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Abstract. Attack-defence trees are a promising approach for represent-
ing threat scenarios and possible countermeasures in a concise and intu-
itive manner. An attack-defence tree describes the interaction between
an attacker and a defender, and is evaluated by assigning parameters to
the nodes, such as probability or cost of attacks and defences. In case
of multiple parameters most analytical methods optimise one parameter
at a time, e.g., minimise cost or maximise probability of an attack. Such
methods may lead to sub-optimal solutions when optimising conflicting
parameters, e.g., minimising cost while maximising probability.

In order to tackle this challenge, we devise automated techniques that
optimise all parameters at once. Moreover, in the case of conflicting pa-
rameters our techniques compute the set of all optimal solutions, defined
in terms of Pareto efficiency. The developments are carried out on a new
and general formalism for attack-defence trees.

Keywords: Attack-defence trees, attack trees, countermeasures, secu-
rity assessment, Pareto efficiency, multiple criteria.

1 Introduction

Nowadays fast growing technologies influence our everyday life and increase our
productivity. Unfortunately, we witness with alarming frequency that they also
increase the risk of physical and cyber attacks to a wide range of targets, from
personal devices to systems of public concern. The growing number of threats
demands a thorough investigation of the security properties of a system when
deployed in a given environment. To this end, various formal graphical models
have been studied.

Fault trees, introduced in the early 1980’s, are one of the first and most
prominent graphical representations for analysing the safety of a system. They
represent a system failure in terms of the failure of its components [1].

Fault trees inspired a similar approach to security. In 1991, Weiss used trees in
security analysis and presented threat-logic trees as a graphical attack-modelling
technique [2]. Later, in 1999, Schneier introduced attack trees as a tool to evaluate
the security of complex systems in a structured, hierarchical way. Attack trees
allow to analyse the possible attack scenarios and reason about the security of
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the whole system in a formal, methodical way, by splitting a complex goal into
sub-goals and basic attacks [3]. However, attack trees evaluate only the attacker’s
behaviour and do not consider possible defences undertaken to avoid the attacks.

To overcome this limitation, further extensions of attack trees for capturing
the defender’s behaviour have been studied. Such extensions have been explored
in several dimensions. Some enrich an attack tree model by integrating appro-
priate defender’s actions against specific attacks only at leaf level [4], while oth-
ers combine attack and defence models and present a methodology to compute
specific parameters [5]. Kordy [6] introduced a more general tool, called attack-
defence trees, to represent the interaction between an attacker and a defender.

Attack-defence trees are extensions of attack trees with countermeasures.
They illustrate in a graphical way the possible actions an attacker can perform
in order to attain a given goal, and the feasible countermeasures a defender can
undertake to counter such actions. Attack-defence trees are used for analysing
attack-defence scenarios. Analyses are performed by considering specific aspects
or properties of the scenario. The evaluation assigns values to the parameters of
the leaves and the tree is traversed from the leaves to the root.

Most analyses of attack-defence trees focus on one specific aspect of the sys-
tem, such as feasibility or cost of an attack or a defence. They do not consider
multiple parameters and the subsequent need for optimising all of them at once.
Moreover, optimisation of multiple parameters might lead to incomparable val-
ues, in which case such methods may result in sub-optimal solutions. However,
in many real-life scenarios a single parameter might not be adequate for the
analysis of complex attack-defence scenarios.

In order to address multi-parameter optimisation of attack-defence trees, we
present evaluation techniques that characterise the leaves of a tree with more
than one parameter, such as the success probability and the cost of an attack.
Our techniques compute different aspects of the scenario and handle multiple
parameters, thus optimising all of them at once. Multi-parameter optimisation
becomes necessary in case of conflicting parameters, as there is no single best
solution but rather a set of optimal solutions. We handle conflicting parameters
by computing the set of efficient solutions, defined in terms of Pareto efficiency.
Thus, Pareto efficiency handles the multi-criteria optimisation problem, as well
as parameters with incomparable values.

Our developments are performed on a new language-based formalism for
attack-defence trees. Furthermore, we study the issue in both Boolean and prob-
abilistic settings. For each such setting, we first consider the problem of feasibility
of the attack or the defence, and then we extend our techniques to compute op-
timal attacks or defences in presence of multiple costs. Moreover, for each case,
we first define the solution considering all possible player interactions, obtaining
a natural but exponential characterisation. Then, we improve dramatically on
the complexity devising an algorithmic evaluation that is linear in the size of the
tree and yet sound for an expressive sub-class of models.
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Organisation of the paper. In Sect. 2 we introduce our formalism for attack-
defence trees and provide evaluation techniques for feasibility queries. Sect. 3
extends the model with a single cost and presents evaluation techniques for
computing minimum cost. We extend the single cost model to multiple costs
in Sect. 4. The results of evaluation are discussed on a case study for a Radio-
Frequency Identification system managing goods in a warehouse. We describe
related work in Sect. 5 and conclude in Sect. 6.

2 Formal Model of Attack-Defence Trees

In the following, we present our formalism for attack-defence trees. We start by
defining the syntax and the terminology used throughout the paper. Then, we
describe the evaluation techniques for investigating the feasibility of attacks and
defences both in Boolean and probabilistic settings. The Boolean case is thor-
oughly explained in Sect. 2.2. The developments are generalised to the proba-
bilistic setting in Sect. 2.3.

2.1 Syntax and Well-Formednes

Syntax and intended semantics. We construe an attack-defence tree as an in-
teraction between two players (denoted by 7), the proponent (7 = p) and the
opponent (7 = o), in the wake of [6]. A player can be either an attacker or a
defender. We associate the proponent with the player at the root, and the op-
ponent with the opposite player. Each player has an associated goal, such as
minimising or maximising the overall probability of an attack or a defence.

The root of the tree represents the main goal of an attack-defence scenario
for a given player 7. The leaves represent the basic actions that a player can
perform to achieve his/her goal. The internal nodes show how those actions can
be combined. In order to simplifying the technical developments, we assume that
the players’ actions are independent.

The abstract syntax of an attack-defence tree ¢ is presented in Table 1. A tree
is either a leaf or the application of a tree operator to one or two sub-trees.

Based on the player type, a leaf a is either a basic action of the proponent or
of the opponent. We denote the set of proponent’s and opponent’s basic actions
by Act, and Act,, respectively. We assume that these two sets are disjoint,
Act,NAct, = (0. We denote by Act the set of all basic actions, Act = Act, U Act,.

There are two special types of leaves; &t,ue represents a trivially-successful
action, and &¢a5e Tepresents a trivially-failed action.

As standard in the literature, tree operators include conjunction and disjunc-
tion, while we introduce negation and a novel construct for player alternation.
The conjunction operator ¢t = &n(t1,t2) requires that the goals of ¢1,ty are
achieved in order for the goal of ¢ to be achieved. The disjunction operator
t = &y (t1,t2) requires that the goal of at least one sub-tree is achieved in order
for the goal of t to be achieved.

The negation operator ¢t = & (t’) requires that the goal of the sub-tree ¢ is not
achieved in order for the goal of ¢ to be achieved. This operator negates the goal
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Table 1. The type system for defining well-formed trees
to= a| &/\(tl,tQ) ‘ &\/(tl,tz) | &ﬁ(t) ‘ &N(t) | &true | &false

Fa:p if a € Actp Fa:o0 ifae Act,

Fti:7 Fita:T Fti:7 Fta: T Ft:T Ft:T
F&a(ty,t2) o 7 F&y(ty,t2) 7 F&(t): 7 F&(t): 7

of t’ and leaves the player unchanged. Such an operator allows to analyse a wider
range of attack and defence scenarios, including the cases of unrecoverable and
conflicting actions, thus making trees more flexible and expressive. For instance,
cutting a communication wire might be unrecoverable, and after having cut a
wire a player might not be able to communicate with a given device.

The changing player operator t = & (') changes the goal of ¢’ by changing
the type of the player. Note that in this case the goal belongs to the opposite
player. For instance, if ¢’ belongs to an attacker with the corresponding goal
(e.g., minimising), then the tree ¢ belongs to a defender with the corresponding
goal (e.g., maximising). Thus, the changing player operator flips the player from
an attacker to a defender and vice versa, as highlighted by the side-condition of
the corresponding rule, where p~! = 0 and o~ ! = p.

The syntax of Table 1 is overly liberal for it does not associate players to nodes.
The simple type system, showed in the second section of the table, enforces such
association defining a well-formedness condition. We denote by Tree, the set of
well-formed attack-defence trees whose root belongs to a player 7. Based on the
type of the player, we have Tree, when 7 is the proponent and Tree, when 7 is
the opponent and Tree = Tree, U Tree,. In the following, we will refer to them
as attack-defence trees or simply trees. Moreover, we introduce below the notion
of polarity consistency, to be exploited in the technical developments.

Polarity-Consistent Tree. We say that an action a occurs negatively in a tree, if
a is under an odd number of negations. Otherwise, we say that an action a occurs
positively. Such polarities are denoted with the symbols — and +, respectively.

Definition 1. An attack-defence tree t is polarity-consistent iff there is no ac-
tion that occurs both positively and negatively in t.

A sufficient (but not necessary) condition for polarity-consistency is that all
actions are “uniformly good” or “uniformly bad” for the proponent. If ¢ is a
polarity-consistent tree, then the polarity of each action is uniquely determined.

Running Example. Let us introduce an example that we will develop throughout
the paper. We consider a fragment of a Radio-Frequency Identification (RFID)
system managing goods in a warehouse, studied in [7]. Particularly, we consider
an attacker (proponent) whose goal consists in removing the RFID tags from
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Fig. 1. Attack-defence tree for removing tag

goods with the help of an insider. In order to enable a direct comparison with
the evaluation techniques in the literature, our attack-defence tree does not
contain negation. We will see, however, that as far as the calculation is concerned,
negation would be treated similarly to the changing player operator.

In order to attain the goal, the attacker can “bribe”, “threaten”, “blackmail”,
or “trick” the insider. For bribing a person the attacker has to “identify a cor-
ruptible subject” and “bribe the subject”. The defender (opponent) can protect
against bribery by “thwarting employees”, which can be done by “training for
security” and by “threatening to fire the employees”.

In case the attacker decides instead to “trick” the insider by placing a fake
tag, they can either “send false replacement tags” or give a “false management
order” to do it. The latter can be done by “infiltrating the management” and
“ordering replacement tags”. To fight such attacks, the defender can provide the
employees with “training for trick”.

The corresponding attack-defence tree is given in Figure 1. We decorate internal
nodes with labels to keep track of sub-goals, hence making the tree more informa-
tive and human-readable. We label the leaves to refer to them easily.

The ¢, displayed in Figure 1, is represented by the following syntactic term:
t=&y (& (is, & (bs, &~ (& (t1,t1)))),
&y (b, &y (b, &n(&v (&n(st, &~ (&n(at, &~ (ba)))), &a(im,ot)), &~ (£2)))))
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2.2 Semantics in the Boolean Case

As mentioned above, we construe an attack-defence tree as an interaction be-
tween the proponent and the opponent. In the Boolean setting the investigation
of the feasibility of a scenario is related to answering questions such as “Is the
scenario satisfiable?” or “Is there an always-successful attack/defence?”.

In this setting, we associate with each basic action a value from the Boolean
set B, where true corresponds to performing and false corresponds to not per-
forming the action. We consider B to be ordered such that max{tt, ff } = t¢ and
min{#t, ff} = ff.

We define a Boolean assignment of basic actions for a given player 7 as follows:
a Boolean assignment m. is an arbitrary function that assigns a value b € B to
each basic action a € Act;; m, : Act; — B. Thus, the Boolean assignment m
is a pair (mp, m,), but we allow to write m(a) as a shorthand for m,(a) when
a € Act, and my(a) when a € Act,. We say that the main goal described by a
tree succeeds if the Boolean assignment evaluates the tree to true.

For evaluating the feasibility of an attack-defence tree, we present two evalu-
ation techniques, termed semantic and algorithmic evaluations respectively.

The semantic evaluation M (t) of an attack-defence tree t € Tree, is presented
in Table 2. The evaluation analyses the tree ¢ by considering all possible Boolean
assignments of values to the basic actions of ¢. It computes the pair of minimum
and maximum success values of the proponent. If the proponent is an attacker,
then it computes the minimum and the maximum values of an attack. Otherwise,
it computes the minimum and maximum values of a defence. We observe that if
the main goal of the scenario (represented by the root of the tree) is successful
for the proponent, then it is not successful for the opponent. Similarly, if the
proponent wants to maximise the success of the main goal, then the opponent
wants to minimise it. Thus, the players have opposite goals. We integrate this
consideration into our technique by minimising the value of ¢ over all opponent’s
Boolean assignments m,,, and then maximising it over all proponent’s Boolean
assignments my,. This is illustrated in the second component of M (¢) in Table 2,
which computes the maximum success value of the proponent. The first compo-
nent of M (t) computes the minimum success value of the proponent. Therefore,
the computation maximises the value over all m,’s and then minimises it over
all mp’s.

The analysis B[t]m of the tree t, displayed in the second part of the Table 2, is
performed recursively on the structure of ¢. Observe that even though the nega-
tion and changing player operators work on the same assignment m, the former
only changes the polarity of a tree whereas the latter changes the optimisation
objective by swapping the players.

The result of the semantic evaluation, when the proponent is an attacker, is
interpreted as follows.

— If both the minimum and the maximum values of ¢t are false (ff,ff), then
the system is always secure despite the attacker’s actions.
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Table 2. The Boolean semantic evaluation of an attack-defence tree

M (t) = (min{max{B[t](mp, mo) | Mo Boolean assignment} | m, Boolean assignment},

max{min{B[¢](mp, mo) | m, Boolean assignment} | m, Boolean assignment})

Bla]m =m(a)

B[[&/\( 1,t2)]]m B[tlﬂmAB[[tgﬂm
Bl& (t1,t2)]m = BtiJm V B[tz]m
Bl&-(t)]m = =B[t]m
Blie-(Olm = -Bltm
B[[&true]]m = tt

Bﬂ&falseﬂm = ﬁ

— If the minimum value of ¢ is false and the maximum value of ¢ is true (ff, tt),
then the system is vulnerable. In other words, there exist actions (a Boolean
assignment m) such that an attack on the system is feasible.

— If both the minimum and the maximum values of ¢ are true (it,{t), then
the system is flawed. In other words, despite the attacker’s actions (for all
Boolean assignments m) an attack on the system is always successful.

The result is interpreted likewise, when the proponent is a defender.

The semantic evaluation characterises the analysis in a natural way, for it ex-
plicitly considers all the interactions interwoven in a tree in terms of assignments
to the leaves. Nonetheless, it gives rise to an exponential computation already
in the Boolean case, the satisfiability problem being NP-complete. Therefore,
evaluation techniques that enjoy a lower complexity are needed. In particular,
we face the problem of defining those restrictions on attack-defence trees un-
der which the more efficient methods are sound with respect to the semantic
evaluation, our gold standard.

The algorithmic evaluation INT(t) of an attack-defence tree t € Tree, is
presented in Table 3. Similarly to the semantic evaluation, it computes the pair
of minimum and maximum success values of the proponent. It considers the
values of basic actions and propagates them up to the root. The propagation
is performed according to the rules given in Table 3. The first rule assigns
the minimum and the maximum success values to the actions based on the
player type. Observe that, as the players have opposite goals, the success values
are also opposite. The next four rules define the computation for operators.
Conjunction and disjunction are treated in the standard way, hence let us focus
on the negation and changing player operators. Both operators change the goal
of the player. The negation operator negates the goal without changing the
player, while the changing player operator changes the goal by changing the
player. Thus, in both rules we first swap the minimum and maximum values,
and then apply negation. The last two rules are independent from the players
and represent always successful and failed actions.

The semantic and algorithmic evaluations might lead to different results, as we
can see by considering the attack-defence tree t = & (a, & (a)), where a € Act,,.
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Table 3. The Boolean algorithmic evaluation of an attack-defence tree

INT(a) _ {(ﬁ, tt) Tf a € Act,
(tt, ff) if a € Act,
INT (& (t1,t2)) = let (mini,maz;) = INT(;),7 € {1,2}
in (miny A ming, mazi1 A mazsz)
INT (&v(t1,t2)) = let (min;, maz;) = INT (&), € {1,2}
in (miny V ming, maz1 V mazsz)

INT (&~ (1)) = let (min, max) = INT(t)
in (—max, ~min)

INT (&~ (1)) = let (min, max) = INT(t)
in (—max, ~min)

INT (&true) = (tt, tt)

]NT(&false) = (ﬁ7ﬁ)

The result of the semantic evaluation is M (t) = (ff,ff), while the results of
the algorithmic evaluation is INT(t) = (ff, tt). However, observe that ¢ is not
polarity-consistent. As a matter of fact, if we restrict to polarity-consistent trees,
then the two evaluations are equivalent.

Theorem 1. Ift € Tree is a polarity-consistent tree, then M(t) = INT(t).

The semantic evaluation considers all possible Boolean assignments m, thus
being exponential in the size of t. The implementation of the algorithmic eval-
uation consists in a bottom-up traversal of ¢, and thus is linear in the size of
the tree. Therefore, in case of polarity-consistent trees, our method offers a dra-
matic improvement in performance hence in scalability. This is in line with the
development of, e.g., [8].

2.3 Semantics in the Probabilistic Case

The probabilistic setting generalises the Boolean one. In the following, we give
a brief explanation of the setting and the evaluations, focusing on the novelties
and omitting redundant details.

In the probabilistic setting, we consider the interval [0, 1], where 1 corresponds
to success and 0 corresponds to failure. The questions tackled in the probabilistic
setting are, e.g., “What is the maximum probability of an attack?” or “How
vulnerable is the system to the attack?”.

In the remainder of the paper, we shall restrict our investigation to linear
trees, inspired by Girard’s linear logic [9] and defined as follows:

Definition 2. An attack-defence tree t is linear iff no action occurs twice in t.

The notion of linearity is stronger than polarity-consistency, as the latter does
not forbid to have multiple occurrences of the same action with the same polarity.
Let us focus on the occurrences of an action a in the following polarity-consistent
tree: t = &v(&a(a,b), &n(a,c)). In the tree t the action a is performed once but
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Table 4. The probabilistic semantic evaluation of an attack-defence tree

M (t) = (min{max{P[t](mp, mo) | m, Boolean assignment} | m, Boolean assignment},

max{min{P[¢](mp, mo) | mo Boolean assignment} | m, Boolean assignment})

Ms(a) if m(a) = tt

Pla]m =

la] {Ml(a) if m(a) = ff
PH&A(tl,tz)]]m = P[[tl]]m . Pl[tz]]m
Pl[&v(tl,tz)]]m =1- (1 — P[[tlﬂm) . (1 — Pl[tz]]m)
Pl&-(t)]m =1-—"P[tjm
Plé&~(t)]m =1-"P[tjm
P[[&true]]m =1
Pll&false]]m =0

occurs more than once, and the success of each sub-tree containing a depends on
the actions b, c. However, observe that in ¢ the actions of sub-trees & (a, b) and
& a(a, ) are not independent. The assumption of linearity ensures independence
of actions, thereby guaranteeing the soundness of the computations explained
below.

We assume that each basic action a € Act has two associated success proba-
bilities; success probability Mj(a) in case of not performing a, and success prob-
ability Ms(a) in case of performing a, such that M;(a) < Maz(a). For instance,
an attacker might succeed to disable a security camera with a given probability
Ms, or the security camera might be disabled due to some external conditions
with a given probability M7, which for the attacker will be the probability of
succeeding without performing the action. We consider the Boolean assignment
m. as defined in the previous section, m, : Act, — B, and assume that an action
a has a probability of success M (a) if m(a) is false and has a probability of
success Ma(a) if m(a) is true. Choosing Mi(a) = 0 and M3(a) = 1 coincides
with the Boolean case.

The evaluation of attack-defence trees in the probabilistic setting follows the
development for the Boolean setting: first, we characterise the solution to our
problem in a top-down fashion, and then we investigate what limitations on the
model allow to devise an algorithmic approach with lower complexity.

The semantic evaluation M (t) of an attack-defence tree t € Tree, is illustrated
in Table 4. It computes the minimum and the maximum success probability of
a scenario by analysing the tree ¢ over all Boolean assignments from which the
probability values are inferred. Observe that also here the players have opposite
goals, e.g., the proponent wants to maximise the overall probability of success,
while the opponent wants to minimise it.

The result of the computation, when the proponent is an attacker, is inter-
preted as follows. The maximum success probability p shows the existence of an
attack with probability p. In this case, we say that the system is p-vulnerable.

The algorithmic evaluation INT(t) of an attack-defence tree t € Tree, is
given in Table 5. It traverses the tree from the leaves to the root and propagates
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Table 5. The probabilistic algorithmic evaluation of an attack-defence tree

INT(a) _ { (Mi(a), M2(a)) ?f a € Acty
(Ma2(a), Mi(a)) if a € Acto
INT (& (t1,t2)) = let (ming, max;) = INT (t:),1 € {1,2}
in (mini - ming, max1 - maxz)
INT (& (t1,t2)) = let (min;, maz;) = INT (L), € {1, 2}
in (1—(1—miny)- (1 —ming),1 —(1—maz1)- (1 —mazs2))
INT (&-(t)) = let (min, maz) = INT(t)
in (1 —maz,1 — min)

INT (&~ (1)) = let (min, maz) = INT(t)
in (1 —maz,1 —min)

INT (& rue) =(1,1)

INT (&tarse) = (0,0)

Table 6. The values of probability and cost for the basic actions of the example

Label Name of the Node M, Mo c
is identify subject 0.2 0.8 80
bs bribe subject 0 0.7 100
t1 training for thwart 0.1 0.3 0
tf threaten to fire employees 0.1 0.4 0

t threaten 0 0.7 160
b blackmail 0 0.7 150
st send false tag 0 0.5 50
at authenticate tag 0.1 0.7 0
ba break authentication 0.1 0.6 85
im infiltrate management 0 0.5 70
ot order tag replacement 0 0.6 0
t2 training for trick 0.1 0.4 0

the values of the basic actions. Similarly to the Boolean case, as the negation
and changing player operators change the goal of the player, we first swap the
minimum and maximum values before applying negation.

The restriction of linear trees is adequate for showing the equivalence of the
two evaluations.

Theorem 2. Ift € Tree is a linear tree, then M(t) = INT(t).

Hence, in the probabilistic setting linearity allows to scale from an exponential
to a linear complexity.

Running Example. Consider the attack-defence tree ¢ presented in Figure 1. Ob-
serve that t is a linear tree, thus we can apply the algorithmic evaluation for
computing the maximum probability of success at the root. Table 6 lists possi-
ble probability values for basic actions (the last column is for later reference).
Providing a realistic estimate is a research topic in itself and falls outside the
scope of this work. Following the algorithmic computation, at the root we obtain
INT(t) = (0,0.97), that is, the system is 0.97 vulnerable.
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3 Attack-Defence Trees with Cost

In this section we extend our evaluation techniques by considering a single cost
for basic actions. We evaluate the minimum cost of an attack or defence in the
Boolean and probabilistic settings. Similarly to the previous section, the Boolean
case is thoroughly explained in Sect. 3.1. The developments are generalised to
the probabilistic setting in Sect. 3.2.

3.1 Cost in the Boolean Case

In the following, we extend the model of attack-defence trees described in Sect.
2.2 with a single cost for basic actions. Therefore, each basic action is associated
with a pair of Boolean and cost values.

When we consider costs, we can focus on questions such as “What is the
minimum cost of an attack?” or “How much does it cost to protect a system in
a given scenario?”. Observe that such questions are player-dependent, meaning
that the model is evaluated from a given player’s perspective. Since we assumed
that the basic actions are independent, we need to consider one player’s values
only. For instance, for computing the minimum cost of an attack we need only
the cost of the attacker’s actions and do not require the cost of the defender’s
actions. Thus, in our evaluation techniques we consider only the cost of the
proponent’s actions, and do not consider the cost of the opponent’s actions.

In the following we consider the set D = B x R>¢. In order to link the cost
parameter to the existing model in the Boolean setting, we assume that each
basic action of the proponent a € Act, has two associated costs (non-negative
real numbers). One is the cost of not performing a (0 in the following), the other
is the cost ¢ of performing a. We set both costs of the opponent actions to 0.

Extending the model with costs and evaluating the pairs of success and cost
values lead to multi-parameter optimisation. Moreover, such pairs are incompa-
rable in case the goal of a player is to maximise one parameter while minimising
the other. In order to address multi-parameter optimisation in the case of in-
comparable values, we resort to Pareto efficiency and define two functions for
computing the sets of Pareto efficient solutions. A solution is called Pareto effi-
cient if it is not dominated by any other solution in the ordering relation [10].

We assume that the goal of the proponent is to maximise the success value
while minimising the cost of an attack or defence. In order to compute the set of
pairs of efficient solutions, where we want to maximise the first argument while
minimising the second, we define function MR*~. The function computes the
set of all pairs that have higher value for the first argument or lower value for
the second argument with respect to the other pairs in the set.

MR*(Z2)={(z,y) € Z|¥(2',y)€Z 2’ JaANy Cy=2 =z Ay =y}
={(z,y) e Z |V, y)eZ: (T2 Vyy) AN (02’ VyCTy)}

where Z C D.



106 Z. Aslanyan and F. Nielson

Note that the sign “+” indicates the maximisation and the sign “-” indicates
the minimisation, and their position refer to the parameter of the maximisa-
tion/minimisation.

In Sect. 2.2 we discussed how the negation and changing player operators
change the goal, e.g., maximisation is turned into minimisation. Thus, if the
proponent’s goal is to maximise the success value and minimise the cost of an
attack or defence, then under negation the goal is to minimise the success value
and minimise the cost of an attack or defence. Observe that the goal for the
cost does not change, as we assume to deal with rational players. Therefore, we
define function MR~ to compute the set of all pairs that have lower values for
both arguments with respect to the other pairs in the set.

MR (Z)={(z,y) e Z V(') e Z 2’ Cany Cy=a =zANy =y}

{
{(y) eV y)eZ:(xEa'VyCy) A (xC2'VyLEy)}

where Z C D.

Observe that the “4+” symbol in MR*™ corresponds to the outer-most max
operator in Table 2, and the first “-” symbol in MR~ corresponds to the outer-
most min operator.

Following the previous developments, we present two evaluation techniques.

The semantic evaluation M (t, A) of an attack-defence tree t € Tree, and a
set of actions A is illustrated in Table 7. It computes a pair, where the first
argument is a set computed by the function MR™~ and consists of all pairs
that have lower success value and lower cost of the proponent actions compared
to other pairs, and the second argument is the set computed by the function
MR™™ and consists of all pairs that have higher success value and lower cost of
the proponent actions compared to other pairs.

As we discussed in Sect. 2.2, if the proponent wants to maximise the success
of the main goal, then the opponent wants to minimise it. In other words, the
players affect the computation of the success value of the main goal in opposite
ways, e.g., when one wants to maximise, the other wants to minimise and vice
versa. The functions MR~ and MR~ evaluate the success values based on
the goal of the proponent. In order to consider the effect of the opponent with
the opposite goal, we define functions f;"*(t) and f,"*(t) given in Table 7. The
functions compute respectively the maximum and minimum success values over
all Boolean assignments m, for a given Boolean assignment m,.

As the costs of the opponent’s actions are 0 and do not influence the overall
cost of the proponent, we consider only the cost of the proponent. The cost is
represented with the concept of a budget, denoted by b,, for associating with
each success value the corresponding budget of the proponent and the Boolean
assignment m,,. The budget b, € R>( takes values from 0 to infinity in an
increasing manner. For a given budget b, we take m, such that the cost of the
proponent for m,, is not greater than b,, and the corresponding success value for
m,, is computed. The cost for a given m, is computed with the function cost,
defined in Table 7.
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Table 7. The Boolean semantic evaluation of an attack-defence tree with cost

M(t, A) = (MR~ ({ (f{"" (), bp) | cost(myp, A) < by}),
MR+7({ (fzmp (t):bp) ‘ COSt(mp:A) < bp}))

P (t) = max{B[t](mp, mo) | Mo Boolean assignment }

7 (t) = min{B[t](mp, mo) | mo Boolean assignment}

7 c(a), if mp(a) = tt
cost(my, A) = ZA { 0, if my(a)=ff

The result of the semantic evaluation is a pair of sets of Pareto efficient solu-
tions for the given optimisation criteria of the goal.

The algorithmic evaluation INT(t) for an attack-defence tree t € Tree, is
given in Table 8. It again computes a pair, where the first argument consists of
all pairs that have lower success value and cost of the proponent actions, and
the second argument consists of all pairs that have higher success value and
lower cost of the proponent actions. Such sets are computed in the bottom-up
fashion, defined by the rules presented in Table 8. The rules extend the ones for
the success value computation, presented in Sect. 2.2, Table 3.

The first rule assigns the sets MR~ and MR™™ to the basic actions. Ob-
serve that the cost of not performing the proponent’s actions, as well as both
costs of the opponent’s actions, is 0. The rules for conjunction and disjunction
use the common computation for success values and sum the costs. The nega-
tion and changing player operators evaluate the success value as described in
Sect. 2.2, while leaving the cost unchanged. The last two rules correspond to
always successful and failed actions, which are independent from the players,
and thus have a cost equal to 0. Applying the functions MR~ and MR'™ in
each rule of the evaluation allows to reduce the size of the sets in each step.

We denote by yield(t) C Act the set of actions that are in the leaves of ¢t. By
considering the polarity-consistent tree t = &a(&y(a,b), &y (a,&~(c))), where
a,b € Acty,c € Acty, c(a) = 2 and c(b) = 1, we see that the two evaluation
techniques lead to different results. The semantic evaluation gives the result
M (t, yield(t)) = ({(f,0)}, {(,0), (tt,2)}), while the algorithmic evaluation gives
the result INT(t) = ({(ff,0)}, {(;,0), (¢, 3)}).

Therefore, the assumption of polarity consistency, considered in the Boolean
case in Sect. 2.2, is no longer adequate when dealing with the notion of cost.
In order to show the equivalence of the two evaluations we resort to a stronger
assumption of linearity.

Theorem 3. Ift € Tree is a linear tree, then M (¢, yield(t)) = INT(t).

We measure complexity of the two evaluation methods by calculating the
number of set operations. The semantic evaluation is exponential in the size of
t, as it considers all Boolean assignments. The algorithmic evaluation is linear
and hence presents a dramatic improvement in the case of linear trees.
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Table 8. The Boolean algorithmic evaluation of an attack-defence tree with cost

(MR~ ({(#,0), (#, c(a))}),
INT(a) =< MR ({(#,0), (tt, c(a))})) if a € Acty
(MR™~({(t£,0)}), MR*~ ({(£,0)})) if a € Act,
INT (& (t1,t2)) = let (V W) = INT(t;),i € {1,2}

( (@AY, et )| (be) €Vr, (V) €Va}),
+ {BAY,c+) | (bc) € W, (¥, ) € Wa}))

INT (& (11, 12)) = let (V,,Wl) = INT(t:),i € {1,2}
n (M + (gbvb',cﬂ/) | (b,c) € Vi, (V,c) € Va}),

MRY=({(bVvb,c+ )| (bec) e Wi, (¥, c) € Wa}))
INT(&-(t) = let (V,W) = INT(%)
n (MR~ ({(=b,¢) | (b;c) € W}), MR*~({(=b,¢) | (b,c) € V}))
INT (&~(1)) =let (V,W)=INT(t)
n (MR"({(ﬁb: c) | (b,c) € W}), MR~ ({(=b,¢) | (b,c) € V}))
INT (&true) = ({(#,0)},{(#,0)})

INT (&rarse) = ({(#,0)}, {(F,0)})

3.2 Cost in the Probabilistic Case

In this section we briefly generalise our development to the probabilistic setting,
concentrating on the differences with respect to the Boolean setting.

In the probabilistic setting the cost-related questions are the same as in the
Boolean setting, and the same observation regarding the cost to the proponent
and to the opponent applies. Here we consider the set D = [0,1] X R>o. The
cost is integrated to the basic actions in the same way. Thus, to extend the
probabilistic model with costs, we assume that each basic action of the proponent
player a € Act, has two associated costs, 0 in case of not performing a, and ¢ in
case of performing a. We set both costs of the opponent’s actions equal to 0.

As in the Boolean case, by considering probability and cost and focusing
on maximising the first while minimising the other, we face a multi-parameter
optimisation issue with incomparable values. Similarly to the Boolean setting, we
provide two evaluation techniques based on Pareto efficiency by considering the
functions MR~ and MR™~. We compute the set of Pareto efficient solutions
for answering questions such as “What is the maximum probability and the
minimum cost of an attack?”.

The semantic evaluation M(t, A) of an attack-defence tree t € Tree, and a
given set A is illustrated in Table 9. The evaluation follows the corresponding one
for the Boolean case, described in the Sect. 3.1. The only difference is that the
tree t is evaluated over the Boolean assignments by considering the probabilistic
analysis P[t] instead of the Boolean B[t] one (and considering the corresponding
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Table 9. The probabilistic semantic evaluation of an attack-defence tree with cost

M(t, A) = (MR~ ({ ("7 (£),bp) | cost(myp, A) < by}),
MR™™({ ("7 (t),bp) | cost(my, A) < bp}))

7P (t) = max{P[t](mp, ms) | Mo Boolean assignment}

7 () = min{P[t](mp, ms) | Mo Boolean assignment}

_ c(a), if mp(a) =t
cost(myp, A) = Z {0, if mp(a)=ff

ac

probabilistic values for each action). The result of the evaluation is the pair of
the sets MR~ and MR™ ™, corresponding to the set of Pareto efficient solutions.
The algorithmic evaluation INT(t) for a tree t € Tree, is given in Table 10.
It traverses the tree from the leaves to the root according to the rules presented
in Table 10. The rules follow the corresponding ones of the Boolean setting.
Analogously to the previous section, we shall restrict to linear trees in order
to show the equivalence of the two evaluations.

Theorem 4. Ift € Tree is a linear tree, then M(t,yield(t)) = INT(t).

Again, a syntactic restriction allows to develop a sound evaluation technique
that is linear in the size of the tree as opposed to the exponential complexity
that characterises the general case.

Running Example. Consider the linear attack-defence tree t discussed in
Figure 1. Table 6 lists possible values for probability and cost for basic actions.
In order to detect the attacks with maximum probability of success and
minimum cost, we apply the algorithmic evaluation. At the root we obtain:
INT(t) = ({(0,0)}, “The plot in Figure 2”}). The overall result of the evalua-
tion, i.e., the set of efficient solutions for the goal representing the Pareto frontier
of the problem, is displayed in Figure 2. The probability of successful attacks
ranges from 0 to 0.97 and the corresponding cost ranges from 0 to 695. The inter-
mediate points on the Pareto frontier indicate other optimal solutions. We can
conclude that the system under study is (p,c)-vulnerable for all the incomparable
pairs in the Pareto frontier. In particular, the attack is not trivially attainable
(all pairs with probability greater than zero require a cost greater than zero).

4 Attack-Defence Trees with Multiple Cost

In this section we extend further the model to deal with multiple costs for basic
actions. Observing that the Boolean setting is a special case of the probabilistic
one, in the following we describe the extended model only in the probabilistic
setting, focusing on the extensions with respect to a single cost model.
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Table 10. The probabilistic algorithmic evaluation of an attack-defence tree with cost

(MR™™ ({(M(a),0), (M2(a), c(a))}),
INT(a) =< MR ({(Mi(a),0), (M2(a),c(a))})) if a € Acty
(MR™~({(M2(a),0)}), MR*~ ({(Mi(a),0)})) if a € Acto
INT (&n(t1,t2)) = let (Vi,W;) = INT(t;),1 € {1,2}
in (MR™~({(p-p'sc+ ) | (p,c) € Vi, (p',¢) € V2}),
MR ({(p-p'sc+ ) | (p,c) € Wi, (p, ) € Wa}))
INT (& (t1,t2)) = let (Vi,W;) = INT (&), € {1,2}
in (MR~ ({(1 = (1L =p)(1=p),c+ )| (p,c) € Vi, (¢, ) € Va}),
MR ({1 =1 =p)A=p)ct+c) | (p,c)eWr, (¢, ') €Wa}))
INT(&-(t)) = let (V,W) = INT(t)
in (MR™~({(1 = p,e) | (n,0) EW}), MR*~({(1 = p, ) | (p,c) EV}))
INT(&~(t)) = let (V,W) = INT(t)

in (MR==({(1 —p,c) | (p,c) eW}), MR*=({(1 = p,c)| (p,c) EV}))
INT (&true) = {10} {10}
INT (&sase) = ({(0,0)},{(0,0)})

We consider the set D = [0,1] x RZ,. We assume that each basic action of the
proponent a € Act, has a vector of n associated costs, a vector of 0’s in case of
not performing a, and a vector v : Act, — R%, in case of performing a. When
adding costs we resort to point-wise summation of vectors. We set the cost of
the opponent’s actions to vectors of 0’s.

Analogously to the previous sections, we deal with a multi-parameter opti-
misation with incomparable values. We give two evaluation techniques by using
Pareto efficiency. In order to generalise the functions MR~ and MR, defined
in the previous section, we introduce polarity modifications of the comparison
operators as follows: J7 is 3, 37 is 3, 3~ is C and 3~ is C. The sign “+” cor-
responds to the maximisation of the parameters and keeps the operator as it is,
while the sign “—” corresponds to the minimisation of the parameters, therefore
it changes the operator.

We define a general frontier function, where s; € {+, —} and Z C D, as follows:

MRso,~~~,sn(Z) - {(x0,~-~,xn) cZ ‘ V(w6,~-~,x;) c7Z:
xh A0 g A Azl Tk S xy =To A ANxh, =z}
:{(xO,"'axn)GZ‘V(:EE),"":E;L)GZ:
((xo 30 z() V(x1 21 2)) V-V (x, 2" 2,)) A---
A ((wo 2% @) V(zy I ah) VooV (2 27 a))}
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Fig. 2. Pareto efficient solutions for the attack-defence tree ¢

The function MR?*°""** computes the efficient solutions for multiple param-
eters by maximising the parameter values if s; = + and minimising it if s; = —.
Note that each 1% is in fact a total order (on [0,1] or R>¢) and hence —(a} 3% x;)
is equivalent to x; 1% z} (as in Sect. 3). Observe that with this notation we get
MR~ when we take n =1 and sg = s; = —, and we get MR™*™ when we take
n—1and sg = +,s1 = —

The definition of the semantic and algorithmic evaluations closely follows that
of the corresponding ones in the Sect. 3.2. Similarly, we show their equivalence
by restricting to linear trees.

For better understanding the extension to multiple costs, let us explain the
rule for conjunction in the algorithmic evaluation. The rule is as follows:

INT(&/\(tth)) = let (V;,Wz) = [NT(ti),i S {1,2}

in (MR~ "({(p-p 1+, ent )|
(pvcla" sen) € V1, (D1, 0p) € Va}),
MR T{ppieatd, e+ ) |
(p,c1y oo en) € Wh, (ply ey, -5 ¢) € Wal))

First, it computes all possible combinations of pairs from both sub-trees t;
and to by multiplying probabilities and summing costs. Then, it applies functions
MR in order to get the Pareto efficient solutions. This is sound due to the
point-wise ordering of the set.

5 Related Work

We now expand on the comparison with related work given in Sect. 1. Different
graphical approaches have been studied, for evaluating the security of a system.
A historical overview on existing graph-based approaches for security threats is
given by Pietre-Cambacédes and Boussou [11]. Moreover, Kordy et al. summarise
the existing methodologies for analysing attack and defence scenarios in [12].
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As we mentioned in Sect. 1, Schneier developed attack trees as an approach
to analyse the security of complex systems [3]. Further extensions of attack
trees based on Schneier’s model have been considered, such as attack graphs
[13,14] and dynamic attack trees [15,16], as well as tools for modelling [17,18]
and generating automatically [19] attack trees. Mauw and Oostdijk give a formal
semantics of attack trees in [20]. Moreover, Buldas et al. developed a multi-
parameter attack tree model for security analysis against rational attacks [21],
subsequently extended in [22,23,24].

While attack trees focus on evaluating attack scenarios, other tree-structure
representations incorporate countermeasures. Bistarelli et al. introduced an ex-
tension of attack trees with defender actions to the leaves of a tree [4]. Edge et
al. proposed protection trees, a methodology for allocating appropriate protec-
tions against specified attacks such that the success probability of the defender
is maximised [25]. Zonouz et al. [26] and Roy et al. [5] proposed a methodology
for attack and defence modelling that combines analytical methods of attack and
defence trees. They capture attacks and countermeasures at any node of a tree.

Finally, Kordy et al. [6] formalised attack-defence trees as an intuitive model
for presenting attacks and countermeasures in a single view. For evaluating
attack-defence trees the typical bottom-up approach of attack trees is extended.
Attack-defence trees are interpreted with various semantics to answer questions
such as the vulnerability of the system to an attack or the minimum cost of an
attack [6]. Most evaluations [6,27,28] analyse a specific aspect of a scenario and
do not consider trees with multiple parameters.

Further developments on attack-defence trees have been carried out, such as
studying the relationship between such trees and two-player games [8] and com-
bining the tree methodology with Bayesian networks for analysing probabilistic
measures of attack-defence trees with dependent actions [28].

6 Conclusion

The growing centrality of technology requires a thorough investigation of the se-
curity properties of complex systems with respect to cyber and physical attacks,
as well as consideration of possible defences undertaken to counter such attacks.

Attack-defence trees are a useful tool to study attack-defence scenarios and
present the interaction between an attacker and a defender in an intuitive way.
Moreover, such models are relied on to develop quantitative analyses of attacks
and defences. Many evaluation methods consider one-parameter trees or analyse
multi-parameter trees focusing on one specific aspect of the scenario, such as
probability of success or cost. Nonetheless, in case of multi-parameter models,
conflicting objectives may lead to incomparable values, which require to optimise
all parameters at once on pain of computing sub-optimal solutions.

In order to tackle this issue, we have presented evaluation techniques for multi-
parameter attack-defence trees that optimise all parameters at once, leveraging
the concept of Pareto efficiency. Our developments have been carried out on a
new language-based formalism for attack-defence trees, which extends standard
trees with negation and with a novel operator for player alternation. In this
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language, the interaction between an attacker and a defender is made explicit
by associating a player to each node thanks to a simple type system. We have
called proponent the player at the root and opponent the other player.

We have developed analyses of attack-defence scenarios both in the Boolean
and in the probabilistic settings, investigating aspects such as the feasibility and
the cost of an attack or a defence. For each case we have illustrated the natural
semantic evaluation technique as well as an algorithmic evaluation which enjoys a
dramatic improvement in complexity, and we have proven under which conditions
the latter can be relied on in place of the former. Both methods characterise the
goal of the scenario with a set of Pareto efficient solutions.

Our current methods focus on the players independently: for evaluating the
cost of the proponent p, we set the cost of the opponent to 0 and assign a budget
to p. In future work, we plan to extend the model with a budget for the opponent,
so as to compute the optimal solutions for both players at once.
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