rules at all.

Theorem 14 (Strong normalisation). If Γ � C, then there are no infinite
≡−→≡ reduction sequences beginning from C.

To prove strong normalisation for core GV, one can use an elementary argument
based on linearity. When we add replication (§4.2) and other features, a logical
relations argument along the lines of that of Perez et al. [21] suffices. Weak nor-
malisation (the existence of a finite reduction sequence to an irreducible config-
uration) also follows as a direct corollary of Theorem 23 and the cut-elimination
theorem for classical linear logic.

3 Classical Linear Logic

3.1 The Process Calculus CP

Figure 6 gives the syntax and typing rules for the multiplicative-additive frag-
ment of CP; we let Δ range over typing environments. CP types and duality
are the standard propositions and duality function of classical linear logic, while
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Syntax

Types A,B ::= A⊗ B | A � B | 1 | ⊥ | A⊕ B | A � B | 0 | �
Terms P ,Q ::= x ↔ y | νy (P | Q) | x(y).P | x [y ].(P | Q)

| x [ini ].P | case x {P ;Q} | x().P | x [].0 | case x {}
Duality

(A⊗ B)⊥ = A⊥ � B⊥

(A � B)⊥ = A⊥ ⊗ B⊥
1⊥ = ⊥
⊥⊥ = 1

(A⊕ B)⊥ = A⊥ � B⊥

(A � B)⊥ = A⊥ ⊕ B⊥
�⊥ = 0

0⊥ = �
Typing

x ↔ w � x : A,w : A⊥
P � Δ, y : A Q � Δ′, y : A⊥

νy (P | Q) � Δ,Δ′ x [].0 � x : 1

P � Δ, y : A, x : B

x(y).P � Δ, x : A � B

P � Δ, y : A Q � Δ′, x : B

x [y ].(P | Q) � Δ,Δ′, x : A⊗ B

P � Δ

x().P � Δ, x : ⊥

P � Δ, x : Ai

x [ini].P � Δ, x : A1 ⊕ A2

P � Δ, x : A Q � Δ, x : B

case x {P ;Q} � Δ, x : A � B case x {} � Δ, x : �

Fig. 6. CP Syntax and Typing

the terms are based on a subset of the π-calculus. The types � and ⊕ are in-
terpreted as external and internal choice; the types � and ⊗ are interpreted as
input and output, while their units ⊥ and 1 are interpreted as nullary input and
output. Note that CP’s typing rules implicitly rebind identifiers: for example, in
the hypothesis of the rule for �, x identifies a proof of B , while in the conclusion
it identifies a proof of A � B .

CP includes two rules that are logically derivable: the axiom rule, which is in-
terpreted as channel forwarding, and the cut rule, which is interpreted as process
composition. Two of CP’s terms differ from standard π-calculus terms. The first
is composition—rather than having distinct name restriction and composition
operators, CP provides one combined operator. This syntactically captures the
restriction that composed processes must share exactly one channel. The second
is output: the CP term x [y].(P | Q) includes output, composition, and name
restriction (the name y designates a new channel, bound in P).

A Simpler Send. The CP send rule is appealing because if one erases the terms
it is exactly the classical linear logic rule for tensor. However, this correspondence
comes at a price. Operationally, the process x [y].(P | Q) does three things: it
introduces a fresh variable y, it sends y to a freshly spawned process P , and in
parallel it continues as process Q . This complicates both the reduction semantics
of CP (as the cut reduction of ⊗ against � must account for all three behaviours)
and the equivalence of CP and GV (where the behaviour of send is simpler).
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Structural congruence

x ↔ w ≡ w ↔ x
νy (P | Q) ≡ νy (Q | P)

νy (P | νz (Q | R)) ≡ νz (νy (P | Q) | R), if y �∈ fv(R)
νx (P1 | Q) ≡ νx (P2 | Q), if P1 ≡ P2

Primary cut reduction rules

νx (w ↔ x | P) −→C P [w/x ]
νx (x [y ].(P | Q) | x(y).R) −→C νx (Q | νy (P | R))

νx (x [].0 | x().P) −→C P
νx (x [ini].P | case x {Q1;Q2}) −→C νx (P | Qi)

νx (P1 | Q) −→C νx (P2 | Q), if P1 −→C P2

Commuting conversions

νz (x [y ].(P | Q) | R) −→CC x [y ].(νz (P | R) | Q), if z �∈ fv(Q)
νz (x [y ].(P | Q) | R) −→CC x [y ].(P | νz (Q | R)), if z �∈ fv(P)

νz (x(y).P | Q) −→CC x(y).νz (P | Q)
νz (x().P | Q) −→CC x().νz (P | Q)

νz (x [ini].P | Q) −→CC x [ini].νz (P | Q)
νz (case x {P ;Q} | R) −→CC case x {νz (P | R); νz (Q | R)}

νz (case x {} | Q) −→CC case x {}

Fig. 7. CP Congruences and Cut Reduction

Following Boreale [4], we can give an alternative formulation of send, avoiding
the additional name restriction and composition, as follows:

P � Δ, x : B , y : A

x 〈y〉.P � Δ, x : A⊗ B , y : A⊥

where x 〈y〉.P is defined as x [z ].(y ↔ z | P). In particular, note that

νx (x 〈y〉.P | x (z ).Q) = νx (x [z ].(y ↔ z | P) | x (z ).Q)
−→C νz (y ↔ z | νx (P | Q))
−→C νx (P | Q{y/z})

as we would expect for synchronising a send and a receive. Similarly, we note
that any process x [y].(P | Q) can also be expressed as a process νy (P | x 〈y〉.Q),
which reduces to the original by one application of the commuting conversions.
However, the two formulations are not quite identical. Let us consider the pos-
sible reductions of the two terms. Notice that in x [y].(P | Q), both P and Q
are blocked on x ; however, the same is not true for νy (P | x 〈y〉.Q); the latter
permits reductions in P before synchronising on x .

Cut Elimination. The semantics of CP terms are given by cut reduction, as
shown in Figure 7. We write fv(P) for the free names of process P . Terms are
identified up to structural congruence≡ (as name restriction and composition are
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On types

�A⊗ B� = !�A�.�B�

�A � B� = ?�A�.�B�

�1� = end!
�⊥� = end?

�A⊕ B� = �A� ⊕ �B�

�A � B� = �A� � �B�

�0� = ⊕{}
��� = �{}

On terms
�νx (P | Q)� = let x = fork (λx .�P�) in �Q�

�x ↔ y� = link (x , y)
�x [y ].(P | Q)� = let x = send (fork (λy .�P�), x) in �Q�

�x(y).P� = let (y , x) = receive x in �P�

�x [].0� = x
�x().P� = let () = wait x in �P�

�x [l].P� = let x = select l x in �P�

�case x {P ;Q}� = offer x {inl x �→ �P�; inr x �→ �Q�}
�case x {}� = let (y , x) = receive x in absurd y

C�νx (P | Q)� = (νx)(C�P� ‖ C�Q�)
C�P� = ◦ �P�, P is not a cut

Fig. 8. Translation of CP Terms into GV

combined into one form, composition is not always associative). We write −→C

for the cut reduction relation, −→CC for the commuting conversion relation,
and −→ for −→C ∪ −→CC. The majority of the cut reduction rules correspond
closely to synchronous reductions in π-calculus—for example, the reduction of �
against ⊕ corresponds to the synchronisation of an internal and external choice.
The rule for reduction of � against ⊗ is more complex than synchronisation of
input and output in GV, as it must also manipulate the implicit name restriction
and composition in CP’s output term. We write =⇒ for (≡−→≡)+, =⇒C for
(≡−→C≡)+, and =⇒CC for =⇒C−→�

CC.
Just as cut elimination in logic ensures that any proof may be transformed

into an equivalent cut-free proof, the reduction rules of CP transform any term
into a term blocked only on external communication—that is to say, if P � Δ,
then P =⇒CC P ′ where P ′ �= νx (Q | Q ′) for any x ,Q ,Q ′. The final commuting
conversions play a central role in this transformation, moving any remaining
internal communication after an external communication. However, note that
the commuting conversions do not correspond to computational steps (i.e., any
reduction rule in π-calculus).

3.2 Translation from CP to GV

In this section, we show that GV can simulate CP. Figure 8 gives the translation
of CP into GV; typing environments are translated by the pointwise extension
of the translation on types. We rely on our encoding of choice in GV (§2.1).

In translating CP terms to GV terms, the key observation is that CP terms
contain their continuations; for example, the translation of input includes both a
call to receive and the translation of the continuation. Additionally, the rebinding
that is implicit in CP syntax is made explicit in GV. The translation C�−�
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Session types

�!T .S� = �T �⊥ ⊗ �S� �?T .S � = �T � � �S� �end!� = 1 �end?� = ⊥
Functional types

�T � = �T	
⊥, if T is not a session type

�0	 = 0
�T + U	 = �T	 ⊕ �U	

�1	 = 1
�T × U	 = �T	 ⊗ �U	

�T � U	 = �T	⊥ � �U	

�S	 = �S�

Fig. 9. Translation of GV Types into CP

translates top-level cuts to GV configurations; cuts that appear under prefixes
are translated to applications of fork. As CP processes do not have return values,
the translation of a CP process contains no main thread.

It is straightforward to see that the translation preserves typing; note that the
channels in the CP typing environment become free variables in its translation.

Theorem 15. If P � Δ then �Δ� �◦ C�P�.

Structural congruence in CP is a subset of the structural congruence relation for
GV configurations; thus the translation trivially preserves congruence.

Theorem 16. If P ≡ Q, then C�P� ≡ C�Q�.

Finally, observe that the translation of any prefixed CP term is a GV thread of
either the form F [K M ] for K ∈ {send, receive,wait} or is ◦x for some variable
x . Thus, we can see that any cut reduction immediately possible for a process
P is similarly possible for �P�. Following such a reduction, several additional
GV reductions may be necessary to expose the next possible communication,
such as substituting the received values into the continuation in the case of the
translation of input, or spawning new threads in the translation of composition.

Theorem 17. If P � Δ and P −→C Q, then C�P� −→+ C�Q�.

Proof. By induction on P ; the cases are all straightforward.

The commuting conversions in CP do not expose additional reductions, but
are only necessary to assure that the result of evaluation does not have a cut
at the top level. Our characterisation of deadlock freedom in GV has no such
requirement, so we have no need for corresponding steps in GV.

3.3 Translation from GV to CP

In this section, we show that CP can simulate GV. Figure 9 gives the transla-
tion on types and Figure 10 gives the translation on terms, substitutions, and
configurations; we translate type environments pointwise on types.

The translation on session types is homomorphic except for output, where the
output type is dualised. This accounts for the discrepancy between !T .S = ?T .S
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Session terms

�forkM �z = νw (w ↔ z | νx (�M �x | νy (x〈w〉.x ↔ y | y [])))
�link (M ,N )�z = νv (v ↔ z | νw (v ↔ w | νx (�M �x | νy (�N �y | w().x ↔ y))))

�send (M ,N )�z = νx (�N �x | νy (�M �y | x〈y〉.x ↔ z))
�receiveM �z = νy (�M �y | y(x).νw (w ↔ y | z〈x〉.w ↔ z))

�waitM �z = νy (y ↔ z | �M �y)

Functional terms

�x�z = x ↔ z
�λσx .M �z = �σ�(z(x).�M �z)

�LM �z = νx (�M �x | νy (�L�y | y〈x〉.y ↔ z))
�()�z = z []

�let () = M in N �z = νy (�M �y | y().�N �z)
�(M ,N )�z = νx (�M �x | νy (�N �y | z〈x〉.y ↔ z))

�let (x , y) = M in N �z = νy (�M �y | y(x).�N �z)
�inlM �z = νx (�M �x | z [in1].x ↔ z)
�inrM �z = νx (�M �x | z [in2].x ↔ z)

�case L {inl x �→ M ; inr x �→ N }�z = νx (�L�x | case x {�M �z ; �N �z})
�absurdL�z = νx (�L�x | case x {})

Substitutions

�{Vi/xi}�(P) = ν̂(xi �→ �Vi�xi)i [P ]

ν̂(xi �→ Pi)i [P ] � νx1 (P1 | . . . νxn (Pn | P) . . . )

Configurations

�◦M �z = νy (�M �y | y [])
�•M �z = �M �z

�(νx)C �z = �C �z
�C ‖x C ′�z = νx (�C �z | �C ′�z)

Fig. 10. Translation of GV Terms, Substitutions, and Configurations into CP

and (A⊗B)⊥ = A⊥ �B⊥. Following our previous work [19], the translation on
functional types is factored through an auxiliary translation �−�. The intuition
is that the translation �T 	 of a functional type T is the type of its interface,
whereas �T� is the type of its implementation.

As CP processes do not have return values, the translation �M 	z of a term
M of type T includes the additional argument z : �T 	⊥, which is a channel
for simulating the return value. The translation on session terms is somewhat
complicated by the need to include apparently trivial axiom cuts (highlighted
in grey). These are needed to align with the translation of values, which permit
further reduction inside the value constructors. The output in the translation of
a fork arises from the need to apply the argument to a freshly generated channel
(notice that application is simulated by an output). Linking is simulated by a
link (↔) guarded by a nullary input which matches the nullary output of the
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output channel. Sending is simulated by output as one might expect. Receiving
is simulated by input composed with sending the result to the return channel.
Waiting is simulated by simply connecting the result to the return channel.

Variables are linked to the return channel. Closures are simulated by input,
subject to an appropriate substitution, and application by output. Unit values
are simulated by empty output to the return channel. Pairs are simulated by
evaluating both components in parallel, transmitting the first along the return
channel, and linking the second to the continuation of the return channel. Injec-
tions are simulated by injections. Each elimination form (other than application)
guards the continuation with a suitable prefix, delaying reduction of the continu-
ation until a value has been computed to pass to it. Substitutions are translated
to right-nested sequences of cuts.

The translation of configurations is quite direct. We write C ‖x C ′ to indicate
that the variable x is shared by C and C ′; in a well-typed GV configuration,
there will always be exactly one such variable, so the translation is unambiguous.

Our translation differs from both Wadler’s [26] and our previous one [19],
neither of which simulate even plain β-reduction. This is because the obvious
translation to CP cannot simulate substitution under a lambda abstraction, mo-
tivating our use of closures / weak explicit substitution. Indeed, others have taken
advantage of full explicit substitutions in order simulate small-step semantics of
λ-calculi in the full π-calculus [24].

Another departure from the previous translations to CP is that, despite the
call-by-value semantics of GV, our translation is more in the spirit of
call-by-name. For instance, in the translation of an application LM , the evalua-
tion of L and M can happen in parallel, and β-reduction can occur before M has
reduced to a value. The previous translations hide the evaluation of M behind
the prefix y〈x 〉, which means that reduction of M can get stuck in the case that
L is a free variable. Short of performing a CPS transformation on the transla-
tion, our new approach seems necessary in order to ensure that �−	 preserves
reduction.

It is straightforward to show that the translation preserves typing.

Theorem 18.

1. If Γ � M : T, then �M 	z � �Γ 	, z : �T 	⊥.
2. If Γ � C, then ∃T .�C 	z � �Γ 	, z : �T 	⊥.

Proof. By induction on derivations. �
We now show that reduction in GV is preserved by reduction in CP. First, we

observe that structural equivalence is preserved.

Theorem 19. If Γ � C, Γ � D, and C ≡ D, then �C 	z ≡ �D	z .

Proof. By induction on the derivation of Γ � C . �
As the translations on terms and configurations are compositional, we can

mechanically lift them to translations on evaluation contexts and configuration
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contexts such that the following lemma holds by construction. Each translation
of a context takes two arguments: a function that describes the CP term to plug
into the hole, and an output channel.

Lemma 20. For X ∈ {E ,F ,G}, �X [M ]	z = �X 	[�M 	]z

We will make implicit use of Lemma 20 throughout our proofs. We write x �→ P
for a function that maps a name x to a process P that depends on x .

We now show that substitution commutes with �−	.

Lemma 21. If Γ � M : T, Γ � σ : Δ, and z /∈ dom(σ), then �σ	(�M 	z ) =⇒
�Mσ	z .

Proof. By induction on the structure of M . Here we show the cases for variables
and closures.

– Case x . By linearity there exists V such that σ = {V /x}.

�σ	(�x 	z ) = νx (�V 	x | x ↔ z ) −→ �V 	z = �xσ	z

– Case λσ′
x .M .

�σ	(�λσ′
x .M 	)

= (σ′ = {Vi/xi}i)
�σ	(ν̂(xi �→ (�Vi	xi))i [z (x ).�M 	z ])

= (σ = σ1 � · · · � σn where dom(σi ) = fv(Vi))
�σ1	(. . . �σn	(ν̂(xi �→ �Vi	xi)i [z (x ).�M 	z ]))

= (structural equivalence)
ν̂(xi �→ �σi 	(�Vi	xi))i [z (x ).�M 	z ]

=⇒ (IH)
ν̂(xi �→ �Viσi	xi)i [z (x ).�M 	z ]

= (Viσi = V σ)
ν̂(xi �→ �Viσ	xi)i [z (x ).�M 	z ]

= (definition of �−	)

�λσ′σx .M 	
= (definition of substitution)

�λσ′
x .Mσ	

Each of the remaining non-binding form cases follows straightforwardly using
the induction hypothesis. Each of the remaining binding form cases requires a
commuting conversion to push the appropriate substitution through a prefix. �

Using the substitution lemma, we prove that �−	 preserves reduction on terms.

Theorem 22. If Γ � M, and M −→V N , then �M 	z =⇒ �N 	v.

Proof. By induction on the derivation of M −→V N . Here we show the case of
β-reduction.
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Syntax
Session types S ::= !T .S | ?T .S | end | S �

Constants K ::= send | receive | fork | close | link
Changes to duality

end = end

Changes to type schemas for constants

fork : (S � 1) � S close : end � 1 link : S × S � 1

Fig. 11. Syntax and Typing Rules for Combined Closed Channels

– Case (λσx .M )V −→V M ({V /x} ∪ σ).

�(λσx .M )V 	z
= (definition of �−	)
νw (�V 	w | νy (�σ	(y(x ).�M 	y) | y[x ](w ↔ x | y ↔ z )))

=⇒C (cut send against receive)
νw (�V 	w | νy (y ↔ z | νx (w ↔ x | �σ	(�M 	y))))

=⇒C (cut links and α rename)
νx (�V 	x | �σ	(�M 	z ))
=⇒ (by Lemma 21)
�M ({V /x} � σ)	

The remaining base cases are similarly direct. The inductive case for reduc-
tion inside an evaluation context follows straightforwardly by observing that the
translation of an evaluation context never places its argument inside a prefix. �

Finally, we prove that �−	 preserves reduction on configurations.

Theorem 23. If Γ � C, Γ � D, and C −→ D, then �C 	z =⇒ �D	z .

Proof. By induction on the derivation of C −→ D . The inductive cases follow
straightforwardly from the compositionality of the definitions and Theorem 22.

�
4 Extending GV

In this section, we consider two variants of our core calculus: the first adopts a
single self-dual type for closed channels; the second adds unlimited types.

4.1 Unifying end! and end?

We begin by defining a language, based on GV, but combining the types end!
and end? of closed channels. Figure 11 gives the alterations to the syntax and
typing rules. The dual session types end! and end? are replaced by a single, self-
dual type end; a new constant, close is provided to eliminate channels of type
end. (In many existing systems, channels of type end are treated as unlimited,
subject to weakening, rather than requiring an explicit close. We have left close
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Extended configuration equivalence

C ‖ ◦ () ≡ C

Extended reduction rules (all other reduction rules apply as in GV)

Close

(νx)(F [close x ] ‖ F ′[close x ]) −→ F [()] ‖ F ′[()]

Link

(νx)(F [link (x , y)] ‖ C ) −→ F [()] ‖ C{y/x}

Fig. 12. Updated Configuration Evaluation Rules

explicit to simplify the presentation.) The type schemas for fork and link have
been simplified, as we no longer need to build elimination of closed channels into
fork. Figure 12 gives the updated evaluation rules for the extended language. In
addition to a new rule for close (replacing the one for wait), the rule for link can
be simplified (as it can now return a unit value instead of a closed channel).

Our modified language is, perhaps surprisingly, strictly more expressive than
GV. Consider the following term:

let w = fork (λw .closew ;M ) in closew ;N

Initially, the forked thread and its parent share channel w . After both threads
close w , there can be no further communication between the threads; in contrast,
in core GV, there must always be a final synchronisation with wait. To account
for the increase in expressivity, we must extend the existing configuration typing
rules (Figure 5) with a rule for composition in which no channels are shared:

Γ �φ C Γ ′ �φ′
C ′

Γ, Γ ′ �φ+φ′
C ‖ C ′

Despite the additional expressivity of the modified calculus, we might hope
that our results on deadlock freedom and progress (Theorems 7 and 10) would
apply to this calculus as well. For the modified calculus, we must adapt Lemma 5:

Lemma 5A. If Γ � C and C = G[D ‖ D ′], then fv(D)∩ fv(D ′) is either empty
or the singleton set {x} for some variable x .

Clearly, this change does not allow the introduction of cyclic dependencies. Thus,
the adaptation of the deadlock freedom and progress results to the modified cal-
culus is entirely mechanical. It is straightforward to show that the other theorems
of (§2.2) still hold in the presence of a single self-dual type for closed channels.

The additional expressivity does mean that we cannot define a translation
from the modified calculus to CP. We believe that we could do so were CP
extended with terms corresponding to the mix rules:

0 �
P � Δ Q � Δ′

P | Q � Δ,Δ′
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Syntactic extensions

Types T ::=�T | . . .
Terms M ,N ::= let !x = M in N | !M | . . .
Values V ::= !σE | . . .
Evaluation contexts E ::= let !x = E in M | . . .

Typing rules

Γ � M : T �Γ

Γ � !M : �T

Γ � M : �T Γ ′, x : T � N : U

Γ � let !x = M in N : U

Γ � M : T

Γ, x : �U � M : T

Γ, x : �T , x ′ : �T � M : U

Γ, x : �T � M {x/x ′} : T

Reduction

let !x = !σM in N −→V N {(Mσ)/x}

Fig. 13. GV Extensions for Unlimited Types

4.2 Unlimited Types

So far, we have treated only linear types. In this section, we consider one standard
approach to extending the term language to include unlimited types.

Figure 13 gives the extension of GV. We begin by adding a new class of types,
�T , representing unlimited types. (The typical notation for such types in linear
logic, !T , clashes with the notation for output in session types.) We add terms to
construct and deconstruct values of type �T ; �Γ denotes that every type in Γ
must be of the form �U for some type U . Values of type �T can be weakened
(discarded) and contracted (duplicated). We extend the language of values with
unlimited values !σE ; note that, as an unlimited value behaves similarly to a
closure, we must introduce an explicit substitution. As in the treatment of λ-
terms, we extend the typing relation to take account of the substitution

Γ � Mσ : T dom(σ) = fv(M ) �Γ

Γ � !σM : �T

and treat a term !M as an abbreviation as follows:

!M � !σ(Mσ′)
where fv(M ) = {x1, . . . , xn} y1, . . . , yn are fresh variables

σ = {x1/y1, . . . , xn/yn} σ′ = {y1/x1, . . . , yn/xn}

The reduction rule for �T values is unsurprising—however, unlike in the other
reductions, x may be used non-linearly in M . As the concurrent semantics is un-
changed from the base calculus, the extension of deadlock freedom and progress
to this calculus is mechanical. Similarly, it is not difficult to show that the
other theorems of (§2.2) still hold in the presence of either or both extensions.



582 S. Lindley and J.G. Morris

The only non-trivial feature is the need for a logical relations argument in order
to prove strong normalisation in the presence of unlimited types.

It is straightforward to extend CP with replication (following Wadler [26])
and correspondingly adapt the translations between CP and GV. The details
are omitted due to lack of space.

5 Related Work

Session Types and Functional Languages. Session types were originally
proposed by Honda [13], and later extended by Takeuchi et al. [22] and by
Honda et al. [14]. Honda’s system relies on a substructural type system (in which
channels cannot be duplicated or discarded) and adopts the syntax � and ⊕ for
choice; however, he does not draw a connection between his type system and
the connectives of linear logic, and his system includes a single, self-dual closed
channel. Vasconcelos et al. [25] develop a language that integrates session-typed
communication primitives and a functional language. Gay and Vasconcelos [10]
extend the approach to describe asynchronous communication with statically-
bounded buffers. Their approach provides a more flexible mechanism of session
initiation, distinct from their construct for thread creation, and they do not
consider deadlock. Kobayashi [15] describes an embedding of session-typed π-
calculus in polyadic linear π-calculus, relying on multi-argument send and receive
to capture the state of a communication and variant types to capture choice;
Dardha et al. [9] extend his approach to subtyping and polymorphism.

Linear Logic and Session Types. When he originally described linear logic,
Girard [12] suggested that it would be suited to reasoning about concurrency.
Abramsky [1] and Bellin and Scott [3] give embeddings of linear logic proofs in
π-calculus, and show that cut reduction is simulated by π-calculus reduction.
Their work is not intended to provide a type system for π-calculus: there are
many processes which are not the image of some proof.

Caires and Pfenning [5] present a session type system for π-calculus that ex-
actly corresponds to the proof system for the dual intuitionistic linear logic, and
show that (up to congruence) cut reductions corresponds to process reductions
or process equivalences. Toninho et al. [23] consider embeddings of the λ-calculus
into session-typed π-calculus; their focus is on expressing the concurrency inher-
ent in λ-calculus terms, rather than simulating standard reduction. Wadler [26]
adapts the approach of Caires and Pfenning to classical (rather than intuitionis-
tic) linear logic, and gives a translation from GV (his functional language) to CP
(his process calculus). He does not give a direct semantics for GV. In previous
work [19], we give a type-preserving translation from CP to GV.

Deadlock Freedom and Progress. There have been several approaches to
guarantee deadlock freedom in π-calculus. Kobayashi [16] and Padovani [20]
extend type systems for linear π-calculus with priority information, capturing
the order in which channels are used. Giachino et al. [11] give a type system
that expresses dependencies directly in the types of CCS terms. These systems



A Semantics for Propositions as Sessions 583

permit more programs than ours, at the cost of significantly more complex type
systems; they also do not enjoy the close correspondence with linear logic (or
other well-known logical systems).

Carbone and Debois [7] give a graphical characterisation of session-typed pro-
cesses; this allows them to directly identify cycles in channel dependencies. They
show that all possible interactions eventually take place in cycle-free processes.
Carbone et al. [6] show similar results for well-typed processes under Kobayashi’s
type system for deadlock freedom; their approach accommodates processes with
open channels by defining a type-directed closure of a process, and showing that
open processes progress only if their typed closures progress.

6 Conclusion and Future Work

We have presented a small-step operational semantics for GV, a session-typed
functional core language. We have proved that it is deadlock-free, determinis-
tic, and terminating, and have established simulations both ways between our
semantics for GV and cut-reduction in a process calculus based on linear logic.
Furthermore, we have shown that GV provides a promising basis for future mod-
ular language development by illustrating two extensions to GV, both of which
preserve deadlock-freedom, determinism, and termination.

We identify two important directions for future work: recursion and asyn-
chronous communication. Recursion is essential both for channels (to capture
repeating behaviour, such as adding recipients to a mail message) and for func-
tional programming. Adding unchecked recursion to GV would clearly compro-
mise termination and introduce the possibility of livelock; we hope that adapting
approaches used for fixed points in linear logic might mitigate this issue. Asyn-
chronous communication naturally lends itself to practical implementation. We
hope to develop the approach of Gay and Vasconcelos [10] and show a corre-
spondence between synchronous and asynchronous semantics for GV.
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Abstract. Modern large-scale distributed systems often rely on eventually con-
sistent replicated stores, which achieve scalability in exchange for providing weak
semantic guarantees. To compensate for this weakness, researchers have pro-
posed various abstractions for programming on eventual consistency, such as
replicated data types for resolving conflicting updates at different replicas and
weak forms of transactions for maintaining relationships among objects. How-
ever, the subtle semantics of these abstractions makes using them correctly far
from trivial.

To address this challenge, we propose composite replicated data types, which
formalise a common way of organising applications on top of eventually consis-
tent stores. Similarly to an abstract data type, a composite data type encapsulates
objects of replicated data types and operations used to access them, implemented
using transactions. We develop a method for reasoning about programs with com-
posite data types that reflects their modularity: the method allows abstracting
away the internals of composite data type implementations when reasoning about
their clients. We express the method as a denotational semantics for a program-
ming language with composite data types. We demonstrate the effectiveness of
our semantics by applying it to verify subtle data type examples and prove that it
is sound and complete with respect to a standard non-compositional semantics.

1 Introduction

Background. To achieve availability and scalability, many modern networked sys-
tems use replicated stores, which maintain multiple replicas of shared data. Clients
can access the data at any of the replicas, and these replicas communicate changes to
each other using message passing. For example, large-scale Internet services use data
replicas in geographically distinct locations, and applications for mobile devices keep
replicas locally as well as in the cloud to support offline use. Ideally, we would like
replicated stores to provide strong consistency, i.e., to behave as if a single centralised
replica handles all operations. However, achieving this ideal usually requires synchro-
nisation among replicas, which slows down the store and even makes it unavailable if
network connections between replicas fail [14, 3]. For this reason, modern replicated
stores often provide weaker guarantees, described by the umbrella term of eventual
consistency [5].
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(a) Disallowed

R1: friends[a].add(b) R2: v = wall [a].get // {post}
wall [a].add(post) w = friends[a].get // ∅

ωfa.add(b)

ωwa.add(post)

ωwa.get: {post}

ωfa.get: ∅
sovis, arso

(b) Allowed, even when using transactions

R1: wall [a].add(post1 ) R2: wall [b].add(post2 )

v = wall [b].get // ∅ w = wall [a].get // ∅

ωwa.add(post1)

ωwb.get: ∅

ωwb.add(post2)

ωwa.get: ∅
soso

(c) Disallowed

R1: atomic { R2: atomic {
friends[a].add(b) v = friends[a].get // {b}
friends[b].add(a) } w = friends[b].get // ∅ }

vis, ar
ωfa.add(b)

ωfb.add(a)

ωfa.get: {b}

ωfb.get: ∅
soso

Fig. 1. Anomalies illustrating the semantics of causal consistency and causally consistent trans-
actions. The outcomes of operations are shown in comments. The variables v and w are local to
clients. The structures shown on the right are explained in §3.2.

Eventually consistent stores adopt an architecture where a replica performs an oper-
ation requested by a client locally without any synchronisation with others and imme-
diately returns to the client; the effects of the operation are propagated to other replicas
only eventually. As a result, different replicas may find out about an operation at differ-
ent points in time. This leads to anomalies, one of which is illustrated by the outcome
in Figure 1(a). The program shown there consists of two clients operating on set ob-
jects friends [a] and wall [a], which represent information about a user a in a social
network application. The first client, connected to replica 1, makes b a friend of a’s
and then posts b’s message on a’s wall. After each of these operations, replica 1 might
send a message with an update to replica 2. If the messages carrying the additions of b
to friends [a] and post to wall [a] arrive at replica 2 out of order, the second client can
see b’s post , but does not know that b has become a’s friend. This outcome cannot be
produced by any interleaving of the operations shown in Figure 1(a) and, hence, is not
strongly consistent.

The consistency model of a replicated store restricts the anomalies that it exhibits.
In this paper, we consider the popular model of causal consistency [18], a variant of
eventual consistency that strikes a reasonable balance between programmability and
efficiency. A causally consistent store disallows the anomaly in Figure 1(a), because it
respects causal dependencies between operations: if the programmer sees b’s post to a’s
wall, she is also guaranteed to see all events that led to this posting, such as the addition
of b to the set of a’s friends. Causal consistency is weaker than strong consistency; in
particular, it allows reading stale data. This is illustrated by the outcome in Figure 1(b),
which cannot be produced by any interleaving of the operations shown. In a causally
consistent store it may be produced because each message about an addition sent by the
replica performing it may be slow to get to the other replica.

Due to such subtle semantics, writing correct applications on top of eventually con-
sistent stores is very difficult. In fact, finding a good programming model for eventual



Composite Replicated Data Types 587

consistency is considered one of the major research challenges in the systems commu-
nity [5]. We build on two programming abstractions proposed by researchers to address
this challenge, which we now describe.

One difficulty of programming for eventually consistent stores is that their clients can
concurrently issue conflicting operations on the same data item at different replicas. For
example, spouses sharing a shopping cart in an online store can add and concurrently
remove the same item. To deal with these situations, eventually consistent stores provide
replicated data types [23] that implement objects, such as registers, counters or sets,
with various strategies for resolving conflicting updates to them. The strategies can be
as simple as establishing a total order on all operations using timestamps and letting the
last writer win, but can also be much more subtle. For example, a set data type, which
can be used to implement a shopping cart, can process concurrent operations trying to
add and concurrently remove the same element so that ultimately the element ends up
in the set.

Another programming abstraction that eventually consistent stores are starting to
provide is transactions, which make it easier to maintain relationships among different
objects. In this paper we focus on causally consistent transactions, implemented (with
slight variations) by a number of stores [26, 18, 19, 24, 17, 2, 4]. When a causally con-
sistent transaction performs several updates at a replica, we are guaranteed that these
will be delivered to every other replica together. For example, consider the execution
in Figure 1(c), where at replica 1 two users befriend each other by adding their iden-
tifiers to set objects in the array friends . If we did not use transactions, the outcome
shown would be allowed by causal consistency, as replica 2 might receive the addition
of b to friends [a], but not that of a to friends [b]. This would break the expected invari-
ant that the friendship relation encoded by friends is symmetric. Causally consistent
transactions disallow this anomaly, but nevertheless provide weaker guarantees than
the classical serialisable ACID transactions. The latter guarantee that operations done
within a transaction can be viewed as taking effect instantaneously at all replicas. With
causally consistent transactions, even though each separate replica sees updates done by
a transaction together, different replicas may see them at different times. For example,
the outcome in Figure 1(b) could occur even if we executed the pair of commands at
each replica in a transaction, again because of delays in message delivery.

A typical way of using replicated data types and transactions for writing applica-
tions on top of an eventually consistent store is to keep the application data as a set
of objects of replicated data types, and update them using transactions over these ob-
jects [26, 24, 17, 2]. Then replicated data types ensure sensible conflict resolution, and
transactions ensure the maintenance of relationships among objects. However, due to
the subtle semantics of these abstractions, reasoning about the behaviour of applica-
tions organised in this way is far from trivial. For example, it is often difficult to trace
how the choice of conflict-resolution policies on separate objects affects the policy for
the whole application: as we show in §5, a wrong choice can lead to violations of in-
tegrity invariants across objects, resulting in undesirable behaviour.

Contributions. To address this challenge, we propose a new programming concept
of a composite replicated data type that formalises the above way of organising appli-
cations using eventually consistent stores. Similarly to a class or an abstract data type, a
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composite replicated data type encapsulates constituent objects of replicated data types
and composite operations used to access them, each implemented using a transaction.
For example, a composite data type representing the friendship relation in a social net-
work may consist of a number of set objects storing the friends of each user, with
transactions used to keep the relation symmetric. Composite data types can also capture
the modular structure of applications, since we can construct complex data types from
simpler ones in a nested fashion.

We further propose a method for reasoning about programs with composite data
types that reflects their modularity: the method allows one to abstract from the internals
of composite data type implementations when reasoning about the clients of these data
types. Technically, we express our reasoning method as a denotational semantics for a
programming language that allows defining composite data types (§4). As any denota-
tional semantics, ours is compositional and is thus able to give a denotation to every
composite data type separately. This denotation abstracts from the internal data type
structure using what we term granularity abstraction: it does not record fine-grained
events describing operations on the constituent objects that are performed by compos-
ite operations, but represents every invocation of a composite operation by a single
coarse-grained event. Thereby, the denotation allows us to pretend that the compos-
ite data type represents a single monolithic object, no different from an object of a
primitive data type implemented natively by the store. The denotation then describes
the data type behaviour using a mechanism recently proposed for specifying primitive
replicated data types [11]. The granularity abstraction achieved by this coarse-grained
denotational semantics is similar (but not identical, as we discuss in §7) to atomicity
abstraction, which has been extensively investigated in the context of shared-memory
concurrency [13, 25].

Our coarse-grained semantics enables modular reasoning about programs with com-
posite replicated data types. Namely, it allows us to prove a property of a program by: (i)
computing the denotations of the composite data types used in it; and (ii) proving that
the program satisfies the property assuming that it uses primitive replicated data types
with the specifications equal to the denotations of the composite ones. We thus never
have to reason about composite data type implementations and their clients together.

Since we use an existing specification mechanism [11] to represent a composite data
type denotation, our technical contribution lies in identifying which specification to
pick. We show that the choice we make is correct by proving that our coarse-grained
semantics is sound with respect to a fine-grained semantics of the programming lan-
guage (§6), which records the internal execution of composite operations and follows
the standard way of defining language semantics on weak consistency models [11]. We
also establish that the coarse-grained semantics is complete with respect to the fine-
grained one: we do not lose precision by reasoning with denotations of composite data
types instead of their implementations. The soundness and completeness results also
imply that our coarse-grained denotational semantics is adequate, i.e., can be used for
proving the observational equivalence of two composite data type implementations.

We demonstrate the usefulness of the coarse-grained semantics by applying the
composite data type denotation it defines to specify and verify small but subtle data
types, such as a social graph (§5). In particular, we show how our semantics lets one
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Primitive data types B ∈ PrimType Data-type variables α, β ∈ DVar

Ordinary variables v, w ∈ Var = {vin, vout, . . .} Object variables x, y ∈ OVar

Data-type contexts Γ ::= α1 : O1, . . . , αk : Ok Ordinary contexts Σ ::= v1, . . . , vk

Object contexts Δ ::= x1 : O1, . . . , xk : Ok

D ::= let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O T ::= B | D | α
G ::= v | G+G | G ∧G | G ∨G | ¬G | . . .
C ::= var v. C | v= x.o(G) | v=G | C;C | if G then C else C | while G do C | atomic {C}
P ::= C1 ‖ . . . ‖ Cn | let α = T in P | let x = new T in P

Δ | Σ � C FV(G) ∪ {v} ⊆ (Σ − {vin, vout})
Δ,x : {o} ∪ O | Σ � v = x.o(G)

Δ | Σ, v � C

Δ | Σ � var v. C

Δ | Σ � C

Δ | Σ � atomic {C}

Γ � T : O Γ � B : sig(B)

Γ, α : O � α : O

Γ � Tj : Oj for all j = 1..m

x1 : O1, . . . , xm : Om | vin, vout � Co for all o ∈ O

Γ � let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O : O

Γ | Δ � P Γ � T : O Γ | Δ,x : O � P

Γ | Δ � let x = new T in P

Δ | ∅ � Cj for all j = 1..n

Γ | Δ � C1 ‖ . . . ‖ Cn

Fig. 2. Programming language and sample typing rules

understand the consequences of different design decisions in the implementation of a
composite data type on its behaviour.

2 Programming Language and Composite Replicated Data Types

Store Data Model. We consider a replicated store organised as a collection of prim-
itive objects. Clients interact with the store by invoking operations on objects from
a set Op, ranged over by o. Every object in the store belongs to one of the primitive
replicated data types B ∈ PrimType, implemented by the store natively. The signature
sig(B) ⊆ Op determines the set of operations allowed on objects of the type B. As
we explain in §3, the data type also determines the semantics of the operations and,
in particular, the conflict-resolution policies implemented by them. For uniformity of
definitions, we assume that each operation takes a single parameter and returns a single
value from a set of values Val, whose elements are ranged over by a, b, c, d. We assume
that Val includes at least Booleans and integers, their sets and tuples thereof. We use a
special value ⊥ ∈ Val to model operations that take no parameter or return no value. For
example, primitive data types can include sets with operations add, remove, contains
and get (the latter returning the set contents).

Composite Replicated Data Types. We develop our results for a language of client
programs interacting with the replicated store, whose syntax we show in Figure 2. We
consider only programs well-typed according to the rules also shown in the figure.
The interface to the store provided by the language is typical of existing implemen-
tations [26, 2]. It allows programs to declare objects of primitive replicated data types,
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residing in the store, invoke operations on them, and combine these into transactions.
Crucially, the language also allows declaring composite replicated data types from the
given primitive ones and composite objects of these types. These composite objects
do not actually reside in the store, but serve as client-side anchors for compositions of
primitive objects. A declaration D of a composite data type includes several constituent
objects of specified types Tj , which can be primitive types, composite data type decla-
rations or data-type variables α ∈ DVar, bound to either. The constituent objects are
bound to distinct object variables xj , j = 1..m from a set OVar. The declaration D
also defines a set of composite operations O (the type’s signature), with each o ∈ O
implemented by a command Co executed as a transaction accessing the objects xj . We
emphasise the use of transactions by wrapping Co into an atomic block. Since a store
implementation executes a transaction at a replica without synchronising with other
replicas, transactions never abort.

The syntax of commands includes the form var v. C for declaring ordinary vari-
ables v, w ∈ Var, to be used by C, which store values from Val and are initialised to
⊥. Commands Co in composite data type declarations D can additionally access two
distinguished ordinary variables vin and vout (never declared explicitly), used to pass
parameters and return values of operations: the parameter gets assigned to vin at the
beginning of the execution of Co and the return value is read from vout at the end. The
command v = x.o(G) executes the operation o on the object bound to the variable x
with parameter G and assigns the result to v.1

Our type system enforces that commands only invoke operations on objects consis-
tent with the signatures of their types and that all variables be used within the correct
scope; in particular, constituent objects of composite types can only be accessed by their
composite operations. For simplicity, we do not adopt a similar type discipline for val-
ues and treat all expressions as untyped. Finally, for convenience of future definitions,
the typing rule for v = x.o(G) requires that vin and vout do not appear in v or G.

Example: Social Graph. Figure 3 gives our running example of a composite data
type soc, which maintains friendship relationships and requests between accounts in
a toy social network application. To concentrate on core issues of composite data type
correctness, we consider a language that does not allow creating unboundedly many
objects; hence, we assume a fixed number of accounts N . Using syntactic sugar, the
constituent objects are grouped into arrays friends and requesters and have the type
RWset of sets with a particular conflict-resolution policy (defined in §3.1). We use these
sets to store account identifiers: friends [a] gives the set of a’s friends, and requesters[a]
the set of accounts with pending friendship requests to a. The implementation maintains
the expected integrity invariants that the friendship relation is symmetric and the friend
and requester sets of any account are disjoint:

∀a, b. friends [a].contains(b) ⇔ friends [b].contains(a); (1)

∀a. friends [a].get ∩ requesters[a].get = ∅. (2)

1 Since the object bound to x may itself be composite, this may result in atomic blocks being
nested. Their semantics is the same as the one obtained by discarding all blocks except the
top-level one. In particular, the atomic blocks that we include into the syntax of commands
have no effect inside operations of composite data types.
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Dsoc = let { friends = new RWset[N ]; requesters = new RWset[N ] } in {
request(from, to) = atomic {

if (friends[to].contains(from) ∨ requesters [to].contains(from)) then vout = false

else { requesters [to].add(from); vout = true } };
accept(from, to) = atomic {

if (¬requesters [to].contains(from)) then vout = false

else { requesters [to].remove(from); requesters [from].remove(to);

friends[to].add(from); friends[from ].add(to); vout = true } };
reject(from, to) = atomic {

if (¬requesters [to].contains(from)) then vout = false

else { requesters [to].remove(from); requesters [from].remove(to); vout = true } };
breakup(from, to) = atomic {

if (¬friends[to].contains(from)) then vout = false

else { friends[to].remove(from); friends[from].remove(to); vout = true } };
get(id) = atomic {vout = (friends[id ].get, requesters [id ].get) } }

Fig. 3. A social graph data type soc

The composite operations allow issuing a friendship request, accepting or rejecting
it, breaking up and getting the information about a given account. For readability, we
use some further syntactic sugar in the operations. Thus, we replace vin with more de-
scriptive names, recorded after the operation name and, in the case when the parameter
is meant to be a tuple, introduce separate names for its components. Thus, from and to
desugar to fst(vin) and snd(vin). We also allow invoking operations on objects inside
expressions and omit unimportant parameters to operations.

The code of the composite operations is mostly as expected. For example, request
adds the user sending the request to the requester set of the user being asked, after
checking, e.g., that the former is not already a friend of the latter. However, this sim-
plicity is deceptive: when reasoning about the behaviour of the data type, we need to
consider the possibility of operations being issued concurrently at different replicas.
For example, what happens if two users concurrently issue friendship requests to each
other? What if two users managing the same institutional account take conflicting de-
cisions, such as concurrently accepting and rejecting a request? As we argue in §5, it
is nontrivial to implement the data type so that the behaviour in the above situations be
acceptable. Using the results in this paper, we can specify the desired social graph be-
haviour and prove that the composite data type in Figure 3 satisfies such a specification.
Our specification abstracts from the internal structure of the data type, thereby allowing
us to view it as no different from the primitive set data types it is constructed from. This
facilitates reasoning about programs using the data type, which we describe next.

Programs. A program P consists of a series of data type and object variable decla-
rations followed by a client. The latter consists of several commands C1, . . . , Cn, each
representing a user session accessing the store concurrently with others; a session is
thus an analogue of a thread in shared-memory languages. An implementation would
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connect each session to one of the store replicas (as in examples in Figure 1), but this is
transparent on the language level. Data type variables declared in P are used to specify
the types of objects declared afterwards, and object variables are used inside sessions
Cj , as per the typing rules. Sessions can thus invoke operations on a number of objects
of primitive or composite types. By default, every such operation is executed within a
dedicated transaction. However, like in composite data type implementations, we allow
sessions to group multiple operations into transactions using atomic blocks included
into the syntax of commands. We consider data types T and programs P up to the
standard alpha-equivalence, adjusted so that vin and vout are not renamed.

Technical Restriction. To simplify definitions, we assume that commands inside
atomic blocks always terminate and, thus, so do all operations of composite data types.
We formalise this restriction when presenting the semantics of the language in §4. It can
be lifted at the expense of complicating the presentation. Note that the sessions Cj do
not have to terminate, thereby allowing us to model the reactive nature of store clients.

3 Replicated Store Semantics

A replicated store holds objects of primitive replicated data types and implements op-
erations on these objects. The language of §2 allows us to write programs that interact
with the store by invoking the operations while grouping primitive objects into com-
posite ones to achieve modularity. The main contribution of this paper is a denotational
semantics of the language that allows the reasoning about a program to reflect this
modularity. But before presenting it (in §4), we need to define the semantics of the
store itself: which values can operations on primitive objects return in an execution of
the store? This is determined by the consistency model of causally consistent transac-
tions [26, 18, 19, 24, 17, 12, 4], which we informally described in §1. To formalise it, we
use a variant of the framework proposed by Burckhardt et al. [11, 12, 10], which defines
the store semantics declaratively, without referring to implementation-level concepts
such as replicas or messages. The framework models store executions using structures
on events and relations in the style of weak memory models and allows us to define
the semantics of the store in two stages. We first specify the semantics of single oper-
ations on primitive objects using replicated data type specifications (§3.1), which are
certain functions on events and relations. We then specify allowed executions of the
store, including multiple operations on different objects, by constraining the events and
relations using consistency axioms (§3.2).

A correspondence between the declarative store specification and operational models
closer to implementations was established elsewhere [11, 12, 10]. Although we do not
present an operational model in this paper, we often explain various features of the
store specification framework by referring to the implementation-level concepts they
are meant to model.

The granularity abstraction of the denotational semantics we define in §4 allows
us to pretend that a composite data type is a primitive one. Hence, when defining the
semantics, we reuse the replicated data type specifications introduced here to specify
the behaviour of a composite data type, such as the one in Figure 3, while abstracting
from the internals of its implementation.
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3.1 Semantics of Primitive Replicated Data Types

In a strongly consistent system, there is a total order on all operations on an object, and
each operation takes into account the effects of all operations preceding it in this order.
In an eventually consistent system, the result of an operation o is determined in a more
complex way:

1. The result of o depends on the set of operations information about which has
been delivered to the replica performing o—those visible to o. For example, in
Figure 1(a) the operation friends [a].get returns ∅ because the message about
friends [a].add(b) has not yet been delivered to the replica performing the get.

2. The result of o may also depend on additional information used to order some
events. For example, we may decide to order concurrent updates to an object using
timestamps, as is the case when we use the last-writer-wins conflicts resolution
policy mentioned in §1.

Hence, we specify the semantics of a replicated data type by a function F that computes
the return value of an operation o given its operation context, which includes all we need
to know about the store execution to determine the value: the set of events visible to o,
together with a pair of relations on them that specify the above relationships.

Assume a countably-infinite set Event of events, representing operations issued to
the store. A relation is a strict partial order if it is transitive and irreflexive. A total
order is a strict partial order such that for every two distinct elements e and f , the order
relates e to f or f to e. We call a pair p ∈ Op× Val = AOp of an operation o together
with its parameter a an applied operation, written as o(a).

DEFINITION 1 An operation context is a tuple N = (p,E, aop, vis, ar), where p ∈
AOp, E is a finite subset of Event, aop : E → AOp, and vis (visibility) and ar (arbitra-
tion) are strict partial orders on E such that vis ⊆ ar.

We call the tuple M = (E, aop, vis, ar) a partial operation context.

We write Ctxt for the set of all operation contexts and denote components of N and

similar structures as in N.E. For a relation R we write (e, f) ∈ R and e
R−→ f inter-

changeably. Informally, the orders vis and ar record the relationships between events in
E motivated by the above points 1 and 2, respectively. In implementation terms, the re-
quirement vis ⊆ ar guarantees that timestamps are consistent with message delivery: if
e is visible to f , then e has a lower timestamp than f . We define where vis and ar come
from formally in §3.2; for now we just assume that they are given and define replicated
data type specifications as certain functions of operation contexts including them.

DEFINITION 2 A replicated data type specification is a partial function F : Ctxt ⇀
Val that returns the same value on isomorphic operation contexts and preserves it on
arbitration extensions. Formally, let us order operation contexts by the pre-order 
:

(p,E, aop, vis, ar) 
 (p′, E′, aop′, vis′, ar′) ⇐⇒
p = p′ ∧ ∃π ∈ E →bijective E

′. π(aop) = aop′ ∧ π(vis) = vis′ ∧ π(ar) ⊆ ar′,

where we use the expected lifting of π to relations. Then we require

∀N,N ′ ∈ Ctxt. N 
 N ′ ∧N ∈ dom(F ) =⇒ N ′ ∈ dom(F ) ∧ F (N) = F (N ′). (3)
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Let Spec be the set of data type specifications F and assume a fixed FB for every prim-
itive type B ∈ PrimType provided by the store. The requirement (3) states that, once
arbitration gives all the information that is needed in addition to visibility to determine
the outcome of an operation, arbitrating more events does not change this outcome.

Replicated Sets. We illustrate the above definitions by specifying replicated set data
types with different conflict-resolution policies. The semantics of a replicated set is
straightforward when it is add-only, i.e., its signature is {add, contains, get}. An
element a is in the set if there is an add(a) event in the context, or informally, if the
replica performing contains(a) has received a message about the addition of a:

FAOset(contains(a), E, aop, vis, ar) = (∃e ∈ E. aop(e) = add(a)).

We define the result to be⊥ for add operations and define the result of get as expected.2

Things become more subtle if we allow removing elements, since we need to define
the outcome of concurrent operations adding and removing the same element, as in
the context N = (contains(42), {e, f}, aop, vis, ar), where aop(e) = add(42) and
aop(f) = remove(42). There are several possible ways of resolving this conflict [8]: in
add-wins sets (AWset) adds always win against concurrent removes (so that the element
ends up in the set), remove-wins sets (RWset) act vice versa, and last-writer-wins sets
(LWWset) apply operations in the order of their timestamps. We specify the result of
contains in these cases using the vis and ar orders in the operation context:

FAWset(contains(a), E, aop, vis, ar) =

∃e ∈ E. aop(e) = add(a) ∧ (∀f ∈ E. aop(f) = remove(a) =⇒ ¬(e vis−→ f));

FRWset(contains(a), E, aop, vis, ar) =

∃e ∈ E. aop(e) = add(a) ∧ (∀f ∈ E. aop(f) = remove(a) =⇒ f
vis−→ e);

FLWWset(contains(a), E, aop, vis, ar) =

∃e ∈ E. aop(e) = add(a) ∧ (∀f ∈ E. aop(f) = remove(a) =⇒ f
ar−→ e),

if ar is total on {e ∈ E | aop(e) ∈ {add( ), remove( )}};

FLWWset(contains(a), E, aop, vis, ar) = undefined, otherwise.

Thus, the add-wins semantics is formalised by mandating that remove operations cancel
only the add operations that are visible to them; the remove-wins semantics additionally
mandates that they cancel concurrent add operations, but not those that follow them
in visibility. On the above context N , the operation contains(42) returns true iff:

¬(e vis−→ f) for AWset; f
vis−→ e for RWset; and f

ar−→ e for LWWset. As we show in §5,
using a remove-wins set for requesters in Figure 3 is crucial for preserving the integrity
invariant (2); friends could well be add-wins, which would lead to different, but also
sensible, data type behaviour.

3.2 Whole-Store Semantics

We define the semantics of a causally consistent store by the set of its histories, which
are certain structures on events recording all client-store interactions that can be pro-

2 FAOset is undefined on contexts with operations other than those from the signature. The type
system of our language ensures that such contexts do not arise in its semantics.
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duced during a run of the store; these include operations invoked on all objects and their
return values. The store has no control over the operations occurring in histories, since
these are chosen by the client; hence, the semantics only constrains return values. Repli-
cated data type specifications define return values of operations in terms of visibility and
arbitration, but where do these orders come from? As we explained in §3.1, intuitively,
they are determined by the way messages are delivered and timestamps assigned in a
run of a store implementation. Since this highly non-deterministic, in general, visibility
and arbitration orders are arbitrary, but not entirely. A causally consistent store provides
to its clients a guarantee that these orders in the contexts of different operations in the
same run are related in certain ways, and this guarantee disallows anomalies such as the
one in Figure 1(a).

We formalise the guarantee using the notion of an execution, which extends a history
with visibility and arbitration orders on its events. A history is allowed by the store
semantics if there is a way to extend it to an execution such that: (i) the return values of
operations in the execution are obtained by applying replicated data type specifications
to contexts extracted from it; and (ii) the execution satisfies certain consistency axioms,
which constrain visibility and arbitration and, therefore, operation contexts.

Histories, Executions and the Satisfaction of Data Type Specifications. We iden-
tify objects (primitive or composite) by elements of the set Obj, ranged over by ω. A
strict partial order R is prefix-finite if {f | (f, e) ∈ R} is finite for every e.

DEFINITION 3 A history is a tuple H = (E, label, so,∼), where:

– E ⊆ Event.
– label : E → Obj × AOp × Val describes the events in E: if label(e) = (ω, p, a),

then the event e describes the applied operation p on the object ω returning the
value a.

– so ⊆ E × E is a session order, ordering events in the same session according to
the order in which they were submitted to the store. We require that so be prefix-
finite and be the union of finitely many total orders defined on disjoint subsets of E,
which correspond to events in different sessions.

– ∼ ⊆ E × E is an equivalence relation grouping events in the same transaction.
Since all transactions terminate (§2), we require that every equivalence class of ∼
be a finite set. Since every transaction is performed by a single session, we require
that any two distinct events by the same transaction be related by so one way or
another:

∀e, f. e ∼ f ∧ e �= f =⇒ e
so−→ f ∨ f

so−→ e.

We also require that a transaction be contiguous in so:

∀e, f, g. e so−→ f
so−→ g ∧ e ∼ g =⇒ e ∼ f ∼ g.

An execution is a triple X = (H, vis, ar) of a history H and prefix-finite strict partial
orders vis and ar on H.E, such that vis ∪ ar ⊆ {(e, f) | H.obj(e) = H.obj(f)} and
vis ⊆ ar.

We denote the sets of all histories and executions by Hist and Exec. We write H.obj(e),
H.aop(e) and H.rval(e) for the components of H.label(e) and shorten, e.g., X.H.so
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to X.so. Note that the set H.E can be infinite, which models infinite runs. Figure 1(a)
graphically represents an execution corresponding to the causality violation anomaly
explained in §1. The relation ∼ is an identity in this case, and the objects in this and
other executions in Figure 1 are add-only sets (AOset, §3.1).

Given an execution X , we extract the operation context of an event e ∈ X.E by
selecting all events visible to it according to X.vis:

ctxt(X, e) = (X.aop(e), E, (X.aop)|E , (X.vis)|E , (X.ar)|E), (4)

whereE = (X.vis)−1(e) and ·|E is the restriction to events in E. Then, given a function
F : Obj ⇀ Spec that associates data type specifications with some objects, we say that
an execution X satisfies F if the return value of every event in X is computed on its
context according to the specification that F gives for the accessed object.

DEFINITION 4 An execution X satisfies F, written X |= F, if

∀e ∈ X.E. (X.obj(e) ∈ dom(F) =⇒ X.rval(e) = F(X.obj(e))(ctxt(X, e))).

Since a context does not include return values, the above equation determines them
uniquely for the events e satisfying the premise. For example, in the execution in Fig-
ure 1(a) the context of the get from ωfa is empty. Hence, to satisfy F = (λω. FAOset),
the get returns ∅. If we had a vis edge from the add(b) to the get, then the latter would
have to return {b}.

Consistency Axioms. We now formulate additional constraints that executions have
to satisfy. They restrict the anomalies allowed by the consistency model we consider
and, in particular, rule out the execution in Figure 1(a).

To define the semantics of transactions, we use the following operation. For a relation
R on a set of events E and an equivalence relation ∼ on E (meant to group events in
the same transaction), we define the factoring R/∼ of R over ∼ as follows:

R/∼ = R ∪ ((∼;R;∼)− (∼)), (5)

where ; composes relations. Thus, R/∼ includes all edges from R and those obtained
from such edges by relating any actions coming from the same transactions as their
endpoints, excluding the case when the endpoints themselves are from the same trans-
action. We also let sameobj(X)(e, f) ⇐⇒ X.obj(e) = X.obj(f).

DEFINITION 5 An execution X = ((E, label, so,∼), vis, ar) is causally consistent if it
satisfies the following consistency axioms:

CAUSALVIS. ((so ∪ vis)/∼)+ ∩ sameobj(X) ⊆ vis;
CAUSALAR. (so ∪ ar)/∼ is acyclic;

EVENTUAL. ∀e ∈ E.
∣
∣{f ∈ E | sameobj(X)(e, f) ∧ ¬(e vis−→ f)}∣∣ < ∞.

We write X |=CC F if X |= F and X is causally consistent.

The axioms follow the informal description of the consistency model we gave in §1.
We explain them below; however, their details are not crucial for understanding the rest
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of the paper. Before explaining the axioms, we note that Definitions 4 and 5 allow us to
define the semantics of a store with object specifications given by F : Obj ⇀ Spec as
the set of histories that can be extended to a causally consistent execution satisfying F:

HistCC(F) = {H | ∃vis, ar. (H, vis, ar) |=CC F}. (6)

To prove that a particular store implementation satisfies this specification, for every
history H the implementation produces we have to come up with vis and ar that satisfy
the constraint in (6); this is usually done by constructing them from message delivery
and timestamps in the run of the implementation producingH . Here we rely on previous
correctness proofs of store implementations [11, 12, 10] and use the above declarative
specification of the store semantics without fixing the store implementation.

Causal Consistency. The axioms CAUSALVIS and CAUSALAR in Definition 5 en-
sure that visibility and arbitration respect causality between operations. CAUSALVIS

guarantees that an event sees all events on the same object that causally affect it, i.e.,
those preceding it in a chain of session order and visibility edges (ignore the use of
factoring over ∼ for now). Thus, CAUSALVIS disallows the execution in Figure 1(a).
CAUSALAR similarly requires that arbitration be consistent with session order on all
objects (recall that X.vis ⊆ X.ar). EVENTUAL formalises the liveness property that
every replica eventually sees every update: it ensures that an event cannot be invisible
to infinitely many other events on the same object.

Transactions. The use of factoring over the ∼ relation in CAUSALVIS formalises
the guarantee provided by causally consistent transactions that we noted in §1: updates
done by a transaction get delivered to replicas together. According to CAUSALVIS, a
causal dependency established between two actions of different transactions results in
a dependency also being established between any other actions in the two transactions.
Thus, CAUSALVIS disallows the execution in Figure 1(c), where the dashed rectangles
group events into transactions. The axioms allow the execution in Figure 1(b) even
when the operations by the same session are done within a transaction—an outcome
that would not be allowed with serialisable transactions.

4 Coarse-Grained Language Semantics

We now describe our main contribution—a coarse-grained denotational semantics of
programs in the language of §2 that enables modular reasoning. We establish a corre-
spondence between this semantics and the reference fine-grained semantics in §6.

4.1 Session-Local Semantics of Commands

The semantics of the replicated store defined by (6) in §3 describes the store behaviour
under any client and thus produces histories with all possible sets of client operations.
However, a particular command C in the language of §2 generates only histories with
certain sequences of operations. Thus, our first step is to define a session-local seman-
tics that, for each (sequential) command C, gives the set of histories that C can possibly
generate. This semantics takes into account only the structure of the command C and
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〈Δ | Σ � C〉 : (dom(Δ) →inj Obj)× LState(Σ) → P((FHist× LState(Σ)) ∪ IHist)

〈v = G〉(obj , σ) = {(Hemp, σ[v → �G�σ]) | Hemp = (∅, [ ], ∅, ∅)}
〈v = x.o(G)〉(obj , σ) = {(He, σ[v → a]) | e ∈ Event ∧ a ∈ Val

∧He = ({e}, [e → (obj (x), o(�G�σ), a)], ∅, {(e, e)})}
〈atomic {C}〉(obj , σ) = {((E, label, so, E × E), σ′) | ((E, label, so,∼), σ′) ∈ 〈C〉(obj , σ)}

Fig. 4. Key clauses of the session-local semantics of commands. Here FHist and IHist are respec-
tively sets of histories with finite and infinite event sets; σ[v → a] denotes the function that has
the same value as σ everywhere except v, where it has the value a; and [ ] is a nowhere-defined
function. We assume a standard semantics of expressions �G� : LState(Σ) → Val.

operations on local variables; the return values of operations executed on objects in the
store are chosen arbitrarily. Later (§4.3), we intersect the set of histories produced by
the session-local semantics with (6) to take the store semantics into account.

To track the values of local variables Σ in the session-local semantics of a command
Δ | Σ � C (Figure 2), we use local states σ ∈ LState(Σ) = Σ → Val. The semantics
interprets commands by the function 〈Δ | Σ � C〉 in Figure 4. Its first parameter obj
determines the identities of objects bound to object variables in Δ. Given an initial local
state σ as the other parameter, 〈Δ | Σ � C〉 returns the set of histories produced by
C when run from σ, together with final local states when applicable. The semantics is
mostly standard and therefore we give only key clauses; see [1, §A] for the remaining
ones. Recall that, to simplify our formalism, we require every transaction to terminate
(§2). To formalise this assumption, the clause for atomic filters out infinite histories.

4.2 Composite Data Type Semantics

The distinguishing feature of our coarse-grained semantics is its support for granularity
abstraction: the denotation of a composite data type abstracts from its internal structure.
Technically, this means that composite data types are interpreted in terms of replicated
data type specifications, which we originally used for describing the meaning of prim-
itive data types (§3.1). Thus, type variable environments Γ and data types Γ � T : O
(Figure 2) are interpreted over the following domains:

�Γ � = dom(Γ ) → Spec; �Γ � T : O� ∈ �Γ � → Spec.

We use type to range over elements of �Γ �. Two cases in the definition of �Γ � T : O�
are simple. We interpret a primitive data type B ∈ PrimType as the corresponding
data type specification FB , which is provided as part of the store specification (§3.1):
�B�type = FB . We define the denotation of a type variable α by looking it up in the
environment type: �α�type = type(α).

The remaining and most interesting case is the interpretation �Γ � D : O� of a
composite data type

D = let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O. (7)

For type ∈ �Γ �, the data type specification F = �Γ � D : O�type returns a value given
a context consisting of coarse-grained events that represent composite operations on
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request(b,a)

accept(b,a) reject(b,a)

e0: get(a): ({b},∅)

ωfa.contains(b): f
ωra.contains(b): f
ωra.add(b)

ωra.contains(b): t
ωra.remove(b)
ωrb.remove(a)
ωfa.add(b)
ωfb.add(a)

ωra.contains(b): t
ωra.remove(b)
ωrb.remove(a)

ωfa.get: {b}
ωra.get: ∅

c = ({b},∅)

(a) (b)

Fig. 5. (a) A context N of coarse-grained events for the social graph data type soc in Figure 3,
with an event e0 added to represent the operation N.p. Solid edges denote both visibility and arbi-
tration (equal, since the data type does not use arbitration). The dashed edges show the additional
edges in vis′ and ar′ introduced in Definition 7. (b) An execution X belonging to the concreti-
sation of N . The objects ωfa, ωfb, ωra, ωrb correspond to the variables friends[a], friends [b],
requesters [a], requesters [b] of type RWset. Solid edges denote both visibility and arbitration.
We have omitted the session order inside transactions, the visibility and arbitration edges it in-
duces and the transitive consequences of the edges shown. Dashed rectangles group events into
transactions. The function β maps events in X to the horizontally aligned events in N .

an object of type D (e.g., the one in Figure 5(a)). This achieves granularity abstraction,
because, once a denotation of this form is computed, it can be used to determine the
return value of a composite operation without knowing the operations on the constituent
objects xj that were done by the implementations Co of the composite operations in its
context (e.g., the ones in Figure 3). We call events describing the operations on xj

fine-grained.
Informally, our approach to defining the denotation F of D is to determine the value

that F has to return on a context N of coarse-grained events by “running” the imple-
mentations Co of the composite operations invoked in N . This produces an execution
X over fine-grained events that describes how Co acts on the constituent objects xj—a
concretisation of N . The execution X has to be causally consistent and satisfy the data
type specifications for the objects xj . We then define F (N) to be the return value that
the implementation of the composite operation N.p gives in X . However, concretis-
ing N into X is easier said than done: while the history part of X is determined by
the session-local semantics of the implementationsCo (§4.1), determining the visibility
and arbitration orders so that the resulting denotation be sound (in the sense described
in §6) is nontrivial and represents our main insight.

To define the denotation of (7) formally, we first gather all histories that an imple-
mentation Co of a composite operation can produce in the session-local semantics 〈·〉
into a summary: given an applied composite operation and a return value, a summary
defines the set of histories that its implementation produces when returning the value.

DEFINITION 6 A summary ρ is a partial map ρ : AOp × Val ⇀ P(FHist) such that
for every (p, a) ∈ dom(ρ), ρ(p, a) is closed under the renaming of events, and for every
H ∈ ρ(p, a), H.so is a total order on H.E and H.∼ = H.E ×H.E.
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For a family of commands {Δ | vin, vout � Co}o∈O and obj : dom(Δ) →inj Obj,
we define the corresponding summary �{Co}o∈O�(obj ) : AOp × Val ⇀ P(FHist) as
follows: for o′ ∈ O and a, b ∈ Val, we let

�{Co}o∈O�(obj )(o′(a), b) =

{H | (H, [vin �→ , vout �→ b]) ∈ 〈atomic {Co′}〉(obj , [vin �→ a, vout �→ ⊥])}.
For example, the method bodies Co in Figure 3 and an appropriate obj define the sum-
mary ρsoc = �{Co}o∈{request,accept,...}�(obj ). This maps the get operation in Fig-
ure 5(a) to a set of histories including the one shown to the right of it in Figure 5(b).

We now define the executionsX that may result from “running” the implementations
of composite operations in a coarse-grained context N given by a summary ρ. The
definition below pairs these executions X with the value c returned in them by the
implementation of N.p, since this is what we are ultimately interested in. We first state
the formal definition, and then explain it in detail. We write id for the identity relation.

DEFINITION 7 A pair (X, c) ∈ Exec × Val is a concretisation of a context N with
respect to a summary ρ : AOp × Val ⇀ P(FHist) if for some event e0 �∈ N.E and
function β : X.E → N.E � {e0} we have

(∀f ∈ (N.E). (X.H)|β−1(f) ∈ ρ(N.aop(f), )) ∧ ((X.H)|β−1(e0) ∈ ρ(N.p, c)); (8)

β(X.so) ⊆ id; (9)

β(X.vis)− id ⊆ vis′; (10)

β−1(vis′) ∩ sameobj(X) ⊆ X.vis; (11)

β(X.ar)− id ⊆ ar′, (12)

where vis′ = N.vis ∪ {(f, e0) | f ∈ N.E} and ar′ = N.ar ∪ {(f, e0) | f ∈ N.E}.
We write γ(N, ρ) for the set of all concretisations of N with respect to ρ.

For example, the pair of the execution and the value in Figure 5(b) belongs to
γ(N, ρsoc) for N in Figure 5(a). When X concretises N with respect to ρ, the his-
tory X.H is a result of expanding every composite operation in N into a history of its
implementation according to ρ. The function β maps every event in X.E to the event
from N it came from, with an event e0 added to N.E to represent the operation N.p;
this is formalised by (8). The condition (9) further requires that the implementation
of every composite operation be executed in a dedicated session. As it happens, it is
enough to consider concretisations of this form to define the denotation.

The conditions (10)–(12) represent the main insight of our definition of the denota-
tion: they tell us how to select the visibility and arbitration orders in X given those in
N . They are best understood by appealing to the intuition about how an implementa-
tion of the store operates. Recall that, from this perspective, visibility captures message
delivery: an event is visible to another event if and only if the information about the
former has been delivered to the replica of the latter (§3.1). Also, in implementations
of causally consistent transactions, updates done by a transaction are delivered to every
replica together (§1). Since composite operations execute inside transactions, the visi-
bility order in N can thus be intuitively thought of as specifying the delivery of groups
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of updates made by them: we have an edge e′ vis′−−→ f ′ between coarse-grained events
e′ and f ′ in N (e.g., request and accept in Figure 5(a)) if and only if the updates
performed by the transaction denoted by e′ have been delivered to the replica of f ′.
Now consider fine-grained events e, f ∈ X.E on the same constituent object describ-
ing updates made inside the transactions of e′ and f ′, so that β(e) = e′ and β(f) = f ′

(e.g., ωra.add(b) and ωra.contains(b) in Figure 5(b)). Then we can have e
X.vis−−−→ f if

and only if e′ vis′−−→ f ′. This is formalised by (10) and (11).
To explain (12), recall that arbitration captures the order of timestamps assigned to

events by the store implementation. Also, in implementations the timestamps of all
updates done by a transaction are contiguous in this order. Thus, arbitration in N can
be thought of as specifying the timestamp order on the level of whole transactions
corresponding to the composite operations in N . Then (12) states that the order of
timestamps of fine-grained events in X is consistent with that over transactions these
events come from.

To define the denotation, we need to consider only those executions concretising N
that are causally consistent and satisfy data type specifications. Hence, for F : Obj ⇀
Spec we let

γ(N, ρ,F) = {(X, c) ∈ γ(N, ρ) | X |=CC F}.
For example, the execution in Figure 5(b) belongs to γ(N, ρsoc,F) for N in Figure 5(a)
and F = (λω. FRWset). As the following theorem shows, the constraints (8)–(12) are
so tight that the set of concretisations defined in this way never contains two different
return values; this holds even if we allow choosing object identities differently.

THEOREM 8 Given a family {Δ | vin, vout � Co}o∈O, we have:

∀N. ∀obj 1, obj 2 ∈ [dom(Δ) →inj Obj].

∀F1 ∈ [range(obj 1) → Spec]. ∀F2 ∈ [range(obj 2) → Spec].

(∀x ∈ dom(Δ).F1(obj 1(x)) = F2(obj 2(x))) =⇒
∀(X1, c1) ∈ γ(N, �{Co}o∈O�(obj 1),F1).

∀(X2, c2) ∈ γ(N, �{Co}o∈O�(obj 2),F2). c1 = c2.

This allows us to define the denotation of (7) according to the outline we gave before.

DEFINITION 9 For (7) we let �Γ � D�type = F , where F : Ctxt ⇀ Val is defined as
follows: for N ∈ Ctxt and c ∈ Val, if

∃obj ∈ [{xj | j = 1..m} →inj Obj]. ∃F ∈ [range(obj ) → Spec].

(∀j = 1..m.F(obj (xj)) = �Tj�type) ∧ ( , c) ∈ γ(N, �{Co}o∈O�(obj ),F),

then F (N) = c; otherwise F (N) is undefined.

The existence and uniqueness of F in the definition follow from Theorem 8. It is easy
to check that F defined above satisfies all the properties required in Definition 2 and,
hence, F ∈ Spec. According to the above definition, the denotation of the data type in
Figure 3 has to give ({b}, ∅) on the context in Figure 5(a).
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�Γ | Δ � P � : �Γ � → ∏
obj∈[dom(Δ)→injObj]((range(obj ) ⇀ Spec) → P(Hist))

�let α = T in P �(type , obj ,F) = �P �(type[α → �T �type], obj ,F)

�let x = new T in P �(type , obj ,F) =
⋃{�P �(type, obj [x → ω],F[ω → �T �type]) |

ω �∈ range(obj )}
�C1 ‖ . . . ‖ Cn�(type , obj ,F) = HistCC(F) ∩ {⊎n

j=1 Hj | ∀j = 1..n.

(Hj , ) ∈ 〈Cj〉(obj , [ ]) ∨ Hj ∈ 〈Cj〉(obj , [ ])
}

Fig. 6. Semantics of Γ | Δ � P . Here H �H ′ = (H.E �H ′.E, H.label �H ′.label, H.so ∪
H ′.so, H.∼ ∪H ′.∼); undefined if so is H.E �H ′.E.

4.3 Program Semantics

Having defined the denotations of composite data types, we give the semantics to a
program in the language of §2 by instantiating (6) with an F computed from these de-
notations and by intersecting the result with the set of histories that can be produced
by the program according to the session-local semantics of its sessions (§4.1). A pro-
gram Γ | Δ � P is interpreted with respect to environments type , obj and F, which
give the semantics of data type variables in Γ , the identities of objects in Δ and the
specifications associated with these objects (Figure 6). A data type variable declaration
extends the type environment with the specification of the data type computed from its
declaration as described in §4.2. An object variable declaration extends obj with a fresh
object and F with the specification corresponding to its type. A client is interpreted by
combining all histories its sessions produce in the session-local semantics with respect
to obj and intersecting the result with (6). Note that we originally defined the store se-
mantics (6) under the assumption that all replicated data types are primitive. Here we
are able to reuse the definition because our denotations of composite data types have
the same form as those of primitive ones.

Using the Semantics. Our denotational semantics enables modular reasoning about
programs with composite replicated data types. Namely, it allows us to check if a pro-
gram P can produce a given history H by: (i) computing the denotations F of the
composite data types used in P ; and (ii) checking if the client of P can produce H
assuming it uses primitive data types with the specifications F. Due to the granularity
abstraction in our denotation, it represents every invocation of a composite operation by
a single event and thereby abstracts from its internal structure. In particular, different
composite data type implementations can have the same denotation describing the data
type behaviour. As a consequence, in (ii) we can pretend that composite data types are
primitive and thus do not have to reason about the behaviour of their implementations
and the client together. For example, we can determine how a program using the so-
cial graph data type behaves in the situation shown in Figure 5(a) using the result the
data type denotation gives on this context, without considering how its implementation
behaves (cf. Figure 5(b)). We get the same benefits when reasoning about a complex
composite data type D constructed from simpler composite data types Tj as in (7): we
can first compute the denotations of Tj and then use the results in reasoning about D.

In practice, we do not compute the denotation of a composite data type D using
Definition 9 directly. Instead, we typically invent a specification F that describes the
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desired behaviour of D, and then prove that F is equal to the denotation of D, i.e., that
D is correct with respect to F . Definition 9 and, in particular, constraints (8)–(12), give
a proof method for establishing this. The next section illustrates this on an example.

5 Example: Social Graph
We have applied the composite data type denotation in §4 to specify and prove the
correctness of three composite data types: (i) the social graph data type in Figure 3; (ii)
a shopping cart data type implemented using an add-wins set, which resolves conflicts
between concurrent changes to the quantity of the same product; (iii) a data type that
uses transactions to simultaneously update several objects that resolve conflicts using
the last-writer-wins policy (cf. LWWset from §3.1). The latter example uses arbitration
in a nontrivial way. Due to space constraints, we focus here on the social graph data
type and defer the others to [1, §D].

Below we give a specification Fsoc to the social graph data type, which we have
proved to be the denotation of its implementation Dsoc in Figure 3. The proof is done
by considering an arbitrary context N and its concretisation (X, c) according to Def-
inition 7 and showing that Fsoc(N) = c. The constraints (8)–(12) make the required
reasoning mostly mechanical and therefore we defer the easy proof to [1, §D] and only
illustrate the correspondence between Dsoc and Fsoc on examples.

The function Fsoc is defined recursively using the following operation that selects a
subcontext of a given event in a context, analogously to the ctxt operation on execu-
tions (4) from §3.2. For a partial context M and an event e ∈ M.E, we let

ctxt(M, e) = (M.aop(e), E, (M.aop)|E , (M.vis)|E , (M.ar)|E),
where E = (M.vis)−1(e). Then

Fsoc(get(a),M) =

({b | ∃e ∈ (M.E). (M.aop(e) = accept((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e)) ∧
(∀f ∈ (M.E). (M.aop(f) ∈ breakup((b, a) | (a, b))) ∧ Fsoc(ctxt(M,f))

=⇒ f
vis−→ e)},

{b | ∃e ∈ (M.E). (M.aop(e) = request(b, a)) ∧ Fsoc(ctxt(M, e)) ∧
(∀f ∈ (M.E). (M.aop(f)∈ (accept | reject)((b, a) | (a, b)))∧Fsoc(ctxt(M,f))

=⇒ f
vis−→ e)});

Fsoc(accept(b, a),M) = (b ∈ snd(Fsoc(get(a),M))).

The results of request, reject and breakup are defined similarly to accept. For
brevity, we use the notation (G1 | G2) above to denote the set arising from picking
either G1 or G2 as the subexpression of the expression where it occurs. Even though the
definition looks complicated, its conceptual idea is simple and has a temporal flavour.
Our definition takes into account that: after breaking up, users can become friends again;
and sometimes data type operations are unsuccessful, in which case they return false.
According to the two components of Fsoc(get(a),M):

1. a’s friends are the accounts b with a successful accept operation between a and
b such that any successful breakup between them was in its past, as formalised
by visibility. We determine whether an operation was successful by calling Fsoc

recursively on its subcontext.
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request(b,a)

accept(b,a)

e0: get(a): ({b},∅)

request(b,a) ωra.add(b) ωra.add(b)

ωra.remove(b)

ωfa.get: {b}

ωfa.add(b)

ωra.get:
(a) {{b} if ωra is AWset

∅  if ωra is RWset

ωfa.add(b) ωfa.add(b)

ωfa.remove(b)

ωfa.get:{{b} if ωfa is AWset
∅  if ωfa is RWset

request(b,a)

accept(b,a)

e0: get(a): (∅,∅)

request(b,a)

(b)

breakup(b,a)

accept(b,a)

request(a,b)

accept(a,b)

e0: get(a): ({b},∅)

request(b,a) ωrb.add(a) ωra.add(b)

ωrb.remove(a)

ωra.get: ∅

ωra.remove(b)

(c)

Fig. 7. (Left) Coarse-grained contexts of the social graph data type together with the result that
Fsoc gives on them. (Right) Relevant events of the fine-grained executions of the implementation
in Figure 3 resulting from concretising the contexts according to Definition 7. We use the same
conventions as in Figure 5.

2. a’s requesters are the accounts b with a successful request(b, a) operation such
that any successful accept or reject between a and b was in its past.

This specifies the behaviour of the data type while abstracting from its implementation,
thereby enabling modular reasoning about programs using it (§4.3).

Our specification Fsoc can be used to analyse the behaviour of the implementation
in Figure 3. By a simple unrolling of the definition of Fsoc, it is easy to check that the
two sets returned by Fsoc(get(a),M) are disjoint and, hence, the invariant (2) in §2
holds; (1) can be checked similarly. Also, since Fsoc returns ({b}, ∅) on the context in
Figure 5(a), when the same friendship request is concurrently accepted and rejected,
the accept wins. Different behaviour could also be reasonable; the decision ultimately
depends on application requirements.

We now illustrate the correspondence between Dsoc and Fsoc on examples and, on
the way, show that our coarse-grained semantics lets one understand how the choice
of conflict-resolution policies on constituent objects affects the policy of the composite
data type. First, we argue that making requesters remove-wins in Figure 3 is crucial
for preserving the integrity invariant (2) and satisfying Fsoc. Indeed, consider the sce-
nario shown in Figure 7(a). Here two users managing the same account b concurrently
issue friendship requests to a, which initially sees only one of them. If requesters were
add-wins, the accept by a would affect only the request that it sees. The remaining
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request would eventually propagate to all replicas in the system, and the calls to get in
the implementation would thus return b as being both a friend and a requester of a’s,
violating (2). The remove-wins policy of requesters ensures that, when a user accepts
or rejects a request, this also removes all identical requests issued concurrently.

If we made friends add-wins, this would make the data type behave differently,
but sensibly, as illustrated in Figure 7(b). Here we again have two concurrently issued
requests from b to a. The account a may also be managed by multiple users, which
concurrently accept the requests they happen to see. One of the users then immedi-
ately breaks up with a. Since friends are remove-wins, this cancels the addition of b
to friends [a] (i.e., ωfa) resulting from the concurrent accept by the other user; thus, b
ends up not being a’s friend, as prescribed by Fsoc. Making friends add-wins would
result in the reverse outcome, and Fsoc would have to change accordingly. Thus, the
conflict-resolution policy on friends determines the way conflicts between accept and
breakup are resolved.

Finally, if users a and b issue friendship requests to each other concurrently, a deci-
sion such as an accept taken on one of them will also affect the other, as illustrated
in Figure 7(c). To handle this situation without violating (2), accept removes not only
the request it is resolving, but also the symmetric one.

6 Fine-Grained Language Semantics, Soundness and
Completeness

To justify that the coarse-grained semantics from §4 is sensible, we relate it to a fine-
grained semantics that follows the standard way of defining language semantics on
weak consistency models [11]. Unlike the coarse-grained semantics, the fine-grained
one is defined non-compositionally: it considers only certain complete programs and
defines the denotation of a program as a whole, without separately defining denotations
of composite data types in it. This denotation is computed using histories that record
all operations on all primitive objects comprising the composite data types in the pro-
gram; hence, the name fine-grained. The semantics includes those histories that can be
produced by the program in the session-local semantics (§4.1) and are allowed by the
semantics of the store managing the primitive objects the program uses (§3).

We state the correspondence between the coarse-grained and fine-grained semantics
as an equivalence of the externally-observable behaviour of a program in the two se-
mantics. Let us fix a variable xio ∈ OVar and an object io ∈ Obj used to interpret
xio. A program P is complete if ∅ | xio : {oio} � P . The operation oio on xio mod-
els a combined user input-output action, rather than an operation on the store, and the
externally-observable behaviour of a complete program P is given by operations on
xio it performs. Formally, for a history H let observ(H) be its projection to events
on io: {e ∈ H | H.obj(e) = io}. We lift observ to sets of histories pointwise. Then
we define the set of externally-observable behaviours of a complete program P in the
coarse-grained semantics of §4 as �P �CG = observ(�P �([ ], [xio : io], [ ])). Note that our
semantics does not restrict the values returned by oio, thus accepting any input.

To define the fine-grained semantics of a complete program P , we flatten P by in-
lining composite data type definitions using a series of reductions −→ on programs
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(defined shortly). Applying the reductions exhaustively yields programs with only ob-
jects of primitive data types, which have the following normal form:

P̄ ::= C1 ‖ . . . ‖ Cn | let x = new B in P̄

Given a complete program P , consider the unique P̄ such that P −→∗ P̄ and
P̄ �−→ . Then we define the denotation of P in the fine-grained semantics by the set
of externally-observable behaviours that P̄ produces when interacting with a causally
consistent store managing the primitive objects it uses. To formalise this, we reuse the
definition of the coarse-grained semantics and define the denotation of P in the fine-
grained semantics as �P �FG = �P̄ �CG. Since P̄ contains only primitive data types, this
does not use the composite data type denotation of §4.2.

We now define the reduction −→. Let Comm be the set of commands C in Fig-
ure 2. We use an operator subst that takes a mapping S : OVar × Op ⇀ Comm and a
command C or a program P , and replaces invocations of object operations in C or P
according to S. The key clauses defining subst are as follows:

subst(S, v = x.o(G)) = if ((x, o) �∈ dom(S)) then (v = x.o(G))

else (atomic {var v1. var v2. v1 = G; (S(x, o)[v1/vin, v2/vout]); v = v2})
subst(S, let x = new T in P ) = let x = new T in subst(S|¬x, P )

subst(S, let α = T in P ) = let α = T in subst(S, P )

subst(S,C1 ‖ . . . ‖ Cn) = subst(S,C1) ‖ . . . ‖ subst(S,Cn)

Here v1, v2 are fresh ordinary variables, and S|¬x denotes S with its domain restricted
to (OVar \ {x})×Op. Applying subst to an assignment command does not change the
command, and applying it to all others results in recursive applications of subst to their
subexpressions. Then the relation −→ is defined as follows:

P ::= [−] | let x = new T in P | let α = T in P
P [let α = T in P ] −→ P [P [T/α]]

P [let x = new (let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O) in P ]

−→ P [let {xj = new Tj}j=1..m in subst({(x, o)�→Co | o ∈ O}, P )],

where xj do not occur in P . The first reduction rule replaces data-type variables by their
definitions, and the second defines the semantics of composite operations via inlining.

Our central technical result is that the coarse-grained semantics of §4 is sound
and complete with respect to the fine-grained semantics presented here: the sets of
externally-observable behaviours of programs in the two semantics coincide.

THEOREM 10 For every complete program P we have �P �FG = �P �CG.

We give a (highly nontrivial) proof in [1, §C]. The theorem allows us to reason about
programs using the coarse-grained semantics, which enables granularity abstraction and
modular reasoning (§4.3). It also implies that our denotational semantics is adequate,
i.e., can be used to prove the observational equivalence of two data type implementa-
tions D1 and D2: if �D1� = �D2�, then �C[D1]�FG = �C[D2]�FG for all contexts C of
the form P [let α = [−] in P ]. Note that both soundness and completeness are needed
to imply this property.
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7 Related Work

One of the classical questions of data abstraction is: how can we define the semantics
of a data type implementation that abstracts away the implementation details, includ-
ing a particular choice of data representation? Our results can be viewed as revisiting
this question, which has so far been investigated in the context of sequential [15] and
shared-memory concurrent [13, 25] programs, in the emerging domain of eventually
consistent distributed systems. Most of the work on data abstraction for concurrency
has considered a strongly consistent setting [13, 25]. Thus, it usually aimed to achieve
atomicity abstraction, which allows one to pretend that a composite command takes
effect atomically throughout the system. Here we consider data abstraction in the more
challenging setting of weak consistency and achieve a weaker and more subtle guaran-
tee of granularity abstraction: although our coarse-grained semantics represents com-
posite operations by single events, these events are still subject to anomalies of causal
consistency, with different replicas being able to see the events at different times.

We are aware of only a few previous data abstraction results for weak consis-
tency [16, 9, 6]. The most closely related is the one for the C/C++ memory model
by Batty et al. [6]. Like the consistency model we consider, the C/C++ model is de-
fined axiomatically, which leads to some similarities in the general approach followed
in [6] and in this paper. However, other features of the settings considered are dif-
ferent. First, we consider arbitrary replicated data types, whereas, as any model of a
shared-memory language, the C/C++ one considers only registers with the last-writer-
wins conflict-resolution policy. Second, the artefacts related during abstraction in [6]
and in this paper are different. Instead of composite replicated data types, [6] considers
libraries, which encapsulate last-writer-wins registers and operations accessing them
implemented by arbitrary code without using transactions. A specification of a library
is then just another library, but with operations implemented using atomic blocks remi-
niscent of our transactions. Hence, a single invocation of an operation of a specification
library is still represented by multiple events and therefore [6] does not support granu-
larity abstraction to the extent achieved here. Our work can roughly be viewed as start-
ing where [6] left off, with composite constructions whose operations are implemented
using transactions, and specifying their behaviour more declaratively with replicated
data type specifications over contexts of coarse-grained events. It is thus possible that
our approach can be adapted to give more declarative specifications to C/C++ libraries.

Researchers and developers have often implemented complex objects with domain-
specific conflict resolution policies inside replicated stores [22], which requires deal-
ing with low-level details, such as message exchange between replicas. Burckhardt
et al. [11] also proposed a method for proving the correctness of such replicated
data type implementations with respect to specifications of Definition 2. Our results
show that, using causally consistent transactions, complex domain-specific objects can
often be implemented as composite replicated data types, using a high-level program-
ming model to compose replicated objects and their conflict-resolution policies. Fur-
thermore, due to the granularity abstraction we established, the resulting objects can be
viewed as no different from those implemented inside the store. The higher-level pro-
gramming model we consider makes our proof method significantly different from that of
Burckhardt et al.
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Partial orders, such as event structures [20] and Mazurkiewicz traces [21], have been
used to define semantics of concurrent or distributed programs by explicitly express-
ing the dependency relationships among events such programs generate. Our results
extend this line of semantics research by considering new kinds of relations among
events, describing computations of eventually consistent replicated stores, and studying
how consistency axioms on these relations interact with the granularity abstraction for
composite replicated data types.

8 Conclusion

In this paper we have proposed the concept of composite replicated data types, which
formalises a common way of organising applications on top of eventually consis-
tent stores. We have presented a coarse-grained denotational semantics for these data
types that supports granularity abstraction: the semantics allows us to abstract from
the internals of a composite data type implementation and pretend that it represents a
single monolithic object, which simplifies reasoning about client programs. We have
also shown that our semantics is sound and complete with respect to a standard non-
compositional semantics.

One important derivative of our semantics is a mechanism for specifying composite
data types where we regard all operations of these data types as atomic, and describe
their return values for executions that consist of such atomic operations. As our sound-
ness and completeness results show, this mechanism is powerful enough to capture all
essential aspects of composite replicated data types. Using a nontrivial example, we
have illustrated how the denotation of a data type in our semantics specifies its be-
haviour in tricky situations and thereby lets one understand the consequences of differ-
ent design decisions in its implementation.

As we explained in §1, developing correct programs on top of eventually consistent
stores is a challenging yet unavoidable task. Our results mark the first step towards provid-
ing developers with methods and tools for specifying and verifying programs in this new
programming environment and expanding the rich theories of programming languages,
such as data abstraction, to this environment. Even though our results were developed for a
particular popular variant of eventual consistency—causally consistent transactions—we
hope that in the future the results can be generalised to other consistency models with sim-
ilar formalisations [10, 4]. Another natural future direction is to use our coarse-grained
semantics to propose a logic for reasoning about composite data types symbolically.
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Abstract. In counterexample-guided abstraction refinement, a predi-
cate refinement scheme is said to be complete for a given theory if it
is guaranteed to eventually find predicates sufficient to prove the given
property, when such exist. However, existing complete methods require
deciding if a proof of the counterexample’s spuriousness exists in some fi-
nite language of predicates. Such an exact finite-language-restricted pred-
icate search is quite hard for many theories used in practice and incurs
a heavy overhead. In this paper, we address the issue by showing that
the language restriction can be relaxed so that the refinement process
is restricted to infer proofs from some finite language Lbase ∪ Lext but
is only required to return a proof when the counterexample’s spurious-
ness can be proved in Lbase . Then, we show how a proof-based refine-
ment algorithm can be made to satisfy the relaxed requirement and be
complete by restricting only the theory-level reasoning in SMT to emit
Lbase -restricted partial interpolants (while such an approach has been
proposed previously, we show for the first time that it can be done for
languages that are not closed under conjunctions and disjunctions). We
also present a technique that uses a property of counterexample patterns
to further improve the efficiency of the refinement algorithm while still
satisfying the requirement. We have experimented with a prototype im-
plementation of the new refinement algorithm, and show that it is able
to achieve complete refinement with only a small overhead.

1 Introduction

Predicate abstraction with counterexample-guided abstraction refinement (CE-
GAR) is a promising approach to automated verification of safety (i.e., reachabil-
ity) properties (see, e.g., [6] for a survey). Briefly, the CEGAR approach works
as follows. Let T be a first-order logic (FOL) theory. The verifier picks some
finite set of predicates from T as the initial candidate predicate set, and iterates
the following two processes until convergence (here, we use the term “predicate”
for an arbitrary formula, and not limited to just atomic predicates).
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(1) The abstraction process checks if the current candidates form a sufficient
proof of the program’s safety (i.e., an inductive invariant – sometimes called
“safe” inductive invariant). If so, then the program is proved safe and the
iteration halts. Otherwise, the process generates a counterexample as an
evidence that the current candidates are insufficient, and (2) is invoked.

(2) The refinement process analyzes the given counterexample. If the counterex-
ample cannot be proved spurious by predicates from T (i.e., “the counterex-
ample is real”), then the iteration halts and the program is detected to be
unsafe. Otherwise, the predicates inferred as a proof of the counterexample’s
spuriousness are added to the candidates, and we repeat from (1).

Note that the verifier halts either when sufficient predicates are inferred to prove
the program safe, or a real counterexample is discovered.

For an unsafe program, the state-of-the-art CEGAR-based verifiers are usually
able to eventually discover a real counterexample and converge, by exploring the
state space in a fair manner (if somewhat slowly for ones requiring large coun-
terexamples). By contrast, when a program is safe and the underlying theory
T is sufficient for proving the safety, most verifiers have no guarantee of con-
vergence and can diverge by having the refinement process indefinitely produce
incorrect candidate proofs.

For example, consider the C-like program shown in Figure 1. Here, ndet()
returns a non-deterministic integer. The goal is to verify that the assertion failure
is unreachable, that is, a = b ⇒ y = x whenever line 10 is reached.

1: void main(void) {

2: int a = ndet();int b = ndet();

3: int x = a;int y = b;int z = 0;

4: while (ndet()) {

5: y++;z++;

6: }

7: while (z != 0) {

8: y--;z--;

9: }

10: if (a=b && y!=x) { assert false; }

11: }

Fig. 1. A program on which CEGAR may diverge

Suppose we start the ver-
ification process with the
candidate set comprising the
boolean closure of the pred-
icates z = 0, a = b and
y = x. A possible counterex-
ample is a path that passes
through the first loop (lines
4-6) once, reaching line 7
with the abstract state (a =

b ⇒ y ≠ x) ∧ z ≠ 0, and then
passes through the second
loop (lines 7-9) once, reach-
ing line 10 with the abstract
state z = 0, which does not
imply a = b ⇒ y = x. A possible proof of the counterexample’s spuriousness (i.e.,
proof that the path is actually safe) is the predicate a = b ⇒ y = x+z. The predi-
cate turns out to be an inductive invariant for the program, and the verification
process halts in the next iteration.

Unfortunately, the refinement process is not guaranteed to infer such a predi-
cate but may choose any predicates that can prove the counterexample’s safety.
For instance, another possibility is the predicate a = b ⇒ y = x + 1. Adding this
to the candidate set is sufficient for proving the safety of the counterexample
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but not that of the program, and the abstraction process in the subsequent iter-
ation would return yet another counterexample. For example, it may return the
counterexample that passes the first loop twice, reaching line 7 with the abstract
state a = b ⇒ y ≠ x + 1, and then passes through the second loop twice, reaching
line 10 with the abstract state z = 0 again. Then, the refinement process may
choose the predicate a = b ⇒ y = x + 2 to prove the spuriousness of this new
counterexample, which is still insufficient to prove the whole program correct.
The abstract-and-refine iteration may repeat indefinitely in this manner, adding
to the candidates the predicate a = b ⇒ y = x + i in each i-th run of the re-
finement process. A refinement process is said to be complete (w.r.t. T ) if the
CEGAR process is guaranteed to converge and eventually discover a proof of
the program’s safety, when one exists in T .

Previous works [7,11] have proposed to achieve complete refinement in CE-
GAR by stratifying T into an infinite sequence of predicate languages L0 ⊆ L1 ⊆

. . . Lk . . . such that T = ⋃k∈ω Lk, and requiring each i-th run of the refinement
to only infer predicates from the stratum Llvl(i) where lvl(i) is the stratum level
at the i-th CEGAR iteration. By requiring each Lk to be finite1 and raising
the stratum level just when the refinement process reports that no proof exists
for the given counterexample in the current stratum, the approach guarantees
completeness. However, the approach requires the refinement process to exactly
decide if there is a proof of the given counterexample in the current stratum. In-
deed, completeness would be lost if the refinement process was allowed to report
that the current stratum does not have a proof when it actually does. For many
theories used in practice, such as the theory of linear real arithmetic, such an
exact finite-language-restricted proof search incurs heavy overhead and is pro-
hibitive (see Section 4, Section 5, and the extended report [18] for analysis and
discussion).

The first contribution of this paper is the observation that exact finite lan-
guage restricted proof search is actually unnecessary for completeness. Instead,
we show that the following more relaxed scheme is sufficient: in each i-th run of
the refinement process, we restrict the returned proof to some finite language of

predicates L
lvl(i)
base ∪ L

lvl(i)
ext (base and extension) such that the refinement process

may report that no proof exists only when no proof exists in L
lvl(i)
base . There are

no further restrictions on the refinement process, and so, the refinement process
may return a proof that is not in Lbase (but in Lbase ∪Lext) even if a proof exists
in Lbase , or may report that no proof exists even if a proof exists in Lbase ∪Lext

(but not in Lbase). We show that this relaxed approach still ensures completeness
when the stratum level is raised just when the refinement process reports that
there is no proof in the current stratum, as before, and Lbase grows to eventually
cover T (i.e., L0

base ⊆ L1
base ⊆ . . . Lk

base . . . such that T = ⋃k∈ω Lk
base). We formal-

ize this observation in a refinement algorithm scheme called relaxed stratification
(contra the exact stratification approach described above) and prove that it is
indeed complete.

1 The term “finite predicate language” is used synonymously with “finite set of pred-
icates”.
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As the second contribution, we present a concrete refinement algorithm that
implements the relaxed scheme. The algorithm is a modification of the proof-
based refinement [5] in which the theory-level reasoning is restricted so that
partial (tree-)interpolants at that level is restricted to Lbase .

2 We also present a
technique that uses a certain property of the counterexample patterns to further
improve the efficiency of the algorithm while still satisfying the requirement
of the scheme. We formalize the refinement algorithm as a constraint solver for
recursion-free Horn-clause constraints [3,12,13,21] which has gained popularity as
the standard format for describing refinement algorithms. We have implemented
a prototype of the refinement algorithm, and we show empirically that it is able
to achieve complete predicate refinement with low overhead.

In summary, the paper’s contributions are as follows:

– A new scheme for practical complete predicate refinement called relaxed
stratification and the proof of its completeness (Section 2).

– A new predicate refinement algorithm as concrete instance of the relaxed
stratification scheme (Section 3).

– Experiments with a prototype implementation of the refinement algorithm
(Section 4).

The rest of the paper is organized as follows. Section 2 formally defines the
relaxed stratification scheme and proves its completeness. Section 3 presents
the concrete refinement algorithm implementing the scheme. Section 4 presents
experimental results with the prototype implementation of the refinement algo-
rithm. We discuss related work in Section 5 and conclude the paper in Section 6.
Supplementary material contains the extended report with proofs and extra ma-
terials omitted from the main body of the paper, and the benchmarks used in
the experiments [18].

2 The Relaxed Stratification Scheme

Let T be a FOL theory. For a formula θ in the signature of T (a T -formula), we
write fvs(θ) for the free variables in θ. A predicate in T is of the form λx1, . . . , xn.θ
where θ is a T -formula such that fvs(θ) ⊆ {x1, . . . , xn}. For readability, we often
omit the explicit λ abstraction and treat a formula θ as the predicate λx̄.θ where
{x̄} = fvs(θ). We overload T for the set of predicates in T .

2.1 Assumptions on the Abstraction Process

Relaxed stratification only concerns the refinement process part of CEGAR.
We show that the scheme is quite general and can be used in a wide range
of CEGAR-based verifiers. To this end, we delineate the conditions that the

2 While this approach has already been suggested in [7], they require the restricting
language to be closed under conjunctions and disjunctions (see Section 5 for further
discussion).
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abstraction process part needs to satisfy. As we shall show below, the conditions
are quite weak and satisfied by virtually any CEGAR-based verifier.

We assume that the abstraction process Abs takes as input a program and a
finite set of predicates in T (the set of candidate proofs). For a program M and
a finite set of predicates F ⊆ T , we require that Abs(M,F ) either returns safe,
indicating that M has been proved safe using the predicates from F , or returns a
counterexample. For generality, we assume that a counterexample is also simply
a program so that, for a counterexampleM , we write Abs(M,F ) = safe when F is
sufficient for the abstraction process to prove the spuriousness of M (in practice,
a counterexample is not an arbitrary program, but, e.g., an unwound program
slice of the input program, and concrete instances of the relaxed stratification
scheme take advantage of the counterexample structure – cf. Section 3). We
sometimes say that F refutes the counterexample M when Abs(M,F ) = safe.

We require Abs to be monotonic on the candidates, that is, if Abs(M,F ) = safe
and F ⊆ F ′ then Abs(M,F ′) = safe (i.e., having more predicates can only in-
crease Abs’s ability to prove). We also require that if Abs(M,F ) = cex(M ′) then
Abs(M ′, F ) ≠ safe, that is, the returned counterexample is actually a counterex-
ample and cannot be refuted by the given predicates. Finally, we require that if
Abs(M,F ) = safe and Abs(M,F ′) = cex(M ′) then Abs(M ′, F ) = safe, that is, if
a set of predicates is a proof for program’s safety then it is also a proof for any
counterexample of the program. We say that Abs is sound when it only proves
safe programs safe, that is, Abs(M,F ) = safe only if M is safe.3

We note that the assumptions on the abstraction process are quite liberal
and do not demand, for example, the process uses the given set of predicates
by decomposing them into atomic predicates and taking their boolean closure,
taking the cartesian closure, or using them directly as loop invariants. In Exam-
ple 1 below, we describe an example abstraction process that uses the predicates
directly.

Example 1. Let T be the quantifier-free theory of linear real arithmetic. Let Abs
be the abstraction process that, given a program (or counterexample)M and the
set of predicates F ⊆ T , checks if there exists an assignment from each loop-head
location in M to a predicate in F that forms an inductive invariant of M . Recall
the example from Section 1. Let Mex be the program shown in Figure 1. Then,
the map ρ such that ρ(L4) = ρ(L7) = θex1 where θex1 ≡ a = b ⇒ y = x + z is an
inductive invariant of Mex, and therefore, Abs(Mex,{θex1}) = safe.

When given an insufficient set of predicates as the candidates, Abs returns a
counterexample. For instance, as discussed in Section 1, a possible counterex-
ample of Mex is Mexa, shown in Figure 2, that passes through each loop once
to reach line 10. (The semantics of assume (b) is to safely halt if b is false, and
proceed otherwise.) Here, a1–a4 label the entry points of the unwound loops.
Viewing them as one-iteration loops where invariants are asserted, it can be
seen that ρ such that ρ(�) = θex1 for each � ∈ {a1–a4} is an inductive invari-
ant of Mexa, and therefore Abs(Mexa,{θex1}) = safe. However, as discussed in

3 Soundness of Abs is not required for completeness of relaxed stratification.
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int a=ndet();int b=ndet();
int x=a;int y=b;int z=0;

a1:assume (ndet());
y++;z++;

a2:assume (ndet());
a3:assume (z != 0);

y--;z--;
a4:assume (z == 0);

assume (a=b && y!=x);
assert false;

int a=ndet();int b=ndet();
int x=a;int y=b;int z=0;

b1:assume (ndet());
y++;z++;

b2:assume (ndet());
y++;z++;

b3:assume (ndet());
b4:assume (z != 0);

y--;z--;
b5:assume (z != 0);

y--;z--;
b6:assume (z == 0);

assume (a=b && y!=x);
assert false;

Mexa Mexb

Fig. 2. Counterexamples of the program from Figure 1

Section 1, asserting θ0 at a1, a4, and θ1 at a2, a3 where θ0 ≡ a = b ⇒ y = x
and θ1 ≡ a = b ⇒ y = x + 1 also constitutes a sufficient loop invariant of Mexa.
Therefore, we also have Abs(Mexa,{θ0, θ1}) = safe.

Similarly, Mexb shown in Figure 2 is a counterexample that passes through
each loop twice to reach line 10. By reasoning similar to the above, we have
Abs(Mexb,{θex1}) = Abs(Mexb,{θ0, θ1, θ2}) = safe where θ2 ≡ a = b ⇒ y = x + 2.▲

2.2 The Relaxed Stratification Scheme

We are now ready to formalize the relaxed stratification scheme. The core of the
scheme is the relaxed finite-language-restricted refinement process RlxRef that
takes as input a counterexample and a restricting predicate language (Lbase , Lext),
and returns either unsafe indicating that the counterexample is real, a set of pred-
icates F ⊆ Lbase ∪ Lext that proves the safety of the counterexample, or noproof
indicating that it could not find a proof for the counterexample within the given
restriction.

We prepare strata of restricting predicate languages:

(L0
base , L

0
ext), (L1

base , L
1
ext), . . . (Lk

base , L
k
ext), . . .

We require each restricting predicate language to be finite, and the base-part to
eventually cover T . Formally, we impose the following condition on the restricting
predicate languages: 1.) for each k ∈ ω, Lk

base ∪Lk
ext is a finite subset of T , 2.) for

each k ∈ ω, Lk
base ⊆ Lk+1

base , and 3.) T = ⋃k∈ω Lk
base .

Figure 3 shows the overview of the relaxed stratification verification process.
The verification procedure RlxCegar takes as input the programM to be verified,
and first initializes the candidate predicate set Cands to ∅ (line 2) and the
restricting language stratum k to 0 (line 3). Then, it repeats the abstract-and-
refine loop (lines 4-10) until convergence. The loop first calls Abs(M,Cands) to
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01: RlxCegar(M) =
02: Cands := ∅;
03: k := 0;
04: while true do
05: match Abs(M ,Cands) with
06: safe → return safe

07: ∣ cex(M ′

) → match RlxRef(M ′,Lk
base ,L

k
ext ) with

08: unsafe → return unsafe
09: ∣ prf(F ) → Cands := Cands ∪ F
10: ∣ noproof → k := k + 1

Fig. 3. The relaxed stratification verification process

check if M can be proved safe with the current candidates. If so, then we exit
the verification process, returning safe (line 6). Otherwise, a counterexample
M ′ is obtained, and we call RlxRef on M ′ and the current restricting language
(Lk

base , L
k
ext) (line 7). If RlxRef returns unsafe, then the counterexample is real

and we exit the verification process, returning unsafe (line 8). Otherwise, RlxRef
either returns a set of predicates that refutes the counterexample (line 9), or
returns noproof indicating that it has failed to find a proof for the counterexample
in the current language stratum (line 10). In the former case, the returned set
of predicates are added to Cands, and in the latter case, the language stratum
is raised to the next level.

We require RlxRef to only report unsafe on a real counterexample, that is,
RlxRef(M,Lbase , Lext) = unsafe only if ∀F ⊆ T .Abs(M,F ) ≠ safe, and we re-
quire the returned proof to be actually a proof of the counterexample, that is
RlxRef(M,Lbase , Lext) = prf(F ) only if Abs(M,F ) = safe (these conditions are
not particular to relaxed stratification and usually assumed for any refinement
process in CEGAR). In addition, we require RlxRef to only infer proofs from the
given restricting predicate language and be able to return some proof if the given
counterexample is refutable just in the base part of the language. Formally, we
impose the following additional conditions on RlxRef:

– If RlxRef(M,Lbase , Lext) = prf(F ) then F ⊆ Lbase ∪ Lext ; and
– If ∃F ⊆ Lbase .Abs(M,F ) = safe, then RlxRef(M,Lbase , Lext) = prf(F ′) for

some F ′.

We state and prove the completeness of the relaxed stratification scheme.

Theorem 1 (Completeness). If ∃F ⊆ T .Abs(M,F ) = safe, then RlxCegar(M)

terminates and returns safe.

We remind that safety verification is undecidable in general, and our “complete-
ness” only states that the verification terminates under the promise that a proof
of the program’s safety exists in T .4

4 This notion of completeness is the same as the one from previous works [7,11].
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Also, assuming that Abs is sound (cf. Section 2.1), it is easy to see that
RlxCegar is also sound in that it only proves safe programs safe (in fact, this
holds independently of the behavior of RlxRef).

Theorem 2 (Soundness). If Abs is sound, then RlxCegar(M) returns safe only
if M is safe.

Example 2. We show how the relaxed stratification scheme would ensure the
convergence of a verifier on the program Mex from Example 1. Suppose that we
run RlxCegar(Mex), and for contradiction, it diverges by generating the following
infinite series of refinements discussed in Section 1:

a = b ⇒ y = x, a = b ⇒ y = x + 1, . . . a = b ⇒ y = x + i, . . .

By the definition of RlxCegar, it must be the case that the restricting predicate

language at the i-th CEGAR iteration is (L
lvl(i)
base , L

lvl(i)
ext ) such that y = x + i ∈

L
lvl(i)
base ∪ L

lvl(i)
ext where lvl(i) is the restricting language stratum level in the i-th

iteration. Because each L
lvl(i)
base ∪L

lvl(i)
ext is finite, the stratum level of the language

must have been raised infinitely many times. Therefore, a = b ⇒ y = x + z ∈ Lj
base

for some j because T = ⋃k∈ω Lk
base .

But, as argued in Example 1, a = b ⇒ y = x + z is a sufficient proof of Mex’s
safety, and therefore also that of its counterexamples. Therefore, by the fact that
RlxRef refutes any counterexample refutable in the base part of the given re-
stricting language, for any counterexample M ′ of Mex, RlxRef(M

′, Lj
base , L

j
ext) =

prf(F ′) for some F ′ ⊆ Lj
base ∪Lj

ext . Then, because Lj
base ∪Lj

ext is finite, RlxCegar
must have eventually inferred a sufficient set of predicates that constitutes a
proof of Mex’s safety without further raising the language stratum. ▲

3 Concrete Refinement Algorithm Instances

We show how to implement the relaxed finite-language-restricted refinement pro-
cess RlxRef. In fact, we describe a technique that takes as module an exact Lbase-
restricted refinementalgorithmandturn it intoa relaxed (Lbase, Lbase

∧∨

)-restricted
refinement algorithm. (We write L∧∨ for the closure of L under conjunctions and
disjunctions.) We focus on the case where the given counterexample is spurious.5

Following the recent trend [17,3,8,2,1,13,12,21], we formalize the refinement
algorithm as a constraint solver for recursion-free Horn-clause constraints. Specif-
ically, we present a relaxed (Lbase , Lext)-restricted constraint solver that takes
as module an exact Lbase-restricted constraint solver (cf. Section 3.1 for the def-
inition of exact/relaxed finite-language-restricted constraint solvers). We review
Horn-clause constraints in Section 3.1, and describe the constraint solver, that
we call RlxSolveA, in Section 3.2.

5 Detecting if the counterexample real and returning unsafe if so can be handled via usual
unrestricted refinement (cf. Section 4).
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We also present a technique that takes as module a relaxed (Lbase , Lext)-
restricted constraint solver, an unrestricted constraint solver AU , and a positive
integer parameter �, and turn them into a relaxed (Lbase ,LB(Lbase∪Lext ,AU , �))-
restricted constraint solver where LB(L,AU , �) is a certain finite language of
predicates determined by L, AU , and �. We formalize the technique as the con-
straint solver RlxSolveB, described in Section 3.3. The technique applies the re-
laxed finite-language-restricted constraint solver provided as the module to only
a small subset of the constraint solving problem, and can be used to improve
the efficiency of the given relaxed finite-language-restricted constraint solver.

We remind that the exact finite-language-restricted proof search is an inher-
ently expensive process (cf. Section 5, Section 4, and the extended report [18]),
and the key idea in these constraint solvers is to use the expensive exact finite-
language-restricted proof search process (given as a module) only on small sub-
parts of the problem. This is made possible thanks to the relaxed requirement on
the language restriction where the refinement process is not required to exactly
decide the existence of a restricted solution for the whole problem. Informally,
the trick is to choose the subproblems just large enough to guarantee that if a
subproblem is not Lbase solvable then neither is the whole and that there can
only be finitely many solutions for the whole obtainable from Lbase-restricted
solutions for the subproblems.

3.1 Horn Clause Constraints

For concreteness, in what follows, we assume that the underlying theory T is
the quantifier-free theory of linear real arithmetic (QFLRA). However, the tech-
niques presented in Sections 3.2 and 3.3 can be applied to any quantifier-free
theory.

A formula θ in the signature of QFLRA comprises atomic predicate p of the
form a1x1 +a2x2 ⋅ ⋅ ⋅ +anxn ≤ an+1 where a1, . . . , an+1 ∈ Z, and is closed under the
usual boolean operations ¬, ∧, ∨, and ⇒. As usual, we let ¬ bind the tightest and
⇒ the weakest. A literal l is either an atomic predicate or its negation. A clause
C is a disjunction of literals. A conjunctive normal form (CNF) is a conjunction
of clauses. We often use a set to represent a clause or a CNF so that {l1, . . . , ln}

represents l1 ∨ ⋅ ⋅ ⋅ ∨ ln and {C1, . . . ,Cn} represents C1 ∧ ⋅ ⋅ ⋅ ∧ Cn. We write � for
contradiction and ⊺ for tautology. We write ⊧ θ when θ is valid in T .

Horn Clauses and Horn-Clause Constraints. A predicate variable appli-
cation is of the form P (x̄) where P is a predicate variable of arity ∣x̄∣. A Horn
clause hc is of the form θ ∧B1 ∧ ⋅ ⋅ ⋅ ∧Bn ⇢ H where θ is a formula in T , each Bi

is a predicate variable application, and H is a predicate variable application or
�. We call H the head of the Horn clause, and θ ∧B1 ∧ ⋅ ⋅ ⋅ ∧Bn the body. A Horn
clause whose head is � is called a root clause.

A Horn-clause constraint set (HCCS) H is a finite set of Horn clauses. We
write pvs(H) for the predicate variables in H. We write leaves(H) for the set
of predicate variables in H that do not occur as a head in H. We define ↝H to
be the relation {(P,Q) ∣ θ ∧ . . . P (x̄) . . . ⇢ Q(ȳ) ∈ H}. We say that a Horn clause
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θp1 ⇢ P (x̄)
θp2 ∧ P (x̄) ⇢ P (x̄′)
P (x̄) ⇢ Q(x̄)
θp3 ∧Q(x̄) ⇢ Q(x̄′)
θp4 ∧Q(x̄) ⇢ �

θp1 ⇢ P1(x̄)
θp2 ∧ P1(x̄) ⇢ P2(x̄

′

)

P2(x̄) ⇢ Q1(x̄)
θp3 ∧Q1(x̄) ⇢ Q2(x̄

′

)

θp4 ∧Q2(x̄) ⇢ �

θp1 ⇢ P1(x̄)
θp2 ∧ P1(x̄) ⇢ P2(x̄

′

)

θp2 ∧ P2(x̄) ⇢ P3(x̄
′

)

P3(x̄) ⇢ Q1(x̄)
θp3 ∧Q1(x̄) ⇢ Q2(x̄

′

)

θp3 ∧Q2(x̄) ⇢ Q3(x̄
′

)

θp4 ∧Q3(x̄) ⇢ �

Hex Hexa Hexb

Fig. 4. HCCS examples

θ ∧ B1 ∧ ⋅ ⋅ ⋅ ∧ Bn ⇢ H is conjunctive if θ is a conjunction of literals. We say that
an HCCS H is conjunctive if each hc ∈ H is conjunctive.

We say that H is recursion-free if ↝H is acyclic. We say that a recursion-free
HCCS H is tree-like [12,13] if 1.) there is exactly one root clause in H and every
P ∈ pvs(H) can reach a predicate variable occurring in the body of the root clause
via ↝∗

H
; and 2.) for any P ∈ pvs(H), at most one hc ∈ H contains P in its body, at

most one hc ∈ H contains P as its head, and no hc ∈ H has multiple occurrences of
P . For a tree-like HCCS H, we define the depth of H, depth(H), to be the length
of the longest ↝H path. For η a mapping from predicate variables to predicate
variables, we write η(hc) for the Horn clause hc with each predicate variable
application P (x̄) replaced by η(P )(x̄). We write η(H) for {η(hc) ∣ hc ∈ H}. We
say that a tree-like HCCS H′ is an unwound instance of a (possibly recursive)
HCCS H if there exists a mapping η from pvs(H′) to pvs(H) such that η(H′) ⊆ H.

Constraint Solutions and Restricted Constraint Solvers. For σ a map-
ping from predicate variables to predicates in T , we write σ(hc) for hc with each
predicate variable application P (x̄) replaced by θ[x̄/ȳ] where σ(P ) = λȳ.θ. We
say that the map σ from pvs(H) to predicates in T is a solution of H, written
σ ⊧ H, if for each hc ∈ H, ⊧ σ(hc), interpreting ⇢ as ⇒. We define ran(σ), the
range of σ, to be the set of predicates {σ(P ) ∣ P ∈ dom(σ)}.

We focus on constraint solving algorithms for tree-like HCCSs (they can be
extended to arbitrary recursion-free HCCSs by adopting the technique from [13]).
We say that an algorithm is an unrestricted constraint solver if given a tree-like
HCCS H, it returns a solution of H or decides that H has no solution. We say
that an algorithm is an exact L-restricted constraint solver if given a tree-like
HCCS H, it decides if there is a solution σ of H such that ran(σ) ⊆ L and returns
such a solution if so. We say that an algorithm is a relaxed (Lbase , Lext)-restricted
constraint solver if given a tree-like HCCS H, it either returns a solution σ of H

such that ran(σ) ⊆ Lbase ∪Lext or returns noproof indicating that it has failed to
find a solution, with the requirement that it returns some solution (whose range
is in Lbase ∪ Lext) if there exists a solution σ′ of H such that ran(σ′) ⊆ Lbase .
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Example 3. Consider the HCCS Hex shown in Figure 4. Here, x̄ = a, b, x, y, z,
x̄′ = a′, b′, x′, y′, z′, and

θp1 ≡ x = a ∧ y = b ∧ z = 0
θp2 ≡ z′ = z + 1 ∧ y′ = y + 1 ∧ x′ = x ∧ a′ = a ∧ b′ = b
θp3 ≡ z ≠ 0 ∧ z′ = z − 1 ∧ y′ = y − 1 ∧ x′ = x ∧ a′ = a ∧ b′ = b
θp4 ≡ z = 0 ∧ a = b ∧ x ≠ y

Hex is not tree-like (in fact,↝S is cyclic). Figure 4 showsHCCSsHexa andHexb that
are tree-like. In addition, they are unwound instances of Hex because ηa(Hexa) ⊆

Hex and ηb(Hexb) ⊆ Hex where ηa = {P1 ↦ P,P2 ↦ P,Q1 ↦ Q,Q2 ↦ Q} and ηb =

{P1 ↦ P,P2 ↦ P,P3 ↦ P,Q1 ↦ Q,Q2 ↦ Q,Q3 ↦ Q}.
Recall the predicates θext1 , θ0, θ1, θ2 from Example 1. Let the maps σa1 , σa2 ,

σb1 , and σb2 be defined as below.

σa1 = {P ↦ θex1 ∣ P ∈ pvs(Hexa)}

σa2 = {P ↦ θ0 ∣ P ∈ {P1,Q2}}

∪ {P ↦ θ1 ∣ P ∈ {P2,Q1}}

σb1 = {P ↦ θex1 ∣ P ∈ pvs(Hexb)}

σb2 = {P ↦ θ0 ∣ P ∈ {P1,Q3}}

∪ {P ↦ θ1 ∣ P ∈ {P2,Q2}}

∪ {P ↦ θ2 ∣ P ∈ {P3,Q1}}

Then, σa1 and σa2 are solutions of Hexa, and σb1 and σb2 are solutions of Hexb.
▲

Relating Refinement Process to Constraint Solving. We relate constraint
solving to refinement process. Roughly, the relationship says that, for any coun-
terexample, there is a corresponding tree-like HCCS such that the range of its
solutions are the proofs of the counterexample’s spuriousness. We further as-
sume that such a tree-like HCCS is always an unwound instance of some fixed
“generator” HCCS determined by the given program.

We formalize the relationship. Let M be a program. We assume that there
exists an HCCS Hgen(M ) such that for any counterexample M ′ of M (i.e.,
Abs(M,F ) = cex(M ′) for some F ), there exists an unwound instance HM ′ of
Hgen(M ) that satisfies the following:

– if σ ⊧ HM ′ then Abs(M ′, ran(σ)) = safe (i.e., the range of a solution of HM ′

is a proof of M ′’s spuriousness); and
– if Abs(M ′, F ) = safe then ∃σ. ran(σ) ⊆ F ∧σ ⊧ HM ′ (i.e., if M ′ can be refuted

by F , then there is a solution for HM ′ whose range is in F ).

Hence, the task of implementing a relaxed language restricted refinement process
RlxRef for the restricting language (Lbase , Lext) is now reduced to implementing
a relaxed (Lbase, Lext)-restricted constraint solver.

We remark that the relationship stated above is quite general and many
CEGAR-based verifiers [17,8,2,1,13,12,21] use the relationship to implement the
refinement process as a constraint solver for tree-like HCCSs. For example, re-
futing a counterexample in a typical CEGAR-based verification of sequential
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imperative programs is equivalent to solving a tree-like HCCS of the form be-
low where x̄ are the variables in the program, and each θi is a formula on x̄
and x̄′ that expresses the semantics of symbolically executing the corresponding
segment (e.g., basic block) in the path:

θ1 ⇢ P1(x̄)

θ2 ∧ P1(x̄) ⇢ P2(x̄′)
⋮

θi ∧ Pi(x̄) ⇢ Pi+1(x̄′)
⋮

Pn(x̄) ⇢ �

In such a verification, the generator HCCS Hgen(M ) can be described as follows.
Let x̄ be the variables in the program. For each node a in the program’s control
flow graph (CFG), we associate a predicate variable Pa of arity ∣x̄∣. For each
edge from node a to node b in the CFG, we add to Hgen(M ) the Horn clause
θab ∧ Pa(x̄) ⇢ Pb(x̄′) where θab is a formula on x̄ and x̄′ expressing the effect
of symbolically executing the CFG path from a to b (with x̄ representing the
current and x̄′ representing the post state). For the entry node a, we add the
Horn clause θinit ⇢ Pa(x̄) where θinit is a formula on x̄ expressing the program’s
initial state. Finally, for each error node a (i.e., assert false statement), we
add the Horn clause Pa(x̄) ⇢ �.

Example 4. Recall the program Mex from Example 1. The corresponding gen-
erator HCCS Hgen(Mex)

is Hex from Example 3. Roughly, the predicate variable
P in the HCCS represents the program states at the time when the first loop is
entered, and Q represents the states when the second loop is entered.

Recall the counterexamples Mexa and Mexb from Example 1, and the tree-like
HCCSs Hexa and Hexb from Example 3. Hexa corresponds to Mexa and Hexb

corresponds to Mexb. Indeed, as shown in Example 1, {θex1} (resp. {θ0, θ1}) is
a proof of Mexa, and Hexa has the corresponding solution σa1 (resp. σa2) from
Example 3. Similarly, the solutions σb1 and σb2 of Hexb and the proofs {θex1}

and {θ0, θ1, θ2} of Mexb correspond. ▲

3.2 The Constraint Solver RlxSolveA

RlxSolveA is a relaxed (Lbase , Lbase
∧∨

)-restricted constraint solver. It is param-
eterized by an exact Lbase-restricted constraint solver that it takes as module.
Let us fix the exact solver, AELbase

, and write RlxSolveA[AELbase
] for RlxSolveA

parameterized by the exact solver. Note that Lbase
∧∨ is finite for a finite Lbase .

We briefly overview the construction of RlxSolveA. First, we leverage the equiv-
alence of solving tree-like HCCS and tree interpolation [13] to reduce the prob-
lem to tree interpolation. Then, we adopt the standard proof-based interpolation
technique that obtains interpolants from resolution proofs generated via SMT
solving [10], except that we modify the SMT solver to use the exact Lbase-
restricted solver AELbase

for the theory solver so as to infer Lbase-restricted (par-
tial) interpolants at the theory level of the resolution proof. As we shall show,
this guarantees that if the SMT solver fails to prove, then no Lbase solution
exists, and conversely, any inferred solution is guaranteed to be in Lbase

∧∨.
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We describe the approach more formally. First, we review tree interpolation.
The tree interpolation problem takes as input (V,E,Θ) where (V,E) is a finite
directed tree with the node set V and (v, v′) ∈ E denoting that the node v is
a direct child of the node v′, and the map Θ labels each node v ∈ V with the
T -formula Θ(v). The goal is to find a map I from V to T -formulas, called a tree
interpolant of (V,E,Θ), that satisfies the following.

– I(vrt) = � for the root node vrt ;
– for each v ∈ V , ⊧ Θ(v) ∧ ⋀(v′,v)∈E I(v′) ⇒ I(v); and
– for each v ∈ V , fvs(I(v)) ⊆ (⋃(v′,v)∈E∗ fvs(Θ(v′))) ∩ (⋃(v′,v)∉E∗ fvs(Θ(v′))).

We reduce constraint solving for a tree-like HCCS to tree interpolation as fol-
lows.6 Let H be the input tree-like HCCS. We transform H to an equivalent
HCCS that satisfies: 1.) for each predicate variable P ∈ pvs(H), there exists a
vector of fresh variables x̄P such that P only occurs in the form P (x̄P ), and 2.)
the only sharing of variables among Horn clauses are x̄P ’s between two Horn
clauses both containing P . Then, the transformed H is reduced to the tree in-
terpolation problem (VH,EH,ΘH) where

– VH = pvs(H) ∪ {vrt} where vrt ∉ pvs(H);
– EH =↝H ∪{(P, vrt) ∣ θ ∧ . . . P (x̄P ) . . . ⇢ � ∈ H};
– For each P ,ΘH(P ) = θP if θP ∧⋀iBi ⇢ P (x̄P ) ∈ H and otherwiseΘH(P ) = �;

and
– ΘH(vrt) = θrt where θrt ∧ ⋀iBi ⇢ � ∈ H.

The theorem below follows from the construction, and shows the one-to-one
correspondence between the tree interpolants of (VH,EH,ΘH) and the solutions
of H.

Theorem 3 ([13]). Let H be a tree-like HCCS. Let σ and I be such that I(vrt) =

� and for each P ∈ pvs(S), σ(P ) = λx̄P .I(P ). Then, σ ⊧ H if and only if I is a
tree interpolant of (VH,EH,ΘH).

Example 5. Recall the tree-like HCCS Hexa from Example 3. The corresponding
tree interpolation problem (V,E,Θ) is shown below where each x̄P1 , x̄P2 , x̄Q1 ,
x̄Q2 is a quintuple of fresh variables.

V = {vrt , P1, P2,Q1,Q2}

E = {(P1, P2), (P2,Q1), (Q1,Q2), (Q2, vrt)}

Θ(P1) = θp1[x̄P1/x̄]

Θ(Q1) = x̄P2 = x̄Q1

Θ(vrt) = θp4[x̄Q2/x̄]

Θ(P2) = θp2[x̄P1/x̄][x̄P2/x̄′]
Θ(Q2) = θp3[x̄Q1/x̄][x̄Q2/x̄′]

▲

Now, the relaxed (Lbase , Lbase
∧∨

)-restricted constraint solving problem is re-
duced to relaxed (Lbase , Lbase

∧∨

)-restricted tree interpolation. That is, we would
like to find tree interpolants restricted to Lbase ∪Lbase

∧∨ (i.e., Lbase
∧∨), with the

guarantee to return one if there exists a Lbase-restricted tree interpolant.

6 The reduction is adopted from [13].
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Thy

AELbase
(Hthy(C ,V ,E ,Θ)) = σ I(vrt) = � ∀P.λx̄P .I(P ) = σ(P )

(V,E,Θ) ⊢itp C ∶ I

Hyp

C ∈ Θ(v) ∀v′.I(v′) =

⎧
⎪⎪

⎨

⎪⎪
⎩

C↑v′ if (v, v′) ∈ E∗

⊺ otherwise

(V,E,Θ) ⊢itp C ∶ I

Res

(V,E,Θ) ⊢itp p ∨C1 ∶ I1
(V,E,Θ) ⊢itp ¬p ∨C2 ∶ I2

∀v.I3(v) =

⎧
⎪⎪

⎨

⎪⎪
⎩

I1(v) ∧ I2(v) if p ∈ outs(v)

I1(v) ∨ I2(v) otherwise

(V,E,Θ) ⊢itp C1 ∨C2 ∶ I3

Fig. 5. The tree interpolation rules

Next, we describe the process of relaxed (Lbase , Lbase
∧∨

)-restricted tree inter-
polation. In what follows, we assume familiarity with lazy SMT and the proof-
based technique for obtaining interpolants from resolution proofs [16,10]. Let
(V,E,Θ) be the tree interpolation instance to be solved. In an ordinary proof-
based tree interpolation, one looks for tree interpolants by having the SMT solver
check the unsatisfiability of ⋀v∈V Θ(v) and analyzing the output resolution proof
to compute the interpolant. However, this decides the existence of, and infers,
a tree interpolant from the entire T , and is unsuitable for our task (i.e., this
results in an unrestricted constraint solver).

Instead, we modify the SMT solver so that its theory-level reasoning is del-
egated to the exact Lbase-restricted constraint solver AELbase

. More specifically,
when the SMT solver builds a model of possible (propositional) satisfying assign-
ment ¬C, instead of passing the model to a theory solver as in ordinary SMT,
we build a “fragment” HCCS Hthy(C ,V ,E ,Θ) that just contains the part of the
tree interpolation problem touched by the literals in C. Formally,

Hthy(C ,V ,E ,Θ) = {¬C↡v ∧ ⋀(P,v)∈E P (x̄P ) ⇢ Hv ∣ v ∈ V }

where C↡v is the set of literals of C over atomic predicates occurring in Θ(v),
and Hv = � if v = vrt and Hv = Q(x̄Q) if v is a predicate variable Q. We pass
Hthy(C ,V ,E ,Θ) to AELbase

to decide if it has a Lbase restricted solution, and if
so, we set the obtained solution as the partial tree interpolant for the theory-
level resolution proof nodes where C occurs as the theory lemma. Otherwise,
we can safely reject that the whole problem as having no Lbase-restricted tree
interpolant and return noproof. To generate the tree interpolant for the whole,
we adopt the proof-based approach that builds the tree interpolant in a bottom
up manner following the rules shown in Figure 5.7 Here, outs(v) is the set of
atomic predicates occurring outside of the subtree rooted at v (i.e., outs(v) =

7 We assume that each Θ(v) is CNF (if not, they can be transformed so via the Tseitin
transformation [19]).
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{p ∣ p occurs in Θ(v′) where (v′, v) ∉ E∗}), and C↑v is the set of literals of C
over the atomic predicates occurring outside of the subtree rooted at v (i.e.,
C↑v = {p ∈ C ∣ p ∈ outs(v)} ∪ {¬p ∈ C ∣ p ∈ outs(v)}). The rules Hyp for clauses
in the input tree and Res for resolution steps extend the analogous rules from
the standard proof-based interpolation [10] to tree interpolation. As described
above, Thy uses the Lbase-restricted solution computed by the exact solver for
the partial tree interpolant. As we show in Theorems 4 and 5 below, this achieves
the desired relaxed (Lbase , Lbase

∧∨

)-restricted tree interpolation.
First, we show that any tree interpolant obtained by the method is restricted

to Lbase
∧∨.

Theorem 4. Let H be a tree-like HCCS and (V,E,Θ) be the corresponding tree
interpolation problem. Suppose (V,E,Θ) ⊢itp � ∶ I. Then, I is a tree interpolant
of (V,E,Θ), and for all P ∈ pvs(H), λx̄P .I(P ) ∈ Lbase

∧∨.

Next, we prove that if there is a Lbase-restricted tree interpolant for the given
tree interpolation instance, then the method infers some tree interpolant (and
by Theorem 4 above, such a tree interpolant will be restricted to Lbase

∧∨).

Theorem 5. Let H be a tree-like HCCS and (V,E,Θ) be the corresponding tree
interpolation problem. Suppose there is a tree interpolant I of (V,E,Θ) such that
for all P ∈ pvs(H), λx̄P .I(P ) ∈ Lbase. Then, (V,E,Θ) ⊢itp � ∶ I ′ for some I ′.

We note that Hthy(C ,V ,E ,Θ) is always a conjunctive HCCS and is often much
smaller than the input HCCS. Therefore, the expensive exact Lbase-restricted
constraint solver AELbase

is only applied to small conjunctive HCCSs, thereby
making its job easier. Also, we note that, while we have presented RlxSolveA to be
parameterized by an exact Lbase-restricted constraint solver passed as module,
the algorithm actually works even if a relaxed (Lbase , Lext)-restricted constraint
solver is used in place of the exact Lbase-restricted constraint solver.8 Therefore,
RlxSolveA can actually be parameterized by RlxSolveA itself, but the solvers must
be “primed” by some exact solver (e.g., RlxSolveA[RlxSolveA[AELbase

]]).

Minimizing Theory Lemmas. When ¬C is given as a possible propositional
model by the SMT solver, we use the exact finite-language-restricted constraint
solver AELbase

to find a solution for Hthy(C ,V ,E ,Θ). But, using C directly as
the theory lemma after AELbase

finds a solution could result in the SMT solver
producing many propositional models and lead to bad performance. (This is
analogous to using C directly as the theory lemma in an ordinary lazy SMT
solving when the theory solver finds ¬C unsatisfiable.) Instead, we let AELbase

return the subset of the literals of C that it used to find the solution, and use
it to obtain a smaller theory lemma. (We refer to the extended report [18] for
more detail.)

8 More precisely, it becomes a relaxed (Lbase ,Lext
∧∨

)-restricted constraint solver when
passed a relaxed (Lbase ,Lext)-restricted constraint solver.
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3.3 The Constraint Solver RlxSolveB

RlxSolveB is a relaxed (Lbase ,LB(Lbase ∪Lext ,AU , �))-restricted constraint solver
which takes as module a relaxed (Lbase , Lext)-restricted constraint solver, an un-
restricted constraint solver AU , and a positive integer parameter �. LB(L,AU , �)

is a finite language of predicates determined by L, AU , and �.
We informally describe RlxSolveB. We select some fraction of predicate vari-

ables in a certain “fair” manner based on the parameter � and use the relaxed
(Lbase , Lext)-restricted solver provided as a module to look for solutions to just
the selected predicate variables. After restricted solutions are obtained for the
selected predicate variables, we use AU to look for unrestricted solutions to the
remaining predicate variables, and return the combined solution as the solution
for the input HCCS. Note that this technique reduces the number of predicate
variables that the given relaxed (Lbase , Lext)-restricted solver needs to solve for,
and therefore can be used to improve the performance of a relaxed (Lbase , Lext)-
restricted solver. The key observation we use here is that HCCSs solved in a
refinement process are all unwound instances of a fixed “generator” HCCS (i.e.,
Hgen(M )). As we shall show next, the observation can be used to guarantee
that the result is a relaxed finite-language-restricted solver, when the predicate
variable selection is done in a certain proper way.

We describe the constraint solving algorithm in detail. In what follows, we
extend the definition of a tree-like HCCS (cf. Section 3.1) so that the root clause
can be a Horn clause whose head is of the form P (x̄) where P does not occur
anywhere else in the HCCS. For such an HCCS H, we say that P is the root of
H and write root(H) = P (root(H) = � for H with a �-head root clause).

01: RlxSolveB[AR
(Lbase ,Lext)

,AU , �](H) =
02: let Y = partition(�,H) in
03: let A = ⋃H′∈Y {root(H

′

)} ∖ {�} in
04: let HA = rewrite(H,A) in
05: match AR

(Lbase ,Lext)
(HA) with

06: noproof → return noproof
07: ∣ sol(σA) → return sol(σA ∪ ⋃H′∈Y AU(σA(H

′

)))

Fig. 6. The overview of RlxSolveB

Let RlxSolveB be parameterized by the relaxed (Lbase , Lext)-restricted con-
straint solver AR

(Lbase,Lext)
, the unrestricted constraint solver AU , and the posi-

tive integer �. Figure 6 shows the overview of RlxSolveB. RlxSolveB first partitions
the input HCCS H into a set of tree-like HCCSs of depth at most � in a top-down
manner (line 2). Formally, partition is defined as follows.

partition(�,H) =
if depth(H) ≤ � then {H}

else let H′,X = subtrees(�,H) in
{H′} ∪ ⋃H∈X partition(�,H)
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Here, subtrees(�,H) returns the pair (H′,X) such that 1.) H′ is the largest tree-
like subset of H containing the root clause of H and depth(H′) = �, and 2.) X
is the set of subtrees of H rooted at each leaf of H′. It is easy to see that Y
partitions H (i.e., H = ⋃Y and ∀H1,H2 ∈ Y.H1 ≠ H2 ⇒ H1 ∩ H2 = ∅), and that
each H′ ∈ Y is a tree-like HCCS of depth at most �. In fact, the partition is the
coarsest of such partitions, where the only HCCSs in the partition having depth
less than � are the ones whose leaf predicate variables do not appear anywhere
else in the partition.

By construction, only the root predicate variables are shared by different
HCCSs in Y (more precisely, a root of one HCCS appears as a leaf in another
HCCS). RlxSolveB selects these shared predicate variables to be the ones to
infer restricted solutions (line 3). It can be seen that the fraction of the selected
predicate variables, that is ∣A∣/∣pvs(H)∣, is inversely proportional to the size of a
depth � tree-like subset of H, and decreases rapidly as � is increased.

To infer restricted solutions to A, RlxSolveB constructs the HCCS HA such
that pvs(HA) = A, and solutions of HA correspond exactly to the solutions of
H restricted to A (i.e., σ ⊧ HA if and only if ∃σ′.σ′↾A = σ ∧ σ′ ⊧ H ). This is
done by the operation rewrite(H,A) (line4), defined to be the application of the
following rewriting relation ↠ to H until convergence.

H′ ∪ {Φ1 ⇢ P (x̄), Φ2 ∧ P (ȳ) ⇢ H} ↠ H′ ∪ {Φ2 ∧ Φ1[ȳ/x̄] ⇢ H}

Here, P ∈ pvs(H) ∖A, and Φi’s range over Horn clause bodies. (We assume that
each Horn clause in H is over disjoint variables. Otherwise, we transform H into
such a form by variable renaming.)

Then, RlxSolveB calls AR
(Lbase ,Lext)

to find a Lbase ∪ Lext-restricted solution
for HA (line 5). If AR

(Lbase,Lext)
returns noproof then no Lbase solution exists for

HA by the property of AR
(Lbase,Lext)

, and by the construction above, it can be
shown that no Lbase solution exists for the input HCCS H either, and we safely
return noproof (line 6) (see Theorem 7 for the proof). Otherwise, we obtain
a solution σA for HA, and RlxSolveB calls AU on each element of the partition
with the solution σA substituted (i.e., AU(σA(H′)) for each H′ ∈ Y ).9 This gives
solutions for the remaining predicate variables in H, and we return the union of
σA and these solutions as the final solution (line 7).

We argue that the produced solution is indeed a solution of H. Let Y =

{H1, . . . ,Hn}. Note that the only predicate variables shared by different ele-
ments in Y are A. Therefore, σA(H1),. . . ,σA(Hn), and HA are over disjoint
predicate variables, and their solutions are over disjoint domains. Then, because
Y partitions H, it follows that σA ∪ ⋃H′∈Y AU(σA(H′)) is a solution of H.

To show that RlxSolveB is a relaxed finite-language-restricted constraint solver,
it remains to show that the obtained solution is restricted to a finite language
of predicates. We show that it is restricted to LB(Lbase ∪ Lext ,AU , �) which is

9 Here, we extend the notion of substitution so that the result is tree-like: for P ∈
dom(σA), σA(Φ ⇢ P (x̄)) = ¬σA(P )[x̄/ν̃(P )] ∧ σA(Φ) ⇢ �.
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defined as follows. Let L be a finite language. We define LB(L,AU , �) as follows.

LB(L,AU , �) = L ∪ ⋃H′∈X ran(AU(H′))

where
X = {σ(H′) ∣ H′ ∈ unwds(�,Hgen(M )) and σ ⪰L H′}

Here, M is the program being verified (i.e., the input to the top-level procedure
RlxCegar), unwds(�,H) is the set of unwound instances of H of depth at most �,
and σ ⪰L H if and only if σ is a map from the leaves and the root of H to the
predicates in L (i.e., dom(σ) = leaves(H)∪{root(H)}∖{�} and ran(H) ⊆ L). Note
that Hgen(M ) is a constant for the entire run of RlxCegar(M), and unwds(�,H)

is finite for any H and �. Therefore, LB(L,AU , �) is a finite language that is
determined by L, AU and �.

We formally prove that RlxSolveB is indeed a relaxed (Lbase,LB(Lbase ∪Lext ,
AU , �))-restricted constraint solver. First, we prove that the solution returned
is indeed a solution of the input HCCS and that it is restricted to LB(Lbase ∪

Lext ,AU , �).

Theorem 6. Suppose RlxSolveB[AR
(Lbase,Lext)

,AU , �](H) returns sol(σ). Then,
σ ⊧ H and ran(σ) ⊆ LB(Lbase ∪ Lext ,AU , �).

Next, we show that some solution is returned if there exists a Lbase-restricted
solution to the given HCCS (and by Theorem 6, such a solution is restricted to
LB(Lbase ∪ Lext ,AU , �)).

Theorem 7. Suppose that there exists σ such that σ ⊧ H and ran(σ) ⊆ Lbase.
Then, RlxSolveB[AR

(Lbase ,Lext)
,AU , �](H) infers some σ′ such that σ′ ⊧ H.

Example 6. Recall the HCCS Hexa from Example 3. Running RlxSolveB on Hexa

with � = 2, we have Y = partition(2,Hexa) = {H1,H2,H3} where

H1 = {θp3 ∧ Q1(x̄) ⇢ Q2(x̄′), θp4 ∧ Q2(x̄) ⇢ �}

H2 = {θp2 ∧ P1(x̄) ⇢ P2(x̄′), P2(x̄) ⇢ Q1(x̄)}

H3 = {θp1 ⇢ P1(x̄)}

Then, the shared predicate variables that are selected to be restricted are A =

{root(H1), root(H2), root(H3)} ∖ {�} = {P1,Q1}. And, HA = rewrite(Hexa,A) is
as shown below.

HA = {θp3 ∧ Q1(x̄) ∧ θp4[x̄′, x̄′′/x̄, x̄′] ⇢ �, θp2 ∧ P1(x̄) ⇢ Q1(x̄′), θp1 ⇢ P1(x̄)}

where x̄′′ is a quintuple of fresh variables. RlxSolveB then calls AR
(Lbase,Lext)

on HA to obtain a restricted solution for A. Suppose the returned solution is
σA = {P ↦ a = b ⇒ y = z + x ∣ P ∈ {P1,Q1}}. Then, σA is applied to each element
of the partition and we obtain σA(H1), σA(H2), and σA(H3) shown below.

σA(H1) = {θp3 ∧ (a = b ⇒ y = x + z) ⇢ Q2(x̄′), θp4 ∧ Q2(x̄) ⇢ �}

σA(H2) = {θp2 ∧ (a = b ⇒ y = x + z) ⇢ P2(x̄′), a = b ∧ y ≠ x + z ∧ P2(x̄) ⇢ �}

σA(H3) = {a = b ∧ y ≠ x + z ∧ θp1 ⇢ �}



628 T. Terauchi and H. Unno

AU is called on σA(H1), σA(H2), and σA(H3) to infer unrestricted solutions
to the remaining predicate variables. Suppose we have obtained the solutions
σ1 = {Q2 ↦ a = b ⇒ z ≠ −1 ∧ y = x + z}, σ2 = {P2 ↦ a = b ⇒ y = x + z}, and σ3 = ∅

for σA(H1), σA(H2), and σA(H3) respectively. Finally, RlxSolveB returns the
combined map, σA ∪ σ1 ∪ σ2 ∪ σ3, as the solution inferred for the input HCCS
Hexa. ▲

4 Implementation and Experiments

We have implemented the new refinement algorithms RlxSolveA and RlxSolveB
described in Section 3. The refinement algorithms require an exact finite-
language-restricted constraint solver and an unrestricted constraint solver to
be provided as modules. An unrestricted constraint solver finds unrestricted so-
lutions to the given tree-like HCCS. This is the ordinary constraint solving for
tree-like HCCSs which is a well-studied problem, and we use the existing tech-
nique that iteratively solve the constraints one predicate variable at a time by
using interpolation as a blackbox process (see [20,4,17] for details).10

Exact Finite-Language-Restricted Constraint Solver. For the exact
solver, we use a simple approach in which the finite predicate languages are
represented by predicate templates containing unknowns of bounded range. We
use an SMT solver11 to find an assignment to the unknowns within the bound
that makes the templates into an actual solution. Below, we informally describe
the process by an example, and defer the detailed description to the extended
report [18].

Example 7. Recall the programMex from Example 1. Let Lbase be the finite lan-
guage of predicates consisting of conjunctions of at most two atomic predicates
whose numeric constants are bounded in the range {−1,0,1}. We represent the
language by the bounded predicate template shown below

λa, b, x, y, z. c1a + c2b + c3x + c4y + c5z + c6 ≤ 0∧

c7a + c8b + c9x + c10y + c11z + c12 ≤ 0

where ci’s are unknown constants each associated with the bound {−1,0,1}.
Bounded predicate templates can concisely represent a finite language of predi-
cates.12

Let ξ be a bounded predicate template. To check if the given HCCS H has a
solution in the language represented by ξ, we make a solution template σξ that
maps each predicate variable in H to a copy of ξ with fresh unknowns. Then,
we check if there exists an assignment to the unknowns within the bounds that
makes the solution template into an actual solution of H, that is, we look for

10 The implementation uses MathSAT 5 (http://mathsat.fbk.eu/) for the backend
interpolation process.

11 The implementation uses Z3 (http://z3.codeplex.com/).
12 Note that such a language is generally not closed under conjunctions or disjunctions.

http://mathsat.fbk.eu/
http://z3.codeplex.com/
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assignments to the unknowns within the bounds that satisfy ∀hc ∈ σξ(H). ⊧ hc.
For QFLRA, the latter can be done by applying the Motzkin’s transposition
theorem [15] to reduce the problem to the satisfiability problem for quantifier-
free non-linear real arithmetic, and using an SMT solver to solve the resulting
problem. ▲

We note that the exact finite-language-restricted constraint solving is a highly
expensive process and using it directly solve the whole HCCS is prohibitive.
Indeed, as we show in the experiments, the exact solver fails to scale even on
relatively small constraint sets (see also the discussion in Section 5 and the
complexity theoretic analysis in the extended report [18]).

Experiment Setup.We have experimented with the new refinement algorithms
by using them in the refinement process of MoCHi [8]. MoCHi is a state-of-the-art
software model checker for higher-order functional programs based on predicate
abstraction, CEGAR, and higher-order-recursion-scheme (HORS) model check-
ing. MoCHi verifies assertion safety of OCaml programs. A verifier for functional
programs such as MoCHi is suited for experimenting with the new refinement
algorithm because Horn-clause constraints generated in such a verifier often con-
tain non-trivial tree-like structure. (Intuitively, this is because the constraints
express the flow of data in the program, and data often flow in a complex way
in a functional program, e.g., passed to and returned from recursive functions,
captured in closures, etc.)

The new refinement algorithms RlxSolveA and RlxSolveB are parametric. For
this experiment, we parameterize them as follows to obtain a single refinement
algorithm:

RlxSolveB[RlxSolveA[AELbase
],AU ,4]

Here, the exact Lbase-restricted constraint solver AELbase
and the unrestricted

solver AU are the ones described above. That is, we use RlxSolveB parameter-
ized to use as modules the relaxed (Lbase , (Lbase)∧∨)-restricted constraint solver
RlxSolveA (itself parameterized by the exact Lbase-restricted constraint solver
AELbase

) and the unrestricted constraint solver AU , and with the parameter
� = 4. The strata of restricting predicate languages are built “dynamically” as
the CEGAR iteration progresses, by starting from a small fixed (L0

base , L
0
ext)

and enlarging the current (Lbase , Lext) whenever the refinement algorithm re-
turns noproof by using the unrestricted refinement process.13

We compare the new refinement algorithm with two other refinement meth-
ods: 1.) the ordinary (incomplete) unrestricted predicate search, and 2.) exact
finite-language-restricted predicate search. The unrestricted predicate search al-
gorithm is AU , and the exact finite-language restricted predicate search algo-
rithm is AE . For AE , we give (the Lbase part of) the same restricting predicate
language given to the new algorithm when solving the corresponding HCCS.

13 Formally, this is done by having a non-decreasing preorder of restricting predicate
languages where the limit of any ω-chain is T , and when noproof is returned, the
language raised to the least one containing the predicate inferred by AU .
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We have ran the three refinement algorithms on 318 HCCSs generated by
running MoCHi on 139 programs, measuring the time spent in each run of the
refinement process. The benchmark programs are mostly taken from the pre-
vious work on MoCHi [8,14,22,9]. To obtain the benchmark HCCS set, we ran
MoCHi on each benchmark program with the new refinement algorithm until
completion or timeout and recorded the HCCS given as the input to each run of
the refinement process. We also compare the overall verification speed of MoCHi
when using the three refinement algorithms. This is done by running MoCHi
with each of the refinement algorithm on the 139 benchmark programs. We have
run the experiments on a machine with 2.69 GHz i7-4600U processor with 16
GB of RAM, with the time limit of 100 seconds. The benchmark programs, the
benchmark HCCSs and the experiment results data are available online [18].

Experiment Aim and Hypothesis. Because of the overhead from computing
restricted proofs, we expect the individual refinement runs to be slower with
the new refinement algorithm compared to an ordinary incomplete approach
which only does unrestricted refinement, but faster than the more näıve complete
approach that directly applies the exact finite-language-restricted proof search
to the entire refinement problem. The main purpose of the experiment is to
test this hypothesis. We also compare the overall verification speeds, but we
do not expect a significant improvement on this aspect because of the inherent
complexity of the verification problem. (For any sound and QFLRA-complete
verifier, one can always find a program on which the verifier takes arbitrarily
long time.)

Experiment Results and Analysis. Figure 7 shows the plots comparing the
the run times of the new refinement algorithm (New Algorithm), the unrestricted
refinement algorithm (Unrestricted), and the exact finite-language-restricted re-
finement algorithm (Exact) on each of the 318 benchmark HCCSs. As we have
expected, the unrestricted refinement algorithm is the fastest of the three. The
new algorithm performs quite competitively, however, and shows that it is able
to achieve completeness with only a low overhead. Also, the plots show that
the exact finite-language-restricted refinement algorithm is significantly slower,
timing out on many instances that the other two algorithms were able to solve
quickly.

Figure 8 shows the plots comparing the run times of the overall verification
process on each of the 139 benchmark programs for each refinement algorithm.
The plots show that there is no clear winner in this comparison and none of
the three outperformed the others on all benchmarks (while the unrestricted
refinement edged out in the number of instances solved within the time limit,
it also timed out on some instances the complete methods were able to solve).
This is due to the inherent undecidability of the program verification problem,
and the fact that the speed of overall verification depends heavily on subtle
heuristic choices made by MoCHi. Such issues are largely outside of the scope
of this paper, but they give interesting insights into what would be the good
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Fig. 7. Run time comparison of the refinement algorithms on benchmarks HCCSs
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Fig. 8. Run time comparison of the refinement algorithms on benchmarks programs

heuristics to use with the new refinement algorithm. For instance, an interesting
behavior we have observed is that the stratified approaches (New Algorithm and
Exact) sometimes infer more useless predicates than the ordinary unrestricted
refinement because a stratified approach needs to add predicates to raise the lan-
guage stratum till it reaches the level where a proof of the given program exists.
Because MoCHi does eager predicate abstraction, its performance degrades ex-
ponentially in the number of predicates that are added to the candidate predicate
set. This seems to have had a large negative impact on the stratified approaches.
A possible way to address the issue maybe is to have MoCHi take a more lazy
approach to predicate abstraction, or allow the language strata “coarseness” to
be dynamically adjustable so that we can immediately jump to a large predicate
language when it seems beneficial.
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5 Related Work

Previous work [7,11] has considered an exact stratification approach which re-
quires the refinement process to exactly decide if a proof of the given counterex-
ample’s spuriousness exists in the current finite language stratum. As remarked
before, an issue with exact stratification is the high cost of exact finite-language-
restricted proof search. As we have shown empirically in Section 4, the exact
finite-language-restricted proof search suffers from high overhead. (We also show
complexity theoretic evidences for the inherent hardness of the exact search in
the extended report [18].) We note that relaxed stratification is a generalization
of exact stratification. That is, exact stratification is a special case of relaxed
stratification where Lext = ∅.

We note that the interpolation technique that limits the theory-level reason-
ing to only emit restricted partial interpolants (cf. Section 3.2) has also been
proposed in [7]. But, they target exact stratification and therefore requires the
restricting language to be closed under conjunctions and disjunctions (so that
L∧∨ = L), which substantially reduces the applicability of the technique.14

6 Conclusion

We have presented a new approach to complete predicate refinement, called
relaxed stratification, where the background theory is stratified into a sequence
of finite predicate languages

(L0
base , L

0
ext), (L1

base , L
1
ext), . . . (Lk

base , L
k
ext), . . .

such that each run of the refinement process is restricted to only infer predi-
cates from the current stratum Lbase ∪ Lext . Contrary to previous approaches
to complete refinement, the refinement process is neither required to decide the
existence of a proof for the given counterexample in Lbase ∪Lext nor in Lbase , but
is only required to return some proof if one exists in Lbase . We have proved that
the approach is complete despite the relaxed requirement, assuming that the
strata of Lbase ’s grow to eventually cover the predicates of the underlying the-
ory. We have shown that the relaxed requirement can be used to build practical
refinement algorithms that have low overhead and the completeness guarantee.

References

1. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp.
405–416. ACM (2012)

14 Contrary to [7], in QFLRA, it is insufficient to only look for an atomic interpolant
(i.e., a separating hyperplane) when interpolating between even just conjunctions
of literals (i.e., polytopes) under a finite-language restriction. For example, consider
interpolating between y ≤ 1 ∧ 2x + y ≤ −3 ∧ x ≤ −1 and y + x ≥ 1 under the restriction
that interpolants’ constants are in {−1,0,1}.



A New Approach to Practical Complete Predicate Refinement 633

2. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement
for verifying multi-threaded programs. In: Ball, T., Sagiv, M. (eds.) POPL, pp.
331–344. ACM (2011)

3. Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free horn clauses over
LI+UIF. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 188–203. Springer,
Heidelberg (2011)

4. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Hermenegildo,
M.V., Palsberg, J. (eds.) POPL, pp. 471–482. ACM (2010)

5. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Jones, N.D., Leroy, X. (eds.) POPL, pp. 232–244. ACM (2004)

6. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009)

7. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

8. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Hall, M.W., Padua, D.A. (eds.) PLDI, pp. 222–233. ACM
(2011)

9. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination
verification for higher-order functional programs. In: Shao, Z. (ed.) ESOP 2014
(ETAPS). LNCS, vol. 8410, pp. 392–411. Springer, Heidelberg (2014)

10. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Sci-
ence 345(1), 101–121 (2005)

11. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)
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Abstract. We propose SplInter, a new technique for proving proper-
ties of heap-manipulating programs that marries (1) a new separation
logic–based analysis for heap reasoning with (2) an interpolation-based
technique for refining heap-shape invariants with data invariants. SplIn-
ter is property directed, precise, and produces counterexample traces
when a property does not hold. Using the novel notion of spatial in-
terpolants modulo theories, SplInter can infer complex invariants over
general recursive predicates, e.g., of the form all elements in a linked list
are even or a binary tree is sorted. Furthermore, we treat interpolation
as a black box, which gives us the freedom to encode data manipulation
in any suitable theory for a given program (e.g., bit vectors, arrays, or
linear arithmetic), so that our technique immediately benefits from any
future advances in SMT solving and interpolation.

1 Introduction

Since the problem of determining whether a program satisfies a given property
is undecidable, every verification algorithm must make some compromise. There
are two classical schools of program verification, which differ in the compromise
they make: the static analysis school gives up refutation soundness (i.e., may
report false positives); and the software model checking school gives up the guar-
antee of termination. In the world of integer program verification, both schools
are well explored and enjoy cross-fertilization of ideas: each has its own strengths
and uses in different contexts. In the world of heap-manipulating programs, the
static analysis school is well-attended [36,15,13,11], while the software model
checking school has remained essentially vacant. This paper initiates a program
to rectify this situation, by proposing one of the first path-based software model
checking algorithms for proving combined shape-and-data properties.

The algorithmwe propose,SplInter, marries two celebrated program verifica-
tion ideas: McMillan’s lazy abstraction with interpolants (Impact) algorithm for
software model checking [26], and separation logic, a program logic for reasoning
about shape properties [33]. SplInter (like Impact) is based on a path-sampling
methodology: given a program P and safety property ϕ, SplInter constructs a
proof that P is memory safe and satisfies ϕ by sampling a finite number of paths
through the control-flowgraph ofP , proving them safe, and then assembling proofs
for each sample path into a proof for the whole program.The key technical advance
which enables SplInter is an algorithm for spatial interpolation, which is used to

c© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 634–660, 2015.
DOI: 10.1007/978-3-662-46669-8_26
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construct proofs in separation logic for the sample traces (serving the same function
as Craig interpolation for first-order logic in Impact).

SplInter is able to prove properties requiring integrated heap and data (e.g.,
integer) reasoning by strengthening separation logic proofs with data refinements
produced by classical Craig interpolation, using a technique we call spatial in-
terpolation modulo theories. Data refinements are not tied to a specific logical
theory, giving us a rather generic algorithm and freedom to choose an appropri-
ate theory to encode a program’s data.

Fig. 1 summarizes the high-level operation of our algorithm. Given a program
with no heap manipulation, SplInter only computes theory interpolants and
behaves exactly like Impact, and thus one can thus view SplInter as a proper
extension of Impact to heap manipulating programs. At the other extreme, given
a program with no data manipulation, SplInter is a new shape analysis that
uses path-based relaxation to construct memory safety proofs in separation logic.

There is a great deal of work in the static analysis school on shape analysis
and on combined shape-and-data analysis, which we will discuss further in Sec. 8.
We do not claim superiority over these techniques (which have had the benefit
of 20 years of active development). SplInter, as the first member of the soft-
ware model checking school, is not better ; however, it is fundamentally different.
Nonetheless, we will mention two of the features of SplInter (not enjoyed by
any previous verification algorithm for shape-and-data properties) that make our
approach worthy of exploration: path-based refinement and property-direction.
– Path-based refinement : This supports a progress guarantee by tightly cor-

relating program exploration with refinement, and by avoiding imprecision
due to lossy join and widening operations employed by abstract domains.
SplInter does not report false positives, and produces counterexamples for
violated properties. This comes, as usual, at the price of potential divergence.

– Property-direction: Rather than seeking the strongest invariant possible, we
compute one that is just strong enough to prove that a desired property
holds. Property direction enables scalable reasoning in rich program logics
like the one described in this paper, which combines separation logic with
first-order data refinements.

We have implemented an instantiation of our generic technique in the T2

verification tool [38], and used it to prove correctness of a number of programs,
partly drawn from open source software, requiring combined data and heap
invariants. Our results indicate the usability and promise of our approach.

Contributions. We summarize our contributions as follows:

1. A generic property-directed algorithm for verifying and falsifying safety of
programs with heap and data manipulation.

2. Aprecise and expressive separation logic analysis for computingmemory safety
proofs of program paths using a novel technique we term spatial interpolation.

3. A novel interpolation-based technique for strengthening separation logic
proofs with data refinements.

4. An implementation and an evaluation of our technique for a fragment of
separation logic with linked lists enriched with linear arithmetic refinements.
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Heap prover
(spatial interpolants)

Data prover
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Path
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Program P

Property ϕ

Path π from P

Proof that π is safe

No proof found

Path violates
memory safety

Path violates
property ϕ

P is safe w.r.t. ϕ

Fig. 1. Overview of SplInter verification algorithm

The extended version [2] of this paper contains additional details and material.

2 Overview

In this section, we demonstrate the operation of SplInter (Fig. 1) on the
simple linked list example shown in Fig. 2. We assume that integers are un-
bounded (i.e., integer values are drawn from Z rather than machine integers) and

1: int i = nondet();

node * x = null;

2: while (i != 0)

node * tmp = malloc

(node );

tmp ->N = x;

tmp ->D = i;

x = tmp;

i--;

3: while (x != null )

4: assert(x->D >= 0);

x = x->N;

Fig. 2. Illustrative Example

that there is a struct called node denoting a
linked list node, with a next pointer N and an in-
teger (data) element D. The function nondet()

returns a nondeterministic integer value. This
program starts by building a linked list in the
loop on location 2. The loop terminates if the
initial value of i is � 0, in which case a linked
list of size i is constructed, where data elements
D of list nodes range from 1 to i. Then, the loop
at location 3 iterates through the linked list as-
serting that the data element of each node in the
list is � 0. Our goal is to prove that the assertion
at location 4 is never violated.

Sample a Program Path. To start, we need a
path π through the program to the assertion at location 4. Suppose we start by
sampling the path 1,2,2,3,4, that is, the path that goes through the first loop
once, and enters the second loop arriving at the assertion. This path is illustrated
in Fig. 3 (where 2a indicates the second occurrence of location 2). Our goal is
to construct a Hoare-style proof of this path: an annotation of each location
along the path with a formula describing reachable states, such that location 4

is annotated with a formula implying that x->D >= 0. This goal is accomplished
in two phases. First, we use spatial interpolation to compute a memory safety
proof for the path π (Fig. 3(b)). Second, we use theory refinement to strengthen
the memory safety proof and establish that the path satisfies the post-condition
x->D >= 0 (Fig. 3(c)).

Compute Spatial Interpolants. The first step in constructing the proof is to
find spatial interpolants : a sequence of separation logic formulas approximating
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the shape of the heap at each program location, and forming a Hoare-style
memory safety proof of the path. Our spatial interpolation procedure is a two
step process that first symbolically executes the path in a forward pass and then
derives a weaker proof using a backward pass. The backward pass can be thought
of as an under-approximate weakest precondition computation, which uses the
symbolic heap from the forward pass to guide the under-approximation.

We start by showing the symbolic heaps in Fig. 3(a), which are the result
of the forward pass obtained by symbolically executing only heap statements
along this program path (i.e., the strongest postcondition along the path). The
separation logic annotations in Fig. 3 follow standard notation (e.g., [15]), where
a formula is of the form Π : Σ, where Π is a Boolean first-order formula over
heap variables (pointers) as well as data variables (e.g., x = null or i > 0),
and Σ is a spatial conjunction of heaplets (e.g., emp, denoting the empty heap,
or Z(x, y), a recursive predicate, e.g., that denotes a linked list between x and
y). For the purposes of this example, we assume a recursive predicate ls(x, y)
that describes linked lists. In our example, the symbolic heap at location 2a is
true : x �→ [d′, null], where the heap consists of a node, pointed to by variable x,
with null in the N field and the (implicitly existentially quantified) variable d′ in
the D field (since so far we are only interested in heap shape and not data).

The symbolic heaps determine a memory safety proof of the path, but it
is too strong and would likely not generalize to other paths. The goal of spa-
tial interpolation is to find a sequence of annotations that are weaker than the
symbolic heaps, but that still prove memory safety of the path. A sequence of
spatial interpolants is shown in Fig. 3(b). Note that all spatial interpolants are
implicitly spatially conjoined with true; for clarity, we avoid explicitly conjoin-
ing formulas with true in the figure. For example, location 2 is annotated with
true : ls(x, null) ∗ true, indicating that there is a list on the heap, as well as other
potential objects not required to show memory safety. We compute spatial inter-
polants by going backwards along the path and asking questions of the form: how
much can we weaken the symbolic heap while still maintaining memory safety?
We will describe how to answer such questions in Section 4.

Refine with Theory Interpolants. Spatial interpolants give us a memory
safety proof as an approximate heap shape at each location. Our goal now is to
strengthen these heap shapes with data refinements, in order to prove that the
assertion at the end of the path is not violated. To do so, we generate a system
of Horn clause constraints from the path in some first-order theory admitting
interpolation (e.g., linear arithmetic). These Horn clauses carefully encode the
path’s data manipulation along with the spatial interpolants, which tell us heap
shape at each location along the path. A solution of this constraint system, which
can be solved using off-the-shelf interpolant generation techniques (e.g., [27,35]),
is a refinement (strengthening) of the memory safety proof.

In this example, we encode program operations over integers in the theory
of linear integer arithmetic, and use Craig interpolants to solve the system of
constraints. A solution of this system is a set of linear arithmetic formulas that
refine our spatial interpolants and, as a result, imply the assertion we want to
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1 2 2a 3 4

true : ls(x, null)

true : emp true : x �→ [d′, null]x = null : emp true : x �→ [d′, null] true : x �→ [d′, null]

true : emp true : ls(x, null) true : ls(x, null)

true : emp true : ls((λν.ν � i), x, null) true : ls((λν.ν � 0), x, null) d′ � 0 : x �→ [d′, n′]

assert(x->D >= 0)

⇓ ⇓ . . . . . .

. . . . . .⇑ ⇑
true : ls((λν.ν � i), x, null)

true : x �→ [d′, n′]

int i = nondet();
node* x = null

assume(i != 0);
node* tmp = ...;
tmp->N = x;
tmp->D = i;
x = tmp; i--

assume(i == 0) assume(x != null)

(a)

(b)

(c)

Fig. 3. Path through program in Fig. 2, annotated with (a) results of forward symbolic
execution, (b) spatial interpolants, and (c) spatial(T ) interpolants, where T is linear
integer arithmetic. Arrows ⇒ indicate implication (entailment) direction.

prove holds. One possible solution is shown in Fig. 3(c). For example, location
2a is now labeled with true : ls((λν.ν � i), x, null), where the green parts of the
formula are those added by refinement. Specifically, after refinement, we know
that all elements in the list from x to null after the first loop have data values
greater than or equal to i, as indicated by the predicate (λν.ν � i). (In Section 3,
we formalize recursive predicates with data refinements.)

Location 4 is now annotated with d′ � 0 : x �→ [d′, n′] ∗ true, which implies
that x->D >= 0, thus proving that the path satisfies the assertion.

From Proofs of Paths to Proofs of Programs. We go from proofs of paths
to whole program proofs implicitly by building an abstract reachability tree as in
Impact [26]. To give a flavour for how this works, consider that the assertions at
2 and 2a are identical: this implies that this assertion is an inductive invariant
at line 2. Since this assertion also happens to be strong enough to prove safety of
the program, we need not sample any longer unrollings of the first loop. However,
since we have not established the inductiveness of the assertion at 3, the proof is
not yet complete and more traces need to be explored (in fact, exploring one more
trace will do: consider the trace that unrolls the second loop once and shows that
the second time 3 is visited can also be labeled with true : ls((λν.ν � 0), x, null)).

Since our high-level algorithm is virtually the same as Impact [26], we will not
describe it further in the paper. For the remainder of this paper, we will concen-
trate on the novel contribution of our algorithm: computing spatial interpolants
with theory refinements for program paths.

3 Preliminaries

3.1 Separation Logic

We define RSep, a fragment of separation logic formulas featuring points-to pred-
icates and general recursive predicates refined by theory propositions.

Fig. 4 defines the syntax of RSep formulas. In comparison with the standard
list fragment used in separation logic analyses (e.g., [4,14,28]), the differentiating
features of RSep are: (1) General recursive predicates, for describing unbounded
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x, y ∈ HVar (Heap variables) E,F ∈ HTerm ::= null | x
a, b ∈ DVar (Data variables) Æ ::= A | E
A ∈ DTerm (Data terms) Π ∈ Pure ::= true | E = E | E �= E |
ϕ ∈ DFormula (Data formulas) ϕ | Π ∧Π

Z ∈ RPred (Rec. predicates) H ∈ Heaplet ::= true | emp | E �→ [ �A, �E] | Z(�θ, �E)
θ ∈ Refinement ::= λ�a.ϕ Σ ∈ Spatial ::= H | H ∗Σ
X ⊆ Var ::= x | a P ∈ RSep ::= (∃X. Π : Σ)

Fig. 4. Syntax of RSep formulas

pointer structures like lists, trees, etc. (2) Recursive predicates are augmented
with a vector of refinements, which are used to constrain the data values ap-
pearing on the data structure defined by the predicate, detailed below. (3) Each

heap cell (points-to predicate), E �→ [ �A, �E], is a record consisting of data fields (a

vector �A of DTerm) followed by heap fields (a vector �E of HTerm). (Notationally,

we will use di to refer to the ith element of the vector �d, and �d[t/di] to refer to

the vector �d with the ith element modified to t.) (4) Pure formulas contain heap
and first-order data constraints.

Our definition is (implicitly) parameterized by a first-order theory T . DVar
denotes the set of theory variables, which we assume to be disjoint from HVar
(the set of heap variables). DTerm and DFormula denote the sets of theory terms
and formulas, and we assume that heap variables do not appear in theory terms.

For an RSep formula P , Var(P ) denotes its free (data and heap) variables. We
treat a Spatial formula Σ as a multiset of heaplets, and consider formulas to be
equal when they are equal as multisets. For RSep formulas P = (∃XP . ΠP : ΣP )
and Q = (∃XQ. ΠQ : ΣQ), we write P ∗Q to denote the RSep formula

P ∗Q = (∃XP ∪XQ. ΠP ∧ΠQ : ΣP ∗ΣQ)

assuming that XP is disjoint from Var(Q) and XQ is disjoint from Var(P ) (if
not, then XP and XQ are first suitably renamed). For a set of variables X , we
write (∃X. P ) to denote the RSep formula

(∃X. P ) = (∃X ∪XP . ΠP : ΣP )

Recursive Predicates. Each recursive predicate Z ∈ RPred is associated with
a definition that describes how the predicate is unfolded. Before we formalize
these definitions, we will give some examples.

The definition of the list segment predicate from Sec. 2 is:

ls(R, x, y) ≡ (x = y : emp) ∨
(∃d, n′. x = y ∧R(d) : x �→ [d, n′] ∗ ls(R, n′, y))

In the above, R is a refinement variable, which may be instantiated to a concrete
refinement θ ∈ Refinement. For example, ls((λa.a � 0), x, y) indicates that there
is a list from x to y where every element of the list is at least 0.
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A refined binary tree predicate is a more complicated example:

bt(Q,L,R, x) = (x = null : emp)

∨ (∃d, l, r. Q(d) : x �→ [d, l, r]

∗ bt((λa.Q(a) ∧ L(d, a)), L,R, l)

∗ bt((λa.Q(a) ∧R(d, a)), L,R, r))

This predicate has three refinement variables: a unary refinement Q (which must
be satisfied by every node in the tree), a binary refinement L (which is a relation
that must hold between every node and its descendants to the left), and a binary
refinement R (which is a relation that must hold between every node and its
descendants to the right). For example,

bt((λa.true), (λa, b.a � b), (λa, b.a � b), x)

indicates that x is the root of a binary search tree, and

bt((λa.a � 0), (λa, b.a � b), (λa, b.a � b), x)

indicates that x is the root of a binary min-heap with non-negative elements.
To formalize these definitions, we first define refinement terms and refined

formulas : a refinement term τ is either (1) a refinement variable R or (2) an
abstraction (λa1, . . . , an.Φ), where Φ is a refined formula. A refined formula is
a conjunction where each conjunct is either a data formula (DFormula) or the

application τ( �A) of a refinement term to a vector of data terms (DTerm).
A predicate definition has the form

Z(�R, �x) ≡ (∃X1. Π1 ∧ Φ1 : Σ1) ∨ · · · ∨ (∃Xn. Πn ∧ Φn : Σn)

where �R is a vector of refinement variables, �x is a vector of heap variables, and
where refinement terms may appear as refinements in the spatial formulas Σi.
We refer to the disjuncts of the above formula as the cases for Z, and define
cases(Z(�R, �x)) to be the set of cases of Z. �R and �x are bound in cases(Z(�R, �x)),
and we will assume that predicate definitions are closed, that is, for each case of
Z, the free refinement variables belong to �R, the free heap variables belong to �x,
and there are no free data variables. We also assume that they are well-typed in
the sense that each refinement term τ is associated with an arity, and whenever
τ( �A) appears in a definition, the length of �A is the arity of τ .

Semantics. The semantics of our logic, defined by a satisfaction relation s, h |=
Q, is essentially standard. Each predicate Z ∈ RPred is defined to be the least
solution1 to the following equivalence:

s, h |= Z(�θ, �E) ⇐⇒ ∃P ∈ cases(Z(�R, �x)). s, h |= P [�θ/ �R, �E/�x]

Note that when substituting a λ-abstraction for a refinement variable, we implic-
itly β-reduce resulting applications. For example, R(b)[(λa.a � 0)/R] = b � 0.

Semantic entailment is denoted by P |= Q, and provable entailment by P � Q.
When referring to a proof that P � Q, we will mean a sequent calculus proof.

1 Our definition does not preclude ill-founded predicates; such predicates are simply
unsatisfiable, and do not affect the technical development in the rest of the paper.
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3.2 Programs

A program P is a tuple 〈V,E, vi, ve〉, where
– V is a set of control locations, with a distinguished entry node vi ∈ V and

error (exit) node ve ∈ V , and
– E ⊆ V × V is a set of directed edges, where each e ∈ E is associated with a

program command ec.
We impose the restriction that all nodes V \ {vi} are reachable from vi via

E, and all nodes can reach ve. The syntax for program commands appears be-
low. Note that the allocation command creates a record with n data fields,
D1, . . . , Dn, and m heap fields, N1, . . . , Nm. To access the ith data field of a
record pointed to by x, we use x->Di (and similarly for heap fields). We assume
that programs are well-typed, but not necessarily memory safe.

Assignment: x := Æ

Heap store: x->Ni := E

Heap load: y := x->Ni

Assumption: assume(Π)

Data store: x->Di := A

Data load: y := x->Di

Allocation: x := new(n,m)

Disposal: free(x)

As is standard, we compile assert commands to reachability of ve.

4 Spatial Interpolants

In this section, we first define the notion of spatial path interpolants, which
serve as memory safety proofs of program paths. We then describe a technique
for computing spatial path interpolants. This algorithm has two phases: the first
is a (forwards) symbolic execution phase, which computes the strongest memory
safety proof for a path; the second is a (backwards) interpolation phase, which
weakens the proof so that it is more likely to generalize.

Spatial path interpolants are bounded from below by the strongest memory
safety proof, and (implicitly) from above by the weakest memory safety proof.
Prior to considering the generation of inductive invariants using spatial path
interpolants, consider what could be done with only one of the bounds, in gen-
eral, with either a path-based approach or an iterative fixed-point computation.
Without the upper bound, an interpolant or invariant could be computed using
a standard forward transformer and widening. But this suffers from the usual
problem of potentially widening too aggressively to prove the remainder of the
path, necessitating the design of analyses which widen conservatively at the price
of computing unnecessarily strong proofs. The upper bound neatly captures the
information that must be preserved for the future execution to be proved safe.
On the other hand, without the lower bound, an interpolant or invariant could be
computed using a backward transformer (and lower widening). But this suffers
from the usual problem that backward transformers in shape analysis explode,
due to issues such as not knowing the aliasing relationship in the pre-state. The
lower bound neatly captures such information, heavily reducing the potential
for explosion. These advantages come at the price of operating over full paths
from entry to error. Compared to a forwards iterative analysis, operating over
full paths has the advantage of having information about the execution’s past
and future when weakening at each point along the path. A forwards iterative
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exec(x := new(k, l), (∃X. Π : Σ)) = (∃X ∪ {x′, �d, �n}. (Π : Σ)[x′/x] ∗ x �→ [�d, �n])

where x′, �d, �n are fresh, �d = (d1, . . . , dk), and �n = (n1, . . . , nl).

exec(free(x), (∃X. Π : Σ ∗ z �→ [�d, �n]) = (∃X. Π ∧Π �= : Σ)

where Π : Σ ∗ z �→ [�d, �n] 	 x = z and Π �= is the
conjunction of all disequalities x 
= y s.t y �→ [ , ] ∈ Σ.

exec(x := E, (∃X. Π : Σ)) = (∃X ∪ {x′}. (x = E[x′/x]) ∗ (Π : Σ)[x′/x])
where x′ is fresh.

exec(assume(Π ′), (∃X. Π : Σ)) = (∃X. Π ∧Π ′ : Σ) .

exec(x->Ni := E, (∃X. Π : Σ ∗ z �→ [�d, �n])) = (∃X. Π : Σ ∗ x �→ [�d, �n[E/ni]])

where i � |�n| and Π : Σ ∗ z �→ [�d, �n] 	 x = z .

exec(y := x->Ni, (∃X. Π : Σ ∗ z �→ [�d, �n])) =

(∃X ∪ {y′}. (y = ni[y
′/y]) ∗ (Π : Σ ∗ z �→ [�d, �n])[y′/y])

where i � |�n| and Π : Σ ∗ z �→ [�d, �n] 	 x = z, and y′ is fresh.

Fig. 5. Symbolic execution for heap statements. Data statements are treated as skips.

analysis, on the other hand, trades the information about the future for informa-
tion about many past executions through the use of join or widening operations.

The development in this section is purely spatial: we do not make use of
data variables or refinements in recursive predicates. Our algorithm is thus of
independent interest, outside of its context in this paper. We use Sep to refer
to the fragment of RSep in which the only data formula (appearing in pure
assertions and in refinements) is true (this fragment is equivalent to classical
separation logic). An RSep formula P , in particular including those in recursive
predicate definitions, determines a Sep formula P obtained by replacing all re-
finements (both variables and λ-abstractions) with (λ�a.true) and all DFormulas
in the pure part of P with true. Since recursive predicates, refinements, and
DFormulas appear only positively, P is no stronger than any refinement of P .
Since all refinements in Sep are trivial, we will omit them from the syntax (e.g.,

we will write Z( �E) rather than Z((λ�a.true), �E)).

4.1 Definition

We define a symbolic heap to be a Sep formula where the spatial part is a *-
conjunction of points-to heaplets and the pure part is a conjunction of pointer
(dis)equalities. Given a command c and a symbolic heap S, we use exec(c, S) to
denote the symbolic heap that results from symbolically executing c starting in
S (the definition of exec is essentially standard [4], and is shown in Fig. 5).

Given a program path π = e1, . . . , en, we obtain its strongest memory safety
proof by symbolically executing π starting from the empty heap emp. We call this
sequence of symbolic heaps the symbolic execution sequence of π, and say that a
path π is memory-feasible if every formula in its symbolic execution sequence is
consistent. The following proposition justifies calling this sequence the strongest
memory safety proof.
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Proposition 1. For a path π, if the symbolic execution sequence for π is de-
fined, then π is memory safe. If π is memory safe and memory-feasible, then its
symbolic execution sequence is defined.

Recall that our strategy for proving program correctness is based on sampling
and proving the correctness of several program paths (á la Impact [26]). The
problem with strongest memory safety proofs is that they do not generalize well
(i.e., do not generate inductive invariants).

One solution to this problem is to take advantage of property direction. Given
a desired postcondition P and a (memory-safe and -feasible) path π, the goal is
to come up with a proof that is weaker than π’s symbolic execution sequence,
but still strong enough to show that P holds after executing π. Coming up with
such “weak” proofs is how traditional path interpolation is used in Impact. In
light of this, we define spatial path interpolants as follows:

Definition 1 (Spatial path interpolant). Let π = e1, . . . , en be a program
path with symbolic execution sequence S0, . . . , Sn, and let P be a Sep formula
(such that Sn |= P ). A spatial path interpolant for π is a sequence I0, . . . , In of
Sep formulas such that
– for each i ∈ [0, n], Si |= Ii;
– for each i ∈ [1, n], {Ii−1} eci {Ii} is a valid triple in separation logic; and
– In |= P .

Our algorithm for computing spatial path interpolants is a backwards prop-
agation algorithm that employs a spatial interpolation procedure at each back-
wards step. Spatial interpolants for a single command are defined as:

Definition 2 (Spatial interpolant). Given Sep formulas S and I ′ and a com-
mand c such that exec(c, S) |= I ′, a spatial interpolant (for S, c, and I ′) is a
Sep formula I such that S |= I and {I} c {I ′} is valid.

Before describing the spatial interpolation algorithm, we briefly describe how
spatial interpolation is used to compute path interpolants. Let us use itp(S, c, I)
to denote a spatial interpolant for S, c, I, as defined above. Let π = e1, . . . , en
be a program path and let P be a Sep formula. First, symbolically execute π
to compute a sequence S0, . . . , Sn. Suppose that Sn � P . Then we compute a
sequence I0, . . . , In by taking In = P and (for k < n) Ik = itp(Sk, e

c
k+1, Ik+1).

The sequence I0, . . . , In is clearly a spatial path interpolant.

4.2 Bounded Abduction

Our algorithm for spatial interpolation is based on an abduction procedure.
Abduction refers to the inference of explanatory hypotheses from observations
(in contrast to deduction, which derives conclusions from given hypotheses). The
variant of abduction we employ in this paper, which we call bounded abduction, is
simultaneously a form of abductive and deductive reasoning. Seen as a variant of
abduction, bounded abduction adds a constraint that the abduced hypothesis be
at least weak enough to be derivable from a given hypothesis. Seen as a variant
of deduction, bounded abduction adds a constraint that the deduced conclusion
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be at least strong enough to imply some desired conclusion. Formally, we define
bounded abduction as follows:

Definition 3 (Bounded abduction). Let L,M,R be Sep formulas, and let X
be a set of variables. A solution to the bounded abduction problem

L � (∃X. M ∗ [ ]) � R

is a Sep formula A such that L |= (∃X. M ∗A) |= R.

Note how, in contrast to bi-abduction [11] where a solution is a pair of formulas,
one constrained from above and one from below, a solution to bounded abduction
problems is a single formula that is simultaneously constrained from above and
below. The fixed lower and upper bounds in our formulation of abduction give
considerable guidance to solvers, in contrast to bi-abduction, where the bounds
are part of the solution.

Sec. 6 presents our bounded abduction algorithm. For the remainder of this
section, we will treat bounded abduction as a black box, and use L � (∃X. M ∗
[A]) � R to denote that A is a solution to the bounded abduction problem.

4.3 Computing Spatial Interpolants

We now proceed to describe our algorithm for spatial interpolation. Given a com-
mand c and Sep formulas S and I ′ such that exec(c, S) � I ′, this algorithm must
compute a Sep formula itp(S, c, I ′) that satisfies the conditions of Definition 2.
Several examples illustrating this procedure are given in Fig. 3.

This algorithm is defined by cases based on the command c. We present the
cases for the spatial commands; the corresponding data commands are similar.

Allocate. Suppose c is x := new(n,m). We take itp(S, c, I ′) = (∃x. A), where
A is obtained as a solution to exec(c, S) � (∃�a, �z. x �→ [�a, �z] ∗ [A]) � I ′, and �a
and �z are vectors of fresh variables of length n and m, respectively.

Deallocate. Suppose c is free(x). We take itp(S, c, I ′) = (∃�a, �z. I ′∗x �→ [�a, �z]),
where �a and �z are vectors of fresh variables whose lengths are determined by the
unique heap cell which is allocated to x in S.

Assignment. Suppose c is x := E. We take itp(S, c, I ′) = I ′[E/x].

Store. Suppose c is x->Ni := E. We take itp(S, c, I ′) = (∃�a, �z. A ∗ x �→ [�a, �z]),
whereA is obtained as a solution to exec(c, S) � (∃�a, �z. x �→ [�a, �z[E/zi]]∗[A]) � I ′

and where �a and �z are vectors of fresh variables whose lengths are determined
by the unique heap cell which is allocated to x in S.

Example 1. Suppose that S is t �→ [4, y, null] ∗ x �→ [2, null, null] where the cells
have one data and two pointer fields, c is t->N0 := x, and I ′ is bt(t). Then we
can compute exec(c, S) = t �→ [4, x, null] ∗ x �→ [2, null, null], and then solve the
bounded abduction problem

exec(c, S) � (∃a, z1. t �→ [a, x, z1] ∗ [ ]) � I ′ .

One possible solution is A = bt(x) ∗ bt(z1), which yields

itp(S, c, I ′) = (∃a, z0, z1. t �→ [a, z0, z1] ∗ bt(z1) ∗ bt(x)) . �
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Load. Suppose c is y := x->Ni. Suppose that �a and �z are vectors of fresh
variables of lengths | �A| and | �E| where S is of the form Π : Σ ∗ w �→ [ �A, �E] and

Π : Σ ∗ w �→ [ �A, �E] � x = w (this is the condition under which exec(c, S) is
defined, see Fig. 5). Let y′ be a fresh variable, and define S = (y = zi[y

′/y])∗(Π :
Σ ∗ w �→ [�a, �z])[y′/y]. Note that S � (∃y′. S) ≡ exec(c, S) � I ′.

We take itp(S, c, I ′) = (∃�a, �z. A[zi/y, y/y′] ∗ x �→ [�a, �z]) where A is obtained
as a solution to S � (∃�a, �z. x[y′/y] �→ [�a, �z] ∗ [A]) � I ′.

Example 2. Suppose that S is y = t : y �→ [1, null, x] ∗ x �→ [5, null, null], c is y

:= y->N1, and I ′ is y = null : bt(t). Then S is

y = x ∧ y′ = t : y′ �→ [1, null, x] ∗ x �→ [5, null, null]

We can then solve the bounded abduction problem

S � (∃a, z0, z1. y′ �→ [a, z0, z1] ∗ [ ]) � I ′

A possible solution is y = null ∧ y′ = t : bt(z0) ∗ bt(z1), yielding
itp(S, c, I ′) = (∃a, z0, z1.z1 = null∧y = t : bt(z0)∗bt(z1)∗y �→ [a, z0, z1]) . �

Assumptions. The interpolation rules defined up to this point cannot intro-
duce recursive predicates, in the sense that if I ′ is a *-conjunction of points-to
predicates then so is itp(S, c, I ′).2 A *-conjunction of points-to predicates is ex-
act in the sense that it gives the full layout of some part of the heap. The power
of recursive predicates lies in their ability to be abstract rather than exact, and
describe only the shape of the heap rather than its exact layout. It is a special
circumstance that {P} c {I ′} holds when I ′ is exact in this sense and P is not:
intuitively, it means that by executing c we somehow gain information about
the program state, which is precisely the case for assume commands.

For an example of how spatial interpolation can introduce a recursive predicate
at an assume command, consider the problem of computing an interpolant

itp(S, assume(x = null), (∃a, z. x �→ [a, z] ∗ true))
where S ≡ x �→ [d, y] ∗ y �→ [d′, null]: a desirable interpolant may be ls(x, null) ∗
true. The disequality introduced by the assumption ensures that one of the cases
of the recursive predicate ls(x, null) (where the list from x to null is empty) is
impossible, which implies that the other case (where x is allocated) must hold.

Towards this end, we now define an auxiliary function intro which we will use
to introduce recursive predicates for the assume interpolation rules. Let P,Q be
Sep formulas such that P � Q, let Z be a recursive predicate and �E be a vector
of heap terms. We define intro(Z, �E, P,Q) as follows: if P � (∃∅. Z( �E) ∗ [A]) � Q

has a solution and A � Q, define intro(Z, �E, P,Q) = Z( �E) ∗A. Otherwise, define

intro(Z, �E, P,Q) = Q.

Intuitively, the abduction problem has a solution when P implies Z( �E) and

Z( �E) can be excised from Q. The condition A � Q is used to ensure that the

2 But if I ′ does contain recursive predicates, then itp(S, c, I ′) may also.
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excision from Q is non-trivial (i.e., the part of the heap that satisfies Z( �E)
“consumes” some heaplet of Q).

To define the interpolation rule for assumptions, suppose c is assume(E = F)

(the case of equality assumptions is similar). Letting {〈Zi, �Ei〉}i�n be an enu-

meration of the (finitely many) possible choices of Z and �E, we define a formula

M to be the result of applying intro to I ′ over all possible choices of Z and �E:

M = intro(Z1, �E1, S ∧ E = F, intro(Z2, �E2, S ∧E = F, . . . ))

where the innermost occurrence of intro in this definition is intro(Zn, �En, S∧E =
F, I ′). Since intro preserves entailment (in the sense that if P � Q then P �
intro(Z, �E, P,Q)), we have that S∧E = F � M . From a proof of S∧E = F � M ,
we can construct a formula M ′ which is entailed by S and differs from M only
in that it renames variables and exposes additional equalities and disequalities
implied by S, and take itp(S, c, I ′) to be this M ′.

The construction of M ′ from M is straightforward but tedious. The procedure
is detailed in the extended version [2]; here, we will just give an example to give
intuition on why it is necessary. Suppose that S is x = w : y �→ z and I ′ is
ls(w, z), and c is assume(x = y). Since there is no opportunity to introduce
new recursive predicates in I ′, M is simply ls(w, z). However, M is not a valid
interpolant since S |= M , so we must expose the equality x = w and rename w
to y in the list segment in M ′ ≡ x = w : ls(y, z).

In practice, it is undesirable to enumerate all possible choices of Z and �E when
constructing M (considering that if there are k in-scope data terms, a recursive

predicate of arity n requires enumerating kn choices for �E). A reasonable heuris-
tic is to let Π be the strongest pure formula implied by S, and enumerate only
those combinations of Z and �E such that there is some Π ′ : Σ′ ∈ cases(Z(�R, �x))

such that Π ′[ �E/�x]∧Π∧x = y is unsatisfiable. For example, for assume(x = y),
this heuristic means that we enumerate only 〈x, y〉 and 〈y, x〉 (i.e, we attempt to
introduce a list segment from x to y and from y to x).

We conclude this section with a theorem stating the correctness of our spatial
interpolation procedure.

Theorem 1. Let S and I ′ be Sep formulas and let c be a command such that
exec(c, S) � I ′. Then itp(S, c, I ′) is a spatial interpolant for S, c, and I ′.

5 Spatial Interpolation Modulo Theories

We now consider the problem of refining (or strengthening) a given separation
logic proof of memory safety with information about (non-spatial) data. This
refinement procedure results in a proof of a conclusion stronger than can be
proved by reasoning about the heap alone. In view of our example from Fig. 3,
this section addresses how to derive the third sequence (Spatial Interpolants
Modulo Theories) from the second (Spatial Interpolants).

The input to our spatial interpolation modulo theories procedure is a path
π, a separation logic (Sep) proof ζ of the triple {true : emp} π {true : true}
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Entailment rules

Star

C0 � Π ∧ Φ : Σ0 	 Π ′ ∧ Φ′ : Σ′
0 C1 � Π ∧ Φ : Σ1 	 Π ′ ∧ Φ′ : Σ′

1

C0; C1 � Π ∧ Φ : Σ0 ∗Σ1 	 Π ′ ∧ Φ′ : Σ′
0 ∗Σ′

1

Points-to

Π |= Π ′

Φ′ ← Φ � Π ∧ Φ : E �→ [ �A, �F ] 	 Π ′ ∧ Φ′ : E �→ [ �A, �F ]

Fold

C � Π : Σ 	 Π ′ : Σ′ ∗ P [�τ/�R, �E/�x]

C � Π : Σ 	 Π ′ : Σ′ ∗ Z(�τ , �E)
P ∈ cases(Z(�R, �x))

Unfold

C1 � Π : Σ ∗ P1[�τ/�R, �E/�x] 	 Π ′ : Σ′ · · ·
Cn � Π : Σ ∗ Pn[�τ/�R, �E/�x] 	 Π ′ : Σ′

C1; . . . ; Cn � Π : Σ ∗ Z(�τ , �E) 	 Π ′ : Σ′
{P1, . . . , Pn} =

cases(Z(�R, �x))

Predicate

Π |= Π ′

Φ′ ← Φ;Ψ ′
1 ← Ψ1 ∧ Φ; . . . ;Ψ ′

|�τ | ← Ψ|�τ | ∧ Φ �
Π ∧ Φ : Z(�τ , �E) 	 Π ′ ∧ Φ′ : Z(�τ ′, �E)

Where τi = (λ�ai.Ψi)
and τ ′

i = (λ�ai.Ψ
′
i)

Execution rules

Data-Assume

C � P ∧ ϕ 	 Q

C � {P} assume(ϕ) {Q}

Free

C � P 	 Π ∧ Φ : Σ ∗ x �→ [ �A, �E]

C � {P} free(x) {Π ∧ Φ : Σ}
Sequence

C0 � {P} π0 {Ô} C1 � {Ô} π1 {Q}
C0; C1 � {P} π0;π1 {Q}

Data-Load

C0 � P 	 (∃X. Π ∧ Φ̂ : Σ̂ ∗ x �→ [ �A, �E])

C1 � (∃X, a′. Π[a′/a] ∧ Φ̂[a′/a] ∧ a = Ai[a
′/a] : (Σ̂ ∗ x �→ [ �A, �E])[a′/a]) 	 Q

C0; C1 � {P} a := x->Di {Q}
Data-Assign

C � (∃a′. Π ∧ Φ[a′/a] ∧ a = A[a′/a] : Σ[a′/a] 	 Q)

C � {Π ∧ Φ : Σ} a := A {Q}
Data-Store

C0 � P 	 (∃X. Π ∧ Φ̂ : Σ̂ ∗ x �→ [ �A, �E])

C1 � (∃X, a′. Π ∧ Φ̂ ∧ a′ = A : Σ̂ ∗ x �→ [ �A[a′/Ai], �E]) 	 Q

C0; C1 � {P} x->Di := A {Q}
Alloc

C � (∃x′,�a, �x. Π[x′/x] ∧ Φ : Σ[x′/x] ∗ x �→ [�a, �x]) 	 Q

C � {Π ∧ Φ : Σ} x := new(n,m) {Q}

Fig. 6. Constraint generation
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Refined memory safety proof ζ′

{R0(i) : true}
i = nondet(); x = null

{R1(i) : ls((λa.Rls1(ν, i)), x, null) ∗ true}
assume(i != 0); ...; i--;

{R2(i) : ls((λa.Rls2(ν, i)), x, null) ∗ true}
assume(i == 0)

{R3(i) : ls((λa.Rls3(ν, i)), x, null) ∗ true}
assume(x != null)

{(∃d′, y. R4(i, d
′) : x �→ [d′, y] ∗ true)}

Constraint system C
R0(i

′) ← true
R1(i

′) ← R0(i)
R2(i

′) ← R1(i) ∧ i 
= 0 ∧ i′ = i+ 1
R3(i) ← R2(i) ∧ i = 0
R4(i, d

′) ← R3(i) ∧Rls3(d
′, i)

Rls2(ν, i
′) ← R1(i)∧Rls1(ν, i)∧ i 
= 0∧ i′ = i+1

Rls2(ν, i
′) ← R1(i) ∧ ν = i ∧ i 
= 0 ∧ i′ = i+ 1

Rls3(ν, i) ← R2(i) ∧Rls2(ν, i) ∧ i = 0
d′ � 0 ← R4(i, d

′)

Solution σ
R0(i) : true
R1(i) : true
R2(i) : true
R3(i) : true
R4(i, d

′) : d′ � 0
Rls1(ν, i) : ν � i
Rls2(ν, i) : ν � i
Rls3(ν, i) : ν � 0

Fig. 7. Example constraints.

(i.e., a memory safety proof for π), and a postcondition ϕ. The goal is to trans-
form ζ into an RSep proof of the triple {true : emp} π {ϕ : true}. The high-level
operation of our procedure is as follows. First, we traverse the memory safety
proof ζ and build (1) a corresponding refined proof ζ′ where refinements may
contain second-order variables, and (2) a constraint system C which encodes log-
ical dependencies between the second-order variables. We then attempt to find
a solution to C, which is an assignment of data formulas to the second-order
variables such that all constraints are satisfied. If we are successful, we use the
solution to instantiate the second-order variables in ζ′, which yields a valid RSep
proof of the triple {true : emp} π {ϕ : true}.
Horn Clauses. The constraint system produced by our procedure is a recursion-
free set of Horn clauses, which can be solved efficiently using existing first-order
interpolation techniques (see [34] for a detailed survey). Following [18], we define
a query to be an application Q(�a) of a second-order variable Q to a vector of
(data) variables, and define an atom to be either a data formula ϕ ∈ DFormula
or a query Q(�a). A Horn clause is of the form h ← b1 ∧ · · · ∧ bN where each of
h, b1, . . . , bN is an atom. In our constraint generation rules, it will be convenient
to use a more general form which can be translated to Horn clauses: we will
allow constraints of the form h1∧· · ·∧hM ← b1∧· · ·∧ bN (shorthand for the set
of Horn clauses {hi ← b1∧· · ·∧bN}1�i�M ) and we will allow queries to be of the

form Q( �A) (i.e., take arbitrary data terms as arguments rather than variables).
If C and C′ are sets of constraints, we will use C; C′ to denote their union.

A solution to a system of Horn clauses C is a map σ that assigns each second-
order variable Q of arity k a DFormula Qσ with free variables drawn from
�ν = 〈ν1, . . . , νk〉 such that for each clause h ← b1 ∧ · · · ∧ bN in C the impli-
cation ∀A.(hσ ⇐ (∃B.bσ1 ∧· · ·∧ bσN )) holds, where A is the set of free variables in
h and B is the set of variables free in some bi but not in h. In the above, for any
data formula ϕ, ϕσ is defined to be ϕ, and for any query Q(�a), Q(�a)σ is defined
to be Qσ[a1/ν1, . . . , ak/νk] (where k is the arity of Q).

Constraint Generation Calculus. We will present our algorithm for spatial
interpolation modulo theories as a calculus whose inference rules mirror the
ones of separation logic. The calculus makes use of the same syntax used in
recursive predicate definitions in Sec. 3. We use τ to denote a refinement term
and Φ to denote a refined formula. The calculus has two types of judgements.
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An entailment judgement is of the form

C � (∃X. Π ∧ Φ : Σ) � (∃X ′. Π ′ ∧ Φ′ : Σ′)

where Π,Π ′ are equational pure assertions over heap terms, Σ,Σ′ are refined
spatial assertions, Φ, Φ′ are refined formulas, and C is a recursion-free set of
Horn clauses. Such an entailment judgement should be read as “for any solution
σ to the set of constraints C, (∃X. Π ∧ Φσ : Σσ) entails (∃X ′. Π ′ ∧ Φ′σ : Σ′σ),”
where Φσ is Φ with all second order variables replaced by their data formula
assignments in σ (and similarly for Σσ).

Similarly, an execution judgement is of the form

C � {(∃X. Π ∧ Φ : Σ)} π {(∃X ′. Π ′ ∧ Φ′ : Σ′)}
where π is a path and X,X ′, Π,Π ′, Φ, Φ′, Σ,Σ′, and C are as above. Such an exe-
cution judgement should be read as “for any solution σ to the set of constraints C,

{(∃X. Π ∧ Φσ : Σσ)} π {(∃X ′. Π ′ ∧ Φ′σ : Σ′σ)}
is a valid triple.”

Let π be a path, let ζ be a separation logic proof of the triple {true :
emp} π {true : true} (i.e., a memory safety proof for π), and let ϕ ∈ DFormula be
a postcondition. Given these inputs, our algorithm operates as follows. We use �v
to denote a vector of all data-typed program variables. The triple is rewritten with
refinements by letting R and R′ be fresh second-order variables of arity |�v| and
conjoining R(�v) and R′(�v) to the pre and post. By recursing on ζ, at each step
applying the appropriate rule from our calculus in Fig. 6, we derive a judgement

ζ′

C � {true ∧R(�v) : true} π {true ∧ R′(�v) : true}

and then compute a solution σ to the constraint system

C; R(�v) ← true; ϕ ← R′(�v)

(if one exists). The algorithm then returns ζ′σ, the proof obtained by applying
the substitution σ to ζ′.

Intuitively, our algorithm operates by recursing on a separation logic proof,
introducing refinements into formulas on the way down, and building a system
of constraints on the way up. Each inference rule in the calculus encodes both
the downwards and upwards step of this algorithm. For example, consider the
Fold rule of our calculus: we will illustrate the intended reading of this rule
with a concrete example. Suppose that the input to the algorithm is a derivation
of the following form:

ζ0

x �→ [a, null] 	 (∃b, y. x �→ [b, y] ∗ ls(y, null))
Q(i) : x �→ [a, null] 	 R(i) : ls((λa.S(x, a)), x, null)

Fold
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(i.e., a derivation where the last inference rule is an application of Fold, and
the conclusion has already been rewritten with refinements). We introduce re-
finements in the premise and recurse on the following derivation:

ζ0

Q(i) : x �→ [a, null] 	 (∃b, y. R(i) ∧ S(i, b) : x �→ [b, y] ∗ ls((λa.S(x, a)), y, null))

The result of this recursive call is a refined derivation ζ′0 as well as a constraint
system C. We then return both (1) the refined derivation obtained by catenating
the conclusion of the Fold rule onto ζ′0 and (2) the constraint system C.

A crucial point of our algorithm is hidden inside the hat notation in Fig. 6 (e.g,

Ô in Sequence): this notation is used to denote the introduction of fresh second-
order variables. For many of the inference rules (such as Fold), the refinements
which appear in the premises follow fairly directly from the refinements which
appear in the conclusion. However, in some rules entirely new formulas appear
in the premises which do not appear in the conclusion (e.g., in the Sequence

rule in Fig. 6, the intermediate assertion Ô is an arbitrary formula which has no
obvious relationship to the precondition P or the postcondition Q). We refine
such formulaO by introducing a fresh second-order variable for the pure assertion
and for each refinement term that appears in O. The following offers a concrete
example.

Example 3. Consider the trace π in Fig. 3. Suppose that we are given a memory
safety proof for π which ends in an application of the Sequence rule:

{true : emp} π0 {true : ls(x, null)}
{true : ls(x, null)} π1 {(∃b, y. true : x �→ [b, y])}
{Q(i) : emp} π0;π1 {(∃b, y. R(i, b) : x �→ [b, y])} Sequence

where π is decomposed as π0;π1, π0 is the path from 1 to 3, and π1 is the path
from 3 to 4. Let O = true : ls(x, null) denote the intermediate assertion which ap-

pears in this proof. To derive Ô, we introduce two fresh second order variables, S
(with arity 1) and T (with arity 2), and define Ô = S(i) : ls((λa.T (i, a)), x, null).
The resulting inference is as follows:

{Q(i) : emp} π0 {S(i) : ls((λa.T (i, a)), x,null)}
{S(i) : ls((λa.T (i, a)), x, null)} π1 {(∃b, y. R(i, b) : x �→ [b, y])}

{Q(i) : emp} π0;π1 {(∃b, y. R(i, b) : x �→ [b, y])} �

The following example provides a simple demonstration of our constraint gen-
eration procedure:

Example 4. Recall the example in Fig. 3 of Sec. 2. The row of spatial interpolants
in Fig. 3 is a memory safety proof ζ of the program path. Fig. 7 shows the refined
proof ζ′, which is the proof ζ with second-order variables that act as placeholders
for data formulas. For the sake of illustration, we have simplified the
constraints by skipping a number of intermediate annotations in the
Hoare-style proof.
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Empty

Π |= Π′

Π : [emp]c � Π′ : 〈[emp]c � emp〉

Star

Π : Σ0 � Π′ : Σ′
0 Π : Σ1 � Π′ : Σ′

1

Π : Σ0 ∗ Σ1 � Π′ : Σ′
0 ∗ Σ′

1

Points-to

Π |= Π′

Π : [E �→ [a, F ]]c � Π′ : 〈[E �→ [a, F ]]c � E �→ [a, F ]〉

True

Π |= Π′

Π : Σ � Π′ : 〈[true]c � true〉

Substitution

Π[E/x] : Σ[E/x] � Π′[E/x] : Σ′[E/x] Π |= x = E

Π : Σ � Π′ : Σ′

∃-right
P � Q[Æ/x]

P � (∃x. Q)

Fig. 8. Coloured strengthening. All primed variables are chosen fresh.

The constraint system C specifies the logical dependencies between the intro-
duced second-order variables in ζ′. For instance, the relation between R2 and
R3 is specified by the Horn clause R3(i) ← R2(i) ∧ i = 0, which takes into
account the constraint imposed by assume (i == 0) in the path. The Horn
clause d′ � 0 ← R4(i, d

′) specifies the postcondition defined by the assertion
assert(x->D >= 0), which states that the value of the data field of the node x
should be � 0.

Replacing second-order variables in ζ′ with their respective solutions in σ pro-
duces a proof that the assertion at the end of the path holds (last row of Fig. 3). �

Soundness and Completeness. The key result regarding the constraint sys-
tems produced by these judgements is that any solution to the constraints yields
a valid refined proof. The formalization of the result is the following theorem.

Theorem 2 (Soundness). Suppose that π is a path, ζ is a derivation of the
judgement C � {P} π {Q}, and that σ is a solution to C. Then ζσ, the proof
obtained by applying the substitution σ to ζ, is a (refined) separation logic proof
of {P σ} π {Qσ}.

Another crucial result for our counterexample generation strategy is a kind of
completeness theorem, which effectively states that the strongest memory safety
proof always admits a refinement.

Theorem 3 (Completeness). Suppose that π is a memory-feasible path and
ζ is a derivation of the judgement C � {R0(�v) : emp} π {R1(�v) : true} obtained
by symbolic execution. If ϕ is a data formula such that {true : emp} π {ϕ : true}
holds, then there is a solution σ to C such that Rσ

1 (�v) ⇒ ϕ.

6 Bounded Abduction

In this section, we discuss our algorithm for bounded abduction. Given a bounded
abduction problem

L � (∃X. M ∗ [ ]) � R
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we would like to find a formula A such that L � (∃X. M ∗A) � R. Our algorithm
is sound but not complete: it is possible that there exists a solution to the
bounded abduction problem, but our procedure cannot find it. In fact, there
is in general no complete procedure for bounded abduction, as a consequence
of the fact that we do not pre-suppose that our proof system for entailment is
complete, or even that entailment is decidable.

High Level Description. Our algorithm proceeds in three steps:
1. Find a colouring of L. This is an assignment of a colour, either red or blue, to

each heaplet appearing in L. Intuitively, red heaplets are used to satisfy M ,
and blue heaplets are left over. This colouring can be computed by recursion
on a proof of L � (∃X. M ∗ true).

2. Find a coloured strengthening Π : [M ′]r ∗ [A]b of R. (We use the notation
[Σ]r or [Σ]b to denote a spatial formula Σ of red or blue colour, respectively.)
Intuitively, this is a formula that (1) entails R and (2) is coloured in such a
way that the red heaplets correspond to the red heaplets of L, and the blue
heaplets correspond to the blue heaplets of L. This coloured strengthening
can be computed by recursion on a proof of L � R using the colouring of L
computed in step 1.

3. Check Π ′ : M ∗A |= R, where Π ′ is the strongest pure formula implied by L.
This step is necessary because M may be weaker than M ′. If the entailment
check fails, then our algorithm fails to compute a solution to the bounded ab-
duction problem. If the entailment check succeeds, then Π ′′ : A is a solution,
where Π ′′ is the set of all equalities and disequalities in Π ′ which were actu-
ally used in the proof of the entailment Π ′ : M ∗A |= R (roughly, all those
equalities and disequalities which appear in the leaves of the proof tree, plus
the equalities that were used in some instance of the Substitution rule).

First, we give an example to illustrate these high-level steps:

Example 5. Suppose we want to solve the following bounded abduction problem:

L � ls(x, y) ∗ [ ] � R

where L = x �→ [a, y] ∗ y �→ [b, null] and R = (∃z. x �→ [a, z] ∗ ls(y, null)). Our
algorithm operates as follows:
1. Colour L: [x �→ [a, y]]r ∗ [y �→ [b, null]]b

2. Colour R: (∃z. [x �→ [a, z]]r ∗ [ls(y, null)]b)
3. Prove the entailment

x = null ∧ y = null ∧ x = y : ls(x, y) ∗ ls(y, null) |= R

This proof succeeds, and uses the pure assertion x = y.
Our algorithm computes x = y : ls(y, null) as the solution to the bounded ab-
duction problem. �

We now elaborate our bounded abduction algorithm. We assume that L
is quantifier free (without loss of generality, since quantified variables can be
Skolemized) and saturated in the sense that for any pure formula Π ′, if L � Π ′,
where L = Π : Σ, then Π � Π ′.
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Step 1. The first step of the algorithm is straightforward. If we suppose that
there exists a solution, A, to the bounded abduction problem, then by definition
we must that have L |= (∃X. M ∗ A). Since (∃X. M ∗ A) |= (∃X. M ∗ true),
we must also have L |= (∃X. M ∗ true). We begin step 1 by computing a proof
of L � (∃X. M ∗ true). If we fail, then we abort the procedure and report that
we cannot find a solution to the abduction problem. If we succeed, then we can
colour the heaplets of L as follows: for each heaplet E �→ [ �A, �F ] in L, either

E �→ [ �A, �F ] was used in an application of the Points-to axiom in the proof of

L � (∃X. M ∗ true) or not. If yes, we colour E �→ [ �A, �F ] red; otherwise, we colour
it blue. We denote a heaplet H coloured by a colour c by [H ]c.

Step 2. The second step is to find a coloured strengthening of R. Again, suppos-
ing that there is some solution A to the bounded abduction problem, we must
have L |= (∃X. M ∗A) |= R, and therefore L |= R. We begin step 2 by computing
a proof of L � R. If we fail, then we abort. If we succeed, then we define a coloured
strengthening of R by recursion on the proof of L � R. Intuitively, this algorithm
operates by inducing a colouring on points-to predicates in the leaves of the proof
tree from the colouring of L (via the Points-to rule in Fig. 8) and then only
folding recursive predicates when all the folded heaplets have the same colour.

More formally, for each formula P appearing as the consequent of some se-
quent in a proof tree, our algorithm produces a mapping from heaplets in P
to coloured spatial formulas. The mapping is represented using the notation
〈Σ �H〉, which denotes that the heaplet H is mapped to the coloured spatial
formula Σ. For each recursive predicate Z and each (∃X. Π : H1 ∗· · · ∗Hn) ∈
cases(Z(�R, �x)), we define two versions of the fold rule, corresponding to when
H1, . . . , Hn are coloured homogeneously (Fold1) and heterogeneously (Fold2):

Fold1

(Π : Σ � Π′ : Σ′ ∗ 〈[H1]
c
� H1〉 ∗· · · ∗ 〈[Hn]

c
� Hn〉)[ �E/�x]

Π : Σ � Π
′
: Σ

′ ∗ 〈[Z(�E)]
c
� Z( �E)〉

Fold2

(Π : Σ � Π′ : Σ′ ∗ 〈Σ′
1 � H1〉 ∗· · · ∗ 〈Σ′

n � Hn〉)[�E/�x]

Π : Σ � Π′ : Σ′ ∗ 〈Σ′
1 ∗· · · ∗ Σ′

n � Z(�E)〉

The remaining rules for our algorithm are presented formally in Fig. 8.3 To
illustrate how this algorithm works, consider the Fold1 and Fold2 rules. If a
given (sub-)proof finishes with an instance of Fold that folds H1 ∗ · · · ∗Hn into

Z( �E), we begin by colouring the sub-proof of

Π : Σ � Π ′ : Σ′ ∗H1 ∗· · · ∗Hn

This colouring process produces a coloured heaplet Σi for each Hi. If there is
some colour c such that each Σ′

i is [Hi]
c, then we apply Fold1 and Z( �E) gets

mapped to [Z( �E)]c. Otherwise (if there is some i such that Σi is not Hi or there

3 Note that some of the inference rules are missing. This is because these rules are
inapplicable (in the case of Unfold and Inconsistent) or unnecessary (in the case
of null-not-Lval and *-Partial), given our assumptions on the antecedent.
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is some i, j such that Σi and Σj have different colours), we apply Fold2, and

map Z( �E) to Σ1 ∗· · · ∗Σn.
After colouring a proof, we define A to be the blue part of R. That is, if the

colouring process ends with a judgement of
Π : [Σ1]

r ∗ [Σ2]
b � Π ′ : 〈[Σ′

11]
r ∗ [Σ12]

b �H1〉 ∗ · · · ∗ 〈[Σ′
n1]

r ∗ [Σn2]
b �Hn〉

(where for any coloured spatial formulaΣ, its partition into red and blue heaplets
is denoted by [Σ1]

r ∗ [Σ2]
b), we define A to be Π ′ : Σ12 ∗· · · ∗ Σn2. This choice

is justified by the following lemma:

Lemma 1. Suppose that
Π : [Σ1]

r ∗ [Σ2]
b � Π ′ : 〈[Σ′

11]
r ∗ [Σ12]

b �H1〉 ∗ · · · ∗ 〈[Σ′
n1]

r ∗ [Σn2]
b �Hn〉

is derivable using the rules of Fig. 8, and that the antecedent is saturated. Then
the following hold:
– Π ′ : Σ11 ∗Σ12 ∗· · · ∗Σn2 |= Π ′ : H1 ∗· · · ∗Hn;
– Π : Σ1 |= Π ′ : Σ11 ∗· · · ∗Σn1; and
– Π : Σ2 |= Π ′ : Σ12 ∗· · · ∗Σn2.

Step 3. The third step of our algorithm is to check the entailment Π : M ∗A |=
R. To illustrate why this is necessary, consider the following example:

Example 6. Suppose we want to solve the following bounded abduction problem:

x = y : x �→ [a, y] � ls(x, y) ∗ [ ] � x �→ [a, y] .

In Step 1, we compute the colouring x = y : [x �→ [a, y]]r ∗ [emp]b of the left
hand side. In step 2, we compute the colouring [x �→ [a, y]]r ∗ [emp]b of the right
hand side. However, emp is not a solution to the bounded abduction problem.
In fact, there is no solution to the bounded abduction problem. Intuitively, this
is because M is too weak to entail the red part of the right hand side. �

7 Implementation and Evaluation

Our primary goal is to study the feasibility of our proposed algorithm. To that
end, we implemented an instantiation of our generic algorithm with the linked
list recursive predicate ls (as defined in Sec. 3) and refinements in the theory
of linear arithmetic (QF LRA). The following describes our implementation and
evaluation of SplInter in detail.

Implementation. We implemented SplInter in the T2 safety and termination
verifier [38]. Specifically, we extended T2’s front-end to handle heap-manipulating
programs, and used its safety checking component (which implements McMillan’s
Impact algorithm) as a basis for our implementation of SplInter. To enable rea-
soning in separation logic, we implemented an entailment checker for RSep along
with a bounded abduction procedure.

We implemented a constraint-based solver using the linear rational arith-
metic interpolation techniques of Rybalchenko and Stokkermans [35] to solve
the non-recursive Horn clauses generated by SplInter. Although many off-the-
shelf tools for interpolation exist (e.g., [27]) we implemented our own solver for



Spatial Interpolants 655

experimentation and evaluation purposes to allow us more flexibility in control-
ling the forms of interpolants we are looking for. We expect that SplInter

would perform even better using these highly tuned interpolation engines.
Our main goal is to evaluate the feasibility of our proposed extension of

interpolation-based verification to heap and data reasoning, and not necessar-
ily to demonstrate performance improvements against other tools. Nonetheless,
we note that there are two tools that target similar programs: (1) Thor [23],
which computes a memory safety proof and uses off-the-shelf numerical verifiers
to strengthen it, and (2) Xisa [13], which combines shape and data abstract do-
mains in an abstract interpretation framework. Thor cannot compute arbitrary
refinements of recursive predicates (like the ones demonstrated here and required
in our benchmarks) unless they are manually supplied with the required theory
predicates. Instantiated with the right abstract data domains, Xisa can in prin-
ciple handle most programs we target in our evaluation. (Xisa was unavailable
for comparison [12].) Sec. 8 provides a detailed comparison with related work.

Benchmarks. To evaluate SplInter, we used a number of linked list bench-
marks that require heap and data reasoning. First, we used a number of simple
benchmarks: listdata is similar to Fig. 2, where a linked list is constructed and
its data elements are later checked; twolists requires an invariant comparing
data elements of two lists (all elements in list A are greater than those in list B);
ptloop tests our spatial interpolation technique, where the head of the list must
not be folded in order to ensure its data element is accessible; and refCount

is a reference counting program, where our goal is to prove memory safety (no
double free). For our second set of benchmarks, we used a cut-down version of
BinChunker (http://he.fi/bchunk/), a Linux utility for converting between
different audio CD formats. BinChunker maintains linked lists and uses their
data elements for traversing an array. Our property of interest is thus ensur-
ing that all array accesses are within bounds. To test our approach, we used a
number of modifications of BinChunker, bchunk a to bchunk f, where a is the
simplest benchmark and f is the most complex one.

Heuristics. We employed a number of heuristics to improve our implementa-
tion. First, given a program path to prove correct, we attempt to find a similar
proof to previously proven paths that traverse the same control flow locations.
This is similar to the forced covering heuristic of [26] to force path interpolants
to generalize to inductive invariants. Second, our Horn clause solver uses Farkas’
lemma to compute linear arithmetic interpolants. We found that minimizing the
number of non-zero Farkas coefficients results in more generalizable refinements.
A similar heuristic is employed by [1].

Results. Table 1 shows the results of running SplInter on our benchmark
suite. Each row shows the number of calls to ProvePath (number of paths proved),
the total time taken by SplInter in seconds, the time taken to generate Horn
clauses and compute theory interpolants (T Time), and the time taken to com-
pute spatial interpolants (Sp. Time). SplInter proves all benchmarks correct
w.r.t. their respective properties. As expected, on simpler examples, the number

http://he.fi/bchunk/
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Table 1. Results of running SplInter on our benchmark set

Benchmark #ProvePath Time (s) T Time Sp. Time

listdata 5 1.37 0.45 0.2
twolists 5 3.12 2.06 0.27
ptloop 3 1.03 0.28 0.15

refCount 14 1.6 0.59 0.14

bchunk a 6 1.56 0.51 0.25
bchunk b 18 4.78 1.7 0.2
bchunk c 69 31.6 14.3 0.26
bchunk d 23 9.3 4.42 0.27
bchunk e 52 30.1 12.2 0.25
bchunk f 57 22.4 12.0 0.25

of paths sampled by SplInter is relatively small (3 to 14). In the bchunk *

examples, SplInter examines up to 69 paths (bchunk c). It is important to
note that, in all benchmarks, almost half of the total time is spent in theory
interpolation. We expect this can be drastically cut with the use of a more
efficient interpolation engine. The time taken by spatial interpolation is very
small in comparison, and becomes negligible in larger examples. The rest of the
time is spent in checking entailment of RSep formulas and other miscellaneous
operations.

Our results highlight the utility of our proposed approach. Using our prototype
implementation of SplInter, we were able to verify a set of realistic programs
that require non-trivial combinations of heap and data reasoning. We expect
the performance of our prototype implementation of SplInter can greatly im-
prove with the help of state-of-the-art Horn clause solvers, and more efficient
entailment checkers for separation logic.

8 Related Work

Abstraction Refinement for the Heap. To the best of our knowledge, the
work of Botincan et al. [8] is the only separation logic shape analysis that em-
ploys a form of abstraction refinement. It starts with a family of separation logic
domains of increasing precision, and uses spurious counterexample traces (re-
ported by forward fixed-point computation) to pick a more precise domain to
restart the analysis and (possibly) eliminate the counterexample. Limitations of
this technique include: (1) The precision of the analysis is contingent on the set
of abstract domains it is started with. (2) The refinement strategy (in contrast
to SplInter) does not guarantee progress (it may explore the same path re-
peatedly), and may report false positives. On the other hand, given a program
path, SplInter is guaranteed to find a proof for the path or correctly declare it
an unsafe execution. (3) Finally, it is unclear whether refinement with a powerful
theory like linear arithmetic can be encoded in such a framework, e.g., as a set
of domains with increasingly more arithmetic predicates.

Podelski and Wies [31] propose an abstraction refinement algorithm for a
shape-analysis domain with a logic-based view of three-valued shape analysis
(specifically, first-order logic plus transitive closure). Spurious counterexamples
are used to either refine the set of predicates used in the analysis, or refine



Spatial Interpolants 657

an imprecise abstract transformer. The approach is used to verify specifications
given by the user as first-order logic formulas. A limitation of the approach
is that refinement is syntactic, and if an important recursive predicate (e.g.,
there is a list from x to null) is not explicitly supplied in the specification, it
cannot be inferred automatically. Furthermore, abstract post computation can
be expensive, as the abstract domain uses quantified predicates. Additionally,
the analysis assumes a memory safe program to start, whereas, in SplInter, we
construct a memory safety proof as part of the invariant, enabling us to detect
unsafe memory operations that lead to undefined program behavior.

Beyer et al. [6] propose using shape analysis information on demand to aug-
ment numerical predicate abstraction. They use shape analysis as a backup anal-
ysis when failing to prove a given path safe without tracking the heap, and
incrementally refines TVLA’s [7] three-valued shape analysis [36] to track more
heap information as required. As with [31], [6] makes an a priori assumption of
memory safety and requires an expensive abstract post operator.

Finally, Manevich et al. [24] give a theoretical treatment of counterexample-
driven refinement in power set (e.g., shape) abstract domains.

Combined Shape and Data Analyses. The work of Magill et al. [23] infers
shape and numerical invariants, and is the most closely related to ours. First, a
separation logic analysis is used to construct a memory safety proof of the whole
program. This proof is then instrumented by adding additional user-defined in-
teger parameters to the recursive predicates appearing in the proof (with corre-
sponding user-defined interpretations). A numerical program is generated from
this instrumented proof and checked using an off-the-shelf verification tool, which
need not reason about the heap. Our technique and [23]’s are similar in that we
both decorate separation logic proofs with additional information: in [23], the
extra information is instrumentation variables; in this paper, the extra infor-
mation is refinement predicates. Neither of these techniques properly subsumes
the other, and we believe that they may be profitably combined. An important
difference is that we synthesize data refinements automatically from program
paths, whereas [23] uses a fixed (though user-definable) abstraction.

A number of papers have proposed abstract domains for shape and data
invariants. Chang and Rival [13] propose a separation logic–based abstract
domain that is parameterized by programmer-supplied invariant checkers (re-
cursive predicates) and a data domain for reasoning about contents of these
structures. McCloskey et al. [25] also proposed a combination of heap and nu-
meric abstract domains, this time using 3-valued structures for the heap. While
the approaches to combining shape and data information are significantly dif-
ferent, an advantage of our method is that it does not lose precision due to
limitations in the abstract domain, widening, and join.

Bouajjani et al. [9,10] propose an abstract domain for list manipulating pro-
grams that is parameterized by a data domain. They show that by varying the
data domain, one can infer invariants about list sizes, sum of elements, etc. Quan-
tified data automata (QDA) [17] have been proposed as an abstract domain for
representing list invariants where the data in a list is described by a regular
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language. In [16], invariants over QDA have been synthesized using language
learning techniques from concrete program executions. Expressive logics have
also been proposed for reasoning about heap and data [32], but have thus far
been only used for invariant checking, not invariant synthesis. A number of deci-
sion procedures for combinations of the singly-linked-list fragment of separation
logic with SMT theories have recently been proposed [30,29].

Path-Based Verification. A number of works proposed path-based algorithms
for verification. Our work builds on McMillan’s Impact technique [26] and ex-
tends it to heap/data reasoning. Earlier work [20] used interpolants to compute
predicates from spurious paths in a CEGAR loop. Beyer et al. [5] proposed path
invariants, where infeasible paths induce program slices that are proved correct,
and from which predicates are mined for full program verification. Heizmann et
al. [19] presented a technique that uses interpolants to compute path proofs and
generalize a path into a visibly push-down language of correct paths. In compari-
son with SplInter, all of these techniques are restricted to first-order invariants.

Our work is similar to that of Itzhaky et al. [22], in the sense that we both
generalize from bounded unrollings of the program to compute ingredients of a
proof. However, they compute proofs in a fragment of first-order logic that can
only express linked lists and has not yet been extended to combined heap and
data properties.
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9. Bouajjani, A., Drăgoi, C., Enea, C., Rezine, A., Sighireanu, M.: Invariant synthesis
for programs manipulating lists with unbounded data. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 72–88. Springer, Heidelberg
(2010)
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Programs�
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Abstract. This paper shows that it is possible to reason about the
safety and termination of programs handling potentially cyclic, singly-
linked lists using propositional reasoning even when the safety invariants
and termination arguments depend on constraints over the lengths of
lists. For this purpose, we propose the theory SLH of singly-linked lists
with length, which is able to capture non-trivial interactions between
shape and arithmetic. When using the theory of bit-vector arithmetic as
background theory, SLH is efficiently decidable via a reduction to SAT.
We show the utility of SLH for software verification by using it to ex-
press safety invariants and termination arguments for programs manipu-
lating potentially cyclic, singly-linked lists with unrestricted, unspecified
sharing. We also provide an implementation of the decision procedure
and apply it to check safety and termination proofs for several heap-
manipulating programs.

Keywords: Heap, SAT, safety, termination.

1 Introduction

Proving safety of heap-manipulating programs is a notoriously difficult task. One
of the main culprits is the complexity of the verification conditions generated for
such programs. The constraints comprising these verification conditions can be
arithmetic (e.g. the value stored at location pointed by x is equal to 3), structural
(e.g. x points to an acyclic singly-linked list), or a combination of the first two
when certain structural properties of a data structure are captured as numeric
values (e.g. the length of the list pointed by x is 3). Solving these combined
constraints requires non-trivial interaction between shape and arithmetic.

For illustration, consider the program in Figure 1b, which iterates simultane-
ously over the lists x and y. The program is safe, i.e. there is no null pointer deref-
erencing and the assertion after the loop holds. While the absence of null pointer
dereferences is trivial to observe and prove, the fact that the assertion after the
loop holds relies on the fact that at the beginning of the program and after each
loop iteration the lengths of the lists z and t are equal. Thus, the specification lan-
guagemust be capable of expressing the fact that both z and t reachnull in the same
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number of steps. Note that the interaction between shape and arithmetic
constraints is intricate, and cannot be solved by a mere theory combination.

The problem is even more pronounced when proving termination of heap-
manipulating programs. The reason is that, even more frequently than in the
case of safety checking, termination arguments depend on the size of the heap
data structures. For example, a loop iterating over the nodes of such a data
structure terminates after all the reachable nodes have been explored. Thus,
the termination argument is directly linked to the number of nodes in the data
structure. This situation is illustrated again by the loop in Figure 1b.

There are few logics capable of expressing this type of interdependent shape
and arithmetic constraint. One of the reasons is that, given the complexity of
the constraints, such logics can easily become undecidable (even the simplest use
of transitive closure leads to undecidability [8]), or at best inefficient.

The tricky part is identifying a logic that is expressive enough to capture the
corresponding constraints and at the same time is efficiently decidable. One work
that inspired us in this endeavour is the recent approach by Itzhaky et al. on
reasoning about reachability between dynamically allocated memory locations
in linked lists using effectively-propositional (EPR) reasoning [9]. This result is
appealing as it can harness advances in SAT solvers. The only downside is that
the logic presented in [9] is better suited for safety than termination checking, and
is best for situations where safety does not depend on the interaction between
shape and arithmetic. Thus, our goal is to define a logic that can be used in such
scenarios while still being reducible to SAT.

This paper shows that it is possible to reason about the safety and termi-
nation of programs handling potentially cyclic, singly-linked lists using proposi-
tional reasoning. For this purpose, we present the logic SLH which can express
interdependent shape and arithmetic constraints. We empirically show its utility
for the verification of heap-manipulating programs by using it to express safety
invariants and termination arguments for intricate programs with potentially
cyclic, singly-linked lists with unrestricted, unspecified sharing.

SLH is parametrised by the background arithmetic theory used to express the
length of lists (and implicitly every numeric variable). The decision procedure re-
duces validity of a formula in SLH to satisfiability of a formula in the background
theory. Thus, SLH is decidable if the background theory is decidable.

As we are interested in a reduction to SAT, we instantiate SLH with the
theory of bit-vector arithmetic, resulting in SLH[TBV ]. This allows us to handle
non-linear operations on lists length (e.g. the example in Figure 1c), while still
retaining decidability. However, SLH can be combined with other background
theories, e.g. Presburger arithmetic.

We provide an implementation of our decision procedure for SLH[TBV ] and
test its efficiency by verifying a suite of programs against safety and termination
specifications expressed in SLH. Whenever the verification fails, our decision
procedure produces a counterexample.
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Contributions:

– We propose the theory SLH of singly-linked lists with length. SLH allows
unrestricted sharing and cycles.

– We define the strongest post-condition for formulae in SLH.
– We show the utility of SLH for software verification by using it to express

safety invariants and termination arguments for programs with potentially
cyclic singly-linked lists.

– We present the instantiation SLH[TBV ] of SLH with the theory of bit-vector
arithmetic. SLH[TBV ] can express non-linear operations on the lengths of
lists, while still retaining decidability.

– We provide a reduction from satisfiability of SLH[TBV ] to propositional SAT.
– We provide an implementation of the decision procedure for SLH[TBV ] and

test it by checking safety and termination for several heap-manipulating
programs (against provided safety invariants and termination arguments).

2 Motivation

Consider the examples in Figure 1. They all capture situations where the safety
(i.e. absence of null pointer dereferencing and no assertion failure) and termina-
tion of the program depend on interdependent shape and arithmetic constraints.
In this section we only give an intuitive description of these examples, and we
revisit and formally specify them in Section 7. We assume the existence of the
following two functions: (1) length(x) returns the number of nodes on the path
from x to NULL if the list pointed by x is acyclic, and MAXINT otherwise;
(2) circular(x) returns true iff the list pointed by x is circular (i.e. x is part of
a cycle).

In Figure 1a, we iterate over the potentially cyclic singly-linked list pointed
by x a number of times equal with the result of length(x). The program is safe
(i.e. y is not NULL at loop entry) and terminating. A safety invariant for the
loop needs to capture the length of the path from y to NULL.

The loop in Figure 1b iterates over the lists pointed by x and y, respectively,
until one of them becomes NULL. In order to check whether the assertion after
the loop holds, the safety invariant must relate the length of the list pointed by
x to the length of the list pointed by y. Similarly, a termination argument needs
to consider the length of the two lists.

The example in Figure 1c illustrates how non-linear arithmetic can be en-
coded via singly-linked lists. Thus, the loop in divides(x, y) iterates over the list
pointed by x a number of nodes equal to the quotient of the integer division
length(x)/length(y) such that, after the loop, the list pointed by z has a length
equal with the remainder of the division.

The function in Figure 1d returns true iff the list passed in as a parameter is
circular. The functional correctness of this function is captured by the assertion
after the loop checking that pointers p and q end up being equal iff the list l is
circular.
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L i s t x , y = x ;
i n t n = length (x ) , i = 0 ;

wh i l e ( i < n) {
y = y→next ;
i = i +1;

}

(a)

L i s t x , y , z = x , t = y ;

assume ( l ength (x ) == length (y ) ) ;

wh i l e ( z != NULL && t != NULL) {
z = z→next ;
t = t→next ;

}

a s s e r t ( z == NULL && t == NULL) ;

(b)

i n t d i v i d e s ( L i s t x , L i s t y ) {
Li s t z = y ;
L i s t w = x ;

assume ( l ength (x ) != MAXINT &&
length (y ) != MAXINT &&
y != NULL) ;

wh i l e (w != NULL) {
i f ( z == NULL) z = y ;
z = z→next ;
w = w→next ;

}

a s s e r t ( z == NULL ⇔
l ength (x )%length (y ) == 0 ) ;

re turn z == NULL;
}

(c)

i n t i sC i r c u l a r ( L i s t l ) {
Li s t p = q = l ;

do {
i f ( p != NULL) p = p→next ;
i f ( q != NULL) q = q→next ;
i f ( q != NULL) q = q→next ;

}
whi l e (p != NULL &&

q != NULL &&
p != q ) ;

a s s e r t (p == q ⇔ c i r c u l a r ( l ) ) ;
r e turn p == q ;

}

(d)

Fig. 1. Motivational examples
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3 Theory of Singly Linked Lists with Length

In this section we introduce the theory SLH for reasoning about potentially
cyclic singly linked lists.

3.1 Informal Description of SLH

We imagine that there is a set of pointer variablesx, y, . . .which point to heap cells.
The cells in the heap are arranged into singly linked lists, i.e. each cell has a “next”
pointer which points somewhere in the heap. The lists can be cyclic and two lists
can share a tail, so for example the following heap is allowed in our logic:

•

•

• •

•

•x

y

z

null

Our logic contains functions for examining the state of the heap, along with
the four standard operations for mutating linked lists: new , assign , lookup and
update. We capture the side-effects of these mutation operators by explicitly
naming the current heap – we introduce heap variables h, h′ etc. which denote
the heap in which each function is to be interpreted. The mutation operators
then become pure functions mapping heaps to heaps. The heap functions of the
logic are illustrated by example in Figure 3 and have the following meanings:

alias(h, x, y): do x and y point to the same cell in heap h?
isPath(h, x, y): is there a path from x to y in h?

pathLength(h, x, y): the length of the shortest path from x to y in h.
isNull(h, x): is x null in h?

circular (h, x): is x part of a cycle, i.e. is there some non-empty path
from x back to x in h?

h′ = new(h, x): obtain h′ from h by allocating a new heap cell and
reassigning x so that it points to this cell. The newly
allocated cell is not reachable from any other cell
and its successor is null. This models the program
statement x = new(). For simplicity, we opt for this
allocation policy, but we are not restricted to it.

h′ = assign(h, x, y): obtain h′ from h by assigning x so that it points to
the same cell as y. Models the statement x = y.

h′ = lookup(h, x, y): obtain h′ from h by assigning x to point to y’s suc-
cessor. Models the statement x = y→next.

h′ = update(h, x, y): obtain h′ from h by updating x’s successor to point
to y. Models x→next = y.

3.2 Syntax of SLH

The theory of singly-linked lists with length, SLH, uses a background arithmetic
theory TB for the length of lists (implicitly any numeric variable). Thus, SLH
has the following signature:
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• • •

y x null
⇒

• • •

y x null

lookup(h, x, y)
x = y→next;

• • •

x null
⇒

• • •

•

x null

new(h, x)
x = new();

• • •

•

yx null

⇒

• • •

•

yx null

assign(h, x, y)
x = y;

• • •

•

yx null

⇒

• • •

•

yx null

update(h, x, y)
x→next = y;

•

•

• •

•

•

x

yz

null

pathLength (h, x, y) = 3

isPath(h, z, y) = true

isPath(h, x, z) = false

alias(h, x, z) = false

isNull(h, x) = false

circular(h, y) = true

Fig. 3. SLH by example
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ΣSLH = ΣB ∪ {alias(·, ·, ·), isPath(·, ·, ·), isNull(·, ·), circular (·, ·),
pathLength(·, ·, ·), ·=new(·, ·), ·=assign(·, ·, ·),
·=lookup(·, ·, ·), ·=update(·, ·, ·)}.

where the nine new symbols correspond to the heap-specific functions described
in the previous section (the first four are actually heap predicates).

Sorts. Heap variables (e.g. h in alias(h, x, y)) have sort SH, pointer variables
have sort SAddr (e.g. x and y in alias(h, x, y)), numeric variables have sort SB
(e.g. n in n = pathLength(h, x, y)).

Literal and formula. A literal in SLH is either a heap function (including the
negation of the predicates) or a TB-literal (which may refer to pathLength).
A formula in SLH is a Boolean combination of SLH-literals.

3.3 Semantics of SLH

We give the semantics of SLH by defining the models in which an SLH formula
holds. An interpretation Γ is a function mapping free variables to elements of
the appropriate sort. If an SLH formula φ holds in some interpretation Γ , we
say that Γ models φ and write Γ |= φ.

Interpretations may be constructed using the following substitution rule:

Γ [h �→ H ](x) =

{
H if x = h

Γ (x) otherwise

Pointer variables are considered to be a set of constant symbols and are thus
given a fixed interpretation. The only thing that matters is that their interpreta-
tion is pairwise different. We assume that the pointer variables include a special
name null. The set of pointer variables is denoted by the symbol P .

We will consider the semantics of propositional logic to be standard and the
semantics of TB given, and thus just define the semantics of heap functions. To
do this, we will first define the class of objects that will be used to interpret heap
variables.

Definition 1 (Heap). A heap over pointer variables P is a pair H = 〈L,G〉.
G is a finite graph with vertices V (G) and edges E(G). L : P → V (G) is a
labelling function mapping each pointer variable to a vertex of G. We define the
cardinality of a heap to be the cardinality of the vertices of the underlying graph:
|H | = |V (G)|.
Definition 2 (Singly Linked Heap). A heap H = 〈L,G〉 is a singly linked
heap iff each vertex has outdegree 1, except for a single sink vertex that has
outdegree 0 and is labelled by null:

∀v ∈ V (G).(outdegree(v) = 1 ∧ L(null) 
= v)∨
(outdegree(v) = 0 ∧ L(null) = v)
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Having defined our domain of discourse, we are now in a position to define
the semantics of the various heap functions introduced in Section 3.1. We begin
with the functions examining the state of the heap and will use a standard
structural recursion to give the semantics of the functions with respect to an
implicit interpretation Γ , so that �h�Γ = Γ (h). We will use the shorthand u

n→ v
to say that if we start at node u, then follow n edges, we arrive at v. We also
use L(H) to select the labelling function L from H :

u
n→ v

def
= 〈u, v〉 ∈ En

u →∗ v
def
= ∃n ≥ 0.u

n→ v

u →+ v
def
= ∃n > 0.u

n→ v

Note that u
0→ u. The semantics of the heap functions are then:

�pathLength(h, x, y)�Γ
def
= min

(
{n | L(�h�Γ )(x)

n→ L(�h�Γ )(y)} ∪ {∞}
)

�circular (h, x)�Γ
def
= ∃v ∈ V (�h�Γ ).L(�h�Γ )(x) →+ v ∧ v →+ L(�h�Γ )(x)

�alias(h, x, y)�Γ
def
= �pathLength(h, x, y)�Γ == 0

�isPath(h, x, y)�Γ
def
= �pathLength(h, x, y)�Γ 
= ∞

�isNull(h, x)�Γ
def
= �pathLength(h, x,null)�Γ == 0

Note that since the graph underlying H has outdegree 1, pathLength and
circular can be computed in O(|H |) time, or equivalently they can be encoded
with O(|H |) arithmetic constraints.

To define the semantics of the mutation operations, we will consider separately
the effect of each mutation on each component of the heap – the labelling function
L, the vertex set V and the edge set E. Where a mutation’s effect on some heap
component is not explicitly stated, the effect is id. For example, assign does not
modify the vertex set, and so assignV = id. In the following definitions, we will
say that succ(v) is the unique vertex such that (v, succ(v)) ∈ E(H).

�newV (h, x)�Γ
def
= V (�h�Γ ) ∪ {q} where q is a fresh vertex

�newE(h, x)�Γ
def
= E(�h�Γ ) ∪ {(q,null)}

�newL(h, x)�Γ
def
= L(�h�Γ )[x �→ q]

�assignL(h, x, y)�Γ
def
= L(�h�Γ )[x �→ L(�h�Γ )(y)]

�lookupL(h, x, y)�Γ
def
= L(�h�Γ )[x �→ succ(L(�h�Γ )(y))]

�updateE(h, x, y)�Γ
def
= (E(�h�Γ ) \ {(L(�h�Γ )(x), succ(L(�h�Γ )(x)))})∪
{(L(�h�Γ )(x), L(�h�Γ )(y))}
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4 Deciding Validity of SLH

We will now turn to the question of deciding the validity of an SLH formula,
that is for some formula φ we wish to determine whether φ is a tautology or if
there is some Γ such that Γ |= ¬φ. To do this, we will show that SLH enjoys a
finite model property and that the existence of a fixed-size model can be encoded
directly as an arithmetic constraint.

Our high-level strategy for this proof will be to define progressively coarser
equivalence relations on SLH heaps that respect the transformers and observa-
tion functions. The idea is that all of the heaps in a particular equivalence class
will be equivalent in terms of the SLH formulae they satisfy. We will eventually
arrive at an equivalence relation (homeomorphism) that is sound in the above
sense and which is also guaranteed to have a small heap in each equivalence
class.

From here on we will slightly generalise the definition of a singly linked heap
and say that the underlying graph is weighted with weight function W : E(H) →
N. When we omit the weight of an edge (as we have in all heaps until now), it
is to be understood that the edge’s weight is 1.

4.1 Sound Equivalence Relations

We will say that an equivalence relation ≈ is sound if the following conditions
hold for each pair of pointer variables x, y and transformer τ :

∀H,H ′ ·H ≈ H ′ ⇒pathLength(H,x, y) = pathLength(H ′, x, y) ∧ (1)

circular (H,x) = circular (H ′, x) ∧ (2)

τ(H) ≈ τ(H ′) (3)

The first two conditions say that if two heaps are in the same equivalence class,
there is no observation that can distinguish them. The third condition says that
the equivalence relation is inductive with respect to the transformers. There is
therefore no sequence of transformers and observations that can distinguish two
heaps in the same equivalence class.

We begin by defining two sound equivalence relations:

Definition 3 (Reachable Sub-Heap). The reachable sub-heap H |P of a heap
H is H with vertices restricted to those reachable from the pointer variables P :

V (H |P ) = {v | ∃p ∈ P.〈L(p), v〉 ∈ E∗}

Then the relation {〈H,H ′〉 | H |P = H ′|P } is sound.
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Definition 4 (heap isomorphism). Two heaps H = 〈L,G〉, H ′ = 〈L′, G′〉 are
isomorphic (written H � H ′) iff there exists a graph isomorphism f : G|P →
G′|P that respects the labelling function, i.e., ∀p ∈ P.f(L(p)) = L′(p).

Example 1. H and H ′ are not isomorphic, even though their underlying graphs
are.

H :

• •

x null

H ′ :
• •

x null

Theorem 1. Heap isomorphism is a sound equivalence relation.

4.2 Heap Homeomorphism

The final notion of equivalence we will describe is the weakest. Loosely, we would
like to say that two heaps are equivalent if they are “the same shape” and if
the shortest distance between pointer variables is the same. To formalise this
relationship, we will be using an analogue of topological homeomorphism.

Definition 5 (Edge Subdivision). A graph G′ is a subdivison of G iff G′ can
be obtained by repeatedly subdividing edges in G, i.e., for some edge (u, v) ∈ E(G)
introducing a fresh vertex q and replacing the edge (u, v) with edges (u, q), (q, v)
such that W ′(u, q)+W ′(q, v) = W (u, v). Subdivision for heaps is defined in terms
of their underlying graphs.

We define a function subdivide , which subdivides an edge in a heap. As usual,
the function is defined componentwise on the heap:

subdivideV (H,u, v, k) =V ∪ {q}
subdivideE(H,u, v, k) = (E \ {(u, v)}) ∪ {(u, q), (q, v)}
subdivideW (H,u, v, k) =W (H)[(u, v) �→ ∞, (u, q) �→ k, (q, v) �→ W (H)(u, v)− k]

Definition 6 (Edge Smoothing). The inverse of edge subdivision is called
edge smoothing. If G′ can be obtained by subdividing edges in G, then we say
that G is a smoothing of G′.

Basically, edge smoothing is the dual of edge subdivision – if we have two
edges u

n−→ q
m−→ v, where q is unlabelled and has no other incoming edges, we

can remove q and add the single edge u
n+m−→ v.

Example 2. H ′ is a subdivision of H .

H :

• •

x null

3
H ′ :

• • •

x null

1 2
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Lemma 1 (Subdividing an Edge Preserves Observations). If H ′ is ob-
tained from H by subdividing one edge, then for any x, y we have:

pathLength(H,x, y) = pathLength(H ′, x, y) (4)

circular(H,x) = circular (H ′, x) (5)

Definition 7 (Heap Homeomorphism). Two heaps H,H ′ are homeomor-
phic (written H ∼ H ′) iff there there is a heap isomorphism from some subdivi-
sion of H to some subdivision of H ′.

Intuitively, homeomorphisms preserve the topology of heaps: if two heaps are
homeomorphic, then they have the same number of loops and the same number
of “joins” (vertices with indegree ≥ 2).

Example 3. H and H ′ are homeomorphic, since they can each be subdivided to
produce S.
H :

x

y

•

•
• • • •

1

2

4 2

6

3 H ′ :
x

y

•

•
• • •

•
1

2

6

6

12

S :
x

y

•

•
• • • •

•
1

2

4 2

6

12

Lemma 2 (Transformers Respect Homeomorphism). For any heap trans-
former τ , if H1 ∼ H2 then τ(H1) ∼ τ(H2).

Proof. It suffices to show that for any transformer τ and single-edge subdivision
s, the following diagram commutes:

A

B

C

D

τ

s

τ

s

We will check that τ ◦ s = s ◦ τ by considering the components of each arrow
separately and using the semantics defined in Section 3.3. The only difficult case
is for lookup, for which we provide the proof in full. This case is illustrative of
the style of reasoning used for the proofs of the other transformers.

τ = lookup(h, x, y): Now that we have weighted heaps, there are two cases for
lookup: if the edge leaving L(y) does not have weight 1, we need to first subdivide
so that it does; otherwise the transformer is exactly as in the unweighted case,
which can be seen easily to commute.
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In the second (unweighted) case, all of the components commute due to id.
Otherwise, lookup is a composition of some subdivision s′ and then unweighted
lookup: lookup = lookupU ◦ s′.

A

B C

s′
lookup

lookupU

Our commutativity condition is then:

(lookupU ◦ s′) ◦ s =s ◦ (lookupU ◦ s′)

We know that unweighted lookup commutes with arbitrary subdivisions, so

(lookupU ◦ s′) ◦ s =s ◦ (s′ ◦ lookupU )

lookupU ◦ (s′ ◦ s) =(s ◦ s′) ◦ lookupU

But the composition of two subdivisions is a subdivision, so we are done.

Theorem 2. Homeomorphism is a sound equivalence relation.

Proof. This is a direct consequence of Lemma 1 and Lemma 2.

4.3 Small Model Property

We would now like to show that for each equivalence class induced by ∼, there
is a unique minimal element. We call that element the kernel.

Definition 8 (Kernel). A kernel is a heap H = (L,G) such that all the vertices
in G are either labelled by L, or have at least two incoming edges.

In other words, a kernel is the maximally smoothed heap.

Theorem 3 (The Kernel is Unique). Each equivalence class induced by ∼
has a unique kernel.

Proof. We can prove this by contradiction. Let’s assume there are two such
kernels K1 and K2 in an equivalence class. Then K1 ∼ K2, and according to the
homeomorphism definition, one is a subdivision of the other. Let’s say K1 is a
subdivision of K2. However, subdividing an edge introduces anonymous vertices
with only one incoming edge. Thus K1 is not a kernel.

As an alternative intuition for this, readers familiar with category theory
can consider the category SLH of singly linked heaps, with edge subdivisions
as arrows. The category SLH are singly linked heaps, and there is an arrow from
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one heap to another if the first can be subdivided into the second. To illustrate,
Example 3 is represented in SLH by the following diagram:

H

SH ′

Now for every pair of homeomorphic heaps H1 ∼ H2 we know that there is
some X that is a subdivision of both H1 and H2. Clearly if we continue subdi-
viding edges, we will eventually arrive at a heap where every edge has weight
1, at which point we will be unable to subdivide any further. Let us call this
maximally subdivided heap the shell, which we will denote by Sh(H1). Then
Sh(H1) = Sh(H2) is the pushout of the previous diagram. Dually, there is some
Y that both H1 and H2 are subdivisions of, and the previous diagram has a
pullback, which we shall call the kernel. This is the heap in which all edges have
been smoothed. The following diagram commutes, and since a composition of
subdivisions and smoothings is a homeomorphism, all of the arrows (and their
inverses) in this diagram are homeomorphisms. In fact, the H1, H2, X, Y, Sh and
Ke are exactly an equivalence class:

Y H1

H2 X

Ke

Sh

∼

Lemma 3 (Kernels are Small). For any H, |Ke(H)| ≤ 2× |P |.
Proof. Since Ke(H) is maximally smoothed, every unlabelled vertex has indegree
≥ 2. We will partition the vertices of H into named and unlabelled vertices:

N ={v ∈ V (H) | ∃p ∈ P.L(p) = v}
U ={u ∈ V (H) | ∀p ∈ P.L(p) 
= u}

V (H) =N ∪ U

Then let n = |N | and u = |U |. Now, the total indegree of the underlying
graph must be equal to the total outdegree, so:
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∑

v∈V (H)

out(v) =
∑

v∈V (H)

in(v)

n+ u =
∑

n∈N

in(n) +
∑

u∈U

in(u)

=
∑

n∈N

in(n) + 2u+ k

where k ≥ 0, since in(u) ≥ 2 for each u.

n = u+
∑

n∈N

in(n) + k

︸ ︷︷ ︸
≥0

n ≥ u

So u ≤ n ≤ |P |, hence |Ke(H)| = n+ u ≤ 2× |P |.
Theorem 4 (SLH has Small Model). For any SLH formula ∀h.φ, if there is
a counterexample Γ |= ¬φ, then there is Γ ′ |= ¬φ with every heap-sorted variable
in Γ being interpreted by a homeomorphism kernel.

Proof. This follows from Theorem 2 and Lemma 3.

We can encode the existence of a small model with an arithmetic constraint
whose size is linear in the size of the SLH formula, since each of the transformers
can be encoded with a constant sized constraint and the observation functions
can be encoded with a constraint of size O(|H |) = O(|P |). An example imple-
mentation of the constraints used to encode each atom is given in Section 6. We
need one constraint for each of the theory atoms, which gives us O(|P | × |φ|)
constraints in total.

Corollary 1 (Decidability of SLH). If the background theory TB is decidable,
then SLH is decidable.

Proof. The existence of a small model can be encoded with a linear number of
arithmetic constraints in TB.

5 Using SLH for Verification

Our intention is to use SLH for reasoning about the safety and termination of
programs with potentially cyclic singly-linked lists:
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datat := struct C {(typ v)∗}
e := v | v→next | new(C) | null
S := v=e | v1→next=v2 | S1;S2 | if (B) S1 else S2 |

while (B) S | assert(φ) | assume(φ)

Fig. 4. Programming Language

– For safety, we annotate loops with safety invariants and generate VCs check-
ing that each loop annotation is genuinely a safety invariant, i.e. (1) it is
satisfied by each state reachable on entry to the loop, (2) it is inductive with
respect to the program’s transition relation, and (3) excludes any states
where an assertion violation takes place (the assertions include those ensur-
ing memory safety). The existence of a safety invariant corresponds to the
notion of partial correctness: no assertion fails, but the program may never
stop running.

– For termination, we provide ranking functions for each loop and generate
VCs to check that the loops do terminate, i.e. the ranking function is mono-
tonically decreasing with respect to the loop’s body and (2) it is bounded
from below. By combining these VCs with those generated for safety, we
create a total-correctness specification.

The two additional items we must provide in order to be able to generate these
VCs are a programming language and the strongest post-condition for formulae
in SLH with respect to statements in the programming language. We do so next.

5.1 Programming Language

We use the sequential programming language in Fig. 4. It allows heap allocation
and mutation, with v denoting a variable and next a pointer field. To simplify
the presentation, we assume each data structure has only one pointer field, next,
and allow only one-level field access, denoted by v→next. Chained dereferences
of the form v→next→next. . . are handled by introducing auxiliary variables. The
statement assert(φ) checks whether φ (expressed in the heap theory described
in Section 3) holds for the current program state, whereas assume(φ) constrains
the program state.

For convenience when using SLH in the context of safety and termination
verification, the SLH functions we expose in the specification language are side-
effect free. That is to say, we don’t require the explicit heap h to be mentioned
in the specifications.

5.2 Strongest Post-condition

To create a verification condition from a specification, we first decompose the
specification into Hoare triples and then compute the strongest post-condition
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to generate a VC in the SLH theory. Since SLH includes primitive operations
for heap manipulation, our strongest post-condition is easy to compute:

SP(x = y, φ)
def
= φ[h′/h] ∧ h = assign(h′, x, y)

SP(x = y→next, φ)
def
= φ[h′/h] ∧ h = lookup(h′, x, y)

SP(x = new(C), φ)
def
= φ[h′/h] ∧ h = new(h′, x, y)

SP(x→next = y, φ)
def
= φ[h′/h] ∧ h = update(h′, x, y)

In the definitions above, h′ is a fresh heap variable. The remaining cases for SP
are standard.

5.3 VC Generation Example

x = y ;

whi le ( x �= nu l l ) {
{isPath(y, x)}
x = x→next ;

}

a s s e r t ( isPath(y, x) ) ;

Fig. 5. An annotated program

Consider the program in Figure 5, which has been annotated with a loop
invariant. In order to verify the partial-correctness condition that the assertion
cannot fail, we must check the following Hoare triples:

{�} x = y {isPath(y, x)} (6)

{isPath(y, x) ∧ ¬isNull (x)} x = x → next {isPath(y, x)} (7)

{isPath(y, x) ∧ isNull(x)} skip {isPath(y, x)} (8)

Taking strongest post-condition across each of these triples generates the fol-
lowing SLH VCs:

∀h.h′ = assign(h, x, y) ⇒ isPath(h′, y, x) (9)

∀h.isPath(h, y, x) ∧ ¬isNull(x) ∧ h′ = lookup(h, x, x) ⇒ isPath(h′, y, x) (10)

∀h.isPath(h, y, x) ∧ isNull(x) ⇒ isPath(h, y, x) (11)
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6 Implementation

For our implementation, we instantiate SLH with the theory of bit-vector arith-
metic. Thus, according to Corollary 1, the resulting theory SLH[TBV ] is decid-
able. In this section, we provide details about the implementation of the decision
procedure via a reduction to SAT.

To check validity of an SLH[TBV ] formula φ, we search for a small counterex-
ample heapH . By Theorem 4, if no such smallH exists, there is no counterexam-
ple and so φ is a tautology. We encode the existence of a small counterexample
by constructing a SAT formula.

To generate the SAT formula, we instantiate every occurrence of the SLH[TBV ]
functions with the functions shown in Figure 6. The structure that the functions
operate over is the following, where N is the number of vertices in the structure
and P is the number of program variables:

typede f i n t node ;
typede f i n t ptr ;

s t r u c t heap {
ptr : node [P ] ;
succ : ( node × i n t ) [N ] ;
num nodes : i n t ;

}
The heap contains N nodes, of which num nodes are allocated. Pointer vari-

ables are represented as integers in the range [0, P −1] where by convention null
= 0. Each pointer variable is mapped to an allocated node by the ptr array, with
the restriction that null maps to node 0. The edges in the graph are encoded in
the succ array where h.succ[n] = (m, w) iff the edge (n,m) with weight w is in
the graph. For a heap with N nodes, this structure requires 3N + 1 integers to
encode.

The implementations of the SLH[TBV ] functions described in Section 3.1 are
given in Figure 6. Note that only Alloc and Lookup can allocate new nodes.
Therefore if we are searching for a counterexample heap with at most 2P nodes,
and our formula contains k occurrences of Alloc and Lookup, the largest heap
that can occur in the counterexample will contain no more than 2P + k nodes.
We can therefore encode all of the heaps using 6P + 3k + 1 integers each.

When constructing the SAT formula corresponding to the SLH[TBV ] formula,
each of the functions can be encoded (via symbolic execution) as a formula in the
background theory TBV of constant size, except for PathLength which contains
a loop. This loop iterates N = 2P + k times and so expands to a formula of size
O(P ). If the SLH[TBV ] formula contains x operations, the final SAT formula in
TBV is therefore of size x×P . We use CBMC [6] to construct and solve the SAT
formula.

One important optimisation when constructing the SAT formula involves a
symmetry reduction on the counterexamples. Since our encoding assigns names
to each of the vertices in the graph, we can have multiple representations for
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heaps that are isomorphic. To ensure that the SAT solver only considers a single
counterexample from each homeomorphism class, we choose a canonical repre-
sentative of each class and add a constraint that the counterexample we are
looking for must be one of these canonical representatives. We define the canon-
ical form of a heap such that the nodes are ordered topologically and so that the
ordering is compatible with the ordering on the program variables. Note that
this canonical form is described in terms of a breadth-first traversal of the graph,
which eliminates cycles.

∀p, p′ ∈ P .p < p′ ⇒ ∀n, n′.L(p) →∗ n ∧ L(p′) →∗ n′ ⇒ n ≤ n′

∀n, n′.n → n′ ⇒ n ≤ n′

Where n →∗ n′ means n′ is reachable from n.

function NewNode(heap h)
n ← h.num nodes
h.num nodes ← h.num nodes + 1
h.succ[n] ← (null, 1)
return n

function Subdivide(heap h, node a)
n ← NewNode(h)
(b, w) ← h.succ[a]
h.succ[a] ← (n, 1)
h.succ[n] ← (b, w - 1)
return n

function Update(heap h, ptr x, ptr y)
n ← h.ptr[x]
m ← h.ptr[y]
h.succ[n] ← (m, 1)

function Assign(heap h, ptr x, ptr y)
h.ptr[x] ← h.ptr[y]

function Lookup(heap h, ptr x, ptr y)
n ← h.ptr[y]
(n’, w) ← h.succ[n]
if w 
= 1 then

n’ ← Subdivide(h, n)

h.ptr[x] ← n’

function Alloc(heap h, ptr x)
n ← NewNode(h)
h.ptr[x] ← n

function PathLength(heap h, ptr x, ptr y)
n ← h.ptr[x]
m ← h.ptr[y]
distance ← 0
for i ← 0 to h.num nodes do

if n = m then
return distance

else
(n, w) ← h.succ[n]
distance ← distance + w

return ∞

function Circular(heap h, ptr x)
n ← h.ptr[x]
m ← h.succ[n]
distance ← 0
for i ← 0 to h.num nodes do

if m = n then
return True

else
if n = null then

return False
m ← h.succ[m]

return False

Fig. 6. Implementation of the SLH[TBV ] functions

7 Motivation Revisited

In this section, we get back to the motivational examples in Figure 1 and ex-
press their safety invariants and termination arguments in SLH. As mentioned
in Section 5.1, for ease of use, we don’t mention the explicit heap h in the
specifications.
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In Figure 1a, assuming that the call to the length function ensures the state
before the loop to be pathLength(h, x,null) = n, then a possible safety invariant
is pathLength(h, y,null) = n − i. Note that this invariant covers both the case
where the list pointed by x is acyclic and the case where it contains a cycle.
In the latter scenario, given that ∞ − i = ∞, the invariant is equivalent to
pathLength(h, y,null) = ∞. A ranking function for this program is R(i) = −i.

The program in Figure 1b is safe with a possible safety invariant:

pathLength(h, z,null) == pathLength(h, t,null).

Similar to the previous case, this invariant covers the scenario where the lists
pointed by x and y are acyclic, as well as the one where they are cyclic. In the
latter situation, the program does not terminate.

For the example in Figure 1c, the divides function is safe and a safety invariant
is:

isPath(x,null) ∧ isPath(z,null) ∧ isPath(y,null) ∧ isPath(y, z) ∧ isPath(x,w)∧
¬isNull(y) ∧ (pathLength (x,w) + pathLength (z,null))%pathLength(y,null) == 0.

Additionally, the function terminates as witnessed by the ranking function
R(w) = pathLength(w,null).

Function isCircular in Figure 1c is safe and terminating with the safety invari-
ant: pathLength(l, p) ∧ pathLength(p, q) ∧ isPath(q, p)
=isPath(l,null), and lexi-
cographic ranking function: R(q, p) = (pathLength(q,null), pathLength(q, p)).

8 Experiments

To evaluate the applicability of our theory, we created a tool for verifying that
heaps don’t lie: Shakira [16]. We ran Shakira on a collection of programs
manipulating singly linked lists. This collections includes the standard operations
of traversal, reversal, sorting etc. as well as the motivational examples from
Section 2. Each of the programs in this collection is annotated with correctness
assertions and loop invariants, as well as the standard memory-safety checks. One
of the programs (the motivational program from Figure 1b) used a non-linear
loop invariant, but this did not require any special treatment by Shakira.

To generate VCs for each program, we generated a Hoare proof and then used
CBMC 4.9 [6] to compute the strongest post-conditions for each Hoare triple
using symbolic execution. The resulting VCs were solved using Glucose 4.0 [1].
As well as correctness and memory safety, these VCs proved that each loop
annotation was genuinely a loop invariant. For four of the programs, we anno-
tated loops with ranking functions and generated VCs to check that the loops
terminated, thereby creating a total-correctness specification.

None of the proofs in our collection relied on assumptions about the shape
of the heap beyond that it consisted of singly linked lists. In particular, our safety
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proofs show that the safe programs are safe even in the presence of arbitrary
cycles and sharing between pointers.

We ran our experiments on a 4-core 3.30GHz Core i5 with 8GB of RAM.
The results of these experiments are given in Table 1.

Table 1. Experimental results

LOC #VCs Symex(s) SAT(s) C/E

Safe benchmarks (UNSAT VCs)

SLL (safe) 236 40 18.2 5.9 —

SLL (termination) 113 25 14.7 9.6 —

Counterexamples (SAT VCs)

CLL (nonterm) 38 14 6.9 1.6 3

Null-deref 165 31 13.6 3.0 3

Assertion Failure 73 11 3.5 0.7 3.5

Inadequate Invariant 37 4 4.9 1.2 6

Legend:
LOC Total lines of code
#VCs Number of VCs
Symex(s) Total time spent in symbolic execution to generate VCs
SAT(s) Total time spent in SAT solver
C/E Average counterexample size (number of nodes)

The top half of the table gives the aggregate results for the benchmarks
in which the specifications held, i.e., the VCs were unsatisfiable. These “safe”
benchmarks are divided into two categories: partial- and total-correctness proofs.
Note that the total-correctness proofs involve solving more complex VCs – the
partial correctness proofs solved 40 VCs in 5.9 s, while the total correctness
proofs solved only 25 VCs in 9.6 s. This is due to the presence of ranking func-
tions in the total-correctness proofs, which by necessity introduces a higher level
of arithmetic complexity.

The bottom half of the table contains the results for benchmarks in which the
VCs were satisfiable. Since the VCs were generated from a Hoare proof, their
satisfiability only tells us that the purported proof is not in fact a real proof
of the program’s correctness. However, Shakira outputs models when the VCs
are satisfiable and these can be examined to diagnose the cause of the proof’s
failure. For our benchmarks, the counterexamples fell into four categories:

– Non-termination due to cyclic lists.
– Null dereferences.
– A correctness assertion (not a memory-safety assertion) failing.
– The loop invariant being inadequate, either by being too weak to prove the

required properties, or failing to be inductive.
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A counterexample generated by Shakira is given in Figure 7. This program is
a variation on the motivational program from Figure 1c in which the programmer
has tried to speed up the loop by unwinding it once. The result is that the
program no longer terminates if the list contains a cycle whose size is exactly
one, as shown in the counterexample found by Shakira.

i n t ha s c yc l e ( l i s t l ) {
l i s t p = l ;
l i s t q = l→n ;

do {
// Unwind loop to search
// twice as f a s t !
i f (p != NULL) p = p→n ;
i f (p != NULL) p = p→n ;

i f ( q != NULL) q = q→n ;
i f ( q != NULL) q = q→n ;
i f ( q != NULL) q = q→n ;
i f ( q != NULL) q = q→n ;

} whi l e (p != q &&
p != NULL &&
q != NULL) ;

return p == q ;
}

• • •

null l, p q

1

1

Counterexample heap leading to
non-termination.

Fig. 7. A non-terminating program and the counterexample found by Shakira

These results show that discharging VCs written in SLH is practical with
current technology. They further show that SLH is expressive enough to specify
safety, termination and correctness properties for difficult programs. When the
VCs require arithmetic to be done on list lengths, as is necessary when proving
termination, the decision problem becomes noticeably more difficult. Our encod-
ing is efficient enough that even when the VCs contain non-linear arithmetic on
path lengths, they can be solved quickly by an off-the-shelf SAT solver.

9 Related Work

Research works on relating the shape of data structures to their numeric prop-
erties (e.g. length) follow several directions. For abstract interpretation based
analyses, an abstract domain that captures both heap and size was proposed
in [3]. The THOR tool [12,13] implements a separation logic [15] based shape
analysis and uses an off-the-shelf arithmetic analysis tool to add support for
arithmetic reasoning. This approach is conceptually different from ours as it aims
to separate the shape reasoning from the numeric reasoning by constructing a
numeric program that explicitly tracks changes in data structure sizes. In [4],
Boujjani et al. introduce the logic SLAD for reasoning about singly-linked lists
and arrays with unbounded data, which allows to combine shape constraints,
written in a fragment of separation logic, with data and size constraints. While
SLAD is a powerful logic and has a decidable fragment, our main motivation for
designing a new logic was its translation to SAT. A second motivation was the
unrestricted sharing.
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Other recent decidable logics for reasoning about linked lists were devel-
oped [9,14,17,11,4]. Piskac et al. provide a reduction of decidable separation
logic fragments to a decidable first-order SMT theory [14]. A decision proce-
dure for an alternation-free sub-fragment of first-order logic with transitive clo-
sure is described in [9]. Lahiri and Qadeer introduce the Logic of Interpreted
Sets and Bounded Quantification (LISBQ) capable to express properties on the
shape and data of composite data structures [10]. In [5], Brain et al. propose a
decision procedure for reasoning about aliasing and reachability based on Ab-
stract Conflict Driven Clause Learning (ACDCL) [7]. As they don’t capture the
lengths of lists, these logics are better suited for safety and less for termination
proving.

In [2], Berdine et al. present a small model property for a fragment of separa-
tion logic with linked lists without explicit lengths. Their small model property
says that it suffices to check if lists of lengths zero and two entail the formula
(i.e. it suffices to unfold the list predicates 0 and 2 times). However if their
fragment allowed imposing minimum lengths for lists, their small model result
would be violated. In our case, since SLH allows adding explicit constraints on
the lengths of lists (thus, one can impose minimum lengths), their small model
property does not hold.

10 Conclusions

We have presented the logic SLH for reasoning about potentially cyclic singly-
linked lists. The main characteristics of SLH are the fact that it allows unre-
stricted sharing in the heap and can relate the structure of lists to their length,
i.e. reachability constraints with numeric ones. As SLH is parametrised by the
background arithmetic theory used to express the length of lists, we present its
instantiation SLH[TBV ] with the theory of bit-vector arithmetic and provide a
way of efficiently deciding its validity via a reduction to SAT. We empirically
show that SLH is both efficient and expressive enough for reasoning about safety
and (especially) termination of list programs.

Limitations. It is not straightforward how to add quantifiers to our approach.
Also, extending our technique to other data structures such as trees would break
the small model property in its current form, and although we can see ways of
adapting it theoretically, it is unclear whether the SAT instances would still be
tractable.
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INRIA
{gabriel.scherer,didier.remy}@inria.fr

Abstract. Core calculi that model the essence of computations use full
reduction semantics to be built on solid grounds. Expressive type sys-
tems for these calculi may use propositions to refine the notion of types,
which allows abstraction over possibly inconsistent hypotheses. To pre-
serve type soundness, reduction must then be delayed until logical hy-
potheses on which the computation depends have been proved consistent.
When logical information is explicit inside terms, proposition variables
delay the evaluation by construction. However, logical hypotheses may be
left implicit, for the user’s convenience in a surface language or because
they have been erased prior to computation in an internal language. It
then becomes difficult to track the dependencies of computations over
possibly inconsistent hypotheses.

We propose an expressive type system with implicit coercions, consis-
tent and inconsistent abstraction over coercions, and assumption hiding,
which provides a fine-grained control of dependencies between compu-
tations and the logical hypotheses they depend on. Assumption hiding
opens a continuum between explicit and implicit use of hypotheses, and
restores confluence when full and weak reductions are mixed.

Extended version. For reasons of page limits, the proofs have been omitted from
this conference version. A full version with additional remarks and all proofs, is
available electronically.1

1 Introduction

The Curry-Howard isomorphism trained generations of statically-typed-language
designers to be able to instantly switch their point of view from programs to
proof terms, and from types to logic statements. Proof assistants based on type
theory let us use our functional programming intuitions to program proofs. One
example of the merits of such a re-unification is the strikingly simple and natural
treatment of axioms in the functional languages of those assistants: assuming an
axiom P is just abstracting over a variable (x : P ) of the corresponding type,
and using this assumption is done by applying or pattern matching this bound
variable x. These languages generally allow full reduction, in particular reducing
under unapplied λ-abstractions. For example, a Coq program abstracting over

1 At http://gallium.inria.fr/~remy/coercions/
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an axiom P is of the form λ(x : P ) a, where a may be computed as usual, but
the reduction of subterms depending on x will be blocked.

There is a subtle but important contrast with how logical assumptions have
been dealt with in languages designed mostly for programming rather than prov-
ing, such as ML or Haskell. Typical examples are the reasoning on type equalities
in the ML module system, or in Generalized Algebraic Data Types (GADTs).
Consider the following example that implements application up to type equality,
given in OCaml-like syntax:

type ( , ) eq = Refl : (α, α) eq

let apply : ∀α1α2β. (α1 → β) → α2→ (α1, α2) eq → β
= fun f x Refl → f x

With GADTs, the equality assumption is present at the term level, marked by
a λ-abstraction over the type (α1, α2) eq, but the use of this equality is im-
plicit : equality assumptions introduced by abstraction or pattern-matching can
be silently used in the corresponding term clauses. This implicitness can be ex-
plained away by translating source terms into an intermediate language, such as
System FC [Vytiniotis and Jones, 2011] that marks uses of equality assumptions
with explicit coercions – providing a treatment similar to logical assumptions in
proof assistants. But it can also be formalized directly, as in the presentation of
GADTs extended to arbitrary logic constraints by Simonet and Pottier [2007],
or Dependent ML by Xi [2007].

It is well-known however that, with implicit use of potentially-absurd assump-
tions, it is no longer safe to use full reduction under those assumptions. Assuming
(fst : (α ∗ β) → α) and (true : bool), the term apply fst true reduces to

fun (Refl : (bool, (α ∗ β)) eq) → fst true

Reducing under this abstraction would mean computing fst true, i.e. the appli-
cation of a destructor to a constructor of an incompatible type, which is called
a runtime error. Interestingly, this issue does not happen with an explicit han-
dling of logical assumptions. In System FC, the above example would reduce to
the following normal form (assuming that the assumption γ has been used to
convert the type of the argument true rather than the type of the function fst):

fun (Refl (γ : bool ˜# (α ∗ β)) → fst (true � γ)

Here, bool ˜# (’a ∗ ’b) is the type of coercions that prove the equality between
bool and (’a ∗ ’b), and (true � γ) is the application of the coercion γ to true.
This application cannot be reduced until the formal variable γ has been instan-
tiated (that is, never, if we are in an empty context with a sound type system).
Meaning, γ remains in between fst and true preventing the application. Although
System FC is a weak calculus (abstracting on term or coercion variables blocks
reduction), full reduction could be used in a similar, explicit system.

We are convinced that it is important to also study the implicit presentation
directly. There is a convergence of designs that indicates that implicit use of as-
sumptions is significantly more convenient to the programmer. For a less-obvious
example than GADTs in ML or Haskell, the book Programming in Martin-Löf
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Type Theory [Nordström et al., 1990] uses a type theory with extensional equal-
ity, which allows implicit use of equality assumptions, especially to simplify pro-
gramming with quotient types. We want to study λ-calculi that match how
users wish to program and define the operational behavior of programs directly
at this level.

Besides, we deem unfortunate the absolute reign of weak reduction on λ-
calculi designed for programming. We argue that while one could have a weak-
reduction semantics for reasoning about runtime complexity, a more abstract full
reduction understanding is better to reason about correctness – as an important
step towards equational reasoning on open terms.

In fact, type systems of programming languages are designed for full reduction
strategies, and left unchanged when restricting the semantics to weak reduction
strategies. For example, the type systems of ML, System F and its derivatives
(Fη [Mitchell, 1988], F<: [Cardelli, 1993], MLF [Le Botlan and Rémy, 2003], etc.)
are all sound for full reduction. While type systems are regularly improved to
accept more well-typed programs, they do not try in general to take advantage of
weak reduction strategies to accept nonsense under yet unapplied abstractions,
e.g. λ(x) 1 true, on the basis that these errors won’t be reachable by a weak-
reduction strategy.2

We claim that (pure) lambda-calculi for programming languages ought to
strive to support full reduction; this design pressure should result in a better
understanding of programming constructs. For example, soundness of full re-
duction subsumes soundness for any evaluation strategy such as call-by-name
and call-by-value; and full reduction is used in practice in dependently-typed
languages such as Coq or Agda, with significant efforts spent to make it practi-
cal [Grégoire and Leroy, 2002, Boespflug et al., 2011].

We could summarize the topic of this article with the following question. We
know how to design calculi with explicit uses of logical assumptions and full
reduction, or calculi with implicit uses of assumptions and weak reduction. Can
we merge those apparently incompatible feature pairs into a single calculus, close
to the non-encumbered terms the programmer wishes to write?

Consistent and Inconsistent Abstraction. Intuitively, an abstraction on a type is
consistent when we can prove at the point of abstraction that there always exists
a possible instantiation for it in the current typing context; otherwise, we say it
is inconsistent. A typical example of a consistent abstraction is an abstraction
over a type variable α that has the kind � of concrete types, as we know that
at least int has kind � so it is a valid instance for α. Abstraction over a type
variable may also be constrained by a proposition that restricts the possible
instances of the type variable. An example of an unsatisfiable proposition is the
inter-convertibility int � (int → τ), which is absurd for any type τ . Hence, an
abstraction over a type variable α such that int � (int → α) is inconsistent.

2 One interesting counterexample is typechecking record concatenation, which delays
the resolution of typing constraints based on the evaluation strategy [Pottier, 2000]
in order to avoid the heavy cost of early consistency checking.
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Previous work by Cretin [2014] and Cretin and Rémy [2014] introduced the
calculus Fcc, built around consistent coercion abstraction, a mechanism that al-
lows implicit abstraction over coercions and uses typing-transforming coercions,
provided we prove at their abstraction point that they are instantiable; such
coercions are completely erasable – they are not at all present at the term level.
This generalizes the traditional ML-style polymorphism in an expressive way,
encompassing the type systems of System F, MLF, F<:, Fη, and Fω. To be able
to also abstract over hypotheses that may not be consistent, Cretin and Rémy
added a distinct mechanism of inconsistent polymorphism that is present at the
term level and blocks reduction.

If an Fcc term a has type τ in the context Γ, α : κ, and we can prove that the
kind κ is instantiable by producing some type Γ � σ : κ, we will consider that a
has type ∀(α : κ) τ in context Γ . The Curry-style presentation, with no explicit
syntax for type abstraction at the term level – we just write a, not Λ(α : κ) a –
highlights that this form of polymorphism is erasable.

If on the contrary we do not know how to prove that κ is instantiable (or do
not wish to do so), we may use inconsistent abstraction by building the term
∂ a at the distinct type3 Π(α : κ) τ . This form blocks the reduction of a and is
thus explicit at the term level.

To the explicit incoherent abstraction corresponds an explicit incoherent ap-
plication, which unblocks computation: if the type σ has kind κ, then κ is in fact
inhabited and a ♦ has type τ [σ/α].

Even in full reduction (when reduction under λ’s is allowed), reduction re-
mains forbidden under ∂ ’s; an inconsistent abstraction is eliminated by the cor-
responding application, (∂ a) ♦, which reduces to a letting the evaluation of a
be resumed. In contrast, consistent abstraction is erasable by construction: it is
absent from the term itself, which alone determines reduction.

Issues with Fcc. In the absence of inconsistency abstraction, the language Fcc
has a full reduction semantics and is confluent. However, both properties break
when introducing inconsistent abstraction, since inconsistent abstraction blocks
the evaluation to maintain soundness. This amounts to introducing a form of
weak reduction inside the language. While some reductions under ∂ are unsound
and must be blocked, others may be harmless and could be safely reduced—but
this is not allowed. This is going against our claim that core calculi ought to
support full reduction to the largest possible extent.

Besides, it is well known that mixing weak and strong reductions may break
confluence, and this problem affects Fcc. If b reduces to b′, then (λ(x) ∂ x) b can
reduce to either (λ(x) ∂ x) b′ and then ∂ b′, or to ∂ b, which cannot be further
reduced and, in particular, does not reduce to ∂ b′ (or one of its reducts), as
confluence would require.

These issues were well-understood by Cretin and Rémy [2014] and left for
future work. We present an improved variant of Fcc that solves both problems
simultaneously. In the course of doing so, we also encountered some more minor

3 The notation Π(α : κ) τ has nothing to do with dependent types.
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issues in the details of Fcc, which allowed us to also improve the system as a
whole.

Propositional Truths and Hiding. The language Fcc uses a blocking construct
∂ a to introduce the inconsistent abstraction Π(α : κ) τ . This does not match,
however, the way potentially absurd assumptions are handled in dependent type
theories, such as Coq, where reduction is blocked at the point of use of the as-
sumption, not its point of introduction. This distinction is essential, in particular,
to allow writing certified programs as Coq program terms: if the axioms (e.g.
classical logic or proof irrelevance) are only used in logic parts of the formal-
ization (under terms at type Prop), they get removed by extraction; a program
whose correctness proof uses axioms can compute – while it would be blocked if
we used our ∂ to introduce the axiom.

We therefore split inconsistent abstraction into two more atomic notions.
First, an abstraction form introduces the assumption, but does not allow its
implicit use yet; this does not block computation – the assumption is as frozen.
Second, an elimination construct on frozen assumptions makes them available
for implicit use – but blocks reduction.

Since the elimination construct blocks reduction, it needs to be present at the
term level; it refers to assumption names introduced by the abstraction construct,
which therefore also needs to be in terms – but without blocking reduction. In
fact, we just reuse λ-abstraction for that purpose: locked assumptions are term
variables at a new type [P ] of propositional truths, representing the assumption
that the proposition P is true.

We write � for the introduction of propositional truths, and δ(a, φ.b) for its
elimination. Informally,4 if the proposition P holds in the typing context Γ ,
then � is a witness of P at type [P ]. The corresponding elimination rule, δ(a, φ.b)
computes a at type [P ], while blocking the reduction of b, type-checked under
the assumption φ : P , until a turns into a concrete witness �. Then, δ(�, φ.b)
can be reduced to the pseudo-substitution b[�/φ] whose effect is to remove all
occurrences of φ in b, and, finally, the reduction of b can proceed.

With these new constructions, we may use standard abstraction λ(x : [P ]) a
to abstract over a proposition P without blocking the evaluation of a, which
means that a cannot use P yet. In particular, a may be of the form a[δ(x, φ.b1),
δ(x, φ.b2)], allowing the implicit use of the proposition P in subterms b1 and b2,
which cannot be reduced, while full reduction is still allowed in a.

Propositional truth elimination allows the user to express the fact that an
assumption P may not actually be used directly at its abstraction site, but only
“at some later time”. Conversely, there are situations where an elimination on P
is needed to type-check parts of a term a and is no longer needed to typecheck
some subterm b of a. To enable reduction of b in such a case, we introduce
assumption hiding hideφ in b, which enforces that the proposition variable φ will
not be used implicitly in the subterm b. In exchange for losing this convenience,
we regain the full reduction behavior for b.

4 The language is formally defined in §2.



690 G. Scherer and D. Rémy

While assumption hiding has been introduced for programming reasons, it is
also instrumental in restoring confluence. The loss of confluence happens when
a substitution places a reducible term in an irreducible context. We may now
restore confluence by inserting appropriate hidings during substitution when
traversing proposition eliminators so as to preserve reducibility.

Contributions. The central, novel idea of our work is the interaction of the ex-
plicit and implicit modes of use of logical assertions in a programming calculus
admitting full-reduction. From a theoretical point of view, implicitness was a
somewhat-neglected design choice, and we propose a continuum between im-
plicit and explicit uses thanks to propositional truths and assumption hiding
(Section 2.2). It reveals, for example, that GADTs are fundamentally different
from the usual algebraic datatypes. From a practical point of view, this gives the
user flexible control over the scope of logical assumptions to prevent them from
leaking into unrelated parts of his program—while retaining the convenience of
their implicit invocation.

Another, more technical contribution is a new formal full-reduction calculus
Fth, with inconsistent coercion abstraction that is confluent (Section 3.5). It
is notable that the construction that regains confluence (hiding) was initially
motivated by increasing the programmer’s convenience.

Besides, there are several other contributions:
– We improve some details of the existing Fcc calculus, updating its mechanized

soundness proof accordingly. Although coercion calculi in the spirit of Fcc are
neither surface nor internal languages, they are good at exploring the design
space; hence, even small improvements are valuable in the long term.

– We extend (3.5) the confluence proof technique of Takahashi [1995] so that it
scales to larger calculi expressed in the Wright-Felleisen style, using reduction
contexts to factor out common patterns and avoid a combinatorial increase
in the number of cases.

– When translating between two given calculi, precisely establishing a bisim-
ulation generally requires the use of an administrative variant of the target
calculus; in our case, we need an administrative arrow type that is incompat-
ible with the usual arrow type. While this is a common trick in the literature,
its soundness proof is not as obvious as one would expect. We provide precise
proofs that would be applicable to any calculus with several computational
type constructors, e.g. arrows and products.

2 A Calculus with Propositional Truths

In this section, we formally present our calculus, Fth – with propositional truths
and hiding. As another instance of calculus based on erasable coercions, it is
strongly inspired by the previous work on Fcc by Cretin and Rémy [2014] and
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TermVar

Γ, x : σ,Δ � x : σ

TermLam

Γ � τ : 	 Γ, x : τ � a : σ

Γ � λ(x)a : τ → σ

TermApp

Γ � a : τ → σ Γ � b : τ

Γ � a b : σ

TermProd

Γ � a : τ1 Γ � b : τ2

Γ � (a, b) : τ1 ∗ τ2

TermProj

Γ � a : τ1 ∗ τ2
Γ � πi a : τi

TermCoerce

Γ,Σ � a : τ Γ � (Σ � τ )  σ

Γ � a : σ

TermWit

Γ � Q

Γ � � : [Q]

TermAssume

Γ � a : [P ] Γ, φ : P � b : σ

Γ � δ(a, φ.b) : σ

TermHide

Γ � Δ Γ � ∃Δ Γ,Δ � a : τ

Γ, φ : P,Δ � hideφ in a : τ

Fig. 1. Fth term typing judgment Γ � a : τ

a, b ::= x, y . . . | λ(x)a | a a | (a, a) | πi a Terms

| � | δ(a, φ.a) | hide φ in a

τ, σ ::= α, β . . . | τ → τ | τ ∗ τ Types

| ∀(α : κ) τ | (τ, σ) | πi τ | () | [P ]

κ ::= 	 | 1 | κ ∗ κ | {α : κ | P} Kinds

P,Q ::= � | P ∧ P | ∀(α : κ)P | ∃κ | (Σ � τ ) � τ Prop.

Γ,Σ,Δ ::= ∅ | Γ, x : τ | Γ, α : κ | Γ, φ : P Contexts

Fig. 2. Syntax of terms, types, kinds and propositions

follows the same global structure of judgments. Yet, we do not assume familiarity
with Fcc.

5

We first present the general structure of judgments and the constructs that
are common to both Fcc and Fth, together with their typing rules (§2.1). We then
detail the novel features of Fth, namely propositional truths and assumption
hiding (§2.2). Last, we present the dynamic semantics of Fth (§2.3). In §2.4, we
introduce a variant of Fth that is used to prove the soundness of Fth by translation
to Fcc in several steps (§3).

2.1 Consistent Coercion Calculus

Cretin and Rémy [2014] use a general notion of erasable coercions with abstrac-
tion over consistent coercions to present different type system features, such
as polymorphism, subtyping, and more in a common framework where these
features can be easily composed together. The restriction that only consistent
coercions can be abstracted over is key to erasability.

Our calculus has four syntactic categories: terms a, b; types τ, σ; kinds κ; and
propositions P,Q. The syntax of each category and that of typing environments
Γ , are described in Figure 2.

5 Fcc also supports equi-recursive types; we left them out of this presentation as they
are orthogonal to reduction under inconsistent assumptions. It is the only feature of
Fcc as previously described that is absent from Fth.
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The static semantics is given by four main judgments: a typing judgment
Γ � a : σ; a kinding judgment Γ � σ : κ; a proposition satisfiability judgment
Γ � P ; a coercion judgment Γ � (Σ � τ) � σ; plus a context consistency
judgment Γ � ∃Δ and well-formedness judgments Γ � t where t may be an
environment, a kind, a proposition, or a coercion.

Terms. We first describe terms of the consistent subset of Fth, which are the
terms of the untyped λ-calculus with products, extended with one additional con-
struct for coercions. Other constructs for manipulating inconsistent assumptions,
namely, propositional truth and assumption hiding will be presented in §2.2.

The term typing judgment is defined by the rules in Figure 1. The introduction
and elimination rules for arrows (TermVar, TermLam, TermApp) and products
(TermProd, and TermProj) are standard.

A remarkable feature of coercion calculi is that there is exactly one rule that
does not change the term (and thus does not influence the dynamic semantics):
the coercion rule TermCoerce. All runtime-irrelevant typing constructions, such
as subtyping conversion and polymorphism introduction and elimination, are
factorized into coercions. To express polymorphism, these coercions are typing
coercions (Σ � τ) � σ rather than type coercions τ � σ: they also affect the
typing environment Γ in which the coercion is used, by extending Γ with Σ
when typechecking the premise of type τ , as described by Rule TermCoerce.

This factorization has been explained in previous works of Cretin and Rémy
[2014] and is orthogonal to our point of interest in the present paper, namely,
the interplay between program types and logical propositions in a programming
system. We thus focus our presentation on propositions in general rather than
coercions, and propositional truths would naturally extend to many other pro-
gram logics, such as arithmetic reasoning or general refinement types. Still, by
maintaining a crisp separation between (Curry-style) program terms that com-
pute and derivations on which we statically reason, consistent coercion calculi
are good systems in which to think about implicit versus explicit uses of logic
reasoning in program terms.

Coercions. Despite the fact that coercions are included in the syntactic class of
propositions, there are still two separate judgments Γ � (Σ � τ) � σ and Γ � P .

The coercion judgment is defined in Figure 3. Besides structural rules of reflex-
ivity (CoerRefl) and transitivity (CoerTrans), coercions have rules for poly-
morphism (type abstraction CoerGen and type application CoerInst), and rules
CoerArrow, CoerProd, and CoerWit for distributivity of coercions under com-
putational type constructors (those that describe the shape of terms and appear
in the term typing judgment). Formulating rules for both polymorphism and
distributivity under computational type constructors as coercions let us easily
compose them: the Fη rules for instantiation of polymorphism under construc-
tors naturally fall out as derived rules in consistent coercion calculi. Finally, Rule
CoerProp injects any propositional proof of a coercion (seen as a proposition)
into the coercion judgment – when the coercion context is consistent. We refer
the reader to Cretin and Rémy [2014] for a detailed presentation.
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CoerRefl

Γ � τ  τ

CoerTrans

Γ,Σ1 � (Σ2 � τ3)  τ2
Γ � (Σ1 � τ2)  τ1

Γ � (Σ1, Σ2 � τ3)  τ1

CoerGen

Γ � ∃κ
Γ � (α : κ � τ )  ∀(α : κ)τ

CoerInst

Γ � σ : κ

Γ � ∀(α : κ)τ  τ [σ/α]

CoerArrow

Γ,Σ � τ ′  τ Γ � τ ′ : 	 Γ � (Σ � σ)  σ′

Γ � (Σ � (τ → σ))  (τ ′ → σ′)

CoerProd

Γ � (Σ � τ )  τ ′

Γ � (Σ � σ)  σ′

Γ � (Σ � τ ∗ σ)  τ ′ ∗ σ′

CoerWit

Γ, φ : P � Q

Γ � [P ]  [Q]

CoerProp

Γ � (Σ � τ ) � σ Γ � ∃Σ
Γ � (Σ � τ )  σ

Fig. 3. Coercion judgment Γ � (Σ � τ )  σ

PropVar

Γ, φ : P,Δ � P

PropAnd

Γ � P1 Γ � P2

Γ � P1 ∧ P2

PropProj

Γ � P1 ∧ P2

Γ � Pi

PropGen

Γ � κ Γ, α : κ � P

Γ � ∀(α : κ)P

PropInst

Γ � ∀(α : κ)P Γ � τ : κ

Γ � P [τ/α]

PropTrue

Γ � �
PropConv

Γ � P P =β P ′ Γ � P ′

Γ � P ′

PropKind

Γ � τ : {α : κ | P}
Γ � P [τ/α]

PropInh

Γ � σ : κ

Γ � ∃κ

PropCoer

Γ � (Σ � τ )  σ Γ,Σ � τ : 	

Γ � (Σ � τ ) � σ

Fig. 4. Proposition satisfiability judgment Γ � P

Notice how the introduction rule for polymorphism CoerGen requires the
quantified-over kind κ to be inhabited—the proposition ∃κ denoting kind inhab-
itation. This is the cornerstone of the distinction between consistent and incon-
sistent polymorphism: to abstract over a potentially-absurd kind or proposition
(you have no inhabitation proof at hand), one must instead use the inconsistent
abstraction, which changes the term as it blocks the reduction.

Kinding, Satisfiability, and Consistency. Figures 5, 4, and 6 present those three
related judgments.

The proposition satisfiability judgment Γ � P is defined in Figure 4. Besides
coercions (Σ � τ) � σ, the propositional features inherited from Fcc are relatively
limited: there are the features used to subsume existing System F variants with
some form of constrained quantification (Fη, F<:, MLF etc.), but more proposi-
tions could be added. The trivial true proposition, conjunction of propositions,
and type-polymorphic propositions have obvious introduction and elimination
rules.

The kind inhabitation proposition ∃κ is true whenever kind κ is inhabited
by some type σ; we use the judgment Γ � ∃κ instead of Γ � σ : κ when only
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KindVar

Γ, α : κ,Δ � α : κ

KindArrow

Γ � τ : 	 Γ � σ : 	

Γ � τ → σ : 	

KindProd

Γ � τ : 	 Γ � σ : 	

Γ � τ ∗ σ : 	

KindWit

Γ � P

Γ � [P ] : 	

KindAll

Γ � κ Γ, α : κ � τ : 	

Γ � ∀(α : κ) τ : 	

KindUnit

Γ � () : 1

KindPair

Γ � τ : κ1 Γ � σ : κ2

Γ � (τ, σ) : κ1 ∗ κ2

KindProj

Γ � τ : κ1 ∗ κ2

Γ � πi τ : κi

KindRefine

Γ � τ : κ Γ, α : κ � P Γ � P [τ/α]

Γ � τ : {α : κ | P}

KindForget

Γ � τ : {α : κ | P}
Γ � τ : κ

KindConv

Γ � τ : κ κ =β κ′ Γ � κ′

Γ � τ : κ′

Fig. 5. Kinding judgment Γ � τ : κ

ContEmpty

Γ � ∃∅
ContTerm

Γ � ∃Δ Γ,Δ � τ : 	

Γ � ∃(Δ,x : τ )

ContType

Γ � ∃Δ Γ,Δ � ∃κ
Γ � ∃(Δ,α : κ)

ContProp

Γ � ∃Δ Γ,Δ � P

Γ � ∃(Δ,φ : P )

Fig. 6. Context consistency judgment Γ � ∃Δ

consistency matters. It is defined in Figure 4. Inhabitation is lifted to whole
contexts in Figure 6, as the judgment Γ � ∃Δ.

Kinding rules are defined in Figure 5. Kinding rules for base types are stan-
dard. The unit kind 1 is inhabited by the type-level trivial value (). Refinement
kinds are the only construction introducing propositions in kinds—and thus in
types: a refinement kind {α : κ | P} is inhabited by the types τ of kind κ
such that the proposition P [τ/α] holds. For example, the bounded quantifica-
tion ∀(α ≤ τ)σ can be expressed as ∀(α : {α : � | α � τ})σ.

Product kinds allow quantifying over several kinds at once; in combination
with refinement kinds, this gives an expressive and convenient way to use re-
finement conditions P (α, β) that depend on several variables. In particular,
∀(γ : {γ : κ1 ∗ κ2 | P (π1 γ, π2 γ)}) τ cannot be expressed in the general case
as a double abstraction of the form ∀(α : κ1)∀(β : {β : κ2 | P (α, β)}) τ ; the
consistency proof in the former case requires a witness γ : κ1 ∗ κ2 that satis-
fies P , while the consistency proof of the second abstraction in the latter case
requires to provide a witness β : κ2 for any fixed (rigid) variable α : κ1. De-
pending on P , the first form may be consistent and the second inconsistent; to
split bindings while keeping consistency, one has to constrain the domain of α
by writing ∀(α : {α : κ1 | ∃{β : κ2 | P (α, β)}})∀(β : {β : κ2 | P (α, β)}) τ , which
inconveniently duplicates the proposition.

The reader may have recognized in refinement kinds a restricted form of (kind-
level) dependent product. Indeed, this would exactly be a dependent product if
the propositions were included into the kinds – dependent products would then
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Γ � 	 Γ � 1
Γ � κ1 Γ � κ2

Γ � κ1 ∗ κ2

Γ � κ Γ, α : κ � P

Γ � {α : κ | P} Γ � �

Γ � κ

Γ � ∃κ
Γ � P Γ � Q

Γ � P ∧Q

Γ � κ Γ, α : κ � P

Γ � ∀(α : κ)P

Γ � Σ Γ,Σ � τ : 	 Γ � σ : 	

Γ � (Σ � τ )  σ
Γ � ∅ Γ � Δ Γ,Δ � τ : 	 x /∈ Γ,Δ

Γ � Δ, x : τ

Γ � Δ Γ,Δ � κ α /∈ Γ,Δ

Γ � Δ,α : κ

Γ � Δ Γ � P φ /∈ Γ,Δ

Γ � Δ,φ : P

Fig. 7. Well-formedness judgments

unify product kinds, refinement kinds, and conjunction of propositions. However,
Fcc’s irrelevant handling of proposition proofs gives us very simple, clutter-free
elimination rules for the refinement kind, which do not have to appear in the
syntax of types. We occasionally benefit from that convenience.

The presence of type-level data structures (in our case product kinds) implies
a need for type-level computation and identification of computationally-equal
objects, in particular in rules PropConv and KindConv. The conversion rules
for kinds and propositions allow to interchange well-formed objects equal upto
β-reduction of projections, πi (τ1, τ2) =β τi, and is closed by congruence and
equivalence to all types, propositions, and kinds.

Well-formedness. Figure 7 presents the well-formedness judgments of Fcc for
contexts, kinds and propositions, which are all standard.

2.2 Propositional Truths and Hiding

The type [P ] represents the type of dynamic witnesses that P is satisfied. The
type-checking rule for types of the form [P ] are listed in Figure 1. This type is
introduced by the token �, a ground value that inhabits [P ] exactly when the
proposition P is satisfied in the current typing environment (Rule TermWit). It
is eliminated by the construction δ(a, φ.b), where a must have a propositional
truth type [Q], and b is type-checked in an extended context where the assump-
tion φ : Q is implicitly available (Rule TermAssume) – until it is hidden again
in some subterm of the form hideφ in a′.

As any other computational type, there is a distributivity coercion for propo-
sitional truths, Rule CoerWit (Figure 3), which following Fcc design principle,
can be derived and justified from the context δ(�, φ.�), as an η-expansion of the
identity context �. Rule CoerWit tells us that a witness for a proposition P of
type [P ] can be coerced into a witness for a proposition Q of type [Q] whenever
P implies Q as a proposition.

Finally, the typing rule TermHide (Figure 1) for hideφ in a in context Γ, φ :
P,Δ is a form of weakening of φ. It is only valid under the condition that
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(λ(x)a) b ◦→ a[b/x]∅
δ(�, φ.b) ◦→ b[�/φ]

πi (a1, a2) ◦→ ai

Context

a ◦→ b unguarded(E)

E[a] −→ E[b]

cth ::= λ(x)a | (a, b) | �
dth ::= � b | πi � | δ(�, φ.b)
E th

�
= {E[a] | unguarded(E), a = dth[cth], a ◦→}

Fig. 8. Dynamic semantics of Fth

unguarded(E)
�
= (guard∅(E) = ∅)

guardS(λ(x)E)
�
= guardS(E)

guardS(a E)
�
= guardS(E)

guardS(E a)
�
= guardS(E)

guardS(δ(E, φ.b))
�
= guardS(E)

guardS(δ(a, φ.E))
�
= guardS∪{φ}(E)

guardS(hideφ inE)
�
= guardS\{φ}(E)

guardS(�)
�
= S

Fig. 9. Guards

Γ � ∃Δ holds. This does not mean that Δ must be consistent (it can depend
on variables in Γ that were introduced by blocking elimination), but that it is
consistent relative to Γ .

Kind-level propositions. Propositional truths are named as such because they
are constructed and abstracted over in terms, with an explicit elimination con-
struction; by contrast with the definitional judgment Γ � P which only lives in
typing derivations. Note that it is possible to see propositions as kinds: the kind
{α : 1 | P}, which could be abbreviated as 〈P 〉, is inhabited by () exactly when
the proposition P is satisfiable.

2.3 Dynamic Semantics

The dynamic semantics of Fth is defined in figures 8, 9 and 10. Because of as-
sumption hiding, the notion of elimination contexts is non-standard: irreducible
terms may have reducible subterms. In fact, the head β-reduction steps are also
non-standard, because of the way hiding constructions are added during substi-
tution of reducible values, so as to preserve confluence.

Reduction and Head Reduction. We define a β-reduction relation (−→) that
is congruent to reduction contexts, and a head β-reduction relation (◦→) that
only applies to head β-redexes (Figure 8). Distinguishing head reductions is
important for the confluence proof (Section 3.5). Those reductions are fairly
standard, except for the use of non-standard notions of substitution, and a side-
condition on contexts described below.

Reduction Contexts. Full reduction is meant to allow any reduction path, so in
general all one-hole term contexts E are reduction contexts. In Fth, subterms
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x[b/x]S
�
= hideS in b

y[b/x]S
�
= y (if y = x)

�[b/x]S �
= �

(λ(y)a)[b/x]S
�
= λ(y)a[b/x]S (if y = x)

(a a′)[b/x]S
�
= a[b/x]S a′[b/x]S

δ(a, φ.a′)[b/x]S
�
= δ(a[b/x]S, φ.a

′[b/x]S∪{φ})
(if φ /∈ S)

(hide φ in a)[b/x]S
�
= hideφ in a[b/x]S\{φ}

x[�/φ] �
= x

(λ(x)a)[�/φ] �
= λ(x)a[�/φ]

(hideφ in a)[�/φ] �
= a

(hideψ in a)[�/φ] �
= hideψ in a[�/φ]

(if ψ = φ)

Fig. 10. Hiding and unhiding substitutions

that are in the scope of an implicit assumption, or equivalently of a proposi-
tion variable, must still be blocked. We use an auxiliary function guardS(E)
to compute the set of proposition variables, called the guards, under which
the hole � of the single-hole context E is blocked, extended with an initial
set S. The predicate unguarded(E) is then an abbreviation for the empty-
ness of guard∅(E). Reduction contexts are the unguarded one-hole contexts
E. For example, δ(a, φ.�) is not a reduction context, whereas (λ(x) �) and
δ(w1, φ.δ(w2, ψ.hideψ in hideφ in �)) are. Unguardedness is checked by an ad-
ditional premise in Rule Context.

Hiding Substitution a[b/x]S. In order to preserve confluence it is essential that β-
reduction preserves reducibility of subterms. A counter-example for confluence
in Fcc, translated in Fth, is the term (λ(x) δ(y, φ.x)) b. The problem is that b
appears in a reducible position but would become irreducible after one head
reduction step, i.e. in the term δ(y, φ.b)—with the usual notion of reduction.

Our solution is to define the reduction of λ-redexes using a non-standard
notion of substitution, a[b/x]∅ that inserts assumption hidings as necessary for
substituted terms to remain reducible. For instance, δ(y, φ.x)[b/x]∅ is equal to
δ(y, φ.hideφ in b). In general, this hiding substitution can be indexed by any
guard, which is the list of logical assumptions made so far during term traversal.

The hiding substitution is defined on Figure 10 where
�
= stands for definition

equality and hideS in b is syntactic sugar for repeated hiding for all variables
in the set S. Some cases that are simple traversals have been omitted.

Un-hiding Substitution b[�/φ]. When the witness a of a propositional elimination
δ(a, φ.b) is blocked over reduces to �, we know that the proposition witnessed
by a is true, and the reduction of b can proceed. We remove each occurrence
of hideφ in each subterm of b, as it is not only unnecessary, but could also
block now-reducible β-redexes if it remained: a[�/φ] removes all occurrences of
“hideφ” in the term b while traversing b. It is also defined in Figure 10 – we give
only a few representative cases. Note that the typing rule for assumption hiding
guarantees that φ cannot appear in the subterm of hideφ – and this property
is preserved by reduction.
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Errors. Head reduction occurs when a destructor of some computational type
meets a constructor of the same type. An immediate error is a term whose head
is a destructor applied on a constructor of a different type. Figure 8 defines
destructor contexts dth and constructor terms cth; the set Eth of errors is then
defined as immediate errors occurring in a reduction context. Note that being
stuck on a free variable is not an error, that errors may still further reduce (if
it contains other reducible positions with valid redexes), and that a non-error
term may contain an immediate error blocked under a propositional elimination,
such as λ(x) δ(x, φ.π1 true) in our introductory example of abstracting over an
equality between int and bool.

Below, we define errors for variants of our calculus in the same way, gener-
ated from a definition of constructor terms, destructor contexts, and the head
reduction relation. Given a language of terms with a reduction relation and a
set of errors E , we say that a term a is sound if no reduction sequence starting
from a ends in E .

2.4 Two Variants of Fth: Ft and Fcc

The soundness of Fth is proved by translation into Fcc, which has been proved
sound [Cretin and Rémy, 2014]. In fact, the translation is in two steps, using an
intermediate calculus Ft. Below, we formally define the calculi Ft and Fcc.

Removing assumption hiding. The language Ft is obtain from Fth by restricting
to terms without hiding and by modifying the semantics of β-reduction so that
it does not introduce hiding: the λ-reduction rule is (λ(x) a) b ◦→ a[b/x]. (As a
consequence, Ft is not confluent.)

The rest of the definition is unchanged; in absence of hiding, unguarded con-
texts unguarded(E) degenerate to a simpler, context-free definition that includes
λ(x) � and δ(�, φ.b), but not δ(a, φ.�); and unhiding substitutions b[�/φ] leave
terms unchanged. Error terms Et are the subset of Eth of terms without hiding.

Primitive inconsistent abstraction. Fcc uses a different primitive of inconsis-
tent abstraction to work with inconsistent propositions, or rather potentially-
uninhabited kinds. Its construction ∂ a, mentioned in the introduction, blocks
reduction immediately and has a type of the form Π(α : κ) τ stating that it
assumes a type α : κ while κ may be uninhabited. Conversely, a ♦ unblocks a
computation of type Π(α : κ) τ , whenever the kind κ can be shown inhabited.
The head reduction rule is (∂ a) ♦ ◦→ a, and reduction contexts are as before,
if we consider that guardS(∂ E) is defined as guardS∪φ(E) where φ is a fresh
propositional variable. The typing rules for those constructs are as follows:

IncohIntro

Γ � κ Γ, α : κ � a : τ

Γ � ∂ a : Π(α : κ) τ

IncohElim

Γ � a : Π(α : κ) τ Γ � σ : κ

Γ � a ♦ : τ [σ/α]
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KindIncoh

Γ � κ
Γ, α : κ � τ : �

Γ � Π(α : κ) τ : �

CoerIncoh

Γ, α : κ′, Σ � σ : κ Γ � ∃Σ
Γ,α : κ′ � (Σ � τ [σ/α]) � τ ′

Γ � (Σ � Π(α : κ) τ) � Π(α : κ′) τ ′

The set Ecc of Fcc error terms is generated from its head reduction, its construc-
tor terms (as in Fth, but without � and with (∂ a)) and its destructor contexts
(as in Fth, but without δ(�, φ.b) and with (� ♦)).

3 Soundness and Confluence

In this section, we prove our two technical results, confluence and soundness
of Fth. The proof proceeds by a series of translations, proving that the source
language is sound if the target language is sound as well. In §3.1, we recall the
Fcc soundness result from previous work. In §3.2, we show a translation from the
sublanguage Ft to (an administrative variant of) Fcc. This establishes soundness
of Ft. In §3.5, we prove confluence of Fth using parallel reductions. For this we
precisely define Fth multi-hole contexts, which give convenient tools to reason
on its dynamic semantics. Finally, §3.6 proves soundness of Fth, using the tools
introduced for the confluence proof.

3.1 Soundness of Fcc

Fcc comes with a (computer-checked) soundness proof for its (non-deterministic)
reduction: starting from a well-typed term, no reduction path can lead to an
erroneous stuck term. For deep reasons detailed in previous work, subject reduc-
tion (preservation of typing by reduction) does not hold for Fcc. Therefore, the
soundness proof uses more semantic tools, building a model of the type system
where types are sets of terms.

Theorem 1 (Previous work, Cretin and Rémy [2014] Soundness of Fcc).
Terms that are well-typed in Fcc in a consistent environment are sound. That is,
if ∅ � ∃Γ and Γ � a : τ , then a is sound.

3.2 Translating Propositional Truths to Fcc

We now define a translation � � of terms, types and judgment derivations into Fcc.
Informally, the idea of the translation is a form of CPS-encoding: we can translate
a witness of type [P ] into a continuation consuming any inconsistent abstraction
Π(α : 〈P 〉) τ to return a τ . Witness construction � would become the elimina-
tion continuation λ(x) (x ♦), while propositional elimination δ(a, φ.b) uses the
translation of a as a continuation: �a� (∂ �b�).

The actual translation on terms and types is close to the informal description
above, with an important difference. The informal translation gives the expected
computational behavior to well-typed terms, but has the defect of mapping some
terms that are errors in Ft to terms in Fcc that may still further reduce: for
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example, δ((λ(x)x), φ.y) is a stuck Ft term, but its translation (λ(x)x) (∂ y)
can be further reduced.

Because the soundness proof of Fcc is done semantically, and subject reduction
does not hold for this calculus, it is important that our translation of Ft terms
be well-behaved even on ill-typed terms. Indeed, we want to translate whole
reduction paths starting from a known Ft term which, even if well-typed, may
reduce to ill-typed terms (but, as we prove in this section, not an error). We also
want to reason about the translation of those sound, ill-typed reducts.

To get a translation of δ((λ(x)x), φ.y) that is stuck, we use a slight variant of
Fcc, called F�

cc, for the target language. It is equipped with an “administrative”
copy of the arrow type (τ →� σ), of λ-abstraction (λ�(x) a) and application
(a� b). The type system and reduction semantics are exactly those of Fcc, with
each rule (in the static and dynamic semantics) about λ-abstractions duplicated
into an identical “administrative” variant.

The administrative λ� is entirely separate from the usual λ, and in particular

(λ(x) a)
�
b and (λ�(x) a) b do not reduce and thus are both errors.

We can now formally define the translation from Ft to F�
cc, which makes judi-

cious use of administrative constructions to preserve stuck terms. It is defined
below on the Ft-specific constructions; it just preserves the structure of other
constructions and translate their subterms (we use for unused variable bind-
ings):

�[P ]�
�
= ∀(β : �) (Π( : { : 1 | �P �})β) →� β

�δ(a, φ.b)�
�
= �a�

�
(∂ �b�)

��� �
= λ�(x) (x ♦)

�Γ, φ : P �
�
= �Γ � , α : { : 1 | �P �}

For example, the translation of the error δ((λ(x)x), φ.y) is now (λ(x)x)
�
(∂ y),

which is also an error.One cannot build a counter-example of the form δ((λ�(x) a),
φ.b) as the administrative variants are not part of the input language Ft. One can
show by induction that the translation preserves errors and typing.

Lemma 1 (Error preservation of Ft). A term a is an error in Ft if and only
if �a� is an error in F�

cc.

Lemma 2 (Typing preservation of Ft). If Γ � a : τ in Ft, then �Γ � � �a� : �τ�
in F�

cc.

Independently of typing preservation, we also prove a bisimulation property
between Ft and F�

cc. It is not quite the case that any single-reduction step in Ft
is turned into a single-reduction step of F�

cc, because the reduction of the trans-

lation of δ(�, φ.b), that is (λ�(x) (x ♦))
�
(∂ �b�), does an extra administrative

λ�-reduction step before the expected ∂ -reduction. We define the relation (◦→�)
of administrative head β-reductions as the subset, in F�

cc, of reductions in (◦→)

of the form (λ�(x) a)
�
b ◦→ a[b/x], and (−→�), the administrative β-reductions,

its closure (◦→�) under reduction contexts.
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For any relation (R), we define the relation R? by a R? b if and only if
(a R b) ∨ (a = b).

Lemma 3 (Bisimulation of Ft by F�
cc). For any a −→ a′ in Ft, we have

�a� −→?
� b −→ �a′� for some b in F�

cc.

Conversely, if �a� −→ b in F�
cc, then a −→ a′ for some a′ such that either

b = �a′� or �a� −→� b −→ �a′�.

Corollary 1. If �a� is sound in F�
cc, then a is sound in Ft.

Corollary 2. If F�
cc is sound, then so is Ft.

We note that we do not need the bisimulation result to establish soundness
(relative to F�

cc), but only the forward simulation and the forward translation of
errors.

The backward simulation shows that besides having the same soundness prop-
erty, Ft and F�

cc are also the same in term of number of reductions up to admin-
istrative steps: reasoning on program efficiency can therefore also be transposed
from one to the other. In this respect, it may be important to remark that the
one computation step we allowed to neglect, the administrative λ�-reduction,
never performs arbitrary duplication of its argument: whenever it appears in the
translation, the λ�-variable appears exactly once in the body. We could better
enforce this invariant by using a linear type for this administrative construction,
but this would require invasive changes to the type system.

3.3 Translating Fcc into Ft

Just as we presented a translation from Ft into (an administrative variant of)
Fcc to prove Ft’s soundness, it is possible and enlightening to translate Fcc back
into (an administrative variant of) Ft – after fixing a minor defect of Fcc as
previously presented. By lack of space, we have not included this translation in
the conference version of this article, but it is available in the full version.

3.4 Soundness of the Administrative Arrow

To conclude, from the two previous sections, that Fcc’s soundness implies Ft’s
soundness and conversely, we need to prove the soundness of the administrative
variants relative to their base calculus. While this is a common technique, its
soundness proof is actually not as obvious as one would expect. By lack of space,
the proof is only available in the full version.

This result proves, in particular, the soundness of F�
cc relative to Fcc. Along

with Corollary 2, establishing the soundness of Ft relative to F�
cc, and the already

established soundness of Fcc (Theorem 1) this concludes the soundness proof
of Ft.
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�i : S � �i : S ∅ � x : S
Γ � E : S\{φ}

Γ � hideφ inE : S

Γ � E1 : S Δ � E2 : S ∪ {φ}
Γ,Δ � δ(E1, φ.E2) : S

Γ � E1 : S Δ � E2 : S

Γ,Δ � (E1 E2), (E1, E2) : S

Γ � E : S

Γ � (λ(x)E), (πi E) : S

a = E[x]i x /∈ E (�i : Si) � E : S

a[b/x]S
�
= E[hideSi in b]

i

a = E[hideφ in bi]
i φ /∈ E

a[�/φ] �
= E[bi]

i

Fig. 11. Guard analysis of multi-hole contexts

3.5 Confluence of Fth

Multi-hole Contexts. Figure 11 introduces a new judgment (�i : Si)
i∈I � E : S,

that is a simple syntactic analysis of the guards of a multi-hole context, that
is the set of propositional variables that block the reduction of each hole. The
judgment can be read as “if the whole term is guarded by S, then the i-th hole
�i is guarded by Si”. A multi-hole context is just a term whose variables are,
by convention, named �i for some i in I, and which appear only once in the
term; we enforce that latter invariant by using disjoint union for the context
union Γ,Δ, which corresponds to a simple linear typing discipline. The notation
E[ ]i∈I corresponds to a context with a family of holes indexed by i, and in
contexts �i∈IΔi is the disjoint union of a family of contexts (Δi)

i∈I . For sake
of brevity, we often leave I implicit and just write i instead of i ∈ I.

Notice that guardS(E) for a single-hole context is uniquely defined by � :
guardS(E) � E : S. We also use multi-contexts to re-define the hiding substitu-
tion a[b/x]S defined in §2.3, and the hide-removing substitution a[�/φ] used in
the reduction rule for δ(�, φ.a).

Finally, a multi-context E is a prefix of E′ (or a term, if E′ has no holes) if
E′ can be obtained by substituting sub-contexts into the holes of E.

Parallel Reductions. We prove confluence using the Tait-Martin-Löf technique of
parallel reductions, with a simple proof argument inspired by Takahashi [1995].
The idea of Takahashi is that parallel reduction (noted a =⇒ b) for the simple λ-
calculus with only arrows can be made deterministic by adding a redex-avoidance
rule (the a �= (λ( ) ) hypothesis below meaning that a does not start with an
abstraction) to the parallel reduction of application:

a �= (λ( ) ) a =⇒ a′ b =⇒ b′

a b =⇒ a′ b′
a =⇒ a′ b =⇒ b′

(λ(x) a) b =⇒ a′[b′/x]

Without the redex-avoiding condition a �= λ( ) in the application reduction rule,
two reduction paths are available to each β-redex, performing the β-reduction or
not. This gives a parallel condition that may reduce each redex in one step, and
can thus subsume the usual single-step reduction relation by choosing to reduce
exactly one redex. Takahashi remarks that the condition forces all redexes of the
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E → (�i : ∅)i � E : ∅ (ai ◦⇒ bi)
i

E[ai]
i =⇒ E[bi]

i

(ai =⇒ a′
i)

i R[a′
i]
i ?◦→ b

R[ai]
i ◦⇒ b

R ::= (λ(x)�1) �2 | πi (�1,�2) | δ(�, φ.Eφ[hide φ in�i]
i)

(with unguarded(Eφ) and φ /∈ Eφ)

Fig. 12. Parallel reduction

term to be reduced (Gross-Knuth reduction), and that this modified relation
trivially forces confluence of the parallel reduction, of which it is a special case.

Adapting Takahashi’s idea to a Wright-Felleisen setting of head reduction
and elimination contexts suggests a new formulation, which is to decompose a
reducible term a into the form E[bi]

i where the multi-context E is not reducible
when seen as a term – a generalization of the redex-avoiding condition. For the
same reason that Takahashi’s reduction was deterministic, the decomposition of
a into E[bi]

i where E is not reducible and the bi are head redexes is unique, since
E is the largest head context that does not contain redexes. This decomposition
still let us define parallel reduction, rather than only the Gross-Knuth reduction.

Figure 12 gives the definition of our parallel reduction a =⇒ b, mutually
defined with the head parallel reduction a ◦⇒ b that reduces head redexes . The
notation E �−→ can be understood in term of the single-step reduction relation,
when E is seen as a term as any other: ¬(∃E′, E −→ E′).

The parallel reduction of E[ai]
i only happens when the ai are all redexes,

as they must be related to some bi by the head parallel reduction (◦⇒) that
only starts from head redexes R[�i]

i. Not all these redexes need to be reduced,
however, as the head beta-reduction step R[a′i]

i ◦→? b is optional. In particular,
taking R[a′i]

i = b for each redex shows that the relation (=⇒) is reflexive.
The restriction that the substituted terms ai are redexes is crucial to modu-

larly reason about reducibility; for if we substituted the non-redex λ(x) a into
the context (� b), we would get a reducible result while neither the term nor the
context were. No such situation can happen when the plugged terms are head
redexes themselves, as redexes do not overlap.

Lemma 4 (Orthogonality). Redexes do not overlap: If (�i : ∅)i � E : ∅
is a one-hole irreducible context distinct from �, then for any redex contexts
R[�j ]

j and (R′
i[�k]

k)i and families of terms (aj)
j and (bi,k)

i,k) we have R[aj ]
j �=

E[R′
i[bi,k]

k]i.

The other lemma we need, to prove the unicity of the decomposition by ir-
reducible contexts, is about the structure of reducible positions in a term or
context.

Lemma 5 (Reducible positions). For any guard S, any term a has a minimal
non-empty prefix F such that (�k : ∅)k � F [�k]

k : S. For any non-empty prefix
F ′ of a with (�k′ )k

′ � F ′[�k′ ]k
′
: S, F is a prefix of F ′. Furthermore, F is

irreducible.
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Lemma 6 (Unique decomposition of irreducible contexts). If two par-
allel reductions have the same source, then they use the same context-redexes
decomposition.

In the general case of filling a context E with subterms that are not necessarily
head redexes, we may still reason on reducibility of the subterms:

Lemma 7 (Composability of parallel reduction). The following rule, which
does not constrain the (ai)

i to be head redexes or E to be irreducible, is admis-
sible:

(�i : ∅)i � E : ∅ (ai =⇒ bi)
i

E[ai]
i =⇒ E[bi]

i
··················································

The last technical lemma we need closes a commutative diagram between parallel
reduction and one-step head reduction.

Lemma 8 (Commutation =⇒ and ◦→). If R[ai]
i =⇒ R[a′i]

i and both
R[ai]

i ◦→ b and R[a′i]
i ◦→ b′, then b =⇒ b′.

Note that it is precisely that last lemma that failed with Ft or Fcc without a hid-
ing construct. Indeed, with b =⇒ b′, reducing (λ(x) δ(y, φ.x)) b to δ(y, φ.b) does
not allow closing the diagram to δ(y, φ.b′), while reducing to δ(y, φ.hideφ in b)
allows closing the diagram by reducing to δ(y, φ.hideφ in b′).

Theorem 2. The parallel reduction relation (=⇒) is confluent.

Corollary 3 (Confluence). The relation (−→∗) is confluent.

3.6 Soundness of Fth

The soundness proof of Fth is again a translation from Fth to Ft with a for-
ward simulation. Before getting to the translation proper, we need to study two
transformations used to define it. Hide-extrusion (3.6) removes hiding from a
Fth term, and its correctness property let us simulate forward reductions of the
form δ(�, φ.b) ◦→ b[�/φ]. Hide-normalization (3.6) strengthens the structure of
hiding in a Fth term, in such a way that we can forward-simulate the other Fth
reductions, despite the mismatch between Fth’s hiding substitution a[b/x]S and
Ft’s natural substitution. We finally prove Fth’s soundness (Theorem 3).

Hide-extrusion. In a language without hiding such as Ft, it is possible for the
programmer to emulate the effects of hiding by extruding terms out of a block-
ing construction. Instead of δ(a, φ.E[hideφ in b]), one can write let xb =
b in δ(a, φ.E[xb]), where b appears in reducible position; we call this transfor-
mation hide-extrusion. In the general case, E may bind variables or block over
other proposition variables, and the translation needs to be refined to preserve b’s
typing environment; for example, δ(a, φ.λ(y) (f (hideφ in b))) is hide-extruded
into let xb = λ(y) b in δ(a, φ.λ(y) (f (xb y))).
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δ(b, φ.C[hide φ in a]) ↪→ let x = abs(C, a) in δ(b, φ.C[app(x,C)])

N ::= � b | a � | (�, b) | (a,�) | πi � | σi � | δ(�, φ.b) Non-binding contexts

abs(�, a)
�
= a

abs(N [C], a)
�
= abs(C, a)

abs(λ(y)C, a)
�
= λ(y)abs(C, a)

abs(δ(w, ψ.C), a)
�
= λ(xw) δ(xw, ψ.abs(C, a))

app(a,�)
�
= a

app(a,N [C])
�
= app(a,C)

app(a, λ(y)C)
�
= app(a y,C)

app(a, δ(xw, ψ.C))
�
= app(a �, C)

Fig. 13. Hide-extrusion: translating hide back into plain Ft

Figure 13 gives a formal definition of the hide-extruding rewrite a ↪→ a′ by
defining two functions abs(C, a), which abstracts a over all the variables bound
in the context C, and app(b, C), which closes such an abstracted b (when applied
from under the context C) by applying it to the appropriate variables, accord-
ingly. These definitions are factorized by a grammar N of context frames that
do not bind any variable.

Lemma 9 (Typing preservation of hide-extrusion). If a is well-typed in
Fth and a ↪→ b, then b is well-typed, at the same type.

Lemma 10 (Hide-extrusion of errors). If a ↪→ b, then a is an error if and
only if b is an error.

Lemma 11 (Extrusion Reduction). app(abs(C, a), C)
−→∗ a[�/guard∅(C)].

Each hide-extrusion rewrite removes exactly one hideφ from the source term;
in particular, iterating hide-extrusion terminates, and gives a term without any
hiding construct. We prove in 3.6 that this gives a forward simulation of Fth by
Ft. This is easy to see in the simple case of extrusion through a reduction context
E without any other hideφ:

δ(b, φ.E[hideφ in a]) ↪→ let x = abs(E, a) in δ(b, φ.E[app(x,E)])

The only reducible subterms of the source term are a and b. The subterms b and
a are still reducible in the target term, since in particular guard∅(abs(E, �)) is
empty. If b eventually reduces to �, then the source becomes E[a] which may re-
duce further. The target can reduce to let x = abs(E, a) in E[app(x,E)], which
itself reduces to E[app(abs(E, a), E)], then to E[a] by the previous lemma 11.

Hide-normalization. The remaining issue for a forward simulation of Fth by Ft
is the difference between the substitutions used in β-reductions. If (λ(x) a) b
is related to some (λ(x) a′) b′ by hide-extrusion, a[b/x]∅ may not be related to
a′[b′/x] in the general case, as the substitution in Fth may introduce new hiding
constructs that have to be extruded again.

The idea of hide-normalization is to rewrite a term so that both substitutions
coincide, by establishing the invariant that the guard of each bound variable
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occurrence is equal to the guard of its binder. For example, in λ(x) δ(y, φ.x) the
guard of x’s binding site is ∅, while its occurrence has guard {φ}. β-reducing
this λ-abstraction would introduce a hideφ. We can statically rewrite it into
λ(x) δ(y, φ.hideφ inx), which is equivalent (unblocking free variables doesn’t
affect reduction), and whose β-reduction doesn’t introduce hiding.

In the general case, we define the hide-normalization function H(a) from Fth
to Fth. It recursively traverses all subterms and is a direct mapping, except :

HideNormLam

(�i : Si)
i � C : ∅ x /∈ C

H(λ(x)C[x]i)
�
= λ(x) H(C[hideSi inx]

i)

Lemma 12 (Type preservation of hide-normalization). If a is well-typed
in Fth, then H(a) is also well-typed, at the same type.

Lemma 13 (Error preservation of hide-normalization). A Fth term a is
an error if and only if H(a) is an error.

Lemma 14 (Hide-normalization is stable by reduction). If H(a) −→ b′,
then b′ is equal to H(b) for some b.

Lemma 15 (Hide-normalization is a forward simulation). If a −→ b hen
H(a) −→ H(b).

Soundness. Given a well-typed Fth term a, its hide-normalized form H(a) is
still well-typed and has the same reduction behavior – errors included. We can
compute the maximal hide-extrusion a′ of H(a); this term is well-typed in both
Ft and Fth. All that remains, to establish that the original term a is sound, is
to forward-simulate any reduction path starting from a′ in Ft. This should be
done carefully, however, as it is not the case that the hide-extrusion of H(a) is
itself hide-normal; it is, except on the subterms created by hide-extrusion. Hide-
extrusion introduces linearly-used variables to preserve scoping, and of course
does insert the appropriate hiding constructs, as its goal is to remove hiding.
Fortunately, we do not need to hide-normalize the terms produced by hide-
extrusion: they remain well-separated from other subterms during reduction,
and are not affected by β-reduction from other parts of the term.

Theorem 3 (Soundness of Fth). Every well-typed Fth term is sound.

4 Related and Future Work

Related Work

Confluence and Weak Reduction. It appears to be folklore that there are three
ways to get confluence in a weak reduction setting. One solution is to allow
reduction under weak binders of subterms that do not use the bound vari-
ables [Çağman and Hindley, 1998]; we cannot apply this method in Fth as uses
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of propositions are not traced in terms. Another solution is to introduce ex-
plicit weakening when substituting under a binder, so as to preserve the non-
dependency with bound variables. This corresponds to our hiding substitution.
Finally, one may use explicit substitutions and forbid them from going through
weak bindings, so that the substituted terms remain reducible. Interestingly, this
happens to be precisely the computational behavior of terms used in our final
soundness proof (from Fth to Ft), as a result of hide-normalization followed by
hide-extrusion.

Some explicit substitution calculi [Kesner, 2007] also have explicit weakening
for the purpose of understanding reduction behavior of substructural systems
(e.g. linear proof nets) where weakening must be applied maximally and this
invariant is preserved by reductions and substitutions. This gives a reduction
semantics that is different from our more relaxed system.

Another systemwithexplicitweakening isAdbmalbyHendriks and van Oostrom
[2003]. Their weakening construct enforces a well-parenthesized order between in-
troduction andweakening by removing not just one variable from scope, but also all
variables introduced afterwards. Our hiding construct allows non-bracketed
introduction-hiding sequences, which is more convenient for the programmer. In-
terestingly, we also considered a construct hide � in a to hide all propositional
variables in scope and simplify the definition of hiding substitutions, but the lo-
cal use of hide-normalization in the soundness proof suffices to get a similar effect.
The scope-extrusion performed before Adbmal’s β-reductions, which extrudes the
weakening above a bound variable to also weaken its binder is also related to our
hide-normalization technique.

System FC. The family of works on System FC [Sulzmann et al., 2007] is related
to consistent coercion calculi in general, but also to our specific focus on implicit
v.s. explicit use of potentially-inconsistent propositions. Sulzmann et al. [2007,
§3.8] argue that explicit coercions often simplify understanding of compiler trans-
formations by turning semantically incorrect hard-to-debug optimizations into
scope-breaking transformations that are immediately detected. Implicit use of
logical hypotheses is for user’s convenience, and is not necessary in a compil-
ter intermediate language. Yet, we claim that Fth retain some advantages in an
explicit setting. The explicit reduction-blocking elimination reifies the semantic
boundary into the syntax, which simplifies reasoning for both users and compiler
designers. Another relation to our work is the march towards richer kind systems.
Fcc includes a small set of features to demonstrate its usefulness, but the features
studied for System FC, which moves towards a fully dependent type and kind
sublanguage [Weirich et al., 2013], would also make sense in our setting. In par-
ticular, dependent kinds would make it natural to include propositions directly
as kinds and merge product kinds, refinement kinds, and proposition conjunction
as a single dependent product constructor. Consistency is known to be a pain
point in the metatheory of System FC. It is neither needed nor traced in arbitrary
coercion abstractions – they are not quite erasable as coercion abstraction blocks
reduction. Yet, it is required for the axioms introduced at the toplevel – e.g. to
model type families. An Fcc-inspired, more explicit treatment of consistency may
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structure System FC and provide optimization opportunities. We know that the
mode of use of coercions corresponding to bounded quantification is consistent
and can be erased; but the practical question of how to decide consistency is not
answered in our work.

Future Work

Completing Consistent Coercion Calculi. In the process of our work we have
encountered small glitches in Fcc: rules that we would expect to be derivable,
and that were not in the current system. We have fixed them as necessary for
Fth’s need, but some aspects could still be improved – adding η-expansions in the
kind equality, and understanding whether the context consistency requirement
of coercions could be removed, and recovered by a semantics argument.

Extraction. Coq’s extraction process [Letouzey, 2004] compiles a language with
full reduction and explicit uses of hypotheses into OCaml, a language with weak
reduction and implicit uses of hypotheses; Fth might be a good intermediate lan-
guage in which to express and study some of the optimizations happening during
the translation—which is known to be difficult. More generally, the dependent
type community is aware that computation is very different under arbitrary con-
texts [Brady et al., 2003]. We suspect that context consistency could be a good
generalization of the “empty context” assumption. A distinction between propo-
sitional and definitional truths naturally arises in our framework and, interest-
ingly, we have a use for abstracting over definitional truths – while dependent
systems don’t generally consider abstracting over definitional equalities.

Conclusion

We have introduced Fth, a consistent coercion calculus that blocks reductions
under implicit inconsistent assumptions in a fine-grained manner. This solves
both practical issues (user control over reducibility) and theoretical issues (con-
fluence) with a previous calculus of erasable coercions, Fcc, and opens interesting
perspectives on the study of full-reduction calculi for programming language de-
sign, the interplay between type systems and weak reduction strategies, and an
explicit handling of consistency in dependent type systems.

Acknowledgments. Julien Cretin made many helpful remarks on our work;
in particular, he suggested to introduce incoherent abstraction on propositions
instead of kinds, which simplifies the presentation. We had fruitful discussions
with Luc Maranget and Thibaut Balabonski about weak reduction; Thibaut
Balabonski suggested the use of multi-hole contexts to unify guards (Figure 9)
and hiding substitution (Figure 10), an idea we used in the proof of confluence.
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Abstract. A key difficulty in verifying shared-memory concurrent pro-
grams is reasoning compositionally about each thread in isolation. Existing
verification techniques for fine-grained concurrency typically require rea-
soning about either the entire shared state or disjoint parts of the shared
state, impeding compositionality. This paper introduces the program logic
CoLoSL, where each thread is verified with respect to its subjective view of
the global shared state. This subjective view describes only that part of the
state accessed by the thread. Subjective viewsmay arbitrarily overlap with
each other, and expand and contract depending on the resource required
by the thread. This flexibility gives rise to small specifications and, hence,
more compositional reasoning for concurrent programs. We demonstrate
our reasoning on a range of examples, including a concurrent computation
of a spanning tree of a graph.

1 Introduction

A key difficulty in verifying properties of fine-grained concurrent programs is be-
ing able to reason compositionally about each thread in isolation, even though in
reality the correctness of the whole system is the collaborative result of intricately
intertwined actions of the threads. Such compositional reasoning is essential for:
verifying large concurrent systems, since it allows them to be verified component-
wise; verifying library code and incomplete programs, since one does not need to
know about the context of execution; and replicating a programmer’s intuition
about why their implementations are correct, since their informal arguments are
typically kept local and do not bring the whole system into the reasoning.

Rely-guarantee [16] and various combinations of rely-guarantee and separation
logic reasoning [26,9,10,7,23,3] achieve compositional reasoning for increasingly
difficult inter-thread interactions. However, we believe that, despite substantial
progress, there are many examples where the specifications and proofs are not as
concise as they might be; they are either too coarse or too contrived. We explore
a different approach, introducing the program logic CoLoSL, using which we
can give small specifications and proofs which correspond to the programmer’s
intuition of what shared resource is required by the thread.

Small specifications were emphasised in the work of O’Hearn, Reynolds and
Yang on separation logic [19]. The original separation logic [21,15] achieves local,
compositional reasoning for sequential heap-manipulating programs by splitting
the heap into disjoint heaplets for describing the local resources required by a pro-
gram. Compositionality then rests on two powerful mechanisms: a program can be

c© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 710–735, 2015.
DOI: 10.1007/978-3-662-46669-8_29



CoLoSL: Concurrent Local Subjective Logic 711

specified using only those resources that it actually accesses; and this specification
can be simply reused in any context that contains these resources. By making the
specification as small as possible, we can ensure that it can be reused in a large set
of possible contexts using the frame rule. This plays an important role in achieving
scalable compositional reasoning, as each block of code can be proved in isolation
and its small specification reused in larger contexts.

Concurrent separation logic extends this compositional reasoning to concurrent
programsusing the disjoint concurrency rule, where individual threads use both lo-
cal resources private to the thread as well as static shared resources, which can be
accessed by all threads through critical sections. Since then, there have been many
extensions combining rely-guarantee reasoningwith ideas from concurrent separa-
tion logic to reason about fine-grained concurrency: RGSep [26] introduced local
resource and shared disjoint regions which are stable with respect to a static inter-
ference relation stating how the current thread and the environment can affect the
region; CAP [7] and its extensions [24,23,3] in addition abstract the regions. This
work has achieved substantial success; see the relatedwork section formore details.
Yet, we believe these approaches are not always able to provide small specifications
for concurrent programs, impeding compositionality.

The problem is due to the rigid nature of the shared disjoint regions and
their static interference, which limits how we can work with a concurrent data
structure. A disjoint region typically either describes the entire data structure
such as a linked list, or contains individual components of the data structure
such as the nodes of a linked list. However, threads may have shared access
to arbitrary parts of the data structure, which cannot be directly expressed in
the reasoning. The interference associated with the region is static in that it
is defined when the region is created and is fixed throughout its entire lifetime.
However, threads having access to parts of a shared region need only know about
the interference on those parts. In addition, it is not always possible to predict all
future interactions associated with a shared region at the time of creation. Just
as the original separation logic uses the frame rule to obtain small specifications
for the local state, we seek an analogous framing mechanism on both the shared
resource and its interference to obtain small specifications of the shared state.

For example, consider a linked list consisting ofn+1nodes accessed concurrently
byn threadswhere the ith thread requires access to the ith and (i+1)st nodes. Cur-
rent approaches cannot provide a small specification for each threadwhich captures
just these two shared nodes and their interference.1 Now consider a programwhose
threads manipulate subgraphs of a graph, such as a recursive concurrent spanning
tree algorithm. Current approaches cannot give small specifications capturing just
the subgraphmanipulated by each thread due to intrinsic, unspecified sharing be-
tween subgraphs. Finally, consider a concurrent set implementation. In CoLoSL it
is possible to describe the interference associated with a new element as it is added
to the set.The interference onnewelements neednot be the same as before andmay

1 In [13], similar problemswere encountered in an attempt to provide small specifications
for a doubly-linked list implementation of a concurrent tree.
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only be known at the time they are added. Existing approaches cannot accommo-
date such dynamic interference relations.

This paper introduces the program logic CoLoSL, which stands for Concurrent
Local Subjective Logic. CoLoSL’s semantic model is based on one global shared
state, and each thread is verified with respect to its partial subjective view of
this state. Each subjective (personalised) view comprises an assertion which de-
scribes parts of the shared global resource used by a thread, and an interference
relation which describes how the thread and the environment may affect these
parts. Subjective views may arbitrarily overlap with each other, with both their
resources and interference expanding and contracting in accordance with what is
required by the thread. Interestingly, this sometimes requires rewriting the inter-
ference relation so that the interference on the smaller state captures the same
information as the interference on the bigger state. This expansion and contrac-
tion of subjective views provides small specifications for individual threads and
local reasoning about a thread’s shared state.

We demonstrate CoLoSL reasoning on a range of examples. The first exam-
ple in §2 is Dijkstra’s token ring mutual exclusion algorithm [5]. Regardless of
the size of the ring, we are able to give a small specification to each thread
in isolation such that each proof only mentions resources associated with two
of its neighbours. This means that the proof can be largely reused when the
implementation of the ring is changed to allow dynamic spawning of new partic-
ipants. In §4, we study two further examples. The first is a concurrent spanning
tree algorithm for graphs, where threads are recursively spawned on potentially
overlapping subgraphs. We demonstrate that the flexible, overlapping subjective
views of CoLoSL are just what we need. The second is a concurrent set module
implemented using a hand-over-hand list-locking algorithm. Our CoLoSL rea-
soning for this set module improves on CAP reasoning [7] in that our small
specifications can be dynamically extended to include other behaviour in future
whereas the static CAP interference must predict all behaviour from the start.

Most of the technical details have been left out due to space constraints, and
are provided in the accompanying technical report [20].

Related work. Jones’ rely-guarantee reasoning [16] provided a breakthrough in
compositional reasoning about concurrent programs. It described permitted in-
terferences between threads using global rely and guarantee relations on one
global shared state. This work is compositional in the sense that the guaran-
tee of one thread is the rely of another. However, O’Hearn [18] demonstrated
that, for concurrent reasoning to scale, it is important to work with small spec-
ifications based on local state and shared state rather than working with one
global state. In particular, he introduced concurrent separation logic based on
thread-local state and static invariants for the shared state.

Since then, there has been much recent work on compositional reasoning about
fine-grained concurrent algorithms. RGSep [26] combined rely-guarantee reason-
ing with separation logic, with the state split into thread-local state and disjoint
shared regions, and global rely-guarantee relations providing the interference on
these regions. Deny-guarantee extends rely-guarantee and RGSep with permis-
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sions that can turn pieces of interference on or off during the proof of a program,
as would be typically needed in a programming language with fork and join con-
structs instead of statically-scoped parallel composition. This has influenced the
capabilities of CAP. CAP reasoning [7] increased compositionality by, instead of
the global rely-guarantee relations, having static interference relations associated
with the disjoint shared regions and capabilities in the local state for dynami-
cally controlling the permitted interference, and concurrent abstract predicates
for hiding implementation details. Several program logics have adapted this work
to incorporate more abstraction [25], higher-order features [23] and more flexible
capabilities [3]. We believe that all this work has limited compositional reasoning
in the sense that it is only possible to frame off local state and unused shared
regions. It is not possible to frame within regions nor frame inside the interfer-
ence relations. (It is, of course, possible to weaken the region assertion by the
logical implication P �Q ⇒ P � true, but this is not the same as being able to
shrink regions and their interference to just work with P .)

Meanwhile, a different breakthrough in compositionality came from Feng’s
local rely-guarantee (LRG) reasoning [10]. The LRG model comprises one global
shared state, with assertions describing disjoint but flexible parts of this state
and rely-guarantee relations determining how the thread and environment can
affect these partial states. With LRG, it is possible to frame off disjoint parts
of shared state and their associated disjoint rely-guarantee relations, but, as
noted by its author, the strong disjointness restrictions make this approach only
applicable for disjoint modules in the code. We took significant inspiration from
LRG, combining the flexibility of the LRG approach with our subjective views
to reason locally about overlapping shared states.

Finally, Fine-grained Concurrent Separation Logic (FCSL) [17] of Nanevski et
al. explores a different notion of region called concurroids. Like the regions in CAP,
concurroids describe disjoint pieces of shared state together with their static inter-
ference. It is therefore not possible to frame within concurroids. The term “subjec-
tivity” in FCSL refers to the fact that, unlike CAP, concurroids have three parts:
the “joint” part; and the disjoint “self” and “other” parts. Although FCSL did not
influenceCoLoSL, it does highlight an interesting point regarding resource transfer
between regions: inCAP, communicationbetween regions is achieved indirectly via
the local state; in FCSL, communication between concurroids is achieved directly
through dangling external transitions; and, in CoLoSL, communication between
compatible subjective views can be achieved by merging the two views.

2 Informal Development

We sketch a proof of an implementation of Dijkstra’s token ring mutual exclu-
sion algorithm, which pioneered self-stabilising distributed algorithms [5]. Our
proof highlights the main reasoning principles of CoLoSL and results in small
specifications for each participant in the ring. Besides their concision, we show
how small specifications are robust against non-trivial changes to the program.

The algorithm assumes a network of n+1 machines arranged in a ring, with
a designated master machine and n slave machines. Each machine maintains a
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P � P ′ � {P ′} C {Q′} Q′ � Q

� {P} C {Q} Consq

Fig. 1. Main reasoning principles and rules of CoLoSL

local counter and has access to the value of its left neighbour’s counter; the state
of the system consists of all n+1 counters. Starting in an arbitrary state, the
network eventually stabilises to legitimate states [4], with the following global
property: in the ith legitimate state, machines 0 to i−1 (machine 0 being the
master) have some value v+1, and all others have value v. In the ith legiti-
mate state, only the ith machine (indicated by • below) can make progress: it
increments its counter by 1 and takes the system to the next legitimate state
(i+1modn+1). For a ring at address x, the ith legitimate state is depicted below
(for both i > 0 and i = 0).

x x+1 x+i−1 x+i x+n

v+1 v+1 · · · v+1 v • · · · v

x x+1 x+n

v • v · · · v

In [20], we outline a proof of the token ring’s self-stabilisation phase, which
shows that the system always converges to a legitimate state. We also provide
a proof of the token ring as a mutual exclusion mechanism, where a machine
holding • may gain ownership of a shared resource. For simplicity, here we focus
on the case where the token ring is in the 0th legitimate state, with all counters
holding value 0. Our proof makes use of the CoLoSL principles laid out in Fig.
1, together with the usual concurrency rule of separation logic [18] and the
rule of semantic consequence from the views framework [6]. We introduce them
informally as needed, and discuss them in more detail in §3.

CoLoSL introduces a new assertion
�

�

�

�

P
I
called a subjective view, which com-

prises a subjective assertion P describing a part of the global shared state and
an interference assertion I characterising how this partial shared state may be
changed by the thread or the environment. Similar to the interference assertions
of CAP [7], I declares actions of the form [a] : Q � R, where a thread in posses-
sion of the [a] capability in its local state may carry out its transition and update
parts of the shared state satisfying Q to a state satisfying R. Assertions in Hoare
triples must be stable with respect to the interference from the environment: that
is, robust with respect to the interference assertion I.

Consider the program ring(x) defined in Fig. 2 which represents a token ring
with n+1 machines. It is written in pseudo-code resembling C with additional
constructs for concurrency: atomic sections 〈 〉 which declare that code behaves
atomically; and parallel composition ‖ which spawns threads then waits until
they complete. In our example, the n+1 threads run in parallel until all counters
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r i n g (x )

//
{

x ⇀⇁ x � [mx] � [sx+1] � · · · � [sx+n] �
�

�

�

�

n ⇀⇁ n � x �→ 0 � x+1 �→ 0 � · · · � x+n �→ 0
I

}

{ master (x ) || s l av e ( x+1) || · · · || s l av e ( x+n ) ;

} //
{

x ⇀⇁ x � [mx] � [sx+1] � · · · � [sx+n] �
�

�

�

�

n ⇀⇁ n � x �→ 10 � x+1 �→ 10 � · · · � x+n �→ 10
I

}

master (x )

//

{

x ⇀⇁ x � [mx] �
�

�

�

�

n ⇀⇁ n � x �→ 0 � x+n �→ 0
M′

x

}

{ while (*x != 10)

//

⎧

⎪

⎨

⎪

⎩

x ⇀⇁ x � [mx] �
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�

�

	

n ⇀⇁ n � ∃v. x �→ v �

(x+n �→ v ∨ x+n �→ v−1)
M′

x

⎫

⎪

⎬

⎪

⎭

{ 〈 i f (*x == *(x+n ) )
*x = *x + 1 ; 〉 }

} //
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s l av e (x )
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�

x �→ 0 � (x−1 �→ 0 ∨ x−1 �→ 1)
S′
x

}

{ while (*x != 10)
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⎩
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(x−1 �→ v ∨ x−1 �→ v+1)
S′
x

⎫
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⎪

⎭

{ 〈 i f (*x != *(x - 1 ) )
*x = *(x - 1 ) ; 〉 }

} //

⎧
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⎩
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x �→ 10 �
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S′
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⎫

⎪

⎬

⎪

⎭

sx � [sx]: ∃v. x 	→ v � x−1 	→ v+1 � x 	→ v+1 � x−1 	→ v+1

s′x � [sx]: ∃v. x+1 	→ v � x 	→ v � x−1 	→ v+1 � x+1 	→ v � x 	→ v+1 � x−1 	→ v+1

mx � [mx]:∃v, n.n ⇀⇁ n � x 	→ v � x+n 	→ v � n ⇀⇁ n � x 	→ v+1 � x+n 	→ v

m′
x � [mx]:∃v, n.n ⇀⇁ n � x+1 	→ v � x 	→ v � x+n 	→ v �

n ⇀⇁ n � x+1 	→ v � x 	→ v+1 � x+n 	→ v

l′x � [sx]: ∃v, n. n ⇀⇁ n � x 	→ v+1 � x+n 	→ v � x+n−1 	→ v+1 �
n ⇀⇁ n � x 	→ v+1 � x+n 	→ v+1 � x+n−1 	→ v+1

I � {mx, sx+1, . . . , sx+n} M ′
x � {mx, l

′
x} F ′

x � {sx,m′
x−1} S′

x � {sx, s′x−1}

Fig. 2. A proof sketch of the token ring in CoLoSL. Assertions in lines starting with //
describe the local state and the subjective shared state at the relevant program points.
The proof of slave(x) applies to all slaves expect the first one (called the foreman) in
the parallel composition, where S′

x is replaced by F ′
x.

reach value 10. While the implementation of all the slave threads are identical,
we shall see that the proof of the first slave in the ring (at x+1) is slightly
different from the others. We henceforth refer to the first slave thread as the
foreman. Let us proceed with the proof of the other slaves.

Proof of the slaves. Let us temporarily forget about the proof outline of Fig. 2
and attempt to prove slave(x) in isolation, in the spirit of local reasoning. Since
slave(x) inspects the value of its counter pointed to by x and compares it against
the counter at x-1 (its left neighbour in the ring), a tempting precondition for
slave(x) would be one describing just these two locations, e.g.

x ⇀⇁ x � [sx] �
�

�

�

�

x �→ 0 � (x−1 �→ 0 ∨ x−1 �→ 1)
Sx

Sx = {sx, sx−1}

The above assertion comprises: a) a variable assertion stating that the thread
locally owns variable x with value x (using the variables-as-resource model [1]);
b) a capability [sx] that allows it to perform the associated sx action (see below);
and c) a subjective view of the shared state: x points to 0, and x−1, its left
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neighbour, points to either 0 or 1 since it might already have incremented its
own counter. The � connective used between assertions is that of separation logic
and means that the assertions describe disjoint pieces of state. The interference
assertion associated with the subjective view is captured by Sx and consists of
two actions: sx and sx−1, where sx represents an increment of the contents of x
under the condition that its value is one less than the value at address x−1 (see
Fig. 2). Since the current thread owns [sx] locally, only it can perform sx. On
the other hand, the capability [sx−1] is not locally owned, thus the environment
could potentially perform the associated action whenever its precondition (on
the left-hand side of �) is satisfied. Upon closer inspection, since this subjective
view says nothing of the value of the cell at address x−2, sx−1 could potentially
always fire. The assertion is thus not stable: nothing prevents the counter at x−1
from incrementing beyond value 1. A weaker, stable assertion is thus:

x ⇀⇁ x � [sx] �
�

�

�

�

∃v. x �→ 0 � x−1 �→ v
Sx

Fortunately, we can do better and obtain a stronger small precondition. Let
us first step back and think again at the level of the whole algorithm. As the
programmer knows, the situation above cannot happen as x−2 can only be at
most one ahead of x itself. We can thus replace Sx by S′

x and give a stronger
stable precondition that captures just what we want, as in Fig. 2. The proof of
slave(x) is now relatively straightforward. By inspection (or using the rules of
§3.3), the invariant of the while loop and the postcondition are also stable. The
atomic section temporarily “opens the box” to perform action sx then “closes
back the box”, and preserves the invariant. The final postcondition of slave(x)
follows from the invariant and the boolean expression of the loop.

Proof of the master and foreman. The proof sketches of the master and foreman
threads given in Fig. 2 are analogous. As the first slave, the foreman has to
account for interference from the master instead of another slave. Moreover, the
master and its associated action mx have access to variable n holding the current
size of the ring, since they depend on the value of the counter at address x+ n.

Proof of the ring. The precondition of ring(x) states that it owns all capabilities,
which will be distributed amongst the n+1 threads; the global variable n ⇀⇁ n
is shared, as are all n+1 counters, initialised to 0. The interference I associated
with the subjective view consists of the actions of the n+1 threads. Because
ring(x) has a global view of the state of the ring (and moreover all capabilities
are held locally), the sx+i actions are enough to guarantee stability.

Let us write
�

�

�

�

P
I
for this initial subjective view. This assertion may be freely

duplicated using the Copy principle of Fig. 1 and each thread is given a copy
together with the appropriate capability using the usual Par rule of concurrent
separation logic. For instance, the thread running slave(x+i), for i > 1, gets
[sx+i] �

�

�

�

�

P
I
. This assertion does not match the precondition of slave(x+i) just

yet. Using the principles of Fig. 1, we can weaken the assertion as such:
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(I\{sx+i−1})∪{s′x+i−1}

(Forget)⇒ �

�

�

�

x+i−1 �→ 0 � x+i �→ 0
(I\{sx+i−1})∪{s′x+i−1}

(Shift)⇒ �

�

�

�

x+i−1 �→ 0 � x+i �→ 0 {s′x+i−1,sx+i}
(Weaken)⇒

�

�

�

�

x+i �→ 0 � (x+i−1 �→ 0 ∨ x+i−1 �→ 1) {s′x+i−1,sx+i}

We start by exchanging the action sx+i−1 of I for the stronger action s′x+i−1

using the Shift principle. In general, Shift allows us to replace I with any
interference assertion I ′ that has the same observable effect as far as the sub-
jective assertion P is concerned (written I 
P I ′). In this instance, the actions
sx+i−1 and s′x+i−1 have the same effect according to P , as discussed in the
proof of slave(x). As such, rewriting sx+i−1 as s′x+i−1 merely reflects stronger
knowledge about how x+i and x+i−2 are related through x+i−1. In particular,
I 
P (I \ {sx+i−1}) ∪ {s′x+i−1} as required.

Next, because subjective views only describe parts of the shared state, we
can use the Forget principle to obtain a weaker view of the shared state, in
this case a view that ignores all cells in the ring except for those at addresses
x+i−1 and x+i. With all other cells out of the subjective view, their actions
no longer have observable effects on the assertion, since they leave x+i−1 and
x+i unchanged. We can thus apply the Shift principle again to frame off those
actions and obtain S′

x+i = {s′x+i−1, sx+i}.
Finally, we weaken the resulting subjective view so that it is stable with

respect to S′
x+i, i.e. preserved by those of its actions that the environment may

perform (here, s′x+i−1). This yields the precondition of slave(x+i) as in Fig. 2.
The preconditions of the master and foreman threads can be derived analogously.

Once all threads have completed their operations, we join up their post-
conditions using the Merge principle, which embodies a crucial feature of
CoLoSL: different subjective views overlap. The overlapping conjunction ∪� be-
tween two assertions means that the two assertions describe potentially over-
lapping pieces of state. In particular, A � B ⇒ A ∪� B and A ∧ B ⇒ A ∪� B.
This connective has been used in the past to reason about sharing in data struc-
tures [22,11,14]. Since ∨ distributes over ∪�, the subjective view simplifies to
�

�

�

�

x �→ 10 � x+1 �→ 10 � · · · � x+n �→ 10
I′ where I

′ = M ′
x∪F ′

x+1∪S′
x+2∪· · ·∪S′

x+n.

Finally, since I ′ 
n⇀⇁n�x �→10�x+1�→10�···�x+n�→10 I, we get the postcondition of
ring(x) by the Shift principle. This concludes our CoLoSL proof of ring(x).

Small specifications and proof reuse. Our expansion and contraction of subjec-
tive views, in particular with the shifting of interference assertions at key places,
enables us to confine the specification and verification of each thread to just the
resources they need. Such small specifications make proofs robust against changes
to each thread’s environment, and provide more opportunities for proof reuse.

For instance, let us now add a thread that dynamically grows the ring by spawn-
ing extra slaves to the parallel composition of ring(x) (the details can be found
in [20]). When the ring has n+1 machines, we use theExtend principle as follows
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to add a new slave (at x+n+1) to the shared state with the associated interference
relation and capability.2

(x+n+1) �→ v
(Extend)

� ∃sx+n+1. [sx+n+1] �
�

�

�

�

x+n+1 �→ v {sx+n+1}

Here, the view shift [6] (or repartitioning [7]) P � Qmeans that an instrumented
(logical) state satisfying P may be changed toQ as long as the underlying machine
state does not change. In particular, (P ⇒ Q) ⇒ (P � Q). The point is that
our proof changes only minimally to accommodate the new program: the proof of
master(x) accounts for new interference onn ⇀⇁ n since the environment can grow
the ring, hence mutate n; the proofs of other threads can be directly reused.

In contrast, in existing CAP-like approaches [7,3], both n ⇀⇁ n and the global
interference relation are observed by all threads. As such, with the above exten-
sion, the global interference relation needs to change (to include the interference
onn ⇀⇁ n), and the proofs of both master and slave threads need to be adapted.

3 CoLoSL

We now give a more formal overview of how to use CoLoSL for program verifi-
cation, eschewing some details of the semantics for lack of space, while still pro-
viding enough ingredients to carry program proofs. We describe the underlying
model of CoLoSL, give the semantics of CoLoSL assertions, then present proof
rules to reduce the various obligations typically encountered in proofs (namely,
the side-conditions of Shift and Extend, and stability checks) to classical sep-
aration logic entailments that, in particular, do not mention subjective views.

3.1 CoLoSL Worlds

A world is a triple (l, g, I) where l and g are logical states and I is an action model.
The local logical state (or local state) l represents the locally owned resources of
a thread, in the standard separation logic sense, while the global logical state (or
shared state) g represents shared resources. The actionmodel I records all possible
interferences on the shared state.

Logical states have two components: one describes machine states (e.g. stacks
and heaps); the other represents capabilities. The latter are inspired by the ca-
pabilities in CAP [7]: a thread in possession of a given capability is allowed to
perform the associated actions (as prescribed by the action model component of
eachworld, defined below), while any capability not owned by a threadmeans that
the environment can perform the action. This can be seen as a unified treatment
of the rely and guarantee relations in rely-guarantee reasoning [16]: a capability

2 Unlike CAP [7] and as in iCAP [23], we do not provide an explicit unsharing mecha-
nism to claim back shared resources. Instead, this can be simply encoded as an action
of the form �j∈J [aj ]:P � �j∈J [aj ]: a thread holding �j∈J [aj ] can move the shared
resource P into its local state in exchange for the associated capabilities.
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fully owned (resp. fully not owned) during the entire lifetime of a thread repre-
sents its guarantee (resp. its rely), while a partially-owned capability means that
the corresponding action is both in the rely and the guarantee. Capabilities go be-
yond the rely-guarantee model [9]; in particular, they may be transferred between
a thread and its environment just like any other resource to temporarily block or
enable certain actions. See the presentation of CAP [7] and deny-guarantee [9] for
further details and motivation.

In general, each component of a logical state is taken from an arbitrary separa-
tion algebra [2] (i.e. a cancellative, partial commutative monoid) that satisfies the
cross-split property3[8] (this is needed for ∪� to be associative [14]). As we demon-
strate in the examples of §4, our programs often call for a more complex model
of machine states and capabilities than that presented here. For instance, we may
need our capabilities to be fractionally owned, where ownership of a fraction of a
capability grants the right to perform the action to both the thread and the en-
vironment, while a fully-owned capability by the thread denies the right to the
environment to perform the associated action. For ease of presentation, the focus
of this paper is on the standard stack and heapmodel for machine states, and finite
sets of tokens (which are simple names) for capabilities. We assume a set of pro-
gram values Val, as well as infinite disjoint sets PVar, Loc, and Token of program
variables, memory locations, and tokens, respectively.

Definition 1 (Logical states). A logical state is a tuple ((σ, h), κ) ∈ LState,
also written (σ, h, κ), of a finite partial stack σ ∈ Stack associating program vari-
ables with values, a heap h ∈ Heap associating heap locations with values, and a
capability κ ∈ K:

Stack � PVar ⇀fin Val Heap � Loc ⇀fin Val M � Stack× Heap

K � Pfin(Token) LState � M×K

The local and global logical states of a world are always compatible: they can
be composed with one another. This captures the intuition that locally-owned re-
sources are disjoint from shared resources. The composition of logical states is
defined component-wise as disjoint function union � over stacks and heaps, and
disjoint set union � on capabilities.

Definition 2 (Logical state composition). The composition of logical states
◦ : LState× LState ⇀ LState is defined as:

((σ, h), κ) ◦ ((σ′, h′), κ′) � ((σ � σ′, h � h′), κ � κ′)

We write l to range over arbitrary logical states or just local states, and g to
range over logical states representing global shared states. The empty logical state
(∅, ∅, ∅) is written 0L. We write l1 ≤ l2 when there exists l such that l◦ l1 = l2, and

3 A monoid (A,+,1) satisfies the cross-split property iff, for all a, b, c, d ∈ A, if a+ b =
c+ d, there exists x, y, z, w ∈ A s.t. a = x+ y, b = z +w, c = x+ z and d = y + w.
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write l2 − l1 to denote the unique such l (by cancellativity) when it exists. When
l1 ◦ l2 is defined, we say that l1 and l2 are compatible and write l1 � l2.

An action is a triple (p, q, c) of logical states where p and q are the action pre-
and post-states describing how the shared state is modified by the action; and c is
the action catalyst. An action catalyst has to be present for the action to take ef-
fect, but is left unchanged by the action. It is maximal in the sense that no further,
non-empty catalyst c′ can be found, which we write p⊥q: ∀l. l ≤ p∧l ≤ q =⇒ l =
0L.

4 For instance, as we shall shortly see, sx in Fig. 2 will be interpreted as the set
of actions S = {av�((∅, {� : v}, ∅), (∅, {� : v+1}, ∅), (∅, {�−1 : v+1}, ∅)) | v ∈ N},
where � is the value of x in the current logical environment.

An action model is a partial function from capabilities to sets of actions. It cor-
responds to the semantic interpretation of an interference assertion.

Definition 3 (Actionmodels).The setAction of actions, ranged over by a, and
the set AMod of action models, ranged over by I, are defined as:

Action � LState× LState× LState AMod � K ⇀ P (Action)

Worlds are triples (l, g, I) ∈ LState × LState × AMod that satisfy several well-
formedness conditions: the local and shared states are compatible; the capabilities
owned by l and g are in the domain of I; and actions in I are confined to g (written
g c© I). An action a = (p, q, c) is confined to g if and only if, whenever it is enabled
(p ◦ c agrees with g), then its pre-state p is contained in g (p ≤ g). We motivate
the need for the confinement condition in §3.3.

Definition 4 (Well-formedness). A triple (l, g, I) ∈ LState × LState × AMod
is well-formed, written wf (l, g, I), iff l � g, lκ ∪ gκ ⊆ ⋃

dom(I) and g c© I.

Definition 5 (Worlds).The setWorldof worlds consists of allwell-formed triples:

World � {w ∈ LState× LState× AMod | wf (w)}

Finally, the composition of two worlds is defined when their local states are
compatible, their global shared states and action models are the same, and the
resulting tuple is well-formed.

Definition 6 (World composition). The composition of worlds, • : World ×
World ⇀ World, is defined as:

(l, g, I) • (l′, g′, I′) �
{
(l ◦ l′, g, I) if g = g′, and I = I′, and wf((l ◦ l′, g, I))
undefined otherwise

4 Alternatively, the catalyst could be computed a posteriori for each action. However,
we often need to isolate the part of the state that is modified by an action, hence our
technical choice of recording the catalyst in the model.
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3.2 CoLoSL Assertions

Our assertion language extends separation logic with subjective views and capa-
bility assertions.

CoLoSL is parametric in the assertions of machine states and capabilities, and
can be instantiated with any assertion language over machine statesM and capa-
bilities K. In this paper, we use standard heap and stack assertions for machine
state assertions, and single token assertions of the form [a] for capability assertions
where a ∈ Token. We write [A] as a shorthand for �a∈A[a]. We assume an infinite
set LVar of logical variables, disjoint from PVar.

Definition 7 (Assertion syntax). Given x ∈ LVar, x ∈ PVar, and a ∈ Token,
the assertions of CoLoSL , Assn, are described by the grammars below:

LAssn � p, q ::= false | E1 = E2 | emp |x ⇀⇁ E | E1 �→ E2 | [E]
| p ∨ q | ¬p | ∃x. p | p � q | p ∪� q | p −−�� q

Assn � P,Q ::= p | ∃x. P | P ∨Q | P �Q | P ∪� Q | �
�

�

�

P
I

I ::= ∅ | {[A]: ∃x̄. P � Q} ∪ I E ::= x | a | E1 + E2 | · · ·

The syntax and semantics of local assertions LAssn are as in standard sepa-
ration logic with variables-as-resource [1].5 Local assertions are interpreted over
a world’s local state. The empty local state 0L is denoted by emp. The assertion
x ⇀⇁ E denotes a singleton stack where x has value E. Similarly, E1 �→ E2 is true
of the singleton heap where only address E1 is allocated and has value E2. The
capability assertion [E] is true of the singleton capability {a} if E evaluates to
a. The separating conjunction p � q is true when the local state can be split into
two according to ◦ such that one state satisfies p and the other satisfies q. The
overlapping conjunction p∪� q is true when the local state can be split three-ways
according to ◦, such that the ◦-composition of the first two states satisfies p and
the ◦-composition of the last two satisfy q [14,12,22]. Septraction (or existential
magic wand) p −−�� q is true when there exists a local state satisfying p that can be
◦-composed with the current one to yield a state satisfying q. The usual predicates
and connectives have their standard classical meaning.

As in RGSep [26], our assertions Assn are defined on top of local assertions. For
simplicity, assertions do not include negation nor septraction. The interpretation
of assertions is a simple lift from that of local assertions, with the exception of the
subjective view

�

�

�

�

P
I
. First, an interference assertion I describes actions enabled

by a given capability, in the form of a pre- and postcondition. A subjective view
�

�

�

�

P
I
is then true of (l, g, I) when l = 0L and a subjective state s can be found in the

global shared state g (i.e. g = s ◦ r for some r), such that s satisfies P , and I and
I agree given the decomposition s and r, written I ↓ (s, r, �I�ι), in the following
sense:

5 Note in particular that expressions E do not allow program variables: they can only
appear on the left-hand side of x ⇀⇁ E.
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1. every action in I is reflected in I;
2. every action in I that has a visible effect on s is reflected in I;
3. the above holds after any number of actions in I takes place.

Thus, given a world (l, g, I) and a subjective view
�

�

�

�

P
I
, P describes a subjective

state s that is a part of g and I describes all parts of I concerning s, while I de-
scribes the overall interference on g. We refer to the above agreement between the
action model and the subjective view as the action model closure property. We
omit its formal definition for lack of space.

The semantics of CoLoSL assertions is given by a forcing relation w, ι � P be-
tween a world w, a logical environment ι ∈ LEnv, and an assertion P . We use
two auxiliary forcing relations. The first one l, ι �SL p interprets local assertions
p ∈ LAssn in the usual separation logic sense over a logical state l. The second
one s, ι �g,I P interprets assertions P ∈ Assn over a subjective state s that is part
of the global shared state g, subject to the action model I. This second relation
is needed to deal with the nesting of subjective views.6 Since logical connectives
are interpreted uniformly in all cases, we write �† for any of the three satisfac-
tion relations, u for elements of either World or LState, and • for either • or ◦, as
appropriate.

Definition 8 (Assertion semantics). Given a logical environment ι : LVar →
Val, the semantics of CoLoSL assertions is defined below, using the semantics of
interference assertions �.�(.) : LEnv → AMod also defined below:

(l, g, I), ι � p iff l, ι �SL p
(l, g, I), ι �

�

�

�

�

P
I
iff l = 0L and ∃s, r. g = s ◦ r and s, ι �g,I P and I↓ (s, r, �I�ι)

s, ι �g,I p iff s, ι �SL p
s, ι �g,I

�

�

�

�

P
I

iff (s, g, I), ι �
�

�

�

�

P
I

u, ι �† ∃x. P iff ∃v. u, [ι | x : v] �† P
u, ι �† P ∨Q iff u, ι �† P or u, ι �† Q
u, ι �† P1 � P2 iff ∃u1, u2. u = u1 • u2 and u1, ι �† P1 and u2, ι �† P2

u, ι �† P1 ∪� P2 iff ∃u′, u1, u2. u = u′ • u1 • u2 and
u′ • u1, ι �† P1 and u′ • u2, ι �† P2

l, ι �SL false never
l, ι �SL emp iff l = 0L

l, ι �SL E1 = E2 iff �E1�ι = �E2�ι
l, ι �SL x ⇀⇁ E iff l = ({x : �E�ι}, ∅, ∅)
l, ι �SL E1 �→ E2 iff l = (∅, {�E1�ι : �E2�ι}, ∅)
l, ι �SL [E] iff l = (∅, ∅, {�E�ι})
l, ι �SL ¬p iff l, ι ��SL p
l, ι �SL p −−�� q iff ∃l′. l′, ι �SL p and l � l′ and l ◦ l′, ι �SL q

6 This presentation with several forcing relations differs from the usual CAP presen-
tation [7], where assertions are first interpreted over worlds that are not necessarily
well-formed, and then cut down to well-formed ones. The advantage of our presenta-
tion is that the semantics of assertions is compositional, e.g. the semantics of P � Q
follows directly from the semantics of P and Q.
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�I�ι(A) �
{

(p, q, c)
[A]: ∃x̄. P � Q ∈ I ∧ p⊥ q ∧ ∃v̄, I, r, r′. c = r ◦ r′ ∧

p ◦ r, [ι | x̄ : v̄] �p◦c,I P ∧ q ◦ r, [ι | x̄ : v̄] �q◦c,I Q

}

Note that, as in the CAP family [7,23,3], CoLoSL cannot ensure that proved
programs do not leak memory. This is because of the following property of the
semantics with respect to the shared state (sometimes called “intuitionistic se-
mantics” [21]): if (l, g, I), ι � P then (l, g ◦ g′, I), ι � P .

Five of the principles of Fig. 1 are direct consequences of the semantics.

Lemma 1. TheCoLoSL reasoning principles Forget,Merge,Shift,Weaken,
and Copy are valid.

Proof (sketch). The cases of Weaken and Copy are straightforward. For For-
get,Merge, and Shift, we note in [20] that action model closure is preserved by
picking a smaller subjective state, taking the union of subjective states and their
interference assertions, and shifting the interference assertion, respectively. ��

3.3 Reducing CoLoSL Principles to Separation Logic Entailments

We turn to the remaining two principles, Extend and Shift, and to the stability
of assertions. These involve reasoning outside our assertion language, potentially
requiring semantic reasoning in the model. Fortunately, it is enough to work with
a partial axiomatisation for all three conditions to verify our examples. In this sec-
tion,we give cut-downversions of these rules for a fragment of theCoLoSLassertion
language where the nesting of subjective views is not permitted and interference
assertions cannot mention subjective views. This restriction is easily lifted: asser-
tions with nested boxes can always be flatten into logically equivalent assertions
with no nesting; and interference assertions mentioning other subjective views in
their actions may be rewritten into ones that do not. See [20] for the full details.

Confinement. The soundness of CoLoSL hinges on the fact that, given a world
(l, g, I), the actionmodel I contains all actions that could possibly affect the shared
state g. This was captured by a well-formedness condition in the definition of
worlds (Def. 5) as g c© I, stipulating that the actions in I are confined to the
shared state g. It is also possible to extend g at any time. Any part l′ of the lo-
cal state can migrate to the shared state under a new set of actions I′, yielding a
new shared state g ◦ l′ and action model I∪ I′. This migration is only permitted if
l′ c© I′. This confinement condition means that the extension does not invalidate
the views of the threads.

The technical definition of confinement of an action model on a logical state is
given in the technical report [20]. Intuitively, it means that, whenever an action
a = (p, q, c) of I′ is enabled, the pre-state p must be a substate of l′. It is possible
for someof the catalyst c to lie outside l′, since the fact that it does not changeduring
the course of the action means that it will not have an effect on the views of other
threads. For example, recall the interpretation of sx given by S just before Def. 3.
The action a0 = ((∅, {� : 0}, ∅), (∅, {� : 1}, ∅), (∅, {�−1 : 1}, ∅)) ∈ S is confined to
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P � f f � I

P c© I

∀ ([A]: ∃x̄. p � q) ∈ I. f � {[A]: ∃x̄. p � q}
f � I

f ∪� p �SL false

f�{[A]: ∃x̄. p � q}

p �SL p′ � r q �SL q′ � r exact(r) f � {[A]: ∃x̄. p′ � q′}
f � {[A]: ∃x̄. p � q}

(p −−�� f) � q �SL f f⇔∨
i∈J fi (precise (fi) ∧ fi ∪� p �SL fi for i ∈ J)

f � {[A]: ∃x̄. p � q}

Fig. 3. Selected confinement and local fencing rules. We assume that variables in x̄ do
not appear free in f , and in fi for any i.

the logical state l0 = (∅, {� : 0}, ∅) because l0 is the first component of the action,
and state (∅, {�−1 : 0}, ∅) because it is incompatible with the action, but not state
(∅, {�−1 : 1}, ∅) because the action canpotentially affect address �. The definition of
confinement also requires that all states resulting from the successive application
of actions in I′ themselves confine all actions in I′. For instance, we also require
that l1 = (∅, {� : 1}, ∅) resulting from the application of a0 on l0, l2 = (∅, {� : 2}, ∅)
resulting from the application of a1 on l1, and so forth, all confine the actions in
S. Inspired by the LRG approach [10], we achieve this by first finding a set that
is invariant under all actions in I′ (called a fence), then checking the confinement
condition for each action. We provide the technical details of confinement in [20].

For our examples, it is in fact enough to work with confinement in the logic.We
lift the notion of confinement to assertions, and write P c© I when the set of states
described by P confines the actions of interface assertion I. In the logic, the shared
state can be extended by the resources in P under the interference assertion I via
the Extend principle, which requires that P c© I be established.

Fig. 3 presents a set of rules which reduces P c© I to a series of entailments
in ordinary separation logic. As expressed by the first rule, P c© I holds if there
is a weaker local assertion f that acts as a local fence for I, written f � I. This
relation states that f must be invariant under all actions of I and must confine
the actions in f . In [20], we show that it is always possible to weaken an arbitrary
assertion into a local assertion. This fencing condition is checked for each action
in I (see the second rule). For each action [A]: ∃x̄. p � q, the three remaining
rules of the figure may apply. In the first of these rules, the action cannot possibly
fire, because its precondition does not agree with f : no state satisfying f may be
extended such that a subpart satisfies p. The second of these rules allows us to trim
a neutral part r (corresponding to a part of the catalyst in the interpretation of
this action) of an action [A]: ∃x̄. p � q appearing both in p and q. This only applies
when r is exact, i.e. satisfied by at most one logical state:7 the part of the state
denoted by r is then uniquely determined and left unchanged by the action. The
last rule finally reduces local fencing to entailment checking, provided the fence
f can be expressed as a disjunction of precise assertions, i.e. assertions satisfied

7 exact(p) � ∀ι, l1, l2. l1, ι �SL p and l2, ι �SL p implies l1 = l2
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P � f I �f I ′

I �P I ′ I �f I

f � I ∪ I1 I1 �f I2

I ∪ I1 �f I ∪ I2

p �SL p′ � r q �SL q′ � r exact(r) f ⊥ p′

{[A]: ∃x̄. p � q} �f ∅
(p −−�� (f ∪� p)) � q �SL false

{[A] : ∃x̄. p � q} �f ∅

f ∪� p �SL

∨
i∈J f ∪� (p � ri) exact(ri) for i ∈ J

{[A]: ∃x̄. p � q} ≡f ⋃
i∈J {[A]: ∃x̄. p � ri � q � ri}

⋃
i∈K,j∈J{[A] :∃x̄. pi�qj} ≡true

{
[A] : ∃x̄. ∨i∈K pi �∨

j∈J qj
}

true � I

∀[A] : ∃x̄. p � q ∈ I. f � {[A] : ∃x̄. p � q}
f � I

p⊥ q (p −−�� (f ∪� p)) � q �SL f

f � {[A]: ∃x̄. p � q}

f ⊥ p

f � {[A]: ∃x̄. p � q}
p �SL p′ � r q �SL q′ � r exact(r) f�{[A]: ∃x̄. p′ � q′}

f � {[A]: ∃x̄. p � q}

Fig. 4. Selected action shifting rules. We write I ≡f I ′ for I �f I ′∧I ′ �f I , and p⊥q to
denote that states satisfying p and q have empty intersections. We assume that variables
in x̄ do not appear free in f .

by at most one substate of each logical state.8 The first premise states that f is
invariant under the action [A]: ∃x̄. p � q, similar to the way that RGSep encodes
stability checks as separation logic entailments. Informally, it reads: for any state
in f , remove a part satisfying p, add a state satisfying q, and the result should still
be in f . The third premise checks the confinement condition: given a state in local
assertion fi (l1 ◦ l2 � fi), and a state in p (l2 ◦ l3 � p with l1 and l3 disjoint), the
combined state (l1 ◦ l2 ◦ l3) must also be in fi. Hence, by precision of fi, we have
l1 ◦ l2 ◦ l3 = l1 ◦ l2, i.e. l2 ◦ l3 ≤ l1 ◦ l2 as required.

Shifting and fencing. Fig. 4 presents a partial axiomatisation of the shifting con-
dition I 
P I ′ required by the Shift principle. As with confinement, we omit
the direct semantic definition. Intuitively, the relation I 
P I ′ means that in-
terference assertion I can be replaced by I ′, because I and I ′ describe the same
interference with respect to the states described by P . The first rule weakens the
shifting condition from assertions to local fence assertions. The third rule reduces
the shifting judgement I ∪ I1 
f I ∪ I2 to the simpler I1 
f I2, provided that f
is invariant with respect to I ∪ I1, written f � I ∪ I1. This invariant fencing con-
dition is necessary: I1 
f I2 only states that I1 and I2 have the same effect with
respect to f ; f � I ∪ I1 states that f is an invariant of the shared state under the
combined interferences of I and I1.

The next two rules describe situations where it is impossible to apply the ac-
tion to f : when the precondition of the action is entirely outside f ; or when the

8 precise (p) � ∀ι, l, l1, l2. l1 ≤ l, l2 ≤ l, l1, ι �SL p, and l2, ι �SL p implies l1 = l2
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postcondition is incompatible with that part of f not associated with the precon-
dition. The notation p ⊥ q asserts that states described by p and q have empty
intersections : whenever l1, ι �SL p and l2, ι �SL q, we have l1 ⊥ l2 as defined in
§3.1. This is expressible in standard separation logic as follows:

p⊥ q ⇔ p �SL ¬ (true � (¬emp ∧ (true −−�� q)))

The next rule is a shifting equivalence that uses the knowledge embodied by f
of all the possible states that the subjective shared state may be in to rewrite an
action into an equivalent one. More precisely, if whenever the precondition p of the
action agreeswith f then one of the ri’s is also true, then adding ri as a neutral part
of the action produces the same behaviour. We can use this rule (with the single
r0 = x �→ v) to justify the shiftings of §2. The fact that the ri’s are exact guarantees
that no piece of state in ri is mutated by the “larger” action. In general, it may not
be the case that a single exact assertion can be added, but it may be the case that
a disjunction of exact facts holds. The last shifting equivalence is straightforward.

The last five rules partially axiomatise the fencing relation f � I. Most are
similar to those for local fencing f � I. The first two state that true fences any
interference assertion, and fencing can be checked per action. The last one states
that, as for local fencing, neutral parts of actions may be ignored. The one before
that states that, contrarily to local fencing, actions are allowed to have effects out-
side of the fence. If the action precondition does not intersect with the fence, then
its effect is entirely outside the fence and the action may be ignored.

Let us now focus on the third of these rules, which states that whenever p and
q do not intersect in an action [A]: ∃x̄. p � q (e.g. when their common parts have
been removed using the last rule), then the application of the action must preserve
the fence f . Contrarily to the case of local fencing, the action is allowed to act partly
outside of f , hence the state on which the action is applied is f ∪� p. However, the
whole of thepostcondition q of the action is thenadded, and the resulting statemust
still be in f . One might instead have expected that only parts of the resulting state
need to be represented in f , tomimic the relationship between f and p (and indeed,
this is all that is required for stability, as we shall see next). However, we do need
the full q. Recall that shifting asserts that two interference assertions have the same
effect even after an arbitrary number of steps. Doing otherwise would be unsound
because therewould be no guarantee that I accounts for all possible actions on that
part of q that would be discarded, since it would not be part of f . Hence, we could
end up with a new interference assertion I ′ that breaks the original action model
closure property. Finally, the reason why p and q must not intersect stems from
similar considerations. If p and q had a non-empty intersection c, such that c is not
part of f , then this would force the fence to account for c which would prevent us
from forgetting actions associatedwith it using shifting.For instance, itwouldmake
it impossible to forget actions as we do in §2.

Stability. Fig. 5 partially axiomatises the stability of assertions of the form ∃x̄. p�
�i∈J

�

�

�

�

qi Ii
. We work with a more restricted form of assertions than our two pre-

vious axiomatisations for simplicity; see [20] for the general case. The first two
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Stable(p)

Stable(P )

Stable(∃x.P )

∀j ∈ J.Stable(qj , Ij , p,
⋃
�i∈J qi)

Stable(p ��i∈J

�

�

�

�

qi
Ii
)

∀[A]: ∃x̄. p1 �p2∈I.Stable(q, {[A]: ∃x̄. p1 � p2}, p, r)
Stable(q, I, p, r)

[A] � p � r �SL false

Stable(q, {[A]: ∃x̄. p1 � p2}, p, r)

p � (r ∪� p1) �SL false

Stable(q, {[A]: ∃x̄. p1 � p2}, p, r)
(p1 −−�� (q ∪� p1)) � p2 �SL q � true

Stable(q, {[A]: ∃x̄. p1 � p2}, p, r)

Fig. 5. Selected rules for stability checks. We assume that variables in x̄ do not appear
free in p, q, and r.

rules state that local assertions are always stable and existentials can be elimi-
nated. The next rule states that checking the stability of p ��i∈J

�

�

�

�

qi Ii
boils down

to establishing, for each local assertion qj for j ∈ J , that the four-place predicate
Stable(qj , Ij , p,

⋃
�i∈J qi) holds: this means that qi is stable under the interference

assertion Ii, a local context p, and a shared context made of the ∪�-combination
of all the subjective assertions (including qj). In turn, checking this fact reduces
to checking stability for each action of Ij . The last three rules deal with checking
stability for a single action, in a similar way to the fencing rules above.

The first of these rules is unfamiliar. Unlike fencing, stability checking for asser-
tions only has to be checked against actions for which the environment may have
the capability. If the capability required by the action cannot exist separately from
those held by the assertion (that is, those in p � r) then the environment cannot
possibly own the capability to perform the action. Similarly, an action whose pre-
condition is incompatible with the assertion p � r cannot possibly fire, as stated
by the next rule. The last rule checks that q is preserved by the effect of an action.
Again, there is a crucial difference with the corresponding check for fencing: in p2,
the action may bring in some newly-shared state, hence the result q�true; but the
Forget rule allows us to immediately discard it, if appropriate.

Proof reuse. Note that, once the local fencing judgement f � I has been estab-
lished, it automatically establishes the weaker fencing judgement f � I, which in
turn implies that f is stable under I. Also, fencing is preserved by action shifting.
These observations provide the admissible rules:

f � I

f � I

p � I

Stable(
�

�

�

�

p
I
)

f � I I 
f I ′

f � I ′

The other directions are not valid in general: fencing lacks the confinement con-
dition required by local fencing; stability of p under I may omit part of the state re-
sulting from an action application to re-establish p, which is not allowed in
fencing; and a fence f for a smaller interference assertion need not be a fence for
a larger interference assertion.
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3.4 Soundness

We prove the soundness of CoLoSL, parametrised by the underlyingmodels of ma-
chine states (M) and capabilities (K). We appeal to the general soundness result
of the views framework, providing parameters such as the reification function in
Def. 9 and proving lemmas required to make the result hold.

The main part of the proof establishes the soundness of the following rule for
atomic commands, where �SL represents standard sequential separation logic:

�SL {p} C {q} P �{p}{q} Q

� {P} 〈C〉 {Q} Atom

This rule is present in logics arising fromCAP [7,23]. For CoLoSL, the repartition-
ing P �{p}{q} Q holds if, from any world (l, g, I) satisfying P , whenever parts of
l ◦ g satisfies p then substituting that part for any other satisfying q will yield a
state l′ ◦ g′ such that there exists I′ such that (l′, g′, I′) satisfies Q. Moreover, the
passage from (l, g, I) to (l′, g′, I′) can be achieved via a succession of valid updates
from I and valid extension steps. The details can be found in the accompanying
technical report [20].

Semantic validity of Hoare triples depends on the definition of an operational
semantics C,m →*

C
′,m′, where m,m′ ∈ M, and a reification function that re-

lates a CoLoSL world to a concrete machine state.

Definition 9 (Reification). The reification, �.�W : World → M is defined as:

�((σl, hl, κl), (σg, hg, κg), I)�W � (σl � σg, hl � hg)

Definition 10 (Valid triple).A triple is valid, written � {P}C {Q}, if and only
if, for all ι ∈ LEnv, w ∈ World and m,m′ ∈ M,

(w, ι � P and C, �w�W →∗ skip,m′) implies ∃w′. w′, ι � Q and m′ = �w′�W
Theorem 1 (Soundness). If �{P} C {Q} then �{P} C {Q}.

4 Examples

4.1 Concurrent Spanning Tree

Programs manipulating arbitrary graphs present a significant challenge for com-
positional reasoning, because deep, unspecified sharing between different compo-
nents of a graph results in changes to one subgraph affecting other subgraphs
pointing into it. This makes it hard to reason about updates to each subgraph
in isolation. In a concurrent setting, this difficulty is compounded by the fact that
threads working on different parts of the graph may affect each other in ways that
are difficult to reason about locally to each subgraph. Using a concurrent spanning
tree algorithm, we demonstrate that CoLoSL reasoningmight be just the right ap-
proach, as subjective views naturally provide arbitrary overlapping views of the
shared state where interferences can be naturally tailored to a given subjective
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view. With CoLoSL, we have achieved local reasoning about the shared state for
this challenging program.

Our example, presented in Fig. 8, operates on a directed binary graph (hence-
forth simply graph): that is, a directed graph where each node has at most two
successors, called its left and right children. The program concurrently computes
an in-place spanning tree of the graph (i.e. a tree that covers all nodes of the
graphs from a given root), as follows: each time a new node is encountered, two
new threads are created that each prune the edges of its left and right children
recursively. A mark bit is associated with each node to keep track of which nodes
have already been visited. Each thread returns whether it marked the node it was
called on itself or whether somebody else did. In the latter case, the parent thread
removes the link from its own root node to the corresponding child. Intuitively, it
is allowed to do so because the child has already been reached via some other path
in the graph since it was marked by another thread.

We will prove that, given a shared graph as input, the program always returns
a tree, i.e. all sharing and cycles have been appropriately removed. Pleasingly, the
CoLoSL specification captures just the subgraph manipulated by the thread, in-
stead of the whole graph.

To reason about this program, following [14] we use two representations of
graphs. The first is a mathematical representation γ = (V,E) where V is a finite
set of vertices and E : V → (V � {null})× (V � {null}) is a function associating
each vertex with at most two successors, where null denotes the absence of a child.
We write n ∈ γ for n ∈ V , γ(n) for E(n) which also assumes n ∈ γ, n �γ n′ for
n′ ∈ γ(n), and �∗

γ for the reflexive and transitive closure of �γ .
Mathematical graphs are connected to their in-memory representations by a

predicate graph (x, γ) shown in Fig. 6, denoting a spatial (in-heap) graph rooted
at address x corresponding to the mathematical graph γ. This predicate uses the
overlapping conjunction to account for potential sharing between the left and right
children and for potential cycles in the graph. Each vertex is represented as three
consecutive cells in the heap tracking the mark bit and the addresses of the left
and right subgraphs. We write x �→ m, l, r for x �→ m �x+1 �→ l �x+2 �→ r, and
x.l and x.r for x + 1 and x + 2, respectively. When vertex x is in the unmarked
state U (x, l, r), the whole cell x �→ 0, l, r resides in the shared state. In the marked
stateM (x), only x �→ 1 is owned. In both cases, the shared state also contains the
left and right subgraphs represented by G (l, γ) and G (r, γ).

To understand the difference in ownership between U (x, l, r) and M (x), let us
look at the interference associated with the graph, which is the union of interfer-
ences pertaining each vertex in the graph. For each vertex n ∈ γ, the only permit-
ted action is that of marking n. (For simplicity, this action does not require any
capability.) When changing the mark field of n from 0 to 1, the current thread
also claims ownership of its left and right pointers. Indeed, we observe that other
threads need not access the children of n once they see that it has already been
marked. The atomic CAS (compare-and-swap) instruction prevents two threads
from concurrently marking the same node and claiming ownership of the same
resource.
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graph (x, γ) �
�

�

�

�

G (x, γ)
Iγ

Iγ �
⋃
n∈γ

I(n) I(n) � {[∅] : ∃l, r.U (n, l, r) � M (n)}

G (x, γ) � (x = null ∧ emp) ∨ ∃l, r. γ(x) = (l, r) ∧
(U (x, l, r) ∨M (x)) ∪� G (l, γ) ∪� G (r, γ)

U (x, l, r) � x 	→ 0, l, r

M (x) � x 	→ 1

Fig. 6. Globally-shared graph predicate

g (x, γ) � (x = null ∧ emp) ∨ ∃l, r. γ(x) = (l, r) ∧
�

�

�

�

U (x, l, r) ∨M (x)
I(x)

� g (l, γ) � g (r, γ)

t (x, γ) � (x = null ∧ emp) ∨ (∃l, r. γ(x) = (l, r) ∧ ∃l′∈{l, null}, r′∈{r,null}.
�

�

�

�

M (x)
I(x)

� x.l 	→ l′ � t (l′, γ) � x.r 	→ r′ � t (r′, γ))

Fig. 7. Locally-shared graph predicate

The graph (x, γ) predicate defined in Fig. 6 is a global subjective view of the
graph that contains all vertices and the interference associated with γ. However,
our spanning tree algorithm operates locally as it is called upon recursively for
each node. That is, for each span(n) call (wheren ∈ γ), the footprint of the call is
limited to the subgraph rooted at n. Moreover, in order to reason about the con-
current recursive calls span(x-> l ) || span(x->r), we need to split the state into two
using �, pass each constituent state to the relevant thread and �-combine the re-
sulting states, as required by thePar rule.We thus conduct our proof with respect
to a local description of the graph, g (x, γ) as defined in Fig. 7. The definition of
the g (x, γ) predicate is similar to that of

�

�

�

�

G (x, γ)
Iγ

except that the single view
�

�

�

�

G (x, γ)
Iγ

has been broken down into individual views for each vertex n reach-

able from x. Moreover, the interference assertion of each local view concerning a
vertex n ∈ γ has been shifted from Iγ to I(n) so as to reflect only those actions
that affect n.

The t (x, γ) predicate, also given in Fig. 7, represents a tree rooted at x, as is
standard in separation logic [21], and consists, once fully unfolded, of one subjec-
tive view for each vertex n reachable from x in γ. The assertion of the subjective
view for x reflects the fact that x has been marked, and its left and right point-
ers have been claimed by the marking thread and moved into its local state. The
vertex l′ addressed by the left pointer of x corresponds to either the initial value
l prior to marking, or to null when l has more than one predecessor and has been
marked by another thread.

Our goal is to prove that the following specification holds using the global graph
predicate:

{graph (x, γ)}b = span(x) {(b = 0 ∧ emp) ∨ (b = 1 ∧ t (x, γ))} (1)

This is achieved below by giving a proof of the analogous specification using the
local graph predicate in Fig. 8, and demonstrating that the global graph specifi-
cation implies the local one using the principles of CoLoSL from Fig. 1. The proof
sketched in Fig. 8 is mostly straightforward. One subtlety is the consequence step
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b = span ( x ) //{g (x, γ)}
{ //{(x = null ∧ emp) ∨ (∃l, r. γ(x) = (l, r) ∧

�

�

�

�

U (x, l, r) ∨ M (x)
I(x)

� g (l, γ) � g (r, γ))}
i f ( x == nu l l ) {

//{x = null ∧ emp}
//{t (x, γ)}
return 1 ;

}//
{

∃l, r. γ(x) = (l, r) ∧
�

�

�

�

U (x, l, r) ∨ M (x)
I(x)

� g (l, γ) � g (r, γ)
}

r e s = 〈 CAS(x , 0 , 1) 〉 ;

//

{

∃l, r. γ(x) = (l, r) ∧
�

�

�

�

M (x)
I(x)

� g (l, γ) � g (r, γ) �
(

(res = 0 ∧ emp) ∨ (

res = 1 ∧ x.l �→ l � x.r �→ r
))

}

//

{

(res = 0 ∧ emp)∨
(

res = 1 ∧ ∃l, r. γ(x) = (l, r) ∧
�

�

�

�

M (x)
I(x)

� g (l, γ) � g (r, γ) � x.l �→ l � x.r �→ r

)}

i f ( r e s ) {
//

{

res = 1 ∧ ∃l, r. γ(x) = (l, r) ∧
�

�

�

�

M (x)
I(x)

� g (l, γ) � g (r, γ) � x.l �→ l � x.r �→ r
}

//{g (l, γ)} //{g (r, γ)}
b1 = span(x->l); b2 = span(x->r);
//{(b1 = 0 ∧ emp) ∨ (b1 = 1 ∧ t (l, γ))} //{(b2 = 0 ∧ emp) ∨ (b2 = 1 ∧ t (r, γ))}

//

{

res = 1 ∧ ∃l, r. γ(x) = (l, r) ∧
�

�

�

�

M (x)
I(x)

� x.l �→ l � x.r �→ r �

((b1 = 0 ∧ emp) ∨ (b1 = 1 ∧ t (l, γ))) � ((b2 = 0 ∧ emp) ∨ (b2 = 1 ∧ t (r, γ)))

}

i f ( ! b1 ) { x -> l = nu l l ; }
i f ( ! b2 ) { x ->r = nu l l ; }

//

{

res = 1 ∧ ∃l, r. γ(x) = (l, r) ∧
�

�

�

�

M (x)
I(x)

�

∃l′ ∈ {l, null}. x.l �→ l′ � t
(

l′, γ
)

� ∃r′ ∈ {r, null}. x.r �→ r′ � t
(

r′, γ
)

}

//
{

res = 1 ∧ t (x, γ)
}

} //
{

(res = 0 ∧ emp) ∨ (res = 1 ∧ t (x, γ))
}

return r e s ;

} //
{

(b = 0 ∧ emp) ∨ (b = 1 ∧ t (x, γ))
}

Fig. 8. Code and proof sketch of the concurrent spanning tree program. We omit the
obvious variables as resource assertions.

just before the second if statement. There, we first distribute the shared state
�

�

�

�

M (x)
I(x)

� g (l, γ)� g (r, γ) over the disjunction, then use the fact that it implies

emp to discard it in the left disjunct. This proof demonstrates that our CoLoSL
reasoning really is compositional, in the sense that we are doing local reasoning
on the shared state (the subgraphs).

Let us show how to derive the specification (1) from the one obtained in Fig. 8.
We introduce the iterative star operator�; when iterating over the empty set, it
denotes emp by convention (needed below, when x is null). We define

P (x, γ) � �
x�∗

γn
∃l, r. γ(n) = (l, r) ∧ (U (n, l, r) ∨M (n))

Q(x, γ) � �
x�∗

γn
∃l, r. γ(n) = (l, r) ∧

�

�

�

�

U (n, l, r) ∨M (n)
I(n)

From the definitions of G (x, γ) and g (x, γ), one can show that

graph (x, γ) ⇐⇒
�

�

�

�

P (x, γ)
Iγ

g (x, γ) ⇐⇒ Q(x, γ)

The specification (1) then follows from Consq, Fig. 8, and the derivation below:
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graph (x, γ)
(Copy)⇒ �

x�∗
γn

�

�

�

�

P (x, γ)
Iγ

(Forget)⇒ �
x�∗

γn

(
∃l, r. γ(n) = (l, r) ∧

�

�

�

�

U (n, l, r) ∨M (n)
Iγ

)

(Shift)⇒ �
x�∗

γn

(
∃l, r. γ(n) = (l, r) ∧

�

�

�

�

U (n, l, r) ∨M (n)
I(n)

)
def⇐⇒ g (x, γ)

4.2 Set Module

Finally, we give a pictorial description of our reasoning about a concurrent set
module implemented as a singly-linked list. We compare our CoLoSL reasoning
with the original CAP reasoning of [7], demonstrating that our CoLoSL reasoning
provides more concise proofs using our local reasoning about shared state.

Consider the following diagram which illustrates the CAP set predicate of [7]:

v1 v2 v3 . . .
x y z

� �
(x,y)/∈S

�
v
[U(x, y, v)] � �

(x,y)∈S
∃w. �

v �=w
[U(x, y, v)]

s

Ix∪Iy∪Iz∪···

The set is represented as a sorted singly-linked list with no duplicate elements.
The list starts at address x with value v1, points to the next element at address y
with value v2, and so forth. Hereafter, we write node (x, v, y) to denote a node at
address x, with value v and successor y.

All nodes of the list reside in a single shared region labelled s and the inter-
ference on the list is the combined interference associated with each constituent
node. Each node at a given address x is associated with a set of update capabilities
of the form [U(x, y, v)] for all possible addresses y and all possible values v. This is
to capture all potential successor addresses y and all potential values v that may
be stored at address x. In order to modify a node, a thread can acquire the lock
associated with the node and subsequently claim the relevant update capability.

Since in CAP the capabilities associated with a region can only be generated
upon its creation, the shared region is required to keep track of all possible update
capabilities [U(x, y, v)] associated with all addresses x (including those not cur-
rently in the domain of the list), all addresses y and all values v. At any one point,
given node (x, v, y), the only update capability that can be claimed by a thread
(through locking) is the one that reflects its current status, namely [U(x, y, v)]. As
a result, an auxiliary mathematical set S is used to track those nodes of the list
that are currently locked and thus infer which [U] capabilities have been claimed.
The distribution of update capabilities is captured by the two assertions written
as the infinite multiplicative star operator �. The first part of the assertion states
that given any node at address xwith successor y, if it is not locked, i.e. (x, y) �∈ S,
then all of its update capabilities of the form [U(x, y, v)] lie in the shared region
for all values v. Dually, if it is locked, i.e. (x, y) ∈ S, then the update capabilities
for all values v but one (w �= v) are in the shared region.
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This CAP set predicate is unnecessarily complicated. It is counter-intuitive to
have to account for the capabilities associated with addresses not in the domain
of the list. Moreover, each thread observes all nodes in the list and thus needs to
account for their associated interference.

TaDA [3] took the first steps towards addressing the above shortcomings of the
CAP approach. TaDA regions are parametric in the separation algebra of capa-
bilities (called guards). As such, one can choose a more suitable algebra to ax-
iomatise the desired behaviour of capabilities. While TaDA’s approach is much
cleaner than that of CAP, it nevertheless requires the foresight of specifying all
desired interference associated with the region upon its creation. As such, inter-
ference specifications are static and cannot be extended with new behaviour even
when the existing resources are left untouched. On the other hand, as well as being
parametric in its capability separation algebra, the dynamic subjective views of
CoLoSL provide local reasoning about the shared resource and its interference.

We proceed with the CoLoSL proof of the set implementation. Recall from
§3 that CoLoSL is parametric in the separation algebra of capabilities. We thus
instantiate it with a heap-like capability separation algebra that is stateful and
demonstrate that this allows for a more concise proof.

We specify the set predicate as the �-composition of subjective views associated
each node in the singly-linked list as illustrated by:

[x.N→y] � v1
x

Ix
� [y.N→z] � v2

y

Iy
� [z.N→ . . . ] � v3

z

Iz
� · · ·

The interference on each subjective view is limited to the node in question. Asso-
ciated with each node at address x is a “next” capability [x.N→y] that tracks its
successor y. This is analogous to the [U(x, y, v)] capability of CAP and we shortly
demonstrate how it is utilised in our reasoning.

Since CoLoSL allows for dynamic extension of the shared state, we do not need
to account for capabilities associated with all addresses. Instead, fresh capabilities
are generated dynamically as needed. We demonstrate this by giving a reasoning
outline of the add(v′) method that adds value v′ to the set by inserting it in the
sorted list. Suppose v2 < v′ < v3, and thus a new node w with value v′ is to
be inserted after node y. The operating thread proceeds by traversing the list by
hand-over-hand locking until it reaches node y. It then locks y and claims its next
pointer and moves it to its local state, as allowed by Iy . Subsequently, the shared
state is extended by the resources associated with the new node and its associated
capabilities ([w.N→z]) are generated on the fly as illustrated by:

[x.N→y] � v1
x

Ix
� [y.N→z] � v2

y

Iy
� [w.N→z] � v′

w

Iw
� [z.N→ . . . ] � v3

z

Iz
� · · ·

Since the locking thread holds the next pointer of y in its local state, it modifies
it to point to the new node w. It then unlocks y and returns its next pointer to
the shared state. When inserting a new node between y and z, the associated in-
terference assertion Iy allows y to be unlocked only if it has been directed to a
new node whose successor is z. As such, the unlocking thread must demonstrate
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that the new node w does indeed point to z. In order to establish this, we use the
Merge principle to combine the subjective views of y and w as follows:

[x.N→y] � v1
x

Ix
� [y.N→z] � v2

y
� [w.N→z] � v′

w

Iy ∪ Iw
� [z.N→ . . . ] � v3

z

Iz
� · · ·

Finally, y is unlocked; its next pointer is returned to the shared state and its next
capability is modified to reflect its new successor. Using the Copy, Forget and
Shift principles in order, we obtain the set predicate with w inserted.

[x.N→y] � v1
x

Ix
� [y.N→w] � v2

y

Iy
� [w.N→z] � v′

w

Iw
� [z.N→ . . . ] � v3

z

Iz
� · · ·

We can reason about the remove operation in a similar fashion. The dynamic
extension afforded by the Extend principle allows us to generate new capabilities
only when needed and thus gives way to a concise proof. Moreover, rather than
having a distinct capability to modify the element at address x, for each possible
successor address y (as with [U(x, y, v)] in CAP), we appeal to a single capability
of the form [x.N→y] that is modified to [x.N→y′] whenever x’s successor changes
from y to y′. Lastly, using the reasoning principles of Merge, Forget, Shift
and Copy, we can grow and shrink our subjective views as needed. This means
that, at any one point, we only view the relevant parts of the shared state. The
technical details can be found in [20].

Concluding Remarks. We have introduced CoLoSL, a new program logic for rea-
soning locally about the shared state. We focus on subjective views, which expand
and contract to provide a flexible treatment of both the shared resource and its in-
terference. However, CoLoSL is still young, and lacks many features of its various
cousins. There are many interesting ideas present in the literature: e.g. abstract
states governed by state transition systems [25]; higher-order reasoning [23]; and
abstract atomicity [3]. All these ideas require further investigation. Here, our aim
was to simply introduce subjective views as a fundamental new way of underpin-
ning such reasoning.
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Abstract. To improve performance, modern multiprocessors and pro-
gramming languages typically implement relaxed memory models that
do not require all processors/threads to observe memory operations in
the same order. To relieve programmers from having to reason directly
about these relaxed behaviors, languages often provide efficient synchro-
nization primitives and concurrent data structures with stronger high-
level guarantees about memory reorderings. For instance, locks usually
ensure that when a thread acquires a lock, it can observe all memory
operations of the releasing thread, prior to the release. When used cor-
rectly, these synchronization primitives and data structures allow clients
to recover a fiction of a sequentially consistent memory model.

In this paper we propose a new proof system, iCAP-TSO, that cap-
tures this fiction formally, for a language with a TSO memory model. The
logic supports reasoning about libraries that directly exploit the relaxed
memory model to achieve maximum efficiency. When these libraries pro-
vide sufficient guarantees, the logic hides the underlying complexity and
admits standard separation logic rules for reasoning about their more
high-level clients.

1 Introduction

Modern multiprocessors and programming languages typically implement re-
laxed memory models that allow the processor and compiler to reorder memory
operations. While these reorderings cannot be observed in a sequential setting,
they can be observed in the presence of concurrency. Relaxed memory mod-
els help improve performance by allowing more agressive compiler optimizations
and avoiding unnecessary synchronization between processes. However, they also
make it significantly more difficult to write correct and efficient concurrent code:
programmers now have to explicitly enforce the orderings they rely on, but en-
forcing too much ordering negates the performance benefits of the relaxed mem-
ory model.

To help programmers, several languages [2,1] provide standard libraries
that contain efficient synchronization primitives and concurrent data structures.
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These constructs restrict the reordering of low-level memory operations in or-
der to express more high-level concepts, such as acquiring or releasing a lock,
or pushing and popping an element from a stack. For instance, the collections
provided by java.util.concurrent enforce that memory operations in a first
thread prior to adding an element to a collection cannot be reordered past the
subsequent removal by a second thread. Provided the library is used correctly,
these high-level guarantees suffice for clients to recover a fiction of a sequentially
consistent memory model, without introducing unnecessary synchronization in
client code.

The result is a two-level structure: At the low-level we have libraries that
directly exploit the relaxed memory model to achieve maximum efficiency, but
enforce enough ordering to provide a fiction of sequential consistency; at the
high-level we have clients that use these libraries for synchronization. While we
have to reason about relaxed behaviors when reasoning about low-level libraries,
ideally we should be able to use standard reasoning for the high-level clients. In
this paper we propose a new proof system, iCAP-TSO, specifically designed to
support this two-level approach, for a language with a TSO memory model.

We focus on TSO for two reasons. Firstly, while the definition of TSO is
simple, reasoning about TSO programs is difficult, especially modular reasoning.
Reasoning therefore greatly benefits from a program logic, in particular with the
fiction of sequential consistency we provide. Moreover, a logic specifically tailored
for TSO allows us to reason about idioms that are valid under TSO but not
necessarily under weaker memory models, such as double-checked initialization
(see examples).

In the TSO memory model, each thread is connected to main memory via a
FIFO store buffer, modeled as a sequence of (address, value) pairs, see, e.g., [20].
When a value is written to an address, the write is recorded in the writing
thread’s store buffer. Threads can commit these buffered writes to main memory
at any point in time. When reading from a location, a thread first consults its
own store buffer; if it contains buffered writes to that location, then the thread
reads the value of its last buffered write to that location; otherwise, it consults
main memory. Each thread thus has its own subjective view of the current state
of memory, which might differ from other threads’.

In contrast, in a sequentially consistent memory model, threads read and write
directly to main memory and thus share an objective view of the current state
of the memory. In separation logics for languages with sequentially consistent
memory models we thus use assertions such as x �→ 1, which express an objective
property of the value of location x. Since in the TSO setting each thread has
a subjective view of the state, in order to preserve the standard proof rules for
reading and writing, we need a subjective interpretation of pre- and postcondi-
tions. The first component of our proof system, the SC logic (for sequentially
consistent), provides exactly this kind of subjective interpretation.

In the SC logic we use specifications of the form {P} e {r.Q}, which express
that if e is executed by some thread t from an initial state that satisfies P from
the point of view of t and e terminates with some value v, then the terminal
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state satisfies Q[v/r] from the point of view of thread t. Informally, an assertion
P holds from the point of view of a thread t if the property holds in a heap
updated with t’s store buffer. Additionally, to ensure that other threads’ store
buffers cannot invalidate the property, no store buffer other than t’s can contain
buffered writes to the parts of the heap described by P. In particular, x �→ v
holds from the point of view of thread t, if the value of x that t can observe is v.
We shall see that this interpretation justifies the standard separation logic read
and write rules.

What about transfer of resources? In separation logics for sequentially con-
sistent memory models, assertions about resources are objective and can thus
be transferred freely between threads. However, since assertions in the SC logic
are interpreted subjectively, they may not hold from the point of view of other
threads. To transfer resources between threads, their views of the resources must
match. Thus, the SC logic is not expressive enough to reason about implemen-
tations of low-level concurrency primitives. To verify such data structures, we
use the TSO logic, which allows us to reason about the complete TSO machine
state, including store buffers. Importantly, in cases where the data structure
provides enough synchronization to transfer resources between two threads, we
can verify the implementation against an SC specification. This gives us a fiction
of sequential consistency and allows us to reason about the clients of such data
structures using the SC logic.

Example. To illustrate, consider a simple spin-lock library with acquire and
release methods. We can specify the lock in the SC logic as follows.

∃isLock, locked : Prop
SC
× Val → Prop

SC
. ∀R : Prop

SC
. stable(R) ⇒

{R} Lock() {r. isLock(R, r)}
∧ {isLock(R, this)} Lock.acquire() {locked(R, this) ∗ R}
∧ {locked(R, this) ∗ R} Lock.release() {	}
∧ valid(∀x : Val. isLock(R, x) ⇔ isLock(R, x) ∗ isLock(R, x))
∧ ∀x : Val. stable(isLock(R, x)) ∧ stable(locked(R, x))

Here PropSC is the type of propositions of the SC logic, and isLock and locked
are thus abstract representation predicates. The predicate isLock(R, x) expresses
that x is a lock protecting the resource invariant R, while locked(R, x) expresses
that the lock x is indeed locked. Acquiring the lock grants ownership of R, while
releasing the lock requires the client to relinquish ownership of R. Since the re-
source invariant R is universally quantified, this is a very strong specification; in
particular, the client is free to instantiate R with any SC proposition. This speci-
fication requires the resource invariant to be stable, stable(R). The reason is that
R could in general refer to shared resources and to reason about shared resources
we need to ensure we only use assertions that are closed under interference from
the environment. This is what stability expresses.

Note that this specification is expressed in the SC logic and the specification of
the acquiremethod thus grants ownership of the resource R from the caller’s point
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of view. Likewise, the release method only requires that R holds from the caller’s
point of view. This specification thus provides a fiction of sequential consistency,
by allowing transfer of SC resources. Crucially, since the lock specification is an
SC specification, we can reason about the clients that use it to transfer resources
entirely using the standard proof rules of the SC logic. We illustrate this by
verifying a shared bag in Section 3.

Using the TSO logic we can verify that an efficient spin-lock implementation
satisfies this specification. The spin-lock that we verify is inspired by the Linux
spin-lock implementation [3], which allows the release to be buffered. To ver-
ify the implementation we must prove that between releasing and acquiring the
lock, the releasing and acquiring threads’ views of the resource R match. Intu-
itively, this is the case because if R holds from the point of view of the releasing
thread, once the buffered release makes it to main memory, R holds objectively.
This style of reasoning relies on the ordering of buffered writes. To capture this
intuition, we introduce a new operator in the TSO logic for expressing such
ordering dependencies. This operator supports modular reasoning about many
of the ordering dependencies that arise naturally in TSO-optimized data struc-
tures. In Section 5 we illustrate how to use the TSO logic to verify the spin-lock
and briefly discuss other case studies we have verified.

iCAP. iCAP-TSO builds on iCAP [22], a recent extension of higher-order sep-
aration logic [5] for modular reasoning about concurrent higher-order programs
with shared mutable state. While the meta-theory of iCAP is intricate, under-
standing it is not required to understand this paper. By building on iCAP, we
can use higher-order quantification to express abstract specifications that ab-
stract over both internal data representations and client resources (such as the
resource invariant R in the lock specification). This is crucial for modular ver-
ification, as it allows libraries and clients to be verified independently against
abstract specifications and thus to scale verification to large programs. In addi-
tion, by abstractly specifying possible interference from the environment, iCAP
allows us to reason about shared mutable state without having to consider all
possible interleavings.

Summary of Contributions. We provide a new proof system, iCAP-TSO, for a
TSO memory model, which features:

– a novel logic for reasoning about low-level racy code, called the TSO logic;
this logic features new connectives for expressing ordering dependencies in-
troduced by store buffers;

– a standard separation logic, called the SC logic, that allows simple reasoning
for clients that transfer resources through libraries that provide sufficient
synchronization;

– a notion of fiction of sequential consistency which allows us to provide SC
specifications for libraries that provide synchronized resource transfer, even
if the implementations exhibit relaxed behaviors.

Moreover, we prove soundness of iCAP-TSO. We use the logic to verify efficient
spin-lock and bounded ticket lock implementations, double-checked initialization
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Val � v ::= x | null | this | o | n | b | ()
Exp � e ::= v | let x = e1 in e2 | if v then e1 else e2 | new C(v̄)

| v.f | v1.f := v2 | v.m(v̄) | CAS(v1.f, v2, v3) | fence | fork(v.m)

Fig. 1. Syntax of the programming language. In the definition of values, n ranges over
machine integers, b over booleans, and o over object references. In the definition of
expressions, f ranges over the field names, and m over the method names.

that uses a spin-lock internally, a circular buffer, and Treiber’s stack against SC
specifications. Crucially, this means that we can reason about clients of these
libraries entirely using standard separation logic proof rules!

Outline. In Section 2 we introduce the programming language that we reason
about and its operational semantics. Section 3 illustrates how the fiction of se-
quential consistency allows us to reason about shared resources using standard
separation logic. Section 4 introduces the TSO logic and connectives for reason-
ing about store buffers. In Section 5 we illustrate the use of the TSO logic to
verify an efficient spin-lock and briefly discuss the other case-studies we have
verified. In Section 6 we discuss the iCAP-TSO soundness theorem. Finally, in
Sections 7 and 8 we discuss related work and future work and conclude. Details
and proofs can be found in the accompanying technical report [21]. The technical
report is available online at http://cs.au.dk/~filips/icap-tso-tr.pdf.

2 Language

We build our logic for a simple, class-based programming language. For simplicity
of both semantics and the logic, the language uses let-bindings and expressions,
but we keep it relatively low-level by ensuring that all the values are machine-
word size. The values include variables, natural numbers, booleans, unit, object
references (pointers), the null pointer and the special variable this. The expres-
sions include values, let bindings, conditionals, constructor and method calls,
field reads and writes, atomic compare-and-swap expressions, a fork call and
an explicit fence instruction. The syntax of values and expressions is shown in
Figure 1. The class and method definitions are standard and therefore omitted;
they can be found in the accompanying technical report.

To simplify the construction of the logic, we follow the Views framework [10]
and split the operational semantics into two components. The first is a thread-
local small-step semantics labeled with actions that occur during the step, the
second — an action semantics that defines the effect of each action on the ma-
chine state, which in our case consists of the heap and the store buffer pool.
In the thread-local semantics, a thread, which consists of a thread identifier
and an expression, takes a single step of evaluation to a finite set of threads
that contains besides the original thread also the threads spawned by this step.

http://cs.au.dk/~filips/icap-tso-tr.pdf
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(t, E[o.f := v])
write(t,o,f,v)−−−−−−−−→ {(t, E[()])}

Write

(t, E[o.f])
read(t,o,f,v)−−−−−−−→ {(t, E[v])}

Read

(t, E[CAS(o.f, vo, vn)])
cas(t,o,f,vo,vn,r)−−−−−−−−−−→ {(t, E[r])}

CAS

(t, e)
flush(t)−−−−→ {(t, e)}

Flush

body(C,m) = (unit m() = e) t �= t′

(t, E[fork(o.m)])
fork(t,o,C,t′)−−−−−−−−→ {(t, E[()]), (t′, e[o/this])}

Fork

Fig. 2. Selected cases of the thread-local operational semantics

It also emits the action that describes the interaction with the memory. For in-
stance, the Write rule in Figure 2 applies when the expression associated with
thread t is an assignment (possibly in some evaluation context). It reduces by
replacing the assignment with a unit value, and emits a write action that states
that thread t wrote the value v to the field f of object o.

The non-fault memory state consists of a heap — a finite map from pairs of
an object reference and a field to semantic values (i.e., all the values that are
not variables) — and a store buffer pool, which contains a sequence of buffered
updates for each of the finitely many thread identifiers. The memory can also
be in a fault state (written �), which means that an error in the execution of the
program has occurred. The action semantics interprets the actions as functions
from memory states to sets of memory states: if it is impossible for the action
to occur in a given state, the result is an empty set; if, however, the action may
occur in the given state but it would be erroneous, the result is the fault state.
Consider the write action emitted by reducing an assignment. In Figure 3 we can
see the interpretation of the action: there are three distinct cases. The action is
successful if there is a store buffer associated with the thread that emitted the
action and the object is allocated in the heap, and has the appropriate field.
In this case, the write gets added to the end of the thread’s buffer. However,
the write action can have two additional outcomes: if there is no store buffer
associated with the thread in the store buffer pool, the initial state had to be
ill-formed, and so the interpretation of the action is an empty set; however, if
the thread is defined, but the reference to the field o.f is not found in the heap,
the execution will fault.

The state of a complete program consists of the thread pool and a memory
state, and is consistent if the memory state is a fault, or the domain of the
store buffer pool equals the domain of the thread pool. The complete semantics
proceeds by reducing one of the threads using the thread-local semantics, then
interpreting the resulting action with the action semantics, and reducing to a
memory state in the resultant set:

t ∈ domT (t, T (t))
a−→ T ′ μ′ ∈ �a�(μ)

(μ, T ) → (μ′, (T − t) � T ′)

Note how in some cases, notably read, this might require “guessing” the return
value, and checking that the guesswas right using the action semantics. Some of the
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�read(t, o, f, v)�(h,U) =⎧⎪⎨
⎪⎩
{(h, U)} if (o, f) ∈ domh and lookup(o.f, U(t), h) = v

∅ if t �∈ domU or (o, f) ∈ domh and lookup(o.f, U(t), h) �= v

{�} if (o, f) �∈ domh

�write(t, o, f, v)�(h,U) =⎧⎪⎨
⎪⎩
{(h, U [t �→ U(t) · (o, f, v)])} if (o, f) ∈ domh and t ∈ domU

{�} if (o, f) �∈ domh

∅ if t �∈ domU

�cas(t, o, f, vo, vn, r)�(h,U) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(flush(h,U(t) · (o, f, vn)), U [t �→ ε])} if (o, f) ∈ domh, r = true

and lookup(o.f, U(t), h) = vo

{(flush(h,U(t)), U [t �→ ε])} if (o, f) ∈ domh, r = false

and lookup(o.f, U(t), h) �= vo

{�} if (o, f) �∈ domh

∅ otherwise

�flush(t)�(h,U) ={
{(h[(o, f) �→ v], U [t �→ α])} if U(t) = (o, f, v) · α and (o, f) ∈ domh

∅ if t �∈ dom(U), U(t) = ε, or (o, f) �∈ domh

Fig. 3. Selected cases of the action semantics. The lookup function finds the newest
value associated with the field, including the store buffer, while the flush function
applies all the updates from the store buffer to the heap in order.

cases of the semantics are written out in Figures 2 and 3. In particular, we show the
reduction and action semantics that correspond to the (nondeterministic) flush-
ing of a store buffer: a flush action can be emitted by a thread at any time, and
the action is interpreted by flushing the oldest buffered write to the memory. Note
also the rules for the compare-and-swapexpression: similarly to reading, the return
value has to be guessed by the thread-local semantics. However, whether the guess
matches the state of the memory or not, the whole content of the store buffer is
written to mainmemory.Moreover, if the compare-and-swap succeeds, the update
resulting from it is also written to main memory. Thus, this expression can serve as
a synchronization primitive.

Note that our operational semantics is the usual TSO semantics of the x86 [20]
adapted to a high-level language. The only difference is that we have a notion
of allocation of objects, which does not exist in the processor-level semantics.
Our semantics allocates the new object directly on the heap to avoid different
threads trying to allocate the same object.
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3 Reasoning in the SC Logic

The SC logic of iCAP-TSO allows us to reason about code that always uses
synchronization to transfer resources using standard separation logic, without
having to reason about store buffers. Naturally, this also includes standard mu-
table data structures without any sharing. We can thus easily verify a list library
in the SC logic against the standard separation logic specification as it enforces a
unique owner. Crucially, within the SC logic we can also use libraries that provide
synchronized resource transfer. For instance, we can use the specification of the
spin-lock from the Introduction and the fiction of sequential consistency that it
provides. We illustrate this point by verifying a shared bag library, implemented
as a list protected by a lock.

The SC Logic. The SC logic is an intuitionistic higher-order separation logic.
Recall that the SC logic features Hoare triples of the form {P} e {r. Q}, where P
and Q are SC assertions. Formally, SC assertions are terms of type Prop

SC
. SC as-

sertions include the usual connectives and quantifiers of higher-order separation
logic and language specific assertions such as points-to, x.f �→ v, for asserting
the value of field f of object x.

Recall that SC triples employ a subjective interpretation of the pre- and post-
condition: {P} e {r. Q} expresses that if thread t executes the expression e from
an initial state where P holds from the point of view of thread t and e terminates
with value v then Q[v/r] holds for the terminal state from the point of view of
thread t. An assertion P holds from the point of view of a thread t if P’s asser-
tions about the heap hold from the point of view of t’s store buffer and main
memory and no other thread’s store buffer contains a buffered write to these
parts of the heap. The assertion x.f �→ v thus holds from the point of view of
thread t if

– the value of the most recently buffered write to x.f in t’s store buffer is v

– or t’s store buffer does not contain any buffered writes to x.f and the value
of x.f in main memory is v

and no other threads store buffer contains a buffered write to x.f. The condition
that no other thread’s store buffer can contain a buffered write to x.f ensures
that flushing of store buffers cannot invalidate x.f �→ v from the point of view of
a given thread.

If x.f �→ v holds from the point of view of thread t and thread t attempts to
read x.f it will thus read the value v either from main memory or its own store
buffer. Likewise, if x.f �→ v1 holds from the point of view of thread t and thread
t writes v2 to x.f, afterwards x.f �→ v2 holds from the point of view of thread t.
We thus get the standard rules for reading and writing to a field in our SC logic:

{x.f �→ v} x.f {r. x.f �→ v ∗ r = v} S-Read {x.f �→ v1} x.f := v2 {r. x.f �→ v2}
S-Write
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Using SC specifications: a shared bag To illustrate how we can use the lock
specification from the Introduction, consider a shared bag implemented using a
list. Each shared bag maintains a list of elements and a lock to ensure exclusive
access to the list of elements. Each bag method acquires the lock and calls the
corresponding method of the list library before releasing the lock.

We take the following specification, which allows unrestricted sharing of the
bag, to be our specification of a shared bag. This is not the most general specifi-
cation we can express — we discuss a more general specification of a stack in the
technical report — but it suffices to illustrate that verification of the shared bag
against such specifications is standard. Since the specification allows unrestricted
sharing (the bag predicate is duplicable), no client can know the contents of the
bag; instead, the specification allows clients to associate ownership of additional
resources (expressed using the predicate P) with each element in the bag.

∃bag : Val× (Val → Prop
SC
) → Prop

SC
. ∀P : Val → Prop

SC
.

(∀x : Val. stable(P(x))) ⇒
{	} Bag() {r. bag(r,P)} ∧
{bag(this,P) ∗ P(x)} Bag.push(x) {	} ∧
{bag(this,P)} Bag.pop() {r. (P(r) ∨ r = null)} ∧
∀x : Val. valid(bag(x,P) ⇔ bag(x,P) ∗ bag(x,P))

Pushing an element x thus requires the client to transfer ownership of P(x) to
the bag. Likewise, either pop returns null or the client receives ownership of the
resources associated with the returned element.

To verify the implementation against this specification, we first have to define
the abstract bag representation predicate. To define bag we first need to choose
the resource invariant of the lock. Intuitively, the lock owns the list of elements
and the resources associated with the elements currently in the list. This is
expressed by the following resource invariant Rbag(xs,P), where xs refers to the
list of elements.

Rbag(xs,P)
def
= ∃l : list Val. lst(xs, l) ∗�y∈mem(l)P(y)

The bag predicate asserts read-only ownership of the lock and elms fields, and
that the lock field refers to a lock with the above resource invariant.

bag(x,P)
def
= ∃y, xs : Val. x.lock �→ y ∗ x.elms �→ xs ∗ isLock(Rbag(xs,P), y)

Now, we are ready to verify the bag methods. The most interesting method is
pop, as it actually returns the resources associated with the elements it returns.
A proof outline of pop is presented below. The crucial thing to note is that since
locks introduce sufficient synchronization, they can mediate ownership trans-
fer. Thus, once a thread t acquires the lock, it receives the resource invariant
Rbag(xs,P) from the point of view of t. Since it now owns the list, t can call the
List.pop method, and finally — again using the fiction of sequential consistency
provided by the lock — release the lock.
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class Bag {
Lock lock; List elms;

Object pop() =

{bag(this,P)}
let x = this.lock in let xs = this.elms in x.acquire();

{this.elms �→ xs ∗ locked(Rbag(xs,P), x) ∗ Rbag(xs,P)}
let z = xs.pop() in

{locked(Rbag(xs,P), x) ∗ Rbag(xs,P) ∗ (z = null ∨ P(z))}
x.release();

{isLock(Rbag(xs,P), x) ∗ (z = null ∨ P(z))}
z

{r. r = null ∨ P(r)}
...

}

This example illustrates the general pattern that we can use to verify clients
of libraries that provide fiction of sequential consistency. As long as these clients
only transfer resources using libraries that provide sufficient synchronization, the
verification can proceed entirely within the SC logic.

4 TSO Logic and Connectives

In this section we describe the TSO logic and introduce our new TSO connectives
that allow us to reason about the kinds of relaxed behaviors that occur in low-
level concurrency libraries.

We can express the additional reorderings that the memory model allows by
extending the space of states over which the assertions are built. In the case
of our TSO model, we include the store buffer pool as an additional compo-
nent of the memory state. However, reasoning about the buffers directly would
be extremely unwieldy and contrary to the spirit of program logics. Hence, we
introduce new logical connectives that allow us to specify this interference ab-
stractly, and provide appropriate reasoning rules.

The Triples and Assertions of the TSO Logic. First, however, we need to consider
how the TSO logic is built. As mentioned in the Introduction, its propositions
extend the propositions of SC logic by adding the store buffer pool component.
Just like SC assertions, this space forms a higher-order intuitionistic separation
logic, with the usual rules for reasoning about assertion entailment. However, we
are still reasoning about the code running in a particular thread and we often
need to state properties that hold of its own store buffer. Thus, formally, the
typing rule for the TSO logic triples is as follows:

P : TId → PropTSO Q : TId → Val → PropTSO

[P] e [Q] : Spec

where TId is the type of thread identifiers and Spec is the type of specifications.
We usually keep this quantification over thread identifiers implicit, by introduc-
ing appropriate syntactic sugar for the TSO-level connectives. The logic also
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includes another family of Hoare triples, the atomic triples, with the following
typing rule:

atomic(e) P : TId → Prop
TSO

Q : TId → Val → Prop
TSO

〈P〉 e 〈Q〉 : Spec
As the rule states, these triples can only be used to reason about atomic ex-
pressions — read, write, fence, and compare-and-swap. This feature is inherited
from iCAP, as a means of reasoning about the way the shared state changes at
the atomic updates. We give an example of such reasoning in Section 5.

Note that the triples above use a different space of assertions than the SC
triples introduced in Section 3. Hence, in order to provide the fiction of sequential
consistency and prove SC specifications for implementations whose correctness
involves reasoning about buffered updates, we need to use of both of these spaces
in the TSO logic. To this end we define two embeddings of Prop

SC
into Prop

TSO
.

The Subjective Embedding. The subjective embedding is denoted �− in −� :
PropSC × TId → PropTSO. Intuitively, �P in t� means that P holds from the
perspective of thread t — including the possible buffered updates in the store
buffer of t, but forbidding buffered updates that “touch” P by other threads.
Thus, it means that if the buffer of thread t is flushed to the memory, P will
hold in the resulting state. Note that this corresponds to the interpretation of
the assertions in the SC triples.

For a concrete example of what this embedding means, consider an assertion
x.f �→ v : PropSC. Clearly, we can use our embedding to get �x.f �→ v in t�. This
assertion requires that the reference x.f is defined, and there are no buffered
updates in store buffers of threads other than t. As for t’s store buffer, the last
update of x.f has to set its value to v or, if there are no buffered updates of
x.f, the value associated with it in main memory is v. This means that from the
point of view of thread t, x.f �→ v holds, but from the point of view of the other
threads, the only information is that x.f is defined.

The Objective Embedding. The objective embedding is denoted �−� : PropSC →
Prop

TSO
. The idea is that �P� holds in a state that does include store buffers if

P holds in the state where we ignore the buffers and none of the buffers contain
buffered updates to the locations mentioned by P. The intuition behind this
embedding is that P should hold in main memory, and as such from the point
of view of all threads. This makes it very useful to express resource transfer: an
assertion that holds for all threads can be transferred to any of them.

Using the points-to example again, �x.f �→ v� means precisely that the refer-
ence x.f is defined, its associated value in the heap is v, and there are no buffered
updates in any of the store buffers to the field x.f.

Semantics of assertions and embeddings In the following, we provide a simplified
presentation of parts of the model for the interested reader, to flesh out the
intuitions given above. We concentrate on the interpretation of TSO-specific
constructs and elide the parts inherited from iCAP, which are orthogonal.
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Following the Views framework [10], TSO assertions (terms of type Prop
TSO

)
are modeled as predicates over instrumented states. In addition to the under-
lying machine state, instrumented states contain shared regions, protocols and
phantom state. The instrumented states form a Kripke model in which worlds
consist of allocated regions and their associated protocols. Since iCAP-TSO in-
herits iCAP’s impredicative protocols [22], worlds need to be recursively defined.
Hence we use a meta-theory that supports the definition of sets by guarded re-
cursion, namely the so-called internal language of the topos of trees [6]. We refer
readers to the accompanying technical report [21] for details and proofs.

Propositions are interpreted as subsets of instrumented states upwards-closed
wrt. extension ordering. The states are instrumented with shared regions and
protocols which we inherit from iCAP. In the following these are denoted with
X , and we elide their definition.

�PropTSO�
def
= P↑(LState × SPool ×X) �PropSC�

def
= P↑(LState ×X)

In these definitions LState denotes the local state, including the partial physi-
cal heap, while SPool is the store-buffer pool that directly corresponds to the
operational semantics. Note that the interpretation of PropSC does not consider
store buffer pools, only the local state and the instrumentation. This allows us
to interpret the connectives at this level in a standard way.

At the level of PropTSO, we have several important connectives, namely sepa-
rating conjunction, and both embeddings we have introduced before. These are
defined as follows:

lfd(l, U)
def
= ∀t, v. ∀(o, f) ∈ dom(l). (o, f, v) �∈ U(t)

��P�� def
= {(l, U, x) | ∃l′ ≤ l. (l′, x) ∈ �P� ∧ lfd(l′, U)}

��P in t�� def
= {(l, U, x) | (flush(l, U(t)), U [t �→ ε], x) ∈ ��P��}

�P ∗Q�
def
= {(l, U, x) | ∃l1, l2. l = l1 • l2 ∧ (l1, U, x) ∈ �P� ∧ (l2, U, x) ∈ �Q�}.

The embeddings are defined using the auxiliary “locally flushed” lfd(l, U) predi-
cate, which ensures that no updates to dom(l) are present in U . We only require
this on a sub-state of the local state to ensure good behavior with respect to
the extension ordering. The subjective embedding is then defined in terms of
the objective one, with all the updates in the corresponding store-buffer flushed.
Finally, the separating conjunction is defined as a composition of local states.
Separating conjunction does not split the instrumentation or store-buffer pool
and both conjuncts thus have to hold with the same pools of buffered updates.

Reasoning About Buffered Updates. To effectively reason about the store buffers,
we need an operator that describes how the state changes due to an update. To
this end, we define − U− − : PropTSO × TId × PropTSO → PropTSO. Because of its
role, this connective has a certain temporal feel: in fact, it behaves in a way that
is somewhat similar to the classic “until” operator. Intuitively, P Ut Q means
that there exists a buffered update in the store buffer of thread t, such that
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until this update is flushed the assertion P holds, while after the update gets
written to memory, the assertion Q holds. Thus, it can be used to describe the
ordering dependencies introduced by the presence of store buffers. This intuition
should become clearer by observing the proof rules in Figure 4 (explained in the
following).

Again, let us consider a simple example. In the state described by �x.f �→ 1� Ut

�x.f �→ 2�, we know that the value of x.f in the heap is 1, and that there exists a
buffered update in thread t. Before that update there are no updates to x.f, due
to the use of �−�, so it has to be the first update to x.f in the store buffer of t.
Additionally, after it gets flushed �x.f �→ 2� holds — so the update must set x.f
to 2. Since the right-hand side of Ut also uses �−�, we also know that there are
no further buffered updates to x.f. This means that the thread t can observe the
value of x.f to be 2, while all of the other threads can observe it to be 1. Note
that, since Ut is a binary operator on PropTSO, it is possible to use it to express
multiple buffered updates.

The semantics of the until operator follow very closely the intuition given
above. Note that for some assertions and states, several choices of the update
would validate the conditions. However, this rarely occurs in practice due to the
use of the objective embedding, which requires no updates in its footprint.

�P Ut Q�
def
={(l, U, x) | ∃α, β, o, f, v. U(t) = α · (o, f, v) · β ∧

(l, U [t �→ α], x) ∈ �P� ∧ (flush(l, α · (o, f, v)), U [t �→ β], x) ∈ �Q�}

Relating the Two Embeddings. The two embeddings we have defined are in fact
quite related. Since an assertion under an objective embedding holds from the
perspective of any thread, we get �P� ⇒ �P in t�. We also have P Ut �Q� ⇒
�Q in t�: since there is a buffered update at which �Q� starts to hold, Q holds
from t’s perspective.

Since most of the time we are reasoning from the perspective of a particular
thread, we also include some syntactic sugar: U is a shorthand for an update
in the current thread, while Uo is a shorthand for an update in some thread
other than the current one. We also use P as a shorthand for �P in t�, where t
is the current thread. To make the syntax simpler, whenever we need to refer to
the thread identifier explicitly, we use an assertion iam(t). This is just syntactic
sugar for a function λt′. t = t′ : TId → PropTSO, which allows us to bind the
thread identifier of the thread we are reasoning about to a logical variable.

Reading and Writing State. The presence of additional connectives that mention
the state makes reading fields of an object and writing to them more involved in
the TSO logic than in standard separation logic. We deal with this by introducing
additional judgments that specify when we can read a value and what the result
of flushing a store buffer will be. Intuitively, P �rd(t) x.f �→ v specifies that thread
t can read the value v from the reference x.f — precisely what we need for reading
the state. The other new judgment, P �fl(t) Q, means that if we flush thread
t’s store buffer in a state specified by P, the resulting state will satisfy Q. This
action judgment is clearly useful for specifying actions that flush the store buffer:
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��x.f �→ v in t� �rd(t) x.f �→ v
Rd-Ax

P �rd(t) x.f �→ v t �= t′

P Ut′ Q �rd(t) x.f �→ v
Rd-U-NEq

��P in t� �fl(t) �P�
Fl-Ax

P(t) �fl(t) �x.f �→ −� ∗ Q(t)

〈P ∗ iam(t)〉 x.f := v 〈 . P U (Q ∗ �x.f �→ v�)〉C A-Write

Q �fl(t) R

P Ut Q �fl(t) R
Fl-U-Eq P(t) �rd(t) x.f �→ v

〈P ∗ iam(t)〉 x.f 〈r. P ∗ r = v〉C A-Read

P(t) �fl(t) �x.f �→ vo� ∗ Q(t)

〈P ∗ iam(t)〉 CAS(x.f, vn, vo) 〈r. r = true ∗Q ∗ �x.f �→ vn�〉C
A-CAS-True

P(t) �rd(t) x.f �→ v P(t) �fl(t) Q(t) v �= vo

〈P ∗ iam(t)〉 CAS(x.f, vn, vo) 〈r. r = false ∗ Q〉C A-CAS-False

〈P〉 e 〈Q〉C atomic(e)

[P] e [Q]
A-Start

[P] e1 [r. Q(r)] [Q(x)] e2 [r. R(r)]

[P] let x = e1 in e2 [r. R(r)]
Bind

[P] e [Q] stable(R)

[P ∗ R] e [Q ∗ R] Frame

[P] e [Q]

{P} e {Q} S-Shift

Fig. 4. Selected rules of the TSO logic

compare-and-swap and fences. However, it is also used to specify the non-flushing
writes. To see this, consider the ruleA-Write in Figure 4. Since the semantics of
assignment will introduce a buffered update, we know that after this new update
reaches main memory, all the other updates will also have reached it. Thus, at
that point in time, Q will also hold, since it is disjoint from the reference x.f. The
other interesting rules are related to the CAS expression. In A-CAS-True, we
do not need to establish the read judgment, since the form of the flush judgment
ensures that the value we can observe is vo. Aside from that, the rule behaves
like a combination of writing and flushing. The rule A-CAS-False, on the other
hand, requires a separate read judgment. This is because it does not perform an
assignment, and so the current value does not need to appear in the right-hand
side of the flush assumption, like in A-Write and A-CAS-True rules.

Also of interest are some of the proof rules for the read and flush judgments.
Note how in rules Rd-Ax and Fl-Ax the later operator (�) appears. This arises
from the fact that the model is defined using guarded recursion to break cir-
cularities, and later is used as a guard. However, since the guardedness is tied
to operational semantics through step-indexing and atomic expressions always
take one evaluation step, later can be removed at the atomic steps of the proof,
as expressed by the rules. Moreover, the rules also match the intuition we gave
about the store buffer related connectives. First, the judgment means that all
the updates in t’s store buffer are flushed: thus, it is enough to know �P in t�
holds to get �P� in Fl-Ax, and similarly we only look to the right-hand side of
U in the rule Fl-U-Eq. Note also, that we can reason about updates buffered
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in other threads, as evidenced by the rule Rd-U-NEq, where we “ignore” the
buffered update and read from the left-hand side of U .

Stability and Stabilization. There is one potentially worrying issue in the defini-
tion of the Ut operator given in this section: since at any point in the program
a flush action can occur nondeterministically, how can we know that there still
exists a buffered update as asserted by Ut? After all, it might have been flushed
to the memory. This is the question of stability1 of the until operator — and the
answer is that it is unstable by design. The rationale behind this choice is sim-
ple: Suppose we had made it stable by allowing the possibility that the buffered
update has already been flushed. Then, if we were to read a field that had a
buffered write to it in a different thread, we would not know whether the write
was still buffered or had been flushed, and so we would not know what value we
read. With the current definition, when we read, we know that the update is still
buffered and so the result of the read is known. However, we only allow reasoning
with unstable assertions in the atomic triples, i.e., when reasoning about a single
read, write or compare-and-swap expression. Hence, we need a way to make U
stable. For this reason, we define an explicit stabilization operator, �−�. It is a
closure operator, which means we have P � �P�. Moreover, for stable assertions,
the other direction, �P� � P, also holds. The important part, however, is how
stabilization behaves with respect to U : provided P and Q are stable, we have
�P Ut Q� �� (P Ut Q) ∨ Q. This does indeed correspond to our intuition — even
for stable assertions P and Q, the interference can flush the buffered update that
is asserted in the definition of U , which would transition to a state in which Q
holds. However, since P and Q are stable, this is also the only problem that the
interference could cause.

Explicit stabilization has been explored before in separation logic, most often
in connection with rely-guarantee reasoning. In particular, Wickerson studies
explicit stabilization in RGSep in his PhD thesis [25, Chapter 3], and Ridge [18]
uses it to reason about x86-TSO.

Semantically, stability is defined through the notion of interference, which
expresses the effect that the environment can have on a state. In iCAP-TSO there
are two classes of interference. Firstly, other threads can concurrently change the
state of shared regions. This source of interference is inherited from iCAP; we
reason about it by considering the states of shared regions, and the transitions
the environment is allowed to make. As an example, after releasing a lock we
cannot be certain it remains unlocked, since other threads could concurrently
acquire it. The protocol for a lock is described in Section 5. A second class of
interference is related to the TSO nature of our semantics, and includes the
interference that arises in the memory system: we refer to this class as store-
buffer interference. It is defined through three possible actions of the memory
system: allocation of a new store-buffer (which happens when a fork command
gets executed), adding a new buffered update to a location outside the assertion’s
footprint to a store-buffer, and committing the oldest buffered update from one

1 Recall an assertion is stable, if it cannot be invalidated by the environment.
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of the buffers. Stability under allocation of new store-buffers and under buffering
new updates is never a problem. Most of the connectives we use are also stable
under flushing — both embeddings are specifically designed in this way. As
we mentioned above, U is unstable under flushing by design, and we stabilize
it explicitly. For the formal definition of the interference relation we refer the
reader to the technical appendix [21].

Interpretation of the SC Logic. As we have already mentioned, the intuition that
lies behind the SC logic, discussed in the previous section, is precisely expressed
by the �− in t� embedding. This is more formally captured by the rule S-Shift
in Figure 4 (recall P is syntactic sugar for λt. �P in t�), which states that the two
ways of expressing that a triple holds from the perspective of the current thread
are equivalent. In fact, we take this rule as the definition of the SC triples, and
so we can prove that the SC triples actually form a standard separation logic
by proving that the proof rules of the SC logic correspond to admissible rules in
the TSO logic. This is expressed by the following theorem:

Theorem 1 (Soundness of SC logic). The SC logic is sound wrt. its inter-
pretation within the TSO logic, i.e., the proof rules of the SC logic composed with
the rule S-Shift are admissible rules of the TSO logic.

For most of the proof rules, the soundness follows directly; the only ones that
require additional properties to be proved are the frame, consequence, and stan-
dard quantifier rules, which additionally require the following property:

Lemma 1. The embeddings �−� and �− in t� distribute over quantifiers and
separating conjunction, and preserve entailment.

The formal statement of this property, along with the proof, can be found in the
accompanying technical report.

5 Reasoning in the TSO Logic

In Section 3 we illustrated that the fiction of sequential consistency provided by
the lock specification allows us to reason about shared mutable data structures
shared through locks, without explicitly reasoning about the underlying relaxed
memory model. Of course, to verify a lock implementation against this lock
specification, we do have to reason about the relaxed memory model. In this
section we illustrate how to achieve this using our TSO logic. We focus on the
use of the TSO connectives introduced in Section 4 to describe the machine states
of the spin-lock and elide the details related to the use of concurrent abstract
predicates.

The spin-lock implementation that we wish to verify is given in Figure 5.
It uses a compare-and-swap (CAS) instruction to attempt to acquire the lock,
but only a primitive write instruction to release the lock. While CAS flushes the
store buffer of the thread that executes the CAS, a plain write does not. To verify
this implementation, we thus have to explicitly reason about the possibility of
buffered releases in store buffers.
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Lock {
bool locked;

Lock() = this.locked := false; fence; this

unit acquire() =

let x = CAS(this.locked, true, false) in

if x then () else acquire()

unit release() = this.locked := false

}

LU

Rel

Acq

Fig. 5. Left: spin-lock implementation. Right: lock protocol

Specification. In the Introduction we introduced a lock specification expressed
in our SC logic. When verifying the spin-lock implementation, we actually verify
the implementation against the following slightly stronger specification, from
which we can easily derive the SC specification.

∃isLock, locked : Prop
SC
× Val → Prop

SC
. ∀R : Prop

SC
. stable(R) ⇒

[R] Lock() [r. isLock(R, r)]

∧ [isLock(R, x)] Lock.acquire() [locked(R, x) ∗ �R�]
∧ [locked(R, x) ∗ R] Lock.release() [	]

∧ valid(∀x : Val. isLock(R, x) ⇔ isLock(R, x) ∗ isLock(R, x))
∧ ∀x : Val. stable(isLock(R, x)) ∧ stable(locked(R, x))

Note that this stronger specification is expressed using TSO triples. This speci-
fication of the acquire method is slightly stronger: this specification asserts that
upon termination of acquire, the resource invariant R holds in main memory and
there are no buffered writes affecting R in any store buffer (�R�). The weaker
SC specification only asserts that the resource invariant R holds from the point
of view of the acquiring thread and that there are no buffered writes affecting R
in any of the other threads’ store buffers (R).

Lock Protocol. To verify the spin-lock implementation against the above spec-
ification, we first need to define the abstract representation predicates isLock
and locked. Following CAP [11] and iCAP [22], to reason about sharing iCAP-
TSO extends separation logic with shared regions, with protocols governing the
resources owned by each shared region. In the case of the spin-lock, upon allo-
cation of a new spin-lock the idea is to allocate a new shared region governing
the state of the spin-lock and ownership of the resource invariant.

Conceptually, a spin-lock can be in one of two states: locked and unlocked.
In iCAP-TSO we express this formally using the transition system in Figure 5.
This labeled transition system specifies an abstract model of the lock. To relate
it to the concrete implementation, for each abstract state (L and U), we choose
an assertion that describes the resources the lock owns in that state.

Since acquiring the lock flushes the store buffer of the acquiring thread, the
locked state is fairly simple. In the locked state the spin-lock owns the locked
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field, which contains the value true in main memory and there are no buffered
writes to locked in any store buffer. The spin-lock x with resource invariant R
thus owns the resources described by IL(x,R, n) in the abstract locked state.

IL(x,R, n) = �x.locked �→ true�

Due to the possibility of buffered releases in store buffers, the unlocked state is
more complicated. In the unlocked state,

– either locked is false in main memory and there are no buffered writes to
locked in any store buffer

– or locked is true in main memory, and there is exactly one store buffer with
a buffered write to locked, and the value of this buffered write is false

Furthermore, in case there is a buffered write to locked that changes its value from
true to false, then, once the buffered write reaches main memory, the resource
invariant holds in main memory. Since the resource invariant must hold from the
point of view of the releasing thread before the lock is released any buffered writes
affecting the resource invariant must reach main memory before the buffered
release. We can express this ordering dependency using the until operator:

IU(x,R, n) = ∃t : TId. ��x.locked �→ true� Ut �x.locked �→ false ∗ R ∗ [Rel]n1��

Here [Rel]n1 is a CAP action permission used to ensure that only the current
holder of the lock can release it. Since this is orthogonal to the underlying mem-
ory model, we refer the interested reader to the technical report [21] for details.

Since both arguments of Ut are stable, as explained in Section 4, IU(x,R, n) is
equivalent to the following assertion.

∃t : TId. �x.locked �→ false ∗ R ∗ [Rel]n1� ∨
(�x.locked �→ true� Ut �x.locked �→ false ∗ R ∗ [Rel]n1�)

The first disjunct corresponds to the case where the release has made its way to
main memory and the second disjunct to the case where it is still buffered.

The definition of isLock in terms of IL and IU now follows iCAP.2 The isLock
predicate asserts the existence of a shared region governed by the above labeled
transition system, where the resources owned by the shared region in the two
abstract states are given by IL and IU. It further asserts that the abstract state
of the shared region is either locked or unlocked and also a non-exclusive right
to acquire the lock.

Proof Outline. To verify the spin-lock implementation, it remains to verify each
method against the specification instantiated with the concrete isLock and locked
predicates. To illustrate the reasoning related to the relaxed memory model,
we focus on the verification of the acquire method and the compare-and-swap

2 See the accompanying technical report for a formal definition of isLock.
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instruction in particular. The full proof outline is given in the accompanying
technical report.

As the name suggests, the resources owned by a shared region are shared be-
tween all threads. Atomic instructions are allowed to access and modify resources
owned by shared regions, provided they follow the protocol imposed by the re-
gion. In the case of the spin-lock, the spin-lock region owns the shared locked
field and we thus need to follow the spin-lock protocol to access and modify the
locked field. Since the precondition of acquire asserts that the lock is either in
the locked or unlocked state, we need to consider two cases.

If the spin-lock region is already locked, then the compare-and-swap fails and
we remain in the locked state. This results in the following proof obligation:

〈�IL(this,R, n) ∗ iam(t)〉 CAS(this.locked, true, false) 〈r. � IL(this,R, n) ∗ iam(t) ∗ r = false〉

That is, if locked contains the value true from the point of view of a thread t,
then CAS’ing from false to true in thread t will fail. This is easily shown to hold
by rule A-CAS-False.

If the spin-lock region is unlocked, then the compare-and-swapmay or may not
succeed, depending on whether the buffered release has made it to main memory
and which thread performed the buffered release. If it succeeds, the acquiring
thread transitions the shared region to the locked state and takes ownership
of the resource invariant; otherwise, the shared region remains in the unlocked
state. This results in the following proof obligation:

〈�IU(this,R, n) ∗ iam(t)〉 CAS(this.locked, true, false) 〈r. ∃y. � Iy(this,R, n) ∗ iam(t) ∗Q(y, r, n)〉

where Q(y, r, n)
def
= (y = U∗r = false) ∨ (y = L∗ [Rel]n1∗�R�∗ r = true). Rewriting

the explicit stabilization to a disjunction and commuting in �, this reduces to
the following proof obligation:

〈iam(t) ∗ (∃t′ : TId. � �x.locked �→ false ∗ R ∗ [Rel]n1� ∨
(��x.locked �→ true� Ut′ ��x.locked �→ false ∗ R ∗ [Rel]n1�))〉
CAS(this.locked, true, false)

〈r. ∃y ∈ {U, L}. � Iy(this,R, n) ∗ iam(t) ∗Q(y, r, n)〉

In case the second disjunct holds and there exist buffered releases in the store
buffer of t′, the CAS will succeed if executed by thread t′ and fail if executed by
any other thread. To prove this obligation, we thus do case analysis on whether
t′ is our thread or not, i.e., whether t = t′. This leaves us with three proof
obligations (after strengthening the post-condition):

– either the buffered release is in our store buffer

〈(��this.locked �→ true� U ��x.locked �→ false ∗ R ∗ [Rel]n1�) ∗ iam(t)〉
CAS(this.locked, true, false)

〈r. � IL(this,R, n) ∗ [Rel]n1 ∗ �R� ∗ iam(t) ∗ r = true〉

– or in some other thread’s store buffer

〈(��this.locked �→ true� Uo ��x.locked �→ false ∗ R ∗ [Rel]n1�) ∗ iam(t)〉
CAS(this.locked, true, false)

〈r. � IU(this,R, n) ∗ iam(t) ∗ r = false〉
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– or it has already been flushed

〈��x.locked �→ false ∗ R ∗ [Rel]n1� ∗ iam(t)〉
CAS(this.locked, true, false)

〈r. � IL(this,R, n) ∗ [Rel]n1 ∗ �R� ∗ iam(t) ∗ r = true〉

These three proof obligations are easily discharged using rules A-CAS-True

and A-CAS-False.
Note that our logic makes us consider exactly those four cases that intuitively

one has to consider when reasoning operationally in TSO.

Logical Atomicity and Relaxed Memory

Although shared-memory concurrency introduces opportunity for threads to in-
terfere, concurrent data structures are often written to ensure that all operations
provided by the library are observably, or logically atomic. That is, for clients
of the concurrent data structure, any concurrent execution of operations pro-
vided by the library should behave as if it occurred in some sequential order.
This property immensely simplifies client-side reasoning, since the clients need
not reason about any internal states of the library. One way of ensuring logical
atomicity is by using coarse-grained synchronization, for instance by wrapping
the whole data structure in a lock. However, this is far from efficient, and many
real-life concurrent data structures opt to use fine-grained synchronization, such
as compare-and-swap, while still being logically atomic. Since the simplification
of the client-side reasoning one can obtain by exploiting the logical atomicity can
be significant, any truly modular proof system that supports fine-grained con-
currency should support logical atomicity. This is a known and well-researched
problem in the sequentially consistent setting; here we discuss its interplay with
relaxed memory and sketch how our system tackles it.

One of the approaches to express logical atomicity is to develop a program
logic that internalizes the concept, i.e., in which one can express atomicity as
a specification and prove that implementations satisfy such a spec within the
logic. Several of the more recent program logics go this route, in particular
TaDA and iCAP [9,22]. In this work we follow iCAP, which uses a reasonably
simple specification pattern to encode abstract atomicity. The crux of the idea
is for the data structure to provide an abstract mathematical model of its state,
and to model the (possibly non-atomic) updates of the concrete state with an
atomic update of the abstract state. Since the abstract state is only a model, it
can be updated after any atomic step of the program, and thus any update of
the abstract state can be considered atomic.

Since iCAP-TSO inherits most of the properties of iCAP, one could imag-
ine that we inherit iCAP’s specification pattern for logical atomicity verbatim.
This, however, would lead to problems. If we ported the pattern to the relaxed
setting directly, we would gain a way to express logical atomicity, but lose all
the information about the flushing behavior of the data structure—and in effect
we would not be able to derive an SC specification, even if the data structure
provided a fiction of sequential consistency. The idea for how one can adjust
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the specification pattern hinges on using the SC assertions and the embeddings
described earlier to describe the state of the store-buffers when the abstract
update happens. We refer the interested reader to the accompanying technical
report [21] for an explanation of how to extend the iCAP pattern to the TSO
setting, as well as the formal proofs and technical details.

Other Case Studies

In addition to the spin-lock, we have verified several other algorithms in the
TSO logic against SC specifications. Below we discuss the challenges of each
case-study. Full proofs are included in the accompanying technical report.

Treiber’s Stack. Treiber’s stack is a classic fine-grained concurrent stack imple-
mentation. We verify this data structure against a specification that provides
logical atomicity, based on the one given in [22]. From this general specification
we derive two classic specifications: a single-owner stack and a shared-bag that
provides a fiction of sequential consistency. The challenge, as explained in the
preceding section, is to provide a specification pattern that provides both logical
atomicity and fiction of sequential consistency.

Double-Checked Initialization. Double-checked initialization [19] is a design pat-
tern that reduces the cost of lazy initialization by having clients only use a lock
if the wrapped object has not been initialized yet, to their knowledge. We verify
this algorithm against a specification that ensures that the wrapped object is
initialized only once. The challenge is to capture the fact that holding the lock
ensures that there are no buffered updates to the object.

Ticket Lock. A bounded ticket lock [16] is a fair locking algorithm where threads
obtain a ticket number and wait for it to be served, and where the ticket number
goes back to zero when it reaches its bound. We verify this algorithm against a
specification that allows a bounded number of clients to transfer resources. The
challenge is to ensure that a thread’s ticket will not be skipped and reissued
to another thread, despite the fact that in TSO, the increment to the serving
number in the release can be buffered, as for the spinlock.

Circular Buffer. A circular buffer [14] is a single-writer single-reader resource
ownership transfer mechanism based on an array viewed circularly. This algo-
rithm is interesting in TSO because it does not need any synchronisation: the
FIFO behavior of store buffers is enough. Because there are no synchronisation
operations, a thread can be ahead of main memory in the array, and the challenge
is to ensure that despite that, the writer does not overtake the reader.

6 Soundness

We prove soundness of iCAP-TSO with respect to the TSO model of section 2.
Soundness is proven by relating the machine semantics to an instrumented se-
mantics that, for instance, enforces that clients obey the chosen protocols when
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accessing shared state. This relation is expressed through an erasure function,
�−�, that erases an instrumented state to a set of machine states.

The soundness theorem is stated in terms of the following eval(μ, T, q) predi-
cate, which asserts that for any terminating execution of the thread pool T from
initial state μ, the predicate q must hold for the terminal state and thread pool.
The eval predicate is defined as a guarded recursive predicate (the recursive oc-
currence of eval is guarded by �), to express that each step of evaluation in the
machine semantics corresponds to a step in the topos of trees.

eval(μ, T, q)
def
= (irr(μ, T ) ⇒ (μ, T ) ∈ q) ∧

(∀T ′, μ′. (μ, T ) → (μ′, T ′) ⇒ �eval (μ′, T ′, q))

Here irr(μ, T ) means that (μ, T ) is irreducible. We can now state the soundness
of iCAP-TSO.

Theorem 2 (Soundness). If [P] e [r. Q] and μ ∈ ��P�(t)� then

eval (μ, [t �→ e], λ(μ′, T ). μ′ ∈ ��Q�(t)(T (t))�)

This theorem expresses that if a specification [P] e [r. Q] holds and the execution
of the thread pool [t �→ e] with a single thread t from an initial state μ in the
erasure of P terminates (including threads spawned by t), then the execution has
finished in a proper terminal state (i.e., did not fault), which is in the erasure of
Q instantiated with the return value T (t) of thread t.

7 Related Work

Our work builds directly on iCAP [22], which is an extension of separation logic
for modular reasoning about concurrent higher-order programs with shared mu-
table state. Our work extends the model of iCAP with store buffers to implement
a TSO memory model, extends the iCAP logic with TSO-connectives for rea-
soning about these store buffers and crucially, it reduces to standard concurrent
separation logic for sequentially consistent clients.

Rely/Guarantee Reasoning Over Operational Models. Conceptually, iCAP-TSO
is a Rely/Guarantee-based proof system for reasoning about an operational se-
mantics with a relaxed memory model. This approach has also been explored by
Ridge [18], Wehrman [24], and Jacobs [15].

Ridge [18] and Wehrman [24] both propose proof systems for low-level reason-
ing about racy TSO programs based on Rely/Guarantee reasoning. In Ridge’s
system [18] the Rely/Guarantee is explicit, while in Wehrman’s system [24] it is
expressed implicitly through a separation logic. To reason in the presence of a
relaxed memory model, both systems enforce a rely that includes possible inter-
ference from write buffers. Consequently, both systems support reasoning about
racy code. However, in the case where a library includes sufficient synchroniza-
tion, neither system is able to take advantage of the stronger rely provided by



758 F. Sieczkowski et al.

this synchronization to simplify client proofs. This is exactly what our fiction of
sequential consistency allows.

Jacobs [15] proposes to extend separation logic with “TSO spaces” for rea-
soning about shared resources in a TSO setting. While the exact goals of his
approach remain a bit unclear, it seems that Jacobs is also aiming for a sys-
tem that reduces to standard separation logic reasoning when possible. How-
ever, to ensure soundness Jacobs’ proof system lacks the usual structural rules
for disjunction and existentials. This results in non-standard reasoning even for
non-racy clients.

Recovering Sequential Consistency. There are several other approaches for recov-
ering sequentially consistent reasoning about clients in the presence of a relaxed
memory model.

Cohen and Schirmer [8] propose a programming discipline based on owner-
ship, which ensures that all TSO program behaviors can be simulated by a
sequentially consistent machine. Unfortunately, the proposed discipline enforces
too much synchronization. In particular, an efficient spin-lock implementation
with a buffered release, like the one we verify in Section 5, does not obey their
programming discipline. Their approach is thus unable to deal with such code
without introducing additional synchronization.

Owens [17] defines a trace property on the set of SC behaviors of a pro-
gram which ensures that all TSO behaviors can be simulated by an SC machine.
Owens shows how this property allows clients of synchronization primitives to
reason using SC semantics, despite racy implementations of these synchroniza-
tion primitives. However, in contrast to our appraoch, Owens’ approach is non-
compositional: while Owens proves similar results for multiple synchronization
primitives in isolation, these results do not apply to clients that combine two or
more of these synchronization primitives.

Gotsman et al. [13] propose another approach for providing clients with a
fiction of sequential consistency, based on linearizability. By relating racy li-
brary implementations on a TSO architecture with abstract specifications on
an SC architecture, they can reason about data-race free clients that call racy
libraries using an SC memory model. Their approach is only compositional for
non-interacting libraries (libraries that do not interact through the heap) and
further requires libraries and clients to be non-interacting. Their approach can
also relate fine-grained implementations with coarse-grained implementations,
which provides similar advantages to our logical atomicity.

Our approach does not suffer from the compositionality problems of [17,13]
or the need for unnecessary and potentially expensive synchronization required
by [8]. In particular, iCAP-TSO allows racy libraries that interact through the
heap to be verified independently.

Reasoning Over Axiomatic Models. Relaxed memory models are often defined
using relations over read and write events that enforce certain consistency/visi-
bility constraints.
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Alglave et al. [4] proposes the use of such axiomatic models to support effi-
cient model-checking in the context of relaxed memory models. The use of an
axiomatic semantics avoids the need to consider all the possible interleavings in-
troduced by operational models with explicit buffers and caches. Alglave et al.’s
approach supports fully automatic verification of simple correctness properties
of realistic C code. Alglave et al.’s approach is non-modular in the sense that
it only supports whole-program verification and thus lacks support for verifying
modules independently.

While our logic is based on an operational model with explicit buffers, we
use Rely/Guarantee reasoning to avoid the explosion in interleavings observed
by Alglave et al. Our fiction of sequential consistency is specifically designed to
strengthen the rely (and implicitly, reduce the number of possible interleavings
that have to be considered) when the code enforces sufficient synchronization.

More recently, Turon et al. [23] has proposed GPS, a proof system over the
axiomatic C11 memory model. GPS extends separation logic with per-location
protocols which internalize some of the properties of the underlying visibility
properties between read and write events. GPS supports two of the C11 access
modes: non-atomics and release/acquire. Reasoning about non-atomics reduces
to standard separation logic. However, ownership transfer requires the use of
release/acquire and explicit reasoning about visibility of memory events. GPS
lacks support for logical atomicity and thus cannot express canonical specifica-
tions for concurrent data structures such as the specification of Treiber’s stack
in the technical report.

8 Conclusion and Future Work

We have presented a new proof system, iCAP-TSO, to support modular and
scalable reasoning for a language with a TSO memory model. The proof system
consists of two logics. The TSO logic supports reasoning about libraries with low-
level racy code. In cases where the libraries provide sufficient synchronization,
they can be verified against SC specifications. Clients that only do resource
transfer through such libraries can then be verified entirely within the SC logic,
which uses standard separation logic rules.

We use the TSO logic to verify an efficient spin-lock implementation against
an SC specification. We use this to verify a shared bag library, implemented
using a spin-lock, in the SC logic. We also verify a double-checked initialization
wrapper, a bounded ticket lock, and a circular buffer against SC specifications.
Lastly, we verify Treiber’s stack against a specification that showcases how logical
atomicity can be extended to TSO.

We think of iCAP-TSO as a first step towards more automated/interactive
tools for reasoning about the TSO memory model. In this paper we have focused
on the foundational issues of constructing a logic that allows simple reasoning
for well-behaved code. As future work it would be interesting to try to extend
tools like [7,12] to support mostly automated verification in the SC logic and
interactive verification in the TSO logic. We believe that the fiction of sequential
consistency could be really beneficial in this area: one could imagine that the
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lock-free concurrency libraries would be verified by hand, while automated tools
could verify properties of client programs. Since the rules of the SC logic are
standard, the whole range of techniques developed for automating separation
logic could be applicable. The open question here is how one could infer the
instantiations of higher-order specifications, for instance the invariants for locks,
and this should be investigated.
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Abstract. A long line of research has been dealing with the representa-
tion, in a formal tool such as an interactive theorem prover, of languages
with binding structures (e.g. the lambda calculus). Several concrete en-
codings of binding have been proposed, including de Bruijn dummies, the
locally nameless representation, and others. Each of these encodings has
its strong and weak points, with no clear winner emerging. One common
drawback to such techniques is that reasoning on them discloses too much
information about what we could call “implementation details”: often,
in a formal proof, an unbound index will appear out of nowhere, only to
be substituted immediately after; such details are never seen in an infor-
mal proof. To hide this unnecessary complexity, we propose to represent
binding structures by means of an abstract data type, equipped with
high level operations allowing to manipulate terms with binding with
a degree of abstraction comparable to that of informal proofs. We also
prove that our abstract representation is sound by providing a de Bruijn
model.

1 Introduction

The techniques for reasoning on languages with binders are a very popular topic
in both programming and logic ([20,5]). Especially in logic, the choice of a repre-
sentation of binding structures is one of the most significant issues when formal-
izing the metatheory of a programming language. Over the years, a number of
different styles have been proposed to deal with binding, roughly divided in two
different categories: first order encodings, also called concrete encodings, and
higher-order encodings like higher-order abstract syntax (HOAS). In interactive
theorem provers based on a strong type theory, like Coq, Matita, or Agda, trivial
implementations of HOAS by means of inductive types are rejected because they
do not satisfy the positivity checks required by those systems to ensure consis-
tency and, more importantly, adequacy concerns related to the appearance of
exotic terms arise; thus, concrete encodings are more usually employed (notable
exceptions include two-level approaches [8] and weak HOAS [10]).

Concrete encodings include some of the best known styles, like the de Bruijn
nameless encoding [16] (which represents variables using indices pointing to
the binder that declares them), the locally nameless encoding (a variant of
the de Bruijn encoding where only bound variables are represented by indices,
whereas free variables still use names) and the canonically named encoding of

c© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 762–786, 2015.
DOI: 10.1007/978-3-662-46669-8_31
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Pollack and Sato [23], where a bound variable is represented by means of a name
that is programmatically chosen depending on the structure of the term within
scope. All of these styles are described as canonical because terms that are equal
up to α-renaming are identified. We have studied these styles in [17,3] and drawn
a comparison in [22].

Our experience tells us that every concrete encoding has its own disadvan-
tages, but more importantly that all of them share one problem: they force
the formalizer to deal with the intricacy of the inner representation of binding,
something that in an informal proof is never seen. In a formal proof based on a
concrete approach, it is only a matter of time before nameless dummies, lifting
operations, or name choosing operations come to the surface.

We should ask ourselves whether this inconvenience is inherent to the concrete
representation of binding. Our understanding is that very often (if not always)
the internal representation of binding must be treated explicitly because of the
lack of an infrastructure designed to keep it hidden. We have very good access
to the implementation but, crucially, we lack an abstract view on binding.

This paper describes a project which aims at representing binding only by
means of abstract operations (similar to the ones employed in a pencil-and-
paper proof), keeping the implementation details hidden from the user. More
precisely, we will represent the terms of the object language as an abstract data
type, which can only be manipulated by means of the operations and logical
properties provided by its module. Based on this, we will prove two kinds of
results:

– soundness properties, showing the existence of an implementation, or model,
of the abstract data type which validates all the stated properties;

– theorems about the object language (e.g.: subject reduction), whose are car-
ried out within the abstract data type, without resorting to any property
specific to the model.

While other proposals to treat binding structures axiomatically exist ([11,19]),
in this paper we will address some topics that have been neglected, particularly
the treatment of inductively defined predicates over binding structures. All of
the proofs presented here have been proved valid in the Matita theorem prover.1

The paper is structured as follows: Section 2 presents an abstract data type
representing the term language of the simply typed lambda calculus; in Section 3
we provide an implementation of the abstract data type in the form of a locally
nameless model; after recalling the problem of induction principle strengthening
in the context of typing rules (Section 4), we extend our abstract data type to the
level of type systems (Section 5) and beta reduction (Section 6), showing that
the technique is sufficiently powerful to carry out common proofs like weakening
and subject reduction; finally Section 7 concludes.

1 The Matita formalization can be found at
http://www.irit.fr/~Wilmer.Ricciotti/publications.html .

http://www.irit.fr/~Wilmer.Ricciotti/publications.html


764 W. Ricciotti

2 An Abstract View of Binding

We present in this section a collection of abstract data types describing a simple
language with binding: the simply typed lambda calculus (or, for brevity, λ→).
Similarly to the axiomatization in [11], the operations working on our data type
include a set of opaque constants acting as “constructors” for the terms of the
language and a principle allowing to define functions by structural recursion
on the terms. However, instead of a primitive substitution function, we provide
facilities to form contexts (terms with holes) and apply them to variables, which
we regard as more basic. An operation to retrieve the list of the free variables in a
term or context is also given. In addition, properties asserting the computational
behavior of the aforementioned operations are provided.

Signature. Our module defines the abstract data types of λ→ as follows:

tp : Type
Atom : tp
Arr : tp ⇒ tp ⇒ tp

(Λi)i∈N : Type
Par : A ⇒ Λ0

App : Λ0 ⇒ Λ0 ⇒ Λ0

Lam : A ⇒ tp ⇒ Λ0 ⇒ Λ0

ν : A ⇒ Λi ⇒ Λi+1

−�−� : Λi+1 ⇒ A ⇒ Λi

FV : (Λi)i∈N ⇒ list A

RΛ0 : ∀T : Λ0 ⇒ Type, C : list A.
(∀x : A.T (Par x)) ⇒
(∀u, v : Λ0.T u ⇒ T v ⇒ T (App u v)) ⇒(∀x : A, σ : tp, v : Λ1.x /∈ FV(v), C ⇒ T (v�x�)

⇒ T (Lam x σ (v�x�))
)

⇒
∀u : Λ0.T u

We call this presentation of binding ostensibly named because at the external
level we always manipulate terms as entities containing names, including bound
variables: we never see bound variables represented as nameless dummies, or
pointers to their binder. The concrete implementation of binding structures may
or may not use names, but this is hidden from the user.

The set of types tp of the simply typed lambda calculus is of no particular
interest and is here provided for reference only: it is the free algebra obtained
from the zeroary constructor of the atomic type Atom and the binary constructor
of arrow (function) types Arr. Types of the simply typed lambda calculus will
be denoted by σ,τ ,...
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Λi will represent the type of terms with i holes, or i-ary contexts. Zeroary
contexts are taken as the terms of the calculus. We will denote terms and contexts
alike by u, v, . . .. The type of names A is an arbitrary infinite type with decidable
equality. We assume the existence of an operation ϕ : list A ⇒ A allowing us to
choose a name which is fresh with respect to any given finite list (i.e., ϕ(C) /∈ C
holds for all finite lists of names C).

The constructors of terms include Par, encapsulating a name to represent a
free variable or parameter, applications App, and lambda abstractions Lam. Just
as in informal syntax, lambda abstractions bear a type and bind a name inside
a subterm. For example, the identity function λx : Atom.x is expressed as

Lam x Atom (Par x)

provided that x is a name in A.
Crucially, to put our representation to some use we need to be able to talk

about contexts. Two operations ν and −�−� (respectively variable closing or
context formation and variable opening or context application) are provided to
build and apply contexts: νx.u substitutes a hole for all (free) occurrences of
Par x in u, thus increasing its arity, whereas u�x� replaces the last created hole
in u with Par x, decreasing its arity. It is worth noting that, since it cancels out
a free variable, ν acts like a binder (the notation was chosen in analogy to the
“new channel” operator of the π-calculus). Closing and opening can be combined
(in this order) to rename a variable: we will use the following special notation
for variable renaming:

u 〈y/x〉 � (νx.u)�y�
If p = (x, y) is a pair of variable names, we will write u 〈p〉 for u 〈y/x〉. This
notation is further extended to vectors: if −→p = [p1, . . . , pn] is a vector of pairs,
we will write u 〈−→p 〉 for u 〈p1〉 · · · 〈pn〉.

An abstract operation FV takes as input a term or a context and returns
the list of free names used in that term or context. Lastly, RΛ0 is a primitive
recursion principle over terms. Recursion principles on inductive types have a
well defined shape, which is followed by RΛ0 , except for the Lam case, which
provides a special treatment for the bound variable. We will make this clear in
the following paragraphs.

Properties of terms and contexts. The following properties of terms and context
forming operations are assumed:

x 〈y/x〉 = y
z 〈y/x〉 = z if z 
= x

(App u v) 〈y/x〉 = App (u 〈y/x〉) (v 〈y/x〉)
(Lam z σ u) 〈y/x〉 = Lam z σ (u 〈y/x〉) if z 
= x, y

u 〈x/x〉 = u (*)
νx.(u�x�) = u if x /∈ FV(u)

Lam x σ (u�x�) = Lam y σ (u�y�) if x, y /∈ FV(u)
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The first four lines fall logically into the same group, they describe the computa-
tional behaviour of renaming. The last line is also remarkable, since it expresses
the fact that Λ0 is canonical, i.e. α-convertible terms are provably equal. The
second-to-last property expresses a sort of an “η-equivalence” on contexts: open-
ing a context and then closing it with respect to the same variable yields the
original context, provided that the variable involved is fresh.

The property marked with (*) has a special status since, assuming a suitable
induction principle on Λ0, it could be proved from the other properties whenever
u is a term; we will provide such an induction principle on terms, but if we want
(*) to be valid not just for terms, but for proper contexts as well, we will still
have to assume it as part of the abstract data type.

Recursion. We employ contexts to express a recursion principle RΛ0 for Λ0,
allowing us to define functions over terms by structural recursion.

The lines 2–5 of the type of RΛ0 express the types of the arguments of the
principle which will provide its behaviour in the Par, App, and Lam case. To
better understand how RΛ0 works, we use it to define the usual operation of
substitution of terms for free variables. Informally, substitution is often defined
as follows:

u [v/x] �

⎧
⎪⎪⎨

⎪⎪⎩

(Par x) [v/x] = v
(Par y) [v/x] = Par y if x 
= y
(App u1 u2) [v/x] = App (u1 [v/x]) (u2 [v/x])
(Lam y σ u1) [v/x] = Lam y σ (u1 [v/x]) if y /∈ {x} ∪ FV(v)

This is not a regular pattern matching over an inductive type: while the Par and
App cases do not look special (and the same can be said about the types of the
associated clauses in RΛ0) the Lam case hides an implicit α-conversion in order
to make the bound variable different from both x and any free variable occurring
in v, to prevent variable capture. More generally, an effective recursion principle
over lambda abstractions should allow us to retrieve, for a bound variable, a
name that is fresh with respect to an arbitrary list: for this reason, we add a
“freshness context” C to the principle RΛ0 (similarly to what is done in Nominal
Isabelle [25]).

Thus, we can express the substitution operation as a structurally recursive
function over ostensibly named terms as follows.

Definition 1 (substitution). For all terms u, v and parameter names x, the
function subst is defined as follows:

subst u x v � RΛ0 (λ .Λ0) (x,FV(v))
(λy.if (x = y) then v else (Par y))
(λu1, u2, r1, r2.App r1 r2)
(λy, σ, u∗, , r∗.Lam y σ r∗) u

We will use the notation u [v/x] as a short form for subst u x v.
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In this definition, variables r1,r2,r
∗ are used to represent the result of recursion

on the subterms u1,u2,u
∗�y� respectively. The abstraction operation is special:

the recursion principle unpacks it as Lam y σ (u∗�y�), where u∗ is a unary context
and y is taken to be fresh with respect to the list x,FV(v) we provided as an
argument and also with respect to FV(u∗) (a proof that y /∈ x,FV(v),FV(u∗) is
also provided as the underscore “ ” argument, that is irrelevant to the definition
of the substitution, but may be employed in a proof of correctness).

Properties of FV. For FV, we assume that the following properties hold:

FV(Par x) = [x]
FV(App u v) = FV(u) ∪ FV(v)
FV(Lam x σ u) = FV(νx.u)

x ∈ FV(νy.u) ⇐⇒ (x 
= y ∧ x ∈ FV(u))

FV(u�x�) ⊆ {x} ∪ FV(u)
FV(u) ⊆ FV(u�x�)

Properties of Recursion. Since the recursion principle is part of our ostensibly
named interface, it is opaque. This means its algorithmic behaviour must be
expressed explicitly. Let Rec be short for RΛ0 T C fPar fApp fLam (where T ,
C, fPar, fApp, fLam have a suitable type). We will assume that the following
properties hold:

Rec (Par x) = fPar x

Rec (App u v) = fApp u v (Rec u) (Rec v)

∀U : (∀u : Λ0.T u ⇒ Type).x /∈ FV(u) ⇒
(∀y,Hy.U (u�y�) (fLam C y σ u Hy (Rec (u�y�)))) ⇒
U (Lam x σ (u�x�) (Rec (Lam x σ (u�x�)))

The first two lines are equations stating that on parameters and applications,
RΛ0 behaves as a normal recursion operator on an inductive type: it can be
rewritten as an application of the appropriate branch (fPar or fApp) to the ar-
guments of the constructor and, in the case of App, to the result of recursion
on its subterms. The last line expresses the behaviour in the Lam case, which is
more complicated: if we allowed the same scheme as with Par and App we could
take fLam = λy, , , , .y and use RΛ0 to expose the variable bound by Lam as
follows:

Rec (Lam x σ (u�x�))
= (λy, , , , .y) x σ u H (Rec (u�x�))
= x

(where H is any proof that x /∈ FV(u), C). As it turns out, this equation would
make it possible to look into the name bound by Lam: this would in turn enable
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us to discriminate abstractions in terms of their bound variables, which is clearly
inconsistent with the α-equivalence hypothesis.

The fact that we should not be able to extract naming information from
binders prevents us from expressing the computational behaviour of the recursion
principle explicitly in the Lam case. The property we stated is a “constrained
rewriting principle” which does not allow, in general, to compute the result of a
structurally recursive function in the Lam x σ (u�x�) case. However, if we employ
it in a proof whose goal involves such a function, we will get a new variable y,
together with a proof Hy that y /∈ C,FV(u) (both universally quantified in the
property) and the goal will be rewritten in such a way that we have the illusion
that Lam x σ (u�x�) has been renamed to Lam y σ (u�y�) and a computation
step on the recursive definition has occurred. Notice the difference with Nominal
Isabelle, which does not allow one to define functions exposing bound variables:
in contrast, not only can we write a function that given a term Lam x σ (u�x�)
(with x /∈ FV(u)) will return the tuple 〈y, σ, u�y�〉 (for some y /∈ FV(u)), but
we can also prove that putting together those items we obtain the original term,
i.e. Lam x σ (u�x�) = Lam y σ (u�y�).

2.1 Some Derived Properties

Since RΛ0 provides case analysis, it can be used to prove many of the proper-
ties that we expect from Par, App and Lam as constructors. Among these, an
important one concerns injectivity and discrimination:

Lemma 2. The following properties hold:

– if Par x = Par y, then x = y;
– if App u1 u2 = App v1 v2, then u1 = v1 and u2 = v2;
– if Lam x σ u = Lam x τ v, then σ = τ and u = v;
– different constructors always yield different terms: Par x 
= App u v,

App u1 u2 
= Lam x σ v, Par x 
= Lam y σ v.

Proof (sketch). McBride’s generic proof for inductive types ([13]) only requires
pattern matching and reasoning by cases: it is thus easy to adapt it to our
abstract data type.

One thing to notice is that the injectivity property for Lam requires the bound
variable to be the same in both abstractions. If this is not the case, the two should
be made equal by α-equivalence before applying injectivity.

Other properties cannot be proved as easily. One reason for this is that the
constrained rewriting approach for the recursion principle is not completely satis-
fying: we are giving up the possibility to compute directly the result of functions
defined by means of RΛ0 because some of those functions (like those that try to
expose bound variables) are ill-behaved. But other functions, like substitution,
are well-behaved: we expect to know that whenever the bound variable x is not
in y,FV(v), then the following equality holds:

(Lam x σ u) [v/y] = Lam x σ (u [v/y])
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As a matter of fact, the equality holds in the context of our abstract data
type. To prove it, we need the following induction principle:

Theorem 3. The following induction principle EΛ0 is provable:

EΛ0 : ∀P : Λ0 ⇒ Prop.
(∀x.P (Par x)) ⇒
(∀u1, u2.P u1 ⇒ P u2 ⇒ P (App u1 u2)) ⇒
(∀x, σ, v.x /∈ FV(v) ⇒

(∀y.y /∈ FV(v) ⇒ P (v�y�)) ⇒ P (Lam x σ (v�x�))) ⇒
∀u.P u

Proof (sketch). We assume the branches of EΛ0 as hypotheses and we subse-
quently prove ∀−→p .P (u 〈−→p 〉) using the recursion principleRΛ0 on u. This implies
P u by instantiating −→p with the empty list [].

That EΛ0 can be proved using RΛ0 should not be surprising, as in type theory
recursion and induction are intimately related. Actually, when we ignore the
computational content of RΛ0 and only consider its type, we see that its form
is very similar to that of an induction principle (where the result of recursion
on a subterm corresponds to the induction hypothesis). Besides the fact that
EΛ0 returns a proof of a proposition rather than an object of a given type2,
the biggest difference between RΛ0 and EΛ0 is that the latter, in the Lam case,
provides a different induction hypothesis for all possible choices of the bound
variable, while RΛ0 only considers a single variable (which one is not under
our control: at most, we can require that it should be sufficiently fresh): this
is usually enough to define a recursive function, but not in proofs by induction
like the following ones. We will come back to the topic of universally quantified
induction hypotheses in Sections 4 and 5.

Lemma 4. For all u, x, v, FV(u [v/x]) ⊆ FV(u) ∪ FV(v).

Lemma 5. For all u, x, v, if −→p is a list of pairs of variable names not in
x,FV(v), then

u [v/x] 〈−→p 〉 = (u 〈−→p 〉) [v/x]
Both proofs are by induction on u, with Lemma 5 using Lemma 4 in the Lam
case. These two properties are what we need to prove the commutation property
for subst in the Lam case.

Fact 6 If x /∈ y,FV(v), then (Lam x σ u) [v/y] = Lam x σ (u [v/y])

Proof. Notice that u = u 〈x/x〉 = (νx.u)�x�. Thus we can apply the constrained
rewriting property: this leaves us with the goal

Lam z σ ((u 〈z/x〉) [v/y]) = Lam x σ (u [v/y])

2 Induction principles are usually given for Prop; however we could as well derive a
similar principle for Type, at no additional formalization cost.
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where z is not free in νx.u or y,FV(v). The goal can be proved by rewriting the
left-hand side as follows:

Lam z σ ((u 〈z/x〉) [v/y])
= Lam z σ (u [v/y] 〈z/x〉) (by Lemma 5)
= Lam z σ ((νx.u [v/y])�z�) (by def. of renaming)
= Lam x σ ((νx.u [v/y])�x�) (by α-equivalence)
= Lam x σ (u [v/y] 〈x/x〉) (by def. of renaming)
= Lam x σ (u [v/y]) (by axiom)

where the α-equivalence holds because z /∈ νx.u [v/y], which is easily proved using
Lemma 4.

It is worth noting that the recursion principle in Gordon and Melham’s ax-
iomatization ([11]) handles abstractions differently, allowing direct computation
of functions employing it. This, however, comes at the price of requiring explicit
treatment of variable renaming in the function definition. As a consequence, if we
expressed substitution in that style, the following computation property would
trivially hold in the Lam case:

(Lam x σ u) [v/y] = Lam ϕ(y,FV(v)) σ ((u 〈ϕ(y,FV(v))/x〉) [v/y])

However, this is a weaker property than Fact 6 (which remains provable, with a
similar argument as ours).

3 A Locally Nameless Model

A locally nameless representation [9] of a language with binders is a variant of
de Bruijn’s nameless representation where names are allowed to represent free
parameters, but indices are always used to express bound variables. A locally
nameless representation of the simply typed lambda calculus can be given as the
following pretm inductive type of pre-terms :

inductive pretm : Type �
var : N ⇒ pretm
par : A ⇒ pretm
app : pretm ⇒ pretm ⇒ pretm
abs : tp ⇒ pretm ⇒ pretm .

Notice we use lowercase identifiers to distinguish the constructors of pretm
from the similar operations discussed in the previous section. The constructor
var is used to construct indices and par for named parameters; abs is a nameless
abstraction that is used as the counterpart of Lam abstractions, binding an index
rather than a named variable: by convention, our indices are zero-based, so that
index var k is considered to be bound to the (k + 1)-th outer abstraction.

In such a representation, indices whose values are too high and thus do not
point to any binder are said to be dangling : a dangling index is neither a bound
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variable nor a free, named parameter, thus it is often an unwanted situation.
Most formalizations employing this style adopt a validity predicate on pre-terms
that is verified only for real terms, i.e. those that do not contain dangling indices
(also called locally closed).

However, in our case the type of pre-terms will have a much more substantial
value as the interpretation of both terms and n-ary contexts. We regard dangling
indices as holes implicitly bound at the outermost level, waiting for a context
application to fill a free variable in them.

The following function checks whether a pre-term can be the interpretation
of a k-ary context by verifying that the value of all dangling indices is less than
k:

check u k �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

check (var n) k =

{
true if n < k
false else

check (par x) k = true
check (app u1 u2) k = (check u1 k) ∧ (check u2 k)
check (abs σ u1) k = check u1 (k + 1)

We thus define the interpretation of i-ary ostensibly named contexts in the
locally nameless model as the dependent pair associating a pre-term u to the
proof that check u i = true:

�Λi� = ctx i � Σu : pretm.check u i = true

We define algorithmically in the model two contextual operations that are
a counterpart to the similar operations of the ostensibly named presentation.
They employ a parameter k that is used, in recursive calls, to keep track of the
number of abstractions crossed.

νkx.u �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

νkx.var n =

{
var n if n < k
var (n+ 1) else

νkx.par y =

{
var k if x = y
par y else

νkx.app u1 u2 = app (νkx.u1) (νkx.u2)
νkx.abs σ u1 = abs σ (νk+1x.u1)

u�x�k �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(var n)�x�k =

⎧
⎨

⎩

par x if n = k
var n if n < k
var (n− 1) if n > k

(par y)�x�k = par y
(app u1 u2)�x�k = app (u1�x�k) (u2�x�k)
(abs σ u1)�x�k = abs σ (u1�x�k+1)

The definition of �Λi� as a dependent pair implies that, in the model, every
term or context is composed of a structural part – a pre-term – together with a
proof object asserting that the pre-term has the expected arity. This is reflected
in the interpretation:
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�Par x� = (par x, . . .)
�App u1 u2� = (app π1 (�u1�) π1 (�u2�), . . .)
�Lam x σ u1� = (abs σ (ν0x.π1 (�u1�)), . . .)

�νx.u� � (ν0x.π1 (�u�), . . .)

�u�x�� � (π1 (�u�)�x�0, . . .)
where π1 is the left projection of a dependent pair (here used to extract a pre-
term from the interpretation of a term) and the ellipses “. . .” must be filled
with appropriate proof objects. When we limit ourselves to the structural part,
most of the interpretations are straightforward, but that of Lam is worth looking
into: the name-carrying lambda is transformed by interpreting its body u1 first,
then turning all the occurrences of the parameter x into a dangling index that
is immediately bound by a nameless abstraction.

We have formalized the existence of proof objects such that the interpretation
of terms and contexts satisfies the following lemma, stating its soundness.

Lemma 7.

1. �Par x� : ctx 0
2. if �u� : ctx 0 and �v� : ctx 0, then �App u v� : ctx 0
3. if �u� : ctx 0, then �Lam x σ u� : ctx 0
4. if �u� : ctx i, then �νx.u� : ctx (i+ 1)
5. if �u� : ctx (i+ 1), then �u�x�� : ctx i

We omit the trivial interpretation of the FV operation and state some of the
remaing properties we proved to ensure the validity of the model.

Lemma 8.

1. �x 〈y/x〉� = �y�
2. if x 
= y, then �x 〈z/y〉� = �x�
3. �(App u v) 〈y/x〉� = �App (u 〈y/x〉) (v 〈y/x〉)�
4. if z 
= x, y, then �(Lam z σ u) 〈y/x〉� = �Lam z σ (u 〈y/x〉)�
Lemma 9. (α-conversion)
If x, y /∈ FV(u), then �Lam x σ (u�x�)� = �Lam y σ (u�y�)�
Lemma 10.

1. �(νx.u)�x�� = �u�
2. if x /∈ FV(u), then �νx.(u�x�)� = �u�

A final piece is missing to complete the model: an intepretation of the recursion
principle RΛ0 , and the proof that its equational properties are valid. We provide
such an interpretation as a recursive function pretm rec on pre-terms, which is
later lifted to proper terms.

The function pretm rec receives similar arguments to the abstract RΛ0 , plus
an additional fvar for dangling indices (which are missing from the ostensibly
named presentation) that is not of particular interest here.
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When dealing with a term of the form abs σ u, we generate a new fresh name
x = ϕ(C,FV(u)) and open u with respect to that name; we then perform the
recursive call on the opened u�x�0. The full pretm rec is defined by recursion
on the height of the syntax tree of a pre-term, rather than structural recursion
on the pre-term, because not all the recursive calls are on a pre-term which is
structurally smaller than the one received in input (something that is beyond
the capabilities of the termination heuristics found in Matita):

let rec pretm rec aux (P : pretm ⇒ Type)
(C : list A) (fpar : ∀x.P (par x)) (fvar : ∀n.P (var n))
(fapp : ∀v1, v2.P v1 ⇒ P v2 ⇒ P (app v1 v2))
(fabs : ∀x, s, v.x /∈ FV v ⇒ x /∈ C ⇒ P (v�x�) ⇒ P (abs s (νx.(v�x�))))
(h : N) u on h : (height(u) < h ⇒ P u) � match h with

[0 ⇒ . . . (* absurd: height is always > 0 *)

|S h0 ⇒ let rcall � pretm rec aux P C fpar fvar fapp fabs h0 in
match u with
[par x ⇒ λ .fpar x
|var n ⇒ λ .fvar n
|app v1 v2 ⇒ λp.fapp . . . (rcall v1 . . . ) (rcall v2 . . . )

|abs σ v ⇒ let x � ϕ(C,FV(v)) in
fabs . . . (rcall (v�x�0) . . . )]]

pretm rec P C fpar fvar fapp fabs u �
pretm rec aux P C fpar fvar fapp fabs (S height(u)) u . . .

The ellipses in pretm rec and in the app and abs cases of pretm rec aux must
be filled with proofs that the value provided for h is an upper bound to the
height of the term on which we are performing recursion (in our formalization,
those proofs were filled in interactively).

Since proper terms are a subset of pre-terms, expressing RΛ0 in terms of
pretm rec is conceptually simple, although in practice the related proofs are
technical, due to the handling of dependent types. The interested reader can
check the details of the proof in the formalization, within the module model.ma.

4 Intermezzo: Formalizing Typing Rules

We now turn our attention to the formalization of more complex structures:
typing judgments and their derivations by means of inductive rules. We chose
the simply typed lambda-calculus as our setting, because even in its simplicity
some of the issues of the representation of binding are already quite visible.

Its formalization in the most common representations of binding is well un-
derstood. Most locally nameless formalizations employ the following concrete
introduction rule for lambda abstractions:

x /∈ FV (u)

〈x, σ〉, Γ � u {var 0 �→ par x} : τ
(LN-T-Abs)

Γ � abs σ u : σ → τ
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where u {v �→ v′} is a generalized substitution operator, replacing a subterm v in
u with v′, preserving scopes. Following [23], we call rules in this style “backward”,
as they are most easily read from the bottom upwards: if the term which we
intend to type can be deconstructed as abs σ u, then we should first get a typing
derivation for u in an extended typing environment. However, since unboxing
an abstraction yields a term where the index var 0 is possibly dangling, we are
supposed to substitute a fresh name x for it, which must also be used in the
extended context.

An alternative “forward” representation of the abstraction rule has a more
familiar look:

〈x, σ〉, Γ � u : τ
(LN-T-Lam)

Γ � Lam x σ u : σ → τ

In this case, the substitution is hidden inside the Lam operator: Lam x σ u is
syntactic sugar for abs σ u {par x �→ var 0}. Although this rule is more pleasant
to read, in practice it is seldom used in formalizations because the associated
induction principle is more difficult to use, due to the fact that Lam is not a real
constructor: on the contrary, the algorithmic interpretation of the backward rule
is immediate, as we argued some lines above.

As it turns out, even if we formalize a type system by means of backward rules,
we get an induction principle which is weaker than what a formalizer expects.
For example, suppose that we write a type checker for the simply typed calculus:
we can verify its soundness with respect to the formalized type system (type-
checking does not succeed for ill-typed terms) quite easily by induction; however
verifying completeness (all well-typed terms typecheck successfully) turns out to
be challenging for a naive formalizer.

As originally noted by McKinna and Pollack [15], the reason behind this
difficulty lies in the fact that the LN-T-Abs rule is quite liberal: x can be
any sufficiently fresh parameter. Given the typing judgment associated to an
abstraction, we get a different derivation for every choice of a suitable x. All
the derivations are isomorphic, but contain, so to say, a “hardcoded” parameter
name: in other words, when we view typing derivations as data structures, they
are not canonical.

The problem with typing derivations being not canonical is that, in a proof
by induction, the hardcoded fresh parameter x makes its return as part of the
induction hypothesis associated with the abstraction case:

∀P.
...
⎛

⎜
⎜
⎜
⎜
⎝

∀Γ, x, σ, u, τ.
x /∈ FV(u) ⇒
〈x, σ〉, Γ � u {var 0 �→ par x} : τ ⇒
P (〈x, σ〉, Γ, u {var 0 �→ par x} , τ) ⇒
P (Γ, abs σ u, σ → τ)

⎞

⎟
⎟
⎟
⎟
⎠

⇒

..
∀Γ, u, σ.Γ � u : σ ⇒ P (Γ, u, σ)
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However on many occasions we will need our induction hypothesis to refer to
an arbitrary y /∈ dom(Γ ) (or even all such ys).

We can force typing derivations to be canonical (independent of arbitrary
choices of parameter names) by means of a universally quantified premise:

(∀x.x /∈ dom(Γ ),FV(u) ⇒
〈x, σ〉, Γ � u {var 0 �→ par x} : τ)

)

(LN-T-Abs’)

Γ � abs σ u : σ → τ

This yields a strong induction principle, where the induction hypothesis associ-
ated to the abstraction case is similarly quantified over all suitable xs. However,
the rule LN-T-Abs’ itself is actually weaker: to derive a typing judgment for
abstractions, one now needs to prove an infinite number of judgments, one for
every choice of x! This is not how typecheckers work and is thus usually not
considered a good formalization of a typing rule.

Still, it must be noted that all the rules presented in this section are equiv-
alent. In particular, it is possible to prove the “strong” induction principle for
a formalization using LN-T-Abs by showing that the typing judgment is equi-
variant, i.e. stable under arbitrary finite permutations of names π:

Γ � u : σ ⇐⇒ ∀π.π · Γ � π · u : σ

5 Ostensibly Named Representation of Typing

We employ the ostensibly named style presented in Section 2 to express the type
system of the simply typed lambda calculus.

〈x, σ〉 ∈ Γ dom(Γ ) is duplicate-free
(ON-T-Par)

Γ �O Par x : σ

〈x, σ〉, Γ �O u : τ
(ON-T-Lam)

Γ �O Lam x σ u : σ → τ

Γ �O u : σ → τ Γ �O v : σ
(ON-T-App)

Γ �O App u v : τ

Fig. 1. Typing rules for λ→, ostensibly named style

The typing rules, shown in Figure 1, look quite unremarkable. The rule ON-

T-Lam, in particular, looks the same as the rule LN-T-Lam of the previous
section, although in this case Lam is opaque and, more importantly, the rules
themselves must not be intended as the constructors of the concrete inductive
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type of typing derivations, but as operations provided by the abstract data type
of typing derivations. We postpone the discussion about the internal represen-
tation of typing to the next section.

∀P.
(∀Γ, x, σ.〈x, σ〉 ∈ Γ ⇒ P (Γ,Par x, σ)) ⇒⎛
⎜⎜⎜⎝

∀Γ, x, σ, u, τ.x /∈ dom(Γ ),FV(u) ⇒
(∀y.y /∈ dom(Γ ),FV(u) ⇒ 〈y, σ〉, Γ �O u	y
 : τ ) ⇒
(∀y.y /∈ dom(Γ ),FV(u) ⇒ P (〈y, σ〉, Γ, u	y
, τ )) ⇒
P (Γ, Lam x σ (u	x
), σ → τ )

⎞
⎟⎟⎟⎠ ⇒

⎛
⎜⎜⎝

∀Γ, u, σ, τ.
Γ �O u : σ → τ ⇒ Γ �O v : σ ⇒
P (Γ, u, σ → τ ) ⇒ P (Γ, v, σ) ⇒
P (Γ,App u v, τ )

⎞
⎟⎟⎠ ⇒

∀Γ, u, σ.Γ �O u : σ ⇒ P (Γ, u, σ)

Fig. 2. Rule induction for the λ→ typing derivations, ostensibly named style

The ostensibly named induction principle we associate to these rules (Figure 2)
is more interesting. The induction hypothesis of the lambda case (highlighted
in the figure) is quantified over all suitable parameter names, as in a strong
principle; however, we use the variable opening operation, both in the induction
hypothesis and in the conclusion, to avoid exposing the internal structure of the
terms. To prevent variable capture, the new names are chosen to be fresh with
respect to the context u being opened.

Ostensibly Named Inversion. We can use the ostensibly named induction prin-
ciple to derive an inversion principle in the style of McBride ([14]). Together
with Lemma 2, inversion principles provide an effective tool to perform case
analysis on the last rule used in a derivation tree. The inversion principle we
obtain is strong (as in [6]) in the sense that, for instance, given a derivation of
Γ � Lam x σ (u�x�) : σ → τ with x /∈ FV(u), we can deduce 〈y, σ〉, Γ � u�y� : τ
for all y /∈ FV(u), dom(Γ ).

5.1 Internal Representation of Typing Rules

As we argued in Section 4, the weak or strong induction principle dilemma, in the
context of typing, stems from the fact that the natural typing rules mentioning
a specific variable in the binder case, yield a plurality of derivations for the same
typing judgment; but to have a single derivation and thus a strong induction
principle, one has to employ an infinitary typing rule.

In essence, names are the origin of the dilemma: so it is just natural to look at
a de Bruijn formalization of the typing rules, shown in Figure 3. In the nameless
encoding, typing environments are just lists of types: we denote them as γ, γ′, . . ..
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γ(n) = σ
(DB-T-Var)

γ �D var n : σ

σ, γ �D u : τ
(DB-T-Abs)

γ �D abs σ u : σ → τ

γ �D u : σ → τ γ �D v : σ
(DB-T-App)

γ �D app u v : τ

Fig. 3. Typing rules for λ→, pure de Bruijn style

Since in this presentation no named parameter appears, context references are
by position (rule DB-T-Var, where γ(n) returns the n+1-th type in γ). In the
abstraction rule, unboxing an abstraction yields, in the premise, a new dangling
index, whose type is referenced in an extended context.

The nice thing about going nameless is the following: the rule DB-T-Abs is
finitary (in fact, unary), but at the same time it is also canonical! For every
well-typed abstraction, there is exactly one derivation, because we do not have
the freedom of choosing any fresh name: in fact, we choose none. This desirable
situation comes from the fact that, in a nameless setting, not only abstractions,
but also the typing environment γ of the judgments and even the ruleDB-T-Abs

are treated as binders.
These properties make the de Bruijn style rules, together with the associ-

ated induction principle (Figure 4), an ideal model for the abstract rules of the
previous section.

∀P.
(∀γ, n, σ.γ(n) = σ ⇒ P (γ, var n, σ)) ⇒⎛
⎜⎜⎝

∀γ, σ, u, τ.
σ, γ �D u : τ ⇒
P (σ, γ, u, τ ) ⇒
P (γ, abs σ u, σ → τ )

⎞
⎟⎟⎠ ⇒

⎛
⎜⎜⎝

∀γ, u, σ, τ.
γ �D u : σ → τ ⇒ γ �D v : σ ⇒
P (γ, u, σ → τ ) ⇒ P (γ, v, σ) ⇒
P (γ,App u v, τ )

⎞
⎟⎟⎠ ⇒

∀γ, u, σ.γ �D u : σ ⇒ P (γ, u, σ)

Fig. 4. Rule induction for the λ→ typing derivations, de Bruijn style

To model the ostensibly named presentation of λ→, we first need to interpret
�O in terms of �D. For this purpose, we give an interpretation of the ostensibly
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named representations of types, typing environments, and terms into the corre-
sponding concepts of the de Bruijn representation. As usual, the interpretation
of types is the identity. For what concerns typing environments, all we need to
do is to throw away the names, keeping the types in the same order: this is best
done by projecting the second component of each pair in the list. Finally the
interpretation of terms is given by taking the interpretation we used in Section 3
and subsequently closing the obtained locally-nameless term with respect to the
names in its typing context: assuming all the names referenced in the term have
an entry in the environment, the resulting interpretation is nameless. In symbols:

�σ� � σ

�Γ � � cod(Γ )

�u�−→x � ν0
−→x .�u�

�Γ �O u : σ� � df(dom(Γ )) ∧ �Γ � �D �u�dom(Γ ) : �σ�

where:

dom([x1 : σ1; . . . ;xn : σn]) � [x1; . . . ;xn]

cod([x1 : σ1; . . . ;xn : σn]) � [σ1; . . . ;σn]

νk[x1; . . . ;xn].u � νkx1 . . . νkxn.u

The model of an ostensibly named judgment contains, in addition to its nameless
counterpart, a proof that the domain of Γ is duplicate-free (a property which we
expect to be able to prove, and which is not implied by the nameless judgment).
We have used the predicate df to assert that a certain list of names is duplicate-
free. The vector notation −→x is employed as a compact way of referring to lists,
in this case to a list of names. Our second task is to model the rules of Figure 1
as instances of their nameless counterparts. This is expressed by the following
lemma:

Lemma 11.

1. If 〈x, σ〉 ∈ Γ and dom(Γ ) is duplicate-free, then �Γ �O Par x : σ�.
2. If �〈x, σ〉, Γ �O u : τ�, then �Γ �O Lam x σ u : σ → τ�.
3. If �Γ �O u : σ → τ� and �Γ �O v : σ�, then �Γ �O App u v : τ�.

Finally, we provide an interpretation of the ostensibly named induction prin-
ciple as follows:

Theorem 12. Let P be a predicate over named typing environments, terms,
and types. Assume the following properties:

1. for all Γ ,x,σ, 〈x, σ〉 ∈ Γ implies P (Γ,Par x, σ);
2. for all Γ ,x,σ,u,τ such that

• x /∈ dom(Γ ),FV(u)
• ∀y.y /∈ dom(Γ ),FV(u) ⇒ �〈y, σ〉, Γ �O u�y� : τ�
• ∀y.y /∈ dom(Γ ),FV(u) ⇒ P (〈y, σ〉, Γ, u�y�, τ)

then P (Γ, Lam x σ (u�x�), σ → τ) holds;
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3. for all Γ ,u,v,σ,τ such that
• �Γ �O u : σ → τ�
• �Γ �O v : σ�
• P (Γ, u, σ → τ)
• P (Γ, v, σ)

then P (Γ,App u v, τ).

Then for all Γ ,u,σ such that �Γ �O u : σ�, P (Γ, u, σ) holds.

Proof (sketch). Assume �Γ �O u : σ�. By definition, we know that the domain
of Γ is duplicate-free and that �Γ � �D �u�dom(Γ ) : σ.

Let P̂ be the augmented predicate:

P̂ (γ, u, σ) � ∀−−→x|γ|.df (
−−→x|γ|) ⇒ P (γ�−−→x|γ|�, u�−−→x|γ|0�, σ)

where we have extended the definition of −�−� as follows:

[σ1; . . . ;σn]�[x1; . . . ;xn]� � [〈x1, σ1〉; . . . ; 〈xn, σn〉]
u�−→x �k �

{
u�[]�k = u
u�y,−→z �k = u�y�k�−→z �k

The notation |γ| indicates the length of the list γ. The extended vector no-
tation in the form −→xn is used to express lists of length n. We now proceed by
induction on �Γ � �D �u�dom(Γ ) : σ to prove P̂ (�Γ �, �u�dom(Γ ), σ). By instantiat-
ing the augmented predicate over the list dom(Γ ), we finally obtain P (Γ, u, σ)
(using lemma 10).

The most difficult part of the induction is the abstraction case:
given γ0, σ0, τ0, u0 and a duplicate free list of names −−→x|γ0|, we need to prove

P (γ0�−−→x|γ0|�, (abs σ0 u0)�−−→x|γ0|�, σ0 → τ0)

under the hypotheses
σ0, γ0 �D u0 : τ0
P̂ (σ0, γ0, u0, τ0)

where the latter is the induction hypothesis. Then we take a fresh name y and
rewrite in the thesis

(abs σ0 u0)�−−→x|γ0|�
= abs σ0 (u0�−−→x|γ0|�1)
= Lam y σ0 (u0�−−→x|γ0|�1�y�)

This allows us to apply the second lemma hypothesis (to fulfill the guards of the
hypothesis, we exploit the equality u0�−−→x|γ0|�1�y� = u0�y,−−→x|γ0|�).

6 Beta Reduction

The ostensibly named technique we used in the previous section to define typing
judgments extends to other types of judgments. The trick is to make explicit
the environment where all the free parameters appearing in the judgment are
defined. Other than that, we axiomatize reduction rules that are close to informal
syntax (Fig. 5). These introduction rules are completed by a strong induction
principle, providing a universally quantified induction hypothesis for the case
where reduction happens under a lambda (Fig. 6).
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6.1 De Bruijn Model of Beta Reduction

A de Bruijn-style model of beta reduction is given in Figure 7. The main differ-
ence with the ostensibly named rules is that the list of free parameters is replaced
by an integer stating the number of dangling indices possibly appearing in the
judgment. Thus we define the interpretation of an ostensibly named reduction
as:

�−→xk �O u � v� � k �D �u�−→xk
� �v�−→xk

All the preterms involved in the de Bruijn judgment must be contexts of a
suitable arity containing no parameters. When this property is not implied by

−→x is duplicate-free FV(App (Lam y σ u) v) ⊆ −→x
(ON-B-Red)−→x �O App (Lam y σ u) v � u [v/y]

−→x �O u � u′ FV(v) ⊆ −→x
(ON-B-App1)−→x �O App u v � App u′ v

−→x �O v � v′ FV(u) ⊆ −→x
(ON-B-App2)−→x �O App u v � App u v′

y,−→x �O u � u′
(ON-B-Xi)−→x �O Lam y σ u � Lam y σ u′

Fig. 5. Beta reduction: ostensibly named encoding

∀P.⎛
⎝ ∀−→x , y, σ, u, v.df (−→x ) ⇒

FV(App (Lam y σ u) v) ⊆ −→x ⇒
P (−→x ,App (Lam y σ u) v, u [v/y])

⎞
⎠ ⇒

⎛
⎝ ∀−→x , u, u′, v.FV(v) ⊆ −→x ⇒−→x �O u � u′ ⇒ P (−→x , u, u′) ⇒

P (−→x ,App u v,App u′ v)

⎞
⎠ ⇒

⎛
⎝ ∀−→x , u, v, v′.FV(u) ⊆ −→x ⇒−→x �O v � v′ ⇒ P (−→x , v, v′) ⇒

P (−→x ,App u v,App u v′)

⎞
⎠ ⇒

⎛
⎜⎜⎜⎝

∀−→x , y, σ, u, u′.y /∈ −→x ,FV(u),FV(u′) ⇒
(∀z.z /∈ −→x ,FV(u),FV(u′) ⇒ z,−→x �O u	z
 � u′	z
) ⇒
(∀z.z /∈ −→x ,FV(u),FV(u′) ⇒ P (z,−→x , u	z
, u′	z
)) ⇒
P (−→x , Lam y σ (u	y
), Lam y σ (u′	y
))

⎞
⎟⎟⎟⎠ ⇒

∀−→x , u, u′.−→x �O u � u′ ⇒ P (−→x , u, u′)

Fig. 6. Induction principle for beta reduction: ostensibly named encoding
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a recursive premise of a rule, we have to specify it as an extra premise: for this
purpose, we use the notation

k �D u ok � check tm u k = true ∧ FV(u) = ∅

y,−→xk is duplicate-free k �D app (abs σ u) v ok
(DB-B-Red)

k �D app (abs σ u) v � �u	y,−→xk
 [v�−→xk�/y]�−→xk

k �D u � u′ k �D v ok
(DB-B-App1)

k �D app u v � app u′ v

k �D v � v′ k �D u ok
(DB-B-App2)

k �D app u v � app u v′

k + 1 �D u � u′
(DB-B-Xi)

k �D abs σ u � abs σ u′

Fig. 7. Beta reduction: de Bruijn encoding

While most other adaptations are trivial, rule DB-B-Red is slightly upset-
ting: de Bruijn terms u and v are opened in an arbitrary environment to become
ostensibly named terms; then we use ostensibly named substitution and finally
convert the result back to a de Bruijn term. This round-trip is entirely unnec-
essary if we define a substitution operation on de Bruijn terms; however for
our purpose – justifying the ostensibly named rules and induction principle –
this is not required: thus we decided not to bother dealing with two notions of
substitution and their equivalence.

The following properties show that the de Bruijn rules are a model of the
ostensibly named rules. Their proofs are similar to those relative to the typing
judgment.

Lemma 13.

1. If −→x is duplicate-free and FV(App (Lam y σ u) v) ⊆ −→x then �−→x �O

App (Lam y σ u) v � u [v/y]�.
2. If �−→x �O u � u′� and FV(v) ⊆ −→x then �−→x �O App u v � App u′ v�.
3. If �−→x �O v � v′� and FV(u) ⊆ −→x then �−→x �O App u v � App u v′�.
4. If �y,−→x �O u � u′� then �−→x �O Lam y σ u � Lam y σ u′)�.

Theorem 14. Let P be a predicate over named lists of variable names and pairs
of terms. Assume the following properties:
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1. for all −→x ,y,σ,u,v such that −→x is duplicate-free, FV(App (Lam y σ u) v) ⊆ −→x
implies P (−→x ,App (Lam y σ u) v, u [v/y]);

2. for all −→x ,u,u′,v such that
• FV(v) ⊆ −→x
• �−→x � u � u′�
• P (−→x , u, u′)

then P (−→x ,App u v,App u′ v) holds;
3. for all −→x ,u,v,v′ such that

• FV(u) ⊆ −→x
• �−→x � v � v′�
• P (−→x , v, v′)

then P (−→x ,App u v,App u v′) holds;
4. for all −→x ,y,σ,u,u′ such that

• y /∈ −→x ,FV(u),FV(u′);
• ∀z.z /∈ −→x ,FV(u),FV(u′) ⇒ �y,−→x �O u�z� � u′�z��
• ∀z.z /∈ −→x ,FV(u),FV(u′) ⇒ P (y,−→x , u�z�, u′�z�)

then P (−→x , Lam y σ (u�y�), Lam y σ, u′�y�) holds;
Then for all −→x ,u,u′ such that �−→x �O u � u′�, P (−→x , u, u′) holds.

6.2 Some Formalized Results

The machinery we have presented in the previous sections is all we need to
prove metatheoretical properties of λ→ such as weakening of typing judgments
and subject reduction.

Theorem 15 (weakening of typing). If Γ �O u : σ and Γ ⊆ Δ, then Δ �O

u : σ.

Proof. Routine induction on the derivation of Γ �O u : σ, closely resembling
the corresponding proof in a locally nameless setting. This is remarkable when
considering that the underlying implementation of our typing judgments uses a
pure nameless approach: normally, a proof of weakening in a nameless setting
requires relatively complex arguments about lifting and permutations of indices
and typing environments. Such unnecessary technicalities are completely hidden
in our proof because the ostensibly named approach allows for a more adequate
degree of abstraction.

Lemma 16 (substitutivity of typing). If Δ, 〈x, σ〉, Γ �O u : τ and Γ �O v :
σ, then Δ,Γ �O u [v/x] : τ .

Theorem 17 (preservation of typing). If Γ �O u : σ and dom(Γ ) �O u�u′,
then Γ �O u′ : σ.

Proof. We proceed by induction on the derivation of Γ � u : σ, followed, for
each case, by an inversion on the reduction judgment. These are the interesting
cases:
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– ON-T-App and ON-B-Red: we have u = App (Lam x σ0 u0) v0, u
′ =

u0 [v0/x] and σ = σ0 → τ0, and we also know that Γ �O Lam x σ0 u0 : σ0 →
τ0 and Γ �O v0 : σ0; we must prove Γ �O u0 [v0/x]. By inversion we obtain
z,u1 such that z /∈ FV(u1), dom(Γ ), Lam σ0 x u0 = Lam z σ0 (u1�z�) and
〈z : σ0〉, Γ � u1�z� : τ0 (this implies u1�z� = u0 〈z/x〉); thus, by Lemma 16
we get Γ �O u1�z� [v/z]; it is then easy to prove u1�z� [v/z] = u0 〈z/x〉 [v/z] =
u0 [v/x], as needed.

– ON-T-Lam and ON-B-Xi: we have u = Lam x σ0 (u0�x�),
u′ = Lam y σ0 (u′

0�y�) and σ = σ0 → τ0, where x /∈ dom(Γ ),FV(u0) and
y /∈ dom(Γ ),FV(u0),FV(u′

0), and we also know that dom(〈y, σ0〉, Γ ) �O

u0�y� � u′
0�y�. By induction hypothesis, for all z /∈ dom(Γ ),FV(u0), for all

u′′ such that dom(〈z, σ〉, Γ ) � u0�z� � u′′, we have 〈z, σ0〉, Γ �O u′′ : τ0; thus,
by taking z = y and u′′ = u′

0�y�, we have 〈y, σ0〉, Γ �O u′
0�y� : τ0. From this

we immediately derive Γ �O Lam y σ0 (u′
0�y�) : σ0 → τ0, as needed.

Theorem 18 (progress). If �O u : σ and u is not a value (i.e. it is not in the
form Lam x τ v), then there exists u′ such that �O u � u′.

Proof. By induction on u. By hypothesis, u is not a Lam abstraction and, since
it is well typed in the empty environment, it is not a Par either. Therefore, we
have u = App u1 u2. By inversion of typing, we also know that �O u1 : τ → σ
and �O u2 : τ , for some type τ . Then:

– if u1 is in the form Lam y τ u′
1, we have a redex: we can take u′ = u′

1 [u2/y]
and obtain the thesis by rule ON-B-Red;

– otherwise u1 is not a value and by induction hypothesis there exists a u′
1

such that �O u1 � u
′
1: then we can take u′ = App u′

1 u2 and obtain the thesis
by rule ON-B-App1 (the side condition about the free variables of u2 is
easily closed knowing that u2 is well typed in the empty environment).

7 Conclusions

In this paper we have presented an ostensibly named abstract data type for the
formalization of languages with binding, which enables the user of an interactive
theorem prover to only deal with familiar concepts like named binders and terms
with holes. Our work can be likened to other axiomatic or abstract approaches
([11,19,21] just to list a few). While other authors have focused especially on
the representation of terms and recursively defined functions, our technique ex-
tends to inductively defined judgments. In the representation of judgments, an
important role is played by our ability to express contexts (terms with holes).

To show the soundness of our axiomatization, we provided and fully formal-
ized a constructive model employing de Bruijn indices. The term language of
the model is locally nameless, with non-locally closed terms used to represent
contexts. Judgments, instead, are represented in a pure de Bruijn fashion. Since
the model is formalized, we retain the possibility of extracting code from all the
definitions and proofs based on the ostensibly named ADT.
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Even though our internal representation of binding structures employs name-
less dummies, other models are possible as long as they are canonical, the most
obvious alternatives being the canonical locally named representation [17] and
nested datatypes [7]. However, users do not need to worry about this, since they
only deal with an abstract data type that does not expose such inner details.

In the long run, every representation of binding should be expected to scale
up to dependently-typed object languages with generalized binders (i.e. binders
declaring multiple variables simultaneously) and possibly other complex oper-
ations. The system λ→ that we formalized does not include dependent types;
however multiple binders are part of our formalization, if only in the constrained
form of typing judgments. Other recent efforts to accomodate generalized bind-
ing have been made in the context of Nominal Isabelle [12,26]. Among the biggest
challenges in the formalization of binding, we include languages combining gener-
alized binding with dependent types and hereditary substitution ([1]). In practice
formalizations of such rich languages are attempted rarely and require non-trivial
adaptations; however, it is with complex languages that abstract approaches like
ours give the most ample benefits. For this reason, we are working on an exten-
sion of ostensibly named syntax to languages with signatures expressed in a
generic way, in the style of [2].

In perspective, the ostensibly named approach seems to enjoy very desirable
properties that would recommend its adoption as an alternative to more estab-
lished techniques. These properties, however, come at a cost: without the help
of automated tools, the burden of providing two formalization levels (concrete
nameless and abstract ostensibly named) together with the associated proofs,
will scare away most formalizers. Secondly, abstract recursion principles whose
computational behaviour is expressed by an equational theory are not as conve-
nient as the concrete ones available for inductive types. Lastly, defining recursive
functions as instances of a recursion principle is quite unusual and can be tricky,
although syntactic sugar can be used to make definitions more readable.

Such drawbacks could be greatly mitigated, if not completely eliminated, by
means of specialized tool support. For this purpose, we plan to investigate in
the future whether it is feasible to produce the overhead to an ostensibly named
formalization programmatically from a declarative specification of a language
with binding (similarly to what tools like DBgen [18] and LNgen [4] provide for
pure de Bruijn and locally nameless formalizations). Taking advantage of recent
works on specialized automation tactics for concrete encodings of binding (e.g.
Autosubst [24]), we will also study the design of tactics and syntactic constructs
to allow interactive theorem provers to present ostensibly named interfaces al-
most as if they were inductive types, automating computation of recursively
defined functions and allowing definitions by pattern matching.
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Abstract. This paper presents a novel type-and-effect analysis for pre-
dicting upper-bounds on memory allocation costs for co-recursive def-
initions in a simple lazily-evaluated functional language. We show the
soundness of this system against an instrumented variant of Launch-
bury’s semantics for lazy evaluation which serves as a formal cost model.
Our soundness proof requires an intermediate semantics employing indi-
rections. Our proof of correspondence between these semantics that we
provide is thus a crucial part of this work.

The analysis has been implemented as an automatic inference system.
We demonstrate its effectiveness using several example programs that
previously could not be automatically analysed.

1 Introduction

Co-recursion can be treated as a construction principle for infinite data struc-
tures: whereas recursion progressively deconstructs (finite) data structures, co-
recursion progressively constructs (possibly infinite) data structures through syn-
thesis from some base case [1]. In lazy functional programming, co-recursion al-
lows concise and elegant definitions by separating data generation from control.
For example, an infinite sequence of Fibonacci numbers, fibs, can be defined in
Haskell by zipping a list with its own tail [2]:

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

There are two co-recursive base cases (0 and 1). The zipWith operation then
builds the remainder of fibs constructively using both these base cases. Thanks
to lazy evaluation, the above definition is efficient: each successive Fibonacci
number is produced in constant cost. Furthermore, the flow of demand will
ensure that each number is evaluated once only when it is needed. However,
reasoning about execution costs requires a detailed understanding of the oper-
ational properties of lazy evaluation, particularly how intermediate results are
shared. Moreover, apparently innocuous changes may have a significant impact
on execution costs. As a simple example, consider two definitions of the function
cycle that produces an infinite list by repeated concatenation:
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cycle xs = xs’ where xs’ = xs++xs’
cycle’ xs = xs ++ cycle’ xs

Although the two definitions are denotationally equivalent, the evaluation of
cycle’ will allocate space that is proportional to the number of elements that
are demanded from the result, whereas cycle will generate a circular list and
thus only use constant space. Difficulties in reasoning about space usage are often
mentioned as a hindrance to the practical use of lazily evaluated languages, such
as Haskell, especially in domains where predictability is a primary concern.

This paper presents a new static analysis for obtaining a-priori bounds on the
dynamic costs of co-recursive definitions for a foundational subset of Haskell.
The analysis is formulated as a proof system for inferring annotated types that
express upper bounds on the costs of program fragments. For concreteness, we
chose to bound the number of heap allocations performed by a standard opera-
tional semantics for lazy evaluation. Note that the semantics and our analysis do
not model deallocation — hence our cost model does not account for residency
of an implementation using e.g. garbage collection. Nonetheless, measuring allo-
cations has the foundational benefit of being directly derivable from a standard
semantics. Furthermore, the number of allocations has been shown to be a good
predictor in practice for the effects of optimizations in real implementations of
lazy languages [3].

The work presented here complements our previous analysis for lazy functional
programs [4]. We have previously shown that amortisation allows cost bounds
to be determined for recursive definitions over finite data, but also that it does
not contribute to the analysis of co-recursion over infinite data. For clarity of
presentation, we thefore omit amortisation here. Any automated analysis that
is aimed at practical use could obviously combine both methods for improved
precision. We do not foresee any problems in doing this (in fact, our implemen-
tation includes amortisation), but the technical complexity of the presentation
and proofs is likely to increase substantially.

2 Language and Cost Semantics

We consider the λ-calculus extended with local bindings, data constructors and
pattern matching:

e ::= x | λx. e | e x | let x = e1 in e2 | c(x) | match e0 with {ci(xi)->ei}ni=1

Our semantics is built on Sestoft’s revision [5] of Launchbury’s natural seman-
tics for lazy evaluation [6], which is one of the earliest and most widely-used
operational accounts of lazy evaluation for the λ-calculus. As in Launchbury’s
semantics, we restrict arguments of applications to simple variables; nested appli-
cations must translated into nested let-bindings.1 Let -expressions bind variables
1 This transformation does not increase worst-case costs because, in a call-by-need

setting, function arguments must, in general, be heap-allocated in order to allow
in-place update and sharing of normal forms.
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H,S ,L m
m w ⇓ w,H (Whnf⇓)

� �∈ L H[� �→ e],S ,L ∪ {�} m

m′ e ⇓ w,H′[� �→ e]

H[� �→ e],S ,L m

m′ � ⇓ w,H′[� �→ w]
(Var⇓)

� is fresh H[� �→ e1[�/x]],S ,L m

m′ e2[�/x] ⇓ w,H′

H,S ,L m + 1

m′ let x = e1 in e2 ⇓ w,H′ (Let⇓)

H,S ,L m

m′ e ⇓ λx. e′,H′ H′,S ,L m′
m′′ e′[�/x] ⇓ w,H′′

H,S ,L m

m′′ e � ⇓ w,H′′ (App⇓)

H,S ∪ (⋃n
i=1{xi} ∪ BV(ei)

)
,L m

m′ e0 ⇓ ck(�),H′ H′,S ,L m′
m′′ ek[�/xk] ⇓ w,H′′

H,S ,L m

m′′ match e0 with {ci(xi)->ei}ni=1 ⇓ w,H′′

(Match⇓)

Fig. 1. Instrumented version of Launchbury’s operational semantics

to possibly (co)recursive terms. In line with common practice in non-strict func-
tional languages, we do not have a separate letrec form, as in ML. For simplicity,
we consider only single-variable let-bindings: multiple let-bindings can be en-
coded, if needed, using pairs and projections. Unlike [4], we do not require a
distinguished let-construct for introducing constructors here.

Figure 1 defines an instrumented version of Launchbury’s semantics, using a
simple cost counting mechanism, against which we prove the soundness of our
cost analysis. Our semantics is given as a relation H,S,L m

m′ e ⇓ w,H′, where
e is an expression; the heap H is a finite mapping from variables to possibly-
unevaluated expressions (thunks):

H ::= ∅ | H[x �→ e]

Some notation conventions: we will write dom(H) for the set of variables occur-
ring in the left-hand side of all mappings in H. We also assume that variables
are assigned at most once, i.e. the notation H[x �→ e] requires x �∈ dom(H), and
we will use heaps as partial functions, i.e. use H(x) for the (possibly-undefined)
expression associated with x in H. The set S contains bound variables that are
used to ensure the freshness condition in the Let⇓ rule; and L is a set of vari-
ables used to record thunks that are under evaluation, thereby preventing cyclic
evaluation (similar to the well-known “black-hole” technique used in [6]). The
result of evaluation is an expression w in weak head normal form (whnf) and a
final heap H′. Note that we use lowercase letters x, y, . . . for bound variables in
the original expression and �, �′, . . . for “fresh” variables (designated locations)
introduced by the evaluation of let-expressions. The parameters m,m′ are non-
negative integers representing the number of available heap locations before and
after evaluation, respectively. The choice of instrumenting the semantics with
before-and-after resources, as opposed to net costs, is conceptually simpler be-
cause it does rely on an a-priori assumption of cost additivity. Furthermore, it
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also makes it easier to adapt to cost models that allow e.g. for deallocation in
the future.

The purpose of the analysis that will be developed in Section 3 is to ob-
tain static bounds on m and m′ that will allow the execution to proceed. For
readability, we may omit the resource information from judgements when they
are not otherwise mentioned, writing simply H,S,L � e ⇓ w,H′ instead of
H,S,L m

m′ e ⇓ w,H′.
Under a lazy evaluation model, expressions are evaluated only when they are

demanded (that is when their value is needed in order to progress evaluation). In
our operational semantics, this happens: i) when we need the value of a variable
in Var⇓ (which is looked up from the environment); ii) when we need the value
of a function (a λ-expression) in App⇓; or iii) when we need the value of the
constructor argument in a match-expression.Let⇓ is the only rule that augments
the heap with a new expression bound to a “fresh” location. Accordingly, it is the
only rule that requires a positive heap cost in the annotation above the turnstile;
all other rules simply “thread” costs from sub-expressions to the outermost one.
For simplicity, but without loss of generality, we choose to use a uniform cost
model where each freshly allocated location is counted as a single cost unit. More
complex cost model, e.g. for determining the usage of other resources such as
execution time, or stack usage (as in [7]), could be easily substituted, if required.

The Whnf⇓ rule deals with weak-head normal forms (λ-expressions and con-
structors) that require no further evaluation, and hence it incurs no cost.

The Var⇓ and App⇓ rules are identical to their equivalents in Launchbury’s
semantics, except for passing on m,m′,etc. Note that the Var⇓ rule is restricted
to locations that are not marked as being under evaluation, � �∈ L (so enforcing
“black-holing” that explicitly excludes some non-terminating evaluations).

The Match⇓ rule deals with pattern matching against a constructor. The
variables bound in the matching pattern are replaced in the corresponding
branch expression ek by the locations within the heap (also just variables, but
we use the meta-variable � to range over variables within the domain of the
heap), which is then evaluated. Regardless of the actual branch taken, all pos-
sibly bound variables are added to S; this is done solely to ensure the freshness
condition in subsequent applications of the Let⇓ rule.

For the sake of completeness, we state the auxiliary definition that formalises
the notion of variable freshness. This is due to de La Encina and Peña-Marí [8].

Definition 1 (Freshness). A variable x is fresh in judgement H,S,L � e ⇓
w,H′ if x does not occur in either dom(H), L or S nor does it occur bound in
either e or the range of the heap H.

3 Type and Effect Analysis

The syntax of annotated types is as follows:

A ::= X | A1
−→q A2 | Tp(A) | μX.{ci : Ai}ni=1
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let one = 1 in
in letcons ones = Cons(one,ones)
in let map = \f xs -> match xs with Nil () -> letcons r = Nil() in r

| Cons (x,xs’) -> let y = f x
in let ys = map f xs’
in letcons r = Cons(y,ys) in r

in let f = (\x -> let two=2 in two * x)
in map f ones

Fig. 2. Map over an infinite cyclic list

We use meta-variables A, B, C for types, X,Y for type variables and p, q for
cost annotations (i.e. non-negative rational numbers). Function types A1

−→q A2

are annotated with a cost q of evaluating the function; thunk types Tp(A) are
annotated with a cost p of evaluating the thunk to whnf.

Both recursive and non-recursive algebraic data types are encoded as μ-types
μX.{ci : Ai} where the ci are constructors, Ai is a sequence of argument types
and and X is a recursively-bound type variable. For example, the type of lists
with elements of type A can be encoded as μX.{Nil : () | Cons : (A,X)}. Note
that we do not distinguish co-recursive data types syntactically, hence finite and
infinite lists have the same type.

3.1 Worked Example

Before introducing the formal type rules we start by providing some intuition for
the type annotations through a simple example. This is also available through the
web version of our analysis at http://kashmir.dcc.fc.up.pt/cgi/lazy.cgi.

The example in Fig. 2 multiplies by two every integer in an infinite list, using
the canonical map function. To this end we augment expressions with primitive
integer constants and associated arithmetic operations and a primitive type for
integers. Our prototype analysis infers the following annotated types:

f : T0(Int)−→1 Int
ones : μX.{Nil : () | Cons : (T0(Int),T0(X))}

map f ones : μX.{Nil : () | Cons : (T1(Int),T3(X))}
From these types we observe the following:

1. the type for function f has a cost of 1 on the arrow; this is because each
evaluation of f allocates one integer (let two=2 in. . . );

2. the type of ones has 0 costs assigned to the head and tail thunks; this implies
that forcing elements from this infinite list does not incur more allocations
(because ones is a cyclic list);

3. the type of the result expression map f ones has costs of 1 and 3 units assigned
to the head and tail thunks, respectively; this means that evaluating each
tail of of the result list costs 3 allocations (for the map) while evaluating
each head costs 1 allocation (for the argument function f);

http://kashmir.dcc.fc.up.pt/cgi/lazy.cgi
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4. from the type of map f ones we can also read a closed formula of 3n + 1
for the cost of evaluating the n-th element of the result list (n times the
evaluation of the tail thunks plus one evaluation of a head thunk).

Note, however, that if we transform the program by floating the let -binding for
two outwards (i.e. let two=2 in let f = \x -> two * x) we infer annotated
types that reflect this optimization.

f : T0(Int)−→0 Int
map f ones : μX.{Nil : () | Cons : (T0(Int),T3(X))}

After let-floating, f does not incur any allocation (a single allocation is done for
all evaluations). Hence, the type for the result list has now only positive costs
for the each successive tail. Note that the cost of 3 per successive list node is
accurate because under lazy evaluation, applying map to a cyclic list produces
an infinite acyclic list.

3.2 Formal Description of Type Rules

Our analysis is presented in Figures 3 and 4 as a proof system that derives
annotated typing judgments for expressions. The rules use two auxiliary relations
on types (subtyping and lowering thunk costs) defined in Figures 5 and 6.

An annotated type judgment has the form Γ
p

p′ e : A where Γ is a context
assigning types to variables,2 e is an expression, A is an annotated type and p, p′

are non-negative numbers approximating the available resources before and after
evaluation of e, respectively; these annotations are used for “threading” resources
through sub-expressions in rules Let and Match. As with the operational se-
mantics, we omit the annotations on the turnstile whenever they are not further
referenced.

Because variables reference heap expressions, rules dealing with the introduc-
tion and elimination of variables also deal with the introduction and elimination
of thunk types: Var eliminates an assumption of a thunk type, i.e. of the form
x : Tq(A). Dually, Let introduce an assumption of a thunk type. Note how the
cost of evaluating a thunk is deferred from Let to Var. Similarly, the cost of
evaluating the body of a λ-abstraction is deferred to application. Rules Abs and
App are otherwise standard.

The type rules Cons and Match for constructors and pattern matching are
straightforward.3 The Cons rule just ensures consistency between the arguments
to a constructor and its result type. In correspondence with our operational
semantics, there is no extra cost for constructors, since allocation is accounted
for in rule Let. The Match rule deals with pattern-matching over an expression
of a (possibly recursive) data type. The rule requires that all branches admit an
2 We use the standard notation x : A to denote the singleton context mapping variable
x to type A, and a comma between two contexts denotes disjoint union.

3 Note that these rules are simpler than in our earlier work [4], since data constructors
do not carry potential as required for the amortisation technique.
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Γ, x:Tq(A)
q
0 x : A

(Var)

Γ, x:T0(A′) q
0 e1 : A A′ � A Γ, x:Tq(A)

p

p′ e2 : C

Γ
1 + p

p′ let x = e1 in e2 : C
(Let)

Γ, x:A
q
0 e : C

Γ, x:A 0
0 λx.e : A−→q C

(Abs)

Γ
p

p′ e : A−→q C

Γ, y:A
p + q

p′ e y : C
(App)

B = μX.{· · · |c : A| · · · }
Γ, y:A[B/X] 0

0 c(y) : B
(Cons)

|Ai| = |xi| B = μX.{ci : Ai} Γ
p

p′ e0 : B Γ, xi:Ai[B/X]
p′
p′′ ei : C

Γ
p

p′′ match e0 with {ci(xi)->ei} : C

(Match)

Fig. 3. Syntax directed type rules

q ≥ p p− p′ ≥ q − q′ Γ
p

p′ e : A

Γ
q

q′ e : A
(Relax)

Γ
p

p′ e : A A <: B

Γ
p

p′ e : B
(Subtype)

Γ, x:B
p

p′ e : C A <: B

Γ, x:A
p

p′ e : C
(Supertype)

Γ, x:Tq0(A)
p

p′ e : C

Γ, x:Tq0+q1(A)
p + q1

p′ e : C
(Prepay)

Fig. 4. Structural type rules
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X <: X

|Ai| = |Bi| Aij <: Bij

μX.{ci : Ai}ni=1 <: μX.{ci : Bi}ni=1

A′ <: A B <: B′ p ≤ q

A−→p B <: A′ −→q B′

A <: B p ≤ q

Tp(A) <: Tq(B)

Fig. 5. Subtyping relation

A � A

|Ai| = |Bi| Aij �X Bij

μX.{ci : Ai}ni=1 � μX.{ci : Bi}ni=1

A �X A

p ≤ q

Tp(X)�X Tq(X)

Fig. 6. Lowering thunk costs

identical result type and that estimated resources after execution of any of the
branches are equal; fulfilling such a condition may require relaxing type and/or
cost information using the structural rules below.

A significant difference from our previous work [4] lies in the typing of let-
expressions. Typing let x = e1 in e2 allows lower costs for the bound variable x
within the recursively-defined expression e1. Specifically, it allows zero costs for
both the thunk itself and also for its recursive references; this is justified because
any recursive access to the defined value cannot incur evaluation costs, since
either the thunk is already in whnf, or the access would cause a self-referential
loop (which is prevented by the “black-holing” in the operational semantics).

The type rule Let uses an auxiliary ordering relation � on annotated types
defined in Figure 6. Note that relation � is different from subtyping (<:); the
former is used in Let for lowering only the cost for the recursively-defined thunks
in a μ-type (thereby increasing precision) while the latter is used in a structural
rule to lower any thunk or arrow costs to allow common types for branches with
distinct costs. Note also that it would be enough for � to lower μ-thunks costs
to zero (since that will always lead to a more precise analysis), but because
the type system is only constraining admissible type annotations, we choose to
express this as an ordering relation and let the constraint solver choose suitable
annotations in order to minimize costs.

The structural rules of Figure 4 allow the analysis to be relaxed in various
ways: Relax allows the relaxing of cost bounds. Subtype and Supertype allow
subtyping in the conclusion and supertyping in a hypothesis, respectively; these
make use of an separate relation defined in Figure 5. Informally, A <: B means
that the A and B have identical type structure but A has lower cost annotations
in both thunk and function types.

The crucial rule Prepay allows (part of) the cost of a thunk to be paid
in advance, thus reducing the cost of further uses of the same variable. Rule
Var requires the cost of the thunk to be paid for every use, as in call-by-name
evaluation. However, Prepay allows the cost of a thunk to be shared, which
models the effect of memoization in call-by-need evaluation.
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Note that weakening and contraction are implicitly allowed without any re-
strictions, so type assumptions may be freely duplicated without requiring the
application of an explicit type rule.4

4 Experimental Results

We have constructed a prototype implementation of our analysis as an inference
algorithm for the type system of Section 3. A publicly accessible web version
with several editable examples (including the ones presented here) is available at
http://kashmir.dcc.fc.up.pt/cgi/lazy.cgi. The implementation combines
the analysis presented in this paper with our earlier amortised analysis [4]. These
techniques complement each other: amortisation deals with recursive definitions
over finite data, while our new system deals with co-recursive definitions on
infinite data. In this paper, of course, we focus only on examples of co-recursive
definitions here.

The analysis is fully automatic, i.e. it does not require type annotations from
the programmer and either produces an annotated typing or fails when no cost
bounds can be found. Inference for a whole program is currently performed in
three steps:

1. We first perform Damas-Milner type inference to obtain an unannotated
version of the type derivation. The unannotated types form a free algebra
and can be determined using standard first-order unification.

2. We then decorate types with fresh variables and perform a traversal of the
type derivation gathering linear constraints among annotations following the
type rules.

3. Finally, we feed the linear constraints to a standard linear programming
solver5 with the objective of minimizing the overall expression cost on the
turnstile. Any solution gives rise to a valid annotated typing derivation.

As in Standard ML or Haskell, we associate constructors with specific data
types (e.g. Cons and Nil with lists). This ensures that the use of the Cons
rule is syntax-directed. Also, the implementation includes some minor language
extensions, namely, primitive integers and associated arithmetic operations.

It remains to explain how to decide the use of the structural rules from Fig-
ure 4. Prepay is used immediately whenever bound variables are introduced,
namely, in the body of a lambda, let-expression or match alternative. This can
be done uniformly because the rule allows any part of the cost to be paid (in-
cluding zero); hence, we defer to the LP solver the choice of how much should
each individual thunk be prepaid in order to achieve an overall optimal solu-
tion. Finally, we allow the use of Relax at every node of the derivation and
Subtype at the application rule (to enforce compatibility between the function
and its argument) and at the Match rule (to obtain a compatible result type).
4 This is again quite different to [4], where restrictions on weakening and contraction

are needed because of the amortisation technique.
5 We use the GLPK library: http://www.gnu.org/software/glpk.

http://kashmir.dcc.fc.up.pt/cgi/lazy.cgi
http://www.gnu.org/software/glpk


796 P. Vasconcelos et al.

4.1 Zipping Streams

Our first example is a co-recursive zipWith function that combines two infinite
lists by applying a function to corresponding elements:

let zipWith = \f xs ys -> match xs with
Cons(x,xs’) -> match ys with

Cons(y,ys’) -> let t = f x y
in let r = zipWith f xs’ ys’
in let s = Cons(t,r) in s

The analysis infers the following annotated type:

zipWith : T(T(a) -> T(b) -> c) ->
T(Rec{Cons:(T(a),T(#)) | Nil:()}) ->

T(Rec{Cons:(T(b),T(#)) | Nil:()}) ->@3
Rec{Cons:(T(c),T@3(#)) | Nil:()}

Some remarks on the analysis output: μ-types are written Rec{...} with an
implicit bound type variable represented by an ‘#’-sign; annotations in thunk
and arrow types are marked by an ‘@’-sign; for readability, zero annotations are
omitted. Hence, the type above ensures that zipWith yields a list where each
successive tail costs (at most) 3 allocations (T@3(#)) plus 3 for the application
itself (->@3); thus the cost for obtaining n elements is bounded by 3 + 3n.

Note that the inference algorithm outputs only one of an infinite set of admis-
sible solutions. Because zipWith was analysed in isolation, we obtained a type
with zero costs for the function argument and, therefore, where all costs of the
result are assigned to the list spine. If zipWith was used in a context where the
argument function requires positive costs, we might instead obtain a type with
costs in both head and spine thunks, e.g.:

zipWith : T(T(a) -> T(b) ->@1 c) ->
T(Rec{Cons:(T(a),T(#)) | Nil:()}) ->

T(Rec{Cons:(T(b),T(#)) | Nil:()}) ->@3
Rec{Cons:(T@1(c),T@3(#)) | Nil:()}

4.2 Fibonacci Numbers

Our next example is the infinite list of Fibonacci numbers from the introduction;
this can be defined using the zipWith function shown before:

let zero = 0 in
let one = 1 in
let plus = \x y -> x+y in
let fibs = (let t = match fibs with

Cons(x,fibs’) -> zipWith plus fibs fibs’
in let r = Cons(one,t)
in let s = Cons(zero,r)
in s)
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Here we extend the language with a type for integers by adding suitable con-
structors for each constant and primitive arithmetic operators. As in the STG
machine [9], operators must be fully applied; higher-order values can be obtained
using explicit lambda-expressions (plus in the example). We also assume that
arithmetic operations have no intrinsic allocation costs, but since arguments of
applications are restricted to be variables, compound results have to be let-bound
(and thus heap allocated) anyway. The type inferred for fibs is as follows:

fibs : Rec{Cons:(T(Int),T@3(#)) | Nil:()}

From the type above we see that the infinite list evaluating each successive of
Fibonacci requires at most 3 allocations. This matches exactly the cost of zipWith
because plus has zero cost in our model. Note that it is essential that fibs’ is
the tail of fibs, for otherwise one would have to pay twice for evaluating each
argument of zipWith. Thanks to our novel Let typing rule, our analysis can
recognise this reduction in cost due to aliasing.

4.3 The Hamming Problem

Our final example is the Hamming problem: produce an infinite list of numbers in
ascending order and without duplicates, starting with 1 and such that, whenever
x occurs in the list, so do 2 × x, 3 × x and 5 × x. One elegant Haskell solution
(from Bird and Wadler’s textbook [2]) uses a function that merges infinite lists
in ascending order:

merge (x:xs) (y:ys) | x==y = x : merge xs ys
| x<y = x : merge xs (y:ys)
| x>y = y : merge (x:xs) ys

The Hamming numbers can then be defined co-recursively using merge and the
standard list map:

hamming = 1 : merge (map (2*) hamming)
(merge (map (3*) hamming) (map (5*) hamming))

Using some informal reasoning about the sharing properties of the cyclic list
above, Bird and Wadler argue that n elements can be computed with bounded
O(n) cost [2]. We will see that our analysis can confirm this with a precise bound.

However, a direct translation of the above definitions into our core language
does not admit an annotated type in our system: the two uses of merge in the
definition of hamming require different cost annotations. Because of this, the
constraints generated by the reconstruction algorithm will not admit a solution.6

One work around for this limitation is to simply duplicate the definition of
merge so that each use can be assigned a precise type7:
6 This does not happen for map because, in this particular problem, all the uses have

identical costs.
7 A more general solution would be to extend the analysis to include effect polymor-

phism – we leave this as further work (see Section 7).
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Table 1. Comparison of analysis with the operational semantics

evaluation demand 0 1 2 3 4 5 6 7 8 9 10
Fibs analysis 8 8 11 14 17 20 23 26 29 32 35

semantics 8 8 8 11 14 17 20 23 26 29 32
Hamming analysis 17 17 30 43 56 69 82 95 108 121 134

semantics 17 17 30 35 42 47 54 64 69 76 86

hamming = 1 : merge1 (map (2*) hamming)
(merge2 (map (3*) hamming) (map (5*) hamming))

With this translation, the reconstruction algorithm is able to obtain the following
annotated types:

merge1 : T@3(Rec{Cons:(T(Int),T@3(#)) | Nil:()}) ->
T@3(Rec{Cons:(T(Int),T@3(#)) | Nil:()}) ->@8
Rec{Cons:(T(Int),T@8(#)) | Nil:()}

merge2 : T@3(Rec{Cons:(T(Int),T@3(#)) | Nil:()}) ->
T@8(Rec{Cons:(T(Int),T@8(#)) | Nil:()}) ->@13
Rec{Cons:(T(Int),T@13(#)) | Nil:()}

hamming : Rec{Cons:(T(Int),T@13(#)) | Nil:()}

The type inferred for hamming confirms Bird and Wadler’s reasoning and pro-
vides a precise bound: each successive Fibonacci number requires (at most) 13
allocations.

Finally, we note that the revised Let type rule that is presented in this paper
is essential for obtaining annotated types for the fibs and hamming examples
above. In fact, these two examples do not admit annotated types using just the
amortised analysis described in [4].

4.4 Comparison with the Instrumented Semantics

Table 1 presents a short assessment of the quality of the upper-bounds obtained
from our analysis by comparison with the exact costs obtained from an imple-
mentation of the operational semantics of Section 2. Figures are grouped by the
evaluation demand from the result infinite lists, where 0 evaluates the list to
whnf (i.e. just a Cons cell), 1 evaluates the first element to whnf, 2 evaluates the
second, etc. We first note that the analysis is indeed producing upper-bounds;
this is true in general as shown by the soundness theorem proved in Section 5.

The results for the fibs are quite accurate: the inferred cost of 3 allocation for
each successive elements is exact. There is a fixed overestimation of 3 allocations
because a recursive type Rec{Cons:(T(Int),T@3(#))|...} cannot distinguish
the lower cost of the first two elements. The results for hamming are less ac-
curate; this is because the exact cost for successive elements is not constant,
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instead varying between 0 and 10 allocations; however, our annotated types as-
sign identical cost for the entire spine (Rec{Cons:(T(Int),T@13(#)|...}— i.e.
13 allocations), hence the overestimation.

5 Soundness

In this section we formulate the soundness of our analysis from Section 3. The
structure of our proof is as follows:

1. in Section 5.1, we define a variant of the operational semantics which uses
indirections;

2. in Section 5.5, we establish the soundness of the type rules against the indi-
rection semantics.

3. finally, in Section 5.6, we show the equivalence of the original semantics and
the revised indirection semantics (including preservation of resource bounds).

5.1 Indirection Semantics

To facilitate proving the soundness of the type analysis of Section 3 we will con-
sider a variant of the operational semantics. We exploit a new syntactic form for
indirections. These do not occur in the original program, but are used internally
by the evaluation mechanism.

e ::= · · · | ind(x) w ::= λx.e | c(x) | ind(x)

Operationally, an indirection ind(x) will be treated similarly to the variable x (i.e.
it references some expression in the heap). However, evaluation of an indirection
will not force the evaluation of a thunk; instead, it succeeds immediately. This
will be crucial for establishing the soundness of the type rule Let.

Figure 7 presents the revised semantics as a relation H,S,L m

m′ e ⇓I w,H′

where the components play identical roles to the semantics of Section 2. Note
that, in this revised judgment, both expressions and whnfs may be indirections;
they may also occur in heaps, H or H′.

The Whnf⇓I rule is revised to allow indirections as results. Indirections are
used to mark recursive self-references, and thus this revised rule allows justifying
lower costs for such cases in the soundness proof. The Var⇓I rule is identical
to the previous one. The revised rule for let-expressions Let⇓I substitutes the
bound variable in e1 by an indirection instead of a self-reference; this will allow
the costs of (co-)recursive uses to be distinguished in the soundness proof.

The revised rules Whnf⇓I , App⇓I and Match⇓I make use of a auxiliary
partial function H@w for de-referencing a result w with respect to a heap H.
For constructors and abstractions this function is the identity; and in the case of
indirections it dereferences a heap location. It is undefined for other expressions.

H@λx.e
def
= λx.e H@c(x)

def
= c(x) H@ind(�) def

= H(�) if � ∈ dom(H)
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H@w is defined
H,S ,L m

m w ⇓I w,H (Whnf⇓I)

� �∈ L H[� �→ e],S ,L ∪ {�} m

m′ e ⇓I w,H′[� �→ e]

H[� �→ e],S ,L m

m′ � ⇓I w,H′[� �→ w]
(Var⇓I)

�, �′ are fresh H[� �→ e1[�
′/x], �′ �→ ind(�)],S ,L m

m′ e2[�/x] ⇓I w,H′

H,S ,L m + 1

m′ let x = e1 in e2 ⇓I w,H′ (Let⇓I)

H,S ,L m

m′ e ⇓I u,H′ H′@u = λx. e′ H′,S ,L m′
m′′ e′[�/x] ⇓I w,H′′

H,S ,L m

m′′ e � ⇓I w,H′′ (App⇓I)

H,S ∪ (⋃n
i=1{xi} ∪ BV(ei)

)
,L m

m′ e0 ⇓I u,H′

H′@u = ck(�) H′,S ,L m′
m′′ ek[�/xk] ⇓I w,H′′

H,S ,L m

m′′ match e0 with {ci(xi)->ei}ni=1 ⇓I w,H′′ (Match⇓I)

Fig. 7. Indirection semantics

5.2 Typing Rule for Indirections

We introduce the following typing rule Ind for indirections:

A′ � A

Γ, x:Tq(A) 0
0 ind(x) : A′ (Ind)

This rule is similar to Var except that it allows lowering the thunk costs both
on the judgment and on the recursive type; we use the relation � of Figure 6 for
the latter. The rule will be needed in the soundness proof solely for establishing
well-typing of intermediate heap configurations (since indirections may not occur
within source programs).

5.3 Global Types and Balance

The global types are given by a mapping M from locations to (annotated) types.
The intuition is that when M(�) = Tq(A) then q is (an upper bound of) the cost
of evaluating � and the resulting whnf admits type A. Furthermore, we introduce
an auxiliary balance function B mapping locations to non-negative numbers.
This keeps track of the partial costs that have been paid in advance by uses of
the Prepay rule. We also define the balance sum over a heap configuration as
the sum of the balance associated with all thunks that are not under evaluation:

∑
H,L B def

=
∑{B(�) : � ∈ dom(H) and � �∈ L and H(�) is not a whnf }

Note that the balance is needed to prove the soundness of the analysis, but is
not part of the operational semantics — in particular, it does not incur runtime
costs.



Type-Based Allocation Analysis for Co-recursion 801

5.4 Consistency and Compatibility

We can now define the principal soundness invariants of our analysis, namely, a
consistency relation for typing heap configurations and a compatibility relation
between global types and contexts. We proceed by first defining typing of a single
location and then extend it to typing a heap configuration.

Definition 2 (Typing of locations). We say that location � admits type Tq(A)
under context Γ , balance B, heap configuration (H,L), and write Γ,B;H,L �Loc
� : Tq(A) if one of the following cases holds:

(Loc1) H(�) is in whnf and Γ 0
0 H(�) : A;

(Loc2) H(�) is not in whnf and Γ
q + B(�)

0 H(�) : A;

The two cases above are mutually exclusive: Loc1 applies when the expression
in the heap is already in whnf ; otherwise Loc2 applies. For Loc2, the balance
B(�) associated with location � is added to the available resources for typing the
thunk H(�), effectively reducing its cost by the prepaid amount. Note that in [4],
we additionally distinguished whether a location was under evaluation. Since we
do not use the notion of potential here, this is no longer needed.

Definition 3 (Typing of heap configurations). We say that a heap con-
figuration (H,L) is consistent with context Γ , global types M and balance B,
and write Γ,B �Mem (H,L) : M, if and only if for all � ∈ dom(H) we have
Γ,B;H,L �Loc � : M(�).

The compatibility relation enforces that the global types of locations are super-
types (i.e. have lower costs) of the types occurring in a context.

Definition 4 (Compatibility). We say that a global types M are compatible
with a context Γ , written M <: Γ , if and only if M(�) <: A for all �:A ∈ Γ .

5.5 Soundness of the Proof System

We state the soundness of our analysis as an augmented type preservation result.

Theorem 1 (Soundness). Let t ≥ 0 be fixed but arbitrary. If the following
statements hold

Γ p

p′ e : A (1)
Γ,B �Mem (H,L) : M (2)

M <: Γ (3)
H,S,L � e ⇓I w,H′ (4)
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then for all m such that m ≥ t + p +
∑

H,L B, there exists m′, Γ ′, B′ and M′

such that

Γ ′ 0
0 w : A (5)

Γ ′,B′ �Mem (H′,L) : M′ (6)
M′ <: Γ ′ (7)

H,S,L m

m′ e ⇓I w,H′ (8)
m′ ≥ t+ p′ +

∑
H′,L B′ (9)

Informally, the soundness theorem reads as follows: if an expression e admits
type A (1), the heap can be typed (2) (3), and the evaluation is successful (4),
then the result whnf also admits type A (5). Furthermore, the final heap can
also be typed (6) (7) and the static bounds that are obtained from the typing of
e give safe resource estimates for evaluation (8) (9). Because of space limitations,
we will only present the cases that differ significantly from our previous work [4],
particularly the revised typing rule for let and for indirections.

Proof. The proof is by induction on the lengths of the derivations of evalua-
tion (4) and typing (1) ordered lexicographically, with the former taking priority
over the later.

We proceed by case analysis of the typing rule used in premise (1), considering
just some representative cases.

Case Let. The typing premise (1) instantiates as

Γ 1 + p
p let x = e1 in e2 : C

By inversion of rule Let together with the substituition lemma, we get

Γ, �′:T0(A′) q
0 e1[�

′/x] : A (10)
Γ, �:Tq(A) p

p′ e2[�/x] : C (11)

where A′ � A. The evaluation premise (4) instantiates as

H,S,L 1 + m

m′ let x = e1 in e2 ⇓I w,H′

from which we get H0,S,L m

m′ e2[�/x] ⇓I w,H′ where H0 = H[� �→ e1[�
′/x],

�′ �→ ind(�)]. Define:

B0 = B[� �→ 0, �′ �→ 0]

M0 = M[� �→ Tq(A), �′ �→ T0(A′)]

Γ0 = Γ, �:Tq(A), �′:T0(A′)

To apply induction to the evaluation of e2[�/x] we first need to re-establish
type consistency and compatibility. Type consistency for � follows from (10)
and (Loc2); and for �′ follows directly from the type rule Ind and (Loc1).
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Compatibility is immediate because the types for � and �′ in Γ0 are exactly M0(�)
and M0(�

′). Applying induction to (11) then yields all required conclusions. Note
that the lower thunk costs for A′ are only allowed for the recursive reference �′

introduced in the let-expression; crucially this is sound only because the recursive
reference is introduced in the heap as in indirection whose cost is ignored by the
typing rule Ind. Otherwise compatibility would not hold.

Case Ind. This case is immediate: taking Γ ′ = Γ , B′ = B, M′ = M and m′ = m
yields all required conclusions.

Case Var. The typing premise is Γ, �:Tq(A) q
0 � : A and the evaluation premise

is H,S,L m

m′ � ⇓I w,H′[� �→ w]; by inversion of rule Var⇓I we get H,S,L ∪
{�} m

m′ H(�) ⇓I w,H′ and � �∈ L. By the type compatibility hypothesis we get
that

M(�) <: Tq(A)

We now distinguish the two applicable cases:

H(�) is in whnf. The evaluation succeeds immediately by either Whnf⇓I and
we have w = H(�), H = H′ and m′ = m, i.e. the update is without effect.
Taking Γ ′ = Γ , B′ = B, M′ = M. By type consistency, we get

Γ 0
0 H(�) : A

which is equivalent to the required conclusion

Γ ′ 0
0 w : A

The remaining conclusions are immediate because H′ = H.

H(�) is not in whnf. Let Tr(Â) = M(�). In this case, type consistency for
� requires (Loc2), which instantiates as

Γ, �:Tq(A)
r + B(�)

0 H(�) : Â

Recall that from compatibility for location � we get Tr(Â) <: Tq(A), which
implies Â <: A. By applying the type rule Subtype we obtain

Γ, �:Tq(A)
r + B(�)

0 H(�) : A

By inversion of the evaluation premise we get

H,S,L ∪ {�} m

m′ H(�) ⇓I w,H′

and � �∈ L. We now apply the induction hypothesis to the evaluation of H(�).
Note that according to rule Var⇓I , we apply the induction hypothesis for
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L′ = L∪{�}. Observe that m ≥ t+p+B(�)+∑
H,L∪{�} B holds as required.

We thus obtain m′, Γ ′, B′ and M′ such that

Γ ′ 0
0 w : A (12)

Γ ′,B′ �Mem (H′,L ∪ {�}) : M′ (13)
M′ <: Γ ′ (14)

m′ ≥ t+ p′ +
∑

H′,L∪{�} B (15)

The only remaining proof obligations is to re-establish these statements for
the updated heap H′′ = H′[� �→ w]. In particular, we need

Γ ′,B′ �Mem (H′′,L) : M′ (16)
m′ ≥ t+ p′ +

∑
H′,L∪{�} B (17)

The only location changed from (13) to (16) is � were the applicable case
changes from (Loc2) to (Loc1). But the latter is immediate from (12)
because H′′(�) = w. Since the balance sum skips locations mapped to whnf,
we have

∑
H′,L∪{�} B =

∑
H′′,L B, thus establishing (17) as required.

Case App. The typing and evaluation premises in this case are

Γ, y:A p + q

p′ e y : C (18)

H,S,L m

m′′ (e �) ⇓I u,H′′ (19)

By inversion of the type rule (App) applied to (18) we obtain

Γ, y:A p

p′ e : A−→q C (20)

By inversion of the evaluation rule App⇓I applied to (19) we get

H,S,L m

m′ e ⇓I u,H′ (21)
H′@u = λx.e′ (22)

H′,S,L m′
m′′ e′[�/x] ⇓I w,H′′ (23)

Taking t′ = t+ q, we show that we verify the conditions for applying induction
to the evaluation of e because

m ≥ (t+ q)
︸ ︷︷ ︸

t′

+p+
∑

H,L B (24)

By induction we obtain Γ ′,B′,M′ such that

Γ ′ 0
0 u : A−→q C (25)

Γ ′,B′ �Mem (H′,L) : M′ (26)
M′ <: Γ ′ (27)

m′ ≥ (t+ q) + p′ +
∑

H′,L B′

= (t+ p′)
︸ ︷︷ ︸

t′′

+q +
∑

H′,L B′ (28)
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By H′@u = λx. e′ we either have u = λx. e′ or u = ind(κ). In either case the type
remains unchanged, due to rule Ind and due to � not altering function types,
we thus get

Γ ′ 0
0 λx.e′ : A−→q C

Using a standard Abs inversion lemma, we get

Γ ′, x:A q
0 e′ : C

By the substitution lemma we get

Γ ′, �:A q
0 e′[�/x] : C

We can now apply induction again to (23) (evaluation of e′[�/x]) and obtain
m′′, Γ ′′,M′′,B′′ satisfying all desired conclusions:

Γ ′′ 0
0 w : C (29)

Γ ′′,B′′ �Mem (H′′,L) : M′′ (30)
M′′ <: Γ ′′ (31)

m′′ ≥ (t+ p′) + 0 +
∑

H′′,L B′′

= t+ p′ +
∑

H′′,L B′′ (32)

Corollary 1. If the evaluation of a closed expression e with an initially empty
memory succeeds, and e is well-typed ∅ p

p′ e : A, then the total amount of
allocations during this evaluation is bounded by p.

Proof. This is a direct consequence of Theorem 1, by choosing t = 0. Observe
that preconditions 2 and 3 are trivial in an empty memory configuration. Fur-
thermore, the sum over the balance is an empty sum and thus equal to zero. Thus,
for all m such that m ≥ p, there exists some m′,H′ with ∅, ∅, ∅ m

m′ e ⇓I w,H′

5.6 Relationship with Launchbury’s Semantics

In this section we sketch the correspondence between the indirection semantics
and Launchbury’s standard semantics, which justifies our cost model. More pre-
cisely, we prove for every evaluation in the standard semantics that there is a
corresponding one in the indirection semantics and that the conversion preserves
cost (Theorem 2). The reverse correspondence also holds, but is not required for
the soundness result, so we do not pursue it here. The development of the re-
lationship follows [10]. We start by defining an auxiliary function to remove
indirections from a heap.

Definition 5. Consider a heap H such that H(�) = ind(�′). The indirection
erasure of � from H, written H� �, is defined as follows:

∅[� �→ ind(�′)]� �
def
= ∅

H[κ �→ e, � �→ ind(�′)]� �
def
= (H[� �→ ind(�′)]� �)[κ �→ e[�′/�]]
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Note that we remove not just the indirection � �→ ind(�′) but also rename all
occurrences of � to �′ in the remaining heap expressions.

Using indirection erasure, we can now define a relation on heaps H � H′

which informally says that we obtain H′ from H by removing a sequence of
indirections.

Definition 6. We say that H is indirection-related to H′ and write H � H′

iff there exists a (possibly empty) sequence of locations � such that H(�i) is an
indirection and H� � = H′.

The next two lemmas state some auxiliary results about �; the proofs are similar
to the corresponding results from [10].

Lemma 1. � is reflexive and transitive (i.e. a pre-order relation on heaps).

Lemma 2. If H � H′ then dom(H) ⊇ dom(H′).

Because expressions have free variables which must be interpreted in the context
of a heap, it is convenient to extend the indirection relation to pairs (H, e) of a
heap and associated expression; we do so by simply introducing the expression
in a fresh location.

Definition 7. We say that (H, e) is indirection-related to (H′, e′) and write
(H, e) � (H′, e′) iff there exists � �∈ dom(H) ∪ dom(H′) ∪ FV(H) ∪ FV(H′)
such that H[� �→ e] � H′[� �→ e′].

Before presenting the correspondence result we state some auxiliary lemmas; for
space restrictions we omit most proofs.

Lemma 3. If (H, e) � (H′, e′) then e′ is a renaming of e i.e. there exist variables
x and y such that e[y/x] = e′.

Lemma 4. If (H, e) � (H′, e′) and � ∈ dom(H′) and � ∈ FV(e′) then � ∈ FV(e).

Lemma 5. If (H, u) � (H′, w) and w is in whnf, then H@u is defined (e.g. u
is either a whnf or an indirection from which a whnf can be reached in a finite
number of steps).

Proof (Sketch.). By the definition of �, there is a sequence of locations � such
that H� � = H′. The proof is by induction on the length of �.

Lemma 6. If (H, let x = e1 in e2) � (H′, let x = e′1 in e′2) and � is a fresh
location then

(H[� �→ e1[�/x]], e2[�/x]) � (H′[� �→ e′1[�/x]], e
′
2[�/x]) .

We can now finally establish the correspondence between ⇓ and ⇓I.

Theorem 2. If H,S,L m

m′ e ⇓ w,H′ then for all Ĥ such that Ĥ � H there
exists Ĥ′ and ŵ such that:

Ĥ,S,L m

m′ e ⇓I ŵ, Ĥ′

(Ĥ′, ŵ) � (H′, w)
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In order to prove the above theorem by induction on the evaluation we need to
strengthen the statement by allowing the evaluations to start from indirection-
related heap-expression pairs.

Proposition 1. If H,S,L m

m′ e ⇓ w,H′ then for all Ĥ and ê with

(Ĥ, ê) � (H, e) (33)

there exists Ĥ′ and ŵ such that:

Ĥ,S,L m

m′ ê ⇓I ŵ, Ĥ′ (34)

(Ĥ′, Ĥ′@ŵ) � (H′, w) (35)

Proof. By induction on the derivation of the evaluation H,S,L m

m′ e ⇓ w,H′;
we proceed by case-analysis of the last rule used. Due to space limitations, we
only present selected cases.

Case Whnf⇓. The premises are H,S,L, m
m w ⇓ w,H and (Ĥ, u) � (H, w) for

some Ĥ and expression u. By Lemma 5, we get that Ĥ@u is defined. This satisfies
the side condition of rule Whnf⇓I . Hence, we application of this evaluation rule
yields the required conclusion (34). Conclusion (35) follows by transitivity of �.

Case Var⇓. The evaluation premise is H[� �→ e],S,L m

m′ � ⇓ w,H′[� �→ w]. By
inversion of rule Var⇓ we get � �∈ L and

H[� �→ e],S,L ∪ {�} m

m′ e ⇓ w,H′[� �→ e] (36)

The premise (33) is (Ĥ0, ê0) � (H[� �→ e], �); by Lemma 2 this implies Ĥ0 =

Ĥ[� �→ ê] for some ê; and by Lemmas 3 and 4 we get ê0 = �. Thus the premise
instantiates in this case as:

(Ĥ[� �→ ê], �) � (H[� �→ e], �) (37)

We can now apply induction to (36) and (37) and obtain

Ĥ[� �→ ê],S,L m

m′ ê ⇓I ŵ, Ĥ′[� �→ ê] (38)

(Ĥ′[� �→ ê], Ĥ′[� �→ ê]@ŵ) � (H′[� �→ e], w) (39)

Conclusion (39) fulfils proof obligation (35). Applying Var⇓I to (38) yields the
remaining obligation (34). This concludes the proof of the Var⇓ case.

Case Let⇓. The evaluation premise is H,S,L 1 + m

m′ let x = e1 in e2 ⇓ w,H′.
By inversion of rule Let⇓ we get for some fresh �:

H[� �→ e1[�/x]],S,L m

m′ e2[�/x] ⇓ w,H′ (40)

By Lemma 3, the premise (33) instantiates as

(Ĥ, let x = ê1 in ê2) � (H, let x = e1 in e2) (41)
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By Lemma 6 and (41) we get

(Ĥ[� �→ ê1[�/x]], ê2[�/x]) � (H[� �→ e1[�/x], e2[�/x]) (42)

By the definition of � (erasing the indirection �′ �→ ind(�)) it is immediate that:

Ĥ[� �→ ê1[�
′/x], �′ �→ ind(�)] � Ĥ[� �→ ê1[�/x]] (43)

By transitivity of � (Lemma 1) and (43) plus (42) we get

(Ĥ[� �→ ê1[�
′/x], �′ �→ ind(�)], ê2[�/x])
� (H[� �→ e1[�/x], e2[�/x])

which is the premise needed for applying induction to the evaluation (40). As a
result of induction we get

Ĥ[� �→ ê1[�
′/x], �′ �→ ind(�)],S,L m

m′ ê2[�/x] ⇓I ŵ, Ĥ′ (44)

(Ĥ′, Ĥ′@ŵ′) � (H′, w) (45)

Applying rule Let⇓I to (44) together with (45) yields the required conclusions.

6 Related Work

This paper extends our previous work on type-based static analysis of resource
bounds for lazy functional programs using amortisation [4]. Unlike that system,
here we focus on co-recursive infinite data structures and show that a simpler
type-and-effect system without amortisation suffices to obtain static resource
bounds. As described in Section 4, this type-and-effect system successfully pro-
duces resource bounds for examples that could not previously be analysed.

Our cost model is based on Launchbury’s natural semantics for lazy evaluation
[6], as subsequently refined by Sestoft [5], de la Encina and Peña-Marì [11,12].
The proof technique used in Section 5.6 for establishing correspondence between
the indirections semantics and the standard one is based on work by Sánchez-Gil,
Hidalgo-Herrero and Ortega-Mallén [10]. The first work on cost analysis for lazy
evaluation of higher-order functional programs was by Sands [13,14]. This used
evaluation contexts [15] and projections [16] to capture the degree of evaluation
of data structures. This was intended to aid manual reasoning about program
costs but is not directly automatable for use in a compiler or static analysis tool.

Several authors have proposed symbolic profiling approaches, where programs
are annotated with additional cost parameters. For example, Wadler [17] has
used a state monad to count reduction costs through a tick-counting operation.
Danielsson extends this work using a cost-annotated monad [18] that allows
expressing machine-checkable complexity annotations through dependent types
in the Agda programming language. Unlike the work presented here, this system
allows checking but not automatic inference of complexity annotations.
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Turner’s elementary strong functional programming [19] explores issues of
guaranteed termination in a purely functional programming language. Turner’s
approach separates inductive data structures from co-data structures such as
streams. This ensures that functions on both finite and infinite structures are
total by construction using only primitive recursive definitions. However, this
work does not consider evaluation costs, and does not provide an analysis.

Hughes, Pareto and Sabry [20] describe a sized type system for a simple
higher-order, non-strict functional language, that guarantees termination and
productivity of recursive and co-recursive definitions. This work was subsequently
developed to ensure bounded space usage in the strict functional language Em-
bedded ML [21], which lacks co-recursion. Brady and Hammond [22] have also
developed an embedding of sized types in a dependently typed framework. How-
ever, all three approaches require the programmer to provide explicit size in-
formation, that is checked rather than inferred. Finally, a combination of sized
types with memory regions has been suggested by Peña and Segura [23], building
on information provided by ancillary analyses on termination and safe destruc-
tion [24]. However, this does not deal with co-recursive costs.

7 Conclusions and Further Work

This paper presents a type-and-effect system for predicting upper-bounds on
allocation costs for co-recursive definitions in a lazy functional language. The
analysis is formally based on a standard operational semantics for lazy evaluation
and we present a detailed proof sketch of soundness. We have also implemented
this type system as a fully automatic static analysis. Initial experimental results
show it can deal with non-trivial examples (the Fibonacci sequence and the
Hamming problem). We are not aware of any previous automatic analysis that
is capable of dealing with these examples.

A number of future research directions are left open by this work. For sim-
plicity we presented a type system without either type polymorphism or effect
polymorphism. This limits the compositionality of the analysis (cf. the dupli-
cation of definitions required in Hamming example of Section 4.3). Let-bound
polymorphism could, in principle, be added simply by capturing constraints in
type schemes as in [25,26,27]. It then remains an open question whether our
system admits a notion of principal types schemes [28] (although this concerns
only the completeness of the inference algorithm and not soundness).

Again for simplicity we chose a uniform cost model (each let -expression
costs one unit). It should be straightforward to extend this to a more realis-
tic cost model by allowing variable costs, derived from e.g. the STG abstract
machine [9,29]. Another option would be to focus on resources other than heap,
e.g. time or stack usage.

We have considered annotated types that express linear bounds for co-
recursion, i.e. where the cost for each successive value is bounded by a constant.
Hoffmann et al. have previously demonstrated successful extensions to multi-
variate polynomial bounds, in the context of amortised cost analysis for recur-
sion [30]. It would be interesting to explore whether their techniques could also
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be applied in our work, to allow for non-linear costs with respect to evaluation
depth.

Finally, the presented analysis and cost model do not yet consider deallocation
of resources. In order to reason about memory residency in a type-based system,
we would need, for example, to express deallocation using some syntax-directed
primitives. It should be possible to extend our language and type-system with
a deallocation primitive (e.g. the deallocating match in [31] or a region-based
mechanism [32,33]) to accommodate this. This would pave the way for an inter-
mediate language for compiling lazily evaluated programs with static residency
guarantees.
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Type Targeted Testing

Eric L. Seidel, Niki Vazou, and Ranjit Jhala

UC San Diego

Abstract. We present a new technique called type targeted testing, which trans-
lates precise refinement types into comprehensive test-suites. The key insight be-
hind our approach is that through the lens of SMT solvers, refinement types can
also be viewed as a high-level, declarative, test generation technique, wherein
types are converted to SMT queries whose models can be decoded into concrete
program inputs. Our approach enables the systematic and exhaustive testing of
implementations from high-level declarative specifications, and furthermore, pro-
vides a gradual path from testing to full verification. We have implemented our
approach as a Haskell testing tool called TARGET, and present an evaluation that
shows how TARGET can be used to test a wide variety of properties and how it
compares against state-of-the-art testing approaches.

1 Introduction

Should the programmer spend her time writing better types or thorough tests? Types
have long been the most pervasive means of describing the intended behavior of code.
However, a type signature is often a very coarse description; the actual inputs and out-
puts may be a subset of the values described by the types. For example, the set of or-
dered integer lists is a very sparse subset of the set of all integer lists. Thus, to validate
functions that produce or consume such values, the programmer must painstakingly
enumerate these values by hand or via ad-hoc generators for unit tests.

We present a new technique called type targeted testing, abbreviated to TARGET, that
enables the generation of unit tests from precise refinement types. Over the last decade,
various groups have shown how refinement types – which compose the usual types
with logical refinement predicates that characterize the subset of actual type inhabitants
– can be used to specify and formally verify a wide variety of correctness properties of
programs [29,7,23,27]. Our insight is that through the lens of SMT solvers, refinement
types can be viewed as a high-level, declarative, test generation technique.

TARGET tests an implementation function against a refinement type specification
using a query-decode-check loop. First, TARGET translates the argument types into a
logical query for which we obtain a satisfying assignment (or model) from the SMT
solver. Next, TARGET decodes the SMT solver’s model to obtain concrete input values
for the function. Finally, TARGET executes the function on the inputs to get the corre-
sponding output, which we check belongs to the specified result type. If the check fails,
the inputs are returned as a counterexample, otherwise TARGET refutes the given model
to force the SMT solver to return a different set of inputs. This process is repeated for a
given number of iterations, or until all inputs up to a certain size have been tested.

TARGET offers several benefits over other testing techniques. Refinement types pro-
vide a succinct description of the input and output requirements, eliminating the need
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J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 812–836, 2015.
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to enumerate individual test cases by hand or to write custom generators. Furthermore,
TARGET generates all values (up to a given size) that inhabit a type, and thus does not
skip any corner cases that a hand-written generator might miss. Finally, while the above
advantages can be recovered by a brute-force generate-and-filter approach that discards
inputs that do not meet some predicate, we show that our SMT-based method can be
significantly more efficient for enumerating valid inputs in a highly-constrained space.

TARGET paves a gradual path from testing to verification, that affords several ad-
vantages over verification. First, the programmer has an incentive to write formal spec-
ifications using refinement types. TARGET provides the immediate gratification of an
automatically generated, exhaustive suite of unit tests that can expose errors. Thus, the
programmer is rewarded without paying, up front, the extra price of annotations, hints,
strengthened inductive invariants, or tactics needed for formally verifying the specifica-
tion. Second, our approach makes it possible to use refinement types to formally verify
some parts of the program, while using tests to validate other parts that may be too dif-
ficult to verify TARGET integrates the two modes by using refinement types as the uni-
form specification mechanism. Functions in the verified half can be formally checked
assuming the functions in the tested half adhere to their specifications. We could even
use refinements to generate dynamic contracts [9] around the tested half if so desired.
Third, even when formally verifying the type specifications, the generated tests can act
as valuable counterexamples to help debug the specification or implementation in the
event that the program is rejected by the verifier.

Finally, TARGET offers several concrete advantages over previous property-based
testing techniques, which also have the potential for gradual verification. First, instead
of specifying properties with arbitrary code [4,21] which complicates the task of sub-
sequent formal verification, with TARGET the properties are specified via refinement
types, for which there are already several existing formal verification algorithms [27].
Second, while symbolic execution tools [12,22,28] can generate tests from arbitrary
code contracts (e.g. assertions) we find that highly constrained inputs trigger path ex-
plosion which precludes the use of such tools for gradual verification.

In the rest of this paper, we start with an overview of how TARGET can be used and
how its query-decode-check loop is implemented (§ 2). Next, we formalize a general
framework for type-targeted testing (§ 3) and show how it can be instantiated to gen-
erating tests for lists (§ 4), and then automatically generalized to other types (§ 4.6).
All the benefits of TARGET come at a price; we are limited to properties that can be
specified with refinement types. We present an empirical evaluation that shows TAR-
GET is efficient and expressive enough to capture a variety of sophisticated properties,
demonstrating that type-targeted testing is a sweet spot between automatic testing and
verification (§ 5).

2 Overview

We start with a series of examples pertaining to a small grading library called Scores.
The examples provide a bird’s eye view of how a user interacts with TARGET, how
TARGET is implemented, and the advantages of type-based testing.

Refinement Types. A refinement type is one where the basic types are decorated with
logical predicates drawn from an efficiently decidable theory. For example,
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type Nat = {v:Int | 0 <= v}
type Pos = {v:Int | 0 < v}
type Rng N = {v:Int | 0 <= v && v < N}

are refinement types describing the set of integers that are non-negative, strictly positive,
and in the interval [0, N) respectively. We will also build up function and collection
types over base refinement types like the above. In this paper, we will not address the
issue of checking refinement type signatures [27]. We assume the code is typechecked,
e.g. by GHC, against the standard type signatures obtained by erasing the refinements.
Instead, we focus on using the refinements to synthesize tests to execute the function,
and to find counterexamples that violate the given specification.

2.1 Testing with Types

Base Types. Let us write a function rescale that takes a source range [0,r1), a target
range [0,r2), and a score n from the source range, and returns the linearly scaled score
in the target range. For example, rescale 5 100 2 should return 40. Here is a first
attempt at rescale

rescale :: r1:Nat -> r2:Nat -> s:Rng r1 -> Rng r2
rescale r1 r2 s = s * (r2 ‘div‘ r1)

When we run TARGET, it immediately reports

Found counter-example: (1, 0, 0)

Indeed, rescale 1 0 0 results in 0 which is not in the target Rng 0, as the latter is
empty! We could fix this in various ways, e.g. by requiring the ranges are non-empty:

rescale :: r1:Pos -> r2:Pos -> s:Rng r1 -> Rng r2

Now, TARGET accepts the function and reports

OK. Passed all tests.

Thus, using the refinement type specification for rescale, TARGET systematically
tests the implementation by generating all valid inputs (up to a given size bound) that
respect the pre-conditions, running the function, and checking that the output satisfies
the post-condition. Testing against random, unconstrained inputs would be of limited
value as the function is not designed to work on all Int values. While in this case we
could filter invalid inputs, we shall show that TARGET can be more effective.

Containers. Let us suppose we have normalized all scores to be out of 100

type Score = Rng 100

Next, let us write a function to compute a weighted average of a list of scores.

average :: [(Int, Score)] -> Score
average [] = 0
average wxs = total ‘div‘ n
where

total = sum [w * x | (w, x) <- wxs ]
n = sum [w | (w, _) <- wxs ]
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It can be tricky to verify this function as it requires non-linear reasoning about an un-
bounded collection. However, we can gain a great degree of confidence by systemati-
cally testing it using the type specification; indeed, TARGET responds:

Found counter-example: [(0,0)]

Clearly, an unfortunate choice of weights can trigger a divide-by-zero; we can fix this
by requiring the weights be non-zero:

average :: [({v:Int | v /= 0}, Score)] -> Score

but now TARGET responds with

Found counter-example: [(-3,3),(3,0)]

which also triggers the divide-by-zero! We will play it safe and require positive weights,

average :: [(Pos, Score)] -> Score

at which point TARGET reports that all tests pass.

Ordered Containers. The very nature of our business requires that at the end of the
day, we order students by their scores. We can represent ordered lists by requiring the
elements of the tail t to be greater than the head h:

data OrdList a = [] | (:) {h :: a, t :: OrdList {v:a | h <= v}}

Note that erasing the refinement predicates gives us plain old Haskell lists. We can now
write a function to insert a score into an ordered list:

insert :: (Ord a) => a -> OrdList a -> OrdList a

TARGET automatically generates all ordered lists (up to a given size) and executes
insert to check for any errors. Unlike randomized testers, TARGET is not thwarted
by the ordering constraint, and does not require a custom generator from the user.

Structured Containers. Everyone has a few bad days. Let us write a function that takes
the best k scores for a particular student. That is, the output must satisfy a structural
constraint – that its size equals k. We can encode the size of a list with a logical measure
function [27]:

measure len :: [a] -> Nat
len [] = 0
len (x:xs) = 1 + len xs

Now, we can stipulate that the output indeed has k scores:

best :: k:Nat -> [Score] -> {v:[Score] | k = len v}
best k xs = take k $ reverse $ sort xs

Now, TARGET quickly finds a counterexample:

Found counter-example: (2,[])

Of course – we need to have at least k scores to start with!

best :: k:Nat -> {v:[Score]|k <= len v} -> {v:[Score]|k = len v}
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and now, TARGET is assuaged and reports no counterexamples. While randomized test-
ing would suffice for best, we will see more sophisticated structural properties such as
height balancedness, which stymie random testers, but are easily handled by TARGET.

Higher-order Functions. Perhaps instead of taking the k best grades, we would like
to pad each individual grade, and, furthermore, we want to be able to experiment with
different padding functions. Let us rewrite average to take a functional argument, and
stipulate that it can only increase a Score.

padAverage :: (s:Score -> {v:Score | s <= v})
-> [(Pos, Score)] -> Score

padAverage f [] = f 0
padAverage f wxs = total ‘div‘ n
where

total = sum [w * f x | (w, x) <- wxs ]
n = sum [w | (w, _) <- wxs ]

TARGET automatically checks that padAverage is a safe generalization of average.
Randomized testing tools can also generate functions, but those functions are unlikely
to satisfy non-trivial constraints, thereby burdening the user with custom generators.

2.2 Synthesizing Tests

Next, let us look under the hood to get an idea of how TARGET synthesizes tests from
types. At a high-level, our strategy is to: (1) query an SMT solver for satisfying as-
sigments to a set of logical constraints derived from the refinement type, (2) decode
the model into Haskell values that are suitable inputs, (3) execute the function on the
decoded values to obtain the output, (4) check that the output satisfies the output type,
(5) refute the model to generate a different test, and repeat the above steps until all tests
up to a certain size are executed. We focus here on steps 1, 2, and 4 – query, decode,
and check – the others are standard and require little explanation.

Base Types. Recall the initial (buggy) specification

rescale :: r1:Nat -> r2:Nat -> s:Rng r1 -> Rng r2

TARGET encodes input requirements for base types directly from their corresponding
refinements. The constraints for multiple, related inputs are just the conjunction of the
constraints for each input. Hence, the constraint for rescale is:

C0
.
= 0 ≤ r1 ∧ 0 ≤ r2 ∧ 0 ≤ s < r1

In practice, C0 will also contain conjuncts of the form −N ≤ x ≤ N that restrict Int-
valued variables x to be within the size bound N supplied by the user, but we will omit
these throughout the paper for clarity.

Note how easy it is to capture dependencies between inputs, e.g. that the score s be
in the range defined by r1. On querying the SMT solver with the above, we get a model
[r1 �→ 1, r2 �→ 1, s �→ 0]. TARGET decodes this model and executes rescale 1 1 0

to obtain the value v = 0. Then, TARGET validates v against the post-condition by
checking the validity of the output type’s constraint:

r2 = 1 ∧ v = 0 ∧ 0 ≤ v ∧ v < r2
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As the above is valid, TARGET moves on to generate another test by conjoining C0 with
a constraint that refutes the previous model:

C1
.
= C0 ∧ (r1 �= 1 ∨ r2 �= 1 ∨ s �= 0)

This time, the SMT solver returns a model: [r1 �→ 1, r2 �→ 0, s �→ 0] which, when
decoded and executed, yields the result 0 that does not inhabit the output type, and so is
reported as a counterexample. When we fix the specification to only allow Pos ranges,
each test produces a valid output, so TARGET reports that all tests pass.

Containers. Next, we use TARGET to test the implementation of average. To do so,
TARGET needs to generate Haskell lists with the appropriate constraints. Since each list
is recursively either “nil” or “cons”, TARGET generates constraints that symbolically
represent all possible lists up to a given depth, using propositional choice variables
to symbolically pick between these two alternatives. Every (satisfying) assignment of
choices returned by the SMT solver gives TARGET the concrete data and constructors
used at each level, allowing it to decode the assignment into a Haskell value.

For example, TARGET represents valid [(Pos, Score)] inputs (of depth up to 3),
required to test average, as the conjunction of Clist and Cdata:

Clist
.
= (c00 ⇒ xs0 = []) ∧ (c01 ⇒ xs0 = x1 : xs1) ∧ (c00 ⊕ c01)

∧ (c10 ⇒ xs1 = []) ∧ (c11 ⇒ xs1 = x2 : xs2) ∧ (c01 ⇒ c10 ⊕ c11)

∧ (c20 ⇒ xs2 = []) ∧ (c21 ⇒ xs2 = x3 : xs3) ∧ (c11 ⇒ c20 ⊕ c21)

∧ (c30 ⇒ xs3 = []) ∧ (c21 ⇒ c30)

Cdata
.
= (c01 ⇒ x1 = (w1, s1) ∧ 0 < w1 ∧ 0 ≤ s1 < 100)

∧ (c11 ⇒ x2 = (w2, s2) ∧ 0 < w2 ∧ 0 ≤ s2 < 100)

∧ (c21 ⇒ x3 = (w3, s3) ∧ 0 < w3 ∧ 0 ≤ s3 < 100)

The first set of constraints Clist describes all lists up to size 3. At each level i, the choice
variables ci0 and ci1 determine whether at that level the constructed list xsi is a “nil” or
a “cons”. In the constraints [] and ( : ) are uninterpreted functions that represent “nil”
and “cons” respectively. These functions only obey the congruence axiom and hence,
can be efficiently analyzed by SMT solvers [19]. The data at each level xi is constrained
to be a pair of a positive weight wi and a valid score si.

The choice variables at each level are used to guard the constraints on the next lev-
els. First, if we are generating a “cons” at a given level, then exactly one of the choice
variables for the next level must be selected; e.g. c11 ⇒ c20 ⊕ c21. Second, the con-
straints on the data at a given level only hold if we are generating values for that level;
e.g. c21 is used to guard the constraints on x3, w3 and s3. This is essential to avoid
over-constraining the system which would cause TARGET to miss certain tests.

To decode a model of the above into a Haskell value of type [(Int, Int)], we
traverse constraints and use the valuations of the choice variables to build up the list
appropriately. At each level, if ci0 �→ true, then the list at that level is [], otherwise
ci1 �→ true and we decode xi+1 and xsi+1 and “cons” the results.
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We can iteratively generate multiple inputs by adding a constraint that refutes each
prior model. As an important optimization, we only refute the relevant parts of the
model, i.e. those needed to construct the list (§ 4.5).

Ordered Containers. Next, let us see how TARGET enables automatic testing with
highly constrained inputs, such as the increasingly ordered OrdList values required
by insert. From the type definition, it is apparent that ordered lists are the same as the
usual lists described byClist, except that each unfolded tail must only contain values that
are greater than the corresponding head. That is, as we unfold x1:x2:xs :: OrdList

– At level 0, we have OrdList {v:Score| true}

– At level 1, we have OrdList {v:Score| x1 <= v}

– At level 2, we have OrdList {v:Score| x2 <= v && x1 <= v}

and so on. Thus, we encode OrdList Score (of depth up to 3) by conjoiningClist with
Cscore and Cord, which capture the valid score and ordering requirements respectively:

Cord
.
= (c11 ⇒ x1 ≤ x2) ∧ (c21 ⇒ x2 ≤ x3 ∧ x1 ≤ x3)

Cscore
.
= (c01 ⇒ 0 ≤ x1 < 100) ∧ (c11 ⇒ 0 ≤ x2 < 100) ∧ (c21 ⇒ 0 ≤ x3 < 100)

Structured Containers. Recall that best k requires inputs whose structure is con-
strained – the size of the list should be no less than k. We specify size using special
measure functions [27], which let us relate the size of a list with that of its unfolding,
and hence, let us encode the notion of size inside the constraints:

Csize
.
= (c00 ⇒ len xs0 = 0) ∧ (c01 ⇒ len xs0 = 1 + len xs1)

∧ (c10 ⇒ len xs1 = 0) ∧ (c11 ⇒ len xs1 = 1 + len xs2)

∧ (c20 ⇒ len xs2 = 0) ∧ (c21 ⇒ len xs2 = 1 + len xs3)

∧ (c30 ⇒ len xs3 = 0)

At each unfolding, we instantiate the definition of the measure for each alternative of the
datatype. In the constraints, len · is an uninterpreted function derived from the measure
definition. All of the relevant properties of the function are spelled out by the unfolded
constraints in Csize and hence, we can use SMT to search for models for the above
constraint. Hence, TARGET constrains the input type for best as:

0 ≤ k ∧ Clist ∧ Cscore ∧ Csize ∧ k ≤ len xs0

where the final conjunct comes from the top-level refinement that stipulates the input
have at least k scores. Thus, TARGET only generates lists that are large enough. For
example, in any model where k = 2, it will not generate the empty or singleton list, as
in those cases, len xs0 would be 0 (resp. 1), violating the final conjunct above.

Higher-order Functions. Finally, TARGET’s type-directed testing scales up to higher-
order functions using the same insight as in QuickCheck [4], namely, to generate a
function it suffices to be able to generate the output of the function. When tasked with
the generation of a functional argument f, TARGET returns a Haskell function that
when executed checks whether its inputs satisfy f’s pre-conditions. If they do, then
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-- Manipulating Refinements
refinement :: RefType -> Refinement
subst :: RefType -> [(Var, Var)] -> RefType

-- Manipulating Types
unfold :: Ctor -> RefType -> [(Var, RefType)]
binder :: RefType -> Var
proxy :: RefType -> Proxy a

Fig. 1. Refinement Type API

f uses TARGET to dynamically query the SMT solver for an output that satisfies the
constraints imposed by the concrete inputs. Otherwise, f’s specifications are violated
and TARGET reports a counterexample.

This concludes our high-level tour of the benefits and implementation of TARGET.
Notice that the property specification mechanism – refinement types – allowed us to
get immediate feedback that helped debug not just the code, but also the specification
itself. Additionally, the specifications gave us machine-readable documentation about
the behavior of functions, and a large unit test suite with which to automatically validate
the implementation. Finally, though we do not focus on it here, the specifications are
amenable to formal verification should the programmer so desire.

3 A Framework for Type Targeted Testing

Next, we describe a framework for type targeted testing, by formalizing an abstract
representation of refinement types (§ 3.1), describing the operations needed to generate
tests from types (§ 3.2), and then using the above to implement TARGET via a query-
decode-check loop (§ 3.3). Subsequently, we instantiate the framework to obtain tests
for refined primitive types, lists, algebraic datatypes and higher-order functions (§ 4).

3.1 Refinement Types

A refinement type is a type, where each component is decorated with a predicate from
a refinement logic. For clarity, we describe refinement types and refinements abstractly
as RefType and Refinement respectively. We write Var as an alias for Refinement
that is typically used to represent logical variables appearing within the refinement.

Notation. In the sequel, we will use double brackets [[]] to represent the various entities
in the meta-language used to describe TARGET. For example, [[k]], [[k ≤ len v]], and
[[{v : [Score] | k ≤ len v}]] are the Var, Refinement, and RefType representing the
corresponding entities written in the brackets.

Next, we describe the various operations over them needed to implement TARGET.
These operations, summarized in Figure 1, fall into two categories: those which manip-
ulate the refinements and those which manipulate the types.
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Operating on Refinements. To generate constraints and check inhabitation, we use the
function refinement which returns the (top-level) refinement that decorates the given
refinement type. We will generate fresh Vars to name values of components, and will
use subst to replace the free occurrences of variables in a given RefType. Suppose
that t is the RefType represented by [[{v : [Score] | k ≤ len v}]]. Then,

– refinement t evaluates to [[k ≤ len v]] and
– subst t [([[k]], [[x0]])] evaluates to [[{v : [Score] | x0 ≤ len v}]].

Operating on Types. To build up compound values (e.g. lists) from components (e.g. an
integer and a list), unfold breaks a RefType (e.g. a list of integers) into its constituents
(e.g. an integer and a list of integers) at a given constructor (e.g. “cons”). binder sim-
ply extracts the Var representing the value being refined from the RefType. To write
generic functions over RefTypes and use Haskell’s type class machinery to query and
decode components of types, we associate with each refinement type a proxy repre-
senting the corresponding Haskell type (in practice this must be passed around as a
separate argument). For example, if t is [[{v : [Score] | k ≤ len v}]],

– unfold [[:]] t evaluates to [([[x]], [[Score]]), ([[xs]], [[[Score]]])],
– binder t evaluates to [[v]], and
– proxy t evaluates to a value of type Proxy [Int].

3.2 The Targetable Type Class

Following QuickCheck, we encapsulate the key operations needed for type-targeted
testing in a type class Targetable (Figure 2). This class characterizes the set of types

class Targetable a where
query :: Proxy a -> Int -> RefType -> SMT Var
decode :: Var -> SMT a
check :: a -> RefType -> SMT (Bool, Var)
toReft :: a -> Refinement

Fig. 2. The class of types that can be tested by TARGET

which can be tested by TARGET. All of the operations can interact with an external
SMT solver, and so return values in an SMT monad.

– query takes a proxy for the Haskell type for which we are generating values, an
integer depth bound, and a refinement type describing the desired constraints, and
generates a set of logical constraints and a Var that represents the constrained value.

– decode takes a Var, generated via a previous query and queries the model re-
turned by the SMT solver to construct a Haskell value of type a.

– check takes a value of type a, translates it back into logical form, and verifies that
it inhabits the output type t.

– toReft takes a value of type a and translates it back into logical form (a special-
ization of check).
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3.3 The Query-Decode-Check Loop

Figure 3 summarizes the overall implementation of TARGET, which takes as input a
function f and its refinement type specification t and proceeds to test the function
against the specification via a query-decode-check loop: (1) First, we translate the re-
fined inputTypes into a logical query. (2) Next, we decode the model (i.e. satisfying
assignment) for the query returned by the SMT solver to obtain concrete inputs. (3)
Finally, we execute the function f on the inputs to get the corresponding output,
which we check belongs to the specified outputType. If the check fails, we return
the inputs as a counterexample. After each test, TARGET, refutes the given test to
force the SMT solver to return a different set of inputs, and this process is repeated
until a user specified number of iterations. The checkSMT call may fail to find a model
meaning that we have exhaustively tested all inputs upto a given testDepth bound.
If all iterations succeed, i.e. no counterexamples are found, then TARGET returns Ok,
indicating that f satisfies t up to the given depth bound.

target f t = do
let txs = inputTypes t
vars <- forM txs $ \tx ->

query (proxy tx) testDepth tx -- Query
forM [1 .. testNum] $ \_ -> do
hasModel <- checkSMT
when hasModel $ do

inputs <- forM vars decode -- Decode
output <- execute f inputs
let su = zip (map binder txs) (map toReft inputs)
let to = outputType t ‘subst‘ su
(ok,_) <- check output to -- Check
if ok then

refuteSMT
else

throw (CounterExample inputs)
return Ok

Fig. 3. Implementing TARGET via a query-decode-check loop

4 Instantiating the TARGET Framework

Next, we describe a concrete instantiation of TARGET for lists. We start with a con-
straint generation API (§ 4.1). Then we use the API to implement the key opera-
tions query (§ 4.2), decode (§ 4.3), check (§ 4.4), and refuteSMT (§ 4.5), thereby
enabling TARGET to automatically test functions over lists. We omit the definition of
toReft as it follows directly from the definition of check. Finally, we show how the
list instance can be generalized to algebraic datatypes and higher-order functions (§ 4.6).
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4.1 SMT Solver Interface

Figure 4 describes the interface to the SMT solvers that TARGET uses for constraint gen-
eration and model decoding. The interface has functions to (a) generate logical variables
of type Var, (b) constrain their values using Refinement predicates, and (c) determine
the values assigned to the variables in satisfying models.

fresh :: SMT Var
guard :: Var -> SMT a -> SMT a
constrain :: Var -> Refinement -> SMT ()

apply :: Ctor -> [Var] -> SMT Var
unapply :: Var -> SMT (Ctor, [Var])

oneOf :: Var -> [(Var, Var)] -> SMT ()
whichOf :: Var -> SMT Var

eval :: Refinement -> SMT Bool

Fig. 4. SMT Solver API

– fresh allocates a new logical variable.
– guard b act ensures that all the constraints generated by act are guarded by the

choice variable b. That is, if act generates the constraint p then guard b act

generates the (implication) constraint b ⇒ p.
– constrain x r generates a constraint that x satisfies the refinement predicate r.
– apply c xs generates a new Var for the folded up value obtained by applying

the constructor c to the fields xs, while also generating constraints from the mea-
sures. For example, apply [[:]] [[[x1]], [[xs1]]] returns [[x1 : xs1]] and generates the
constraint len (x1 : xs1) = 1 + len xs1.

– unapply x returns the Ctor and Vars from which the input x was constructed.
– oneOf x cxs generates a constraint that x equals exactly one of the elements of
cxs. For example, oneOf [[xs0]] [([[c00 ]],[[[]]]),([[c01]],[[x1 : xs1]])] yields:

(c00 ⇒ xs0 = []) ∧ (c01 ⇒ xs0 = x1 : xs1) ∧ (c00 ⊕ c01)

– whichOf x returns the particular alternative that was assigned to x in the current
model returned by the SMT solver. Continuing the previous example, if the model
sets [[c00]] (resp. [[c01]]) to true, whichOf [[xs0]] returns [[[]]] (resp [[x1 : xs1]]).

– eval r checks the validity of a refinement with no free variables. For example,
eval [[len (1 : []) > 0]] would return True.
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query p d t = do
let cs = ctors d
bs <- forM cs (\_ -> fresh)
xs <- zipWithM (queryCtor (d-1) t) bs cs
x <- fresh
oneOf x (zip bs xs)
constrain x (refinement t)
return x

queryCtor d t b c = guard b (do
let fts = unfold c t
fs’ <- scanM (queryField d) [] fts
x <- apply c fs’
return x)

queryField d su (f, t) = do
f’ <- query (proxy t) d (t ‘subst‘ su)
return ((f, f’) : su, f’)

ctors d
| d > 0 = [ [[:]], [[[]]] ]
| otherwise = [ [[[]]] ]

Fig. 5. Generating a Query

4.2 Query

Figure 5 shows the procedure for constructing a query from a refined list type, e.g. the
one required as an input to the best or insert functions from § 2.

Lists query returns a Var that represent all lists up to depth d that satisfy the logical
constraints associated with the refined list type t. To this end, it invokes ctors to obtain
all of the suitable constructors for depth d. For lists, when the depth is 0 we should only
use the [[[]]] constructor, otherwise we can use either [[:]] or [[[]]]. This ensures that query
terminates after encoding all possible lists up to a given depth d. Next, it uses fresh
to generate a distinct choice variable for each constructor, and calls queryCtor to

generate constraints and a corresponding symbolic Var for each constructor. The choice
variable for each constructor is supplied to queryCtor to ensure that the constraints
are guarded, i.e. only required to hold if the corresponding choice variable is selected
in the model and not otherwise. Finally, a fresh x represents the value at depth d and is
constrained to be oneOf the alternatives represented by the constructors, and to satisfy
the top-level refinement of t.

Constructors queryCtor takes as input the refined list type t, a depth d, a particular
constructor c for the list type, and generates a query describing the unfolding of t at the
constructor c, guarded by the choice variable b that determines whether this alternative
is indeed part of the value. These constraints are the conjunction of those describing the
values of the individual fields which can be combined via c to obtain a t value. To do
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decode x = do
x’ <- whichOf x
(c,fs’) <- unapply x’
decodeCtor c fs’

decodeCtor [[[]]] [] = return []
decodeCtor [[:]] [x,xs] = do
v <- decode x
vs <- decode xs
return (v:vs)

Fig. 6. Decoding Models into Haskell Values

so, queryCtor first unfolds the type t at c, obtaining a list of constituent fields and
their respective refinement types fts. Next, it uses

scanM :: Monad m => (a -> b -> m (a, c)) -> a -> [b] -> m [c]

to traverse the fields from left to right, building up representations of values for the fields
from their unfolded refinement types. Finally, we invoke apply on c and the fields fs’
to return a symbolic representation of the constructed value that is constrained to satisfy
the measure properties of c.

Fields queryField generates the actual constraints for a single field f with refinement
type t, by invoking query on t. The proxy enables us to resolve the appropriate type-
class instance for generating the query for the field’s value. Each field is described by
a new symbolic name f’ which is substituted for the formal name of the field f in
the refinements of subsequent fields, thereby tracking dependencies between the fields.
For example, these substitutions ensure the values in the tail are greater than the head
as needed by OrdList from § 2.

4.3 Decode

Once we have generated the constraints we query the SMT solver for a model, and if
one is found we must decode it into a concrete Haskell value with which to test the
given function. Figure 6 shows how to decode an SMT model for lists.

Lists decode takes as input the top-level symbolic representation x and queries the
model to determine which alternative was assigned by the solver to x, i.e. a nil or a cons.
Once the alternative is determined, we use unapply to destruct it into its constructor c
and fields fs’, which are recursively decoded by decodeCtor.

Constructors decodeCtor takes the constructor c and a list of symbolic representa-
tions for fields, and decodes each field into a value and applies the constructor to obtain
the Haskell value. For example, in the case of the [[[]]] constructor, there are no fields, so
we return the empty list. In the case of the [[:]] constructor, we decode the head and the
tail, and cons them to return the decoded value. decodeCtor has the type

Targetable a => Ctor -> [Var] -> SMT [a]

i.e. if a is a decodable type, then decodeCtor suffices to decode lists of a. Primitives
like integers that are directly encoded in the refinement logic are the base case – i.e. the
value in the model is directly translated into the corresponding Haskell value.
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check v t = do
let (c,vs) = splitCtor v
let fts = unfold c t
(bs, vs’) <- fmap unzip (scanM checkField [] (zip vs fts))
v’ <- apply c vs’
let t’ = t ‘subst‘ [(binder t, v’)]
b’ <- eval (refinement t’)
return (and (b:bs), v’)

checkField su (v, (f, t)) = do
(b, v’) <- check v (t ‘subst‘ su)
return ((f, v’) : su, (b, v’))

splitCtor [] = ([[[]]], [])
splitCtor (x:xs) = ([[:]], [x,xs])

Fig. 7. Checking Outputs

4.4 Check

The third step of the query-decode-check loop is to verify that the output produced by
the function under test indeed satisfies the output refinement type of the function. We
accomplish this by encoding the output value as a logical expression, and evaluating the
output refinement applied to the logical representation of the output value.

check, shown in Figure 7, takes a Haskell (output) value v and the (output) refine-
ment type t, and recursively verifies each component of the output type. It converts
each component into a logical representation, substitutes the logical expression for
the symbolic value, and evaluates the resulting Refinement.

4.5 Refuting Models

Finally, TARGET invokes refuteSMT to refute a given model in order to force the
SMT solver to produce a different model that will yield a different test input. A naı̈ve
implementation of refutation is as follows. Let X be the set of all variables appearing in
the constraints. Suppose that in the current model, each variable x is assigned the value
σ(x). Then, to refute the model, we add a refutation constraint ∨x∈Xx �= σ(x). That
is, we stipulate that some variable be assigned a different value.

The naı̈ve implementation is extremely inefficient. The SMT solver is free to pick
a different value for some irrelevant variable which was not even used for decoding.
As a result, the next model can, after decoding, yield the same Haskell value, thereby
blowing up the number of iterations needed to generate all tests of a given size.

TARGET solves this problem by forcing the SMT solver to return models that yield
different decoded tests in each iteration. To this end TARGET restricts the refutation
constraint to the set of variables that were actually used to decode the Haskell value.
We track this set by instrumenting the SMT monad to log the set of variables and choice-
variables that are transitively queried via the recursive calls to decode. That is, each
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call to decode logs its argument, and each call to whichOf logs the choice variable
corresponding to the alternative that was returned. Let R be the resulting set of decode-
relevant variables. TARGET refutes the model by using a relevant refutation constraint
∨x∈Rx �= σ(x) which ensures that the next model decodes to a different value.

4.6 Generalizing TARGET To Other Types

The implementation in § 4 is for List types, but ctors, decodeCtor, and splitCtor
are the only functions that are List-specific. Thus, we can easily generalize the imple-
mentation to:

– primitive datatypes, e.g. integers, by returning an empty list of constructors,
– algebraic datatypes, by implementing ctors, decodeCtor, and splitCtor for

that type.
– higher-order functions, by lifting instances of a to functions returning a.

Algebraic Datatypes Our List implementation has three pieces of type-specific logic:

– ctors, which returns a list of constructors to unfold;
– decodeCtor, which decodes a specific Ctor; and
– splitCtor, which splits a Haskell value into a pair of its Ctor and fields.

Thus, to instantiate TARGET on a new data type, all we need is to implement these
three operations for the type. This implementation essentially follows the concrete tem-
plate for Lists. In fact, we observe that the recipe is entirely mechanical boilerplate, and
can be fully automated for all algebraic data types by using a generics library.

Any algebraic datatype (ADT) can be represented as a sum-of-products of compo-
nent types. A generics library, such as GHC.Generics [15], provides a univeral sum-of-
products type and functions to automatically convert any ADT to and from the universal
representation. Thus, to obtain Targetable instances for any ADT it suffices to define
a Targetable instance for the universal type.

Once the universal type is Targetable we can automatically get an instance for
any new user-defined ADT (that is an instance of Generic) as follows: (1) to generate
a query we simply create a query for GHC.Generics’ universal representation of the
refined type, (2) to decode the results from the SMT solver, we decode them into the
universal representation and then use GHC.Generics to map them back into the user-
defined type, (3) to check that a given value inhabits a user-defined refinement type,
we check that the universal representation of the value inhabits the type’s universal
counterpart.

The Targetable instance for the universal representation is a generalized version
of the List instance from § 4, that relies on various technical details of GHC.Generics.

Higher Order Functions Our type-directed approach to specification makes it easy to
extend TARGET to higher-order functions. Concretely, it suffices to implement a type-
class instance:

instance (Targetable input, Targetable output)
=> Targetable (input -> output)
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In essence, this instance uses the Targetable instances for input and output to
create an instance for functions from input -> output, after which Haskell’s type
class machinery suffices to generate concrete function values.

To create such instances, we use the insight from QuickCheck, that to generate (con-
strained) functions, we need only to generate output values for the function. Following
this route, we generate functions by creating new lambdas that take in the inputs from
the calling context, and use their values to create queries for the output, after which we
can call the SMT solver and decode the results to get concrete outputs that are returned
by the lambda, completing the function definition. Note that we require input to also
be Targetable so that we can encode the Haskell value in the refinement logic, in
order to constrain the output values suitably. We additionally memoize the generated
function to preserve the illusion of purity. It is also possible to, in the future, extend our
implementation to refute functions by asserting that the output value for a given input
be distinct from any previous outputs for that input.

5 Evaluation

We have built a prototype implementation of TARGET1 and next, describe an evalua-
tion on a series of benchmarks ranging from textbook examples of algorithms and data
structures to widely used Haskell libraries like CONTAINERS and XMONAD. Our goal
in this evaluation is two-fold. First, we describe micro-benchmarks (i.e. functions) that
quantitatively compare TARGET with the existing state-of-the-art, property-based test-
ing tools for Haskell – namely SmallCheck and QuickCheck – to determine whether
TARGET is indeed able to generate highly constrained inputs more effectively. Second,
we describe macro-benchmarks (i.e. modules) that evaluate the amount of code cover-
age that we get from type-targeted testing.

5.1 Comparison with QuickCheck and SmallCheck

We compare TARGET with QuickCheck and SmallCheck by using a set of benchmarks
with highly constrained inputs. For each benchmark we compared TARGET with Small-
Check and QuickCheck, with the latter two using the generate-and-filter approach,
wherein a value is generated and subsequently discarded if it does not meet the de-
sired constraint. While one could possibly write custom “operational” generators for
each property, the point of this evaluation is compare the different approaches ability
to enable “declarative” specification driven testing. Next, we describe the benchmarks
and then summarize the results of the comparison (Figure 8).

Inserting into a sorted List Our first benchmark is the insert function from the
homonymous sorting routine. We use the specification that given an element and a
sorted list, insert x xs should evaluate to a sorted list. We express this with the
type

type Sorted a = List <{\hd v -> hd < v}> a
insert :: a -> Sorted a -> Sorted a

1 http://hackage.haskell.org/package/target-0.1.1.0
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Fig. 8. Results of comparing TARGET with QuickCheck, SmallCheck, and Lazy SmallCheck on a
series of functions. TARGET, SmallCheck, and Lazy SmallCheck were both configured to check
the first 1000 inputs that satisfied the precondition at increasing depth parameters, with a 60
minute timeout per depth; QuickCheck was run with the default settings, i.e. it had to produce
100 test cases. TARGET, SmallCheck, and Lazy SmallCheck were configured to use the same
notion of depth, in order to ensure they would generate the same number of valid inputs at each
depth level. QuickCheck was unable to successfully complete any run due to the low probability
of generating valid inputs at random.

where the ordering constraint is captured by an abstract refinement [25] which states
that each list head hd is less than every element v in its tail.

Inserting into a Red-Black Tree Next, we consider insertion into a Red-Black tree.

data RBT a = Leaf | Node Col a (RBT a) (RBT a)
data Col = Black | Red

Red-black trees must satisfy three invariants: (1) red nodes always have black children,
(2) the black height of all paths from the root to a leaf is the same, and (3) the elements
in the tree should be ordered. We capture (1) via a measure that recursively checks each
Red node has Black children.

measure isRB :: RBT a -> Prop
isRB Leaf = true
isRB (Node c x l r) = isRB l && isRB r &&

(c == Red => isBlack l && isBlack r)
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We specify (2) by defining the Black height as:

measure bh :: RBT a -> Int
bh Leaf = 0
bh (Node c x l r) = bh l + (if c == Red then 0 else 1)

and then checking that the Black height of both subtrees is the same:

measure isBH :: RBT a -> Prop
isBH Leaf = true
isBH (Node c x l r) = isBH l && isBH r && bh l == bh r

Finally, we specify the (3), the ordering invariant as:

type OrdRBT a = RBT <{\r v -> v < r}, {\r v -> r < v}> a

i.e. with two abstract refinements for the left and right subtrees respectively, which state
that the root r is greater than (resp. less than) each element v in the subtrees. Finally, a
valid Red-Black tree is:

type OkRBT a = {v:OrdRBT a | isRB v && isBH v}

Note that while the specification for the internal invariants for Red-Black trees is tricky,
the specification for the public API – e.g. the add function – is straightforward:

add :: a -> OkRBT a -> OkRBT a

Deleting from a Data.Map Our third benchmark is the delete function from the
Data.Map module in the Haskell standard libraries. The Map structure is a balanced
binary search tree that implements purely functional key-value dictionaries:

data Map k a = Tip | Bin Int k a (Map k a) (Map k a)

A valid Data.Map must satisfy two properties: (1) the size of the left and right sub-
trees must be within a factor of three of each other, and (2) the keys must obey a binary
search ordering. We specify the balancedness invariant (1) with a measure

measure isBal :: Map k a -> Prop
isBal (Tip) = true
isBal (Bin s k v l r) = isBal l && isBal r &&

(sz l + sz r <= 1 ||
sz l <= 3 * sz r <= 3 * sz l)

and combine it with an ordering invariant (like OrdRBT) to specify valid trees.

type OkMap k a = {v : OrdMap k a | isBal v}

We can check that delete preserves the invariants by checking that its output is an
OkMap k a. However, we can also go one step further and check the functional cor-
rectness property that delete removes the given key, with a type:

delete :: Ord k => k:k -> m:OkMap k a
-> {v:OkMap k a | MinusKey v m k}

where the predicate MinusKey is defined as:

predicate MinusKey M1 M2 K
= keys M1 = difference (keys M2) (singleton K)
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using the measure keys describing the contents of the Map:

measure keys :: Map k a -> Set k
keys (Tip) = empty ()
keys (Bin s k v l r) = union (singleton k)

(union (keys l) (keys r))

Refocusing XMonad StackSets Our last benchmark comes from the tiling window
manager XMonad. The key invariant of XMonad’s internal StackSet data structure
is that the elements (windows) must all be unique, i.e. contain no duplicates. XMonad
comes with a test-suite of over 100 QuickCheck properties; we select one which states
that moving the focus between windows in a StackSet should not affect the order of
the windows.

prop_focus_left_master n s =
index (foldr (const focusUp) s [1..n]) == index s

With QuickCheck, the user writes a custom generator for valid StackSets and then
runs the above function on test inputs created by the generator, to check if in each case,
the result of the above is True.

With TARGET, it is possible to test such properties without requiring custom gener-
ators. Instead the user writes a declarative specification:

type OkStackSet = {v:StackSet | NoDuplicates v}

(We refer the reader to [26] for a full discussion of how to specify NoDuplicates).
Next, we define a refinement type:

type TTrue = {v:Bool | Prop v}

that is only inhabited by True, and use it to type the QuickCheck property as:

prop_focus_left_master :: Nat -> OkStackSet -> TTrue

This property is particularly difficult to verify; however, TARGET is able to automat-
ically generate valid inputs to test that prop_focus_left_master always returns
True.

Results Figure 8 summarizes the results of the comparison. QuickCheck was unable
to successfully complete any benchmark to the low probability of generating properly
constrained values at random.

List Insert TARGET is able to test insert all the way to depth 20, whereas Lazy
SmallCheck times out at depth 19.

Red-Black Tree Insert TARGET is able to test add up to depth 12, while Lazy Small-
Check times out at depth 6.

Map Delete TARGET is able to check delete up to depth 10, whereas Lazy Small-
Check times out at depth 7 if it checks ordering first, or depth 6 if it checks bal-
ancedness first.

StackSet Refocus TARGET and is able to check this property up to depth 8, while Lazy
SmallCheck times out at depth 7.
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TARGET sees a performance hit with properties that require reasoning with the theory
of Sets e.g. the no-duplicates invariant of StackSet. While Lazy SmallCheck times out
at a higher depths, when it completes e.g. at depth 6, it does so in 0.7s versus TARGET’s
9 minutes. We suspect this is because the theory of sets are a relatively recent addition
to SMT solvers [18], and with further improvements in SMT technology, these numbers
will get significantly better.

Overall, we found that for small inputs Lazy SmallCheck is substantially faster as
exhaustive enumeration is tractable, and does not incur the overhead of communicating
with an external general-purpose solver. Additionally, Lazy SmallCheck benefits from
pruning predicates that exploit laziness and only force a small portion of the structure
(e.g. ordering). However, we found that constraints that force the entire structure (e.g.
balancedness), or composing predicates in the wrong order, can force Lazy SmallCheck
to enumerate the entire exponentially growing search space.

TARGET, on the other hand, scales nicely to larger input sizes, allowing systematic
and exhaustive testing of larger, more complex inputs. This is because TARGET eschews
explicit enumeration-and-filtering (which results in searching for fewer needles in larger
haystacks as the sizes increas), in favor of symbolically searching for valid models via
SMT, making TARGET robust to the strictness or ordering of constraints.

5.2 Measuring Code Coverage

The second question we seek to answer is whether TARGET is suitable for testing en-
tire libraries, i.e. how much of the program can be automatically exercised using our
system? Keeping in mind the well-known issues with treating code coverage as an in-
dication of test-suite quality [16], we consider this experiment a negative filter.

To this end, we ran TARGET against the entire user-facing API of Data.Map, our
RBTree library, and XMonad.StackSet – using the constrained refined types (e.g.
OkMap, OkRBT, OkStackSet) as the specification for the exposed types – and measured
the expression and branch coverage, as reported by hpc [11]. We used an increasing
timeout ranging from one to thirty minutes per exported function.

Results The results of our experiments are shown in Figure 9. Across all three libraries,
TARGET achieved at least 70% expression and 64% alternative coverage at the shortest
timeout of one minute per function. Interestingly, the coverage metrics for RBTree and
Data.Map remain relatively constant as we increase the timeouts, with a small jump
in expression coverage between 10 and 20 minutes. XMonad on the other hand, jumps
from 70% expression and 64% alternative coverage with a one minute timeout, to 96%
expression and 94% alternative with a ten minute timeout.

There are three things to consider when examining these results. First is that some
expressions are not evaluated due to Haskell’s laziness (e.g. the values contained in
a Map). Second is that some expressions should not be evaluated and some branches
should not be taken, as these only happen when an unexpected error condition is trig-
gered (i.e. these expressions should be dead code). TARGET considers any inputs that
trigger an uncaught exception a valid counterexample; the pre-conditions should rule
out these inputs, and so we expect not to cover those expressions with TARGET.

The last remark is not intrinsically related to TARGET, but rather our means of
collecting the coverage data. hpc includes otherwise guards in the “always-true”
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Fig. 9. Coverage-testing of Data.Map.Base, RBTree, and XMonad.StackSet using TAR-
GET. Each exported function was tested with increasing depth limits until a single run hit a time-
out ranging from one to thirty minutes. Lower is better for “always-true” and “always-false”,
higher is better for everything else.

category, even though they cannot evaluate to anything else. Data.Map contained 56
guards, of which 24 were marked “always-true”. We manually counted 21 otherwise
guards, the remaining 3 “always-true” guards compared the size of subtrees when re-
balancing to determine whether a single or double rotation was needed; we were unable
to trigger the double rotation in these cases. XMonad contained 9 guards, of which 4
were “always-true”. 3 of these were otherwise guards; the remaining “always-true”
guard dynamically checked a function’s pre-condition. If the pre-condition check had
failed an error would have been thrown by the next case, we consider it a success of
TARGET that the error branch was not triggered.

5.3 Discussion

To sum up, our experiments demonstrate that TARGET generates valid inputs: (1) where
QuickCheck fails outright, due to the low probability of generating random values sat-
isfying a property; (2) more efficiently than Lazy SmallCheck, which relies on lazy
pruning predicates; and (3) providing high code coverage for real-world libraries with
no hand-written test cases.

Of course our approach is not without drawbacks; we highlight five classes of pitfalls
the user may encounter.

Laziness in the function or in the output refinement can cause exceptions to go un-
thrown if the output value is not fully demanded. For example, TARGET would decide
that the result [1, undefined] inhabits [Int] but not [Score], as the latter would
have to evaluate 0 <= undefined < 100. This limitation is not specific to our sys-
tem, rather it is fundamental to any tool that exercises lazy programs. Furthermore,
TARGET only generates inductively-defined values, it cannot generate infinite or cyclic
structures, nor will the generated values ever contain ⊥.
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Polymorphism. Like any other tool that actually runs the function under scrutiny, TAR-
GET can only test monomorphic instantiations of polymorphic functions. For example,
when testing XMonad we instantiated the “window” parameter to Char and all other
type parameters to (), as the properties we were testing only examined the window.
This helped drastically reduce the search space, both for TARGET and SmallCheck.

Advanced type-system features such as GADTs and Existential types may prevent
GHC from deriving a Generic instance, which would force the programmer to write
her own Targetable instance. Though tedious, the single hand-written instance allows
TARGET to automatically generate values satisfying disparate constraints, which is still
an improvement over the generate-and-filter approach.

Refinement types are less expressive than properties written in the host language. If
the pre-conditions are not expressible in TARGET’s logic, the user will have to use the
generate-and-filter approach, losing the benefits of symbolic enumeration.

Input explosion. TARGET excels when the space of valid inputs is a sparse subset of
the space of all inputs. If the input space is not sufficiently constrained, TARGET may
spend lose its competitive advantage over other tools due to the overhead of using a
general-purpose solver.

6 Related Work

TARGET is closely related to a number of lines of work on connecting formal specifica-
tions, execution, and automated constraint-based testing. Next, we describe the closest
lines of work on test-generation and situate them with respect to our approach.

6.1 Model-Based Testing

Model-based testing encompasses a broad range of black-box testing tools that facilitate
generating concrete test-cases from an abstract model of the system under test. These
systems generally (though not necessarily) model the system at a holistic level using
state machines to describe the desired behavior [6], and may or may not provide fully
automatic test-case generation. In addition to generating test-cases, many model-based
testing tools, e.g. Spec Explorer [28] will produce extra artifacts like visualizations to
help the programmer understand the model. One could view property-based testing, in-
cluding our system, as a subset of model-based testing focusing on lower-level proper-
ties of individual functions (unit-testing), while using the type-structure of the functions
under scrutiny to provide fully automatic generation of test-cases.

6.2 Property-Based Testing

Many property-based testing tools have been developed to automatically generate test-
suites. QuickCheck [4] randomly generates inputs based on the property under scrutiny,
but requires custom generators to consistently generate constrained inputs. [3] extends
QuickCheck to randomly generate constrained values from a uniform distribution. In
contrast SmallCheck [21] enumerates all possible inputs up to some depth, which al-
lows it to check existential properties in addition to universal properties; however, it too
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has difficulty generating inputs to properties with complex pre-conditions. Lazy Small-
Check [21] addresses the issue of generating constrained inputs by taking advantage
of the inherent laziness of the property, generating partially-defined values (i.e. values
containing ⊥) and only filling in the holes if and when they are demanded. Korat [2]
instruments a programmer-supplied repOk method, which checks class invariants and
method pre-conditions, to monitor which object fields are accessed. The authors observe
that unaccessed fields cannot have had an effect on the return value of repOk and are
thereby able to exclude from the search space any objects that differ only in the values
of the unaccessed fields. While Lazy SmallCheck and Korat’s reliance on functions in
the source language for specifying properties is convenient for the programmer (speci-
fication and implementation in the same language), it makes the method less amenable
to formal verification, the properties would need to be re-specified in another language
that is restricted enough to facilitate verification.

6.3 Symbolic Execution and Model-Checking

Another popular technique for automatically generating test-cases is to analyze the
source code and attempt to construct inputs that will trigger different paths through
the program. DART [12], CUTE [22], and Pex [24] all use a combination of symbolic
and dynamic execution to explore different paths through a program. While executing
the program they collect path predicates, conditions that characterize a path through a
program, and at the end of a run they negate the path predicates and query a constraint
solver for another assignment of values to program variables. This enables such tools
to efficiently explore many different paths through a program, but the technique re-
lies on the path predicates being expressible symbolically. When the predicates are not
expressible in the logic of the constraint solver, they fall back to the values produced
by the concrete execution, at a severe loss of precision. Instead of trying to trigger all
paths through a program, one might simply try to trigger erroneous behavior. Check ’n’
Crash [5] uses the ESC/Java analyzer [10] to discover potential bugs and constructs con-
crete test-cases designed to trigger the bugs, if they exist. Similarly, [1] uses the BLAST
model-checker to construct test-cases that bring the program to a state satisfying some
user-provided predicate.

In contrast to these approaches, TARGET (and more generally, property-based test-
ing) treats the program as a black-box and only requires that the pre- and post-conditions
be expressible in the solver’s logic. Of course, by expressing specifications in the source
language, e.g. as contracts, as in PEX [24], one can use symbolic execution to gener-
ate tests directly from specifications. One concrete advantage of our approach over the
symbolic execution based method of PEX is that the latter generates tests by explicitly
enumerating paths through the contract code, which suffers from a similar combinato-
rial problem as SmallCheck and QuickCheck. In contrast, TARGET performs the same
search symbolically within the SMT engine, which performs better for larger input sizes.

6.4 Integrating Constraint-Solving and Execution

TARGET is one of many tools that makes specifications executable via constraint solv-
ing. An early example of this approach is TestEra [17] that uses specifications written
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in the Alloy modeling language [13] to generate all non-isomorphic Java objects that
satisfy method pre-conditions and class invariants. As the specifications are written in
Alloy, one can use Alloy’s SAT-solver based model finding to symbolically enumerate
candidate inputs. Check ’n’ Crash uses a similar idea, and SMT solvers to generate
inputs that satisfy a given JML specification [5]. Recent systems such as SBV [8] and
Kaplan [14] offer a monadic API for writing SMT constraints within the program, and
use them to synthesize program values at run-time. SBV provides a thin DSL over the
logics understood by SMT solvers, whereas Kaplan integrates deeply with Scala, allow-
ing the use of user-defined recursive types and functions. Test generation can be viewed
as a special case of value-synthesis, and indeed Kaplan has been used to generate test-
suites from preconditions in a similar manner to TARGET.

However, in all of the above (and also symbolic execution based methods like PEX
or JCrasher), the specifications are assertions in the Floyd-Hoare sense. Consequently,
the techniques are limited to testing first-order functions over monomorphic data types.
In contrast, TARGET shows how to view types as executable specifications, which yields
several advantages. First, we can use types to compositionally lift specifications about
flat values (e.g. Score) over collections (e.g. [Score]), without requiring special re-
cursive predicates to describe such collection invariants. Second, the compositional na-
ture of types yields a compositional method for generating tests, allowing us to use
type-class machinery to generate tests for richer structures from tests for sub-structures.
Third, (refinement) types have proven to be effective for verifying correctness proper-
ties in modern modern languages that make ubiquitous use of parametric polymorphism
and higher order functions [29,7,20,23,26] and thus, we believe TARGET’s approach of
making refinement types executable is a crucial step towards our goal of enabling grad-
ual verification for modern languages.
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14. Köksal, A.S., Kuncak, V., Suter, P.: Constraints as control. In: POPL 2012, pp. 151–164.

ACM, New York (2012)
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