
PriCL: Creating a Precedent, a Framework

for Reasoning about Privacy Case Law

Michael Backes, Fabian Bendun, Jörg Hoffmann, and Ninja Marnau

CISPA, Saarland University
{backes,bendun,hoffmann,marnau}@cs.uni-saarland.de

Abstract. We introduce PriCL: the first framework for expressing and
automatically reasoning about privacy case law by means of precedent.
PriCL is parametric in an underlying logic for expressing world prop-
erties, and provides support for court decisions, their justification, the
circumstances in which the justification applies as well as court hierar-
chies. Moreover, the framework offers a tight connection between privacy
case law and the notion of norms that underlies existing rule-based pri-
vacy research. In terms of automation, we identify the major reasoning
tasks for privacy cases such as deducing legal permissions or extract-
ing norms. For solving these tasks, we provide generic algorithms that
have particularly efficient realizations within an expressive underlying
logic. Finally, we derive a definition of deducibility based on legal con-
cepts and subsequently propose an equivalent characterization in terms
of logic satisfiability.

1 Introduction

Privacy regulations such as HIPAA, COPPA, or GLBA in the United States
impose legal grounds for privacy [25,30,31]. In order to effectively reason about
such regulations, e.g., for checking compliance, it is instrumental to come up
with suitable formalizations of such frameworks along with the corresponding
automated reasoning tasks.

There are currently two orthogonal approaches to how regulations are ex-
pressed and interpreted in real life that both call for such a formalization and
corresponding reasoning support. One approach is based on explicit rules that
define what is allowed and what is forbidden. The alternative is to consider prece-
dents, which is the approach predominantly followed in many countries such as
the US. Precedents are cases that decide a specific legal context for the first time
and thus serve as a point of reference whenever a future similar case needs to be
decided. Moreover, even judges in countries that do not base their legal system
on precedents often use this mechanism to validate their decision or shorten the
process of argumentation.

Case law is particularly suitable for resolving vague formulations that natu-
rally occur in privacy regulations like the definition of ‘disclosure’ in COPPA.
Here, case law could reference decisions that define what circumstances are qual-
ified as a non-identifiable form of personal data, thereby aiding the user by
providing judicially accurate interpretation of such terms.
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While rule-based frameworks have received tremendous attention in previous
research (see the section on related work below) there is currently no formaliza-
tion for case law that is amenable to automated reasoning.

Our Contribution. Our contribution to this problem space is threefold:
– We derive important legal concepts from actual judicial processes and rele-

vant requirements from related work. The resulting framework PriCL, can
be applied to the judicature of many different countries as it does not assume
any specific argumentation.

– We tailor the framework for privacy regulations. In particular, our privacy
specific case law framework is compatible with former policy languages since
it has only minimal requirements regarding the logic. Therefore, it is possible
to embed other formalizations into our framework.

– We define the major reasoning tasks that are needed to apply the framework
to privacy cases. In particular, these tasks allow us to derive requirements
for the underlying logic which we analyze. Several logics allow an embedding
of the reasoning tasks by giving an equivalent characterization of the tasks.
Consequently, we are able to select a well suited logic.

Related Work. There are plenty of privacy regulations that companies are
required to comply with. In the US there are regulations for specific sectors,
e.g., HIPAA for health data, COPPA for children’s data, or GLBA and RFPA
for financial data. In the EU, the member states have general data protection
codes. The legislative efforts to harmonize these national codes via the EU Data
Protection Regulation [18] are proceeding and already provide for identifying
legislative trends. The importance and impact of these privacy regulations has
brought the interpretation thereof to the attention of more technically focused
privacy research [22,8,2,17,13,26].

Policy languages were mainly developed in order to model these regulations
and to reflect companies’ policies. Many of the modern logics modeling regu-
lations are based on temporal logic [19,10,15,29,9] and were successfully used
to model HIPAA and GLBA [16]. While these logics focus on expressiveness in
order to reflect the regulations, the logics for company policies focus on enforce-
ment [7,3] and thus also on authorization [1,3]. Consequently, company policies
are mostly based on access control policies [24,21].

Bridging the gap between the regulation policies and the company’s policies
leads to automating compliance checks [28]. For many deployed policies, i.e., the
ones that are efficiently enforceable, this is currently not possible due to the lack
of decidability regarding the logics used to formalize regulations. However, for
these cases there exist run-time monitoring tools that allow compliance auditing
on log files [8,19,11,10]. In particular, such auditing was invented for HIPAA [19].

A different approach for achieving compliance is guaranteeing privacy-by-
design [23,14,20]. However, the policy of these systems still needs to be checked
for compliance with the relevant privacy regulations.
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2 Ingredients

In the first step we illustrate which components are essential for a case law frame-
work. To that end, we analyze actual judicial processes and derive ingredients
for the framework from the relevant legal principles. Hence, in the following,
we analyze a representative court decision1 and discuss the implications for our
framework.

The Conflict. “This matter involves three certified questions from the Circuit
Court of Harrison County regarding whether applicable state and federal privacy
laws allow dissemination of confidential customer information [...] during the
adjustment or litigation of an insurance claim.”

Every case reaching a court is based on a conflict, i.e., there is some question,
as the one above, for which different parties have different opinions on its truth
value. As a requirement for the framework, we can conclude that there has to
be a conflict that needs to be resolved by a decision. This decision can be an
arbitrary statement; hence, we call it a decision formula.

Sub-cases. A decision’s justification usually involves decisions of several sub-
cases in order to arrive at the final decision formula, e.g. the court needs to
decide whether a specific law is applicable before examining what follows from its
application. Each of these individual sub-case decisions may become a precedent
for decisions which deal with a similar sub-case.

The Circumstances. “[The plaintiff] concedes that under the definitions of the
GLBA [...] information he requests is technically nonpublic personal information
of a customer which the Act generally protects from disclosure[...].”

Every case contains some factual background. These facts constitute some
statements which are not under discussion but measurably true, e.g., that an
address is nonpublic personal information. We summarize these facts in a case
description.

Referencing Related Court Decisions. “[T]he United States District Court
for the Southern District of West Virginia handed down an opinion in Marks
v. Global Mortgage Group, Inc., 218 F.R.D. 492 (S.D.W.Va.2003), providing us
with timely and pertinent considerations.”

The key of case law is referencing other cases in order to derive statements.
In the example case, this capability is used to introduce an argumentation from
a different court. This mechanism is also used when statements are derived
from regulations. Consequently, the framework has to be capable of introducing
statements during the case justification by references to their origin.

Argumentation Structure of the Justification. “[The] GLBA provides
exceptions to its notification and opt-out procedures, including [...]”

1 The quotes are taken from MARTINO v. BARNETT, Supreme Court of Appeals of
West Virginia, No. 31270, Decided: March 15, 2004. The decision text is public at
http://caselaw.findlaw.com/wv-supreme-court-of-appeals/1016919.html

http://caselaw.findlaw.com/wv-supreme-court-of-appeals/1016919.html
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The argumentation structure of the justification is not linear, i.e., of the form
A ⇒ B ⇒ . . . ⇒. But the arguments can be ordered in a tree form. The
exceptions stipulated by the GLBA are enumerated and then discussed in the
case justification. If more than one is applicable, these may serve as independent
decision grounds, each being a potential precedent in its own right.

World Knowledge. “[We] conclude that nonpublic personal information may
be subject to release pursuant to judicial process.”

In the argumentation, the court leaves to the reader’s knowledge that the
plaintiff’s litigation actually is a “judicial process”. These open ends in the ar-
gumentation are neither explicitly covered by a decision nor by a case reference.
Therefore, we need some world knowledge KBW that will cover these axiomatic
parts of the argumentation.

Precedents and Stare Decisis. The doctrine of stare decisis (to stand by
things decided) or binding precedents is unique to common law systems. The
decisions of superior courts are binding for later decisions of inferior courts (ver-
tical stare decisis). These binding precedents are applied to similar cases by
analogy.

In addition to the binding precedent, there also exists the persuasive prece-
dent: “While we recognize that the decision of the Marks court does not bind
us, we find the reasoning in Marks regarding a judicial process exception to the
GLBA very persuasive and compelling”.

Stare decisis does not apply in civil law systems, like those of Germany or
France. However, these systems have a jurisprudence constante, facilitating pre-
dictable and cohesive court decisions. Though civil law judges are not obliged
to follow precedents, they may use prior decisions as persuasive precedents and
oftentimes do so.

Material Difference. Stare decisis only applies if the subsequent court has to
decide on a case or sub-case that is similar to the precedent. Therefore, if the
court finds material difference between the cases, it is not bound by stare decisis.
In practice, judges may claim material difference on unwarranted grounds, which
may lead to conflicting decisions of analoguous cases within our framework. Thus,
we need to be able to account for false material difference.

Involving Court Hierarchies. “[W]e look initially to federal decisions in-
terpreting the relevant provisions of the GLBA for guidance with regard to the
reformulated question. However, the issue proves to be a novel one in the country
since few courts, federal or state, have addressed the exceptions to the GLBA.”

For our framework we need to take into account court hierarchies to identify
binding precedents. In common law jurisdictions, inferior courts are bound by the
decisions of superior courts; in civil law jurisdictions superior courts usually have
higher authority without being strictly binding. In federal states like the USA
or Germany we need to account for parallel hierarchies on state and on federal
levels. This complex hierarchy has significant implications on stare decisis.
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Hence, in our framework every case needs to be annotated by a court which
is part of a court hierarchy, to identify the character of precedents, binding or
potentially persuasive.

Ratio Decidendi and Obiter Dicta. Regarding the court’s decision text,
we need to differentiate between two types of statements. The actual binding
property of a precedent has only those statements and legal reasoning that are
necessary for the rationale of the decision. These necessary statements as called
ratio decidendi and constitute the binding precedent. Further statements and
reasoning that are not essentially necessary for the decision are called obiter
dicta. These are not binding but can be referenced as persuasive precedents.

For our reasoning framework we need to differentiate and annotate statements
into these two different categories to correctly identify binding precedents.

3 Defining the PriCL Framework

Reflecting the observations just made, we define cases (Section 3.1) and case
law databases (Section 3.2). Thereby we also explain how to model the legal
principles described in Section 2. Then, we define how the database can be
used in order to deduce facts outside the framework (Section 3.3). We analyze
our framework, validating a number of basic desirable properties of case law
databases (Section 3.4). We finally show, for privacy regulations specifically,
that our framework matches the requirements identified by previous work [8]
(Section 3.5).

Throughout this section, we assume an underlying logic in which world proper-
ties are expressed and reasoned about. Our framework is parametric with respect
to the precise form of that logic. The requirements the logic has to fulfill are inter-
preting predicates as relations over objects, supporting universal truth/falseness
(denoted respectively as� and⊥), conjunction (denoted ∧), entailment (denoted
A |= B if formula A entails formula B), and monotonicity regarding entailment,
i.e., if A |= B then A∧C |= B for any formula C. As an intuition when reading
the following, the reader may assume we are using a first-order predicate logic.

3.1 Introducing Cases

As we have seen, a case consists of a decision formula, a case description, a court,
and a proof tree. The first three components are straightforward to capture for-
mally (courts are represented by a finite set Courts of court identifiers). Designing
the proof tree is more involved since it needs to capture the judge’s justification.
We distinguish between different kinds of nodes in the tree depending on the
role the respective statements play in the justification: Does a sentence make an
axiomatic statement, or form part of the case description? Does it refer to a pre-
vious case, adopting a decision under particular prerequisites? Does it make an
assessment on the truth of a particular statement (e.g., that a particular piece of
information is or is not to be considered private) under particular prerequisites?
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We therefore reflect these “standalone” statements in the leaf nodes of the proof
tree, categorized by the three different types of statements mentioned.

The inner nodes of the tree perform logical deductions from their children
nodes, representing the reasoning inherent in the justification, i.e., the con-
clusions that are made until finally, in the tree root, the decision formula is
reached. We differentiate between two kinds of reasoning steps, AND-steps and
OR-steps.The OR-steps reflect the principle of independent decision grounds . The
AND-step is the natural conclusion steps that is used to ensure that the decision
made is reached through the argumentation.

In order to avoid a recursive definition, we need a (possibly infinite) set of
case identifiers CI . Throughout the paper we assume a fixed given set CI .

Definition 1 (Case). A case C is a tuple (df,CaseDesc,ProofTree, crt) s.t.

– df is a formula that we call the decision formula of C.
– CaseDesc is a formula describing the case’s circumstances.
– ProofTree is a (finite) tree consisting of formulas f where the formula of the

root node is df. Inner nodes are annotated with AND or OR and leaves are
annotated with l ∈ {Axiom,Assess} ∪ {Ref(i) | i ∈ CI}. Leaf formulas l are
additionally associated with a prerequisite formula pre. For leaves annotated
with Axiom, we require that pre = l.

– crt ∈ Courts.

For leaf formulas l, we refer to l as the node’s fact, and we will often write these
nodes as pre → fact where fact = l.

By the prerequisites of an inner node n with children nodes n1, . . . , nk, de-
noted as pres(n), we refer to

∨
1≤i≤k pres(ni) if n is annotated by OR and∧

1≤i≤k pres(ni) if n is annotated by AND. The prerequisites of a case C are
the prerequisites of the root node and denoted by presC . We define analogously
the facts of a node and a case. We will often identify formulas with proof tree
nodes. Given a case C, by dfC we denote the decision formula of C.

Let C be a set of cases and μ : C → CI a function. If for every reference Ref(i)
in C, there is an D ∈ C with μ(D) = i, we call the set C closed under μ.

We assume world knowledge common to all cases. In the example of argumen-
tation ends in Section 2, it is assumed that the reader knows that the predicate
is judical process holds for any case. Formally, the world knowledge is a formula
KBW (naturally, a conjunction of world properties) in the underlying logic.

Definition 1 is purely syntactic, imposing no restrictions on how the different
elements are intended to behave. We will fill in these restrictions one by one as
part of spelling out the details of our framework, forcing cases to actually decide
a conflict and behave according to the legal principles. One thing the reader
should keep in mind is that pre → fact is not intended as a logical implication.
Rather, pre are the prerequisites that a judge took into account when mak-
ing the assessment that fact (e.g., the privacy status of a piece of information)
is considered to be true under the circumstances CaseDesc |= pre. This solely
captures human decisions such as trade-off decisions. However, the frameworks
allows reasoning about consequence of such decisions. The formulas presC , and
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respectively factsC , collect all prerequisites needed to apply the proof tree, and
respectively all facts needed to execute the proof tree; axiom leaves act in both
roles.

In principle, a case has the purpose to decide a formula df. However, while
justifying that a formula holds, e.g., that a telecommunication company has to
delete connection data after a certain amount of time, the court might decide
other essential subquestions. This concept is conveniently captured through the
notion of subcases.

Definition 2 (Subcase). Let C = (df,CaseDesc,ProofTree, crt) be a case and
n ∈ ProofTree a node. Let sub(n) be the subtree of ProofTree with root node n.
The case sub(C, n) := (n,CaseDesc, sub(n), crt) is a subcase of C.

Another aspect that is of interest when referencing cases is the degree of ab-
straction. For example, one case could decide that a specific telecommunication
company C has to delete connection information D of some user U after a spe-
cific time period t. The question of how this decision can be used in order to
decide the question for different companies C′ or different information D′ is cov-
ered by the legal concept of material difference. For this work, we assume that
a judge specifies the allowed difference in the prerequisites of a decision.

Our definition of cases, so far, is generic in the sense that it may be applied
to any domain of law. To configure our framework to privacy regulations more
specifically, a natural approach is to simply restrict the permissible forms of
decision formulas. We explicitly leave out legal domains such as individualized
sentencing or measuring of damages. Decisions in the privacy context are about
whether or not a particular action is legal when executed on particular data. We
capture this by assuming a dedicated predicate is legal action, and restricting
the decision formula to be an atomic predicate of the form is legal action(a),
where a is an action from an underlying set Actions of possible actions treated
as objects (constants) in the underlying logic. This can also be used in other
legal domains, but it turns out to be sufficient to connect our formalization of
privacy cases with other policy based approaches. Note that, in contrast to other
policy frameworks, we do not need to add the context to the predicate, as the
context is contained in the case, via nodes of the form “if the transfer-action a
has purpose marketing and the receiver is a third party, then ¬is legal action(a)”.
As decisions about the legality of actions are not naturally part of the common
world knowledge KBW , nor of the case description CaseDesc itself, our modeling
decision is to disallow the use of is legal action predicates in these formulas. In
other words, the world and case context describe the circumstances which are
relevant to determining action legality, but they do not define whether or not
an action is legal.

Definition 3 (Privacy Case). Given world knowledge KBW and action set
Actions, a case C = (df,CaseDesc,ProofTree, crt) is a privacy case if df ∈
{¬is legal action(a), is legal action(a)} for some action a ∈ Actions, where the
is legal action predicate is not used in either of KBW or CaseDesc.
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Starting to fill in the intended semantics of cases, we first capture the essential
properties a case needs to have to “make sense” as a stand-alone structure. Ad-
ditional properties regarding cross-case structures will be considered in the next
subsection. We will use the word “consistency” to denote this kind of property.
The following definition captures the intentions behind cases:

Definition 4 (Case Consistency). Let C = (df, CaseDesc, ProofTree, crt) be
a case. C is consistent if the following holds (for all nodes n where n1, . . . , nk

are its child nodes)
(i) KBW ∧ CaseDesc 	|= ⊥ (ii) KBW ∧ CaseDesc |= presC
(iii) KBW ∧ CaseDesc ∧ factsC 	|= ⊥
(iv)

∧

1≤i≤k

ni |= n if n is an AND step and
∨

1≤i≤k ni |= n if n is an OR step

Regarding (i), if the world knowledge contradicts the case description, i.e.,
KBW ∧ CaseDesc |= ⊥, then the case could not have happened. Similarly, (iii)
the case context must not contradict the facts that the proof tree makes use
of (this subsumes (i), which we kept as it improves readability). As for (ii),
the case context must imply the axioms as well as the prerequisites which the
present judge (assessments) or other judges (references to other cases; see also
Definition 7) assumed to conclude these facts. (iv) says that inner nodes must
represent conclusions drawn from their children.

The OR nodes of the proof tree reflect the legal argumentation structure of
independent decision grounds, the judge gives several arguments. If the judge of
a later case decides that one of these arguments is invalid for the conclusion, he
needs to be able to falsify only one of the branches and not the whole tree.

3.2 Combining Cases to Case Law Databases

The quintessential property of case law is that cases make references to other
cases. These references are necessary to formulate several legal principles.

The legal principles false material difference and reversing decisions define
requirements for when not to reference a case, either because it contains a mistake
or because the opinion has changed over time. Therefore, we consider the design
cleaner if both principles are covered by the same mechanism of the framework
and hence we denote single Assess nodes as unwarranted, i.e., to forbid the
reference to be used thereafter.

We require a different mechanism to differentiate cases we must agree with
and cases which we may use as reference. Unwarranting rather defines which
decisions must not be referenced. In particular, we need to differentiate between
assessments coming from the legal principles ratio decidendi and obiter dicta.
While the part of the decision following ratio decidendi leads to a binding prece-
dent, the obiter dicta part is not binding. Thus, we introduce predicates may-ref
and must-agree. It also provides a mechanisms to respect the court hierarchy. In-
tuitively, may-ref(C1, C2) denotes the circumstances that case C1 may reference
case C2; must-agree(C1, C2) analogously denotes that C1 must agree with C2.
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In addition, we need to introduce the concept of time by a total order ≤t over
cases. This concept allows us to formulate the requirement that references can
only point to the past.

Definition 5 (Case Law Database (CLD)). A case law database is a tuple
DB = (C,≤t,must-agree,may-ref, μ, U) such that:

– C is a set of cases. We will also write C ∈ DB for C ∈ C.
– μ : C → CI is an injective function such that C is closed under μ. In the

following we will also write Ref(D) for Ref(i) if μ(D) = i.
– Let <ref := {(C,D) | D contains a Ref(C) node} and ≤t is an order that we

call time order of the cases. It has to hold:
must-agree ⊆

may-ref ⊆≤t⊆ C×C
<ref⊆

– U specifies the unwarranted nodes, i.e., U : C → N is function such that
• N is a subset of the nodes labelled with Assess or Ref in the cases C.
• The set increases monotonic, i.e., C ≤t D =⇒ U(C) ⊆ U(D).

We denote the unwarranted nodes of DB by U(DB) :=
⋃

C∈C U(C).

The function μ is used to remove the recursive definition of a case and enables
us to connect cases via their individual semantics.

Regarding the relations must-agree and the may-ref we made two design deci-
sions. First, we require to not link must-agree and the actual references <ref. On
the one hand, there might be precedents which are not applicable, but on the
other hand, we want the freedom to define must-agree and may-ref only depend-
ing on the court hierarchy. The second design decision is to base these relations
on cases instead of decision nodes. As for the first decision, the purpose is to
make an instantiation of the definition only depending on the court, but we need
to be careful regarding the principles ratio decidendi and obiter dicta. Since one
of them is not binding, i.e., a must-agree and the other is. This differentiation
can be achieved by replacing every case with a set of cases. We require this to
be part of the modeling process. We did not add further restrictions since they
may depend on local law.

Example 1 (Must-agree and may-references for a court hierarchy). As-
sume the set of courts Courts is partially ordered by ≤§, i.e., there
is a court hierarchy. In this case, we could model must-agree by
must-agree = {(C1, C2) | Ci = (dfi, di, pi, crti), i ∈ {1, 2}, C1 ≤t C2,

and crt1 ≤§ crt2}.
It is easy to see that the must-agree predicate actually only depends on the

crt and not on the other parameters of the proof. We call this property court-
dependency.

The key property of unwarranted decisions is that they are time dependent.
In order to only use warranted decisions when referencing, we define warranted
subcases as follows:
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Definition 6 (Warranted Subcase). A subcase (df,CaseDesc,ProofTree, crt)
is warranted with respect to a set N of nodes if the case
(df,CaseDesc,ProofTree′, crt) is consistent where ProofTree′ is derived from
ProofTree by replacing every precondition of a node n ∈ N by ⊥.

It remains to define when a case law database can be considered to be con-
sistent. To that end, we consider case references and conflicts between cases.
Starting with the former, we obtain:

Definition 7 (Correct Case Reference). Let DB be a case law database and
C = (df,CaseDesc,ProofTree, crt) a case in DB. A leaf node pre → fact in
ProofTree annoted with Ref(D) references correctly if Du = (fact, CaseDescD,
ProofTreeD, crtD) is a warranted subcase of a case D ∈ DB w.r.t. U(C),
may-ref(C,D) holds and KBW ∧ pre |= presD. C references correctly if all its
leaves annoted with Ref(D) reference correctly.

Consider that, when referencing a (sub)case D as pre → fact from our case
C at hand, we are essentially saying that the same argumentation applied in D
can be applied in our case, to prove fact under circumstances pre. So we need to
show that this applicability of arguments is actually given. This is ensured by
KBW∧pre |= presD because presD collects all prerequisites, axioms and otherwise,
needed to apply D. Note that, if C is consistent, by Definition 4 (ii) it holds that
KBW ∧CaseDesc |= pre and thus KBW ∧CaseDesc |= presD. As the same applies
recursively to the case references made in D, we know that pre (given KBW and
CaseDesc) entails all judge decisions underlying the assessment fact.

We are now almost in the position to define consistency of the entire case law
database. The last missing piece in the puzzle is to identify when cases should
be considered to be in conflict — which naturally occurs in case law databases
where judges may make different decisions. We capture this through pairs of
cases whose prerequisites are compatible, while their facts are contradictory:

Definition 8 (Case Conflict). Let C1 be a case in DB and C2 be a warranted
case w.r.t. U(C1). We say that C1 is in conflict with C2 if and only if

(i) KBW ∧ presC1
∧ presC2

	|= ⊥ (ii) KBW ∧ factsC1 ∧ factsC2 |= ⊥
(iii) must-agree(C1, C2)

A case C is in conflict with DB if there is a D ∈ DB s.t. C is in conflict with D.

We ignore the case descriptions here, other than what is explicitly employed
as axioms in the proof trees: we consider cases to be in conflict if one could
construct a case (e.g., presC1

∧ presC2
) which would make it possible to come to

a contradictory decision. We define case law database consistency as follows:

Definition 9 (Case law database consistency). A case law database DB =
(C,≤t,must-agree,may-ref, μ, U) is

(i) case-wise consistent if every C ∈ DB is consistent,
(ii) referentially consistent if every C ∈ DB references correctly, and
(iii) hierarchically consistent if every C ∈ DB is not in conflict with DB.
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(iv) warrants consistently if for every C holds: U(C) contains all Ref(D) nodes
where D is an unwarranted subcase w.r.t. U(C).

We call DB consistent if it warrants consistently and is hierarchically, referen-
tially and case-wise consistent.

3.3 Deriving Legal Consequences: Deducibility and Permissibility

In the following we assume that the predicates may-ref and must-agree of the DB
do not depend on the case description, the decision formula or the proof tree, but
are only court dependent, cf. Example 1. As a consequence, we know the value of
these predicates for formula values and case descriptions which are not contained
as a case in the database given only the court level of the case. In other words, we
require an operation DB∪ {C} that puts C at the end of the timeline regarding
≤t, assigns a fresh identifier i ∈ CI to C with μ, uses as U(C) := U(DB),
and adopts must-agree,may-ref appropriately and is independent of the decision
formula and the proof tree. This operation is needed to apply the framework to
situations not contained in the database.

Obvious applications of our framework are advanced support for case search,
and consistency checking. A more advanced task is to evaluate the legality of
actions given the cases reflected in the database. For example, when designing
a course administration system, one may ask “Am I allowed to store students’
grades in the system?” Our formalism supports this kind of question at different
levels of strength, namely:

Definition 10 (Deducibility and Permissibility). Let DB = (C,≤t

,must-agree,may-ref, μ, U) be a consistent CLD, and f a formula. We say that f
is permitted in DB under circumstances CaseDesc and court crt if there exists a
case C = (f,CaseDesc,ProofTree, crt) such that ProofTree does not contain nodes
labeled with Assess, and DB ∪ {C} is consistent (where C is inserted at the end
of the timeline ≤t). We say that f is uncontradicted in DB under CaseDesc and
crt if ¬f is not permitted under CaseDesc and crt. We say that f is deducible if
it is permitted and uncontradicted.

For sets F of formulas, we say that F is permitted in DB under CaseDesc
and crt if there exists a set of cases {Cf = (f,CaseDesc,ProofTreef , crt) | f ∈
F} such that every ProofTreef does not contain nodes labeled with Assess, and
DB ∪ {Cf | f ∈ F} is consistent (where the Cf are inserted in any order at the
end of the timeline ≤t).

It might be confusing at first why we attach to f the weak attribute of being
“permitted” if we can construct a case supporting it. The issue is, both f and
¬f may have such support in the same database. This follows directly from the
freedom of different courts to contradict each other. If two courts at the same
level decide differently on the same issue, then that is fine by our assumptions.
Hence, to qualify a formula f for the strong attribute of being “deducible”, we
require the database to permit f and to not permit its contradiction.
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The concept of deducibility of a set F of formulas is interesting because, in
general, this is not the same as deducing each formula in separation. In partic-
ular, while each of f and ¬f may be permitted in the same database, {f,¬f}
is never permitted because adding the hypothetical supporting cases necessarily
incurs a hierarchical conflict. Permissibility of F is also not the same as per-
missibility of

∧
f∈F f because the latter makes a stronger assumption: all cases

referred to in order to conclude
∧

f∈F f must have compatible prerequisites.
So deducibility of formula sets forms a middle ground between individual and
conjunctive deducibility.

Theorem 1. There is a consistent case law database DB, case description
CaseDesc and court crt, such that there is a set F of formulas for each of the
following properties (in DB under circumstances CaseDesc and court crt):

(i) For every f ∈ F , f is permissible and F is not permissible.

(ii) F is permissible, but
∧

f∈F f is not permissible.

The proof and the details of all other proofs are given in the long version [6].

Characterizing Deducibility. Deducibility is the central concept for answer-
ing questions that are not explicitly answered by the database. However, Def-
inition 10 does not give an algorithmic description of how to decide whether
some formula is deducible. It is also inconvenient for proving properties about
permissibility and deducibility.

Intuitively, a formula should be permissible if there is a set of warranted
decisions which allow us to conclude the predicate and a formula f should be
deducible if in addition no set of decisions contradicts f . We will first define
supporting sets and then prove that the intuition matches the definitions of
permissibility and deducibility.

Definition 11 (Supporting set). Let DB = (C,≤t,must-agree,may-ref, μ, U)
be a consistent case law database, f a formula, CaseDesc a case description
and crt a court. A set A of leaf nodes in DB that are labeled with Assess is a
supporting set for formula f if the following holds:

(1) KBW ∧ CaseDesc |= ∧
(pre→fact)∈A pre

(2) KBW ∧ CaseDesc ∧∧
(pre→fact)∈A fact |= f

(3) KBW ∧ CaseDesc ∧∧
(pre→fact)∈A fact 	|= ⊥

A supporting set is unwarranted if it contains an unwarranted node w.r.t. any
C ∈ C. If it is not unwarranted it is warranted.

A supporting set is consistent with DB if DB∪ {(�,CaseDesc,ProofTree, crt)}
is consistent, where ProofTree consists of a root node with annotation � and leaf
nodes with annotation Ref(Cn) for n ∈ A, where Cn is the case that contains
node n.

Note that a supporting set that is consistent with the DB leads to consis-
tency, and correct referencing, and does not create any conflicts. The properties
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required in the definition are a consequence of the definition of database con-
sistency. A case constructed from a supporting set would simply refer to all
decisions and place the formula at the root.

The following theorem characterizes permissibility and deducibility using sup-
porting sets. This characterization suggests an algorithmic way of deciding the
properties and gives a tool for proving properties about case law databases.

Theorem 2. Let DB be a consistent case law database, f a formula, CaseDesc
a case description and crt a court. The following holds:

1. C ∈ DB with warranted node f ⇒ ∃A that supports f
2. f is permitted (under circumstance CaseDesc and court crt) ⇔ ∃A that

supports f , is warranted, and is consistent with DB
3. f is deducible ⇔ ∃A that supports f and is consistent with DB, and ∀B it holds

that B does not support ¬f , is unwarranted, or is not consistent with DB

3.4 General Properties of Case Law Databases

Introducing a new framework always comes with the risk of modeling errors.
A method for alleviating that risk is to prove properties that the framework is
expected to have. In order to validate the framework introduced here, we have
proven that (i) case references do not influence decisions (Theorem 2); in this
subsection we also prove that (ii) consistency is necessary for property (i) (The-
orem 3), and that (iii) neither ⊥ nor {f,¬f} are ever permitted (Theorem 4).

Regarding (i), we have shown that every formula f in the database can be
derived from a supporting set of previous decisions (Theorem 2) with the case
description and world knowledge. Hence there is no possible interplay between
case references that would make it possible to prove something not backed up
by judges’ decisions.

Regarding (ii), Theorem 2 implies immediately that, whenever a formula f
is deducible, then it follows from decisions made by judges in previous cases. It
is easy to verify that our restrictions are necessary to ensure this, i.e., that this
property gets lost if we forsake either case-wise or referential consistency:

Theorem 3. Let DB be a case law database, and let f be any formula that does
not entail ⊥. Then there exist cases C1 and C2, each with root node f and the
empty case desc �, such that (inserting Ci at the end of the timeline ≤t):
– If DB is case-wise consistent, then so is DB ∪ {C1}.
– If DB is referentially consistent, then so is DB ∪ {C2}.
– If there is a crt such that must-agree(crt) = ∅, then in addition this holds:

for each of i = 1, 2, if DB is hierarchically consistent, then so is DB ∪ {Ci}.
We remark that, by restricting the formula f only slightly, the proof of The-

orem 3 can be strengthened so as not to have to rely on a maximal court for
ensuring hierarchical consistency. In particular, if f is made of predicates that
do not occur anywhere in the case law database, then the cases C1 and C2 as
constructed cannot be in conflict with any other cases, thus preserving hierarchi-
cal consistency for arbitrary courts crt. We finally prove (iii), non-permissibility
of either ⊥ or {f,¬f}:
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Theorem 4. The formula ⊥ is not permitted in any case law database DB,
under any circumstances CaseDesc and court crt. The same holds for {f,¬f} if
crt ∈ must-agree(crt).

3.5 Privacy Cases and Norms

We now point out an interesting property of privacy cases, and of databases
consisting only of such cases. We call such databases privacy case law databases.

Rule based privacy policies are a well established and widely used concept. The
rules that are used are usually reflected by norms defining privacy regulations.
However, neither rules nor norms are reflected in the case law framework. In this
subsection, we show that we can use a natural definition of norms that can be
extracted from privacy cases. In addition, it is possible to transform a privacy
case to a normal form such that a norm that decides the case is represented.

At the core of privacy regulations are positive and negative norms, as in-
troduced by [8]. Positive norms are permissive in the sense that they describe
conditions that allow transactions with personal data (φ ⇒ is legal action(a)).
Negative norms, in contrast, define necessary conditions for such transactions,
i.e., they forbid transactions with personal data unless certain conditions are
met (φ ⇒ ¬is legal action(a)).
Definition 12 (Norms). Let a ∈ Actions. A norm is a formula that has the
form φ ⇒ p where is legal action(a) does not occur in φ. The norm is a positive
norm, denoted φ+, if p = is legal action(a) and a negative norm, denoted φ−, if
p = ¬is legal action(a). A norm φ decides p given f if KBW ∧ f |= φ.

In the case law framework, norms are hidden by judges’ assessments. However,
in the spirit of Theorem 2, norms are reflected by sets of cases that could be
referenced in order to support either the legality of an action (positive norm)
or its illegality (negative norm). In the following theorem, we show that we can
extract a norm for every privacy case avoiding the recursion of Theorem 2.

Theorem 5. Let DB be a consistent privacy case law database and
C = (df,CaseDesc,ProofTree, crt) ∈ DB. Then there is a norm
φ that decides df given CaseDesc. In particular, there are formulas
φW , φS such that is legal action(a) does not occur in these formulas and
(1) factsC ⇒ φW ∧ (φS ⇒ df) (2) φW ∧ (φS ⇒ df) ⇒ df

The formulas φW and φS can be used to construct a normal form of privacy
cases. In particular, this normal form is consistent and allows reading off norms.

Corollary 1 (Normal forms). Let DB = (C,≤t,must-agree,may-ref, μ, U) be
a privacy case law database, C = (df,CaseDesc,ProofTree, crt) ∈ DB be a case,
and D be the set of C’s leaf nodes. N(C) is the case that consists of a root
node df, two inner nodes φw and φS ⇒ df and the leaf nodes D as children of
both inner nodes. We call N(C) the normal form of C. If DB is consistent, then
(C\{C} ∪ {N(C)},≤t) is also consistent (where N(C) is placed at the position
of C w.r.t. ≤t).
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In order to define N(C), we need to duplicate the leaf nodes since the transfor-
mations to get φW and φS ignore which fact is needed to get the corresponding
formula. Thus, a leaf node’s fact could end up in both formulas φW and φS .

In conformance with [8], we can conclude from deducibility of an action that
there is a positive norm supporting it and show that no negative norm can be
applied, i.e., all negative norms are respected (Theorem 4).

4 Reasoning Tasks

We now discuss the reasoning tasks associated with our framework — how to
answer questions such as “are we allowed to send data D to some party P?”
— in more detail, giving an algorithm sketch and brief complexity analysis (in
terms of the number of reasoning operations required) for each.

Consistency. Analyzing and keeping the state of the case law database consis-
tent is of vital importance for its usefulness; cf. Theorem 4. As in the definition of
consistency, we split the task of checking consistency into case-wise, referential,
and hierarchical consistency. Due to their simplicity, we postpone the detailed
description of their algorithms to the long version [6].

All of these properties are defined per case, i.e., the case wise check of the
corresponding property has to be repeated |DB| times. Following the respective
definition, checking case consistency costs |ProofTree+ 1| entailment operations
and checking correct referencing for C costs references(C) where references(C) is
the number of nodes in C annotated by Ref(D). Hierarchical consistency can be
checked along the time line ≤t only testing for conflicts with earlier cases. So for
the i-th case, we need at most (i − 1) · 2 entailment checks, since every conflict
check requires 2. Consequently, we require |DB| · (|DB|+ 1) entailment checks.

Deducibility and Permissibility. As deducibility amounts to two consecutive
permissibility checks, we consider the latter exclusively. We are given a database
DB, a formula whose permissibility should be checked, as well as a case de-
scription CaseDesc and a court crt forming the circumstances.Permissibility is
equivalent to the existence of a supporting set A for f that is consistent with
DB. Thus the task of permissibility can be reduced to checking the existence
of a suitable set A. If the answer is “yes”, we can also output a witness, i.e., a
hypothetical case C showing permissibility. A straightforward means for doing
this is to set C := (f,CaseDesc,ProofTree, crt) where ProofTree consists of root
node f , one leaf node l labeled with Ref(D) for every D ∈ A, as well as one leaf
node KBW ∧ CaseDesc labeled with Axiom. For convenience, we will denote this
construction by C(A). See Algorithm 1.

The correctness of the algorithm is shown by Theorem 2. In contrast to our
previous algorithms, deducibility checking as per Algorithm 1 requires an expo-
nential number of entailment checks in the worst case. This raises the questions
(1) whether or not this exponential overhead is inherent in the complexity of de-
ciding permissibility, and (2) whether it is possible to encode the permissibility
test directly into the logic instead.
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Algorithm 1. Permissibility

Input : A formula f , case description CaseDesc, court crt, and a consistent
CLD DB

Output: A case C = (f,CaseDesc,ProofTree, crt) such that DB ∪ {C} is
consistent (where C is set to be the maximum w.r.t. ≤t), or ⊥ if no
such C exists

1 Test whether KBW ∧ CaseDesc |= ⊥. If so, output ⊥.
2 Test whether KBW ∧ CaseDesc |= f . If so, output

(f,CaseDesc,ProofTree, crt) where ProofTree is the proof tree consisting of a
leaf node labeled by Axiom containing f .

3 Set N := ∅.
4 for every D ∈ DB and every (pre → fact) ∈ D labeled Assess do
5 Check if KBW ∧ CaseDesc |= pre
6 Check if KBW ∧ CaseDesc ∧ fact 	|= ⊥
7 If both checks succeed, set N := N ∪ {(pre → fact)}.
8 end

9 for A ∈ 2N do
10 Check that KBW ∧ CaseDesc |= ∧

(pre→fact)∈A pre

11 Check that KBW ∧ CaseDesc ∧∧
(pre→fact)∈A fact |= f

12 Check that KBW ∧ CaseDesc ∧∧
(pre→fact)∈A fact 	|= ⊥

13 for every E ∈ DB with crt <§ crtE do
14 Check that E and C(A) are not in conflict.
15 end
16 If all three tests succeed, go on with step 18, otherwise continue with

the next D.
17 end
18 If a set A succeeded, output C(A), otherwise output ⊥.

The answer to (1) is a qualified “yes” in the sense that permissibility checking
essentially pre-fixes entailment checks with an existential quantifier. As entail-
ment checks correspond to universal quantification, this intuitively means that
for permissibility we need to test the validity of a ∃∀ formula, instead of a ∀
formula for entailment. So we add a quantifier alternation step, which typically
does come at the price of increased complexity. This line of thought also imme-
diately provides an intuitive answer to question (2), namely “yes but only if the
underlying logic contains ∃∀ quantification”.

Of course, both these answers are only approximate and only speak in broad
terms. Whether each is to be answered with “yes” or “no” depends on the precise
form of the logic, and on what kind of blow-up we are willing to tolerate. To
make matters concrete, we now consider three particular logics, namely first-
order predicate logic, description logic (more specifically a particular version
of ALC) and propositional logic (i.e., first-order predicate logic given a finite
universe and without quantification). We start with the latter.

In what follows, say we need to check whether formula f is permitted in
DB under circumstances CaseDesc. We abstract from the complications entailed
by maintaining hierarchical consistency, and assume that for crt, it holds that
must-agree(crt) = ∅.
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Theorem 6. For propositional logic, deciding permissibility is Σp
2 -complete.

Proof sketch. The set Σp
2 = NPNP, so containment is shown by guessing a

supporting set and verifying its properties using an NP oracle. For the hardness
we encode an QBF formula ∃x∀y : φ(x, y) in permissibility request for case law
database. We do this by encoding all possible values for x in the database and
asking for the permissibility of φ(x, y). Details can be found in [6].

As entailment testing in propositional logic is only coNP-complete, Theo-
rem 6 answers question (1) with “yes”, and answers question (2) with “no, unless
we are willing to tolerate worst-case exponentially large formulas”.

Theorem 7. Permissibility is equivalent to satisfiability of a formula whose size
is polynomial in the size of DB, CaseDesc, and f for

(1) first-order logic.
(2) the description logic ALC with concept constructors fills and one-of by role

constructors role-and, role-not, product, and inverse.2

Proof sketch. The result in [12] shows equality of expressivity of first-order logic
with at most two free variables. Thus we construct a suitable formula for the
first part. We do this by using existantial quantification in order to choose a
warranted supporting set and then design the formula such that it is satisfiable
if and only if the consistency properties of the case holds that can be constructed
from that supporting set (i.e., the case potentially output by Algorithm 1). All
parts that are not choosen by the existantial quantifier will be equivalent to �.
Details can be found in [6].

Norm Extraction. As seen in Section 3.5, privacy cases induce normative rules.
The format of rules gives the advantage that these are easy to enforce and bridge
the gap towards privacy policies. As shown by Theorem 5 we extract a norm for
every case in the database. The algorithm is postponed to the long version [6].
It basically turns the proof of Theorem 5 into an algorithm transforming the
logical formula of the case’s facts.

Let f be the size of the biggest formula in the leaves of C and n the number
of nodes in C. Then the size of the norm can become O(2f · n + |preC |). The
computation needs operations linear in that size.

5 Logic Selection

For modeling purposes as well as for computational purposes the choice of
logic is, of course, of paramount importance. The only hard requirement (“must
have”) that the logic, L, must meet is:
(i) Sufficient expressivity to tackle our framework and reasoning tasks. Pre-

cisely, the minimal requirement is for L to provide a language LF for for-
mulas, with reasoning support for tests of the form (a)

∧
φ∈Φ |= ⊥ and (b)

2 For details on this instance of ALC, please consult [12].
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∧
φ∈Φ |= ψ: These are the only tests our reasoning tasks demand from the

underlying logic. If LF is closed under conjunction and contains ⊥ (as will
be the case in our logic of choice), the requirement simply becomes to be
able to test whether φ |= ψ.

The soft requirements (“nice to have”) on the logic are:
(ii) Suitable for modeling real-world phenomena and knowledge, ide-

ally an established paradigm for such modeling tasks.
(iii) Decidability, and as low complexity as possible, of the relevant rea-

soning (e.g., satisfiability checks; cf. (i)).
(iv) Effective tool support established and available.
What we have just outlined is essentially a “wanted poster” for description
logic (DL) [4]. This is a very well investigated family of fragments of first-order
logic, whose mission statement is to provide a language for modeling real-world
phenomena and knowledge (ii), while retaining decidability and exploring the
trade-off of expressivity vs. complexity (iii). Effective tool support (iv) has been
an active area for two decades. Every DL provides a language to describe “ax-
ioms”, and even the most restricted DLs make it possible to answer queries
about the truth of an axiom relative to a conjunction of axioms, which is exactly
the test we require.

We briefly consider the description logic attributive concept language with
complements, for short ALC [27,5], which is widely regarded as the canonical
“basic” description logic variant (most other DLs extend ALC, in a variety of
directions). Description logic is a form of predicate logic that considers only
1-ary and 2-ary predicates, referred to as concepts and roles, respectively. As-
suming a set NC of concept names and a set NR of role names, DL makes it
possible to construct complex concepts, which correspond to a particular subset
of predicate-logic formulas with exactly one free variable. For ALC, the set of
complex concepts is the smallest set s.t.
1. �,⊥ and every concept name A ∈ NC are complex concepts, and
2. if C and D are complex concepts and r ∈ NR, then C �D, C �D, ¬C, ∀r.C,

and ∃r.C are complex concepts.
Here, � denotes concept intersection (logical conjunction), � denotes concept
union (logical disjunction), and ¬C denotes concept complement (logical nega-
tion). ∀r.C collects the set of all objects x such that, whenever x stands in
relation r to y, y ∈ C. Similarly, ∃r.C collects the set of all objects x such that
there exists y where x stands in relation r to y and y ∈ C.

ALC allows concept inclusion axioms, of the form C � D, where C,D are
complex concepts, meaning that C is a subset of D (universally quantified logi-
cal implication). ALC furthermore allows assertional axioms, of the form x : C
or (x, y) : r, where C is a complex concept, r is a role, and x and y are in-
dividual names (i.e., constants). An ALC knowledge base consists of finite sets
of concept inclusion axioms and assertional axioms (called the TBox and ABox
respectively), interpreted as conjunctions. The basic reasoning services provided
by ALC (and most other DLs) are testing whether a knowledge base KB is satisfi-
able, and testing whether KB |= φ where φ is an axiom. These decision problems
are decidable, and more precisely, ExpTime-complete for ALC.



362 M. Backes et al.

For our purposes, we can assume as our formulas LF conjunctions of axioms,
i.e., the smallest set that contains⊥, all axioms of the underlying DL (e.g.,ALC),
as well as φ∧ψ if φ and ψ are members of LF . In order to test whether φ |= ψ, we
then simply call the DL reasoning service “φ |= ψi?” for every conjunct ψi of ψ
and return “yes” iff all these calls did. In other words, we may use conjunctions
of DL axioms in the knowledge base, case descriptions, and proof tree nodes.

6 Conclusion

In this paper, we introduced PriCL, the first framework for automated reason-
ing about case law. We showed that it complies with natural requirements of
consistency. Moreover, we showed a tight connection between privacy case law
and the notion of norms that underlies existing rule-based privacy research. We
identified the major reasoning tasks such as checking the case law database for
consistency, extracting norms and deducing whether an action is legal or not.
For all these tasks, we gave algorithms deciding them and we did an analysis
that leads to ALC as a suitable instantiation for the logic.
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