
Riccardo Focardi
Andrew Myers (Eds.)

 123

4th International Conference, POST 2015
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015
London, UK, April 11–18, 2015, Proceedings

Principles of Security
and TrustLN

CS
 9

03
6

AR
Co

SS

Lecture Notes in Computer Science 9036

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
John C. Mitchell, USA
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA
Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel
C. Pandu Rangan, India
Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Riccardo Focardi · Andrew Myers (Eds.)

Principles of Security
and Trust
4th International Conference, POST 2015
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015
London, UK, April 11–18, 2015
Proceedings

ABC

Editors
Riccardo Focardi
Ca’ Foscari University
Venice
Italy

Andrew Myers
Cornell University
Ithaca
New York
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-46665-0 ISBN 978-3-662-46666-7 (eBook)
DOI 10.1007/978-3-662-46666-7

Library of Congress Control Number: 2015933999

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Heidelberg New York Dordrecht London
c© Springer-Verlag Berlin Heidelberg 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Foreword

ETAPS 2015 was the 18th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established
in 1998, and this year consisted of six constituting conferences (CC, ESOP, FASE,
FoSSaCS, TACAS, and POST) including five invited speakers and two tutorial speakers.
Prior to and after the main conference, numerous satellite workshops took place and
attracted many researchers from all over the world.

ETAPS is a confederation of several conferences, each with its own Program Com-
mittee and its own Steering Committee (if any). The conferences cover various aspects
of software systems, ranging from theoretical foundations to programming language
developments, compiler advancements, analysis tools, formal approaches to software
engineering, and security. Organizing these conferences into a coherent, highly syn-
chronized conference program enables the participation in an exciting event, having the
possibility to meet many researchers working in different directions in the field, and to
easily attend talks at different conferences.

The six main conferences together received 544 submissions this year, 152 of which
were accepted (including 10 tool demonstration papers), yielding an overall acceptance
rate of 27.9%. I thank all authors for their interest in ETAPS, all reviewers for the peer-
reviewing process, the PC members for their involvement, and in particular the PC Co-
chairs for running this entire intensive process. Last but not least, my congratulations to
all authors of the accepted papers!

ETAPS 2015 was greatly enriched by the invited talks by Daniel Licata (Wesleyan
University, USA) and Catuscia Palamidessi (Inria Saclay and LIX, France), both unify-
ing speakers, and the conference-specific invited speakers [CC] Keshav Pingali (Univer-
sity of Texas, USA), [FoSSaCS] Frank Pfenning (Carnegie Mellon University, USA),
and [TACAS] Wang Yi (Uppsala University, Sweden). Invited tutorials were provided
by Daniel Bernstein (Eindhoven University of Technology, the Netherlands and the Uni-
versity of Illinois at Chicago, USA), and Florent Kirchner (CEA, the Alternative Ener-
gies and Atomic Energy Commission, France). My sincere thanks to all these speakers
for their inspiring talks!

ETAPS 2015 took place in the capital of England, the largest metropolitan area in
the UK and the largest urban zone in the European Union by most measures. ETAPS
2015 was organized by the Queen Mary University of London in cooperation with
the following associations and societies: ETAPS e.V., EATCS (European Association
for Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). It was supported by the following sponsors: Semmle, Winton, Facebook,
Microsoft Research, and Springer-Verlag.

VI Foreword

The organization team comprised:

– General Chairs: Pasquale Malacaria and Nikos Tzevelekos
– Workshops Chair: Paulo Oliva
– Publicity chairs: Michael Tautschnig and Greta Yorsh
– Members: Dino Distefano, Edmund Robinson, and Mehrnoosh Sadrzadeh

The overall planning for ETAPS is the responsibility of the Steering Committee. The
ETAPS Steering Committee consists of an Executive Board (EB) and representatives of
the individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board comprises Gilles Barthe (satellite events, Madrid), Hol-
ger Hermanns (Saarbrücken), Joost-Pieter Katoen (Chair, Aachen and Twente), Gerald
Lüttgen (Treasurer, Bamberg), and Tarmo Uustalu (publicity, Tallinn). Other members of
the Steering Committee are: Christel Baier (Dresden), David Basin (Zurich), Giuseppe
Castagna (Paris), Marsha Chechik (Toronto), Alexander Egyed (Linz), Riccardo Focardi
(Venice), Björn Franke (Edinburgh), Jan Friso Groote (Eindhoven), Reiko Heckel (Le-
icester), Bart Jacobs (Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Christof
Löding (Aachen), Ina Schäfer (Braunschweig), Pasquale Malacaria (London), Tiziana
Margaria (Limerick), Andrew Myers (Boston), Catuscia Palamidessi (Paris), Frank
Piessens (Leuven), Andrew Pitts (Cambridge), Jean-Francois Raskin (Brussels), Don
Sannella (Edinburgh), Vladimiro Sassone (Southampton), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Cesare Tinelli (Iowa City),
Luca Vigano (London), Jan Vitek (Boston), Igor Walukiewicz (Bordeaux), Andrzej Wą-
sowski (Copenhagen), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work to make the 18th
edition of ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and to Springer for their support. Finally, many thanks
to Pasquale and Nikos and their local organization team for all their efforts enabling
ETAPS to take place in London!

January 2015 Joost-Pieter Katoen

Preface

This volume contains the papers presented at POST 2015: 4th Conference on Princi-
ples of Security and Trust, held during April 16–17, 2015 in London, UK. Principles of
Security and Trust is a broad forum related to the theoretical and foundational aspects
of security and trust. Papers of many kinds are welcome: new theoretical results, prac-
tical applications of existing foundational ideas, and innovative theoretical approaches
stimulated by pressing practical problems.

POST was created in 2012 to combine and replace a number of successful and long-
standing workshops in this area: Automated Reasoning and Security Protocol Analy-
sis (ARSPA), Formal Aspects of Security and Trust (FAST), Security in Concurrency
(SecCo), and the Workshop on Issues in the Theory of Security (WITS). A subset of
these events met jointly as an event affiliated with ETAPS 2011 under the name Theory
of Security and Applications (TOSCA).

There were 57 submissions to POST 2015, including 55 research papers and two
tool demonstration papers. Each submission was reviewed by three Program Committee
members, who in many cases solicited the help of outside experts to review the papers.
Electronic discussion was used to decide which papers to select for the program. The
papers that appear in this volume may differ from the initial submissions; it is expected
that some will be further revised and submitted for publication in refereed archival
journals.

The Committee decided to accept 17 papers. In addition to these papers, the volume
includes a contribution from the POST invited speaker Catuscia Palamidessi, who is
also one of the ETAPS unifying speakers.

We would like to thank the members of the Program Committee, the External Re-
viewers, the POST Steering Committee, the ETAPS Steering Committee, and Local Or-
ganizing Committee, who all contributed to the success of POST 2015. We also thank
all authors of submitted papers for their interest in POST and congratulate the authors
of accepted papers. Finally, we gratefully acknowledge the use of EasyChair for orga-
nizing the submission process, the Program Committee’s work, and the preparation of
this volume.

January 2015 Riccardo Focardi
Andrew Myers

Organization

Program Committee

Pedro Adão SQIG, IST, Lisboa, Portugal
Alessandro Armando DIBRIS - University of Genoa, Italy
David Basin ETH Zurich, Switzerland
Lujo Bauer Carnegie Mellon University, USA
Karthikeyan Bhargavan Inria, France
James Cheney University of Edinburgh, UK
Stephen Chong Harvard University, USA
Veronique Cortier CNRS, Loria, France
Riccardo Focardi Università Ca’ Foscari, Venezia, Italy
Joshua Guttman Worcester Polytechnic Institute, USA
Somesh Jha University of Wisconsin, USA
Ralf Kuesters University of Trier, Germany
Boris Köpf IMDEA Software Institute, Spain
Peeter Laud Cybernetica AS, Estonia
Ninghui Li Purdue University, USA
Matteo Maffei CISPA, Saarland University, Germany
Sergio Maffeis Imperial College London, UK
Heiko Mantel Technische Universität Darmstadt, Germany
Andrew Myers Cornell University, USA
David Naumann Stevens Institute of Technology, USA
Tamara Rezk Inria, France
Mark Ryan University of Birmingham, UK
Pierangela Samarati Università degli Studi di Milano, Italy
Graham Steel Cryptosense, France

Additional Reviewers

Arapinis, Myrto
Carbone, Roberto
Cheval, Vincent
Chowdhury, Omar
Chudnov, Andrey
Costa, Gabriele
Davidson, Drew
De Capitani Di Vimercati, Sabrina
De Carli, Lorenzo
Delignat-Lavaud, Antoine

Denzel, Michael
Dougherty, Daniel
Eigner, Fabienne
Foresti, Sara
Fragoso Santos, José
Fredrikson, Matt
Gay, Richard
Gazeau, Ivan
Hammer, Christian
Harris, William

X Organization

Hu, Jinwei
Jia, Limin
Kordy, Piotr
Kremer, Steve
Laur, Sven
Liu, Jia
Livraga, Giovanni
Lortz, Steffen
Melissen, Matthijs
Mohammadi, Esfandiar
Novakovic, Chris
Perner, Matthias
Pironti, Alfredo
Radomirovic, Sasa
Rafnsson, Willard

Rausch, Daniel
Rowe, Paul
Sasse, Ralf
Schneider, David
Solhaug, Bjørnar
Strub, Pierre-Yves
Torabi Dashti, Mohammad
Traverso, Riccardo
Truderung, Tomasz
Van Der Meyden, Ron
Weber, Alexandra
Willemson, Jan
Yu, Jiangshan
Zalienscu, Eugen

Contents

Invited Contribution

Quantitative Approaches to the Protection of Private Information:
State of the Art and Some Open Challenges . 3

Catuscia Palamidessi

Information Flow and Security Types

IFC Inside: Retrofitting Languages with Dynamic Information Flow
Control . 11

Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell,
and Alejandro Russo

Very Static Enforcement of Dynamic Policies . 32
Bart van Delft, Sebastian Hunt, and David Sands

The Foundational Cryptography Framework . 53
Adam Petcher and Greg Morrisett

On the Flow of Data, Information, and Time . 73
Mart́ın Abadi and Michael Isard

Risk Assessment and Security Policies

Pareto Efficient Solutions of Attack-Defence Trees . 95
Zaruhi Aslanyan and Flemming Nielson

Analysis of XACML Policies with SMT . 115
Fatih Turkmen, Jerry den Hartog, Silvio Ranise, and Nicola Zannone

Protocols

Automatically Checking Commitment Protocols in ProVerif without
False Attacks . 137

Tom Chothia, Ben Smyth, and Chris Staite

Generalizing Multi-party Contract Signing . 156
Sjouke Mauw and Saša Radomirović

Leakiness is Decidable for Well-Founded Protocols 176
Sibylle Fröschle

XII Contents

Abstractions for Security Protocol Verification . 196
Binh Thanh Nguyen and Christoph Sprenger

Hardware and Physical Security

Automated Backward Analysis of PKCS#11 v2.20 219
Robert Künnemann

A Safe Update Mechanism for Smart Cards . 239
Kristian Beilke and Volker Roth

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security
Protocols . 259

Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov,
and Carolyn Talcott

Timing Attacks in Security Protocols: Symbolic Framework and Proof
Techniques . 280

Vincent Cheval and Véronique Cortier

Privacy and Voting

Type-Based Verification of Electronic Voting Protocols 303
Véronique Cortier, Fabienne Eigner, Steve Kremer, Matteo Maffei,
and Cyrille Wiedling

Composing Security Protocols: From Confidentiality to Privacy 324
Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune

PriCL: Creating a Precedent, a Framework for Reasoning about
Privacy Case Law . 344

Michael Backes, Fabian Bendun, Jörg Hoffmann, and Ninja Marnau

Author Index . 365

Invited Contribution

Quantitative Approaches to the Protection

of Private Information: State of the Art and
Some Open Challenges

Catuscia Palamidessi

INRIA Saclay and LIX, École Polytechnique

Privacy is a broad concept affecting a variety of modern-life activities. As a
consequence, during the last decade there has been a vast amount of research on
techniques to protect privacy, such as communication anonymizers [9], electronic
voting systems [8], Radio-Frequency Identification (RFID) protocols [13] and
private information retrieval schemes [7], to name a few.

Until some years ago, the prevailing technology for privacy protection was
k-anonymity [17,16]. Similarly to other techniques like �-diversity, k-anonymity
is based on the principle of modifying opportunely the so-called quasi-identifier
attributes so that for every combination of quasi-identifier values in the data
set, there are at least k individuals with these values. The idea is that in this
way, each individual would be concealed in a group of at least k individuals
with the same characteristics. The problem is that this technique requires the
set of the quasi-identifier to be static, fixed in advance, and to be the same for
all the individuals. However, as the amount of publicly available information
about individuals grows, the distinction between quasi-identifier and non-quasi-
identifier attributes fades away: Any information that distinguishes one person
from another can be used to re-identify the person. For instance, any behavioral
or transactional profile like movie viewing histories, consumption preferences,
shopping habits, browsing patterns, etc. Furthermore, while many attributes
may not be uniquely identifying on their own, in combination with others any
attribute can be identifying. Due to these shortcomings, anonymity techniques,
and more in general, the privacy protection paradigm based on de-identifying
the data, have proved mostly ineffective against the emergence of powerful re-
identification algorithms based on background knowledge, cross-correlation be-
tween databases, and analysis of the network structure. For instance, Narayanan
and Shmatikov [15] conducted research on two large social networks, Flickr and
Twitter, and demonstrated that, by using their algorithm, one third of the users
who were members of both networks could be recognized in the completely
anonymous Twitter graph with only 12% error rate!

In recent years, a new framework for privacy, called differential privacy (DP)
has become increasingly popular in the area of statistical databases [10,12,11].
The idea is that, first, the access to the data should be allowed only through
a query-based interface. Second, it should not be possible for the adversary to
distinguish, from the answer to the query, whether a certain individual is present
or not in the database. Formally, the likelihood of obtaining a certain answer
should not change too much (i.e., more than a factor eε, where ε is a parameter)

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 3–7, 2015.

DOI: 10.1007/978-3-662-46666-7_1

4 C. Palamidessi

when the individual joins (or leaves) the database. This is achieved by adding
random noise to the answer, resulting in a trade-off between the privacy of the
mechanism and the utility of the answer: the stronger privacy we wish to achieve,
the more the answer needs to be perturbed, thus the less useful it is. One of the
important features of DP is that it does not depend on the side information
available to the adversary. Related to this, another important advantage is that
DP is robust with respect to composition attacks: by combining the results of
several queries, the level of privacy of every mechanism necessarily decreases,
but with DP it declines in a controlled way. This is a feature that can only
be achieved with randomized mechanisms: With deterministic methods, such as
k-anonymity, composition attacks may be catastrophic.

DP has proved to be a solid foundation for privacy in statistical databases.
Various people have also tried to extend it to other domains. However, there
are some inherent limitations that make it inadequate in several practical cases.
First, DP assumes that the disclosed information is produced by aggregating
the data of multiple individuals. However, many privacy applications involve
only a single individual, making differential privacy inapplicable. Second, even
when multiple individuals are involved, DP assumes that full range of possible
values of an individual needs to be completely protected. In applications where
perturbations in an individual’s value lead to a non-negligible change in the
result, this requirement is impractical since the noise that we need to add is so
big that the result becomes useless. In such cases, we wish to adapt our privacy
definition, to only partially protect the user’s data (which is often sufficient),
while lowering the noise to obtain an acceptable level of utility. Third, DP focuses
on the worst-case, since it requires the likelihood property to be satisfied for every
possible database and every possible result. There are situations, however, where
an average notion (weighed with the probabilities) would be more suitable for
measuring the risk. For example, an insurance company protecting credit cards
will be interested in knowing the probability that a card is compromised (and
the corresponding expected loss) in order to decide what fee to apply. And an
individual user may want to know the probability of a privacy breach in order
to decide whether it is worth employing some costly counter-measures.

Finally, differential privacy needs some care when handling correlated data.
In such situation, in fact, the adversary can filter out some of the noise by
statistical reasoning. The best solution offered so far to this problem is to assign
a privacy budget, and subtract from this budget a certain amount at every release
of information.

In our team, we have addressed some of these issues by defining an extended
DP framework in which the indistinguishability requirement is based on an ar-
bitrary notion of distance (dx-privacy, [5]). In this way we can naturally express
(protection against) privacy threats that cannot be represented with the stan-
dard notion, leading to new applications of the differential privacy framework. In
particular, we have explored applications in geolocation [3,4] and smart meter-
ing [5]. In the context of geolocation, the problem of the correlated data becomes
particularly relevant when we consider traces, which usually are composed of a

Quantitative Approaches to the Protection of Private Information 5

large amount of highly related points. We addressed this issue using prediction
functions [6], obtaining encouraging results.

A different approach for measuring privacy is to employ techniques from quan-
titative information flow (QIF). Such techniques aim at quantifying the leakage of
secret information through the observation of some public event, and have been
successfully applied in several application contexts, such as programs, anonymity
protocols, side channels attacks, etc. A common approach in this area is to use
notions from information theory to measure the correlation between secret and
observable information, the most prominent examples being Shannon and min-
entropy. In contrast to differential privacy, these approaches typically provide
average measures.

An important limitation of these entropy-based measures is that they treat
secrets as atomic data, ignoring the structure and the relationship between the
secrets. This structure is crucial for privacy applications: in geo-location systems,
for instance, the distance between secrets (which are locations) plays a crucial
role in defining the concept of privacy within a certain area.

Another limitation, common to both QIF and DP measures, is that they
ignore several parameters that should play a fundamental role in an effective and
realistic analysis of the privacy risk. First of all they ignore that the inference
of the confidential information may have a cost for the adversary, which may
considerably reduce the risk of an attack. Such cost can be, for example, in
terms of computational resources or of some kind of deterrent. Furthermore,
they ignore the gain that the adversary may obtain by acquiring the confidential
data, and which is not necessarily the same for all the data (the credit card of
Bill Gates is probably more worth than that of an average person. . .). Dually,
they ignore the amount of damage that the user may suffer from the privacy
breach, and that can be different depending on the data, or on the user.

The recently developed g-leakage framework [2,14,1] proposes a unified solu-
tion to the above issues by introducing the notion of gain function, which allows
to express the gain of the adversary when guessing a secret. This richer definition
of leakage has opened the way to new research directions.

Another shortcoming of the current approaches to privacy is that they are
only applicable when the public information is well delimited and acquired in
finite in time. Unfortunately, in most situation the source of public information is
not necessarily bound, and some additional information can always be revealed
in the future. At present, there are no techniques to verify privacy guarantees
in situations in which the revelation of public information is not bound in time.
This is a serious limitation, especially given that most of the systems which we
use nowadays have an interactive nature, and usually are not under the control
of the user.

In our team, we have started exploring a possible approach to this prob-
lem by defining a generalized version of the bisimulation distance based on the
Kantorovich metric. In contrast to the standard bisimulation distance, which
is additive and therefore not suitable to capture properties such as differential
privacy, our framework considers the Kantorovich lifting on arbitrary metrics.

6 C. Palamidessi

We have applied this framework to the particular case of the dx-privacy, and
provided an efficient method to compute it based on a dual form of the Kan-
torovich lifting. However, for other notions of leakage the quest for an efficient
implementation remains open, as well as that of a generalized dual form.

References

1. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Additive and multiplicative notions of leakage, and their capacities. In: IEEE
27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, July
19-22, pp. 308–322. IEEE (2014)

2. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of the 25th IEEE
Computer Security Foundations Symposium (CSF), pp. 265–279 (2012)

3. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Proceedings
of the 20th ACM Conference on Computer and Communications Security (CCS
2013), pp. 901–914. ACM (2013)

4. Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Optimal geo-
indistinguishable mechanisms for location privacy. In: Proceedings of the 21th
ACM Conference on Computer and Communications Security, CCS 2014 (2014)

5. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening
the Scope of Differential Privacy Using Metrics. In: De Cristofaro, E., Wright, M.
(eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013)

6. Chatzikokolakis, K., Palamidessi, C., Stronati, M.: A Predictive Differentially-
Private Mechanism for Mobility Traces. In: De Cristofaro, E., Murdoch, S.J. (eds.)
PETS 2014. LNCS, vol. 8555, pp. 21–41. Springer, Heidelberg (2014)

7. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence, pp. 41–50. IEEE (1995)

8. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435–487 (2009)

9. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320.
USENIX (2004)

10. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

11. Dwork, C.: A firm foundation for private data analysis. Communications of the
ACM 54(1), 86–96 (2011)

12. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Mitzenmacher, M.
(ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC), Bethesda, MD, USA, May 31-June 2, pp. 371–380. ACM (2009)

13. Juels, A.: Rfid security and privacy: A research survey. IEEE Journal on Selected
Areas in Communications 24(2), 381–394 (2006)

14. McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract Channels
and Their Robust Information-Leakage Ordering. In: Abadi, M., Kremer, S. (eds.)
POST 2014 (ETAPS 2014). LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg
(2014)

Quantitative Approaches to the Protection of Private Information 7

15. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proceedings of
the 30th IEEE Symposium on Security and Privacy, pp. 173–187. IEEE Computer
Society (2009)

16. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
Knowl. Data. Eng. 13(6), 1010–1027 (2001)

17. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclos-
ing information (abstract). In: ACM (ed.) PODS 1998. Proceedings of the ACM
SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems, Seat-
tle, Washington, June 1-3, pp. 188–188. ACM Press (1998)

Information Flow and Security Types

IFC Inside: Retrofitting Languages

with Dynamic Information Flow Control

Stefan Heule1, Deian Stefan1, Edward Z. Yang1, John C. Mitchell1,
and Alejandro Russo2,��

1 Stanford University, Stanford, USA
2 Chalmers University, Gothenburg, Sweden

Abstract. Many important security problems in JavaScript, such as
browser extension security, untrusted JavaScript libraries and safe inte-
gration of mutually distrustful websites (mash-ups), may be effectively
addressed using an efficient implementation of information flow control
(IFC). Unfortunately existing fine-grained approaches to JavaScript IFC
require modifications to the language semantics and its engine, a non-goal
for browser applications. In this work, we take the ideas of coarse-grained
dynamic IFC and provide the theoretical foundation for a language-based
approach that can be applied to any programming language for which ex-
ternal effects can be controlled. We then apply this formalism to server-
and client-side JavaScript, show how it generalizes to the C programming
language, and connect it to the Haskell LIO system. Our methodology
offers design principles for the construction of information flow control
systems when isolation can easily be achieved, as well as compositional
proofs for optimized concrete implementations of these systems, by re-
lating them to their isolated variants.

1 Introduction

Modern web content is rendered using a potentially large number of different
components with differing provenance. Disparate and untrusting components
may arise from browser extensions (whose JavaScript code runs alongside web-
site code), web applications (with possibly untrusted third-party libraries), and
mashups (which combine code and data from websites that may not even be
aware of each other’s existence.) While just-in-time combination of untrusting
components offers great flexibility, it also poses complex security challenges. In
particular, maintaining data privacy in the face of malicious extensions, libraries,
and mashup components has been difficult.

Information flow control (IFC) is a promising technique that provides security
by tracking the flow of sensitive data through a system. Untrusted code is confined
so that it cannot exfiltrate data, except as per an information flow policy. Signif-
icant research has been devoted to adding various forms of IFC to different kinds
of programming languages and systems. In the context of the web, however, there
is a strong motivation to preserve JavaScript’s semantics and avoid JavaScript-
engine modifications, while retrofitting it with dynamic information flow control.

�� Work partially done while at Stanford.

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 11–31, 2015.
DOI: 10.1007/978-3-662-46666-7_2

12 S. Heule et al.

The Operating Systems community has tackled this challenge (e.g., in [1])
by taking a coarse-grained approach to IFC: dividing an application into coarse
computational units, each with a single label dictating its security policy, and
only monitoring communication between them. This coarse-grained approach
provides a number of advantages when compared to the fine-grained approaches
typically employed by language-based systems. First, adding IFC does not re-
quire intrusive changes to an existing programming language, thereby also al-
lowing the reuse of existing programs. Second, it has a small runtime overhead
because checks need only be performed at isolation boundaries instead of (al-
most) every program instruction (e.g., [2]). Finally, associating a single security
label with the entire computational unit simplifies understanding and reasoning
about the security guarantees of the system, without reasoning about most of
the technical details of the semantics of the underlying programming language.

In this paper, we present a framework which brings coarse-grained IFC ideas
into a language-based setting: an information flow control system should be
thought of as multiple instances of completely isolated language runtimes or
tasks, with information flow control applied to inter-task communication. We
describe a formal system in which an IFC system can be designed once and then
applied to any programming language which has control over external effects
(e.g., JavaScript or C with access to hardware privilege separation). We formal-
ize this system using an approach by Matthews and Findler [3] for combining
operational semantics and prove non-interference guarantees that are indepen-
dent of the choice of a specific target language.

There are a number of points that distinguish this setting from previous
coarse-grained IFC systems. First, even though the underlying semantic model
involves communicating tasks, these tasks can be coordinated together in ways
that simulate features of traditional languages. In fact, simulating features in
this way is a useful design tool for discovering what variants of the features are
permissible and which are not. Second, although completely separate tasks are
semantically easy to reason about, real-world implementations often blur the
lines between tasks in the name of efficiency. Characterizing what optimizations
are permissible is subtle, since removing transitions from the operational seman-
tics of a language can break non-interference. We partially address this issue by
characterizing isomorphisms between the operational semantics of our abstract
language and a concrete implementation, showing that if this relationship holds,
then non-interference in the abstract specification carries over to the concrete
implementation.

Our contributions can be summarized as follows:
– We give formal semantics for a core coarse-grained dynamic information flow

control language free of non-IFC constructs. We then show how a large class
of target languages can be combined with this IFC language and prove that
the result provides non-interference. (Sections 2 and 3)

– Weprovide a proof technique to show the non-interference of a concrete seman-
tics for a potentially optimized IFC language by means of an isomorphism and
showa class of restrictions on the IFC language thatpreserves non-interference.
(Section 4)

Retrofitting Languages with Dynamic Information Flow Control 13

– We have implemented an IFC system based on these semantics for Node.js,
and we connect our formalism to another implementation based on this work
for client-side JavaScript [4]. Furthermore, we outline an implementation for
the C programming language and describe improvements to the Haskell LIO
system that resulted from this framework. (Section 5)

In the extended version of this paper we give all the relevant proofs and extend
our IFC language with additional features [5].

2 Retrofitting Languages with IFC

Before moving on to the formal treatment of our system, we give a brief primer
of information flow control and describe some example programs in our system,
emphasizing the parallel between their implementation in a multi-task setting,
and the traditional, “monolithic” programming language feature they simulate.

Information flow control systems operate by associating data with labels, and
specifying whether or not data tagged with one label l1 can flow to another la-
bel l2 (written as l1 � l2). These labels encode the desired security policy (for
example, confidential information should not flow to a public channel), while
the work of specifying the semantics of an information flow language involves
demonstrating that impermissible flows cannot happen, a property called non-
interference [6]. In our coarse-grained floating-label approach, labels are associ-
ated with tasks. The task label—we refer to the label of the currently executing
task as the current label—serves to protect everything in the task’s scope; all
data in a task shares this common label.

As an example, here is a program which spawns a new isolated task, and then
sends it a mutable reference:

let i = TI�sandbox (blockingRecv x , in IT� ! TI�x��)�
in TI�send IT�i� l IT�ref true��

For now, ignore the tags TI� · � and IT� · �: roughly, this code creates a new
sandboxed task with identifier i which waits (blockingRecv, binding x with
the received message) for a message, and then sends the task a mutable reference
(ref true) which it labels l. If this operation actually shared the mutable cell
between the two tasks, it could be used to violate information flow control if the
tasks had differing labels. At this point, the designer of an IFC system might
add label checks to mutable references, to check the labels of the reader and
writer. While this solves the leak, for languages like JavaScript, where references
are prevalently used, this also dooms the performance of the system.

Our design principles suggest a different resolution: when these constructs are
treated as isolated tasks, each of which have their own heaps, it is obviously the
case that there is no sharing; in fact, the sandboxed task receives a dangling
pointer. Even if there is only one heap, if we enforce that references not be
shared, the two systems are morally equivalent. (We elaborate on this formally
in Section 4.) Finally, this semantics strongly suggests that one should restrict the

14 S. Heule et al.

types of data which may be passed between tasks (for example, in JavaScript,
one might only allow JSON objects to be passed between tasks, rather than
general object structures).

Existing language-based, coarse-grained IFC systems [7, 8] allow a
sub-computation to temporarily raise the floating-label; after the sub-computation
is done, the floating-label is restored to its original label. When this occurs, the
enforcement mechanism must ensure that information does not leak to the (less
confidential) program continuation. The presence of exceptions adds yet more in-
tricacies. For instance, exceptions should not automatically propagate from a sub-
computation directly into the program continuation, and, if such exceptions are
allowed to be inspected, the floating-label at the point of the exception-raise must
be tracked alongside the exception value [7–9]. In contrast, our system provides the
same flexibility and guaranteeswith no extra checks: tasks are used to execute sub-
computations, but the mere definition of isolated tasks guarantees that (a) tasks
only transfer data to the program continuation by using inter-task communication
means, and (b) exceptions do cross tasks boundaries automatically.

2.1 Preliminaries

Our goal now is to describe how to take a target language with a formal
operational semantics and combine it with an information flow control language.
For example, taking ECMAScript as the target language and combining it with
our IFC language should produce the formal semantics for the core part of
COWL [4]. In this presentation, we use a simple, untyped lambda calculus with
mutable references and fixpoint in place of ECMAScript to demonstrate some
the key properties of the system (and, because the embedding does not care
about the target language features); we discuss the proper embedding in more
detail in Section 5.

Notation We have typeset nonterminals of the target language using bold font
while the nonterminals of the IFC language have been typeset with italic font.
Readers are encouraged to view a color copy of this paper, where target language
nonterminals are colored red and IFC language nonterminals are colored blue.

2.2 Target Language: Mini-ES

In Fig. 1, we give a simple, untyped lambda calculus with mutable references and
fixpoint, prepared for combination with an information flow control language.
The presentation is mostly standard, and utilizes Felleisen-Hieb reduction se-
mantics [10] to define the operational semantics of the system. One peculiarity
is that our language defines an evaluation context E, but, the evaluation rules
have been expressed in terms of a different evaluation context EΣ; Here, we follow
the approach of Matthews and Findler [3] in order to simplify combining seman-
tics of multiple languages. To derive the usual operational semantics for this
language, the evaluation context merely needs to be defined as EΣ [e] � Σ,E [e].
However, when we combine this language with an IFC language, we reinterpret
the meaning of this evaluation context.

Retrofitting Languages with Dynamic Information Flow Control 15

v ::= λx.e | true | false | a
e ::= v | x | e e | if e then e else e | ref e | !e | e := e | fix e
E ::= [·]T | E e | v E | if E then e else e | ref E | !E | E := e | v :=E | fix E

e1; e2 � (λx.e2) e1 where x �∈ FV (e2)

let x = e1 in e2 � (λx.e2) e1

T-app

EΣ [(λx .e) v] → EΣ [{v / x } e]

T-ifTrue

EΣ [if true then e1 else e2] → EΣ [e1]

Fig. 1. λES: simple untyped lambda calculus extended with booleans, mutable refer-
ences and general recursion. For space reasons we only show two representative reduc-
tion rules; full rules can be found in the extended version of this paper.

In general, we require that a target language be expressed in terms of some
global machine state Σ, some evaluation context E, some expressions e, some set
of values v and a deterministic reduction relation on full configurationsΣ×E×e.

2.3 IFC Language

As mentioned previously, most modern, dynamic information flow control lan-
guages encode policy by associating a label with data. Our embedding is agnostic
to the choice of labeling scheme; we only require the labels to form a lattice [11]
with the partial order �, join �, and meet �. In this paper, we simply represent
labels with the metavariable l, but do not discuss them in more detail. To enforce
labels, the IFC monitor inspects the current label before performing a read or
a write to decide whether the operation is permitted. A task can only write to
entities that are at least as sensitive. Similarly, it can only read from entities
that are less sensitive. However, as in other floating-label systems, this current
label can be raised to allow the task to read from more sensitive entities at the
cost of giving up the ability to write to others.

In Fig. 2, we give the syntax and single-task evaluation rules for a minimal in-
formation flow control language. Ordinarily, information flow control languages
are defined by directly stating a base language plus information flow control oper-
ators. In contrast, our language is purposely minimal: it does not have sequencing
operations, control flow, or other constructs. However, it contains support for
the following core information flow control features:

– First-class labels, with label values l as well as operations for computing on
labels (� , � and �).

– Operations for inspecting (getLabel) and modifying (setLabel) the current
label of the task (a task can only increase its label).

– Operations for non-blocking inter-task communication (send and recv),
which interact with the global store of per-task message queues Σ.

– A sandboxing operation used to spawn new isolated tasks. In concurrent set-
tings sandbox corresponds to a fork-like primitive, whereas in a sequential
setting, it more closely resembles computations which might temporarely
raise the current floating-label [7, 12].

16 S. Heule et al.

These operations are all defined with respect to an evaluation context E i,l
Σ

that represents the context of the current task. The evaluation context has three
important pieces of state: the global message queues Σ, the current label l and
the task ID i .

We note that first-class labels, tasks (albeit named differently), and operations
for inspecting the current label are essentially universal to all floating-label sys-
tems. However, our choice of communication primitives is motivated by those
present in browsers, namely postMessage [13]. Of course, other choices, such as
blocking communication or labeled channels, are possible.

These asynchronous communication primitives are worth further discussion.
When a task is sending a message using send, it also labels that message with
a label l′ (which must be at or above the task’s current label l). Messages can
only be received by a task if its current label is at least as high as the label of
the message. Specifically, receiving a message using recv x1, x2 in e1 else e2
binds the message and the sender’s task identifier to local variables x1 and x2,
respectively, and then executes e1. Otherwise, if there are no messages, that task
continues its execution with e2. We denote the filtering of the message queue
by Θ 	 l, which is defined as follows. If Θ is the empty list nil, the function is
simply the identity function, i.e., nil 	 l = nil, and otherwise:

((l′, i , e), Θ) 	 l =

{
(l′, i , e), (Θ 	 l) if l′ � l
Θ 	 l otherwise

This ensures that tasks cannot receive messages that are more sensitive than
their current label would allow.

2.4 The Embedding

Fig. 3 provides all of the rules responsible for actually carrying out the embedding
of the IFC language within the target language. The most important feature of
this embedding is that every task maintains its own copy of the target language
global state and evaluation context, thus enforcing isolation between various
tasks. In more detail:

– We extend the values, expressions and evaluation contexts of both languages
to allow for terms in one language to be embedded in the other, as in [3]. In
the target language, an IFC expression appears as TI�e� (“Target-outside,
IFC-inside”); in the IFC language, a target language expression appears as
IT�e� (“IFC-outside, target-inside”).

– We reinterpret E to be evaluation contexts on task lists, providing definitions
for EΣ and E i,l

Σ . These rules only operate on the first task in the task list,
which by convention is the only task executing.

– We reinterpret →, an operation on a single task, in terms of ↪→, operation
on task lists. The correspondence is simple: a task executes a step and then
is rescheduled in the task list according to schedule policy α. Fig. 4 defines
two concrete schedulers.

Retrofitting Languages with Dynamic Information Flow Control 17

v ::= i | l | true | false | 〈〉 ⊗ ::= � | 	 |

e ::= v | x | e ⊗ e | getLabel | setLabel e | taskId | sandbox e

| send e e e | recv x , x in e else e
E ::= [·]I | E ⊗ e | v ⊗ E | setLabel E | send E e e | send v E e | send v v E
θ ::= (l, i e) Θ ::= nil | θ,Θ Σ ::= ∅ | Σ [i �→ Θ]

I-getTaskId

E i,l
Σ [taskId] → E i,l

Σ [i]

I-getLabel

E i,l
Σ [getLabel] → E i,l

Σ [l]

I-labelOp

�l1 ⊗ l2� = v

E i,l
Σ [l1 ⊗ l2] → E i,l

Σ [v]

I-send

l � l′ Σ(i ′) = Θ Σ′ = Σ
[
i ′ �→ (l′, i , v), Θ

]

E i,l
Σ

[
send i ′ l′ v

] → E i,l
Σ′ [〈〉]

I-recv

(Σ(i)
 l) = θ1, ..., θk , (l
′, i ′, v) Σ′ = Σ [i �→ (θ1, ..., θk)]

E i,l
Σ [recv x 1, x2 in e1 else e2] → E i,l

Σ′
[{v / x 1, i

′ / x 2} e1

]

I-noRecv

Σ(i)
 l = nil Σ′ = Σ [i �→ nil]

E i,l
Σ [recv x1, x2 in e1 else e2] → E i,l

Σ′ [e2]

I-setLabel

l � l′

E i,l
Σ

[
setLabel l′

] → E i,l′
Σ [〈〉]

Fig. 2. IFC language with all single-task operations

v ::= · · · | IT�v�
e ::= · · · | IT�e�
E ::= · · · | IT�E�

v ::= · · · | TI�v�
e ::= · · · | TI�e�
E ::= · · · | TI�E�

EΣ [e] � Σ; 〈Σ, E[e]T〉il , . . .
E i,l
Σ [e] � Σ; 〈Σ, E[e]I〉il , . . .

E [e] → Σ; t , . . . � E [e]
α
↪→ Σ;αstep(t , . . .)

I-sandbox

Σ′ = Σ
[
i ′ �→ nil

]

Σ′ = κ (Σ) t1 = 〈Σ, E[i ′]〉il tnew = 〈Σ′, e〉i′l fresh(i ′)

Σ; 〈Σ, E[sandbox e]I〉il , . . . α
↪→ Σ′;αsandbox(t1, . . . , tnew)

I-done

Σ; 〈Σ, v〉il , . . . α
↪→ Σ;αdone(〈Σ, v〉il , . . .)

I-noStep

Σ; t , . . . � α↪→
Σ; t , . . .

α
↪→ Σ;αnoStep(t , . . .)

I-border

E i,l
Σ

[
IT�TI�e��

]
→ E i,l

Σ [e]

T-border

EΣ

[
TI�IT�e��

]
→ EΣ [e]

Fig. 3. The embedding LIFC(α, λ), where λ= (Σ,E, e,v,→)

18 S. Heule et al.

RRstep(t1, t2, . . .) = t2, . . . , t1
RRdone(t1, t2, . . .) = t2, . . .
RRnoStep(t1, t2, . . .) = t2, . . .
RRsandbox(t1, t2, . . .) = t2, . . . , t1

Seqstep(t1, t2, . . .) = t1, t2, . . .
SeqnoStep(t1, t2, . . .) = t1, t2, . . .
Seqdone(t) = t
Seqdone(t1, t2, . . .) = t2, . . .
Seqsandbox(t1, t2, . . . , tn) = tn , t1, t2, . . .

Fig. 4. Scheduling policies (concurrent round robin on the left, sequential on the right)

– Finally, we define some rules for scheduling, handling sandboxing tasks (which
interact with the state of the target language), and intermediating between
the borders of the two languages.

The I-sandbox rule is used to create a new isolated task that executes sep-
arately from the existing tasks (and can be communicated with via send and
recv). When the new task is created, there is the question of what the target
language state of the new task should be. Our rule is stated generically in terms
of a function κ. Conservatively, κ may be simply thought of as the identity func-
tion, in which case the semantics of sandbox are such that the state of the target
language is cloned when sandboxing occurs. However, this is not necessary: it is
also valid for κ to remove entries from the state. In Section 4, we give a more
detailed discussion of the implications of the choice of κ, but all our security
claims will hold regardless of the choice of κ.

The rule I-noStep says something about configurations for which it is not

possible to take a transition. The notation c � α↪→ in the premise is meant to be
understood as follows: If the configuration c cannot take a step by any rule other
than I-noStep, then I-noStep applies and the stuck task gets removed.

Rules I-done and I-noStep define the behavior of the system when the
current thread has reduced to a value, or gotten stuck, respectively. While these
definitions simply rely on the underlying scheduling policy α to modify the task
list, as we describe in Sections 3 and 6, these rules (notably, I-noStep) are
crucial to proving our security guarantees. For instance, it is unsafe for the whole
system to get stuck if a particular task gets stuck, since a sensitive thread may
then leverage this to leak information through the termination channel. Instead,
as our example round-robin (RR) scheduler shows, such tasks should simply
be removed from the task list. Many language runtime or Operating System
schedulers implement such schedulers. Moreover, techniques such as instruction-
based scheduling [14, 15] can be further applied close the gap between specified
semantics and implementation.

As in [3], rules T-border and I-border define the syntactic boundaries
between the IFC and target languages. Intuitively, the boundaries respectively
correspond to an upcall into and downcall from the IFC runtime. As an ex-
ample, taking λES as the target language, we can now define a blocking receive
(inefficiently) in terms of the asynchronous recv as series of cross-language calls:

blockingRecv x1, x 2 in e � IT�fix (λk .TI�recv x1, x2 in e else IT�k��)�

For any target language λ and scheduling policy α, this embedding defines an
IFC language, which we will refer to as LIFC(α, λ).

Retrofitting Languages with Dynamic Information Flow Control 19

3 Security Guarantees

We are interested in proving non-interference about many programming lan-
guages. This requires an appropriate definition of this notion that is language
agnostic, so in this section, we present a few general definitions for what an in-
formation flow control language is and what non-interference properties it may
have. In particular, we show that LIFC(α, λ), with an appropriate scheduler α,
satisfies non-interference [6], without making any reference to properties of λ.
We state the appropriate theorems here, and provide the formal proofs in the
extended version of this paper.

3.1 Erasure Function

When defining the security guarantees of an information flow control, we must
characterize what the secret inputs of a program are. Like other work [12, 16–
18], we specify and prove non-interference using term erasure. Intuitively, term
erasure allows us to show that an attacker does not learn any sensitive informa-
tion from a program if the program behaves identically (from the attackers point
of view) to a program with all sensitive data “erased”. To interpret a language
under information flow control, we define a function εl that performs erasures
by mapping configurations to erased configurations, usually by rewriting (parts
of) configurations that are more sensitive than l to a new syntactic construct •.
We define an information flow control language as follows:

Definition 1 (Information flow control language). An information flow
control language L is a tuple (Δ, ↪→, εl), where Δ is the type of machine con-
figurations (members of which are usually denoted by the metavariable c), ↪→
is a reduction relation between machine configurations and εl :Δ → ε(Δ) is an
erasure function parametrized on labels from machine configurations to erased
machine configurations ε(Δ). Sometimes, we use V to refer to set of terminal
configurations in Δ, i.e., configurations where no further transitions are possible.

Our language LIFC(α, λ) fulfills this definition as (Δ,
α
↪→, εl), where Δ = Σ ×

List(t). The set of terminal conditions V is Σ× tV , where tV ⊂ t is the type for
tasks whose expressions have been reduced to values.1 The erased configuration
ε(Δ) extends Δ with configurations containing •, and Fig. 5 gives the precise
definition for our erasure function εl. Essentially, a task and its corresponding
message queue is completely erased from the task list if its label does not flow
to the attacker observation level l. Otherwise, we apply the erasure function
homomorphically and remove any messages from the task’s message queue that
are more sensitive than l.

The definition of an erasure function is quite important: it captures the attacker
model, stating what can and cannot be observed by the attacker. In our case, we
assume that the attacker cannot observe sensitive tasks or messages, or even the

1 Here, we abuse notation by describing types for configuration parts using the same
metavariables as the “instance” of the type, e.g., t for the type of task.

20 S. Heule et al.

εl(Σ; ts) = εl(Σ); filter (λt .t = •) (map εl ts)

εl(〈Σ, e〉il′) =
{
• l′ �� l

〈εl(Σ), εl(e)〉il′ otherwise

εl(Σ [i �→ Θ]) =

{
εl(Σ) l′ �� l, where l′ is the label of thread i

εl(Σ) [i �→ εl(Θ)] otherwise

εl(Θ) = Θ
 l εl(∅) = ∅
Fig. 5. Erasure function for tasks, queue maps, message queues, and configurations.
In all other cases, including target-language constructs, εl is applied homomorphically.
Note that εl(e) is always equal to e (and similar for Σ) in this simple setting. However,
when the IFC language is extended with more constructs as shown in Section 6, then
this will no longer be the case.

number of such entities. While such assumptions are standard [18, 19], our defini-
tions allow for stronger attackers that may be able to inspect resource usage.2

3.2 Non-interference

Given an information flow control language, we can now define non-interference.
Intuitively, we want to make statements about the attacker’s observational power
at some security level l. This is done by defining an equivalence relation called
l-equivalence on configurations: an attacker should not be able to distinguish
two configurations that are l-equivalent. Since our erasure function captures
what an attacker can or cannot observe, we simply define this equivalence as the
syntactic-equivalence of erased configurations [18].

Definition 2 (l-equivalence). In a language (Δ, ↪→, εl), two machine config-
urations c, c′ ∈ Δ are considered l-equivalent, written as c ≈l c

′, if εl(c) = εl(c
′).

We can now state that a language satisfies non-interference if an attacker at
level l cannot distinguish the runs of any two l-equivalent configurations. This
particular property is called termination sensitive non-interference (TSNI). Be-
sides the obvious requirement to not leak secret information to public channels,
this definition also requires the termination of public tasks to be independent of
secret tasks. Formally, we define TSNI as follows:

Definition 3 (Termination Sensitive Non-Interference (TSNI)). A lan-
guage (Δ, ↪→, εl) satisfies termination sensitive non-interference if for any label
l, and configurations c1, c

′
1, c2 ∈ Δ, if

c1 ≈l c2 and c1 ↪→∗ c′1 (1)

then there exists a configuration c′2 ∈ Δ such that

c′1 ≈l c
′
2 and c2 ↪→∗ c′2 . (2)

2 We believe that we can extend LIFC(α, λ) to such models using the resource limits
techniques of [20]. We leave this extension to future work.

Retrofitting Languages with Dynamic Information Flow Control 21

In other words, if we take two l-equivalent configurations, then for every inter-
mediate step taken by the first configuration, there is a corresponding number
of steps that the second configuration can take to result in a configuration that
is l-equivalent to the first resultant configuration. By symmetry, this applies to
all intermediate steps from the second configuration as well.

Our language satisfies TSNI under the round-robin scheduler RR of Fig. 4.

Theorem 1 (Concurrent IFC language is TSNI). For any target language
λ, LIFC(RR, λ) satisfies TSNI.

In general, however, non-interference will not hold for an arbitrary scheduler
α. For example, LIFC(α, λ) with a scheduler that inspects a sensitive task’s
current state when deciding which task to schedule next will in general break
non-interference [21, 22].

However, even non-adversarial schedulers are not always safe. Consider, for
example, the sequential scheduling policy Seq given in Fig. 4. It is easy to show
that LIFC(Seq, λ) does not satisfy TSNI: consider a target language similar to
λES with an additional expression terminal ⇑ that denotes a divergent compu-
tation, i.e., ⇑ always reduces to ⇑ and a simple label lattice {pub, sec} such
that pub � sec, but sec �� pub. Consider the following two configurations in this
language:

c1 = Σ; 〈Σ1,
IT� if false then ⇑ else true�〉1sec, 〈Σ2, e〉2pub

c2 = Σ; 〈Σ1,
IT� if true then ⇑ else true�〉1sec, 〈Σ2, e〉2pub

These two configurations are pub-equivalent, but c1 will reduce (in two steps) to
c′1 = Σ; 〈Σ1,

IT�true�〉2pub, whereas c2 will not make any progress. Suppose that

e is a computation that writes to a pub channel,3 then the sec task’s decision to
diverge or not is directly leaked to a public entity.

To accommodate for sequential languages, or cases where a weaker guarantee
is sufficient, we consider an alternative non-interference property called termi-
nation insensitive non-interference (TINI). This property can also be upheld by
sequential languages at the cost of leaking through (non)-termination [23].

Definition 4 (Termination insensitive non-interference (TINI)). A lan-
guage (Δ,V, ↪→, εl) is termination insensitive non-interfering if for any label l,
and configurations c1, c2 ∈ Δ and c′1, c

′
2 ∈ V , it holds that

(c1 ≈l c2 ∧ c1 ↪→∗ c′1 ∧ c2 ↪→∗ c′2) =⇒ c′1 ≈l c
′
2

TINI states that if we take two l-equivalent configurations, and both configu-
rations reduce to final configurations (i.e., configurations for which there are no
possible further transitions), then the end configurations are also l-equivalent.
We highlight that this statement is much weaker than TSNI: it only states that
terminating programs do not leak sensitive data, but makes no statement about
non-terminating programs.

3 hough we do not model labeled channels, extending the calculus with such a feature
is straightforward, see Section 6.

22 S. Heule et al.

As shown by compilers [24, 25], interpreters [2], and libraries [12, 17], TINI is
useful for sequential settings. In our case, we show that our IFC language with
the sequential scheduling policy Seq satisfies TINI.

Theorem 2 (Sequential IFC language is TINI). For any target language
λ, LIFC(Seq, λ) satisfies TINI.

4 Isomorphisms and Restrictions

The operational semantics we have defined in the previous section satisfy non-
interference by design. We achieve this general statement that works for a large
class of languages by having different tasks executing completely isolated from
each other, such that every task has its own state. In some cases, this strong
separation is desirable, or even necessary. Languages like C provide direct access
to memory locations without mechanisms in the language to achieve a separa-
tion of the heap. On the other hand, for other languages, this strong isolation
of tasks can be undesirable, e.g., for performance reasons. For instance, for the
language λES, our presentation so far requires a separate heap per task, which is
not very practical. Instead, we would like to more tightly couple the integration
of the target and IFC languages by reusing existing infrastructure. In the run-
ning example, a concrete implementation might use a single global heap. More
precisely, instead of using a configuration of the form Σ; 〈Σ1, e1〉i1l1 , 〈Σ2, e2〉i2l2 . . .

we would like a single global heap as in Σ;Σ; 〈e1〉i1l1 , 〈e2〉
i2
l2
, . . .

If the operational rules are adapted näıvely to this new setting, then non-
interference can be violated: as we mentioned earlier, shared mutable cells could
be used to leak sensitive information. What we would like is a way of char-
acterizing safe modifications to the semantics which preserve non-interference.
The intention of our single heap implementation is to permit efficient execution
while conceptually maintaining isolation between tasks (by not allowing sharing
of references between them). This intuition of having a different (potentially
more efficient) concrete semantics that behaves like the abstract semantics can
be formalized by the following definition:

Definition 5 (Isomorphism of information flow control languages). A
language (Δ, ↪→, εl) is isomorphic to a language (Δ′, ↪→′, ε′l) if there exist total
functions f :Δ → Δ′ and f −1 :Δ′ → Δ such that f ◦f −1 = idΔ and f −1◦f = idΔ′ .
Furthermore, f and f −1 are functorial (e.g., if x′ R′ y′ then f(x′) R f(y′)) over
both l-equivalences and ↪→.

If we weaken this restriction such that f −1 does not have to be functorial over
↪→, we call the language (Δ, ↪→, εl) weakly isomorphic to (Δ′, ↪→′, ε′l).

Providing an isomorphism between the two languages allows us to preserve
(termination sensitive or insensitive) non-interference as the following two theo-
rems state.

Theorem 3 (Isomorphism preserves TSNI). If L is isomorphic to L′ and
L′ satisfies TSNI, then L satisfies TSNI.

Retrofitting Languages with Dynamic Information Flow Control 23

Proof. Shown by transporting configurations and reduction derivations from
L to L′, applying TSNI, and then transporting the resulting configuration, l-
equivalence and multi-step derivation back. ��

Only weak isomorphism is necessary for TINI. Intuitively, this is because it is
not necessary to back-translate reduction sequences in L′ to L; by the definition
of TINI, we have both reduction sequences in L by assumption.

Theorem 4 (Weak isomorphism preserves TINI). If a language L is weakly
isomorphic to a language L′, and L′ satisfies TINI, then L satisfies TINI.

Proof. Shown by transporting configurations and reduction derivations from L
to L′, applying TINI and transporting the resulting equivalence back using func-
toriality of f −1 over l-equivalences. ��

Unfortunately, an isomorphism is often too strong of a requirement. To obtain
an isomorphism with our single heap semantics, we need to mimic the behavior
of several heaps with a single actual heap. The interesting cases are when we
sandbox an expression and when messages are sent and received. The rule for
sandboxing is parametrized by the strategy κ (see Section 2), which defines what
heap the new task should execute with. We have considered two choices:

– When we sandbox into an empty heap, existing addresses in the sandboxed
expression are no longer valid and the task will get stuck (and then removed
by I-noStep). Thus, we must rewrite the sandboxed expression so that
all addresses point to fresh addresses guaranteed to not occur in the heap.
Similarly, sending a memory address should be rewritten.

– When we clone the heap, we have to copy everything reachable from the
sandboxed expression and replace all addresses correspondingly. Even worse,
the behavior of sending a memory address now depends on whether that
address existed at the time the receiving task was sandboxed; if it did, then
the address should be rewritten to the existing one.

Isomorphism demands we implement this convoluted behavior, despite our
initial motivation of a more efficient implementation.

4.1 Restricting the IFC Language

A better solution is to forbid sandboxed expressions as well as messages sent to
other tasks to contain memory addresses in the first place. In a statically typed
language, the type system could prevent this from happening. In dynamically
typed languages such as λES, we might restrict the transition for sandbox and
send to only allow expressions without memory addresses.

While this sounds plausible, it is worth noting that we are modifying the IFC
language semantics, which raises the question of whether non-interference is pre-
served.This question canbe subtle: it is easy to remove a transition froma language
and invalidate TSNI. Intuitively if the restriction depends on secret data, then a
public thread can observe if some other task terminates or not, and from that ob-
tain information about the secret data thatwas used to restrict the transition.With

24 S. Heule et al.

this in mind, we require semantic rules to get restricted only based on information
observable by the task triggering them. This ensures that non-interference is pre-
served, as the restriction does not depend on confidential information. Below, we
give the formaldefinitionof this condition for the abstract IFC languageLIFC(α, λ).

Definition 6 (Restricted IFC language). For a family of predicates P (one
for every reduction rule), we call LP

IFC(α, λ) a restricted IFC language if its
definition is equivalent to the abstract language LIFC(α, λ), with the following
exception: the reduction rules are restricted by adding a predicate P ∈ P to
the premise of all rules other than I-noStep. Furthermore, the predicate P can
depend only on the erased configuration εl(c), where l is the label of the first task
in the task list and c is the full configuration.

By the following theorem, the restricted IFC language with an appropriate
scheduling policy is non-interfering.

Theorem 5. For any target language λ and family of predicates P, the re-
stricted IFC language LP

IFC(RR, λ) is TSNI. Furthermore, the IFC language
LP
IFC(Seq, λ) is TINI.

In the extended version of this paper we give an example how this formalism can
be used to show non-intereference of an implementation of IFC with a single heap.

5 Real World Languages

Our approach can be used to retrofit any language for which we can achieve
isolation with information flow control. Unfortunately, controlling the external
effects of a real-world language, as to achieve isolation, is language-specific and
varies from one language to another.4 Indeed, even for a single language (e.g.,
JavaScript), how one achieves isolation may vary according to the language run-
time or embedding (e.g., server and browser).

In this section, we describe several implementations and their approaches to
isolation. In particular, we describe two JavaScript IFC implementations building
on the theoretical foundations of this work. Then, we consider how our formalism
could be applied to the C programming language and connect it to a previous
IFC system for Haskell.

5.1 JavaScript

JavaScript, as specified by ECMAScript [26], does not have any built-in func-
tionality for I/O. For this language, which we denote by λJS, the IFC system
LIFC(RR, λJS) can be implemented by exposing IFC primitives to JavaScript
as part of the runtime, and running multiple instances of the JavaScript virtual
machine in separate OS-level threads. Unfortunately, this becomes very costly
when a system, such as a server-side web application, relies on many tasks.

4 Though we apply our framework to several real-world languages, it is conceivable
that there are languages for which isolation cannot be easily achieved.

Retrofitting Languages with Dynamic Information Flow Control 25

TCB

main task-1 task-n

send n sec ...

recv x, i in ...

1

2

LIFC(SEQ,λJS)

Σ0 λJS+ Σ0 λJS+Σnode λJS+

Fig. 6. This example shows how our trusted monitor (left) is used to mediate com-
munication between two tasks for which IFC is enforced (right)

Luckily, this issue is not unique to our work—browser layout engines also rely
on isolating code executing in separate iframes (e.g., according to the same-origin
policy). Since creating an OS thread for each iframe is expensive, both the V8 and
SpiderMonkey JavaScript engines provide means for running JavaScript code in
isolation within a single OS thread, on disjoint sub-heaps. In V8, this unit of iso-
lation is called a context ; in SpiderMonkey, it is called a compartment. (We will
use these terms interchangeably.) Each context is associated with a global object,
which, bydefault, implements theJavaScript standard library (e.g.,Object,Array,
etc.). Naturally, we adopt contexts to implement our notion of tasks.

When JavaScript is embedded in browser layout engines, or in server-side
platforms such as Node.js, additional APIs such as the Document Object Model
(DOM) or the file system get exposed as part of the runtime system. These
features are exposed by extending the global object, just like the standard li-
brary. For this reason, it is easy to modify these systems to forbid external
effects when implementing an IFC system, ensuring that important effects can
be reintroduced in a safe manner.

Server-side IFC for Node.js: We have implemented LIFC(Seq, λJS) for Node.js
in the form of a library, without modifying Node.js or the V8 JavaScript engine.
Our implementation5 provides a library for creating new tasks, i.e., contexts
whose global object only contains the standard JavaScript library and our IFC
primitives (e.g., send and sandbox). When mapped to our formal treatment,
sandbox is defined with κ(Σ) = Σ0, whereΣ0 is the global object corresponding
to the standard JavaScript library and our IFC primitives. These IFC operations
are mediated by the trusted library code (executing as the main Node.js context),
which tracks the state (current label, messages, etc.) of each task. An example
for send/recv is shown in Fig. 6. Our system conservatively restricts the kinds
of messages that can be exchanged, via send (and sandbox), to string values.
In our formalization, this amounts to restricting the IFC language rule for send
in the following way:

JS-send

l � l′ Σ (i ′) = Θ Σ′ = Σ [i ′ �→ (l′, i , v), Θ]

e = IT�e� EΣ [typeOf(e) === "string"] → EΣ [true]

Σ; 〈Σ, E[send i ′ l′ v]I〉il , . . . ↪→ Σ′;αstep(〈Σ, E[〈〉]I〉il , . . .)
5 Available at http://github.com/deian/espectro

http://github.com/deian/espectro

26 S. Heule et al.

Of course, we provide a convenience library whichmarshals JSON objects to/from
strings. We remark that this is not unlike existing message-passing JavaScript
APIs, e.g., postMessage, which impose similar restrictions as to avoid sharing
references between concurrent code.

While the described system implements LIFC(Seq, λJS), applications typically
require access to libraries (e.g., the file system library fs) that have external ef-
fects. Exposing the Node.js APIs directly to sandboxed tasks is unsafe. Instead,
we implement libraries (like a labeled version of fs) as message exchanges be-
tween the sandboxed tasks (e.g., task-1 in Fig. 6) and the main Node.js task that
implements the IFC monitor. While this is safer than simply wrapping unsafe
objects, which can potentially be exploited to access objects outside the context
(e.g., as seen with ADSafe [27]), adding features such as the fs requires the code
in the main task to ensures that labels are properly propagated and enforced.
Unfortunately, while imposing such a proof burden is undesirable, this also has
to be expected: different language environments expose different libraries for
handling external I/O, and the correct treatment of external effects is appli-
cation specific. We do not extend our formalism to account for the particular
interface to the file system, HTTP client, etc., as this is specific to the Node.js
implementation and does not generalize to other systems.

Client-side IFC: This work provides the formal basis for the core part of the
COWL client-side JavaScript IFC system [4]. Like our Node.js implementation,
COWL takes a coarse-grained approach to providing IFC for JavaScript pro-
grams. However, COWL’s IFC monitor is implemented in the browser layout
engine instead (though still leaving the JavaScript engine unmodified).

Furthermore, COWL repurposes existing contexts (e.g., iframes and pages) as
IFC tasks, only imposing additional constraints onhow they communicate.Aswith
Node.js, at its core, the global object of a COWL task should only contain the stan-
dard JavaScript libraries and postMessage, whose semantics are modeled by our
JS-send rule. However, existing contexts have objects such as the DOM, which re-
quire COWL to restrict a task’s external effects. To this end, COWLmediates any
communication (even via the DOM) at the context boundary.

Simply disallowing all the external effects is overly-restricting for real-world
applications (e.g., pages typically load images, perform network requests, etc.). In
this light, COWL allows safe network communication by associating an implicit
label with remote hosts (a host’s label corresponds to its origin). In turn, when
a task performs a request, COWL’s IFC monitor ensures that the task label
can flow to the remote origin label. While the external effects of COWL can be
formally modeled, we do not model them in our formalism, since, like for the
Node.js case, they are specific to this system.

5.2 Haskell

Our work borrows ideas from the LIO Haskell coarse-grained IFC system [12, 18].
LIO relies on Haskell’s type system and monadic encoding of effects to achieve
isolation and define the IFC sub-language. Specifically, LIO provides the LIO

monad as a way of restricting (almost all) side-effects. In the context of our

Retrofitting Languages with Dynamic Information Flow Control 27

framework, LIO can be understood as follows: the pure subset of Haskell is
the target language, while the monadic subset of Haskell, operating in the LIO

monad, is the IFC language.
Unlike our proposal, LIO originally associated labels with exceptions, in a

similar style to fine-grained systems [7, 8]. In addition to being overly complex,
the interaction of exceptions with clearance (which sets an upper bound on the
floating label, see the extended version of this paper) was incorrect: the clearance
was restored to the clearance at point of the catch. Furthermore, pure exceptions
(e.g., divide by zero) always percolated to trusted code, effectively allowing for
denial of service attacks. The insights gained when viewing coarse-grained IFC
as presented in this paper led to a much cleaner, simpler treatment of exceptions,
which has now been adopted by LIO.

5.3 C

C programs are able to execute arbitrary (machine) code, access arbitrary mem-
ory, and perform arbitrary system calls. Thus, the confinement of C programs
must be imposed by the underlying OS and hardware. For instance, our notion
of isolation can be achieved using Dune’s hardware protection mechanisms [28],
similar to Wedge [28, 29], but using an information flow control policy. Using
page tables, a (trusted) IFC runtime could ensure that each task, implemented
as a lightweight process, can only access the memory it allocates—tasks do not
have access to any shared memory. In addition, ring protection could be used to
intercept system calls performed by a task and only permit those corresponding
to our IFC language (such as getLabel or send). Dune’s hardware protection
mechanism would allow us to provide a concrete implementation that is efficient
and relatively simple to reason about, but other sandboxing mechanisms could
be used in place of Dune.

In this setting, the combined language of Section 2 can be interpreted in the
following way: calling from the target language to the IFC language corresponds
to invoking a system call. Creating a new task with the sandbox system call
corresponds to forking a process. Using page tables, we can ensure that there
will be no shared memory (effectively defining κ(Σ) = Σ0, where Σ0 is the set of
pages necessary to bootstrap a lightweight process). Similarly, control over page
tables and protection bits allows us to define a send system call that copies
pages to our (trusted) runtime queue; and, correspondingly, a recv that copies
the pages from the runtime queue to the (untrusted) receiver. Since C is not
memory safe, conditions on these system calls are meaningless. We leave the
implementation of this IFC system for C as future work.

6 Extensions and Limitations

While the IFC language presented thus far provides the basic information flow
primitives, actual IFC implementations may wish to extend the minimal system
with more specialized constructs. For example, COWL provides a labeled version
of the XMLHttpRequest (XHR) object, which is used to make network requests.

28 S. Heule et al.

Our system can be extended with constructs such as labeled values, labeled mu-
table references, clearance, and privileges. For space reasons, we provide details
of this, including the soundness proof with the extensions, in the appendix of
the extended version of this paper. Here, we instead discuss a limitation of our
formalism: the lack of external effects.

Specifically, our embedding assumes that the target language does not have
any primitives that can induce external effects. As discussed in Section 5, im-
posing this restriction can be challenging. Yet, external effects are crucial when
implementing more complex real-world applications. For example, code in an
IFC browser must load resources or perform XHR to be useful.

Like labeled references, features with external effects must be modeled in
the IFC language; we must reason about the precise security implications of
features that otherwise inherently leak data. Previous approaches have mod-
eled external effects by internalizing the effects as operations on labeled chan-
nels/references [18]. Alternatively, it is possible to model such effects as messages
to/from certain labeled tasks, an approach taken by our Node.js implementa-
tion. These “special” tasks are trusted with access to the unlabeled primitives
that can be used to perform the external effects; since the interface to these
tasks is already part of the IFC language, the proof only requires showing that
this task does not leak information. Instead of restricting or wrapping unsafe
primitives, COWL allow for controlled network communication at the context
boundary. (By restricting the default XHR object, for example, COWL allows
code to communicate with hosts according to the task’s current label.)

7 Related Work

Our information flow control system is closely related to the coarse-grained in-
formation systems used in operating systems such as Asbestos [30], HiStar [1],
and Flume [31], as well as language-based floating-label IFC systems such as
LIO [12], and Breeze [7], where there is a monotonically increased label asso-
ciated with threads of execution. Our treatment of termination-sensitive and
termination-insensitive interference originates from Smith and Volpano [32, 33].

One information flow control technique designed to handle legacy code is
secure multi-execution (SME) [34, 35]. SME runs multiple copies of the program,
one per security level, where the semantics of I/O interactions is altered. Bielova
et al. [36] use a transition system to describe SME, where the details of the
underlying language are hidden. Zanarini et al. [37] propose a novel semantics
for programs based on interaction trees [38], which treats programs as black-
boxes about which nothing is known, except what can be inferred from their
interaction with the environment. Similar to SME, our approach mediates I/O
operations; however, our approach only runs the program once.

One of the primary motivations behind this paper is the application of infor-
mation flow control to JavaScript. Previous systems retrofitted JavaScript with
fine-grained IFC [2, 9]. While fine-grained IFC can result in fewer false alarms

Retrofitting Languages with Dynamic Information Flow Control 29

and target legacy code, it comes at the cost of complexity: the system must
accommodate the entirety of JavaScript’s semantics [2]. By contrast, coarse-
grained approaches to security tend to have simpler implications [39, 40].

The constructs in our IFC language, as well as the behavior of inter-task com-
munication, are reminiscent of distributed systems like Erlang [41]. In distributed
systems, isolation is required due to physical constraints; in information flow con-
trol, isolation is required to enforce non-interference. Papagiannis et al. [42] built
an information flow control system on top of Erlang that shares some similarities
to ours. However, they do not take a floating-label approach (processes can find
out when sending a message failed due to a forbidden information flow), nor do
they provide security proofs.

There is limited work on general techniques for retrofitting arbitrary languages
with information flow control. However, one time-honored technique is to define
a fundamental calculus for which other languages can be desugared into. Abadi
et al. [43] motivate their core calculus of dependency by showing how various
previous systems can be encoded in it. Tse and Zdancewic [44], in turn, show
how this calculus can be encoded in System F via parametricity. Broberg and
Sands [45] encode several IFC systems into Paralocks. However, this line of work
is primarily focused on static enforcements.

8 Conclusion

In this paper, we argued that when designing a coarse-grained IFC system, it
is better to start with a fully isolated, multi-task system and work one’s way
back to the model of a single language equipped with IFC. We showed how
systems designed this way can be proved non-interferent without needing to rely
on details of the target language, and we provided conditions on how to securely
refine our formal semantics to consider optimizations required in practice. We
connected our semantics to two IFC implementations for JavaScript based on
this formalism, explained how our methodology improved an exiting IFC system
for Haskell, and proposed an IFC system for C using hardware isolation. By
systematically applying ideas from IFC in operating systems to programming
languages for which isolation can be achieved, we hope to have elucidated some
of the core design principles of coarse-grained, dynamic IFC systems.

Acknowledgements. We thank the POST 2015 anonymous reviewers, Adriaan
Larmuseau, Sergio Maffeis, and David Mazières for useful comments and sug-
gestions. This work was funded by DARPA CRASH under contract #N66001-
10-2-4088, by the NSF, by the AFOSR, by multiple gifts from Google, by a gift
from Mozilla, and by the Swedish research agencies VR and the Barbro Oshers
Pro Suecia Foundation. Deian Stefan and Edward Z. Yang were supported by
the DoD through the NDSEG.

30 S. Heule et al.

References
[1] Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information

flow explicit in HiStar. In: OSDI (2006)

[2] Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: Tracking information
flow in JavaScript and its APIs. In: SAC (2014)

[3] Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
In: POPL (2007)

[4] Stefan, D., Yang, E.Z., Marchenko, P., Russo, A., Herman, D., Karp, B., Mazières,
D.: Protecting users by confining JavaScript with COWL. In: OSDI (2014)

[5] Heule, S., Stefan, D., Yang, E.Z., Mitchell, J.C., Russo, A.: Ifc inside: Retrofitting
languages with dynamic information flow control (2015),
http://cowl.ws/ifc-inside.pdf

[6] Goguen, J., Meseguer, J.: Security policies and security Models. In: SP (1982)

[7] Hritcu, C., Greenberg, M., Karel, B., Pierce, B.C., Morrisett, G.: All your IFCEx-
ception are belong to us. In: SP (2013)

[8] Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in the presence of exceptions. Arxiv preprint arXiv:1207.1457 (2012)

[9] Hedin, D., Sabelfeld, A.: Information-flow security for a core of javascript. In: CSF
(2012)

[10] Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. TCS 103 (1992)

[11] Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19
(1976)

[12] Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in Haskell. In: Haskell (2011)

[13] W3C: HTML5 web messaging (2012), http://www.w3.org/TR/webmessaging/

[14] Stefan, D., Buiras, P., Yang, E.Z., Levy, A., Terei, D., Russo, A., Mazières, D.:
Eliminating cache-based timing attacks with instruction-based scheduling. In: ES-
ORICS (2013)

[15] Buiras, P., Levy, A., Stefan, D., Russo, A., Mazières, D.: A library for removing
cache-based attacks in concurrent information flow systems. In: TGC (2013)

[16] Li, P., Zdancewic, S.: Arrows for secure information flow. TCS 411 (2010)

[17] Russo, A., Claessen, K., Hughes, J.: A library for light-weight information-flow
security in Haskell. In: Haskell (2008)

[18] Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J.C., Mazières, D.: Addressing
covert termination and timing channels in concurrent information flow systems.
In: ICFP (2012)

[19] Boudol, C.: Noninterference for concurrent programs. In: ICALP (2001)

[20] Yang, E.Z., Mazières, D.: Dynamic space limits for Haskell. In: PLDI (2014)

[21] Russo, A., Sabelfeld, A.: Securing Interaction between threads and the scheduler.
In: CSFW (2006)

[22] Barthe, G., Rezk, T., Russo, A., Sabelfeld, A.: Security of multithreaded programs
by compilation. In: ESORICS (2007)

[23] Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: ESORICS (2008)

[24] Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java Informa-
tion Flow. Software release (2001), Located at http://www.cs.cornell.edu/jif

[25] Simonet, V.: The Flow Caml system (2003), Software release at
http://cristal.inria.fr/~simonet/soft/flowcaml/

http://cowl.ws/ifc-inside.pdf
http://www.w3.org/TR/webmessaging/
http://www.cs.cornell.edu/jif
http://cristal.inria.fr/~simonet/soft/flowcaml/

Retrofitting Languages with Dynamic Information Flow Control 31

[26] Ecma International: ECMAScript language specification (2014),
http://www.ecma.org/

[27] Taly, A., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis of security-
critical javascript apis. In: SP (2011)

[28] Belay, A., Bittau, A., Mashtizadeh, A., Terei, D., Mazières, D., Kozyrakis, C.:
Dune: Safe user-level access to privileged CPU features. In: OSDI (2012)

[29] Bittau, A., Marchenko, P., Handley, M., Karp, B.: Wedge: Splitting applications
into reduced-privilege compartments. In: NSDI (2008)

[30] Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E.,
Mazières, D., Kaashoek, F., Morris, R.: Labels and event processes in the Asbestos
operating system. In: SOSP (2005)

[31] Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,
R.: Information flow control for standard OS abstractions. In: SOSP (2007)

[32] Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: POPL (1998)

[33] Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In: CSFW
(1997)

[34] Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: SP
(2010)

[35] Rafnsson, W., Sabelfeld, A.: Secure multi-execution: fine-grained, declassification-
aware, and transparent. In: CSF (2013)

[36] Bielova, N., Devriese, D., Massacci, F., Piessens, F.: Reactive non-interference for
a browser model. In: NSS (2011)

[37] Zanarini, D., Jaskelioff, M., Russo, A.: Precise enforcement of confidentiality for
reactive systems. In: CSF (2013)

[38] Jacobs, B., Rutten, J.: A Tutorial on (Co)Algebras and (Co)Induction. EATCS
62 (1997)

[39] Yip, A., Narula, N., Krohn, M., Morris, R.: Privacy-preserving browser-side script-
ing with BFlow. In: EuroSys (2009)

[40] De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: FlowFox: a web browser
with flexible and precise information flow control. In: CCS (2012)

[41] Armstrong, J.: Making reliable distributed systems in the presence of software
errors (2003)

[42] Papagiannis, I., Migliavacca, M., Eyers, D.M., Sh, B., Bacon, J., Pietzuch, P.:
Enforcing user privacy in web applications using Erlang. In: W2SP (2010)

[43] Abadi, M., Banerjee, A., Heintze, N., Riecke, J.: A Core Calculus of Dependency.
In: POPL (1999)

[44] Tse, S., Zdancewic, S.: Translating dependency into parametricity. In: ICFP (2004)
[45] Broberg, N., Sands, D.: Paralocks: Role-based information flow control and be-

yond. In: POPL (2010)

http://www.ecma.org/

Very Static Enforcement of Dynamic Policies

Bart van Delft1, Sebastian Hunt2, and David Sands1

1 Chalmers University of Technology, Sweden
2 City University London

Abstract. Security policies are naturally dynamic. Reflecting this, there has been
a growing interest in studying information-flow properties which change during
program execution, including concepts such as declassification, revocation, and
role-change.

A static verification of a dynamic information flow policy, from a semantic
perspective, should only need to concern itself with two things: 1) the dependen-
cies between data in a program, and 2) whether those dependencies are consistent
with the intended flow policies as they change over time. In this paper we provide
a formal ground for this intuition. We present a straightforward extension to the
principal flow-sensitive type system introduced by Hunt and Sands (POPL ’06,
ESOP ’11) to infer both end-to-end dependencies and dependencies at intermedi-
ate points in a program. This allows typings to be applied to verification of both
static and dynamic policies. Our extension preserves the principal type system’s
distinguishing feature, that type inference is independent of the policy to be en-
forced: a single, generic dependency analysis (typing) can be used to verify many
different dynamic policies of a given program, thus achieving a clean separation
between (1) and (2).

We also make contributions to the foundations of dynamic information flow.
Arguably, the most compelling semantic definitions for dynamic security con-
ditions in the literature are phrased in the so-called knowledge-based style. We
contribute a new definition of knowledge-based progress insensitive security for
dynamic policies. We show that the new definition avoids anomalies of previ-
ous definitions and enjoys a simple and useful characterisation as a two-run style
property.

1 Introduction
Information flow policies are security policies which aim to provide end-to-end security
guarantees of the form “information must not flow from this source to this destination”.
Early work on information flow concentrated on static, multi-level policies, organising
the various data sources and sinks of a system into a fixed hierarchy. The policy de-
termined by such a hierarchy (a partial order) is simply that information must not flow
from a to b unless a � b.

1.1 Dynamic Policies

Since the pioneering work of Denning and Denning [DD77], a wide variety of infor-
mation-flow policies and corresponding enforcement mechanisms have been proposed.
Much of the recent work on information-flow properties goes beyond the static, multi-
level security policies of earlier work, considering instead more sophisticated, dynamic

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 32–52, 2015.
DOI: 10.1007/978-3-662-46666-7_3

Very Static Enforcement of Dynamic Policies 33

forms of policy which permit different flows at different points during the excecution of
a program. Indeed, this shift of focus better reflects real-world requirements for security
policies which are naturally dynamic.

// x → a
out x on a;
// x �→ a
out 2 on a;

Fig. 1.

For example, consider a request for sensitive employee infor-
mation made to an employer by a regulatory authority. In order
to satisfy this request it may be necessary to temporarily allow
the sensitive information to flow to a specific user in the Human
Resources department. In simplified form, the essence of this ex-
ample is captured in Figure 1.

Here x contains the sensitive information, channel a represents the HR user, and the
policy is expressed by the annotations x → a (x may flow to a) and x �→ a (x must not
flow to a). It is intuitively clear that this program complies with the policy.

Consider two slightly more subtle examples, in each of which revocation of a per-
mitted flow depends on run-time data:

1 /*Program A*/ /*Program B*/
2 // x, y → a // x → a
3 out x on a; out x on a;
4 if (y > 0) { if (x > 0) {
5 out 1 on a; out 1 on a;
6 // x �→ a // x �→ a
7 } }
8 out 2 on a; out 2 on a;
9 out 3 on a; out 3 on a;

In program A, the revocation of
x → a is controlled by the value of
y, whereas in program B it is con-
trolled by the value of x itself. Note
that the policy for A explicitly al-
lows y → a so the conditional output
(which reveals information about y)
appears to be permissible. In pro-
gram B the conditional output re-
veals information about x itself, but

this happens before the revocation. So should program B be regarded as compliant?
We argue that it should not, as follows. Consider “the third output” of program B as
observed on channel a. Depending on the initial value of x, the observed value may be
either 2 (line 8) or 3 (line 9). Thus this observation reveals information about x and, in
the cases where revocation occurs, the observation happens after the revocation.

Unsurprisingly, increasing the sophistication of policies also increases the challenge
of formulating good semantic definitions, which is to say, definitions which both match
our intuitions about what the policies mean and can form the basis of formal reasoning
about correctness.

At first sight it might seem that increasing semantic sophistication should also require
increasingly intricate enforcement mechanisms. However, all such mechanisms must
somehow solve the same two distinct problems:

1. Determine what data dependencies exist between the various data sources and sinks
manipulated by the program.

2. Determine whether those dependencies are consistent with the flows permitted by
the policy.

Ideally, the first of these problems would be solved independently of the second, since
dependencies are a property of the code, not the policy. This would allow reuse at two
levels: a) reuse of the same dependency analysis mechanisms and proof techniques for
different types of policy; b) reuse of the dependency properties for a given program
across verification of multiple alternative policies (whether of the same type or not).

34 B. van Delft, S. Hunt, and D. Sands

In practice, enforcement mechanisms are typically not presented in a way which
cleanly separates the two concerns. Not only does this hamper the reuse of analysis
mechanisms and proof techniques, it also makes it harder to identify the essential dif-
ferences between different approaches.

Central Contribution. We take a well-understood dependency type system for a sim-
ple while-language, originally designed to support enforcement of static policies, and
extend it in a straightforward way to a language with output channels (§ 5). We demon-
strate the advantages of a clean separation between dependency analysis and policy
enforcement, by establishing a generic soundness result (§ 6) for the type system which
characterises the meaning of types as dependency properties. We then show how the
dependency information derived by the type system can be used to verify compliance
with dynamic policies. Note that this means that the core analysis for enforcement can
be done even before the policy is known: we dub this very static enforcement. More sig-
nificantly, it opens the way to reuse dependency analyses across verification of multiple
types of information flow policy (for example, it might be possible to use the depen-
dency analyses from advanced slicing tools such as JOANA [JOA] and Indus [Ind]).

Foundations of Dynamic Flow Policies. Although it was not our original aim and
focus, we also make some contributions of a more foundational nature, and our paper
opens with these (§2–§4). The semantic definition of security which we use is based on
work of Askarov and Chong [AC12], and we begin with their abstract formulation of
dynamic policies (§2). In defining security for dynamic policies, they made a convincing
case for using a family of attackers of various strengths, following an observation that
the intuitively strongest attacker (who never forgets anything that has been observed)
actually places weaker security demands on the system than we would want. On the
other hand they observe that the family of all attackers contains pathological attacker
behaviours which one certainly does not wish to consider. Due to this they do not give a
characterisation of the set of all reasonable attackers against which one should protect.
We make the following two foundational contributions:

Foundational Contribution 1. We focus (§3.3) on the pragmatic case of progress in-
sensitive security (where slow information leakage is allowed through observation of
computational progress [AHSS08]). We argue for a new definition of progress insensi-
tive security (Def 11), which unconditionally grants all attackers knowledge of compu-
tational progress. With this modification to the definition from [AC12], the problematic
examples of pathological attackers are eliminated, and we have a more complete defini-
tion of security. Consequently, we are able to prove security in the central contribution
of the paper for all attackers.

Foundational Contribution 2. The definitions of security are based on characterising
attacker knowledge and how it changes over time relative to the changing policy. As
argued previously e.g., [BS09], this style of definition forms a much more intuitive basis
for a semantics of dynamic policies than using two-run characterisations. However,
two-run formulations have the advantage of being easier to use in proofs. We show (§4)
that our new knowledge-based progress-insensitive security definition enjoys a simple

Very Static Enforcement of Dynamic Policies 35

two-run characterisation. We make good use of this in our proof of correctness of our
central contribution.

2 The Dynamic Policy Model

In this section we define an abstract model of computation and a model of dynamic
policies which maps computation histories to equivalence relations on stores.

2.1 Computation and Observation Model

Computation Model. The computation model is given by a labelled transition system
over configurations. We write 〈c, σ〉 α−−→〈c′, σ′〉 to mean that configuration 〈c, σ〉 eval-
uates in one step to configuration 〈c′, σ′〉 with label α. Here c is a command and σ ∈ Σ
is a store. In examples and when we instantiate this model the store will be a mapping
from program variables to values.

The label α records any output that happens during that step, and we have a distin-
guished label value ε to denote a silent step which produces no output. Every non-silent
label α has an associated channel channel(α) ∈ Chan and a value value(α). Channels
are ranged over by a and values by v. We abbreviate a sequence of evaluation steps

〈c0, σ0〉 α1−−→〈c1, σ1〉 α2−−→ . . . αn−−−→〈cn, σn〉
as 〈c0, σ0〉−→n〈cn, σn〉. We write 〈c0, σ0〉−→∗〈c′, σ′〉 if 〈c0, σ0〉−→n〈c′, σ′〉 for some
n≥ 0. We write the projection of a single step 〈c, σ〉 α−−→〈c′, σ′〉 to some channel a
as 〈c, σ〉 β−−→a〈c′, σ′〉 where β= v if channel(α) = a and value(α) = v, and β= ε
otherwise, that is, when α is silent or an output on a channel different from a.

We abbreviate a sequence of evaluation steps

〈c0, σ0〉 β1−−→a〈c1, σ1〉 β2−−→a . . .
βn−−→a〈cn, σn〉

as 〈c0, σ0〉 t−→n
a〈cn, σn〉 where t is the trace of values produced on channel a with every

silent ε filtered out. We write 〈c0, σ0〉 t−→a〈c′, σ′〉 if 〈c0, σ0〉 t−→n
a〈c′, σ′〉 for some n≥ 0,

and we omit the final configuration in contexts where it is not relevant, e.g. 〈c, σ〉 t−→a.
We use |t| to denote the length of trace t.

Attacker’s Observation Model. We follow the standard assumption that the command
c is known to the attacker. We assume a passive attacker which aims to extract informa-
tion about an input store σ by observing outputs. As in [AC12], the attacker is able only
to observe a single channel. A generalisation to multi-channel attackers (which would
also allow colluding attackers to be modelled) is left for future work.

2.2 Dynamic Policies

A flow policy specifies a limit on how much information an attacker may learn. A very
general way to specify such a limit is as an equivalence relation on input stores.

Example 1. Consider a store with variables x and y. A simple policy might state that
the attacker should only be able to learn the value of x. It follows that all stores which
agree on the value of x should look the same to the attacker. This is expressed as the
equivalence relation σ≡ ρ iff σ(x)= ρ(x).

36 B. van Delft, S. Hunt, and D. Sands

A more complicated policy might allow the attacker to learn the value of some arbi-
trary expression e on the initial store, e.g. x= y. This is expressed as the equivalence
relation σ≡ ρ iff σ(e)= ρ(e).

Definition 1 (Policy). A policy P maps each channel to an equivalence relation ≡ on
stores. We write Pa for the equivalence relation that P defines for channel a.

As defined, policies are static. A dynamic policy changes while the program is run-
ning and may dictate a different P for each point in the execution. Here we assume that
the policy changes synchronously with the execution of the program. That is, the active
policy can be deterministically derived from the execution history so far.

Definition 2 (Execution History). An execution history H of length n is a transition
sequence 〈c0, σ0〉 α1−−→〈c1, σ1〉 α2−−→ . . . αn−−−→〈cn, σn〉.

Definition 3 (Dynamic Policy). A dynamic policy D maps every execution history H
to a policy D(H). We write Da(H) for the equivalence relation that is defined by D(H)
for channel a, that is to say, Da(H) = Pa where P = D(H).

Most synchronous dynamic policy languages in the literature determine the current
policy based solely on the store σn in the final configuration of the execution history
[AC12, BvDS13]. Definition 3 allows in principle for more flexible notions of dynamic
policies, as they can incorporate the full execution history to determine the policy at
each stage of an execution (similar to the notion of conditional noninterference used by
[GM84, Zha12]). However, our enforcement does assume that the dynamic policy can
be statically approximated per program point, which arguably is only feasible for poli-
cies in the style of [AC12, BvDS13]. Such approximations can typically be improved
by allowing the program to branch on policy-related queries.

Since programs are deterministic, an execution history of length n is uniquely deter-
mined by its initial configuration 〈c0, σ0〉. We use this fact to simplify our definitions
and proofs:

Definition 4 (Execution Point). An execution point is a triple (c0, σ0, n) identifying
the point in execution reached after n evaluation steps starting from configuration
〈c0, σ0〉. Such an execution point is considered well-defined iff there exists 〈cn, σn〉
such that 〈c0, σ0〉−→n〈cn, σn〉.

Lemma 1. Each well-defined execution point (c0, σ0, n) uniquely determines an exe-
cution history H(c0, σ0, n) of length n starting in configuration 〈c0, σ0〉.

In the rest of the paper we rely on this fact to justify a convenient abuse of notation,
writing D(c0, σ0, n) to mean D(H(c0, σ0, n)).

3 Knowledge-Based Security Conditions
Recent works on dynamic policies, including [AC12, BDLG11, BNR08, BS10], make
use of so-called knowledge-based security definitions, building on the notion of gradual
release introduced in [AS07]. This form of definition seems well-suited to provide intu-
itive semantics for dynamic policies. We focus in particular on the attacker-parametric
model from Askarov and Chong in [AC12].

Very Static Enforcement of Dynamic Policies 37

Suppose that the input state to a program is σ. In the knowledge-based approach,
an attacker’s knowledge of σ is modelled as a knowledge set K , which may be any set
of states such that σ ∈ K . Note that the larger the knowledge set, the less certain is
the attacker of the actual value of σ, so a smaller K means more precise knowledge.
(Sometimes, as we see below, it can be more intuitive to focus on the complement K,
which is the set of a-priori possible states which the attacker is able to exclude, since
this set, which we will call the exclusion knowledge, grows as the attacker learns more).

Now suppose that the currently active policy is ≡. The essential idea in any know-
ledge-based semantics is to view the equivalence classes of ≡ as placing upper bounds
on the attacker’s knowledge. In the simplest setting, if the actual input state is σ and the
attacker’s knowledge set is K , we require:

K ⊇ {σ′ | σ′ ≡ σ}
Or, in terms of what the attacker is able to exclude:

K ⊆ {ρ | ρ �≡ σ} (1)

How then do we determine the attacker’s knowledge? Suppose an attacker knows
the program c and observes channel a. Ignoring covert channels (timing, power, etc)
an obvious approach is to say that the attacker’s knowledge is simply a function of the
trace t observed so far:

k(t) = {ρ|〈c, ρ〉 t−→a} (2)

We define the exclusion knowledge as the complement of this: ek (t) = k(t). Note
that, as a program executes and more outputs are observed, the attacker’s exclusion
knowledge can only increase; if 〈c, σ〉 t·v−−→a then ek (t) ⊆ ek(t · v), since, if ρ can
already be excluded by observation of t (because c cannot produce t when started in
ρ), then it will still be excluded when t · v is observed (if c cannot produce t it cannot
produce any extension of t either).

But this simple model is problematic for dynamic policies. Suppose that the policies
in effect when t and t · v are observed are, respectively ≡1 and ≡2. Then it seems that
we must require both ek (t) ⊆ {ρ | ρ �≡1 σ} and ek(t · v) ⊆ {ρ | ρ �≡2 σ}. As observed
above, it will always be the case that ek(t) ⊆ ek (t · v), so we are forced to require
ek(t) ⊆ {ρ | ρ �≡2 σ}. In other words, the observations that we can permit at any given
moment are constrained not only by the policy currently in effect but also by all policies
which will be in effect in the future. This makes it impossible to have dynamic policies
which revoke previously permitted flows (or, at least, pointless; since all revocations
would apply retrospectively, the earlier “permissions” could never be exercised).

Askarov and Chong’s solution has two key components, outlined in the following
two sections.

3.1 Change in Knowledge

Firstly, recognising that policy changes should not apply retrospectively, we can relax
(1) to constrain only how an attacker’s knowledge should be allowed to increase, rather
than its absolute value. The increase in attacker knowledge going from t to t · v is given
by the set difference ek(t · v)− ek(t). So, instead of (1), we require:

ek(t · v)− ek(t) ⊆ {ρ | ρ �≡ σ} (3)

38 B. van Delft, S. Hunt, and D. Sands

where ≡ is the policy in effect immediately before the output v. (Some minor set-
theoretic rearrangement gives the equivalent

k(t · v) ⊇ k(t) ∩ {σ′ | σ′ ≡ σ}
which is the form of the original presentation in [AC12].)

3.2 Forgetful Attackers

Focussing on change in knowledge addresses the problem of retrospective revocation
but it creates a new issue. Consider the following example.

Example 2. The program in Figure 2 produces the same output many times, but only
the first output is permitted by the policy. Assume that the value of x is 5. Before the
first output, the exclusion knowledge of an observer on channel a is the empty set. After
the first output the observer’s exclusion knowledge is increased to include those stores
σ where σ(x) �= 5. This is allowed by the policy at that point.

By the time the second output occurs, the policy prohibits any further flows from x.
However, since the attacker’s exclusion knowledge already provides complete knowl-
edge of x, the second output does not actually change the attacker’s exclusion knowl-
edge at all, so (3) is satisfied (since ek(t · v) = ek(t)). Thus a policy semantics based
on (3) would accept this program even though it continues to leak the value of x long
after the flow has been revoked.

// x → a
out x on a;
// x �→ a
while (true)
out x on a;

Fig. 2.

Askarov and Chong address this by revisiting the assump-
tion that an attacker’s knowledge is necessarily determined
by the simple function of traces (2) above. Consider an at-
tacker which forgets the value of the first output in exam-
ple 2. For this attacker, the second output would come as
a revalation, revealing the value of x all over again, in vi-
olation of the policy. Askarov and Chong thus arrive at the
intriguing observation that security against a more powerful
attacker, one who remembers everything that happens, does not imply security against
a less resourceful attacker, who might forget parts of the observations made.

Forgetful attackers are modelled as deterministic automata.

Definition 5 (Forgetful Attacker � § III.A [AC12]). A forgetful attacker is a tuple
A=(SA, s0, δA) where SA is the set of attacker states; s0 ∈ SA is the initial state;
and δA : SA × Val → SA the (deterministic) transition function describing how the
attacker’s state changes due to the values that the attacker observes.

We write A(t) for the attacker’s state after observing trace t:

A(ε) = s0

A(t · v) = δA(A(t), v)

A forgetful attacker’s knowledge after trace t is defined as the set of all initial stores
that produce a trace which would result in the same attacker state A(t):

Definition 6 (Forgetful Attacker Knowledge � § III.A [AC12]).

k(A, c, a, t) = {ρ | 〈c, ρ〉 t′−−→a ∧ A(t′) = A(t)}

Very Static Enforcement of Dynamic Policies 39

(Note that, in preparation for the formal definition of the security condition, program c
and channel a now appear as explicit parameters.)

The proposed security condition is still essentially as given by (3), but now relative
to a specific choice of attacker. Stated in the notation and style of the current paper, the
formal definition is as follows.

Definition 7 (Knowledge-Based Security � Def. 1 [AC12]). Command c is secure for
policy D against an attacker A on channel a for initial store σ if for all traces t and
values v such that 〈c, σ〉 t−→n

a〈c′, σ′〉 v−−→1
a we have

ek (A, c, a, t · v)− ek(A, c, a, t) ⊆ {ρ | ρ �≡ σ}
where ≡ = Da(c, σ, n).

Having relativised security to the power of an attacker’s memory, it is natural to con-
sider the strong notion of security that would be obtained by requiring Def. 7 to hold for
all choices of A. However, as shown in [AC12], this exposes a problem with the model:
there are attackers for which even well-behaved programs are insecure according to
Def. 7.

Example 3. Consider again the first example from the Introduction (Section 1.1). Here,
for simplicity, we assume that the variable x is boolean, taking value 0 or 1.

// x → a
out x on a;
// x �→ a
out 2 on a;

q0start

q1

q2

0

1

2

2

It is intuitively clear that this program complies with the policy. However, as ob-
served in [AC12], if we instantiate Def. 7 with the forgetful attacker displayed, the
attacker’s exclusion knowledge increases with the second output when x=0.

After observing the value 0, the attacker’s state is A(0)= q0. Since A(ε)= q0, the
exclusion knowledge is still the empty set. After the second observation, only stores
where x=0 could have led to state q2, so the exclusion knowledge increases at a point
where the policy does not allow it.

This example poses a question which (so far as we are aware) remains unanswered:
if we base a dynamic policy semantics on Def.7, for which set of attackers should we
require it to hold?

In the next section we define a progress-insensitive variant of Def.7. For this variant
it seems that security against all attackers is a reasonable requirement and in Section 6
we show that progress-insensitive security against all attackers is indeed enforced by
our type system.

3.3 Progress Insensitive Security

Since [VSI96], work on the formalisation and enforcement of information-flow poli-
cies has generally distinguished between two flavours of security: termination-sensitive
and termination-insensitive. Termination-sensitive properties guarantee that protected

40 B. van Delft, S. Hunt, and D. Sands

information is neither revealed by its influence on input-output behaviour nor by its
influence on termination behaviour. Termination-insensitive properties allow the latter
flows and thus provide weaker guarantees. For systems with incremental output (as
opposed to batch-processing systems) it is more appropriate to distinguish between
progress-sensitive and progress-insensitive security. Progress-insensitive security ig-
nores progress-flows, where a flow is regarded as a progress-flow if the information that
it reveals can be inferred solely by observing how many outputs the system produces.

Two examples of programs with progress-flows are as follows:

Example 4. Programs containing progress-flows:

// Program A // Program B
out 1 on a; out 1 on a;
while (x == 8) skip; if (x != 8) out 2 on a;
out 2 on a;

Let σ and ρ differ only on the value of x: σ(x) = 4 and ρ(x) = 8. Note that, if started in
σ, both programs produce a trace of length 2 (namely, the trace 1 · 2) whereas, if started
in ρ, the maximum trace length is 1. Thus, for both programs, observing just the length
of the trace produced can reveal information about x. Note that, since termination is not
an observable event in the semantics, A and B are actually observably equivalent; we
give the two variants to emphasise that progress-flows may occur even in the absence
of loops.

In practice, most enforcement mechanisms only enforce progress-insensitive secu-
rity. This is a pragmatic choice since (a) it is hard to enforce progress-sensitive secu-
rity without being overly restrictive (typically, all programs which loop on protected
data will be rejected), and (b) programs which leak solely via progress-flows, leak
slowly [AHSS08].

Recall that Knowledge-Based Security (Def. 7) places a bound on the increase in
an attacker’s knowledge which is allowed to arise from observation of the next output
event. Askarov and Chong show how this can be weakened in a natural way to pro-
vide a progress-insensitive property, by artificially strengthening the supposed previous
knowledge to already include progress knowledge. Their definition of progress knowl-
edge is as follows:

Definition 8 (AC Progress Knowledge � § III.A [AC12]).

k+(A, c, a, t) = {ρ | 〈c, ρ〉 t′·v−−−→a ∧ A(t′) = A(t)}

Substituting this (actually, its complement) in the “previous knowledge” position in
Def. 7 provides Askarov and Chong’s notion of progress-insensitive security:

Definition 9 (AC Progress-Insensitive (ACPI) Security� Def. 2 [AC12]). Command
c is AC Progress-Insensitive secure for policy D against an attacker A on channel a for
initial store σ if for all traces t and values v such that 〈c, σ〉 t−→n

a〈c′, σ′〉 v−−→1
a we have

ek(A, c, a, t · v)− ek+(A, c, a, t) ⊆ {ρ | ρ �≡ σ}

where ≡ = Da(c, σ, n).

Very Static Enforcement of Dynamic Policies 41

Now consider again programs A and B above. These are examples of programs
where the only flows are progress-flows. In general, we say that a program is quasi-
constant if there is some fixed (possibly infinite) trace t such that every trace produced
by the program is a prefix of t, regardless of the choice of initial store. Thus, for a quasi-
constant program, the only possible observable variation in behaviour is trace length,
so all flows are progress-flows. Since PI security is intended explicitly to allow progress-
flows, we should expect all quasi-constant programs to satisfy PI security, regardless of
the choice of policy and for all possible attackers. But, for Def. 9, this fails to hold, as
shown by the following counterexample.

Example 5. Consider the program and attacker below. The attacker is a very simple
bounded-memory attacker which remembers just the last output seen and nothing else
(not even whether it has seen any previous outputs).

// x �→ a
out 1 on a;
out 1 on a;
while (x) skip;
out 1 on a;
out 2 on a;

q0start

q1

q2

1

2

1

2

2

1

Clearly, the program is quasi-constant. However, it is not ACPI secure for the given
attacker. To see this, suppose that x = 0 and consider the trace t = 1 · 1 · 1. The attacker
has no knowledge at this point (ek(t) is the empty set) since it does not know whether
it has seen one, two or three 1’s. It is easily verified that ek+(t) is also the empty set
for this attacker (intuitively, giving this attacker progress knowledge in the form k+

doesn’t help it, since it still does not know which side of the loop has been reached).
But ek(t · 2) is not the empty set, since in state q2 the attacker is able to exclude all
stores for which x = 1, thus ACPI security is violated.

What has gone wrong here? The attacker itself seems reasonable. We argue that the real
problem lies in the definition of k+(A, c, a, t). As defined, this is the knowledge that A
would have in state A(t) if given just the additional information that c can produce at
least one more output. But this takes no account of any previous progress knowledge
which might have been forgotten by A. (Indeed, the above attacker forgets nearly all
such previous progress knowledge.) As a consequence, the resulting definition of PI
security mistakenly treats some increases in knowledge as significant, even though they
arise purely because the attacker has forgotten previously available progress knowledge.

Our solution will be to re-define progress knowledge to include what the attacker
would know if it had been keeping count. To this end, for any attacker A = (S, s0, δ)
we define a counting variant Aω = (Sω, sω0 , δ

ω), such that Sω ⊆ S ×N , sω0 = (s0, 0)
and δω((s, n), v) = (δ(s, v), n+1). In general, Aω will be at least as strong an attacker
as A:

Lemma 2. For all A, c, a, t:

1. k(Aω, c, a, t) ⊆ k(A, c, a, t)
2. ek(A, c, a, t) ⊆ ek (Aω, c, a, t)

42 B. van Delft, S. Hunt, and D. Sands

Proof. It is is easily seen that Aω(t) = (q, n) ⇒ A(t) = q. Thus Aω(t′) = Aω(t) ⇒
A(t′) = A(t), which establishes part 1. Part 2 is just the contrapositive of part 1.

Our alternative definition of progress knowledge is then:

Definition 10 (Full Progress Knowledge).

k#(A, c, a, t) = {ρ | 〈c, ρ〉 t′·v−−−→a ∧ Aω(t′) = Aω(t)}

Our corresponding PI security property is:

Definition 11 (Progress-Insensitive (PI) Security). Command c is progress-insensitive
secure for policy D against an attacker A on channel a for initial store σ if for all traces
t and values v such that 〈c, σ〉 t−→n

a〈c′, σ′〉 v−−→1
a we have

ek(A, c, a, t · v)− ek#(A, c, a, t) ⊆ {ρ | ρ �≡ σ}

where ≡ = Da(c, σ, n).

This definition behaves as expected for quasi-constant programs:

Lemma 3. Let c be a quasi-constant program. Then c is PI secure for all policies D
against all attackers A on all channels a for all initial stores σ.

Proof. It suffices to note that, from the definitions, if t · v is a possible trace for c and c
is quasi-constant, ek#(A, c, a, t) = ek (Aω, c, a, t · v). The result follows by Lemma 2.

As a final remark in this section, we note that there is a class of attackers for which
ACPI and PI security coincide. Say that A is counting if it always remembers at least
how many outputs it has observed. Formally:

Definition 12 (Counting Attacker). A is counting if A(t) = A(t′) ⇒ |t| = |t′|.

Now say that attackers A and A′ are isomorphic (written A ∼= A′) if A(t1) = A(t2) ⇔
A′(t1) = A′(t2) and note that none of the attacker-parametric security conditions dis-
tinguish between isomorphic attackers (in particular, knowledge sets are always equal
for isomorphic attackers). It is easily verified that A ∼= Aω for all counting attackers. It
is then immediate from the definitions that ACPI security and PI security coincide for
counting attackers.

4 Progress-Insensitive Security as a Two-Run Property

Our aim in this section is to derive a security property which guarantees (in fact, is
equivalent to) PI security for all attackers, and in a form which facilitates the soundness
proof of our type system. For this we seek a property in “two run” form.

First we reduce the problem by establishing that it suffices to consider just the count-
ing attackers.

Lemma 4. Let c be a command. Then, for any given policy, channel and initial store, c
is PI secure against all attackers iff c is PI secure against all counting attackers.

Very Static Enforcement of Dynamic Policies 43

Proof. Left to right is immediate. Right to left, it suffices to show that

ek(A, c, a, t · v)− ek#(A, c, a, t) ⊆ ek(Aω , c, a, t · v)− ek#(Aω , c, a, t)

Since Aω ∼= (Aω)ω, we have ek#(Aω , c, a, t) = ek#(A, c, a, t). It remains to show
that ek(A, c, a, t · v) ⊆ ek(Aω , c, a, t · v), which holds by Lemma 2.

Our approach is now essentially to unwind Def. 11. Our starting point for the un-
winding is:

ek(A, c, a, t · v)− ek#(A, c, a, t) ⊆ {ρ | ρ �≡ σ}

where ≡ is the policy in effect at the moment the output v is produced. Simple set-
theoretic rearrangement gives the equivalent:

{σ′ | σ′ ≡ σ} ∩ k#(A, c, a, t) ⊆ k(A, c, a, t · v)
Expanding the definitions, we arrive at:

ρ ≡ σ ∧ 〈c, ρ〉 t′·v′
−−−→a ∧ Aω(t′) = Aω(t) ⇒ ∃s.〈c, ρ〉 s−→a ∧A(s) = A(t · v)

By Lemma 4, we can assume without loss of generality that A is counting, so we can
replace Aω(t′) = Aω(t) by A(t′) = A(t) on the lhs. Since A is counting, we know that
|t| = |t′| and |s| = |t · v|, hence |s| = |t′ · v′|. Now, since c is deterministic and both
s and t′ · v′ start from the same ρ, it follows that s = t′ · v′. Thus we can simplify the
unwinding to:

ρ ≡ σ ∧ 〈c, ρ〉 t′·v′
−−−→a ∧A(t′) = A(t) ⇒ A(t′ · v′) = A(t · v)

Now, suppose that this holds for A and that v′ �= v. Let q be the attacker state A(t′) =
A(t) and let r be the attacker state A(t′ · v′) = A(t · v). Since |t| �= |t · v| and A is
counting, we know that q �= r. Then we can construct an attacker A′ from A which
leaves q intact but splits r into two distinct states rv and rv′ . But then security will
fail to hold for A′, since A′(t′ · v′) = rv �= rv′ = A′(t · v). So, since we require
security to hold for all A, we may strengthen the rhs to A(t′ · v′) = A(t · v) ∧ v = v′.
Then, given A(t′) = A(t), since A is a deterministic automaton, it follows that v =
v′ ⇒ A(t′ · v′) = A(t · v), hence the rhs simplifies to just v = v′ and the unwinding
reduces to:

ρ ≡ σ ∧ 〈c, ρ〉 t′·v′
−−−→a ∧ A(t′) = A(t) ⇒ v′ = v

Finally, since A now only occurs on the lhs, we see that there is a distinguished counting
attacker for which the unwinding is harder to satisfy than all others, namely the attacker
A#, for which A#(t

′) = A#(t) iff |t′| = |t|. Thus the property will hold for all A iff it
holds for A# and so we arrive at our two-run property:

Definition 13 (Two-Run PI Security). Command c is two-run PI secure for policy D
on channel a for initial store σ if whenever 〈c, σ〉 t−→n

a〈cn, σn〉 v−−→1
a and ρ ≡ σ and

〈c, ρ〉 t′·v′
−−−→a and |t′| = |t|, then v′ = v, where ≡ = Da(c, σ, n).

Theorem 1. Let c be a command. For any given policy, channel and initial store, c is
PI secure against all attackers iff c is two-run PI secure.

Proof. This follows from the unwinding of the PI security definition, as shown above.

44 B. van Delft, S. Hunt, and D. Sands

5 A Dependency Type System
Within the literature on enforcement of information flow policies, some work is distin-
guished by the appearance of explicit dependency analyses. In the current paper we take
as our starting point the flow-sensitive type systems of [HS11, HS06], due to the relative
simplicity of presentation. Other papers proposing similar analyses include [CHH02],
[AB04], [AR80] and [BBL94]. Some of the similarities and differences between these
approaches are discussed in [HS06].

The original work of [HS06] defines a family of type systems, parameterised by
choice of a multi-level security lattice, and establishes the existence of principal typ-
ings within this family. The later work of [HS11] defines a single system which pro-
duces only principal types. In what follows we refer to the particular flow-sensitive type
system defined in [HS11] as FST.

The typings derived by FST take the form of an environment Γ mapping each pro-
gram variable x to a set Γ (x) which has a direct reading as (a conservative approxima-
tion to) the set of dependencies for x. All other types derivable using the flow-sensitive
type systems of [HS06] can be recovered from the principal type derived by FST. Be-
cause principal types are simply dependency sets, they are not specific to any particular
security hierarchy or policy. This is the basis of the clean separation we are able to
achieve between analysis and policy verification in what follows.

x := z + 1;
z := x;
if (z > 0)

y := 1;
x := 0;

Fig. 3.

Consider the simple program shown in Figure 3. The type in-
ferred for this program is Γ , where Γ (x) = {}, Γ (y) = {y, z},
Γ (z) = {z}. From this typing we can verify, for example, any
static policy using a security lattice in which level(z) � level (y).

FST is defined only for a simple language which does not in-
clude output statements. This makes it unsuitable for direct appli-
cation to verification of dynamic policies, so in the current paper
we describe a straightforward extenion of FST to a language with output statements.
We then show how the inferred types can be used to enforce policies such as those in
[AC12] and [BvDS13], which appear very different from the simple static, multi-level
policies originally targeted.

5.1 Language

We instantiate the abstract computation model of Section 2.1 with a simple while-
language with output channels, shown in Figure 4. We let x ∈ PVar range over program
variables, a ∈ Chan range over channels (as before) and p ∈ PPoint range over pro-
gram points. Here non-silent output labels have the form (a, v, p), channel(a, v, p) = a,
and value(a, v, p) = v.

The language is similar to the one considered in [AC12], except for the absence of
input channels. Outputs have to be annotated with a program point p to bridge between
the dependency analysis and the policy analysis, described in Section 6.

5.2 Generic Typing

Traditional type systems for information flow assume that all sensitive inputs to the
system (here: program variables) are associated with a security level. Expressions in
the command to be typed might combine information with different security levels. To

Very Static Enforcement of Dynamic Policies 45

Values v ::= n Expressions e ::= v | x
Commands c ::= skip | c1; c2 | x := e | if e c1 c2 | while e c | out e on a @ p

〈skip; c, σ〉 ε−→〈c, σ〉 〈c1, σ〉 α−−→〈c′1, σ′〉
〈c1; c2, σ〉 α−−→〈c′1; c2, σ′〉

σ(e) = v

〈x := e, σ〉 ε−→〈skip, σ′〉

σ(e) = v

〈out e on a @ p, σ〉 (a,v,p)−−−−−→〈skip, σ′〉 〈while e c, σ〉 ε−→〈if e (c; while e c) skip, σ〉

σ(e) �= 0

〈if e c1 c2, σ〉 ε−→〈c1, σ〉
σ(e) = 0

〈if e c1 c2, σ〉 ε−→〈c2, σ〉
Fig. 4. Language and semantics

ensure that all expressions can be typed, the security levels are therefore required to
form at least a join-semilattice, or in some cases a full lattice. The type system then
ensures no information of a (combined) level l1 can be written to a program variable
with level l2 unless l1 � l2.

The system FST from Hunt and Sands [HS11] differs from these type systems in two
ways. Firstly, it does not require intermediate assignments to respect the security lattice
ordering. As an observer is assumed to only see the final state of the program, only the
final value of a variable must not depend on any information which is forbidden by the
lattice ordering. For example, suppose level(y) � level (z) � level (x) but level(x) ��
level(z) and consider the first two assignments in the example from Fig. 3.

x = z + 1; z = x;

A traditional type system would label this command as insecure because of the assign-
ment z = x and the fact that level (x) �� level(z), even though the value of z after
this assignment does not depend on the initial value of x at all. FST however is flow-
sensitive and allows the security label on x to vary through the code.

Secondly, and more significantly, by using the powerset of program variables as se-
curity lattice, FST provides a principal typing from which all other possible typings can
be inferred.

Thus the typing by FST is generic: a command needs to be typed only once and can
then be verified against any static information-flow policy. Since the ordering among
labels is not relevant while deriving the typing, FST is also able to verify policies which
are not presented in the shape of a security lattice, but any relational ‘may-flow’ predi-
cate between security labels can be verified.

5.3 Generic Typing for Dynamic Policies

We now present an extended version of FST which includes an additional typing rule
for outputs. All the original typing rules of FST remain unchanged.

Intuitively, an output on a channel is like the final assignment to a variable in the
original FST, that is, its value can be observed. Since types are sets of dependencies, we
could simply type an output channel as the union of all dependencies resulting from all
output statements for that channel. This would be sound but unduly imprecise: the only
flows permitted would be those permitted by the policy at all times, in effect requiring

46 B. van Delft, S. Hunt, and D. Sands

us to conservatively approximate each dynamic policy by a static one. But we can do
better than this.

The flow-sensitivity of FST means that a type derivation infers types at intermediate
program points which will, in general, be different from the top-level type inferred for
the program. These intermediate types are not relevant for variables, since their inter-
mediate values are not observable. But the outputs on channels at intermediate points
are observable, and so intermediate channel types are relevant. Therefore, for each
channel we record in Γ distinct dependency sets for each program point at which an
output statement on that channel occurs. Of course, this is still a static approximation of
runtime behaviour. While our simple examples of dynamic policies explicitly associate
policy changes to program points, for real-world use more expressive dynamic policy
languages may be needed. In Section 2.2 we formally define the semantics of a dynamic
policy as an arbitrary function of a program’s execution history, which provides a high
degree of generality. However, in order to apply a typing to the verification of such
a policy, it is first necessary to conservatively approximate the flows permitted by the
policy at each program point of interest (Definition 16).

Let X be the dependency set for the channel-a output statement at program point p.
The meaning1 of X is as follows:

Let σ be a store such that execution starting in σ arrives at p, producing the
i’th output on a. Let ρ be any store which agrees with σ on all variables in X
and also eventually produces an i’th output on a (not necessarily at the same
program point). Then these two outputs will be equal.

Two key aspects of our use of program points should be highlighted:

1. While the intended semantics of X as outlined above does not require correspond-
ing outputs on different runs to be produced at the same program point, the X that
is inferred by the type system does guarantee this stronger property. Essentially
this is because (in common with all similar analyses) the type system uses control-
flow dependency as a conservative proxy for the semantic dependency property of
interest.

2. Our choice of program point to distinguish between different ouputs on the same
channel is not arbitrary; it is essentially forced by the structure of the original type
system. As noted, program point annotations simply allow us to record in the final
typing exactly those intermediate dependency sets which are already inferred by
the underlying flow-sensitive system. While it would be possible in principle to
make even finer distinctions (for example, aiming for path-sensitivity rather than
just flow-sensitivity) this would require fundamental changes to the type system.

The resulting type system is shown in Figure 5. We now proceed informally to mo-
tivate its rules. Definitions and proofs of formal soundness are presented in Section 6.

The type system derives judgements of the form �{c}Γ , where Γ : Var → 2Var is
an environment mapping variables to a set of dependencies. The variables we consider
are Var = PVar ∪ CPoint ∪ {pc} ∪ Chan with CPoint = Chan × PPoint . We
consider the relevance of each kind of variable in turn.

1 This is progress-insensitive dependency (see Section 3). A progress-sensitive version can be
defined in a similar way.

Very Static Enforcement of Dynamic Policies 47

TS-SKIP � {skip} Γid TS-ASSIGN � {x := e} Γid [x �→ fv(e) ∪ {pc}]

TS-SEQ
� {c1}Γ1 � {c2}Γ2

� {c1 ; c2} Γ2;Γ1

TS-IFELSE

� {ci}Γi � Γ ′
i = Γi;Γid [pc �→ {pc} ∪ fv(e)] i = 1, 2

� {if e c1 c2} (Γ ′
1 ∪ Γ ′

2)[pc �→ {pc}]
TS-WHILE

� {c}Γc Γf = (Γc;Γid [pc �→ {pc} ∪ fv(e)])∗

� {while e c} Γf [pc �→ {pc}]
TS-OUTPUT

� {out e on a @ p}Γid [ap �→ fv(e) ∪ {pc, a, ap}; a �→ {pc, a}]

Fig. 5. Type System

– As program variables PVar form the inputs to the command, these are the depen-
dencies of interest in the typing of a command. For program variables themselves,
Γ (x) are the dependencies for which a different initial value might result in a dif-
ferent final value of x.

– Pairs of channels and program points (a, p) ∈ CPoint are denoted as ap. The
dependencies Γ (ap) are those program variables for which a difference in initial
value might cause a difference in the value of any observation that can result from
an output statement for channel a with annotation p.

– Whenever the program counter pc∈Γ (x) this indicates that this command poten-
tially changes the value of program variable x. Similar, if pc∈Γ (a) then c might
produce an output on channel a and if pc∈Γ (ap) then c might produce an output
on a caused by a statement annotated with p. We use the program counter to catch
implicit flows that may manifest in these ways.

– We use Chan to capture the latent flows described in example program B in the
introduction. The dependencies Γ (a) are those program variables for which a dif-
ference in initial value might result in a different number of outputs produced on
channel a by this command. This approach to address latent flows was first intro-
duced in [AC12] as channel context bounds.

We first explain the notation used in the unchanged rules from FST before turning our
attention to the new TS-OUTPUT rule. All concepts have been previously introduced
in [HS11].

The function fv(e) returns the free variables in expression e. The identity environ-
ment Γid maps each variable to the singleton set of itself, that is Γid (x)={x} for all
x∈Var . Sequential composition of environments is defined as:

Γ2;Γ1(x) =
⋃

y∈Γ2(x)

Γ1(y)

48 B. van Delft, S. Hunt, and D. Sands

Intuitively, Γ2;Γ1 is as Γ2 but substituting the dependency relations already established
in Γ1. We overload the union operator for environments: (Γ1∪Γ2)(x) = Γ1(x)∪Γ2(x).
We write Γ ∗ for the fixed-point of Γ , used in TS-WHILE:

Γ ∗ =
⋃
n≥0

Γn where Γ 0 = Γid and Γn+1 = Γn;Γ

It is only in the typing TS-OUTPUT of the output command that the additional chan-
nel and program point dependencies are mentioned; this underlines our statement that
extending FST to target dynamic policies is straightforward.

We explain the changes to Γid in TS-OUTPUT in turn. For ap, clearly the value of
the output and thus the observation is affected by the program variables occuring in the
expression e. We also include the program counter pc to catch implicit flows; if we have
a command of the form if e (out 1 on a @ p) (out 2 on a @ q) the output at ap is
affected by the branching decision, which is caught in TS-IFELSE.

We include the channel context bounds a for the channel on which this output occurs
to capture the latent flows of earlier conditional outputs, as demonstrated in the intro-
duction. Observe that by the definition of sequential composition of environments, we
only add those dependencies for conditional outputs that happened before this output,
since it cannot leak information about the absence of future observations.

Finally, we include the dependencies of output point ap itself. By doing so the de-
pendency set of ap becomes cumulative: with every sequential composition (including
those used in Γ ∗) the dependency set of ap only grows, as opposed to the dependencies
of program variables. This makes us sum the dependencies of all outputs on channel a
annotated with the same program point, as we argued earlier.

The mapping for channel context bounds a is motivated in a similar manner. The
pc is included since the variables affecting whether this output occurs on channel a
are the same as those that affect whether this statement is reached. Note that we are
over-approximating here, as the type system adds the dependencies of e in

if e (out 1 on a @ p1) (out 2 on a @ p2)

to context bounds a, even though the number of outputs is always one.
Like for ap, we make a depend on itself, thus accumulating all the dependencies that

affect the number of outputs on channel a.
As the TS-OUTPUT rule does not introduce more complex operations than already

present, the type system has the same complexity as FST. That is, the type system can
be used to construct a generic type in O(nv3) where n is the size of the program and v
the number of variables in Var.

6 Semantic Soundness and Policy Compliance
We present a soundness condition for the type system, and show that the type system
is sound. We then describe how the derived generic typings can be used to check com-
pliance with a dynamic policy that is approximated per program point. We begin by
showing how an equivalence relation on stores can be created from a typing:

Definition 14. We write =Γ (x) for the equivalence relation corresponding to the typing
Γ of variable x ∈ Var , defined as σ=Γ (x) ρ iff σ(y)= ρ(y) for all y ∈ Γ (x).

Very Static Enforcement of Dynamic Policies 49

As we are using Γ (ap) as the approximation of dependencies for an observation, the
soundness of the PI type system is similar to the PI security for dynamic policies, except
that we take the equivalence relation as defined by Γ (ap) rather than the policy Da.

Definition 15 (PI Type System Soundness). We say that the typing �{c}Γ is sound
iff for all σ, ρ, if 〈c, σ〉 t−→a〈cσ, σ′〉 (a,v,p)−−−−−→ and 〈c, ρ〉 t′−−→a〈cρ, ρ′〉 v′

−−→a and |t| = |t′|
then σ=Γ (ap) ρ ⇒ v= v′.

Theorem 2. All typings derived by the type system are sound.

The proof for Theorem 2 can be found in Appendix A of [DHS15].
To link the typing and the actual dynamic policy, we rely on an analysis that is able

to approximate the dynamic policy per program point. A sound approximation should
return a policy that is at least as restrictive as the actual policy for any observation on
that program point.

Definition 16 (Dynamic Policy Approximation). A dynamic policy approximation
A : CPoint → 2Σ×Σ is a mapping from channel and program point pairs to an
equivalence relation on stores. The approximation A on command c, written c : A,
is sound for dynamic policy D iff, for all σ if 〈c, σ〉−→n〈c′, σ′〉 (a,v,p)−−−−−→ then A(ap) is
coarser than Da(c, σ, n).

We now arrive at the main theorem in this section. Given a typing �{c}Γ , we can
now easily verify for command c its compliance with any soundly approximated dy-
namic policy, by simply checking that the typing’s policy is at least as restrictive as the
approximated dynamic policy for every program point.

Theorem 3 (PI Dynamic Policy Compliance). Let c :A be a sound approximation of
dynamic policy D. If �{c}Γ and =Γ (ap) is coarser than A(ap) for all program points
ap, then c is two-run PI secure for D on all channels and for all initial stores.

Proof. Given a store σ such that 〈c, σ〉 t−→n
a〈cσ, σ′〉 (a,v,p)−−−−−→ and a store ρ such that

〈c, ρ〉 t′−−→a〈cρ, ρ′〉 v′
−−→a and |t| = |t′| and σDa(c, σ, n)ρ, we need to show that v= v′.

Since c :A is a sound approximation of D, we have that σA(ap)ρ and as =Γ (ap) is
coarser than A(ap) we also have σ=Γ (ap) ρ. Which by Theorem 2 gives us that v= v′.

Corollary 1. If the conditions of Theorem 3 are met, then c is PI secure for D for all
attackers. This is immediate by Theorem 1.

7 Related Work
In this section we consider the related work on security for dynamic policies and on
generic enforcement mechanisms for information-flow control. We already discuss the
knowledge-based definitions by Askarov and Chong [AC12] in detail in Section 3.

The generality of expressing dynamic policies per execution point can be identified
already in the early work by Goguen and Meseguer [GM82]. They introduce the notion
of conditional noninterference as a relation that should hold per step in the system, pro-
vided that some condition on the execution history holds. Conditional noninterference

50 B. van Delft, S. Hunt, and D. Sands

has been recently revisited by Zhang [Zha12] who uses unwinding relations to present
a collection of properties that can be verified by existing proof assistants.

Broberg and Sands [BS09] developed another knowledge-based definition of secu-
rity for dynamic policies which only dealt with the attacker with perfect recall. The
approach was specialised to the specific dynamic policy mechanism Paralocks [BS10]
which uses part of the program state to vary the ordering between security labels.

Balliu et al. [BDLG11] introduce a temporal epistemic logic to express informa-
tion flow policies. Like our dynamic policies, the epistemic formulas are to be satisfied
per execution point. Dynamic policies can be individually checked by the ENCOVER

tool [BDLG12].
The way in which we define dynamic policies matches exactly the set of synchronous

dynamic policies: those policies that deterministically determine the active policy based
on an execution point. Conversely, an asynchronously changing policy cannot be deter-
ministically determined from an execution point, but is influenced by an environment
external to the running program.

There is relatively little work on the enforcement of asynchronous dynamic poli-
cies. Swamy et al. [SHTZ06] present the language RX where policies are define in a
role-based fashion, where membership and delegation of roles can change dynamically.
Hicks et al. [HTHZ05] present an extension to the DLM model, allowing the acts-for
hierarchy among principals to change while the program is running.

Both approaches however need a mechanism to synchronise the policy changes with
the program in order to enforce information-flow properties. RX uses transactions which
can rollback when a change in policy violates some of the flows in it, whereas the
work by Hicks et al. inserts automatically derived coercions that force run-time checks
whenever the policy changes.

A benefit of our enforcement approach is that commands need to be analysed only
once to be verified against multiple information-flow policies. This generality can also
be found in the work by Stefan et al. [SRMM11] presenting LIO, a Haskell library
for information-flow enforcement which is also parametric in the security policy. The
main differences between our approach and theirs is that LIO’s enforcement is dynamic
rather than static, while the enforced policies are static rather than dynamic.

8 Conclusions

We extended the flow-sensitive type system from [HS06] to provide for each output
channel individual dependency sets per point in the program and demonstrated that this
is sufficient to support dynamic information flow policies. We proved the type system
sound with respect to a straightforward two-run property which we showed sufficient
to imply knowledge-based security conditions.

As our approach allows for the core of the analysis to be performed even before the
policy is known, this enables us to reuse the results of the dependency analysis across
the verification of multiple types of policies. An interesting direction for future research
could be on the possibility to use the dependency analyses performed by advanced
slicing tools such as JOANA [JOA] and Indus [Ind].

Acknowledgements. This work is partly funded by the Swedish agencies SSF and VR.

Very Static Enforcement of Dynamic Policies 51

References
[AB04] Amtoft, T., Banerjee, A.: Information Flow Analysis in Logical Form. In: Giacobazzi,

R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg (2004)
[AC12] Askarov, A., Chong, C.: Learning is change in knowledge: Knowledge-based security

for dynamic policies. In: Computer Security Foundations Symposium, pp. 308–322. IEEE
(2012)

[AHSS08] Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-Insensitive Noninterfer-
ence Leaks More Than Just a Bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 333–348. Springer, Heidelberg (2008)

[AR80] Andrews, G.R., Reitman, R.P.: An axiomatic approach to information flow in programs.
TOPLAS 2(1), 56–75 (1980)

[AS07] Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, encryption and
key release policies. In: Proc. IEEE Symp. on Security and Privacy, pp. 207–221 (May
2007)

[BBL94] Banâtre, J.-P., Bryce, C., Le Métayer, D.: Compile-time detection of information flow
in sequential programs. In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 55–73.
Springer, Heidelberg (1994)

[BDLG11] Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic for information flow
security. In: Programming Languages and Analysis for Security, PLAS 2011, pp. 6:1–6:12.
ACM (2011)

[BDLG12] Balliu, M., Dam, M., Le Guernic, G.: Encover: Symbolic exploration for information
flow security. In: 2012 IEEE 25th Computer Security Foundations Symposium (CSF), pp.
30–44. IEEE (2012)

[BNR08] Banerjee, A., Naumann, D., Rosenberg, S.: Expressive declassification policies and
modular static enforcement. In: Proc. IEEE Symp. on Security and Privacy, pp. 339–353.
IEEE Computer Society (2008)

[BS09] Broberg, N., David, S.: Flow-Sensitive Semantics for Dynamic Information Flow Poli-
cies. In: Programming Languages and Analysis for Security (2009)

[BS10] Broberg, N., Sands, D.: Paralocks – role-based information flow control and beyond. In:
Symposium on Principles of Programming Languages. ACM (2010)

[BvDS13] Broberg, N., van Delft, B., Sands, D.: Paragon for Practical Programming with
Information-Flow Control. In: Shan, C.-c. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 217–
232. Springer, Heidelberg (2013)

[CHH02] Clark, D., Hankin, C., Hunt, S.: Information flow for Algol-like languages. Journal of
Computer Languages 28(1), 3–28 (2002)

[DD77] Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Comm. of the ACM 20(7), 504–513 (1977)

[DHS15] van Delft, B., Hunt, S., Sands, D.: Very Static Enforcement of Dynamic Policies. Tech-
nical Report 1501.02633, arXiv (2015)

[GM82] Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proc. IEEE
Symp. on Security and Privacy, April 1982, pp. 11–20 (April 1982)

[GM84] Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proc. IEEE Symp. on
Security and Privacy, pp. 75–86 (April 1984)

[HS06] Hunt, S., Sands, D.: On Flow-sensitive Security Types. In: Symposium on Principles of
Programming Languages, pp. 79–90. ACM (2006)

[HS11] Hunt, S., Sands, D.: From Exponential to Polynomial-Time Security Typing via Prin-
cipal Types. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 297–316. Springer,
Heidelberg (2011)

[HTHZ05] Hicks, M., Tse, S., Hicks, B., Zdancewic, S.: Dynamic updating of information-flow
policies. In: Foundations of Computer Security Workshop, pp. 7–18 (2005)

52 B. van Delft, S. Hunt, and D. Sands

[Ind] Indus homepage, http://indus.projects.cis.ksu.edu/ (accessed: January
09, 2015)

[JOA] JOANA homepage, http://pp.ipd.kit.edu/projects/joana/ (accessed:
January 09, 2015)

[SHTZ06] Swamy, N., Hicks, M., Tse, S., Zdancewic, S.: Managing Policy Updates in Security-
Typed Languages. In: Proceedings of the 19th IEEE Workshop on Computer Security Foun-
dations (2006)

[SRMM11] Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in Haskell. In: Proceedings of the 4th ACM Symposium on Haskell (2011)

[VSI96] Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. J.
Computer Security 4(3), 167–187 (1996)

[Zha12] Zhang, C.: Conditional Information Flow Policies and Unwinding Relations. In: Bruni,
R., Sassone, V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 227–241. Springer, Heidelberg
(2012)

http://indus.projects.cis.ksu.edu/
http://pp.ipd.kit.edu/projects/joana/

The Foundational Cryptography Framework

Adam Petcher1,2 and Greg Morrisett1

1 Harvard University, Cambridge, Massachusetts, USA
{apetcher,greg}@seas.harvard.edu

2 MIT Lincoln Laboratory, Lexington, Massachusetts, USA

Abstract. We present the Foundational Cryptography Framework
(FCF) for developing and checking complete proofs of security for crypto-
graphic schemes within a proof assistant. This is a general-purpose frame-
work that is capable of modeling and reasoning about a wide range of
cryptographic schemes, security definitions, and assumptions. Security is
proven in the computationalmodel, and theproof provides concrete bounds
as well as asymptotic conclusions. FCF provides a language for probabilis-
tic programs, a theory that is used to reason about programs, and a library
of tactics and definitions that are useful in proofs about cryptography. The
framework is designed to leverage fully the existing theory and capabilities
of the Coq proof assistant in order to reduce the effort required to develop
proofs.

Keywords: Cryptography, Protocol Verification, Proof Assistant, Coq.

1 Introduction

Cryptographic algorithms and protocols are becoming more numerous, special-
ized, and complicated. As a result, it is likely that security vulnerabilities will
slip by peer review. To address this problem, some cryptographers [7][16] have
proposed an increased level of rigor and formality for cryptographic proofs. It is
our hope that eventually, cryptographers will be able to describe cryptographic
schemes and security proofs using a formal language, and the proofs can be
checked automatically by a highly trustworthy mechanized proof checker.

To enable such mechanically-verified proofs, we have developed The Founda-
tional Cryptography Framework (FCF). This framework embeds into the Coq
proof assistant [17] a simple probabilistic programming language to allow the
specification of cryptographic schemes, security definitions, and assumptions.
The framework also includes useful theory, tactics, and definitions that assist
with the construction of proofs of security. Once complete, the proof can be
checked by the Coq proof checker. Facts proven in FCF include the security of
El Gamal encryption [14], and of the encryption scheme described in Section 4
of this paper. We have also proven the security and correctness of the “tuple-
set” construction of [11], and shown how this primitive can be used to construct
a searchable symmetric encryption scheme supporting single keyword queries.
This is a complex and sophisticated construction with a proof of over 15000

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 53–72, 2015.
DOI: 10.1007/978-3-662-46666-7_4

54 A. Petcher and G. Morrisett

lines of Coq code which includes a pair of core arguments involving more than
30 intermediate games.

FCF is heavily influenced by CertiCrypt [6], which was later followed by Easy-
Crypt [5]. CertiCrypt is a framework that is built on Coq, and allows the develop-
ment of mechanized proofs of security in the computational model for arbitrary
cryptographic constructions. Unfortunately, proof development in CertiCrypt is
time-consuming, and the developer must spend a disproportionate amount of
time on simple, uninteresting goals. To address these limitations, the group be-
hind CertiCrypt developed EasyCrypt, which has a similar semantics and logic,
and uses the Why3 framework and SMT solvers to improve proof automation.
EasyCrypt takes a huge step forward in terms of usability and automation, but
it sacrifices some trustworthiness due to that fact that the trusted computing
base is larger and the basis of the mechanization is a set of axiomatic rules.

FCF is a foundational framework like CertiCrypt, in which the rules used
to prove equivalence of programs (or any fact) are mechanized proofs derived
from the semantics or other core definitions. An important difference between
CertiCrypt and FCF is that CertiCrypt uses a deep embedding of a probabilistic
programming language whereas FCF uses a shallow embedding (similar to [19]).
The shallow embedding allows us to easily extend the language, and to make
better use of Coq’s tactic language and existing automated tactics to reduce the
effort required to develop proofs. The result is a framework that is foundational
and easily extensible, but in which proof development effort is greatly reduced.

2 Design Goals

Based on our experience working with EasyCrypt, we formulated a set of ide-
alized design goals that a practical mechanized cryptography framework should
satisfy. We believe that FCF achieves many of these goals, though there is still
some room for improvement, as discussed in Section 5.

Familiarity. Security definitions and descriptions of cryptographic schemes should
look similar to how they would appear in cryptography literature, and a cryptog-
rapher with no knowledge of programming language theory or proof assistants
should be able to understand them. Furthermore, a cryptographer should be
able to inspect and understand the foundations of the framework itself.

Proof Automation. The system should use automation to reduce the effort re-
quired to develop a proof. Ideally, this automation is extensible, so that the
developer can produce tactics for solving new kinds of goals.

Trustworthiness. Proofs should be checked by a trustworthy procedure, and the
core definitions (e.g., programming language semantics) that must be inspected
in order to trust a proof should be relatively simple and easy to understand.

Extensibility. It should be possible to directly incorporate any existing the-
ory that has been developed for the proof assistant. For example, it should be

The Foundational Cryptography Framework 55

possible to directly incorporate an existing theory of lattices in order to support
cryptography that is based on lattices and their related assumptions.

Concrete Security. The security proof should provide concrete bounds on the
probability that an adversary is able to defeat the scheme. Concrete bounds
provide more information than asymptotic statements, and they inform the se-
lection of values for system parameters in order to achieve the desired level of
security in practice.

Abstraction. The system should support abstraction over types, procedures,
proofs, and modules containing any of these items. Abstraction over procedures
and primitive types is necessary for writing security definitions, and for reason-
ing about adversaries in a natural way. The inclusion of abstraction over proofs
and structures adds a powerful mechanism for developing sophisticated abstract
arguments that can be reused in future proofs.

Code Generation. The system should be able to generate code containing the
procedures of the cryptographic scheme that was proven secure. This code can
then be used for basic testing, prototyping, or as an executable model to which
future implementations will be compared during testing.

3 Framework Components

In a typical cryptographic proof, we specify cryptographic schemes, security
definitions, and (assumed) hard problems, and then we prove a reduction from
a properly-instantiated security definition to one or more problems that are
assumed to be hard. In other words, we assume the existence of an effective
adversary against the scheme in question, and then prove that we can construct
a procedure that can effectively solve a problem that is assumed to be hard. This
reduction results in a contradiction that allows us to conclude that an effective
adversary against the scheme cannot exist.

The cryptographic schemes, security definitions, and hard problems are proba-
bilistic, and FCF provides a common probabilistic programming language (Sec-
tion 3.1) for describing all three. Then we provide a denotational semantics
(Section 3.1) that allows reasoning about the probability distributions that cor-
respond to programs in this language. This semantics assigns a numeric value
to an event in a probability distribution, and it also allows us to conclude that
two distributions are equivalent and we can replace one with the other (which
supports the game-hopping style of [7]).

It can be cumbersome to work directly in the semantics, so we provide a the-
ory of distributions (Section 3.2) that can be used to prove that distributions
are related by equality, inequality or “closeness.” A program logic (Section 3.3)
is also provided to ease the development of proofs involving state or looping be-
havior. To reduce the effort required to develop a proof, the framework provides
a library of tactics (Section 3.4) and a library of common program elements with
associated theory (Section 3.4). The equational theory, program logic, tactics,
and programming library greatly simplify proof development, yet they are all

56 A. Petcher and G. Morrisett

derived from the semantics of the language, and using them to complete a proof
does not reduce the trustworthiness of the proof.

By combining all of the components described above, a developer can pro-
duce a proof relating the probability that some adversary defeats the scheme
to the probability that some other adversary is able to solve a problem that is
assumed to be hard. This is a result in the concrete setting, in which probability
values are given as expressions, and certain problems are assumed to be hard
for particular constructed adversaries. In such a result, it may be necessary to
inspect an expression describing a probability value to ensure it is sufficiently
“small,” or to inspect a procedure to ensure it is in the correct complexity class.
FCF provides additional facilities to obtain more traditional asymptotic results,
in which these procedures and expressions do not require inspection. A set of
asymptotic definitions (Section 3.5) allows conclusions such as “this probability
is negligible” or “this procedure executes a polynomial number of queries.” In
order to apply an assumption about a hard problem, it may be necessary to
prove that some procedure is efficient in some sense. So FCF provides an ex-
tensible notion of efficiency (Section 3.5) and a characterization of non-uniform
polynomial time Turing machines.1

3.1 Probabilistic Programs

We describe probabilistic programs using Gallina, the purely functional pro-
gramming language of Coq, extended with a computational monad in the spirit
of Ramsey and Pfeffer [20], that supports drawing uniformly random bit vectors.
Listing 2 contains an example of a valid FCF program that implements a one-
time pad on bit vectors. This program accepts a bit vector argument x, samples
a random bit vector of length c (where c is a constant declared outside of this
function) and assigns the result to variable p, then returns p⊕ x.

The syntax of the language is defined by an inductive type called Comp and
is shown in Listing 1. At a high-level, Comp is an embedded domain-specific
language that inherits the host language Gallina, and extends it with operations
for generating and working with random bits.

The most notable primitive operation is Rnd, which produces n uniformly
random bits. The Repeat operation repeats a computation until some decidable
predicate holds on the value returned. This operation allows a restricted form of
non-termination that is sometimes useful (e.g., for sampling natural numbers in
a specified range). The operations Bind and Ret are the standard monadic con-
structors, and allow the construction of sequences of computations, and compu-
tations from arbitrary Gallina terms and functions, respectively. However, note
that the Ret constructor requires a proof of decidable equality for the underly-
ing return type, which is necessary to provide a computational semantics as seen
later in this section. In the remainder of this paper, we will use a more natural

notation for these constructors: {0, 1}n is equivalent to (Rnd n), x
$← c; f is

1 The current release of the FCF code for version 8.4 of Coq is available from http://

people.seas.harvard.edu/~apetcher/FCF_14.10.14.zip

http://people.seas.harvard.edu/~apetcher/FCF_14.10.14.zip
http://people.seas.harvard.edu/~apetcher/FCF_14.10.14.zip

The Foundational Cryptography Framework 57

Inductive Comp : Set -> Type :=
| Ret : forall {A : Set}

{H: EqDec A}, A -> Comp A
| Bind : forall {A B : Set}, Comp

B
-> (B -> Comp A) -> Comp A

| Rnd : forall n, Comp (Bvector n)
| Repeat : forall {A : Set}, Comp

A
-> (A -> bool) -> Comp A.

Listing 1. Probabilistic Computation
Syntax

Definition OTP (x : Bvector c) :
Comp (Bvector c)

:= p <-$ {0, 1}^c; ret (p xor x)

Listing 2. An Example of a
Probabilistic Program

�ret a� =1{a}

�x
$← c; f x� =λx.

∑

b∈supp(�c�)

(�f b� x) ∗ (�c� b)

�{0, 1}n� =λx. 2−n

�Repeat c P � =λx.(1P x) ∗ (�c� x)∗
(
∑

b∈P

(�c� b)

)−1

Fig. 1. Semantics of Probabilistic
Computations

the same as (Bind c (fun x ⇒ f), and ret e is (Ret e). The framework
includes an ASCII form of this notation used in Listing 2. In the case of Ret,
the notation serves to hide the proof of decidable equality, which is irrelevant to
the programmer and is usually constructed automatically by proof search.

FCF uses a (mostly) shallow embedding, in which functions in the object lan-
guage are realized using functions in the metalanguage. In contrast, CertiCrypt
uses a deep embedding, in which the data type describing the object language
includes constructs for specifying and calling functions, as well as all of the
primitives such as bit-vectors and xor.

We have found that there are key benefits to shallow embedding. The primary
benefit is that we immediately gain all of the capability of the metalanguage,
including (in the case of Coq) dependent types, higher-order functions, modules,
etc. Another benefit is that it is very simple to include any necessary theory
in a security proof, and all of the theory that has been developed in the proof
assistant can be directly utilized. One benefit that is specific to Coq (and other
proof assistants with this property) is that Gallina functions are necessarily ter-
minating, and Coq provides some fairly complex mechanisms for proving that a
function terminates. By combining this restriction on functions with additional
restrictions on Repeat, we can ensure that a computation (eventually) termi-
nates, and that this computation corresponds with a distribution in which the
total probability mass is 1.

On the other hand, the shallow embedding approachdoes have some drawbacks.
The main drawback is that a Gallina function is opaque; we can only reason about
a Gallina function based on its input/output behavior. The most significant effect
of this limitation is that we cannot directly reason about the computational com-
plexity of a Gallina function. We address this issue in Section 3.5.

The denotational semantics of a probabilistic computation is shown in Figure
1. The denotation of a term of type Comp A is a function in A → Q which
should be interpreted as the probability mass function of a distribution on A. In
FCF, all distributions are discrete and have finite support. In Figure 1, 1S is the

58 A. Petcher and G. Morrisett

indicator function for set S. So the denotation of ret a is a function that returns
1 when the argument is definitionally equal to a, and 0 otherwise. We can view

the denotation of x
$← c; f c as a marginal probability of the joint distribution

formed by c and f . We know the probability of all events in c, but we only know
the probability of events in f conditioned on events in c, so we can compute
the probability of any event in this marginal distribution using the law of total
probability. The fact that random bits are uniform and independent is encoded
in the denotation of {0, 1}n, which is a function that ignores the argument and
returns the probability that any n-bit value is equal to a randomly chosen n-bit
value. The probability that Repeat c P produces x is the conditional probability
of x given P in c—which is equivalent to the function shown in Figure 1.

It is important to note that this language is purely functional, but the monadic
style gives programs an imperative appearance. This appearance supports the
Familiarity design goal since cryptographic definitions and games are typically
written in an imperative style.

It is sometimes necessary to include some state in a cryptographic definition or
proof. This can be easily accomplished by layering a state monad on top of Comp.
However, this simple approach does not allow the development of definitions in
which an adversary has access to an oracle that must maintain some hidden
state across multiple interactions with the adversary. The definition could not
simply pass the state to the adversary, because then the adversary could inspect
or modify it. So FCF provides an extension to Comp for probabilistic procedures
with access to a stateful oracle. The syntax of this extended language (Listing 3)
is defined in another inductive type called OracleComp, where OracleComp A B

C is a procedure that returns a value of type C, and has access to an oracle that
takes a value of type A and returns a value of type B.

Inductive OracleComp : Set -> Set -> Set -> Type :=
| OC_Query : forall (A B : Set), A -> OracleComp A B B
| OC_Run : forall (A B C A’ B’ S : Set), EqDec S -> EqDec B -> EqDec A ->

OracleComp A B C -> S -> (S -> A -> OracleComp A’ B’ (B * S)) ->
OracleComp A’ B’ (C * S)

| OC_Ret : forall A B C, Comp C -> OracleComp A B C
| OC_Bind : forall A B C C’, OracleComp A B C ->

(C -> OracleComp A B C’) -> OracleComp A B C’.

Listing 3. Computation with Oracle Access Syntax

The OC Query constructor is used to query the oracle, and OC Run is used to
run some program under a different oracle that is allowed to access the current
oracle. The OC Bind and OC Ret constructors are used for sequencing and for
promoting terms into the language, as usual. In the rest of this paper, we overload
the sequencing and ret notation in order to use them for OracleComp as well
as Comp. We use query and run, omitting the additional types and decidable
equality proofs, as notation for the corresponding constructors of OracleComp.

The denotation of an OracleComp is a function from an oracle and an or-
acle state to a Comp that returns a pair containing the value provided by the
OracleComp and the final state of the oracle. The type of an oracle that takes

The Foundational Cryptography Framework 59

�query a� = λo s.(o s a)

�run c′ s′ o′� = λo s.�c′(λx y.�(o′(fst x) y) o (snd x)�) (s′, s)�

�ret c� = λo s.x
$← c; ret (x, s)

�x
$← c; f x� = λo s.[x, s′] $← �c o s�; �(f x) o s′�

Fig. 2. Semantics of Computations with Oracle Access

an A and returns a B is (S -> A -> Comp(B * S)) for some type S which holds
the state of the oracle. The denotational semantics is shown in Figure 2.

3.2 (In)Equational Theory of Distributions

A common goal in a security proof is to compare two distributions with respect to
some particular value (or pair of values) in the distributions. To assist with such
goals, we have provided an (in)equational theory for distributions. This theory
contains facts that can be used to show that two probability values are equal,
that one is less than another, or that the distance between them is bounded by
some value. For simplicity of notation, equality is overloaded in the statements
below in order to apply to both numeric values and distributions. When we say
that two distributions (represented by probability mass functions) are equal,
as in D1 = D2, we mean that the functions are extensionally equal, that is
∀x, (D1 x) = (D2 x).

Theorem 1 (Monad Laws).

�a
$← ret b; fa� = �(f b)� �a

$← c; ret a� = �c�

�a
$← (b

$← c1; c2 b); c3 a� = �b
$← c1; a

$← c2 b; c3 a�

Theorem 2 (Commutativity).

�a
$← c1; b

$← c2; c3 a b� = �b
$← c2; a

$← c1; c3 a b�

Theorem 3 (Distribution Irrelevance). For well-formed computation c,

(∀x ∈ supp(�c�), �f x�y = v) ⇒ �a
$← c; f a�y = v

Theorem 4 (Distribution Isomorphism). For any bijection f,

∀x ∈ supp(�c2�), �c1�(f x) = �c2�x

∧ ∀x ∈ supp(�c2�), �f1 (f x)� v1 = �f2 x�v2

⇒ �a
$← c1; f1 a� v1 = �a

$← c2; f2 a� v2

Theorem 5 (Identical Until Bad).

�a
$← c1; ret (B a)� = �a

$← c2; ret (B a)�∧

�a
$← c1; ret (P a,B a)�(x, false) = �a

$← c2; ret (P a,B a)�(x, false) ⇒

| �a $← c1; ret (P a)� x− �a
$← c2; ret (P a)� x | ≤ �a

$← c1; ret (B a)� true

60 A. Petcher and G. Morrisett

The meaning and utility of many of the above theorems is direct (such as the
standard monad properties in Theorem 1), but others require some explanation.
Theorem 3 considers a situation in which the probability of some event y in �f x�
is the same for all x produced by computation c. Then the distribution �c� is
irrelevant, and it can be ignored. This theorem only applies to well-formed com-
putations: A well-formed computation is one that terminates with probability 1,
and therefore corresponds to a valid probability distribution.

Theorem 4 is a powerful theorem that corresponds to the common informal
argument that two random variables “have the same distribution.” More for-
mally, assume distributions �c1� and �c2� assign equal probability to any pair of
events (f x) and x for some bijection f . Then a pair of sequences beginning with
c1 and c2 are denotationally equivalent as long as the second computations in
the sequences are equivalent when conditioned on (f x) and x. A special case of
this theorem is when f is the identity function, which allows us to simply “skip”
over two semantically equivalent computations at the beginning of a sequence.

Theorem 5, also known as the “Fundamental Lemma” from [7], is typically
used to bound the distance between two games by the probability of some un-
likely event. Computations c1 and c2 produce both a value of interest and an
indication of whether some “bad” event happened. We use (decidable) predicate
B to extract whether the bad event occurred, and projection P to extract the
value of interest. If the probability of the “bad” event occurring in c1 and c2 is
the same, and if the distribution of the value of interest is the same in c1 and c2
when the bad event does not happen, then the distance between the probability
of the value of interest in c1 and and c2 is at most the probability of the “bad”
event occurring.

3.3 Program Logic

The final goal of a cryptographic proof is always some relation on probability
distributions, and in some cases it is possible to complete the proof entirely
within the equational theory described in 3.2. However, when the proof requires
reasoning about loops or state, a more expressive theory may be needed in
order to discharge some intermediate goals. For this reason, FCF includes a
program logic that can be used to reason about changes to program state as
the program executes. Importantly, the program logic is related to the theory of
probability distributions through completeness and soundness theorems which
allow the developer to derive facts about distributions from program logic facts,
and vice-versa.

The core logic is a Probabilistic Relational Postcondition Logic (PRPL), that
behaves like a Hoare logic, except there are no preconditions. The definition
of a PRPL specification is given in Definition 1. In less formal terms, we say
that computations p and q are related by the predicate Φ if both p and q are
marginals of the same joint probability distribution, and Φ holds on all values
in the support of that joint distribution.

The Foundational Cryptography Framework 61

Definition 1 (PRPL Specification). Given p : Comp A and q : Comp B,

p ∼ q{Φ} ⇔
(
∃ (d : Comp (A * B)), ∀(x, y) ∈ supp(�d�), Φ x y ∧

�p� = �x
$← d; ret (fst x)� ∧ �q� = �x

$← d; ret (snd x)�

)

Using the PRPL, we can construct a Probabilistic Relational Hoare Logic
(PRHL) which includes a notion of precondition for functions that return com-
putations as shown in Definition 2. The resulting program logic is very similar
to the Probabilistic Relational Hoare Logic of EasyCrypt [5], and it has many
of the same properties.

Definition 2 (PRHL Specification). Given p : A -> Comp B and q : C ->

Comp D, {Ψ}p ∼ q{Φ} ⇔ ∀a b, Ψ a b ⇒ (p a) ∼ (q b){Φ}.
Several theorems are provided along with the program logic definitions to

simplify reasoning about programs. In order to use the program logic, one only
needs to apply the appropriate theorem, so it is not necessary to produce the
joint distribution described in the definition of a PRPL specification unless a
suitable theorem is not provided. Theorems are provided for reasoning about
the basic programming language constructs, interactions between programs and
oracles, specifications describing equivalence, and the relationship between the
program logic and the theory of probability distributions. Some of the more
interesting program logic theorems are described below.

Theorem 6 (Soundness/Completeness).

p ∼ q{λ a b.a = x ⇔ b = y} ⇔ �p� x = �q� y

p ∼ q{λ a b.a = x ⇒ b = y} ⇔ �p� x ≤ �q� y

Theorem 7 (Sequence Rule).

p ∼ q{Φ′} ⇒ {Φ′}r ∼ s{Φ} ⇒ (x
$← p; r x) ∼ (x

$← q; s x){Φ}

Theorem 8 (Oracle Equivalence). Given an OracleComp c, and a pair of
oracles, o and p with initial states s and t,

Φ = λ x y.(fst x) = (fst y) ∧ P (snd x)(snd y) ⇒
(∀a s′ t′, P s′ t′ ⇒ (o s′ a) ∼ (p t′ a){Φ}) ⇒ P s t ⇒ (�c� o s) ∼ (�c� p t){Φ}

Theorem 6 relates judgments in the program logic to relations on probabil-
ity distributions. Theorem 7 is the relational form of the standard Hoare logic
sequence rule, and it supports the decomposition of program logic judgments.
Theorem 8 allows the developer to replace some oracle with an observationally
equivalent oracle. There is also a more general form of this theorem (omitted for
brevity) in which the state of the oracle is allowed to go bad. This more general
theorem can be combined with Theorem 5 to get “identical until bad” results
for program/oracle interactions.

3.4 Tactics and Programming Library

The framework includes several tactics that can be used to transform goals us-
ing the facts in Sections 3.2 and 3.3. An example proof in section 4 uses the

62 A. Petcher and G. Morrisett

comp simp, inline first and comp skip tactics. These tactics simplify pro-
grams (e.g. by applying left identity to remove unnecessary ret statements),
pull out nested statements by applying associativity, and remove identical state-
ments at the beginning of a pair of programs, respectively. Also included is a
more sophisticated tactic called dist compute that attempts to automatically
discharge goals involving simple computations.

FCF also includes a library containing useful programming structures and
their related theory. For example, the library includes several sampling routines,
such as drawing a natural number from a specified range; drawing an element
from a finite list, set, or group; or sampling from an arbitrary Bernoulli distribu-
tion. These sampling routines are all computations based on the Rnd statement
provided by the language, and each routine is accompanied by a theory estab-
lishing that the resulting distribution is correct. The CompFold package contains
higher-order functions for folding and mapping a computation over a list. This
package uses the program logic extensively, and many of the theorems take a
specification on a pair of computations as an argument, and produce a speci-
fication on the result of folding/mapping those computations over a list. The
package also contains theorems about typical list and loop manipulations such
as appending, flattening, fusion/fission and order permutation.

3.5 Asymptotic Theory and Efficient Procedures

Using the tools described in the previous sections, it is possible to complete a
proof of security in the concrete setting. That is, the probability that an adver-
sary wins a game is given as an expression which may include some value (or
set of values) η that we can interpret as the security parameter. To get a typi-
cal asymptotic security result, we must show that this expression, when viewed
as a function of η, is negligible. To assist with these sorts of conclusions, FCF
provides a library of asymptotic definitions and theory.

An additional challenge is that the expression in the concrete security result
may contain a value describing the probability that some other procedure wins
some other game. We can apply a standard security assumption to conclude
that this value is negligible in η, but in order to do so we need to show that
the procedure is in the appropriate complexity class. FCF utilizes an extensible
notion of complexity, and it includes a simple predicate that accepts non-uniform
worst-case polynomial time Turing machines. This predicate is constructed using
a concrete cost model that assigns numeric costs to particular Coq functions,
Comp values, and OracleComp values. The cost model for Gallina functions is
necessarily axiomatic, since there is no way to directly reason about intensional
properties of Coq functions. It includes axioms for some primitive operations
as well as a set of combinators for determining the cost of more complicated
functions. A proof must assume additional cost axioms for the set of functions
used by constructed adversaries, which is relatively small in practice. The axioms
need to be carefully inspected to ensure they accurately describe the desired
complexity class, though a similar kind of inspection is needed to ensure the
faithfullness of a cost model for a deeply-embedded language.

The Foundational Cryptography Framework 63

3.6 Code Extraction

FCF provides a code extraction mechanism that includes a strong guarantee
of equivalence between a model of a probabilistic program and the code ex-
tracted from that model. We developed a small-step operational semantics that
describes the behavior of these computations on a traditional machine (in which
the memory contains values rather than probability distributions). This opera-
tional semantics (omitted for brevity) is an oracle machine that is given a finite
list of bits representing the “random” input, and it describes how a computation
takes a single step to produce a new computation, a final value, or fails due to
insufficient input bits.

To show that this semantics is correct, we consider [c]n, the multiset of results
obtained by running a program c under this semantics on the set of all input lists
of length n. We can view [c]n as a distribution, where the mass of some value a
in the distribution is the proportion of input strings that cause the program to
terminate with value a. The statement of equivalence between the semantics is
shown in Theorem 9.

Theorem 9. If c is well-formed, then lim
n→∞[c]n = �c�

FCF contains a proof of Theorem 9 as a validation of the operational seman-
tics used for extraction. Now that we have an operational semantics, we can
simply use the standard Coq extraction mechanism to extract it along with
the model of interest and all supporting types and functions. Of course, the
trustworthiness of the extracted code depends on the correctness of Coq’s ex-
traction mechanism. Gallina does not allow infinite recursion, so the framework
includes OCaml code that runs a computation under the operational seman-
tics until a value is obtained. The final step is instantiating any abstract types
and functions with appropriate OCaml code. This extraction mechanism does
not produce production-quality code, but the code could be used for purposes
related to prototyping and testing.

This alternate semantics also provides other benefits. Because limits are unique,
if two programs are equivalent under the operational semantics, then they are also
equivalent under the denotational semantics. This allows us to prove equivalence of
two programs using the operational semantics when it is more convenient to do so.
Another benefit is that the operational semantics can be considered to be the basic
semantics for computations, and the denotational semantics no longer needs to be
trusted. Some may prefer this arrangement, since the operational semantics more
closely resembles a typical model of computation, andmay be easier to understand
and inspect. The operational semantics can also be used as a basis for a model of
computation used to determine whether programs are efficient.

4 Security Proof Construction

This section uses an example to describe the process of constructing a proof
of security using the general process described at the beginning of Section 3.

64 A. Petcher and G. Morrisett

We consider a simple encryption scheme constructed from a pseudorandom func-
tion (PRF), and we prove that ciphertexts produced by this scheme are indis-
tinguishable under chosen plaintext attack (IND-CPA). This example proof is
relatively simple, yet it contains many elements that one would find in a typical
cryptographic argument, and so it allows us to exercise all of the key function-
ality of the framework. A more complex mechanized proof (e.g., the proof of
[11]) may have more intermediate games and a different set of arguments to jus-
tify game transformations, but the structure is similar to the proof that follows.
The omitted details of the proof can be found in the longer form of this paper
available at http://arxiv.org/abs/1410.3735.

4.1 Concrete Security Definitions

In FCF, security definitions are used to describe properties that some construc-
tion is proven to have, as well as problems that are assumed to be hard. In the
PRF encryption proof, we use the definition of a PRF to assume that such a
PRF exists, and we use that assumption to prove that the construction in ques-
tion has the IND-CPA property. A concrete security definition typically contains
some game and an expression that describes the advantage of some adversary –
i.e., the probability that the adversary will “win” the game.

The game used to define the concrete security of a PRF is shown in Listing
4. Less formally, we say that f is a PRF for some adversary A if A cannot
effectively distinguish f from a random function. So this means that we expect
that PRF Advantage is “small” as long as A is an admissible adversary.

The function f oracle simply puts the function f in the form of an oracle,
though a very simple one with no state and with deterministic behavior. The
procedure RndR func is an oracle implementing a random function constructed
using the provided computation RndR. The expressions involving A use a coer-
cion in Coq to invoke the denotational semantics for OracleComp, and therefore
ensure that A can query the oracle but has no access to the state of the oracle.

At a high level, this definition involves two games describing two different
“worlds” in which the adversary may find himself. In one world (PRF G A) the
adversary interacts with the PRF, and in the other (PRF G B) the adversary
interacts with a random function. In each game, the adversary interacts with the
oracle and then outputs a bit. The advantage of the adversary is the difference
between the probability that he outputs 1 in world PRF G A and the probability
that he outputs 1 in world PRF G B. If f is a PRF, then this advantage should
be small.

The concrete security definition for IND-CPA encryption is shown in Listing
6. In this definition, KeyGen and Encrypt are the key generation and encryption
procedures. The adversary comprises two procedures, A1 and A2 with different
signatures, and the adversary is allowed to share arbitrary state information
between these two procedures. This definition uses a slightly different style than
the PRF definition—there is one game and the “world” is chosen at random
within that game. Then the adversary attempts to determine which world was
chosen.

http://arxiv.org/abs/1410.3735

The Foundational Cryptography Framework 65

Variable Key D R : Set.
Variable RndKey : Comp Key.
Variable RndR : Comp R.
Variable A : OracleComp D R bool.
Variable f : Key -> D -> R.

Definition f_oracle (k: Key)(x: unit)
(d : D) : Comp (R * unit) :=
ret (f k d, tt).

Definition PRF_G_A : Comp bool :=
k <-$ RndKey;
[b, _] <-$2 A (f_oracle k) tt;
ret b.

Definition PRF_G_B : Comp bool :=
[b, _] <-$2 A (RndR_func) nil;
ret b.

Definition PRF_Advantage :=
| Pr[PRF_G_A] - Pr[PRF_G_B] |.

Listing 4. PRF Concrete Security
Definition

Variable eta : nat.
Variable f : Bvector eta ->

Bvector eta -> Bvector eta.

Definition PRFE_KeyGen :=
{0, 1} ^ eta.

Definition PRFE_Encrypt
(k : Key)(p : Plaintext) :=
r <-$ {0, 1} ^ eta;
ret (r, p xor (f k r)).

Definition PRFE_Decrypt
(k : Key)(c : Ciphertext) :=
(snd c) xor (f k (fst c)).

Listing 5. Encryption using a PRF

Variable Plaintext Ciphertext Key
State : Set.

Variable KeyGen : Comp Key.
Variable Encrypt : Key -> Ciphertext

-> Comp Plaintext.
Variable A1 : OracleComp

Plaintext Ciphertext
(Plaintext * Plaintext * State).

Variable A2 : State -> Ciphertext ->
OracleComp Plaintext Ciphertext

bool.

Definition EncryptOracle
(k: Key)(x: unit)(p: Plaintext) :=
c <-$ Encrypt k p;
ret (c, tt).

Definition IND_CPA_SecretKey_G :=
key <-$ KeyGen ;
[b, _] <-$2
(

[p0, p1, s_A] <--$3 A1;
b <--$$ {0, 1};
pb <- if b then p1 else p0;
c <--$$ Encrypt key pb;
b’ <--$ A2 s_A c;
$ ret eqb b b’

)
(EncryptOracle key) tt;
ret b.

Definition
IND_CPA_SecretKey_Advantage :=
| Pr[IND_CPA_SecretKey_G] - 1/2 |.

Listing 6. IND-CPA Concrete Security
Definition

In Listing 6, the game produces an encryption oracle from the Encrypt func-
tion and a randomly-generated encryption key. Then the remainder of the game,
including the calls to A1 and A2, may interact with that oracle. The code for this
definition includes some additional notation (different arrows and extra $ sym-
bols) that is only used to provide hints to the Coq parser and does not change
the behavior of the program.

4.2 Construction

The construction, like the security definitions, can be modeled in a very natural
way. Of course, one must take care to ensure that the construction has the cor-
rect signature as specified in the desired security property. The PRF encryption
construction is shown in Listing 5.

In the PRF Encryption construction, we assume a nat called eta (η) which
will serve as the security parameter. The encryption scheme is based on a func-
tion f, and the scheme will only be secure if f is a PRF. The type of keys and
plaintexts is bit vectors of length eta, and the type of ciphertexts is pairs of
these bit vectors. The decryption function is included for completeness, but it is
not needed for this security proof.

66 A. Petcher and G. Morrisett

4.3 Sequence of Games

The sequence of games represents the overall strategy for completing the proof.
In the case of PRF Encryption, we want to show that the probability that
the adversary will correctly guess the randomly chosen “world” is close to 1/2.
We accomplish this by instantiating the IND-CPA security definition with the
construction, and then transforming this game, little by little, until we have a
game in which this probability is exactly 1/2. Each transformation may add some
concrete value to the bounds, and we want to ensure that the sum of these values
is small.

IND CPA G = G1

≈PRF Advantage

G2

≈Random List Collision

G3

=One Time Pad

G4 = G5 = 1/2

Fig. 3. Sequence of Games Diagram

Definition PRFE_Encrypt_OC (x : unit)
(p : Plaintext) : OracleComp
(Bvector eta) (Bvector eta)
(Ciphertext * unit) :=
r <--$$ {0,1} ^ eta;
pad <--$ OC_Query r;
$ (ret (r, p xor pad , tt)).

Definition PRF_A : OracleComp
(Bvector eta) (Bvector eta) bool :=
[a, n] <--$2 OC_Run A1

PRFE_Encrypt_OC tt;
[p0, p1, s_A] <-3 a;
b <--$$ {0,1}; r <--$$ {0,1}^eta;
pb <- if b then p1 else p0;
pad <--$ OC_Query r;
c <- (r, pb xor pad);
z <--$ OC_Run (A2 s_A c)

PRFE_Encrypt_OC n;
[b’,_] <-2 z; $ ret (eqb b b’).

Listing 7. The Constructed Adversary
Against the PRF

The diagram in Figure 3 shows the entire sequence of games, as well as the
relationship between each pair of games in the sequence. In this diagram, two
games are related by = if they are identical, and by ≈ if they are close. When
the equivalence is non-trivial, the diagram gives an argument for the equiva-
lence, which implies a bound on the distance between the games when they are
not equal. The intermediate game code is omitted for brevity, but a detailed
description of each game transformation follows.

We begin by instantiating the IND-CPA definition with the construction and
simplifying to produce game G1. This equivalence is obvious, and the proof can
be completed using Coq’s reflexivity tactic.

Next we replace the function f with a random function, and the distance be-
tween G1 and G2 is exactly the advantage of some adversary against a PRF.
The adversary against the PRF (Listing 7) is constructed from A1 and A2.
PRFE Encrypt OC is an encryption oracle that interacts with the PRF as an
oracle. PRF A provides this encryption oracle to A1 and A2 (the two adversary
procedures in the IND-CPA definition) using the OC Run operation. This proof
can be completed by performing simple manipulations and then unifying with
PRF Advantage.

The Foundational Cryptography Framework 67

Now we replace the random function output used to encrypt the challenge
ciphertext with a bit vector selected completely at random to produce game G3.
We show that G2 and G3 are “close” by demonstrating that these games are
“identical until bad” in the sense of Theorem 5. The “bad” event of interest is
the event that the randomly-generated PRF input used to encrypt the challenge
plaintext is also used to encrypt some other value during the interaction between
the adversary and the encryption oracle. There are two separate adversary pro-
cedures, and each one is capable of encountering r during its interaction with
the oracle. To get an expression for the probability of the “bad”event, we assume
natural numbers q1 and q2, and that A1 performs at most q1 queries and A2 per-
forms at most q2 queries. FCF includes a library module called RndInList that
includes general-purpose arguments related to the probability of encountering a
randomly selected value in a list of a certain length, and the probability of en-
countering a certain value in a list of randomly-generated elements of a certain
length. Using these arguments, we conclude that the distance between G2 and
G3 is q1/2η + q2/2η.

The previous equivalences are proven using the program logic described in
Section 3.3. Once the random functions are removed, there are no more issues
related to state, and the remainder of the proof can be completed by reasoning
on the probability distributions using the theory from Section 3.2.

In G3, the encryption of the challenge plaintext is by one-time pad, so we
can replace the resulting ciphertext with a randomly-chosen value to produce
G4. FCF contains a generic one-time-pad argument that we can apply to show
that G3 is equivalent to G4. This step is relatively simple so we include the
full code of the proof (Listing 8) for illustration. The one-time pad argument
expects the game to be in a particular form, so we develop another intermediate
game (G3 1), and we start by proving that G3 is equivalent to G3 1. These games
only differ by associativity, so a simple repeated proof script establishes their
equivalence. The second proof in Listing 8 focuses on the appropriate context,
and then applies the one-time pad argument for xor. The custom tactics used
in this proof are described in Section 3.4.

Theorem G3_G3_1_equiv:
Pr[G3] == Pr[G3_1].

unfold G3, G3_1.
repeat (comp_simp;

inline_first;
comp_skip).

Qed.

Theorem G3_1_G4_equiv:
Pr[G3_1] == Pr[G4].

unfold G3_1 , G4.
do 4 (comp_skip;

comp_simp).
apply xor_OTP_eq.
reflexivity.

Qed.

Listing 8. Proof of
Equivalence of G3 and G4

In G4, the challenge bit is independent of all other
values in the game, so we can move the sampling of
this bit to the end of the game to produce G5. The
proof of equivalence is by repeated application of the
commutativity theorem (Theorem 2).

Finally, we develop the proof that the adversary
wins Game 5 with probability exactly 1/2. This proof
proceeds by discarding all of the statements in the
game before the coin flip. Then what remains is a
very simple game that flips a coin and compares the
result to a fixed value. A provided tactic can auto-
matically determine that the probability that this
game returns true is 1/2.

68 A. Petcher and G. Morrisett

By combining the equivalences of each pair of intermediate games, we get the
final concrete security result shown in Listing 9. It is important to note that the
statement of this theorem does not reference any of the intermediate games. The
sequence of games was only a tool that we used to get the final result, and this
sequence does not need to be inspected in order to trust the result.

Theorem PRFE_IND_CPA_concrete :
IND_CPA_SecretKey_Advantage PRFE_KeyGen PRFE_Encrypt A1 A2 <=
PRF_Advantage ({0 ,1}^eta) ({0 ,1}^eta) f PRF_A + (q1 / 2^eta + q2 / 2^eta).

Listing 9. Concrete Security Result

This completes the proof of security in the concrete setting. We have also
developed an asymptotic security proof based on this result, but a discussion of
this proof is omitted for brevity.

5 Comparison to EasyCrypt

This section attempts to evaluate FCF against the design goals listed in Section
2, and to contrast with both CertiCrypt and EasyCrypt.

All three of these frameworks provide concrete bounds, so this criterion is
not discussed further. And, all three frameworks use a relatively familiar syntax
for security definitions and constructions. We believe that, based on our experi-
ence working with cryptographers, they can easily understand these definitions
(e.g., Listing 4) after spending a few minutes familiarizing themselves with the
notation.

Regarding proof automation, FCF lies somewhere between CertiCrypt and
EasyCrypt. EasyCrypt achieves a significant level of automation by using SMT
solvers to discharge simple logical goals, but higher-level goals still need to be
addressed manually by applying tactics. FCF achieves a similarly high level of
automation through the use of existing and custom Coq tactics. These tactics are
not as powerful as modern SMT solvers, so the developer may need to manually
address some goals in FCF that would be discharged automatically in EasyCrypt.
However, the semantics of programs in FCF is computational, so Coq is able to
immediately compute an expression describing the probability distribution for
any program. This allows some simple equivalences to be discharged immediately
using the semantics and tactics provided by FCF.

Regarding trust in extensional properties, FCF and CertiCrypt are founda-
tional, meaning that the program logic is constructed definitionally from the
semantics. In contrast, the relationship between EasyCrypt’s semantics and pro-
gram logic is not mechanized. The trusted computing base of EasyCrypt includes
the EasyCrypt front end (the OCaml code that implements EasyCrypt) and the
Why3 verification condition generator and one or more SMT solvers (if the proof
includes a tactic that invokes the SMT solvers), whereas the TCB of FCF and
CertiCrypt includes only the Coq type checker. EasyCrypt provides no sup-
port for reasoning about intensional properties such as execution time, whereas

The Foundational Cryptography Framework 69

CertiCrypt and FCF do, though FCF provides this suport using a trusted set of
axioms.

EasyCrypt and CertiCrypt are based on simply-typed, first-order languages
which are deeply-embedded into higher-order languages. This design makes it dif-
ficult to directly support abstraction, extension, and reuse, though these frame-
works include elements which support these goals to some extent. In contrast,
FCF uses a shallow embedding and the advanced features of Coq, such as de-
pendent types, modules, notation, and higher-order functions, to support ab-
straction, extensiblity, and reuse. We believe that having such a rich language
for describing games, assumptions, and arguments is critical for scaling to larger
protocols.

FCF supports code generation with a semantics that is proven to be equivalent
to the semantics used to reason about the probabilistic behavior of programs.
That is, a program extracted from an FCF model is guaranteed to produce
the correct probability distribution when the input bits provided to it are uni-
formly distributed, assuming the extraction mechanism of Coq preserves mean-
ing. There has been some initial work [3] in producing implementations that
correspond to EasyCrypt models, but there is no formal relationship between
the semantics of the implementation and the semantics used to reason about the
model.

EasyCrypt and FCF solve the same problem in slightly different ways and
with different sets of strengths and weaknesses. It is too early to tell which sorts
of proofs will benefit from one approach over the other.

6 Related Work

There has been a large amount of work in the area of verifying cryptographic
schemes in recent years. In this section we will describe some of this related
work, focusing on systems that attempt to establish security in the computa-
tional model. CertiCrypt [6] and EasyCrypt [5] have been thoroughly discussed
previously in this paper.

There are several other examples of frameworks for cryptographic security
proofs implemented within proof assistants. The most similar work is that of
Nowak [19], who was the first to develop proofs of cryptography in Coq using
a shallow embedding in which programs have probability distributions as their
denotations. FCF builds on this work by adding more tools for modeling and
reasoning such as procedures with oracle access (Section 3.1), a program logic
(Section 3.3), and asymptotic reasoning (Section 3.5).

The work of [2] is a Coq library utilizing a deeply-embedded imperative pro-
gramming language. This library is a predecessor to CertiCrypt, and it includes
some important elements that were later adopted by CertiCrypt. Notably, the
probabilistic programming language in this work is given a semantics in which
program states are distributions, and the semantics describes how these distri-
butions are transformed by each command in the language. Though this library
lacks some of the features of CertiCrypt such as oracles, unrestricted loops, and
the Probabilistic Relational Hoare Logic.

70 A. Petcher and G. Morrisett

Verypto [9] is a fully-featured framework built on Isabelle [18] that includes a
deep embedding of a functional programming language. To allow state informa-
tion to remain hidden from adversaries, Verypto provides ML-style references,
in contrast to the oracle system provided by FCF. To date, Verypto has only
been used to prove the security of simple constructions, but this work uses an
interesting approach that deserves more exploration.

CryptoVerif [10] is a tool based on a concurrent, probabilistic process cal-
culus that is only able to prove properties related to secrecy and authenticity.
CryptoVerif is highly automated to the extent that it will even attempt to lo-
cate intermediate games, and so proof development in CryptoVerif requires far
less effort compared to FCF or EasyCrypt. However, there are a large number
of proofs that could be completed in FCF or EasyCrypt that are impossible in
CryptoVerif due to its specialized nature and lack of interactive proof develop-
ment features.

Refinement types [8] have been used by Fournet et al [15] to develop proofs of
security for cryptographic schemes in the computational model. In this system,
a security property is specified as an ideal functionality (in the sense of the re-
al/ideal paradigm), and constructions have these properties by assumption. This
approach allows the proofs of security to be fairly simple, but many important
facts are assumed rather than mechanized, and no concrete security claims are
proved.

Computational soundness [1] provides another mechanism for verifying cryp-
tographic schemes. This approach attempts to derive security in the computa-
tional model from security in the symbolic model by showing that any likely
execution trace in the computational model also exists in the symbolic model. It
is possible to mechanize such a proof as described in [4]. This approach is limited
to classes of schemes for which computational soundness results have been dis-
covered. Another limitation with this approach is that it can only produce proofs
in the asymptotic setting—there is no way to prove concrete security claims.

Protocol Composition Logic (PCL) [12] provides a logic and proof system for
verifying cryptographic schemes in the symbolic model. The system is based on
a process calculus and allows reasoning about the results of individual protocol
steps. More recent work [13] has extended this logic to allow for proofs in the
computational model. In computational PCL, formulas are interpreted against
probability distributions on traces and a formula is true if it holds with over-
whelming probability. This approach is similar to computational soundness in
that low-probability traces are ignored, and proofs of concrete security claims
are impossible.

7 Conclusion and Future Work

Our contribution is a complete mechanized framework for specifying and check-
ing cryptographic proofs within a proof assistant. Our framework compares fa-
vorably to the current state of the art, and provides many new benefits, such as
extensibility through a foundational approach, a powerful language for describ-
ing schemes and arguments, and the ability to extract excutable code. Next we

The Foundational Cryptography Framework 71

intend to demonstrate the scalability of FCF by describing a mechanized proof
of security of a complex searchable symmetric encryption scheme ([11]).

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography. In: Watanabe,
O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS,
vol. 1872, pp. 3–22. Springer, Heidelberg (2000),
http://dl.acm.org/citation.cfm?id=647318.723498

2. Affeldt, R., Tanaka, M., Marti, N.: Formal proof of provable security by game-
playing in a proof assistant. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007.
LNCS, vol. 4784, pp. 151–168. Springer, Heidelberg (2007),
http://dl.acm.org/citation.cfm?id=1779394.1779408

3. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Certified computer-aided
cryptography: Efficient provably secure machine code from high-level implementa-
tions. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2013, pp. 1217–1230. ACM, New York (2013),
http://doi.acm.org/10.1145/2508859.2516652

4. Backes, M., Unruh, D.: Computational soundness of symbolic zero-knowledge
proofs against active attackers. In: 21st IEEE Computer Security Foundations Sym-
posium, CSF 2008, pp. 255–269 (June 2008), preprint on IACR ePrint 2008/152

5. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

6. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009, pp. 90–101. ACM (2009), http://dx.
doi.org/10.1145/1480881.1480894

7. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004), http://eprint.
iacr.org/

8. Bengtson, J., Bhargavan, K., Fournet, C., Maffeis, S., Gordon, A.D.: Refinement
types for secure implementations. In: 21st IEEE Computer Security Foundations
Symposium (CSF 2008), pp. 17–32. IEEE (2008)

9. Berg, M.: Formal Verification of Cryptographic Security Proofs. Ph.D. thesis,
Saarland University (2013),
http://www.infsec.cs.uni-saarland.de/~berg/publications/thesis-berg.

pdf

10. Blanchet, B.: Computationally sound mechanized proofs of correspondence asser-
tions. In: 20th IEEE Computer Security Foundations Symposium (CSF 2007), pp.
97–111. IEEE, Venice (2007)

11. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
Scalable Searchable Symmetric Encryption with Support for Boolean Queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013)

12. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL).
Electronic Notes in Theoretical Computer Science 172, 311–358 (2007)

http://dl.acm.org/citation.cfm?id=647318.723498
http://dl.acm.org/citation.cfm?id=1779394.1779408
http://doi.acm.org/10.1145/2508859.2516652
http://dx.doi.org/10.1145/1480881.1480894
http://dx.doi.org/10.1145/1480881.1480894
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.infsec.cs.uni-saarland.de/~berg/publications/thesis-berg.pdf
http://www.infsec.cs.uni-saarland.de/~berg/publications/thesis-berg.pdf

72 A. Petcher and G. Morrisett

13. Datta, A., Derek, A., Mitchell, J.C., Turuani, M.: Probabilistic polynomial-time
semantics for a protocol security logic. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 16–29.
Springer, Heidelberg (2005)

14. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

15. Fournet, C., Kohlweiss, M., Strub, P.Y.: Modular code-based cryptographic ver-
ification. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM Conference on
Computer and Communications Security, pp. 341–350. ACM (2011)

16. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181 (2005), http://eprint.iacr.org/

17. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project (2004), version 8.0, http://coq.inria.fr

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

19. Nowak, D.: A framework for game-based security proofs. Cryptology ePrint
Archive, Report 2007/199 (2007), http://eprint.iacr.org/

20. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probabil-
ity distributions. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2002, pp. 154–165. ACM,
New York (2002), http://doi.acm.org/10.1145/503272.503288

http://eprint.iacr.org/
http://coq.inria.fr
http://eprint.iacr.org/
http://doi.acm.org/10.1145/503272.503288

On the Flow of Data, Information, and Time

Mart́ın Abadi1 and Michael Isard2

1 University of California, Santa Cruz, California, USA
2 Microsoft Research�, Mountain View, California, USA

Abstract. We study information flow in a model for data-parallel com-
puting. We show how an extant notion of virtual time can help guaran-
tee information-flow properties. For this purpose, we introduce functions
that express dependencies between inputs and outputs at each node in
a dataflow graph. Each node may operate over a distinct set of virtual
times—so, from a security perspective, it may have its own classification
scheme. A coherence criterion ensures that those local dependencies yield
global properties.

1 Introduction

The flow of data generally entails the flow of information, whose understanding
is often essential for the performance and correctness of dataflow computations.
For example, knowing that two dataflow computations on different input batches
do not interfere with one another can open opportunities for asynchronous, over-
lapped execution. It may perhaps also contribute to ensuring that sensitive in-
puts do not leak through public outputs, that untrusted data does not taint
trusted results, and other security and privacy properties.

Therefore, modern platforms for data-parallel computing sometimes track de-
pendencies, at least coarsely, primarily in order to enable efficient implementa-
tions. For instance, Spark maintains dependencies between Resilient Distributed
Datasets [17], representing their lineage. Naiad [11] associates messages and other
events with virtual times [4]; the partial order of virtual times, which need not
correspond to the order of execution, determines whether one event can poten-
tially result in another event.

Of course, understanding the flow of information does not necessarily mean
the same in data-parallel computing and in security and privacy. In particular,
covert communication channels are seldom a concern for data-parallel comput-
ing. Furthermore, at least at present, systems for data-parallel computing typi-
cally leverage strong trust assumptions: most systems code is trusted, and even
the environment is often assumed to be somewhat benign.

Nevertheless, we explore the idea that models and systems for data-parallel
computing can offer substantial information-flow control. We focus on concepts
and facilities for information-flow control, rather than on their applications.
Specifically, we consider the computational model that underlies Naiad, called

� Most of this work was done at Microsoft Research. M. Abadi is now at Google.

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 73–92, 2015.
DOI: 10.1007/978-3-662-46666-7_5

74 M. Abadi and M. Isard

timely dataflow. We find that, after a modest strengthening (and a change of
perspective), timely dataflow offers information-flow properties that resemble
familiar ones from the security literature.

As indicated above, timely dataflow supports partially ordered virtual times.
These virtual times may be viewed as analogous to security levels or classifica-
tions. Furthermore, timely dataflow considers the question of whether one event
at a given virtual time t and location l in a dataflow graph could result in another
event at a virtual time t′ and location l′ in the same graph. The expectation that
an event at (l, t) cannot result in an event at (l′, t′) “in the past” is analogous to
conditions on flows across security levels, but weaker. So we identify alternative
concepts and properties that, although consistent with timely dataflow, lead to
non-interference guarantees.

One somewhat unusual aspect of the resulting framework is that it allows the
use of different sets of virtual times (that is, different sets of security levels) in
different parts of a system. For example, virtual times inside loops may have
coordinates that correspond to loop counters, and can distinguish data from
different loop iterations that may be processed simultaneously; those coordinates
do not make sense outside loops. From a security viewpoint, virtual times in
different parts of a computation may reflect the classification schemes of different
organizations, or the classification schemes appropriate to the different kinds of
data being processed. While simple levels like “Public” and “Secret” are allowed,
there is no built-in assumption or requirement that they mean and are treated
the same everywhere. Moreover, each neighborhood of a dataflow graph could
have its own custom levels. Finally, a virtual time may be a tuple that includes
both structural information (such as loop counters) and other facets, such as
secrecy and integrity levels. We define a criterion that ensures the coherence of
the use of levels.

Our main results enable us to reason about systems organized as dataflow
graphs, and to characterize the information that each node in such a graph
may obtain. As a small example (to which we return in Section 5.4), consider
a system that receives and processes messages that each pertain to one of two
users U1 and U2. Suppose that a particular node p0 in this system forwards data
about each user to a different destination, p1 or p2 respectively. We abstract p0’s
behavior by stating that its messages to p1 do not depend on its inputs about U2,
and symmetrically its messages to p2 do not depend on its inputs about U1. We
make such statements directly, formulating them in terms of virtual times; in
other approaches, analogous statements might be encoded in type annotations.
From p0’s properties and the topology of the dataflow graph we may then derive
that p1 learns nothing from the inputs about U2, and that p2 learns nothing
from the inputs about U1. More generally, our work provides an approach for
establishing information-flow properties of a dataflow system from properties of
individual nodes and the topology of the system.

The next section is a review of the relevant aspects of the model of computa-
tion that we consider. Section 3 introduces auxiliary concepts: frontiers, filter-
ing, and reordering. Section 4 defines and studies the machinery for specifying

On the Flow of Data, Information, and Time 75

dependency information at the level of individual nodes. Section 5 presents
lemmas and our main results, including the coherence criterion and the non-
interference guarantees. Section 6 concludes. Although this paper aims to be
self-contained, it stems from a larger effort to understand, improve, and apply
timely dataflow. Section 6 briefly discusses aspects of this effort relevant to se-
curity and some directions for further work. Because of space constraints, proofs
are omitted.

2 Model of Computation

This section reviews the setting for our work. As explained in Section 6, it is a
fragment of the full timely dataflow model, which was introduced in the context
of Naiad [11] and whose formal study is the subject of another paper, currently in
preparation. Here, therefore, we do not describe the model in full detail, focusing
instead on the main ideas and aspects relevant to our present purposes.

As in other dataflow models (e.g., [5]), programs are organized as directed
graphs, in which nodes do the processing and messages travel on edges. We
write P for the set of nodes (or processors) and E for the set of edges (or
channels). We refer to both nodes and edges as locations. For simplicity, we
assume that the source src(e) and the destination dst(e) of each edge e are
distinct nodes; however, in general, graphs may contain cycles. We write M for
the set of messages, and M∗ for the set of finite sequences of messages.

Each message m is associated with a virtual time time(m). The virtual times
form a partial order (not necessarily linear, not necessarily a lattice), which we
write (T,≤). There is no built-in requirement that the order of processing of
messages correspond in any way to their virtual times.

We can describe the state of a system as a mapping from nodes to their local
states plus a mapping from edges to their contents. We write LocState(p) for the
local state of node p, and ΣLoc for the set of local states; we are not concerned
with the specifics of how local state is organized. We write Q(e) for the finite
sequence of messages on edge e.

A local history for a node p is a finite sequence 〈〈s, (e1,m1), . . . , (ek,mk)〉〉
that starts with an initial local state s that satisfies a given predicate Initial(p),
and is followed by (zero, one, or more) pairs of the form (ei,mi), which indicate
the messages that the node has received and the corresponding edges. We write
Histories(p) for the set of local histories of p.

We assume that initially each node p is in a local state that satisfies Initial(p),
and for each edge e we let Q(e) contain an arbitrary finite sequence of messages,
so as to get computations started. (This detail constitutes a minor variation from
other presentations of timely dataflow, in which computations can get started by
other means.) Thereafter, at each step of computation (atomically, for simplic-
ity), a node that has messages on incoming edges picks one of them, processes
it, and places messages on its output edges. The processing is defined by a func-
tion g1(p) for each node p, which we apply to p’s local state s and to a pair (e,m),

76 M. Abadi and M. Isard

and which produces a tuple that contains a new state s′ and finite sequences of
messages μ1, . . . , μk on p’s output edges e1, . . . , ek, respectively. We write:

g1(p)(s, (e,m)) = (s′, 〈e1 �→μ1, . . . , ek �→μk〉)

where 〈e1 �→μ1, . . . , ek �→μk〉 is the function that maps e1 to μ1, . . . , ek to μk.
Iterating this function g1(p), we obtain a function g(p) which takes as input
an entire local history h and produces a new state s′ and the cumulative finite
sequences of messages μ1, . . . , μk for the output edges e1, . . . , ek, as follows:

– g(p)(〈〈s〉〉) = (s, 〈e1 �→∅, . . . , ek �→∅〉),
– if g(p)(h) = (s′, 〈e1 �→μ1, . . . , ek �→μk〉) and g1(p)(s

′, (d,m)) = (s”, 〈e1 �→μ′
1,

. . . , ek �→μ′
k〉), then g(p)(h·(d,m)) = (s”, 〈e1 �→μ1·μ′

1, . . . , ek �→μk·μ′
k〉).

As in this definition, we write ∅ for the empty sequence and 〈〈a0, a1, . . .〉〉 for a
sequence that contains a0, a1, . . . , and we use · both for adding elements to
sequences and for appending sequences. We let ΠLoc(s

′, 〈e1 �→μ1, . . . , ek �→μk〉) =
s′ and Πei(s

′, 〈e1 �→μ1, . . . , ek �→μk〉) = μi for i = 1 . . . k.
The overall specification of a system denotes a set of allowed sequences of

states. Each of the sequences starts in an initial state, and every pair of consec-
utive states is either identical (a “stutter”) or related by a step of computation.
We add an auxiliary state function H (a history variable [1]) in order to track
local histories: H(p) represents p’s local history; thus, each state is defined by
values for the state functions LocState, Q, and H . We express the specification
in TLA [8], in Figure 1, with the following notations. A primed state function
(Q′, LocState ′, or H ′) in an action refers to the value of the state function in
the “next” state (the state after the action); is the temporal-logic operator
“always”; given an action N and a list of expressions v1, . . . , vk, [N]v1,...,vk ab-
breviates N ∨ ((v′1 = v1) ∧ . . . ∧ (v′k = vk)).

We call ISpec the complete specification, InitProp the initial conditions, and
MessR the action that represents a step of computation. When Q0 is a (state-
independent) function from E toM∗, we also write ISpec(Q0) for the conjunction
of ISpec with ∀e ∈ E.Q(e) = Q0(e), which says that the initial values of the
queues are as given by Q0.

The definition of the actionMessR describes how a node p dequeues a message
m and reacts to it, producing messages. This action is a relaxed version of a sim-
pler action that we call Mess (hence the name MessR) and according to which p
takes a message from the head of Q(e), so Q(e) = m·Q′(e). (The head of a queue
is to the left, the tail to the right.) According to MessR, on the other hand, p is
allowed to take any message m in Q(e) such that there is no message n ahead
of m with time(n) ≤ time(m); so, for some u and v, Q(e) = u·m·v, Q′(e) = u·v,
and u does not contain any message n with time(n) ≤ time(m). Thus, queues
are not strictly FIFO. This relaxation can be useful in support of optimizations,
as it can allow more messages for a given time to be processed together. It is

On the Flow of Data, Information, and Time 77

also important for work on fault-tolerance in which we are currently engaged,
and seems attractive in the present context as well. (See Section 5.)

InitProp
Δ
=

⎛

⎜
⎜
⎜
⎜
⎝

∀p ∈ P.LocState(p) ∈ Initial(p)
∧
∀e ∈ E.Q(e) ∈ M∗

∧
∀p ∈ P.H(p) = 〈〈LocState(p)〉〉

⎞

⎟
⎟
⎟
⎟
⎠

MessR
Δ
= ∃p ∈ P.MessR1 (p)

MessR1 (p)
Δ
=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

∃m ∈ M.∃e ∈ E such that p = dst(e).∃u, v ∈ M∗.
Q(e) = u·m·v ∧Q′(e) = u·v
∧
∀n ∈ u.time(n) �≤ time(m)
∧
Mess2 (p, e,m)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

Mess2 (p, e,m)
Δ
=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

let
{e1, . . . , ek} = {d ∈ E | src(d) = p},
s = LocState(p),
(s′, 〈e1
→µ1, . . . , ek
→µk〉) = g1(p)(s, (e,m))
in
LocState ′(p) = s′

∧
Q′(e1) = Q(e1)·µ1 . . . Q

′(ek) = Q(ek)·µk

∧
H ′(p) = H(p)·(e,m)
∧
∀q ∈ P �= p.LocState ′(q) = LocState(q)
∧
∀d ∈ E − {e, e1, . . . , ek}.Q′(d) = Q(d)
∧
∀q ∈ P �= p.H ′(q) = H(q)

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

ISpec
Δ
= InitProp ∧ [MessR]LocState,Q,H

ISpec(Q0) = ISpec ∧ ∀e ∈ E.Q(e) = Q0(e)

Fig. 1. The specification

78 M. Abadi and M. Isard

3 Frontiers, Filtering, and Other Auxiliary Concepts

We introduce a few auxiliary notions, namely frontiers, filtering, and reordering.

3.1 Frontiers

A subset S of T is downward closed if and only if, for all t and t′, t ∈ S and
t′ ≤ t imply t′ ∈ S. We call such a subset a frontier , and write F for the set of
frontiers; we often let f range over frontiers. When S ⊆ T , we write Close↓(S)
for the downward closure of S (the least frontier that contains S).

As indicated in the Introduction, we may view virtual times as security levels.
From that perspective, a frontier is a set of security levels S such that if S
includes one level it includes all lower levels. For example, in multi-level security
(MLS), such a set S might arise as the set of levels of the objects that a subject
at a given level can read.

3.2 Filtering

We introduce filtering operations on histories and on sequences of messages.
These filtering operations keep or remove all elements whose times are in a
given frontier. Thus, they are analogous to the purge functions that appear in
security models. (See, for example, McLean’s survey [9, Section 2.2.1].)

Given a local history h and a frontier f , we write h@f for the subsequence of
h obtained by removing (filtering out) all events (d,m) such that time(m)
∈ f .
More precisely, h@f is defined inductively by:

– 〈〈s〉〉@f = 〈〈s〉〉,
– (h·(d,m))@f = (h@f)·(d,m) if time(m) ∈ f and (h·(d,m))@f = h@f oth-

erwise.

Similarly, when u is a sequence of messages, we write u@f for the subsequence
obtained by removing those messages whose times are not in f . Finally, given a
sequence of messages u and a frontier f , we write u\@f for the subsequence of u
consisting only of messages whose times are not in f .

3.3 Reordering

We define a relation ↪→ on finite sequences of messages: it is the least reflexive
and transitive relation such that, for u, v ∈ M∗ and m1,m2 ∈ M , if time(m1)
≤
time(m2) then u·m1·m2·v ↪→u·m2·m1·v. We call it the reordering relation.

This relation is a counterpart at the level of message sequences to the reorder-
ing that happens in message processing according to action MessR of Figure 1.
It is therefore helpful for analyzing that specification and its implementations.

On the Flow of Data, Information, and Time 79

3.4 Subtraction

Subtraction for message sequences (−) is defined inductively by:

u− ∅ = u

u−m·v = (u−m)− v

(m·u−m) = u

(m′·u−m) = m′·(u −m) for m′
= m

∅ −m = ∅

The last clause (∅−m = ∅) appears in order to make subtraction a total opera-
tion. In our uses of subtraction, we sometimes ensure explicitly that it does not
apply.

3.5 Some Properties of Filtering and Reordering

We state a few properties of filtering and reordering. Throughout, f , f1, f2,
f3 range over frontiers; u, v, w range over message sequences; h ranges over
histories.

Proposition 1. If f1 = f2 ∩ f3 then h@f1 = h@f2@f3.

Proposition 2. If u ↪→ v then u@f ↪→ v@f .

Proposition 3. If u ↪→ v then (u− w) ↪→ (v − w).

Proposition 4. If u ↪→ v·w then (u− v@f) ↪→ v\@f ·w.

Proposition 5. If u@f = u′@f , then (u− v@f)@f = (u′ − v@f)@f .

The last two propositions (Propositions 6 and 7) are useful in reasoning with the
action MessR because they provide methods for establishing that, for a sequence
u and element m, there is no element n with time(n) ≤ time(m) to the left of
m in u (in a prefix v). They say, respectively, that it suffices to consider any
reordering u′ of u or any sequence u′ that coincides with u on some frontier f
such that time(m) ∈ f .

Proposition 6. If u ↪→u′, u′ = v′·m·w′, and time(n)
≤ time(m) for all n in
v′, then there exist v and w such that u = v·m·w, and time(n)
≤ time(m) for
all n in v.

Proposition 7. If u@f = u′@f , u′ = v′·m·w′, time(m) ∈ f , and time(n)
≤
time(m) for all n in v′, then there exist v and w such that u = v·m·w, and
time(n)
≤ time(m) for all n in v.

80 M. Abadi and M. Isard

4 From Timeliness to Determination

Time domains and the could-result-in relation are central to timely dataflow.
Although we do not need a formal definition of these notions for our present
purposes, we review them informally in this section, in order to motivate our
new definitions. While the could-result-in relation focuses on whether one event
might trigger another event (directly or indirectly), we are interested in whether
a history or a part of a history suffices for determining an output. These two
questions are closely related, as we show. We treat the latter via frontier trans-
formers , which are functions that map frontiers for inputs to frontiers for outputs
and which we introduce and study in this section.

4.1 Time Domains

Timely dataflow does not require that all nodes deal with the same set of virtual
times. In particular, the set T may be the disjoint union of multiple sets Tp,
which we call time domains , one for each node p in a dataflow graph. Node p
may expect inputs with times in set Tp and produce outputs with times in the
sets appropriate for their recipients.

For example, in Naiad, nodes for loop ingress expect inputs with times
of the form (t1, . . . , tk), and produce outputs with an extra coordinate, set
to 0: (t1, . . . , tk, 0). Nodes for loop egress expect inputs with times of the form
(t1, . . . , tk, tk+1), and drop the last coordinate on outputs. Nodes for loop feed-
back expect inputs with times of the form (t1, . . . , tk), and increment the last
coordinate of these times. In all cases, the appropriate value of k is determined
by the nesting depth of the loop.

Beyond these standard examples, it is possible, at least in principle, for pro-
grammers to define custom nodes, with their own ideas about virtual times.
Thus, a custom node may consume inputs with times 1 and 2, but, somehow,
produce results with times “Public” and “Secret”; or a custom node may con-
sume inputs with times “Public” and “Secret”, but produce results with finer
classifications, such as “(Secret,A)” or “(Secret,B)”, where “A” and “B” might
indicate compartments, retention policies, or other properties of interest.

For simplicity, we proceed with the assumption that all inputs of a node are
in the same time domain, but the outputs on each outgoing edge may be in a
different time domain. It is straightforward to accommodate inputs in different
time domains by inserting relay nodes that translate across time domains on
incoming edges.

4.2 The Could-result-in Relation

When one event at a given virtual time t and location l in a dataflow graph
can potentially result in another event at a virtual time t′ and location l′ in
the same graph, we say that (l, t) could-result-in (l′, t′). We write this relation
(l, t)� (l′, t′). For example, suppose that whenever node p receives any message
m with time(m) = 1 on incoming edge d, p outputs a message n with time(n) = 2

On the Flow of Data, Information, and Time 81

on outgoing edge e; in this case we would have that (d, 1)� (e, 2). In Naiad,
the could-result-in relation is exploited for supporting completion notifications,
which tell a node when it will no longer see messages for a given time. It also
allows an implementation to reclaim resources that correspond to pairs (l, t) at
which no more events are possible.

Informally, we expect that an event at (l, t) cannot result in an event at (l′, t′)
“in the past”. Naiad relies on this property in some of its algorithms. It holds
rather obviously for most nodes, since, in response to an input at time t, most
nodes would produce outputs at the same time t. However, defining “in the past”
is delicate across time domains; fortunately, the approach that we develop in this
paper does not require it.

As suggested in the Introduction, the expectation that an event cannot re-
sult in another event “in the past” is somewhat analogous to conditions on
flows across security levels. For example, one may generally expect that a “low-
integrity” event cannot cause a “high-integrity” event, except perhaps in trusted
system components. Obviously, however, this property is not quite equivalent to
a non-interference guarantee, or to other strong guarantees defined in the secu-
rity literature [9]. Even if an input on edge d at time 2 may not trigger an output
on edge e at time 1 for a node p, so we do not have (d, 2)� (e, 1), the input at
time 2 may affect the contents of future messages at time 1, if p is stateful and
sends such messages in response to future inputs at times 0 and 1. Thus, inputs
at time 2 may interfere with outputs at time 1.

4.3 Frontier Transformers

Going beyond what the could-result-in relation can express, knowing whether
subsets of inputs determine subsets of outputs can be useful for a variety of
purposes. We are finding it valuable in the context of current work on fault-
tolerance. It is also clearly valuable for security, in which we often want, for
instance, that “Public” inputs determine “Public” outputs, or that “Trusted”
inputs determine “Trusted” outputs.

Formally, for each edge e ∈ E, we assume a function φ(e) that maps frontiers
to frontiers (so, φ(e) is a frontier transformer). Its main intended property is
Condition 1 which says that h gives rise to a message on e in φ(e)(f) if and only
if so does h@f , and with messages in the same order and multiplicity.

Condition 1. For all f ∈ F , if g(p)(h) = (. . . , 〈. . . ei �→μi . . .〉) and g(p)(h@f) =
(. . . , 〈. . . ei �→μ′

i . . .〉) then μi@φ(ei)(f) = μ′
i@φ(ei)(f).

For many simple nodes, φ(e) may be the identity function for all outgoing
edges e. On the other hand, the identity function is not always appropriate,
particularly (but not only) when a node produces outputs in a different time
domain than its inputs. Some of the nodes described in Section 4.1 exemplify
this point. Entering a loop at depth k+1, inputs to an ingress node in a frontier
f determine outputs for all times {(t1, . . . , tk, tk+1) | (t1, . . . , tk) ∈ f}. In a
loop at depth k, inputs to a feedback node in a frontier f determine outputs in

82 M. Abadi and M. Isard

{(t1, . . . , tk + 1) | (t1, . . . , tk) ∈ f}. As another simple example, when T consists
of two unrelated points t1 and t2 that represent private data for two users U1

and U2, we may have a node with outgoing edges e1 and e2 that demultiplexes
data for U1 and U2, so that φ(e1)({t1}) = T and φ(e2)({t2}) = T .

The function φ need not be as accurate as possible. In particular, φ(e) could
always be completely uninformative (as small as possible), with φ(e)(f) = ∅ for
all f
= T and φ(e)(T) = T . However, a more informative φ is typically more
helpful, and generally easy to find.

In this paper, we do not investigate how to check that a node actually satisfies
Condition 1 for a given φ. Section 6 returns briefly to this subject.

4.4 Relating φ to �

With the aim of clarifying the relation between φ and � , we argue that � is
included in φ at each node. More precisely, if an event at a node p at time t1
could-result-in an event at time t2 on one of the outgoing edges e, and t2 is in
φ(e)(f) for some frontier f , then t1 is in f . For example, if f includes only the
security level “Public”, and φ(e) is simply the identity function, this property
entails that if an event at p at time t1 could-result-in a message on e at the level
“Public”, then t1 is also in f and hence equals “Public”.

Proposition 8. Assume that φ satisfies Condition 1. Suppose src(e) = p and
(p, t1)� (e, t2). Then, for all f , if t2 ∈ φ(e)(f) then t1 ∈ f .

This proposition relies on the following property of � : if (p, t1)� (e, t2) and
src(e) = p then there exist a history h for p, a state s such that

g(p)(h) = (s, . . .)

and an event (d,m) such that t1 ≤ time(m) and

g1(p)(s, (d,m)) = (. . . , 〈. . . e �→μ . . .〉)

where some element of μ has time ≤ t2. In this paper we simply assume this
property; the proof that it actually holds requires a definition of � , which we
omit.

4.5 A Special Case of Condition 1

In the security literature, non-interference properties are sometimes expressed in
terms of single levels (e.g., outputs at level “Trusted” are determined by inputs
at level “Trusted”, or outputs to a user U are determined by U ’s inputs), rather
than in terms of sets of levels analogous to frontiers. McLean’s survey [9], for
example, phrases purging functions and non-interference in terms of individual
users, while the classic article by Goguen and Meseguer [3] refers to groups of
users.

We therefore investigate the power of a special case of Condition 1 in which
the frontier f is not arbitrary but rather consists of (the downward closure of) a

On the Flow of Data, Information, and Time 83

single time. Such a special case is often sufficient, and sometimes equivalent to
the full Condition 1. In particular, when (T,≤) is a finite linear order, the only
frontiers are ∅ and the sets of the form Close↓({t}) for some t ∈ T .

Condition 2 captures this special case. It specializes Condition 1 to f of the
form Close↓({t}), for t ∈ T . It does not require that φ(ei)(f) be of the same
form.

Condition 2. For all t ∈ T , if f = Close↓({t}), g(p)(h) = (. . . , 〈. . . ei �→μi . . .〉),
and g(p)(h@f) = (. . . , 〈. . . ei �→μ′

i . . .〉) then μi@φ(ei)(f) = μ′
i@φ(ei)(f).

We generally adopt Condition 1 rather than Condition 2, because Condition 2
is strictly weaker than Condition 1. The following small but tricky example
illustrates this point. Perhaps with the security literature in mind (e.g., [2]),
one may imagine that a lattice structure for the set of times T would help,
and specifically that it would enable us to represent an arbitrary frontier f by
the least upper bound of its elements. However, a variant of the example shows
that Condition 2 is strictly weaker than Condition 1 even if T is a very simple
distributive lattice.

Example 1. Suppose that T consists of three unrelated elements a, b, and c, and
a fourth element d below b and c but not a.

The example concerns a simple node p that ignores its initial state. It has a
single input edge e and a single output edge e′, for which we take φ(e′)(f) = f .
Moreover, the node ignores the contents of input messages, considering only
their times. It also ignores all input messages at times b and c. As output, it
may produce ∅, 〈〈mb,mc〉〉, or 〈〈mc,mb〉〉, where mb and mc are distinct, fixed
messages with time(mb) = b and time(mc) = c. So the function g(p) for this node
can be regarded as mapping a sequence of (a and d) times for input messages to
∅, 〈〈mb,mc〉〉, or 〈〈mc,mb〉〉. We write ḡ for this mapping, and define it as follows:

ḡ(a∗) = ∅
ḡ(a+·d·u) = 〈〈mb,mc〉〉

ḡ(d·u) = 〈〈mc,mb〉〉

where u is an arbitrary sequence of a’s and d’s. It is straightforward to define a
function g1(p) that induces a function g(p) that corresponds to ḡ.

Let f = {b, c, d}. Condition 1 fails for this f . We have that ḡ((a·d)@f) =
ḡ(d) = 〈〈mc,mb〉〉, so ḡ((a·d)@f)@f = 〈〈mc,mb〉〉, while ḡ(a·d) = 〈〈mb,mc〉〉, so
ḡ(a·d)@f = 〈〈mb,mc〉〉, hence

ḡ((a·d)@f)@f
= ḡ(a·d)@f

On the other hand, in the special case of frontiers of the form Close↓({t}),
where t ∈ T , Condition 1 holds:

– For t = a: For all u, ḡ(u@Close↓({a})) = ∅, and ḡ(u) never contains a
message at time a, so

ḡ(u@Close↓({a}))@Close↓({a}) = ḡ(u)@Close↓({a})

84 M. Abadi and M. Isard

– For t = b: For all u, ḡ(u@Close↓({b})) = 〈〈mc,mb〉〉 if u contains a d, and
is ∅ otherwise; so ḡ(u@Close↓({b}))@Close↓({b}) = 〈〈mb〉〉 if u contains a d,
and is ∅ otherwise. On the other hand, ḡ(u) = 〈〈mc,mb〉〉 or 〈〈mb,mc〉〉 if u
contains a d, and is ∅ otherwise; so ḡ(u)@Close↓({b}) = 〈〈mb〉〉 if u contains
a d, and is ∅ otherwise. Therefore, in all cases,

ḡ(u@Close↓({b}))@Close↓({b}) = ḡ(u)@Close↓({b})

– For t = c: This case is exactly analogous to that of t = b.
– For t = d: For all u, ḡ(u)@Close↓({d}) = ∅, so

ḡ(u@Close↓({d}))@Close↓({d}) = ḡ(u)@Close↓({d})

The partial order of times, as defined above, is not a lattice. We can, however,
give a variant of the example in which it is. We modify the partial order by
placing a above b and c (and therefore above d as well); we do not modify the
function ḡ. The argument that Condition 1 fails for the frontier {b, c, d} but
holds for Close↓({t}) when t ∈ {b, c, d} is exactly as above. It remains to check
that Condition 1 holds for Close↓({t}) when t = a.

– For t = a: For all u, ḡ(u@Close↓({a})) = ḡ(u), so

ḡ(u@Close↓({a}))@Close↓({a}) = ḡ(u)@Close↓({a})

4.6 Another Perspective on φ and Its Properties

Intuitively, we may expect φ to have additional properties beyond Condition 1,
and such properties are sometimes useful for working with φ. For example, we
may expect that, for all e, φ(e)(T) = T , since the initial state of a node and
its inputs (and their exact interleaving) determine its outputs. We may also
expect φ(e) to be monotonic, since intuitively knowing more of the input cannot
remove information about the output. Furthermore, given a function φ(e) that
is not necessarily monotonic, we could define a new monotone function φ′(e) by

φ′(e)(f) = ∪f ′⊆fφ(e)(f
′)

Finally, we may expect that φ(e) distributes over intersections. This property
implies both φ(e)(T) = T and the monotonicity of φ(e)(T). We formulate it as
follows:

Condition 3. For all e ∈ E, for any index set X and family of frontiers fx for
x ∈ X, φ(e)(∩x∈Xfx) = ∩x∈Xφ(e)(fx).

In the remainder of this section, we present another way of looking at frontier
transformers. While φ(e) may be seen as going from inputs to outputs, the
alternative perspective is based on reasoning in the opposite direction, from
outputs to inputs. We show that the two perspectives yield equivalent results;
in our opinion, this equivalence makes frontier transformers (and Condition 3)
even more compelling.

On the Flow of Data, Information, and Time 85

Suppose that, for a node p and an outgoing edge e, we are given a function R0

from times to frontiers, with the property (informally) that knowing p’s inputs at
R0(t) suffices for knowing its outputs on e at t. This function induces a monotone
function R(t) = ∪t′≤tRo(t

′), with the property that knowing p’s inputs at R(t)
suffices for knowing its outputs on e up to t, as the following condition asserts.

Condition 4. If g(p)(h) = (. . . , 〈. . . ei �→μi . . .〉) and g(p)(h@R(t)) = (. . . , 〈. . .
ei �→μ′

i . . .〉) then μi@(Close↓({t})) = μ′
i@(Close↓({t})).

Going forward, we prefer to work with R rather than R0, because we have
not set out the notation to work directly with R0, and because knowing the
output only at a time t and not at the times below t may sometimes be useless,
in particular in the context of differential computation [10]. The fact that R
is (or may be) generated from some function R0 is reflected in the following
monotonicity condition.

Condition 5. If t′ ≤ t then R(t′) ⊆ R(t).

Every function R induces a function φ(e), and conversely every function φ(e)
induces a function R, as follows. Let us write F for the function that maps R to
φ(e) and G for the function that goes in the opposite direction. For ρ : T → F
and ψ : F → F , we set:

F(ρ)(f) = {t | ρ(t) ⊆ f}

and
G(ψ)(t) = ∩{f | t ∈ ψ(f)}

We obtain that the conditions on φ(e) and those on R are exactly equivalent,
and that the functions F and G are anti-monotone and inverses of each other:

Proposition 9.

– If φ(e) = F(R) and R satisfies Conditions 4 and 5 then φ(e) satisfies Con-
ditions 1 and 3.

– Conversely, if R = G(φ(e)) and φ(e) satisfies Conditions 1 and 3 then R
satisfies Conditions 4 and 5.

Proposition 10.

– If φ(e)(f) ⊆ φ′(e)(f) for all f , then G(φ′(e))(t) ⊆ G(φ(e))(t) for all t.
– If R(t) ⊆ R′(t) for all t, then F(R′)(f) ⊆ F(R)(f) for all f .

Proposition 11.

– For all f , φ(e)(f) = F(G(φ(e)))(f).
– For all t, R(t) = G(F(R))(t).

The following example illustrates that Condition 3 is needed in order for us
to obtain φ(e)(f) = F(G(φ(e)))(f), as we do in Proposition 11. Distributivity
over finite intersections would not suffice.

86 M. Abadi and M. Isard

Example 2. Suppose that the set of times T consists of the integers (including
the negative ones), and that φ(e)(f) = T if f
= ∅ and φ(e)(∅) = ∅. Note that
φ(e) distributes over all finite intersections but not over all infinite intersections.
We obtain that G(φ(e))(t) = ∩{f | t ∈ φ(e)(f)} = ∅, since t ∈ φ(e)(f) for
all non-empty f , but the intersection of all non-empty f is empty. Further, we
obtain that F(G(φ(e)))(f) = {t | G(φ(e))(t) ⊆ f} = {t | ∅ ⊆ f} = T , for all f .
In sum, F(G(φ(e))) is strictly bigger than φ(e) in this example.

From a semantics perspective, a frontier is a predicate, and a frontier trans-
former φ(e) is a predicate transformer. Curiously, our predicate transformers go
from inputs to outputs; generally the opposite is true. Nevertheless, much of the
material in this section is part of the general theory of predicate transformers
(e.g. [12, p. 83]), not specific to our setting. An exception is the correspondence
between Conditions 1 and 4, in Proposition 9.

5 Main Results

In this section we present our main results. We start with an informal discussion
of the results which leads to a few definitions, continue with some auxiliary
lemmas, then state our main theorem.

Throughout, we assume a function φ that satisfies Condition 1. This condition
is purely local: it refers to the behavior of each node in isolation. In this section,
we use it in order to obtain global guarantees for an entire system.

5.1 Informal Discussion and Definitions

Our main theorem considers the messages that each node p receives within a
frontier D(p), possibly a different frontier for each node. Initially, however, let
us consider the simple case in which T = {“Public”, “Secret”}, with “Public” ≤
“Secret”, and D(p) = {“Public”} for all p. In this case, we can derive that each
node’s history is independent of any secrets, even if queues may contain secrets
initially and even if nodes can generate secrets in response to public messages.

More precisely, suppose that σ = 〈〈s0, s1, . . .〉〉 is a behavior of the system
with initial values for the queues Q0. Suppose further that HQ0 is such that
HQ0(e)@{“Public”} = Q0(e)@{“Public”} for all e, that is, that Q0 and HQ0

coincide on public messages. Then there exists an alternative behavior σ̂ =
〈〈ŝ0, ŝ1, . . .〉〉 with initial values HQ0 such that, if p has respective histories h and

ĥ in two corresponding states si and ŝi, then h@{“Public”} = ĥ@{“Public”}. In
this alternative behavior, each node has no information about messages outside
“Public”, not even that they exist at all.

Recall that, in Section 2, the definition of the action MessR says that, given
a sequence of messages u·m·v, a node p is allowed to process m when there is
no message n ahead of m (so, in u) with time(n) ≤ time(m). Although moti-
vated by other applications, this specification of MessR seems attractive from an
information-flow perspective. It enables a system to produce the same behavior

On the Flow of Data, Information, and Time 87

at time(m) independently of data at higher and unrelated levels. For example,
given the queue n·m where time(n) = “Secret” and time(m) = “Public”, the
node p can process m as though n was not there.

Going beyond the special case where D is constant across nodes, we would
want that a node p gets no information about messages outside D(p) from mes-
sages in D(p). For this purpose, we would assume that Q0 and HQ0 coincide on
D(p) for edges going into p, and would reason that for every behavior σ with
Q0 there is an alternative behavior σ̂ with HQ0 that yields the same histories
filtered to D(p) at each node p. Thus, messages at D(p) are fixed, and those
outside D(p) differ between σ and σ̂.

However, not all possible mappings of nodes to frontiers constitute reason-
able values for D. For instance, suppose that D(p) = {“Public”}, D(q) =
{“Public”, “Secret”}, and p has sent some messages to q on a direct edge e
from p to q. Any secrets that p has sent to q will be apparent in q’s history, and
corresponding actions at p must be present in any alternative behavior. Such
examples suggest that, when there is an edge from p to q, perhaps we should
require that D(q) ⊆ D(p).

Still, this requirement is not quite satisfactory in that it does not consider the
dependence of p’s outputs on e on p’s inputs. Treating this dependence via the
function φ, we amend the requirement to D(q) ⊆ φ(e)(D(p)). Thus, the frontier
at q is included in the frontier determined on e by the frontier at p.

In sum, we arrive at the following definitions:

– We say that a function D from P to F is coherent if, whenever p, q ∈ P ,
e ∈ E, src(e) = p, and dst(e) = q, D(q) ⊆ φ(e)(D(p)).

– We say that two functions Q0 and HQ0 from E to M∗ are equivalent up
to D, and write Q0 � HQ0, if for all q ∈ P and e ∈ E with q = dst(e),
Q0(e)@D(q) = HQ0(e)@D(q).

We have studied weaker but sound requirements in which we consider not only
the static graph topology but also what messages are actually sent. We have also
studied the possibility of D being state-dependent, as explained in Section 6. In
this paper we do not develop those more sophisticated variants, for simplicity.

5.2 Lemmas

Our first auxiliary lemma relates g, local states, queues, and local histories.
It relies on definitions of properties InvLocH and InvQH, which it asserts are
invariants. Property InvLocH says that the local state of a node is the local
state obtained by applying g to its history. Property InvQH similarly relates the
contents of a queue Q(e) to what is obtained by applying g to the history of e’s
source. We do not quite have Πeg(p)(H(p)) = Q(e), however, for three reasons:

– the initial value of Q(e) must be added ahead of the result of applying g to
the history of e’s source, on the left of this equation;

– the messages that e’s destination has consumed, which are in its history,
must be added ahead of Q(e), on the right;

88 M. Abadi and M. Isard

– finally, reorderings are possible, because of the definition of MessR, so we
should use a reordering relation rather than an equality.

We arrive at the following definitions and lemma:

– Let InvLocH be

∀p ∈ P.ΠLocg(p)(H(p)) = LocState(p)

– Let InvQH be:

∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.
(Q0(e)·Πeg(p)(H(p))) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

– Let InvLocQH be the conjunction of InvLocH and InvQH.

Lemma 1. ISpec(Q0) implies InvLocQH.

Our second lemma is motivated by the definition of HQ in Section 5.3 below.
There, we consider a sequence of messages defined as a subtraction. The lemma
implies that the subtraction never resorts to the clause ∅ − m = ∅; in other
words, the sequence from which we are subtracting contains all the elements of
the sequence that we are subtracting, and with at least the same multiplicity.

Lemma 2. Assume that Q0 � HQ0 and that D is coherent. Let p = src(e) and
q = dst(e). Let μ = HQ0(e)·Πeg(p)(H(p)@D(p)) and ν = 〈m | (e,m) ∈ H(q)〉.
Then ISpec(Q0) implies (μ·u− ν@D(q)) = (μ− ν@D(q))·u, for all u.

5.3 Main Theorem

Our main theorem relies on a way of mapping one state to another state. Specif-
ically, given state functions LocState, Q, and H , we define new state functions
HLocState, HQ , and HH . We then show that if a behavior satisfies ISpec(Q0)
then the behavior induced by the mapping satisfies ISpec(HQ0).

As in other work with TLA (e.g., [8, Section 8.9.4]), we phrase the theorem
in terms of formulas and substitutions rather than in terms of behaviors. For
any expression Exp, we write Exp for the result of applying the substitution
[HLocState/LocState,HH /H,HQ/Q] to Exp.

We let:

HLocState(p) = ΠLocg(p)(H(p)@D(p))

HQ(e) = HQ0(e)·Πeg(p)(H(p)@D(p))− 〈m | (e,m) ∈ H(q)〉@D(q)

where p = src(e), q = dst(e)

HH (p) = H(p)@D(p)

According to these definitions, HLocState(p) is obtained by applying g(p), much
as in InvLocH, but filtering the history with D(p). Intuitively, HLocState(p) is

On the Flow of Data, Information, and Time 89

intended to be the local state that p would reach if it only saw messages with
times in D(p). Similarly HQ(e) aims to describe the contents of Q(e) in an
alternative reality in which the source of e would see only messages with times
in D(p) and the destination of e would only consume messages in D(q). Its
definition has many of the same ingredients as InvQH. Finally, HH (p) is simply
the part of p’s local history that is limited to messages with times in D(p).

We obtain:

Theorem 1. Assume that Q0 � HQ0 and that D is coherent. Then ISpec(Q0)
implies ISpec(HQ0).

The following corollary reformulates the theorem in terms of a behavior σ and
an alternative behavior σ̂. It also considers the case where the local history of
some node p in σ contains only messages with times in D(p). The corollary states
that the node would have exactly the same history in the alternative behavior
σ̂. Thus, the history does not allow p to differentiate σ and σ̂.

Corollary 1. Assume that Q0 � HQ0 and that D is coherent. For every be-
havior σ = 〈〈s0, s1, . . .〉〉 that satisfies ISpec(Q0) there exists a behavior σ̂ =
〈〈ŝ0, ŝ1, . . .〉〉 that satisfies ISpec(HQ0) and such that, for all p ∈ P , if H(p) has
the value h in si then it has the value h@D(p) in ŝi.

If in addition, for some p ∈ P , σ satisfies (H(p) = H(p)@D(p)), then H(p)
has the same sequence of values in σ and in σ̂.

While differences in models make precise comparisons difficult, the properties
that these results express resemble non-interference and its possibilistic variants,
such as restrictiveness [9, Section 2.2.2]. For instance, restrictiveness talks about
adding or deleting “high-level inputs” to a system trace; in our results, the change
from Q0 to HQ0 can essentially serve that purpose.

5.4 A Small Example

We close this section with an application of Theorem 1 and Corollary 1. It is a
trivial exercise, but illustrates how the results can be instantiated.

Consider a simple graph with nodes p0, p1, and p2, with edges e1 and e2 from
p0 to p1 and p2, respectively, plus an inert node q with an edge e0 from q to p0.
Initially, Q(e0) contains messages for two unrelated times t1 and t2 that represent
private data for two users U1 and U2 (as in Section 4.3); Q(e1) and Q(e2) are
initially empty. Suppose that p0 demultiplexes the payload of those messages,
applies to them a state-independent function, and strips the time information
which is not needed at p1 and p2. Formally, all of p0’s outputs are in a third,
unrelated time null.

We still have φ(e1)({t1}) = T and φ(e2)({t2}) = T , and we also have φ(e1)
({t2}) = ∅ and φ(e2)({t1}) = ∅. Since q has no incoming edges, we can take
φ(e0)(f) = T for all f .

Therefore, we can satisfy the coherence criterion for the function D by letting
D(q) = T , D(p0) = {t1}, D(p1) = T , and D(p2) = ∅. Suppose further that

90 M. Abadi and M. Isard

σ is a behavior of the system with the given initial messages in Q(e0). Then,
according to Corollary 1, there exists another behavior σ̂ with the same initial
messages in Q(e0) at time t1 but arbitrary ones at time t2 (because D(p0) =
{t1}). Moreover, Q(e1) is initially empty in σ̂ (because D(p1) = T), but the
initial contents of Q(e2) are arbitrary (because D(p2) = ∅). It follows from
Corollary 1 that the local history at p1 is identical in σ and σ̂. In other words,
this local history does not allow p1 to infer anything about which messages at
time t2 are initially present on e0.

Some alternative choices of D also satisfy the coherence criterion but lead
to different results, in particular showing that, symmetrically, p2 cannot infer
anything about which messages at time t1 are initially present on e0.

6 Conclusion

In this paper, we study how a dataflow model of computation, timely dataflow,
can offer information-flow properties. The required enhancements include the use
of functions that express dependencies between inputs and outputs at each node.
They are consistent with the possibility that each node operates over a distinct
set of virtual times. We leave for further work the enforcement or checking of
those dependencies. In the context of Naiad, programming conventions have
sometimes been used for ensuring the expected properties of the could-result-in
relation; those could probably be extended and codified into information-flow
type systems or other static analyses. We also leave for further work the study
of declassification and of quantitative information-flow properties, which should
be helpful in applications. Although Naiad remains a research artifact, it is
already a substantial, efficient system on which non-trivial applications have
been developed, but not, to date, with consideration of security and privacy
properties. Beyond Naiad, more broadly, there seems to be growing interest in
mandatory access control, information-flow control, and their applications in
modern data-parallel systems (e.g., [13,6]).

As mentioned in the Introduction, this work stems from a larger effort to
understand, improve, and apply timely dataflow. We close this paper with a
brief discussion of some of our recent and ongoing work, and how it relates to
security.

Section 2 is based on the original description of the timely dataflow model
of computation in the context of Naiad [11], and on another paper (in prepa-
ration) that studies the model in more generality and detail. In particular, the
model includes completion notifications, which tell a node when it will no longer
see messages for a given time, and which require a careful definition and analy-
sis of the could-result-in relation. Other features of the model include external
input and output channels. We omit these aspects of timely dataflow here, in
order to simplify the presentation of this paper, though we have considered their
information-flow aspects. Interestingly, completion notifications introduce flows
of information “at a distance” (not necessarily from neighbor to neighbor in a
dataflow graph), via the run-time system that tracks the progress of the compu-
tation and delivers those notifications.

On the Flow of Data, Information, and Time 91

A further paper (also in preparation) explores fault-tolerance in the timely
dataflow model. Over the years, connections between non-interference and fault-
tolerance have been identified (e.g., [16,15,14]); perhaps it is time to revisit
them. Much of the machinery that we present in this paper arose in our work
on fault-tolerance, in a more general, more dynamic form. In particular, there,
the function D that maps a node to a set of times is state-dependent, rather
than static. “Undo computing” [7], which restores system integrity after an in-
trusion by undoing changes made by an adversary while preserving legitimate
user actions, may be an intriguing area of application for this ongoing work.

Acknowledgments. We are grateful to our coauthors on work on Naiad for
discussions that led to this paper, and to Gordon Plotkin for pointing out the
connection with predicate transformers.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991)

2. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

3. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

4. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Systems 7(3), 404–425 (1985)

5. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress, pp. 471–475 (1974)

6. Khan, S.M., Hamlen, K.W., Kantarcioglu, M.: Silver lining: Enforcing secure infor-
mation flow at the cloud edge. In: 2014 IEEE International Conference on Cloud
Engineering, pp. 37–46 (2014)

7. Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.F.: Intrusion recovery using selec-
tive re-execution. In: 9th USENIX Symposium on Operating Systems Design and
Implementation, pp. 89–104 (2010)

8. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

9. McLean, J.: Security models. In: Marciniak, J. (ed.) Encyclopedia of Software
Engineering. Wiley & Sons (1994)

10. McSherry, F., Murray, D.G., Isaacs, R., Isard, M.: Differential dataflow. In: CIDR
2013, Sixth Biennial Conference on Innovative Data Systems Research (2013)

11. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: A
timely dataflow system. In: ACM SIGOPS 24th Symposium on Operating Systems
Principles, pp. 439–455 (2013)

12. Plotkin, G.: Domains, the so-called Pisa notes (1983),
http://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps.

13. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security
and privacy for MapReduce. In: Proceedings of the 7th USENIX Symposium on
Networked Systems Design and Implementation, pp. 297–312 (2010)

http://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps.

92 M. Abadi and M. Isard

14. Rushby, J.: Partitioning for avionics architectures: Requirements, mechanisms, and
assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research
Center (June 1999)

15. Simpson, A., Woodcock, J., Davies, J.: Safety through security. In: Proceedings of
the 9th International Workshop on Software Specification and Design, pp. 18–24.
IEEE Computer Society (1998)

16. Weber, D.G.: Formal specification of fault-tolerance and its relation to computer
security. In: Proceedings of the 5th International Workshop on Software Specifica-
tion and Design, pp. 273–277. ACM (1989)

17. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, pp. 15–28 (2012)

Risk Assessment and Security Policies

Pareto Efficient Solutions

of Attack-Defence Trees

Zaruhi Aslanyan and Flemming Nielson

DTU Compute, Technical University of Denmark, Denmark
{zaas,fnie}@dtu.dk

Abstract. Attack-defence trees are a promising approach for represent-
ing threat scenarios and possible countermeasures in a concise and intu-
itive manner. An attack-defence tree describes the interaction between
an attacker and a defender, and is evaluated by assigning parameters to
the nodes, such as probability or cost of attacks and defences. In case
of multiple parameters most analytical methods optimise one parameter
at a time, e.g., minimise cost or maximise probability of an attack. Such
methods may lead to sub-optimal solutions when optimising conflicting
parameters, e.g., minimising cost while maximising probability.

In order to tackle this challenge, we devise automated techniques that
optimise all parameters at once. Moreover, in the case of conflicting pa-
rameters our techniques compute the set of all optimal solutions, defined
in terms of Pareto efficiency. The developments are carried out on a new
and general formalism for attack-defence trees.

Keywords: Attack-defence trees, attack trees, countermeasures, secu-
rity assessment, Pareto efficiency, multiple criteria.

1 Introduction

Nowadays fast growing technologies influence our everyday life and increase our
productivity. Unfortunately, we witness with alarming frequency that they also
increase the risk of physical and cyber attacks to a wide range of targets, from
personal devices to systems of public concern. The growing number of threats
demands a thorough investigation of the security properties of a system when
deployed in a given environment. To this end, various formal graphical models
have been studied.

Fault trees, introduced in the early 1980’s, are one of the first and most
prominent graphical representations for analysing the safety of a system. They
represent a system failure in terms of the failure of its components [1].

Fault trees inspired a similar approach to security. In 1991, Weiss used trees in
security analysis and presented threat-logic trees as a graphical attack-modelling
technique [2]. Later, in 1999, Schneier introduced attack trees as a tool to evaluate
the security of complex systems in a structured, hierarchical way. Attack trees
allow to analyse the possible attack scenarios and reason about the security of

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 95–114, 2015.
DOI: 10.1007/978-3-662-46666-7_6

96 Z. Aslanyan and F. Nielson

the whole system in a formal, methodical way, by splitting a complex goal into
sub-goals and basic attacks [3]. However, attack trees evaluate only the attacker’s
behaviour and do not consider possible defences undertaken to avoid the attacks.

To overcome this limitation, further extensions of attack trees for capturing
the defender’s behaviour have been studied. Such extensions have been explored
in several dimensions. Some enrich an attack tree model by integrating appro-
priate defender’s actions against specific attacks only at leaf level [4], while oth-
ers combine attack and defence models and present a methodology to compute
specific parameters [5]. Kordy [6] introduced a more general tool, called attack-
defence trees, to represent the interaction between an attacker and a defender.

Attack-defence trees are extensions of attack trees with countermeasures.
They illustrate in a graphical way the possible actions an attacker can perform
in order to attain a given goal, and the feasible countermeasures a defender can
undertake to counter such actions. Attack-defence trees are used for analysing
attack-defence scenarios. Analyses are performed by considering specific aspects
or properties of the scenario. The evaluation assigns values to the parameters of
the leaves and the tree is traversed from the leaves to the root.

Most analyses of attack-defence trees focus on one specific aspect of the sys-
tem, such as feasibility or cost of an attack or a defence. They do not consider
multiple parameters and the subsequent need for optimising all of them at once.
Moreover, optimisation of multiple parameters might lead to incomparable val-
ues, in which case such methods may result in sub-optimal solutions. However,
in many real-life scenarios a single parameter might not be adequate for the
analysis of complex attack-defence scenarios.

In order to address multi-parameter optimisation of attack-defence trees, we
present evaluation techniques that characterise the leaves of a tree with more
than one parameter, such as the success probability and the cost of an attack.
Our techniques compute different aspects of the scenario and handle multiple
parameters, thus optimising all of them at once. Multi-parameter optimisation
becomes necessary in case of conflicting parameters, as there is no single best
solution but rather a set of optimal solutions. We handle conflicting parameters
by computing the set of efficient solutions, defined in terms of Pareto efficiency.
Thus, Pareto efficiency handles the multi-criteria optimisation problem, as well
as parameters with incomparable values.

Our developments are performed on a new language-based formalism for
attack-defence trees. Furthermore, we study the issue in both Boolean and prob-
abilistic settings. For each such setting, we first consider the problem of feasibility
of the attack or the defence, and then we extend our techniques to compute op-
timal attacks or defences in presence of multiple costs. Moreover, for each case,
we first define the solution considering all possible player interactions, obtaining
a natural but exponential characterisation. Then, we improve dramatically on
the complexity devising an algorithmic evaluation that is linear in the size of the
tree and yet sound for an expressive sub-class of models.

Pareto Efficient Solutions of Attack-Defence Trees 97

Organisation of the paper. In Sect. 2 we introduce our formalism for attack-
defence trees and provide evaluation techniques for feasibility queries. Sect. 3
extends the model with a single cost and presents evaluation techniques for
computing minimum cost. We extend the single cost model to multiple costs
in Sect. 4. The results of evaluation are discussed on a case study for a Radio-
Frequency Identification system managing goods in a warehouse. We describe
related work in Sect. 5 and conclude in Sect. 6.

2 Formal Model of Attack-Defence Trees

In the following, we present our formalism for attack-defence trees. We start by
defining the syntax and the terminology used throughout the paper. Then, we
describe the evaluation techniques for investigating the feasibility of attacks and
defences both in Boolean and probabilistic settings. The Boolean case is thor-
oughly explained in Sect. 2.2. The developments are generalised to the proba-
bilistic setting in Sect. 2.3.

2.1 Syntax and Well-Formednes

Syntax and intended semantics. We construe an attack-defence tree as an in-
teraction between two players (denoted by τ), the proponent (τ = p) and the
opponent (τ = o), in the wake of [6]. A player can be either an attacker or a
defender. We associate the proponent with the player at the root, and the op-
ponent with the opposite player. Each player has an associated goal, such as
minimising or maximising the overall probability of an attack or a defence.

The root of the tree represents the main goal of an attack-defence scenario
for a given player τ . The leaves represent the basic actions that a player can
perform to achieve his/her goal. The internal nodes show how those actions can
be combined. In order to simplifying the technical developments, we assume that
the players’ actions are independent.

The abstract syntax of an attack-defence tree t is presented in Table 1. A tree
is either a leaf or the application of a tree operator to one or two sub-trees.

Based on the player type, a leaf a is either a basic action of the proponent or
of the opponent. We denote the set of proponent’s and opponent’s basic actions
by Actp and Acto, respectively. We assume that these two sets are disjoint,
Actp∩Acto = ∅. We denote by Act the set of all basic actions, Act = Actp∪Acto.

There are two special types of leaves; &true represents a trivially-successful
action, and &false represents a trivially-failed action.

As standard in the literature, tree operators include conjunction and disjunc-
tion, while we introduce negation and a novel construct for player alternation.
The conjunction operator t = &∧(t1, t2) requires that the goals of t1, t2 are
achieved in order for the goal of t to be achieved. The disjunction operator
t = &∨(t1, t2) requires that the goal of at least one sub-tree is achieved in order
for the goal of t to be achieved.

The negation operator t = &¬(t′) requires that the goal of the sub-tree t′ is not
achieved in order for the goal of t to be achieved. This operator negates the goal

98 Z. Aslanyan and F. Nielson

Table 1. The type system for defining well-formed trees

t ::= a | &∧(t1, t2) | &∨(t1, t2) | &¬(t) | &∼(t) | &true | &false

� a : p if a ∈ Actp � a : o if a ∈ Acto

� t1 : τ � t2 : τ

� &∧(t1, t2) : τ

� t1 : τ � t2 : τ

� &∨(t1, t2) : τ

� t : τ

� &¬(t) : τ

� t : τ

� &∼(t) : τ ′ τ
′ = τ−1

of t′ and leaves the player unchanged. Such an operator allows to analyse a wider
range of attack and defence scenarios, including the cases of unrecoverable and
conflicting actions, thus making trees more flexible and expressive. For instance,
cutting a communication wire might be unrecoverable, and after having cut a
wire a player might not be able to communicate with a given device.

The changing player operator t = &∼(t′) changes the goal of t′ by changing
the type of the player. Note that in this case the goal belongs to the opposite
player. For instance, if t′ belongs to an attacker with the corresponding goal
(e.g., minimising), then the tree t belongs to a defender with the corresponding
goal (e.g., maximising). Thus, the changing player operator flips the player from
an attacker to a defender and vice versa, as highlighted by the side-condition of
the corresponding rule, where p−1 = o and o−1 = p.

The syntax of Table 1 is overly liberal for it does not associate players to nodes.
The simple type system, showed in the second section of the table, enforces such
association defining a well-formedness condition. We denote by Treeτ the set of
well-formed attack-defence trees whose root belongs to a player τ . Based on the
type of the player, we have Treep when τ is the proponent and Treeo when τ is
the opponent and Tree = Treep ∪ Treeo. In the following, we will refer to them
as attack-defence trees or simply trees. Moreover, we introduce below the notion
of polarity consistency, to be exploited in the technical developments.

Polarity-Consistent Tree. We say that an action a occurs negatively in a tree, if
a is under an odd number of negations. Otherwise, we say that an action a occurs
positively. Such polarities are denoted with the symbols − and +, respectively.

Definition 1. An attack-defence tree t is polarity-consistent iff there is no ac-
tion that occurs both positively and negatively in t.

A sufficient (but not necessary) condition for polarity-consistency is that all
actions are “uniformly good” or “uniformly bad” for the proponent. If t is a
polarity-consistent tree, then the polarity of each action is uniquely determined.

Running Example. Let us introduce an example that we will develop throughout
the paper. We consider a fragment of a Radio-Frequency Identification (RFID)
system managing goods in a warehouse, studied in [7]. Particularly, we consider
an attacker (proponent) whose goal consists in removing the RFID tags from

Pareto Efficient Solutions of Attack-Defence Trees 99

∨
Remove tag

threaten

t

∧
bribe

blackmail

b

∧
trick

identify
subject

is

bribe
subject

bs

∼

∧
thwart

employees

training
for thwart

t1

threaten
to fire

employees

tf

∨ ∼

∧
false

replacement ∧
false

management

send
false
tag

st

∼

∧authentication

authenticate
tag

at

∼

break
authenti-
cation

ba

infiltrate
manage-
ment

im

order tag
replace-
ment

ot

training
for trick

t2

© - proponent’s action
� - opponent’s action

Fig. 1. Attack-defence tree for removing tag

goods with the help of an insider. In order to enable a direct comparison with
the evaluation techniques in the literature, our attack-defence tree does not
contain negation. We will see, however, that as far as the calculation is concerned,
negation would be treated similarly to the changing player operator.

In order to attain the goal, the attacker can “bribe”, “threaten”, “blackmail”,
or “trick” the insider. For bribing a person the attacker has to “identify a cor-
ruptible subject” and “bribe the subject”. The defender (opponent) can protect
against bribery by “thwarting employees”, which can be done by “training for
security” and by “threatening to fire the employees”.

In case the attacker decides instead to “trick” the insider by placing a fake
tag, they can either “send false replacement tags” or give a “false management
order” to do it. The latter can be done by “infiltrating the management” and
“ordering replacement tags”. To fight such attacks, the defender can provide the
employees with “training for trick”.

The corresponding attack-defence tree is given in Figure 1.We decorate internal
nodes with labels to keep track of sub-goals, hence making the tree more informa-
tive and human-readable. We label the leaves to refer to them easily.
The t, displayed in Figure 1, is represented by the following syntactic term:
t=&∨(&∧(is,&∧(bs,&∼(&∧(t1,tf)))),

&∨(t,&∨(b,&∧(&∨(&∧(st,&∼(&∧(at,&∼(ba)))),&∧(im,ot)),&∼(t2)))))

100 Z. Aslanyan and F. Nielson

2.2 Semantics in the Boolean Case

As mentioned above, we construe an attack-defence tree as an interaction be-
tween the proponent and the opponent. In the Boolean setting the investigation
of the feasibility of a scenario is related to answering questions such as “Is the
scenario satisfiable?” or “Is there an always-successful attack/defence?”.

In this setting, we associate with each basic action a value from the Boolean
set B, where true corresponds to performing and false corresponds to not per-
forming the action. We consider B to be ordered such that max{tt ,ff } = tt and
min{tt ,ff } = ff .

We define a Boolean assignment of basic actions for a given player τ as follows:
a Boolean assignment mτ is an arbitrary function that assigns a value b ∈ B to
each basic action a ∈ Actτ ; mτ : Actτ → B. Thus, the Boolean assignment m
is a pair (mp,mo), but we allow to write m(a) as a shorthand for mp(a) when
a ∈ Actp and mo(a) when a ∈ Acto. We say that the main goal described by a
tree succeeds if the Boolean assignment evaluates the tree to true.

For evaluating the feasibility of an attack-defence tree, we present two evalu-
ation techniques, termed semantic and algorithmic evaluations respectively.

The semantic evaluation M (t) of an attack-defence tree t ∈ Treep is presented
in Table 2. The evaluation analyses the tree t by considering all possible Boolean
assignments of values to the basic actions of t. It computes the pair of minimum
and maximum success values of the proponent. If the proponent is an attacker,
then it computes the minimum and the maximum values of an attack. Otherwise,
it computes the minimum and maximum values of a defence. We observe that if
the main goal of the scenario (represented by the root of the tree) is successful
for the proponent, then it is not successful for the opponent. Similarly, if the
proponent wants to maximise the success of the main goal, then the opponent
wants to minimise it. Thus, the players have opposite goals. We integrate this
consideration into our technique by minimising the value of t over all opponent’s
Boolean assignments mo, and then maximising it over all proponent’s Boolean
assignments mp. This is illustrated in the second component of M (t) in Table 2,
which computes the maximum success value of the proponent. The first compo-
nent of M (t) computes the minimum success value of the proponent. Therefore,
the computation maximises the value over all mo’s and then minimises it over
all mp’s.

The analysis B[[t]]m of the tree t, displayed in the second part of the Table 2, is
performed recursively on the structure of t. Observe that even though the nega-
tion and changing player operators work on the same assignment m, the former
only changes the polarity of a tree whereas the latter changes the optimisation
objective by swapping the players.

The result of the semantic evaluation, when the proponent is an attacker, is
interpreted as follows.

– If both the minimum and the maximum values of t are false (ff ,ff), then
the system is always secure despite the attacker’s actions.

Pareto Efficient Solutions of Attack-Defence Trees 101

Table 2. The Boolean semantic evaluation of an attack-defence tree

M (t)=(min{max{B[[t]](mp,mo) | mo Boolean assignment} | mp Boolean assignment},
max{min{B[[t]](mp,mo) | mo Boolean assignment} | mp Boolean assignment})

B[[a]]m = m(a)

B[[&∧(t1, t2)]]m = B[[t1]]m ∧ B[[t2]]m
B[[&∨(t1, t2)]]m = B[[t1]]m ∨ B[[t2]]m
B[[&¬(t)]]m = ¬B[[t]]m
B[[&∼(t)]]m = ¬B[[t]]m
B[[&true]]m = tt
B[[&false]]m = ff

– If the minimum value of t is false and the maximum value of t is true (ff , tt),
then the system is vulnerable. In other words, there exist actions (a Boolean
assignment m) such that an attack on the system is feasible.

– If both the minimum and the maximum values of t are true (tt , tt), then
the system is flawed. In other words, despite the attacker’s actions (for all
Boolean assignments m) an attack on the system is always successful.

The result is interpreted likewise, when the proponent is a defender.
The semantic evaluation characterises the analysis in a natural way, for it ex-

plicitly considers all the interactions interwoven in a tree in terms of assignments
to the leaves. Nonetheless, it gives rise to an exponential computation already
in the Boolean case, the satisfiability problem being NP-complete. Therefore,
evaluation techniques that enjoy a lower complexity are needed. In particular,
we face the problem of defining those restrictions on attack-defence trees un-
der which the more efficient methods are sound with respect to the semantic
evaluation, our gold standard.

The algorithmic evaluation INT (t) of an attack-defence tree t ∈ Treep is
presented in Table 3. Similarly to the semantic evaluation, it computes the pair
of minimum and maximum success values of the proponent. It considers the
values of basic actions and propagates them up to the root. The propagation
is performed according to the rules given in Table 3. The first rule assigns
the minimum and the maximum success values to the actions based on the
player type. Observe that, as the players have opposite goals, the success values
are also opposite. The next four rules define the computation for operators.
Conjunction and disjunction are treated in the standard way, hence let us focus
on the negation and changing player operators. Both operators change the goal
of the player. The negation operator negates the goal without changing the
player, while the changing player operator changes the goal by changing the
player. Thus, in both rules we first swap the minimum and maximum values,
and then apply negation. The last two rules are independent from the players
and represent always successful and failed actions.

The semantic and algorithmic evaluations might lead to different results, as we
can see by considering the attack-defence tree t = &∧(a,&¬(a)), where a ∈ Actp.

102 Z. Aslanyan and F. Nielson

Table 3. The Boolean algorithmic evaluation of an attack-defence tree

INT (a) =

{
(ff , tt) if a ∈ Actp

(tt ,ff) if a ∈ Acto

INT (&∧(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ∧min2,max1 ∧max2)

INT (&∨(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ∨min2,max1 ∨max2)

INT (&¬(t)) = let (min,max) = INT (t)
in (¬max,¬min)

INT (&∼(t)) = let (min,max) = INT (t)
in (¬max,¬min)

INT (&true) = (tt , tt)
INT (&false) = (ff ,ff)

The result of the semantic evaluation is M (t) = (ff ,ff), while the results of
the algorithmic evaluation is INT (t) = (ff , tt). However, observe that t is not
polarity-consistent. As a matter of fact, if we restrict to polarity-consistent trees,
then the two evaluations are equivalent.

Theorem 1. If t ∈ Tree is a polarity-consistent tree, then M (t) = INT (t).

The semantic evaluation considers all possible Boolean assignments m, thus
being exponential in the size of t. The implementation of the algorithmic eval-
uation consists in a bottom-up traversal of t, and thus is linear in the size of
the tree. Therefore, in case of polarity-consistent trees, our method offers a dra-
matic improvement in performance hence in scalability. This is in line with the
development of, e.g., [8].

2.3 Semantics in the Probabilistic Case

The probabilistic setting generalises the Boolean one. In the following, we give
a brief explanation of the setting and the evaluations, focusing on the novelties
and omitting redundant details.

In the probabilistic setting, we consider the interval [0, 1], where 1 corresponds
to success and 0 corresponds to failure. The questions tackled in the probabilistic
setting are, e.g., “What is the maximum probability of an attack?” or “How
vulnerable is the system to the attack?”.

In the remainder of the paper, we shall restrict our investigation to linear
trees, inspired by Girard’s linear logic [9] and defined as follows:

Definition 2. An attack-defence tree t is linear iff no action occurs twice in t.

The notion of linearity is stronger than polarity-consistency, as the latter does
not forbid to have multiple occurrences of the same action with the same polarity.
Let us focus on the occurrences of an action a in the following polarity-consistent
tree: t = &∨(&∧(a, b),&∧(a, c)). In the tree t the action a is performed once but

Pareto Efficient Solutions of Attack-Defence Trees 103

Table 4. The probabilistic semantic evaluation of an attack-defence tree

M (t)=(min{max{P [[t]](mp,mo) |mo Boolean assignment} | mp Boolean assignment},
max{min{P [[t]](mp,mo) |mo Boolean assignment} | mp Boolean assignment})

P [[a]]m =

{
M2(a) if m(a) = tt

M1(a) if m(a) = ff

P [[&∧(t1, t2)]]m = P [[t1]]m · P [[t2]]m
P [[&∨(t1, t2)]]m = 1− (1− P [[t1]]m) · (1−P [[t2]]m)
P [[&¬(t)]]m = 1−P [[t]]m
P [[&∼(t)]]m = 1−P [[t]]m
P [[&true]]m = 1
P [[&false]]m = 0

occurs more than once, and the success of each sub-tree containing a depends on
the actions b, c. However, observe that in t the actions of sub-trees &∧(a, b) and
&∧(a, c) are not independent. The assumption of linearity ensures independence
of actions, thereby guaranteeing the soundness of the computations explained
below.

We assume that each basic action a ∈ Act has two associated success proba-
bilities; success probability M1(a) in case of not performing a, and success prob-
ability M2(a) in case of performing a, such that M1(a) < M2(a). For instance,
an attacker might succeed to disable a security camera with a given probability
M2, or the security camera might be disabled due to some external conditions
with a given probability M1, which for the attacker will be the probability of
succeeding without performing the action. We consider the Boolean assignment
mτ as defined in the previous section, mτ : Actτ → B, and assume that an action
a has a probability of success M1(a) if m(a) is false and has a probability of
success M2(a) if m(a) is true. Choosing M1(a) = 0 and M2(a) = 1 coincides
with the Boolean case.

The evaluation of attack-defence trees in the probabilistic setting follows the
development for the Boolean setting: first, we characterise the solution to our
problem in a top-down fashion, and then we investigate what limitations on the
model allow to devise an algorithmic approach with lower complexity.

The semantic evaluation M (t) of an attack-defence tree t ∈ Treep is illustrated
in Table 4. It computes the minimum and the maximum success probability of
a scenario by analysing the tree t over all Boolean assignments from which the
probability values are inferred. Observe that also here the players have opposite
goals, e.g., the proponent wants to maximise the overall probability of success,
while the opponent wants to minimise it.

The result of the computation, when the proponent is an attacker, is inter-
preted as follows. The maximum success probability p shows the existence of an
attack with probability p. In this case, we say that the system is p-vulnerable.

The algorithmic evaluation INT (t) of an attack-defence tree t ∈ Treep is
given in Table 5. It traverses the tree from the leaves to the root and propagates

104 Z. Aslanyan and F. Nielson

Table 5. The probabilistic algorithmic evaluation of an attack-defence tree

INT (a) =

{
(M1(a),M2(a)) if a ∈ Actp

(M2(a),M1(a)) if a ∈ Acto

INT (&∧(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ·min2,max1 ·max2)

INT (&∨(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (1− (1−min1) · (1−min2), 1− (1−max1) · (1−max2))

INT (&¬(t)) = let (min,max) = INT (t)
in (1−max, 1−min)

INT (&∼(t)) = let (min,max) = INT (t)
in (1−max, 1−min)

INT (&true) = (1, 1)
INT (&false) = (0, 0)

Table 6. The values of probability and cost for the basic actions of the example

Label Name of the Node M1 M2 c
is identify subject 0.2 0.8 80

bs bribe subject 0 0.7 100

t1 training for thwart 0.1 0.3 0

tf threaten to fire employees 0.1 0.4 0

t threaten 0 0.7 160

b blackmail 0 0.7 150

st send false tag 0 0.5 50

at authenticate tag 0.1 0.7 0

ba break authentication 0.1 0.6 85

im infiltrate management 0 0.5 70

ot order tag replacement 0 0.6 0

t2 training for trick 0.1 0.4 0

the values of the basic actions. Similarly to the Boolean case, as the negation
and changing player operators change the goal of the player, we first swap the
minimum and maximum values before applying negation.

The restriction of linear trees is adequate for showing the equivalence of the
two evaluations.

Theorem 2. If t ∈ Tree is a linear tree, then M (t) = INT (t).

Hence, in the probabilistic setting linearity allows to scale from an exponential
to a linear complexity.

Running Example. Consider the attack-defence tree t presented in Figure 1. Ob-
serve that t is a linear tree, thus we can apply the algorithmic evaluation for
computing the maximum probability of success at the root. Table 6 lists possi-
ble probability values for basic actions (the last column is for later reference).
Providing a realistic estimate is a research topic in itself and falls outside the
scope of this work. Following the algorithmic computation, at the root we obtain
INT (t) = (0, 0.97), that is, the system is 0.97 vulnerable.

Pareto Efficient Solutions of Attack-Defence Trees 105

3 Attack-Defence Trees with Cost

In this section we extend our evaluation techniques by considering a single cost
for basic actions. We evaluate the minimum cost of an attack or defence in the
Boolean and probabilistic settings. Similarly to the previous section, the Boolean
case is thoroughly explained in Sect. 3.1. The developments are generalised to
the probabilistic setting in Sect. 3.2.

3.1 Cost in the Boolean Case

In the following, we extend the model of attack-defence trees described in Sect.
2.2 with a single cost for basic actions. Therefore, each basic action is associated
with a pair of Boolean and cost values.

When we consider costs, we can focus on questions such as “What is the
minimum cost of an attack?” or “How much does it cost to protect a system in
a given scenario?”. Observe that such questions are player-dependent, meaning
that the model is evaluated from a given player’s perspective. Since we assumed
that the basic actions are independent, we need to consider one player’s values
only. For instance, for computing the minimum cost of an attack we need only
the cost of the attacker’s actions and do not require the cost of the defender’s
actions. Thus, in our evaluation techniques we consider only the cost of the
proponent’s actions, and do not consider the cost of the opponent’s actions.

In the following we consider the set D = B × R≥0. In order to link the cost
parameter to the existing model in the Boolean setting, we assume that each
basic action of the proponent a ∈ Actp has two associated costs (non-negative
real numbers). One is the cost of not performing a (0 in the following), the other
is the cost c of performing a. We set both costs of the opponent actions to 0.

Extending the model with costs and evaluating the pairs of success and cost
values lead to multi-parameter optimisation. Moreover, such pairs are incompa-
rable in case the goal of a player is to maximise one parameter while minimising
the other. In order to address multi-parameter optimisation in the case of in-
comparable values, we resort to Pareto efficiency and define two functions for
computing the sets of Pareto efficient solutions. A solution is called Pareto effi-
cient if it is not dominated by any other solution in the ordering relation [10].

We assume that the goal of the proponent is to maximise the success value
while minimising the cost of an attack or defence. In order to compute the set of
pairs of efficient solutions, where we want to maximise the first argument while
minimising the second, we define function MR+−. The function computes the
set of all pairs that have higher value for the first argument or lower value for
the second argument with respect to the other pairs in the set.

MR+−(Z) = {(x, y) ∈ Z | ∀(x′, y′) ∈ Z : x′ � x ∧ y′
 y ⇒ x′ = x ∧ y′ = y}
= {(x, y) ∈ Z | ∀(x′, y′) ∈ Z : (x � x′ ∨ y � y′) ∧ (x � x′ ∨ y
 y′)}

where Z ⊆ D.

106 Z. Aslanyan and F. Nielson

Note that the sign “+” indicates the maximisation and the sign “-” indicates
the minimisation, and their position refer to the parameter of the maximisa-
tion/minimisation.

In Sect. 2.2 we discussed how the negation and changing player operators
change the goal, e.g., maximisation is turned into minimisation. Thus, if the
proponent’s goal is to maximise the success value and minimise the cost of an
attack or defence, then under negation the goal is to minimise the success value
and minimise the cost of an attack or defence. Observe that the goal for the
cost does not change, as we assume to deal with rational players. Therefore, we
define function MR−− to compute the set of all pairs that have lower values for
both arguments with respect to the other pairs in the set.

MR−−(Z) = {(x, y) ∈ Z | ∀(x′, y′) ∈ Z : x′
 x ∧ y′
 y ⇒ x′ = x ∧ y′ = y}
= {(x, y) ∈ Z | ∀(x′, y′) ∈ Z : (x
 x′ ∨ y � y′) ∧ (x � x′ ∨ y
 y′)}

where Z ⊆ D.
Observe that the “+” symbol in MR+− corresponds to the outer-most max

operator in Table 2, and the first “-” symbol in MR−− corresponds to the outer-
most min operator.

Following the previous developments, we present two evaluation techniques.
The semantic evaluation M (t,A) of an attack-defence tree t ∈ Treep and a

set of actions A is illustrated in Table 7. It computes a pair, where the first
argument is a set computed by the function MR−− and consists of all pairs
that have lower success value and lower cost of the proponent actions compared
to other pairs, and the second argument is the set computed by the function
MR+− and consists of all pairs that have higher success value and lower cost of
the proponent actions compared to other pairs.

As we discussed in Sect. 2.2, if the proponent wants to maximise the success
of the main goal, then the opponent wants to minimise it. In other words, the
players affect the computation of the success value of the main goal in opposite
ways, e.g., when one wants to maximise, the other wants to minimise and vice
versa. The functions MR−− and MR+− evaluate the success values based on
the goal of the proponent. In order to consider the effect of the opponent with
the opposite goal, we define functions f

mp

1 (t) and f
mp

2 (t) given in Table 7. The
functions compute respectively the maximum and minimum success values over
all Boolean assignments mo for a given Boolean assignment mp.

As the costs of the opponent’s actions are 0 and do not influence the overall
cost of the proponent, we consider only the cost of the proponent. The cost is
represented with the concept of a budget, denoted by bp, for associating with
each success value the corresponding budget of the proponent and the Boolean
assignment mp. The budget bp ∈ R≥0 takes values from 0 to infinity in an
increasing manner. For a given budget bp we take mp such that the cost of the
proponent for mp is not greater than bp, and the corresponding success value for
mp is computed. The cost for a given mp is computed with the function cost,
defined in Table 7.

Pareto Efficient Solutions of Attack-Defence Trees 107

Table 7. The Boolean semantic evaluation of an attack-defence tree with cost

M (t,A) = (MR−−({ (f
mp

1 (t), bp) | cost(mp,A) ≤ bp}),
MR+−({ (f

mp

2 (t), bp) | cost(mp,A) ≤ bp}))

f
mp

1 (t) = max{B[[t]](mp,mo) | mo Boolean assignment}
f
mp

2 (t) = min{B[[t]](mp,mo) | mo Boolean assignment}

cost(mp,A) =
∑

a∈A

{
c(a), if mp(a) = tt
0, if mp(a) = ff

The result of the semantic evaluation is a pair of sets of Pareto efficient solu-
tions for the given optimisation criteria of the goal.

The algorithmic evaluation INT (t) for an attack-defence tree t ∈ Treep is
given in Table 8. It again computes a pair, where the first argument consists of
all pairs that have lower success value and cost of the proponent actions, and
the second argument consists of all pairs that have higher success value and
lower cost of the proponent actions. Such sets are computed in the bottom-up
fashion, defined by the rules presented in Table 8. The rules extend the ones for
the success value computation, presented in Sect. 2.2, Table 3.

The first rule assigns the sets MR−− and MR+− to the basic actions. Ob-
serve that the cost of not performing the proponent’s actions, as well as both
costs of the opponent’s actions, is 0. The rules for conjunction and disjunction
use the common computation for success values and sum the costs. The nega-
tion and changing player operators evaluate the success value as described in
Sect. 2.2, while leaving the cost unchanged. The last two rules correspond to
always successful and failed actions, which are independent from the players,
and thus have a cost equal to 0. Applying the functions MR−− and MR+− in
each rule of the evaluation allows to reduce the size of the sets in each step.

We denote by yield(t) ⊆ Act the set of actions that are in the leaves of t. By
considering the polarity-consistent tree t = &∧(&∨(a, b),&∨(a,&∼(c))), where
a, b ∈ Actp, c ∈ Acto, c(a) = 2 and c(b) = 1, we see that the two evaluation
techniques lead to different results. The semantic evaluation gives the result
M(t, yield(t)) = ({(ff, 0)}, {(ff, 0), (tt, 2)}), while the algorithmic evaluation gives
the result INT(t) = ({(ff, 0)}, {(ff, 0), (tt, 3)}).

Therefore, the assumption of polarity consistency, considered in the Boolean
case in Sect. 2.2, is no longer adequate when dealing with the notion of cost.
In order to show the equivalence of the two evaluations we resort to a stronger
assumption of linearity.

Theorem 3. If t ∈ Tree is a linear tree, then M (t , yield(t)) = INT (t).

We measure complexity of the two evaluation methods by calculating the
number of set operations. The semantic evaluation is exponential in the size of
t, as it considers all Boolean assignments. The algorithmic evaluation is linear
and hence presents a dramatic improvement in the case of linear trees.

108 Z. Aslanyan and F. Nielson

Table 8. The Boolean algorithmic evaluation of an attack-defence tree with cost

INT (a) =

⎧
⎪⎨

⎪⎩

(MR−−({(ff, 0), (tt, c(a))}),
MR+−({(ff, 0), (tt, c(a))})) if a ∈ Actp

(MR−−({(tt, 0)}),MR+−({(ff, 0)})) if a ∈ Acto

INT (&∧(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(b ∧ b′, c+ c′) | (b, c) ∈ V1, (b

′, c′) ∈ V2}),
MR+−({(b ∧ b′, c+ c′) | (b, c) ∈ W1, (b

′, c′) ∈ W2}))
INT (&∨(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}

in (MR−−({(b ∨ b′, c+ c′) | (b, c) ∈ V1, (b
′, c′) ∈ V2}),

MR+−({(b ∨ b′, c+ c′) | (b, c) ∈ W1, (b
′, c′) ∈ W2}))

INT (&¬(t)) = let (V,W) = INT (t)
in (MR−−({(¬b, c) | (b, c) ∈ W }),MR+−({(¬b, c) | (b, c) ∈ V }))

INT (&∼(t)) = let (V,W) = INT (t)
in (MR−−({(¬b, c) | (b, c) ∈ W }),MR+−({(¬b, c) | (b, c) ∈ V }))

INT (&true) = ({(tt , 0)}, {(tt , 0)})
INT (&false) = ({(ff , 0)}, {(ff , 0)})

3.2 Cost in the Probabilistic Case

In this section we briefly generalise our development to the probabilistic setting,
concentrating on the differences with respect to the Boolean setting.

In the probabilistic setting the cost-related questions are the same as in the
Boolean setting, and the same observation regarding the cost to the proponent
and to the opponent applies. Here we consider the set D = [0, 1] × R≥0. The
cost is integrated to the basic actions in the same way. Thus, to extend the
probabilistic model with costs, we assume that each basic action of the proponent
player a ∈ Actp has two associated costs, 0 in case of not performing a, and c in
case of performing a. We set both costs of the opponent’s actions equal to 0.

As in the Boolean case, by considering probability and cost and focusing
on maximising the first while minimising the other, we face a multi-parameter
optimisation issue with incomparable values. Similarly to the Boolean setting, we
provide two evaluation techniques based on Pareto efficiency by considering the
functions MR−− and MR+−. We compute the set of Pareto efficient solutions
for answering questions such as “What is the maximum probability and the
minimum cost of an attack?”.

The semantic evaluation M (t,A) of an attack-defence tree t ∈ Treep and a
given set A is illustrated in Table 9. The evaluation follows the corresponding one
for the Boolean case, described in the Sect. 3.1. The only difference is that the
tree t is evaluated over the Boolean assignments by considering the probabilistic
analysis P [[t]] instead of the Boolean B[[t]] one (and considering the corresponding

Pareto Efficient Solutions of Attack-Defence Trees 109

Table 9. The probabilistic semantic evaluation of an attack-defence tree with cost

M (t ,A) = (MR−−({ (f
mp

1 (t), bp) | cost(mp,A) ≤ bp}),
MR+−({ (f

mp

2 (t), bp) | cost(mp,A) ≤ bp}))

f
mp

1 (t) = max{P [[t]](mp,mo) | mo Boolean assignment}
f
mp

2 (t) = min{P [[t]](mp,mo) | mo Boolean assignment}

cost(mp,A) =
∑

a∈A

{
c(a), if mp(a) = tt
0, if mp(a) = ff

probabilistic values for each action). The result of the evaluation is the pair of
the sets MR−− and MR+−, corresponding to the set of Pareto efficient solutions.

The algorithmic evaluation INT (t) for a tree t ∈ Treep is given in Table 10.
It traverses the tree from the leaves to the root according to the rules presented
in Table 10. The rules follow the corresponding ones of the Boolean setting.

Analogously to the previous section, we shall restrict to linear trees in order
to show the equivalence of the two evaluations.

Theorem 4. If t ∈ Tree is a linear tree, then M (t , yield(t)) = INT (t).

Again, a syntactic restriction allows to develop a sound evaluation technique
that is linear in the size of the tree as opposed to the exponential complexity
that characterises the general case.

Running Example. Consider the linear attack-defence tree t discussed in
Figure 1. Table 6 lists possible values for probability and cost for basic actions.

In order to detect the attacks with maximum probability of success and
minimum cost, we apply the algorithmic evaluation. At the root we obtain:
INT (t) = ({(0, 0)}, “The plot in Figure 2”}). The overall result of the evalua-
tion, i.e., the set of efficient solutions for the goal representing the Pareto frontier
of the problem, is displayed in Figure 2. The probability of successful attacks
ranges from 0 to 0.97 and the corresponding cost ranges from 0 to 695. The inter-
mediate points on the Pareto frontier indicate other optimal solutions. We can
conclude that the system under study is (p,c)-vulnerable for all the incomparable
pairs in the Pareto frontier. In particular, the attack is not trivially attainable
(all pairs with probability greater than zero require a cost greater than zero).

4 Attack-Defence Trees with Multiple Cost

In this section we extend further the model to deal with multiple costs for basic
actions. Observing that the Boolean setting is a special case of the probabilistic
one, in the following we describe the extended model only in the probabilistic
setting, focusing on the extensions with respect to a single cost model.

110 Z. Aslanyan and F. Nielson

Table 10. The probabilistic algorithmic evaluation of an attack-defence tree with cost

INT (a) =

⎧
⎪⎨

⎪⎩

(MR−−({(M1(a), 0), (M2(a), c(a))}),
MR+−({(M1(a), 0), (M2(a), c(a))})) if a ∈ Actp

(MR−−({(M2(a), 0)}),MR+−({(M1(a), 0)})) if a ∈ Acto

INT (&∧(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(p · p′, c+ c′) | (p, c) ∈ V1, (p

′, c′) ∈ V2}),
MR+−({(p · p′, c+ c′) | (p, c) ∈ W1, (p

′, c′) ∈ W2}))
INT (&∨(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}

in (MR−−({(1− (1− p)(1− p′), c+ c′) | (p, c) ∈ V1, (p
′, c′) ∈ V2}),

MR+−({(1− (1− p)(1− p′), c+ c′) | (p, c)∈W1, (p
′, c′)∈W2}))

INT (&¬(t)) = let (V,W) = INT (t)
in (MR−−({(1− p, c) | (p, c)∈W }),MR+−({(1− p, c) |(p, c)∈V }))

INT (&∼(t)) = let (V,W) = INT (t)

in (MR−−({(1− p, c) | (p, c)∈W }),MR+−({(1− p, c) |(p, c)∈V }))
INT (&true) = ({(1, 0)}, {(1, 0)})
INT (&false) = ({(0, 0)}, {(0, 0)})

We consider the set D = [0, 1]×Rn
≥0. We assume that each basic action of the

proponent a ∈ Actp has a vector of n associated costs, a vector of 0’s in case of
not performing a, and a vector γ : Actp → Rn

≥0 in case of performing a. When
adding costs we resort to point-wise summation of vectors. We set the cost of
the opponent’s actions to vectors of 0’s.

Analogously to the previous sections, we deal with a multi-parameter opti-
misation with incomparable values. We give two evaluation techniques by using
Pareto efficiency. In order to generalise the functions MR−− and MR+−, defined
in the previous section, we introduce polarity modifications of the comparison
operators as follows: �+ is �, �+ is �, �− is
 and �− is �. The sign “+” cor-
responds to the maximisation of the parameters and keeps the operator as it is,
while the sign “−” corresponds to the minimisation of the parameters, therefore
it changes the operator.

We define a general frontier function, where si ∈ {+,−} and Z ⊆ D, as follows:

MRs0,···,sn(Z) = {(x0, · · · , xn) ∈ Z | ∀(x′
0, · · · , x′

n) ∈ Z :

x′
0 �s0 x0 ∧ · · · ∧ x′

n �sn xn ⇒ x′
0 = x0 ∧ · · · ∧ x′

n = xn}
= {(x0, · · · , xn) ∈ Z | ∀(x′

0, · · · , x′
n) ∈ Z :

((x0 �s0 x′
0) ∨ (x1 �s1 x′

1) ∨ · · · ∨ (xn �sn x′
n)) ∧ · · ·

· · · ∧ ((x0 �s0 x′
0) ∨ (x1 �s1 x′

1) ∨ · · · ∨ (xn �sn x′
n))}

Pareto Efficient Solutions of Attack-Defence Trees 111

0

100

200

300

400

500

600

700

C
o
st

0 0.1 0.2 0.3 0.4 0.5
Probability

0.6 0.7 0.8 0.9 1
××

×× ×
×

××
×××

×
××
××××

×××
×××
××

Fig. 2. Pareto efficient solutions for the attack-defence tree t

The function MRs0,···,sn computes the efficient solutions for multiple param-
eters by maximising the parameter values if si = + and minimising it if si = −.
Note that each�si is in fact a total order (on [0,1] or R≥0) and hence ¬(x′

i �si xi)
is equivalent to xi �si x′

i (as in Sect. 3). Observe that with this notation we get
MR−− when we take n = 1 and s0 = s1 = −, and we get MR+− when we take
n− 1 and s0 = +, s1 = −.

The definition of the semantic and algorithmic evaluations closely follows that
of the corresponding ones in the Sect. 3.2. Similarly, we show their equivalence
by restricting to linear trees.

For better understanding the extension to multiple costs, let us explain the
rule for conjunction in the algorithmic evaluation. The rule is as follows:

INT (&∧(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |

(p, c1, · · · , cn) ∈ V1, (p
′, c′1, · · · , c′n) ∈ V2}),

MR+−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |
(p, c1, · · · , cn) ∈ W1, (p

′, c′1, · · · , c′n) ∈ W2}))

First, it computes all possible combinations of pairs from both sub-trees t1
and t2 by multiplying probabilities and summing costs. Then, it applies functions
MR··· in order to get the Pareto efficient solutions. This is sound due to the
point-wise ordering of the set.

5 Related Work

We now expand on the comparison with related work given in Sect. 1. Different
graphical approaches have been studied, for evaluating the security of a system.
A historical overview on existing graph-based approaches for security threats is
given by Piètre-Cambacédès and Boussou [11]. Moreover, Kordy et al. summarise
the existing methodologies for analysing attack and defence scenarios in [12].

112 Z. Aslanyan and F. Nielson

As we mentioned in Sect. 1, Schneier developed attack trees as an approach
to analyse the security of complex systems [3]. Further extensions of attack
trees based on Schneier’s model have been considered, such as attack graphs
[13,14] and dynamic attack trees [15,16], as well as tools for modelling [17,18]
and generating automatically [19] attack trees. Mauw and Oostdijk give a formal
semantics of attack trees in [20]. Moreover, Buldas et al. developed a multi-
parameter attack tree model for security analysis against rational attacks [21],
subsequently extended in [22,23,24].

While attack trees focus on evaluating attack scenarios, other tree-structure
representations incorporate countermeasures. Bistarelli et al. introduced an ex-
tension of attack trees with defender actions to the leaves of a tree [4]. Edge et
al. proposed protection trees, a methodology for allocating appropriate protec-
tions against specified attacks such that the success probability of the defender
is maximised [25]. Zonouz et al. [26] and Roy et al. [5] proposed a methodology
for attack and defence modelling that combines analytical methods of attack and
defence trees. They capture attacks and countermeasures at any node of a tree.

Finally, Kordy et al. [6] formalised attack-defence trees as an intuitive model
for presenting attacks and countermeasures in a single view. For evaluating
attack-defence trees the typical bottom-up approach of attack trees is extended.
Attack-defence trees are interpreted with various semantics to answer questions
such as the vulnerability of the system to an attack or the minimum cost of an
attack [6]. Most evaluations [6,27,28] analyse a specific aspect of a scenario and
do not consider trees with multiple parameters.

Further developments on attack-defence trees have been carried out, such as
studying the relationship between such trees and two-player games [8] and com-
bining the tree methodology with Bayesian networks for analysing probabilistic
measures of attack-defence trees with dependent actions [28].

6 Conclusion

The growing centrality of technology requires a thorough investigation of the se-
curity properties of complex systems with respect to cyber and physical attacks,
as well as consideration of possible defences undertaken to counter such attacks.

Attack-defence trees are a useful tool to study attack-defence scenarios and
present the interaction between an attacker and a defender in an intuitive way.
Moreover, such models are relied on to develop quantitative analyses of attacks
and defences. Many evaluation methods consider one-parameter trees or analyse
multi-parameter trees focusing on one specific aspect of the scenario, such as
probability of success or cost. Nonetheless, in case of multi-parameter models,
conflicting objectives may lead to incomparable values, which require to optimise
all parameters at once on pain of computing sub-optimal solutions.

In order to tackle this issue, we have presented evaluation techniques for multi-
parameter attack-defence trees that optimise all parameters at once, leveraging
the concept of Pareto efficiency. Our developments have been carried out on a
new language-based formalism for attack-defence trees, which extends standard
trees with negation and with a novel operator for player alternation. In this

Pareto Efficient Solutions of Attack-Defence Trees 113

language, the interaction between an attacker and a defender is made explicit
by associating a player to each node thanks to a simple type system. We have
called proponent the player at the root and opponent the other player.

We have developed analyses of attack-defence scenarios both in the Boolean
and in the probabilistic settings, investigating aspects such as the feasibility and
the cost of an attack or a defence. For each case we have illustrated the natural
semantic evaluation technique as well as an algorithmic evaluation which enjoys a
dramatic improvement in complexity, and we have proven under which conditions
the latter can be relied on in place of the former. Both methods characterise the
goal of the scenario with a set of Pareto efficient solutions.

Our current methods focus on the players independently: for evaluating the
cost of the proponent p, we set the cost of the opponent to 0 and assign a budget
to p. In future work, we plan to extend the model with a budget for the opponent,
so as to compute the optimal solutions for both players at once.

Acknowledgment. Part of the research leading to these results has received
funding from the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 318003 (TRESPASS). Special thanks to Roberto
Vigo and Alessandro Bruni for valuable comments and inspiring discussions.

References

1. Vesely, W., Roberts, N., Haasl, D., Goldberg, F.: Fault Tree Handbook. Number
v. 88 in Fault Tree Handbook. Systems and Reliability Research, Office of Nuclear
Regulatory Research, U.S. Nuclear Regulatory Commission (1981)

2. Weiss, J.D.: A system security engineering process. In: Proceedings of the 14th
National Computer Security Conference, pp. 572–581 (1991)

3. Schneier, B.: Attack Trees: Modeling Security Threats. Dr. Dobb’s Journal of Soft-
ware Tools 24(12), 21–29 (1999)

4. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense trees for economic evaluation of
security investments. In: Availability, Reliability and Security, pp. 416–423 (2006)

5. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (ACT): Towards
unifying the constructs of attack and defense trees. Security and Communication
Networks 5(8), 929–943 (2012)

6. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011)

7. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute decoration of
attack-defense trees. IJSSE 3(2), 1–35 (2012)

8. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack-defense trees and two-
player binary zero-sum extensive form games are equivalent. In: Alpcan, T.,
Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 245–256.
Springer, Heidelberg (2010)

9. Girard, J.Y.: Linear logic: Its syntax and semantics. In: Proceedings of the Work-
shop on Advances in Linear Logic, pp. 1–42. Cambridge University Press (1995)

10. Legriel, J., Le Guernic, C., Cotton, S., Maler, O.: Approximating the pareto front of
multi-criteria optimization problems. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 69–83. Springer, Heidelberg (2010)

114 Z. Aslanyan and F. Nielson

11. Piètre-Cambacédès, L., Bouissou, M.: Beyond attack trees: Dynamic security mod-
eling with boolean logic driven markov processes (BDMP). In: Eighth European
Dependable Computing Conference, EDCC-8 2010, pp. 199–208 (2010)

12. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. CoRR abs/1303.7397 (2013)

13. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated gener-
ation and analysis of attack graphs. In: IEEE S&P 2002, pp. 273–284 (2002)

14. Jha, S., Sheyner,O.,Wing, J.M.:Two formal analyses of attack graphs. In: 15th IEEE
Computer Security Foundations Workshop (CSFW-15 2002), pp. 49–63 (2002)

15. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp.
285–305. Springer, Heidelberg (2014)

16. Khand, P.: System level security modeling using attack trees. In: Computer, Con-
trol and Communication, IC4 2009, pp. 1–6 (2009)

17. Amenaza: SecurITree, http://www.amenaza.com
18. Isograph: AttackTree+, http://www.isograph.com/software/attacktree/
19. Vigo, R., Nielson, F., Riis Nielson, H.: Automated Generation of Attack Trees. In:

27th Computer Security Foundations Symposium (CSF 2014), pp. 337–350. IEEE
(2014)

20. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

21. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational Choice of
Security Measures Via Multi-Parameter Attack Trees. In: López, J. (ed.) CRITIS
2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006)

22. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter at-
tack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332,
pp. 1036–1051. Springer, Heidelberg (2008)

23. Jürgenson, A., Willemson, J.: On fast and approximate attack tree computations.
In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047,
pp. 56–66. Springer, Heidelberg (2010)

24. Buldas, A., Lenin, A.: New efficient utility upper bounds for the fully adaptive
model of attack trees. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M. (eds.)
GameSec 2013. LNCS, vol. 8252, pp. 192–205. Springer, Heidelberg (2013)

25. Edge, K., Dalton, G., Raines, R., Mills, R.: Using attack and protection trees to
analyze threats and defenses to homeland security. In: MILCOM 2006, pp. 1–7.
IEEE (2006)

26. Zonouz, S.A., Khurana, H., Sanders, W.H., Yardley, T.M.: RRE: A game-theoretic
intrusion response and recovery engine. In: DSN 2009, pp. 439–448 (2009)

27. Kordy, B., Pouly, M., Schweitzer, P.: Computational aspects of attack-defense trees.
In: Bouvry, P., K�lopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka, A.,
Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 103–116. Springer, Heidelberg
(2012)

28. Kordy, B., Pouly, M., Schweitzer, P.: A probabilistic framework for security scenar-
ios with dependent actions. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS,
vol. 8739, pp. 256–271. Springer, Heidelberg (2014)

http://www.amenaza.com
http://www.isograph.com/software/attacktree/

Analysis of XACML Policies with SMT

Fatih Turkmen1, Jerry den Hartog1, Silvio Ranise2, and Nicola Zannone1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Fondazione Bruno Kessler (FBK) Trento, Italy

Abstract. The eXtensible Access Control Markup Language (XACML)
is an extensible and flexible XML language for the specification of ac-
cess control policies. However, the richness and flexibility of the language
(along with the verbose syntax of XML) come with a price: errors are
easy to make and difficult to detect when policies grow in size. If these er-
rors are not detected and rectified, they can result in serious data leakage
and/or privacy violations leading to significant legal and financial conse-
quences. To assist policy authors in the analysis of their policies, several
policy analysis tools have been proposed based on different underlying
formalisms. However, most of these tools either abstract away functions
over non-Boolean domains (hence they cannot provide information about
them) or produce very large encodings which hinder the performance. In
this paper, we present a generic policy analysis framework that employs
SMT as the underlying reasoning mechanism. The use of SMT does not
only allow more fine-grained analysis of policies but also improves the
performance. We demonstrate that a wide range of security properties
proposed in the literature can be easily modeled within the framework.
A prototype implementation and its evaluation are also provided.

1 Introduction

Access rules governing sensitive data such as patient health records or financial
transactions are usually encoded in a policy that is enforced by the authoriza-
tion system. Correctness of access control policies is crucial for organizations to
prevent authorization violations or fraud which can result in serious data leakage
and/or privacy violations leading to significant legal and financial consequences
(e.g., financial and reputation loss). In this work, we consider policies expressed
in eXtensible Access Control Markup Language (XACML) [20]. XACML pro-
vides an extensible and flexible language that allows the specification of struc-
tured policies in which policies specified by different authorities can be combined
together. However, policy specification in XACML is known to be a difficult and
error-prone task [10,13]. This richness and flexibility along with its verbose syn-
tax make it difficult to determine whether policies work as intended. Therefore,
automated tools are needed to assist policy authors in analyzing their policies
to detect and correct errors before policies are deployed.

This need has spurred the development of several methods and tools for
the verification of policy specifications at design time using formal reasoning
[5,8,10,12,13]. The security properties being verified can express requirements

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 115–134, 2015.
DOI: 10.1007/978-3-662-46666-7_7

116 F. Turkmen et al.

on the policies but also on relations between policies. A requirement on a policy
could specify (types of) access requests that should (not) be granted by the pol-
icy. An updated policy being compared with the original to ensure the update
is ‘safe’ is an example of a requirement on the relation between policies. Here
‘safe’ could be expressed in being as permissive/restrictive as another policy as
is done in policy refinement [5] and subsumption [13]. Despite a large variety
in security properties that one may need to check, existing policy analysis tools
often support only a restricted set of properties due to the (lack of) expressive-
ness of the formalization employed by the tool and the capabilities offered by
the underlying reasoner.

Advances in propositional satisfiability (SAT) research [11] make SAT solvers
an attractive underlying reasoner in policy analysis [13]. SAT allows efficient rea-
soning about propositional logic formula and many access control policies and
security properties can be naturally modeled in propositional logic. However,
SAT solvers do not natively support reasoning on predicates over non-Boolean
variables and functions which frequently appear in access control policies and,
in particular, in XACML policies. For instance, SAT does not allow a straight-
forward reasoning on temporal constraints such as request -time > 13:20, which
can play an important role in the correctness of a policy and thus in the security
of the system. Such non-Boolean expressions are usually left uninterpreted [13]
which restricts analysis capabilities. Alternatives that support fine-grained pol-
icy analysis can lead to excessively large encodings of the policy. The analyst is
forced to choose a trade-off between performance and accuracy by introducing
bounds on the domains.

In this paper, we consider SAT modulo theories (SMT) [6] as the underlying
reasoning method for the analysis of XACML policies. SMT enables the use of
theories, such as linear arithmetic and equality, to reason about the satisfiability
of first order formulas. SMT is a natural extension to SAT in which SMT solvers
employ tailored reasoners when solving non-Boolean predicates in the input for-
mula. The use of SMT makes it possible to perform a more fine-grained analysis
than existing SAT-based policy analysis tools allow.

The contributions of this paper are thus as follows:

– A novel policy analysis framework which makes it possible to verify access
control policies against a large range of security properties.

– A fine-grained analysis of access control policies by performing reasoning on
non-Boolean predicates, e.g. arithmetic functions on numeric attributes.

– A prototype implementation of the framework and its extensive evaluation
using a number of well-known security properties taken from the literature.

The remainder of the paper provides an overview of XACML and SMT in Sec-
tion 2, and an encoding of XACML policies in SMT in Section 3. Our analysis
framework that uses this encoding for policy analysis is given in Section 4. Sec-
tion 5 presents a prototype of our framework with experimental results. Section 6
discusses related work, and Section 7 provides conclusions.

Analysis of XACML Policies with SMT 117

2 Preliminaries

In this section we shortly recall key points of XACML and SMT.

2.1 XACML

XACML [20] is an OASIS standard for the specification of access control policies.
It provides an attribute-based language that allows the specification of composite
policies. In this work, we focus on the core specification of XACML v3 [20]
(without obligations).

Three policy elements are provided by XACML: policy sets, policies and rules.
A policy set consists of policy sets and policies; policies in turn consist of rules.
If policy element p1 is nested in policy element p2 we say that p1 is a child policy
element of p2 and that p2 is the parent policy element of p1. Each policy element
has a (possibly empty) target which defines (restricts) the applicability of the
policy element in terms of attributes characterizing the subject, the resource,
the action to be performed on the resource, and the environment. Intuitively,
the target identifies the set of access requests that the policy element applies to.
In addition, rules specify an effect element that defines whether the requested
actions should be allowed (Permit) or denied (Deny), and can be associated
with conditions to further restrict their applicability.

If an access request matches both the target and conditions of a rule, the
rule is applicable to the request and yields the decision specified by its effect
element. Otherwise, the rule is not applicable, and a NotApplicable decision is
returned. If an error occurs during evaluation, an Indeterminate decision is re-
turned. XACML v3 also introduces an extended set of Indeterminate values
to allow a fine-grained combination of decisions: Indeterminate{P}, Indetermi-
nate{D} and Indeterminate{PD}. Intuitively, these Indeterminate decisions in-
dicate the evaluation result of a policy element if the error not occurred.

To combine decisions obtained from the evaluation of different applicable pol-
icy elements, XACML provides a number of combining algorithms [20]: permit-
overrides, deny-overrides, deny-unless-permit, permit-unless-deny, first-applicable
and only-one-applicable.1 Intuitively, these algorithms define procedures to eval-
uate composite policies based on the order of the policy elements and priorities
between decisions.

Next we present a sample XACML policy in a concise form that we will use
as a running example through the paper.

Example 1. A user is allowed to create an object of type “transaction” only if
his credit balance (credit) is higher than the value of the transaction itself (value)
and banking costs (cost). Transactions can only be created during working days
(ı.e., Monday, Tuesday, Wednesday, Thursday, Friday) within the time interval

1 Combining algorithms permit-overrides and deny-overrides are defined over the Inde-
terminate extended set, while the other algorithms are defined over a single Inde-
terminate decision value. Combining algorithm only-one-applicable can only be used
to combine policy sets and policies.

118 F. Turkmen et al.

08:00-18:00. One way to model this policy is to represent (the negation of) these
constraints as Deny rules and then to combine the resulting rules using deny-
overrides (dov):

p[dov] : resource-type = “transaction” ∧ action-id = “create”
r1[Deny] : value+ cost > credit
r2[Deny] : current-day /∈ {Mo, Tu,We, Th, Fr}∨

current-time < 08:00 ∨ current-time > 18:00
r3[Permit] : true

where true is used to indicate that the target of the policy element matches every
access request. We assume that attributes value, cost, credit, current-time and
current-day are further constrained with function one-and-only so that a policy
element returns Indeterminate if multiple values are provided for them.

2.2 Satisfiability Modulo Theories

SMT [6] is a generalization of SAT in which Boolean variables can be replaced
by constraints from a variety of theories. To specify SMT formulas, we follow
an extended version of the SMT-LIB (v2) standard (http://www.smtlib.org)
which is based on many-sorted first order logic. In the remainder, we assume
the usual syntactic (e.g., sort, constant, predicate and function symbols, terms,
atoms, literals, Boolean connectives, quantifiers, and formulas) and semantic
(e.g., structure, satisfaction, model, and validity) notions of many-sorted first
order logic; see [9] for formal definitions.

A theory T consists of a signature and a class of models. Intuitively, the
signature fixes the vocabulary to build formulas and the class of models gives
the meaning of the symbols in the vocabulary. As an example, consider the
theory of an enumerated data-type: the signature consists of a single sort symbol
and n constants corresponding to the elements in the enumeration; the class of
models contains all structures interpreting the sort symbol as a set of cardinality
n. For Linear Arithmetic over the Integers (LAI), the signature consists of the
numerals (corresponding to the integers), binary addition, and the usual ordering
relations; the class of models contains the standard model of the integers in
which only linear constraints are considered. For the theory of uninterpreted
functions, the signature consists of a finite set of symbols and the equality sign;
the class of models contains all those structures interpreting the equality sign
as a congruence relation and the other symbols in the signature as arbitrary
constants, functions, or relations.

A formula ϕ is T -satisfiable (or satisfiable modulo T) iff there exists a structure
M in the class of models of T and a valuation φ (i.e., a mapping from the
variables that are not in the scope of a quantifier in the formula to the elements
in the domains of M) satisfying ϕ (in symbols, M, φ |= ϕ). A formula ϕ is
T -valid (or valid modulo T) iff for every structure M in the class of models of
T and every valuation φ, we have that M, φ |= ϕ. Notice that a formula ϕ is
T -valid iff the negation of ϕ (i.e., ¬ϕ) is T -unsatisfiable.

http://www.smtlib.org

Analysis of XACML Policies with SMT 119

Checking the satisfiability of conjunctions of literals (i.e., atoms or their nega-
tions) modulo certain theories – e.g., the theory of uninterpreted functions, the-
ories of enumerated data-types, and Linear Arithmetic over the Integers – is
well-known to be decidable [6]. These results imply the decidability of checking
the satisfiability of quantifier-free formulas modulo the same theories. This is so
as it is always possible to transform arbitrary Boolean combinations of atoms into
disjunctive normal form (DNF), i.e. in a disjunction of conjunctions of literals.
Unfortunately, the transformation to DNF may be computationally expensive
and generate an exponentially larger formula [9]. For this reason, even if checking
the satisfiability of conjunctions of literals modulo certain theories is polynomial
(as it is the case for the theory of uninterpreted functions), checking the satis-
fiability of quantifier-free formulas modulo the same theories becomes NP-hard.
While these theoretical limitations are unavoidable, modern SMT solvers have
developed a wealth of heuristics to scale and handle very large formulas with ar-
bitrary Boolean structures. The interested reader is pointed to [6] for a thorough
introduction.

The situation is further complicated by two possible sources of problems.
First, several verification problems (such as the XACML policy analysis prob-
lems considered in this paper) require to consider more than one theory to model
various aspects of the situation under scrutiny. Under suitable assumption on
the component theories, it is possible to build theory solvers capable of check-
ing the satisfiability of conjunctions of literals in combinations of theories by
modularly re-using the theory solvers of the component theories. However, the
complexity of checking the satisfiability of conjunctions of literals in the com-
bination can be much higher than that of modulo the individual theories. For
instance, there exists a combination of two theories with polynomial satisfiabil-
ity problem whose combination becomes NP-complete [22]. The second source
of problems is the presence of quantifiers in the proof obligations generated by
certain verification tools (as it is the case of some of the policy analysis problems
considered in this work). In fact, the decidability of quantifier-free formulas does
not extend to quantified formulas. For instance, checking the satisfiability of
quantified formulas modulo the theory of uninterpreted functions is undecidable
since one can encode the satisfiability problem for arbitrary first-order formulas
whose undecidability is well-known [9]. Despite this and other negative results,
several efforts have been put in identifying classes of quantified formulas whose
satisfiability is decidable by integrating instantiation or quantifier-elimination
procedures in SMT solvers; see, e.g., [6] for pointers to relevant work.

3 Encoding XACML Policies in SMT

In this section, we first present our formalization of XACML policies that allows
us to represent policies in terms of predicates. We then show how the obtained
predicates can be used to define SMT formulas.

120 F. Turkmen et al.

3.1 XACML Formalization

An access control schema 〈Att,Dom〉 defines the vocabulary used for specify-
ing access control policies. Here Att is a set of attributes a1, . . . , an, Dom gives
the corresponding attribute domains Doma1 , . . . , Doman and we refer to set
2Doma1 × . . . × 2Doman as the policy space specified within the schema. The
elements of the policy space are called attribute assignments. An attribute as-
signment maps attributes to a (possibly empty) set of values in their domains. An
access request 〈a1 = v1i , . . . , an = vnk

〉 (with v1i ∈ Doma1 , . . . , vnk
∈ Doman)

specifies an attribute assignment, provided the values for those attributes are not
assigned the empty set (multiple attribute/value pairs with the same attribute
indicate multiple values are assigned to that attribute). Hereafter, R denotes the
set of all possible access requests, i.e. the policy space.

Each policy element in XACML has a target that specifies applicability con-
straints in terms of attribute assignments. Applicability constraints are used
to divide the policy space in three disjoint sub-spaces: the Applicable space
ASA, the Indeterminate space ASIN , and the NotApplicable space ASNA. These
sub-spaces respectively represent access requests for which the policy’s target
matches the request, checking whether the target matches the request produces
an error, and the target does not match the request. We represent the appli-
cability space of a policy element as 〈ASA, ASIN 〉 with an access request req
in the set ASNA (in symbols, req ∈ ASNA) iff req /∈ ASA ∪ ASIN . An access
request is evaluated against a policy element only if it matches the target of
policy element’s parent. Based on this observation, we flatten a XACML policy
by propagating its applicability constraints in a top-down fashion from the root
policy element to rules.

Definition 1. Let p be a policy where 〈AST
A , AS

T
IN 〉 is the applicability space

induced by its target. The applicability space of p is inductively given by:

〈ASp
A, AS

p
IN 〉 =

{
〈AST

A, AS
T
IN 〉 if p is a root policy

〈AST
A ∩ ASq

A, (AS
T
IN ∩ ASq

A) ∪ASq
IN 〉 if q is the parent of p

For the root policy (i.e., the policy that does not have a parent policy element),
the applicability space is that induced by its target. For policies that do have
a parent the applicability space of the parent is also taken into account so the
parents applicability is iteratively propagated to all its child policies. Thus, a rule
has an applicability space which is determined by the applicability constraints
in its target and by the applicability constraints in the target of all its ancestor
policy elements. Note that, as for any target AST

A and AST
IN are disjoint, a

straightforward inductive arguments shows that ASp
A and ASp

IN are also disjoint.

Example 2. Consider the policy in Example 1. Below we represent the appli-
cability constraints aci defined from the target of every policy element:

Analysis of XACML Policies with SMT 121

ac0 : “transaction” ∈ resource-type
ac1 : “create” ∈ action-id
ac2 :

∧
d∈{Mo,Tu,We,Th,Fr} d /∈ current-day

ac3 : ∀v ∈ current-time v > 18:00
ac4 : ∀v ∈ current-time v < 8:00
ac5 : ∀v1 ∈ credit, v2 ∈ cost, v3 ∈ value (v1 < v2 + v3)
ac6, ..., ac10 : att = ∅ ∨ ∃v1, v2 ∈ att.(v1 �= v2 ∧ v1 ∈ att ∧ v2 ∈ att)

where att is current-day, current-time, credit, cost, and value in ac6, ac7, ac8,
ac9, and ac10, respectively. Constraints ac6, ..., ac10 address Indeterminate cases
by requiring att to be either empty or to contain at least two distinct elements
(denoted by v1 and v2). The applicability space induced by the target of rule
ri, 〈ASTi

A , ASTi

IN 〉, can be represented as follows (for the sake of simplicity, we
represent sets of access requests as the applicability constraints that render them):

T1 : 〈ac5 ∩ (ac8 ∪ ac9 ∪ ac10), ac8 ∪ ac9 ∪ ac10〉
T2 : 〈(ac2 ∪ ac3 ∪ ac4) ∩ (ac6 ∪ ac7), ac6 ∪ ac7〉
T3 : 〈R, ∅〉
Policy p has applicability space 〈ac0 ∩ ac1, ∅〉; this space has to be propagated to
rules. Thus, the applicability space 〈ASri

A , ASri
IN 〉 of rule ri is:

r1 : 〈ac0 ∩ ac1 ∩ ac5 ∩ (ac8 ∪ ac9 ∪ ac10), (ac8 ∪ ac9 ∪ ac10) ∩ (ac0 ∩ ac1)〉
r2 : 〈ac0 ∩ ac1 ∩ (ac2 ∪ ac3 ∪ ac4) ∩ (ac6 ∪ ac7), (ac6 ∪ ac7) ∩ (ac0 ∩ ac1)〉
r3 : 〈ac0 ∩ ac1, ∅〉

Based on the possible decisions in XACML, the policy space can be parti-
tioned into four disjoint subsets DSP , DSD , DS IN and DSNA by using rule
effects and applicability constraints. These subsets represent the classes of ac-
cess requests that evaluate to same access decision: Permit, Deny, Indetermi-
nate and NotApplicable, respectively. We denote the decision space of a policy
as 〈DSP ,DSD ,DS IN 〉. If an access request does not fall in DSP ∪DSD ∪DS IN ,
then it falls in DSNA. The decision space of a rule can be derived from its effect
and applicability constraints.

Definition 2. Let 〈ASA, ASIN 〉 be the applicability space of a rule r and Effect
its effect. The decision space of r, denoted 〈DSP ,DSD ,DS IN 〉, is

DSP =

{
ASA if Effect = Permit
∅ otherwise

DSD =

{
ASA if Effect = Deny
∅ otherwise

DS IN = ASIN

In order to obtain the decision space of the root policy element, the decision
space of child policy elements have to be recursively combined in a bottom-up
fashion according to specified combining algorithms. As noted in Section 2.1
some combining algorithms use an extended decision set in which the Inde-
terminate space is subdivided into three parts. For these we extend the de-
cision space accordingly. Here, we show the decision space of a policy with
respect to deny-overrides as an example. The other combining algorithms can
be defined in a similar way. Let 〈DSp1

P ,DSp1

D ,DSp1

IN (P),DS p1

IN (D),DS p1

IN (PD)〉 and

122 F. Turkmen et al.

〈DSp2

P ,DSp2

D ,DSp2

IN (P),DSp2

IN (D),DSp2

IN (PD)〉 be the (extended) decision spaces of

policy elements p1 and p2, respectively. We are interested in the decision space
〈DSp

P ,DS p
D ,DSp

IN 〉 of a policy p which combines policy elements p1 and p2 using
deny-overrides. The decision spaces induced by deny-overrides can be defined as
follows:
DSp

D = DS p1

D ∪DSp2

D

DSp
IN (PD) =

(
(DS p1

IN (PD) ∪DSp2

IN (PD)) ∪
(
DSp1

IN (D) ∩ (DS p2

IN (P) ∪DS p2

P)
)

∪
(
DS p2

IN (D) ∩ (DSp1

IN (P) ∪DSp1

P)
))

\DS p
D

DSp
IN (D) = (DSp1

IN (D) ∪DS p2

IN (D)) \ (DS p
D ∪DSp

IN (PD))

DSp
P = (DSp1

P ∪DS p2

P) \ (DS p
D ∪DSp

IN (PD) ∪DSp
IN (D))

DSp
IN (P) = (DS p1

IN (P) ∪DSp2

IN (P)) \ (DS p
D ∪DSp

IN (PD) ∪DS p
IN (D) ∪DSp

P)

Intuitively, the representation above defines the priorities between decision
spaces. The Deny space of the parent policy element is the union of the Deny
space of child policy elements, i.e. the former evaluates to Deny if at least one
child policy element evaluates to Deny. Then, Indeterminate{PD} has prior-
ity over Indeterminate{D}; in turn Indeterminate{D} has priority over Per-
mit, which has priority over Indeterminate{P}. The overall Indeterminate space
can be obtained as the union of the three Indeterminate spaces, i.e. DSp

IN =
DSp

IN (PD) ∪DS p
IN (D) ∪DSp

IN (P).

Example 3. Consider the policy in Example 1 and the applicability space of the
rules forming it in Example 2. Decision space of rule ri 〈DS ri

P ,DS ri
D ,DS ri

IN 〉 is
r1 : 〈∅, ac0 ∩ ac1 ∩ ac5 ∩ (ac8 ∪ ac9 ∪ ac10), (ac8 ∪ ac9 ∪ ac10) ∩ (ac0 ∩ ac1)〉
r2 : 〈∅, ac0 ∩ ac1 ∩ (ac2 ∪ ac3 ∪ ac4) ∩ (ac6 ∪ ac7), (ac6 ∪ ac7) ∩ (ac0 ∩ ac1)〉
r3 : 〈ac0 ∩ ac1, ∅, ∅〉
The decision space of the overall policy 〈DSP ,DSD ,DS IN 〉 can be obtained by

combining the decision space of the rules as shown above (by derivation order):
DSp

D = ac0 ∩ ac1∩((
ac5 ∩ (ac8 ∪ ac9 ∪ ac10)

)
∪
(
(ac2 ∪ ac3 ∪ ac4) ∩ (ac6 ∪ ac7)

))
DSp

IN =
(
ac0 ∩ ac1 ∩ (ac8 ∪ ac9 ∪ ac10 ∪ ac6 ∪ ac7)

)
\DS p

D

DS p
P = (ac0 ∩ ac1) \ (DSp

D ∪DSp
IN)

where notation S is used to denote the complement of set S.

3.2 Policies as SMT Formulas

The expressions presented in the previous section can be straightforwardly trans-
lated to many-sorted first-order formulas over the attributes in Att and a theory
T specifying the algebraic structures of the values of Att in Dom. This allows
us to encode the decision space of a policy using SMT formulas.

Definition 3. Given an XACML policy p and a background theory T , the rep-
resentation of p in SMT is a tuple 〈FP ,FD,FIN 〉 where FP , FD and FIN are
many sorted first-order formulas encoding Permit, Deny, Indeterminate decision
spaces of p respectively with some of their terms interpreted in T .

Analysis of XACML Policies with SMT 123

When talking about deciding satisfiability of a policy p in SMT, we refer to T -
satisfiability of the formulas FP , FD and FIN . Since decision spaces DSP , DSD

and DS IN are pair-wise disjoint, their satisfiability is mutually exclusive.
The background theories needed for the analysis of a policy are determined

from the policy’s applicability constraints. In order to do this, we map classes of
common XACML functions to certain background theories that can be used to
encode the applicability constraints constructed from them.

Most of the logical functions of XACML (i.e., or, and, not) do not require
any specific background theory. Some applicability constraints involving equal-
ity predicates of attributes with finite domains can be modeled by the theory
of enumerated data types in which attribute values are represented as 0-ary
function symbols within an appropriate signature Σ. Other constraints involv-
ing equality predicates require the theory of equality with uninterpreted func-
tions. This theory does not impose any constraint on the way the symbols in
the signature are interpreted. Thus, the predicates that are not supported by
any theory can be left uninterpreted and analyzed using the theory of “uninter-
preted functions”. The theory of equality with uninterpreted functions can be
used to support XACML functions for which a dedicated theory is not available
such as XPath-based functions. Constraints defined using arithmetic and nu-
meric comparison functions (e.g., ac3, . . . , ac5 in Example 2) require the theory
of linear arithmetic. Applicability constraints defined over strings, bag and sets
may require dedicated theories. For instance, constraints defined using compar-
ison functions over strings and string conversion functions can be modeled with
the theory of strings [26]; constraints defined over bag and set functions (e.g.,
ac6, . . . , ac10) can be modeled with the theories of arrays [15] and cardinality
constraints on sets [24].

Finally, observe that a background theory can be a combination of different
theories as it is the case of Example 2 in which the cost of a transaction depends
on its value. This dependence can be represented by a function f which is left
uninterpreted since we are not interested in specifying exactly how the cost
must be derived from the value of the transaction. By abstracting the actual
details of f , the applicability constraint ac5 can be represented as (credit <
f(value)+ value) and interpreted within a combined background theory of linear
arithmetic and uninterpreted functions.

4 XACML Policy Analysis

The previous section describes an encoding of XACML policies as SMT formulas.
In this section we use this encoding to represent policies analysis problems, i.e. for
a collection of policies checking various properties expressed in so called queries.
We first introduce the query language and then give example query formulas for
different policy properties from the literature.

Definition 4. Let 〈Att,Dom〉 be the access control scheme and T a background
theory with signature Σ. A policy analysis problem is a tuple 〈Q, (p1, . . . , pn)〉

124 F. Turkmen et al.

where p1, . . . , pn are policies expressed in SMT with respect to T and Q is a
(policy) query. A query Q is a formula of the form

Q = Pi | Di | IN i | g(t1, . . . , tk) | ¬Q | Q1 ∨Q2 | . . .
| (∀x : σ Q) | (∃x : σ Q) | νx.Q | Q〈a1 = v1j , . . . , an = vnk

〉

where Pi, Di and IN i (for i = 1, . . . , n) are new symbols representing the Permit,
Deny and Indeterminate spaces of policy pi (they thus represent Fpi

P , Fpi

D and
Fpi

IN respectively, see also query semantics below), g is a Σ-atom over terms
t1, . . . , tk such that each term t is either a variable denoting attributes from Att
or built using function symbols in Σ, and logical operators are defined as usual
where Q1 and Q2 are also queries. In quantified formulas, i.e. (∀x : σ Q) and
(∃x : σ Q), σ ranges over sort symbols in the theory T . νx.Q represents the
restriction of a variable x in Q (i.e., νx.Q ≡ Q[x/y] with y a fresh variable),
Q〈a1 = v1j , . . . , an = vnk

〉 represents the instantiation of a policy with a request
with v1j ∈ Doma1 , . . . , vnk

∈ Doman .

Note that construct νx.Q is used to restrict the scope of the substitution of a
variable x to a subformula Q of the query. This construct allows us to encode
properties comparing a number of policies, in which some policies are instanti-
ated with a request while other policies are instantiated with a different request
(see below for examples of such properties). Q〈a1 = v1j , . . . , an = vnk

〉 is logi-
cally equivalent to Q ∧ v1j ∈ a1 ∧ . . . ∧ vnk

∈ an.
The basic query Pi encodes (inclusion in) the Permit space of policy pi; it is

satisfiable if any request is permitted by pi. Similarly, Di and IN i represent the
Deny and Indeterminate spaces of pi respectively. Constraints such as Alice ∈
subject-id, ∀v ∈ current-time v < 18:00 etc., are used to instantiate the subject or
the time of the query. The predicates can also capture relations between different
policies (see examples below).

Example 4. Let p1, p2 be two policies, and 〈P1, D1, IN 1〉 and 〈P2, D2, IN 2〉
their SMT representation, respectively. Below we present some example queries.

– (P1 → P2): any request permitted by p1 is also permitted by p2.
– ν subject-id.(P1〈subject-id = Alice〉) ∧ ν subject-id.(D1〈subject-id = Bob〉):

some request is permitted by p1 for Alice but denied for Bob.
– (P1 ∧D2)〈subject-id = Alice〉: some request of Alice is permitted by p1 but

denied by p2.
– P1〈subject-id = Alice, resource-type = transaction, action-id = create〉:

policy p1 allows Alice to create a transaction.

Definition 5. Let 〈Q, (p1, . . . , pn)〉 be a policy analysis problem, T a background
theory with signature Σ, and M a structure for signature Σ. Let 〈Fpi

P ,Fpi

D ,Fpi

IN 〉
be the encoding of policy pi in SMT with some or all terms interpreted in T . We
say that 〈Q, (p1, . . . , pn)〉 is satisfiable with respect to T if the formula

Q ∧
n∧

i=1

(Pi ↔ Fpi

P) ∧ (Di ↔ Fpi

D) ∧ (IN i ↔ Fpi

IN)

is T -satisfiable. Otherwise, we say that it is unsatisfiable.

Analysis of XACML Policies with SMT 125

In the remainder of this section, we demonstrate that our framework can
model various types of policy properties proposed in the literature.

Policy Refinement and Subsumption Organizations often need to update their
security policies to comply with new regulations or to adapt changes in their
business model. Nonetheless, they might have to ensure that the new policies
preserve (refine) the intention of the original policies. Different definitions of
policy refinement have been proposed in the literature. Backes et al. [5] propose
a notion of policy refinement based on the idea that “one policy refines another
if using the first policy automatically also fulfills the second policy”. Intuitively,
a policy refines another policy if whenever the latter returns Permit (or Deny)
the first policy returns the same decision. This can be formalized in our frame-
work as follows. Let p1, p2 be two policies with decision space 〈P1, D1, IN 1〉 and
〈P2, D2, IN 2〉 respectively. Policy p2 is a refinement of p1 iff the following formula
is T -valid

(P1 → P2) ∧ (D1 → D2) (1)

Hughes and Bultan [13] present a stronger notion of policy refinement called
policy subsumption. In addition to constraining Permit and Deny spaces as in
refinement, subsumption also imposes constraints on the Indeterminate space.
Formally, policy p1 subsumes policy p2 iff the following formula is T -valid

(P1 → P2) ∧ (D1 → D2) ∧ (IN 1 → IN 2) (2)

Note that our framework is general enough to express other notions of policy
refinement, for instance imposing constraints only on the Permit space or on the
Deny space. In the next example, we demonstrate the notion of policy refinement
presented in [5] with respect to background theory linear arithmetic.

Example 5. Consider the XACML policy in Example 1. Suppose that the policy
is updated by omitting the cost of the transaction in rule r1:

r′1[Deny] : value > credit

We want to check whether the new policy is a refinement of the original policy.
It is easy to verify that (1) does not hold if the cost of the transaction is higher
than the credit minus the value of the service. Therefore, the new policy is not a
refinement of the original policy.

Change-impact Change-impact analysis [10] aims to analyze the impact of
changes to policies. Intuitively, change-impact analysis is the counterpart of
policy refinement, in which the goal is to extract the differences between two
policies. Differently from policy refinement, changes of the NotApplicable space
should also be considered in change-impact analysis. Let p1, p2 be two policies
with decision space 〈P1, D1, IN 1〉 and 〈P2, D2, IN 2〉 respectively. We are inter-
ested in finding the access requests for which the decisions returned by p1 and

126 F. Turkmen et al.

p2 are different. This policy analysis problem consists of finding access requests
that satisfy the following formula:

(P1 → ¬P2) ∨ (D1 → ¬D2) ∨ (IN 1 → ¬IN 2) (3)

∨(¬(P1 ∨D1 ∨ IN 1) → (P2 ∨D2 ∨ IN 2))

where ¬(P1 ∨D1 ∨ IN 1) represents the NotApplicable space.

Attribute Hiding An attribute hiding attack is a situation in which a user is able
to obtain a more favorable authorization decision by hiding some of her attributes
[8]. Attribute hiding attack is a threat exploiting the non-monotonicity of access
control systems such as XACML. Differently from the previous policy properties
that can be expressed solely in terms of Permit, Deny and Indeterminate spaces
of the policies, attribute hiding is about changing the request: a request that
is previously denied is permitted by hiding some attributes or attribute-value
pairs. In particular, we call partial attribute hiding attack the situation in which
a user hides a single attribute-value pair. Let req = 〈a1 = v1i , . . . , an = vnk

〉 with
v1i ∈ Doma1 , . . . , vnk

∈ Doman be a request denied by a policy p (i.e., a solution
of Dp), and ajm = vjm an attribute-value pair occurring in req (1 ≤ j ≤ n)
and vjm ∈ Domaj . A policy is vulnerable to partial attribute hiding attack if
the request obtained by suppressing aj = vjm from req is permitted by p (i.e., a
solution of Pp). The property representing the absence of partial attribute hiding
attack can be encoded as follows:

νa.(Dp〈a = v〉) → ¬Pp (4)

where we use restriction to ensure that the request is only applied to the left
part of the formula. A more generalized version of attribute hiding attack is
general attribute hiding where a user completely suppresses information about
one attribute. The property representing the absence of general attribute hiding
attack can be encoded as follows:

νa.(Dp〈a = v1, . . . , a = vn〉) → ¬Pp (5)

We use an example policy from [8] to discuss the analysis of attribute hiding.

Example 6. Consider two competing companies, A and B. To protect confiden-
tial information from competitors, company A defines the following policy:

p[dov] : true

r1[Deny] : confidential = true ∧ employer = B

r2[Permit] : true

The first rule (r1) of the policy denies employees of company B to access con-
fidential information while the second rule (r2) grants access to every requests.

Analysis of XACML Policies with SMT 127

The two rules are combined using deny-overrides combining algorithm (dov).
Now consider the following access requests:

req1 =〈employer = A, confidential = true〉
req2 =〈employer = A, employer = B, confidential = true〉
req3 =〈confidential = true〉

Rule r1 is only applicable to request req2 and thus the request is denied. Rule r2 is
applicable to the remaining requests and thus access is granted for requests req1
and req3. However, if the subject can hide some information from the request,
for instance, reducing req2 to req1 by suppressing element employer = B from
the request (partial attribute hiding) or to req3 by suppressing attribute employer
from the request (general attribute hiding), then she would be allowed to access
confidential information leading to a violation of the conflict of interest require-
ment. Note that we assume that attribute confidential is under the control of the
system and cannot be hidden by the user.

Scenario-finding Scenario finding queries [10,19] aim to find attribute assign-
ments that represent scenarios in which a sought behavior occurs. They are es-
pecially useful to obtain request instances of certain decision types (e.g., permit)
which are otherwise difficult to obtain manually. Examples of scenario finding
queries include checking whether a policy ever permits (some) users to perform
certain actions or denies certain actions under given circumstances. Scenario
finding can also be used to check whether a policy is compliant with well-known
security principles. For instance, a XACML policy implementing role-based ac-
cess control can be checked for the separation of duty principle or a XACML
policy implementing Chinese Wall policy can be checked if it correctly imple-
ments conflict of interest classes.

Scenario finding does not have a fixed form of encoding as the previous prop-
erties since it is formulated by the user according to selected decision space.

Example 7. In the context of Example 2 a policy author may want to check
whether the policy permits any access request before 18:00 on Saturday. We can
encode this query as follows:

P ∧ current-day = Saturday ∧ time < 18:00

Many types of scenario finding queries can be formulated and analyzed within
existing XACML analysis tools. However, most of these tools leave non-Boolean
functions (i.e., Σ-terms of form f(t1, . . . , tn)) uninterpreted. In contrast, SMT
enables to reason on those attributes using a suitable underlying background
theory. For instance, an SMT solver can find an assignment for an attribute
“age” that satisfies a Linear Arithmetic constraint age < 18.

5 Evaluation

In this section we evaluate our SMT-based policy analysis framework by means
of a prototype implementation. In the evaluation we use two sets of experiments,

128 F. Turkmen et al.

one comparing our SMT-based solution to SAT-based techniques and one showing
our prototype can be used on realistic policies. Our experimental testbed consists
of a 64-bit (virtual) machine with 16GB of RAM and 3.40GHz quad-core CPU
running Ubuntu.

5.1 Prototype Implementation

To support the analysis of XACML policies described in the previous section, we
have implemented X2S [25], a formal policy analysis tool. X2S employs Z3 [18],
an SMT-LIB v2 compliant tool that supports efficient reasoning in a wide range
of background theories, as the underlying solver. X2S accepts both XACML v2
and v3 policies and supports a large fraction of standard XACML functions.
It consists of two main components. The first component, the SMT Translator,
first translates XACML policies provided by the user into SMT formulas using
the encoding presented in Section 3. Next the user is prompted to enter a query
expressed in the language defined in Section 4 which is also translated and added
to SMT specification. The second component, the Report Generator, presents the
results of the analysis by providing an interface to the SMT solver.

Our prototype can enumerate models as required for certain queries such as
change impact. We perform this by incrementally adding a new constraint rep-
resenting the negation of the obtained model to the original formula. However,
there may be infinitely many models satisfying a formula with certain expression
types. To help alleviate this problem, we try to avoid models that do not “signif-
icantly” differ from those already considered with respect attribute assignments.
In particular, we do this in the treatment of arithmetic expressions by fixing the
assignments of (arithmetic) variables in a model to the first values found. For
instance, if the first solution of the arithmetic expression att1 < att2 assigns 4
and 5 to the attributes respectively, then we fix these assignments by adding
new (conjunctive) constraints att1 = 4 and att2 = 5 to the original formula.

5.2 Experiments 1: SAT vs. SMT

Consider a user wanting to validate and possibly update a set of policies collected
over time and from different contributors. For example, a building manager wants
to verify the policy governing the access to a certain building in which right to
enter depend on the current time and date and/or membership of a group; or a
bank manager wants to verify the bank policy for transfers which depend on the
balance of accounts, size of the transfer, etc. The main advantage of our SMT
approach over a SAT based solution is that it allows direct reasoning with non-
Boolean values. For example, one can use the background theories for basic sets
(i.e., the theory of arrays) and linear arithmetic (LAI). To perform this analysis
in SAT one has to encode everything in Boolean terms. With some limitations
we can encode LAI constraints in SAT using order encoding [21] where each
expression of the form x ≤ c is represented by a different Boolean variable.
Membership expressions in the set theory can be encoded in SAT using a similar

Analysis of XACML Policies with SMT 129

approach where the relation between a variable and a value from its domain is
represented with a different Boolean variable for each value.

Ideally, the user’s validation tool would be able to give real-time feedback on
their edits, or at the very least, respond promptly to a validation query. When
analyzing with SAT, users needs to find a suitable trade-off between the precision
and the efficiency as well as the scalability of the analysis; for example instead
of the time only distinguishing ‘morning’ from ‘afternoon’ or hour of the day.
Choosing what granularity is suitable for what attribute is a difficult, laborious
and error-prone task requiring the user to closely investigate all constraints. Too
low granularity may lead to missing errors in the policies. Yet, the more fine
grained the analysis is, the larger the SAT encoding. Our experiments below
confirm that increasing the granularity quickly become very costly performance
wise. Our SMT-based approach does not need to restrict the granularity.

To illustrate the effect of granularity on the analysis we distinguish course
grained analysis using a ‘small’ domain (e.g., morning/afternoon for time, and
day of the week for date), an analysis with some detail through a ‘medium’ (M)
size domain (e.g., minutes in an hour, days in a month) and a detailed analysis
using a ‘large’ (L) domain (e.g., minute in a day, day of a year). We analyze
policies and properties from the examples in Section 4. We check policy refine-
ment (PR), policy subsumption (PS), change-impact (CI) analysis, both partial
(P-AH) and global (G-AH) Attribute Hiding, and finally scenario finding (SF).
We analyze each with our prototype and three different SAT solvers; zchaff [17],
lingeling [7] and Z3 itself to obtain a fair comparison as certain solvers are opti-
mized for certain types of problems. We use size 10 to represent small domains,
100 for medium domains and 500 for large domains (they may need to be much
larger but this size already shows the clear advantage of our SMT solution). Note
that we aim at a comparison in orders of magnitude rather than an in-depth and
comprehensive performance analysis. For small domains all solutions are able to
complete the analysis quickly with limited resources; they are fast enough for
real-time feedback during editing. For the medium and large domains the results
are provided in Table 1. The first column specifies the property (P) analyzed.
The second column (Q) gives the class of formula used; finding a counter-example
(¬F) or a satisfying assignment (F). The other columns present the results in
terms of number of variables used in the encoding, memory allocation2 and re-
quired computation time for the SAT solvers with M(edium) and L(arge) domain
size, and SMT.

Compared to the number of many-sorted first order variables in SMT encod-
ing, the number of Boolean variables in SAT encoding is quite large due to the
mapping of non-Boolean domains to Boolean variables. For instance, the SMT
encoding of the policy query for verifying policy refinement requires 12 variables.
These variables are used to specify the attributes defined in the policy as well
as the Boolean variables representing one-and-only constraints on the arithmetic
variables (Example 1). In contrast, 591 Boolean variables are needed to encode
the same policy query in SAT when a medium size domain is considered. The

2 We used a memory profiler for measuring the memory usage.

130 F. Turkmen et al.

Table 1. Evaluation Results of Example Properties with SAT vs SMT Encoding

#Vars Memory(MB) Time(s)

SAT SMT Z3-SAT zchaff lingeling SMT Z3-SAT zchaff lingeling SMT

P Q M L M L M L M L M L M L M L

PR ¬F 591 2191 12 84 459 99 340 23 555 0.3 1.6 99.7 ∼0 3.3 20.5 >100 ∼0

PS ¬F 909 2509 12 303 240 377 1159 82 2054 0.3 3.9 6.1 ∼0 12.4 65.5 >100 ∼0

CI F 1409 3009 12 88 231 650 1087 133 1513 0.5 0.3 9.1 ∼0 19.1 36.5 45.5 ∼0

P-AH ¬F 24 15 3 0.1 0.1 0.1 0.1 ∼0 ∼0 0.3 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

G-AH ¬F 12 12 4 ∼0 ∼0 0.1 0.1 ∼0 ∼0 0.3 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

SF F 511 1718 12 13 328 92 409 14 356 0.3 ∼0 1.2 ∼0 13.4 0.2 7.3 ∼0

memory allocated by the SMT solver needed in analyzing the example policies
was always less than 1MB for all properties while SAT solver requires several
orders of magnitude more memory. The time necessary to prove (or disprove)
that the property holds was negligible (∼10ms) for all SMT cases. Analysis with
SAT solvers performs far worse with the growth of the domain size as can be
noted from the table. For instance, for scenario finding analysis with a large do-
main, the best performing SAT solver (Z3) took ∼1.2s which is several orders of
magnitude slower than the analysis with SMT (which took 7ms). The exception
is the case of attribute hiding analysis where the SAT solvers offer performance
similar to SMT. This is expected since our example policy for attribute hid-
ing does not include complicated predicates and the available predicates can be
easily represented in propositional logic. Note that in our experiments for the
case of change-impact analysis, we obtained only one model since we prune the
uninteresting assignments of arithmetic variables (i.e. value, credit and cost). Fi-
nally, we also observe a performance variation between different SAT solvers. We
believe this is due to the fact that certain solvers are better tailored to certain
types of problems.

In conclusion, even with these relatively simple policies, performance quickly
becomes impractical using SAT based solvers while the SMT approach could
even be used for real-time feedback while editing a policy. In the next section,
we test our approach with some more complex and realistic policies.

5.3 Experiments 2: Real-World Policies

In this second set of experiments, we analyze four realistic policies with our
prototype in order to obtain insights about its performance in real-world settings.
The policy GradeMan is a simplified version of the access control policy used to
regulate access to grades at Brown university and the Continue-a policy is used
to manage a conference management system. Both policies are from [10] and
consist mainly of string equality predicates. IN4STARS is an in-house policy
defined in the context of a project on intelligence interoperability. It contains
various user-defined functions that are used to determine the privileges of users
according to their clearance. All these three policies are XACML v2 policies.
Our final test policy, KMarket, is a sample policy to manage authorizations in

Analysis of XACML Policies with SMT 131

Table 2. Evaluation Results for Real-world Policies

Policy #PSet #Policy #Rule
Time(ms)

PR PS CI P-AH G-AH SF

IN4STARS 3 4 11 24 28 1717 7 7 10

KMarket 1 3 12 36 12 2525 13 12 10

GradeMan 11 5 5 40 30 2424 10 9 17

Continue-a 111 266 298 91 87 2929 33 21 43

an on-line trading application from [1]. It contains simple arithmetic operations
such as less-than and is written in XACML v3.

We performed policy refinement, subsumption and change-impact analysis by
modifying the value of a single, randomly chosen attribute in the original policy.
The number of models has been limited to 100 during change-impact analysis.
For scenario finding, we look for an assignment of attributes (i.e. model) that is
permitted by the input policy. Our findings are summarized in Table 2 in which
we report the characteristics of policies (e.g., the number of policy elements in
the XACML policy) and the time taken by our prototype to answer queries.

Analyzing the policies included in our experiments takes less than 100ms for
all properties except Change-impact which makes feedback during policy editing
feasible. Change-impact analysis, however, brings the time up to 3s as it requires
the enumeration of models in the SMT formula. Another important observation
in the experiments is the efficiency of dealing with expressions with non-Boolean
attributes; we have not observed a significant performance difference between
the analysis of KMarket which contains linear arithmetic expressions and Grade-
Man which consists of very simple expressions. Finally, the result of Continue-a
analysis (a policy with around 300 rules) indicates that the time needed for
analysis with SMT of larger policies increases but not necessary as quickly as
the policy grows. This result is not surprising since the analysis of a policy with
our approach not only depends on the size of the policy but also the type of
expressions contained in them.

We believe the experimental results of this and the previous section demon-
strate that our approach can be used in practice to analyze realistic policies at
a more fine-grained level than the one permitted by the use of SAT solvers with
no significant performance penalty.

6 Related Work

When XACML policies grow in number and size, or are updated to address new
security requirements, it is difficult to verify their correctness due to XACML’s
rich and verbose syntax. To assist policy authors in the analysis of XACML poli-
cies, several policy analysis tools have been proposed. One of the most promi-
nent tools for policy analysis is Margrave [10]. Margrave uses multi-terminal bi-
nary decision diagrams (MTBDDs) as the underlying representation of XACML

132 F. Turkmen et al.

policies. The nodes of an MTBDD represent Boolean variables encoding the
attribute-values pairs in the policy. The terminal nodes represent the possible
decisions (i.e., NotApplicable, Permit or Deny). Given an assignment of Boolean
values to the variables, a path from the root to a terminal node according to the
variable values indicates the result of the policy under that assignment. Mar-
grave uses MTBDDs to support two types of analysis: policy querying, which
analyzes access requests evaluated to a certain decision, and change-impact anal-
ysis, which is used to compare policies. Another policy analysis tool that employs
BDDs for the encoding of XACML policies is XAnalyzer [12]. XAnalyzer uses a
policy-based segmentation technique to detect and resolve policy anomalies such
as redundancy and conflicts. Compared to our approach, BDD-based approaches
allow the verification of XACML policies against a limited range of properties.
In addition, these approaches encode only a fragment of XACML with simple
constraints [13].

An alternative to Margrave, and in general to BDD-based approaches, is pre-
sented in [13] where policies and properties are encoded as propositional formulas
and analyzed using a SAT solver. However, SAT solvers cannot handle non-
Boolean variables; most XACML functions are thus left uninterpreted limiting
the capability of the analysis. EXAM [16] combines the use of SAT solvers and
MTBDD to reason on various policy properties. In particular, EXAM supports
three classes of queries: metadata (e.g., policy creation date), content (e.g., num-
ber of rules) and effect (e.g., evaluation of certain requests). Policies and queries
are expressed as Boolean formulas. These formulas are converted to MTBDDs
and then combined into a single MTBDD for analysis.

Other formalisms have also been used for the analysis of XACML policies. For
instance, Kolovski et al. [14] use description logic (DL) to formalize XACML poli-
cies and employs off-the-shelf DL reasoners for policy analysis. The use of DL
reasoners enables the analysis on a wide subset of XACML in a more expressive
manner but also hinders the performance. Ramli et al. [23] and Ahn et al. [2]
present a formulation of policy analysis problems similar to ours in answer set
programming (ASP). However, these approaches have drawbacks due to intrinsic
limitations of ASP. Unlike SMT, ASP does not support quantifiers, and cannot
easily express constraints such as Linear Arithmetic. Indeed, in ASP the ground-
ing (i.e., instantiation of variables with values) of Linear Arithmetic constraints
either yield very large number of clauses (integers) or is not supported (reals).

In summary, the approaches discussed above lack the inherent benefits of
SMT: either background theories are not supported so that the attributes in-
volved in most XACML functions cannot be analyzed at a finer level, or the
performance of analysis deteriorates very quickly.

While the use of SMT for the analysis of XACML policies is new to our knowl-
edge, there are few recent proposals that exploit SMT solvers for the analysis of
policies specified in different access control models. The work in [3] shares with
our approach the use of SMT solvers to support the analysis of polycies. The
main difference is in the input language: instead of using XACML, Arkoudas
et al. [3] adopts a sophisticated logical framework, which can handle XACML

Analysis of XACML Policies with SMT 133

policies (such as Continue) indirectly by translating them to expressions of the
logical framework to which the available analyses (such as those considered in
this paper) can be applied. In contrast, our technique generates proof obliga-
tions to be discharged by SMT solvers directly from XACML policies. Another
example of SMT techniques supporting the analysis of policies is [4] in which
SMT solvers are used to detect conflicts and redundancies in RBAC. Here, rules
specifying constraints on the assignment/activation of roles are encoded as SMT
formulas with certain background theories such as enumerated data types and
Linear Arithmetic over the reals/integers. Although these proposals show the
potentiality of SMT for policy analysis, the policy specifications considered in
such proposals are rather simple. In this work we make an additional step by
showing that SMT is able to deal with real world XACML policies.

7 Conclusions

In this paper, we presented an SMT-based analysis framework for policies speci-
fied in XACML. The use of SMT does not only enable wider coverage of XACML
compared to existing analysis tools but also presents significant performance
gains in terms of allocated memory and computational time. As demonstrated
in the paper, several security policy properties found in the literature can be
easily encoded and checked within our framework. In our prototype, we use
various background theories to encode a large fraction of XACML functions,
allowing a fine-grained analysis of XACML policies. SMT function symbols en-
coding XACML functions for which a specific background theory is not avail-
able (e.g., XPath-based and regular-expression-based functions) are left unin-
terpreted. With the development of new background theories, policy analysis
problems using those predicates can be represented and solved efficiently. Our
experiments show that our framework enables efficient policy analysis and can
be used in practice. As future work, we plan to extend the performance analysis
of our prototype against a larger set of real-world policies.

Acknowledgments. This work has been partially funded by the EDA project
IN4STARS2.0, the EU FP7 project AU2EU, the ARTEMIS project ACCUS,
and the Dutch national program COMMIT under the THeCS project.

References

1. Balana: Open source xacml 3.0 implementation (January 2013),
http://xacmlinfo.org/category/balana/

2. Ahn, G.J., Hu, H., Lee, J., Meng, Y.: Representing and reasoning about web access
control policies. In: COMPSAC, pp. 137–146 (2010)

3. Arkoudas, K., Chadha, R., Chiang, C.J.: Sophisticated access control via SMT and
logical frameworks. ACM TISSEC 16(4), 17 (2014)

4. Armando, A., Ranise, S.: Automated and efficient analysis of role-based access
control with attributes. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J.
(eds.) DBSec 2012. LNCS, vol. 7371, pp. 25–40. Springer, Heidelberg (2012)

http://xacmlinfo.org/category/balana/

134 F. Turkmen et al.

5. Backes, M., Karjoth, G., Bagga, W., Schunter, M.: Efficient comparison of enter-
prise privacy policies. In: SAC, pp. 375–382 (2004)

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2008)

7. Biere, A.: Lingeling essentials, A tutorial on design and implementation aspects of
the the SAT solver lingeling. In: POS, p. 88 (2014)

8. Crampton, J., Morisset, C.: PTaCL: A Language for Attribute-Based Access Con-
trol in Open Systems. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS,
vol. 7215, pp. 390–409. Springer, Heidelberg (2012)

9. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)
10. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and

change-impact analysis of access-control policies. In: ICSE, pp. 196–205 (2005)
11. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability Solvers. In: Hand-

book of Knowledge Representation, Foundations of Artificial Intelligence, vol. 3,
pp. 89–134. Elsevier (2008)

12. Hu, H., Ahn, G.J., Kulkarni, K.: Discovery and Resolution of Anomalies in Web
Access Control Policies. TDSC 10(6), 341–354 (2013)

13. Hughes, G., Bultan, T.: Automated verification of access control policies using a
SAT solver. STTT 10(6), 503–520 (2008)

14. Kolovski, V., Hendler, J.A., Parsia, B.: Analyzing web access control policies. In:
WWW, pp. 677–686 (2007)

15. Kröning, D., Weissenbacher, G.: A Proposal for a Theory of Finite Sets, Lists, and
Maps for the SMT-Lib Standard. In: Pro. International Workshop on Satisfiability
Modulo Theories (2009)

16. Lin, D., Rao, P., Bertino, E., Li, N., Lobo, J.: Exam: A comprehensive environment
for the analysis of access control policies. Int. J. Inf. Sec. 9(4), 253–273 (2010)

17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535 (2001)

18. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

19. Nelson, T.: First-order Models For Configuration Analysis. Ph.D. thesis, Worcester
Polytechnic Institute (2013)

20. OASIS XACML Technical Committee: eXtensible Access Control Markup Lan-
guage (XACML) (2013)

21. Petke, J., Jeavons, P.: The Order Encoding: From Tractable CSP to Tractable
SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 371–372.
Springer, Heidelberg (2011)

22. Pratt, V.R.: Two easy theories whose combination is hard. Tech. rep. MIT (1977)
23. Kencana Ramli, C.D.P., Nielson, H.R., Nielson, F.: XACML 3.0 in Answer Set

Programming. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 89–105.
Springer, Heidelberg (2013)

24. Suter, P., Steiger, R., Kuncak, V.: Sets with cardinality constraints in satisfiability
modulo theories. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 403–418. Springer, Heidelberg (2011)

25. Turkmen, F., den Hartog, J., Zannone, N.: Analyzing Access Control Policies with
SMT. In: Proceedings of the ACM Conference on Computer and Communications
Security, pp. 1508–1510. ACM (2014)

26. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A Z3-based string solver for web appli-
cation analysis. In: ESEC/SIGSOFT FSE, pp. 114–124 (2013)

Protocols

Automatically Checking Commitment Protocols

in ProVerif without False Attacks

Tom Chothia1, Ben Smyth2, and Chris Staite1

1 School of Computer Science, University of Birmingham, UK
2 Mathematical and Algorithmic Sciences Lab, France Research Center,

Huawei Technologies Co. Ltd., France

Abstract. ProVerif over-approximates the attacker’s power to enable
verification of processes under replication. Unfortunately, this results
in ProVerif finding false attacks. This problem is particularly common
in protocols whereby a participant commits to a particular value and
later reveals their value. We introduce a method to reduce false attacks
when analysing secrecy. First, we show how inserting phases into non-
replicated processes enables a more accurate translation to Horn clauses
which avoids some false attacks. Secondly, we generalise our methodology
to processes under replication. Finally, we demonstrate the applicability
of our technique by analysing BlueTooth Simple Pairing. Moreover, we
propose a simplification of this protocol that achieves the same security
goal.

1 Introduction

State space exploration has emerged as a leading verification technique [25] and,
in this context, Abadi & Fournet [2] propose the applied pi calculus – an exten-
sion of the pi calculus – to reason with cryptographic protocols. Unfortunately,
proving security in this context is undecidable [21], due to several sources of
unboundedness, including, messages of arbitrary length and the possibility of an
unbounded number of sessions. Accordingly, state-of-the-art automated reason-
ing techniques focus on sound, but incomplete, methodologies, which may report
false attacks and do not always terminate.

Blanchet [8,9,10] translates applied pi calculus processes to Horn clauses and
uses resolution of Horn clauses to reason with secrecy and authentication proper-
ties, these results have been implemented in ProVerif [15]. ProVerif has been suc-
cessfully used to automatically analyse cryptographic protocols from a variety of
applications domains, including, key exchange [1,10,29], electronic voting [20,5,4]
and trusted computing [18,19,28], for example. However, Blanchet’s translation
to Horn clauses over-approximates the attacker’s power and, therefore, ProVerif
may report false attacks; as highlighted by Blanchet [12, §2.2]:

� A long version of this paper and ProVerif source code supporting this paper are
available from http://www.cs.bham.ac.uk/~tpc/projects/falseattacks.

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 137–155, 2015.
DOI: 10.1007/978-3-662-46666-7_8

http://www.cs.bham.ac.uk/~tpc/projects/falseattacks

138 T. Chothia, B. Smyth, and C. Staite

“false attacks occur typically for protocols that first need to keep data
secret, then publish them later in the protocol. In that situation, the Horn
clause model considers that the attacker can re-inject the secret in the
early part of the run, which is not possible in reality.”

This behaviour is typical of protocols in which participants commit to a value
and later reveal it, such as the BlueTooth Simple Pairing protocol [22,23], which
we analyse in Section 6. In this paper, we introduce techniques for analysing
secrecy that avoids some false attacks.

1.1 Our Contribution in Context of Existing Work

Let us consider the following process, proposed by Allamigeon & Blanchet [3,
§3.2]:

ν n.c(x).c〈n〉.if x = n then c〈s〉 (P1)

Process P1 generates a fresh bound name n, binds a message input to variable
x, outputs the name n, tests if the message bound to x is equal to n, and
outputs the free name s, if the test succeeds. It follows intuitively that an attacker
that does not know s in advance, cannot derive s from Process P1, that is, we
have secrecy({c}, s) : P1. However, the Horn clauses generated by Blanchet’s
translation of P1 include:

attacker(x) ⇒ attacker(n)

attacker(n) ⇒ attacker(s)

Hence, ProVerif cannot prove secrecy({c}, s) : P1, because the Horn clauses
permit the following false attack: knowledge of an arbitrary term M implies
knowledge of n and knowledge of n implies knowledge of s. This is due to an
over-approximation: the Horn clauses model the process ν n.!c(x).c〈n〉.if x =
n then c〈s〉, rather than P1. It follows that the Horn clauses do not enforce that
a message input must be received before the bound name n is output. Intuitively,
such false attacks can be avoided by ensuring that the translation preserves
temporal order of message inputs and outputs. We shall achieve this objective
using Blanchet, Abadi & Fournet’s notion of phases [13, §8]. Phases, denoted
t :P , ensure which parts of concurrent processes are active at a particular time.

Inserting phases into a process can stop false attack, e.g., we can add a phase
into process P1:

0 :ν n.c(x).1:c〈n〉.if x = n then c〈s〉 (P2)

The semantics of phases ensure that P2 is a sound approximation of P1. However,
the Horn clauses generated by Blanchet’s translation of P2 to Horn clauses are
more precise:

attacker(x) ⇒ attacker′(x)
attacker(x) ⇒ attacker′(n)
attacker(n) ⇒ attacker′(s)

Automatically Checking Commitment Protocols in ProVerif 139

Indeed, ProVerif can use these Horn clauses to prove secrecy({c}, s) : P2 and,
since P2 is a sound approximation of P1, we have secrecy({c}, s) : P1.

We define a compiler (Section 3) that inserts phases into a restricted class
of processes such that Blanchet’s translation from compiled processes to Horn
clauses enforces order. We prove the soundness of our methodology:

secrecy holds in the original process
iff secrecy holds in the compiled process

This technique is limited to proving secrecy of names which are not under the
scope of a replication and we overcome this limitation using an alternative no-
tion of secrecy.

The class of secrecy properties which can be considered using Blanchet’s def-
inition [10, Section 3.1] is limited, for example, we cannot consider secrecy of
an arbitrary session secret s in the process !ν s.P , that is, we cannot consider
if an instance of ν s.P leaks s. This problem can be overcome by abstraction,
in particular, Blanchet [10, §2.3] proposes the following solution. Extend the set
of function symbols with the binary constructor e and the binary destructor d,
let the set of rewrite rules def (d) = {d(x, e(x, y)) −→ y}, and modify !ν s.P such
that e(s,m) is published at the end of every successful session of ν s.P , where
m is a free name not known by the attacker. It follows that the modified pro-
cess preserves secrecy of m iff !ν s.P preserves secrecy of s, hence, we have a
methodology to consider the secrecy of bound names.

We consider (Section 4) a definition for secrecy of bound names which does
not require abstraction and introduce a new proof technique: given a process P ,
name s, and fresh name s′, we have

secrecy of the bound name s in !ν s.P

iff secrecy of the bound name s′ in ν s′.(P{s′/s}) | !ν s.P)

iff secrecy of the free name s′ in P{s′/s} | !ν s.P
In the context of these results, we describe how our compiler can be applied to
avoid false attacks, in particular, we can prove security results for secrets under
the scope of a replication.

We demonstrate the applicability of our technique by analysing three protocols
(Sections 5 & 6): a toy extension of the Needham-Schroeder protocol in which
one of the participants reveals their nonce at the end of a successful run, the
Bluetooth Simple Pairing [22,23], and a simplification of the Bluetooth Sim-
ple Pairing that we propose. ProVerif finds false attacks against each of these
protocols, whereas our techniques allow us to prove security.

Pairing protocols typically use a low-entropy, human-verifiable string, derived
from a high-entropy shared secret, to authenticate protocol participants and pro-
tect against impersonation attacks. Given that the string is low-entropy, strings
derived from distinct secrets may collide and an attacker that can predict colli-
sions can launch impersonation attacks. Accordingly, pairing protocols must en-
sure that deriving collisions is computationally expensive. The Bluetooth Simple

140 T. Chothia, B. Smyth, and C. Staite

Pairing protocol defends against such attacks by making both parties commit to
particular values before the low-entropy string can be calculated; this deprives
an attacker of the opportunity to carry out a brute force attack to find a collision.

We develop theory to enable protocols that are vulnerable to collision attacks
to be accurately modelled in the applied pi calculus. Accordingly, our analysis
of Bluetooth Simple Pairing is more precise than an earlier analysis by Chang
& Shmatikov [17], which ignores collision attacks, and so would incorrectly find
the protocol to be secure even if the steps that stop impersonation attacks were
removed. We also present a simplified version of the Bluetooth Simple Pairing
protocol, which achieves the same secrecy goals with fewer steps, and we use our
analysis method to show that it is secure.

The key contributions of this paper are:

– A framework for avoiding some false attacks when analysing secrecy.
– A definition for secrecy of bound names.
– A method to captured collision attacks.
– A demonstration of how BlueTooth Simple Pairing defends against collision

attacks.
– A simplified pairing protocol.

Hence, our paper advances automated analysis techniques.

2 Background: Applied pi Calculus

We adopt Blanchet’s dialect [10] of the applied pi calculus [2,27], which is suited
to automated reasoning using Blanchet’s ProVerif [15]. The dialect uses the
notion of configurations proposed by Baudet [7] to avoid structural equivalence,
which simplifies security definitions and subsequent proofs.

The calculus assumes an infinite set of names, an infinite set of variables,
and a finite set of function symbols (constructors and destructors), each with an
associated arity. We write f for a constructor, g for a destructor; constructors
are used to build terms whereas destructors are used to manipulate terms in
processes. Terms range over names, variables, and applications of constructors to
terms. Substitutions {M/x} replace the variable x with the term M . Arbitrarily
large substitutions can be written as {M1/x1, . . . ,Mn/xn} and the letters σ and
τ range over substitutions. We write Mσ for the result of applying σ to the
variables of M .

The signature Σ is equipped with a finite set of equations of the form M = N
and we derive an equational theory from this set by reflexive, symmetric and
transitive closure, closure under the application of constructors, closure un-
der substitution of terms for variables, and closure under bijective renaming
of names. We write Σ � M = N for an equality modulo the equational theory
and Σ � M �= N for an inequality modulo the equational theory. (We write
M = N and M �= N for syntactic equality and inequality, respectively.)

Automatically Checking Commitment Protocols in ProVerif 141

The semantics of a destructor g of arity l is given by a finite set def (g) of
rewrite rules g(M ′

1, . . . ,M
′
l) → M ′, whereM ′

1, . . . ,M
′
l ,M

′ are terms that contain
only constructors and variables; the variables ofM ′ must be bound inM ′

1, . . . ,M
′
l

and variables are subject to renaming. The value g(M1, . . . ,Ml) is defined if and
only if there exists a substitution σ and a rewrite rule g(M ′

1, . . . ,M
′
l) → M ′ in

def (g) such that Mi = M ′
iσ for all i ∈ {1, . . . , l}, and in this case g(M1, . . . ,Ml)

is defined as M ′σ.
The grammar for terms and processes is presented in Figure 1, where t is a non-

negative integer representing a global clock. The process let x = g(M1, ...,Ml)
in P else Q tries to evaluate g(M1, ...,Ml); if this succeeds (that is, if g(M1, ...,Ml)
is defined), then x is bound to the result and P is executed, otherwise, Q is
executed. The statement let x = g(M1, . . . ,Ml) in P else Q may be abbrevi-
ated as let x = g(M1, . . . ,Ml) in P , when Q is 0. The syntax does not include
the conditional if M = N then P else Q, but this can be defined as let x =
eq(M,N) in P else Q, where x is a fresh variable, eq is a binary destructor,
and def(eq) = {eq(x, x) → x}; we always include eq in our set of function
symbols. For convenience, we may write if M = N then P else Q for let x =
eq(M,N) in P else Q and if M = N then P for let x = eq(M,N) in P . In Fig-
ure 1, we extend Blanchet’s syntax [10] with Blanchet, Abadi & Fournet’s notion
of phases [13, §8], denoted t :P , which ensures a process t :P is only active during
time t.

Fig. 1. Syntax for terms and processes

M,N ::= terms
x, y, z variables
a, b, c, k, s names
f(M1, . . . ,Mn) constructor application

D ::= g(M1, . . . ,Mn) destructor application

P,Q ::= processes
0 nil

M〈N〉.P output
M(x).P input
P | Q parallel composition
!P replication
ν a.P restriction
let x = D in P else Q term evaluation
t :P phase

The sets of free and bound names, respectively variables, in process P are
denoted by fn(P) and bn(P), respectively fv(P) and bv(P). We also write fn(M)
and fv(M) for the sets of names and variables in term M . A process P is closed if
it has no free variables. A context C is a process with a hole and we obtain C[P]
as the result of filling C’s hole with P . An evaluation context is a context whose
hole is not in the scope of a replication, an input, an output, or a term evaluation.

142 T. Chothia, B. Smyth, and C. Staite

The operational semantics (Figures 2) for the applied pi-calculus are defined
by reduction (→) on configurations. A configuration C is a pair E,P such that E
is a finite set of names, and P is a finite multiset of pairs of closed process. The
set E contains all the free names in P , and is extended to include any names
introduced during reduction, namely, those names introduced by (E,P ∪ {t :
ν a;P}) → (E ∪ {a′},P ∪ {t : P{a′/a}}). A sequence of reductions, denoted
C1 → C2 → · · · → Cn, is called a trace. We occassionally write →∗ for the
reflexive and transitive closure of →.

Fig. 2. Operational semantics

E,P ∪ {t :0} → E,P (Red Nil)

E,P ∪ {t : !P} → E,P ∪ {t : !P, t :P} (Red Repl)

E,P ∪ {t : (P | Q)}) → E,P ∪ {t :P, t :Q} (Red Par)

E,P ∪ {t :ν a.P} → E ∪ {a′},P ∪ {t :P{a′/a}} (Red Res)

for some name a′ /∈ E

E,P ∪ {t :N〈M〉.P , t :N(x).Q} → E,P ∪ {t :P, t :Q{M/x}} (Red I/O)

E,P ∪ {t : let x = D in L} → E,P ∪ {t :P{M/x}} (Red Destr 1)

if there exists M such that D → M

E,P ∪ {t : let x = D in P else Q}) → E,P ∪ {t :Q} (Red Destr 2)

if there is no M such that D → M ′

E,P ∪ {t : t′ :P} → E,P ∪ {t′ :P} (Red Order)

if t < t′

Given a process P in the applied pi-calculus without phases and a set of names
Init , the configuration Init , {0 : P} will reduce using our semantics in exactly
the same way as the configuration Init , {P} using Blanchet’s semantics [10]. We
note that Blanchet, Abadi & Fournet [13, §8], who introduce phases, assume any
process without phases is assumed to run in phase zero. In this paper, we wish
to distinguish between processes in phase zero and processes without phases,
so we always make the phases explicit, except in case studies where we adopt
Blanchet, Abadi & Fournet’s convention for brevity.

3 Secrecy of Free Names

We recall (Definition 1) Blanchet’s formalisation [10] of knowledge derivable from
a trace – that is, a reduction on a configuration – as any names which are output.

Automatically Checking Commitment Protocols in ProVerif 143

Definition 1. Let T = E0,P0 −→∗ E′,P ′ be a trace, n be a name, and Init be
a finite set of names. We write attacker(Init , n) : T if T contains a reduction
E,P ∪ {t :c〈n〉.P , t :c(x).Q} −→ E,P ∪ {t :P, t :Q{n/x}} for some E,P , P,Q, x, t
and c ∈ Init.

It follows naturally that a configuration preserves the secrecy of a name if no
(adversarial) process added to the configuration can generate a trace which per-
mits the name to be derived. We recall (Definition 2) Blanchet’s definition [10]
for secrecy of free names.

Definition 2. Let C = E,P be a configuration, n be a name and Init be a finite
set of names, where fn(P) ⊆ E. We write secrecy(Init , n) : C if for all processes
Q such that fn(Q) ⊆ Init there is no trace T = E∪Init∪fn(n),P∪{Q} −→∗ E′,P ′

such that attacker(Init , n) : T for some E′ and P ′.
Let P be a closed process, n be a name, and Init be a finite set of names. We

write secrecy(Init , n) : P if secrecy(Init , n) : fn(P), {P}.

Definition 2 facilitates the analysis of secrecy when the secret is a free name and
Section 4 proposes a definition which supposes the secret is bound.

As discussed in Section 1.1, we encounter false attacks when analysing secrecy
of free names and we overcome this problem in the remainder of this section.

3.1 Our Compiler: Phases Improve Horn Clause Generation

As demonstrated in Section 1.1, false attacks can be avoided by inserting phases
into processes. Formally, we insert phases using function δ:

Definition 3. Given a set of names Init and a process, we define δ as follows:

δ(Init , P) = {P} ∪ {C[1 :M(x).P ′] : P = C[M(x).P ′]}
∪ {C[1 :M〈N〉.P ′] : P = C[M〈N〉.P ′] ∧ fn(M) ∩ Init = ∅}

Function δ outputs a set of processes representing all ways of inserting a phase
into P such that the phase appears immediately before an input or an output
on a private channel1.

The insertion of one phase does not generally result in a sound abstraction.
For instance, process P2 | 0: !P1 is not a sound approximation of 0 :P1 | 0 : !P1,
because the phase in P2 prevents the instance of n generated by P2 being input
by 0:P1. This problem can be overcome by ensuring that all inputs and outputs
are available in either phase 0 or phase 1, which can be achieved using our
compiler (Definition 4). For simplicity, we restrict our compiler to multisets of
processes P = {0:L, 0: !L1, . . . , 0: !Lm}, where L,L1, . . . , Lm are linear processes
(Figure 3) and ProVerif discovers false attacks arising from process L. This is
sufficient to avoid the false attacks discovered in the examples in this paper.

1 Outputs on public channels can be received by the environment in phase 0 and
replayed in phase 1, therefore function δ does not insert phases immediately before
outputs on public channels.

144 T. Chothia, B. Smyth, and C. Staite

Fig. 3. Syntax for linear processes

L ::= linear processes
0 nil

M〈N〉.L output
M(x).L input
ν a.L restriction
let x = g(M1, . . . ,Mn) in L else 0 destructor application

Definition 4. Given a set of names Init and a multiset of process P = {0 :
L, 0: !L1, . . . , 0: !Lm}, we define Δ as follows:

Δ(Init ,P) =

⎧⎨
⎩{P} ∪ Q

∣∣∣∣∣∣ P ∈ δ(Init , 0:L) ∧ Q =
⋃

1≤i≤m

δ(Init , 0: !Li)

⎫⎬
⎭

The compiler tries to avoid false attacks by inserting a phase into process L (in
a different place for each member of the set produced by Δ). To ensure that all
of the original reductions are still possible, our compiler also generates a copy of
every other process with a phase in every necessary position.

3.2 Automated Reasoning without False Attacks

Our compiler is designed such that Blanchet’s translation from compiled pro-
cesses to Horn clauses ensures that the clauses abide by an ordering, thereby
avoiding the false attacks described in Section 1.1, whilst preserving secrecy:

Theorem 1. Given a name s, sets of names E and Init and a multiset of
processes P = {0 :L, 0: !L1, . . . , 0: !Lm}, such that s /∈

⋃
1≤i≤n(fn(Li) ∪ bn(Li))

and fn(P) ⊆ E, we have for all Q ∈ Δ(Init ,P) that:

secrecy(Init , s) : E,P ⇔ secrecy(Init , s) : E,Q

The proof of Theorem 1 appears in the long version of this paper. We demon-
strate an application of Theorem 1 with reference to processes P1 and P2:

Example 1. Let C = 0 : ν n.c(x). and witness that 0 : P1 = C[c〈n〉.if x =
n then c〈s〉] and P2 = C[1 : c〈n〉.if x = n then c〈s〉], i.e., {P2} ∈ Δ({c}, {P1}).
We have secrecy({c}, s) : {c, s}, {0 : P1} ⇔ secrecy({c}, s) : {c, s}, {P2} by The-
orem 1, hence, secrecy({c}, s) : (0 : P1) ⇔ secrecy({c}, s) : P2 by Definition 2.
Moreover, since ProVerif can prove secrecy({c}, s) : P2, we have the desired
result, namely secrecy({c}, s) : (0 : P1).

4 Secrecy of Bound Names

We adapt the notion of knowledge derivable from a trace (Definition 1) to con-
sider names which are bound by the trace’s initial configuration.

Automatically Checking Commitment Protocols in ProVerif 145

Definition 5. Let T = E0,P0 −→∗ E1,P1 be a trace, n be a name, and Init be

a finite set of names. We write ̂attacker(Init , n) : T if T contains the following
reductions

E,P ∪ {t :ν n.P} −→ E ∪ {n′},P ∪ {t :P{n′
/n}}

−→∗ E′,P ′ ∪ {s :c〈n′〉.P ′, s :c(x).Q′}
−→ E′,P ′ ∪ {s :P ′, s :Q′{n′

/x}}

where c ∈ Init and some E,E′,P ,P ′, P, P ′, Q′, n′, x, s and t.

Intuitively, a trace T satisfies ̂attacker(Init , n) : T if n is bound by the trace’s
initial configuration, n is renamed to n′ and, subsequently, n′ is outputted.

It follows naturally from Definition 5 that a configuration preserves secrecy of
a bound name if no (adversarial) process added to the configuration can generate
a trace which permits the name to be derived.

Definition 6. Let C = E,P be a configuration, n be a name and Init be a set of
names, where fn(P) ⊆ E. We write ̂secrecy(Init , n) : C if for all processes Q such
that fn(Q) ⊆ Init and n �∈ bn(Q), there is no trace T = E ∪ Init ,P ∪ {Q} −→∗

E′,P ′ such that ̂attacker(Init , n) : T for some E′ and P ′.
Let P be a closed process, n be a name and Init be a finite set of names, where

n ∈ bn(P). We write ̂secrecy(Init , n) : P if ̂secrecy(Init , n) : fn(P), {P}.

We remark that ̂secrecy(Init , n) : P guarantees secrecy of every bound name n in
P . It follows that ̂secrecy(Init , n) : (s :ν n.Q | t :ν n.R) implies ̂secrecy(Init , n) :
(s :ν n.Q | t :ν m.(R{m/n}) ∧ ̂secrecy(Init ,m) : (s :ν n.Q | t :ν m.(R{m/n})), for
example.

Secrecy of bound names is not new. ProVerif can already check the secrecy
of bound names, however, the corresponding theoretical definition has not been
published. (Blanchet [11] has confirmed that Definition 6 corresponds to the se-
crecy of bound names notion used by ProVerif.) In addition, Ryan & Smyth [27,
§3.1] propose a definition for secrecy of bound names in the applied pi calcu-
lus, however, their definition is restricted to bound names which do not appear
under the scope of replication and we do not impose such a restriction. The
false attacks we encounter when analysing secrecy of free names similarly oc-
cur when analysing secrecy of bound names, for instance, ProVerif cannot prove
̂secrecy({c}, s) : {c}, {0 : !ν s.P1}. In the remainder of this section we overcome
this problem.

4.1 A Proof Technique for Secrecy of Bound Names

It follows from our semantics and the definition of bound secrecy that: if t : !ν n.P
does not preserve the secrecy of n, then there exists an instance of ν n.P that
leaks n, when running in parallel with !ν n.P . We now show that it is sufficient to
rename n with some fresh name m in an instance of ν n.P and consider secrecy
of the m in t :ν m.(P{m/n}) | !ν n.P).

146 T. Chothia, B. Smyth, and C. Staite

Theorem 2. Given a name s, sets of names E and Init, process P and multiset
of processes P such that s �∈ bn(P) ∪ bn(P) and fn(P) ∪ (fn(P) \ {s}) ⊆ E, we
have, for all fresh names s′, that:

̂secrecy(Init , s) : E,P ∪ {t : !ν s.P} ⇐⇒
̂secrecy(Init , s′) : E,P ∪ {t : !ν s.P , t :ν s′.(P{s′/s})}

The proof of Theorem 1 appears in the long version of this paper.

4.2 Secrecy of Bound and Free Names Coincide

Secrecy of bound and free names coincide when the secret is not under replica-
tion.

Proposition 1. Given a name s, sets of names E and Init , process P and
multiset of processes P such that s �∈ bn(P) ∪ bn(P) ∪ fn(P) ∪ Init ∪ E and
fn(P) ∪ (fn(P) \ {s}) ⊆ E, we have:

̂secrecy(Init , s) : E,P ∪ {t :ν s.P} ⇐⇒ secrecy(Init , s) : E ∪ {s},P ∪ {t :P}

Proof sketch. We note that E,P ∪ {t :ν s.P} −→ E ∪ {s′},P ∪ {t :P{s′/s}}, for a
fresh name s′ and that secrecy(Init , s) : E ∪ {s},P ∪ {t :P} iff secrecy(Init , s′) :
E∪{s′},P∪{t :P{s′/s}}. Therefore, given a trace that causes free secrecy to fail
to hold for the R.H.S we can add the new name declaration to produce a trace
that causes secrecy to fail for the L.H.S. Conversely, given a trace that causes
secrecy to fail for the L.H.S., removing the new name declaration will give us a
trace that causes secrecy to fail for the R.H.S.

A similar equivalence does not hold when the secret is under replication, as the
following example demonstrates:

Example 2. For instance, suppose P = a〈s〉 | a(x).a(y).if x = y then c〈s〉 and
Init = {c}, we have ̂secrecy(Init , s) : (0 : !ν s.P) but not secrecy(Init , s) : (0 : !P),
since:

E, {0: !P , 0:c(z)} −→−→ E, {0: !P , 0:P, 0:P, 0:c(z)} by (Red Repl)

−→−→ E, {0: !P , 0:a〈s〉, 0:a〈s〉, Q,Q, 0:c(z)} by (Red Par)

−→−→ E,P ∪ {0: if s = s then c〈s〉, 0:c(z)} by (Red I/O)

−→ E,P ∪ {0:c〈s〉, 0:c(z)} by (Red Destr 1)

−→ E,P ∪ {0:0, 0:0{s/z}} by (Red I/O)

where E = {a, c, s},Q = 0:a(x).a(y).if x = y then c〈s〉 and P = {0: !P , 0, 0, Q}.

4.3 Automated Reasoning without False Attacks

The following corollary allows us to reduce the false attacks encountered when
analysing secrecy of bound names.

Automatically Checking Commitment Protocols in ProVerif 147

Corollary 1. Given a name s, sets of names E and Init, and a multiset of pro-
cesses P = {0: !ν s.L, 0: !L1, . . . , 0: !Lm}, such that s /∈ bn(L)∪

⋃
1≤i≤n(fn(Li)∪

bn(Li)) and fn(P) ⊆ E, we have for all fresh names s′ and Q ∈ Δ(Init ,P ∪
{L{s′/s}}) that:

̂secrecy(Init , s) : E,P ⇔ secrecy(Init , s′) : E ∪ {s′},Q

Proof. We have:

̂secrecy(Init , s) : E,P
⇔ ̂secrecy(Init , s′) : E, {0:ν s′.(L{s′/s})} ∪ P by Theorem 2

⇔ secrecy(Init , s′) : E ∪ {s′}, {0:L{s′/s}} ∪ P by Proposition 1
⇔ secrecy(Init , s′) : E ∪ {s′},Q by Theorem 1

We demonstrate an application of Corollary 1 by evaluating ̂secrecy({c}, s) :
{c}, {!ν s.P1}:

Example 3. Witness that ν s.P1 = C[c(x).c〈n〉.if x = n then c〈s〉], where C =
ν n. , but there is no other context C, process L and terms M and x such
that ν s.P1 = C[M(x).L]. In addition, there is no context C, process L and
terms M,N such that ν s.P1 = C[M〈N〉.L] ∧ fn(M) ∩ {c} = ∅. It follows that
δ({c}, ν s.0 : P1) = {0 : !ν s.P1, 0 : !ν s.1:c(x).c〈n〉.if x = n then c〈s〉}. Let Q =
δ({c}, 0:ν s.P1) ∪ {P3}, where P3 is defined as follows:

0 :ν n.c(x).1:c〈n〉.if x = n then c〈s′〉 (P3)

Since P1{s′/s} = C[c〈n〉.if x = n then c〈s′〉], where C = ν n.c(x). , we have
P3 ∈ δ(∅, 0 :P1{s′/s}) and it follows that Q ∈ Δ({c}, {0 :P1{s′/s}, 0 : !ν s.P1}).
We have ̂secrecy({c}, s) : {c}, {0 : !ν s.P1} ⇔ secrecy({c}, s′) : {c, s′},Q by
Corollary 1 and, since ProVerif can prove secrecy({c}, s) : Q, we have the desired
result ̂secrecy({c}, s) : {c}, {!ν s.P1}.

5 Case Study I: Needham-Schroeder Protocol

For our first case study, we compose the Needham-Schroeder protocol [26] with
a symmetric encryption scheme to derive a secure channel.

Needham-Schroeder protocol. The Needham-Schroeder protocol [26] is intended
to generate a session key shared between two participants. We assume the par-
ticipants are Alice and Bob, to prevent Lowe’s man-in-the-middle attack2 [24].
The protocol proceeds as follows. First, Alice generates a nonce and outputs

2 Lowe’s attack works as follows: an attacker engages Alice in a session of the protocol
and impersonates Alice to Bob in a parallel session. The attack can be thwarted
by assuming that Alice will only run the protocol with Bob, rather than any other
principal.

148 T. Chothia, B. Smyth, and C. Staite

the nonce encrypted with Bob’s public key. Secondly, Bob decrypts Alice’s ci-
phertext using his private key to recover Alice’s nonce, generates a nonce, and
outputs the pair of nonces encrypted with Alice’s public key. Finally, Alice de-
crypts Bob’s ciphertext using her private key to recover the pair of nonces and
outputs Bob’s nonce encrypted with Bob’s public key. The rationale behind the
protocol is that: since only Bob can recover Alice’s nonce, only he can output the
encrypted pair of nonces, moreover, since only Alice can recover Bob’s nonce,
only she can output his encrypted nonce; it follows that the two nonces are only
known to Alice and Bob.

Symmetric encryption scheme. Symmetric encryption enables a secret to be
shared between two participants. We consider the following symmetric encryp-
tion scheme. Given an identifier, key, and secret as input, the initiator outputs
the identifier paired with the secret encrypted with the key. Upon receipt of such
a pair, the interlocutor uses the key associated with the initiator’s identifier to
decrypt the ciphertext. It follows from our description that the initiator’s secret
can only be known by the key holders.

We compose the Needham-Schroeder protocol and symmetric encryption scheme
to derive a secure channel3. The Needham-Schroeder protocol is used to generate
a pair of nonces and these nonces are used by the symmetric encryption scheme
as follows: Alice’s nonce is used as the identifier and Bob’s nonce is used as
the key. Intuitively, the composition ensures that Alice’s secret is known only to
Alice and Bob, because Bob’s nonce is only known to Alice and Bob.

5.1 Applied pi Calculus Model

We construct a signature Σ to capture the primitives modelling cryptographic
operators and constants: Σ = {fst, snd, pk, pair, adec, aenc, sdec, senc}, where
fst, snd, pk are unary functions and adec, aenc, sdec, senc are binary functions.
We equip the signature with the following rewrite rules:

{fst(pair(x, y)) → x, snd(pair(x, y)) → y,

adec(x, aenc(pk(x), y)) → y, sdec(x, senc(x, y)) → y}.

Our signature and associated rewrite rules allow us to model: asymmetric en-
cryption, pairing, and symmetric encryption.

We define the participants, Alice and Bob, in our composition of the Needham-
Schroeder protocol with a symmetric encryption scheme (Figure 4). Hence, the
complete composition is modelled by the configuration ENSL,PNSL = {c, kA, kB},
{!ν s.A, !B, !c〈pk(kA)〉, !c〈pk(kB)〉} (which are implicitly assumed to be running
in phase 0).

3 This example was inspired by discussion with Blanchet & Cortier [14].

Automatically Checking Commitment Protocols in ProVerif 149

Fig. 4. Processes modelling Alice and Bob in the Needham-Schroeder protocol

A = ν nA.
c〈aenc(pk(kB), nA)〉.
c(xciph).
let xpair = adec(kA, xciph) in
let ynonce = fst(xpair) in
if ynonce = nA then
let xnonce = snd(xpair) in
c〈aenc(pk(kB), xnonce)〉.
(∗ end key exchange ∗)
c〈pair(nA, senc(xnonce, s))〉

B = c(yciph).
let ynonce = adec(kB, yciph) in
ν nB .
c〈aenc(pk(kA), pair(ynonce, nB))〉.
c(y′

ciph).
let xnonce = adec(kB, y

′
ciph) in

if xnonce = nB then
c(ypair).
let y′

nonce = fst(ypair) in
if ynonce = y′

nonce then
let y′′

ciph = snd(ypair) in
let ysecret = sdec(nB , y′′

ciph) in 0

5.2 Analysis

We would like to analyse ̂secrecy({c}, s) : ENSL,PNSL using ProVerif. However,
the Horn clauses generated by Blanchet’s translation of PNSL result in Horn
clauses which model the process PNSL with a replication after the name restric-
tion ν nA. Unfortunately, secrecy does not hold in this process, because the
attacker can learn nA during one run of the protocol and simulate Bob during
a second run to learn Alice’s secret s. Indeed, ProVerif finds such an attack.
However, this is a false attack, because the protocol states that Alice should use
a fresh nonce for every session of the protocol. This false attack can be avoided
using our results.

By Corollary 1, to prove ̂secrecy({c}, s) : ENSL,PNSL it is sufficient to prove
secrecy(Init , s′) : E ∪ {s′},Q, where Q ∈ Δ({c},PNSL ∪ {A{s′/s}}). Let us con-
struct a suitable Q. By definition of Δ (Definition 4), we have Q = {L} ∪⋃

P∈PNSL
{!R | R ∈ δ(Init , P)} for some L ∈ δ(∅, A{s′/s}). Since PNSL does

not contain any private channels, for all contexts C, processes L and terms
M and N such that fv(M) ∩ {c} = ∅, we have ν s.A �= C[M〈N〉.L′], B �=
C[M〈N〉.L′], c〈pk(kA)〉 �= C[M〈N〉.L′], and c〈pk(kB)〉 �= C[M〈N〉.L′]. More-
over, since c〈pk(kA)〉 and c〈pk(kB)〉 do not contain inputs, we have {!R | R ∈
δ(Init , c〈pk(kA)〉)} = {!c〈pk(kA)〉} and, similarly, {!R | R ∈ δ(Init , c〈pk(kB)〉)} =
{!c〈pk(kB)〉}. The set {!R | R ∈ δ(Init , ν s.A)} contains !ν s.A and a modified
version of !ν s.A, namely, !ν s.A with a phase inserted before the input. The set
{!R | R ∈ δ(Init , B)} contains !B and three modified versions of !B, namely, !B
with a phase before each of the three inputs. We have a concrete definition of⋃

P∈PNSL
{!R | R ∈ δ(Init , P)} and we let L ∈ δ(∅, A{s′/s}) be A{s′/s} with a

phase inserted before the penultimate output. ProVerif can automatically verify
that secrecy(Init , s′) : E ∪ {s′},Q holds (verification takes less than one second
using ProVerif 1.86pl4 on Ubuntu 12.04.3 with 3.60GHz Intel Xeon E5-1620 and
8GB memory).

150 T. Chothia, B. Smyth, and C. Staite

6 Case Study II: Bluetooth Simple Pairing

The Bluetooth Simple Pairing protocol [22,23] extends the (elliptic curve) Diffie-
Hellman protocol to provide authenticated key exchange. There are a number
of variations of this protocol, depending on the capabilities of the devices being
paired, here we look at the “Numeric Comparison Protocol” that aims to securely
pair devices that are capable of displaying a short number on a screen, and
receiving an input from the user. The displays of the participants’ devices provide
a low-bandwidth, authenticated “out of band” channel, which is assumed to be
untappable by the attacker. The bandwidth constraint of this out of band channel
makes BlueTooth Pairing non-trivial.

The protocol (Figure 5) proceeds as follows. Alice and Bob establish a Diffie-
Hellman key (Steps 1 & 2). Bob generates a nonce and outputs a commitment
to his nonce (Step 3), Alice outputs a nonce (Step 4), and Bob reveals his nonce
(Step 5). Alice and Bob each establish their transcript of values gx, gy, Na, Nb

and check that the first few characters of their transcripts – which we write as
short(gx, gy, Na, Nb) – match using their out of band channel (Step 6). Alice
and Bob can use the Diffie-Hellman key gxy.

Fig. 5. BlueTooth Simple Pairing

Alice Bob

1.
gx

−−−−−−−−−−→
2.

gy

←−−−−−−−−−−
3.

H(gy,gx,Nb)←−−−−−−−−−−
4.

Na−−−−−−−−−−→
5.

Nb←−−−−−−−−−−
6.

transcript⇐=======⇒
Out of Band

The rationale behind the protocol
is that: checking the transcripts on an
authenticated channel guarantees the
key is shared between Alice and Bob.
However, Alice and Bob are only re-
quired to check a few characters of the
transcript, because the authenticated
channel is low-bandwidth, which limits
the number of characters that can be
checked. Formally, we derive the low-
entropy string of the characters that
should be checked by applying func-
tion short to the values gx, gy, Na, Nb.

Collision attacks. String short(gx, gy, Na, Nb) is low-entropy, therefore, unlike
computing a hash on gx, gy, Na, Nb, it is computationally feasible to find a col-
lision. The following example demonstrates collision attacks.

Example 4. Consider a variant of BlueTooth Simple Pairing, without step 3. In
this protocol, the attacker can replace Alice’s message gx with gz and Bob’s
message Nb with Ne such that short(gz, gy, Na, Nb) = short(gx, gz, Na, Ne).
(This would require the attacker to make many guesses for the nonce Ne.) Given
that Alice and Bob would now see the same low-entropy string, the attacker can
impersonate Alice.

Such an attack is prevented in BlueTooth Simple Pairing, by forcing both partic-
ipants to commit to their nonces before they see the other participant’s nonce.
Alice must send her nonce first, and Bob must send a hash of this nonce be-
fore he sees Alice’s Nonce. Alice will check that this nonce matches the hash

Automatically Checking Commitment Protocols in ProVerif 151

between steps 5 and 6 of the protocol. This ensures that the attacker never has
the opportunity to launch an impersonation attack.

We remark that collision attacks are conceptually different from guessing at-
tacks against weak secrets [6,16], which occur when an attacker gets enough
information from a protocol to verify a guess of a value, which is low entropy.
The kind of brute force attack we describe here occurs when an attacker has
some control over the inputs to a high-entropy function and needs to force the
short code based on the output of that function to equal a certain value. In par-
ticular, if an attacker controls one input and knows the values of all the other
inputs, the attacker can generated a large number of possible inputs and, by
brute force, find an input of their own that makes the output of the function
produce a value that matches any short code they wish.

6.1 Applied pi Calculus Model

Our model assumes that an attacker can generate sufficiently many transcripts
such that distinct transcripts share the same first few characters. That is, given
short(M1,M2,M3,M4), the adversary can compute short(N1, N2, N3, N4) such
that short(M1,M2,M3,M4) = short(N1, N2, N3, N4). Function bruteforce cap-
tures this. Moreover, we supplement short with shortb to enable automated
analysis.

We construct a signature Σ = {g,f,sdec,senc,H,bruteforce,short,shortb},
where g is a unary function, sdec, senc and f are binary functions, H is a ternary
function, and bruteforce, short and shortb take four arguments. Function H

represents a hash function, sdec and senc capture symmetric encryption, i.e.,
def(short) = {sdec(x, senc(x, y)) → y}, and the purpose of the remaining func-
tions is explained below.

Diffie-Hellman key agreement is modelled in the standard fashion [10, §9.1]
using functions f and g and the following equation:

f(x, g(y)) = f(y, g(x))

which allows us to capture (gx)y = (gy)x. (A more general setting is beyond the
scope of [10, §9.1].)

Function shortb is used to model a low-entropy string derived from its input.
For instance, shortb(gx, gy, NA, NB) represents a low-entropy string derived from
terms gx, gy, NA, and NB. To capture collision attacks, function shortb is not
used directly (that is, we do not use shortb in processes), instead, destructor
short is used and we map occurrences of short to shortb using the following
rewrite rule:

short(w, x, y, z) → shortb(w, x, y, z)

Moreover, we add the following rewrite rules to capture collisions:

short(w, x, y, bruteforce(w, x, y, shortb(ŵ, x̂, ŷ, ẑ))) → shortb(ŵ, x̂, ŷ, ẑ)
short(w, x, bruteforce(w, x, z, shortb(ŵ, x̂, ŷ, ẑ)), z) → shortb(ŵ, x̂, ŷ, ẑ)
short(w, bruteforce(w, y, z, shortb(ŵ, x̂, ŷ, ẑ)), y, z) → shortb(ŵ, x̂, ŷ, ẑ)
short(bruteforce(x, y, z, shortb(ŵ, x̂, ŷ, ẑ)), x, y, z) → shortb(ŵ, x̂, ŷ, ẑ)

152 T. Chothia, B. Smyth, and C. Staite

It follows from our rewrite rules that

short(M1,M2,M3,M4) → shortb(M1,M2,M3,M4)

and

short(N1, N2, N3, bruteforce(N1, N2, N3, shortb(M1,M2,M3,M4)))

→ shortb(M1,M2,M3,M4))

i.e., terms short(M1,M2,M3,M4) and short(N1, N2, N3, bruteforce(N1, N2, N3,
shortb(M1,M2,M3,M4))) collide.

The ProVerif source of this, and all our other examples, are available from the
following URL: http://www.cs.bham.ac.uk/~tpc/projects/falseattacks.

6.2 Analysis

We analyse this protocol by adding in the exchange of a value at the end of the
protocol using the key gxy and testing for the secrecy of this value. Running our
model in ProVerif we find that it results in a false attack, due to the commitment
problem that was discussed above. The tool suggests that the attacker can send
a dummy commitment value and then observe nonces Na and Nb. The attacker
can then use a brute forced value based on Nb and start the protocol again with
a commitment to this new brute forced value, however, in this second run of the
protocol Bob would be using a different Nb value and so the attack is a false
one.

Applying Theorem 1 to transform the BlueTooth Protocol results in a model
(available from the aforementioned URL) for which ProVerif can verify that the
secrecy of seckey in less than a second, and so Theorem 1 then tells us that,
in spite of the false attack, the original protocol is also secure. If we remove
the check of the commitment sent in step 3 of the protocol, then ProVerif finds
the attack in which the attacker performs a man in the middle attack using the
bruteforce function to find a value which matches the short code sent between
Alice and Bob.

6.3 Case Study III: The Simplified Simple Pairing Protocol

Our final case study proposes a simplified version of the Bluetooth Simple Pair-
ing protocol (Figure 6). Our new protocol merges the tasks of the Diffie-Hellman
exponents and the nonces. The out of band channel is used for confirmations of
a short code based on the Diffie-Hellman key. We note that in the specification
of the Bluetooth Simple Pairing protocol [23] the Diffie-Hellman steps of the
protocol are presented as a method of stopping eavesdropping attacks, and the
steps using the nonce values are presented quite separately as a method of stop-
ping active attacks; the contribution of our protocol is to show that these steps
can be merged. We also note that in the Bluetooth Simple Pairing protocol the
channel is protected by the entropy of the secret Diffie-Hellman values and the

http://www.cs.bham.ac.uk/~tpc/projects/falseattacks

Automatically Checking Commitment Protocols in ProVerif 153

nonces, whereas in our new protocol it is just protected by the entropy of the
secret Diffie-Hellman values. Therefore, for our protocol to be secure, the secret
Diffie-Hellman values must be high-entropy and fresh; this is not currently an
explicit requirement stated in the Bluetooth specification.

Fig. 6. SSP: Simplified Simple Pairing

Alice Bob

1.
Hash(gx)−−−−−−−−−−−→

2.
gy←−−−−−−−−−−

3.
gx−−−−−−−−−−→

Verify 3.gx vs. 1.Hash(gx)

4.
short(gxy)⇐=======⇒

Out of Band

Verify 4.short(gxy) vs. gxy Verify 4.short(gxy) vs. gxy

5.
{seckey}gxy−−−−−−−−−→

Our new protocol starts with Alice sending a commitment to a particular
Diffie-Hellman exponent. Bob then sends his exponent and Alice replies by send-
ing her’s. Bob must check that the exponent he receives matches the commitment
to avoid the brute force attack described above. Alice and Bob then compare
the transcript of the key on their out of bound channel. The nonces used in
the Bluetooth Simple Pairing protocol are no longer needed, as the freshness
guarantees are now provided by the values x and y.

A brute force attack may be tried against the short string in this protocol.
To allow this in our model, we adapt the rules for bruteforce and short to work
against Diffie-Hellman exponents. In this case, the short function is applied to
the f function i.e., short(f(s,g(t))) represents the short string generated from
the Diffie-Hellman key f(s,g(t)).

Given g(t) and M, the attacker can derive a term N such that short(f(N,g(t)))
= short(M), and we write this N value as bruteforce(g(t),M) and capture the
desired relation using the following rewrite rules:

short(x) → shortb(x)
short(f(bruteforce(x, shortb(y)), x)) → shortb(y)
short(y, f(bruteforce(y, shortb(x)))) → shortb(x)

It follows from the above rules that given g(t) and f(s,g(t)), the attacker can
derive bruteforce(g(t),short(f(s,g(t)))) such that short(f(bruteforce(g(t),

short(f(s,g(t)))),g(t))) = short(f(s,g(t))), thereby modelling a brute force
attack against the Diffie-Hellman exponents.

Analysing this scheme using ProVerif results in the discovery of a false attack,
whereas Theorem 1 allows us to verify the secrecy of seckey.

154 T. Chothia, B. Smyth, and C. Staite

7 Conclusion

We have shown how false atacks can be avoided when analysing secrecy with
ProVerif. Our method works by inserting phases into processes such that they
enforce an ordering on Horn clauses. We demonstrate the applicability of our
methodology by analysing BlueTooth Pairing. This case study leads use to de-
velop theory to enable the analysis of protocols that are vulnerable to imper-
sonation attacks. Finally, we show that BlueTooth Pairing can be simplified and
show that the simplified scheme satisfies the same secrecy objectives.

Acknowledgements. We thank Bruno Blanchet for insightful discussions which
have influenced this paper. This work was performed in part at INRIA with sup-
port from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC project CRYSP (259639).

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just Fast Keying in the Pi Calculus. ACM
Transactions on Information and System Security 10(3) (2007)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL 2001: 28th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 104–115. ACM Press (2001)

3. Allamigeon, X., Blanchet, B.: Reconstruction of Attacks against Cryptographic
Protocols. In: CSFW 2005: 18th Computer Security Foundations Workshop, pp.
140–154. IEEE Computer Society (2005)

4. Arapinis, M., Cortier, V., Kremer, S., Ryan, M.: Practical everlasting privacy. In:
Basin, D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 21–40. Springer,
Heidelberg (2013)

5. Backes, M., Hriţcu, C., Maffei, M.: Automated Verification of Remote Electronic
Voting Protocols in the Applied Pi-calculus. In: CSF 2008: 21st IEEE Computer
Security Foundations Symposium, pp. 195–209. IEEE Computer Society (2008)

6. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
Proc. 12th ACM Conference on Computer and Communications Security (CCS
2005), pp. 16–25. ACM Press (2005)

7. Baudet, M.: Sécurité des protocoles cryptographiques: Aspects logiques et calcula-
toires. PhD thesis, Laboratoire Spécification et Vérification, ENS Cachan, France
(2007)

8. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules.
In: CSFW 2001: 14th IEEE Computer Security Foundations Workshop, pp. 82–96.
IEEE Computer Society (2001)

9. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359.
Springer, Heidelberg (2002)

10. Blanchet, B.: Automatic Verification of Correspondences for Security Protocols.
Journal of Computer Security 17(4), 363–434 (2009)

11. Blanchet, B.: Private email communication (November 12, 2012)

Automatically Checking Commitment Protocols in ProVerif 155

12. Blanchet, B.: Security Protocol Verification: Symbolic and Computational Models.
In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS,
vol. 7215, pp. 3–29. Springer, Heidelberg (2012)

13. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1),
3–51 (2008)

14. Blanchet, B., Cortier, V.: Private email communication (November 13, 2012)
15. Blanchet, B., Smyth, B.: ProVerif: Automatic Cryptographic Protocol Verifier User

Manual & Tutorial (2011), http://www.proverif.ens.fr/
16. Blanchet, B., Smyth, B., Cheval, V.: Proverif 1.88: Automatic cryptographic pro-

tocol verifier, user manual and tutorial (2013)
17. Chang, R., Shmatikov, V.: Formal analysis of authentication in bluetooth device

pairing. In: Foundations of Computer Security and Automated Reasoning for Se-
curity Protocol Analysis (2007)

18. Chen, L., Ryan, M.: Attack, Solution and Verification for Shared Authorisation
Data in TCG TPM. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS,
vol. 5983, pp. 201–216. Springer, Heidelberg (2010)

19. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on tpm state registers. In: CSF 2011: 24th IEEE Computer Security Foundations
Symposium, pp. 66–80. IEEE (2011)

20. Delaune, S., Ryan, M.D., Smyth, B.: Automatic verification of privacy properties
in the applied pi-calculus. In: Karabulut, Y., Mitchell, J., Herrmann, P., Jensen,
C.D. (eds.) IFIPTM 2008: 2nd Joint iTrust and PST Conferences on Privacy, Trust
Management and Security. IFIP, vol. 263, pp. 263–278. Springer, Heidelberg (2008)

21. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the
complexity of bounded security protocols. Journal of Computer Security 12(2),
247–311 (2004)

22. Bluetooth Special Interest Group. Specification of the bluetooth system (2001)
23. Bluetooth Special Interest Group. Simple pairing whitepaper (2006)
24. Breaking, G.L.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol

using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp.
147–166. Springer, Heidelberg (1996)

25. Meadows, C.: Open Issues in Formal Methods for Cryptographic Protocol Analysis.
In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS 2001. LNCS,
vol. 2052, p. 21. Springer, Heidelberg (2001)

26. Needham, R.M., Schroeder, M.D.: Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM 21(12), 993–999 (1978)

27. Ryan, M.D., Smyth, B.: Applied pi calculus. In: Cortier, V., Kremer, S. (eds.)
Formal Models and Techniques for Analyzing Security Protocols, ch. 6. IOS Press
(2011)

28. Smyth, B., Ryan, M.D., Chen, L.: Formal analysis of privacy in Direct Anonymous
Attestation schemes (2012)

29. Zhao, F., Hanatani, Y., Komano, Y., Smyth, B., Ito, S., Kambayashi, T.: Secure
Authenticated Key Exchange with Revocation for Smart Grid. In: ISGT 2012: 3rd
IEEE Power & Energy Society Conference on Innovative Smart Grid Technologies,
pp. 1–8 (2012)

http://www.proverif.ens.fr/

Generalizing Multi-party Contract Signing

Sjouke Mauw1 and Saša Radomirović2

1 CSC/SnT, University of Luxembourg
sjouke.mauw@uni.lu

2 Institute of Information Security, Dept. of Computer Science, ETH Zurich
sasa.radomirovic@inf.ethz.ch

Abstract. Multi-party contract signing (MPCS) protocols allow a group
of signers to exchange signatures on a predefined contract. Previous ap-
proaches considered either completely linear protocols or fully parallel
broadcasting protocols. We introduce the new class of DAG MPCS pro-
tocols which combines parallel and linear execution and allows for paral-
lelism even within a signer role. This generalization is useful in practical
applications where the set of signers has a hierarchical structure, such as
chaining of service level agreements and subcontracting.

Our novel DAG MPCS protocols are represented by directed acyclic
graphs and equipped with a labeled transition system semantics. We
define the notion of abort-chaining sequences and prove that a DAG
MPCS protocol satisfies fairness if and only if it does not have an abort-
chaining sequence. We exhibit several examples of optimistic fair DAG
MPCS protocols. The fairness of these protocols follows from our theory
and has additionally been verified with our automated tool.

We define two complexity measures for DAG MPCS protocols, related
to execution time and total number of messages exchanged. We prove
lower bounds for fair DAG MPCS protocols in terms of these measures.

1 Introduction

A multi-party contract signing (MPCS) protocol is a communication protocol
that allows a number of parties to sign a digital contract. The need for MPCS
protocols arises, for instance, in the context of service level agreements (SLAs)
and in supply chain contracting. In these domains (electronic) contract negotia-
tions and signing are still mainly bilateral. Instead of negotiating and signing one
multi-party contract, in practice, multiple bilateral negotiations are conducted
in parallel [20]. Because negotiations can fail, parties may end up with just a
subset of the pursued bilateral contracts. If a party is missing contracts with
providers or subcontractors, it faces an overcommitment problem. If contracts
with customers are missing, it has an overpurchasing problem [8]. Both problems
can be prevented by using fair multi-party contract signing protocols.

Existing optimistic MPCS protocols come in two flavors. Linear MPCS proto-
cols require that at any point in time at most one signer has enough information
to proceed in his role by sending messages to other signers. Broadcast MPCS
protocols specify a number of communication rounds in each of which all signers

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 156–175, 2015.
DOI: 10.1007/978-3-662-46666-7_9

Generalizing Multi-party Contract Signing 157

send or broadcast messages to each other. However, neither of the two kinds of
protocols is suitable for SLAs or supply chain contracting. The reason is that in
both domains, the set of contractors typically has a hierarchical structure, con-
sisting of main contractors and levels of subcontractors. It is undesirable (and
perhaps even infeasible) for the main contracting partners and their subcon-
tractors to directly communicate with another partner’s subcontractors. This
restriction immediately excludes broadcast protocols as potential solutions and
forces linear protocols to be impractically large.

In this paper we introduce MPCS protocol specifications that support arbi-
trary combinations of linear and parallel actions, even within a protocol role.
The message flow of such protocols can be specified as a directed acyclic graph
(DAG) and we therefore refer to them as DAG MPCS protocols.

A central requirement for MPCS protocols is fairness. This means that either
all honest signers get all signatures on the negotiated contract or nobody gets the
honest signers’ signatures. It is well known that in asynchronous communication
networks, a deterministic MPCS protocol requires a trusted third party (TTP)
to achieve fairness [5]. Optimistic MPCS protocols [1] involve the TTP only when
conflicts or faults occur and thus prevent the TTP from becoming a bottleneck.
We focus on optimistic protocols in this paper.

DAGMPCS protocols not only allow for better solutions to the subcontracting
problem, but also have further advantages over linear and broadcast MPCS
protocols and we design three novel MPCS protocols that demonstrate this.
One such advantage concerns communication complexity. Linear protocols can
reach the minimal number of messages necessary to be exchanged in fair MPCS
protocols at the cost of a high number of protocol “rounds”. We call this the par-
allel complexity, which is a generalization of the round complexity measure for
broadcast protocols, and define it in Section 4.3. Conversely, broadcast protocols
can attain the minimal number of protocol rounds necessary for fair MPCS, but
at the cost of a high message complexity. We demonstrate that DAG MPCS
protocols can simultaneously attain best possible order of magnitude for both
complexity measures.

As discussed in our related work section, the design of fair MPCS protocols
has proven to be non-trivial and error-prone. We therefore not only prove our
three novel DAG MPCS protocols to be fair, but we also derive necessary and
sufficient conditions for fairness of any optimistic DAG MPCS protocol. These
conditions can be implemented and verified automatically, but they are still non-
trivial. Therefore, for a slightly restricted class of DAG protocols, we additionally
derive a fairness criterion that is easy to verify.

Contributions. Our main contributions are (i) the definition of a syntax and
interleaving semantics of DAG MPCS protocols (Section 4.1); (ii) the definition
of the message complexity and parallel complexity of such protocols (Section 4.3);
(iii) a method to derive a full MPCS specification from a skeletal graph, including
the TTP logic (Section 5); (iv) necessary and sufficient conditions for fairness
of DAG MPCS protocols (Section 6); (v) minimal complexity bounds for DAG

158 S. Mauw and S. Radomirović

MPCS protocols (Section 7.1); (vi) novel fair MPCS protocols (Section 7.2); (vii)
a software tool that verifies whether a given MPCS protocol is fair.1

2 Related Work

We build on the body of work that has been published in the field of fair opti-
mistic MPCS protocols in asynchronous networks. The first such protocols were
proposed by Baum-Waidner and Waidner [2], viz. a round-based broadcast pro-
tocol and a related round-based linear protocol. They showed subsequently [3]
that these protocols are round-optimal. This is a complexity measure that is re-
lated to, but less general than, parallel complexity defined in the present paper.

Garay et al. [6] introduced the notion of abuse-free contract signing. They
developed the technique of private contract signature and used it to create
abuse-free two-party and three-party contract signing protocols. Garay and Mac-
Kenzie [7] proposed MPCS protocols which were later shown to be unfair using
the model checker Mocha and improved by Chadha et al. [4]. Mukhamedov and
Ryan [17] developed the notion of abort chaining attacks and used such attacks
to show that Chadha et al.’s improved version does not satisfy fairness in cases
where there are more than five signers. They introduced a new optimistic MPCS
protocol and proved fairness for their protocol by hand and used the NuSMV
model checker to verify the case of five signers. Zhang et al. [21] have used Mocha
to analyze the protocols of Mukhamedov and Ryan and of Mauw et al. [15].

Mauw et al. [15] used the notion of abort chaining to establish a lower bound
on the message complexity of linear fair MPCS protocols. This complexity mea-
sure is generalized in the present paper to DAG MPCS protocols. Kordy and
Radomirović [10] have shown an explicit construction for fair linear MPCS proto-
cols. The construction covers in particular the protocols proposed by Mukhame-
dov and Ryan [17] and the linear protocol of Baum-Waidner and Waidner [2],
but not the broadcast protocols. The DAG MPCS protocol model and fairness
results developed in the present paper encompass both types of protocols. MPCS
protocols combining linear and parallel behaviour have not been studied yet.

Apart from new theoretical insights to be gained from designing and studying
DAG MPCS protocols, we anticipate interesting application domains in which
multiple parties establish a number of related contracts, such as SLAs. Emerging
business models like Software as a Service require a negotiation to balance a
customer’s requirements against a service provider’s capabilities. The result of
such a negotiation is often complicated by the dependencies between several
contracts [13] and multi-party protocols may serve to mitigate this problem.
Karaenke and Kirn [8] propose a multi-tier negotiation protocol to mitigate
the problems of overcommitment and overpurchasing. They formally verify that
the protocol solves the two observed problems, but do not consider the fairness
problem. SLAs and negotiation protocols have also been studied in the multi-
agent community. An example is the work of Kraus [11] who defines a multi-party

1 Proofs of theorems and additional results including a description of the tool and a
link to it are given in the extended version of this paper [14].

Generalizing Multi-party Contract Signing 159

negotiation protocol in which agreement is reached if all agents accept an offer.
If the offer is rejected by at least one agent, a new offer will be negotiated.

Another interesting application area concerns supply chain contracting [12]. A
supply chain consists of a series of firms involved in the production of a product
or service with potentially complex contractual relationships. Most literature in
this area focuses on economic aspects, like pricing strategies. An exception is the
recent work of Pavlov and Katok [9] in which fairness is studied from a game-
theoretic point of view. The study of multi-party signing protocols and multi-
contract protocols has only recently been identified as an interesting research
topic in this application area [19].

3 Preliminaries

3.1 Multi-party Contract Signing

The purpose of a multi-party contract signing protocol is to allow a number of
parties to sign a digital contract in a fair way. In this section we recall the basic
notions pertaining to MPCS protocols. We use A to denote the set of signers
involved in a protocol, C to denote the contract, and T to denote the TTP.

A signer is considered honest (cf. Definition 5) if it faithfully executes the
protocol specification. An MPCS protocol is said to be optimistic if its execution
in absence of adversarial behaviour and failures and with all honest signers results
in signed contracts for all participants without any involvement of T. Optimistic
MPCS protocols consist of two subprotocols: the main protocol that specifies
the exchange of promises and signatures by the signers, and the resolve protocol
that describes the interaction between the agents and T in case of a failure in
the main protocol. A promise made by a signer indicates the intent to sign C.
A promise ℘P (m,x,Q,T) can only be generated by signer P ∈ A. The content
(m,x) can be extracted from the promise and the promise can be verified by
signer Q ∈ A and by T. A signature SP (m) can only be generated by P and by
T, if T has a promise ℘P (m,x,Q,T). The content m can be extracted and the
signature can be verified by anybody. Cryptographic schemes that allow for the
above properties are digital signature schemes and private contract signatures [6].

MPCS protocols must satisfy at least two security requirements, namely fair-
ness and timeliness. An optimistic MPCS protocol for contract C is said to be
fair for an honest signer P if whenever some signer Q �= P obtains a signature
on C from P , then P can obtain a signature on C from all signers participating in
the protocol. An optimistic MPCS protocol is said to satisfy timeliness, if each
signer has a recourse to stop endless waiting for expected messages. The fairness
requirement will be the guiding principle for our investigations and timeliness
will be implied by the communication model together with the behaviour of the
TTP. A formal definition of fairness is given in Section 6.

3.2 Graphs

Let G = (V,E) with E ⊆ V × V be a directed acyclic graph. Let v, w ∈ V be
vertices. We say that v causally precedes w, denoted v ≺ w, if there is a directed

160 S. Mauw and S. Radomirović

path from v to w in the graph. We write v � w for v ≺ w ∨ v = w. We extend
causal precedence to the set V ∪ E as follows. Given two edges (v, w), (v′, w′) ∈
E, we say that (v, w) causally precedes (v′, w′) and write (v, w) ≺ (v′, w′), if
w � v′. Similarly, we write v ≺ (v′, w′) if v � v′ and (v, w) ≺ v′ if w � v′. Let
x, y ∈ V ∪ E. If x causally precedes y we also say that y causally follows x. We
say that a set S ⊆ V ∪ E is causally closed if it contains all causally preceding
vertices and edges of its elements, i.e., ∀x ∈ S, y ∈ V ∪ E : y ≺ x =⇒ y ∈ S.

By in(v) ⊆ E we denote the set of edges incoming to v and by out(v) ⊆ E the
set of edges outgoing from v. Formally, we have in(v) = {(w, v) ∈ E | w ∈ V }
and out(v) = {(v, w) ∈ E | w ∈ V }.

3.3 Assumptions

The communication between signers is asynchronous and messages can get lost or
be delayed arbitrary long. The communication channels between signers and the
TTP T are assumed to be resilient. In order to simplify our reasoning, we assume
that the channels between protocol participants are confidential and authentic.
We consider the problem of delivering confidential and authentic messages in a
Dolev-Yao intruder model to be orthogonal to the present problem setting.

We assume that C contains the contract text along with fresh values (con-
tributed by every signer) which prevent different protocol executions from gener-
ating interchangeable protocol messages. Furthermore we assume that C contains
all information that T needs in order to reach a decision regarding the contract
in case it is contacted by a signer. This information contains the protocol spec-
ification, an identifier for T, identifiers for the signers involved in the protocol,
and the assignment of signers to protocol roles in the protocol specification.

We assume the existence of a designated resolution process per signer which
coordinates the various resolution requests of the signer’s parallel threads. It will
ensure that T is contacted at most once by the signer. After having received the
first request from one of the signer’s threads, this resolution process will contact
T on behalf of the signer and store T’s reply. This reply will be forwarded to all
of the signer’s threads whenever they request resolution.

4 DAG Protocols

Our DAG protocol model is a multi-party protocol model in an asynchronous
network with a TTP and an adversary that controls a subset of parties.

4.1 Specification and Execution Model

A DAG protocol specification (or simply, a protocol specification) is a directed
acyclic graph in which the vertices represent the state of a signer and the edges
represent either a causal dependency between two states (an ε-edge) or the
sending of a message. A vertex’ outgoing edges can be executed in parallel.
Edges labeled with exit denote that a signer contacts T.

Generalizing Multi-party Contract Signing 161

Definition 1. Let R be a set of roles such that T �∈ R and M a set of messages.
Let ε and exit be two symbols, such that ε, exit /∈ M . By Mexit

ε and RT we denote
the sets Mexit

ε = M ∪{ε, exit} and RT = R∪{T}, respectively. A DAG protocol
specification is a labeled directed acyclic graph P = (V,E, r, μ, δ), where

1. (V,E) is a directed acyclic graph;

2. r : V → RT is a labeling function assigning roles to vertices;

3. μ : E → Mexit
ε is an edge-labeling function that satisfies

(a) ∀(v, v′) ∈ E : μ(v, v′) = ε =⇒ r(v) = r(v′),
(b) ∀(v, v′) ∈ E : μ(v, v′) = exit =⇒ r(v′) = T;

4. δ : M∗ → M is a function associated with exit-labeled edges.

A message edge (v, v′) specifies that μ(v, v′) = m is to be sent from role r(v) to
role r(v′). An ε-edge (v, v′) represents internal progress of role r(v) = r(v′) and
allows to specify a causal order in the role’s events. An exit edge denotes that
a role can contact the TTP. The TTP then uses the function δ to determine
a reply to the requesting role, based on the sequence of messages that it has
received. In Section 5 exit messages and the δ function are used to model the
resolve protocol of the TTP.

A B

s

s

A B

ss

A B

ss

Fig. 1. Linear, broadcast, and the novel DAG MPCS protocols

We give three examples of DAG protocols in Figure 1, represented as Message
Sequence Charts (MSCs). The dots denote the vertices, which we group vertically
below their corresponding role names. Vertical lines in the MSCs correspond to
ε-edges and horizontal or diagonal edges represent message edges. We mark edges
labeled with signing messages with an “s” and we leave out the edge labels of
promise messages. We do not display exit edges, they are implied by the MPCS
protocol specification. A box represents the splitting of a role into two parallel
threads, which join again at the end of the box. We revert to a traditional
representation of labeled DAGs if it is more convenient (see, e.g., Figure 2).

The first protocol in Figure 1 is a classical linear 2-party contract signing
protocol. It consists of one round of promises followed by a round of exchanging
signatures. The second protocol is the classical broadcast protocol for two signers.
It consists of two rounds of promises, followed by one round of signatures. The
third protocol is a novel DAG protocol, showing the power of in-role parallelism.
It is derived from the broadcasting protocol by observing that its fairness does
not depend on the causal order of the first two vertices of each of the roles.

162 S. Mauw and S. Radomirović

Let P = (V,E, r, μ, δ) be a protocol specification. The restriction of P to role
P , denoted by PP , is the protocol specification (VP , EP , rP , μP , δP), where

EP = {(v, v′) ∈ E | r(v) = P ∨ r(v′) = P} , VP = {v, v′ ∈ V | (v, v′) ∈ EP } ,
rP (v) = r(v) for v ∈ VP , μP (e) = μ(e) for e ∈ EP , and δP = δ.

The execution state of a protocol consists of the set of events, connected to
vertices or edges, that have been executed.

Definition 2. Let P = (V,E, r, μ, δ) be a protocol specification. A state of P is
a set s ⊆ V ∪E. The set of states of P is denoted by SP . The initial state of P
is defined as s0 = ∅.

In order to give DAG protocols a semantics, we first define the transition
relation between states of a protocol.

Definition 3. Let P = (V,E, r, μ, δ) be a protocol specification, L = {ε, send ,
recv , exit} the set of transition labels, and s , s ′ ∈ SP the states of P. We say

that P transitions with label α from state s into s ′, denoted by s
α� s ′, iff s �= s ′

and one of the following conditions holds

1. α = recv and ∃v ∈ V , such that in(v) ⊆ s and s ′ = s ∪ {v},
2. α = send and ∃m ∈ M, e ∈ E, such that μ(e) = m, and s ′ = s ∪ {e},
3. α = ε and ∃e = (v, v′) ∈ E, such that μ(e) = ε, v ∈ s and s ′ = s ∪ {e},
4. α = exit and ∃e ∈ E, such that μ(e) = exit and s ′ = s ∪ {e}.

In Definition 3, receive events are represented by vertices, all other events by
edges. By the first condition, a receive event can only occur if all events assigned
to the incoming edges have occurred. In contrast, the sending of messages (second
condition) can take place at any time. The third condition states that an ε-edge
can be executed if the event on which it causally depends has been executed.
Finally, like send events, an exit event can occur at any time. Every event may
occur at most once, however. This is ensured by the condition s′ �= s.

The transitions model all possible behavior of the system. The behavior of
honest agents in the system will be restricted as detailed in the following sub-
section. We denote sequences by [a0, a1, . . . , al] and the concatenation of two
sequences σ1, σ2 by σ1 · σ2.

Definition 4. Let P = (V,E, r, μ, δ) be a protocol specification and L = {ε, send ,
recv , exit} a set of labels. The semantics of P is the labeled transition system
(SP , L,�,s0), which is a graph consisting of vertices SP and edges � with start
state s0. An execution of P is a finite sequence ρ = [s0, α1, s1, . . . , αl, sl], l ≥ 0,

such that ∀i ∈ {0, . . . , l − 1} : si
αi+1� si+1. The set of all executions of P is

denoted by Exe(P).

If ρ = [s0, α1, s1, . . . , αl, sl] is an execution of P and PP is the restriction to role
P , then the restricted execution ρP is obtained inductively as follows.

1. [s]P = [s ∩ (VP ∪EP)] for a state s .

Generalizing Multi-party Contract Signing 163

2. ([s , α, s ′] · σ)P =

{
[s]P · σP if [s]P = [s ′]P
[s]P · [α] · ([s ′] · σ)P else.

Commutativity of restriction and execution is asserted by the following lemma.

Lemma 1. Let P be a protocol specification and PP the restriction to role P .
Then every restricted execution ρP is an execution of PP .

4.2 Adversary Model

An honest agent executes the protocol specification faithfully. The following
definition specifies what this entails for a DAG protocol: the agent waits for the
reception of all causally preceding messages before sending causally following
messages, does not execute an exit edge attached to a vertex v if all messages at
v have been received and never executes more than one exit edge (which in the
context of MPCS protocols corresponds to contacting the TTP at most once),
and does not send any messages which causally follow a vertex from which the
exit edge was executed.

Definition 5. Let P be a DAG protocol specification. An agent P is honest in
an execution ρ of P, if all states s of the restricted execution ρP satisfy the
following conditions:

1. s contains at most one exit edge.

2. If s contains no exit edge, then s is causally closed.

3. If s contains an exit edge e = (v, w), μ(e) = exit, then v �∈ s and s \ {e} is
causally closed.

A dishonest agent is only limited by the execution model. Thus a dishonest
agent can send its messages at any time and in any order, regardless of the causal
precedence given in the protocol specification. A dishonest agent can execute
multiple exit edges and may send and receive messages causally following an
exit edge. Dishonest agents are controlled by a single adversary, their knowledge
is shared with the adversary. The adversary can delay or block messages sent
from one agent to another, but the adversary cannot prevent messages between
agents and the TTP from being delivered eventually. All communication channels
are authentic and confidential.

4.3 Communication Complexity

To define measures for expressing the communication complexity of DAG pro-
tocols, we introduce the notion of closed executions. A closed execution is a
complete execution of the protocol by honest agents.

Definition 6. Let P = (V,E, r, μ, δ) be a protocol specification and (SP , L,�,s0)
be the semantics for P. Given ρ = [s0, α1, s1, . . . , αl, sl] ∈ Exe(P), we say that ρ
is closed if the following three conditions are satisfied

164 S. Mauw and S. Radomirović

1. si is causally closed, for every 0 ≤ i ≤ l,

2. αi �= exit , for every 1 ≤ i ≤ l,

3. �α ∈ L \ {exit} , s ∈ SP : ρ · [α, s] ∈ Exe(P).

The set of all closed executions of P is denoted by ExeC(P).

Let ρ = [s0, α1, s1, . . . , αl, sl] be an execution of a protocol P . By |ρ|send we
denote the number of labels αi, for 1 ≤ i ≤ l, such that αi = send .

Lemma 2. For any two closed executions ρ and ρ′ of a protocol P we have
|ρ|send = |ρ′|send .
The proof is given in [14]. The first measure expressing the complexity of a
protocol P is calledmessage complexity. It counts the overall number of messages
that have been sent in a closed execution of a protocol P .

Definition 7. Let P be a protocol specification and let ρ ∈ ExeC(P). The mes-
sage complexity of P, denoted by MCP , is defined as MCP = |ρ|send .
Lemma 2 guarantees that the message complexity of a protocol is well defined.

The second complexity measure is called parallel complexity. It represents
the minimal time of a closed execution assuming that all events which can be
executed in parallel are executed in parallel. The parallel complexity of a protocol
is defined as the length of a maximal chain of causally related send edges.

Definition 8. The parallel complexity of a protocol P, denoted by PCP , is
defined as

PCP = max
n∈N

∃[e1,e2,...,en]∈E∗ : ∀1≤i≤n : μ(ei) = send ∧ ∀1≤i<n : ei ≺ ei+1.

Example 1. The message complexity of the first protocol in Figure 1 is 4, which
is known to be optimal for two signers [18]. Its parallel complexity is 4, too. The
message complexity of the other two protocols is 6, but their parallel complexity
is 3, which is optimal for broadcasting protocols with two signers [3].

5 DAG MPCS Protocols

We now define a class of optimistic MPCS protocols in the DAG protocol model.

5.1 Main Protocol

The key requirements we want our DAG MPCS protocol specification to satisfy,
stated formally in Definition 9, are as follows. The messages exchanged between
signers in the protocol are of two types, promises, denoted by ℘(), and signatures,
denoted by S(). Every promise contains information about the vertex from which
it is sent. This is done by concatenating the contract C with the vertex v the
promise originates from and is denoted by (C, v). The signers can contact the
TTP at any time. This is modeled with exit edges: Every vertex v ∈ V such
that r(v) ∈ A (the set of all signers) is adjacent to a unique vertex vT ∈ V ,
r(vT) = T. The communication with T is represented by δ. The set of vertices
with outgoing signature messages is denoted by SigSet .

Generalizing Multi-party Contract Signing 165

Definition 9. Let P = (V,E, r, μ, δ) be a protocol specification, A ⊂ R be a
finite set of signers, C be a contract, and SigSet ⊆ V . P is called a DAG MPCS
protocol specification for C, if 2

1. ∃! vT ∈ V : r(vT) = T ∧ ∀v ∈ V \ {vT} : (v, vT) ∈ E,
2. ∀v, w ∈ V : v ≺ w ⇒ (v, w) ∈ E ∨ ∃u ∈ V : v ≺ u ≺ w ∧ r(u) ∈ {r(v), r(w)},
3. ∀(v, w) ∈ E : μ(v, w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε, if r(v) = r(w),

exit, if w = vT,

Sr(v)(C), if v ∈ SigSet ∧ r(v) �= r(w) �= T,

℘r(v)(C, v, r(w),T), else.

4. δ : M∗ →
{
“abort”, (SP (C))P∈A

}
, where (SP (C))P∈A denotes a list of sig-

natures on C, one by each signer.

We write SigSet(P) for the largest subset of SigSet which satisfies

v ∈ SigSet(P) ⇒ ∃w ∈ V : (v, w) ∈ E, μ(v, w) ∈ M.

The set SigSet(P) is called the signing set.

We represent DAG MPCS protocols as skeletal graphs as shown in Figure 2a.
The full graph, shown in Figure 2b, is obtained from the skeletal graph by adding
all edges required by condition 2 of Definition 9 and extending μ according to
condition 3. The ε edges are dashed in the graphs. The shaded vertices in the
graphs indicate the vertices that are in the signing set. We define the knowledge
K(v) of a vertex v to be the set of message edges causally preceding v, and
incoming to a vertex of the same role. The knowledge of a vertex represents the
state right after its receive event.

K(v) = {(w, v′) ∈ E | μ(w, v′) ∈ M, v′ � v, r(v′) = r(v)}

We define the pre-knowledge K≺(v) of a vertex v to be K≺(v) = {(w, v′) ∈
K(v) | v′ ≺ v}. The pre-knowledge represents the state just before the vertex’
receive event has taken place. We extend both definitions to sets S ⊆ V :

K(S) =
⋃
v∈S

K(v) and K≺(S) =
⋃
v∈S

K≺(v).

We define the initial set of P , denoted InitSet(P) to be the set of vertices of
the protocol specification for which the pre-knowledge of the same role does not
contain an incoming edge by every other role. Formally,

v ∈ InitSet(P) ⇐⇒ {r(w) ∈ A | (w, v′) ∈ K≺(v)} ∪ {r(v)} �= A

The end set of P , denoted EndSet(P), is the set of vertices of the protocol
specification at which the corresponding signer possesses all signatures.

v ∈ EndSet(P) ⇐⇒ {r(w) ∈ A | (w, v′) ∈ K(v), w ∈ SigSet(P)} ∪ {r(v)} = A

2 We write ∃! for unique existential quantification.

166 S. Mauw and S. Radomirović

A4A3

A2

A1 C1 C3

C2

Bq

B1

B2

B3 B4

(a) Skeletal graph

A4A3

A2

A1 C1 C3

C2

Bq

B1

B2

B3 B4

(b) Full graph

Fig. 2. Skeletal and full representation of a DAG MPCS protocol

5.2 Resolve Protocol

Let P = (V,E, r, μ, δ) be a DAG MPCS protocol specification. The resolve
protocol is a two-message protocol between a signer and the TTP T, initi-
ated by the signer. The communication channels for this protocol are assumed
to be resilient, confidential, and authentic. T is assumed to respond imme-
diately to the signer. This is modeled in P via an exit edge from a vertex
v ∈ V \ {vT} to the unique vertex vT ∈ V . T’s response is given by the δ
function, δ : M∗ → {“abort”, (SP (C))P∈A}. If m1, . . . ,mn is the sequence of
messages sent by the signers to T, then δ(m1, . . . ,mn) is T’s response for the
last signer in the sequence. The function will be stated formally in Definition 10.

We denote the resolve protocol in the following by Res(C, v). The signer ini-
tiating Res(C, v) is r(v). He sends the list of messages assigned to the vertices in
his pre-knowledge K≺(v), prepended by ℘r(v)(C, v, r(v),T), to T. This demon-
strates that r(v) has executed all receive events causally preceding v. We denote
r(v)’s message for T by pv:

pv =
(
℘r(v)(C, v, r(v),T), (μ(w, v

′))(w,v′)∈K≺(v)

)
(1)

The promise ℘r(v)(C, v, r(v),T), which is the first element of pv, is used by T
to extract the contract C, to learn at which step in the protocol r(v) claims to
be, and to create a signature on behalf of r(v) when necessary. All messages re-
ceived from the signers are stored. T performs a deterministic decision procedure,
shown in Algorithm 1, on the received message and existing stored messages and
immediately sends back “abort” or the list of signatures (SP (C))P∈A.

Generalizing Multi-party Contract Signing 167

Our decision procedure is based on [10, 17]. The input to the algorithm con-
sists of a message m received by the T from a signer and state information
which is maintained by T. T extracts the contract and the DAG MPCS proto-
col specification from m. For each contract C, T maintains the following state
information. A list EvidenceC of all messages received from signers, a set IC of
vertices the signers contacted T from, a set DishonestC of signers considered to
be dishonest, and the last decision made decisionC. If T has not been contacted
by any signer regarding contract C, then decisionC = “abort”. Else, decisionC is
equal to “abort” or the list (SQ(C)Q∈A) of signatures on C, one by each signer.

T verifies that the request is legitimate in that the received message m is
valid and the requesting signer P is not already considered to be dishonest. If
these preliminary checks pass, the message is appended to EvidenceC. This is
described in Algorithm 1 in lines 1 through 9. The main part of the algorithm,
starting at line 10, concerns the detection of signers who have continued the main
protocol execution after executing the resolve protocol. If P has not received a
promise from every other signer in the protocol (i.e. the if clause in line 10 is not
satisfied), then T sends back the last decision made (line 17). This decision is an
“abort” token unless T has been contacted before and decided to send back a
signed contract. If P has received a promise from every other signer, T computes
the set of dishonest signers (lines 11 through 13) by adding to it every signer
which has carried out the resolve protocol, but can be seen to have continued
the protocol execution (line 12) based on the evidence the TTP has collected.
If P is the only honest signer that has contacted T until this point in time, the
decision is made to henceforth return a signed contract.

Definition 10. Let P = (V,E, r, μ, δ) be a DAG MPCS protocol specification
and δ0 the TTP decision procedure from Algorithm 1. Then δ : M∗ → M is
defined for m1, . . . ,mn ∈ M by

δ(m1, . . . ,mn) = π1(δ1(m1, . . . ,mn)),

where π1 is the projection to the first coordinate and δ1 is defined inductively by

δ1() = (“abort”, “abort”, ∅, ∅, ∅)
δ1(m1, . . . ,mn) = δ0(mn, δ1(m1, . . . ,mn−1)).

Thus the δ function represents the response of the TTP in the Res(C, v)
protocol for all executions of P .

6 Fairness

We say that a DAG MPCS protocol execution is fair for signer P if one of the
following three conditions is true: (i) No signer has received a signature of P ; (ii)
P has received signatures of all other signers; (iii) P has not received an “abort”
token from the TTP.

The key problem in formalizing these conditions is to capture under which
circumstances the TTP responds with an “abort” token to a request by a signer.

168 S. Mauw and S. Radomirović

Algorithm 1. TTP decision procedure δ0
input : m,r, decisionC,EvidenceC, IC,DishonestC
output: r,decisionC,EvidenceC, IC,DishonestC

1 if m �= (℘P (C, v, P,T), list) then
2 r = “abort”;
3 return output;

4 if P ∈ DishonestC ∨ ∀w ∈ V : m �= pw ∨ ∃w′ ∈ IC : P = r(w′) then
5 DishonestC := DishonestC ∪ {P};
6 r = “abort”;
7 return output;

8 IC := IC ∪ {v};
9 EvidenceC := (EvidenceC,m);

10 if v /∈ InitSet(P) then
11 for w ∈ IC do
12 if w ≺ (w′, x) ∈ K≺(IC) ∧ r(w′) = r(w) then
13 DishonestC := DishonestC ∪ {r(w)};
14 if ∀w ∈ IC : r(w) /∈ DishonestC =⇒ r(w) = P then
15 decisionC := (SQ(C))Q∈A;

16 r = decisionC;
17 return output;

The TTP’s response is dependent on the decision procedure which in turn de-
pends on the order in which the TTP is contacted by the signers. Since the deci-
sion procedure is deterministic, it follows that the δ function can be determined
for every execution ρ = [s0, α1, s1, . . . , sn] by considering the pre-knowledge of
the vertices from which the exit transitions are taken. Abusing notation, we will
write δ(ρ) instead of δ(m1, . . . ,mk) where mi are the messages sent to the TTP
at the i-th exit transition in the execution.

Definition 11. Let T be the TTP. An execution ρ = [s0, α1, . . . , sn] of P is fair
for signer P if one of the following conditions is satisfied:

1. P has not sent a signature and no signer has received signatures from T.

δ(ρ) = “abort” ∧ ∀(v, w) ∈ sn : r(v) = P, r(w) �= P =⇒ v �∈ SigSet(P)

2. P has received signatures from all other signers.

∃v ∈ s ∩ EndSet(P) : r(v) = P

3. P has not received an “abort” token from T.

∃(v,w) ∈ s : r(v) = P ∧ r(w) = T ⇒ δ([s0, . . . , sk, exit , sk ∪ {(v, w)}]) �= “abort”

If none of these conditions are satisfied, the execution is unfair for P .

Definition 12. An MPCS protocol specification P is said to be fair, if every
execution ρ of P is fair for all signers that are honest in ρ.

Generalizing Multi-party Contract Signing 169

6.1 Sufficient and Necessary Conditions

By the TTP decision procedure, T returns an “abort” token if contacted from a
vertex v ∈ InitSet(P). Thus a necessary condition for fairness is that an honest
signer executes all steps of the initial set causally before all steps of the signing
set that are not in the end set:

∀v ∈ InitSet(P), w ∈ SigSet(P) \ EndSet(P) : r(v) = r(w) =⇒ v ≺ w (2)

If P contacts T from a vertex v �∈ InitSet(P), then T responds with an “abort”
token if it has already issued an “abort” token to another signer who is not in the
set DishonestC. This condition can be exploited by a group of dishonest signers
in an abort chaining attack [16]. The following definition states the requirements
for a successful abort chaining attack. For ease of reading, we define the predicate
hon(v, I). The predicate is true if there is no evidence (pre-knowledge) at the
vertices in I that the signer r(v) has sent a message at or causally after v:

hon(v, I) ≡ ¬∃(x, y) ∈ K≺(I) : v ≺ (x, y) ∧ r(v) = r(x)

This is precisely the criterion used by T to verify honesty in Algorithm 1, line 12.

Definition 13. Let C be a contract and l ≤ |A|. A sequence (v1, . . . , vl | s)
over V is called an abort-chaining sequence (AC sequence) for P if the following
conditions hold:

1. Signer r(v1) receives an abort token: v1 ∈ InitSet(P)
2. No signer contacts T more than once: ∀i�=j r(vi) �= r(vj)
3. The present and previous signer to contact T are considered honest by T:

∀i ≤ l : hon(vi, {v1, . . . , vi}) ∧ hon(vi−1, {v1, . . . , vi})

4. The last signer to contact T has not previously received all signatures:

∀v ≺ vl : r(v) = r(vl) =⇒ v �∈ EndSet(P)

5. The last signer to contact T has sent a signature before contacting T or in
a parallel thread:

s ∈ SigSet(P) \ EndSet(P) : r(s) = r(vl) ∧ vl �� s

The AC sequence represents the order in which signers execute the resolve
protocol with T. A vertex vi in the sequence implies an exit transition via the
edge (vi, vT) in the protocol execution. An abort chaining attack must start at a
step in which T has no choice but to respond with an abort token due to lack of
information. Condition 1 covers this. Each signer may run the resolve protocol
at most once. This is covered by Condition 2. To ensure that T continues to issue
“abort” tokens, Condition 3 requires that there must always be a signer which
according to T’s evidence has not continued protocol execution after contacting
T. To complete an abort chaining attack, there needs to be a signer which has

170 S. Mauw and S. Radomirović

issued a signature (Condition 5), but has not received a signature (Conditions 4
and 5) and will not receive a signed contract from T because there is an honest
signer (by Condition 3) which has received an “abort” token.

It is not surprising that a protocol with an AC sequence is unfair. However,
the converse is true, too. The proof of this and the following theorems is given
in [14].

Theorem 1. Let P be a DAG MPCS protocol. Then P is fair if and only if it
has no AC sequences.

6.2 Fairness Criteria

Theorem 1 reduces the verification of fairness from analyzing all executions to
verifying that there is no AC-sequence (Definition 13). This, however, is still
difficult to verify in general. The following two results are tools to quickly assess
fairness of DAG MPCS protocols. The first is an unfairness criterion and the
second is a fairness criterion for a large class of DAG MPCS protocols.

The following theorem states that in a fair DAG MPCS protocol, the union
of paths from the initial set to every vertex v ∈ SigSet(P) must contain all
permutations of all signers (other than r(v)) as subsequences. In the class of
linear MPCS protocols, considered in [10], this criterion was both necessary and
sufficient. We show in Example 2 below that this criterion is not sufficient for
fairness of DAG MPCS protocols.

For I ⊆ V , v ∈ V , let path(I, v) be the set of all directed paths from a vertex
in I to v and let seq(I, v) = {r(p) ∈ A∗ | p ∈ path(I, v)} be the sequences of
signers corresponding to the paths from I to v, where r(p) = (r(v1), . . . , r(vk)).

Theorem 2. Let k = |A|. Let P be an optimistic fair DAG MPCS protocol,

I = {v ∈ InitSet(P) | (v ≺ w ∧ r(v) = r(w)) ⇒ w �∈ InitSet(P)} .

If v ∈ SigSet(P), then for every permutation (P1, . . . , Pk−1) of signers in A \
{r(v)}, there exists a sequence in seq(I, v) which contains (P1, . . . , Pk−1) as a
(not necessarily consecutive) subsequence.

The converse of the theorem is not true as the following example shows. In
particular, this example demonstrates that the addition of a vertex to a fair
DAG MPCS protocol does not necessarily preserve fairness.

Example 2. The protocol in Figure 3a is fair by the results of [10]. By Theorem 2,
for every vertex v ∈ SigSet(P) every permutation of signers in A \ {P} occurs
as a subsequence of a path in seq(I, v). The protocol in Figure 3b is obtained
by adding the vertex Bq as a parallel thread of signer B. Thus the permutation
property on the set of paths is preserved, yet the protocol is not fair: An AC
sequence is (Bq, C3, A4|A3). The vertex Bq is in InitSet(P), the evidence pre-
sented to the TTP at C3 includes the vertices causally preceding C2, thus B
is considered to be honest. The evidence presented by signer A at A4 are the
vertices causally preceding A3 proving that B is dishonest, but C is honest. Thus
A has sent a signature at A3 but will not receive signatures from B and C.

Generalizing Multi-party Contract Signing 171

A4A3A2A1 C1 C3C2B1 B2 B3 B4

(a) A three-party MPCS protocol from a signing sequence [10].

A4A3

A2
A1 C1 C3

C2

Bq

B1

B2
B3 B4

(b) Adding a vertex

A4A3

A2
A1 C1 C3

C2

Bq

B1
B2

B3 B4

(c) Adding an ε edge.

Fig. 3. Skeletal graphs of fair protocols (a, c) and an unfair protocol (b)

If a protocol has no in-role parallelism, then the converse of Theorem 2 is
true. Thus we have a simple criterion for the fairness of such protocols.

Theorem 3. Let P be an optimistic DAG MPCS protocol without in-role par-
allelism. Let

I = {v ∈ InitSet(P) | (v ≺ w ∧ r(v) = r(w)) ⇒ w �∈ InitSet(P)} .

If all paths from I to v ∈ SigSet(P) contain all permutations of A \ {r(v)} then
P is fair for r(v).

Example 3. By adding a causal edge between vertex Bq and vertex B2 of the
protocol in Figure 3b, as shown in Figure 3c, we obtain again a fair protocol.

7 Protocols

In this section we illustrate the theory and results obtained in the preceding
sections by proving optimality results and constructing a variety of protocols.

7.1 Minimal Complexity

We prove lower bounds for the two complexity measures defined in our model,
viz. parallel and message complexity.

Theorem 4. The minimal parallel complexity for an optimistic fair DAGMPCS
protocol is n+ 1, where n is the number of signers in the protocol.

Proof. By Theorem 2, every permutation of signers in the protocol must occur
as a subsequence in the set of paths from a causally last vertex in the initial set
to a vertex in the signing set. Since a last vertex v in the initial set must have a
non-empty knowledge K(v), there must be a message edge causally preceding v.

172 S. Mauw and S. Radomirović

There are at least n− 1 edges in the path between the vertices associated with
the n signers in a permutation and there is at least one message edge outgoing
from a vertex in the signing set. Thus a minimal length path for such a protocol
must contain n+ 1 edges.

The minimal parallel complexity is attained by the broadcast protocols of
Baum-Waidner and Waidner [2].

Theorem 5. The minimal message complexity for an optimistic fair DAGMPCS
protocol is λ(n)+ 2n− 3, where n is the number of signers in the protocol and λ(n)
is the length of the shortest sequence which contains all permutations of elements
of an n-element set as subsequences.

The minimal message complexities for 2 < n < 8 are n2 + 1. The minimal
message complexities for n ≥ 10 are smaller or equal to n2.

Note that while broadcasting protocols have a linear parallel complexity, they
have a cubic message complexity, since in each of the n + 1 rounds each of
the n signers sends a message to every other signer. Linear protocols on the
other hand have quadratic minimal message and parallel complexities. In the
following we demonstrate that there are DAG protocols which attain a linear
parallel complexity while maintaining a quadratic message complexity.

7.2 Protocol Constructions

Single Contractor, Multiple Subcontractors. A motivation for fair MPCS
protocols given in [10] is a scenario where a single entity, here referred to as
a contractor, would like to sign k contracts with k independent companies, in
the following referred to as subcontractors. The contractor has an interest in
either having all contracts signed or to not be bound by any of the contracts.
The subcontractors have no contractual obligations towards each other. It would
therefore be advantageous if there is no need for the subcontractors to directly
communicate with each other.

The solutions proposed in [10] are linear protocols. Their message and parallel
complexities are thus quadratic. Linear protocols can satisfy the requirement
that subcontractors do not directly communicate with each other only by greatly
increasing the message and parallel complexities.

The protocol we propose here is a DAG, its message complexity is 2(n+1)(n−
1) and its parallel complexity is 2n+ 2 for n signers. It therefore combines the
low parallel complexity typically attained by broadcasting protocols with the
low message complexity of linear protocols. Additionally, the protocol proposed
does not require any direct communication between subcontractors.

Figure 4a shows a single contractor with three subcontractors. The protocol
can be subdivided into five rounds, one round consisting of the subcontractors
sending a message to the contractor followed by the contractor sending a message

Generalizing Multi-party Contract Signing 173

A S1 S2 S3

s s
s

s s s

(a) A single contractor and
three subcontractors.

L A B R

s s

s

s
s s

(b) Two joint subcontractors.

Fig. 4. Two examples of fair DAG MPCS protocols

to the subcontractors. In the first four rounds promises are sent, in the final
round signatures are sent. The protocol can be easily generalized to more than
three subcontractors. For every subcontractor added, one extra round of promises
needs to be included in the protocol specification.

The protocol is fair by Theorem 3. The MSC shown in Figure 4a resembles the
skeletal graph from which it was built. The message contents can be derived by
computing the full graph according to Condition 2 of Definition 9. The result is
as follows. In each round of the protocol, each of the subcontractors sends to the
contractor a promise for the contractor and for each of the other subcontractors.
The contractor then sends to each of the subcontractors all of the promises
received and his own promise. The final round is performed in the same manner,
except that promises are replaced by signatures.

Two Contractors with Joint Subcontractors. Figure 4b shows a protocol
where two contractors want to sign a contract involving two subcontractors. The
subcontractors are independent of each other.

After the initial step, where all signers send a promise to the first contractor
A, there are three protocol rounds, one round consisting of the contractor A
sending promises to the two subcontractors L and R in parallel which in turn
send promises to the second contractorB. A new round is started with the second
contractor sending the promises received with his own promise to contractor A.

This protocol, too, can be generalized to several independent subcontractors.
For every subcontractor added, one extra protocol round needs to be included in
the protocol specification and each protocol step of the subcontractors executed
analogously.

174 S. Mauw and S. Radomirović

L A R

s s

s s

ss

Fig. 5. In-role parallelism

Parallelism within a Role. Figure 5 shows
an example of a subcontracting protocol with
in-role parallelism for the contractor role. The
contractor initiates the protocol. In the indi-
cated parallel phase, the contractor may im-
mediately forward a promise by one of the
subcontractors along with his own promise to
the other subcontractor without waiting for
the latter subcontractor’s promise. The same
is true in the signing phase. The fairness prop-
erty for this protocol has been verified with a
tool which tested fairness for each signer in all
possible executions.

8 Conclusion

We have identified fair subcontracting as a challenging new problem in the area
of multi-party contract signing. We have made first steps towards solving this
problem by introducing DAG MPCS protocols and extending existing fairness
results from linear protocols to DAG protocols. For three typical subcontracting
configurations we propose novel DAG MPCS protocols that perform well in
terms of message complexity and parallel complexity. Fairness of our protocol
schemes follows directly from our theoretical results and we have verified it for
concrete protocols with our automatic tool.

There are a number of open research questions related to fair subcontracting
that we haven’t addressed. We mention two. The first concerns the implemen-
tation of multi-contracts. In our current approach we consider a single abstract
contract shared by all parties. However, in practice such a contract may con-
sist of a number of subcontracts that are accessible to the relevant signers only.
How to cryptographically construct such contracts and what information these
contracts should share is not evident. Second, a step needs to be made towards
putting our results into practice. Given the application domains identified in
this paper, we must identify the relevant signing scenarios and topical boundary
conditions in order to develop dedicated protocols for each application area.

Acknowledgement. We thank Barbara Kordy for her many helpful comments
on this paper.

References

1. Asokan, N.: Fairness in electronic commerce. PhD thesis, Univ. of Waterloo (1998)
2. Baum-Waidner, B., Waidner, M.: Optimistic asynchronous multi-party contract

signing. Research Report RZ 3078 (#93124), IBM Zurich Research Laboratory,
Zurich, Switzerland (November 1998)

Generalizing Multi-party Contract Signing 175

3. Baum-Waidner, B., Waidner, M.: Round-optimal and abuse free optimistic multi-
party contract signing. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 524–535. Springer, Heidelberg (2000)

4. Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multi-party contract sign-
ing. In: CSFW 2004, p. 266. IEEE, Washington, DC (2004)

5. Even, S., Yacobi, Y.: Relations among public key signature systems. Technical
Report 175, Computer Science Dept. Technion, Haifa, Isreal (March 1980)

6. Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-free optimistic contract sign-
ing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999)

7. Garay, J.A., MacKenzie, P.D.: Abuse-free multi-party contract signing. In: Jayanti,
P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 151–166. Springer, Heidelberg (1999)

8. Karaenke, P., Kirn, S.: Towards model checking & simulation of a multi-tier ne-
gotiation protocol for service chains. In: Int. Found. for Autonomous Agents and
Multiagent Systems AAMAS 2010, pp. 1559–1560 (2010)

9. Katok, E., Pavlov, V.: Fairness in supply chain contracts: a laboratory study. J. of
Operations Management 31, 129–137 (2013)

10. Kordy, B., Radomirović, S.: Constructing optimistic multi-party contract signing
protocols. In: CSF 2012, pp. 215–229. IEEE Computer Society (2012)

11. Kraus, S.: Automated negotiation and decision making in multi-agent environ-
ments. In: ACM Multi-agent Systems and Applications, pp. 150–172 (2001)

12. Krishnan, H., Winter, R.: The economic foundations of supply chain contract-
ing. Foundations and Trends in Technology, Information and Operations Manage-
ment 5(3-4), 147–309 (2012)

13. Lu, K., Yahyapour, R., Yaqub, E., Kotsokalis, C.: Structural optimisation of re-
duced ordered binary decision diagrams for SLA negotiation in IaaS of cloud com-
puting. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS,
vol. 7636, pp. 268–282. Springer, Heidelberg (2012)

14. Mauw, S., Radomirović, S.: Generalizing Multi-party Contract Signing. CoRR,
abs/1501.03868 (Extended version.) (2015), http://arxiv.org/abs/1501.03868

15. Mauw, S., Radomirović, S., Dashti, M.T.: Minimal message complexity of asyn-
chronous multi-party contract signing. In: CSF 2009, pp. 13–25. IEEE (2009)

16. Mukhamedov, A., Ryan, M.D.: Improved multi-party contract signing. In: Dietrich,
S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 179–191.
Springer, Heidelberg (2007)

17. Mukhamedov, A., Ryan, M.D.: Fair multi-party contract signing using private con-
tract signatures. Inf. Comput. 206(2-4), 272–290 (2008)

18. Schunter, M.: Optimistic Fair Exchange. Phd thesis, Universität des Saarlandes
(2000)

19. Seifert, R., Zequiera, R., Liao, S.: A three-echelon supply chain with price-only
contracts and sub-supply chain coordination. Int. J. of Production Economics 138,
345–353 (2012)

20. Yaqub, E., Wieder, P., Kotsokalis, C., Mazza, V., Pasquale, L., Rueda, J., Gómez,
S.G., Chimeno, A.: A generic platform for conducting SLA negotiations. In: Service
Level Agreements for Cloud Computing, pp. 187–206. Springer (2011)

21. Zhang, Y., Zhang, C., Pang, J., Mauw, S.: Game-based verification of contract
signing protocols with minimal messages. Innovations in Systems and Software
Engineering 8(2), 111–124 (2012)

http://arxiv.org/abs/1501.03868

Leakiness is Decidable for Well-Founded

Protocols�

Sibylle Fröschle

OFFIS & University of Oldenburg, 26121 Oldenburg, Germany
froeschle@informatik.uni-oldenburg.de

Abstract. A limit to algorithmic verification of security protocols is
posed by the fact that checking whether a security property such as se-
crecy is satisfied is undecidable in general. In this paper we introduce the
class of well-founded protocols. It is designed to exclude what seems to
be common to all protocols used in undecidability proofs: the protocol
syntax ensures that honest information cannot be propagated unbound-
edly without the intruder manipulating it. We show that the secrecy
property of leakiness is decidable for well-founded protocols.

Consider the insecurity problem that stands behind classical protocol veri-
fication: Given a protocol P and an attack goal G, is there a run of protocol
P controlled by the Dolev-Yao intruder that obtains G? This problem is well-
known to be undecidable in general [13,17]. One can distinguish between two
directions to restrict the problem to analyse the decidability border.

One direction is to restrict the sources of infinity the Dolev-Yao intruder can
make use of: an attack may involve messages of unbounded size, an unbounded
number of freshly generated data, and an unbounded number of sessions. This
direction is well-investigated and many positive results have been obtained. in-
security turns out to be NP-complete when the number of sessions is bounded
[23,7], and EXPTIME-complete when both the number of freshly generated data
and the message size is bounded [12,14]. insecurity remains undecidable when
only one of these two restrictions is imposed. A recent survey of this area can
be found in [14].

The second direction for borderline investigations is to leave the sources of
infinity a priori unconstrained, but impose restrictions on the message format.
In [10,9] insecurity was shown to be PTIME decidable for ping-pong protocols.
These protocols have a very restricted message format that makes it possible to
formalize them by a form of context-free grammars. More directly motivated by
protocol verification, works by Lowe [18] and Ramanujam and Suresh [20,22,21]
investigate decidability when imposing conditions that make encrypted messages
context-explicit. The idea is that such protocols merely satisfy the prudent engi-
neering practice recommended by Abadi and Needham [1]. These works achieve

� This work is partially supported by the Niedersächsisches Vorab of the Volkswagen
Foundation and the Ministry of Science and Culture of Lower Saxony as part of
the Interdisciplinary Research Center on Critical Systems Engineering for Socio-
Technical Systems.

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 176–195, 2015.
DOI: 10.1007/978-3-662-46666-7_10

froeschle@informatik.uni-oldenburg.de

Leakiness is Decidable for Well-Founded Protocols 177

decidability results for the problem of non-secrecy without temporary secrets,
which we call leakiness here.

Our Contribution. In this paper, we tackle the decidability of context-explicit
protocols ‘from the top’, trying to pinpoint in an abstract manner why the usual
undecidability reductions do not carry over to such protocols. More concretely,
we introduce the class of well-founded protocols. It is designed to exclude what
seems to be common to all protocols used in undecidability results: the message
format allows that honest information can be propagated unboundedly without
the intruder manipulating it. We prove that leakiness is decidable for well-
founded protocols. Our class strictly contains those of [18,20,22,21].

Related Work. In [18] Lowe obtains a small model property (from which decid-
ability of leakiness is immediate) by a condition that requires that encrypted
components are textually distinct, and that each encrypted component includes
all protocol roles. Together this ensures that every encryption that occurs in a
protocol run can be uniquely assigned to a protocol position and the set of agents
involved in the run. The structured protocols of [20] introduce a condition that is
similar to the first part of Lowe’s: between any two terms that occur in distinct
communications, no encrypted subterm of one can be unified with a subterm of
the other. In the full version of this paper [22] the authors obtain NEXPTIME
decidability of leakiness for their class of context-explicit protocols: these pro-
tocols are structured and in addition require that each encryption to be sent
out is tagged by a freshly generated nonce. This ensures that each instantiation
of an encryption can be traced back to exactly one session. In [21] Ramanujam
and Suresh obtain decidability of leakiness for their tagged protocols. These
are essentially an instance of their context-explicit protocols: the structured con-
dition is implemented by using constants to identify encrypted subterms; they
also require the additional dynamic tagging with freshly generated nonces. The
novelty of [21] lies in the fact that the result also works for untyped messages,
and hence, unbounded message length.

The three results [18,22,21] have in common that they establish a small model
property: if there is an attack then there is a small attack and the problem
reduces to checking protocol runs with a bounded number of events. The three
works do not allow composed keys nor blind forwarding of ciphertexts. Since [18]
and [22] work with a typed algebra together with the latter this means that the
message size is bounded, and decidability follows from the small model property.
[21] lifts the typing restriction, and thereby admits messages of unbounded size.
In addition to the small model property it is shown that if there is an attack
then there is a well-typed attack.

In [2] Arapinas and Duflot provide a general approach for bounding the size of
messages in an attack: they introduce a condition of well-formedness and show
that a protocol admits an attack iff it admits a well-typed attack for a partic-
ular typing system that bounds message size. They also show that the tagging
scheme of Blanchet and Podelski [3] implements well-formedness. The tagging
system is light in that it only introduces a different constant in each encryption.
The tagging system is used in [3] to enforce termination of a resolution-based

178 S. Fröschle

verification method. (The verification method is approximate so this does not
give a decidability result.) In [5] the approach of [2] is extended to equivalence
checking and a more general typing system. As an application decidability of
trace equivalence for tagged protocols is obtained for a fixed number of nonces.
The setting admits symmetric encryption and assumes session identifiers.

Dougherty and Guttman are first to apply the idea of context-explicitness in
a rich algebraic setting [11]. They introduce a class of lightweight Diffie-Hellman
protocols with simple signatures. The simple signatures are defined by requiring
an ordering on the occurrences of signatures in a protocol to be acyclic. They
obtain a small model property for their class, which together with other algebraic
results leads to decidability of their security goals for lightweight Diffie-Hellman
protocols.

Synopsis. In Section 1 we present the necessary definitions. In Section 2 we
introduce well-founded protocols motivated by a notion of honest causality, and
prove their characteristic property. In Section 3 we introduce a normal form for
intruder deductions and protocol runs, so-called well-structured source trees and
bundles. We obtain two structural insights on well-structured bundles. In Sec-
tion 4 this allows us to transform honest cause components of non-leaky bundles
into bundles. The transformation also works for minimal leaky bundles and pre-
serves leaks. Altogether, this means that the size of minimal leaky bundles is
bounded by the size of honest cause components. (Indeed, this holds for pro-
tocols in general.) For well-founded protocols we obtain a bound on the size
of honest cause components, and thereby of minimal leaky bundles. With this
decidability is immediate. The ideas behind this work were presented at [15]. A
full version of the paper can be found on the web page of the author.

1 Preliminaries

Terms and Messages. Let Atoms be a set of atomic messages or atoms, and
AVars a set of variables for atoms. Then ATerms = Atoms ∪ AVars is the set
of atomic terms. The set of atoms, and variables for atoms respectively, can be
be further structured into several atomic message types. Here we only assume
a set of agent names Agents ⊂ Atoms , and a set of variables for agent names
VarsAgents respectively. Set TermsAgents = Agents ∪ VarsAgents . Moreover, let
Vars be a set of variables to present any message.

The set of terms, denoted by Terms , is generated from the set of basic terms
ATerms ∪Vars by the following operators:

– priv (ag) where ag ∈ TermsAgents ,
– 〈t1, t2〉 where t1, t2 ∈ Terms ,
– {t}k where t ∈ Terms and k ∈ ATerms ,
– {|t|}ag where t ∈ Terms and ag ∈ TermsAgents .

priv (ag) depicts the private key of agent ag , 〈t1, t2〉 represents the concatenation
of terms t1 and t2, {t}k models the symmetric encryption of t by atomic key k,

Leakiness is Decidable for Well-Founded Protocols 179

and {|t|}ag stands for the asymmetric encryption of t with the public key of agent
ag . As usual we equate the public keys of agents with their names.

Given two terms t1, t2, we write t1 � t2 if t1 is a subterm of t2. We also define
a relation �s to express when a term t1 is source-contained in a term t2. This is
inductively defined as follows:

– t �s a where a ∈ ATerms iff t = a,
– t �s priv (ag), iff t = priv (ag) or t = ag ,
– t �s 〈t1, t2〉 iff t = 〈t1, t2〉 or t �s t1 or t �s t2,
– t �s {t′}k iff t = {t′}k or t �s t

′,
– t �s {|t′|}ag iff t = {|t′|}ag or t �s t

′.

A message is a ground, i.e., variable-free term. A message template is a term
that does not contain any elements of Atoms. We denote the set of messages by
Mesg and the set of message templates by TMesg . A ground substitution is a
function that assigns messages to variables such that the types are preserved.

x y

〈x, y〉 Cpair
〈x, y〉
x Dpair1

〈x, y〉
y Dpair2

x ya

{x}ya
Csenc

{x}ya ya
x Dsenc

x yag

{|x|}yag
Caenc

{|x|}yag priv(yag)
x Daenc

where x, y ∈ Vars , ya ∈ AVars , and yag ∈ VarsAgents .

Fig. 1. The Dolev-Yao intruder deduction system IDY

.

Intruder Deduction Capabilities. We assume the deduction capabilities of
the standard Dolev-Yao intruder, modelled by the inference system IDY depicted
in Fig. 1. The rules of inference fall into matching composition and decomposition
rules. The composition rules model the intruder’s ability to build new messages
from messages he has already deduced while the decomposition rules capture
when he can decompose deduced messages into their parts.

Let T be a set of terms, and u be a term. We say u is deducible from T in
IDY , written u ∈ DY(T), iff there is a proof tree of T � u in IDY . A proof of
T � u in an inference system I is a proof tree Π such that:

– Every leaf of Π is labelled with a term v such that v ∈ T .
– For every node labelled with v0 having n children labelled with v1, . . . , vn,

there is an instance of an inference rule with conclusion v0 and premises v1,
. . . , vn. We say that Π ends with this instance if the node is the root of Π .

– The root is labelled with u.

180 S. Fröschle

Let Π be a proof tree of T � u. Let n be a node of Π . We write lab(n) for the
label of n. We denote the subtree that is rooted in n by subtree(n). Clearly, it is
a proof tree of T � lab(n). We denote the root node of Π by root(Π), and the
set of leaves of Π by leaves(Π). We denote by Concl (Π) the label of the root
of Π , and by Hyp(Π) the set of labels of the leaves of Π . If Π only contains
instances of decomposition rules we say Π is a decomposition tree, and if it only
contains instances of composition rules a composition tree respectively. The size
of a proof tree is the number of its nodes. A proof tree of T � u is minimal if
there is no other proof tree of T � u with size strictly smaller than Π .

Protocol Specifications. A protocol is a pair P = (rolesP , scriptP), where
rolesP is a finite set of roles, and scriptP is a function that maps every role in
rolesP to a role script. Given r ∈ rolesP , scriptP (r) is a finite sequence

p1M1 p2M2 . . . pnMn

where n ≥ 1, and for every i ∈ [1, n], pi ∈ {+,−} and Mi is a message template,
i.e. a term without any atom. A term prefixed with a ‘+’ is thought to be sent,
and a term prefixed with a ‘−’ to be received respectively. For i ∈ [1, n] define
freshr(i) to be the set {x ∈ Vars | pi = ‘ + ’ & x � Mi & ∀j ∈ [1, i[, x �� Mj}.
We require the following three axioms:

r1 p1 = ‘−’, and ∃A ∈ VarsAgents∃M ′
1 ∈ TMesg . M1 = A ∨ M1 = 〈A,M ′

1〉,
r2 ∀i ∈ [1, n], freshr(i) ⊆ AVars, and
r3 ∀i ∈ [1, n], if pi = ‘+’ then

{Mj | j ∈ [1, i[& pj = ‘− ’} ∪ {priv (A)} ∪ freshr(i) � Mi ,
where A is given as in axiom (r1).

Role scripts will be interpreted as follows. The ownership of the session will be
defined by the agent name to be received in the first component of the first
message. This is the reason behind Axiom (r1). If a variable appears for the first
time in a message pattern to be received then any value that respects the sort
of the variable can be matched to it. If a variable appears for the first time in a
message pattern to be sent then a fresh value will be assigned to it at this step.
Axiom (r2) ensures that only atoms can be freshly generated. The received or
freshly generated value is henceforward understood to be bound to the variable.
Axiom (r3) ensures that each message to be sent can be assembled from the
messages already received, the private key of the owner of the session, and the
atoms to be freshly generated at this step. Our interpretation that variables that
first appear in a message pattern to be sent are assumed to be freshly generated
is no restriction: public session parameters such as agent names can be received
in a message to be sent by the intruder. Our use of message templates is no
restriction either: constants can be modelled by types with one element or via
adapting the definitions so that agents have prior knowledge of constants.

Example 1. The Needham-Schroeder Public Key (NSPK) Protocol [19] is infor-
mally described by the message exchange shown on the left below. Formally, it

Leakiness is Decidable for Well-Founded Protocols 181

is specified by P = (rolesP , scriptP), where rolesP = {A,B}, and scriptP (A)
and scriptP (B) are defined as follows.

1. A −→ B : {|NA, A|}B
2. B −→ A : {|NA, NB|}A
3. A −→ B : {|NB|}B

A B

1 −A,B −B,A

2 +{|NA, A|}B −{|NA, A|}B
3 −{|NA, NB|}A +{|NA, NB|}A
4 +{|NB|}B −{|NB|}B

Strands and Bundles. We now define protocol executions in terms of the
strand space model (e.g. [16]). More precisely, we work with a variation of the
strand space model: first, our definition of bundle will not make use of the usual
intruder strands but uses deduction trees whose leaves are mapped to output
events. Second, we add a total order to the concept of bundle, which means we
have available the execution order of events as well as the causal relationship
between them. In the following, assume a fixed protocol P = (rolesP , scriptP).

A strand represents an instantiation of a role script of the protocol or a prefix
thereof. (We admit prefixes to be able to model incomplete protocol sessions; a
situation that naturally arises in a snaphshot of a protocol execution.) Formally,
a strand of P is a totally ordered labelled graph s = (E,⇒, l) where

– E = {(s, 1), . . . , (s, n)}, n > 0,
– (s, i) ⇒ (s, j) iff j = i+ 1,
– l : E → {+,−}×Mesg , and

there are r ∈ rolesP , a prefix of scriptP (r) of the form p1M1 p2M2 . . . pnMn,
and a ground substitution σ such that for all i ∈ [1, n] we have:

S1 l(s, i) = piMiσ,
S2 if x ∈ freshr(i) then

(a) for all j ∈ [1, i[, xσ �� Mjσ,
(b) for all x′ ∈ freshr(i), xσ = x′σ implies x = x′.

Observe how the two axioms ensure that s can indeed be understood as an
instantiation of the partial role script via σ. Axiom (S1) ensures that the signed
message is an instance of the respective signed message template. Axiom (S2)
guarantees that if an atom is to be freshly generated for message Mi then (a) it
does not occur earlier on the strand, and (b) it is distinct from all other atoms
freshly generated for message Mi.

We call E the set of events of s. Given an event e of s, we call the first
component of l(e) the sign of e, written sign(e), and the second component the
message of e, written msg(e). If sign(e) = ‘+’, we call e an output event, and
if sign(e) = ‘−’ an input event respectively. We say atom a originates on event
(s, i) if (s, i) is an output event, a � msg(s, i), and for all j ∈ [1, i[, a �� msg(s, j).
In our technical framework we have the following convenient fact:

Proposition 2. Let s be a strand such that s is a (partial) instance of r ∈ rolesP
via substitution σ. For all events (s, i) of s we have: x ∈ freshr(i) iff xσ originates
on (s, i).

182 S. Fröschle

We assume a special strand init , which consists of a finite set of output events
that models the intruder’s initial knowledge he has prepared for the protocol run.
We assume that he has available at least his own private key, denoted by priv (i),
and an atom of each atomic type. By abuse of notation we usually consider this
strand as one event init .

An ordered strand space of P is a pair S = (S,<) where S is a set of strands
of P , and < is a total order on the events of S such that

S1 init ∈ S,
S2 ⇒ ⊆ <, and
S3 init < e for every event e �= init .

Axiom (S1) models that the intruder is always expected to prepare some initial
knowledge. Axiom (S2) expresses that if e′ precedes e in a session then e′ must
have happened before e. Axiom (S3) expresses that the intruder generates all
atoms he will use in the attack in advance.

In the context of an ordered strand space S = (S,<), we denote the set
of events of S by E, the set of input events by Ein , and the set of output
events by Eout respectively. Given e ∈ E, the downwards closure of e in S is
defined by e ⇓ = {e′ | e′ ≤ e}, and the strict downwards closure of e in S by
e ↓ = {e′ | e′ < e}. When S is not uniquely determined by the context we also
use e⇓S , and e↓S respectively.

Let S be an ordered strand space. A source (proof) tree wrt S is a pair (Π, src)
where Π is a proof tree, and src : leaves(Π) → Eout is a map from the leaf nodes
of Π to the output events of S such that src(nl) = e implies lab(nl) = msg(e).
Given a messagem, we say (Π, src) is a source tree form wrt S if Concl (Π) = m.

A bundle represents a snapshot of a protocol execution. Formally, a bundle of
P is a tuple B = (S, {(Πe, srce)}e∈Ein) where

– S = (S,<) is an ordered strand space of P , and
– ∀e ∈ Ein , (Πe, srce) is a source tree for msg(e) wrt e↓

such that

B1 every atom a occurring in S has a unique origin in S: there is exactly one
event e ∈ E such that a originates on e.

The required family of source trees ensures that the message of every input
event can be deduced by the intruder from the messages of the previous out-
put events (including the intruder’s own event init .) Axiom (B1) together with
Prop. 2 ensures that if an atom is thought to be freshly generated on some strand
then on any other strand it has to be received before it can be sent. Given an
atom a that occurs in S, define the origin of a, denoted by origin(a), to be the
unique event on which a originates as guaranteed by Axiom (B1).

Define → ⊆ Eout × Ein by: e → e′ iff there is a leaf nl ∈ Πe′ such that
srce′ (nl) = e. It is easy to check that → ⊆ <. We denote the relation → ∪ ⇒
by ≺1. ≺1 expresses immediate causality: if e → e′ then e is an immediate cause
of e′ due to the intruder deduction causality between messages captured by the

Leakiness is Decidable for Well-Founded Protocols 183

intruder to deduce a message that is then injected by him into a protocol session.
If e ⇒ e′ then e is an immediate cause of e′ due to the execution order causality
within a protocol session. The transitive closure of ≺1, denoted by ≺, is a strict
order, which captures causality. It is compatible with the execution order <: we
have ≺ ⊆ <, and hence, ≺ is a strict order.

A bundle skeleton of P is an ordered strand space S of P that can be extended
to form a bundle, i.e., there is a family of source trees {(Πe, srce)}e∈Ein such that
(S, {(Πe, srce)}e∈Ein) is a bundle of P .

We carry over our notations E, Ein , Eout , e ⇓, and e ↓ from ordered strand
spaces to bundles and bundle skeletons in the obvious way. Moreover, we write
DY(S) and DY(B) short for DY(M), where M is the set of messages of output
events of S, and B respectively.

The Leakiness Problem. We now define the secrecy problem as formulated
by Ramanujam and Suresh (e.g. [22]). We call the problem leakiness to avoid
confusion with other notions of secrecy. We also slightly generalize it to include
leaks of private keys. Informally, a protocol run is considered to be leaky if
(1) some atom is secret at some intermediate state of the run but known to
the intruder at the end of the run, or (2) the private key of some agent other
than the intruder is known to the intruder at the end of the run. The leakiness
problem is then to check whether a protocol has a leaky run.

Let P be a protocol, and S be a bundle skeleton of P . An atom a origi-
nates secretly in S if a �∈ DY(origin(a) ⇓). We say an atom a is a leak in S
if a originates secretly in S but a ∈ DY(S). We say a private key priv (ag)
is a leak in S if ag �= i but priv (ag) ∈ DY(S). S is leaky if there is a leak in
S and non-leaky otherwise. These notions carry over to bundles in the usual way.

leakiness:

Given: A protocol P .
Decide: Is there a bundle B of P such that B is leaky?

2 Honest Causality and Well-Founded Protocols

Well-founded protocols are defined to syntactically exclude what is common
to all protocols used in undecidability results: that honest information can be
propagated unboundedly without the intruder manipulating it. First, we define
two core concepts, honest encryptions and source paths. Based on these concepts
we formalize the idea of unmanipulated information propagation in terms of a
relation ≺h, called honest causality. This will lead us to our definition of well-
founded protocols We then confirm that for well-founded protocols the honest
causal depth of each bundle is indeed bounded by the depth of the protocol.
Finally, we define the concept of honest cause components.

Honest Encryptions and Source Paths. Let M be a set of messages the
intruder has available at some stage of a protocol run. We wish to single out

184 S. Fröschle

those encryptions that he can deduce but that he cannot analyse nor synthesize.
We call them the honest encryptions wrt M since they must have come from an
honest agent.

Given a set of messages M , an honest encryption wrt M is a message h ∈
DY(M) such that

1. h is a symmetric encryption {m}k such that k �∈ DY(M), or

2. h is a public key encryption {|m|}ag such that m �∈ DY(M).

We denote the set of honest encryptions wrt M by HEnc(M). Given a strand
space S, we write HEnc(S) short for HEnc(M), whereM = {msg(e) | e ∈ Eout}.

Let m be a message, and Π be a proof tree. Say m is source-contained in the
conclusion of Π . We are interested in tracing back where m originates from in
the deduction. We translate this into the concept of source path. Given a message
m, and a proof tree Π , we define a path π of Π to be an intermediate source
path of m in Π iff

Base case: π = nr such that nr is the root of Π , and m �s lab(nr), or

Inductive case: π = π′n such that π′ is an intermediate source path of m in
Π , and one of the following holds with respect to the last node n′ of π′ and
the rule instance it is conclusion of:

c1 : m1 [c2 : m2]

n′ : m′ R

1. R = Cpair , n is the left child c1, and m �s m1,
2. R = Cpair , n is the right child c2, and m �s m2,

3. R = Csenc or Caenc , n is the left child c1, and m �s m1,

4. R = Dpairi
for i = 1, or 2, or

5. R = Dsenc or Daenc, and n is the left child c1.

We say π is a soure path of m in Π if it is a maximal intermediate source path
of m in Π .

Proposition 3. Let m be a message, Π be a proof tree, and π be a source path
of m in Π. For all nodes n of π, we have m �s lab(n).

Note that if there are several occurrences of m in Concl(Π) then there can
be several source paths of m in Π . A source path will trace back m either to a
leaf, or to the conclusion of a composition node. Since atoms and private keys
cannot be composed they can always be traced back to leaves. Moreover, if m is
an honest encryption wrt Hyp(Π) then it can also be traced back to leaves since
it can neither be composed nor decomposed.

Proposition 4. Let M be a set of messages, m a message, and Π a proof tree
of M � m. If h ∈ HEnc(M) such that h �s m then there is a source path π of
h in Π such that π ends in a leaf.

Leakiness is Decidable for Well-Founded Protocols 185

Honest Causality. Let P be a protocol, and let B = (S,<, {(Πe, srce)}e∈Ein)
be a bundle of P . We define a relation →h ⊆ Eout × Ein as follows: e′ →h

e iffthere is h ∈ HEnc(e↓) such that there is a source path of h in Πe ending
in a leaf node nl with srce(nl) = e′.

We denote the relation →h ∪ ⇒ by ≺1
h. ≺1

h expresses that information is
propagated unmanipulated directly from one protocol event to another. If e′ ⇒ e
this is so because e′ precedes e in a protocol session. If e′ →h e this is so because
an encryption is passed from e′ to e in unmanipulated form: because it can
neither be analysed nor synthesized by the intruder at that point. The transitive
closure of ≺1

h, denoted by ≺h, is a strict order, which captures unmanipulated
information propagation. We call it honest causality. It is straightforward to
check that ≺h is a strict order.

Given an event e ∈ E, we define the honest causal depth of e, written depth≺h
(e),

inductively as follows: if e is minimal wrt ≺h then depth≺h
(e) = 0; otherwise

depth≺h
(e) = 1 + max {depth≺h

(e′) | e′ ≺1
h e}. The honest causal depth of B,

denoted by depth≺h
(B), is given by max {depth≺h

(e) | e ∈ E}.

Well-Founded Protocols. We now design a protocol class, which satisfies:
given a protocol P of the class, there is n ∈ Nat such that for every bundle B of
P , depthh(B) is bounded by n. We base the definition on a preorder on protocol
positions that captures potential unmanipulated information propagation.

Let P be a protocol. We define the set of protocol positions of P by Pos =
{(r, i) | r ∈ rolesP & 1 ≤ i ≤ |scriptP (r)|}. Define the output positions of P
by Posout = {(r, i) ∈ Pos | pi = ‘+’ in scriptP (r)}, and the input positions by
Pos in = {(r, i) ∈ Pos | pi = ‘−’ in scriptP (r)} respectively.

First, define a relation ⇒P ⊆ Pos × Pos by (r, i) ⇒P (r′, j) iff r = r′ and
i < j. Second, define a relation →P ⊆ Posout ×Pos in , which describes when an
enryption sent can possibly match an encryption received during a protocol run:
p →P p′ iff there are substitutions σ and σ′, and an encryption me such that
me � msg(p)σ, and me � msg(p′)σ′.

We denote the relation →p ∪ ⇒p by ≺1
p. p ≺1

p p′ expresses that information
might be passed in a protected manner directly from an instance of p to an
instance of p′. If p ⇒p p′ then this is so because p precedes p′ in a role script. If
p →p p′ this is so because an encryption, which is possibly neither analysable nor
composable by the intruder, might be sent from an instance of p to an instance
of p′. The reflexive and transitive closure of ≺1

p, denoted by �p, is a preorder
that captures potential unmanipulated information propagation.

Definition 5. We say a protocol P is well-founded iff ≺1
p is acyclic, or �p is

a partial order equivalently.

Let P be a well-founded protocol. Given a position p ∈ Pos , we define the
depth of p, written depth≺p

(p), inductively as follows: if p is minimal wrt to ≺p

then depth≺p
(p) = 0; otherwise depth≺p

(p) = 1 + max {depth≺p
(p′) | p′ ≺1

p p}.
The depth of protocol P , denoted by depth(P), is given by max {depth≺p

(p) | p ∈
Pos}.

186 S. Fröschle

Example 6. Recall the NSPK protocol from Example 1. It is easy to check that
≺1

p is acyclic, and hence, the NSPK protocol is well-founded. Moreover, observe
that it has depth 6.

Example 7. The Woo and Lam protocol (c.f. [6]) is a flawed authentication pro-
tocol where B wants to verify that A is present with the help of a server S.

1. A −→ B : A

2. B −→ A : NB

3. A −→ B : {NB}sh(A,S)

4. B −→ S : {A, {NB}sh(A,S)}sh(B,S)

5. S −→ B : {NB}sh(B,S)

Formally, the protocol is specified by the following role scripts:1

A B S

1 −A,B, S −B,A, S −S,A,B

2 +A −A −{A, {NB}sh(A,S)}sh(B,S)

3 −NB +NB +{NB}sh(B,S)

4 +{NB}sh(A,S) −X

5 +{A,X}sh(B,S)

6 −{NB}sh(B,S)

The Woo and Lam protocol is not well-founded: e.g., we have (B, 4) ⇒p

(B, 5) →p (B, 4), and (S, 2) ⇒p (S, 3) →p (S, 2). The first situation is an exam-
ple of how blind copies always cause ≺1

p to be cyclic.

Example 8. The Otway-Rees protocol (c.f. [6]) establishes a shared secret be-
tween two agents with the help of a trusted server.

1. A −→ B : A,B, {NA, A,B}sh(A,S)

2. B −→ S : A,B, {NA, A,B}sh(A,S), {NB , A,B}sh(B,S)

3. S −→ B : {NA,KAB}sh(A,S), {NB ,KAB}sh(B,S)

4. B −→ A : {NA,KAB}sh(A,S)

Formally, it has the following role scripts:

A B S

1 −A,B, S −B,A, S −S,A,B

2 +A,B, {NA, A,B}sh(A,S) −A,B,X −A,B, {NA, A,B}sh(A,S), {NB, A,B}sh(B,S)

3 −{NA,KAB}sh(A,S) +A,B,X, {NB, A,B}sh(B,S) +{NA,KAB}sh(A,S), {NB,KAB}sh(B,S)

4 −Y, {NB,KAB}sh(B,S)

5 +Y

It is easy to see that ≺1
p is cyclic due to blind copies: e.g., we have (B, 2) ⇒p

(B, 3) →p (B, 2) by substituting any encryption for X . Note that in this example
blind copies are merely relayed from an input concatenation to an output con-
catenation, and the Dolev-Yao intruder could have provided the relaying himself.
Hence, the following simplified formalization is adequate with respect to most
analysis problems (including leakiness).

1 Long-term shared keys sh(A,B) can be added to our framework analogously to
public keys.

Leakiness is Decidable for Well-Founded Protocols 187

A B S

1 −A,B, S −B,A, S −S,A,B

2 +A,B, {NA, A,B}sh(A,S) −A,B −A,B, {NA, A,B}sh(A,S), {NB , A,B}sh(B,S)

3 −{NA,KAB}sh(A,S) +A,B, {NB , A,B}sh(B,S) +{NA, KAB}sh(A,S), {NB ,KAB}sh(B,S)

4 −{NB ,KAB}sh(B,S)

It is easy to check that this transformed version is well-founded.

The examples are representative for other well-known authentication and key
establishment protocols of the Clark/Jacob library [6] and the collection of Boyd
and Mathuria [4]. Protocols for authentication and key establishment without a
trusted third party are typically well-founded. For example, this also includes the
corrected NSPK by Lowe, the ISO/IEC 9798-2 three pass mutual authentication
protocol, and the revised Andrew protocol of Burrows et al. Protocols with
a trusted third party typically involve that the server sends a ticket to one
of the agents, who then passes it on to another agent. Since tickets formally
lead to blind copies such protocols are not well-founded. However, many can be
transformed into equivalent well-founded protocols similarly to the Otway-Rees
protocol in Example 8. This includes Kerberos Version 5, Yahalom, and Bauer-
Berson-Feiertag. Other protocols send the ticket in an encryption and will not
allow this transformation. Examples are Needham-Schroeder Shared Key, and
the Denning-Sacco protocol. Interestingly, it seems difficult to find real protocols
without flaws that fail to be well-founded without this being due to blind copies.

The Characteristic. We are now ready to establish the characteristic of well-
founded protocols P : for every bundle B of P , the honest causal depth of B is
bounded by the depth of P . This follows from: More precisely, for every event e of
B, the honest causal depth of e is bounded by the depth of the protocol position
that is instantiated by e.

Lemma 9. Let P be a well-founded protocol, and let B be a bundle of P . For
all e ∈ E we have: depth≺h

(e) ≤ depth≺p
(pos(e)).

Theorem 10. Let P be a well-founded protocol. For all bundles B of P we have:
depth≺h

(B) ≤ depth(P).

Honest Cause Components. Let P be a protocol in general, and let B =
(S,<, {Πe, srce}e∈Ein) be a bundle of P . Given e′ ∈ E, define the honest cause
set of e′ by e′ ⇓h= {e′′ | e′′ �h e′}, and the strict honest cause set of e′ by
e′ ↓h= {e′′ | e′′ ≺h e′} respectively. When B is not uniquely determined by the
context we also use e′ ⇓B

h and e′ ↓Bh . The honest cause component induced by e′

is defined by (S � EC , <� EC , {Πe, srce}e∈Ein�EC) where EC = e′⇓h ∪{init}.

3 Well-Structured Source Trees and Bundles

This section is about well-structured source trees and bundles. First we introduce
two basic concepts, bricks and the event of first deducibility of a message. Then
we provide the definition based on these concepts. We show that every bundle can

188 S. Fröschle

be transformed into a well-structured bundle with the same underlying skeleton.
Finally, we prove two structural lemmas: the BWS Lemma, and the WS Lemma
respectively. The latter will allow us to transform honest cause components into
bundles in Section 4. In the following, fix a protocol P .

Basic Concepts. Given a set of messagesM , we wish to capture those messages
that form the smallest units the intruder has available to build new messages.
Such bricks are deducible atoms, private keys, and encryptions that can neither
be analysed nor synthesized, i.e. honest encryptions. Formally, a brick wrt M is
a message b ∈ DY(M) such that (1) b is an atom, (2) b is a private key, or (3) b is
an honest encryption wrt M . We denote the set of bricks wrt M by Bricks(M).
Given an ordered strand space S, we write Bricks(S) short for Bricks(M) where
M = {msg(e) | e ∈ Eout}. We use Bricks(e ↓), Bricks(e ⇓), and Bricks(B) with
the analogous interpretation. Note that Bricks(M) is not the same as the fringe
of analz (M): a public key encryption might be synthesizable by the intruder but
not analyzable.

Let S = (S,<) be an ordered strand space. Given a message m ∈ DY(S), we
single out the event e at which m becomes deducible for the first time wrt <.
Formally, the event of first deducibility of m wrt S, denoted by efdS(m), is
defined to be the event e ∈ E such that m ∈ DY(e ⇓), and e is minimal wrt <,
i.e. for all other events e′ ∈ E such that m ∈ DY(e′ ⇓), e < e′.

Definition and Existence. The general idea behind well-structured bundles
is this: if the intruder needs to deduce a message m at the current stage of the
protocol run then he will compose m from units that are bricks at this stage; and
he will deduce each thus employed brick b by a decomposition using the message
of the event, say e, at which b has first become deducible in the protocol run,
and units that have been available as bricks at the stage before e. And this is
continued in an inductive fashion.

Assume an ordered strand space S = (S,<). We first define when a source
tree is brick-well-structured wrt S. This is the case when its conclusion, say b,
is a brick wrt S, and b is the result of a minimal decomposition of the message
of efdS(b), say e, and elements of Bricks(e↓). The latter are deduced by source
trees that are brick-well-structured wrt e↓ in an inductive fashion.

Let (Π, src) be a source tree wrt S. Formally, we define when (Π, src) is brick-
well-structured wrt S by induction on the size of S (i.e. the number of events of
S).
Base case |S| = 0: There are no source trees wrt such S.
Inductive case |S| > 0: (Π, src) is brick-well-structured wrt S iff, setting b =
Concl(Π), e = efdS(b), and m = msg(e),

– there is a minimal proof tree Πd of Bricks(e ↓) ∪ {m} � b with leaves l1 :
m, . . . , lj : m, l′1 : b1, . . . , l′k : bk for some j > 0, k ≥ 0, and

– for all i ∈ [1, k], there is a brick-well-structured source tree (Πi, srci) with
Concl (Πi) = bi wrt e↓,

such that

Leakiness is Decidable for Well-Founded Protocols 189

l1 : m . . . lj : m . . . l′1 : b1 . . . l′k : bk

. . .

r : b

Π1 Πk

Πd

bws source tree
l1 : b1 lk : bk

. . .

. . .

r : m

ws source tree

Π1 Πk

Πc

Fig. 2. Well-structured source trees

1. b ∈ Bricks(S),
2. Π is the composition of Πd, Π1, . . . , Πk by replacing for each i ∈ [1, k] the

leaf l′i by the proof tree Πi, and
3. src = {(li, e) | i ∈ [1, j]} ∪

⋃
{srci | i ∈ [1, k]}.

We say a source tree (Π, src) is brick-well-structured for b wrt S if it is brick-
well-structured wrt S and Concl (Π) = b.

A source tree with conclusion m is well-structured wrt S if it deduces m in
two stages: first, it composes m from bricks wrt S in a minimal way; second, it
deduces each employed brick b by a source tree that is brick-well-structured wrt
S. Let (Π, src) be a source tree wrt S. Formally, we say (Π, src) is well-structured
wrt S iff, setting m = Concl(Π),

– there is a minimal proof treeΠc of Bricks(S) � m with leaves l1 : b1, . . . , lk :
bk for some k > 0, and

– for all i ∈ [1, k], there is a brick-well-structured source tree (Πi, srci) for bi
wrt S

such that

1. Π is composed of Πc, Π1, . . . , Πk by replacing for each i ∈ [1, k] the leaf li
by the proof tree Πi, and

2. src =
⋃
{srci | i ∈ [1, k]}.

We say a source tree (Π, src) is well-structured form wrt S if it is well-structured
wrt S and Concl(Π) = m.

Proposition 11. Let S be an ordered strand space, and m ∈ DY(S). Then there
is a well-structured source tree for m wrt S.

190 S. Fröschle

Let B = (S, {(Πe, srce)}e∈Ein) be a bundle. B is well-structured if for every
e ∈ Ein , (Πe, srce) is a well-structured source tree wrt e↓.

Theorem 12. For every bundle B, there is a well-structured bundle B′ such
that B′ has the same underlying skeleton as B.

In the following, we abbreviate brick-well-structured by bws, and well-structured
by ws respectively. Moreover, we make use of the fact that it can be proved that
bws trees are decomposition trees, and that Πc in ws trees is a composition tree.

The BWS Lemma. We now prove a characteristic lemma about bws source
trees, called the BWS Lemma. Assume an ordered strand space S, and a bws
source tree (Π, src) wrt S. Given a node n of Π such that n is labelled by a
brick b ∈ Bricks(S), it is easy to trace back from which leaf b stems from. This
is so because Π is a decomposition tree.

Proposition 13. Let n be a node of Π such that n is labelled by a brick b ∈
Bricks(S). There is exactly one source path of b in subtree(n). Moreover, it ends
in a leaf. We call it srcpath↑Π(n).

The BWS Lemma says: either we can trace back the source of b to the event of
first deducibility of b wrt S, or we can exhibit a leak in S. The latter is the case
when b exists wrapped by an encryption at some stage of the run, but b becomes
first deducible only at a later stage when the encryption can be decrypted by
the intruder. We translate this into the tool of leak witness situations.

Definition 14. Let S be an ordered strand space, and e ∈ E. We say a proof
tree Π contains a leak witness situation wrt S and e iff Π contains

1. an instance of rule Dsenc

nl : {m}k nr : k
np : m Dsenc

such that {m}k ∈ HEnc(e↓) and k ∈ DY(e⇓), or
2. an instance of rule Daenc

nl : {|m|}ag nr : priv (ag)
np : m Daenc

such that {|m|}ag ∈ HEnc(e↓) and priv (ag) ∈ DY(e⇓) respectively.

We call nl the cipher node and nr the d-key node of the leak witness situation.

Proposition 15. Let S be a bundle skeleton, (Π, src) be a source tree wrt S,
and e ∈ E. If Π contains a leak witness situation wrt S and e then S is leaky.
More precisely, the label of the d-key node is a leak at e.

Lemma 16 (BWS Lemma). Let S be a bundle skeleton, and let (Π, src) be
a bws source tree wrt S. For each node n of Π such that n is labelled by a brick
b ∈ Bricks(S) one of the following situations holds:

Leakiness is Decidable for Well-Founded Protocols 191

1. srcpath↑Π(n) ends in a leaf nl such that src(nl) = efdS(b), or
2. srcpath↑Π(n) passes through a node n′ such that n′ is the cipher node of a

leak witness situation wrt S and efdS(b).

The proof of the lemma proceeds by case analysis. Assume Π is of the format
of Fig. 2, and set π = srcpathΠ(n). There are three cases to consider: (1) π is
entirely contained in Πd and does not intersect with the roots of the Πi; then
the first situation can be shown to apply. (2) π starts in Πd but passes through
a Πi. Then we can exhibit a leak witness situation at the transition from Πd

into Πi, and the second situation applies. (3) π is entirely contained in one of
the Πi. Then we can argue by induction hypothesis.

By Prop. 15 a leak witness situation indeed implies a leak. Then we further
obtain the corollary below, where the following fact yields a special case.

Proposition 17. Let S be a non-leaky bundle skeleton. For all atoms a ∈
DY(S) we have: efdS(a) = originS(a).

Corollary 18. Let S be a non-leaky bundle skeleton, and let (Π, src) be a bws
source tree wrt S. For each node n of Π such that n is labelled by a brick b ∈
Bricks(S), we have: srcpath↑Π(n) ends in a leaf nl such that src(nl) = efdS(b).
Moreover, if b is an atom then src(nl) = originS(a).

The WS Lemma. Let B be a ws bundle, and let (Π, src) be the source tree of
some input event e of B. Assume Π is of the format of Fig. 2. The WS Lemma
gives us insights about the source events of the leaves of Π .

Let nl be a leaf ofΠ . Consider the largest path π that traces all ancestor nodes
of nl such that the first and only the first node of π is labelled by a brick wrt e↓.
Since nl belongs to some bws source tree, say Πi, the path π clearly exists. Call
its first node n, and let the label of n be b. Since Πi is a decomposition tree, π
is a source path of b in subtree(n). Hence, it coincides with srcpath↑Πi

(n).

Proposition 19. Let nl be a leaf of Π, and let Πi be the bws source tree within
Π that nl belongs to. nl has an ancestor node n such that n is labelled by a brick
b ∈ Bricks(e ↓) and srcpath↑Πi

(n) ends in nl. We call n the special ancestor of
nl, denoted by anc(nl).

Using the existence of anc(nl) we obtain the following statement about the
source event of nl:

Lemma 20 (WS Lemma). Let B be a ws bundle, and let (Π, src) be the source
tree of some input event e of B. Let nl be a leaf of Π, and let b be the label of
anc(nl). We have:

1. If b is an atom and B is non-leaky then src(nl) = originB(a).

2. If b is a private key and B is non-leaky then b = priv (i), and src(nl) = init .

3. If b ∈ HEnc(e↓) then src(nl) ≺h e.

192 S. Fröschle

The first case is a consequence of Corollary 18. The second case is immediate.
To see the third case assume b ∈ HEnc(e↓) and observe that n must be the root
of Πi (where Πi is given as in Prop. 19). This is so since Πi is a decomposition
tree (hence b cannot be the left child of a decryption node), and we do not
consider compositional keys (hence b cannot be the right child of a decryption
node). Consider the path that traces all ancestor nodes of n in Πc from the
root. Since Πc is a composition tree this path must be a source path of b. If we
combine it with srcpathΠi

(n) we obtain a source path of b in Π that ends in nl,
and hence by definition src(nl) →h e.

4 Transforming Honest Cause Components into Bundles

The main result of this section is this: given a ws bundle B, if B is minimal leaky
then B coincides with the honest cause component induced by the last event of
B. We achieve this as follows. Based on the WS Lemma we show how honest
cause components of non-leaky ws bundles can be transformed into bundles. The
transformation also works for minimal leaky bundles and preserves leakiness.
Then by a minimality argument the main result stated above is immediate. In
the following, fix a protocol P .

Let B be a non-leaky ws bundle, and C be an honest cause component of B.
The only reason why, in general, C is not a bundle is that leaves in the source
trees of C might have their sources outside of EC , i.e. in EB \ EC . Let’s take a
closer look at this situation. Consider a source tree (Πe, srce) of C, and a leaf nl of
Πe such that srce(nl) �∈ EC . By Prop. 19 we know that nl has a special ancestor
node n that is labelled by a brick b of e↓B. By Lemma 20 we further obtain that b
must be an atom that does not originate on an event in C: if b is a private key then
srce(nl) = init , which implies srce(nl) ∈ EC , a contradiction; if b ∈ HEnc(e ↓)
then srce(nl) ≺h e, which also implies srce(nl) ∈ EC , a contradiction; if b is an
atom then srce(nl) = originB(a), and hence originB(a) �∈ EC by our assumption
srce(nl) �∈ EC .

Lemma 21. Let B be a non-leaky ws bundle, and C be an honest cause compo-
nent of B. Let (Πe, srce) be a source tree for some input event e of C. Then for
all leaves nl of Πe with srce(nl) �∈ EC we have: anc(nl) is labelled by an atom a
with originB(a) �∈ EC .

Since for such atoms we do not need to respect unique origination constraints
wrt EC we can substitute them by intruder atoms. Thereby we can transform
C into a bundle. For the transformation we first define the concept of atom
substitution. An atom substitution is a function α : A → A′ such that A,A′ ⊆
Atoms and the map preserves atomic types. We generalize atom substitutions
α to proof trees and strands in the obvious way. Given a proof tree Π we write
Πα for the result of applying α to all terms of Π . Given a strand s, we write sα
for the result of applying α to all terms of s.

In Fig. 3 we provide the algorithm, PruneSubst(C). We first define an atom
substitution that substitutes every atom of C that does not originate in C by an

Leakiness is Decidable for Well-Founded Protocols 193

PruneSubst(Π, src, α)

1. Traverse Π upwards from the root and for each encountered node n do:
(a) if lab(n) = a for some a ∈ domain(α) then do:

i. Π := Π \ {subtree(c) | c is a child of n}
ii. src := src \ {(n, e′) | (n, e′) ∈ src for any e′}
iii. src := src ∪ {(n, init)}

2. Π := Πα

PruneSubst(C)

1. α = {(a, c) | a is an atom of C such that originB(a) �∈ EC

& c is an atom known to the intruder of the same type as a} .
2. For every input event e of C do PruneSubst (Πe, srce, α)
3. For every strand s of C do s := sα

Fig. 3. Algorithm PruneSubst

intruder atom. Then for every proof tree of an input event e ∈ EC we proceed
as follows. We traverse the proof tree from the root upwards until we hit a node
that is labelled by an atom to be substituted. We prune the tree so that such
nodes become leaves. We assign init to be the source of such new leaves. We then
apply the atom substitution to the entire tree. Thereby init provides indeed an
appropriate source for the new leaves. Finally, we apply the substitution to the
strands of C. By Lemma 21 we thereby eliminate all leaves that do not have their
source in EC . Moreover, since we only substitute atoms that do not originate in
EC unique origination constraints are not compromised. Together this ensures
that the result is a bundle.

Theorem 22. Let B be a non-leaky ws bundle, and let C be an honest cause
component of B. Then PruneSubst(C) is a bundle.

Since minimal leaky bundles are non-leaky bundles with one additional output
event the transformation carries over to minimal leaky bundles. Moreover, the
transformation is not too strong in that it preserves leakiness. This is non-trivial
to show and requires a variant of Lemma 21.

Theorem 23. Let B be a minimal leaky ws bundle, and let C be the honest
cause component of the last event of B. Then PruneSubst(C) is a leaky bundle.
(Indeed, it is also minimal leaky.)

Now the main result is immediate: given B and C as above, B must coincide
with C. Otherwise there is an event in B that is not in C. Then PruneSubst(C)
yields a leaky bundle that is smaller than B, a contradiction to the assumption
that B is minimal leaky.

Corollary 24. Let B be a minimal leaky ws bundle, and let C be the honest
cause component of the last event of B. Then B = C.

194 S. Fröschle

5 Main Result and Further Research

Theorem 25. leakiness is decidable for well-founded protocols.

To decide leakiness we only need to check whether there exists a minimal
leaky bundle. By Theorem 12 it is sufficient to only consider minimal leaky
well-structured bundles. By Corollary 24 their size is bounded by that of the
honest cause components of ws bundles. For well-founded protocols the latter
are bounded. This follows from Theorem 10, and the fact that the message size
is bounded: we work with typed messages, and the definition of well-foundedness
excludes blind copies. Altogether this means we only have to consider bundles of
bounded size. As usual we can then work with a fixed alphabet, guess a candidate
bundle, and check whether it is indeed a minimal leaky bundle.

For technical ease we have proved the result for a simple message algebra with
symmetric and asymmetric encryption. It is straightforward to lift all concepts
and proofs to include other cryptographic operations such as digital signatures,
MACs, and cryptographic hash functions. Rather than only defining honest en-
cryptions one can work with honest ciphertexts that fall into the corresponding
subcases. Moreover, by the approach of Arapinas in [2] the decidability result
can be lifted to an untyped message algebra.

Non-trivial extensions include generalizing the result to allow compositional
keys and a restricted form of ciphertext forwarding that cannot be dealt with
by the simple transformation suggested for Example 8. Now that the proof is
in place we can also investigate which standard algebraic theories [8] can be
plugged into the framework. One will only have to check that certain properties
of honest ciphertexts are satisfied. That this is possible is also indicated by [11],
where similar ideas are independently used to obtain decidability in the context
of Diffie-Hellmann protocols.

We see our result on leakiness as a major step towards obtaining decidability
for a class of standard authentication properties. We hope that some of the
insights of Dougherty and Guttman in [11] might help to achieve this. Their
security problem is expressed as geometric sequents, and hence, is much more
general than leakiness; on the other hand, their proof relies on the fact that
there are no temporary secrets. This is naturally given since their class of Diffie-
Hellman protocols does not include encryption. Hence, a combination of the
techniques might cover a wide class of protocols and security properties.
Acknowledgements. The author is very grateful to Joshua Guttman who has shepherded

this paper. His comments and feedback have made this a much improved paper. The

author would also like to thank the anonymous referees for their valuable comments.

References

1. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)

2. Arapinis, M., Duflot, M.: Bounding messages for free in security protocols. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 376–387.
Springer, Heidelberg (2007)

Leakiness is Decidable for Well-Founded Protocols 195

3. Blanchet, B., Podelski, A.: Verification of Cryptographic Protocols: Tagging En-
forces Termination. Theoretical Computer Science 333(1-2), 67–90 (2005), Special
issue FoSSaCS 2003

4. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer (2003)

5. Chrétien, R., Cortier, V., Delaune, S.: Typing messages for free in security proto-
cols: The case of equivalence properties. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 372–386. Springer, Heidelberg (2014)

6. Clark, J., Jacob, J.: A survey of authentication protocol literature: Version 1.0
(1997)

7. Comon-Lundh, H., Cortier, V., Zălinescu, E.: Deciding security properties for cryp-
tographic protocols. application to key cycles. ACM Trans. Comput. Logic 11(9),
9:1–9:42 (2010)

8. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)

9. Dolev, D., Yao, A.C.-C.: On the security of public key protocols (extended ab-
stract). In: FOCS, pp. 350–357 (1981)

10. Dolev, S., Even, S., Karp, R.M.: On the security of ping-pong protocols. Inform.
and Control 55(1-3), 57–68 (1982)

11. Dougherty, D., Guttman, J.: Decidability for lightweight diffie-hellman protocols.
In: CSF 2014, pp. 217–231. IEEE Computer Society (2014)

12. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the com-
plexity of bounded security protocols. J. of Computer Security 12(2), 247–311
(2004)

13. Even, S., Goldreich, O.: On the security of multi-party ping-pong protocols. In:
Symposium on the Foundations of Computer Science, pp. 4–39. IEEE Computer
Society (1983)

14. Fröschle, S.: From Security Protocols to Security APIS: Foundations and Verifica-
tion. To appear in the Information Security and Cryptography series of Springer

15. Fröschle, S.: On well-founded security protocols. In: Joint Workshop on Founda-
tions of Computer Security and Formal and Computational Cryptography (FCS-
FCC 2014) (2014)

16. Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles.
Theor. Comput. Sci. 283(2), 333–380 (2002)

17. Heintze, N., Tygar, J.D.: A model for secure protocols and their compositions.
IEEE Transactions on Software Engineering 22, 2–13 (1996)

18. Lowe, G.: Towards a completeness result for model checking of security protocols.
Journal of Computer Security 7(1), 89–146 (1999)

19. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

20. Ramanujam, R., Suresh, S.P.: A decidable subclass of unbounded security proto-
cols. In: WITS 2003, pp. 11–20 (2003)

21. Sarukkai, S., Suresh, S.P.: Tagging makes secrecy decidable with unbounded nonces
as well. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914,
pp. 363–374. Springer, Heidelberg (2003)

22. Ramanujam, R., Suresh, S.P.: Decidability of context-explicit security protocols.
Journal of Computer Security 13(1), 135–165 (2005)

23. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: CSFW 2001, pp. 174–187. IEEE Computer Society (2001)

Abstractions for Security Protocol Verification

Binh Thanh Nguyen and Christoph Sprenger

Institute of Information Security
Department of Computer Science, ETH Zurich, Switzerland

Abstract. We present a large class of security protocol abstractions
with the aim of improving the scope and efficiency of verification tools.
We propose typed abstractions, which transform a term’s structure based
on its type, and untyped abstractions, which remove atomic messages,
variables, and redundant terms. Our theory improves on previous work
by supporting a useful subclass of shallow subterm-convergent rewrite
theories, user-defined types, and untyped variables to cover type flaw
attacks. We prove soundness results for an expressive property language
that includes secrecy and authentication. Applying our abstractions to
realistic IETF protocol models, we achieve dramatic speedups and extend
the scope of several modern security protocol analyzers.

1 Introduction

Security protocols play a central role in today’s networked applications. Past
experience has amply shown that informal arguments justifying the security
of such protocols are insufficient. This makes security protocols prime candi-
dates for formal verification. In the last two decades, research in formal security
protocol verification has made enormous progress, which is reflected in many
state-of-the-art tools including AVANTSSAR [1], ProVerif [6], Maude-NPA [14],
Scyther [10], and Tamarin [21]. These tools can verify small to medium-sized
protocols in a few seconds or less, sometimes for an unbounded number of ses-
sions. Despite this success, they can still be challenged when verifying real-world
protocols such as those defined in standards and deployed on the internet (e.g.,
TLS, IKE, and ISO/IEC 9798). Such protocols typically have messages with nu-
merous fields, support many alternatives (e.g., cryptographic setups), and may
be composed from more basic protocols (e.g., IKEv2-EAP).

Abstraction [7] is a standard technique to over-approximate complex systems
by simpler ones for verification. Sound abstractions preserve counterexamples (or
attacks in security terms) from concrete to abstracted systems. In the context
of security protocols, abstractions are extensively used. Here, we only mention a
few examples. First, the Dolev-Yao model is a standard (not necessarily sound)
abstraction of cryptography. Second, many tools use abstractions to map the
verification problem into the formalism of an efficient solver or reasoner. We
call these back-end abstractions. For example, ProVerif [6] translates models in
the applied pi calculus to a set of Horn clauses, SATMC [4] reduces protocol
verification to SAT solving, and Paulson [24] models protocols as inductively

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 196–215, 2015.
DOI: 10.1007/978-3-662-46666-7_11

Abstractions for Security Protocol Verification 197

defined trace sets. Finally, some abstractions aim at speeding up automated
analysis by simplifying protocols within a given protocol model before feeding
them to verifiers [18,22]. Our work belongs to this class of front-end abstractions.

Extending Hui and Lowe’s work [18], we proposed in [22] a rich class of proto-
col abstractions and proved its soundness for a wide range of security properties.
We used a type system to uniformly transform all terms of a given type (e.g., a
pattern in a protocol role and its instances during execution) whereas [18] only
covers ground terms. Our work [22] exhibits several limitations: (1) the theory
is limited to the free algebra over a fixed signature; (2) all variables have strict
(possibly structured) types, hence we cannot precisely model ticket forwarding
or Diffie-Hellman exchanges. While the type system enables fine-grained control
over abstractions (e.g., by discerning different nonces), it may eliminate realis-
tic attacks such as type flaw attacks; (3) some soundness conditions involving
quantifiers are hard to check in practice; and (4) it presents few experimental
results for a single tool (SATMC) using abstractions that are crafted manually.

In this work, we address all the limitations above. First, we work with a useful
subclass of shallow subterm-convergent rewrite theories modulo a set of axioms
to model cryptographic operations. Second, we support untyped variables, user-
defined types, and subtyping. User-defined types enable the grouping of similar
atomic types (e.g., session keys) and adjusting the granularity of matching in
message abstraction. Third, we have separated the removal of variables, atomic
messages, and redundancies (new untyped abstractions) from the transformation
of the message structure (typed abstractions). This simplifies the specifications
and soundness proof of typed abstractions. Fourth, we provide effectively check-
able syntactic criteria for the conditions of the soundness theorem. Finally, we
extended Scyther [10] with fully automated support for our abstraction method-
ology. We validated our approach on an extensive set of realistic case studies
drawn from the IKEv1, IKEv2, ISO/IEC 9798, and PANA-AKA standard pro-
posals. Our abstractions result in very substantial performance gains. We have
also obtained positive results for several other state-of-the-art verifiers (ProVerif,
CL-Atse, OFMC, and SATMC) with manually produced abstractions.

Example: The IKEv2-mac Protocol. The Internet Key Exchange (IKE)
family of protocols is part of the IPsec protocol suite for securing Internet Pro-
tocol (IP) communication. IKE establishes a shared key, which is later used for
securing IP packets, realizes mutual authentication, and offers identity protec-
tion as an option. Its first version (IKEv1) dates back to 1998 [17]. The second
version (IKEv2) [20] significantly simplifies the first one. However, the protocols
in this family are still complex and contain a large number of fields.

Concrete protocol. As our running example, we present a member of the IKEv2
family, called IKEv2-mac (or IKEm for short), which sets up a session key using
a Diffie-Hellman (DH) key exchange, provides mutual authentication based on
MACs, and also offers identity protection. We use Cremers’ models of IKE [11] as
a basis for our presentation and experiments (see Section 4.2). Our starting point
is the following concrete IKEm protocol between an initiator A and a responderB.

198 B.T. Nguyen and C. Sprenger

IKEm(1). A → B : SPIa, o, sA1 , gx ,Na
IKEm(2). B → A : SPIa, SPIb, sA1 , gy ,Nb
IKEm(3). A → B : SPIa, SPIb, {|A,B,AUTHa, sA2 , tSa, tSb|}SK
IKEm(4). B → A : SPIa, SPIb, {|B,AUTHb, sA2 , tSa, tSb|}SK

Here, SPIa and SPIb denote the Security Parameter Indices that determine
cryptographic algorithms, o is a constant number, sA1 and sA2 are Security
Associations, g is the DH group generator, x and y are secret DH exponents, Na
and Nb are nonces, and tSa and tSb denote Traffic Selectors specifying certain
IP parameters. AUTHa and AUTHb denote the authenticators of A and B and
SK the session key derived from the DH key gxy . These are defined as follows.

SK = kdf(Na,Nb, gxy , SPIa, SPIb)
AUTHa = mac(sh(A,B), SPIa , o, sA1 , gx ,Na,Nb, prf(SK , A))
AUTHb = mac(sh(B,A), SPIa , SPIb, sA1 , gy ,Nb,Na, prf(SK , B))

We model the functions mac, kdf, and prf as hash functions and use sh(A,B) and
sh(B,A) to refer to the (single) long-term symmetric key shared by A and B.

We consider the following security properties: (P1) the secrecy of the DH key
gxy , which implies the secrecy of SK , and (P2) mutual non-injective agreement
on the nonces Na and Nb and the DH half-keys gx and gy .

Abstraction. Our theory supports the construction of abstract models by remov-
ing inessential fields and operations. For example, in IKEm we can remove: (i)
the symmetric encryptions with the session key SK ; then (ii) all atomic top-level
fields except Na and Nb; (iii) all fields of SK except the DH key gxy ; and (iv)
from the authenticators: the fields SPIa, SPIb, and sA1 and the application of
prf including the agent names underneath. The resulting protocol is IKE2

m:

IKE2
m(1). A → B : gx ,Na IKE2

m(3). A → B : AUTHa
IKE2

m(2). B → A : gy ,Nb IKE2
m(4). B → A : AUTHb

where SK = kdf(gxy) and AUTHa = mac(sh(A,B), o, gx ,Na,Nb, SK) for role A
and AUTHb = mac(sh(B,A), gy ,Nb,Na, SK) for role B.

Scyther verifies the properties (P1) and (P2) in 8.7s on the concrete and in 1.7s
on an automatically generated abstract protocol (which is less intuitive than the
one presented here). Our soundness results imply that the original protocol IKEm

also enjoys these properties. We chose the protocol IKEm as running example for
its relative simplicity compared to the other protocols in our case studies. In
many of our experiments (Section 4.2), our abstractions (i) result in much more
substantial speedups, or (ii) enable the successful unbounded verification of a
protocol where it times out or exhausts memory on the original protocol.

2 Security Protocol Model

We define a term algebra TΣ(V) over a signatureΣ and a set of variables V in the
standard way. Let Σn denote the symbols of arity n. We call the elements of Σ0

Abstractions for Security Protocol Verification 199

atoms and write Σ≥1 for the set of proper function symbols. For a fixed Σ≥1, we
will vary Σ0 to generate different sets of terms, denoted by T (V,Σ0), including
terms in protocol roles, network messages, and types. We write subs(t) for the set
of subterms of t and define the size of t by |t| = |subs(t)|. We also define vars(t) =
subs(t)∩V . If vars(t) = ∅ then t is called ground. We denote the top-level symbol
of a (non-variable) term t by top(t) and the set of its symbols in Σ≥1 by ct(t). A
position is a sequence of natural numbers. We denote the subterm of t at position
p with t|p and write t[u]p for the term obtained by replacing t|p at position p
by u. We also partition Σ into sets of public and private symbols, denoted by
Σpub and Σpri. We assume Σpub includes pairing 〈·, ·〉 which associates to the
right, e.g., 〈t, u, v〉 = 〈t, 〈u, v〉〉. We usually write, e.g., {|t, u, v|}k rather than
{|〈t, u, v〉|}k. We define the splitting function by split(〈t, u〉) = split(t) ∪ split(u)
on pairs and split(t) = {t} on other terms t. We call the elements of split(t) the
fields of t. For n ∈ N, ñ denotes {1, . . . , n}.

The set of message terms is M = T (V ,A∪F ∪C), where V , A, F , and C are
pairwise disjoint infinite sets of variables, agents, fresh values, and constants.

2.1 Type System

We introduce a type system akin to [2] and extend it with subtyping. We define
the set of atomic types by Yat = Y0 ∪ {α,msg} ∪ {βn | n ∈ F} ∪ {γc | c ∈ C},
where α, βn, and γc are the types of agents, the fresh value n, and the constant c,
respectively. Moreover, msg is the type of all messages and Y0 is a disjoint set
of user-defined types. The set of all types is then defined by Y = T (∅,Yat).

We assume that all variables have an atomic type, i.e., V = {Vτ}τ∈Yat is a
family of disjoint infinite sets of variables. Let Γ : V → Yat be such that Γ (X) = τ
if and only if X ∈ Vτ . We extend Γ to atoms by defining Γ (a) = α, Γ (n) = βn,
and Γ (c) = γc for a ∈ A, n ∈ F , and c ∈ C, and then homomorphically to all
terms t ∈ M. We call τ = Γ (t) the type of t and sometimes also write t : τ .

The subtyping relation � on types is defined by the following inference rules
and by two additional rules (not shown) defining its reflexivity and transitivity.

τ ∈ Y
τ � msg

S(msg)
τ1 �0 τ2
τ1 � τ2

S(�0)
τ1 � τ ′1 · · · τn � τ ′n

c(τ1, . . . , τn) � c(τ ′1, . . . , τ
′
n)

S(c ∈ Σn)

Every type is a subtype of msg by the first rule. The second rule embeds a
user-defined atomic subtyping relation �0 ⊆ (Yat \ {msg})× Y0, which relates
atomic types (except msg) to user-defined atomic types in Y0. For simplicity, we
require that �0 is a partial function. The third rule ensures that subtyping is
preserved by all symbols. The set of subtypes of τ is τ↓ = {τ ′ ∈ Y | τ ′ � τ}.

2.2 Equational Theories

An equation over a signature Σ is an unordered pair {s, t}, written s � t, where
s, t ∈ TΣ(Vmsg). An equation presentation E = (Σ,E) consists of a signature
Σ and a set E of equations over Σ. The equational theory induced by E is the

200 B.T. Nguyen and C. Sprenger

smallest Σ-congruence, written =E , containing all instances of equations in E.
We often identify E with the induced equational theory.

A rewrite rule is an oriented pair l → r, where vars(r) ⊆ vars(l) ⊆ Vmsg .
A rewrite theory is a triple R = (Σ,Ax,R) where Σ is a signature, Ax a set
of Σ-equations, and R a set of rewrite rules. The rewriting relation →R,Ax on
TΣ(V) is defined by t →R,Ax t′ iff there exists a non-variable position p in t, a rule
l → r ∈ R, and a substitution σ such that t|p =Ax lσ and t′ = t[rσ]p. If t →∗

R,Ax t′

and t′ is irreducible, we call t′ R,Ax-normal and also say that t′ is a normal form
of t. Under suitable termination, confluence, and coherence conditions (see [19]
for definitions), one can decompose an equational theory (Σ,E) into a rewrite
theory (Σ,Ax,R) where Ax ⊆ E and, for all terms t, u ∈ TΣ(V), we have t =E u
iff t↓R,Ax=Ax u↓R,Ax. Here, t↓R,Ax denotes any normal form of t. In this paper,
we work with decomposable equational theories.

A rewriting theory R is subterm-convergent if it is convergent and, for each
l → r ∈ R, r is either a proper subterm of l or ground and in normal form with
respect to R. For our soundness result, we consider the subclass S of subterm-
convergent rewrite theories where each rule in R has one of the following forms.

– (R1): d(c(x1, . . . , xn, t), u) → xj , where c, d ∈ Σpub, t, u are terms, j ∈ ñ, and
x1, . . . , xn are pairwise distinct variables with xi /∈ vars(t, u) for all i ∈ ñ.

– (R2): d(c(x1, . . . , xn)) → xj , where c, d ∈ Σpub, j ∈ ñ, and x1, . . . , xn are
pairwise distinct variables.

– (R3): c(x1, . . . , xn) → xj where c ∈ Σpub, xj is a variable with j ∈ ñ, and xi

is a variable or an atom for all i ∈ ñ.
– (R4): l → a for a constant a.

Intuitively, the first three forms enable different types of projection of a term’s
arguments. Rules R1 and R2 apply a destructor d to extract one of c’s arguments.
In rule R1 the destructor has two arguments. The terms t and u can be seen a
pair of matching keys required to extract xj . Rule R3 uses no destructor. Finally,
R4 models rewriting a term to a constant. Since the rules (R1-R3) have limited
depth, we call the class S of rewrite theories shallow subterm-convergent.

We also introduce a condition on the equations Ax of the rewrite theory.

Definition 1. A rewrite theory (Σ,Ax,R) is well-formed if for all {s, t} ∈ Ax,
we have (i) neither s nor t is a pair and (ii) top(s) = top(t).

We only consider equational theories that can be decomposed into a shallow
subterm-convergent, well-formed rewrite theory. These are adequate to model
many well-known cryptographic primitives as illustrated by the examples below.

Example 1. We model the protocols of our case studies (see Sections 1 and 4) in
the rewrite theory Rcs = (Σcs, Axcs, Rcs) where

Σcs = {sh, pk, pri, prf, kdf,mac, 〈·, ·〉, π1, π2, {|· |}·, {|· |}−1
· , {·}·, {·}−1

· , [·]·, ver}∪Σ0
cs

contains function symbols for: shared, public, and private long-term keys (where
Σpri = {sh, pri}); hash functions prf, kdf, and mac; pairs and projections; sym-
metric and asymmetric encryption and decryption; and signing and verification.

Abstractions for Security Protocol Verification 201

The set of atoms Σ0
cs is specified later. The set Rcs consists of rewrite rules for

projections (type R2) and for decryption and signature verification (type R1):

π1(〈X,Y 〉) → X {|{|X |}K |}−1
K → X ver([X]pri(K), pk(K)) → X

π2(〈X,Y 〉) → Y {{X}pk(K)}−1
pri(K) → X

We have two equations in Axcs, namely, exp(exp(g,X), Y) � exp(exp(g, Y), X)
to model Diffie-Hellman key exchange and sh(X,Y) � sh(Y,X).

Example 2. The theory of XOR is given by the following rewrite system where
the rules are of types R2, R3 and R4. The rightmost rule ensures coherence [19].

X ⊕ Y � Y ⊕ X X ⊕ 0 → X X ⊕ X ⊕ Y → Y
(X ⊕ Y) ⊕ Z � X ⊕ (Y ⊕ Z) X ⊕ X → 0

For our theoretical development, we consider an arbitrary but fixed shallow
subterm-convergent and well-formed rewrite theory (Σ,Ax,R) that includes the
function symbols and rewrite rules for pairing and projections.

We denote by dom(g) and ran(g) the domain and range of a function g. We
now define well-typed substitutions, which respect subtyping.

Definition 2 (Well-typed substitutions). A substitution θ is well-typed if
Γ ((Xθ)↓R,Ax) � Γ (X) for all X ∈ dom(θ).

2.3 Protocols

For a set of terms T , we define the set of events Evt(T) = {snd(t), rcv(t) | t ∈ T }
and term(ev(t))= t for event ev(t). A role is a sequence of events from Evt(M).

Definition 3 (Protocol). A protocol is a function P : Vα ⇀ Evt(M)∗ map-
ping agent variables to roles. Let MP = term(ran(P)) be the set of protocol
terms appearing in the roles of P , and let VP , AP , FP , and CP denote the sets
of variables, agents, fresh values, and constants in MP .

Example 3 (IKEm protocol). We formalize the IKEm protocol from Section 1 in
the rewrite theory of Example 1 as follows, using upper-case (lower-case) iden-
tifiers for variables (atoms). The atoms Σ0

cs are composed of constants C =
{g, o, sA1 , sA2 , tSa, tSb} and fresh values F = {na, nb, x, y, sPIa, sPIb}. The
variables and their types are A,B : α, Ga,Gb : msg , SPIa, SPIb,Na,Nb : nonce
where nonce is a user-defined type that satisfies βn �0 nonce for all n ∈ F . We
show here the initiator role A. The responder role B is dual.

IKEm(A) = snd(sPIa, o, sA1 , exp(g, x), na) · rcv(sPIa, SPIb, sA1 ,Gb,Nb)·
snd(sPIa, SPIb, {|A,B,AUTHaa, sA2 , tSa, tSb|}SKa)·
rcv(sPIa , SPIb, {|B,AUTHba, sA2 , tSa, tSb|}SKa)

where the terms SKa = kdf(na,Nb, exp(Gb, x), sPIa, SPIb) and

AUTHaa = mac(sh(A,B), sPIa , o, sA1 , exp(g, x), na,Nb, prf(SKa, A))
AUTHba = mac(sh(A,B), sPIa , SPIb, sA1 ,Gb,Nb, na, prf(SKa, B)).

represent the initiator A’s view of the session key and of the authenticators.

202 B.T. Nguyen and C. Sprenger

u ∈ T
T �E u

Ax
T �E t′ t′ =E t

T �E t
Eq

T �E t1 · · · T �E tn
T �E f(t1, . . . , tn)

Comp (f ∈ Σ≥1
pub)

Fig. 1. Intruder deduction rules (where Σ≥1
pub = Σ≥1 ∩Σpub)

2.4 Operational Semantics

Let TID be a countably infinite set of thread identifiers. When we instantiate a
role into a thread for execution, we mark its variables and fresh values with the
thread identifier i. We define the instantiation t#i of a term t for i ∈ TID as
the term where every variable or fresh value u is replaced by ui. Constants and
agents remain unchanged. Instantiation does not affect the type of a term.

We define by T � = {t#i | t ∈ T ∧ i ∈ TID} the set of instantiations of
terms in a set T and abbreviate T � = T ∪ T �. For example, M� is the set of
instantiated message terms, which we will use to instantiate roles into threads.
We define the set of network messages exchanged during protocol execution by
N = T (V�,A ∪ F � ∪ F• ∪ C), where F• = {n•

k | n ∈ F ∧ k ∈ N} is the set of
attacker-generated fresh values. Note that M� ⊆ N . We abbreviate T = M∪N .

We use a Dolev-Yao attacker model parametrized by an equational theory E.
Its judgements are of the form T �E t meaning that the intruder can derive term
t from the set of terms T . The derivable judgements are defined in a standard
way by the three deduction rules in Figure 1.

We define a transition system with states (tr, th, σ), where

– tr is a trace consisting of a sequence of pairs of thread identifiers and events,
– th : TID ⇀ dom(P)× Evt(M�

P)
∗ are threads executing role instances, and

– σ : V� ⇀ N is a well-typed ground substitution from instantiated protocol
variables to network messages such that V�

P ⊆ dom(σ).

The trace tr as well as the executing role instance are symbolic (with terms
in M�). The separate substitution σ instantiates these messages to (ground)
network messages. The ground trace associated with such a state is trσ.

The set InitP of initial states of protocol P contains all (ε, th, σ) satisfying

∀i ∈ dom(th). ∃R ∈ dom(P). th(i) = (R,P (R)#i)

where all terms in the respective protocol roles are instantiated. The substitution
σ is chosen non-deterministically in the initial state.

The rules in Figure 2 define the transitions. In both rules, the first premise
states that a send or receive event heads thread i’s role. This event is removed
and added together with the thread identifier i to the trace tr. The substitution σ
remains unchanged. The second premise of RECV requires that the network mes-
sage tσ matching the term t in the receive event is derivable from the intruder’s
(ground) knowledge IK (tr)σ∪IK0. Here, IK (tr) denotes the (symbolic) intruder
knowledge derived from a trace tr as the set of terms in the send events on tr,
i.e., IK (tr) = {t | ∃i. (i, snd(t)) ∈ tr} and IK0 denotes the intruder’s (ground)
initial knowledge. We assume A ∪ C ∪ F• ⊆ IK0 and IK0 is R,Ax-normal. Note
that the SEND rule implicitly updates this intruder knowledge.

Abstractions for Security Protocol Verification 203

th(i) = (R, snd(t) · tl)
(tr, th, σ) → (tr · (i, snd(t)), th[i �→ (R, tl)], σ)

SEND

th(i) = (R, rcv(t) · tl) IK (tr)σ ∪ IK0 �E tσ

(tr, th, σ) → (tr · (i, rcv(t)), th[i �→ (R, tl)], σ)
RECV

Fig. 2. Operational semantics

2.5 Property Language

We use the same specification language as in [22] to express secrecy and authenti-
cation properties. Hence, we only sketch some of its elements and give examples.
There are atomic formulas to express equality (t = u), the secrecy of a term
(secret(t)), the occurrence of an event e by thread i in the trace (steps(i, e)),
that thread i executes role R, and the honesty of other agents in the view of
a thread i. Quantification is allowed over thread identifier variables. To achieve
attack preservation, the predicate secret(t) may occur only positively.

Example 4 (Properties of IKEm). We express the secrecy of the Diffie-Hellman
key exp(Gb, x) for role A of the protocol IKEm of Example 3 as follows.

φs=∀j. (role(j, A) ∧ honest(j, [A,B]) ∧ steps(j, rcv(t4)))⇒secret(exp(Gbj , x j)).

where t4 = 〈sPIa, SPIb, {|B,AUTHba, sA2 , tSa, tSb|}SKa〉 and honest(j, [A,B])
means that A and B are honest. We formalize non-injective agreement of A with
B on the nonces na and nb and the DH half-keys exp(g, x) and exp(g, y) by

φa=∀j. (role(j, A) ∧ honest(j, [A,B]) ∧ steps(j, rcv(t4)))
⇒(∃k. role(k,B) ∧ steps(k, snd(〈SPIa, sPIb, sA1 , exp(g, y), nb〉))∧

〈Aj , Bj , naj ,Nbj , exp(g, x j),Gbj〉=〈Ak, Bk,Nak, nbk,Gak, exp(g, yk)〉).

3 Security Protocols Abstractions

We introduce our security protocol abstractions and illustrate their usefulness
on our running example. We will present two types of protocol abstractions:

Typed abstractions transform a term’s structure by reordering or removing
fields and by splitting or removing cryptographic operations. The same trans-
formations are applied to all terms of a given type and its subtypes.

Untyped abstractions complement typed ones with additional simplifications:
the removal of unprotected atoms and variables and of redundant subterms.

Our main results are soundness theorems for these abstractions. They ensure
that any attack on a given property of the original protocol translates to an at-
tack on the abstracted protocol. As we will see, these results hold under certain
conditions on the protocol and the property. Here, we focus on typed abstrac-
tions, but we will also briefly introduce the untyped ones (see [23] for details).

204 B.T. Nguyen and C. Sprenger

3.1 Typed Protocol Abstractions

Our typed abstractions are specified by a list of recursive equations subject to
some conditions on their shape. We define their semantics in terms of a simple
Haskell-style functional program. We use both pattern matching on terms and
subtyping on types to select the equation to be applied to a given term. This
ensures that terms of related types are transformed in a uniform manner.

Syntax. Let W = {Wτ}τ∈Y be a family of pattern variables disjoint from V .
We define the set of patterns by P = T (W , ∅). A pattern p ∈ P is called linear if
each (pattern) variable occurs at most once in p. We extend the typing function
Γ to patterns by setting Γ (X) = τ if and only if X ∈ Wτ and then lifting it
homomorphically to all patterns. Our typed message abstractions are instances
of the following recursive function specifications.

Definition 4. A function specification Ff = (f, Ef) consists of an unary func-
tion symbol f /∈ Σ1 and a list of equations

Ef = [f(p1) = u1, . . . , f(pn) = un],

where each pi ∈ P is a linear pattern such that ui ∈ TΣ≥1∪{f}(vars(pi)) for all

i ∈ ñ, i.e., ui consists of variables from pi and function symbols from Σ≥1∪{f}.
We use vectors (lists) of terms t = [t1, . . . , tn] for n > 0. We define set(t) =

{t1, . . . , tn} and f̂(t) = 〈f(t1), . . . , f(tn)〉, the elementwise application of a func-
tion f to a vector where the result is converted to a tuple (with the convention
〈t〉 = t). We extend split to vectors by split(t) = split(set(t)). We define three
sets of function symbols occurring in R and Ax as follows.

CR = {c | d(c(x1, . . . , xn, t), u) → xj ∈ R}
CKey =

⋃
{ct(t) ∪ ct(u) | d(c(x1, . . . , xn, t), u) → xj ∈ R}

CAx =
⋃
{ct(s) ∪ ct(t) | {s, t} ∈ Ax}

The function pp(c) returns the set of extractable indices of a function symbol c,
i.e., pp(c) = {j | d(c(x1, . . . , xn, t), u) → xj ∈ R or d(c(x1, . . . , xn)) → xj ∈ R}.
Definition 5 (Typed abstraction). A function specification Ff = (f, Ef) is
a typed abstraction if each equation in Ef has the form

f(c(p1, . . . , pn)) = 〈e1, . . . , ed〉

where for each i ∈ d̃ we have either

(a) ei = f(q) such that q ∈ split(pj) for some j ∈ ñ, or

(b) ei = c(f̂(q1), . . . , f̂(qn)) such that set(qj) ⊆ split(pj) for all j ∈ ñ, c �= 〈·, ·〉,
and c ∈ CR implies qn = [pn], i.e., f̂(qn) = f(pn).

Moreover, we require (i) for all j ∈ pp(c) we have split(pj) ⊆ Qj where

Qj =
⋃

{set(qj) | ∃i ∈ d̃. ei = c(f̂(q1), . . . , f̂(qn))} ∪ {q | ∃i ∈ d̃. ei = f(q)}.

and (ii) if c ∈ CAx ∪ CKey then pi = Xi : msg for all i ∈ ñ, d = 1 and e1 =
c(f(X1), . . . , f(Xn)) is an instance of (b); we say Ff is homomorphic for c.

Abstractions for Security Protocol Verification 205

Intuitively, the abstractions can only weaken the cryptographic protection of
terms, but never strengthen it. Each equation in Ef maps a term with top-level
symbol c to a tuple whose components have the form (a) or (b). Form (a) allows
us to pull fields out of the scope of c, hence removing c’s protection. Using form
(b) we can reorder or remove fields in each argument of c. Form (b) is subject to
two conditions. First, we disallow this form for pairs to obtain the simple shape
f(〈p1, p2〉) = f̂(q). Second, we cannot permit the reordering or removal of fields
in key positions, i.e., in the last argument of c ∈ CR. Moreover, by point (i), all
fields of extractable arguments, i.e., elements of split(pj) for j ∈ pp(c), must be
present in some ei and point (ii) requires that the abstraction is homomorphic
for function symbols c occurring in axioms and in keys (c ∈ CAx ∪ CKey).

Example 5. We present a typed abstraction Ff = (f, Ef) illustrating a repre-
sentative selection of the possible message transformations. Suppose X : γc,
Y : nonce, and Z,U, V : msg and let Ef consists of the following three equations:

f(〈X,Y, Z〉) = 〈f(Y), f(X), f(Z)〉
f(kdf(X,Y, U, V)) = 〈kdf(f(X), f(Y)), kdf(f(U))〉

f({|X,Y, Z|}U) = 〈{|f(X), f(Y)|}f(U), f(Y), {|f(Z)|}f(U)〉

The patterns’ types filter the matching terms:X and Y only match the constant c
and a nonce, respectively. The first equation swaps the first two fields in n-tuples
for n ≥ 3. The second one splits a kdf hash into two, removing the field V . The
last equation splits an encryption: the pair 〈f(X), f(Y)〉 and f(Z) are encrypted
separately with the key f(U) and f(Y) is pulled out of the encryption. Note that
by condition (i) of Definition 5, we cannot directly remove plaintext fields from
encryptions. To achieve this, we pull such fields out of encryptions to the top-
level. This may require a combination of several abstractions if there are multiple
layers of cryptographic protection. At the top-level, the fields are no longer
protected and can be removed using untyped abstractions. In Section 4.1, we
will discuss our heuristics to determine sequences of abstractions automatically.

Semantics. The semantics of a typed abstraction Ff is given by the Haskell-
style functional program f (Program 1).1 To ensure totality, we use the ex-
tended function specification (f, E+

f) = (f, Ef · E0
f), where f(g(Z1, . . . , Zn)) =

g(f(Z1), . . . , f(Zn)) ∈ E0
f for each g ∈ Σn with n ≥ 1 such that Zi : msg for all

i ∈ ñ, and f(Z) = Z with Z : msg is the last clause in E0
f . We assume Ef and

E0
f do not share variables. The case statement has a clause

p | Γ (t) � Γ (p) ⇒ u

for each equation f(p) = u of E+
f . Such a clause is enabled if (1) the term t

matches the pattern p, i.e., t = pθ for some substitution θ, and (2) its type Γ (t)
is a subtype of Γ (p). The first enabled clause is executed. Hence, the equations

1 We are overloading the symbol f here, but no confusion should arise.

206 B.T. Nguyen and C. Sprenger

fun f(t) = case t of
‖
(f(p)=u)∈E

+
f

p | Γ (t) � Γ (p) ⇒ u

Program 1. Functional program f resulting from Ff = (f, Ef)

E0
f serve as fall-back clauses, which cover the terms not handled by Ef . In

particular, the last clause f(Z) = Z handles exactly the atoms and variables.
We extend f to events, event sequences, and traces by applying f to the terms

they contain and to substitutions and protocols by applying f to the terms in
their range. Similarly, we extend f to formulas φ of our property language by
applying f to all terms occurring in φ.

Finding Abstractions. Finding abstractions is fully automated by our tool
using a heuristic that we will describe in Section 4.1. However, the resulting
abstractions can be counterintuitive. Therefore, we present here a simplified
strategy that we apply to our running example below: We start by identifying
the terms that appear in the secret(·) predicates and equations of the desired
properties. Then we determine the cryptographic operations that are essential
to achieve these properties and try to remove all other terms and operations.

Example 6 (from IKEm to IKE1
m). In order to preserve the secrecy of the DH key

exp(exp(g, x), y) and the agreement on na, nb, exp(g, x), and exp(g, y), we have
to keep either the mac or the symmetric encryption with SK (see Examples 3
and 4). We want to remove as many other fields and operations as possible
(e.g., prf). We choose to remove the encryption as this allows us to later remove
additional fields (e.g., sA2) using untyped abstractions. We keep o in AUTHa to
prevent unifiability with AUTHb and hence potential false negatives. This leads
us to the typed abstraction F1 = (f1, E1) where E1 is defined by the equations

f1({|X,Y |}Z) = 〈f1(X), f1(Y)〉
f1(mac(X1, . . . , X8)) = mac(f̂1([X1, X3, X5, X6, X7, X8]))

f1(mac(Y1, . . . , Y8)) = mac(f̂1([Y1, Y5, Y6, Y7, Y8]))
f1(kdf(Z1, . . . , Z5)) = kdf(f1(Z3))

f1(prf(U,Z)) = f1(U)

(where we omitted the homomorphic clauses for exp and 〈·, ·〉) and X : α, X3 : γo,
Y3 : nonce, Z3 : exp(msg ,msg), U : kdf(msg) and all remaining pattern variables
are of type msg. Applying f1 to IKEm we obtain IKE1

m. Here is the abstracted
initiator role.

SIKE1
m
(A) = snd(sPIa, o, sA1 , exp(g, x), na) · rcv(sPIa, SPIb, sA1 ,Gb,Nb)·

snd(sPIa, SPIb, A,B,AUTHaa, sA2 , tSa, tSb)·
rcv(sPIa, SPIb, B,AUTHba, sA2 , tSa, tSb)

with SKa = kdf(exp(Gb, x)), AUTHaa = mac(sh(A,B), o, exp(g, x),na,Nb,SKa),
and AUTHba = mac(sh(A,B),Gb,Nb, na, SKa). In a second step, we will remove
most fields in the roles of IKE1

m using untyped abstractions.

Abstractions for Security Protocol Verification 207

3.2 Soundness of Typed Abstractions

To justify the soundness of our abstractions, we show that any attack on a prop-
erty φ of the original protocol P is reflected as an attack on the property f(φ)
of the abstracted protocol f(P). We decompose this into reachability preserva-
tion (RP) and an attack preservation (AP) as follows. We require that, for all
reachable states (tr, th, σ) of P , there is a ground substitution σ′ such that

(RP) (f(tr), f(th), σ′) is a reachable state of f(P), and
(AP) (tr, th, σ) �|= φ implies (f(tr), f(th), σ′) �|= f(φ).

These properties will require some assumptions about the protocol P , the for-
mula φ, and the abstraction f . Before we formally state the soundness theorem,
we will introduce and motivate these assumptions while sketching its proof. For
the remainder of this subsection we assume arbitrary but fixed P , φ, Ff .

We start with two basic properties of abstractions. The first one, which
we call the substitution property, states that f(tθ) = f(t)f(θ) for well-typed
R,Ax-normal substitutions θ. This does not hold in general. For example, sup-
pose Ef contains the clauses f(h(Y :γc)) = f(X) and f(h(X:msg)) = h(f(X))
in this order. Then the property is violated for t = h(Z :msg) and θ = [c/Z].
Thus, we must ensure that t and all its instance tθ are transformed uniformly,
i.e., match the same clauses of Ef . We therefore require that (i) the patterns
in Ef must not overlap and (ii) all recursive calls of f on composed terms
during the transformation of t are handled by the clauses of Ef , without re-
course to the fall-back clauses in E0

f . This is formalized in the following two
definitions where we denote the set of pattern types of a list of equations L by
Π(L) = {Γ (p) | (f(p) = u) ∈ L}, we define Πf = Π(Ef), and let Rec(Ff , t) be
the set of terms u such that f(u) is called in the computation of f(t).

Definition 6. A function specification Ff is pattern-disjoint if the types in Πf

are pairwise disjoint, i.e., Γ (pi)↓ ∩ Γ (pj)↓ = ∅ for all i, j ∈ ñ such that i �= j.

Definition 7 (Uniform domain). We define the uniform domain of Ff by
udom(Ff) = {t ∈ T | Γ (Rec(Ff , t)) ⊆ Πf↓ ∪ Yat}.
We will require that the protocol terms t ∈ MP belong to this set, which en-
sures that their instances tθ with R,Ax-normal substitutions θ are transformed
uniformly. We henceforth assume that Ff is pattern-disjoint. Note that the ab-
stractions defined in Examples 5 and 6 are pattern-disjoint.

Theorem 1 (Substitution property). Let t ∈ udom(Ff) and θ be a well-
typed and R,Ax-normal substitution. Then f(tθ) = f(t)f(θ).

The second basic property needed in our soundness proof is that abstractions
preserve equality modulo E. We decompose this into the preservation of Ax-
equality and of rewriting steps. Neither is preserved in general. To ensure this
we need the following two definitions.

Definition 8 (R,Ax-closedness). Ff is R,Ax-closed if the following holds:
t =Ax u implies τt � τ if and only if τu � τ , for all R,Ax-normal composed
terms t : τt and u : τu and all τ ∈ Π(E+

f).

208 B.T. Nguyen and C. Sprenger

We henceforth assume that Ff is R,Ax-closed. In [23], we present a syntactic
criterion for checking this. To achieve the preservation of rewriting steps under
abstraction, we must ensure that, for all positions p in t where a rule l → r ∈ R
is applicable, the redex t|p in t is transformed into a redex f(t|p) in f(t) that
still Ax-matches l. This is the purpose of the following definition.

Definition 9 (R,Ax-homomorphism). We say that f is R,Ax-homomorphic
for a term t if for all non-variable positions p in t and for all rules l → r ∈ R
such that there exists a well-typed Ax-unifier of t|p and l, it holds that

(i) f is homomorphic for all c ∈ ct(l),
(ii) f is homomorphic for top(t|p′) and top(t|p′) �= top(l′) for all strict prefixes

p′ of p and rewrite rules l′ → r′ ∈ R such that ct(l′) is not a singleton.

We define rdom(Ff) to be the set of terms for which f is R,Ax-homomorphic.

Many interesting protocols P satisfy MP ⊆ rdom(Ff), including those from our
case studies. Since we must also cover redexes arising by instantiating protocol
terms t ∈ MP , this definition employs Ax-unification rather than Ax-matching.
The definition ensures that instantiations with R,Ax-normal substitutions and
rewriting steps both preserve the membership of terms in rdom(Ff).

Theorem 2 (Equality preservation). Let t and u be terms such that t, u ∈
rdom(Ff). Then t =E u implies f(t) =E f(u).

Reachability preservation (RP) To achieve reachability preservation, we
prove that every step of P can be simulated by a corresponding step of f(P).
In particular, to simulate receive events, we show that intruder deducibility is
preserved under abstractions f (cf. second premise of rule RECV), i.e.,

Tθ, IK0 �E uθ ⇒ f(T)f(θ↓R,Ax), f(IK0) �E f(u)f(θ↓R,Ax). (1)

This property is also required to show the preservation of attacks on secrecy as
part of (AP). We first establish deducibility preservation for ground terms:

Theorem 3 (Deducibility preservation). Let T∪{t} ⊆ N be a set of ground
network messages such that C ⊆ T and T is R,Ax-normal. Then T �E t implies
f(T) �E f(t↓R,Ax).

We can now derive (1) by applying Theorems 3, 2 and 1 in this order, combined
with applications of rule Eq and a cut property of intruder deduction. Summa-
rizing, reachability preservation (RP) holds for MP ⊆ udom(Ff) ∩ rdom(Ff).

Attack Preservation (AP). We next define and explain the conditions on
formulas needed to establish attack preservation. Let

– Secφ be the set of all terms t that occur in formulas secret(t) in φ,
– Eqφ be the set of pairs (t, u) such that the equation t = u occurs in φ and

EqTermφ = {t, u | (t, u) ∈ Eqφ} is the set of underlying terms, and
– Evtφ be the set of events occurring in φ.

Abstractions for Security Protocol Verification 209

Let Eq+φ the positively occurring equations in φ and similarly for Evtφ.

Definition 10 (Safe formulas). φ is safe for P and f if

(i) Secφ ∪ EqTermφ ⊆ udom(Ff) ∩ rdom(Ff),

(ii) f(tσ) =E f(uσ) implies tσ =E uσ for all (t, u) ∈ Eq+φ and for all well-typed
R,Ax-normal ground substitutions σ, and

(iii) f(t) = f(u) implies t = u, for all e(t) ∈ Evt+φ and e(u) ∈ Evt(MP).

Condition (i) requires that Ff is uniform and R,Ax-homomorphic for the terms
in secrecy statements and equalities. Condition (ii) expresses the injectivity of
the abstraction on the terms in positively occurring equalities. This condition is
required to preserve attacks on agreement properties. In other words, it prevents
abstractions from fixing attacks on agreement by identifying two terms that differ
in the original protocol. In the full version [23], we provide a syntactic criterion to
check condition (ii) that avoids the universal quantification over substitutions.
Condition (iii) is required for properties involving event orderings and steps
predicates. It states that the abstraction must not identify an event occurring
positively in the property with a distinct protocol event.

We now state the soundness theorem. Below, IK0 and IK ′
0 respectively denote

the intruder’s initial knowledge associated with P and f(P).

Theorem 4 (Soundness). Suppose P , φ, and Ff satisfy (i) f(IK0) ⊆ IK ′
0, (ii)

Ff is pattern-disjoint and R,Ax-closed, (iii) MP ⊆ udom(Ff) ∩ rdom(Ff), and
φ is safe for P and f . Then, for all states (tr, th, σ) reachable in P , we have

1. (f(tr), f(th), f(σ↓R,Ax)) is a reachable state of f(P), and
2. (tr, th, σ) � φ implies (f(tr), f(th), f(σ↓R,Ax)) � f(φ).

3.3 Untyped Abstractions

Typed abstractions offer a wide range of possibilities to transform cryptographic
operations including subterm removal, splitting, and pulling fields outside a cryp-
tographic operation. We complement these abstractions with two kinds of un-
typed abstractions that allow us to remove (1) unprotected atoms and variables
of any type and (2) redundancy in the form of intruder-derivable terms. Un-
typed protocol abstractions are functions g : T → T ∪ {nil} where messages to
be removed are mapped to nil. We remove events with nil arguments from the
roles. Due to lack of space, we only sketch the definitions and give an example
here. Full details and soundness results can be found in [23].

Atom/Variable Removal. The removal abstraction remT : T → T ∪{nil} for
a set T of atoms or variables is defined by

– remT (u) = nil if u ∈ T �,

– remT (〈t1, t2〉) =
{
remT (ti) if remT (t3−i) = nil for some i ∈ 2̃

〈remT (t1), remT (t2)〉 otherwise

– remT (t) = t for all other terms.

210 B.T. Nguyen and C. Sprenger

In order to preserve attacks, we have to restrict the removal of atoms and vari-
ables from a protocol term t to fields u ∈ split(t) that appear only unprotected
(clear) in t, i.e., such that u /∈ subs(t) \ split(t).

Example 7 (IKE1
m to IKE2

m). We use atom/variable removal to simplify the pro-
tocol IKE1

m. First, we recall the specification of role A of IKE1
m.

SIKE1
m
(A) = snd(sPIa, o, sA1 , exp(g, x), na) · rcv(sPIa, SPIb, sA1 ,Gb,Nb)·

snd(sPIa, SPIb, A,B,AUTHaa, sA2 , tSa, tSb)·
rcv(sPIa, SPIb, B,AUTHba, sA2 , tSa, tSb)

We remove the role names A and B, the constants o, sA1 , sA2 , tSa, tSb, the fresh
value sPIa, and the variable SPIb using an atom/variable removal abstraction.
The result is the protocol IKE2

m whose initiator role is defined as follows.

SIKE2
m
(A) = snd(exp(g, x), na) · rcv(Gb,Nb) · snd(AUTHaa) · rcv(AUTHba)

We also apply the typed abstraction from Example 6 and the untyped abstraction
here to the properties φs and φa of Example 4. These only affect the events in
the steps predicates. The relevant soundness conditions are satisfied.

Redundancy Removal. A redundancy removal abstraction rd enables the
elimination of redundancies within each role of a protocol. Intuitively, a proto-
col term t appearing in a role r can be abstracted to rd(t) if t and rd(t) are
derivable from each other under the intruder knowledge T containing the terms
preceding t in r and the initial knowledge IK0. For example, we can simplify
r = snd(t) · rcv(〈t, u〉) to snd(t) · rcv(u). In contrast to atom/variable removal,
redundancy removal can also remove composed terms. It is therefore a very
effective ingredient for automatic abstraction, which we describe next.

4 Implementation and Experimental Results

We have implemented our abstraction methodology for the Scyther tool and
tested it on a variety of complex protocols, mainly stemming from the IKE and
ISO/IEC 9798 families. Scyther is an efficient verifier for security protocols. It
supports verification for both a bounded and an unbounded number of threads.
Protocols are specified by a set of linear role scripts. It also supports user-defined
types. These features match our setting very well.

4.1 Abstraction Heuristics

Our tool computes a series of successively more abstract protocols. Each ab-
straction step consists of a typed abstraction followed by a redundancy and an
atom/variable removal abstraction. A heuristic guides the automatic generation
of the typed abstractions. These abstractions may be partially user-specified.

Central to our heuristic are the (sub)terms of Secφ and EqTermφ for a given
property φ, which we call essential terms. The heuristic assigns security labels,

Abstractions for Security Protocol Verification 211

c for confidentiality and a for authenticity, to cryptographic primitives as their
intended security guarantees. These labels are inherited by subterms. Concretely,
we label symmetric encryptions and MACs with c and a, asymmetric encryptions
and hashes with c, and signatures with a. Based on this labeling, we decide
which fields are pulled outside of or removed from the topmost cryptographic
operations. The main criterion is that these transformations must preserve the
following labeling properties of each essential term t: the presence of an a label
on some occurrence of t and of c labels on all occurrences of t. The successive
abstractions work from the outside to the inside of the original protocol’s terms.
The untyped abstractions simply remove all inessential top-level fields.

Example 8. We can simplify the term {|B,AUTHba, sA2 , tSa, tSb|}SKa where
AUTHba = mac(sh(A,B), sPIa , SPIb, sA1 ,Gb,Nb,na, prf(SKa, B)) of the IKEm

protocol from Example 3 in two successive abstraction steps as follows.

{|B,AUTHba, sA2 , tSa, tSb|}SKa �→ 〈B,AUTHba, sA2 , tSa, tSb〉
AUTHba �→ mac(sh(A,B),Gb,Nb, na, prf(SKa, B))

In the first step, we pull the whole plaintext out of the encryption since the
security labels of essential terms (underlined) are preserved by the mac. In the
second step, we transformAUTHba by keeping essential and removing inessential
terms. Note that removing the term u = prf(SKa, B) or pulling it out of the mac
would not preserve authenticity for the essential term x inside SKa. In a further
step, we can simplify u by deleting inessential subterms and dropping prf.

Our abstractions are sound, but not complete. Therefore, we may encounter
false negatives, i.e., spurious attacks. We carefully try to avoid these, for instance,
by checking that abstractions do not introduce new pairs of unifiable terms. We
currently do not check automatically whether an attack is spurious. Whenever
an attack on a protocol P is found, we proceed to analyze (only) the failed
properties on the next more concrete protocol in the series of abstractions.

4.2 Experimental Results

We have validated the effectiveness of our abstractions on 22 members of the
IKE and ISO/IEC 9798 protocol families and on the PANA-AKA protocol [3].
We verify these protocols using five tools based on four different techniques:
Scyther [10], CL-Atse [26], OFMC [5], SATMC [4], and ProVerif [6]. Only Scyther
and ProVerif support verification of an unbounded number of threads. Due to
lack of space, we present only a selection of 16 experimental results for Scyther
(Table 1) and refer to the full version [23] for a complete account. Our models of
the IKE and ISO/IEC 9798 protocols are based on Cremers’ [8,9]. Since Scyther
uses a fixed signature with standard cryptographic primitives and no equational
theories, the IKE models approximate the DH theory by oracle roles.

We mark verified properties by � and falsified ones by ×. An entry �/×
means the property holds for one role but not for the other. Each row consists of
two lines, corresponding to the analysis time without (line 1) and with (line 2)

212 B.T. Nguyen and C. Sprenger

Table 1. Experimental results. The time is in seconds. No: Number of abstractions.
Properties: Secrecy, Aliveness, Weak agreement, and Non-injective agreement.

protocol No S A W N 3 4 5 6 7 8 ∞
IKEv1-pk-a22 1 � � 18.48 82.93 249.55 554.09 1006.04 1734.85 TO

0.83 1.26 2.08 3.47 5.96 10.28 TO

IKEv2-eap 5 � � TO TO TO TO TO TO TO
78.35 798.44 4212.71 20911.20 TO TO TO

IKEv2-mac 5 � � 1.85 4.91 6.72 8.07 8.42 8.49 8.70
0.62 1.77 1.83 1.73 1.73 1.80 1.74

IKEv2-mactosig 4 � � 11.65 141.37 1075.46 7440.81 TO TO TO
2.89 12.38 24.54 38.68 53.36 65.07 77.68

IKEv2-sigtomac 5 � � 6.15 33.19 65.05 115.34 204.93 206.45 237.34
3.59 12.72 28.44 44.44 55.11 66.97 67.15

IKEv1-pk-m 2 × 48.62 269.92 507.40 869.23 16254.80 TO TO
0.04 0.05 0.05 0.05 0.05 0.05 TO

IKEv1-pk-m2 2 �/× 18.26 274.87 4438.72 TO TO TO TO
1.48 7.79 32.75 110.32 339.93 963.08 TO

IKEv1-sig-m 2 × 0.34 0.45 0.45 0.45 0.45 0.46 0.44
0.05 0.05 0.05 0.06 0.05 0.05 0.06

IKEv1-sig-m-perlman 2 × 2.86 13.99 40.78 67.83 72.08 72.15 109.03
0.05 0.05 0.05 0.05 0.05 0.05 0.05

ISO/IEC 9798-2-5 1 � 0.78 8.96 73.87 564.67 4214.22 TO TO
0.07 0.11 0.12 0.11 0.11 0.11 0.11

ISO/IEC 9798-2-6 1 � 0.57 3.74 18.42 67.01 196.30 488.04 21278.58
0.05 0.04 0.05 0.05 0.05 0.05 0.05

ISO/IEC 9798-3-6-1 2 � � 43.08 802.95 8903.70 ME ME ME ME
0.13 0.18 0.19 0.19 0.19 0.19 0.19

ISO/IEC 9798-3-6-2 1 � � 2.74 8.67 19.56 33.91 52.51 69.48 90.04
0.12 0.15 0.15 0.15 0.15 0.15 0.15

ISO/IEC 9798-3-7-1 2 � � 40.43 740.47 7483.36 16631.42 ME ME ME
0.13 0.18 0.19 0.19 0.19 0.19 0.19

ISO/IEC 9798-3-7-2 1 � � 2.38 7.71 16.68 26.99 35.06 49.49 TO
0.22 0.32 0.33 0.33 0.33 0.33 0.33

PANA-AKA 5 � � � � 5769.53 TO TO TO TO TO TO
0.10 0.10 0.10 0.10 0.10 0.10 0.10

abstraction for 3-8 or unboundedly many (∞) threads. The times were measured
on a cluster of 12-core AMD Opteron 6174 processors with 64 GB RAM each.
They include computing the abstractions (4-20 ms) and the verification itself.

Verification. For 8 of the 12 original protocols that are verified, an unbounded
verification attempt results in a timeout (TO = 8h cpu time) or memory ex-
haustion (ME). In 6 of these, our abstractions enabled a verification in less than
0.4 seconds and in one case in 78 seconds. However, for the first two protocols,
we still get a timeout. For the large majority of the bounded verification tasks,
we significantly push the bound on the number of threads and achieve massive
speedups. For example, our abstractions enable the verification of the complex
nested protocols IKEv2-eap and PANA-AKA. Scyther verifies an abstraction of
IKEv2-eap for up to 6 threads and, more strikingly, completes the unbounded
verification of the simplified PANA-AKA in under 0.1 seconds whereas it can
handle only 4 threads of the original. We also achieve dramatic speedups for

Abstractions for Security Protocol Verification 213

many other protocols, most notably for IKEv1-pk-a22, ISO/IEC 9798-2-6, and
ISO/IEC 9798-3-6-2. Moreover, the verification time for many abstracted pro-
tocols increases much more slowly than for their originals. We obtain almost
constant verification times for the six ISO/IEC 9798 protocols, whereas the time
significantly increases on some originals, e.g., for ISO/IEC 9798-3-6-1. For a few
protocols, e.g., IKEv2-sigtomac and IKEv2-mac, the speedup is more modest.

Falsification. For rows marked by ×, the second line corresponds to falsification
time for the most abstract model, which is much faster than on the original one.
For example, for 8 threads of the IKEv1-pk-m protocol, we reduce falsification
time from a timeout to 0.05 seconds. In the unbounded case, the speedup factors
are 7 for IKEv1-sig-m and 2180 for IKEv1-sig-m-perlman. A manual analysis of
the abstract attacks shows that none of them is spurious, suggesting that our
measures to prevent them are effective. We expect that fast automatic detection
of spurious attacks is feasible and will affect performance only negligibly.

Combination. For the IKEv1-pk-m2 protocol, the tool verifies non-injective
agreement for one role and falsifies it for the other one. Surprisingly, we ob-
tain a remarkable speedup even though the analysis of this protocol is done
three times (for two abstract and the original models). Our abstractions push
the feasibility bound from 5 to 8 threads. As the property is verified very quickly
for one role on the most abstract model, it needs to be analyzed only for the
other role at lower abstraction levels. This explains the remarkable speedups we
obtain and therefore illustrates an advantage of our abstraction mechanism in
this case.

5 Related Work and Conclusions

Hui and Lowe [18] define several kinds of abstractions similar to ours with the
aim of improving the performance of the CASPER/FDR verifier. They establish
soundness only for ground messages and encryption with atomic keys. We work in
a more general model, cover additional properties, and treat the non-trivial issue
of abstracting the open terms in protocol specifications. Other works [25,13,12]
also propose a set of syntactic transformations, however without formally es-
tablishing their soundness. Using our results, we can, for instance, justify the
soundness of the refinements in [13, Section 3.3]. Guttman [16,15] studies the
preservation of security properties for a rich class of protocol transformations in
the strand space model. His approach to property preservation is based on the
simulation of protocol analysis steps instead of execution steps. Each such step
explains the origin of a message. He does not have a syntactic soundness check.

In this work, we propose a set of syntactic protocol transformations that allows
us to abstract realistic protocols and capture a large class of attacks. Unlike
previous work [22,18], our theory and soundness results accommodate equational
theories, untyped variables, user-defined types, and subtyping. These features
allow us to accurately model protocols, capture type-flaw attacks, and adapt

214 B.T. Nguyen and C. Sprenger

to different verification tools, e.g., those supporting equational theories such as
ProVerif and CL-atse. We have extended Scyther with an abstraction module,
which we validated it on various IKE and ISO/IEC 9798 protocols. We also
tested our technique (with manually produced abstractions) on ProVerif, CL-
atse, OFMC, and SATMC. Our experiments clearly show that modern protocol
verifiers can substantially benefit from our abstractions, which often either enable
previously unfeasible verification tasks or lead to dramatic speedups.

Our abstraction tool does not check for spurious attacks. We plan to add this
functionality to complete the automatic abstraction-refinement process. We are
also interested in generalizing the tool and supporting more protocol verifiers.

Acknowledgements. We thank Mathieu Turuani and Michael Rusinowitch for
our discussions on the topic of this paper, Cas Cremers for his help with Scyther,
David Basin, Ognjen Maric, and Ralf Sasse for their careful proof-reading, and
the anonymous reviewers for their useful feedback. This work is partially sup-
ported by the EU FP7-ICT-2009 Project No. 256980, NESSoS: Network of Ex-
cellence on Engineering Secure Future Internet Software Services and Systems.

References

1. Armando, A., Arsac, W., Avanesov, T., Barletta, M., Calvi, A., Cappai, A., Car-
bone, R., Chevalier, Y., Compagna, L., Cuéllar, J., Erzse, G., Frau, S., Minea,
M., Mödersheim, S., von Oheimb, D., Pellegrino, G., Ponta, S.E., Rocchetto, M.,
Rusinowitch, M., Torabi Dashti, M., Turuani, M., Viganò, L.: The AVANTSSAR
platform for the automated validation of trust and security of service-oriented ar-
chitectures. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
267–282. Springer, Heidelberg (2012)

2. Arapinis, M., Duflot, M.: Bounding messages for free in security protocols. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 376–387.
Springer, Heidelberg (2007)

3. Arkko, J., Haverinen, H.: RFC 4187: Extensible authentication protocol method
for 3rd generation authentication and key agreement (EAP-AKA) (2006), http://
www.ietf.org/rfc/rfc4187

4. Armando, A., Compagna, L.: SAT-based model-checking for security protocols
analysis. International Journal of Information Security 7(1), 3–32 (2008)

5. Basin, D.A., Mödersheim, S., Viganó, L.: OFMC: A symbolic model checker for
security protocols. Int. J. Inf. Sec. 4(3), 181–208 (2005)

6. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
CSFW, pp. 82–96. IEEE Computer Society (2001)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) POPL, pp. 238–252. ACM (1977)

8. Cremers, C.: IKEv1 and IKEv2 protocol suites (2011),
https://github.com/cascremers/scyther/tree/master/gui/Protocols/IKE

9. Cremers, C.: ISO/IEC 9798 authentication protocols (2012),
https://github.com/cascremers/scyther/tree/master/gui/Protocols/

ISO-9798

http://www.ietf.org/rfc/rfc4187
http://www.ietf.org/rfc/rfc4187
https://github.com/cascremers/scyther/tree/master/gui/Protocols/IKE
https://github.com/cascremers/scyther/tree/master/gui/Protocols/ISO-9798
https://github.com/cascremers/scyther/tree/master/gui/Protocols/ISO-9798

Abstractions for Security Protocol Verification 215

10. Cremers, C.J.F.: The Scyther tool: Verification, falsification, and analysis of se-
curity protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
414–418. Springer, Heidelberg (2008)

11. Cremers, C.: Key exchange in IPsec revisited: Formal analysis of IKEv1 and IKEv2.
In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 315–334.
Springer, Heidelberg (2011)

12. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Abstraction and refinement in
protocol derivation. In: Proc. 17th IEEE Computer Security Foundations Work-
shop (CSFW) (2004)

13. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and com-
positional logic for security protocols. Journal of Computer Security 13, 423–482
(2005)

14. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic protocol anal-
ysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2007)

15. Guttman, J.D.: Transformations between cryptographic protocols. In: Degano, P.,
Viganò, L. (eds.) ARSPA-WITS 2009. LNCS, vol. 5511, pp. 107–123. Springer,
Heidelberg (2009)

16. Guttman, J.D.: Security goals and protocol transformations. In: Mödersheim, S.,
Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 130–147. Springer,
Heidelberg (2012)

17. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE) IETF RFC 2409 (Pro-
posed Standard) (November 1998), http://www.ietf.org/rfc/rfc2409.txt

18. Hui, M.L., Lowe, G.: Fault-preserving simplifying transformations for security pro-
tocols. Journal of Computer Security 9(1/2), 3–46 (2001)

19. Jouannaud, J., Kirchner, H.: Completion of a set of rules modulo a set of equations.
SIAM J. Comput. 15(4), 1155–1194 (1986)

20. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet Key Exchange Protocol
Version 2 (IKEv2). IETF RFC 5996 (September 2010), http://tools.ietf.org/
html/rfc5996

21. Meier, S., Schmidt, B., Cremers, C., Basin, D.: TAMARIN prover for the symbolic
analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 696–701. Springer, Heidelberg (2013)

22. Nguyen, B.T., Sprenger, C.: Sound security protocol transformations. In: Basin, D.,
Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 83–104. Springer, Heidelberg
(2013)

23. Nguyen, B.T., Sprenger, C.: Abstractions for security protocol verification. Tech.
rep. Department of Computer Science, ETH Zurich (January 2015), http://dx.
doi.org/10.3929/ethz-a-010347780

24. Paulson, L.: The inductive approach to verifying cryptographic protocols. J. Com-
puter Security 6, 85–128 (1998)

25. Pavlovic, D., Meadows, C.: Deriving secrecy in key establishment protocols. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp.
384–403. Springer, Heidelberg (2006)

26. Turuani, M.: The CL-atse protocol analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

http://www.ietf.org/rfc/rfc2409.txt
http://tools.ietf.org/html/rfc5996
http://tools.ietf.org/html/rfc5996
http://dx.doi.org/10.3929/ethz-a-010347780
http://dx.doi.org/10.3929/ethz-a-010347780

Hardware and Physical Security

Automated Backward Analysis
of PKCS#11 v2.20

Robert Künnemann

Department of Computer Science – TU Darmstadt, Germany

Abstract. The PKCS#11 standard describes an API for cryptographic operations
which is used in scenarios where cryptographic secrets need to be kept secret,
even in case of server compromise. It is widely deployed and supported by many
hardware security modules and smart cards. A variety of attacks in the litera-
ture illustrate the importance of a careful configuration, as API-level attacks may
otherwise extract keys.

Formal verification of PKCS#11 configurations requires the analysis of a
system that contains mutable state, a problem that existing methods solved by
either artificially restricting the number of keys, introducing model-specific over-
approximation or performing proofs by hand. At Security & Privacy 2014, Kre-
mer and Künnemann presented a variant of the applied pi calculus that handles
global state and, in conjunction with the tamarin prover for protocol verification,
allows for the precise analysis of protocols with state. Using this tool chain, we
show secrecy of keys for a PKCS#11 configuration that makes use of features
introduced in version 2.20 of the standard, including wrap and unwrap templates
in an extensible model.

This configuration supports the creation of so-called wrapping keys for im-
port and export of sensitive keys (e. g., for backup or transfer), and it permits the
co-existence of sensitive keys and non-sensitive keys on the same device.

1 Introduction

The more complex a system is, the more difficult is assuring its security. Given the com-
plexity of the runtime environment provided by multi-purpose computers, it appears
reasonable to compute security-critical operations outside the computer that actually
runs the protocol (and usually more than one protocol), and instead on a device which
is a) smaller, and thus more amenable to verification, and b) designed with security in
mind. In security-critical contexts, e. g., the cash machine network or the public key
infrastructure, the use of such devices, so-called security tokens, is common practice.
In case the (complex) system running the protocol is under adversarial control, i. e.,
in case of server compromise, cryptographic secrets are protected by the (smaller, and
thus more secure) security token, and the fact that these secrets were never directly
accessible, even to the server.

PKCS#11 defines a platform-independent API to security tokens, for example smart
cards, but also hardware security modules (HSMs). HSMs are physical computing de-
vices that can be attached directly to a server via Ethernet, USB or other services, pro-
viding logical and physical protection for sensitive information and algorithms.

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 219–238, 2015.
DOI: 10.1007/978-3-662-46666-7 12

220 R. Künnemann

The fundamental security feature this standard provides is protecting the cryptographic
values of keys marked as “sensitive” [22, Section 7]:

Additional protection can be given to private keys and secret keys by marking
them as “sensitive” [..]. Sensitive keys cannot be revealed in plaintext off the
token [..].

Clulow’s attack. It was discovered very soon that a faithful implementation of the
standard violates this property. Clulow showed the following attack in 2003 [8], which
serves as an introduction to the caveats in the design of PKCS#11. Keys are accessed via
handles, hence indirectly. Some may be used for encryption and/or decryption, therefore
an attacker that can access the token (e. g., in case of server compromise) can request
the encryption of some message he supplies with a key of his choice, given that he
knows the handle (which we will consider public) and that the key is configured to
allow for encryption by setting an attribute ’encrypt’ to true, analogously for decryption.
Similarly, it is possible to wrap a key k1 with another key k2, that is, encrypt k1 under
k2. This allows for backup, as well as for transfer. Given that k2 is present on two
security tokens A and B, one may wrap k1 with k2 on A (using two handles associated
with k1 and k2, respectively) and unwrap the resulting cypher-text on B, using another
handle to k2. The scenario where k2 is configured for wrapping and for decryption
permits the attacker to request a wrapping of k1 under k2 and then decrypt the resulting
cyphertext, thus obtaining the value of k1 in the plain. The attack also applies when k2
is wrapped under itself.

An ‘incomplete’ implementation of the standard, often called a configuration can
thwart this attack by forbidding the same key to be used for wrapping and decryption.
But there are other conflicts, e. g., between encryption and unwrapping. In the present
paper, we propose a configuration and a method for verifying its security. We focus on
attacks on the logical level, using only API calls that are (by themselves) perfectly harm-
less, as opposed to attacks on the implementation of cryptographic functionality [4].

Related Work. Building on the work of Longley and Rigby [20] and Bond and An-
derson [5] on API attacks, several recent papers have investigated the security of APIs
on the logical level adapting symbolic techniques for protocol analysis [6, 9, 11], find-
ing many new attacks. There have also been academic proposals for new APIs [19,
10, 18]. While many attacks were found, a lot of effort was directed towards finding
configurations that are secure, i. e., that preserve secrecy of keys.

In the analysis of PKCS#11 configurations, there are three major lines of work. The
first one uses protocol verification techniques, regarding the security token as the (sole)
participant in a protocol, with the adversary sending requests on the public network.
Early results by Delaune, Kremer and Steel translated a given configuration into a sat-
isfiability problem which is solved by model checking, providing secrecy of keys if the
number of keys is known in advance [11]. This restriction was lifted in later work [14]
by Fröschle and Steel, showing that a class of configurations can safely be abstracted
by configurations that are static (i. e., a key’s attribute cannot be changed) and showing
that the latter is soundly over-approximated in a bounded model. This method is used
in further work by Bortolozzo, Centenaro, Focardi and Steel to find attacks on security
tokens using automatic reverse engineering and to show a configuration very similar to
ours secure.

Automated Backward Analysis of PKCS#11 v2.20 221

The second line of work uses a program verification approach, modelling security
tokens in a first-order linear time logic with past operators. In contrast to the proto-
col verification approach, proofs have been conducted by hand (using a tableau proof
method that proceeds by backward analysis), but provide support for advanced data
structures introduced by PKCS#11, version 2.20, in particular wrap/unwrap templates.
An attribute template is a set of attributes, but contains the attributes ‘wrapping tem-
plate’ and ‘unwrapping template’ which themselves are pointers to attribute templates,
resulting in a recursive data structure. In early work, Fröschele and Sommer show se-
curity, but only for keys with ‘extractable’ set to false [15], i. e., keys that cannot be
wrapped at all. In more recent work, the authors added support for wrap/unwrap tem-
plates [13]. Positives result only cover the secrecy of trusted wrapping keys, but not of
keys wrapped using these keys (as opposed to the results in the present paper, and in the
work by Bortolozzo et al.). The proof is done by hand and covers about six pages [16].

The third line of work uses static analysis on the implementation of the security
token [7]. Using security type-checking, a software implementation (written in a sub-
set of C) of the wrap, unwrap, encrypt and decrypt functions was shown to preserve
secrecy of sensitive keys against a Dolev-Yao attacker for a configuration that is func-
tionally equal to the one presented here, but uses a default type for wrapped keys rather
than wrap/unwrap templates. A generalised version of this framework proposes an im-
perative programming language with cryptographic operations and a centralised store
mapping values (possibly handles) to pairs of key values and their ground types [2].
Mapping sets of PKCS#11 attributes to types, the generalised framework again allows
for the analysis of PKCS#11, more specifically, PKCS#11 v2.20 using the configuration
analysed in the present paper.

Contribution. The present work shares common ground with the first two lines of work.
It follows a protocol verification approach and provides machine support, but relies on
backward analysis rather than finite model checking. Therefore, the resulting model can
be extended without breaking the soundness of the decision procedure (or introducing
limitations to the number of keys), but provides a largely automated proof procedure
although decidability cannot be guaranteed. The model is formulated in a variant of
the applied pi calculus augmented with operators for state manipulation. This high-
level protocol description language can be translated to multiset rewrite rules using the
Sapic tool which has been proven sound and complete in prior work [17]. The gen-
erated multiset rewrite system can be verified using the tamarin prover [23], which is
sound and complete as well. The constraint solving algorithm employed by the tamarin
prover uses backward analysis. While various methods in the first line of work achieve
security for an unbounded number of keys indirectly (using bounded analysis and an
over-approximation specific to the modelling of the PKCS#11 API) [14, 6], this method
supports an unlimited number of fresh values by default. For one, our model is closer
to an actual implementation, containing locking operations as well as database lookup,
but most importantly, our result requires no additional over-approximation. Hence, the
security proof is machine-verifiable (relying on the correctness of the translation proce-
dure [17] and the solving algorithm [23]) and the model extensible. The same holds for
the third line of work, too (except that parallelism and hence locking is not supported).
The type-checking approach is much faster and requires less manual intervention than

222 R. Künnemann

our approach, but might not be able to type configurations that are actually secure.
However, the configuration we show secure has been verified using type-checking [7,
2], hence the question of whether there actually is a more versatile policy that can be
shown secure using backward analysis but is not amenable to security type-checking
remains open.

The flexibility and precision of our modelling comes at the cost of losing some
amount of automation. As the verification method is sound and complete, but is able
to express the secrecy problem with unbounded nonces, which is undecidable [12],
there is no guarantee that the tool terminates. In order to achieve termination, some in-
tervention is necessary: Lemmas need to be used to cut branches in the proof attempt.
The advantage is a result that applies to a version of PKCS#11 (2.20) with wrap/un-
wrap templates and an intuitive, extensible model. In the present proof, we have given
10 lemmas, 6 of which are at least partially guided when being used without any model-
specific heuristics for the choice of goals in the proof. If we provide a (model-specific)
heuristic, a proof is found without user intervention. The lemmas are model-specific,
but not specific to the configuration we show secure (except for four trivial lemmas
that speed up the proof, but could be left out). We note that the tool chain is sound and
complete no matter which heuristic is used, i. e., even when the model is altered (e. g.,
to describe future versions of PKCS#11), if the heuristics are helpful in finding a proof,
the result is correct.

The configuration of PKCS#11 we prove secure implements a policy with three kinds
of keys: keys that are used to encrypt or decrypt payload and kept secret, keys that can
wrap and unwrap the first kind of keys for backup and keys that can be read in the clear
and are neither wrapped, nor used to wrap other keys but may encrypt/decrypt payload.
Keys cannot change roles, which we consider a sensible best practice, thus this policy
is static in the sense of [14].

This policy has been shown to provide secrecy of sensitive keys if implemented via
restricting the wrap and unwrap commands [7] or via wrap/unwrap templates [2] using
type-checking. As in these works, we show that non-sensitive keys (keys the attacker is
allowed to read in the clear) do not impair the security of other keys.

2 The PKCS#11 Standard, v2.20

The PKCS#11 standard specifies a security API (this term was coined by Bond and
Anderson [5]), that is, an API that separates trusted code operating on secret data from
untrusted code. As in the case of PKCS#11, security APIs are often used to perform
cryptographic computations. Separating the implementation of cryptographic opera-
tions from the rest of the system has the advantage that cryptographic secrets can be
hidden behind the API, whilst the code only accesses these secrets indirectly, using
handles. If the API gives access to an external piece of hardware, which is often the
case, the hope is that malicious code is restricted to using the API. Smart cards and
hardware security modules (HSMs) implementing PKCS#11 are much simpler than
multi-purpose computers, and designed with security in mind, so the idea of “outsourc-
ing” sensitive information and operations that depend on this information to a device
that is easier to secure seems to be reasonable. However, a sound design of said API is
essential in reaching this goal.

Automated Backward Analysis of PKCS#11 v2.20 223

Table 1. Attributes relevant to key-management. Modifiable means that attributes may be mod-
ified after an object is created, or while it is copied, however, tokens may decide not to permit
modification upon copying [22, Tab. 15, footnote 8, p. 66]. SO-only means the attribute can only
be set by the SO.

name modifiable SO-only comment
wrap (wrap) yes no can be first argument for wrap
unwrap (unwrap) yes no can be first argument for unwrap
encrypt (enc) yes no can be used for encryption
decrypt (dec) yes no can be used for decryption
sensitive (sens) yes no value shall not be extracted (directly), but

may be wrapped
extractable (extr) yes no Value shall not be extracted (directly) or used

as second argument to wrap
trusted (trus) no yes has been generated by SO
wrap-with-trusted (wwt) no no can only be wrapped by ‘trusted’ keys
wrap template (wt) no no key that are wrapped need to match this tem-

plate
unwrap template (ut) no no template applied to keys after being imported

by unwrap

PKCS#11 gives multiple applications access to several cryptographic devices via
slots [22, p.14], abstracting away from their respective implementation technology, be it
smart cards, PCMCIA cards, HSMs, etc. After a user, or an application, has established
a session to a device (through a slot), they can identify either as a Security Officer (SO),
or a normal user [22, p.15]. The role of the SO is to initialize a token and to set the
normal user’s PIN. The normal user cannot log in until the SO has set the normal user’s
PIN. Within a session, the user can manipulate objects stored on the token, such as
keys and certificates. Objects are referred to by handles. The value of a handle does not
reveal any information about the value of the key. Objects may be marked public and
private. A normal user, if authenticated, can access public and private objects, otherwise
only public objects. The SO can only access public objects, but perform operations the
normal user cannot perform, such as setting the user’s PIN.

Attributes. Objects may have attributes (besides being public or private), some of them
specific to their class and type (public keys of type CKK_RSA have a public exponent,
for example), and some general. The latter pertain to the key-management functions of
PKCS#11, and are listed in Table 1. Real devices offer only a subset of the functionality
specified by PKCS#11, partly due to security considerations: The PKCS#11 standards
permits modifying the attributes wrap and dec, immediately giving rise to Clulow’s
attack, see p.220.

2.1 Modelling

Security APIs are a means to provide a higher level of assurance in case of server com-
promise. If the server is compromised, the user PIN can easily be intercepted and the
attacker can establish a session with the device. Hence we model a network comprising

224 R. Künnemann

only of a single PKCS#11 token, which does not perform any kind of authentication for
normal users. The Dolev-Yao adversary is in full control over the network and is thus
able to issue arbitrary requests. The PKCS#11 standard discusses security against server
compromise and states that “none of the [these attacks] can compromise keys marked
‘sensitive’, since a key that is sensitive will always remain sensitive” [22, p. 31]. This
does not hold true for PKCS#11 itself (cf. p. 220), but we will show a configuration of
PKCS#11, for which this holds true.

This paper describes a formal model of the core key-management functionality in
PKCS#11, therefore we left out message digesting functions, signature and MAC func-
tions, as well as dual-purpose cryptographic functions (like C_DigestEncryptUpdate)
and random number generation, as they do not pertain to the key and object management
part of PKCS#11. Key-derivation (C_DeriveKey) allows for creating a new key object
from a base key and could be considered key-management, but there is no cryptographic
mechanism in PKCS#11 that supports wrap/unwrap as well as key derivation [22, Sec-
tion 12]. Thus we consider this function outside the key-management core of PKCS#11.
Note that encryption and decryption functions may allow for producing, or decrypting
wrappings (as Clulow’s attack shows), so they do pertain to the key-management part.
We concentrate on encryption and decryption for single-part data, i. e., the functions
for multi-part data C_EncryptInit, C_EncryptUpdate, C_EncryptFinal are left out in
favour of C_Encrypt, as our focus lies on API-level attacks. The same holds for de-
cryption functions. We furthermore ignored object management functions that reveal
only information which the attacker, as the only user accessing the token, can com-
pute anyway, such as C_GetObjectSize, C_GetAttributeValue, C_FindObjectsInit, C_-
FindObjects and C_FindObjectsFinal. The function C_DestroyObject is disabled, since
our modelling gives the adversary an unlimited amount of space to store keys, thus any
attack can be transformed into an attack that does not delete objects. Previous works

Table 2. Object- and Key-management operations in PKCS#11 and our modelling. Function
marked ‘(n.p.)’ are not present.

function description process comment

Object management functions
C_CreateObject creates an object (n.p.) forbidden by policy
C_CopyObject creates a copy of an object (n.p.) not helpful to adversary (in this

configuration)
C_DestroyObject destroys an object (n.p.) not helpful to adversary
C_SetAttributeValue modifies object’s attribute (n.p.) forbidden by policy

Encryption/Decryption functions
C_Encrypt encrypts single-part data encrypt
C_Decrypt decrypts single-part data decrypt

Key-management functions
C_GenerateKey generates a secret key create
C_GenerateKeyPair generates a public / private

key pair
(n.p.) asymm. wrapping keys permits

‘Trojan wrapped key attack’
C_WrapKey wraps (encrypts) a key wrap
C_UnwrapKey unwraps (decrypts) a key unwrap

Automated Backward Analysis of PKCS#11 v2.20 225

[11, 14, 6, 15] have similar restrictions. The full list of functions is listed in Table 8
of the PKCS#11 standard [22, p. 27]. The rest of PKCS#11 is what we consider the
core key-management part (Table 2). The configuration, while being more versatile
than policies that were previously proposed, forbids certain operations that are poten-
tially harmful. Another class of attacks Clulow discovered are “Trojan wrapped key
attacks”, where a public unwrapping key is used to introduce a wrapping key that the
attacker knows the value of, by producing the wrapping outside the device. We conclude
that our policy should not allow for asymmetric wrapping keys at all, and simplify the
model by only regarding symmetric keys. Extending the model to cover asymmetric
keys for non-key-management operations is straight-forward, but unlikely to lead to
new insights with respect to the security of policies.

2.2 Proposed Configuration

In this section, we will discuss policies that have been proposed in previous work and
introduce requirements that guided the design of the policy we will prove secure. We
will argue that, given these requirements, there are only two secure policies.

The first requirement shall be that there are ‘usage’ keys, i. e., keys that may encrypt
or sign payload. Since only encryption and decryption are relevant to key-management,
we propose:

Requirement A: There should be keys that can be used for encryption and
decryption.

Delaune et al. have shown different policies secure, all of which have in common that
wrap and unwrap are conflicting attributes [11]. Since wrapping keys are useful for
backup and out-of-device-storage of keys, we could formulate the requirement that
wrapping keys should be suitable for wrapping and unwrapping any key, however, we
think that the backup, and possibly the distribution of ‘usage’ keys – in our model, keys
used for encryption and decryption – is the main purpose of wrapping keys. Being able
to wrap wrapping keys is useful, but only once it is established that usage keys can be
wrapped.

Requirement B: Wrapping keys should be able to wrap and unwrap keys that
can be used for encryption and decryption.

Policies in related work often support the setting and unsetting of some attributes
[15, 13], requiring attributes to be unmodifiable where needed. Many configurations
describe policies by declaring conflicting attributes (pairs of attributes that are forbid-
den to be set at once) and sticky (unmodifiable when set) attributes. We argue for a
different approach: security policies become much easier to understand and to design
if the key is assigned a role upon creation, and cannot be altered in subsequent steps.
In most cases, it is clear from the beginning which keys needs to be protected, set-
ting a key to sensitive after it was ready to be exposed is clearly bad practice. The
attributes wrap, unwrap, enc, dec, extr, trust have in common that an attacker becomes
only less powerful in unsetting them. The opposite holds for wwt. Being able to al-
ter wrapping/unwrapping templates is much less useful as it seems, as wrappings in

226 R. Künnemann

PKCS#11 carry no information about which wrapping template was used. Altering the
wrapping template could be useful to define the class of keys that can be wrapped as
the union of permitted wrapping templates but, as we will see, this class can be defined
using a single wrapping template.

Requirement C: Policies should disable C_SetAttributeValue altogether.

Bortolozzo et al. proposed a policy that is static in that attributes cannot be altered after
the creation of keys [6]. Ignoring templates where wrap, unwrap, enc and dec are false,
they propose three templates:

1. Freshly generated keys can have wrap and unwrap set.
2. Freshly generated keys can have enc and dec set.
3. Keys imported with unwrap may have unwrap and encrypt set, but wrap and decrypt

unset.

Intuitively, the third template means that keys ‘degrade’ when being backed up, that
is, they cannot resume to their full functionality. The policy we analyse here differs in
this regard: ‘trusted’ keys can be used to wrap ‘usage’ keys, which can be adequately
restored.

Table 3. The templates using in the proposed policy. (A dot • is present for each attribute that is
set.)

name wrap unwrap enc dec sens extr trus wwt wt ut
trusted • • • • • • usage usage
usage • • • • • - -
untrusted • • • - -

These policies are incomparable; while the second policy supports lossless key-
backup, the policy by Bortolozzo et al. allows for transferring wrapping keys between
two PKCS#11 device A and B. Assume A and B have the same wrapping key set-up
at the start (e. g., by the SO). A creates another wrapping key, which is wrapped us-
ing the common wrapping key, and unwrapped at B. Now A can use this second-level
wrapping key to produce wrappings that B can import.

3 Preliminaries

Terms and equational theories. As usual in symbolic protocol analysis we model mes-
sages by abstract terms. Therefore we define an order-sorted term algebra with the sort
msg and two incomparable subsorts pub and fresh . For each of these subsorts we as-
sume a countably infinite set of names, FN for fresh names and PN for public names.
Fresh names will be used to model cryptographic keys and nonces while public names
model publicly known values. We furthermore assume a countably infinite set of vari-
ables for each sort s, Vs and let V be the union of the set of variables for all sorts. We
write u : s when the name or variable u is of sort s. Let Σ be a signature, i.e., a set of

Automated Backward Analysis of PKCS#11 v2.20 227

function symbols, each with an arity. We write f/n when function symbol f is of arity
n. We denote by TΣ the set of well-sorted terms built over Σ, PN , FN and V . For a
term t we denote by names(t), respectively vars(t) the set of names, respectively vari-
ables, appearing in t. The set of ground terms, i.e., terms without variables, is denoted
by MΣ . When Σ is fixed or clear from the context we often omit it and simply write
T for TΣ and M for MΣ .

We equip the term algebra with an equational theory E, that is, a finite set of equa-
tions of the form M = N where M,N ∈ T . From the equational theory we define
the binary relation =E on terms, which is the smallest equivalence relation containing
equations in E that is closed under application of function symbols, bijective renam-
ing of names and substitution of variables by terms of the same sort. Furthermore, we
require E to distinguish different fresh names, i. e., ∀a, b ∈ FN : a �= b ⇒ a �=E b.

Example 1. Symmetric encryption can be modelled using a signature

Σ = { senc/2, sdec/2, true/0 }

and an equational theory defined by

sdec(senc(m, k), k) = m.

For the rest of the paper we assume that E refers to some fixed equational theory
and that the signature and equational theory always contain symbols and equations for
pairing and projection, i.e., {〈., .〉, fst, snd} ⊆ Σ and equations fst(〈x, y〉) = x and
snd(〈x, y〉) = y are in E. We will sometimes use 〈x1, x2, . . . , xn〉 as a shortcut for
〈x1, 〈x2, 〈. . . , 〈xn−1, xn〉 . . .〉.

We also use the usual notion of positions for terms. A position p is a sequence of
positive integers and t|p denotes the subterm of t at position p.

Facts. We also assume an unsorted signature Σfact , disjoint from Σ. The set of facts is
defined as

F := {F (t1, . . . , tk) | ti ∈ TΣ , F ∈ Σfact of arity k}.

Facts will be used both to annotate protocols, by the means of events, and for defining
multiset rewrite rules. We partition the signature Σfact into linear and persistent fact
symbols. We suppose that Σfact always contains a unary, persistent symbol !K and a
linear, unary symbol Fr. Given a sequence or set of facts S we denote by lfacts(S) the
multiset of all linear facts in S and pfacts(S) the set of all persistent facts in S. By
notational convention facts whose identifier starts with ‘!’ will be persistent. G denotes
the set of ground facts, i.e., the set of facts that do not contain variables. For a fact f
we denote by ginsts(f) the set of ground instances of f . This notation is also lifted to
sequences and sets of facts as expected.

Predicates. We assume an unsorted signature Σpred disjoint from Σ and Σfact . The set
of predicates is defined as

P := {pr(t1, . . . , tk) | ti ∈ TΣ , pr ∈ Σpred of arity k}.

228 R. Künnemann

Predicates will be used to describe branching conditions in protocols. Each predicate
is defined via a first-order formula over ground atoms of the form t1 ≈ t2, i.e., the
grammar for such formulae is

〈φ〉 ::= t1 ≈ t2 | ¬φ | φ1 ∧ φ2 | ∃x.φ
where t1, t2 are terms and x ∈ V . For an n-ary predicate pr , pr (x1, ..., xn) is defined
by a formula φpr such that fv (φp) ⊆ x1, ..., xn, where fv denotes the free variables
in a formula, i. e., variables v ∈ V not bound by ∃v. The semantics of the first-order
formulae is as usual where we interpret ≈ as =E . We use σ1 ∨ σ2 as short-hand for
¬(¬σ1 ∧ ¬σ2).

Example 2. A predicate pr = can_wrap is used to check whether the attributes associ-
ated to two handles (10 attributes each) allow for wrapping. For readability, we rename
x1 to wrap1, x15 to extr2, x7 to trus1 and x18 to wwt2:

σcan_wrap :=(wrap1 ≈ ’on’ ∧ extr2 ≈ ’on’)∧
((wwt2 ≈ ’off’) ∨ (wwt2 ≈ ’on’ ∧ trus1 ≈ ’on’))

Substitutions. A substitution σ is a partial function from variables to terms. We suppose
that substitutions are well-typed, i.e., they only map variables of sort s to terms of sort
s, or of a subsort of s. We denote by σ = {t1/x1 , . . . ,

tn /xn} the substitution whose do-
main is D(σ) = {x1, . . . , xn} and which maps xi to ti. As usual we homomorphically
extend σ to apply to terms and facts and use a postfix notation to denote its application,
e.g., we write tσ for the application of σ to the term t. A substitution σ is grounding
for a term t if tσ is ground. Given function g we let g(x) = ⊥ when x �∈ D(x). When
g(x) = ⊥ we say that g is undefined for x. We define the function f := g[a �→ b] with
D(f) = D(g) ∪ { a } as f(a) := b and f(x) := g(x) for x �= a.

Sets, sequences and multisets. We write Nn for the set {1, . . . , n}. Given a set S we
denote by S∗ the set of finite sequences of elements from S and by S# the set of
finite multisets of elements from S. We use the superscript # to annotate usual multiset
operations, e. g., S1 ∪# S2 denotes the multiset union of multisets S1, S2. Given a
multiset S we denote by set(S) the set of elements in S. The sequence consisting of
elements e1, . . . , en will be denoted by [e1, . . . , en] and the empty sequence is denoted

〈P ,Q〉 ::= 0

| P | Q
| ! P
| νn : fresh; P
| out(M,N); P
| in(M,N); P
| if Pred then P [else Q] Pred ∈ P
| event F ; P (F ∈ F)

〈P ,Q〉 ::= (continued)
| insert M ,N ; P
| delete M ; P
| lookup M as x in P [else Q]

| lock M ; P
| unlock M ; P
| [L] −[A]→ [R];P (L,R,A ∈ F∗)

Fig. 1. Syntax, where M,N ∈ T

Automated Backward Analysis of PKCS#11 v2.20 229

by []. Given a sequence S, we denote by idx (S) the set of positions in S, i.e., Nn when
S has n elements, and for i ∈ idx (S) Si denotes the ith element of the sequence. Set
membership modulo E is denoted by ∈E and defined as e ∈E S if ∃e′ ∈ S. e′ =E e.
⊂E and =E are defined for sets in a similar way. Application of substitutions is lifted to
sets, sequences and multisets as expected. By abuse of notation we sometimes interpret
sequences as sets or multisets; the applied operators should make the implicit cast clear.

3.1 A Cryptographic pi Calculus with Explicit State

Syntax and Informal Semantics. The Sapic calculus is a variant of the applied pi
calculus [1]. In addition to the usual operators for concurrency, replication, commu-
nication and name creation, it offers several constructs for reading and updating an
explicit global state. The grammar for processes is described in Fig. 1.

0 denotes the terminal process. P | Q is the parallel execution of processes P and
Q and !P the replication of P , allowing an unbounded number of sessions in protocol
executions. The construct νn;P binds the name n ∈ FN in P and models the gen-
eration of a fresh, random value. Processes out(M,N); P and in(M,N); P represent
the output, respectively input, of message N on channel M . Readers familiar with the
applied pi calculus [1] may note that we opted for the possibility of pattern matching
in the input construct, rather than merely binding the input to a variable x. The process
if Pred then P else Q will execute P or Q, depending on whether Pred holds. For
example, if Pred = equal(M,N), and φequal = x1 ≈ x2, then if equal(M,N) then
P else Q will execute P if M =E N and Q otherwise. (In the following, we will
use M = N as short-hand for equal(M,N).) The event construct is merely used for
annotating processes and will be useful for stating security properties. For readability
we sometimes omit to write else Q when Q is 0, as well as trailing 0 processes.

The remaining constructs are used for manipulating state and are new compared to
the applied pi calculus. We offer two different mechanisms for state. The first construct
is functional and allows to associate a value to a key. The construct insert M ,N binds
the value N to a key M . Successive inserts allow to change this binding. The delete M
operation simply “undefines” the mapping for the key M . The lookup M as x in P else
Q allows to retrieve the value associated to M , binding it to the variable x in P . If the
mapping is undefined for M the process behaves as Q. The lock and unlock constructs
allow to gain exclusive access to a resource M . This is essential for writing protocols
where parallel processes may read and update a common memory. We additionally
offer another kind of global state in form of a multiset of ground facts, as opposed to
the previously introduced functional store. The purpose of this construct is to provide
access to the underlying notion of state in tamarin, but we stress that it is distinct from
the previously introduced functional state, and its use is only advised to expert users. It
is not used in the present modelling.

The bound names of a process are those that are bound by νn. We suppose that all
names of sort fresh appearing in the process are under the scope of such a binder. Free
names must be of sort pub. A variable x can be bound in three ways: (i) by the construct
lookup M as x, or (ii) x ∈ vars(N) in the construct in(M,N) and x is not under the
scope of a previous binder, (iii) x ∈ vars(L) in the construct [L] −[A]→ [R] and x is
not under the scope of a previous binder. While the construct lookup M as x always

230 R. Künnemann

acts as a binder, the input and [L] −[A]→ [R] constructs do not rebind an already bound
variable but perform pattern matching.

A process is ground if it does not contain any free variables. We denote by Pσ
the application of the homomorphic extension of the substitution σ to P . As usual we
suppose that the substitution only applies to free variables. We sometimes interpret the
syntax tree of a process as a term and write P |p to refer to the subprocess of P at
position p (where |, if and lookup are interpreted as binary symbols, all other constructs
as unary).

Semantics

Frames and deduction. Before giving the formal semantics of our calculus we intro-
duce the notions of frame and deduction. A frame consists of a set of fresh names ñ and
a substitution σ and is written νñ.σ. Intuitively a frame represents the sequence of mes-
sages that have been observed by an adversary during a protocol execution and secrets
ñ generated by the protocol, a priori unknown to the adversary. Deduction models the
capacity of the adversary to compute new messages from the observed ones.

Definition 1 (Deduction). We define the deduction relation νñ.σ � t as the smallest
relation between frames and terms defined by the deduction rules in Figure 2.

a ∈ FN ∪ PN a /∈ ñ
νñ.σ � a

DNAME
νñ.σ � t t =E t′

νñ.σ � t′
DEQ

x ∈ D(σ)

νñ.σ � xσ
DFRAME

νñ.σ � t1 · · · νñ.σ � tn f ∈ Σk

νñ.σ � f(t1, . . . , tn)
DAPPL

Fig. 2. Deduction rules

Operational semantics. We can now define the operational semantics of our calculus.
The semantics is defined by a labelled transition relation between process configura-
tions. A process configuration is a 6-tuple (E ,S,SMS,P , σ,L) where

– E ⊆ FN is the set of fresh names generated by the processes;
– S : MΣ → MΣ is a partial function modeling the functional store;
– SMS ⊆ G# is a multiset of ground facts and models the multiset of stored facts;
– P is a multiset of ground processes representing the processes executed in parallel;
– σ is a ground substitution modeling the messages output to the environment;
– L ⊆ MΣ is the set of currently acquired locks.

The transition relation is defined by the rules described in Fig. 3. Transitions are
labelled by sets of ground facts. For readability we omit empty sets and brackets around

singletons, i.e., we write → for
∅−→ and

f−→ for
{ f }−→. We write →∗ for the reflexive,

transitive closure of → (the transitions that are labelled by the empty sets) and write
f⇒ for →∗ f→→∗. We can now define the set of traces, i.e., possible executions, that a

process admits.

Automated Backward Analysis of PKCS#11 v2.20 231

Definition 2 (Traces of P). Given a ground process P we define the set of traces of P
as

tracespi(P) =
{
[F1, . . . , Fn] | (∅, ∅, ∅, {P}, ∅, ∅) F1=⇒ (E1,S1,SMS

1 ,P1, σ1,L1)
F2=⇒ . . .

Fn=⇒ (En,Sn,SMS
n ,Pn, σn,Ln)

}

3.2 Security Properties

The formalism used for defining security properties in the Sapic tool, which is used to
define key secrecy as well as helping lemmas was introduced with the tamarin tool [23].
Security properties are described in an expressive two-sorted first-order logic. The sort
temp is used for time points, Vtemp are temporal variables.

Definition 3 (Trace formulas). A trace atom is either false ⊥, a term equality t1 ≈ t2,
a timepoint ordering i � j, a timepoint equality i

.
= j, or an action F@i for a fact

F ∈ F and a timepoint i. A trace formula is a first-order formula over trace atoms.

As we will see in our case studies this logic is expressive enough to analyze a variety
of security properties, including complex injective correspondence properties.

To define the semantics, let each sort s have a domain D(s). D(temp) = Q,
D(msg) = M, D(fresh) = FN , and D(pub) = PN . A function θ : V → M∪Q is
a valuation if it respects sorts, that is, θ(Vs) ⊂ D(s) for all sorts s. If t is a term, tθ is
the application of the homomorphic extension of θ to t.

Definition 4 (Satisfaction relation). The satisfaction relation (tr , θ) � ϕ between
trace tr , valuation θ and trace formula ϕ is defined as follows:

(tr , θ) � ⊥ never
(tr , θ) � F@i iff θ(i) ∈ idx (tr) and Fθ ∈E trθ(i)
(tr , θ) � i� j iff θ(i) < θ(j)
(tr , θ) � i

.
= j iff θ(i) = θ(j)

(tr , θ) � t1 ≈ t2 iff t1θ =E t2θ
(tr , θ) � ¬ϕ iff not (tr , θ) � ϕ
(tr , θ) � ϕ1 ∧ ϕ2 iff (tr , θ) � ϕ1 and (tr , θ) � ϕ2

(tr , θ) � ∃x : s.ϕ iff there is u ∈ D(s) such that
(tr , θ[x �→ u]) � ϕ

When ϕ is a ground formula we sometimes simply write tr � ϕ as the satisfaction
of ϕ is independent of the valuation.

Definition 5 (Validity, satisfiability). Let Tr ⊆ (P(G))∗ be a set of traces. A trace
formula ϕ is said to be valid for Tr , written Tr �∀ ϕ, if for any trace tr ∈ Tr and any
valuation θ we have that (tr , θ) � ϕ.

A trace formula ϕ is said to be satisfiable for Tr , written Tr �∃ ϕ, if there exist a
trace tr ∈ Tr and a valuation θ such that (tr , θ) � ϕ.

Note that Tr �∀ ϕ iff Tr ��∃ ¬ϕ. Given a ground process P we say that ϕ is valid,
written P �∀ ϕ, if tracespi(P) �∀ ϕ, and that ϕ is satisfied in P , written P �∃ ϕ, if
tracespi(P) �∃ ϕ.

232 R. Künnemann

Standard operations:

(E ,S ,SMS,P ∪# {0}, σ,L) −→ (E ,S ,SMS,P , σ,L)
(E ,S ,SMS,P ∪# {P |Q}, σ,L) −→ (E ,S ,SMS,P ∪# {P,Q}, σ,L)
(E ,S ,SMS,P ∪# {!P}, σ,L) −→ (E ,S ,SMS,P ∪# {!P, P}, σ,L)

(E ,S ,SMS,P ∪# {νa;P}, σ,L) −→ (E ∪ {a′},S ,SMS,P ∪# {P{a′/a}}, σ,L)
if a′ is fresh

(E ,S ,SMS,P , σ,L) K(M)−−−−→ (E ,S ,SMS,P , σ,L) if νE .σ � M

(. . . ,P ∪# {out(M,N);P}, σ,L) K(M)−−−−→ (E ,S ,SMS,P ∪# {P}, σ ∪ {N/x},L)
if x is fresh and νE .σ � M

(. . . ,P ∪# {in(M,N);P}, σ,L) K(〈M,Nτ〉)−−−−−−−→ (. . . ,P ∪# {Pτ}, σ,L)
if ∃τ. τ is grounding for N, νE .σ � M,νE .σ � Nτ

(. . . ,P ∪# {out(M,N);P,
in(M ′, N ′);Q}, σ,L) −→ (E ,S ,SMS,P ∪# {P,Qτ}, σ,L)

if M =E M ′ and ∃τ. N =E N ′τ and τ grounding for N ′

(. . . ,P ∪# {if pr(M1, . . . ,Mn)
then P else Q}, σ,L) −→ (E ,S ,SMS,P ∪# {P}, σ,L)

if φpr{M1/x1 , . . . ,
Mn /xn} is satisfied

(. . . ,P ∪# {if pr(M1, . . . ,Mn)
then P else Q}, σ,L) −→ (E ,S ,SMS,P ∪# {Q}, σ,L)

if φpr{M1/x1 , . . . ,
Mn /xn} is not satisfied

(. . . ,P ∪# {event(F); P}, σ,L) F−→ (E ,S ,SMS,P ∪ {P}, σ,L)
Operations on global state:

(. . . ,P ∪# {insert M,N ; P}, σ,L) −→ (E ,S [M 	→ N],SMS,P ∪# {P}, σ,L)
(. . . ,P ∪# {delete M ; P}, σ,L) −→ (E ,S [M 	→ ⊥],SMS,P ∪# {P}, σ,L)

(. . . ,P ∪# {lookup M as x
in P else Q }, σ,L) −→ (E ,S ,SMS,P ∪# {P{V/x}}, σ,L)

if S(N) =E V is defined and N =E M

(. . . ,P ∪# {lookup M as x
in P else Q }, σ,L) −→ (E ,S ,SMS,P ∪# {Q}, σ,L)

if S(N) is undefined for all N =E M

(. . . ,P ∪# {lock M ; P}, σ,L) −→ (E ,S ,SMS,P ∪# {P}, σ,L ∪ {M })
if M �∈EL

(. . . ,P ∪# {unlock M ; P}, σ,L) −→ (E ,S ,SMS,P ∪# {P}, σ,L \ {M ′ : M ′ =E M})
(. . . ,P ∪# {[l −[a]→ r]; P}, σ,L) a′−→ (E ,S ,SMS \ lfacts(l′) ∪# r′,P ∪# {Pτ }, σ,L)

if ∃τ, l′, a′, r′.τ grounding for l −[a]→ r, l′ −[a′]→ r′ =E (l −[a]→ r)τ,

lfacts(l′) ⊆# SMS, pfacts(l′) ⊂ SMS

Fig. 3. Operational semantics

Automated Backward Analysis of PKCS#11 v2.20 233

4 Model

In this section, we will introduce our model of a PKCS#11 token. The complete code
is available at http://sapic.gforge.inria.fr/pkcs11templates.zip.
We consider a security device that allows the creation of keys in its secure memory.
The user can access the device via an API. If he creates a key, he obtains a handle,
which he can use to let the device perform operations on his behalf. For each handle
the device also stores a list of attributes, which define what operations are permitted for
this handle. The goal is that the user can never gain knowledge of the key, as the user’s
machine might be compromised. We model the device by the following process (we use
out(m) as a shortcut for out(c,m) for a public channel c):

Pinit ; !(Pcreate | Pdec | Penc | Pwrap | Punwrap | Pget_keyval), where

Pinit :=
/∗ wrap, unwrap, enc, dec, sens , extr , trus , wwt , wt , ut ∗/
insert 〈’ template ’ , ’ trusted ’〉 ,

〈 ’on’ , ’on’ , ’ off ’ , ’ off ’ , ’on’ , ’on’ , ’on’ , ’on’ , ’usage’ , ’usage’〉;
insert 〈’ template ’ , ’usage’〉 ,

〈’ off ’ , ’ off ’ , ’on’ , ’on’ , ’on’ , ’on’ , ’ off ’ , ’on’ , ’undef’ , ’undef’〉;
insert 〈’ template ’ , ’ untrusted ’〉 ,

〈’ off ’ , ’ off ’ , ’on’ , ’on’ , ’ off ’ , ’on’ , ’ off ’ , ’ off ’ , ’undef’ , ’undef’〉;

This sets up the templates before starting operation in the replicated process. Key-
generation is handled by Pcreate :

Pcreate := in(〈’create’,atts,ptr〉);
lock ’device’ ;
ν h; ν k;
lookup 〈’ template ’ , ptr 〉 as templ in
if permits(attwrap(templ) , [. . .], attut(templ),

attwrap(atts) , [. . .], attut(atts)) then
event NewKey(h,k,attsens (atts));
insert 〈’obj’ ,h〉 , 〈k , atts 〉;
event WrapKey(h,k,attwrap(atts)); event DecKey(h,k, attdec (atts));
event EncKey(h,k, attenc (atts)); event UnwrapKey(h,k,attunwrap(atts));
out(h) ;
unlock ’device’

Upon reception of a key generation request with a list of attributes and a pointer to a
template, the device is locked. Then, the device creates a new handle h and a key k. The
pointer is retrieved from the database Pinit has written to. The functions attwrap, to
attut are simple deconstructors, attwrap, for example, extracts the first element from
a list of 10 attributes (see Tab. 1). The predicate permits compares the attributes given
by the adversary with the attributes stored with the template. In subsection 2.2, we have
argued that templates should determine the key’s attributes, hence permits is true if and
only if the attributes including the pointers to the templates match exactly. To obtain

http://sapic.gforge.inria.fr/pkcs11templates.zip

234 R. Künnemann

a more permissive modelling, this predicate can be altered, e. g., to allow for certain
attributes to be changed.

The creation of keys is logged as an event NewKey(h, k, attsens(atts)). If the third
argument is ‘on’, this key is sensitive, i. e., secrecy needs to be preserved. Events are
used to state security properties and helping lemmas. Next, the device stores the key that
belongs to the handle by associating the pair 〈‘key’, h〉 to the value of the key k and the
attributes. The events WrapKey to UnwrapKey are used to refer to the attributes of
keys in helping lemmas and otherwise irrelevant. Finally, the handle is output and the
device unlocked.

Remark 1. The predicate permits compares the attributes, including the pointers wt
and ut, literally. Since our policy only accepts pointers to templates created by Pinit ,
and since those are distinct, this is without loss of generality. Furthermore, the adversary
has to provide the pointer to the template, which is without loss of generality, too, since
the pointers are of sort pub.

If a handle has the ‘dec’ attribute set, it can be used for decryption:

Pdec := in(〈h,senc(m,k)〉);
lock ’device’ ;
lookup 〈’obj’ ,h〉 as v in

if can_decrypt(attwrap(tem(v)) , [. . .], attut(tem(v))) then
if key(v)=k then

event DecUsing(k,m); out(m); unlock ’device’

The lookup stores the value associated to 〈‘obj’, h〉 in v. The predicate can_decrypt
is satisfied, iff. the fourth argument, attdec(tem(v)) equals ‘on’. The function symbol
tem extracts the second element of a pair, it is defined by the equation tem(〈k, t〉) = t.
Similarly, key(〈k, t〉) = k. If the key stored with this handle matches the key used to
generate the encryption, the plain-text is output and the device unlocked.

If a key has the ‘wrap’ attribute set, it can be used to encrypt the value of a second
key:

Pwrap := in(〈h1,h2〉);
lock ’device’ ;
lookup 〈’obj’ ,h1〉 as v1 in

lookup 〈’obj’ ,h2〉 as v2 in
if can_wrap(attwrap(tem(v1)) , [. . .], attut(tem(v1)),

attwrap(tem(v2)) , [. . .], attut(tem(v2))) then
lookup 〈’ template ’ , attwt (tem(v1))〉 as wt in

if permits(attwrap(wt) , [. . .], attut(wt),
attwrap(tem(v2)) , [. . .], attut(tem(v2))) then

event Wrap(key(v1),key(v2));
out(senc(key(v2) , key(v1)));
unlock ’device’

Given the two handles h1 and h2, the corresponding keys and attributes are retrieved.
The predicate can_wrap is defined in Example 2 on page 228. If the template referred

Automated Backward Analysis of PKCS#11 v2.20 235

to by the entry ‘wt’ in the first key’s attribute list permits wrapping the second key, i. e.,
it is equal to the second handle’s attributes, then the encryption is output. The complete
model including Penc , Punwrap and Pget_keyval can be found at http://sapic.
gforge.inria.fr/pkcs11templates.zip.

Limitations. While being more detailed than previous works in terms of the attributes
and commands supported, our model does have the following limitations: Integrity of
wrappings. In our model, a wrapping can only be imported if it is an encryption of
some message with a key that is on the device. In reality, this integrity property cannot
be given. There are techniques that allow to account for malleability of cypher-texts
in the symbolic model [3]. The current draft for version 2.40 indicates that authenti-
cated encryption might be part of the future version of this standard [21] . Multiple
tokens. We currently model a single token. By encapsulating the current process P
in νdevice : pub.P and prepending device to database keys, this situation could be
modelled. Copying keys, asymmetric keys, key derivation. C_CopyObject, support for
asymmetric keys and key-derivation are not modelled for various reasons explained in
Section 2.1. While we conjecture copying objects could be enabled, and asymmetric
keys as well as key-derivation keys be allowed as ‘usage’ keys, this is missing in the
current model (as opposed to other related work [11, 7]).

5 Security Results for the Proposed Policy

The main security result is the secrecy of keys generated on the device that have been
marked ‘sensitive’ upon creation, in our case, keys created with the templates ‘trusted’
or ‘usage’. This is expressed by the following trace formula:

¬(∃h, k : msg, i, j : temp. NewKey(h, k, ’on’)@i ∧K(k)@j)

The action NewKey refers to the event in the key-generation process Pcreate , which we
introduced in Section 4. If the third argument is ‘on’, k has been created ‘sensitive’. To
derive the result, we have defined 9 helping lemmas, four of which are rather trivial,
but help speeding up the proof. The first, dec_limits, establishes typing invariants, most
importantly, it states that decrypt is not useful to the adversary: Any message obtained
by decryption was either known to the adversary in advance, or a key that was created
‘sensitive’ or imported was leaked, or there was some key that had the attributes ‘wrap’
and ‘dec’ set at different points in time. The following four lemmas state that given the
templates it is, e. g., not possible to create a key with ‘trusted’ as wrapping template.
The lemma bad_keys states that a key that was created by unwrapping must earlier
have been created on the device, unless something bad happened, i. e., either a sensitive
key leaked, or a key had wrap and dec, or unwrap and enc set before. The latter two
conflicts are known to cause attacks [8]. The following lemma no_key_is_wrap_and_-
dec says that the first conflict can only occur if the second occurred before, or a sensitive
key was leaked. Subsequently, it is shown the second conflict cannot occur, unless a key
was leaked. The lemma cannot_obtain_key_ind is an inductive version of the security
property cannot_obtain_key.

http://sapic.gforge.inria.fr/pkcs11templates.zip
http://sapic.gforge.inria.fr/pkcs11templates.zip

236 R. Künnemann

Table 4. Evaluation of our proof method with and without the model-specific heuristics, broken
down into lemmas. Interaction is measured in terms of mouse clicks. The user choses the next
proof goal out of a list in a web interface. The value was determined by counting occurrences of
the keyword ‘solve’ in the file. The proof size is the number of case distinctions.

interaction proof size
name (w/o heur.) (w/ heur.) (w/o heur.) (w/ heur.)
dec_limits 11 0 3394 2235
trusted_as_ut_impossible 0 0 4 4
untrusted_as_ut_impossible 0 0 4 4
untrusted_as_wt_impossible 0 0 4 4
trusted_as_wt_impossible 0 0 4 4
bad_keys 0 0 2988 683
no_key_is_wrap_and_dec_[..] 15 0 1177 2396
no_key_is_enc_and_unwrap 29 0 2669 352
cannot_obtain_key_ind 6 0 7306 14598
cannot_obtain_key 0 0 0 0

User intervention is necessary to find the proof when the tamarin prover is used
with heuristics adapted to general Sapic output. They differ from the standard ‘smart’
heuristic only in that the actions corresponding to unlock operations and premises cor-
responding to the previous state in the execution are prioritized. Using a model-specific
heuristic, it is possible to find the proof automatically. This heuristic prioritizes the reso-
lution of insert operations with ’template’ in the first argument (thereby moving the case
distinction about which templates is used upwards in the proof tree) and deprioritizes
the adversary’s deduction of handles (as they are public anyway). With this heuristic,
the complete proof is found within half an hour on a computation server with 24 Intel
Xeon 2.67GHz cores and 50GB RAM. Experiments on desktop machines are planned.
See Table 4 for more details. The manual part of the proof, transcripts of the com-
plete proof and the tools used are available at http://sapic.gforge.inria.
fr/pkcs11templates.zip.

6 Conclusion and Future Work

We have investigated a new method of verifying key secrecy in PKCS#11 configura-
tions following the protocol verification approach. It requires manual effort in defining
helping lemmas, but overcomes the need for a model-specific approximation techniques
and models PKCS#11 in a precise and intuitive manner. In particular, our model sup-
ports features that have been added in version 2.20 of the standard. The upcoming [21]
version 2.40 is available for public review and will support encryption with authenti-
cated data, a mechanism that has long been requested and has the potential to remove
the restriction to three-level policies outlined in Section 2.2 and allow for new policies.
Future work on version 2.40 will benefit from the fact that our verification technique
applies without model-specific approximation. The second contribution is a secure con-
figuration of PKCS#11 that permits wrapping and unwrapping for backup purposes.

http://sapic.gforge.inria.fr/pkcs11templates.zip
http://sapic.gforge.inria.fr/pkcs11templates.zip

Automated Backward Analysis of PKCS#11 v2.20 237

Besides adapting our model to the case of multiple tokens in the network, we plan
to increase the degree of automation by refining the model-specific heuristic for the
tamarin prover’s constraint solving algorithm. The current heuristic is rather simple,
but may be generalized. We stress that completeness and soundness of the tool chain
are independent of the heuristic used, suggesting a tool chain without approximation but
adapted heuristics as an alternative to ad-hoc approximations that does not necessarily
provide decidability, but is more flexible with regard to extensions and less reliant on
hand-written proofs.

Acknowledgements. This work was supported by the German Federal Ministry of
Education and Research (BMBF) within EC SPRIDE.

References

[1] Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication. In: POPL
2001. ACM Press (2001)

[2] Adão, P., Focardi, R., Luccio, F.L.: Type-Based Analysis of Generic Key Management APIs.
In: CSF, pp. 97–111. IEEE (2013)

[3] Ahmed, N., Jensen, C.D., Zenner, E.: Towards Symbolic Encryption Schemes. In: Foresti,
S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 557–572. Springer,
Heidelberg (2012)

[4] Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.: Efficient
Padding Oracle Attacks on Cryptographic Hardware. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer, Heidelberg (2012)

[5] Bond, M., Anderson, R.: API level attacks on embedded systems. IEEE Computer Maga-
zine 34(10) (2001)

[6] Bortolozzo, M., et al.: Attacking and Fixing PKCS#11 Security Tokens. In: CCS 2010.
ACM Press (2010)

[7] Centenaro, M., Focardi, R., Luccio, F.L.: Type-based analysis of key management in
PKCS#11 cryptographic devices. Journal of Computer Security 21(6) (2013)

[8] Clulow, J.: On the security of PKCS #11. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003)

[9] Cortier, V., Keighren, G., Steel, G.: Automatic Analysis of the Security of XOR-Based Key
Management Schemes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 538–552. Springer, Heidelberg (2007)

[10] Cortier, V., Steel, G., Wiedling, C.: Revoke and let live: a secure key revocation API for
cryptographic devices. In: CCS 2012. ACM (2012)

[11] Delaune, S., Kremer, S., Steel, G.: Formal Analysis of PKCS#11 and Proprietary Exten-
sions. Journal of Computer Security 18(6) (2010)

[12] Durgin, N., et al.: Undecidability of Bounded Security Protocols. In: Workshop on Formal
Methods and Security Protocols. IEEE (1999)

[13] Fröschle, S., Sommer, N.: Concepts and Proofs for Configuring PKCS#11. In: Barthe, G.,
Datta, A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 131–147. Springer, Heidelberg
(2012)

[14] Fröschle, S., Steel, G.: Analysing PKCS#11 key management aPIs with unbounded fresh
data. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009. LNCS, vol. 5511, pp. 92–106.
Springer, Heidelberg (2009)

238 R. Künnemann

[15] Fröschle, S., Sommer, N.: Reasoning with past to prove PKCS#11 keys secure. In: Degano,
P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 96–110. Springer,
Heidelberg (2011)

[16] Fröschle, S.B., Sommer, N.: When is a PKCS#11 configuration secure? Tech. rep. Reports
of SFB/TR 14 AVACS 82, SFB/TR 14 AVACS (2011), https://vhome.offis.de/
sibyllef/cryptokireport.pdf

[17] Kremer, S., Künnemann, R.: Automated analysis of security protocols with global state. In:
Security and Privacy. IEEE Computer Society (2014)

[18] Kremer, S., Künnemann, R., Steel, G.: Universally Composable Key-Management. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 327–344.
Springer, Heidelberg (2013)

[19] Kremer, S., Steel, G., Warinschi, B.: Security for Key Management Interfaces. In: CSF
2011, pp. 66–82. IEEE Computer Society (2011)

[20] Longley, D., Rigby, S.: An Automatic Search for Security Flaws in Key Management
Schemes. Computers and Security 11(1) (March 1992)

[21] PKCS #11 Cryptographic Token Interface Base Specification Version 2.40, Committee
Specification 01. OASIS Open (September 2014), http://docs.oasis-open.org/
pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.html

[22] PKCS #11: Cryptographic Token Interface Standard. RSA Security Inc. v2.20 (June 2004)
[23] Schmidt, B., et al.: Automated Analysis of Diffie-Hellman Protocols and Advanced Security

Properties. In: CSF 2012. IEEE (2012)

https://vhome.offis.de/sibyllef/cryptokireport.pdf
https://vhome.offis.de/sibyllef/cryptokireport.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.html

A Safe Update Mechanism for Smart Cards

Kristian Beilke and Volker Roth

Freie Universität Berlin, Berlin, Germany
{kristian.beilke,volker.roth}@fu-berlin.de,
http://www.inf.fu-berlin.de/groups/ag-si/

Abstract. With the advent of the integration of smart card chips into
national identity documents, the business model of replacing compro-
mised smart cards becomes uneconomical. We propose a mechanism to
safely apply updates to embedded systems, particularly high value smart
cards, that are costly to replace. We identify the requirements for such
a mechanism and describe how it can be implemented. Our mechanism
achieves its properties at the expense of using moderately more non-
volatile memory to store program code than contemporary smart cards.
We have developed a Common Criteria protection profile package to ab-
stractly describe such a mechanism and summarize it in this paper. The
mechanism and the abstract description can be a starting point for a
practical realization in consumer products.

1 Introduction

Updates have become an important part of a comprehensive security strategy.
As the tedious and costly task of applying updates results in many unpatched
systems, automatic or vendor controlled updates try to improve the situation.
One notable exception are smart cards.

Smart cards are a special kind of computer. Regular computers are generally
too complex to obtain assurance about their correctness. Smart cards are com-
parably simple devices with limited functionality. The assumption that underlies
their use is that we can engineer them in a trustworthy fashion, that is, with
few errors, if any, without backdoors, and with enough resilience against attacks.
Compromising a smart card should be more expensive to an attacker than the
possible gain.

Yet, our trust is a function of time. The sophistication of attacks grows the
necessary know-how becomes more widely available over the Internet, and re-
sources to attack systems become cheaper. Smart cards that were state of the art
a few years ago do not hold up to today’s standards such as BSI-CC-PP-0084 [7].
Steady improvements of hardware attacks [17] have diminished the technological
advantage of manufacturers of security hardware to only a few years ahead of
the attackers. At the same time, smart cards have found their way into prod-
ucts with expected lifetimes of up to ten years, for example, national identity
documents [11]. These two factors, the increasing pace at which techniques are
developed that chip away on smart card security, and the extended lifetime of

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 239–258, 2015.
DOI: 10.1007/978-3-662-46666-7_13

http://www.inf.fu-berlin.de/groups/ag-si/

240 K. Beilke and V. Roth

smart card systems in the field, increase the likelihood of a critical security
breach over the system’s lifetime.

Apart from hardware attacks that can be defended against only if the attack
was anticipated at design time, software and protocol vulnerabilities are a ma-
jor attack vector. Such a vulnerability might go unnoticed for years, but when
it is discovered, it might suddenly pose a grave risk. A recent example is the
publication of the Heartbleed attack against openssl (CVE-2014-0160).

The industry response for low to medium value smart cards has been and still
is card re-issuance. The vulnerable smart cards are invalidated and new ones are
produced. Economically this only works, if the cards are cheap to replace. If the
cost of replacing or re-issuing a card exceeds a certain threshold as is the case
with modern identity documents, the investment into software updates will be
justified. The same is true if a forced replacement leads to reputation damage or
a loss of trust in the issuer or the smart card enabled system. This is the case for
ID documents where a major part of the production cost are physical protection
features against illegitimate reprints. Therefore we see a need for the provision
of software updates on high value smart cards such as ID documents.

Software updates may not seem novel nor particularly challenging as a re-
search topic but there are reasons why update mechanisms have not yet found
their way into many of today’s deployed smart card systems.

Many embedded systems such as smart phones, home routers, or set-top boxes
provide user or vendor accessible interfaces that enable firmware updates. These
can take the form of hardware debug interfaces or bootloaders. Usually the
update mechanisms support a fail-safe recovery mode that is highly useful in
cases where the regular update process fails and leaves the device in an unusable
state. However, said recovery mechanisms can themselves be the target of attacks
as was shown with industrial FPGA products [15]. The critical nature of most
smart card applications leaves no room for such a loophole, and loosing deployed
devices due to erroneous updates is not acceptable as this easily damages the
issuer in an industry where trust is important.

Another reason that makes updates on smart cards difficult is certification,
usually under the Common Criteria framework (CC) [2]. For certain high value
applications such as electronic national identity documents it is required of the
issuers to only use certified hardware and software products. Evaluations for high
CC assurance classes are time-consuming and expensive. Once an IT product
is certified, it cannot be changed at all without voiding its compliance to the
certified state. Therefore, even small modifications require a re-certification of
the entire implementation which in effort and cost is comparable to the original
evaluation. Manufacturers having already sold their product have no incentives
to bear the costs of re-certification due to an update. Therefore update mech-
anisms have not been included. One exception are virtual machine based cards
such as Java Cards supporting the Global Platform standard [9]. They contain
update mechanisms but they only target the application level. A replacement of
cryptographic primitives which are part of the operating system or in a vendor
supplied library is not possible short of re-implementing this functionality in the

A Safe Update Mechanism for Smart Cards 241

application. This is too limited in our view, as the application logic on smart
cards only encompasses a rather small part of the code that an update should
be applied to. We see the need to provide updates that include the applications,
the OS, and parts of or even the complete firmware (device embedded software).
The technical effort to provide the updates does not increase with the extended
scope. The development and test effort is comparable. The problem of who bears
the costs of re-evaluation remains.

Furthermore economic reasons prevented updates in the past. Smart cards had
only small amounts of writable non-volatile memory (NVM) available. NVM is
a comparably large structure inside the chip and size drives the cost of chips.
Large parts of the software were placed in ROM and hence there was not much
space to integrate new code. With the advent of FLASH memory based con-
trollers this is changing rapidly. Some newer smart card products already are
equipped with only a small amount of ROM and comparatively large FLASH
based memories [1].

Our contribution. We outline a generic mechanism that enables fail-safe updates
on smart cards and we analyze its safety and security. In particular, we show
that the mechanism does not decrease the system’s security. We summarize a CC
Protection Profile package we have developed for an abstract update mechanism
that is compatible to a current Protection Profile for high value application
smart cards.

Paper organization. We begin with a detailed analysis of smart card-specific
requirements for update mechanisms in Sect. 2 while Sect. 3 explains the threat
model. We designed an approach that we believe meets the requirements and we
describe it in Sect. 4. In Sect. 5 we evaluate how well existing update mechanisms
fulfill the requirements as we discuss related work. Section 6 introduces the
Common Criteria (CC) and the context wherein to place the CC Protection
Profile Package which we describe in Sect. 7. After a discussion in Sect. 8 we
offer our conclusions in Sect. 9.

2 Requirements for Smart Card Updates

In this section we derive the requirements for an update mechanism applicable
to high value smart cards. We first depict a scenario of how an end user should
experience the process. Based on that scenario and the threats we identify therein
we list the requirements for an update mechanism and follow with notes about
basic security objectives and considerations about functionality.

2.1 Update Scenario

Alice has been issued a personalized smart card. The card has multiple appli-
cations and can be used for multiple use cases including online authentication,
proof of age, digital signatures, etc. The functions are protected by a PIN only
known to Alice. The card has a validity period spanning multiple years.

242 K. Beilke and V. Roth

Some years after issuance a flaw in one of the cryptographic algorithms used
extensively by the card is discovered. Since the algorithm is implemented in a
firmware level library which is compiled into the image and installed on the
chip before personalization a simple ad hoc fix is not available. To prevent the
necessity to reissue all affected cards the issuer in cooperation with the software
manufacturers provides an update. The update must be applied to all affected
smart cards before they may be used again.

There are two ways it can be applied. First, if the smart card is inserted in
an official terminal, such as an ATM, the update is applied before the card will
run any applications. Alice notices only a slight delay after which the regular
use case is executed as usually. Second, Alice uses the smart card on a personal
reader connected to a PC on which middleware software for the use of the card
is running. This could be at Alice’s home or even in public untrusted place, such
as an internet cafe. In both cases the terminal and the middleware software as
well as the whole PC are not trusted. The middleware only establishes a commu-
nication channel between the smart card and a server. The server provides the
update. The channel is to be mutually authenticated, encrypted, and integrity
protected. Inside the channel the update mechanism is executed. Again, after a
little while the regular use case resumes and Alice can use the smart card with
the update applied to the cryptographic library.

2.2 Requirements

The specific properties of smart cards and the environments in which they must
operate lead to several requirements an update mechanism must meet. The fol-
lowing list of requirements are relevant to the use case at hand: updates on high
value smart cards.

1. Robustness: As the environment is under the control of the user or even an
attacker, an update process can be interrupted at any point of time before
it completes. This could be caused by a sudden loss of power. The card
must be able to handle such interruptions without leaving the software in
an inconsistent state.

2. Low level system updates: Updates should not be limited to applications
on the smart card but should allow the operating system and the device em-
bedded software to be updated as well, including libraries with cryptographic
core functionality.

3. Security: The mechanism shall not enable attackers to gain any new in-
formation from the card or to compromise its security. This means that the
protections of a smart card with such an update mechanism are not lower
than those of an otherwise identical smart card without the mechanism. Se-
curity in this context covers authenticity, confidentiality, and access control.
Unauthorized updates and downgrades must be prevented.

A Safe Update Mechanism for Smart Cards 243

2.3 Secure Updates in Detail

To guarantee the security of an in-the-field update mechanism the use of cryp-
tographic primitives is mandatory to fulfill the following security goals:

– Correctness
• all bytes are correctly transmitted, the update is complete and correct
• the update is written to the correct location in memory

– Access Control
• the update is from an authorized source
• only an authorized entity can execute the update process
• the update is protected while stored

– Communication Security
• the update can not be modified in transit without detection
• the update is transmitted confidentially

Whether and how these are implemented is application specific and has been
explored before, for example by Abrahamsson [3]. We therefore do not elaborate
on the details in this paper. We assume these primitives to be an integral part of
the software that the updates are applied to. We focus our attention on the safety
requirements 1. and 2. from Sect. 2.2 in this paper. However, we do describe how
a downgrade protection can be implemented in Sect. 4.4.

2.4 The Software Split

The requirement to all low level updates results in an assignment of which code
must be stored in what memory. Code stored in ROM is not changeable. The
code in NVM can be updated. The simplest approach is to define the complete
functionality needed to apply an update as part of the static code which can not
be changed. In many embedded systems this is a reasonable idea. With smart
cards this functionality comprises the majority of all available features as this
needs communication, cryptography, access control and authentication. The only
part left is the application logic which is comparably small.

Such a split stands in contradiction to our requirement to affect low level
functionality with the updates. The static part of the software has to be min-
imal, so the largest part of the software, including the update mechanism, will
be changeable through updates. Accordingly this means that the access control
and authentication decisions must also be made by code that can be updated.
We therefore require trust into the updates themselves. A malicious or malfunc-
tioning update, that changes the security functions, can violate any safety or
security properties we aim to achieve.

3 Threat Model and Security Objectives

Smart cards are trusted devices operated in untrusted environments. We must
anticipate that an adversarymay obtain multiple authentic copies of a smart card
and that he may attack them in arbitrary ways, limited only by his resources,
for example by means of:

244 K. Beilke and V. Roth

1. invasive physical attacks such as micro-probing and reverse engineering,
2. semi- and non-invasive attacks such as fault induction, power and electro-

magnetic analysis,
3. logical attacks that exploit implementation bugs, weaknesses in cryptographic

protocols or insufficient operating system protection against untrusted code,
4. any combination of the above.

The inconvenient consequence is that a well-funded adversary will likely be able
to uncover any secrets of a smart card eventually. Hence, security, and conse-
quently the trust in a smart card system, is a function of time and of the value
of the assets that the smart card system protects. The higher the value the more
resources can the adversary invest and still obtain his payoff. These delibera-
tions are part of any smart card system design and determine the extent to
which protection mechanisms are integrated. Our work also depends on these
deliberations as it builds on the security properties of a smart card’s hardware
and its software against state-of-the-art attacks.

In this paper, we focus on logical attacks on our update mechanism instead.
These are any attack vectors our update mechanism adds to the pre-existing
attack vectors on a smart card. In particular, if a smart card hardware is insecure
with respect to an invasive attack then our update mechanism will certainly be
insecure as well. A system is only as secure as its weakest link. Our security
objective is to add update functionality to smart cards without making any link
weaker than it already is. Towards this end, we identify a set of attack vectors
that are specific to update systems. An adversary may attempt to

1. Bring the update mechanism into an invalid state, to cause an invalid state
transition or to cause the mechanism to perform unauthorized computations

2. Cause the update mechanism to accept an update that is not authentic
3. Cause the update mechanism to accept an update that is authentic but

obsolete, that is, to perform a downgrade.

Our informal security objective is the following:

If a smart card hardware is secure and its operating system is secure
and its operating system can verify the authenticity of an update and
the update installs another secure operating system then the smart card
system is secure after the update.

Furthermore, the smart card system is safe if its update installs an operating
system that enables a subsequent update.

An attacker that can freely write to arbitrary memory locations does not need
to attack the update mechanism. We therefore assume he can at best change
random bytes to either 0x00 or 0xFF. This is the case when a NVM write
operation is interrupted between the deletion of a page and the writing of new
data. With modern hardware this should not be possible. The chip will buffer
enough power to finish the write after a delete. Nevertheless we consider this
as an attack. An attacker can also observe and manipulate any communication
between the update provider and the smart card. An attack is considered a

A Safe Update Mechanism for Smart Cards 245

success if the attacker gains access to any confidential information or can abuse
the functionality of the applications in any way not intended by the developer.

4 Safe Smart Card Updates

We detail an update mechanism that meets all requirements specified in Sect. 2.
This does not mean that our mechanism necessarily meets all conceivable re-
quirements that can be asked of an update mechanism. However it meets all
requirements that we set as a goal for this stage of our research.

Whenever systems have the requirement of firmware updates that have to be
applied by the end-user in an uncontrolled environment, similar solutions have
been discovered. In systems where space has been available memory duplication
and transactional behavior to switch between memory images has been used.
This includes mainboards [12] and MCUs [10].

What is new with our work is the necessity to not only guarantee a recoverable
system in case a failure occurs, but to guarantee an always working and secure
system.

To achieve the stated goals we require additional storage space to hold two
images instead of just one. One image holds the current system, that is, the
image which must be updated. The other image will receive the new and updated
version, which is about to become the current system. Once the other image is
the current image, the previous image becomes the staging area for the next
update. In the following, we describe how the transition occurs from one image
to the other and informally prove its safety properties.

4.1 System Layout

We abstract from the practically available memory of a smart card in the fol-
lowing description. The functionality can be implemented on a ROM/EEPROM
based card as well as on a purely FLASH based controller.

Our approach segments the smart card memory as follows. First, a minimal
bootloader is mapped to a segment with the address where the smart card be-
gins execution on power-on or whenever a reset occurs. The bootloader keeps its
state v0 in a small NVM segment, which may consist of a single memory word.
Two more NVM segments called A and B contain system images. We refer to
the images in these segments as image A or B depending on which segment they
are in. Another small NVM segment v1 contains state variables for each image.
The images use them to communicate with the bootloader. The communication
channel is one-way and one-shot, that is, the bootloader reads the contents of
these variables into registers and clears the variables upon each boot. Additional
segments can contain the applications and the application data, if such a parti-
tion is desired. All segments need to be written to and thus are located in NVM.
Only the bootloader may be placed in ROM, if it is available. Upon power-on
or reset, the memory access is set to read/write for the entire address space and
execution begins at a specific address in the bootloader. Before the bootloader

246 K. Beilke and V. Roth

branches into an image, it removes write access to its state segment and config-
ures further access restrictions based on which image it invokes. The following
table summarized the access rights assignment by phase.

State Loader v0 Segm. A Segm. B v1 Apps Data

Boot r rw rw rw rw rw rw
boot A – r r rw w rw rw
boot B – r rw r w rw rw

Note that images are not allowed to write their own code, but they receive access
rights that enable them to write the other image. A mandatory assumption
is that the smart card supports memory protection mechanisms enforcing the
access control restrictions as we have defined them. In Sect. 8 we discuss how
existing mechanisms in smart cards can be used to that effect.

4.2 System States and State Transitions

From the bootloader’s perspective, the system has two states. We illustrate these
states and the associated state transitions in Fig. 1. State boot A directly trans-
fers control to the image in segment A and state boot B does the same for the
image in segment B. In state boot A, segment A contains the current image,
that is, the one in need of an update, whereas segment B is the staging area for
the updated image. These roles are reversed in state boot B. The bootloader

Fig. 1. The bootloader state transitions. The circles represent bootloader states. On
every reset one of the transitions is made. The regular case if no update was written
will not change the state but remain in either boot A or boot B using the transition
to itself.

transitions from state boot A to state boot B in these steps:

1. Normal operation The bootloader is in state boot A and there are no
flags set. The bootloader transfers control to image A without changing
state. Image A provides the facilities for regular operation and for writing
an update to the other segment B.

2. Writing the update Image A processes an update request, writes the
update to segment B and verifies its authenticity. Then it sets flag B.updated
and instantly reboots. This signals the bootloader that an update is available
in segment B.

A Safe Update Mechanism for Smart Cards 247

3. Changing the image The bootloader is in state boot A and flag B.updated
is set. The bootloader changes its state to boot B, clears all flags, and trans-
fers control to image B.

The state transitions from state boot B to state boot A, and the phases that
lead to these state changes, are symmetric to the ones we described before. The
corresponding description can be obtained by substituting A for B and vice
versa. Figure 2 illustrates the general behavior of the bootloader by means of a
flowchart.

4.3 Safety Properties

We prove informally that our update mechanism is safe. The proof proceeds
in four steps. We first argue informally that the system starts in a safe state.
Then we show that, if the system is in a safe state then it will transition into
another safe state, where each step is marked by a reset. Our proof hinges on the
notion of a safe image. Note that each state transition is initiated by an internal
or external reset that invokes the bootloader at a well-defined entry point. We
therefore prove next that any finite number of external resets leads to a safe
state. Finally, we show that all safe states are reachable from a safe state, which
establishes liveliness and completes our proof.

Safe initial state. The initial state is determined by the factory settings of the
smart card. We must assume that this is a safe state or else the system is
obviously insecure.

Fig. 2. The flowchart of the bootloader. Every reset puts the bootloader back into
its start state. After transferring control, one of the images controls execution until
another reset occurs or power is cut.

248 K. Beilke and V. Roth

Safe state transitions. Let x ∈ {A,B} be the current state and x.z the variable
z bound to state x. If x = A then x̄ = B. Note that, whenever the system is
in state boot x, its state transitions are completely determined by the value of
variable x̄.updated. Furthermore, the bootloader transfers control to image x in
this state , with r access permissions to segments x and x̄ where ¯̄x = x and
Ā = B. In state boot x, segment x also gets w rights on segment x̄. Assume we
are in state boot x. A state transition occurs only if x̄.updated = 1. Because
image x is safe, it sets x̄.updated = 1 only after it has written and verified image
x̄. Therefore, if x̄.updated = 1 and image x is safe then so is image x̄. Since x is
safe the new state is safe.

External resets are safe. By our previous argument, state transitions on state
variables that are zero transition only into safe states. Further note that, if a
state variable is 1 then both states x and x̄ are safe. Therefore, a reset at any
time during the update leads to a safe state. From this we conclude that the
system is safe if the adversary performs a finite number of resets.

All states are reachable. Let I1 be a safe, that is, an authentic and correct, image
that is installed on the smart card and let I2, I3, I4 be authentic updates with
increasing version numbers, that is, Ii is a legitimate update for Ij whenever
i > j. By simulating the state machine described in Sect. 4.2 on updates I2 to
I4 one finds that all states are reached from a safe state.

Final remarks. Obviously, all safety guarantees are void if the adversary can
bypass the access control restrictions on the smart card memory.

4.4 Downgrade Protection

One aim to secure the update mechanism is the prevention of downgrades, that
is, prohibition of the installation of an authentic update which is older than the
running image and may contain known exploitable vulnerabilities. A practical
implementation of this feature has two aspects. First, the version of the currently
running image must be determined remotely as to supply the correct update.
Although not a security requirement, this is needed for an effective management
of the update process. Second, the running image should be able to determine if
a provided update is newer than itself.

The latter requirement is about the trust placed in the update provider as
opposed to trust in the update creator. We assume a trusted or authentic update
could be provided by a not fully trusted provider. With full trust in the update
provider this requirement is not needed.

In case of limited trust we can crate a chain of updates by embedding public
keys into the images. The next update will be signed by the private key corre-
sponding to the public key embedded in the previous image. This establishes a
trust chain, were no update can be skipped.

A Safe Update Mechanism for Smart Cards 249

4.5 Memory Attacks

The bootloader has very limited functionality as it only switches between im-
ages based on its state and flags set in NVM. An attacker might try to change
these flags or the state with the intention to boot the older image containing
exploitable vulnerabilities. For that matter the old image might be invalidated
after a successful update. This would require the bootloader to contain code that
checks if an image is valid. No matter how the invalidation is implemented, it has
to be a write access to NVM, for which the bootloader had to check. Ultimately
this has the same effect as the flag we already use. An attacker would have to
control the content of NVM to attack this scheme. Making the flag a hard to
produce bit pattern, distributing it in memory and even duplicating it so that
an attack that flips bits in memory becomes very unlikely to be successful is
sufficient. If we assume, that an adversary can write to NVM at will, he could
just run any code of his choosing, breaking the smart cards security independent
of the update mechanism.

If the bootloader discovers an invalid state or flag, it might assume an attack
had taken place and disable the smart card, as is the case if the security sensors
in the chip are activated due to hardware attacks. The point to take home is
that such invalid state and flags can be detected.

4.6 Security Properties

Based on the threat of an attacker that can control the environment we analyze
the security of our mechanism. We assume that the attacker can interrupt the
process at any time of his choosing. We therefore have to consider all situations
where an operation is carried out. We call the attackers action an interruption.
An interruption will have the same effect as a regular reset. The smart card will
resume operation with the start of the bootloader.

1. Interruption during image write and verification. Any interruption before the
updated flag is set will simply void the update process. It is comparable to
a situation where the update has not been done at all and has to be started
from the beginning. This make the requirement to remotely determine the
current version of the software important.

2. Interruption after setting the update flag. This has no effect as an reset is
required for normal operation and the running image will do just that.

3. Interruption before the bootloader modifies its state. Such interruptions have
no effect as no changes to NVM have been done.

4. Interruption between the bootloader state change and clearing of the flags.
After the state has changed the new image is seen as activate. When the
bootloader starts up again the still set updated flag is not considered as it is
not relevant on the given state. Once the bootloader completes it will clear
the flag.

5. Interruption after clearing the update flags. Again this has no effect as all
actions the change the state are completed.

250 K. Beilke and V. Roth

5 Comparison with Related Work

Reloading of executable code onto smart cards is not a new concept per se.
Such functionality exists on some smart card platforms such as Global Plat-
form [9]. However, they all have shortcomings regarding the requirements stated
in Sect. 2. In what follows we give an overview of update mechanisms reported
on in the literature and in standards specifications. We then analyze how these
existing procedures match our requirements. Subsequently we evaluate how our
mechanism differs from the existing ones and summarize the results in Table 1.
For brevity we labeled the mechanisms with the first word from their name. Our
mechanism is labeled safe.

Table 1. Matching of the requirements to existing smart card update schemes

Requirement patch live multi-app full safe

1. Robustness - - + + +
2. Low Level Updates + - - + +
3. Security ? ? + - +

- not supported, + supported, ? depends on implementation

5.1 Patching of ROM Based Code

The majority of today’s high security smart cards are engineered with a basic
operating system in ROM and trampolines in EEPROM. This means that at
specific positions in its code in ROM, the operating system jumps to predefined
positions in EEPROM. In the absence of patches the code in EEPROM merely
returns to the position behind the jump in ROM. A patch overwrites the EEP-
ROM code with new functions, and returns to a position behind the code that is
obsoleted by the patch [14] in ROM. This is a viable solution as long as the de-
signers correctly anticipate which code will need patching and precede it with a
jump to EEPROM. This requires foresight and adapted tools that generate code
with trampolines which makes this approach inflexible and complex to handle.

If a memory management unit (MMU) is available on the system then this
enables a more flexible procedure. The MMU is configured to issue an interrupt
whenever the execution reaches obsolete code. The interrupt handler then forces
a branch into the code’s replacement. This incurs some overhead but is also
viable as long as the replaced code segments are not too many.

However, we have not found an assessment of these mechanisms’ safety. They
are used primarily in safe and controlled environments for completion, that is,
to put finishing touches on cards before they are issued to end users.

5.2 Live Patching

The most direct method to patching resource constrained card-based systems is
to modify the executable code while the system is running, for example, if the

A Safe Update Mechanism for Smart Cards 251

code is copied to RAM before it is executed. A fine-grained update mechanism
of this kind for Java Cards is described by Noubissi et al. [13]. This approach
is risky and provides no safety guarantees. It is generally used to patch only
applications in order to avoid the risk of making the device inoperable. Allowing
low level updates does require to control the complete state of the software such
as in PROTEOS [8] which is overly complex.

5.3 Multi-application Cards

By design multi-application cards, for example Java Cards and MULTOS smart
cards [4, 5] based on the Global Platform specification [9], have the ability to
load and delete applications in the field. Deleting and reloading an application
can be viewed as an update. However, this approach does not allow updates to
the lower levels of the software.

5.4 Update Mechanisms from Other Domains

Safe update mechanisms play a vital role in many computer systems. Important
examples that shall not go unmentioned are satellites and planetary probes. Once
on their mission these devices cannot be recovered manually and need fail-safe
procedures to update their software. They focus on the detection of misbehaving
updates, rather than security.

Additionally, industry filed for and obtained patent protection for a number
of approaches to update various types of systems. Abrahamsson summarizes and
evaluates several of them in his thesis [3], followed by a description of his own
proposal, which is a combination of the ones he analyzed. In several respects
his solution is conceptually similar to ours described in Sect. 4, but its concrete
design is not compatible with smart cards.

Full Reflash. A different class of embedded systems that requires updates are
smart phones. They have evolved to a point where they could be considered
general purpose computers. Usually, phones enable firmware updates by means
of a bootloader and an update mode. When booted into this update mode the
firmware can be replaced. Additionally, minor updates can be applied directly
to the executable code in non-volatile memory while the device is running. The
same approach is applied to the firmware on many embedded micro-controllers.
In this case a debugger needs to be connected that enables direct access to the
NVM. This has a direct security implication. As the focus is usually on recovering
from errors, these mechanisms offer an increased attack surface.

5.5 Comparison

We summarized in Table 1 how well each smart card update mechanism matches
our requirements. The classical and the live patching approach do not offer
safety protections against failed updates. Multi-application cards and full-reflash

252 K. Beilke and V. Roth

have the required safety properties. This is due to the separation of the update
mechanism from the code that is the subject of an update, and serves as a safety
measure against errors and failures. In case of the full-reflash, a bootloader with
an update or recovery mode updates the remainder of the system. In the case of
a multi-application card, the OS handles the updating of applications.

Our safe update mechanism combines the safety properties of the full-reflash
approach with the ability to make changes to the lower layers of the operating
system and the device-embedded software. Its security properties depend on the
implementation in the updateable image. They are as strong as in a similar
smart card without the update mechanism. It therefore fulfills the identified
requirements through the use of more NVM.

6 Safe Updates Protection Profile Package

A protection profile package is part of a protection profile which in turn is a
document according to the Common Criteria (CC) framework. In this section
we briefly introduce the CC and the protection profile on which our package is
based. We then explain why we see the creation as worthwhile and what we try
to achieve.

6.1 The Common Criteria Framework

The Common Criteria (CC) is an international standard (ISO/IEC 15408) for
computer security certification. It is a formal approach to secure IT-products
and used as the basis for government driven certification schemes. “The CC
permits comparability between the results of independent security evaluations.
The CC does so by providing a common set of requirements for the security
functionality of IT products and for assurance measures applied to these IT
products during a security evaluation. These IT products may be implemented in
hardware, firmware or software.” Consumers shall gain confidence in IT products
through evaluation and the evaluation results may help consumers to determine
whether IT products fulfill their needs.

When an IT-product is evaluated it is called the target of evaluation (TOE).
The evaluation is conducted according to certain assurance requirements belong-
ing to an evaluation assurance level (EAL). An EAL defines a set of assurance
requirements. Seven hierarchical EAL levels exist, where every level includes all
requirements of all lower levels. The evaluation checks conformance of a TOE to
an security target (ST). The ST specifies the security functionality requirements
(SFRs). All parts of the TOE needed to implement the SFRs are called the TOE
security functionality (TSF). A catalog of SFRs is offered in the CC documents.

An ST describes a certain product. In contrast a protection profile (PP) spec-
ifies an implementation independent list of SFRs, or a class of TOEs. STs can
claim compliance to a PP but they also may contain additional SFRs.

A Safe Update Mechanism for Smart Cards 253

6.2 The Safe Updates Protection Profile Package

Many CC protection profiles for smart cards exist. The most important ones ap-
plicable to high value smart cards have been created by the major manufactures.
They describe requirements for resistance against physical attacks and functional
requirements of the software in the form of the device embedded software and
the OS. A recent protection profile was published under the name BSI-CC-PP-
0084 [7]. It defines requirements of a Security Integrated Circuit (IC) product
to maintain the integrity of all memory and the confidentiality of the protected
memory areas as well as maintain the correct execution of the software on the Se-
curity IC. Additionally BSI-CC-PP-0084 defines optional Loader packages that
enable the loading of code and data onto the Security IC. These packages have a
limited feature set, not specifying any requirements of how an update mechanism
is supposed to work. We created a package that extends the Loader packages
from BSI-CC-PP-0084 with functional requirements for safe updates with the
special attention to in-the-field updates. Our package defines the TOE with the
ability to load confidentiality and integrity protected updates through a loader
with access control, while keeping the TOE operational despite failed update
processes.

6.3 Goals

The creation of a protection profile is aimed to define a minimum of abstract
requirements for smart cards that support updates while deployed. Such smart
cards incorporate hardware security features. But the architectures from different
manufacturers posses different features. Some have full MMUs, some duplicate
all calculations in hardware, and others contain various sensors against attacks.
We derived the requirements for updates from experiences with different state-
of-the-art smart card products from NXP and Infineon as well as from requests
of card-issuers for secure updates. Next to the security functions required for
smart card applications, there must be support for (1) a loader component, (2)
access control to the loader, (3) a trusted channel between the loader and the
update provider, (4) robustness, (5) a way for the update provider to determine
the current version of the software running on the smart card.

The loader manages the NVM to store the updates and integrate them into
the software. This includes checking the update for completeness, integrity, and
handling memory encryption where applicable.

The second function enforces the security policy for access to the loader. Only
designated update providers shall be trusted to access the loader.

The third function serves to protect the transferred update for integrity and
confidentiality by using a trusted channel. Both ends should be mutually au-
thenticated to determine the authenticity of the update provider and the smart
card. The trusted channel is bound to these entities and uses encryption and
integrity checking.

The fourth function guarantees that smart cards are not unintentionally ren-
dered inoperable during an update. This could be the case due to a power loss
or an attacker trying to manipulate the process.

254 K. Beilke and V. Roth

The last function serves management purposes. Since some smart card might
not be used frequently, they might miss multiple updates. If these updates have
dependencies on each other, the update provider must be able to determine the
currently running version on the smart card, that is, the correct order of updates
to be installed.

6.4 Package

As smart card chips are used in a wide range of products with different re-
quirements, the protection profiles should contain the basic requirements for all
products. Special functions such as updates, which are only relevant to a sub-
set of all compliant products, are placed in an package to which compliance is
optional. We therefore specified a package instead of a full protection profile.

6.5 Related Work

Smart cards used for national identity cards in Germany have to be evaluated
under Common Criteria. The protection profile to which the security targets
had to comply to until recently was the BSI-CC-PP-0035 [6] which covers the
hardware of a Security IC and optionally the Security IC Dedicated Software
(IC firmware) and libraries. The operating system and applications are usually
covered by an additional protection profile that was composed on top of BSI-CC-
PP-0035. In the beginning of 2014 BSI-CC-PP-0035 was superseded by BSI-CC-
PP-0084 [7], a modernized version that also covers additional optional packages
for extended security functionality.

The two packages that allow loading of code are “Loader dedicated for usage
in secured environment only” and “Loader dedicated for usage by authorized
users only”. The second loader package incorporates the functionality of the
first and adds access control as well as a trusted channel requirement to access
the loader. In combination these packages provide the functional requirements
of a loader that supports the first three functions we see as essential for updates.

Both packages fail to specify what we see as essential requirements for safety
and robustness. They also fail to specify how the current state of the software on
the smart card can be determined. Without further functional requirements any
method of allowing arbitrary writes into NVM by an authorized user does qualify
as an update mechanism. We presume this is due to the fact, that even tho none
of the existing mechanisms has yet been standardized their inclusion should
be allowed in future products without favoring the solution of one particular
manufacturer over another. Unfortunately this might lead to bad solutions in
an traditional closed industry. This motivated the creation of the package “Safe
Loader”.

7 Overview of the Package Safe Loader

This section gives details about the package and how we modeled certain security
objectives with SFRs.

A Safe Update Mechanism for Smart Cards 255

7.1 Architecture and Functions

The protection profile package Safe Loader describes security requirements used
for in-the-field Software Updates. The package augments the Protection Profile
BSI-CC-PP-0084 [7] (hereafter “original PP”) with the additional functionality
to load software. The original PP defines a Security IC product in the form of
a composite TOE. It describes a combination of a Security Integrated Circuit
(Security IC) with a Card Operating System (COS) and Embedded Software. .

The TOE provides functionality to download data into non volatile memory
(NVM). This functionality will be called loader in the following. The common
patch process of the TOE has not been used during operational use in the smart
card life cycle. The loader extends the use to life cycle phases after delivery of
the TOE, during its operational usage. It enables updates in an environment
not necessarily controlled by a trusted party but by the end user or even by an
attacker. Therefore the update mechanism requires special protection measures
and safety properties such that a continued safe operational state can be guar-
anteed. The same loader can also be used in earlier life cycle phases of the TOE,
if applicable.

The loader affects data and code stored in non-volatile memory. The affected
data and code includes parts of the firmware (IC-Dedicated Software), the COS
(Embedded Software), and the applications which make up the software of the
TOE in the original PP.

7.2 Security Objectives and SFRs

To address the security objectives of the TOE we defined security functional
requirements. As this package extends the loader packages from BSI-CC-PP-
0084 [7] with the security objectives, we only outline the security objectives that
were not included in the BSI-CC-PP-0084. They can be placed in two groups:
(i) integrity of the software, and (ii) version information. The integrity of the
software objective aims to guarantee that in no condition the update mechanism
leaves the system in an inconsistent state. This is modeled through a recovery
function, that requires either a successful update or a recovery to a consistent
state, as well as failure of functions with the preservation of a secure state.

The version information objective is matched by requirements for a command
to prove the identity of the TSF itself and the export of a fingerprint of the TOE
implementation in response to such a command.

7.3 Modeling of Safety Properties

The safety property of the update mechanism guarantees that no kind of in-
terruption can bring the software into an insecure and inconsistent state. The
security functional requirements to enforce this behavior have been modeled with
FPT RCV.4 (Function recovery) and FPT FLS.1 (Failure with preservation of
secure state).

256 K. Beilke and V. Roth

FPT FLS.1 requires the TOE in the case it detects an unsuccessful installation
of downloaded software to preserve a secure state. Any failure condition, such
as a failed integrity check on the image written or downloaded will abort the
mechanism and leave to current image unchanged.

FPT RCV.4 requires the TOE that the function to install a software update
has the property to either complete successfully or recover to a consistent and
secure state. This is the transaction of switching between the images after writing
and verifying them has been completed.

The transactional behavior of the switching, which recovers to a secure state
on any error, and the fail safe behavior of the remaining steps of the update
mechanism result in only safe transitions between secure states.

8 Discussion

In this section, we analyze certain hardware requirements for practical realiza-
tions on smart card hardware. We argue which features we deem necessary and
which we see as useful but not necessarily required. We then match our practical
algorithm description to the protection profile package. Lastly we discuss how
the protection profile package can be used.

Memory Access. The security of our update mechanism depends on memory
protection mechanisms to restrict access to the memory regions the bootloader
uses. In its simplest form this is realized through operating system access control
alone. A better method is hardware supported memory protection, for example,
in the form of a memory protection unit (MPU) or a memory management unit
(MMU) that the bootloader configures in connection with hierarchical protection
domains in the CPU. In this way image write access and flag modify access to
the correct regions can be allowed while access to the protected regions and the
bootloader code triggers an interrupt. Not all smart card chips include an MPU,
even fewer include an MMU. An alternative yet effective mechanism with similar
functionality is described by Smith and Weingart [16]. Their mechanism uses a
hardware memory controller with a “ratchet” functionality. On every reset or
boot, the running code has complete access privileges. Every time control is
transferred to code that is less trustworthy, the ratchet is increased and thereby
protects certain areas of memory from access. The ratchet cannot be decreased
except by a reboot which will transfer control to the trusted code, that is, the
bootloader. This scheme is simpler to implement in a microcontroller architecture
than a complete MPU or MMU and protection rings.

Additional Hardware Support. In the described form the safe update mecha-
nism can be implemented on any system supporting a bootloader. One possible
improvement is hardware support for the switching between memory images.
Implementing the functionality that makes up the transaction during the switch
between the images in hardware has the advantage of decreasing the amount of
critical operations. At the same time this can remove the necessity of a separate

A Safe Update Mechanism for Smart Cards 257

bootloader. If the hardware would switch the mapping of memory with a special
command, only one image would be available in the memory map. This lessens
the requirement for special memory protections.

Implementation. A practical realization of the safe update algorithm consists of
a small bootloader and a memory mapping that provides disjunct memory areas
for the images. The bootloader implements the flag checking and switching and
has to know the starting addresses of the images to transfer control. It also needs
to read and write NVM.

The update writing code as well as all security for access control and authen-
tication of the update provider and the update is part of the image itself. Since
the necessary functionality is in most cases already available in a smart card OS,
the image will not be enlarged significantly. The access control decisions can be
modeled by the ISO/IEC 7816 file system. The image staging area can just be
mapped as a quite big (for smart cards) file.

Common Criteria Evaluation. A security target for a smart card product that
features such update functionality can claim conformance to our CC protection
profile package. It defines a common set of requirements to the update functions.
To make this option achievable this package should be certified by an institution
that can set industry standards.

9 Conclusion

We have presented a simple and safe update mechanism that is robust against
interruptions on smart cards. It satisfies the necessary safety properties to guar-
antee a working device even if the update mechanism is attacked. The principal
attack vector requires breaking the security of the operating system and therefore
breaking the card.

We also described a draft of a Common Criteria protection profile package
for such an algorithm. The package is general and abstract, so that different
implementations may be used. It can serve as a template for adoption by a
certification authority.

Acknowledgments. This work is funded through a grant by the Bundesdruck-
erei GmbH.

References

1. STMicroelectronics ST33F1M Smartcard MCU,
http://www.st.com/internet/mcu/product/215291.jsp

2. Common Criteria for Information Technology Security Evaluation, Part 1: Introduc-
tion and General Model; CCMB-2012-09-001, Version 3.1, Revision 4 (September
2012)

http://www.st.com/internet/mcu/product/215291.jsp

258 K. Beilke and V. Roth

3. Abrahamsson, D.: Security Enhanced Firmware Update Procedures in Embedded
Systems. Master’s thesis, Linköping University, Department of Computer and In-
formation Science (2008)

4. Consortium, T.M.: The MULTOS Specification, http://www.multos.com
5. Corp., O.: Java Card, http://www.oracle.com/technetwork/java/javacard
6. Eurosmart: Protection Profile Security IC Platform Protection Profile developed

by Atmel, Infineon Technologies AG, NXP Semiconductors, Renesas Technol-
ogy Europe Ltd., STMicrocontrollers, Registered and Certified by Bundesamt für
Sicherheit in der Informationstechnik (BSI) under Reference BSI-PP-0035, Version
1.0, 15.06 (June 2007), https://www.bsi.bund.de/SharedDocs/Zertifikate/PP/
aktuell/PP_0035.html

7. Eurosmart: Security Integrated Circuit Platform Protection Profile with Aug-
mentation Packages developed by Inside Secure, Infineon Technologies AG, NXP
Semiconductors, STMicroelectronics, Registered and Certified by Bundesamt für
Sicherheit in der Informationstechnik (BSI) under Reference BSI-CC-PP-0084-
2014, Version 1.0, 19.02 (February 2014), https://www.bsi.bund.de/SharedDocs/
Zertifikate/PP/aktuell/PP_0084.html

8. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Safe and automatic live update for
operating systems. In: Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS 2013, pp. 279–292. ACM, New York (2013), http://doi.acm.org/10.1145/
2451116.2451147

9. GlobalPlatform, I.: GlobalPlatform, http://www.globalplatform.org/
10. Lobdell, M.: Robust Over-the-Air Firmware Updates Using Program Flash

Memory Swap on Kinetis Microcontrollers, http://cache.freescale.com/files/
microcontrollers/doc/app_note/AN4533.pdf

11. Margraf, M.: The new german id card. In: Pohlmann, N., Reimer, H., Schneider,
W. (eds.) ISSE 2010: Securing Electronic Business Processes (2011)

12. Noll, M.: System for a primary bios rom recovery in a dual bios rom computer sys-
tem. US Patent 5,793,943 (August 11, 1998), http://www.google.com/patents/
US5793943

13. Noubissi, A.C., Iguchi-Cartigny, J., Lanet, J.L.: Hot updates for java based smart
cards. In: 22nd International Conference on Data Engineering Workshops, pp. 168–
173 (2011)

14. Rankl, W., Effing, W.: Smart Card Handbook, 4th edn. Wiley Publishing (2010)
15. Skorobogatov, S., Woods, C. In: the blink of an eye: There goes your aes key.

Cryptology ePrint Archive, Report 2012/296 (2012), http://eprint.iacr.org/

2012/296

16. Smith, S., Weingart, S.: Building a high-performance, programmable secure copro-
cessor. Comput. Netw. 31, 831–860 (1999), http://domino.research.ibm.com/

comm/research_projects.nsf/pages/ssd_scop.pubs.html

17. Torrance, R., James, D.: The state-of-the-art in IC reverse engineering. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 363–381. Springer, Heidelberg
(2009), http://dx.doi.org/10.1007/978-3-642-04138-9_26

http://www.multos.com
http://www.oracle.com/technetwork/java/javacard
https://www.bsi.bund.de/SharedDocs/Zertifikate/PP/aktuell/PP_0035.html
https://www.bsi.bund.de/SharedDocs/Zertifikate/PP/aktuell/PP_0035.html
https://www.bsi.bund.de/SharedDocs/Zertifikate/PP/aktuell/PP_0084.html
https://www.bsi.bund.de/SharedDocs/Zertifikate/PP/aktuell/PP_0084.html
http://doi.acm.org/10.1145/2451116.2451147
http://doi.acm.org/10.1145/2451116.2451147
http://www.globalplatform.org/
http://cache.freescale.com/files/microcontrollers/doc/app_note/AN4533.pdf
http://cache.freescale.com/files/microcontrollers/doc/app_note/AN4533.pdf
http://www.google.com/patents/US5793943
http://www.google.com/patents/US5793943
http://eprint.iacr.org/2012/296
http://eprint.iacr.org/2012/296
http://domino.research.ibm.com/comm/research_projects.nsf/pages/ssd_scop.pubs.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/ssd_scop.pubs.html
http://dx.doi.org/10.1007/978-3-642-04138-9_26

Discrete vs. Dense Times in the Analysis
of Cyber-Physical Security Protocols

Max Kanovich1,5, Tajana Ban Kirigin2, Vivek Nigam3,
Andre Scedrov4,5, and Carolyn Talcott6

1 Queen Mary, University of London & University College, UK
mik@dcs.qmul.ac.uk

2 University of Rijeka, HR
bank@math.uniri.hr

3 Federal University of Paraba, João Pessoa, Brazil
vivek@ci.ufpb.br

4 University of Pennsylvania, Philadelphia, USA
scedrov@math.upenn.edu

5 National Research University Higher School of Economics, Moscow, Russia
6 SRI International, USA

clt@csl.sri.com

Abstract. Many security protocols rely on the assumptions on the physical prop-
erties in which its protocol sessions will be carried out. For instance, Distance
Bounding Protocols take into account the round trip time of messages and the
transmission velocity to infer an upper bound of the distance between two agents.
We classify such security protocols as Cyber-Physical. Time plays a key role in
design and analysis of many of these protocols. This paper investigates the foun-
dational differences and the impacts on the analysis when using models with dis-
crete time and models with dense time. We show that there are attacks that can
be found by models using dense time, but not when using discrete time. We illus-
trate this with a novel attack that can be carried out on most distance bounding
protocols. In this attack, one exploits the execution delay of instructions during
one clock cycle to convince a verifier that he is in a location different from his ac-
tual position. We propose a Multiset Rewriting model with dense time suitable for
specifying cyber-physical security protocols. We introduce Circle-Configurations
and show that they can be used to symbolically solve the reachability problem for
our model. Finally, we show that for the important class of balanced theories the
reachability problem is PSPACE-complete.

1 Introduction

With the development of pervasive cyber-physical systems and consequent security is-
sues, it is often necessary to specify protocols that not only make use of cryptographic
keys and nonces, but also take into account the physical properties of the environment
where its protocol sessions are carried out. We call such protocols Cyber-Physical Se-
curity Protocols. For instance, Distance Bounding Protocols [4] is a class of cyber-
physical security protocols which infers an upper bound on the distance between two
agents from the round trip time of messages. In a distance bounding protocol session,
the verifier (V) and the prover (P) exchange messages:

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 259–279, 2015.
DOI: 10.1007/978-3-662-46666-7_14

260 M. Kanovich et al.

V −→ P : m
P −→ V : m′

(1)

where m is a challenge and m′ is a response message (constructed using m’s compo-
nents). To infer the distance to the prover, the verifier remembers the time, t0, when the
message m was sent, and the time, t1, when the message m′ returns. From the difference
t1 − t0 and the assumptions on the speed of the transmission medium, v, the verifier can
compute an upper bound on the distance to the prover, namely (t1 − t0) × v.

This is just one example of cyber-physical security protocols. Other examples in-
clude Secure Neighbor Discovery, Secure Localization Protocols [5,29,31], and Secure
Time Synchronization Protocols [14, 30]. The common feature in most cyber-physical
security protocols is that they mention cryptographic keys, nonces and time. (For more
examples, see [2, 24] and references therein.)

A major problem of using the traditional protocol notation for the description of dis-
tance bounding protocols, as in Eg. 1, is that many assumptions about time, such as the
time requirements for the fulfillment of a protocol session, are not formally specified.
It is only informally described that the verifier remembers the time t0 and t1 and which
exact moments these correspond to. Moreover, from the above description, it is not clear
which assumptions about the network are used, such as the transmission medium used
by the participants. Furthermore, it is not formally specified which properties does the
above protocol ensure, and in which conditions and against which intruders.

It is easy to check that the above protocol is not safe against the standard Dolev-
Yao intruder [10] who is capable of intercepting and sending messages anywhere at
anytime. The Dolev-Yao intruder can easily convince V that P is closer than he actually
is. The intruder first intercepts the message m and with zero transmission time sends it
P. Then he intercepts the message m′ and instantaneously sends it to V , reducing the
round-trip-time (t1 − t0). Thus, V will believe that P is much closer than he actually is.
Such an attack does not occur in practice as messages take time to travel from one point
to another. Indeed, the standard Dolev-Yao intruder model is not a suitable model for
the analysis of cyber-physical protocols. Since he is able to intercept and send messages
anywhere at anytime, he results faster than the speed of light. In fact, a major difference
between cyber-physical protocols and traditional security protocols is that there is not
necessarily a network in the traditional sense, as the medium is the network.

Existing works have proposed and used models with time for the analysis of dis-
tance bounding protocols where the attacker is constrained by some physical properties
of the system. Some models have considered dense time [2], while others have used
discrete time [3]. However, although these models have included time, the foundational
differences between these models and the impacts to analysis has not been investigated
in more detail. For example, they have not investigated the fact that provers, verifiers,
and attackers may have different clock rates, i.e., processing speeds, affecting security.
This paper addresses this gap. While studying this problem, we have identified a novel
attack called Attack In-Between-Ticks. We believe it can be carried out on most distance
bounding protocols. The main observation is that while the verifier uses discrete clock
ticking and thus measures time in discrete units, the environment and the attacker is
not limited by a particular clock. In fact, a key observation of this paper is that models
with dense time abstract the fact that attacker clocks may tick at any rate. The attacker

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 261

can mask his location by exploiting the fact that a message may be sent at any point
between two clock ticks of the verifier’s clock, while the verifier believes that it was
sent at a particular time. Depending on the speed of the verifier, i.e., its clock rate, the
attacker can in principle convince the verifier that he is very close to the verifier (less
than a meter) even though he is very far away (many meters away).

Interestingly, however, from a foundational point of view, there is no complexity in-
crease when using a model with dense time when compared to a model with discrete
time. In our previous work [18], we proposed a rewriting framework which assumed dis-
crete time. We showed that the reachability problem is PSPACE-complete. Here we show
that if we extend the model with dense time, the reachability problem is still PSPACE-
complete. For this result we introduce a novel machinery called Circle-Configurations.

Section 2 contains two motivational examples, including the novel attack in-between-
ticks. In Section 3 we introduce a formal model based on Multiset Rewriting (MSR)
which includes dense time. We also show how to specify distance bounding protocols
in this language. Section 4 introduces a novel machinery, called Circle-Configurations,
that allow one to symbolically represent configurations that mention dense time. Sec-
tion 5 proves that the reachability problem for timed bounded memory protocols [16]
is PSPACE-complete. Finally, in Section 6, we comment on related and future work.

2 Two Motivating Examples

This section presents two examples of protocols to illustrates the differences between
models with discrete and dense time. In the first example we present a timed version
of the classical Needham-Schroeder protocol [25]. It shows that some attacks may only
be found when using models with dense time. The second example is the novel attack
in-between-ticks, which illustrates that for the analysis of distance bounding protocols
it is necessary to consider time assumptions of the players involved.

2.1 Time-Bounding Needham-Schroeder Protocol

We first show some subtleties of cyber-physical protocol analysis by re-examining the
original Needham-Schroeder public key protocol [25] (NS), see Fig 1a. Although this
protocol is well known to be insecure [22], we look at it from another dimension, the
dimension of time. We check whether Needham and Schroeder were right after all, in
the sense that their protocol can be considered secure under some time requirements. In
other words, we investigate whether NS can be fixed by means of time.

We timestamp each event in the protocol execution, that is, we explicitly mark the
time of sending and receiving messages by a participant. We then propose a timed
version of this protocol, called Time-Bounding Needham-Schroeder Protocol (Timed-
NS), as depicted in Figure 1b. The protocol exchanges the same messages as in the
original version, but the last protocol message, i.e. the confirmation message {NB}KB , is
sent by A only if the time difference t3 − t0 is smaller or equal to the given response
bounding time R.

The protocol is considered secure in the standard way, that is, if the “accepted” NA

and NB may never be revealed to anybody else except Alice and Bob. Recall that the
well known Lowe attack on NS [22] involves a third party, Mallory who is able to learn

262 M. Kanovich et al.

A B
{NA, A}KB

{NA, NB}KA

{NB}KB

(a) Needham-Schroeder protocol

A

t0

B

t1

t2

{NA, A}KB

t3
{NA, NB}KA

t4
t5

{NB}KB

if t3 − t0 ≤ R

(b) Timed Needham-Schroeder Protocol

Fig. 1. Adding time to Needham-Schroeder Protocol

Alice Mallory

t0 = 0

Mallory Bob

t1 = 1

t2 = 2

{NA, A}kM

t3 = 3
{NA, A}kB

t4 = 4t5 = 5
{NA, NB}kA

t6 = 6t7 = 7
{NA, NB}kA

t8 = 8 t9 = 9
{NB}kM

t10 = 10 t11 = 11
{NB}kB

(c) Discrete Time Model

Alice Mallory

t0 = 0

Mallory Bob

t1 = 0.1

t2 = 0.2

{NA, A}kM

t3 = 0.3
{NA, A}kB

t4 = 0.4t5 = 0.5
{NA, NB}kA

t6 = 0.6t7 = 0.7
{NA, NB}kA

t8 = 0.8 t9 = 0.9
{NB}kM

t11 = 1 t11 = 1.1
{NB}kB

(d) Dense Time Model

Fig. 2. Timed Version of Lowe Attack

Bob’s nonce. At the same time Bob believes that he communicated with Alice and that
only Alice learned his nonce.

The intriguing result of the analysis of Timed-NS is that one may not find an attack
in the discrete time model, but can find one in the dense time model: Figure 2 depicts
the Lowe attack scenario in Timed-NS. In particular, the attack requires that events
marked with t0, . . . , t7 take place and that the round trip time of messages, that is t7 −
t0, does not exceed the given response bounding time R. Assuming that both network
delay and processing time are non-zero, in the discrete time model the attack could be
modeled only for response bounding time R ≥ 7, see Figure 1c. In the discrete model,
the protocol would seem safe for response bounding time R < 7. However, in the dense
time model the attack is possible for any response bounding time R, see Figure 1d.

This simple example already illustrates the challenges of timed models for cyber-
physical security protocol analysis and verification. No rescaling of discrete time units
removes the presented difference between the models. For any discretization of time,
such as seconds or any other infinitesimal time unit, there is a protocol for which there
is an attack with continuous time and no attack is possible in the discrete case. This is
further illustrated by the following more realistic example.

2.2 Attack In-Between-Ticks

Regardless of the design details of a specific distance bounding protocol a new type
of anomaly can happen. We call it Attack In-Between-Ticks. This attack is particularly

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 263

1 2 3 4 5

Measured Round Trip Time = 4

Actual Round Trip Time > 4

Prover

Verifier’s

Clock

Challenge

Msg

Response

Msg

Verifier

6

(a) In different ticks (Sequential Execution)

1 2 3 4 5

Measured Round Trip Time = 4

Actual Round Trip Time > 4

Prover

Verifier’s

Clock

Challenge

Msg

Response

Msg

Verifier

(b) In the same tick (Parallel Execution)

Fig. 3. Attack In-Between-Ticks. Here R = 4 ticks.

harmful when the verifier and the prover exchange messages using radio-frequency
(RF), where the speed of transmission is the speed of light. In this case an error of a 1
nanosecond (ns) already results in a distance error of 30cm.

Consider the illustrations in Figure 3. They depict the execution of instructions by
the verifier. The verifier has to execute two instructions: (1) the instruction that sends
the signal to the prover and (2) the instruction that measures the time when this message
is sent. Figure 3a illustrates the case when the verifier is running a sequential machine
(that is, a single processor), which is the typical case as the verifier is usually a not
very powerful device, e.g., door opening device. Here we assume optimistically that an
instruction can be executed in one cycle. When the first instruction is executed, it means
that the signal is sent somewhere when the clock is up, say at time 0.6. In the following
clock cycle, the verifier remembers the time when the message is sent. Say that this was
already done at time 1.5. If the response message is received at time 5 it triggers an
interruption so that the verifier measures the response time in the following cycle, i.e.,
at time 5.5. Thus the measured round time is 4 = 5.5 − 1.5 = R ticks. Therefore, the
verifier grants access to the prover although the actual round trip is 5−0.6 = 4.4 > R = 4
ticks. This means that the verifier is granting access to the prover although the prover’s
distance to the verifier may not satisfy the distance bound and thus is a security flaw.1

Depending on the speed of verifier’s processor, the difference of 0.4 tick results in a
huge error. Many of these devices use very weak processors. The one proposed in [28],
for example, executes at a frequency of at most 24MHz. This means a tick is equal
to 41ns (in the best case). Thus, an error of 0.4 tick corresponds to an error of 16ns
or an error of 4.8 meters when using RF. In the worst case, the error can be of 1.5
ticks when the signal is sent at the beginning of the cycle, i.e., at time 0.5 tick, and the
measurements at the end of the corresponding cycles, i.e., at times 2 and 6 ticks. An
error of 1.5 tick (61.5ns) corresponds to an error greater than 18 meters when using RF.

Consider now the case when the verifier can execute both instructions in the same
cycle. Even in this case there might be errors in measurement as illustrated in Figure 3b.
It may happen that the signal is sent before the measurement is taken thus leading to
errors of at most 0.5 ticks (not as great as in the sequential case). (Here we are again
assuming optimistically that an instruction can be executed in one cycle.)

1 Notice that inverting the order of the instructions, i.e., first collecting the time and then sending
the signal, would imply errors of measurement but in the opposite direction turning the system
impractical.

264 M. Kanovich et al.

Finally, we observe that these security flaws may happen in principle. In practice,
distance bounding protocols carry out a large number of challenge and response rounds
which we believe mitigates the chances of this attack occurring. We also point out that
these attacks have been inspired by similar issues in the analysis of digital circuits [1].

3 A Multiset Rewriting Framework with Dense Time

We assume a finite first-order typed alphabet, Σ, with variables, constants, function
and predicate symbols. Terms and facts are constructed as usual (see [12]) by applying
symbols with correct type (or sort). For instance, if P is a predicate of type τ1 × τ2 ×
· · · × τn → o, where o is the type for propositions, and u1, . . . , un are terms of types
τ1, . . . , τn, respectively, then P(u1, . . . , un) is a fact. A fact is grounded if it does not
contain any variables.

In order to specify systems that mention time, we use timestamped facts of the form
F@T , where F is a fact and T is its timestamp. In our previous work [19], timestamps
were only allowed to be natural numbers. Here, on the other hand, timestamps are al-
lowed to be non-negative real numbers. We assume that there is a special predicate
symbol Time with arity zero, which will be used to represent the global time. A config-
uration is a multiset of ground timestamped facts, {Time@t, F1@t1, . . . , Fn@tn}, with
a single occurrence of a Time fact. Configurations are to be interpreted as states of the
system. For example, the following configuration

{Time@7.5,Deadline@10.3, Task(1, done)@5.3, Task(2, pending)@2.13} (2)
specifies that the current global time is 7.5, the Task 1 was performed at time 5.3, Task
2 is still pending and issued at time 2.13, and the deadline to perform all tasks is 10.3.
We may sometimes denote the timestamp of a fact F in a given configuration as TF .

3.1 Actions and Constraints

Actions are multiset rewrite rules and are either the time advancement action or instan-
taneous actions. The action representing the advancement of time, called Tick Action, is
the following:

Time@T −→ Time@(T + ε) (3)

Here ε can be instantiated by any positive real number specifying that the global time
of a configuration can advance by any positive number. For example, if we apply this
action with ε = 0.6 to the configuration (2) we obtain the configuration

{Time@8.1,Deadline@10.3, Task(1, done)@5.3, Task(2, pending)@2.13} (4)
where the global time advanced from 7.5 to 8.1.

Clearly such an action is a source of unboundedness as time can always advance by
any positive real number. In particular we will need to deal with issues such as Zeno
Paradoxes when considering how time should advance.

The remaining actions are the Instantaneous Actions, which do not affect the global
time, but may rewrite the remaining facts. They have the following shape:

Time@T,W1@T1, . . . ,Wk@Tk, F1@T ′1, . . . , Fn@T ′n | C −→
∃X.[Time@T,W1@T1, . . . ,Wk@Tk,Q1@(T + D1), . . . ,Qm@(T + Dm)]

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 265

where D1, . . . ,Dm are natural numbers and C is the guard of the action which is a set of
constraints involving the time variables appearing in the pre-condition, i.e. the variables
T, T1, . . . , Tk, T ′1, . . . , T

′
n. Constraints are of the form:

T > T ′ ± D and T = T ′ ± D (5)

where T and T ′ are time variables, and D is a natural number.
An instantaneous action can only be applied if all the constraints in its guard are

satisfied. We use T ′ ≥ T ′ ±D to denote the disjunction of T > T ′ ±D and T ′ = T ′ ±D.
Notice that the global time does not change when applying an instantaneous action.

Moreover, the timestamps of the facts that are created by the action, namely the facts
Q1, . . . ,Qm, are of the form T+Di, where Di is a natural number and T is the global time.
That is, their timestamps are in the present or the future. For example, the following is
an instantaneous action

Time@T, Task(1, done)@T1,Deadline@T2, Task(2, pending)@T3 | {T2 ≥ T + 2}
−→ Time@T, Task(1, done)@T1,Deadline@T2, Task(2, done)@(T + 1)

which specifies that one should complete Task 2, if Task 1 is completed, and moreover,
if the Deadline is at least 2 units ahead of the current time. If these conditions are
satisfied, then the Task 2 will be completed in one time unit. Applying this action to the
configuration (4) yields
{Time@8.1,Deadline@10.3, Task(1, done)@5.3,Task(2, done)@9.1}

where Task 2 will be completed by the time 9.1.
Finally, the variables X that are existentially quantified in the above action are to be

replaced by fresh values, also called nonces in protocol security literature [6, 11]. For
example, the following action specifies the creation of a new task with a fresh identifier
id, which should be completed by time T + D:
Time@T −→ ∃Id.[Time@T, Task(Id, pending)@(T + D)]

Whenever this action is applied to a configuration, the variable Id is instantiated by a
fresh value. In this way we are able to specify that the identifier assigned to the new task
is different to the identifiers of all other existing tasks. In the same way it is possible to
specify the use of nonces in Protocol Security [6, 11].

Notice that by the nature of multiset rewriting there are various aspects of non-
determinism in the model. For example, different actions and even different instanti-
ations of the same rule may be applicable to the same configuration S, which may lead
to different resulting configurationsS′.

3.2 Initial, Goal Configurations, The Reachability Problem and Equivalence

We write S −→r S1 for the one-step relation where configuration S is rewritten to
S1 using an instance of action r. For a set of actions R, we define S −→∗R S1 as the
transitive reflexive closure of the one-step relation on all actions in R. We elide the
subscript R, when it is clear from the context.

A goal SG is a pair of a multiset of facts and a set of constraints:
{F1@T1, . . . , Fn@Tn} | C

where T1, . . . , Tn are time variables, F1, . . . , Fn are ground facts and C is a set of con-
straints involving only T1, . . . , Tn. We call a configuration S1 a goal configuration if

266 M. Kanovich et al.

there is a substitution σ replacing T1, . . . , Tn by real numbers such that SGσ ⊆ S1 and
all the constraints in Cσ are satisfied. The reachability problem, T , is then defined for
a given initial configuration SI , a goal SG and a set of actions R as follows:

Reachability Problem: Is there a goal configuration S1, such that SI −→∗R S1?
Such a sequence of actions is called a plan. We assume that goals are invariant to

nonce renaming, that is, a goal SG is equivalent to the goal S′G if they only differ on the
nonce names (see [15] for more discussion on this).

The following definition establishes the equivalence of configurations. Many formal
definitions and results in this paper mention an upper bound Dmax on the numeric values
of a reachability problem. This value is computed from the given problem: we set Dmax

to be a natural number such that Dmax > n + 1 for any number n (both real or natural)
appearing in the timestamps of the initial configuration, or the Ds and Dis in constraints
or actions of the reachability problem.

Definition 1. Given a reachability problem T , let Dmax be an upper bound on the nu-
meric values appearing in T . Let
S = Q1@t1,Q2@t2, . . . ,Qn@tn and ˜S = Q1@˜t1,Q2@˜t2, . . . ,Qn@˜tn

be two configurations written in canonical way where the two sequences of timestamps
t1, . . . , tn and˜t1, . . . ,˜tn are non-decreasing. Then S and ˜S are equivalent if they satisfy
the same constraints, that is: ti > t j ±D iff ˜ti > ˜t j ±D and ti = t j ±D iff ˜ti = ˜t j ±D, for
all 1 ≤ i, j ≤ n and D < Dmax.

The following proposition states that the notion of equivalence defined above is
coarse enough to identify applicable actions and thus the reachability problem.

Proposition 1. Let S and S′ be two equivalent configurations for a given reachability
problem T and the upper bound Dmax. There is a transition S −→r S1 for an action r
in T if and only if there is a transition S′ −→r S′1 using a possibly different instance of
the same action r and furthermore S1 and S′1 are also equivalent.

Theorem 1. Let SI andS′I be two equivalent initial configurations,SG be a goal andR
a set of actions. Let Dmax be an upper bound on the numbers in R, SI , S′I and SG. Then
the reachability problem with SI ,SG and R is solvable if and only if the reachability
problem with S′I ,SG and R is solvable.

3.3 Distance Bounding Protocol Formalization

To demonstrate how our model can capture the attack in-between-ticks, consider the
following protocol, called DB, This protocol captures the time challenge of distance
bounding protocols.2 Verifier should allow the access to his resources only if the mea-
sured round trip time of messages in the distance-bounding phase of the protocol does
not exceed the given bounding time R. We assume that the verifier and the prover have
already exchanged nonces nP and nV :

V −→ P : nP at time t0
P −→ V : nV at time t1
V −→ P : OK(P) iff t1 − t0 ≤ R

2 Another specification that includes an intruder model, keys, and the specification of the attack
described in [2] can be found in our workshop paper [17].

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 267

Time@T,V0(P,NP,NV)@T1, E@T2 , E@T3 −→
Time@T,V1(pending, P,NP,NV)@T,NS

V (NP)@T, Start(P,NP,NV)@T

Time@T,V1(pending, P,NP,NV)@T1,ClockV @T, P@T2 | T ≥ T1 −→
Time@T,V1(start, P,NP,NV)@T,ClockV @T, StartV (P,NP,NV)@T

Time@T, P0(V,NV ,NP)@T1 ,NR
P(NP)@T2 | T ≥ T2 −→ Time@T, P1(V,NV ,NP)@T,NS

P (NV)@T

Time@T,V1(start, P,NP ,NV)@T1,NR
V (NV)@T2 −→ Time@T,V2(pending, P,NP,NV)@T, Stop(P,NP,NV)@T

Time@T,V2(pending, P,NP,NV)@T1,ClockV @T, E@T2 | T ≥ T1 −→
Time@T,V2(stop, P,NP,NV)@T,ClockV @T, StopV (P,NP,NV)@T

Time@T, StartV (P,NP,NV)@T1 , StopV (P,NP,NV)@T2,V2(stop, P,NP,NV)@T3 | T2 − T1 ≤ R, T ≥ T3 −→
Time@T,V3(P)@T,NS

V (Ok(P))@T, E@T

Fig. 4. Protocol Rules for DB protocol

Encoding of verifier’s clock The fact ClockV@T denotes the local clock of the verifier
i.e. the discrete time clock that verifier uses to measure the response time in the distance
bounding phase of the protocol.

We encode ticking of verifier’s clock in discrete units of time. Action (6) represents
the ticking of verifier’s clock:

Time@T, ClockV@T1 | T = T1 + 1 −→ Time@T, ClockV@T (6)

Notice that if this action is not executed and T advances too much, i.e., T > T1, it means
that the verifier clock stopped as it no longer advances.

Network Let D(X, Y) = D(Y, X) be the integer representing the minimum time needed
for a message to reach Y from X. We also assume that participants do not move. Rule
(7) models network transmission from X to some Y:

T ime@T, NS
X (m)@T1, E@T2 | T ≥ T1 + D(X,Y) −→ T ime@T, NS

X (m)@T1, NR
Y (m)@T (7)

Facts NS
X (m) and NR

X (m) specify that the participant X has sent and may receive the
message m, respectively. Once X has sent the message m, that message can only be
received by Y once it traveled from X to Y. The fact E is an empty fact which can
be interpreted as a slot of resource. This is a technical device used to turn a theory
balanced. It can safely be ignored until Section 5 (see as well [16]).

Measuring the round trip time of messages A protocol run creates facts denoting times
when messages of the distance bounding phase are sent and received by the verifier.
Predicates Start and Stop denote the actual (real) time of these events so that the round
trip time of messages is T2−T1 for timestamps T1, T2 in Start(m)@T1, Stop(m)@T2. On
the other hand predicates StartV and StopV model the verifier’s view of time: T2 − T1,
for T1, T2 in StartV (m)@T1, StopV (m)@T2.

Protocol Theory Our example protocol DB is formalized in Figure 4. The first rule
specifies that the verifier has sent a nonce and still needs to mark the time, specified by
the fact V1(pending, P,NP,NV)@T . The second rule specifies verifier’s instruction of
remembering the current time. The third rule specifies prover’s response to the verifier’s
challenge. The fourth and fifth rules are similar to the first two, specifying when verifier

268 M. Kanovich et al.

actually received prover’s response and when he executed the instruction to remember
the time. Finally, the sixth rule specifies that the verifier grants access to the prover if
he believes that the distance to the prover is under the given bound.

Attack In-Between-Ticks
We now show how attack in-between-ticks is detected in our formalization.
The initial configuration contains facts Time@0, ClockV@0 denoting that global

time and time on verifier’s discrete time are initially set to 0.
Given the protocol specification in Figure 4, attack in-between-ticks is represented

with the following configuration:
Start(P,NP,NV)@T1, Stop(P,NP,NV)@T2,NS

V (Ok(P))@T3 | T2 − T1 > R
It denotes that in the session involving nonces NP,NV the verifier V has allowed the
access to prover P although the distance requirement has been violated.

Notice that such an anomaly is really possible in this specification. Consider the fol-
lowing example: between moments 1.7 and 4.9, there would be 3 ticks on the verifier’s
clock. The verifier would consider starting time of 2 and finishing time of 5, and con-
firm with the time bound R = 3. Actually, the real round trip time is greater than the
time bound, namely 4.9− 1.7 = 3.2. Following facts would appear in the configuration:
StartV (n)@2, StopV (n)@5, Start(n)@1.7, Stop(n)@4.9. Since 5−2 = 3 the last rule from
Figure 4, the accepting rule, would apply resulting in the configuration containing the
facts: Start(p, nP, nV)@1.7, Stop(p, nP, nV)@4.9, NS

V (Ok(p))@5. Since 4.9−1.7 = 3.2
is greater than R = 3, this configuration constitutes an attack.

Protocol Formalization in Maude We have formalized this scenario in an extension with
SMT-solver of the rewriting logic tool, Maude. The tool was able to automatically find
this attack. A main advantage of using an SMT solver in conjunction with Maude proof
search is that one can reduce considerably the search-space involved. For example,
when using the specification above, we do not provide a specific value for D(p, v),
but simply state that D(p, v) > R, that is, the prover is outside the distance bound.
Due to space constraints, we do enter into the details of this implementation. We leave
as future work the challenges of building a tool that can find verify cyber-physical
protocols. We believe that we can integrate time constraints with the machinery used by
MaudeNPA [13].

4 Circle-Configurations

This section introduces the machinery, called Circle-Configurations, that can symbol-
ically represent configurations and plans that mention dense time. Dealing with dense
time leads to some difficulties, which have puzzled us for some time now, in particular,
means to handle Zeno paradoxes. When we use discrete domains to represent time, such
as the natural numbers, time always advances by one, specified by the rule:

Time@T −→ Time@(T + 1)
There is no other choice.3 On the other hand, when considering systems with dense
time, the problem is much more involved, as the non-determinism is much harder to

3 However, as time can always advance, a plan may use an unbounded number of natural num-
bers. This source of unboundedness was handled in our previous work [19]. This solution,
however, does not scale to dense time.

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 269

deal with: the value that the time advances, the ε in Time@T −→ Time@(T + ε)
(Eq. 3), can be instantiated by any positive real number.

Our claim is that we can symbolically represent any plan involving dense time by
using a canonical form called circle-configurations. We show that circle-configurations
provide a sound and complete representation of plans with dense time (Theorem 2).

A circle-configuration consists of two components: a δ-Configuration, Δ, and a Unit
Circle, U, written 〈Δ,U〉. Intuitively, the former accounts for the integer part of the
timestamps of facts in the configuration, while the latter deals with the decimal part of
the timestamps.

In order to define these components, however, we need some additional machinery.
For a real-number, r, int(r) denotes the integer part of r and dec(r) its decimal part. For
example, int(2.12) is 2 and dec(2.12) is 0.12. Given a natural number Dmax, the truncated
time difference between two facts P@tP and Q@tQ such that tQ ≥ tP is defined as follows

δP,Q =

{

int(tQ) − int(tP), if int(tQ) − int(tP) ≤ Dmax

∞, otherwise

For example, if Dmax = 3 and F@3.12,G@1.01,H@5.05, then δF,H = 2 and δG,H = ∞.
Notice that whenever δP,Q = ∞ for two timestamped facts, P@tP and Q@tQ, we can
infer that tQ > tP + D for any natural number D in the theory. Thus, we can truncate
time difference without sacrificing soundness and completeness. This was pretty much
the idea used in [19] to handle systems with discrete-time.

δ-Configuration We now explain the first component,Δ, of circle-configurations, 〈Δ,U〉,
namely the δ-configuration, to only later enter into the details of the second compo-
nent in Section 4.1. Given a configuration S = {F1@t1, . . . , Fn@tn, Time@t}, we con-
struct its δ-configuration as follows: We first sort the facts using the integer part of
their timestamps, obtaining the sequence of timestamped facts Q1@t′1, . . . ,Qn+1@t′n+1,
where t′i ≤ t′i+1 for 1 ≤ i ≤ n + 1 and {Q1, . . . ,Qn+1} = {F1, . . . , Fn, Time}. We then
aggregate in classes facts with the same integer part of the timestamps obtaining a se-
quence of classes {Q1

1, . . . ,Q
1
m1
}, {Q2

1, . . . ,Q
2
m2
}, . . . , {Q j

1, . . . ,Q
j
mj
}, where δQk

i ,Q
k
j
= 0 for

any 1 ≤ i ≤ mk and 1 ≤ k ≤ j. The δ-configuration for S is then:

Δ =
〈

{Q1
1, . . . ,Q

1
m1
}, δ1,2, {Q2

1, . . . ,Q
2
m2
}, . . . {Q j−1

1 , . . . ,Q
j−1
mj−1
}, δ j−1, j, {Q j

1, . . . ,Q
j
mj
}
〉

where δi,i+1 = δQi
1,Q

i+1
1

is the truncated time difference between the facts in class i and
class i + 1. For such a δ-configuration, Δ, we define

Δ(Ql
i,Q

h
j) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

k=h−1
∑

k=l
δk,k+1 if h ≥ l

−
k=l−1
∑

k=h
δk,k+1 otherwise

which is the truncated time difference between any two facts Ql
i and Qh

j from the classes
l and h, respectively, of Δ. Here we assume ∞ is the addition absorbing element, i.e.,
∞ + D = ∞ for any natural number D and∞ +∞ = ∞.

Notice that, for a given upper bound Dmax, different configurations may have the
same δ-configuration. For example, with Dmax = 4, configurations

S1 = {M@3.01,R@3.11, P@4.12, Time@11.12,Q@12.58, S @14} and
S′1 = {M@0.2,R@0.5, P@1.6, Time@6.57,Q@7.12, S @9.01} (8)

270 M. Kanovich et al.

have both the following δ-configuration:ΔS1 = 〈{M,R}, 1, {P},∞, {Time}, 1, {Q}, 2, {S }〉.
This δ-configuration specifies the truncated time differences between the facts. For ex-
ample, ΔS1 (R, P) = 1, that is, the integer part of the timestamp of the fact P is ahead
one unit with respect to the integer part of the timestamp of the fact R. Moreover, the
timestamp of the fact Time is more than Dmax units ahead with respect to the timestamp
of P. This is indeed true for both configurations S1 and S′1 given above.

4.1 Unit Circle and Constraint Satisfaction

In order to handle the decimal part of the timestamps, we use intervals instead of con-
crete values. These intervals are represented by a circle, called Unit Circle, which to-
gether with a δ-configuration composes a circle-configuration. The unit circle of a con-
figuration S = {F1@t1, . . . , Fn@tn, Time@t} is constructed by first ordering the facts
according to the decimal part of their timestamps, obtaining the sequence of facts
Q1, . . . ,Qn+1, where {Q1, . . . ,Qn+1} = {F1, . . . , Fn, Time}. Then the unit circle of the
given configuration S is obtained by aggregating facts that have the same decimal part
obtaining a sequence of classes:

U = [{Q0
1, . . . ,Q

0
m0
}Z, {Q1

1, . . . ,Q
1
m1
}, . . . , {Q j

1, . . . ,Q
j
mj
}]

where the first class {Q0
1, . . . ,Q

0
m1
}Z, marked with the subscript Z contains all facts

whose timestamp’s decimal part is zero, i.e., dec(Q0
i) = 0 for 1 ≤ i ≤ m0. We call it the

Zero Point. Notice that the zero point may be empty. For a unit circle, U, we define:
U(Qi

j) = i to denote the class in which the fact Qi
j appears inU.

For example, the unit circle of configurationS1 given in Eq. 8 is the sequence:US1 =

[{S }Z, {M}, {R}, {P, Time}, {Q}]. Notice that P and Time are in the same class as the
decimal parts of their timestamps are the same, namely 0.12. Moreover, we have that
US1 (S) = 0 < 2 = US1 (R), specifying that the decimal part of the timestamp of the fact
R is greater than the decimal part of the timestamp of the fact S .

Q1

1
, . . . , Q1

m1

Qi
1
, . . . , Qi

mi

Qj
1, . . . , Q

j
mj

Q0

1
, . . . , Q0

m0

Fig. 5. Unit Circle

We will graphically represent a unit circle as shown
in Figure 5. The (green) ellipse at the top of the circle
marks the zero point, while the remaining classes are
placed on the circle in the (red) squares ordered clock-
wise starting from the zero point. Thus, from the above
graphical representation, the decimal part of the times-
tamp of the fact Q1

1 is smaller than the decimal of the
timestamp of the fact Q2

1, while the decimal part of the
timestamps of the facts Qi

1 and Qi
2 are equal. The exact point where the squares are

placed is not important, only their relative positions matter, e.g., the square for the class
containing the fact Q1

1 should be placed on the circle somewhere in between the zero
point and the square for the class containing the fact Q2

1, clockwise. S

M

P, T ime

Q

〈{M,R}, 1, {P},∞, {T ime}, 1, {Q}, 2, {S}〉

R

Fig. 6. Circle-Configuration

Constraint Satisfaction
A circle-configuration 〈Δ,U〉 contains all the in-
formation needed in order to determine whether
a constraint of the form given in Eq. 5 is satis-
fied or not. Consider the circle-configuration in
Figure 6 which corresponds to configuration S1,

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 271

Eq. 8. To determine, for instance, whether tQ > tT ime + 1, we compute the integer dif-
ference between tQ and tT ime from the δ-configuration. This turns out to be 1 and means
that we need to look at the decimal part of these timestamps to determine whether the
constraint is satisfied or not. Since the decimal part of tQ is greater then the decimal
part of tT ime, as can be observed in the unit circle, we can conclude that the constraint
is satisfied. Similarly, one can also conclude that the constraint tQ > tT ime + 2 is not
satisfied as int(tQ) = int(tT ime) + 1. The following definition formalizes this intuition.

Definition 2. Let 〈Δ,U〉 be a circle-configuration. We say that 〈Δ,U〉 satisfies the con-
straint involving the timestamps of two arbitrary facts P and Q in the circle-configura-
tion, where D is a natural number, as defined by cases:
– tP > tQ + D iff Δ(Q, P) > D or Δ(Q, P) = D andU(P) > U(Q);
– tP > tQ − D iff Δ(P,Q) < D or Δ(P,Q) = D andU(P) > U(Q);
– tP = tQ + D iff Δ(Q, P) = D andU(Q) = U(P);
– tP = tQ − D iff Δ(P,Q) = D andU(Q) = U(P);

Proposition 2. For a given upper bound Dmax, the configurationS satisfies a constraint
c of the form tP > tQ ± D or tP = tQ ± D, for any facts P,Q ∈ S and D ≤ Dmax iff its
circle-configuration also satisfies the same constraint c.

4.2 Rewrite Rules and Plans with Circle-Configurations

This section shows that given a reachability problem with a set of rules, A, involving
dense time, and an upper bound on the numbers appearing in the problem, Dmax, we can
compile a set of rewrite rules,C, over circle-configurations. Moreover, we show that any
plan generated using the rules from A can be soundly and faithfully represented by a
plan using the set of rules C. We first explain how we apply instantaneous rules to
circle-configurations and then we explain how to handle the time advancement rule.

Instantaneous Actions
Let Dmax be an upper bound on the numeric values in the given problem and let the

following rule be an instantaneous rule (see Section 3.1) in the set of actionsA:

Time@T,W1@T1, . . . ,Wk@Tk, F1@T ′1, . . . , Fn@T ′n | C −→
∃X.[Time@T,W1@T1, . . . ,Wk@Tk,Q1@(T + D1), . . . ,Qm@(T + Dm)]

The above rule is compiled into a sequence of operations that may rewrite a given
circle-configuration 〈Δ,U〉 into another circle-configuration 〈Δ1,U1〉 as follows:
1. Check whether there are occurrences of W1, . . . ,Wk and F1, . . . , Fn in 〈Δ,U〉 such

that the guard C is satisfied by 〈Δ,U〉. If it is the case, then continue to the next step;
otherwise the rule is not applicable;

2. We obtain the circle-configuration 〈Δ′,U′〉 by removing the occurrences F1, . . . , Fn

in 〈Δ,U〉 used in step 1, and recomputing the truncated time differences so that for
all the remaining facts P and R in Δ, we have Δ′(P,R) = Δ(P,R), i.e., the truncated
time difference between P and R is preserved;

3. Create fresh values, e, for the existentially quantified variables X;
4. We obtain the circle-configuration 〈Δ1,U1〉by adding the facts Q1[e/X], . . . ,Qm[e/X]

to Δ′ so that Δ1(Time,Qi) = Di for 1 ≤ i ≤ m and that Δ1(P,R) = Δ′(P,R) for all the
remaining facts P and R in Δ′. Moreover, we obtainU1 by adding Q1, . . . ,Qm to the
class of Time in the unit circleU′;

272 M. Kanovich et al.

• Time in the zero point and not in the last class in the unit circle, where n ≥ 0:
T ime, F1, . . . , Fn

ΔRule 0: Δ
G1, . . . , Gm

F1, . . . , Fn

G1, . . . , Gm

T ime

• Time alone and not in the zero point nor in the last class in the unit circle:

T ime

Δ

F1, . . . , Fn T ime, F1, . . . , Fn

Rule 1: Δ

• Time not alone and not in the zero point nor in the last class in the unit circle:

T ime,Q1, . . . , Qm

Δ

F1, . . . , Fn

Rule 2:
Q1, . . . , QmF1, . . . , Fn

T ime

Δ

Fig. 7. Rewrite Rules for Time Advancement using Circle-Configurations

5. Return the circle-configuration 〈Δ1,U1〉.
The sequence of operations described above has the effect one would expect: replace

the facts F1, . . . , Fn in the pre-condition of the action with facts Q1, . . . ,Qm appearing in
the post-condition of the action but taking care to update the truncated time differences
in the δ-configuration. Moreover, all steps can be computed in polynomial time.

For example, consider the configuration S1 given in Eq. 8 and the rule:
Time@T,R@T1, P@T2 → Time@T, P@T2,N@(T + 2)

If we apply this rule to S1, we obtain the configuration
S2 = {M@3.01, P@4.12, Time@11.12,Q@12.58,N@13.12, S @14}.

On the other hand, if we apply the above steps to the circle-configuration of S1, shown
S

M

P, T ime,N

Q

〈{M}, 1, {P},∞, {T ime}, 1, {Q}, 1, {N}, 1, {S}〉

in Figure 6, we obtain the circle-configuration
shown to the right. It is easy to check that this is
indeed the circle-configuration of S2. The trun-
cated time differences are updated and the fact N
is added to the class of Time in the unit circle.

Time Advancement Rule
Specifying the time advancement rule (Eq. 3 shown in Section 3.1) over circle-

configurations is more interesting. This action is translated into the rules depicted in
Figures 7 and 8. There are eight rules that rewrite a circle-configuration, 〈Δ,U〉, de-
pending on the position of the fact Time inU.

Rule 0 specifies the case when the fact Time appears in the zero point ofU. ThenU
is re-written so that a new class is created immediately after the zero point clockwise,
and Time is moved to that class. This denotes that the decimal part of Time is greater
than zero and less than the decimal part of the facts in the following class G1, . . . ,Gn.

Rule 1 specifies the case when Time appears alone in a class on the unit circle and
not in the last class. This means that there are some facts, F1, . . . , Fn, that appear in a
class immediately after Time, i.e.,U(Fi) > U(Time) and for any other fact G, such that
U(G) > U(Time),U(G) > U(Fi) holds. In this case, then time can advance so that it
ends up in the same class as Fi, i.e., time has advanced so much that its decimal part is
the same as the decimal part of the timestamps of F1, . . . , Fn. Therefore a constraint of

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 273

• Time not alone and in the last class in the unit circle which may be at the zero point:

T ime,Q1, . . . , Qm

ΔRule 3:
Q1, . . . , Qm

T ime

Δ

• Time alone and in the last class in cnit circle - Case 1: m > 0, k ≥ 0, n ≥ 0 and δ1 > 1:
T ime

Δ = 〈. . . ,P−1, δ−1, {T ime,Q1, . . . , Qm}, δ1,P1, . . . ,Pk〉

Rule 4:

F1, . . . , Fn T ime, F1, . . . , Fn

Δ′ = 〈. . . ,P−1, δ−1, {Q1, . . . , Qm}, 1, {T ime}, δ1 − 1,P1, . . . ,Pk〉

• Time alone and in the last class in unit circle - Case 2: m > 0, k ≥ 1 and n ≥ 0:
T ime

Δ = 〈. . . ,P−1, δ−1, {T ime,Q1, . . . , Qm}, 1,P1, . . . ,Pk〉

Rule 5:

F1, . . . , Fn T ime, F1, . . . , Fn

Δ
′
= 〈. . . ,P−1, δ−1, {Q1, . . . , Qm}, 1, {T ime} ∪ P1, . . . ,Pk〉

• Time alone and in the last class in unit circle - Case 3: k ≥ 0, δ1 > 1 and γ−1 is the
truncated time of δ−1 + 1:

T ime

Δ = 〈. . . ,P−1, δ−1, {T ime}, δ1,P1, . . . ,Pk〉

Rule 6:

F1, . . . , Fn T ime, F1, . . . , Fn

Δ
′
= 〈. . . ,P−1, γ−1, {T ime}, δ1 − 1,P1, . . . ,Pk〉

• Time alone and in the last class in unit circle - Case 4: k ≥ 1 and γ−1 is the truncated
time of δ−1 + 1:

T ime

Δ = 〈. . . ,P−1, δ−1, {T ime}, 1,P1, . . . ,Pk〉

Rule 7:

F1, . . . , Fn T ime, F1, . . . , Fn

Δ
′
= 〈. . . ,P−1, γ−1, {T ime} ∪ P1, . . . ,Pk〉

Fig. 8. (Cont.) Rewrite Rules for Time Advancement using Circle-Configurations

the form TFi > TTime + D that was satisfied by 〈Δ,U〉 might no longer be satisfied by
the resulting circle-configuration, depending on D and the δ-configuration Δ.

Rule 2 is similar, but is only applicable when Time is not alone in the unit circle
class, i.e., there is at least one fact Fi such thatU(Time) = U(Fi) and this class is not
the last one, as in Rule 1. Rule 2 advances time enough so that its decimal part is greater
than the decimal part of the timestamps of Fi, but not greater than the decimal part of
the timestamps of the facts in the class that immediately follows on the circle.

S

M

P

Q

〈{M,R}, 1, {P},∞, {T ime}, 1, {Q}, 2, {S}〉
R

Time

For example, Rule 2 could be applied to the
circle-configuration shown in Figure 6. We obtain
the following circle-configuration, where the δ-
configuration does not change, but the fact Time is
moved to a new class on the unit circle, obtaining
the circle-configuration CS2 shown to the right.

Rule 3 is similar to Rule 2, but it is applicable when Time is in the last equivalence
class, in which case a new class is created and placed clockwise immediately before the
zero point of the circle.

Notice that the δ-configuration is not changed by Rules 0-3. The only rules that
change the δ-configuration are the Rules 4, 5, 6 and 7, as in these cases Time advances
enough to complete the unit circle, i.e., reach the zero point. Rules 4 and 5 handle

274 M. Kanovich et al.

the case when Time initially has the same integer part as timestamps of other facts
Q1, . . . ,Qm, in which case it might create a new class in the δ-configuration (Rule 4) or
merge with the following class P1 (Rule 5). Rules 6 and 7 handle the case when Time
does not have the same integer part as the timestamp of any other fact, i.e., it appears
alone in Δ, in which case it might still remain alone in the same class (Rule 6) or merge
with the following class P1 (Rule 7). Notice that the time difference, δ−1, to the class,
P−1, immediately before the class of Time is incremented by one and truncated by the
value of Dmax if necessary.

M

P

Q

〈{M,R}, 1, {P},∞, {T ime,Q}, 2, {S}〉

R

Time, SFor example, it is easy to check that applying
Rule 1, followed by Rule 3 to circle-configuration
CS2 shown above, we obtain a circle-configuration
for which the Rule 7 is applicable. After applying
Rule 7 we obtain the configuration shown to the
right.

Given a reachability problem T and an upper bound Dmax on the numeric values
of T with the set of rules R containing an instantaneous rule r, we write [r] for the
corresponding rewrite rule of r over circle-configurations as described above. Moreover,
let Next be the set of 8 time advancing rules shown in Figures 7 and 8. Notice that for
a given circle-configuration only one of these rules is applicable. We use C −→rl C1 for
the one-step reachability relation using the rewrite rule rl, i.e., the circle-configuration
C may be rewritten to the circle-configuration C1 using the rewrite rule rl. Finally,
C −→∗ C1 (respectively, C −→∗R′ C1) denotes the reflexive transitive closure relation of
the one-step relation (respectively, using only rules in the set R′ ⊆ R).

Lemma 1. Let T be a reachability problem and Dmax be an upper bound on the nu-
meric values in T . Let S1 be a configuration, whose circle-configuration is C1, and r
be an instantaneous action in T . Then S1 −→r S2 if and only if C1 −→[r] C2 and C2

is the circle-configuration of S2. Moreover, S1 −→Tick S2 if and only if C1 −→∗Next C2

and C2 is the circle-configuration of S2.

Theorem 2. Let T be a reachability problem, Dmax be an upper bound on the numeric
values in T . Then SI −→∗ SG for some initial and goal configurations, SI and SG, in
T if and only if CI −→∗ CG where CI and CG are the circle-configurationss of SI and
SG, respectively.

This theorem establishes that the set of plans over circle-configurations is a sound
and complete representation of the set of plans with dense time. This means that we can
search for solutions of problems symbolically, that is, without writing down the explicit
values of the timestamps, i.e., the real numbers, in a plan.

5 Complexity Results

This section details some of the complexity results for the reachability problem.

Conditions for Decidability
From the Literature, we can infer some conditions for decidability of the reachability

problem in general:

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 275

1. Upper Bound on the Size of Facts: In general, if we do not assume an upper bound
on the size of facts appearing in a plan, where the size of facts is the total num-
ber of predicate, function, constant and variable symbols it contains (e.g. the size of
P(f (a), x, a) is 5), then it is easy to encode the Post-Correspondence problem which
is undecidable, see [6,11].4 Thus we will assume an upper bound on the size of facts,
denoted by the symbol k.

2. Balanced Actions: An action is balanced if its pre-condition has the same num-
ber of facts as its post-condition [20]. The reachability problem is undecidable for
(un-timed) systems with possibly unbalanced actions even if the size of facts is
bounded [6, 11]. In a balanced system, on the other hand, the number of facts in
any configuration in a plan is the same as the number of facts of the initial config-
uration, allowing one to recover decidability under some additional conditions. We
denote the number of facts in the configuration by the symbol m.
As all these undecidability results are time irrelevant, they carry over to systems with

dense time.

Corollary 1. The reachability problem for our model is undecidable in general.

PSPACE-Completeness We show that the reachability problem for our model with
dense time and balanced actions is PSPACE-complete. Interestingly, the same problem
is also PSPACE-complete when using models with discrete time [18].

Given the machinery in Section 4, we can re-use many results in the Literature to
show that the reachability problem is also PSPACE-complete for balanced systems with
dense time that can create fresh values, given in Section 3, assuming an upper bound on
the size of facts. For instance, we use the machinery detailed in [15] to handle the fact
that a plan may contain an unbounded number of fresh values.

The PSPACE lower bound can be inferred from [15]. The interesting bit is to show
PSPACE membership of the reachability problem. The following lemma establishes an
upper bound on the number of different circle-configurations:

Lemma 2. Given a reachability problem T under a finite alphabet Σ, an upper bound
on the size of facts, k, and an upper bound, Dmax, on the numeric values appearing in
T , then the number of different circle-configurations, denoted by LT (m, k,Dmax), with m
facts (counting repetitions) is LT (m, k,Dmax) ≤ Jm(D+2mk)mkmm(Dmax+2)(m−1), where
J and D are, respectively, the number of predicate and the number of constant/function
symbols in Σ.

Intuitively, our upper bound algorithm keeps track of the length of the plan it is con-
structing and if its length exceeds LT (m, k,Dmax), then it knows that it has reached the
same circle-configuration twice. This is possible in PSPACE since the above number,
when stored in binary, occupies only polynomial space with respect to its parameters.
The proof of the result below is similar to the one in given in [15].

4 We leave for Future Work the investigation of specific cases, e.g., protocol with tagging mech-
anisms, where this upper bound may be lifted [27].

276 M. Kanovich et al.

Theorem 3. Let T be a reachability problem with balanced actions. Then T is in
PSPACE with respect to m, k, and Dmax, where m is the number of facts in the ini-
tial configuration, k is an upper bound on the size of facts, and Dmax is an upper bound
on the numbers appearing in T .

6 Related and Future Work

The formalization of timed models and their use in the analysis of cyber-physical secu-
rity protocols has already been investigated. We review this literature.

Meadows et al. [24] and Pavlovic and Meadows in [26] propose and use a logic
called Protocol Derivation Logic (PDL) to formalize and prove the safety of a number
of cyber-physical protocols. In particular, they specify the assumptions and protocol ex-
ecutions in the form of axioms, specifying the allowed order of events that can happen,
and show that safety properties are implied by the axiomatization used. They do not
formalize an intruder model. Another difference from our work is that their PDL speci-
fication is not an executable specification, while we have implemented our specification
in Maude [7]. Finally, they do not investigate the complexity of protocol analysis nor
investigate the expressiveness of formalizations using discrete and continuous time.

Another approach similar to [24] in the sense that it uses a theorem proving ap-
proach is given by Schaller et al. [2]. They formalize an intruder model and some
cyber-physical security protocols in Isabelle. They then prove the correctness of these
protocols under some specific conditions and also identify attacks when some condi-
tions are not satisfied. Their work was a source of inspiration for our intruder model
specified in [17], which uses the model described in Section 3. Although their model
includes time, their model is not refined enough to capture the attack in-between-ticks
as they do not consider the discrete behaviour of the verifier.

Recently [3] proposed a discrete time model for formalizing distance bounding pro-
tocols and their security requirements. Thus they are more interested in the compu-
tational soundness of distance bounding protocols by considering an adversary model
based on probabilistic Turing machines. They claim that their SKI protocol is secure
against a number of attacks. However, their time model is discrete where all players are
running at the same clock rate. Therefore, their model is not able to capture attacks that
exploit the fact that players might run at different speeds.

The Timed Automata [1] (TA) literature contains models for cyber-physical protocol
analysis. Corin et al. [8] formalize protocols and the standard Dolev-Yao intruder as
timed automata and demonstrate that these can be used for the analysis. They are able
to formalize the generation of nonces by using timed automata, but they need to assume
that there is a bound on the number of nonces. This means that they assume a bound
on the total number of protocol sessions. Our model based on rewrite theory, on the
other hand, allows for an unbounded number of nonces, even in the case of balanced
theories [15]. Also they do not investigate the complexity of the analysis problems
nor the expressiveness difference between models with discrete and continuous time.
Lanotte et al. [21] specify cyber-physical protocols, but protocols where messages can
be re-transmitted or alternatively a protocol session can be terminated, i.e., timeouts, in
case a long time time elapses. They formalize the standard Dolev-Yao intruder. Finally,

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 277

they also obtain a decidability result for their formalism and an EXPSPACE-hard lower
bound for the reachability problem. It seems possible to specify features like timeouts
and message re-transmission, in our rewriting formalism.

We also point out some important differences between our PSPACE-completeness
proof and PSPACE-completeness proof for timed automata [1]. A more detailed account
can be found in the Related Work section of [19]. The first difference is that we do not
impose any bounds on the number of nonces created, while the TA proof normally
assumes a bound. The second difference is due to the first-order nature of rewrite rules.
The encoding of a first-order system in TA leads to an exponential blow-up on the
number of states of the automata as one needs take into account all instantiations of
rules. Finally, the main abstractions that we use, namely circle-configurations, are one-
dimensional, while regions used in the TA PSPACE proof are multidimensional.

Malladi et al. [23] formalize distance bounding protocols in strand spaces. They
then construct an automated tool for protocol analysis using a constraint solver. They
did not take into account the fact that the verifier is running a clock in their analysis and
therefore are not able to detect the attack in-betweeen-ticks.

Finally, [9] introduces a taxonomy of attacks on distance bounding protocols, which
include a new attack called Distance Hijacking Attack. This attack was caused by fail-
ures not in the time challenges phase of distance bounding protocols, but rather in the
autenthication phases. It would be interesting to understand how these attacks can be
combined with the attack in-between-ticks to build more powerful attacks. We are in-
vestigating completeness theorems for the analysis of protocols against types of attacks
in the taxonomy. For example, how many colluding intruders is enough.

Another well known formalism that involves time is Time Petri Nets and we plan to
investigate the relationship to our model in the future.

Acknowledgments. Nigam is supported by the Brazilian Research Agencies CNPq
and Capes. Talcott is partially supported by NSF grant CNS-1318848. Kanovich is
supported in part by EPSRC. Scedrov is supported in part by the AFOSR MURI Sci-
ence of Cyber Security: Modeling, Composition, and Measurement as AFOSR Grant
No. FA9550-11- 1-0137. Additional support for Scedrov from ONR. Part of the work
was done while Kanovich and Scedrov were visiting the National Research University
Higher School of Economics, Moscow. They would like to thank Sergei O. Kuznetsov
for providing a very pleasant environment for work.

References

1. Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg
(2004)

2. Basin, D.A., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physical proper-
ties of security protocols. ACM Trans. Inf. Syst. Secur. 14(2), 16 (2011)

3. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical & provably secure distance-bounding.
IACR Cryptology ePrint Archive, 2013:465 (2013)

4. Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

278 M. Kanovich et al.

5. Capkun, S., Hubaux, J.-P.: Secure positioning in wireless networks. IEEE Journal on Selected
Areas in Communications 24(2), 221–232 (2006)

6. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-notation for
protocol analysis. In: CSFW, pp. 55–69 (1999)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.:
All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer,
Heidelberg (2007)

8. Corin, R., Etalle, S., Hartel, P.H., Mader, A.: Timed analysis of security protocols. J. Comput.
Secur. 15(6), 619–645 (2007)

9. Cremers, C.J.F., Rasmussen, K.B., Schmidt, B., Capkun, S.: Distance hijacking attacks on
distance bounding protocols. In: SP (2012)

10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on Informa-
tion Theory 29(2), 198–208 (1983)

11. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the complexity
of bounded security protocols. Journal of Computer Security 12(2), 247–311 (2004)

12. Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)
13. Escobar, S., Meadows, C., Meseguer Maude-NPA, J.: Cryptographic Protocol Analysis Mod-

ulo Equational Properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007. LNCS,
vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

14. Ganeriwal, S., Pöpper, C., Capkun, S., Srivastava, M.B.: Secure time synchronization in sen-
sor networks. ACM Trans. Inf. Syst. Secur., 11(4) (2008)

15. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A.: Bounded memory Dolev-Yao adver-
saries in collaborative systems. Inf. Comput. (2014)

16. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A.: Bounded memory protocols and
progressing collaborative systems. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 309–326. Springer, Heidelberg (2013)

17. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L.: Towards timed models
for cyber-physical security protocols. Available on Nigam’s homepage (2014)

18. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L., Perovic, R.: A rewriting
framework for activities subject to regulations. In: RTA, pp. 305–322 (2012)

19. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L., Perovic, R.: A rewrit-
ing framework and logic for activities subject to regulations (2014), submitted, available on
Nigam’s homepage

20. Kanovich, M.I., Rowe, P., Scedrov, A.: Collaborative planning with confidentiality. J. Autom.
Reasoning 46(3-4), 389–421 (2011)

21. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Reachability results for timed automata with
unbounded data structures. Acta Inf. 47(5-6), 279–311 (2010)

22. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer,
Heidelberg (1996)

23. Malladi, S., Bruhadeshwar, B., Kothapalli, K.: Automatic analysis of distance bounding pro-
tocols, CoRR, abs/1003.5383 (2010)

24. Meadows, C., Poovendran, R., Pavlovic, D., Chang, L., Syverson, P.F.: Distance bounding
protocols: Authentication logic analysis and collusion attacks. In: Secure Localization and
Time Synchronization for Wireless Sensor and Ad Hoc Networks, pp. 279–298 (2007)

25. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of
computers. Commun. ACM 21(12), 993–999 (1978)

26. Pavlovic, D., Meadows, C.: Deriving ephemeral authentication using channel axioms. In:
Christianson, B., Malcolm, J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS,
vol. 7028, pp. 240–261. Springer, Heidelberg (2013)

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols 279

27. Sarukkai, S., Suresh, S.P.: Tagging makes secrecy decidable with unbounded nonces as well.
In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 363–374.
Springer, Heidelberg (2003)

28. Ravi, K., Varun, G.H., Vamsi, P.T.: Rfid based security system. International Journal of In-
novative Technology and Exploring Engineering 2 (2013)

29. Wang, M.-H.: Secure verification of location claims with simultaneous distance modification.
In: Cervesato, I. (ed.) ASIAN 2007. LNCS, vol. 4846, pp. 181–195. Springer, Heidelberg
(2007)

30. Sun, K., Ning, P., Wang, C.: Tinysersync: secure and resilient time synchronization in wire-
less sensor networks. In: CCS, pp. 264–277 (2006)

31. Tippenhauer, N.O., Čapkun, S.: ID-based secure distance bounding and localization. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 621–636. Springer,
Heidelberg (2009)

Timing Attacks in Security Protocols:
Symbolic Framework and Proof Techniques�

Vincent Cheval1,2 and Véronique Cortier1

1 LORIA, CNRS, France
2 School of Computing, University of Kent, UK

Abstract. We propose a framework for timing attacks, based on (a variant of)
the applied-pi calculus. Since many privacy properties, as well as strong secrecy
and game-based security properties, are stated as process equivalences, we focus
on (time) trace equivalence. We show that actually, considering timing attacks
does not add any complexity: time trace equivalence can be reduced to length
trace equivalence, where the attacker no longer has access to execution times but
can still compare the length of messages. We therefore deduce from a previous
decidability result for length equivalence that time trace equivalence is decidable
for bounded processes and the standard cryptographic primitives.

As an application, we study several protocols that aim for privacy. In partic-
ular, we (automatically) detect an existing timing attack against the biometric
passport and new timing attacks against the Private Authentication protocol.

1 Introduction

Symbolic models as well as cryptographic models aim at providing high and strong
guarantees when designing security protocols. However, it is well known that these
models do not capture all types of attacks. In particular, most of them do not detect
side-channel attacks, which are attacks based on a fine analysis of e.g., time latencies,
power consumption, or even acoustic emanations [34,12]. The issue of side-channel at-
tacks is well-known in cryptography. Efficient implementations of secure cryptographic
schemes may be broken by a fine observation of the computation time or the power
consumption. Of course, counter-measures have been proposed but many variations of
side-channel attacks are still regularly discovered against existing implementations.

The same kind of issues occur at the protocol level as well. For example, the biomet-
ric passport contains an RFID chip that stores sensitive information such as the name,
nationality, date of birth, etc. To protect users’ privacy, data are never sent in the clear.
Instead, dedicated protocols ensure that confidential data are sent encrypted between
the passport and the reader. However, a minor variation in the implementation of the
protocol in the French passport has led to a privacy flaw [9]. Indeed, by observing the
error message when replaying some old message, an attacker could learn whether a
given passport belongs to Alice or not. The attack has been fixed by unifying the er-
ror messages produced by the passports. However, it has been discovered [25] that all

� The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n◦ 258865, project ProSecure.

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 280–299, 2015.
DOI: 10.1007/978-3-662-46666-7_15

Timing Attacks in Security Protocols 281

biometric passports (from all countries) actually suffer from exactly the same attack as
soon as the attacker measures the computation time of the passport instead of simply
looking at the error messages.

The goal of the paper is to provide a symbolic framework and proof techniques
for the detection of timing attacks on security protocols. Symbolic models for secu-
rity protocols typically assume “the perfect encryption hypothesis”, abstracting away
the implementation of the primitives. We proceed similarly in our approach, assuming
a perfect implementation of the primitives w.r.t. timing. It is well known that imple-
mentation robust against side-channel attacks should, at the very least, be “in constant
time”, that is, the execution time should only depend on the number of blocks that need
to be processed. “Constant time” is not sufficient to guarantee against timing attacks
but is considered to be a minimal requirement and there is an abundant literature on
how to design such implementations (see for example the NaCl library [1] and some
related publications [33,16]). One could think that side-channel attacks are only due to
a non robust implementation of the primitives and that it is therefore enough to analyze
in isolation each of the cryptographic operations. However, in the same way that it is
well known that the perfect encryption assumption does not prevent flaws in protocols,
a perfect implementation of the primitives does not prevent side-channel attacks. This is
exemplified by the timing attack found against the biometric passport [25] and the tim-
ing attacks we discovered against the Private Authentication protocol [7] and several of
its variants. These attacks require both an interaction with the protocol and a dedicated
time analysis. Robust primitives would not prevent these attacks.

Our first contribution is to propose a symbolic framework that models timing attacks
at the protocol level. More precisely, our model is based on the applied-pi calculus [4].
We equip each function symbol with an associated time function as well as a length
function. Indeed, assuming a perfect implementation of the primitives, the computation
time of a function typically only depends on the size of its arguments. Each time a pro-
cess (typically a machine) performs an observable action (e.g., it sends out a message),
the attacker may observe the elapsed time. Our model is rather general since it inher-
its the generality of the applied-pi calculus with e.g., arbitrary cryptographic primitives
(that can be modeled through rewrite systems), possibly arbitrarily replicated processes,
etc. Our time and length functions are also arbitrary functions that may depend on the
machine on which they are run. Indeed, a biometric passport is typically much slower
than a server. Moreover, a server usually handles thousands of requests at the same time,
which prevents from a fine observation of its computation time. Our model is flexible
enough to cover all these scenarios. Finally, our model covers more than just timing
attacks. Indeed, our time functions not only model execution times but also any kind of
information that can be leaked by the execution, such as power consumption or other
“side-channel” measurements.

Our second main contribution is to provide techniques to decide (time) process
equivalence in our framework. Equivalence-based properties are at the heart of many
security properties such as privacy properties [29,9] (e.g., anonymity, unlinkability, or
ballot privacy), strong secrecy [19] (i.e. indistinguishability from random), or game-
based security definitions [5,27] (e.g., indistinguishability from an ideal protocol). Side
channel attacks are particularly relevant in this context where the attacker typically tries

282 V. Cheval and V. Cortier

to distinguish between two scenarios since any kind of information could help to make a
distinction. Several definitions of equivalence have been proposed such as trace equiva-
lence [4], observational equivalence [4], or diff-equivalence [18]. In this paper, we focus
on trace equivalence. In an earlier work [24], we introduced length (trace) equivalence.
It reflects the ability for an attacker to measure the length of a message but it does not
let him access to any information on the internal computations of the processes.

Our key result is a generic and simple simplification result: time equivalence can
be reduced to length equivalence. More precisely, we provide a general transformation
such that two processes P and Q are in time equivalence if and only if their transfor-
mation P̃ and Q̃ are in length equivalence, that is P ≈ti Q ⇔ P̃ ≈� Q̃. This result
holds for an arbitrary signature and rewriting system, for arbitrary processes - includ-
ing replicated processes, and for arbitrary length and time functions. The first intuitive
idea of the reduction is simple: we add to each output a term whose length encodes the
time needed for the intermediate computations. The time elapsed between two outputs
of the same process however does not only depend on the time needed to compute the
sent term and the corresponding intermediate checks. Indeed, other processes may run
in parallel on the same machine (in particular other ongoing sessions). Moreover, the
evaluation of a term may fail (for example if a decryption is attempted with a wrong
key). Since we consider else branches, this means that an else branch may be chosen
after a failed evaluation of a term, which execution time has to be measured precisely.
The proof of our result therefore involves a precise encoding of these behaviors.

A direct consequence of our result is that we can inherit existing decidability re-
sults for length equivalence. In particular, we deduce from [24] that time equivalence is
decidable for bounded processes and a fixed signature that captures all standard cryp-
tographic primitives. We also slightly extend the result of [24] to cope with polynomial
length functions instead of linear functions.

As an application, we study three protocols that aim for privacy in different application
contexts: the private authentication protocol (PA) [7], the Basic Authentication Protocol
(BAC) of the biometric passport [2], and the 3G AKA mobile telephony protocol [10].
Using the APTE tool [22] dedicated to (length) trace equivalence, we retrieve the flaw of
the biometric passport mentioned earlier. We demonstrate that the PA protocol is actually
not private if the attacker can measure execution times. Interestingly, several natural fixes
still do not ensure privacy. Finally, we provide a fix for this protocol and (automatically)
prove privacy. Similarly, we retrieve the existing flaw on the 3G AKA protocol.

Related work. Several symbolic frameworks already include a notion of
time [15,30,26,31,32]. The goal of these frameworks is to model timestamps. The sys-
tem is given a global clock, actions take some number of “ticks”, and participants may
compare time values. Depending on the approach, some frameworks (e.g. [15,30]) are
analysed using interactive theorem provers, while some others (e.g. [26,32]) can be
analysed automatically using for example time automata techniques [32]. Compared to
our approach, the representation of time is coarser: each action takes a fixed time which
does not depend on the received data while the attack on e.g. the biometric passport
precisely requires to measure (and compare) the time of a given action. Moreover, these
frameworks consider trace properties only and do not apply to equivalence properties.
They can therefore not be applied to side-channel analysis.

Timing Attacks in Security Protocols 283

On the other hand, the detection or even the quantification of information possibly
leaked by side-channels is a subject thoroughly studied in the last years (see
e.g. [35,13,37,17,11]). The models for quantifying information leakage are typically
closer to the implementation level, with a precise description of the control flow of
the program. They often provide techniques to measure the amount of information
that is leaked. However, most of these frameworks typically do not model the crypto-
graphic primitives that security protocols may employ. Messages are instead abstracted
by atomic data. [35] does consider primitives abstracted by functions but the framework
is dedicated to measure the information leakage of some functions and does not apply
to the protocol level. This kind of approaches can therefore not be applied to protocols
such as BAC or PA (or when they may apply, they would declare the flawed and fixed
variants equally insecure).

Fewer papers do consider the detection of side-channel attacks for programs that
include cryptography [36,8]. Compared to our approach, their model is closer to the
implementation since it details the implementation of the cryptographic primitives. To
do so, they over-approximate the ability of an attacker by letting him observe the control
flow of the program, e.g. letting him observe whether a process is entering a then or
an else branch. However privacy in many protocols (in particular for the BAC and PA)
precisely relies on the inability for an attacker to detect whether a process is entering a
then (meaning e.g. that the identity is valid) or an else branch (meaning e.g. that the
identity is invalid). So the approach developed in [36,8] could not prove secure the fixed
variants of BAC and PA. Their side-channel analysis is also not automated, due to the
expressivity of their framework.

2 Messages and Computation Time

2.1 Terms

As usual, messages are modeled by terms. Given a signature F (i.e. a finite set of
function symbols, with a given arity), an infinite set of names N , and an infinite set of
variables X , the set of terms T (F ,N ,X) is defined as the union of names N , variables
X , and function symbols of F applied to other terms. In the spirit of [6], we split F
into two distinct subsets Fd and Fc. Fd represents the set of destructors whereas Fc

represents the set of constructors. We say that a term t is a constructor term if t does
not contain destructor function symbol, i.e. t ∈ T (Fc,N ,X). Intuitively, constructors
stand for cryptographic primitives such as encryption or signatures, while destructors
are operations performed on primitives like decryption or validity checks.

A term is said to be ground if it contains no variable. The set of ground terms may be
denoted by T (F ,N) instead of T (F ,N , ∅). The set of names of a term M is denoted
by names(M). ñ denotes a set of names. Substitutions are replacement of variables by
terms and are denoted by θ = {M1/x1 , . . . ,

Mk /xk
}. The application of a substitution θ

to a term M is defined as usual and is denoted Mθ. The set of subterms of a term t is
denoted st(t). Given a term t and a position p, the subterm of t at position p is denoted
t|p. Moreover, given a term r, we denote by t[r]p the term t where its original subterm
at position p is replaced by r.

284 V. Cheval and V. Cortier

Example 1. A signature for modelling the standard cryptographic primitives (symmet-
ric and asymmetric encryption, concatenation, signatures, and hash) is Fstand = Fc∪Fd

where Fc and Fd are defined as follows (the second argument being the arity):

Fc = {senc/2, aenc/2, pk/1, sign/2, vk/1, 〈 〉/2, h/1}
Fd = {sdec/2, adec/2, check/2, proj1/1, proj2/1, equals/2}

The function aenc (resp. senc) represents asymmetric (resp. symmetric) encryption with
corresponding decryption function adec (resp. sdec) and public key pk. Concatenation
is represented by 〈 〉 with associated projectors proj1 and proj2. Signature is modeled
by the function sign with corresponding validity check check and verification key vk. h
represents the hash function. The operator equals models equality tests. These tests are
typically hard-coded in main frameworks but we need here to model precisely the time
needed to perform an equality test.

2.2 Rewriting Systems

The properties of the cryptographic primitives (e.g. decrypting an encrypted message
yields the message in clear) are expressed through rewriting rules. Formally, we equip
the term algebra with a rewriting system, that is a set R of rewrite rules � → r such that
� ∈ T (F ,X) � X and r ∈ T (F , vars(�)). A term s is rewritten into t by a rewriting
system R, denoted s →R t if there exists a rewrite rule � → r ∈ R, a position p of s
and a substitution σ such that s|p = �σ and t = s[rσ]p. The reflexive transitive closure
of →R is denoted by →∗

R.
A rewriting system R is confluent if for all terms s, u, v such that s →∗

R u and
s →∗

R v, there exists a term t such that u →∗
R t and v →∗

R t. Moreover, we say that R
is convergent if R is confluent and terminates.

A term t is in normal form (w.r.t. a rewrite system R) if there is no term s such that
t →R s. Moreover, if t →∗

R s and s is in normal form then we say that s is a normal
form of t. In what follows, we consider only convergent rewriting system R. Thus the
normal form of a term t is unique and is denoted t↓.

Example 2. We associate to the signature Fstand of Example 1 the following rewriting
system:

sdec(senc(x, y), y) → x
adec(aenc(x, pk(y)), y) → x

check(sign(x, y), vk(y)) → x
equals(x, x) → x

proj1(〈x, y〉) → x
proj2(〈x, y〉) → y

The two first rewriting rules on the left represent respectively symmetric and asymmet-
ric encryption. The first two rules on the right represent the left and right projections.
The rewriting rule check(sign(x, y), vk(y)) → x models the verification of signature:
if the verification succeeds, it returns the message that has been signed. Finally, the
equality test succeeds only if both messages are identical and returns one of the two
messages.

A ground term u is called a message, denoted Message(u), if v↓ is a constructor term
for all v ∈ st(u). For instance, the terms sdec(a, b), proj1(〈a, sdec(a, b)〉), and proj1(a)
are not messages. Intuitively, we view terms as modus operandi to compute bitstrings
where we use the call-by-value evaluation strategy.

Timing Attacks in Security Protocols 285

2.3 Length and Time Functions

We assume a perfect implementation of primitives and we aim at detecting side-channel
attacks at the protocol level. In standard robust implementations of encryption, the time
for encrypting is constant, that is, it does not depend on the value of the key nor the
value of the message but only on the number of blocks that need to be processed. So
the computation time of a function depends solely on the length of its arguments. For
example, assuming the size of m and k to be a multiple of the size of one block, the
time needed to compute senc(m, k), the encryption of the message m over the key k,
depends on the lengths of m and k. We thus introduce time functions as well as length
functions.

Length Function. For any primitive f ∈ F of arity n, we associate a length function
from N

n to N. Typically, the length function of f indicates the length of the message
obtained after application of f, based on the length of its arguments. Given a signature F
and a set of length functionsL associated to F , we denote by lenfL the length function in
L associated to f. Moreover we consider that names can have different sizes. Indeed, an
attacker can always create a bitstring of any size. Hence we consider an infinite partition
of N such that N = ∪i∈NNi and each Ni is an infinite set of names of size i. To ease
the reading, we may denote by ni a name of Ni.

The length of a closed message t, denoted lenL(t), is defined as follows:

lenL(n
i) = i when ni ∈ Ni

lenL(f(t1, . . . , tk)) = lenfL(lenL(t1), . . . , lenL(tk))

We say that a set of length functions L is polynomial if for all f ∈ F , there exists a
polynomial P ∈ N[X1, . . . , Xn] (i.e. a polynomial of n variables, with coefficients in
N) such that for all x1, . . . , xn ∈ N, lenfL(x1, . . . , xn) = P (x1, . . . , xn). The class of
polynomial time functions is useful to obtain decidability of (timed) trace equivalence.
A particular case of polynomial length functions are linear length functions, for which
the associated polynomial is linear. Note that the linear length functions are so far the
only functions that have been proved sound w.r.t. symbolic models [27].

Example 3. An example of set of length functions L associated to the signature Fc of
Example 1 is defined as follows.

lensencL (x, y) = x lenaencL (x, y) = x+ y lenpkL (x) = x

len
〈 〉
L (x, y) = 1 + x+ y lensignL (x, y) = x+ y lenvkL (x) = x

In this example, the length of a encrypted message is linear in the size of the original
message and the length of the key. The concatenation of two messages is of length the
sum of the lengths of its arguments, plus some constant size used to code the frontier
between the two messages. Note that these length functions are polynomial and even
linear. These length functions are rather simple and abstract away some implementation
details such as padding but more complex functions may be considered if desired.

286 V. Cheval and V. Cortier

Time Function. For each primitive f ∈ F of arity n, we associate a time function
from N

n to N. Given a set of time functions T , we denote timefT the time function
associated to f in T . Intuitively, timefT (x1, . . . , xn) determines the computation time of
the application of f on some terms u1, . . . , un assuming that the terms ui are already
computed and the length of ui is xi. Finally, we define a constant function modelling
the computation time to access data such as the content of a variable in the memory,
usually denoted timeXT .

Example 4. Coming back to the signature Fstand of Example 1, we can define the set T
of time functions as follows:

timeXT = 1 time
proj2
T (x) = 1 time

proj1
T (x) = 1 time

〈 〉
T (x, y) = 1

timeadecT (x, y) = x timeaencT (x, y) = x timeequalsT (x, y) = x+ y

In this example, concatenation and projections have constant computation time (e.g.,
concatenation and projections are done by adding or removing a symbolic link). The
asymetric encryption of m by k linearly depends on the size of m. We ignore here the
complexity due to the size of the key since key size is usually fixed in protocols. Note
it would be easy to add a dependency. Finally the time for an equality test is the sum
of the length of its arguments. This corresponds to a naive implementation. We could
also choose timeequalsT (x, y) = max(x, y). Our framework does not allow to model
efficient implementations where the program stops as soon as one bit differs. However,
such efficient implementations leak information about the data tested for equality and
are therefore not good candidates for an implementation robust against side-channel
attacks. Again, other time functions may of course be considered.

The computation time of a term is defined by applying recursively each correspond-
ing time function. More generally, we define the computation time of a term tσ assum-
ing that the terms in σ are already computed.

Definition 1. Let F be a signature, let L be a set of length functions for F and let T
be a set of time functions for F . Consider a substitution σ from variables to ground
constructor terms. For all terms t ∈ T (F ,N ,X) such that vars(t) ⊆ dom(σ), we
define the computation time of t under the substitution σ and under the sets L and T ,
denoted ctimeL,T (t, σ), as follows:

ctimeL,T (t, σ) = timeXT if t ∈ X ∪ N
ctimeL,T (f(u1, . . . , un), σ) = timefT (�1, . . . , �n) +

∑n
i=1 ctimeL,T (ui, σ)

if �i = lenL((uiσ)↓) and Message(uiσ) is true ∀i ∈ {1, . . . , n}
ctimeL,T (f(u1, . . . , un), σ) =

∑k
i=1 ctimeL,T (ui, σ)

if Message(uiσ) is true ∀i ∈ {1, . . . , k − 1} and Message(ukσ) is false

Intuitively, ctimeL,T (t, σ) represents the time needed to compute tσ↓ when the terms
of σ are already computed and stored in some memory. Therefore the computation time
of a variable represents in fact the access time to the memory. We assume in this pa-
per that all primitives are computed using the call-by-value evaluation strategy with
a lazy evaluation when failure arises. Hence, when computing f(u1, . . . , un) with the

Timing Attacks in Security Protocols 287

memory σ, the terms ui are computed first from left to right. If all computations suc-
ceed then the primitive f is applied. In such a case, we obtain the computation time
timefT (lenL(u1σ↓), . . . , lenL(unσ↓)) +

∑n
i=1 ctimeL,T (ui, σ). Otherwise, the compu-

tation of f(u1, . . . , un) stops at the first uk that does not produce a message. This yields
the computation time

∑k
i=1 ctimeL,T (ui, σ). We assume here that names are already

generated to avoid counting their generation twice. Hence the associated computation
time is also timeXT the access time to the memory. We will see later in this section
how the computation time for the generation of names is counted, when defining the
semantics of processes.

3 Processes

Protocols are modeled through processes, an abstract small programming language. Our
calculus is inspired from the applied-pi calculus [4].

3.1 Syntax

The grammar of plain processes is defined as follows:

P,Q,R := 0 | P +Q | P | Q | νk.P | !P |
let x = u in P else Q | in(u, x).P | out(u, v).P

where u, v are terms, and x is a variable of X . Our calculus contains the nil process 0,
parallel composition P | Q, choice P +Q, input in(u, x).P , output out(u, v), replica-
tion νk.P that typically models nonce or key generation, and unbounded replication !P .
Note that our calculus also contains the assignment of variables let x = u in P else Q.
In many calculus, let x = u in P is considered as syntactic sugar for P{u/x}. However,
since we consider the computation time of messages during the execution of a process,
the operation let x = u in P is not syntactic sugar anymore. For example, the three
following processes do not yield the same computation time even though they send out
the same messages.

– P1 = let x = senc(a, k). in out(c, h(n)).out(c, 〈x, x〉)
– P2 = out(c, h(n)).let x = senc(a, k) in out(c, 〈x, x〉)
– P3 = out(c, h(n)).out(c, 〈senc(a, k), senc(a, k)〉)

P1 first computes senc(a, k), and then outputs h(n) and 〈senc(a, k), senc(a, k)〉. P2 is
very similar but outputs h(n) before computing senc(a, k) meaning that the output of
h(n) will occur faster in P2 than in P1, thus an attacker may observe the difference.
Finally, P3 computes senc(a, k) twice and therefore takes twice more time.

The operation let x = u in P can also be used to change the default evaluation
strategy of terms. As mentioned in the previous section, we assume that all primitives
are computed using the call-by-value evaluation strategy with a lazy evaluation when
a failure arises. For example, the eager evaluation of a message senc(sdec(y, k), u) in
the process let x = senc(sdec(y, k), u) in P elseQ can be modelled with the following
process:

let x1 = sdec(y, k) in let x = senc(x1, u) in P else Q else let x2 = u in Q else Q

288 V. Cheval and V. Cortier

In this process, even if the computation of sdec(y, k) fails (else branch), then u is still
computed.

Note that the else branch in let x = u in P else Q is used in case u cannot be com-
puted. For example, let x = sdec(a, a) in 0 else out(c, ok) would output ok. At last, note
that the traditional conditional branching (If-then-else) is not part of our calculus. We
use instead the assignment of variables and the destructor symbol equals. The traditional
process if u = v then P else Q is thus replaced by let x = equals(u, v) in P else Q
where x does not appear in P nor Q.

The computation time of some operation obviously depends on the machine on
which the computation is performed. For example, a server is much faster than a bio-
metric passport. We defined extended processes to represent different physical machines
that can be running during the execution of a protocol. For example, biometric passports
are distinct physical machines that can be observed independently. In contrast, a server
runs several threads which cannot be distinguished from an external observer.

The grammar for our extended processes is defined as follows:

A,B := [P, i, T] | !A | A ||B
where P is a plain process, i is an integer, and T is a set of time functions. [P, i, T]
represents a machine with programP and computation time induced by T . The integer i
represents the computation time used so far on that machine. Note that inside a machine
[P, i, T], there can be several processes running in parallel, e.g. P1 | . . . | Pn. We
consider that their executions rely on a scheduling on a single computation machine
and so the computation time might differ depending on the scheduling. The situation is
different in the case of a real parallel execution of two machines, e.g. A ||B where the
attacker can observe the execution of A and B independently.

Messages are made available to the attacker through frames. Formally, we assume a set
of variables AX , disjoint from X . Variables of AX are typically denoted ax 1, . . . , axn.
A frame is an expression of the formΦ = {ax 1 � u1; . . . ; axn � un}where ax i ∈ AX
and ui are terms. The application of a frame Φ to a term M , denoted MΦ, is defined as
for the application of substitutions.

Definition 2 (time process). A time process is a tuple (E , A, Φ, σ) where:

– E is a set of names that represents the private names of A;
– Φ is a ground frame with domain included in AX . It represents the messages avail-

able to the attacker;
– A is an extended process;
– σ is a substitution of variables to ground terms. It represents the current memory

of the machines in A.

3.2 Semantics

The semantics for time processes explicits the computation time of each operation.
In particular, for each operation, we define a specific time function representing its
computation time standalone, i.e. without considering the computation time required to
generate the messages themselves. Hence, given a set T of time functions associated a

Timing Attacks in Security Protocols 289

physical machine, t_letinT (n) represents the computation time of the assignation of a
message of length n to a variable, whereas t_letelseT represents the computation time
in the case the computation of the message fails; t_inT (n) (resp. t_outT (n)) corre-
sponds to the computation time of the input (resp. output) of a message of length n; and
t_commT (n) corresponds to the computation time of the transmission of the message
of length n through internal communication. At last, t_restrT (n) represents the time
needed to generate a fresh nonce of length n.

The semantics for time processes is similar to the semantics of the applied-pi cal-
culus [4] and is given in Figure 1. For example, the label out(M, axn, j) means that
some message has been sent on a channel corresponding to M after some time j (j
is actually the total computation time until this send action). This message is stored
in variable axn by the attacker. Internal communications within the same machine (or
group of machines connected through a local network) cannot be observed by an at-
tacker, therefore the computation time of the corresponding machine increases but the
transition is silent (τ action). No external machines can communicate secretly since we
assume the attacker can control and monitor all communications (he can at least observe
the encrypted traffic). Lastly, note that the choice, replication and parallel composition
operators do not have associated time functions.

The
w−→ relation is the reflexive and transitive closure of

�−→, where w is the concate-
nation of all actions. Moreover,

tr⇒ is the relation
w−→ where tr are the words w without

the non visible actions (τ). The set of traces of a time process P is the set of the possible
sequences of actions together with the resulting frame.

trace(P) =
{
(tr, νE ′.Φ′)

∣∣∣P tr⇒ (E ′, A′, Φ′, σ′) for some E ′, A′, Φ′, σ′
}

Example 5. Consider the signature F , the set L of length functions of Example 3
and the set T of time functions of Example 4 and assume that for all n ∈ N,
t_outT (n) = n. Let a, b ∈ N� and k ∈ N�pk with �, �pk ∈ N. Consider the time
process P = (∅, [out(c, 〈a, b〉), 0, T] ||[out(c, aenc(a, k)), 0, T], ∅, ∅). Since we have
lenL(aenc(a, k)) = �+�pk, lenL(〈a, b〉) = 2�+1, ctimeL,T (aenc(a, b), ∅) = � ·�3pk+2
and ctimeL,T (〈a, b〉, ∅) = 3, the set trace(A) is composed of four traces (s, Φ):

1. s = out(c, ax 1, � · �3pk + �+ �pk + 3) and Φ = {ax 1 � aenc(a, k)}
2. s = out(c, ax 1, 2�+ 5) and Φ = {ax1 � 〈a, b〉}
3. s = out(c, ax 1, � · �3pk + � + �pk + 3).out(c, ax 2, 2� + 5) and Φ = {ax1 �

aenc(a, k); ax 2 � 〈a, b〉}
4. s = out(c, ax 1, 2� + 5).out(c, ax 2, � · �3pk + � + �pk + 3) and Φ = {ax1 �

〈a, b〉; ax 2 � aenc(a, k)}

Note that since each computation time is local to each machine, the last argument of
the out action is not necessarily increasing globally on the trace, as exemplified by the
third trace.

3.3 Example: The PA Protocol

We consider (a simplified version of) the Passive Authentication protocol (PA), pre-
sented in [7]. It is designed for transmitting a secret without revealing the identity of

290 V. Cheval and V. Cortier

(E , [let x = u in P else Q | R, i, T] ||A,Φ, σ)
τ−→ (LET)

(E , [P | R, j, T] ||A,Φ, σ ∪ {uσ↓/x})
if Message(uσ) with j = i+ ctimeL,T (u, σ) + t_letinT (lenL(uσ↓))

(E , [let x = u in P else Q | R, i, T] ||A,Φ, σ)
τ−→ (E , [Q | R, j, T] ||A,Φ, σ) (ELSE)

if ¬Message(uσ) with j = i+ ctimeL,T (u, σ) + t_letelseT

(E , [out(u, t).Q1 | in(v, x).Q2 | R, i, T] ||A,Φ, σ)
τ−→ (COMM)

(E , [Q1 | Q2 | R, j, T] ||A,Φ, σ ∪ {tσ↓/x})
if Message(uσ),Message(vσ),Message(tσ) and uσ↓ = vσ↓ with j = i+

ctimeL,T (u, σ) + ctimeL,T (v, σ) + ctimeL,T (t, σ) + t_commT (lenL(tσ↓))

(E , [in(u, x).Q | P, i, T] ||A,Φ, σ)
in(N,M)−−−−−−→ (E , [Q | P, j, T] ||A,Φ, σ ∪ {t/x}) (IN)

if MΦ↓ = t, fvars(M,N) ⊆ dom(Φ), fnames(M,N) ∩ E = ∅,
NΦ↓ = uσ↓, Message(MΦ), Message(NΦ), and Message(uσ)

with j = i+ ctimeL,T (u, σ) + t_inT (lenL(t))

(E , [out(u, t).Q | P, i, T] ||A,Φ, σ)
out(M,axn,j)−−−−−−−−−→ (OUT)
(E , [Q | P, j, T] ||A,Φ ∪ {axn � tσ↓}, σ)

if MΦ↓ = uσ↓, Message(uσ), fvars(M) ⊆ dom(Φ), fnames(M) ∩ E = ∅,
Message(MΦ), Message(tσ) and axn ∈ AX , n = |Φ|+ 1

with j = i+ ctimeL,T (t, σ) + ctimeL,T (u, σ) + t_outT (lenL(tσ↓))
(E , [P1 + P2 | R, i, T] ||A,Φ, σ)

τ−→ (E , [P1 | R, i, T] ||A,Φ, σ) (CHOICE-1)

(E , [P1 + P2 | R, i, T] ||A,Φ, σ)
τ−→ (E , [P2 | R, i, T] ||A,Φ, σ) (CHOICE-2)

(E , [νk.P | R, i, T] ||A,Φ, σ)
τ−→ (E ∪ {k}, [P | R, j, T] ||A,Φ, σ) (RESTR)

with j = i+ t_restrT (�) and k ∈ N�

(E , [!P | R, i, T] ||A,Φ, σ)
τ−→ (E , [!P | Pρ | R, i, T] ||A,Φ, σ) (REPL)

(E , !A ||B,Φ, σ)
τ−→ (E , !A ||Aρ ||B,Φ, σ) (M-REPL)

where u, v, t are ground terms, x is a variable and ρ is used to rename variables in bvars(P) and
bvars(A) (resp. names in bnames(P) and bnames(A)) with fresh variables (resp. names).

Fig. 1. Semantics

the participants. In this protocol, an agent A wishes to engage in communication with
an agent B that is willing to talk to A. However, A does not want to compromise her
privacy by revealing her identity or the identity of B more broadly. The participants A
and B proceed as follows:

A → B : aenc(〈Na, pk(skA)〉, pk(skB))
B → A : aenc(〈Na, 〈Nb, pk(skB)〉〉, pk(skA))

else aenc(Nb, pk(skB))

A first sends to B a nonce Na and her public key encrypted with the public key
of B. If the message is of the expected form then B sends to A the nonce Na, a freshly

Timing Attacks in Security Protocols 291

generated nonce Nb and his public key, all of this being encrypted with the public key
of A. If the message is not of the right form or if B is not willing to talk with A, then B
sends out a “decoy” message aenc(Nb, pk(skB)). Intuitively, this message should look
like B’s other message from the point of view of an outsider. This is important since
the protocol is supposed to protect the identity of the participants.

This protocol can be modeled in our process algebra as follows:

B(b, a)
def
= in(c, x).let y = adec(x, skb) in

let z = equals(proj2(y), pk(ska)) in νnb.out(c, aenc(M, pk(ska))).0
else νnerror.out(c, aenc(nerror, pk(ska))).0

else 0.

A(a, b)
def
= νna.out(c, aenc(〈na, pk(ska)〉, pk(skb))).in(c, z).0

where M = 〈proj1(y), 〈nb, pk(skb)〉〉. The process A(a, b) represents the role A played
by agent a with b while the process B(b, a) represents the role B played by agent b
with a.

4 Time Equivalence

Privacy properties such as anonymity, unlinkability, or ballot privacy are often stated
as equivalence properties [29,9]. Intuitively, Alice’s identity remains private if an at-
tacker cannot distinguish executions from Alice from executions from Bob. Equiva-
lence properties are also useful to express strong secrecy [19], indistiguishability from
an ideal system [5], or game-based properties [27]. Several definitions of equivalence
have been proposed such as trace equivalence [4], observational equivalence [4], or diff-
equivalence [18]. In this paper, we focus on trace equivalence that we adapt to account
for length and computation times.

The ability of the attacker is now characterized by three parameters: the set of crypto-
graphic primitives, their corresponding length functions, and their corresponding com-
putation times (w.r.t. the attacker). Later in the paper, for decidability, we will show
that we can restrict the attacker to a finite set of names. So we define a length signa-
ture, usually denoted F�, as a tuple of a symbol functions signature F , a set of names
N ⊆ N , and a set of length functions L, i.e. F� = (F ,N, L). Similarly, we denote a
time signature, usually denoted Fti, as a pair containing a length signature F� and a set
of time functions T corresponding to the signature in F�, i.e. Fti = (F�, T).

4.1 Time Static Equivalence

The notion of static equivalence has been extensively studied (see e.g., [3]). It cor-
responds to the indistinguishability of sequences of messages from the point of view
of the attacker. In the standard definition of static equivalence [3,14,28], the attacker
can only perform cryptographic operations on messages. [24] introduces length static
equivalence, that provides the attacker with the ability to measure the length of mes-
sages. Intuitively, two frames are in length static equivalence if an attacker cannot see
any difference, even when applying arbitrary primitives and measuring the length of the

292 V. Cheval and V. Cortier

resulting messages. In this framework, we also provide the attacker with the capability
to measure computation times. We therefore adapt the definition of static equivalence
to account for both length and computation times.

Definition 3. Let Fti = (F�, T) be a time signature with F� = (F ,N, L). Let E , E ′

two sets of names. Let Φ and Φ′ two frames. We say that νE .Φ and νE ′.Φ′ are time
statically equivalent w.r.t. Fti, written νE .Φ ∼Fti

ti νE ′.Φ′, when dom(Φ) = dom(Φ′),
fnames(νE .Φ, νE ′.Φ′) ∩ (E ′ ∪ E) = ∅ and when for all i, j ∈ N, for all M,N ∈
T (F ,N ∪ X) such that fvars(M,N) ⊆ dom(Φ) and fnames(M,N) ∩ (E ∪ E ′) = ∅,
we have:

– Message(MΦ) if and only if Message(MΦ′)
– if Message(MΦ) and Message(NΦ) then

1. MΦ↓ = NΦ↓ if and only MΦ′↓ = NΦ′↓; and
2. lenL(MΦ↓) = i if and only if lenL(MΦ′↓) = i; and
3. ctimeL,T (M,Φ) = j iff ctimeL,T (M,Φ′) = j

Consider the length signature F�, we say that νE .Φ and νE ′.Φ′ are length statically
equivalent w.r.t. F�, written νE .Φ ∼F�

� νE ′.Φ′, when νE .Φ and νE ′.Φ′ satisfy the same
properties as above except Property 3.

4.2 Time Trace Equivalence

Time trace equivalence is a generalization of time static equivalence to the active case.
It corresponds to the standard trace equivalence [4] except that the attacker can now
observe the execution time of the processes. Intuitively, two extended processes P and
Q are in time trace equivalence if any sequence of actions of P can be matched by the
same sequence of actions in Q such that the resulting frames are time statically equiv-
alent. It is important to note that the sequence of actions now reflects the computation
time of each action. We also recall the definition of length trace equivalence introduced
in [24], which accounts for the ability to measure the length but not the computation
time. We denote by =ti the equality of sequences of labels, where the time parameters
of outputs are ignored. Formally, we define �1 . . . �p =ti �

′
1 . . . �

′
q to hold when p = q

and

– for all N,M , �i = in(N,M) if and only if �′i = in(N,M); and
– for all M, axn, �i = out(M, axn, c) for some c if and only if �′i = out(M, axn, c

′)
for some c′.

Definition 4. Consider a time (resp. length) signature F . Let P and Q be two closed
time processes with fnames(P ,Q) ∩ bnames(P ,Q) = ∅. P �F

ti Q (resp. P �F
� Q)

if for every (tr, νE .Φ) ∈ trace(P), there exists (tr′, νE .Φ′) ∈ trace(Q) such that
νE .Φ ∼F

ti νE ′.Φ′ and tr = tr′ (resp. νE .Φ ∼F
� νE ′.Φ′ and tr =ti tr

′).
Two closed time processes P and Q are time (resp. length) trace equivalent w.r.t.

F , denoted by P ≈F
ti Q (resp. P ≈F

� Q), if P �F
ti Q and P �F

ti Q (resp. P �F
� Q

and P �F
� Q).

Timing Attacks in Security Protocols 293

4.3 Timing Attacks against PA

We consider again the PA protocol described in Section 3.3. This protocol should in
particular ensure the anonymity of the senderA. The anonymity of A can be stated as an
equivalence property: an attacker should not be able to distinguish whether b is willing
to talk to a (represented by the process B(b, a)) or willing to talk to a′ (represented
by the process B(b, a′)), provided that a, a′ and b are honest participants. This can be
modeled by the following equivalence:

(E , [B(b, a′), 0, T] ||[A(a′, b), 0, T], Φ, ∅)
?

≈F
ti (E , [B(b, a), 0, T] ||[A(a, b), 0, T], Φ, ∅)

with E = {ska, ska′ , skb}, Φ = {ax 1 � pk(ska); ax 2 � pk(ska′); ax 3 � pk(skb)}.
In the literature, the Private Authentication protocol was proved [23] to preserve

A’s anonymity when considering standard trace equivalence, i.e. without length and
time. However, an attacker can easily break anonymity by measuring the length of the
messages. Indeed, it is easy to notice that the length of the decoy message is smaller
than the size of the regular message. Therefore, an attacker may simply initiate a session
with B in the name of A:

C(A) → B : aenc(〈Nc, pk(skA)〉, pk(skB))

If the message received in response from B is “long”, the attacker learns that B is
willing to talk with A. If the message is “small”, the attacker learns that A is not one of
B’s friends.

This attack can be easily reflected in our formalism. Consider the sequence of labels
tr(j) = in(c, aenc(〈ni, ax 1〉, ax 3)).out(c, ax 4, j) and the corresponding execution on
B(b, a), where b is indeed willing to talk with a.

(E , [B(b, a), 0, T] ||[A(a, b), 0, T], Φ, ∅) tr(j)⇒ (E ′, [A(a, b), 0, T], Φ ∪ {ax4 � M}, σ)
with M = aenc(〈ni, 〈nb, pk(skb)〉〉, pk(ska)) and E ′ = E ∪ {nb} for some σ and j.
On the other hand, when the communication is between a′ and b then b detects that the
public key does not correspond to a′ and outputs the decoy message:

(E , [B(b, a′), 0, T] ||[A(a′, b), 0, T], Φ, ∅) tr(j′)⇒ (E ′, [A(a, b), 0, T], Φ∪{ax4 � M ′}, σ′)

with M ′ = aenc(nerror, pk(ska)) for some σ′ and j′. If the attacker computes the
length of the received message, he gets lenL(aenc(〈ni, 〈nb, pk(skb)〉〉, pk(ska))) =
2� + �pk + 2 and lenL(aenc(nerror, pk(ska))) = � with ni, nb, nerror ∈ N� and
skb ∈ Npk. Therefore the two resulting frames are not in length static equivalence,
thus

(E , [B(b, a′), 0, T] ||[A(a′, b), 0, T], Φ, ∅) �≈F
ti (E , [B(b, a), 0, T] ||[A(a, b), 0, T], Φ, ∅)

To repair the anonymity of the PA protocol, the decoy message should have the same
length than the regular message.

PA-fix1. A first solution is to include Na in the decoy message which is set to be
aenc(〈Na,Error〉, pk(skA)) where Error is a constant of same length than
〈Nb, pk(skB)〉. However, this variant does not satisfy even trace equivalence since
the attacker can now reconstruct aenc(〈Na,Error〉, pk(skA)) when Na has been
forged by himself.

294 V. Cheval and V. Cortier

PA-fix2. To fix this attack, a natural variant is to set the decoy message to be
aenc(〈Na, Nd〉, pk(skA)), where Nd is a nonce of same length than 〈Nb, pk(skB)〉.
However, this variant is now subject to a timing attack. Indeed, it takes more time
to generate Nd than Nb since Nd is larger. Therefore an attacker may still notice the
difference. Note that this attack cannot be detected when considering length trace
equivalence only.

PA-fix3. Finally, a third solution is to set the decoy message to be the cipher
aenc(〈Na, 〈Nb,Error〉, pk(skA)〉) where Error is a constant of same length than
pk(skB). We show in Section 6 that due to our main result and thanks to the APTE
tool, we are able to prove this version secure, assuming that public keys are of the
same length (otherwise there is again a straightforward attack on privacy).

We will see in Section 6 that our tool detects all these attacks.

5 Reduction of Time Trace Equivalence to Length Equivalence

We focus in this section on the key result of this paper: time equivalence reduces to
length equivalence. We show that this holds for arbitrary processes, possibly with repli-
cations and private channels (Theorem 1). This means that, from a decidability point
of view, there is no need to enrich the model with time. We also prove that our result
induces that time trace equivalence for processes without replication can also be re-
duced to length trace equivalence for processes without replication, even if we restrict
the names of the attacker. Finally, applying the decidability result on length trace equiv-
alence of [24], we can deduce decidability of trace equivalence for processes without
replication and for a fixed signature that includes all standard cryptographic primitives
(Theorem 2).

These three results rely on a generic transformation from a time process P to a
process P ′ where the sole observation of the length of the messages exchanged in P ′

reflects both the time and length information leaked by P .

5.1 Representing Computation Time with Messages

The key idea to get rid of computation times is to attach to each term t a special message,
called time message, whose length corresponds to the time needed to compute t. To that
extent, we first need to augment the signature used to describe our processes. Given a

time signature Ft = ((F ,N, L), T), we extend it as Ft
T
= ((FT

,N, L
T
), T

T
), which

is defined as follows. We first add, for each function symbol f, a fresh function symbol f

whose length function is the time function of f, meaning that lenf
L

T = timefT . Similarly,
for each action proc in the execution of a process, we add a new function symbol whose
length function represents the computation time of proc, that is len

gproc

L
T = t_procT .

Lastly, we consider two new symbol functions plus/1 and hide/2 where the resulting
size of the application of plus is the sum of the size of its arguments, and hide reveals
only the size of its first argument. Since these news function symbols should not yield
information on the computation time other than by their size, we consider that all their

time functions are the null function. With these extended time signature Ft
T

, the time

Timing Attacks in Security Protocols 295

message of a term t, denoted [t]L,T , can be naturally defined. For instance, if t =
f(t1, . . . , tm) then [t]L,T = plus([t1]L,T , . . . plus([tm]L,T , f(t1, . . . , tm)) . . .). Thanks
to the function symbol plus, the length of [t]L,T models exactly the computation time
of t.

5.2 Transformed Processes

The computation time of a process becomes visible to an attacker only at some specific
steps of the execution, typically when the process sends out a message. Therefore the
corresponding time message should consider all previous actions since the last output.
In case a machine executes only a sequential process (i.e. that does not include processes
in parallel) then the computation time of internal actions is easy to compute. For exam-
ple, given a processP = in(c, x).νk.out(c, v), the computation time ofP when v is out-
put can be encoded using the following time message plus(min, plus(grestr(k),mout))
where:

min = plus([x]L,T , plus([c]L,T , gin(x))) mout = plus([v]L,T , plus([c]L,T , gout(v)))

However, if a machine executes a process Q in parallel of P , then the time message
m does not correspond anymore to the computation time when v is output since some
actions of Q may have been executed between the actions of P . Therefore, we need
to “store” the computation time that has elapsed so far. To do this, we introduce cells
that can store the time messages of a machine and will be used as time accumula-
tor. Formally, a cell is simply a process with a dedicated private channel defined as
Cell (c, u) = out(c, u) | ! in(c, x).out(c, x). Note that a cell can only alternate between
inputs and outputs (no consecutive outputs can be done). Thanks to those cells, we can
define a transformation for a time process P into an equivalent process w.r.t. to some
cell d and some length and time functions L and T respectively, denoted [P]dL,T , where
the computation time can now be ignored.

Intuitively, each action of a plain process first starts by reading in the cell d and al-
ways ends by writing on the cell the new value of the computation time. For instance,
[νk.P]dL,T = in(d, y).νk.out(d, plus(y, grestr(k))).[P]dL,T . Moreover, in the case of an
output, out(u, v) is transformed to out(u, 〈v, hide(t, k)〉) where t is the current value of
the computation time of the plain process and k is a fresh nonce. Hence, the attacker gets
information about the computation time of the process through the size of the second
message of the output. The most technical case is for the process let x = u in P elseQ.
Indeed, if u is not a message then the process executes Q instead of P . The main issue
here is that the computation time of u depends on which subterm makes the compu-
tation fail. This, in turn, may depend on the intruder’s inputs. Therefore we introduce
below the process LetTrT (c, t, [u], y) that determines which cryptographic primitive
fails and then returns on channel c the computation time message that corresponds to
the execution of u, added to the existing computation time message y and t being some
initial parameters.

296 V. Cheval and V. Cortier

LetTrT (c, t, ∅, u) = out(c, plus(u, t))
LetTrT (c, t, [t1; . . . ; tn], u) = LetTrT (c, t, [t2; . . . ; tn], plus(u, [t1]L,T)) if t1 ∈ N ∪ X
LetTrT (c, t, [t1; . . . ; tn], u) = let x = t1 in

LetTrT (c, t, [t2; . . . ; tn], plus(u, [t1]L,T)) else LetTrT (c, t
′, [v1; . . . ; vm], u)

where t1 = f(v1, . . . , vm), t′ = f(v1, . . . , vm).
Thanks to this process, the transformed process [let x = u in P else Q]dL,T is defined as follows
where u = f(v1, . . . , vm), t = f(v1, . . . , vm).

in(d, y).let x = u in out(d,plus(plus(y, gletin(x)), [u]L,T)).[P]dL,T

else νc.
(
LetTrT (c, t, [v1; . . . ; vm], plus(y, gletelse)) | in(c, z).out(d, z).[Q]dL,T

)

This transformation is naturally adapted to extended processes by introducing a cell for
each extended process A = [P, i, T], that is [A]L = [νd.(Cell (d, ni) | [P]dL,T), i, T]

for some ni ∈ N .

5.3 Main Theorem

We can finally state the main results of this paper. First, time equivalence can be reduced
to length equivalence, for any two processes.

Theorem 1. Let Fti = ((F ,N , L), T) be a time signature. Intuitively, T is the set of
time functions for the attacker. Consider two time processes P1 = (E1, A1, Φ1, ∅) and
P2 = (E2, A2, Φ2, ∅) with dom(Φ2) = dom(Φ1), built on (F ,N , L) and time functions
sets T1, . . . , Tn. Let P ′

1 = (E1, [A1]L, Φ1, ∅) and P ′
2 = (E2, [A2]L, Φ2, ∅). Then

P1 ≈Fti

ti P2 if, and only if, P ′
1 ≈Fti

T,T1,...,Tn

� P ′
2

This theorem holds for arbitrary processes and for any signature and associated
rewriting system. It is interesting to note that it also holds for arbitrary time functions.
Moreover, the transformed processes P ′

1 and P ′
2 only add length functions which are

either linear or are the same than the initial time functions. It therefore does not add any
complexity. Note also that if P1 and P2 are two processes without replication then P ′

1

andP ′
2 are still processes with replication. For decidability in the case of processes with-

out replication, we need to further restrict the number of names given to the attacker. We
therefore refine our theorem for processes without replication with a slightly different
transformation. Instead of adding cells of the form out(c, u) | ! in(c, x).out(c, x), we
unfold in advance the replication as much as needed in the extended process. As a con-
sequence, and relying on the decidability of time trace equivalence described in [24],
we can immediately deduce decidability of time trace equivalence for processes without
replication and polynomial time functions.

Theorem 2. Let Fti = ((F ,N , L), T) be a time signature such that F = Fstand � Fo

where Fo contains only one-way symbols, that are not involved in any rewrite rules. We
assume that L and T contain only polynomial functions. Then time trace equivalence
is decidable for time processes without replication.

Timing Attacks in Security Protocols 297

Anonymity Status Execution time

PA-Original timing attack 0.01 sec

PA-fix1 timing attack 0.01 sec

PA-fix2 timing attack 0.08 sec

PA-fix3 safe 0.3 sec

Unlinkability Status Execution time

BAC timing attack 0.08 sec

AKA timing attack 0.9 sec

Fig. 2. Timing attacks found with the APTE tool

6 Application to Privacy Protocols

The APTE tool [21,22] is a tool dedicated to the automatic proof of trace equivalence
of processes without replication, for the standard cryptographic primitives. It has been
recently extended to length trace equivalence [24]. We have implemented our generic
transformation (Theorem 2) and thanks to this translator from time to length equiva-
lence, APTE can now be used to check time trace equivalence. Using the tool, we have
studied the privacy of three protocols:

PA. Our running example is the Private Authentication Protocol, described in Sec-
tion 3.3. As explained in Section 4.3, this protocol suffers from length or time
attacks for several versions of it, depending on the decoy message. With the APTE
tool, we have found privacy attacks against all the fixes we first proposed. The
APTE tool was able to show privacy of our last version of PA.

BAC. As explained in the Introduction, several protocols are embedded in biometric
passports, to protects users’ privacy. We have studied the Basic Access Control
protocol (BAC). With the APTE tool, we have retrieved the timing attack reported
in [25]. Note that this attack could not have been detected when considering length
trace equivalence only. Indeed, the returned message does not vary. The only no-
ticeable change is the time needed to reply. Even if APTE is guaranteed to always
terminate (since it implements a decidable procedure [21]), the corrected version
that includes a fake test was unfortunately out of reach of the APTE tool in its
current version (we stopped the computation after two days). This is due to the
fact that the BAC protocol contains several inputs and else branches which causes
state-explosion in APTE.

3G AKA Protocol. The 3G AKA protocol is deployed in mobile telephony to pro-
tect users from being traced by third parties. To achieve privacy, it makes use of
temporary pseudonyms but this was shown to be insufficient [10]. Indeed, thanks
to error messages, an attacker may recognize a user by replaying an old session.

298 V. Cheval and V. Cortier

The suggested fix proposes to simply use a unique error message. However, the
protocol then remains subject to potential timing attacks (as for the BAC protocol).
The APTE tool is able to automatically detect this timing privacy attack.

Our study is summarized in Figure 2. The precise specification of the protocols and
their variants can be found in [20].

References

1. http://nacl.cr.yp.to/
2. Machine readable travel document. Technical Report 9303, International Civil Aviation

Organization (2008)
3. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories.

Theoretical Computer Science 387(1-2), 2–32 (2006)
4. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: 28th

ACM Symp. on Principles of Programming Languages, POPL 2001 (2001)
5. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The spi calculus. In: 4th

Conference on Computer and Communications Security (CCS 1997), pp. 36–47. ACM Press
(1997)

6. Abadi, M., Blanchet, B.: Analyzing Security Protocols with Secrecy Types and Logic Pro-
grams. Journal of the ACM 52(1), 102–146 (2005)

7. Abadi, M., Fournet, C.: Private authentication. Theoretical Computer Science 322(3),
427–476 (2004)

8. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Certified computer-aided cryptogra-
phy: Efficient provably secure machine code from high-level implementations. In: 21st ACM
Conference on Computer and Communications Security, CCS 2013 (2013)

9. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and anonymity using
the applied pi calculus. In: 23rd IEEE Computer Security Foundations Symposium, CSF
2010 (2010)

10. Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M., Golde, N., Redon, K., Borgaonkar, R.: New
privacy issues in mobile telephony: fix and verification. In: ACM Conference on Computer
and Communications Security, pp. 205–216 (2012)

11. Backes, M., Doychev, G., Köpf, B.: Preventing side-channel leaks in web traffic: A formal
approach. In: Network and Distributed System Security Symposium, NDSS 2013 (2013)

12. Backes, M., Duermuth, M., Gerling, S., Pinkal, M., Sporleder, C.: Acoustic emanations of
printers. In: 19th USENIX Security Symposium (2010)

13. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of informa-
tion leaks. In: Symposium on Security and Privacy, S&P 2009 (2009)

14. Baudet, M., Cortier, V., Delaune, S.: YAPA: A generic tool for computing intruder knowl-
edge. ACM Transactions on Computational Logic 14 (2013)

15. Bella, G., Paulson, L.C.: Kerberos version IV: Inductive analysis of the secrecy goals. In:
Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ESORICS 1998. LNCS,
vol. 1485, pp. 361–375. Springer, Heidelberg (1998)

16. Bernstein, D.J., Chou, T., Schwabe, P.: Mcbits: Fast constant-time code-based cryptography.
In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 250–272. Springer,
Heidelberg (2013)

17. Biondi, F., Legay, A., Malacaria, P., Wąsowski, A.: Quantifying information leakage of ran-
domized protocols. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 68–87. Springer, Heidelberg (2013)

http://nacl.cr.yp.to/

Timing Attacks in Security Protocols 299

18. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equivalences for
Security Protocols. In: 20th Symposium on Logic in Computer Science, LICS 2005 (2005)

19. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: Symposium on
Security and Privacy (S&P 2004), pp. 86–100. IEEE Comp. Soc. Press (2004)

20. Cheval, V.: APTE (Algorithm for Proving Trace Equivalence) (2013),
http://projects.lsv.ens-cachan.fr/APTE/

21. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: Negative tests and
non-determinism. In: 18th ACM Conference on Computer and Communications Security,
CCS 2011 (2011)

22. Cheval, V.: Apte: an algorithm for proving trace equivalence. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidelberg (2014)

23. Cheval, V., Blanchet, B.: Proving more observational equivalences with proverif. In: Basin,
D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 226–246. Springer, Heidelberg
(2013)

24. Cheval, V., Cortier, V., Plet, A.: Lengths may break privacy – or how to check for equiv-
alences with length. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
708–723. Springer, Heidelberg (2013)

25. Chothia, T., Smirnov, V.: A traceability attack against e-passports. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 20–34. Springer, Heidelberg (2010)

26. Cohen, E.: Taps: A first-order verifier for cryptographic protocols. In: 13th IEEE Computer
Security Foundations Workshop (CSFW 2000). IEEE Computer Society Press, Los Alamitos
(2000)

27. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equivalence. In:
15th Conf. on Computer and Communications Security, CCS 2008 (2008)

28. Cortier, V., Delaune, S.: Decidability and combination results for two notions of knowledge
in security protocols. Journal of Automated Reasoning, 48 (2012)

29. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security (4), 435–487 (2008)

30. Evans, N., Schneider, S.: Analysing time dependent security properties in CSP using PVS.
In: Cuppens, F., Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS,
vol. 1895, pp. 222–237. Springer, Heidelberg (2000)

31. Gorrieri, R., Locatelli, E., Martinelli, F.: A simple language for real-time cryptographic pro-
tocol analysis. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 114–128. Springer,
Heidelberg (2003)

32. Jakubowska, G., Penczek, W.: Modelling and checking timed authentication of security pro-
tocols. Fundamenta Informaticae, 363–378 (2007)

33. Käsper, E., Schwabe, P.: Faster and timing-attack resistant aes-gcm. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg (2009)

34. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer,
Heidelberg (1996)

35. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel attacks. In:
14th ACM Conf. on Computer and Communications Security, CCS 2007 (2007)

36. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security model:
Automatic detection and removal of control-flow side channel attacks. In: Won, D.H.,
Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer, Heidelberg (2006)

37. Phan, Q.-S., Malacaria, P., Tkachuk, O., Pasareanu, C.S.: Symbolic quantitative information
flow. ACM SIGSOFT Software Engineering Notes (2012)

http://projects.lsv.ens-cachan.fr/APTE/

Privacy and Voting

Type-Based Verification of Electronic Voting Protocols

Véronique Cortier1, Fabienne Eigner2, Steve Kremer1,
Matteo Maffei2, and Cyrille Wiedling3

1 LORIA, CNRS & INRIA & University of Lorraine, France
2 CISPA, Saarland University, Germany

3 Université Catholique de Louvain, Belgium

Abstract. E-voting protocols aim at achieving a wide range of sophisticated
security properties and, consequently, commonly employ advanced cryptographic
primitives. This makes their design as well as rigorous analysis quite challeng-
ing. As a matter of fact, existing automated analysis techniques, which are mostly
based on automated theorem provers, are inadequate to deal with commonly used
cryptographic primitives, such as homomorphic encryption and mix-nets, as well
as some fundamental security properties, such as verifiability.

This work presents a novel approach based on refinement type systems for the
automated analysis of e-voting protocols. Specifically, we design a generically
applicable logical theory which, based on pre- and post-conditions for security-
critical code, captures and guides the type-checker towards the verification of
two fundamental properties of e-voting protocols, namely, vote privacy and veri-
fiability. We further develop a code-based cryptographic abstraction of the cryp-
tographic primitives commonly used in e-voting protocols, showing how to make
the underlying algebraic properties accessible to automated verification through
logical refinements. Finally, we demonstrate the effectiveness of our approach by
developing the first automated analysis of Helios, a popular web-based e-voting
protocol, using an off-the-shelf type-checker.

1 Introduction

Cryptographic protocols are notoriously difficult to design and their manual security
analysis is extremely complicated and error-prone. As a matter of fact, security vulner-
abilities have accompanied early academic protocols like Needham-Schroeder [49] as
well as carefully designed de facto standards like SSL [56], PKCS #11 [18], and the
SAML-based Single Sign-On for Google Apps [4]. E-voting protocols are particularly
tricky, since they aim at achieving sophisticated security properties, such as verifiability
and coercion-resistance, and, consequently, employ advanced cryptographic primitives
such as homomorphic encryptions, mix-nets, and zero-knowledge proofs. Not surpris-
ingly, this makes the attack surface even larger, as witnessed by the number of attacks
on e-voting protocols proposed in the literature (see e.g., [36,30,45]).

This state of affairs has motivated a substantial research effort on the formal anal-
ysis of cryptographic protocols, which over the years has led to the development of
several automated tools based on symbolic abstractions of cryptography. Automated
theorem provers build on a term-based abstraction of cryptography and proved success-
ful in the enforcement of various trace properties [16,6,9,33] and even observational

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 303–323, 2015.
DOI: 10.1007/978-3-662-46666-7_16

304 V. Cortier et al.

equivalence relations [17,25,26]. While some of these tools have also been used in the
context of e-voting [43,8,53,3], they fall short of supporting the cryptographic primi-
tives and security properties specific of this setting. For instance, none of them supports
the commutativity property of homomorphic encryption that is commonly exploited to
compute the final tally in a privacy-preserving manner (e.g., [27,32,2]), and the proof of
complex properties like verifiability or coercion-resistance must be complemented by
manual proofs [34,53] or encodings [8] respectively, which are tedious and error-prone.

Another line of research has focused on the design of type systems for cryptographic
protocol analysis. Refinement type systems, in particular, allow for tracking pre- and
post-conditions on security-sensitive code, and thus enforcing various trace properties,
such as authentication [40,23,24,19,20,5,37], classical authorization policies [7,14,10],
and linear authorization policies [21,22]. Type systems proved capable to enforce even
observational equivalence relations, such as secrecy [38], relational properties [55], and
differential privacy [35]. Type systems are to some extent less precise than theorem
provers and are not suitable to automatically report attacks, in that they do not explic-
itly compute abstractions of execution traces, but they are modular and therefore scale
better to large-scale protocols. Furthermore, by building on a code-based, as opposed
to term-based, abstraction of cryptography, they enable reasoning about sophisticated
cryptographic schemes [38,10]. Although they look promising, type systems have never
been used in the context of e-voting protocols. This task is challenging since, for guiding
the type-checking procedure, one needs to develop a dedicated logical theory, capturing
the structure of e-voting systems and the associated security and privacy properties.

Our Contributions. We devise a novel approach based on refinement type systems for
the formal verification of e-voting protocols. Specifically,

– we design a generically applicable logical theory based on pre- and post-conditions
for security-critical code, which captures and guides the type-checker towards the
verification of two fundamental properties, namely, vote privacy and verifiability;

– we formalize in particular three different verifiability properties (i.e., individual,
universal, and end-to-end verifiability), proving for the first time that individual
verifiability plus universal verifiability imply end-to-end verifiability, provided that
ballots cannot be confused (no-clash property [45]);

– we develop a code-based cryptographic abstraction of the cryptographic primitives
commonly used in e-voting protocols, including homomorphic encryption, showing
how to make its commutativity and associativity properties accessible to automated
verification through logical refinements;

– we demonstrate the effectiveness of our approach by analyzing Helios [2], a popular,
state-of-the-art, voting protocol that has been used in several real-scale elections,
including elections at Louvain-la-Neuve, Princeton, and among the IACR [41]. We
analyze the two main versions of Helios that respectively use homomorphic encryp-
tion and mix-net based tally. For this we use F* [55], an off-the-shelf type-checker
supporting the verification of trace properties and observational equivalence rela-
tions, as required for verifiability and vote privacy, through refinement and rela-
tional types, respectively. Analyzing Helios with homomorphic encryption was out
of reach of existing tools due to the need of a theory that reflects the addition of the

Type-Based Verification of Electronic Voting Protocols 305

votes. A strength of our approach is that proof obligations involving such theories
can be directly discharged to SMT solvers such as Z3 [51].

Related Work. Many symbolic protocol verification techniques have been applied to
analyze e-voting systems [43,8,34,53,44,30,31,3]. In all of these works, the crypto-
graphic primitives are modeled using terms and an equational theory, as opposed to the
code-based abstractions we use in this paper. While code-based abstractions of cryptog-
raphy may look at a first glance more idealized than the modeling using equational the-
ories, they are actually closer to ideal functionalities in simulation-based cryptographic
frameworks. Although a formal computational soundness result is out of the scope of
this work, the code-based abstractions we use are rather standard and computational
soundness results for similar abstractions have been proven in [12,38].

One of the main advantages of symbolic protocol verification is the potential for
automation. However, current automated protocol verification tools are not yet mature
enough to analyze most voting protocols. Firstly, existing tools do not support equa-
tional theories modeling homomorphic encryption. Thus, existing analyses of systems
that rely on homomorphic tallying all rely on hand proofs [30,31,44], which are compli-
cated and error-prone due to the complexity of the equational theories. Secondly, most
current automated tools offer only limited support for verifying equivalence properties,
which is required for verifying vote privacy. For instance, in [8] the analysis of Civi-
tas using ProVerif relies on manual encodings and many other works, even though the
equational theory is in the scope of the tools, again rely on hand proofs of observational
equivalences [43,34]. Although some recent tools, such as AKiSs [25] succeed in ana-
lyzing simple protocols such as [39], more complicated protocols are still out of reach.
In [3], the privacy of the mix-net based version of Helios was shown using AKiSs, but
mix-nets were idealized by simply outputting the decrypted votes in a non-deterministic
order. In contrast, our model manipulates lists to express the fact that a mix-net pro-
duces a permutation. ProVerif was used to check some cases of verifiability [53], but
automation is only supported for protocols without a homomorphic tally.

Other work on e-voting protocols considers definitions of privacy [46,15] and veri-
fiability [42,47,29] in computational models. However, no computer aided verification
techniques have yet been applied in this context. Furthermore, prior work [48] demon-
strated that individual and universal verifiability in general do not imply end-to-end
verifiability, not even by assuming the no-clash property, using as an example the Three-
Ballot voting system [52]. In this paper, we show on the contrary that individual and
universal verifiability do imply end-to-end verifiability. This is due to the fact that our
individual verifiability notion is actually stronger and assumes that the board can be
uniquely parsed as a list of ballots. This is the case for many voting systems but not for
ThreeBallot where each ballot is split into three components.

2 Background

We review the fundamental concepts underlying the typed-based analysis of security
protocols and we present the Helios e-voting protocol that constitutes our case study.

306 V. Cortier et al.

2.1 Refinement Types for Cryptographic Protocols

Computational RCF. The protocols we analyze are implemented in Computational
RCF et al. [38], a λ-calculus with references, assumptions, and assertions. We briefly
review below the syntax and semantics of the language, referring to the long ver-
sion [28] for more details. Constructors, ranged over by h, include inl and inr, which
are used to construct tagged unions, and fold, which is used to construct recursive data
structures. Values, ranged over by M,N , comprise variables x, y, z, the unit value (),
pairs (M,N), constructor applications hM , functions fun x → A, and functions reada
and writea to read from and write to a memory location a, respectively. The syntax and
semantics of expressions are mostly standard. M N behaves as A{N/x} (i.e., A where
x is replaced by N) if M = fun x → A, otherwise it gets stuck; let x = A in B
evaluates A to M and then behaves as B{M/x}; let (x, y) = M in A behaves as
A{N/x,N ′/y} if M = (N,N ′), otherwise it gets stuck; matchM with h x then A
else B behaves as A{N/x} if M = h N , as B otherwise; ref M allocates a fresh label
a and returns the reading and writing functions (reada,writea). The code is decorated
with assumptions assume F and assertions assert F . The former introduce logical for-
mulas that are assumed to hold at a given program point, while the latter specify logical
formulas that are expected to be entailed by the previously introduced assumptions.

Definition 1 (Safety). A closed expression A is safe iff the formulas asserted at run-
time are logically entailed by the previously assumed formulas.

The code is organized in modules, which are intuitively a sequence of function decla-
rations. A module may export some of the functions defined therein, which can then
be used by other modules: we let B · A denote the composition of modules B and A,
where the functions exported by B may be used in A.

Types and Typing Judgements. Table 1 shows the syntax of types. Types bool for
boolean values and bytes for bitstrings can be constructed from unit by encoding1. The
singleton unit type is populated by the value (); μα.T describes values of the form
fold M , where M has the unfolded type T {μα.T/α}; T + U describes values of the
form inl M or inr M , where M has type T or U , respectively; the dependent type
x : T ∗ U describes pairs of values (M,N), where M has type T and N has type
U{M/x}; the dependent type x : T → U describes functions taking as input a value
M of type T and returning a value of type U{M/x}; the dependent refinement type
x : T {F} describes values M of type T such that the logical formula F{M/x} is
entailed by the active assumptions. Notice that a refinement on the input of a function
expresses a pre-condition, while a refinement on the output expresses a post-condition.

The typing judgement I � A : T says that expression A can be typed with type T in
a typing environment I . Intuitively, a typing environment binds the free variables and
labels in A to a type. The typing judgement I � B � I ′ says that under environment I
module B is well-typed and exports the typed interface I ′.
Modeling the Protocol and the Opponent. The protocol is encoded as a module,
which exports functions defining the cryptographic library as well as the protocol par-
ties. The latter are modeled as cascaded functions, which take as input the messages

1 E.g., boolean values are encoded as true � inl () and false � inr ().

Type-Based Verification of Electronic Voting Protocols 307

Table 1. Syntax of types

T,U, V ::= type
unit unit type
α type variable
μα.T iso-recursive type (α bound in τ)
T + U sum type
x : T ∗ U dependent pair type (x bound in U)
x : T → U dependent function type (x bound in U)
x : T{F} dependent refinement type (x bound in F)

received from the network and return the pair composed of the value to be output on the
network and the continuation code 2. Concurrent communication is modeled by letting
the opponent, which has access to the exported functions, act as a scheduler.

Modeling the Cryptographic Library. We rely on a sealing-based abstraction of cryp-
tography [50,54]. A seal for a type T consists of a pair of functions: the sealing function
of type T → bytes and the unsealing function of type bytes → T . The sealing mech-
anism is implemented by storing a list of pairs in a global reference that can only be
accessed using the sealing and unsealing functions. The sealing function pairs the pay-
load with a fresh, public value (the handle) representing its sealed version, and stores
the pair in the list. The unsealing function looks up the public handle in the list and
returns the associated payload. For symmetric cryptography, the sealing and unsealing
functions are both private and naturally model encryption and decryption keys, respec-
tively: a payload of type T is sealed to type bytes and can be sent over the untrusted
network, while a message retrieved from the network with type bytes can be unsealed
to its correct type T . Different cryptographic primitives, like public key encryptions
and signature schemes, can be encoded in a similar way, by exporting the function
modeling the public key to the opponent. We will give further insides on how to build
sealing-based abstractions for more sophisticated cryptographic primitives, such as ho-
momorphic encryptions and proofs of knowledge in Section 4.

Type-Based Verification. Assumptions and assertions can be used to express a variety
of trace-based security properties. For instance, consider the very simple e-voting pro-
tocol below, which allows everyone in possession of the signing key kV , shared by all
eligible voters, to cast arbitrarily many votes.

V T

assume Cast(v)
sign(kV ,v) ��

assert Count(v)

The assumption Cast(v) on the voter’s side tracks the intention to cast vote v. The
authorization policy ∀v.Cast(v) ⇒ Count(v), which is further defined in the system
as a global assumption expresses the fact that all votes cast by eligible voters should
be counted. Since this is the only rule entailing Count(v), this rule actually captures a
correspondence assertion: votes can be counted only if they come from eligible voters.

2 For the sake of readability we use the standard message-passing-style syntax in our examples
and some additional syntactic sugar (e,g., sequential let declarations) that are easy to encode.

308 V. Cortier et al.

The assertion assert Count(v) on the tallying authority’s side expresses the expectation
that vote v should be counted.

In order to type-check the code of authority T , it suffices to prove Cast(v) on the
authority’s side, which entails Count(v) through the authorization policy. Since the
type-checking algorithm is modular (i.e., each party is independently analyzed) and
Cast(v) is assumed on the voter’s side, this formula needs to be conveyed to T . This is
achieved by giving the vote v the refinement type x : bytes{Cast(x)}. In order to type
v on the voter’s side with such a type, v needs to be of type bytes and additionally, the
formula Cast(v) needs to be entailed by the previous assumptions, which is indeed true
in this case. In our sealing-based library for signatures signing corresponds to sealing
a value and verification is modeled using the unsealing function and thus the types of
signing and verification are sigkey(T) � T → bytes and verkey(T) � bytes → T ,
while the types of the signing and verification functions are sig : sigkey(T) → T →
bytes and ver : verkey(T) → bytes → T , respectively.3 Here T is x : bytes{Cast(x)},
thereby imposing a pre-condition on the signing function (before signing x, one has to
assume the formula Cast(x)) and a post-condition on the verification function (after a
successful verification, the formula Cast(x) is guaranteed to hold for the signed x).

When reasoning about the implementations of cryptographic protocols, we are inter-
ested in the safety of the protocol against an arbitrary opponent.

Definition 2 (Opponent and Robust Safety). A closed expression O is an opponent
iff O contains no assumptions or assertions. A closed module A is robustly safe w.r.t.
interface I iff for all opponents O such that I � O : T for some type T , A · O is safe.

Following the approach advocated in [38], the typed interface I exported to the oppo-
nent is supposed to build exclusively on the type bytes, without any refinement. This
means that the attacker is not restricted by any means and can do whatever it wants
with the messages received from the network, except for performing invalid opera-
tions that would lead it to be stuck (e.g., treating a pair as a function). In fact, the
well-typedness assumption for the opponent just makes sure that the only free variables
occurring therein are the ones exported by the protocol module. Robust safety can be
statically enforced by type-checking, as stated below.

Theorem 1 (Robust Safety). If ∅ � A � I then A is robustly safe w.r.t. I .

2.2 Helios

Helios [2] is a verifiable and privacy-preserving e-voting system. It has been used in
several real-life elections such that student elections at the University of Louvain-la-
Neuve or at Princeton. It is now used by the IACR to elect its board since 2011 [41].
The current implementation of Helios (Helios 2.0) is based on homomorphic encryp-
tion, which makes it possible to decrypt only the aggregation of the ballots as opposed

3 We note that the verification function only takes the signature as an input, checks whether it is
indeed a valid signature and if so, retrieves the corresponding message that was signed. This
is a standard abstraction and used for convenience, an alternate approach would be to have
verification take both the signature and message as an input and return a boolean value. The
sealing-based library functions for both versions are very similar.

Type-Based Verification of Electronic Voting Protocols 309

to the individual ballots. Homomorphic tally, however, requires encrypted ballots to
be split in several ciphertexts, depending on the number of candidates. For example,
in case of 4 candidates and a vote for the second one, the encrypted ballot would be
{0}r1pk, {1}

r2
pk, {0}

r3
pk, {0}

r4
pk. In case the number of candidates is high, the size of a bal-

lot and the computation time become large. Therefore, there exists a variant of Helios
that supports mix-net-based tally: ballots are shuffled and re-randomized before being
decrypted. Both variants co-exist since they both offer advantages: mix-nets can cope
with a large voting space while homomorphic tally eases the decryption phase (only
one ballot needs to be decrypted, no need of mixers). We present here both variants of
Helios, which constitute our case studies. For simplicity, in the case of homomorphic
tally, we assume that voters are voting either 0 or 1 (referendum).

The voting process in Helios is divided in two main phases. The bulletin board is a
public webpage that starts initially empty. Votes are encrypted using a public key pk.
The corresponding decryption key dk is shared among trustees. For privacy, the trust
assumption is that at least one trustee is honest (or that the trustees do not collaborate).

Voting Phase. During the voting phase, each voter encrypts her vote v using the public
key pk of the election.She then sends her encrypted vote {v}rpk (where r denotes the
randomness used for encrypting), together with some auxiliary data aux, to the bulletin
board through an authenticated channel. In the homomorphic version of Helios, aux
contains a zero-knowledge proof that the vote is valid, that is 0 or 1. This avoids that a
voter gives e.g. 100 votes to a candidate. In the mix-net variant of Helios, aux is empty.
Provided that the voter is entitled to vote, the bulletin board adds the ballot {v}rpk, aux
to the public list. The voter should check that her ballot indeed appears on the public
bulletin board.

The voter’s behavior is described in Figure 1. It corresponds to the mix-net version
but could be easily adapted to the homomorphic version. Note that this description
contains assume and assert annotations that intuitively represent different states of the
voter’s process. These annotations are crucially used to state verifiability, cf Section 3.

The voting phase also includes an optional audit phase allowing the voter to audit her
ballot instead of casting it. In that case, her ballot and the corresponding randomness
are sent to a third party that checks whether the correct choice has been encrypted. We
do not model here the auditing phase, since a precise characterization would probably
require probabilistic reasoning, which goes beyond the scope of this paper.

Tallying Phase. Once the voting phase is over, the bulletin board contains a list of bal-
lots {v1}r1pk, . . . , {vn}

rn
pk (we omit the auxiliary data). We distinguish the two variants.

– Homomorphic tally. The ballots on the bulletin board are first homomorphically
combined. Since {v}rpk ∗ {v′}r

′
pk = {v+ v′}r+r′

pk anyone can compute the encrypted
sum of the votes {

∑n
i=1 vi}r∗pk . Then the trustees collaborate to decrypt this cipher-

text. Their computation yields
∑n

i=1 vi and a proof of correct decryption.

– Mix-net tally. Ballots are shuffled and re-randomized, yielding {vi1}
r′1
pk, . . . , {vin}

r′n
pk

with a proof of correct permutation. This mixing is performed successively by sev-
eral mixers. For privacy, the trust assumption is that as least one mix-net is honest
(that is, will not leak the permutation). Then the trustees collaborate to decrypt each
(re-randomize) ciphertext and provide a corresponding proof of correct decryption.

310 V. Cortier et al.

Voter(id, v) = assume Vote(id, v);
let r = new() in
let b = enc(pk, v, r) in
assume MyBallot(id, v, b);

send(net, b);
let bb = recv(net) in
if b ∈ bb then
assert VHappy(id, v, bb)

Fig. 1. Modeling of a voter

3 Verifiability

Verifiability is a key property in both electronic as well as paper-based voting systems.
Intuitively, verifiability ensures that the announced result corresponds to the votes such
as intended by the voters. Verifiability is typically split into several sub-properties.

– Individual verifiability ensures that a voter is able to check that her ballot is on the
bulletin board.

– Universal verifiability ensures that any observer can verify that the announced re-
sult corresponds to the (valid) ballots published on the bulletin board.

Symbolic models provide a precise definition of these notions [44].
The overall goal of these two notions is to guarantee end-to-end verifiability: if a

voter correctly follows the election process her vote is counted in the final result. In
our terminology, strong end-to-end verifiability additionally guarantees that at most k
dishonest votes have been counted, where k is the number of compromised voters. This
notion of strong end-to-end verifiability includes the notion of what is called eligibility
verifiability in [44]. For simplicity, we focus here on end-to-end verifiability.

We will now explain our modeling of individual, universal, and end-to-end verifiabil-
ity. One of our contributions is a logical formalization of these properties that enables
the use of off-the-shelf verification techniques, in our case a type system, at least in
the case of individual and universal verifiability. End-to-end verifiability may be more
difficult to type-check directly. Instead, we formally prove for the first time that individ-
ual and universal verifiability entail end-to-end verifiability provided that there are no
“clash attacks” [45]. A clash attack typically arises when two voters are both convinced
that the same ballot b is “their” own ballot. In that case, only one vote will be counted
instead of two. The fact that individual and universal verifiability entail end-to-end ver-
ifiability has two main advantages. First, it provides a convenient proof technique: it is
sufficient to prove individual and universal verifiability, which as we will show can be
done with the help of a type-checker. Second, our results provide a better understanding
of the relation between the different notions of verifiability.

Notations. Before presenting our formal model of verifiability we introduce a few no-
tations. Voting protocols aim at counting the votes. Formally, a counting function is a
function ρ : V∗ → R, where V is the vote space and R the result space. A typical
voting function is the number of votes received by each candidate. By a slight abuse of
notation, we may consider ρ(l) where l is a list of votes instead of a sequence of votes.

If l is a list, #l denotes the size of l and l[i] refers to the ith element of the list.
a ∈ l holds if a is an element of l. Given a1, . . . , an, we denote by {|a1, . . . , an|} the
corresponding multiset. ⊆m denotes multiset inclusion. Assume l1, l2 are lists; by a
slight abuse of notation, we may write l1 ⊆m l2 where l1, l2 are viewed as multisets.
We also write l1 =m l2 if the two lists have the same multisets of elements.

Type-Based Verification of Electronic Voting Protocols 311

In order to express verifiability and enforce it using a type system, we rely on the
following assumptions:

– assume Vote(id, v, c) means that voter id intends to vote for c possibly using some
credential c. This predicate should hold as soon as the voter starts to vote: he knows
for whom he is going to vote.

– assume MyBallot(id, v, b) means that voter id thinks that ballot b contains her vote
v. In case votes are sent in clear, b is simply the vote v itself. In the case of Helios,
we have b = {v}rpk, aux. Typically, this predicate should hold as soon as the voter
(or her computer) has computed the ballot.

An example of where and how to place these predicates for Helios can be found in
Figure 1. The credential c is omitted since there is no use of credentials in Helios.

3.1 Individual Verifiability

Intuitively, individual verifiability enforces that whenever a voter completes her process
successfully, her ballot is indeed in the ballot box. Formally we define the predicate
VHappy as follows:

assume VHappy(id, v, c, bb) ⇔ Vote(id, v, c) ∧ ∃b ∈ bb.MyBallot(id, v, b)

This predicate should hold whenever voter id has finished her voting process, and be-
lieves she has voted for v. At that point, it should be the case that the ballot box bb
contains the vote v (in some ballot). We therefore annotate the voter function with the
assertion assert VHappy(id, v, c, bb). This annotation is generally the final instruction,
see Figure 1 for the Helios example.

Definition 3 (Individual Verifiability). A protocol with security annotations
– assume Vote(id, v, c), assume MyBallot(id, v, b);
– and assert VHappy(id, v, c, bb)

as described above guarantees individual verifiability if it is robustly safe.

3.2 Universal Verifiability

Intuitively, universal verifiability guarantees that anyone can check that the result
corresponds to the ballots present in the ballot box. Formally, we assume a program
Judge(bb, r) that checks whether the result r is valid w.r.t. ballot box bb. Typically,
Judge does not use any secret and could therefore be executed by anyone. We simply
suppose that Judge contains assert JHappy(bb, r) at some point, typically when all the
verification checks succeed. For Helios, the Judge program is displayed Figure 2. We
first introduce a few additional predicates that we use to define the predicate JHappy.

Good Sanitization. Once the voting phase is closed, the tallying phase proceeds in two
main phases. First, some “cleaning” operation is performed in bb, e.g., invalid ballots
(if any) are removed and duplicates are weeded, resulting in the sanitized valid bulletin
board vbb. Intuitively, a good cleaning function should not remove ballots that corre-
spond to honest votes. We therefore define the predicate GoodSan(bb, vbb) to hold if
the honest ballots of bb are not removed from vbb.

assume GoodSan(bb, vbb) ⇔ ∀b.[(b ∈ bb ∧ ∃id, v.MyBallot(id, v, b)) ⇒ b ∈ vbb]

312 V. Cortier et al.

Judge(bb, r) = let vbb = recv(net) in
let zkp = recv(net) in
if vbb = removeDuplicates(bb) ∧ check_zkp(zkp, vbb, r) then
assert JHappy(bb, r)

Fig. 2. Judge function for Helios

Good Counting. Once the ballot box has been sanitized, ballots are ready to be tallied.

A good tallying function should count the votes “contained” in the ballots. To formally
define that a vote is “contained” in a ballot, we consider a predicate Wrap(v, b) that is
left undefined, but has to satisfy the following properties:

– any well-formed ballot b corresponding to some vote v satisfies:
MyBallot(id, v, b) ⇒ Wrap(v, b)

– a ballot cannot wrap two distinct votes: Wrap(v1, b) ∧ Wrap(v2, b) ⇒ v1 = v2
If these two properties are satisfied, we say that Wrap is voting-compliant. For a given
protocol, the definition Wrap typically follows from the protocol specification.

Example 1. In the Helios protocol, the Wrap predicate is defined as follows.

assume Wrap(v, b) ⇔ ∃r. Enc(v, r, pk, b)

where Enc(v, r, pk, b) is a predicate that holds if b is the result of the encryption function
called with parameters pk, v and r. It is easy to see that Wrap is voting-compliant and
this can in fact be proved using a type-checker. It is sufficient to add the annotations

– assert MyBallot(id, v, b) ⇒ Wrap(v, b) and
– assert ∀v1, v2.Wrap(v1, b) ∧Wrap(v2, b) ⇒ v1 = v2

to the voter function (Figure 1) just after theMyBallot assumption. The second assertion
is actually a direct consequence of our modeling of encryption which implies that a
ciphertext cannot decrypt to two different plaintexts.

We are now ready to state when votes have been correctly counted: the result should
correspond to the counting function ρ applied to the votes contained in each ballot.
Formally, we define GoodCount(vbb, r) to hold if the result r corresponds to counting
the votes of rlist , i.e., the list of votes obtained from the ballots in vbb′. The list vbb′ is
introduced for technical convenience and either denotes the list of valid votes vbb itself
(in the homomorphic variant) or any arbitrary permutation of vbb (for mix-nets).

assume GoodCount(vbb, r) ⇔ ∃vbb′, rlist . [#vbb = #rlist ∧ vbb =m vbb′∧
∀b, i.[vbb′[i] = b
⇒ ∃v.(Wrap(v, b) ∧ (rlist [i] = v))] ∧
r = ρ(rlist)]

Note that the definition of GoodCount is parameterized by the counting function ρ of
the protocol under consideration. We emphasize that for GoodCount(vbb, r) to hold,
the sanitized bulletin board may only contain correctly wrapped ballots, i.e., we assume
that the sanitization procedure is able to discard invalid ballots. In the case of mix-net-
based Helios we therefore require that the sanitization discards any ballots that do not
decrypt. This can for instance be achieved by requiring a zero knowledge proof that the

Type-Based Verification of Electronic Voting Protocols 313

submitted bitstring is a correct ciphertext. We may however allow that a ballot decrypts
to an invalid vote, as such votes can be discarded by the tallying function.

Universal Verifiability. Finally, universal verifiability enforces that whenever the ver-
ification checks succeed (that is, the Judge’s program reaches the JHappy assertion),
then GoodSan and GoodCount should be guaranteed. Formally, we define the predicate

assume JHappy(bb, r) ⇔ ∃vbb. (GoodSan(bb, vbb) ∧ GoodCount(vbb, r))

and add the annotation assert JHappy(bb, r) at the end of the judge function.

Definition 4 (Universal Verifiability). A protocol with security annotations
– assume MyBallot(id, v, b), and
– assert JHappy(bb, r)

as described above guarantees universal verifiability if it is robustly safe and the predi-
cate Wrap(v, b) is voting-compliant.

3.3 End-to-End Verifiability

End-to-end verifiability is somehow simpler to express. End-to-end verifiability ensures
that whenever the result is valid (that is, the judge has reached his final state), the result
contains at least all the votes of the voters that have reached their final states. In other
words, voters that followed the procedure are guaranteed that their vote is counted in
the final result. To formalize this idea we define the predicate EndToEnd as follows:

assume EndToEnd ⇔ ∀bb, r, id1, . . . , idn, v1, . . . , vn, c1, . . . , cn.
(JHappy(bb, r) ∧ VHappy(id1, v1, c1, bb) ∧ . . . ∧ VHappy(idn, vn, cn, bb))

⇒ ∃rlist . r = ρ(rlist) ∧ {|v1, . . . , vn|} ⊆m rlist

To ensure that this predicate holds we can again add a final assertion assert EndToEnd.

Definition 5 (End-to-End Verifiability). A protocol with security annotations
– assume Vote(id, v, c), assume MyBallot(id, v, b);
– and assert VHappy(id, v, c, bb), assert JHappy(bb, r), assert EndToEnd

as described above guarantees end-to-end verifiability if it is robustly safe.

For simplicity, we have stated end-to-end verifiability referring explicitly to a bulletin
board. It is however easy to state our definition more generally by letting bb be any
form of state of the protocol. This more general definition does not assume a particular
structure of the protocol, as it is also the case in a previous definitions of end-to-end
verifiability in the literature [47].

It can be difficult to directly prove end-to-end verifiability using a type-checker. An
alternative solution is to show that it is a consequence of individual and universal veri-
fiability. However, it turns out that individual and universal verifiability are actually not
sufficient to ensure end-to-end verifiability. Indeed, assume that two voters id1 and id2
are voting for the same candidate v. Assume moreover that they have built the same
ballot b. In case of Helios, this could be the case if voters are using a bad randomness
generator. Then a malicious bulletin board could notice that the two ballots are identical
and could display only one of the two. The two voters would still be “happy” (they can

314 V. Cortier et al.

see their ballot on the bulletin board) as well as the judge since the tally would corre-
spond to the bulletin board. However, only one vote for v would be counted instead of
two. Such a scenario has been called a clash attack [45].

We capture this property by the predicate NoClash defined as follows.

NoClash ⇔ ∀id1, id2, v1, v2, b. MyBallot(id1, v1, b) ∧ MyBallot(id2, v2, b)
⇒ id1 = id2 ∧ v1 = v2

The assertion assert NoClash is then added after the assumption MyBallot.

Definition 6 (No Clash). A protocol with security annotations
– assume MyBallot(id, v, b) and
– assert NoClash

as described above guarantees no clash if it is robustly safe.

We can now state our result (proved in the long version [28]) that no clash, individual,
and universal verifiability entail end-to-end verifiability.

Theorem 2. If a protocol guarantees individual and universal verifiability as well as
no clash, then it satisfies end-to-end verifiability.

3.4 Verifiability Analysis of Helios

Using the F* type-checker (version 0.7.1-alpha) we have analyzed both the mix-net
and homomorphic versions of Helios. The corresponding files can be found in [1]. The
(simplified) model of the voter and judge functions is displayed in Figures 1 and 2.

Helios with Mix-Nets. Using F*, we automatically proved both individual and univer-
sal verifiability. As usual, we had to manually define the types of the functions, which
crucially rely on refinement types to express the expected pre- and post-conditions. For
example, for universal verifiability, one has to show that GoodSan and GoodCount hold
whenever the judge agrees with the tally. For sanitization, the judge verifies that vbb is
a sublist of bb, where duplicate ballots have been removed. Thus, the type-checker can
check that the function removeDuplicates(bb) returns a list vbb whose type is a refine-
ment stating that x ∈ bb ⇒ x ∈ vbb, which allows us to prove GoodSan. Regarding
GoodCount, the judge verifies a zero-knowledge proof that ensures that any vote in the
final result corresponds to an encryption on the sanitized bulletin board. Looking at the
type of the check_zkp function we see that this information is again conveyed through
a refinement of the boolean type returned by the function:

check_zkp : zkp : bytes → vbb : list ballot → res : result → b : bool{b = true ⇒ ϕ}

where ϕ � ∃vbb′. [#vbb = #res ∧ vbb =m vbb′ ∧
∀b, i.[vbb′[i] = b ⇒ ∃v, r.(Enc(v, r, pk, b) ∧ (res [i] = v))]]

In the case where check_zkp returns true we have that the formulaϕ holds. The formula
ϕ is similar to the GoodCount predicate (with ρ being the identity function for mix-net
based Helios) except that it ensures that a ballot is an encryption, rather than a wrap.
This indeed reflects that the zero-knowledge proof used in the protocol provides exactly
the necessary information to the judge to conclude that the counting was done correctly.

Type-Based Verification of Electronic Voting Protocols 315

The no clash property straightforwardly follows from observing that the logical pred-
icate MyBallot(id, v, b) is assumed only once in the voter’s code, that each voter has
a distinct id, and that, as argued for Wrap(v, b), the same ciphertext cannot decrypt to
two different plaintexts. By Theorem 2, we can conclude that the mix-net version of
Helios indeed satisfies end-to-end verifiability.

Type-checkers typically support lists with the respective functions (length, member-
ship test, etc.). As a consequence, we prove individual and universal verifiability for an
arbitrary number of dishonest voters, while only a fixed number of dishonest voters can
typically be considered with other existing protocol verification tools.

Helios with Homomorphic Tally. The main difference with the mix-net version is that
each ballot additionally contains a zero-knowledge proof, that ensures that the ballot is
an encryption of either 0 or 1. The judge function also differs in the tests it performs.
In particular, to check that the counting was performed correctly, the judge verifies a
zero-knowledge proof that ensures that the result is the sum of the encrypted votes that
are on the sanitized bulletin board. This ensures in turn that the result corresponds to
the sum of the votes. Considering the “sum of the votes” is out of reach of classical
automated protocol verification tools. Here, F* simply discharges the proof obligations
involving the integer addition to the Z3 solver [51] which is used as a back-end.

Finally, as for the mix-net based version, we proved individual and universal veri-
fiability using F*, while the no clash property relies on (the same) manual reasoning.
Again, we conclude that end-to-end verifiability is satisfied using Theorem 2.

4 Privacy

The secrecy of a ballot is of vital importance to ensure that the political views of a voter
are not known to anyone. Vote privacy is thus considered a fundamental and universal
right in modern democracies.

In this section we review the definition of vote privacy based on observational equiv-
alence [34] and present a type-based analysis technique to verify this property using
RF*, an off-the-shelf type-checker. We demonstrate the usefulness of our approach by
analyzing vote privacy in the homomorphic variant of Helios, which was considered so
far out of the scope of automated verification techniques.

4.1 Definition of Privacy

Observational Equivalence. We first introduce the concept of observational equiva-
lence, a central tool to capture indistinguishability properties. The idea is that two runs
of the same program with different secrets should be indistinguishable for any oppo-
nent. The definition is similar to the natural adaption of the one presented in [38] to a
deterministic, as opposed to probabilistic, setting.

Definition 7 (Observational Equivalence). For all modules A,B we say that A and B
are observationally equivalent, written A ≈ B, iff they both export the same interface
I and and for all opponents O that are well-typed w.r.t the interface I it holds that
A ·O →∗ M iff B · O →∗ M for all closed values M .

316 V. Cortier et al.

Here, A →∗ N denotes that expression A eventually evaluates to value N , according
to the semantic reduction relation.

Privacy. We adopt the definition of vote privacy presented in [43]. This property ensures
that the link between a voter and her vote is kept secret. Intuitively, in the case of a
referendum this can only be achieved if at least two honest voters exist, since otherwise
all dishonest voters could determine the single honest voter’s vote from the final tally
by colluding. Furthermore, both voters must vote for different parties, thus counter-
balancing each other’s vote and ensuring that it is not known who voted for whom. Our
definition of privacy thus assumes the existence of two honest voters Alice and Bob and
two candidates v1 and v2. We say that a voting system guarantees privacy if a protocol
run in which Alice votes v1 and Bob votes v2 is indistinguishable (i.e., observationally
equivalent) from the protocol run in which Alice votes v2 and Bob votes v1.

In the following, we assume the voting protocol to be defined as fun (vA, vB) →
S[Alice(vA),Bob(vB)]. The two honest voters Alice and Bob are parameterized over
their votes vA and vB . Here, S[•, •] describes a two-hole context (i.e., an expression
with two holes), which models the behavior of the cryptographic library, the public
bulletin board, and the election authorities (i.e., the surrounding system).

Definition 8 (Vote Privacy). P = fun (vA, vB) → S[Alice(vA),Bob(vB)] guarantees
vote privacy iff for any two votes v1, v2 it holds that P (v1, v2) ≈ P (v2, v1).

4.2 RF*: A Type System for Observational Equivalence Properties

To prove privacy for voting protocols we rely on RF*, an off-the-shelf existing type-
checker that can be used to enforce indistinguishability properties. RF* was introduced
by Barthe et al. [13] and constitutes the relational extension of the F* type-checker [55].
The core idea is to let refinements reason about two runs (as opposed to a single one) of
a protocol. Such refinements are called relational refinements. A relational refinement
type has the form x : T {|F |}, where the formula F may capture the instantiation of x
in the left run of the expression that is to be type-checked, denoted L x, as well as the
instantiation of x in the right run, denoted R x. Formally, A : x : T {|F |} means that
whenever A evaluates to ML and MR in two contexts that provide well-typed substi-
tutions for the free variables in A, then the formula F{ML/L x}{MR/R x} is valid. We
note that relational refinements are strictly more expressive than standard refinements.
For instance, x : bytes{H(x)} can be encoded as x : bytes{|H(L x) ∧ H(R x)|}. A
special instance of relational refinement types is the so-called eq-type. Eq-types specify
that a variable is instantiated to the same value in both the left and the right protocol
run. Formally, eq T � x : T {|L x = R x|}. The authors show how such types can be
effectively used to verify both non-interference and indistinguishability properties.

4.3 Type-Based Verification of Vote Privacy

In the following, we show how to leverage the aforementioned technique to statically
enforce observational equivalence and, in particular, vote privacy. The key observation
is that whenever a value M is of type eq bytes it can safely be published, i.e., given to
the opponent. Intuitively, this is the case since in both protocol runs, this value will be

Type-Based Verification of Electronic Voting Protocols 317

Alice vA =
let bA = create_ballotA(vA) in
send(cA, bA)

Fig. 3. Model of Alice

Bob vB =
let bB = create_ballotB(vB) in
send(cB , bB)

Fig. 4. Model of Bob

the same, i.e., the opponent will not be able to observe any difference. Given that both
runs consider the same opponent O, every value produced by the opponent must thus
also be the same in both runs, which means it can be typed with eq bytes.

We denote typed interfaces that solely build on eq bytes by Ieq and following the
above intuition state that if a voting protocol can be typed with such an interface, the
two runs where (i) Alice votes v1, Bob votes v2 and (ii) Alice votes v2, Bob votes v1
are observationally equivalent, since no opponent will be able to distinguish them.

Theorem 3 (Privacy by Typing). For all P = fun (vA, vB) → S[Alice(vA),Bob(vB)]
and all M,M ′, v1, v2 such that M : x : bytes{|L x = v1 ∧ R x = v2|} and M ′ : x :
bytes{|L x = v2 ∧ R x = v1|} it holds that if ∅ � P (M,M ′) � Ieq, then P provides
vote privacy.

Modeling a Protocol for Privacy Verification. We demonstrate our approach on the
example of Helios with homomorphic encryption. For simplicity, we consider one bal-
lot box that owns the decryption key dk and does the complete tabulation. An informal
description of Alice and Bob’s behavior is displayed in Figures 3 and 4, respectively.
The voters produce the relationally refined ballots using the ballot creation functions
create_ballotA, create_ballotB respectively. The ballots bA, bB consist of the random-
ized homomorphic encryption of the votes and a zero-knowledge proof of correctness
and knowledge of the encrypted vote. The ballots are then sent to the ballot box over
secure https-connections cA and cB respectively.

The behavior of the ballot box is described in Figure 5. For the sake of simplicity, we
consider the case of three voters. The ballot box receives the ballots of Alice and Bob
and publishes them on the bulletin board. It then receives the ballot of the opponent and
checks that the proofs of validity of all received ballots succeed. Furthermore, it checks
that all ballots are distinct before performing homomorphic addition on the ciphertexts.
The sum of the ciphertexts is then decrypted and published on the bulletin board.

Intuitively, all outputs on the network are of type eq bytes, since (i) all ballots are
the result of an encryption that keeps the payload secret and thus gives the opponent no
distinguishing capabilities, and (ii) the homomorphic sum of all ciphertexts bABO =
{vA+ vB + vO}pk is the same in both runs of the protocol up to commutativity. Indeed,
L bABO = {v1 + v2 + vO}pk and R bABO = {v2 + v1 + vO}pk = L bABO.

However, since the application of the commutativity rule happens on the level of
plaintexts, while the homomorphic addition is done one level higher-up on ciphertexts,
we need to guide the type-checker in the verification process.

Sealing-Based Library for Voting. While privacy is per se not defined by logical pred-
icates, we rely on some assumptions to describe properties of the cryptographic library,
such as homomorphism and validity of payloads, in order to guide the type-checker in

318 V. Cortier et al.

BB = let bA = recv(cA) in
let bB = recv(cB) in
send(net, (bA, bB));
let bO = recv(net) in
if check_zkp(bA) true then

match check_zkp(bB) with true then
match check_zkp(bO) with true then
match (bA �= bO ∧ bA �= bB ∧ bB �= bO) with true then
let bAB = add_ballot(bA, bB) in
let bABO = add_ballot(bAB, bO) in
let result = dec_ballot(bABO) in
send(net, result)

Fig. 5. Model of the ballot box

the derivation of eq-types. The (simplified) type of the sealing reference for homomor-
phic encryption with proofs of validity is given below:4

m : bytes ∗ c : eq bytes{|Enc(m, c) ∧ Valid(c)∧
(FromA(c) ∨ FromB(c) ∨ (FromO(c) ∧ L m = Rm))|}

Here, predicates FromA,FromB,FromO are used to specify whether an encryption was
done by Alice, Bob or the opponent, while Enc(m, c) states that c is the ciphertext re-
sulting from encrypting m and Valid(c) reflects the fact that the message corresponds
to a valid vote, i.e., a validity proof for c can be constructed. Note that if a ballot was
constructed by the opponent, the message stored therein must be the same in both runs
(L m = R m), i.e., the message must have been of type eq bytes. These logical pred-
icates are assumed in the sealing functions used by Alice,Bob, and the opponent, re-
spectively. These functions, used to encode the public key, share the same code, and in
particular they access the same reference, and only differ in the internal assumptions.

Similarly, there exist three ballot creation functions create_ballotA, create_ballotB ,
and create_ballotO , used by Alice, Bob and the opponent, respectively, only differing
in their refinements and internal assumptions. Their interfaces are listed below:

create_ballotA : m : x : bytes{|L x = v1 ∧ R x = v2|} →
c : eq bytes{|Enc(m, c) ∧ FromA(c)|}

create_ballotB : m : x : bytes{|L x = v2 ∧ R x = v1|} →
c : eq bytes{|Enc(m, c) ∧ FromB(c)|}

create_ballotO : = eq bytes → eq bytes

Notice that, as originally proposed in [13], the result of probabilistic encryption (i.e.,
the ballot creation function) is given an eq bytes type, reflecting the intuition that there
always exist two randomnesses, which are picked with equal probability, that make the
ciphertexts obtained by encrypting two different plaintexts identical, i.e., probabilistic
encryption does not leak any information about the plaintext.

The interfaces for the functions dec_ballot, check_zkp, add_ballot for decryption,
validity checking of the proofs, and homomorphic addition are listed below. The pub-
lic interfaces for the latter two functions, built only on eq-types, are exported to the
opponent. The interface for decryption is however only exported to the ballot box.

4 The actual library includes marshaling operations, which we omit for simplicity.

Type-Based Verification of Electronic Voting Protocols 319

dec_ballot : c : eq bytes → privkey → m : bytes{|∀z.Enc(z, c) ⇒ z = m|}
check_zkp : c : eq bytes → b : bool{|b = true ⇒ (Valid(c) ∧ (∃m.Enc(m, c))∧

(FromA(c) ∨ FromB(c) ∨ (FromO(c) ∧ L m = Rm)))|}
add_ballot : c : eq bytes → c′ : eq bytes →

c′′ : eq bytes{|∀m,m′.(Enc(m, c) ∧ Enc(m′, c′)) ⇒ Enc(m+m′, c′′)|}
Intuitively, the type returned by decryption assures that the decryption of the ciphertext
corresponds to the encrypted message. The successful application of the validity check
on ballot c proves that the ballot is a valid encryption of either v1 or v2 and that it must
come from either Alice, Bob, or the opponent. In the latter case it must be the same in
both runs. When homomorphically adding two ciphertexts, the refinement of function
add_ballot guarantees that the returned ciphertext contains the sum of the two. The im-
plementation of dec_ballot is standard and consists of the application of the unsealing
function. The implementation of check_zkp follows the approach proposed in [10,11]:
in particular, the zero-knowledge proof check function internally decrypts the cipher-
texts and then checks the validity of the vote, returning a boolean value. Finally, the
add_ballot homomorphic addition function is implemented in a similar manner, inter-
nally decrypting the two ciphertexts and returning a fresh encryption of the sum of the
two plaintexts.

Global Assumptions. In order to type-check the complete protocol we furthermore rely
on three natural assumptions:

– A single ciphertext only corresponds to one plaintext, i.e., decryption is a function:
assume ∀m,m′, c.(Enc(m, c) ∧ Enc(m′, c)) ⇒ m = m′

– Alice and Bob only vote once:
assume ∀c, c′.(FromA(c) ∧ FromA(c′)) ⇒ c = c′

assume ∀c, c′.(FromB(c) ∧ FromB(c′)) ⇒ c = c′
Modeling revoting would require a bit more work. Revoting requires some policy

that explains which ballot is counted, typically the last received one. In that case, we
would introduce two types depending on whether the ballot is really the final one (there
is a unique final one) or not.

4.4 Privacy Analysis of Helios

Using the RF* type-checker (version 0.7.1-alpha) we have proved privacy for the ho-
momorphic version of Helios. The corresponding files can be found in [1]. Our imple-
mentation builds on the above defined cryptographic library and global assumptions as
well as Alice, Bob, and the ballot box BB as defined in the previous section.

We briefly give the intuition why the final tally result = dec_ballot(bABO) can be
typed with type eq bytes, i.e., why both runs return the same value by explaining the
typing of the ballot box BB.

– The ballots bA, bB, bO that are received by the ballot box must have the following
types (by definition of the corresponding ballot creation functions):

bA : c : eq bytes{|Enc(vA, bA) ∧ FromA(bA)|}
bB : c : eq bytes{|Enc(vB , bB) ∧ FromB(bB)|}
bO : eq bytes

320 V. Cortier et al.

– Adding bA and bB together using add_ballot thus yields that the content of the
combined ciphertext corresponds to vA+vB and in particular, due to commutativity,
this sum is the same in both protocol runs.

– The most significant effort is required to show that the payload vO contained in bO
is indeed of type eq bytes, i.e., L vO = R vO , meaning the sum of vA + vB + vO
is the same in both runs. Intuitively, the proof works as follows: From checking the
proof of bO it follows that there exists vO such that Enc(vO, bO) ∧ (FromA(bO) ∨
FromB(bO) ∨ (FromO(bO) ∧ L vO = R vO)). From checking the distinctness of
the ciphertexts we furthermore know that bA �= bO �= bC . Given FromA(bA) and
FromB(bB), the second and third global assumptions imply that neitherFromA(bO)
nor FromB(bO) hold true. Thus, it must be the case that FromO(bO)∧L vO = R vO .

5 Conclusion

In this paper we proposed a novel approach, based on type-checking, for analyzing
e-voting systems. It is based on a novel logical theory which allows to verify both
verifiability and vote privacy, two fundamental properties of election systems. We were
able to put this theory into practice and use an off-the-shelf type-checker to analyze
the mix-net-, as well as homomorphic tallying-based versions of Helios, resulting in
the first automated verification of Helios with homomorphic encryption. Indeed, the
fact that the type-checker can discharge proof obligations on the algebraic properties of
homomorphic encryption to an external solver is one of the strengths of this approach.
Providing the right typing annotations constitutes the only manual effort required by
our approach: in our analysis this was, however, quite modest, in our analysis, thanks
to the support for type inference offered by RF*.

As a next step we are planning to extend our theory to handle strong end-to-end veri-
fiability, which additionally takes the notion of eligibility verifiability into account. This
stronger notion is not satisfied by Helios, but the Helios-C protocol [29] was designed
to achieve this property, providing an interesting case study for our approach.

We also plan to apply our approach to the e-voting protocol recently deployed in
Norway for a political election. The privacy of this protocol was analyzed in [31], but
due to the algebraic properties of the encryption, the proof was completely done by
hand. Our approach looks promising to enable automation of proofs for this protocol.

Acknowledgements. This work was supported by the German research foundation
(DFG) through the Emmy Noether program, the German Federal Ministry of Education
and Research (BMBF) through the Center for IT-Security, Privacy and Accountability
(CISPA), the European Research Council under the EU 7th Framework Programme
(FP7/2007-2013) / ERC grant agreement no 258865 and the ANR project Sequoia
ANR-14-CE28-0030-01.

References

1. http://sps.cs.uni-saarland.de/voting
2. Adida, B.: Helios: Web-based Open-Audit Voting. In: USENIX 2008, pp. 335–348 (2008)

http://sps.cs.uni-saarland.de/voting

Type-Based Verification of Electronic Voting Protocols 321

3. Arapinis, M., Cortier, V., Kremer, S., Ryan, M.D.: Practical Everlasting Privacy. In: POST
2013, pp. 21–40 (2013)

4. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Tobarra, L.: Formal analysis of SAML
2.0 web browser single sign-on: breaking the SAML-based single sign-on for Google Apps.
In: FMSE 2008, pp. 1–10 (2008)

5. Backes, M., Cortesi, A., Focardi, R., Maffei, M.: A calculus of challenges and responses. In:
FMSE 2007, pp. 51–60 (2007)

6. Backes, M., Cortesi, A., Maffei, M.: Causality-based abstraction of multiplicity in security
protocols. In: CSF 2007, pp. 355–369 (2007)

7. Backes, M., Grochulla, M.P., Hritcu, C., Maffei, M.: Achieving security despite compromise
using zero-knowledge. In: CSF 2009, pp. 308–323 (2009)

8. Backes, M., Hriţcu, C., Maffei, M.: Automated Verification of Remote Electronic Voting
Protocols in the Applied Pi-calculus. In: CSF 2008, pp. 195–209 (2008)

9. Backes, M., Lorenz, S., Maffei, M., Pecina, K.: The CASPA Tool: Causality-Based Ab-
straction for Security Protocol Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 419–422. Springer, Heidelberg (2008)

10. Backes, M., Hriţcu, C., Maffei, M.: Union and Intersection Types for Secure Protocol Imple-
mentations. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp.
1–28. Springer, Heidelberg (2012)

11. Backes, M., Maffei, M., Hriţcu, C.: Union and Intersection Types for Secure Protocol Imple-
mentations. JCS, 301–353 (2014)

12. Backes, M., Maffei, M., Unruh, D.: Computationally Sound Verification of Source Code. In:
CCS 2010, pp. 387–398 (2010)

13. Barthe, G., Fournet, C., Grégoire, B., Strub, P., Swamy, N., Béguelin, S.Z.: Probabilistic
Relational Verification for Cryptographic Implementations. In: POPL 2014, pp. 193–206
(2014)

14. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement Types for
Secure Implementations. TOPLAS 33(2), 8 (2011)

15. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios for provable
ballot secrecy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 335–354.
Springer, Heidelberg (2011)

16. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: CSFW
2001, pp. 82–96 (2001)

17. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equivalences for
Security Protocols. JLAP 75(1), 3–51 (2008)

18. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and Fixing PKCS#11 Secu-
rity Tokens. In: CCS 2010, pp. 260–269 (2010)

19. Bugliesi, M., Focardi, R., Maffei, M.: Analysis of typed-based analyses of authentication
protocols. In: CSFW 2005, pp. 112–125. IEEE (2005)

20. Bugliesi, M., Focardi, R., Maffei, M.: Dynamic types for authentication. JCS 15(6), 563–617
(2007)

21. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Resource-aware Authorization Policies in
Statically Typed Cryptographic Protocols. In: CSF 2011, pp. 83–98 (2011)

22. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Logical Foundations of Secure Resource
Management in Protocol Implementations. In: Basin, D., Mitchell, J.C. (eds.) POST 2013.
LNCS, vol. 7796, pp. 105–125. Springer, Heidelberg (2013)

23. Bugliesi, M., Focardi, R., Maffei, M.: Principles for entity authentication. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 294–306. Springer, Heidelberg (2003)

24. Bugliesi, M., Focardi, R., Maffei, M.: Authenticity by tagging and typing. In: FMSE 2004,
pp. 1–12 (2004)

322 V. Cortier et al.

25. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence properties of
cryptographic protocols. In: ESOP 2012, pp. 108–127 (2012)

26. Cheval, V.: APTE: an Algorithm for Proving Trace Equivalence. In: Ábrahám, E., Havelund,
K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidelberg (2014)

27. Cohen, J.D., Fischer, M.J.: A Robust and Verifiable Cryptographically Secure Election
Scheme. In: FOCS 1985, pp. 372–382 (1985)

28. Cortier, V., Eigner, F., Kremer, S., Maffei, M., Wiedling, C.: Type-Based Verification of
Electronic Voting Protocols. Cryptology ePrint Archive, Report 2015/039 (2015)

29. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election Verifiability for Helios under
Weaker Trust Assumptions. In: Kutyłowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS,
vol. 8713, pp. 327–344. Springer, Heidelberg (2014)

30. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy. In: CSF
2011, pp. 297–311 (2011)

31. Cortier, V., Wiedling, C.: A formal analysis of the Norwegian E-voting protocol. In: POST
2012, pp. 109–128 (2012)

32. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-
Authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp.
103–118. Springer, Heidelberg (1997)

33. Cremers, C.: The Scyther Tool: Verification, Falsification, and Analysis of Security Proto-
cols. In: CAV 2008, pp. 414–418 (2008)

34. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting
protocols. JCS 17(4), 435–487 (2009)

35. Eigner, F., Maffei, M.: Differential Privacy by Typing in Security Protocols. In: CSF 2013,
pp. 272–286. IEEE (2013)

36. Estehghari, S., Desmedt, Y.: Exploiting the Client Vulnerabilities in Internet E-voting Sys-
tems: Hacking Helios 2.0 as an Example. In: EVT/WOTE 2010 (2010)

37. Focardi, R., Maffei, M.: Types for security protocols. In: Formal Models and Techniques for
Analyzing Security Protocols. IOS (2011)

38. Fournet, C., Kohlweiss, M., Strub, P.: Modular Code-Based Cryptographic Verification. In:
CCS 2011, pp. 341–350 (2011)

39. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale Elec-
tions. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251.
Springer, Heidelberg (1993)

40. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic protocols.
JCS 12(3), 435–484 (2004)

41. IACR. Elections page at http://www.siacr.org/elections/
42. Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections. In: Chaum,

D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.)
Towards Trustworthy Elections. LNCS, vol. 6000, pp. 37–63. Springer, Heidelberg (2010)

43. Kremer, S., Ryan, M.D.: Analysis of an Electronic Voting Protocol in the Applied Pi Cal-
culus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer, Heidelberg
(2005)

44. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting protocols. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
389–404. Springer, Heidelberg (2010)

45. Küsters, R., Truderung, T., Vogt, A.: Clash Attacks on the Verifiability of E-Voting Systems.
In: S&P 2012, pp. 395–409 (2012)

46. Küsters, R., Truderung, T., Vogt, A.: A Game-Based Definition of Coercion-Resistance and
its Applications. In: CSF 2010, pp. 122–136 (2010)

47. Küsters, R., Truderung, T., Vogt, A.: Accountabiliy: Definition and Relationship to Verifia-
bility. In: CCS 2010, pp. 526–535 (2010)

http://www.siacr.org/elections/

Type-Based Verification of Electronic Voting Protocols 323

48. Küsters, R., Truderung, T., Vogt, A.: Verifiability, Privacy, and Coercion-Resistance: New
Insights from a Case Study. In: S&P 2011, pp. 538–553 (2011)

49. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer,
Heidelberg (1996)

50. Morris, J.: Protection in Programming Languages. CACM 16(1), 15–21 (1973)
51. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.

(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
52. Rivest, R.L.: The threeballot voting system, unpublished draft (2006)
53. Smyth, B., Ryan, M., Kremer, S., Kourjieh, M.: Towards automatic analysis of election veri-

fiability properties. In: Armando, A., Lowe, G. (eds.) ARSPA-WITS 2010. LNCS, vol. 6186,
pp. 146–163. Springer, Heidelberg (2010)

54. Sumii, E., Pierce, B.: A Bisimulation for Dynamic Sealing. TCS 375(1-3), 169–192 (2007)
55. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure Distributed

Programming with Value-Dependent Types. In: ICFP 2011, pp. 266–278 (2011)
56. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: USENIX Workshop on Elec-

tronic Commerce, pp. 29–40 (1996)

Composing Security Protocols:

From Confidentiality to Privacy�

Myrto Arapinis1, Vincent Cheval2,3, and Stéphanie Delaune4

1 School of Informatics, University of Edinburgh, UK
2 LORIA, CNRS, France

3 School of Computing, University of Kent, UK
4 LSV, CNRS & ENS Cachan, France

Abstract. Security protocols are used in many of our daily-life applica-
tions, and our privacy largely depends on their design. Formal verification
techniques have proved their usefulness to analyse these protocols, but
they become so complex that modular techniques have to be developed.
We propose several results to safely compose security protocols. We con-
sider arbitrary primitives modeled using an equational theory, and a rich
process algebra close to the applied pi calculus.

Relying on these composition results, we derive some security prop-
erties on a protocol from the security analysis performed on each of its
sub-protocols individually. We consider parallel composition and the case
of key-exchange protocols. Our results apply to deal with confidentiality
but also privacy-type properties (e.g. anonymity) expressed using a no-
tion of equivalence. We illustrate the usefulness of our composition results
on protocols from the 3G phone application and electronic passport.

1 Introduction

Privacy means that one can control when, where, and how information about
oneself is used and by whom, and it is actually an important issue in many
modern applications. For instance, nowadays, it is possible to wave an electronic
ticket, a building access card, a government-issued ID, or even a smartphone in
front of a reader to go through a gate, or to pay for some purchase. Unfortu-
nately, as often reported by the media, this technology also makes it possible for
anyone to capture some of our personal information. To secure the applications
mentioned above and to protect our privacy, some specific cryptographic pro-
tocols are deployed. For instance, the 3G telecommunication application allows
one to send SMS encrypted with a key that is established with the AKA proto-
col [2]. The aim of this design is to provide some security guarantees: e.g. the
SMS exchanged between phones should remain confidential from third parties.

Since security protocols are notoriously difficult to design and analyse, formal
verification techniques are important. These techniques have become mature and

� The research leading to these results has received funding from the project ProSecure
(ERC grant agreement n◦ 258865), and the ANR project VIP no 11 JS02 006 01.

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 324–343, 2015.
DOI: 10.1007/978-3-662-46666-7_17

Composing Security Protocols: From Confidentiality to Privacy 325

have achieved success. For instance, a flaw has been discovered in the Single-
Sign-On protocol used by Google Apps [6], and several verification tools are
nowadays available (e.g. ProVerif [9], the AVANTSSAR platform [7]). These tools
perform well in practice, at least for standard security properties (e.g. secrecy,
authentication). Regarding privacy properties, the techniques and tools are more
recent. Most of the verification techniques are only able to analyse a bounded
number of sessions and consider a quite restrictive class of protocols (e.g. [18]). A
different approach consists in analysing a stronger notion of equivalence, namely
diff-equivalence. In particular, ProVerif implements a semi-decision procedure
for checking diff-equivalence [9].

Security protocols used in practice are more and more complex and it is diffi-
cult to analyse them altogether. For example, the UMTS standard [2] specifies
tens of sub-protocols running concurrently in 3G phone systems. While one may
hope to verify each protocol in isolation, it is however unrealistic to expect that
the whole application will be checked relying on a unique automatic tool. Ex-
isting tools have their own specificities that prevent them to be used in some
cases. Furthermore, most of the techniques do not scale up well on large systems,
and sometimes the ultimate solution is to rely on a manual proof. It is therefore
important that the protocol under study is as small as possible.

Related Work. There are many results studying the composition of security
protocols in the symbolic model [15,13,12], as well as in the computational
model [8,16] in which the so-called UC (universal composability) framework
has been first developed before being adapted in the symbolic setting [10]. Our
result belongs to the first approach. Most of the existing composition results
are concerned with trace-based security properties, and in most cases only with
secrecy (stated as a reachability property), e.g. [15,13,12,14]. They are quite re-
stricted in terms of the class of protocols that can be composed, e.g. a fixed
set of cryptographic primitives and/or no else branch. Lastly, they often only
consider parallel composition. Some notable exceptions are the results presented
in [17,14,12]. This paper is clearly inspired from the approach developed in [12].

Regarding privacy-type properties, very few composition results exist. In a
previous work [4], we considered parallel composition only. More precisely, we
identified sufficient conditions under which protocols can “safely” be executed in
parallel as long as they have been proved secure in isolation. This composition
theorem was quite general from the point of view of the cryptographic primitives
allowed. We considered arbitrary primitives that can be modelled by a set of
equations, and protocols may share some standard primitives provided they are
tagged differently. We choose to reuse this quite general setting in this work,
but our goal is now to go beyond parallel composition. We want to extend the
composition theorem stated in [4] to allow a modular analysis of protocols that
use other protocols as sub-programs as it happens in key-exchange protocols.

Our Contributions. Our main goal is to analyse privacy-type properties in a
modular way. These security properties are usually expressed as equivalences
between processes. Roughly, two processes P and Q are equivalent (P ≈ Q) if,

326 M. Arapinis, V. Cheval, and S. Delaune

however they behave, the messages observed by the attacker are indistinguish-
able. Actually, it is well-known that:

if P1 ≈ P2 and Q1 ≈ Q2 then P1 | P2 ≈ Q1 | Q2.

However, this parallel composition result works because the processes that
are composed are disjoint (e.g. they share no key). In this paper, we want to go
beyond parallel composition which was already considered in [4]. In particular,
we want to capture the case where a protocol uses a sub-protocol to establish
some keys. To achieve this, we propose several theorems that state the conditions
that need to be satisfied so that the security of the whole protocol can be derived
from the security analysis performed on each sub-protocol in isolation. They are
all derived from a generic composition result that allows one to map a trace
of the composed protocol into a trace of the disjoint case (protocol where the
sub-protocols do not share any data), and conversely. This generic result can be
seen as an extension of the result presented in [12] where only a mapping from
the shared case to the disjoint case is provided (but not the converse).

We also extend [12] by considering a richer process algebra. In particular, we
are able to deal with protocols with else branches and to compose protocols that
both rely on asymmetric primitives (i.e. asymmetric encryption and signature).

Outline. We present our calculus in Section 2. It can be seen as an exten-
sion of the applied pi calculus with an assignment construction. This will al-
low us to easily express the sharing of some data (e.g. session keys) between
sub-protocols. In Section 3, we present a first composition result to deal with
confidentiality properties. The purpose of this section is to review the difficul-
ties that arise when composing security protocols even in a simple setting. In
Section 4, we go beyond parallel composition, and we consider the case of key-
exchange protocols. We present in Section 5 some additional difficulties that
arise when we want to consider privacy-type properties expressed using trace
equivalence. In Section 6, we present our composition results for privacy-type
properties. We consider parallel composition as well as the case of key-exchange
protocols. In Section 7, we illustrate the usefulness of our composition results
on protocols from the 3G phone application, as well as on protocols from the
e-passport application. We show how to derive some security guarantees from
the analysis performed on each sub-protocol in isolation. The full version of
this paper as well as the ProVerif models of our case studies can be found at
http://www.loria.fr/~chevalvi/other/compo/.

2 Models for Security Protocols

Our calculus is close to the applied pi calculus [3]. We consider an assignment
operation to make explicit the data that are shared among different processes.

http://www.loria.fr/~chevalvi/other/compo/

Composing Security Protocols: From Confidentiality to Privacy 327

2.1 Messages

As usual in this kind of models, messages are modelled using an abstract term
algebra. We assume an infinite set of names N of base type (used for representing
keys, nonces, . . .) and a set Ch of names of channel type. We also consider a set of
variables X , and a signature Σ consisting of a finite set of function symbols. We
rely on a sort system for terms. The details of the sort system are unimportant,
as long as the base type differs from the channel type, and we suppose that
function symbols only operate on and return terms of base type.

Terms are defined as names, variables, and function symbols applied to other
terms. The set of terms built from N ⊆ N ∪Ch, and X ⊆ X by applying function
symbols in Σ (respecting sorts and arities) is denoted by T (Σ,N∪X). We write
fv(u) (resp. fn(u)) for the set of variables (resp. names) occurring in a term u.
A term u is ground if it does not contain any variable, i.e. fv(u) = ∅.

The algebraic properties of cryptographic primitives are specified by the means
of an equational theory which is defined by a finite set E of equations u = v with
u, v ∈ T (Σ,X), i.e. u, v do not contain names. We denote by =E the smallest
equivalence relation on terms, that contains E and that is closed under applica-
tion of function symbols and substitutions of terms for variables.

Example 1. Consider the signature ΣDH = {aenc, adec, pk, g, f, 〈 〉, proj1, proj2}.
The function symbols adec, aenc of arity 2 represent asymmetric decryption
and encryption. We denote by pk(sk) the public key associated to the private
key sk. The two function symbols f of arity 2, and g of arity 1 are used to model
the Diffie-Hellman primitives, whereas the three remaining symbols are used to
model pairs. The equational theory EDH is defined by:

EDH =

{
proj1(〈x, y〉) = x adec(aenc(x, pk(y)), y) = x
proj2(〈x, y〉) = y f(g(x), y) = f(g(y), x)

Let u0 = aenc(〈nA, g(rA)〉, pk(skB)). We have that:

f(proj2(adec(u0, skB)), rB) =EDH
f(g(rA), rB) =EDH

f(g(rB), rA).

2.2 Processes

As in the applied pi calculus, we consider plain processes as well as extended
processes that represent processes having already evolved by e.g. disclosing some
terms to the environment. Plain processes are defined by the following grammar:

P,Q := 0 null P | Q parallel

new n.P restriction !P replication

[x := v].P assignment if ϕ then P else Q conditional

in(c, x).P input out(c, v).Q output

where c is a name of channel type, ϕ is a conjunction of tests of the form u1 = u2

where u1, u2 are terms of base type, x is a variable of base type, v is a term of
base type, and n is a name of any type. We consider an assignment operation
that instantiates x with a term v. Note that we consider private channels but
we do not allow channel passing. For the sake of clarity, we often omit the null
process, and when there is no “else”, it means “else 0”.

328 M. Arapinis, V. Cheval, and S. Delaune

Names and variables have scopes, which are delimited by restrictions, inputs,
and assignment operations. We write fv (P), bv (P), fn(P) and bn(P) for the sets
of free and bound variables, and free and bound names of a plain process P .

Example 2. Let PDH = new skA.new skB .(PA | PB) a process that models a
Diffie-Hellman key exchange protocol:

– PA
def
= new rA.newnA.out(c, aenc(〈nA, g(rA)〉, pk(skB))).in(c, yA).
if proj1(adec(yA, skA)) = nA then [xA := f(proj2(adec(yA, skA)), rA)].0

– PB
def
= new rB.in(c, yB).out(c, aenc(〈proj1(adec(yB, skB)), g(rB)〉, pk(skA))).

[xB := f(proj2(adec(yB, skB)), rB)].0

The process PA generates two fresh random numbers rA and nA, sends a message
on the channel c, and waits for a message containing the nonce nA in order to
compute his own view of the key that will be stored in xA. The process PB

proceeds in a similar way and stores the computed value in xB.

Extended processes add a set of restricted names E (the names that are a
priori unknown to the attacker), a sequence of messages Φ (corresponding to
the messages that have been sent so far on public channels) and a substitution σ
which is used to store the messages that have been received as well as those that
have been stored in assignment variables.

Definition 1. An extended process is a tuple (E ;P ;Φ;σ) where E is a set of
names that represents the names that are restricted in P, Φ and σ; P is a mul-
tiset of plain processes where null processes are removed and such that fv (P) ⊆
dom(σ); Φ = {w1 � u1, . . . , wn � un} and σ = {x1 	→ v1, . . . , xm 	→ vm}
are substitutions where u1, . . . , un, v1, . . . , vm are ground terms, and w1, . . . , wn,
x1, . . . , xm are variables.

For the sake of simplicity, we assume that extended processes are name and
variable distinct, i.e. a name (resp. variable) is either free or bound, and in the
latter case, it is at most bound once. We write (E ;P ;Φ) instead of (E ;P ;Φ; ∅).

The semantics is given by a set of labelled rules that allows one to reason about
processes that interact with their environment (see Figure 1). This defines the

relation
�−→ where � is either an input, an output, or a silent action τ . The

relation
tr−−→ where tr denotes a sequence of labels is defined in the usual way

whereas the relation
tr′
==⇒ on processes is defined by: A

tr′
==⇒B if, and only if,

there exists a sequence tr such that A
tr−−→ B and tr′ is obtained by erasing all

occurrences of the silent action τ in tr.

Example 3. Let ΦDH
def
= {w1 � pk(skA), w2 � pk(skB)}. We have that:

({skA, skB};PA | PB;ΦDH)
νw3 .out(c,w3).in(c,w3).νw4.out(c,w4).in(c,w4)
=============================⇒ (E ; ∅;ΦDH � Φ;σ ∪ σ′)

where Φ=EDH
{w3 � u0, w4 � aenc(〈nA, g(rB)〉, pkA)},E={skA, skB, rA, rB , nA},

σ =EDH
{yA 	→ aenc(〈nA, g(rB)〉, pkA), yB 	→ aenc(〈nA, g(rA)〉, pkB)}, and lastly

σ′ =EDH
{xA 	→ f(g(rB), rA), xB 	→ f(g(rA), rB)}. We used pkA (resp. pkB) as a

shorthand for pk(skA) (resp. pk(skB)).

Composing Security Protocols: From Confidentiality to Privacy 329

(E ; {if ϕ then Q1 else Q2} � P ;Φ;σ)
τ−→ (E ;Q1 � P ;Φ;σ) (Then)

if uσ =E vσ for each u = v ∈ ϕ

(E ; {if ϕ then Q1 else Q2} � P ;Φ;σ)
τ−→ (E ;Q2 � P ;Φ;σ) (Else)

if uσ �=E vσ for some u = v ∈ ϕ

(E ; {out(c, u).Q1; in(c, x).Q2} � P ;Φ;σ)
τ−→ (E ;Q1 �Q2 � P ;Φ; σ ∪ {x 	→ uσ})(Comm)

(E ; {[x := v].Q} � P ;Φ;σ)
τ−→ (E ;Q � P ;Φ; σ ∪ {x 	→ vσ}) (Assgn)

(E ; {in(c, z).Q} � P ;Φ; σ)
in(c,M)−−−−−→ (E ;Q � P ;Φ;σ ∪ {z 	→ u}) (In)

if c �∈ E , MΦ = u, fv(M) ⊆ dom(Φ) and fn(M) ∩ E = ∅
(E ; {out(c, u).Q} � P ;Φ; σ)

νwi.out(c,wi)−−−−−−−−−→ (E ;Q � P ;Φ ∪ {wi � uσ}; σ) (Out-T)

if c �∈ E , u is a term of base type, and wi is a variable such that i = |Φ|+ 1

(E ; {new n.Q} � P ;Φ;σ)
τ−→ (E ∪ {n};Q � P ;Φ; σ) (New)

(E ; {!Q} � P ;Φ;σ)
τ−→ (E ; {!Q;Qρ} � P ;Φ; σ) (Repl)

ρ is used to rename bv(Q)/bn(Q) with fresh variables/names

(E ; {P1 | P2} � P ;Φ;σ)
τ−→ (E ; {P1, P2} � P ;Φ;σ) (Par)

where n is a name, c is a name of channel type, u, v are terms of base type, and x, z
are variables of base type.

Fig. 1. Semantics of extended processes

2.3 Process Equivalences

We are particularly interested in security properties expressed using a notion of
equivalence such as those studied in e.g. [5,11]. For instance, the notion of strong
unlinkability can be formalized using an equivalence between two situations: one
where each user can execute the protocol multiple times, and one where each
user can execute the protocol at most once.

We consider here the notion of trace equivalence. Intuitively, two protocols P
and Q are in trace equivalence, denoted P ≈ Q, if whatever the messages they
received (built upon previously sent messages), the resulting sequences of mes-
sages sent on public channels are indistinguishable from the point of view of an
outsider. Given an extended process A, we define its set of traces as follows:

trace(A) = {(tr, new E .Φ) | A tr
=⇒ (E ;P ;Φ;σ) for some process (E ;P ;Φ;σ)}.

The sequence of messages Φ together with the set of restricted names E (those
unknown to the attacker) is called the frame.

Definition 2. We say that a term u is deducible (modulo E) from a frame
φ = new E .Φ, denoted newE .Φ � u, when there exists a term M (called a recipe)
such that fn(M) ∩ E = ∅, fv (M) ⊆ dom(Φ), and MΦ =E u.

Two frames are indistinguishable when the attacker cannot detect the differ-
ence between the two situations they represent.

330 M. Arapinis, V. Cheval, and S. Delaune

Definition 3. Two frames φ1 and φ2 with φi = newE .Φi (i ∈ {1, 2}) are stat-
ically equivalent, denoted by φ1 ∼ φ2, when dom(Φ1) = dom(Φ2), and for all
terms M,N with fn({M,N})∩E = ∅ and fv({M,N}) ⊆ dom(Φ1), we have that:

MΦ1 =E NΦ1, if and only if, MΦ2 =E NΦ2.

Example 4. Consider Φ1 = {w1 � g(rA), w2 � g(rB), w3 � f(g(rA), rB)}, and
Φ2 = {w1 � g(rA), w2 � g(rB), w3 � k}. Let E = {rA, rB, k}. We have that
newE .Φ1 ∼ new E .Φ2 (considering the equational theory EDH). This equivalence
shows that the term f(g(rA), rB) (the Diffie-Hellman key) is indistinguishable
from a random key. This indistinguishability property holds even if the messages
g(rA) and g(rB) have been observed by the attacker.

Two processes are trace equivalent if, whatever the messages they sent and
received, their frames are in static equivalence.

Definition 4. Let A and B be two extended processes, A � B if for every (tr, φ) ∈
trace(A), there exists (tr′, φ′) ∈ trace(B) such that tr = tr′ and φ ∼ φ′. We say
that A and B are trace equivalent, denoted by A ≈ B, if A � B and B � A.

This notion of equivalence allows us to express many interesting privacy-type
properties e.g. vote-privacy, strong versions of anonymity and/or unlinkability.

3 Composition Result: A Simple Setting

It is well-known that even if two protocols are secure in isolation, it is not
possible to compose them in arbitrary ways still preserving their security. This
has already been observed for different kinds of compositions (e.g. parallel [15],
sequential [12]) and when studying standard security properties [13] and even
privacy-type properties [4]. In this section, we introduce some well-known hy-
potheses that are needed to safely compose security protocols.

3.1 Sharing Primitives

A protocol can be used as an oracle by another protocol to decrypt a message,
and then compromise the security of the whole application. To avoid this kind of
interactions, most of the composition results assume that protocols do not share
any primitive or allow a list of standard primitives (e.g. signature, encryption)
to be shared as long as they are tagged in different ways. In this paper, we adopt
the latter hypothesis and consider the fixed common signature:

Σ0 = {sdec, senc, adec, aenc, pk, 〈, 〉, proj1, proj2, sign, check, vk, h}
equipped with the equational theory E0, defined by the following equations:

sdec(senc(x, y), y) = x check(sign(x, y), vk(y)) = x
adec(aenc(x, pk(y)), y) = x proji(〈x1, x2〉) = xi with i ∈ {1, 2}

This allows us to model symmetric/asymmetric encryption, concatenation, sig-
natures, and hash functions. We consider a type seed which is a subsort of the

Composing Security Protocols: From Confidentiality to Privacy 331

base type that only contains names. We denote by pk(sk) (resp. vk(sk)) the pub-
lic key (resp. the verification key) associated to the private key sk which has to
be a name of type seed. We allow protocols to both rely on Σ0 provided that
each application of aenc, senc, sign, and h is tagged (using disjoint sets of tags
for the two protocols), and adequate tests are performed when receiving a mes-
sage to ensure that the tags are correct. Actually, we consider the same tagging
mechanism as the one we have introduced in [4] (see Definitions 4 and 5 in [4]).
In particular, we rely on the same notation: we use the two function symbols
tag/untag, and the equation untag(tag(x)) = x to model the interactions between
them. However, since we would like to be able to iterate our composition results
(in order to compose e.g. three protocols), we consider a family of such function
symbols: tagi/untagi with i ∈ N. Moreover, a process may be tagged using a
subset of such symbols (and not only one). This gives us enough flexibility to
allow different kinds of compositions, and to iterate our composition results.

Example 5. In order to compose the protocol introduced in Example 2 with
another one that also relies on the primitive aenc, we may want to consider a
tagged version of this protocol. The tagged version (using tag1/untag1) of PB is
given below (with u = untag1(adec(yB, skB))):⎧⎪⎪⎨

⎪⎪⎩

new rB.in(c, yB).
if tag1(untag1(adec(yB, skB))) = adec(yB , skB) then
if u = 〈proj1(u), proj2(u)〉 then
out(c, aenc(tag1(〈proj1(u), g(rB)〉), pk(skA))).[xB := f(proj2(u), rB)].0

The first test allows one to check that yB is an encryption tagged with tag1
and the second one is used to ensure that the content of this encryption is a pair
as expected. Then, the process outputs the encrypted message tagged with tag1.

3.2 Revealing Shared Keys

Consider two protocols, one whose security relies on the secrecy of a shared
key whereas the other protocol reveals it. Such a situation will compromise the
security of the whole application. It is therefore important to ensure that shared
keys are not revealed. To formalise this hypothesis, and to express the sharing
of long-term keys, we introduce the notion of composition context. This will help
us describe under which long-term keys the composition has to be done.

A composition context C is defined by the grammar:

C := | new n. C | !C where n is a name of base type.

Definition 5. Let C be a composition context, A be an extended process of the
form (E ;C[P];Φ), key ∈ {n, pk(n), vk(n) | n occurs in C}, and c, s two fresh
names. We say that A reveals key when

(E ∪ {s};C[P | in(c, x). if x = key then out(c, s)];Φ)
tr
=⇒ (E ′;P ′;Φ′;σ′)

for some E ′, P ′, Φ′, and σ′ such that new E ′.Φ′ � s.

332 M. Arapinis, V. Cheval, and S. Delaune

3.3 A First Composition Result

Before stating our first result regarding parallel composition for confidentiality
properties, we gather the required hypotheses in the following definition.

Definition 6. Let C be a composition context and E0 be a finite set of names
of base type. Let P and Q be two plain processes together with their frames Φ
and Ψ . We say that P/Φ and Q/Ψ are composable under E0 and C when fv (P) =
fv(Q) = ∅, dom(Φ) ∩ dom(Ψ) = ∅, and

1. P (resp. Q) is built over Σα ∪ Σ0 (resp. Σβ ∪ Σ0), whereas Φ (resp. Ψ) is
built over Σα ∪ {pk, vk, 〈 〉} (resp. Σβ ∪ {pk, vk, 〈 〉}), Σα ∩ Σβ = ∅, and P
(resp. Q) is tagged;

2. E0 ∩ (fn(C[P]) ∪ fn(Φ)) ∩ (fn(C[Q]) ∪ fn(Ψ)) = ∅; and
3. (E0;C[P];Φ) (resp. (E0;C[Q];Ψ)) does not reveal any key in

{n, pk(n), vk(n) | n occurs in fn(P)∩fn(Q)∩bn(C)}.

Condition 1 is about sharing primitives, whereas Conditions 2 and 3 ensure
that keys are shared via the composition context C only (not via E0), and are
not revealed by each protocol individually.

We are now able to state the following theorem which is in the same vein as
those obtained previously in e.g. [15,13]. However, the setting we consider here
is more general. In particular, we consider arbitrary primitives, processes with
else branches, and private channels.

Theorem 1. Let C be a composition context, E0 be a finite set of names of base
type, and s be a name that occurs in C. Let P and Q be two plain processes
together with their frames Φ and Ψ , and assume that P/Φ and Q/Ψ are com-
posable under E0 and C. If (E0;C[P];Φ) and (E0;C[Q];Ψ) do not reveal s then
(E0;C[P | Q];Φ � Ψ) does not reveal s.

As most of the proofs of similar composition results, we show this result going
back to the disjoint case. Indeed, it is well-known that parallel composition works
well when protocols do not share any data (the so-called disjoint case). We show
that all the conditions are satisfied to apply our generic result (presented only
in the full version of this paper) that allows one to go back to the disjoint case.
Thus, we obtain that the disjoint case D = (E0;C[P] | C[Q];Φ � Ψ) and the
shared case S = (E0;C[P | Q];Φ � Ψ) are in trace equivalence, and this allows
us to conclude.

4 The Case of Key-Exchange Protocols

Our goal is to go beyond parallel composition, and to further consider the par-
ticular case of key-exchange protocols. Assume that P = new ñ.(P1 | P2) is a
protocol that establishes a key between two parties. The goal of P is to establish
a shared session key between P1 and P2. Assume that P1 stores the key in the
variable x1, while P2 stores it in the variable x2, and then consider a protocol Q
that uses the values stored in x1/x2 as a fresh key to secure communications.

Composing Security Protocols: From Confidentiality to Privacy 333

4.1 What Is a Good Key Exchange Protocol?

In this setting, sharing between P and Q is achieved through the composition
context as well as through assignment variables x1 and x2. The idea is to abstract
these values with fresh names when we analyse Q in isolation. However, in order
to abstract them in the right way, we need to know their values (or at least
whether they are equal or not). This is the purpose of the property stated below.

Definition 7. Let C be a composition context and E0 be a finite set of names.
Let P1[] (resp. P2[]) be a plain process with a hole in the scope of an assignment
of the form [x1 := t1] (resp. [x2 := t2]), and Φ be a frame.

We say that P1/P2/Φ is a good key-exchange protocol under E0 and C when
(E0;Pgood;Φ) does not reveal bad where Pgood is defined as follows:

Pgood = new bad .new d.
(
C[new id.(P1[out(d, 〈x1, id〉)] | P2[out(d, 〈x2, id〉)])]

| in(d, x).in(d, y).if proj1(x) = proj1(y) ∧ proj2(x) �= proj2(y) then out(c, bad)

| in(d, x).in(d, y).if proj1(x) �= proj1(y) ∧ proj2(x) = proj2(y) then out(c, bad)

| in(d, x).in(c, z).if z ∈ {proj1(x), pk(proj1(x)), vk(proj1(x))} then out(c, bad)
)

where bad is a fresh name of base type, and c, d are fresh names of channel type.

The expressions u �= v and u ∈ {v1, . . . , vn} used above are convenient nota-
tions that can be rigorously expressed using nested conditionals. Roughly, the
property expresses that x1 and x2 are assigned to the same value if, and only if,
they are joined together, i.e. they share the same id. In particular, two instances
of the role P1 (resp. P2) cannot assign their variable with the same value: a fresh
key is established at each session. The property also ensures that the data shared
through x1/x2 are not revealed.

Example 6. We have that PA/PB/ΦDH described in Example 2, as well as its
tagged version (see Example 5) are good key-exchange protocols under E0 =
{skA, skB} and C = . This corresponds to a scenario where we consider only a
single execution of the protocol (no replication).

Actually, the property mentioned above is quite strong, and never satisfied
when the context C under study ends with a replication, i.e. when C is of the
form C ′[!]. To cope with this situation, we consider another version of this
property. When C is of the form C′[!], we define Pgood as follows (where r1
and r2 are two additional fresh names of base type):

new bad , d, r1, r2.
(
C′[new id.!(P1[out(d, 〈x1, id, r1〉)] | P2[out(d, 〈x2, id, r2〉)])]

| in(d, x).in(d, y).if proj1(x) = proj1(y) ∧ proj2(x) �= proj2(y) then out(c, bad)

| in(d, x).in(d, y).if proj1(x) = proj1(y) ∧ proj3(x) = proj3(y) then out(c, bad)

| in(d, x).in(c, z).if z ∈ {proj1(x), pk(proj1(x)), vk(proj1(x))} then out(c, bad)
)

Note that the id is now generated before the last replication, and thus is not
uniquely associated to an instance of P1/P2. Instead several instances of P1/P2

may now share the same id as soon as they are identical. This gives us more flexi-
bility. The triplet 〈u1, u2, u3〉 and the operator proj3(u) used above are convenient

334 M. Arapinis, V. Cheval, and S. Delaune

notations that can be expressed using pairs. This new version forces distinct val-
ues in the assignment variables for each instance of P1 (resp. P2) through the 3rd
line. However, we do not fix in advance which particular instance of P1 and P2

should be matched, as in the first version.

Example 7. We have that PA/PB/ΦDH as well as its tagged version are good
key-exchange protocols under E0 = {skA, skB} and C =! .

4.2 Do We Need to Tag Pairs?

When analysing Q in isolation, the values stored in the assignment variables
x1/x2 are abstracted by fresh names. Since P and Q share the common signa-
ture Σ0, we need an additional hypothesis to ensure that in any execution, the
values assigned to the variables x1/x2 are not of the form 〈u1, u2〉, pk(u), or
vk(u). These symbols are those of the common signature that are not tagged,
thus abstracting them by fresh names in Q would not be safe. This has already
been highlighted in [12]. They however left as future work the definition of the
needed hypothesis and simply assume that each operator of the common signa-
ture has to be tagged. Here, we formally express the required hypothesis.

Definition 8. An extended process A satisfies the abstractability property if

for any (E ;P ;Φ;σ) such that A
tr
=⇒(E ;P ;Φ;σ), for any x ∈ dom(σ) which corre-

sponds to an assignment variable, for any u1, u2, we have that xσ �=E 〈u1, u2〉,
xσ �=E pk(u1), and xσ �=E vk(u1).

Note also that, in [12], the common signature is restricted to symmetric en-
cryption and pairing only. They do not consider asymmetric encryption, and
signature. Thus, our composition result generalizes theirs considering both a
richer common signature, and a lighter tagging scheme (we do not tag pairs).

4.3 Composition Result

We retrieve the following result which is actually a generalization of two theorems
established in [12] and stated for specific composition contexts.

Theorem 2. Let C be a composition context, E0 be a finite set of names of
base type, and s be a name that occurs in C. Let P1[] (resp. P2[]) be a plain
process without replication and with an hole in the scope of an assignment of
the form [x1 := t1] (resp. [x2 := t2]). Let Q1 (resp. Q2) be a plain process such
that fv (Q1) ⊆ {x1} (resp. fv (Q2) ⊆ {x2}), and Φ and Ψ be two frames. Let
P = P1[0] | P2[0] and Q = new k.[x1 := k].[x2 := k].(Q1 | Q2) for some fresh
name k, and assume that:

1. P/Φ and Q/Ψ are composable under E0 and C;

2. (E0;C[Q];Ψ) does not reveal k, pk(k), vk(k);

3. (E0;C[P];Φ) satisfies the abstractability property; and

4. P1/P2/Φ is a good key-exchange protocol under E0 and C.

Composing Security Protocols: From Confidentiality to Privacy 335

If (E0;C[P];Φ) and (E0;C[Q];Ψ) do not reveal s then (E0;C[P1[Q1]|P2[Q2]];Φ � Ψ)
does not reveal s.

Basically, we prove this result relying on our generic composition result.
In [12], they do not require P to be good but only ask for secrecy of the shared
key. In particular they do not express any freshness or agreement property about
the established key. Actually, when considering a simple composition context
without replication, freshness is trivial (since there is only one session). More-
over, in their setting, agreement is not important since they do not have else
branches. The analysis of Q considering that both parties have agreed on the
key corresponds to the worst scenario. Note that this is not true anymore in pres-
ence of else branches. The following example shows that as soon as else branches
are allowed, as it is the case in the present work, agreement becomes important.

Example 8. Consider a simple situation where:

– P1[0] = newk1.[x1 := k1].0 and P2[0] = newk2.[x2 := k2].0;
– Q1 = if x1 = x2 then out(c, ok) else out(c, s) and Q2 = 0.

Let E0 = ∅, and C = new s. . We consider the processes P = P1[0] | P2[0], and
Q = new k.[x1 := k].[x2 := k].(Q1 | Q2) and we assume that the frames Φ and Ψ
are empty. We clearly have that (E0;C[P];Φ) and (E0;C[Q];Ψ) do not reveal s
whereas (E0;C[P1[Q1] | P2[Q2];Φ � Ψ) does. The only hypothesis of Theorem 2
that is violated is the fact that P1/P2/Φ is not a good key-exchange protocol
due to a lack of agreement on the key which is generated (bad can be emitted
thanks to the 3rd line of the process Pgood given in Definition 7).

Now, regarding their second theorem corresponding to a context of the form
new s. ! , as before agreement is not mandatory but freshness of the key estab-
lished by the protocol P is crucial. As illustrated by the following example, this
hypothesis is missing in the theorem stated in [12] (Theorem 3).

Example 9. Consider A = ({kP }; new s.!([x1 := kP].0 | [x2 := kP].0); ∅), as well
as B = ({kP }; new s. !Q; ∅) where Q = new k.[x1 := k].[x2 := k].(Q1 | Q2) with

Q1 = out(c, senc(senc(s, k), k)); and Q2 = in(c, x).out(c, sdec(x, k)).

Note that neither A nor B reveals s. In particular, the process Q1 emits the
secret s encrypted twice with a fresh key k, but Q2 only allows us to remove one
level of encryption with k. Now, if we plug the key-exchange protocol given above
with no guarantee of freshness (the same key is established at each session), the
resulting process, i.e. (E0;C[P1[Q1] | P2[Q2]]; ∅) does reveal s.

Note that this example is not a counter example of our Theorem 2: P1/P2/∅
is not a good key-exchange protocol according to our definition.

5 Dealing with Equivalence-Based Properties

Our ultimate goal is to analyse privacy-type properties in a modular way. In [4],
we propose several composition results w.r.t. privacy-type properties, but for
parallel composition only. Here, we want to go beyond parallel composition, and
consider the case of key-exchange protocols.

336 M. Arapinis, V. Cheval, and S. Delaune

5.1 A Problematic Example

Even in a quite simple setting (the shared keys are not revealed, protocols do
not share any primitives), such a sequential composition result does not hold.
Let C = new k.! new k1.! new k2. be a composition context, yes/no, ok/ko be
public constants, u = senc(〈k1, k2〉, k), and consider the following processes:

Q(z1, z2) = out(c, u).in(c, x).if x = u then 0 else
if proj1(sdec(x, k)) = k1 thenout(c, z1) elseout(c, z2)

P [] = out(c, u).
(

| in(c, x).if x = u then 0 else
if proj1(sdec(x, k)) = k1 thenout(c, ok) else out(c, ko)

)
We have that C[P [0]] ≈ C[P [0]] and also that C[Q(yes, no)] ≈ C[Q(no, yes)].

This latter equivalence is non-trivial. Intuitively, when C[Q(yes, no)] unfolds its
outermost ! and then performs an output, then C[Q(no, yes)] has to mimic this
step by unfolding its innermost ! and by performing the only available output.
This will allow it to react in the same way as C[Q(yes, no)] in case encrypted
messages are used to fill some input actions. Since the two processes P [0] and
Q(yes, no) (resp. Q(no, yes)) are almost “disjoint”, we could expect the equiva-
lence C[P [Q(yes, no)]] ≈ C[P [Q(no, yes)]] to hold. Actually, this equivalence does
not hold. The presence of the process P gives to the attacker some additional
distinguishing power. In particular, through the outputs ok/ko outputted by P ,
the attacker will learn which ! has been unfolded. This result holds even if we
rename function symbols so that protocols P and Q do not share any primitives.
The problem is that the two equivalences we want to compose hold for differ-
ent reasons, i.e. by unfolding the replications in a different and incompatible
way. Thus, when the composed process C[P [Q(yes, no)]] reaches a point where
Q(yes, no) can be executed, on the other side, the process Q(no, yes) is ready
to be executed but the instance that is available is not the one that was used
when establishing the equivalence C[Q(yes, no)] ≈ C[Q(no, yes)]. Therefore, in
order to establish equivalence-based properties in a modular way, we rely on a
stronger notion of equivalence, namely diff-equivalence, that will ensure that the
two “small” equivalences are satisfied in a compatible way.

Note that this problem does not arise when considering reachability properties
and/or parallel composition. In particular, we have that:

C[P [0] | Q(yes, no)] ≈ C[P [0] | Q(no, yes)].

5.2 Biprocesses and Diff-Equivalence

We consider pairs of processes, called biprocesses, that have the same structure
and differ only in the terms and tests that they contain. Following the approach
of [9], we introduce a special symbol diff of arity 2 in our signature. The idea
being to use this diff operator to indicate when the terms manipulated by the
processes are different. Given a biprocess B, we define two processes fst(B) and
snd(B) as follows: fst(B) is obtained by replacing each occurrence of diff(M,M ′)
(resp. diff(ϕ, ϕ′)) with M (resp. ϕ), and similarly snd(B) is obtained by replacing
each occurrence of diff(M,M ′) (resp. diff(ϕ, ϕ′)) with M ′ (resp. ϕ′).

Composing Security Protocols: From Confidentiality to Privacy 337

The semantics of biprocesses is defined as expected via a relation that ex-
presses when and how a biprocess may evolve. A biprocess reduces if, and only
if, both sides of the biprocess reduce in the same way: a communication succeeds
on both sides, a conditional has to be evaluated in the same way in both sides
too. For instance, the then and else rules are as follows:

(E ; {if diff(ϕL, ϕR) then Q1 else Q2} � P ;Φ;σ)
τ−→bi (E ;Q1 � P ;Φ;σ)

if uσ =E vσ for each u = v ∈ ϕL, and u′σ =E v′σ for each u′ = v′ ∈ ϕR

(E ; {if diff(ϕL, ϕR) then Q1 else Q2} � P ;Φ;σ)
τ−→bi (E ;Q2 � P ;Φ;σ)

if uσ �=E vσ for some u = v ∈ ϕL, and u′σ �=E v′σ for some u′ = v′ ∈ ϕR

When the two sides of the biprocess reduce in different ways, the biprocess

blocks. The relation
tr
=⇒bi on biprocesses is defined as for processes. This leads

us to the following notion of diff-equivalence.

Definition 9. An extended biprocess B0 satisfies diff-equivalence if for every

biprocess B = (E ;P ;Φ;σ) such that B0
tr
=⇒bi B for some trace tr, we have that

1. new E .fst(Φ) ∼ new E .snd(Φ)
2. if fst(B)

�−→ AL then there exists B′ such that B
�−→bi B

′ and fst(B′) = AL

(and similarly for snd).

The notions introduced so far on processes are extended as expected on bipro-
cesses: the property has to hold on both fst(B) and snd(B). Sometimes, we also
say that the biprocessB is in trace equivalence instead of writing fst(B) ≈ snd(B).

As expected, this notion of diff-equivalence is actually stronger than the usual
notion of trace equivalence.

Lemma 1. A biprocess B that satisfies diff-equivalence is in trace equivalence.

6 Composition Results for Diff-Equivalence

We first consider the case of parallel composition. This result is in the spirit
of the one established in [4]. However, we adapt it to diff-equivalence in order
to combine it with the composition result we obtained for the the case of key-
exchange protocol (see Theorem 4).

Theorem 3. Let C be a composition context and E0 be a finite set of names
of base type. Let P and Q be two plain biprocesses together with their frames Φ
and Ψ , and assume that P/Φ and Q/Ψ are composable under E0 and C.

If (E0;C[P];Φ) and (E0;C[Q];Ψ) satisfy diff-equivalence (resp. trace equiva-
lence) then the biprocess (E0;C[P | Q];Φ � Ψ) satisfies diff-equivalence (resp.
trace equivalence).

Proof. (sketch) As for the proof for Theorem 1, parallel composition works
well when processes do not share any data. Hence, we easily deduce that D =
(E0;C[P] | C[Q];Φ � Ψ) satisfies the diff-equivalence (resp. trace equivalence).

338 M. Arapinis, V. Cheval, and S. Delaune

Then, we compare the behaviours of the biprocess D to those of the biprocess
S = (E0;C[P | Q];Φ � Ψ). More precisely, this allows us to establish that fst(D)
and fst(S) are in diff-equivalence (as well as snd(D) and snd(S)), and then we
conclude relying on the transitivity of the equivalence. ��

Now, regarding sequential composition and the particular case of key-exchange
protocols, we obtain the following composition result.

Theorem 4. Let C be a composition context and E0 be a finite set of names of
base type. Let P1[] (resp. P2[]) be a plain biprocess without replication and with
an hole in the scope of an assignment of the form [x1 := t1] (resp. [x2 := t2]).
Let Q1 (resp. Q2) be a plain biprocess such that fv (Q1) ⊆ {x1} (resp. fv (Q2) ⊆
{x2}), and Φ and Ψ be two frames. Let P = P1[0] | P2[0] and Q = new k.[x1 :=
k].[x2 := k].(Q1 | Q2) for some fresh name k, and assume that:

1. P/Φ and Q/Ψ are composable under E0 and C;

2. (E0;C[Q];Ψ) does not reveal k, pk(k), vk(k);

3. (E0;C[P];Φ) satisfies the abstractability property; and

4. P1/P2/Φ is a good key-exchange protocol under E0 and C.

Let P+=P1[out(d, x1)] | P2[out(d, x2)] | in(d, x).in(d, y).ifx = y then 0 else 0.
If the biprocesses (E0; new d.C[P+];Φ) and (E0;C[Q];Ψ) satisfy diff-equivalence
then (E0;C[P1[Q1] | P2[Q2]];Φ � Ψ) satisfies diff-equivalence.

We require (E0; new d.C[P+];Φ) to be in diff-equivalence (and not simply
(E0;C[P];Φ)). This ensures that the same equalities between values of assign-
ment variables hold on both sides of the equivalence. Actually, when the compo-
sition context C under study is not of the form C′[!], and under the hypothesis
that P1/P2/Φ is a good key-exchange protocol under E0 and C, we have that
these two requirements coincide. However, the stronger hypothesis is important
to conclude when C is of the form C′[!]. Indeed, in this case, we do not know
in advance what are the instances of P1 and P2 that will be “matched”. This is
not a problem but to conclude about the diff-equivalence of the whole process
(i.e. (E0;C[P1[Q1] | P2[Q2]];Φ � Ψ)), we need to ensure that such a matching is
the same on both sides of the equivalence. Note that to conclude about trace
equivalence only, this additional requirement is actually not necessary.

7 Case Studies

Many applications rely on several protocols running in composition (parallel,
sequential, or nested). In this section, we show that our results can help in the
analysis of this sort of complex system. Our main goal is to show that the extra
hypotheses needed to analyse an application in a moduar way are reasonnable.

7.1 3G Mobile Phones

We look at confidentiality and privacy guarantees provided by the AKA protocol
and the Submit SMS procedure (sSMS) when run in composition as specified
by the 3GPP consortium in [2].

Composing Security Protocols: From Confidentiality to Privacy 339

Protocols Description. The sSMS protocol allows a mobile station (MS) to send
an SMS to another MS through a serving network (SN). The confidentiality of
the sent SMS relies on a session key ck established through the execution of the
AKA protocol between the MS and the SN. The AKA protocol achieves mutual
authentication between a MS and a SN, and allows them to establish a shared
session key ck . The AKA protocol consists in the exchange of two messages: the
authentication request and the authentication response. The AKA protocol as
deployed in real 3G telecommunication systems presents a linkability attack [5],
and thus we consider here its fixed version as described in [5]. At the end of
a successful execution of this protocol, both parties should agree on a fresh
ciphering key ck . This situation can be modelled in our calculus as follows:

new skSN . !new IMSI . new kIMSI . !new sqn. new sms .

(AKASN [sSMSSN] | AKAMS [sSMSMS])

where skSN represents the private key of the network; while IMSI and kIMSI

represent respectively the long-term identity and the symmetric key of the MS.
The name sqn models the sequence number on which SN and MS are synchro-
nised. The two subprocessesAKAMS and sSMSMS (resp. AKASN , and sSMSSN)
model one session of the MS’s (resp. SN’s) side of the AKA, and sSMS protocols
respectively. Each MS, identified by its identity IMSI and its key kIMSI , can run
multiple times the AKA protocol followed by the sSMS protocol.

Security Analysis. We explain how some confidentiality and privacy properties
of the AKA protocol and the sSMS procedure can be derived relying on our
composition results. We do not need to tag the protocols under study to perform
our analysis since they do not share any primitive but the pairing operator. Note
that the AKA protocol can not be modelled in the calculus given in [12] due to
the need of non-trivial else branches. Moreover, to enable the use of ProVerif,
we had to abstract some details of the considered protocols that ProVerif cannot
handle. In particular, we model timestamps using nonces, we replace the use of
the xor operation by symmetric encryption, and we assume that the two parties
are “magically” synchronised on their counter value.

Strong unlinkability requires that an observer does not see the difference between
the two following scenarios: (i) a same mobile phone sends several SMSs; or (ii)
multiple mobile phones send at most one SMS each. To model this requirement,
we consider the composition context1:

CU []
def
= !new IMSI 1. new kIMSI 1. !new IMSI 2. new kIMSI 2.

let IMSI = diff[IMSI 1, IMSI 2] in let kIMSI = diff[kIMSI 1, kIMSI 2] in
new sqn. new sms.

To check if the considered 3G protocols satisfy strong unlinkability, one needs to
check if the following biprocess satisfies diff-equivalence (Φ0 = {w1 � pk(skSN)}):

(skSN ;CU [AKASN [sSMSSN] | AKAMS [sSMSMS]];Φ0)

1 We use let x = M in P to denote the process P{M/x}.

340 M. Arapinis, V. Cheval, and S. Delaune

Hypotheses (1-4) stated in Theorem 4 are satisfied, and thus this equivalence
can be derived from the following two “smaller” diff-equivalences:

(skSN ; new d. CU [AKA+];Φ0) and (skSN ;C′
U [sSMS]; ∅)

– sSMS
def
= sSMSSN | sSMSMS ,

– AKA+ def
= AKASN [out(d, xckSN)] | AKAMS [out(d, xckMS)] |

in(d, x). in(d, y). if x = y then 0 else 0

– C ′
U []

def
= CU [new ck.let xckSN = ck in let xckMS = ck in].

Weak secrecy requires that the sent/received SMS is not deducible by an out-
sider, and can be modelled using the context

CWS []
def
=!new IMSI . new kIMSI . !new sqn.new sms. .

The composition context CWS is the same as fst(CU) (up to some renaming),
thus Hypotheses (1-4) of Theorem 2 also hold and we derive the weak secrecy
property by simply analysing this property on AKA and sSMS in isolation.

Strong secrecy means that an outsider should not be able to distinguish the
situation where sms1 is sent (resp. received), from the situation where sms2 is
sent (resp. received), although he might know the content of sms1 and sms2.
This can be modelled using the following composition context:

CSS []
def
=!new IMSI . new kIMSI . !new sqn. let sms = diff[sms1, sms2] in

where sms1 and sms2 are two free names known to the attacker. Again, our
Theorem 4 allows us to reason about this property in a modular way.

Under the abstractions briefly explained above, all the hypotheses have been
checked using ProVerif. Actually, it happens that ProVerif is also able to conclude
on the orignal protocol (the one without decomposition) for the three security
properties mentioned above. Note that a less abstract model of the same protocol
(e.g. the one with the xor operator) would have required us to rely on a manual
proof. In such a situation, our composition result allows us to reduce a big
equivalence that existing tools cannot handle, to a much smaller one which is a
more manageable work in case the proof has to be done manually.

7.2 E-passport Application

We look at privacy guarantees provided by three protocols of the e-passport
application when run in composition as specified in [1].

Protocols Description. The information stored in the chip of the passport is
organised in data groups (dg1 to dg19): dg5 contains a JPEG copy of the dis-
played picture, dg7 contains the displayed signature, whereas the verification
key vk(skP) of the passport, together with its certificate sign(vk(skP), skDS) is-
sued by the Document Signer authority are stored in dg15. For authentication
purposes, a hash of all the dgs together with a signature on this hash value are
stored in a separate file, the Security Object Document:

sod
def
= 〈sign(h(dg1, . . . , dg19), skDS), h(dg1, . . . , dg19)〉.

Composing Security Protocols: From Confidentiality to Privacy 341

The ICAO standard specifies several protocols through which this information
can be accessed [1]. First, the Basic Access Control (BAC) protocol establishes
a key seed kseed from which a session key kenc is derived. The purpose of kenc is
to prevent skimming and eavesdropping on the subsequent communication with
the e-passport. The security of the BAC protocol relies on two master keys,
ke and km. Once the BAC protocol has been successfully executed, the reader
gains access to the information stored in the RFID tag through the Passive
Authentication (PA) and the Active Authentication (AA) protocols that can be
executed in any order. This situation can be modelled in our calculus:

P
def
= new skDS . !new ke. new km. new skP .new id . new sig. new pic. . . .

!(BACR[PAR | AAR] | BACP [PAP | AAP])

where id , sig, pic, ... represent the name, the signature, the displayed picture, etc
of the e-passport’s owner, i.e. the data stored in the dgs (1-14) and (16-19). The
subprocesses BACP , PAP and AAP (resp. BACR, PAR and AAR) model one
session of the passport’s (resp. reader’s) side of the BAC, PA and AA protocols
respectively. The name skDS models the signing key of the Document Signing
authority used in all passports. Each passport (identified by its master keys ke
and km , its signing key skP , the owner’s name, picture, signature, ...) can run
multiple times the BAC protocol followed by the PA and AA protocols.

Security Analysis. We explain below how strong anonymity of these three pro-
tocols executed together can be derived from the analysis performed on each
protocol in isolation. In [4], as sequential composition could not be handled, the
analysis of the e-passports application had to exclude the execution of the BAC
protocol. Instead, it was assumed that the key kenc is “magically” pre-shared
between the passport and the reader. Thanks to our Theorem 4, we are now able
to complete the analysis of the e-passport application.

To express strong anonymity, we need on the one hand to consider a system
in which the particular e-passport with publicly known id1, sig1, pic1, etc. is
being executed, while on the other hand it is a different e-passport with publicly
known id2, sig2, pic2, etc. which is being executed. We consider the context:

CA[]
def
=!new ke. new km . new skP .let id = diff[id1, id2] in . . . !

This composition context differs in the e-passport being executed on the left-
hand process and on the right-hand process. In other words, the system satisfies
anonymity if an observer cannot distinguish the situation where the e-passport
with publicly known id1, sig1, pic1, etc. is being executed, from the situation
where it is another e-passport which is being executed. To check if the tagged
version of the e-passport application (we assume here that BAC, PA, and AA are
tagged in different ways) preserves strong anonymity, one thus needs to check if
the following biprocess satisfies diff-equivalence (with Φ0 = {w1 � vk(skDS)}):

(skDS ;CA[BAC
R[PAR | AAR] | BACP [PAP | AAP]];Φ0)

We can instead check whether BAC, PA and AA satisfy anonymity in isola-
tion, i.e. if the following three diff-equivalences hold:

342 M. Arapinis, V. Cheval, and S. Delaune

(skDS ; new d. CA[BAC
+]; ∅) (α) (skDS ;C

′
A[PA

R | PAP];Φ0) (β)

(skDS ;C
′
A[AA

R | AAP]; ∅) (γ)
where

– BAC+ def
= BACR[out(d, xkencR)] | BACP [out(d, xkencP)]

| in(d, x). in(d, y). ifx = y then 0 else 0;

– C ′
A[]

def
= CA[C

′′
A[]]; and

– C′′
A[]

def
= new kenc. let xkencR = kenc in let xkencP = kenc in .

Then, applying Theorem 3 to (β) and (γ) we derive that the following biprocess
satisfies diff-equivalence:

(skDS ;C′
A[PA

R | AAR | PAP | AAP];Φ0) (δ).

and applying Theorem 4 to (α) and (δ), we derive the required diff-equivalence:

(skDS ;CA[BAC
R[PAR | AAR] | BACP [PAP | AAP]];Φ0)

Note that we can do so because Hypotheses (1-4) stated in Theorem 4 are
satisfied, and in particular because BACR/BACP /∅ is a good key-exchange pro-
tocol under {skDS} and CA. Again, all the hypotheses have been checked using
ProVerif. Actually, it happens that ProVerif is also able to directly conclude on
the whole system.

Unfortunately, our approach does not apply to perform a modular analysis
of strong unlinkability. The BAC protocol does not satisfy the diff-equivalence
needed to express such a security property, and this hypothesis is mandatory to
apply our composition result.

8 Conclusion

We investigate composition results for reachability properties as well as privacy-
type properties expressed using a notion of equivalence. Relying on a generic
composition result, we derive parallel composition results, and we study the
particular case of key-exchange protocols under various composition contexts.

All these results work in a quite general setting, e.g. processes may have
non trivial else branches, we consider arbitrary primitives expressed using an
equational theory, and processes may even share some standard primitives as
long as they are tagged in different ways. We illustrate the usefulness of our
results through the mobile phone and e-passport applications.

We believe that our generic result could be used to derive further composition
results. We may want for instance to relax the notion of being a good protocol
at the price of studying a less ideal scenario when analysing the protocol Q in
isolation. We may also want to consider situations where sub-protocols sharing
some data are arbitrarily interleaved. Moreover, even if we consider arbitrary
primitives, sub-protocols can only share some standard primitives provided that
they are tagged. It would be nice to relax these conditions. This would allow one
to compose protocols (and not their tagged versions) or to compose protocols
that both rely on primitives for which no tagging scheme actually exists (e.g.
exclusive-or).

Composing Security Protocols: From Confidentiality to Privacy 343

References

1. PKI for machine readable travel documents offering ICC read-only access. Techni-
cal report, International Civil Aviation Organization (2004)

2. 3GPP. Technical specification group services and system aspects; 3G security; secu-
rity architecture (release 9). Technical report, 3rd Generation Partnership Project
(2010)

3. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proc. 28th Symposium on Principles of Programming Languages, POPL 2001
(2001)

4. Arapinis, M., Cheval, V., Delaune, S.: Verifying privacy-type properties in a mod-
ular way. In: Proc. 25th IEEE Computer Security Foundations Symposium, CSF
2012 (2012)

5. Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M., Golde, N., Redon, K., Bor-
gaonkar, R.: New privacy issues in mobile telephony: fix and verification. In: ACM
Conference on Computer and Communications Security (2012)

6. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Tobarra, M.L.: Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based single
sign-on for google apps. In: Proc. 6th ACM Workshop on Formal Methods in
Security Engineering, FMSE 2008 (2008)

7. Armando, A., et al.: The AVANTSSAR Platform for the Automated Validation of
Trust and Security of Service-Oriented Architectures. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 267–282. Springer, Heidelberg (2012)

8. Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: Proc. 45th Symposium on Foundations of
Computer Science, FOCS 2004 (2004)

9. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming (2008)

10. Böhl, F., Unruh, D.: Symbolic universal composability. In: Proc. 26th Computer
Security Foundations Symposium, CSF 2013 (2013)

11. Bruso, M., Chatzikokolakis, K., den Hartog, J.: Formal verification of privacy for
RFID systems. In: Proc. 23rd Computer Security Foundations Symposium, CSF
2010 (2010)

12. Ciobâcă, Ş., Cortier, V.: Protocol composition for arbitrary primitives. In: Proc.
of the 23rd IEEE Computer Security Foundations Symposium, CSF 2010 (2010)

13. Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods in
System Design 34(1), 1–36 (2009)

14. Groß, T., Mödersheim, S.: Vertical protocol composition. In: Proc. 24th Computer
Security Foundations Symposium, CSF 2011 (2011)

15. Guttman, J.D., Thayer, F.J.: Protocol independence through disjoint encryption.
In: Proc. 13th Computer Security Foundations Workshop, CSFW 2000 (2000)

16. Küsters, R., Tuengerthal, M.: Composition Theorems Without Pre-Established
Session Identifiers. In: Proc. 18th Conference on Computer and Communications
Security, CCS 2011 (2011)

17. Mödersheim, S., Viganò, L.: Secure pseudonymous channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg
(2009)

18. Tiu, A., Dawson, J.E.: Automating open bisimulation checking for the spi calculus.
In: Proc. 23rd Computer Security Foundations Symposium, CSF 2010 (2010)

PriCL: Creating a Precedent, a Framework

for Reasoning about Privacy Case Law

Michael Backes, Fabian Bendun, Jörg Hoffmann, and Ninja Marnau

CISPA, Saarland University
{backes,bendun,hoffmann,marnau}@cs.uni-saarland.de

Abstract. We introduce PriCL: the first framework for expressing and
automatically reasoning about privacy case law by means of precedent.
PriCL is parametric in an underlying logic for expressing world prop-
erties, and provides support for court decisions, their justification, the
circumstances in which the justification applies as well as court hierar-
chies. Moreover, the framework offers a tight connection between privacy
case law and the notion of norms that underlies existing rule-based pri-
vacy research. In terms of automation, we identify the major reasoning
tasks for privacy cases such as deducing legal permissions or extract-
ing norms. For solving these tasks, we provide generic algorithms that
have particularly efficient realizations within an expressive underlying
logic. Finally, we derive a definition of deducibility based on legal con-
cepts and subsequently propose an equivalent characterization in terms
of logic satisfiability.

1 Introduction

Privacy regulations such as HIPAA, COPPA, or GLBA in the United States
impose legal grounds for privacy [25,30,31]. In order to effectively reason about
such regulations, e.g., for checking compliance, it is instrumental to come up
with suitable formalizations of such frameworks along with the corresponding
automated reasoning tasks.

There are currently two orthogonal approaches to how regulations are ex-
pressed and interpreted in real life that both call for such a formalization and
corresponding reasoning support. One approach is based on explicit rules that
define what is allowed and what is forbidden. The alternative is to consider prece-
dents, which is the approach predominantly followed in many countries such as
the US. Precedents are cases that decide a specific legal context for the first time
and thus serve as a point of reference whenever a future similar case needs to be
decided. Moreover, even judges in countries that do not base their legal system
on precedents often use this mechanism to validate their decision or shorten the
process of argumentation.

Case law is particularly suitable for resolving vague formulations that natu-
rally occur in privacy regulations like the definition of ‘disclosure’ in COPPA.
Here, case law could reference decisions that define what circumstances are qual-
ified as a non-identifiable form of personal data, thereby aiding the user by
providing judicially accurate interpretation of such terms.

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 344–363, 2015.
DOI: 10.1007/978-3-662-46666-7_18

PriCL: Creating a Precedent 345

While rule-based frameworks have received tremendous attention in previous
research (see the section on related work below) there is currently no formaliza-
tion for case law that is amenable to automated reasoning.

Our Contribution. Our contribution to this problem space is threefold:
– We derive important legal concepts from actual judicial processes and rele-

vant requirements from related work. The resulting framework PriCL, can
be applied to the judicature of many different countries as it does not assume
any specific argumentation.

– We tailor the framework for privacy regulations. In particular, our privacy
specific case law framework is compatible with former policy languages since
it has only minimal requirements regarding the logic. Therefore, it is possible
to embed other formalizations into our framework.

– We define the major reasoning tasks that are needed to apply the framework
to privacy cases. In particular, these tasks allow us to derive requirements
for the underlying logic which we analyze. Several logics allow an embedding
of the reasoning tasks by giving an equivalent characterization of the tasks.
Consequently, we are able to select a well suited logic.

Related Work. There are plenty of privacy regulations that companies are
required to comply with. In the US there are regulations for specific sectors,
e.g., HIPAA for health data, COPPA for children’s data, or GLBA and RFPA
for financial data. In the EU, the member states have general data protection
codes. The legislative efforts to harmonize these national codes via the EU Data
Protection Regulation [18] are proceeding and already provide for identifying
legislative trends. The importance and impact of these privacy regulations has
brought the interpretation thereof to the attention of more technically focused
privacy research [22,8,2,17,13,26].

Policy languages were mainly developed in order to model these regulations
and to reflect companies’ policies. Many of the modern logics modeling regu-
lations are based on temporal logic [19,10,15,29,9] and were successfully used
to model HIPAA and GLBA [16]. While these logics focus on expressiveness in
order to reflect the regulations, the logics for company policies focus on enforce-
ment [7,3] and thus also on authorization [1,3]. Consequently, company policies
are mostly based on access control policies [24,21].

Bridging the gap between the regulation policies and the company’s policies
leads to automating compliance checks [28]. For many deployed policies, i.e., the
ones that are efficiently enforceable, this is currently not possible due to the lack
of decidability regarding the logics used to formalize regulations. However, for
these cases there exist run-time monitoring tools that allow compliance auditing
on log files [8,19,11,10]. In particular, such auditing was invented for HIPAA [19].

A different approach for achieving compliance is guaranteeing privacy-by-
design [23,14,20]. However, the policy of these systems still needs to be checked
for compliance with the relevant privacy regulations.

346 M. Backes et al.

2 Ingredients

In the first step we illustrate which components are essential for a case law frame-
work. To that end, we analyze actual judicial processes and derive ingredients
for the framework from the relevant legal principles. Hence, in the following,
we analyze a representative court decision1 and discuss the implications for our
framework.

The Conflict. “This matter involves three certified questions from the Circuit
Court of Harrison County regarding whether applicable state and federal privacy
laws allow dissemination of confidential customer information [...] during the
adjustment or litigation of an insurance claim.”

Every case reaching a court is based on a conflict, i.e., there is some question,
as the one above, for which different parties have different opinions on its truth
value. As a requirement for the framework, we can conclude that there has to
be a conflict that needs to be resolved by a decision. This decision can be an
arbitrary statement; hence, we call it a decision formula.

Sub-cases. A decision’s justification usually involves decisions of several sub-
cases in order to arrive at the final decision formula, e.g. the court needs to
decide whether a specific law is applicable before examining what follows from its
application. Each of these individual sub-case decisions may become a precedent
for decisions which deal with a similar sub-case.

The Circumstances. “[The plaintiff] concedes that under the definitions of the
GLBA [...] information he requests is technically nonpublic personal information
of a customer which the Act generally protects from disclosure[...].”

Every case contains some factual background. These facts constitute some
statements which are not under discussion but measurably true, e.g., that an
address is nonpublic personal information. We summarize these facts in a case
description.

Referencing Related Court Decisions. “[T]he United States District Court
for the Southern District of West Virginia handed down an opinion in Marks
v. Global Mortgage Group, Inc., 218 F.R.D. 492 (S.D.W.Va.2003), providing us
with timely and pertinent considerations.”

The key of case law is referencing other cases in order to derive statements.
In the example case, this capability is used to introduce an argumentation from
a different court. This mechanism is also used when statements are derived
from regulations. Consequently, the framework has to be capable of introducing
statements during the case justification by references to their origin.

Argumentation Structure of the Justification. “[The] GLBA provides
exceptions to its notification and opt-out procedures, including [...]”

1 The quotes are taken from MARTINO v. BARNETT, Supreme Court of Appeals of
West Virginia, No. 31270, Decided: March 15, 2004. The decision text is public at
http://caselaw.findlaw.com/wv-supreme-court-of-appeals/1016919.html

http://caselaw.findlaw.com/wv-supreme-court-of-appeals/1016919.html

PriCL: Creating a Precedent 347

The argumentation structure of the justification is not linear, i.e., of the form
A ⇒ B ⇒ . . . ⇒. But the arguments can be ordered in a tree form. The
exceptions stipulated by the GLBA are enumerated and then discussed in the
case justification. If more than one is applicable, these may serve as independent
decision grounds, each being a potential precedent in its own right.

World Knowledge. “[We] conclude that nonpublic personal information may
be subject to release pursuant to judicial process.”

In the argumentation, the court leaves to the reader’s knowledge that the
plaintiff’s litigation actually is a “judicial process”. These open ends in the ar-
gumentation are neither explicitly covered by a decision nor by a case reference.
Therefore, we need some world knowledge KBW that will cover these axiomatic
parts of the argumentation.

Precedents and Stare Decisis. The doctrine of stare decisis (to stand by
things decided) or binding precedents is unique to common law systems. The
decisions of superior courts are binding for later decisions of inferior courts (ver-
tical stare decisis). These binding precedents are applied to similar cases by
analogy.

In addition to the binding precedent, there also exists the persuasive prece-
dent: “While we recognize that the decision of the Marks court does not bind
us, we find the reasoning in Marks regarding a judicial process exception to the
GLBA very persuasive and compelling”.

Stare decisis does not apply in civil law systems, like those of Germany or
France. However, these systems have a jurisprudence constante, facilitating pre-
dictable and cohesive court decisions. Though civil law judges are not obliged
to follow precedents, they may use prior decisions as persuasive precedents and
oftentimes do so.

Material Difference. Stare decisis only applies if the subsequent court has to
decide on a case or sub-case that is similar to the precedent. Therefore, if the
court finds material difference between the cases, it is not bound by stare decisis.
In practice, judges may claim material difference on unwarranted grounds, which
may lead to conflicting decisions of analoguous cases within our framework. Thus,
we need to be able to account for false material difference.

Involving Court Hierarchies. “[W]e look initially to federal decisions in-
terpreting the relevant provisions of the GLBA for guidance with regard to the
reformulated question. However, the issue proves to be a novel one in the country
since few courts, federal or state, have addressed the exceptions to the GLBA.”

For our framework we need to take into account court hierarchies to identify
binding precedents. In common law jurisdictions, inferior courts are bound by the
decisions of superior courts; in civil law jurisdictions superior courts usually have
higher authority without being strictly binding. In federal states like the USA
or Germany we need to account for parallel hierarchies on state and on federal
levels. This complex hierarchy has significant implications on stare decisis.

348 M. Backes et al.

Hence, in our framework every case needs to be annotated by a court which
is part of a court hierarchy, to identify the character of precedents, binding or
potentially persuasive.

Ratio Decidendi and Obiter Dicta. Regarding the court’s decision text,
we need to differentiate between two types of statements. The actual binding
property of a precedent has only those statements and legal reasoning that are
necessary for the rationale of the decision. These necessary statements as called
ratio decidendi and constitute the binding precedent. Further statements and
reasoning that are not essentially necessary for the decision are called obiter
dicta. These are not binding but can be referenced as persuasive precedents.

For our reasoning framework we need to differentiate and annotate statements
into these two different categories to correctly identify binding precedents.

3 Defining the PriCL Framework

Reflecting the observations just made, we define cases (Section 3.1) and case
law databases (Section 3.2). Thereby we also explain how to model the legal
principles described in Section 2. Then, we define how the database can be
used in order to deduce facts outside the framework (Section 3.3). We analyze
our framework, validating a number of basic desirable properties of case law
databases (Section 3.4). We finally show, for privacy regulations specifically,
that our framework matches the requirements identified by previous work [8]
(Section 3.5).

Throughout this section, we assume an underlying logic in which world proper-
ties are expressed and reasoned about. Our framework is parametric with respect
to the precise form of that logic. The requirements the logic has to fulfill are inter-
preting predicates as relations over objects, supporting universal truth/falseness
(denoted respectively as� and⊥), conjunction (denoted ∧), entailment (denoted
A |= B if formula A entails formula B), and monotonicity regarding entailment,
i.e., if A |= B then A∧C |= B for any formula C. As an intuition when reading
the following, the reader may assume we are using a first-order predicate logic.

3.1 Introducing Cases

As we have seen, a case consists of a decision formula, a case description, a court,
and a proof tree. The first three components are straightforward to capture for-
mally (courts are represented by a finite set Courts of court identifiers). Designing
the proof tree is more involved since it needs to capture the judge’s justification.
We distinguish between different kinds of nodes in the tree depending on the
role the respective statements play in the justification: Does a sentence make an
axiomatic statement, or form part of the case description? Does it refer to a pre-
vious case, adopting a decision under particular prerequisites? Does it make an
assessment on the truth of a particular statement (e.g., that a particular piece of
information is or is not to be considered private) under particular prerequisites?

PriCL: Creating a Precedent 349

We therefore reflect these “standalone” statements in the leaf nodes of the proof
tree, categorized by the three different types of statements mentioned.

The inner nodes of the tree perform logical deductions from their children
nodes, representing the reasoning inherent in the justification, i.e., the con-
clusions that are made until finally, in the tree root, the decision formula is
reached. We differentiate between two kinds of reasoning steps, AND-steps and
OR-steps.The OR-steps reflect the principle of independent decision grounds . The
AND-step is the natural conclusion steps that is used to ensure that the decision
made is reached through the argumentation.

In order to avoid a recursive definition, we need a (possibly infinite) set of
case identifiers CI . Throughout the paper we assume a fixed given set CI .

Definition 1 (Case). A case C is a tuple (df,CaseDesc,ProofTree, crt) s.t.

– df is a formula that we call the decision formula of C.
– CaseDesc is a formula describing the case’s circumstances.
– ProofTree is a (finite) tree consisting of formulas f where the formula of the

root node is df. Inner nodes are annotated with AND or OR and leaves are
annotated with l ∈ {Axiom,Assess} ∪ {Ref(i) | i ∈ CI}. Leaf formulas l are
additionally associated with a prerequisite formula pre. For leaves annotated
with Axiom, we require that pre = l.

– crt ∈ Courts.

For leaf formulas l, we refer to l as the node’s fact, and we will often write these
nodes as pre → fact where fact = l.

By the prerequisites of an inner node n with children nodes n1, . . . , nk, de-
noted as pres(n), we refer to

∨
1≤i≤k pres(ni) if n is annotated by OR and∧

1≤i≤k pres(ni) if n is annotated by AND. The prerequisites of a case C are
the prerequisites of the root node and denoted by presC . We define analogously
the facts of a node and a case. We will often identify formulas with proof tree
nodes. Given a case C, by dfC we denote the decision formula of C.

Let C be a set of cases and μ : C → CI a function. If for every reference Ref(i)
in C, there is an D ∈ C with μ(D) = i, we call the set C closed under μ.

We assume world knowledge common to all cases. In the example of argumen-
tation ends in Section 2, it is assumed that the reader knows that the predicate
is judical process holds for any case. Formally, the world knowledge is a formula
KBW (naturally, a conjunction of world properties) in the underlying logic.

Definition 1 is purely syntactic, imposing no restrictions on how the different
elements are intended to behave. We will fill in these restrictions one by one as
part of spelling out the details of our framework, forcing cases to actually decide
a conflict and behave according to the legal principles. One thing the reader
should keep in mind is that pre → fact is not intended as a logical implication.
Rather, pre are the prerequisites that a judge took into account when mak-
ing the assessment that fact (e.g., the privacy status of a piece of information)
is considered to be true under the circumstances CaseDesc |= pre. This solely
captures human decisions such as trade-off decisions. However, the frameworks
allows reasoning about consequence of such decisions. The formulas presC , and

350 M. Backes et al.

respectively factsC , collect all prerequisites needed to apply the proof tree, and
respectively all facts needed to execute the proof tree; axiom leaves act in both
roles.

In principle, a case has the purpose to decide a formula df. However, while
justifying that a formula holds, e.g., that a telecommunication company has to
delete connection data after a certain amount of time, the court might decide
other essential subquestions. This concept is conveniently captured through the
notion of subcases.

Definition 2 (Subcase). Let C = (df,CaseDesc,ProofTree, crt) be a case and
n ∈ ProofTree a node. Let sub(n) be the subtree of ProofTree with root node n.
The case sub(C, n) := (n,CaseDesc, sub(n), crt) is a subcase of C.

Another aspect that is of interest when referencing cases is the degree of ab-
straction. For example, one case could decide that a specific telecommunication
company C has to delete connection information D of some user U after a spe-
cific time period t. The question of how this decision can be used in order to
decide the question for different companies C′ or different information D′ is cov-
ered by the legal concept of material difference. For this work, we assume that
a judge specifies the allowed difference in the prerequisites of a decision.

Our definition of cases, so far, is generic in the sense that it may be applied
to any domain of law. To configure our framework to privacy regulations more
specifically, a natural approach is to simply restrict the permissible forms of
decision formulas. We explicitly leave out legal domains such as individualized
sentencing or measuring of damages. Decisions in the privacy context are about
whether or not a particular action is legal when executed on particular data. We
capture this by assuming a dedicated predicate is legal action, and restricting
the decision formula to be an atomic predicate of the form is legal action(a),
where a is an action from an underlying set Actions of possible actions treated
as objects (constants) in the underlying logic. This can also be used in other
legal domains, but it turns out to be sufficient to connect our formalization of
privacy cases with other policy based approaches. Note that, in contrast to other
policy frameworks, we do not need to add the context to the predicate, as the
context is contained in the case, via nodes of the form “if the transfer-action a
has purpose marketing and the receiver is a third party, then ¬is legal action(a)”.
As decisions about the legality of actions are not naturally part of the common
world knowledge KBW , nor of the case description CaseDesc itself, our modeling
decision is to disallow the use of is legal action predicates in these formulas. In
other words, the world and case context describe the circumstances which are
relevant to determining action legality, but they do not define whether or not
an action is legal.

Definition 3 (Privacy Case). Given world knowledge KBW and action set
Actions, a case C = (df,CaseDesc,ProofTree, crt) is a privacy case if df ∈
{¬is legal action(a), is legal action(a)} for some action a ∈ Actions, where the
is legal action predicate is not used in either of KBW or CaseDesc.

PriCL: Creating a Precedent 351

Starting to fill in the intended semantics of cases, we first capture the essential
properties a case needs to have to “make sense” as a stand-alone structure. Ad-
ditional properties regarding cross-case structures will be considered in the next
subsection. We will use the word “consistency” to denote this kind of property.
The following definition captures the intentions behind cases:

Definition 4 (Case Consistency). Let C = (df, CaseDesc, ProofTree, crt) be
a case. C is consistent if the following holds (for all nodes n where n1, . . . , nk

are its child nodes)
(i) KBW ∧ CaseDesc 	|= ⊥ (ii) KBW ∧ CaseDesc |= presC
(iii) KBW ∧ CaseDesc ∧ factsC 	|= ⊥
(iv)

∧
1≤i≤k

ni |= n if n is an AND step and
∨

1≤i≤k ni |= n if n is an OR step

Regarding (i), if the world knowledge contradicts the case description, i.e.,
KBW ∧ CaseDesc |= ⊥, then the case could not have happened. Similarly, (iii)
the case context must not contradict the facts that the proof tree makes use
of (this subsumes (i), which we kept as it improves readability). As for (ii),
the case context must imply the axioms as well as the prerequisites which the
present judge (assessments) or other judges (references to other cases; see also
Definition 7) assumed to conclude these facts. (iv) says that inner nodes must
represent conclusions drawn from their children.

The OR nodes of the proof tree reflect the legal argumentation structure of
independent decision grounds, the judge gives several arguments. If the judge of
a later case decides that one of these arguments is invalid for the conclusion, he
needs to be able to falsify only one of the branches and not the whole tree.

3.2 Combining Cases to Case Law Databases

The quintessential property of case law is that cases make references to other
cases. These references are necessary to formulate several legal principles.

The legal principles false material difference and reversing decisions define
requirements for when not to reference a case, either because it contains a mistake
or because the opinion has changed over time. Therefore, we consider the design
cleaner if both principles are covered by the same mechanism of the framework
and hence we denote single Assess nodes as unwarranted, i.e., to forbid the
reference to be used thereafter.

We require a different mechanism to differentiate cases we must agree with
and cases which we may use as reference. Unwarranting rather defines which
decisions must not be referenced. In particular, we need to differentiate between
assessments coming from the legal principles ratio decidendi and obiter dicta.
While the part of the decision following ratio decidendi leads to a binding prece-
dent, the obiter dicta part is not binding. Thus, we introduce predicates may-ref
and must-agree. It also provides a mechanisms to respect the court hierarchy. In-
tuitively, may-ref(C1, C2) denotes the circumstances that case C1 may reference
case C2; must-agree(C1, C2) analogously denotes that C1 must agree with C2.

352 M. Backes et al.

In addition, we need to introduce the concept of time by a total order ≤t over
cases. This concept allows us to formulate the requirement that references can
only point to the past.

Definition 5 (Case Law Database (CLD)). A case law database is a tuple
DB = (C,≤t,must-agree,may-ref, μ, U) such that:

– C is a set of cases. We will also write C ∈ DB for C ∈ C.
– μ : C → CI is an injective function such that C is closed under μ. In the

following we will also write Ref(D) for Ref(i) if μ(D) = i.
– Let <ref := {(C,D) | D contains a Ref(C) node} and ≤t is an order that we

call time order of the cases. It has to hold:
must-agree ⊆

may-ref ⊆≤t⊆ C×C
<ref⊆

– U specifies the unwarranted nodes, i.e., U : C → N is function such that
• N is a subset of the nodes labelled with Assess or Ref in the cases C.
• The set increases monotonic, i.e., C ≤t D =⇒ U(C) ⊆ U(D).

We denote the unwarranted nodes of DB by U(DB) :=
⋃

C∈C U(C).

The function μ is used to remove the recursive definition of a case and enables
us to connect cases via their individual semantics.

Regarding the relations must-agree and the may-ref we made two design deci-
sions. First, we require to not link must-agree and the actual references <ref. On
the one hand, there might be precedents which are not applicable, but on the
other hand, we want the freedom to define must-agree and may-ref only depend-
ing on the court hierarchy. The second design decision is to base these relations
on cases instead of decision nodes. As for the first decision, the purpose is to
make an instantiation of the definition only depending on the court, but we need
to be careful regarding the principles ratio decidendi and obiter dicta. Since one
of them is not binding, i.e., a must-agree and the other is. This differentiation
can be achieved by replacing every case with a set of cases. We require this to
be part of the modeling process. We did not add further restrictions since they
may depend on local law.

Example 1 (Must-agree and may-references for a court hierarchy). As-
sume the set of courts Courts is partially ordered by ≤§, i.e., there
is a court hierarchy. In this case, we could model must-agree by
must-agree = {(C1, C2) | Ci = (dfi, di, pi, crti), i ∈ {1, 2}, C1 ≤t C2,

and crt1 ≤§ crt2}.
It is easy to see that the must-agree predicate actually only depends on the

crt and not on the other parameters of the proof. We call this property court-
dependency.

The key property of unwarranted decisions is that they are time dependent.
In order to only use warranted decisions when referencing, we define warranted
subcases as follows:

PriCL: Creating a Precedent 353

Definition 6 (Warranted Subcase). A subcase (df,CaseDesc,ProofTree, crt)
is warranted with respect to a set N of nodes if the case
(df,CaseDesc,ProofTree′, crt) is consistent where ProofTree′ is derived from
ProofTree by replacing every precondition of a node n ∈ N by ⊥.

It remains to define when a case law database can be considered to be con-
sistent. To that end, we consider case references and conflicts between cases.
Starting with the former, we obtain:

Definition 7 (Correct Case Reference). Let DB be a case law database and
C = (df,CaseDesc,ProofTree, crt) a case in DB. A leaf node pre → fact in
ProofTree annoted with Ref(D) references correctly if Du = (fact, CaseDescD,
ProofTreeD, crtD) is a warranted subcase of a case D ∈ DB w.r.t. U(C),
may-ref(C,D) holds and KBW ∧ pre |= presD. C references correctly if all its
leaves annoted with Ref(D) reference correctly.

Consider that, when referencing a (sub)case D as pre → fact from our case
C at hand, we are essentially saying that the same argumentation applied in D
can be applied in our case, to prove fact under circumstances pre. So we need to
show that this applicability of arguments is actually given. This is ensured by
KBW∧pre |= presD because presD collects all prerequisites, axioms and otherwise,
needed to apply D. Note that, if C is consistent, by Definition 4 (ii) it holds that
KBW ∧CaseDesc |= pre and thus KBW ∧CaseDesc |= presD. As the same applies
recursively to the case references made in D, we know that pre (given KBW and
CaseDesc) entails all judge decisions underlying the assessment fact.

We are now almost in the position to define consistency of the entire case law
database. The last missing piece in the puzzle is to identify when cases should
be considered to be in conflict — which naturally occurs in case law databases
where judges may make different decisions. We capture this through pairs of
cases whose prerequisites are compatible, while their facts are contradictory:

Definition 8 (Case Conflict). Let C1 be a case in DB and C2 be a warranted
case w.r.t. U(C1). We say that C1 is in conflict with C2 if and only if

(i) KBW ∧ presC1
∧ presC2

	|= ⊥ (ii) KBW ∧ factsC1 ∧ factsC2 |= ⊥
(iii) must-agree(C1, C2)

A case C is in conflict with DB if there is a D ∈ DB s.t. C is in conflict with D.

We ignore the case descriptions here, other than what is explicitly employed
as axioms in the proof trees: we consider cases to be in conflict if one could
construct a case (e.g., presC1

∧ presC2
) which would make it possible to come to

a contradictory decision. We define case law database consistency as follows:

Definition 9 (Case law database consistency). A case law database DB =
(C,≤t,must-agree,may-ref, μ, U) is

(i) case-wise consistent if every C ∈ DB is consistent,
(ii) referentially consistent if every C ∈ DB references correctly, and
(iii) hierarchically consistent if every C ∈ DB is not in conflict with DB.

354 M. Backes et al.

(iv) warrants consistently if for every C holds: U(C) contains all Ref(D) nodes
where D is an unwarranted subcase w.r.t. U(C).

We call DB consistent if it warrants consistently and is hierarchically, referen-
tially and case-wise consistent.

3.3 Deriving Legal Consequences: Deducibility and Permissibility

In the following we assume that the predicates may-ref and must-agree of the DB
do not depend on the case description, the decision formula or the proof tree, but
are only court dependent, cf. Example 1. As a consequence, we know the value of
these predicates for formula values and case descriptions which are not contained
as a case in the database given only the court level of the case. In other words, we
require an operation DB∪ {C} that puts C at the end of the timeline regarding
≤t, assigns a fresh identifier i ∈ CI to C with μ, uses as U(C) := U(DB),
and adopts must-agree,may-ref appropriately and is independent of the decision
formula and the proof tree. This operation is needed to apply the framework to
situations not contained in the database.

Obvious applications of our framework are advanced support for case search,
and consistency checking. A more advanced task is to evaluate the legality of
actions given the cases reflected in the database. For example, when designing
a course administration system, one may ask “Am I allowed to store students’
grades in the system?” Our formalism supports this kind of question at different
levels of strength, namely:

Definition 10 (Deducibility and Permissibility). Let DB = (C,≤t

,must-agree,may-ref, μ, U) be a consistent CLD, and f a formula. We say that f
is permitted in DB under circumstances CaseDesc and court crt if there exists a
case C = (f,CaseDesc,ProofTree, crt) such that ProofTree does not contain nodes
labeled with Assess, and DB ∪ {C} is consistent (where C is inserted at the end
of the timeline ≤t). We say that f is uncontradicted in DB under CaseDesc and
crt if ¬f is not permitted under CaseDesc and crt. We say that f is deducible if
it is permitted and uncontradicted.

For sets F of formulas, we say that F is permitted in DB under CaseDesc
and crt if there exists a set of cases {Cf = (f,CaseDesc,ProofTreef , crt) | f ∈
F} such that every ProofTreef does not contain nodes labeled with Assess, and
DB ∪ {Cf | f ∈ F} is consistent (where the Cf are inserted in any order at the
end of the timeline ≤t).

It might be confusing at first why we attach to f the weak attribute of being
“permitted” if we can construct a case supporting it. The issue is, both f and
¬f may have such support in the same database. This follows directly from the
freedom of different courts to contradict each other. If two courts at the same
level decide differently on the same issue, then that is fine by our assumptions.
Hence, to qualify a formula f for the strong attribute of being “deducible”, we
require the database to permit f and to not permit its contradiction.

PriCL: Creating a Precedent 355

The concept of deducibility of a set F of formulas is interesting because, in
general, this is not the same as deducing each formula in separation. In partic-
ular, while each of f and ¬f may be permitted in the same database, {f,¬f}
is never permitted because adding the hypothetical supporting cases necessarily
incurs a hierarchical conflict. Permissibility of F is also not the same as per-
missibility of

∧
f∈F f because the latter makes a stronger assumption: all cases

referred to in order to conclude
∧

f∈F f must have compatible prerequisites.
So deducibility of formula sets forms a middle ground between individual and
conjunctive deducibility.

Theorem 1. There is a consistent case law database DB, case description
CaseDesc and court crt, such that there is a set F of formulas for each of the
following properties (in DB under circumstances CaseDesc and court crt):

(i) For every f ∈ F , f is permissible and F is not permissible.

(ii) F is permissible, but
∧

f∈F f is not permissible.

The proof and the details of all other proofs are given in the long version [6].

Characterizing Deducibility. Deducibility is the central concept for answer-
ing questions that are not explicitly answered by the database. However, Def-
inition 10 does not give an algorithmic description of how to decide whether
some formula is deducible. It is also inconvenient for proving properties about
permissibility and deducibility.

Intuitively, a formula should be permissible if there is a set of warranted
decisions which allow us to conclude the predicate and a formula f should be
deducible if in addition no set of decisions contradicts f . We will first define
supporting sets and then prove that the intuition matches the definitions of
permissibility and deducibility.

Definition 11 (Supporting set). Let DB = (C,≤t,must-agree,may-ref, μ, U)
be a consistent case law database, f a formula, CaseDesc a case description
and crt a court. A set A of leaf nodes in DB that are labeled with Assess is a
supporting set for formula f if the following holds:

(1) KBW ∧ CaseDesc |=
∧

(pre→fact)∈A pre

(2) KBW ∧ CaseDesc ∧
∧

(pre→fact)∈A fact |= f

(3) KBW ∧ CaseDesc ∧
∧

(pre→fact)∈A fact 	|= ⊥

A supporting set is unwarranted if it contains an unwarranted node w.r.t. any
C ∈ C. If it is not unwarranted it is warranted.

A supporting set is consistent with DB if DB∪ {(�,CaseDesc,ProofTree, crt)}
is consistent, where ProofTree consists of a root node with annotation � and leaf
nodes with annotation Ref(Cn) for n ∈ A, where Cn is the case that contains
node n.

Note that a supporting set that is consistent with the DB leads to consis-
tency, and correct referencing, and does not create any conflicts. The properties

356 M. Backes et al.

required in the definition are a consequence of the definition of database con-
sistency. A case constructed from a supporting set would simply refer to all
decisions and place the formula at the root.

The following theorem characterizes permissibility and deducibility using sup-
porting sets. This characterization suggests an algorithmic way of deciding the
properties and gives a tool for proving properties about case law databases.

Theorem 2. Let DB be a consistent case law database, f a formula, CaseDesc
a case description and crt a court. The following holds:

1. C ∈ DB with warranted node f ⇒ ∃A that supports f
2. f is permitted (under circumstance CaseDesc and court crt) ⇔ ∃A that

supports f , is warranted, and is consistent with DB
3. f is deducible ⇔ ∃A that supports f and is consistent with DB, and ∀B it holds

that B does not support ¬f , is unwarranted, or is not consistent with DB

3.4 General Properties of Case Law Databases

Introducing a new framework always comes with the risk of modeling errors.
A method for alleviating that risk is to prove properties that the framework is
expected to have. In order to validate the framework introduced here, we have
proven that (i) case references do not influence decisions (Theorem 2); in this
subsection we also prove that (ii) consistency is necessary for property (i) (The-
orem 3), and that (iii) neither ⊥ nor {f,¬f} are ever permitted (Theorem 4).

Regarding (i), we have shown that every formula f in the database can be
derived from a supporting set of previous decisions (Theorem 2) with the case
description and world knowledge. Hence there is no possible interplay between
case references that would make it possible to prove something not backed up
by judges’ decisions.

Regarding (ii), Theorem 2 implies immediately that, whenever a formula f
is deducible, then it follows from decisions made by judges in previous cases. It
is easy to verify that our restrictions are necessary to ensure this, i.e., that this
property gets lost if we forsake either case-wise or referential consistency:

Theorem 3. Let DB be a case law database, and let f be any formula that does
not entail ⊥. Then there exist cases C1 and C2, each with root node f and the
empty case desc �, such that (inserting Ci at the end of the timeline ≤t):
– If DB is case-wise consistent, then so is DB ∪ {C1}.
– If DB is referentially consistent, then so is DB ∪ {C2}.
– If there is a crt such that must-agree(crt) = ∅, then in addition this holds:

for each of i = 1, 2, if DB is hierarchically consistent, then so is DB ∪ {Ci}.
We remark that, by restricting the formula f only slightly, the proof of The-

orem 3 can be strengthened so as not to have to rely on a maximal court for
ensuring hierarchical consistency. In particular, if f is made of predicates that
do not occur anywhere in the case law database, then the cases C1 and C2 as
constructed cannot be in conflict with any other cases, thus preserving hierarchi-
cal consistency for arbitrary courts crt. We finally prove (iii), non-permissibility
of either ⊥ or {f,¬f}:

PriCL: Creating a Precedent 357

Theorem 4. The formula ⊥ is not permitted in any case law database DB,
under any circumstances CaseDesc and court crt. The same holds for {f,¬f} if
crt ∈ must-agree(crt).

3.5 Privacy Cases and Norms

We now point out an interesting property of privacy cases, and of databases
consisting only of such cases. We call such databases privacy case law databases.

Rule based privacy policies are a well established and widely used concept. The
rules that are used are usually reflected by norms defining privacy regulations.
However, neither rules nor norms are reflected in the case law framework. In this
subsection, we show that we can use a natural definition of norms that can be
extracted from privacy cases. In addition, it is possible to transform a privacy
case to a normal form such that a norm that decides the case is represented.

At the core of privacy regulations are positive and negative norms, as in-
troduced by [8]. Positive norms are permissive in the sense that they describe
conditions that allow transactions with personal data (φ ⇒ is legal action(a)).
Negative norms, in contrast, define necessary conditions for such transactions,
i.e., they forbid transactions with personal data unless certain conditions are
met (φ ⇒ ¬is legal action(a)).

Definition 12 (Norms). Let a ∈ Actions. A norm is a formula that has the
form φ ⇒ p where is legal action(a) does not occur in φ. The norm is a positive
norm, denoted φ+, if p = is legal action(a) and a negative norm, denoted φ−, if
p = ¬is legal action(a). A norm φ decides p given f if KBW ∧ f |= φ.

In the case law framework, norms are hidden by judges’ assessments. However,
in the spirit of Theorem 2, norms are reflected by sets of cases that could be
referenced in order to support either the legality of an action (positive norm)
or its illegality (negative norm). In the following theorem, we show that we can
extract a norm for every privacy case avoiding the recursion of Theorem 2.

Theorem 5. Let DB be a consistent privacy case law database and
C = (df,CaseDesc,ProofTree, crt) ∈ DB. Then there is a norm
φ that decides df given CaseDesc. In particular, there are formulas
φW , φS such that is legal action(a) does not occur in these formulas and
(1) factsC ⇒ φW ∧ (φS ⇒ df) (2) φW ∧ (φS ⇒ df) ⇒ df

The formulas φW and φS can be used to construct a normal form of privacy
cases. In particular, this normal form is consistent and allows reading off norms.

Corollary 1 (Normal forms). Let DB = (C,≤t,must-agree,may-ref, μ, U) be
a privacy case law database, C = (df,CaseDesc,ProofTree, crt) ∈ DB be a case,
and D be the set of C’s leaf nodes. N(C) is the case that consists of a root
node df, two inner nodes φw and φS ⇒ df and the leaf nodes D as children of
both inner nodes. We call N(C) the normal form of C. If DB is consistent, then
(C\{C} ∪ {N(C)},≤t) is also consistent (where N(C) is placed at the position
of C w.r.t. ≤t).

358 M. Backes et al.

In order to define N(C), we need to duplicate the leaf nodes since the transfor-
mations to get φW and φS ignore which fact is needed to get the corresponding
formula. Thus, a leaf node’s fact could end up in both formulas φW and φS .

In conformance with [8], we can conclude from deducibility of an action that
there is a positive norm supporting it and show that no negative norm can be
applied, i.e., all negative norms are respected (Theorem 4).

4 Reasoning Tasks

We now discuss the reasoning tasks associated with our framework — how to
answer questions such as “are we allowed to send data D to some party P?”
— in more detail, giving an algorithm sketch and brief complexity analysis (in
terms of the number of reasoning operations required) for each.

Consistency. Analyzing and keeping the state of the case law database consis-
tent is of vital importance for its usefulness; cf. Theorem 4. As in the definition of
consistency, we split the task of checking consistency into case-wise, referential,
and hierarchical consistency. Due to their simplicity, we postpone the detailed
description of their algorithms to the long version [6].

All of these properties are defined per case, i.e., the case wise check of the
corresponding property has to be repeated |DB| times. Following the respective
definition, checking case consistency costs |ProofTree+ 1| entailment operations
and checking correct referencing for C costs references(C) where references(C) is
the number of nodes in C annotated by Ref(D). Hierarchical consistency can be
checked along the time line ≤t only testing for conflicts with earlier cases. So for
the i-th case, we need at most (i − 1) · 2 entailment checks, since every conflict
check requires 2. Consequently, we require |DB| · (|DB|+ 1) entailment checks.

Deducibility and Permissibility. As deducibility amounts to two consecutive
permissibility checks, we consider the latter exclusively. We are given a database
DB, a formula whose permissibility should be checked, as well as a case de-
scription CaseDesc and a court crt forming the circumstances.Permissibility is
equivalent to the existence of a supporting set A for f that is consistent with
DB. Thus the task of permissibility can be reduced to checking the existence
of a suitable set A. If the answer is “yes”, we can also output a witness, i.e., a
hypothetical case C showing permissibility. A straightforward means for doing
this is to set C := (f,CaseDesc,ProofTree, crt) where ProofTree consists of root
node f , one leaf node l labeled with Ref(D) for every D ∈ A, as well as one leaf
node KBW ∧ CaseDesc labeled with Axiom. For convenience, we will denote this
construction by C(A). See Algorithm 1.

The correctness of the algorithm is shown by Theorem 2. In contrast to our
previous algorithms, deducibility checking as per Algorithm 1 requires an expo-
nential number of entailment checks in the worst case. This raises the questions
(1) whether or not this exponential overhead is inherent in the complexity of de-
ciding permissibility, and (2) whether it is possible to encode the permissibility
test directly into the logic instead.

PriCL: Creating a Precedent 359

Algorithm 1. Permissibility

Input : A formula f , case description CaseDesc, court crt, and a consistent
CLD DB

Output: A case C = (f,CaseDesc,ProofTree, crt) such that DB ∪ {C} is
consistent (where C is set to be the maximum w.r.t. ≤t), or ⊥ if no
such C exists

1 Test whether KBW ∧ CaseDesc |= ⊥. If so, output ⊥.
2 Test whether KBW ∧ CaseDesc |= f . If so, output

(f,CaseDesc,ProofTree, crt) where ProofTree is the proof tree consisting of a
leaf node labeled by Axiom containing f .

3 Set N := ∅.
4 for every D ∈ DB and every (pre → fact) ∈ D labeled Assess do
5 Check if KBW ∧ CaseDesc |= pre
6 Check if KBW ∧ CaseDesc ∧ fact 	|= ⊥
7 If both checks succeed, set N := N ∪ {(pre → fact)}.
8 end

9 for A ∈ 2N do
10 Check that KBW ∧ CaseDesc |= ∧

(pre→fact)∈A pre

11 Check that KBW ∧ CaseDesc ∧∧
(pre→fact)∈A fact |= f

12 Check that KBW ∧ CaseDesc ∧∧
(pre→fact)∈A fact 	|= ⊥

13 for every E ∈ DB with crt <§ crtE do
14 Check that E and C(A) are not in conflict.
15 end
16 If all three tests succeed, go on with step 18, otherwise continue with

the next D.
17 end
18 If a set A succeeded, output C(A), otherwise output ⊥.

The answer to (1) is a qualified “yes” in the sense that permissibility checking
essentially pre-fixes entailment checks with an existential quantifier. As entail-
ment checks correspond to universal quantification, this intuitively means that
for permissibility we need to test the validity of a ∃∀ formula, instead of a ∀
formula for entailment. So we add a quantifier alternation step, which typically
does come at the price of increased complexity. This line of thought also imme-
diately provides an intuitive answer to question (2), namely “yes but only if the
underlying logic contains ∃∀ quantification”.

Of course, both these answers are only approximate and only speak in broad
terms. Whether each is to be answered with “yes” or “no” depends on the precise
form of the logic, and on what kind of blow-up we are willing to tolerate. To
make matters concrete, we now consider three particular logics, namely first-
order predicate logic, description logic (more specifically a particular version
of ALC) and propositional logic (i.e., first-order predicate logic given a finite
universe and without quantification). We start with the latter.

In what follows, say we need to check whether formula f is permitted in
DB under circumstances CaseDesc. We abstract from the complications entailed
by maintaining hierarchical consistency, and assume that for crt, it holds that
must-agree(crt) = ∅.

360 M. Backes et al.

Theorem 6. For propositional logic, deciding permissibility is Σp
2 -complete.

Proof sketch. The set Σp
2 = NPNP, so containment is shown by guessing a

supporting set and verifying its properties using an NP oracle. For the hardness
we encode an QBF formula ∃x∀y : φ(x, y) in permissibility request for case law
database. We do this by encoding all possible values for x in the database and
asking for the permissibility of φ(x, y). Details can be found in [6].

As entailment testing in propositional logic is only coNP-complete, Theo-
rem 6 answers question (1) with “yes”, and answers question (2) with “no, unless
we are willing to tolerate worst-case exponentially large formulas”.

Theorem 7. Permissibility is equivalent to satisfiability of a formula whose size
is polynomial in the size of DB, CaseDesc, and f for

(1) first-order logic.
(2) the description logic ALC with concept constructors fills and one-of by role

constructors role-and, role-not, product, and inverse.2

Proof sketch. The result in [12] shows equality of expressivity of first-order logic
with at most two free variables. Thus we construct a suitable formula for the
first part. We do this by using existantial quantification in order to choose a
warranted supporting set and then design the formula such that it is satisfiable
if and only if the consistency properties of the case holds that can be constructed
from that supporting set (i.e., the case potentially output by Algorithm 1). All
parts that are not choosen by the existantial quantifier will be equivalent to �.
Details can be found in [6].

Norm Extraction. As seen in Section 3.5, privacy cases induce normative rules.
The format of rules gives the advantage that these are easy to enforce and bridge
the gap towards privacy policies. As shown by Theorem 5 we extract a norm for
every case in the database. The algorithm is postponed to the long version [6].
It basically turns the proof of Theorem 5 into an algorithm transforming the
logical formula of the case’s facts.

Let f be the size of the biggest formula in the leaves of C and n the number
of nodes in C. Then the size of the norm can become O(2f · n + |preC |). The
computation needs operations linear in that size.

5 Logic Selection

For modeling purposes as well as for computational purposes the choice of
logic is, of course, of paramount importance. The only hard requirement (“must
have”) that the logic, L, must meet is:
(i) Sufficient expressivity to tackle our framework and reasoning tasks. Pre-

cisely, the minimal requirement is for L to provide a language LF for for-
mulas, with reasoning support for tests of the form (a)

∧
φ∈Φ |= ⊥ and (b)

2 For details on this instance of ALC, please consult [12].

PriCL: Creating a Precedent 361

∧
φ∈Φ |= ψ: These are the only tests our reasoning tasks demand from the

underlying logic. If LF is closed under conjunction and contains ⊥ (as will
be the case in our logic of choice), the requirement simply becomes to be
able to test whether φ |= ψ.

The soft requirements (“nice to have”) on the logic are:
(ii) Suitable for modeling real-world phenomena and knowledge, ide-

ally an established paradigm for such modeling tasks.
(iii) Decidability, and as low complexity as possible, of the relevant rea-

soning (e.g., satisfiability checks; cf. (i)).
(iv) Effective tool support established and available.
What we have just outlined is essentially a “wanted poster” for description
logic (DL) [4]. This is a very well investigated family of fragments of first-order
logic, whose mission statement is to provide a language for modeling real-world
phenomena and knowledge (ii), while retaining decidability and exploring the
trade-off of expressivity vs. complexity (iii). Effective tool support (iv) has been
an active area for two decades. Every DL provides a language to describe “ax-
ioms”, and even the most restricted DLs make it possible to answer queries
about the truth of an axiom relative to a conjunction of axioms, which is exactly
the test we require.

We briefly consider the description logic attributive concept language with
complements, for short ALC [27,5], which is widely regarded as the canonical
“basic” description logic variant (most other DLs extend ALC, in a variety of
directions). Description logic is a form of predicate logic that considers only
1-ary and 2-ary predicates, referred to as concepts and roles, respectively. As-
suming a set NC of concept names and a set NR of role names, DL makes it
possible to construct complex concepts, which correspond to a particular subset
of predicate-logic formulas with exactly one free variable. For ALC, the set of
complex concepts is the smallest set s.t.
1. �,⊥ and every concept name A ∈ NC are complex concepts, and
2. if C and D are complex concepts and r ∈ NR, then C �D, C �D, ¬C, ∀r.C,

and ∃r.C are complex concepts.
Here, � denotes concept intersection (logical conjunction), � denotes concept
union (logical disjunction), and ¬C denotes concept complement (logical nega-
tion). ∀r.C collects the set of all objects x such that, whenever x stands in
relation r to y, y ∈ C. Similarly, ∃r.C collects the set of all objects x such that
there exists y where x stands in relation r to y and y ∈ C.

ALC allows concept inclusion axioms, of the form C � D, where C,D are
complex concepts, meaning that C is a subset of D (universally quantified logi-
cal implication). ALC furthermore allows assertional axioms, of the form x : C
or (x, y) : r, where C is a complex concept, r is a role, and x and y are in-
dividual names (i.e., constants). An ALC knowledge base consists of finite sets
of concept inclusion axioms and assertional axioms (called the TBox and ABox
respectively), interpreted as conjunctions. The basic reasoning services provided
by ALC (and most other DLs) are testing whether a knowledge base KB is satisfi-
able, and testing whether KB |= φ where φ is an axiom. These decision problems
are decidable, and more precisely, ExpTime-complete for ALC.

362 M. Backes et al.

For our purposes, we can assume as our formulas LF conjunctions of axioms,
i.e., the smallest set that contains⊥, all axioms of the underlying DL (e.g.,ALC),
as well as φ∧ψ if φ and ψ are members of LF . In order to test whether φ |= ψ, we
then simply call the DL reasoning service “φ |= ψi?” for every conjunct ψi of ψ
and return “yes” iff all these calls did. In other words, we may use conjunctions
of DL axioms in the knowledge base, case descriptions, and proof tree nodes.

6 Conclusion

In this paper, we introduced PriCL, the first framework for automated reason-
ing about case law. We showed that it complies with natural requirements of
consistency. Moreover, we showed a tight connection between privacy case law
and the notion of norms that underlies existing rule-based privacy research. We
identified the major reasoning tasks such as checking the case law database for
consistency, extracting norms and deducing whether an action is legal or not.
For all these tasks, we gave algorithms deciding them and we did an analysis
that leads to ALC as a suitable instantiation for the logic.

Acknowledgements.We want to thank the anonymous reviewer for their valu-
able feedback. We tried to incorporate the feedback as much as possible. Due to
space constraints, parts of the feedback was only used for the long version [6].

This work was supported by the German Ministry for Education and Re-
search (BMBF) through funding for the Center for IT-Security, Privacy and
Accountability (CISPA).

References

1. Anderson, A.: A comparison of two privacy policy languages: EPAL and XACML
(2005)

2. Annas, G.J.: Hipaa regulations-a new era of medical-record privacy? New England
Journal of Medicine 348(15), 1486–1490 (2003)

3. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (EPAL 1.2). Submission to W3C (2003)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

5. Baader, F., Horrocks, I., Sattler, U.: Description Logics. In: Handbook of Knowl-
edge Representation, ch. 3, pp. 135–180. Elsevier (2008)

6. Backes, M., Bendun, F., Hoffman, J., Marnau, N.: PriCL: Creating a Precedent.
A Framework for Reasoning about Privacy Case Law (Extended Version) (2015),
http://arxiv.org/abs/1501.03353

7. Backes, M., Karjoth, G., Bagga, W., Schunter, M.: Efficient comparison of enter-
prise privacy. In: Proc. of Symposium on Applied Computing, pp. 375–382. ACM
(2004)

8. Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual in-
tegrity: Framework and applications. In: Proc. of S&P, p. 15. IEEE (2006)

http://arxiv.org/abs/1501.03353

PriCL: Creating a Precedent 363

9. Barth, A., Mitchell, J.C., Datta, A., Sundaram, S.: Privacy and utility in business
processes. In: CSF, vol. 7, pp. 279–294 (2007)

10. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring compliance poli-
cies over incomplete and disagreeing logs. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 151–167. Springer, Heidelberg (2013)

11. Basin, D.A., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric
first-order temporal properties. In: Proc. of FSTTCS, pp. 49–60 (2008)

12. Borgida, A.: On the relative expressiveness of description logics and predicate log-
ics. Artificial Intelligence 82(1), 353–367 (1996)

13. Breaux, T.D., Antón, A.I.: Analyzing regulatory rules for privacy and security
requirements. IEEE Trans. on Software Engineering 34(1), 5–20 (2008)

14. Cavoukian, A.: Privacy by design. Report of the Information & Privacy Commis-
sioner Ontario, Canada (2012)

15. Datta, A., Blocki, J., Christin, N., DeYoung, H., Garg, D., Jia, L., Kaynar, D.,
Sinha, A.: Understanding and protecting privacy: formal semantics and princi-
pled audit mechanisms. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS,
vol. 7093, pp. 1–27. Springer, Heidelberg (2011)

16. DeYoung, H., Garg, D., Kaynar, D., Datta, A.: Logical specification of the glba
and hipaa privacy laws. CyLab, p. 72 (2010)

17. Duma, C., Herzog, A., Shahmehri, N.: Privacy in the semantic web: What policy
languages have to offer. In: Proc. of POLICY, pp. 109–118. IEEE (2007)

18. European Commission. General data protection regulation, http://ec.europa.

eu/justice/data-protection/document/review2012/com_2012_11_en.pdf

19. Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete logs: theory, imple-
mentation and applications. In: Proc. of CCS, pp. 151–162. ACM (2011)

20. Gürses, S., Gonzalez Troncoso, C., Diaz, C.: Engineering privacy by design. Com-
puters, Privacy & Data Protection (2011)

21. Karat, J., Karat, C.-M., Bertino, E., Li, N., Ni, Q., Brodie, C., Lobo, J., Calo, S.,
Cranor, L., Kumaraguru, P., Reeder, R.: Policy framework for security and privacy
management. IBM Journal of Research and Development 53(2), 4 (2009)

22. Lämmel, R., Pek, E.: Understanding privacy policies. Empirical Software Engineer-
ing 18(2), 310–374 (2013)

23. Maffei, M., Pecina, K., Reinert, M.: Security and privacy by declarative design. In:
Proc. of CSF, pp. 81–96. IEEE (2013)

24. Ni, Q., Bertino, E., Lobo, J., Brodie, C., Karat, C.-M., Karat, J., Trombeta, A.:
Privacy-aware role-based access control. Proc. of TISSEC 13(3), 24 (2010)

25. Office for Civil Rights, U.S. Department of Health and Human Services. Summary
of the HIPAA privacy rule (2003)

26. Oh, S.E., Chun, J.Y., Jia, L., Garg, D., Gunter, C.A., Datta, A.: Privacy-preserving
audit for broker-based health information exchange. In: Proc. of Data and Appli-
cation Security and Privacy, pp. 313–320. ACM (2014)

27. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

28. Sen, S., Guha, S., Datta, A., Rajamani, S.K., Tsai, J., Wing, J.M.: Bootstrapping
privacy compliance in big data systems. In: Proc. of S& P

29. Tschantz, M.C., Datta, A., Wing, J.M.: Formalizing and enforcing purpose restric-
tions in privacy policies. In: Proc. of S& P, pp. 176–190. IEEE (2012)

30. United States Congress. Financial services modernization act of 1999 (2010)
31. United States federal law. Children’s Online Privacy Protection Act (1998)

http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf

Author Index

Abadi, Mart́ın 73
Arapinis, Myrto 324
Aslanyan, Zaruhi 95

Backes, Michael 344
Ban Kirigin, Tajana 259
Beilke, Kristian 239
Bendun, Fabian 344

Cheval, Vincent 280, 324
Chothia, Tom 137
Cortier, Véronique 280, 303

Delaune, Stéphanie 324
den Hartog, Jerry 115

Eigner, Fabienne 303

Fröschle, Sibylle 176

Heule, Stefan 11
Hoffmann, Jörg 344
Hunt, Sebastian 32

Isard, Michael 73

Kanovich, Max 259
Kremer, Steve 303
Künnemann, Robert 219

Maffei, Matteo 303
Marnau, Ninja 344
Mauw, Sjouke 156

Mitchell, John C. 11
Morrisett, Greg 53

Nguyen, Binh Thanh 196
Nielson, Flemming 95
Nigam, Vivek 259

Palamidessi, Catuscia 3
Petcher, Adam 53

Radomirović, Saša 156
Ranise, Silvio 115
Roth, Volker 239
Russo, Alejandro 11

Sands, David 32
Scedrov, Andre 259
Smyth, Ben 137
Sprenger, Christoph 196
Staite, Chris 137
Stefan, Deian 11

Talcott, Carolyn 259
Turkmen, Fatih 115

van Delft, Bart 32

Wiedling, Cyrille 303

Yang, Edward Z. 11

Zannone, Nicola 115

	Foreword

	Preface

	Organization

	Contents
	Invited Contribution

	Quantitative Approaches to the Protection of Private Information: State of the Art andSome Open Challenges

	References

	Information Flow and Security Types

	IFC Inside: Retrofitting Languages with Dynamic Information Flow Control

	1 Introduction
	2 Retrofitting Languages with IFC
	2.1 Preliminaries
	2.2 Target Language: Mini-ES
	2.3 IFC Language
	2.4 The Embedding

	3 Security Guarantees
	3.1 Erasure Function
	3.2 Non-interference

	4 Isomorphisms and Restrictions
	4.1 Restricting the IFC Language

	5 Real World Languages
	5.1 JavaScript

	6 Extensions and Limitations
	7 Related Work
	8 Conclusion
	References

	Very Static Enforcement of Dynamic Policies
	1 Introduction
	1.1 Dynamic Policies

	2 The Dynamic Policy Model
	2.1 Computation and Observation Model
	2.2 Dynamic Policies

	3 Knowledge-Based Security Conditions
	3.1 Change in Knowledge
	3.2 Forgetful Attackers
	3.3 Progress Insensitive Security

	4 Progress-Insensitive Security as a Two-Run Property
	5 A Dependency Type System
	5.1 Language
	5.2 Generic Typing
	5.3 Generic Typing for Dynamic Policies

	6 Semantic Soundness and Policy Compliance
	7 Related Work
	8 Conclusions
	References

	The Foundational Cryptography Framework
	1 Introduction
	2 Design Goals
	3 Framework Components
	3.1 Probabilistic Programs
	3.2 (In)Equational Theory of Distributions
	3.3 Program Logic
	3.4 Tactics and Programming Library
	3.5 Asymptotic Theory and Efficient Procedures
	3.6 Code Extraction

	4 Security Proof Construction
	4.1 Concrete Security Definitions
	4.2 Construction
	4.3 Sequence of Games

	5 Comparison to EasyCrypt
	6 Related Work
	7 Conclusion and Future Work
	References

	On the Flow of Data, Information, and Time
	1 Introduction
	2 Model of Computation
	3 Frontiers, Filtering, and Other Auxiliary Concepts
	3.1 Frontiers
	3.2 Filtering
	3.3 Reordering
	3.4 Subtraction
	3.5 Some Properties of Filtering and Reordering

	4 From Timeliness to Determination
	4.1 Time Domains
	4.2 The Could-result-in Relation
	4.3 Frontier Transformers
	4.4 Relating
	4.5 A Special Case of Condition 1
	4.6 Another Perspective on

	5 MainResults
	5.1 Informal Discussion and Definitions
	5.2 Lemmas
	5.3 Main Theorem
	5.4 A Small Example

	6 Conclusion
	References

	Risk Assessment and Security Policies

	Pareto Efficient Solutions of Attack-Defence Trees

	1 Introduction
	2 Formal Model of Attack-Defence Trees
	2.1 Syntax and Well-Formednes
	2.2 Semantics in the Boolean Case
	2.3 Semantics in the Probabilistic Case

	3 Attack-Defence Trees with Cost
	3.1 Cost in the Boolean Case
	3.2 Cost in the Probabilistic Case

	4 Attack-Defence Trees with Multiple Cost
	5 Related Work
	6 Conclusion
	References

	Analysis of XACML Policies with SMT
	1 Introduction
	2 Preliminaries
	2.1 XACML
	2.2 Satisfiability Modulo Theories

	3 Encoding XACML Policies in SMT
	3.1 XACML Formalization
	3.2 Policies as SMT Formulas

	4 XACML Policy Analysis
	5 Evaluation
	5.1 Prototype Implementation
	5.2 Experiments 1: SAT vs. SMT
	5.3 Experiments 2: Real-World Policies

	6 Related Work
	7 Conclusions
	References

	Protocols

	Automa
tically Checking Commitment Protocolsin ProVerif without False Attacks
	1 Introduction
	1.1 Our Contribution in Context of Existing Work

	2 Background: Applied pi Calculus
	3 Secrecy of Free Names
	3.1 Our Compiler: Phases Improve Horn Clause Generation
	3.2 Automated Reasoning without False Attacks

	4 Secrecy of Bound Names
	4.1 A Proof Technique for Secrecy of Bound Names
	4.2 Secrecy of Bound and Free Names Coincide
	4.3 Automated Reasoning without False Attacks

	5 Case Study I: Needham-Schroeder Protocol
	5.1 Applied pi Calculus Model
	5.2 Analysis

	6 Case Study II: Bluetooth Simple Pairing
	6.1 Applied pi Calculus Model
	6.2 Analysis
	6.3 Case Study III: The Simplified Simple Pairing Protocol

	7 Conclusion
	References

	Generalizing Multi-party Contract Signing
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Multi-party Contract Signing
	3.2 Graphs
	3.3 Assumptions

	4 DAG Protocols
	4.1 Specification and Execution Model
	4.2 Adversary Model
	4.3 Communication Complexity

	5 DAG MPCS Protocols
	5.1 Main Protocol
	5.2 Resolve Protocol

	6 Fairness
	6.1 Sufficient and Necessary Conditions
	6.2 Fairness Criteria

	7 Protocols
	7.1 Minimal Complexity
	7.2 Protocol Constructions

	8 Conclusion
	References

	Leakiness is Decidable for Well-FoundedProtocols

	1 Preliminaries
	2 Honest Causality and Well-Founded Protocols
	3 Well-Structured Source Trees and Bundles
	4 Transforming Honest Cause Components into Bundles
	5 Main Result and Further Research
	References

	Abstractions for Security Protocol Verification
	1 Introduction
	2 Security Protocol Model
	2.1 Type System
	2.2 Equational Theories
	2.3 Protocols
	2.4 Operational Semantics
	2.5 Property Language

	3 Security Protocols Abstractions
	3.1 Typed Protocol Abstractions
	3.2 Soundness of Typed Abstractions
	3.3 Untyped Abstractions

	4 Implementation and Experimental Results
	4.1 Abstraction Heuristics
	4.2 Experimental Results

	5 Related Work and Conclusions
	References

	Hardware and Physical Security

	Automated Backward Analysis of PKCS#11 v2.20

	1 Introduction
	2 The PKCS#11 Standard, v2.20
	2.1 Modelling
	2.2 Proposed Configuration

	3 Preliminaries
	3.1 A Cryptographic pi Calculus with Explicit State
	3.2 Security Properties

	4 Model
	5 Security Results for the Proposed Policy
	6 Conclusion and Future Work
	References

	A Safe Update Mechanism for Smart Cards
	1
Introduction
	2 Requirements for Smart Card Updates

	2.1
Update Scenario
	2.2
Requirements
	2.3
Secure Updates in Detail
	2.4
The Software Split

	3
Threat Model and Security Objectives
	4
Safe Smart Card Updates
	4.1
System Layout
	4.2
System States and State Transitions
	4.3
Safety Properties
	4.4
Downgrade Protection
	4.5
Memory Attacks
	4.6 Security Properties

	5
Comparison with Related Work
	5.1
Patching of ROM Based Code
	5.2
Live Patching
	5.3
Multi-application Cards
	5.4
Update Mechanisms from Other Domains
	5.5
Comparison

	6
Safe Updates Protection Profile Package
	6.1
The Common Criteria Framework
	6.2
The Safe Updates Protection Profile Package
	6.3
Goals
	6.4
Package
	6.5
Related Work

	7
Overview of the Package Safe Loader
	7.1
Architecture and Functions
	7.2
urity Objectives and SFRs
	7.3
Modeling of Safety Properties

	8
Discussion
	9
Conclusion

	Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols
	1
Introduction
	2
Two Motivating Examples
	2.1
Time-Bounding Needham-Schroeder Protocol
	2.2
Attack In-Between-Ticks

	3
A Multiset Rewriting Framework with Dense Time
	3.1
Actions and Constraints
	3.2
Initial, Goal Configurations, The Reachability Problem and Equivalence
	3.3
Distance Bounding Protocol Formalization

	4
Circle-Configurations
	4.1
Unit Circle and Constraint Satisfaction
	4.2
Rewrite Rules and Plans with Circle-Configurations

	5
Complexity Results
	6
Related and Future Work
	References

	Timing Attacks in Security Protocols: Symbolic Framework and Proof Techniques
	1
Introduction
	2
Messages and Computation Time
	2.1
Terms
	2.2
Rewriting Systems
	2.3
Length and Time Functions

	3
Processes
	3.1
Syntax
	3.2
Semantics
	3.3
Example: The PA Protocol

	4
Time Equivalence
	4.1
Time Static Equivalence
	4.2
Time Trace Equivalence
	4.3
Timing Attacks against PA

	5
Reduction of Time Trace Equivalence to Length Equivalence
	5.1
Representing Computation Time with Messages
	5.2
Transformed Processes
	5.3
Main Theorem

	6
Application to Privacy Protocols
	References

	Privacy and Voting

	Type-Based Verification of Electronic Voting Protocols
	1
Introduction
	2
Background
	2.1
Refinement Types for Cryptographic Protocols
	2.2
Helios

	3
Verifiability
	3.1
Individual Verifiability
	3.2
Universal Verifiability
	3.3
End-to-End Verifiability
	3.4
Verifiability Analysis of Helios

	4
Privacy
	4.1
Definition of Privacy
	4.2
rF*: A Type System for Observational Equivalence Properties
	4.3
Type-Based Verification of Vote Privacy
	4.4
Privacy Analysis of Helios

	5
Conclusion
	References

	Composing Security Protocols:From Confidentiality to Privacy
	1 Introduction
	2 Models for Security Protocols
	2.1 Messages
	2.2 Processes
	2.3 Process Equivalences

	3 Composition Result: A Simple Setting
	3.1 Sharing Primitives
	3.2 Revealing Shared Keys
	3.3 A First Composition Result

	4 The Case of Key-Exchange Protocols
	4.1 What Is a Good Key Exchange Protocol?
	4.2 Do We Need to Tag Pairs?
	4.3 Composition Result

	5 Dealing with Equivalence-Based Properties
	5.1 A Problematic Example
	5.2 Biprocesses and Diff-Equivalence

	6 Composition Results for Diff-Equivalence
	7 Case Studies
	7.1 3G Mobile Phones
	7.2 E-passport Application

	8 Conclusion
	References

	PriCL: Creating a Precedent, a Framework for Reasoning about Privacy Case Law
	1
Introduction
	2
Ingredients
	3
Defining the PriCL Framework
	3.1
Introducing Cases
	3.2
Combining Cases to Case Law Databases
	3.3
Deriving Legal Consequences: Deducibility and Permissibility
	3.4
General Properties of Case Law Databases
	3.5
Privacy Cases and Norms

	4
Reasoning Tasks
	5
Logic Selection
	6
Conclusion

	Author Index

