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Abstract. Bug checker tools for Java require fine-grained heap abstrac-
tions including object-sensitive call graphs, field information for objects,
and points-to sets for program variables to find bugs in source codes. How-
ever, heap abstractions coined commonly as points-to analysis, have high
runtime-complexity especially when the points-to analysis is context-
sensitive, and, hence, state-of-the-art points-to analyses do not scale for
large code bases.

In this paper, we introduce a new points-to framework that facilitates
the computation of context-sensitive points-to analysis for large code
bases. The framework is demand-driven, i.e., a client queries the points-
to information for some program variables. The novelty of our approach
is a pre-analysis technique that is a combination of staged points-to anal-
yses with program slicing and program compaction. We implemented the
proposed points-to framework in Datalog for a proprietary bug checker
that could identify security vulnerabilities in the OpenJDKTM library
which has approximately 1.3 million variables and 500,000 allocation-
sites. For the clients that we have chosen, our technique is able to elimi-
nate about 73% of all variables and about 95% of allocation-sites. Thus
our points-to framework scales for code bases with millions of program
variables and hundreds of thousands of methods.

1 Introduction

With the wide-spread use of bug checking and productivity tools [4,8,5], the
scalability of static program analysis for large code bases is imminent. Object-
oriented languages heavily rely on the state of the heap and for static program
analyses it is crucial to reason about the state by using a heap abstraction.
For most bug checking tools one cannot consider software components in isola-
tion [19] easily. For example, Octeau et al. [19] argue that a high-fidelity anal-
ysis of component interaction is required for a comprehensive security analysis,
and hence a comprehensive heap abstraction is required. A heap abstraction
over-approximates the connectivity of the objects on the heap, which program
variables may point to which objects, and resolves virtual dispatches to con-
struct a call-graph. Static program analysis for object-oriented languages relies
on the precision of the heap abstraction, i.e., how the effect of heap operations
are abstracted including object creations, variable references, and read/write
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operations on object fields. The heap abstraction is computed via a points-to
analysis, for which there exists a cornucopia of methods [21,18,12,24,23,17].

The standard context-insensitive points-to algorithm [2] has insufficient pre-
cision for many applications including security analysis [19,11]. To improve the
precision of points-to, context sensitive analyses have been introduced [15,23].
There are various notions of contexts. For instance, method invocations on differ-
ent receiver objects are treated differently. One could also combine the receiver
object with the caller object to create the context to distinguish invocations.
In the context of computing a precise points-to relation Smaragdakis et al. [23]
present a number of context-sensitive analyses and identify situations where the
various context-sensitive analysis can be used. In their experimental study, the
authors show that the 2-Object+1-Heap context sensitive points-to relation is
the most precise for object-oriented programs.

Computing the context-sensitive points-to sets for large-scale software is not
viable due to high computational costs. Scalable points-to analysis for object-
oriented languages such as Java has attracted a lot of attention. To overcome
the performance bottleneck of context-sensitive points-to analysis, approaches
that rely on refinement, demand-driven analysis and pre-analysis have been ex-
plored [24,25,22,27]. For example, to overcome the precision versus scalability
trade-off for large-scale software, demand-driven analysis [28,25] is one of the
most popular approaches that computes a points-to analysis for a client. The
client issues specific points-to queries and for only parts of the program that af-
fect the points-to queries, a points-to set is computed. Other approaches include
preprocessing the input [22] which may increase the efficiency of context-sensitive
analysis. But the presented approach is unable to compute the 2-Object+1-Heap
context-sensitive points-to relations for the programs hsqld and jython from the
DaCapo benchmark suite [6] which are much smaller than real-world code bases
including the source code of the JDK library. Similarly, pre-analysis to measure
potential impact on the final result [20] could also increase the overall efficiency.
But the results reported in the paper are on relatively small programs.

The problem we address in this paper is how to compute a precise but expen-
sive demand-driven context-sensitive points-to analysis, such as the 2-Object+1-
Heap, for very large code-bases. A client issues a query that refers to variables
located in a method, for which the client queries the points-to set. Thus only
parts of the program that affect the client’s queries are considered. However,
converting a context-sensitive points-to analysis into a demand-driven analy-
sis is challenging even for alias analysis [27]. The main issues in converting a
context-sensitive points-to analysis to a demand-driven problem stems from the
nature of the problem: context-sensitivity is obtained in a forward fashion (from
the program start to a location) and hence can only be converted to a backward
problem for the demand-driven approach with great difficulties.

Our approach overcomes this issue by employing static program slicing and
program compaction for given points-to queries. The program slicing and com-
paction that we employ reduces the input program to a semantically equivalent
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for the points-to queries1, for which the context-sensitive points-to analysis is
exhaustively run in a forward-fashion. The program compaction is a program
transformation that eliminates variables and their assignments that can be ex-
pressed by other variables. Since context-sensitive analysis are sensitive to the
number of statements and variables in a method, program compaction is a key
ingredients for scalable context-sensitive points-to.

However, program slicing and compaction is insufficient on its own for achiev-
ing scalability for input programs used in our experimental study. To achieve
scalability for programs with millions of program variables, points-to analysis has
to be performed in stages. A lightweight (context-insensitive) points-to analysis
is performed on the reduced input program. The lightweight points-to analysis
enables the construction of a more precise call graph, since virtual dispatches
can rely on a may-points-to analysis rather than the pure syntactic type infor-
mation. With the improved call-graph, another round of program slicing and
compaction is performed, which further reduces the input program. We refer to
the first stage, i.e., program slicing and compaction with the light-weight points-
to analysis as a pre-analysis, since its points-to result is not actually used beside
construction a refined reduced input program. One of the advantages of our
framework is that existing state-of-the-art points-to analyses can be employed.

For our experimental case study, we use Java’s OpenJDK library, that consists
of approximately 1.3 millions of variables, 200 thousand methods, 600 method
invocations, and 400 thousand object creation sites. We have chosen clients that
produce points-to query sets for tasks related to security analysis for a propri-
etary security analysis tool for Java. We are able to compute context-sensitive
points-to relation with our points-to framework under 8 hours. Without our
staged points-to framework, deep context-sensitive points-to analysis is not com-
putable for problem sizes in the scale of Java’s OpenJDK library.

The main contributions of our work are:

– We introduce a points-to framework that can use off-the-shelf exhaustive
context-sensitive points-to analysis for large-scale code bases. The framework
uses a refinement approach, i.e., points-to analyses of various complexity are
performed in stages in conjunction with static program slicing and com-
paction. A preceding stage produces points-to information to further reduce
the input program by refining the call-graph.

– We introduce the notion of program compaction that compacts a flow-
sensitive program representation.

– We perform experiments on a large-scale code to show that our points-to
framework is feasible.

This paper is organised as follows. In Section 2 we give an overview of our
approach. In Section 3 we illustrate our technique by an example. In Section 4 the
details of our staged approach is explained. Our implementation of the approach
as well as its usefulness is described in Section 5. We conclude the paper by

1 Note that the reduced input program may not be executable and may not produce
semantically correct information for other queries which were not specified.
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comparing our work with related work in the literature and highlighting the
novelty of our work in Section 6.

2 Staged Points-To Framework

Our framework produces high-precision points-to analysis results for large-scale
software. To overcome the complexity issue of high-precision points-to analysis,
we specialise the points-to analysis for a client that issues points-to queries.
Points-to queries concern variables for which the client desires the points-to set.
The specialisation is performed by using static program slicing and program
compaction such that an off-the-shelf points-to analysis is performed on the
reduced input program. The reduced input program produces for the points-to
query set the same results as the original input. However, specialisation is not
sufficient on its own. For large-scale software we observed that a refinement is
necessary, i.e., the points-to analysis is performed in stages. In each stage a more
refined reduced input-program is produced. The refined input-program is smaller
than the previous one due to the points-to analysis of the stage such that a later
points-to analysis has less work to perform.

The process to obtain a context-sensitive points-to information in stages using
specialisation and refinement is illustrated in Figure 1. First, the client provides
the set of points-to queries that are passed on to the step that computes the
initial slice of the program. The initial slice is computed based on syntax infor-
mation only rather than performing any points-to analysis. After this the slice
is compacted, i.e., variables that are not of interest or are not actual/formal
parameters, and return values are eliminated. The compacted slice is passed on
a flow-insensitive and field-sensitive points-to analysis. The points-to analysis
builds a heap-abstraction and hence field sensitivity is taken into account. A
related issue is the construction of the call-graph [26]. Virtual method resolu-
tion could be done in conjunction with the points-to analysis. This leads to a
mutual dependency between the points-to analysis and the construction of the
call-graph. The context-insensitive analysis thus builds a call-graph that is more
precise than the initial call-graph constructed using the Class Hierarchy Analysis
(CHA).

Client

Refined &
Compacted

Slice

Context-
Insensitive
Points-To
Analysis

Refined &
Compacted

Slice

Context-
Sensitive
Points-To
Analysis

Fig. 1. Staged process of slicing and analysis for context-sensitive points-to analysis
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The points-to and the call-graph relations are used to compute the final slice
to refine the virtual dispatch of call-sites. The final slice is passed on to perform
the context-sensitive analysis. The use of the less expensive points-to analysis
and slicing can be viewed as a particular instance of pre-analysis for the final
context sensitive points-to analysis. The pre-analysis enables us to compute the
context-sensitive points-to set in an effective fashion. Note that we are able
to use the context-insensitive points-to results to further slice the program as
it is an over-approximation of the desired result. In general, we can use any
points-to relation that is computable on the initial slice provided it is a sound
over-approximation of the desired points-to relation. Thus, context-insensitive
and 2-Object+1-Heap can be seen as an instance of our approach.

3 Motivating Example

In this section we present an example program and show the effect of the syntac-
tic based and context-insensitive based slicing. The aim is to remove unnecessary
variables and objects. This example is representative of actual code fragments
on which our analysis is performed. Consider the program in Listing 1.1. It has
trusted and untrusted objects which can be used in a secure or an insecure set-
ting. The client’s query is only interested in the use of untrusted objects in a
secure setting. Thus non-security related actions and trusted objects are removed
by our analysis.

Listing 1.1. Original Program

1 class SecurityApplication {
2 public static void main(String[] args) {
3 String result = setup(args);
4 System.out.println(result);
5
6 SecurityFactory uFactory = new UntrustedSecurityFactory();
7 SecurityFactory tFactory = new TrustedSecurityFactory();
8
9 SecurityObject uObject = uFactory.getSecurityObject();

10 SecurityObject tObject = tFactory.getSecurityObject();
11
12 doSecurity(uObject, tObject);
13 }
14
15 private static void doSecurity(SecurityObject secObj1,
16 SecurityObject secObj2) {
17 SecurityAction action1 = new SecurityAction();
18 SecurityAction action2 = new SecurityAction();
19 action1.object = secObj1;
20 action2.object = secObj2;
21
22 Object res1 = action1.invoke();
23 Object res2 = action2.invoke();
24
25 doOtherThings(res1, res2);
26 }
27
28 private static String setup(String[] args) { · · · }
29
30 private static void doOtherThings(Object result1, Object result2) { · · · }
31 }
32
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33 interface SecurityFactory {
34 public SecurityObject getSecurityObject();
35 }
36
37 class UntrustedSecurityFactory implements SecurityFactory {
38 public SecurityObject getSecurityObject() {
39 SecurityObject newObj = new UntrustedSecurityObject();
40 return newObj;
41 }
42 }
43
44 class TrustedSecurityFactory implements SecurityFactory {
45 public SecurityObject getSecurityObject() {
46 SecurityObject newObj = new TrustedSecurityObject();
47 return newObj;
48 }
49 }
50
51 class SecurityAction {
52 public SecurityObject object;
53 public Object invoke() {
54 SecurityObject storedObject = this.object;
55 return invoke0(storedObject);
56 }
57 private static native Object invoke0(SecurityObject obj);
58 }
59
60 class SecurityObject {· · ·}
61 class UntrustedSecurityObject extends SecurityObject {· · ·}
62 class TrustedSecurityObject extends SecurityObject {· · ·}

Specifically, assume that the client’s query is: “whether at the invocation of
invoke0 (at line 55) the parameter storedObject points-to an untrusted heap
object of type UntrustedSecurityObject.” In the example, the only alloca-
tion of the untrusted object is on line 39. It can be seen that variables such as
args, result, res1, res2 and methods such as setup and doOtherThings
have no influence on the desired result. Hence they can be removed from the initial
slice.

Given the initial slice, the points-to analysis needs to determine if the variable
storedObject at line 55 can point to the new object created at line 39. The
variable uObject on line 9 will point to the untrusted object as it holds the
return value of the invocation to the getSecurityObject method. The value
now flows from uObject to secObj1 and then to action1.object on line 19.
The method action1.invoke results in the untrusted object being used in the
call of invoke0. As there is no other value flow, we can safely ignore the other
variables. That is, the context-insensitive points-to indicates that variables such
as tFactory (on line 7), tObject (on line 10) and action2 (on line 20) do not
point to an untrusted heap object. Hence these variables and the allocation sites
they point-to can be removed from the slice. Note that the method doSecurity
now has only one parameter in the computed slice. The main points-to relation
where the variables are in rectangular boxes and allocation-sites are in circles
is shown in Figure 2. The figure also shows objects that are pruned (indicated
via being crossed out) by the slicing operation. The resulting slice is shown in
Listing 1.2.
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uFactory tFactory uObject tObject
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Fig. 2. Removal of Objects

Listing 1.2. Final Slice

1 class SecurityApplication {
2 public static void main() {
3 SecurityFactory uFactory = new UntrustedSecurityFactory();
4 SecurityObject uObject = uFactory.getSecurityObject();
5 doSecurity(uObject);
6 }
7
8 private static void doSecurity(SecurityObject secObj1) {
9 SecurityAction action1 = new SecurityAction();

10 action1.object = secObj1;
11 action1.invoke();
12 }
13 }
14
15 interface SecurityFactory {
16 public SecurityObject getSecurityObject();
17 }
18
19 class UntrustedSecurityFactory implements SecurityFactory {
20 public SecurityObject getSecurityObject() {
21 SecurityObject newUObj = new UntrustedSecurityObject();
22 return newUObj;
23 }
24 }
25
26 class SecurityAction {
27 public SecurityObject object;
28 public Object invoke() {
29 SecurityObject storedObject = this.object;
30 return invoke0(storedObject);
31 }
32 private static native Object invoke0(SecurityObject obj);
33 }
34
35 class SecurityObject {· · ·}
36 class UntrustedSecurityObject extends SecurityObject {· · ·}

4 Steps of the Staged Points-To Framework

In order to express the key aspects of our staged points-to analysis, we first
define a small flow-insensitive object-oriented language that includes core Java
features. The language has types so that class and sub-class relationships and
interfaces can be expressed. We also use the notion of types for object-fields,



138 N. Allen et al.

call-sites and method signatures to model virtual dispatch. We assume variables
reside in a single method and are unique. A variable has attached a declared type
that may not be identical to object type of the object it is referring to. Each
method has a special variable self that denotes the instance object itself. Every
method is defined in a class, and is inherited by its sub-class (if not overridden).
A method may consist of one or more of the following statements:

[L1] Heap allocations: x = new C() creates a new instance of variable C.
[L2] Assignment: x = y assigns variable x the value of variable y. Note that the

variable self is pre-defined and cannot be assigned a value.
[L3] Assignment Cast: x = (T )y assigns variable x the value of variable y by

casting the value to type T .
[L4] Loading of a field: x = y.f loads a value from the field f from the value in

variable y and assigns the loaded to the variable x.
[L5] Storing of a field: x.f = y stores the value present in variable y in the field

f of the value in variable x.
[L6] Return Statement: return u returns the value u.
[L7] Call-Site: y = o.s(x1, . . . , xk) calls method a method m that is declared in

type of variable o or any suitable super-class.

Note that we do not consider control-flow constructs in the language, since it
was shown that flow sensitive analysis is less important than a context sensitive
analysis [14,16]. Note that for real implementation we need to consider static
fields, static method calls, calls to super, etc. For sake of simplicity, we do not
discuss them here. In addition, we do not consider reflection mechanisms either.

4.1 Computing the Initial Slice

Here we describe the computation of a slice.The initial slice is computed by
tracing the dataflow of the client specified query variables backwards by the
assignment relation. The slice S is a multi-set containing variables, field types,
and methods of a program. We use the auxiliary function τ(x) which identifies
the type of a variable. Initially, the slice contains the query variables and the
methods where the variables reside in. We use a model theoretic approach to
describe the set that contains the initial slice. We search for the smallest set S
for which following conditions hold:

[S1] All query variables v and methods m that contain variable v are in S.
[S2] If there is an object creation x = newC() and x ∈ S, then {C, consC} ⊆ S

where consC is the object constructor for the type C.
[S3] If there is an assignment x = y and x ∈ S, then y ∈ S.
[S4] If there is an assignment cast x = (T )y and x ∈ S, then y ∈ S.
[S5] If there is a load x = y.f and x ∈ S, then τ(y).f ∈ S, and y ∈ S.
[S6] If there is a store x.f = y in method m, and there is t′.f ∈ S that is

compatible with τ(x).f , then {m,x, y} ⊆ S.
[S7] If there is a callsite y = o.s(x1, . . . , xk) residing in method m, and callsite

o.s is compatible with a method m′ ∈ S, then m ∈ S and o ∈ S.
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[S8] If there is a callsite y = o.s(x1, . . . , xk) residing in method m, callsite o.s is
compatible with a method m′(z1, . . . , zk) ∈ S, and zi ∈ S, then xi ∈ S.

[S9] If there is a callsite y = o.s(x1, . . . , xk), y ∈ S, then for all methods m that
are compatible with the call-site o.s and for all return z residing in m, then
{m, z} ⊆ S.

Rule [S2] extends the slice to include types and the constructors methods of
objects that are created. Rule [S3] extends the slice to the source of the assign-
ment, if the destination of the assignment is in the slice. Rule [S4] extends the
slice for assignment casts. Rule [S5] adds the field τ(y).f if the result of the load
operation on a field is in the slice. Note that we add all variables whose type
is compatible with the loading of the field f . Rule [S6] adds the method m and
the variables x and y to the slice, if a compatible field type can be found in the
slice. Rule [S7] adds the caller to the slice and the instance object. Rule [S8]
adds the actual parameters to a slice, if the formal parameter of a method are
in the slice. Rule [S9] adds the return variables to the slice if the result variable
is in the slice.

4.2 Compaction

The compaction process eliminates variables that do not contribute directly or
indirectly to the points-to query. In addition, variables that store intermediate
results can be eliminated. For example, in a method without points-to queries,
the only variables which should remain are variables of object-creation sites,
actual/formal parameters, instance variables, and return variables. The com-
paction reduces the size of the data-flow graph of a method, and, hence speeds
up the convergence of the points-to analysis. The compaction can be perceived
as an orthogonal process to slicing.

The implementation of compaction is based on standard techniques such as
reaching-definitions, copy propagation and dead and redundant code elimina-
tion schemes [3,10] suitably adapted for object-oriented programs. Since there
is no control-flow, the computation reduces to the computation of equivalence
classes via the assign relation. This assign relation builds a value flow graph and
involves the query variables, formal arguments/actual arguments, return state-
ments, object creation sites, receiver objects of method invocations at call-sites.

The example on the left in Figure 3 is rewritten to the example on the right.
The intermediate variables z and y are eliminated as assignments to them are
redundant. That is, the assignment z = x is not necessary as all occurrences
of z can be replaced by x. Formally, the variables x, y and z are in the same
equivalence class while the variables a and b are in another equivalence class.

In the above example only one definition reached the use. That is, only x
reaches z and only a reaches b. In general, various definitions could reach a point
of use. Our solution is to maintain a subset of definitions that reach a variable.
The subset in then used to identify all the assignments that are necessary. An
example of this situation is shown in Figure 4.
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1 int foo(int x) {
2 z = x;
3 y = x;
4 a = goo(z);
5 b = a;
6 return b;
7 }

1 int foo(int x) {
2 a = goo(x);
3 return a;
4 }

Fig. 3. Example of Compaction

1 int foo(int arg0, int arg1,
2 int arg2) {
3 x = arg0;
4 y = arg1;
5 z = x;
6 z = y; z : {arg0, arg1}
7 a = arg2;
8 a = z; a : {arg0, arg1, arg2}
9 goo(a);

10 z = a; z : {arg0, arg1, arg2}
11 return z;
12 }

1 int foo(int arg0, int arg1,
int arg2) {

2 arg0arg1arg2 = arg0;
3 arg0arg1arg2 = arg1;
4 arg0arg1arg2 = arg2;
5 goo(arg0arg1arg2);
6 return arg0arg1arg2;
7 }

Fig. 4. Multiple values: Compaction

In general we replace variables by reusing subsets of reaching definitions. Note
that this is sound in our context as we are computing a may-point-to relation.
The subsets of reaching definitions can be arranged in a Hasse-diagram repre-
senting the partial order. The assignments can then be derived by reusing the
assignments used for the relevant subsets and taking into account the variables
from the reaching definitions that have been covered. An example of a partial
order and the generated assignments is given in Figure 5. The emphasised vari-
ables are those that are introduced by compaction whereby variables a to d are
program variables of the input program. All other intermediate variables that
contributed to the partial order are elided.

{a, b, c, d}

{a, b} {c, d} {b, d}

1 ab = a; ab = b;
2 cd = c; cd = d;
3 bd = b; bd = d;
4 abcd = ab; abcd = cd;

Fig. 5. Partial Order and Assignments
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4.3 Context-Insensitive Points-To Analysis

The improvement of the context-insensitive field-sensitive point-to analysis is the
heap-abstraction, i.e., fields are analysed and hence more precise information is
obtained for resolving virtual method dispatches. For each instance variable, the
points-to set consisting of object-creation sites is computed, which we denote
by pt(v). For each field of an object-creation site, a set of object-creation sites
that this field may point to, which we denote by fpt(o, f), is also computed. An
object-creation site has associated an actual type that is used to compute more
precise virtual method dispatches. We search for the smallest points-to set for
the current slice such that following points-to rules hold:

[P1] If there exists a heap allocation a : x = new C(. . .) in a method m ∈ S,
then a ∈ pt(x).

[P2] If there exists an assignment x = y in a method m ∈ S, then pt(y) ⊆ pt(x).
[P3] If there exists an assignment cast x = (T )y in a method m ∈ S, then

o ∈ pt(x), for all o ∈ pt(y) and τ(o) ≤ T .
[P4] If there exists a load statement x = y.f in a method m ∈ S, then pt(o.f) ⊆

pt(x) for all o ∈ pt(y).
[P5] If there exists a store statement x.f = y in a method m ∈ S, then pt(y) ⊆

fpt(o, f) for all o ∈ pt(x).
[P6] If there exists a call-site y = o.s(x1, . . . , xk) in a method m ∈ S, and for all

methods m′(z1, . . . , zk) that are compatible with s and the types in pt(o),
then pt(xi) ⊆ pt(zi) for all i, 1 ≤ i ≤ k, pt(o) ⊆ pt(m′.self), and pt(y) ⊆ pt(u)
for all return u residing in m′(z1, . . . , zk).

Note that the above rules are standard [21] for a field-sensitive context-insensitive
points-to analysis. The points-to relation is used to obtain the final slice. The
slice produced by using the context-insensitive points-to analysis will include
variables, methods, heap allocation sites along with points-to facts for the client’s
query. While the rules are similar in structure as the rules in the variable-based
slicing, there are some subtle differences as we now have the actual object cre-
ation sites for each variable and field-sensitivity.

[S’1] If o ∈ pt(v) such that (v, o) is part of the facts for the client’s query and m
is the method that contains v, then {(o, v),m} ⊆ S.

[S’2] If (v, h) ∈ S, then {v, h} ⊆ S. Similarly if (o, f, o′) ∈ S then {o, f, o′} ⊆ S.
[S’3] If there is an assignment x = y and (x, o) ∈ S, and o ∈ pt(y) then y ∈ S.
[S’4] If there is a load x = y.f and (x, o) ∈ S and o′ ∈ pt(y) such that o ∈

fpt(o′, f), then {(o′, f, o), (y, o′)} ⊆ S.
[S’5] If there is a store x.f = y in method m, and o ∈ pt(x), o′ ∈ pt(y), (o, f, o′) ∈

S, then {m, (x, o), (y, o′)} ⊆ S.

The rule [S’1] adds all the facts that are relevant to the client’s query to the
slice. The rule [S’2] adds all the constituent elements of the points to and field-
points-to relation in the slice to the slice. The rule [S’3] extends the slice with the
variable on the right hand side of the assignment provided it points-to an object
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in the slice. The rule [S’4] adds the points-to facts related to a load operation to
the slice provided the variable which has result of the load operation is in the
slice. The rule [S’5] adds the method m and the points-to facts for the variables
x and y to the slice, if a field is stored into and the field-points-to relation is
part of the slice.

4.4 Context-Sensitive Points-To Analysis

The context-sensitive points-to analysis is the final stage of the analysis. It uses
the last slice to compute the most precise points-to information. The contexts as
well as the points-to relation is computed only on the slice and thus the analysis
can use the standard techniques [23]. The construction of the slice guarantees
that if o belongs to cpt(c, x), then o will also belong to pt(x) where cpt represents
the context-sensitive points-to relation and c the context. So as long as the
result of our context-sensitive analysis is a strict refinement of the results of the
context-insensitive analysis, the result of the pre-analysis can be used for the
context-sensitive analysis. The context-sensitive analysis further refines the call-
graph. The points-to analysis will use the notion of a method being reachable
in a context and use it to compute the points-to set. As noted in Section 1, one
can use a method’s receiver object and the object that allocates this receiver
object as the context. As the resolution of the virtual method being invoked will
depend on the type of the receiver object, certain methods will not be reachable
in certain contexts. More details on this is available in the literature [7,23]. We
use reach(c,m) to indicate that method m is reachable in context c. Contexts
are updated when a method is invoked or when an object is created. We use
extend(c, st) to identify the new context, where st is a statement that represents
an invocation or an object creation. The rules for assignment and the linking of
actual to formal parameters in a method invocation is shown below.

[CSP1] If there exists an assignment x = y in a method m ∈ S, and reach(c,m)
then cpt(c, y) ⊆ cpt(c, x).

[CSP2] If there exists a call-site y = o.s(x1, . . . , xk) in a method m ∈ S with
reach(c,m) and for all methods m′(z1, . . . , zk) that are compatible with s
and cpt(c, o), then cpt(c, xi) ⊆ cpt(c′, zi) for all i, 1 ≤ i ≤ k where c′ =
extend(c, o.s(x1, . . . , xk))

One can show that for any program P , if v is a variable in a client’s query
then cptP (c, x) = cptS(c, x) where cptP and cptS represent the context-sensitive
points-to set computed for the entire program P and slice S respectively. That
is, our slicing technique does not lose any relevant information.

5 Implementation and Results

In this section we demonstrate both the ineffectiveness of using off-the-shelf
context-sensitive points-to analysis and the effectiveness of our staged points-to
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Table 1. Context Sensitive Analysis: Not computable over the JDK

Context Sensitive Analysis Outcome

1-Call-site-sensitive Does not terminate after 20 hours

1-Object-sensitive Does not terminate after 20 hours

2-Call-site-sensitive+1-Heap Does not terminate after 20 hours

2-Object-sensitive+1-Heap Out of memory

framework using specialisation (i.e. program slicing and compaction) and refine-
ment (i.e. staging points-to). We have implemented our technique with Data-
log [1] based on the DOOP [7] framework. We use OpenJDK 7 build 147 (rt.jar)
as the artefact that is subject to various analyses. We ran our experiments on an
Intel Xeon E5-2660 (2.2GHz) machine with 256GB RAM using the LogicBlox
engine [13].

We report results of our experiments with some of the existing context-
sensitive points-to analysis that was not computable in general for the OpenJDK
library without specialisation and refinement. OpenJDK 7 (rt.jar) has more than
2 million lines of Java code. Note that lines of code is not necessarily an accurate
indication of the complexity for the points-to analysis. The number of variables
and allocation sites is a better indication of the effort required to perform points-
to analysis. The OpenJDK 7 library has close to 1.3 million variables and about
500,000 heap allocation sites and goes well beyond the largest benchmarks sizes
such as DaCapo [6] mainly used for points-to research in literature.

The results of points-to without specialisation and refinement are shown in
Table 1. We terminated many of the analyses after 20 hours as that was well
over our self-imposed time budget of 8 hours.

Choice of Client. As results of our analysis is dependent on the client’s query,
we choose different security analysis clients. We choose four security analysis
that relate to access control and are derived from section 9 of the Java Se-
cure Coding guidelines (JSCG) [9]. The guidelines specify certain properties
where security sensitive methods are invoked. Examples of security sensitive
methods include AccessController.doPrivileged(), Class.forName
() and Class.newInstance(). The restrictions on the invocation of such
methods require appropriate permissions, use of untainted objects and escaping
of results from the JDK to the application.

Typically a client is interested in identifying locations in the program that
violate the Java Security Guidelines. For this purpose the client identifies invo-
cations to the security sensitive methods that are potential violations. Points-to
information is required to determine properties such as taintedness of any of
the arguments and results escaping from the JDK to the application. From a
security view point other invocations that do not influence the security related
invocations are not relevant. Note that although security is the principal mo-
tivation, we do not report any security specific results here. The focus here is
purely on client driven calculation of a suitable context-sensitive points-to set.
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5.1 Staged Points-To Framework Results

In this section we present the results of our analysis. We show that

(a) the reduction in the number of variables and allocation-sites due to program
slicing and compaction,

(b) the size of the various points-to relations and
(c) the size of the call-graph

Table 2. Number of Variables

Client
Variables in Variables in Variables after

Client’s Query Initial Slice Context
Insensitive
Analysis

CSM 3,885 895,100 228,054

CSM-Escape 1,321 891,641 224,707

CSM-Taint 847 797,217 222,192

doPrivileged 12,202 799,484 266,558

The reduction in the number of program variables using our pre-analysis is
given in Table 2. The behaviour is uniform across all clients (see Figure 6(a))
and there is no obvious link between the number of variables in the client’s
query and the number of variables in the various reduced input programs. The
variables used either as parameters or as the base in the relevant invocations
yields the variables that are in the client’s query. The variable based slicing
reduces the number of potentially relevant variables by approximately 30%. The
context insensitive analysis on the slice further reduces the number of relevant
variables by approximately 73%. This results in a slice with only about 18% of the
original set of variables. The reduction in the number of allocation-sites is shown
in Table 3. The variable based slice does not significantly reduce the number of
allocation sites. But the context insensitive analysis marks only around 5.0%
of the original set of allocation sites as relevant (shown in Figure 6(b)). This

(a) Variables (b) Allocation Sites

Fig. 6. Size Reduction
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Table 3. Number of Allocation Sites

Client
Allocation Sites in Allocation Sites after

Initial Slice Context-Sensitive
Analysis

CSM 494,560 23,215

CSM-Escape 494,111 22,928

CSM-Taint 492,821 22,850

doPrivileged 494,560 28,298

Table 4. Size of Points-To Relation

Client

Context-
Insensitive

Context-Sensitive Context-Sensitive

(No Context)

CSM 115,470,090 435,721,445 1,895,206

CSM-Escape 115,374,473 434,238,551 1,885,825

CSM-Taint 107,538,308 296,998,797 1,585,422

doPrivileged() 141,053,434 413,813,791 1,952,346

massive reduction in the number of allocation sites combined with a significant
reduction in the number of variables is the key reason for the success of our
technique.

The size of the points-to relation is shown in Table 4. For all the clients there
are more than 100 million points-to relations in the context-insensitive points-to
set. They are refined to more than 400 million points-to relations, except in the
case of CSM-Taint where 296 million facts are generated, an increase by a factor
of more than 3.5. If the contexts from the context-sensitive relation are elided,
there are about 1.9 million facts, except in the case of CSM-Taint where there
are about 1.6 million facts. The sheer size indicates the memory required to hold
these relations.

The average number of objects a variable points to gives insight to the prob-
lem. In the context-insensitive case it is about 140 objects per variable while in
the context-sensitive case it is only about 8 objects per variable. This is shown
in Table 5.

Table 5. Average Number of Allocation Sites Per Variable

Client Context-Insensitive Context-Sensitive

CSM 129.0 8.3

CSM-Escape 129.4 8.4

CSM-Taint 134.9 7.1

doPrivileged() 176.4 7.3
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The call-graph relation generated by the context-insensitive points-to analysis
contains approximately 300,000 points-to relations. This is refined to more than
80 million facts, except in the case of CSM-Taint where close to 59 million
facts are generated. This represents an increase in the size by a factor of 247.
However, if just the call-graph edges are (without the contexts) examined, there
are approximately 140,000 edges. So the context-sensitive analysis reduces the
number of edges from the context-insensitive relation by about 60%.

Table 6. Size of Call-Graph Relation

Client

Context-
Insensitive

Context-Sensitive Context-Sensitive

(No Context)

CSM 337,658 83,472,063 141,066

CSM-Escape 337,482 83,415,055 140,535

CSM-Taint 332,135 58,926,898 137,809

doPrivileged() 373,991 77,723,735 153,079

Despite the size of the call-graph edges and the context-sensitive points-to set,
slicing enables the computation of the context-sensitive points-to and call-graph
relations in under 4 hours and 45 minutes which is well under our limit of about
8 hours. The break up of the time taken by each stage is shown in Table 7. All
times are given in seconds.

Table 7. Timing Information

Client
Initial Context Context

Total
Slice Insensitive Sensitive

CSM 285 1,913 14,936 17,134
(4.76hrs)

CSM-Escape 293 1,903 14,790 16986
(4.72hrs)

CSM-Taint 233 1,694 5,959 7886
(4.05hrs)

doPriv() 256 2,508 11,844 7886
(4.05hrs)

To summarise, our experiments show that the reduction in the number of
variables and allocation sites using our points-to framework. Our experiments
provides insight into the sizes of the various relations that are computed on
the reduced input program. From our experimentation it is hard to establish a
relationship between number of variables specified by client and performance.
Ultimately it depends on the size of the reduced input program, which is hard
to estimate purely from the client’s query.
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Limitation of the Experiment

Firstly, all experiments are conducted on various versions of JDK. Although we
have reported results only on the OpenJDK 7, the results on other versions of JDK
are similar. All large code bases may not have the same characteristics as the JDK.
Hence our analysis might produce different results. But given that we have anal-
ysed the JDK in its entirety gives us confidence that the staged approach can be
applied to other large systems. The second issue relates to the security related
queries. All of them were related to access control and derived from the Java Se-
curity Coding Guidelines. While the coding guidelines cover key security related
situations, there are many aspects of security that we have not covered. However,
an initial analysis of the JDK shows that the security sensitive operations are re-
lated to each other which is why the number of variables and allocation sites are
in the initial slice are independent on the client. We believe that clients derived
from other secure coding guidelines will produce similar results.

6 Related Work

The novelty of our approach is using well known demand-driven points-to anal-
yses and the notion of slicing and combining them in the right order to ob-
tain a scalable demand-driven refinement technique to compute context sensitive
points-to relations for large systems. We have demonstrated that our approach
can compute the 2-Object-sensitive+1-Heap context-sensitive points-to set for
security related analysis of the JDK. No existing work has reported results on
any program that is as large as the JDK.

Most of the existing works report results on programs from standard bench-
marking suites such as DaCapo [6]. All the programs in these suites are much
smaller than the JDK. Jython, which is part of the DaCapo suite [6] is used as
an example of a typically large example for static analysis [24,23]. Smaragdakis
et al. [23] report that they were unable to compute the entire 2-Object+1-Heap
sensitive points-to relation for Jython. As the JDK has about 10 times the num-
ber of heap allocation sites and about 6 times the number of variables of Jython,
the standard DOOP technique cannot be used to compute the context-sensitive
points-to relation for the JDK.

It is difficult to perform an accurate comparison of our approach with other
approaches. This is because the analysis depends on both the size of the input
program as well as the query that is used in the demand-driven refinement
process. For instance, [22] achieve a 30% reduction in the number of variables;
but that is independent of any client query. But they do not reduce the number
of heap objects as they do not compute a relevant slice. None of the existing
work use security analysis for their refinement nor do they use slicing to get a
handle on complexity.

Sridharan and Bod́ık [24] use refinement with cast checking and disjoint anal-
ysis of factory methods as the criteria. Yan et al. [27] do not use refinement –
they compute the may alias relation directly in a demand driven fashion using



148 N. Allen et al.

CFL reachability. They develop a specific context-sensitive analysis based on
reachability and summarisation and do not compute the points-to relation.

Pre-analysis is used to selectively compute the context-sensitive points-to set
[20]. They use the pre-analysis to estimate the potential benefit before they
compute context-sensitive facts. Thus for the same program they have context-
insensitive facts for some program fragments while other fragments have context-
sensitive facts. Our approach is orthogonal to their work as we compute the
context-sensitive facts for the entire slice where the slice is identified using a
demand-driven approach. Furthermore, their approach is for C programs and it
is not clear how easily it can be applied to object-oriented programs. Finally,
their results are on all relatively small programs (the largest program they use
is a2ps-4.14 which has fewer than 65K lines of code).

Table 8 summarises the key differences between the different approaches.

Table 8. Comparison of Different Approaches

Approach
CFL Based Alias

Heap reduction
Client Based Reduction

or or
Variable Reduction Selective Contexts

Set based pre-processing
✓ ✗ ✗

[22]

Demand-driven
✓ ✗ ✓

alias analysis [27]

Selective context-sensitive
✗ ✗ ✓

analysis [20]

Our Work ✓ ✓ ✓

7 Conclusion

In this paper we introduced a staged demand-driven points-to framework that
uses specialisation and refinement. The specialisation is achieved by static pro-
gram slicing and program compaction. The refinement is achieved by staging the
points-to analysis, i.e., a pre-analysis refines the reduced input program for the
later stage. We have implemented our technique using the DOOP framework and
have presented our results on the OpenJDK version 7 build 147 using 4 security
related client queries. We have observed that our technique is able to reduce
the number of variables and allocation sites which enables the computation of
the 2-Object+1-Heap context-sensitive points-to well within our time bound of
8 hours. Our technique produces high-precision points-to analysis information
for code bases with million of program variables and thousands of invocation
sites going beyond the state-of-the-art.
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