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Foreword

ETAPS 2015 was the 18th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established
in 1998, and this year consisted of six constituting conferences (CC, ESOP, FASE,
FoSSaCS, TACAS, and POST) including five invited speakers and two tutorial speakers.
Prior to and after the main conference, numerous satellite workshops took place and
attracted many researchers from all over the world.

ETAPS is a confederation of several conferences, each with its own Program Com-
mittee and its own Steering Committee (if any). The conferences cover various aspects
of software systems, ranging from theoretical foundations to programming language
developments, compiler advancements, analysis tools, formal approaches to software
engineering, and security. Organizing these conferences into a coherent, highly syn-
chronized conference program enables the participation in an exciting event, having the
possibility to meet many researchers working in different directions in the field, and to
easily attend talks at different conferences.

The six main conferences together received 544 submissions this year, 152 of which
were accepted (including 10 tool demonstration papers), yielding an overall acceptance
rate of 27.9%. I thank all authors for their interest in ETAPS, all reviewers for the peer-
reviewing process, the PC members for their involvement, and in particular the PC Co-
chairs for running this entire intensive process. Last but not least, my congratulations to
all authors of the accepted papers!

ETAPS 2015 was greatly enriched by the invited talks by Daniel Licata (Wesleyan
University, USA) and Catuscia Palamidessi (Inria Saclay and LIX, France), both unify-
ing speakers, and the conference-specific invited speakers [CC] Keshav Pingali (Univer-
sity of Texas, USA), [FoSSaCS] Frank Pfenning (Carnegie Mellon University, USA),
and [TACAS] Wang Yi (Uppsala University, Sweden). Invited tutorials were provided
by Daniel Bernstein (Eindhoven University of Technology, the Netherlands and the Uni-
versity of Illinois at Chicago, USA), and Florent Kirchner (CEA, the Alternative Ener-
gies and Atomic Energy Commission, France). My sincere thanks to all these speakers
for their inspiring talks!

ETAPS 2015 took place in the capital of England, the largest metropolitan area in
the UK and the largest urban zone in the European Union by most measures. ETAPS
2015 was organized by the Queen Mary University of London in cooperation with
the following associations and societies: ETAPS e.V., EATCS (European Association
for Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). It was supported by the following sponsors: Semmle, Winton, Facebook,
Microsoft Research, and Springer-Verlag.



VI Foreword

The organization team comprised:

– General Chairs: Pasquale Malacaria and Nikos Tzevelekos
– Workshops Chair: Paulo Oliva
– Publicity chairs: Michael Tautschnig and Greta Yorsh
– Members: Dino Distefano, Edmund Robinson, and Mehrnoosh Sadrzadeh

The overall planning for ETAPS is the responsibility of the Steering Committee. The
ETAPS Steering Committee consists of an Executive Board (EB) and representatives of
the individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board comprises Gilles Barthe (satellite events, Madrid), Hol-
ger Hermanns (Saarbrücken), Joost-Pieter Katoen (Chair, Aachen and Twente), Gerald
Lüttgen (Treasurer, Bamberg), and Tarmo Uustalu (publicity, Tallinn). Other members of
the Steering Committee are: Christel Baier (Dresden), David Basin (Zurich), Giuseppe
Castagna (Paris), Marsha Chechik (Toronto), Alexander Egyed (Linz), Riccardo Focardi
(Venice), Björn Franke (Edinburgh), Jan Friso Groote (Eindhoven), Reiko Heckel (Le-
icester), Bart Jacobs (Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Christof
Löding (Aachen), Ina Schäfer (Braunschweig), Pasquale Malacaria (London), Tiziana
Margaria (Limerick), Andrew Myers (Boston), Catuscia Palamidessi (Paris), Frank
Piessens (Leuven), Andrew Pitts (Cambridge), Jean-Francois Raskin (Brussels), Don
Sannella (Edinburgh), Vladimiro Sassone (Southampton), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Cesare Tinelli (Iowa City),
Luca Vigano (London), Jan Vitek (Boston), Igor Walukiewicz (Bordeaux), Andrzej Wą-
sowski (Copenhagen), and Lenore Zuck (Chicago).

I sincerely thank all ETAPS SC members for all their hard work to make the 18th
edition of ETAPS a success. Moreover, thanks to all speakers, attendants, organizers
of the satellite workshops, and to Springer for their support. Finally, many thanks
to Pasquale and Nikos and their local organization team for all their efforts enabling
ETAPS to take place in London!

January 2015 Joost-Pieter Katoen



Preface

This volume contains the papers presented at CC 2015: 24th International Conference
on Compiler Construction held during April 10–17, 2015 in London.

There were 34 submissions. Each submission was reviewed by at least three Pro-
gram Committee members. The committee decided to accept 11 papers. The program
also included one invited talk.

CC brings together a unique blend of scientists and engineers working on process-
ing programs in a general sense. The conference is the most targeted forum for the dis-
cussion of progress in analyzing, transforming, or executing input that describes how
a system operates, including traditional compiler construction as a special case. This
year’s topics of interest included, but were not limited to: Compiler Engineering and
Compiling Techniques, Compiler Analysis and Optimization, and Formal Techniques
in Compilers.

We take this opportunity to thank our invited speaker, to congratulate the authors,
and to thank them for submitting their fine work to the Compiler Construction confer-
ence. Many thanks to the Local Organization team and to the Steering Committee of
ETAPS for making CC 2015 possible.

February 2015 Björn Franke
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A Graphical Model for Context-Free Grammar Parsing

Keshav Pingali1 and Gianfranco Bilardi2

1 The University of Texas, Austin,
Texas 78712, USA

pingali@cs.utexas.edu
2 Università di Padova

35131 Padova, Italy
bilardi@dei.unipd.it

Abstract. In the compiler literature, parsing algorithms for context-free gram-
mars are presented using string rewriting systems or abstract machines such as
pushdown automata. Unfortunately, the resulting descriptions can be baroque,
and even a basic understanding of some parsing algorithms, such as Earley’s
algorithm for general context-free grammars, can be elusive. In this paper, we
present a graphical representation of context-free grammars called the Grammar
Flow Graph (GFG) that permits parsing problems to be phrased as path problems
in graphs; intuitively, the GFG plays the same role for context-free grammars
that nondeterministic finite-state automata play for regular grammars. We show
that the GFG permits an elementary treatment of Earley’s algorithm that is much
easier to understand than previous descriptions of this algorithm. In addition,
look-ahead computation can be expressed as a simple inter-procedural dataflow
analysis problem, providing an unexpected link between front-end and back-end
technologies in compilers. These results suggest that the GFG can be a new foun-
dation for the study of context-free grammars.

1 Introduction

The development of elegant and practical parsing algorithms for context-free grammars
is one of the major accomplishments of 20th century Computer Science. Two abstrac-
tions are used to present these algorithms: string rewriting systems and pushdown au-
tomata, but the resulting descriptions are unsatisfactory for several reasons.

– Even an elementary understanding of some grammar classes requires mastering
a formidable number of complex concepts. For example, LR(k) parsing requires
an understanding of rightmost derivations, right sentential forms, viable prefixes,
handles, complete valid items, and conflicts, among other notions.

c© Springer–Verlag Berlin Heidelberg 2015
B. Franke (Ed.): CC 2015, LNCS 9031, pp. 3–27, 2015.
DOI: 10.1007/978-3-662-46663-6_1



4 K. Pingali and G. Bilardi

– Parsing algorithms for different grammar classes are presented using different ab-
stractions; for example, LL grammars are presented using recursive-descent, while
LR grammars are presented using shift-reduce parsers. This obscures connections
between different grammar classes and parsing techniques.

– Although regular grammars are a proper subset of context-free grammars, parsing
algorithms for regular grammars, which are presented using finite-state automata,
appear to be entirely unrelated to parsing algorithms for context-free grammars.

In this paper, we present a novel approach to context-free grammar parsing that is
based on a graphical representation of context-free grammars called the Grammar Flow
Graph(GFG). Intuitively, the GFG plays the same role for context-free grammars that
the nondeterministic finite-state automaton (NFA) does for regular grammars: parsing
problems can be formulated as path problems in the GFG, and parsing algorithms be-
come algorithms for solving these path problems. The GFG simplifies and unifies the
presentation of parsing algorithms for different grammar classes; in addition, finite-
state automata can be seen as an optimization of the GFG for the special case of regular
grammars, providing a pleasing connection between regular and context-free grammars.

Section 2 introduces the GFG, and shows how the GFG for a given context-free
grammar can be constructed in a straight-foward way. Membership of a string in the
language generated by the grammar can be proved by finding what we call a complete
balanced GFG path that generates this string. Since every regular grammar is also a
context-free grammar, a regular grammar has both a GFG and an NFA representation.
In Section 2.4, we establish a connection between these representations: we show that
applying the continuation-passing style (CPS) optimization [1,2] to the GFG of a right-
linear regular grammar produces an NFA that is similar to the NFA produced by the
standard algorithm for converting a right-linear regular grammar to an NFA.

Earley’s algorithm[3] for parsing general context-free grammars is one of the more
complicated parsing algorithms in the literature [4]. The GFG reveals that this algorithm
is a straightforward extension of the well-known “ε-closure” algorithm for simulating
all the moves of an NFA (Section 3). The resulting description is much simpler than
previous descriptions of this algorithm, which are based on dynamic programming,
abstract interpretation, and Galois connections [3,5,6].

Look-ahead is usually presented in the context of particular parsing strategies such
as SLL(1) parsing. In Section 4, we show that the GFG permits look-ahead computa-
tion to be formulated independently of the parsing strategy as a simple inter-procedural
dataflow analysis problem, unifying algorithmic techniques for compiler front-ends and
back-ends. The GFG also enables a simple description of parsers for LL and LR gram-
mars and their sub-classes such as SLL, SLR and LALR grammars, although we do not
discuss this in this paper.

Section 5 describes related work. Structurally, the GFG resembles the recursive tran-
sition network (RTN) [7], which is used in natural language processing and parsers like
ANTLR [8], but there are crucial differences. In particular, the GFG is a single graph
in which certain paths are of interest, not a collection of recursive state machines with
an operational model like chart parsing for their interpretation. Although motivated by
similar concerns, complete balanced paths are different from CFL-paths [9].

Proofs of the main theorems are given in the appendix.
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2 Grammar Flow Graph (GFG) and Complete Balanced Paths

A context-free grammar Γ is a 4-tuple <N, T, P, S> where N is a finite set of non-
terminals, T is a finite set of terminals, P ⊆ N × (N ∪ T )∗ is the set of productions,
and S ∈ N is the start symbol. To simplify the development, we make the following
standard assumptions about Γ throughout this paper.

– A1: S does not appear on the righthand side of any production.
– A2: Every non-terminal is used in a derivation of some string of terminals from S

(no useless non-terminals [4]).

Any grammar Γ ′ can be transformed in time O(|Γ ′|) into an equivalent grammar Γ
satisfying the above assumptions [10]. The running example in this paper is this gram-
mar: E→int|(E + E)|E + E. An equivalent grammar is shown in Figure 1, where the
production S→E has been added to comply with A1.

2.1 Grammar Flow Graph (GFG)

Figure 1 shows the GFG for the expression grammar. Some edges are labeled explicitly
with terminal symbols, and the others are implicitly labeled with ε. The GFG can be
understood by analogy with inter-procedural control-flow graphs: each production is
represented by a “procedure” whose control-flow graph represents the righthand side
of that production, and a non-terminal A is represented by a pair of nodes •A and A•,
called the start and end nodes for A, that gather together the control-flow graphs for
the productions of that non-terminal. An occurrence of a non-terminal in the righthand
side of a production is treated as an invocation of that non-terminal.

The control-flow graph for a production A→u1u2..ur has r + 1 nodes. As in finite-
state automata, node labels in a GFG do not play a role in parsing and can be chosen ar-
bitrarily, but it is convenient to label these nodes A→•u1u2..ur through A→u1u2..ur•;
intuitively, the • indicates how far parsing has progressed through a production (these la-
bels are related to items [4]). The first and last nodes in this sequence are called the entry
and exit nodes for that production. If ui is a terminal, there is a scan edge with that label
from the scan node A→u1..ui−1•ui..ur to node A→u1..ui•ui+1..ur, just as in finite-
state automata. If ui is a non-terminal, it is considered to be an “invocation” of that
non-terminal, so there are call and return edges that connect nodes A→u1..ui−1•ui..ur

to the start node of non-terminal ui and its end node to A→u1..ui•ui+1..ur.
Formally, the GFG for a grammar Γ is denoted by GFG(Γ ) and it is defined as

shown in Definition 1. It is easy to construct the GFG for a grammar Γ in O(|Γ |) time
and space using Definition 1.

Definition 1. If Γ=<N, T, P, S> is a context-free grammar, G = GFG(Γ ) is the
smallest directed graph (V (Γ ), E(Γ )) that satisfies the following properties.

� For each non-terminal A ∈ N , V (Γ ) contains nodes labeled •A and A•, called the
start and end nodes respectively for A.

� For each productionA→ε, V (Γ ) contains a node labeledA→•, andE(Γ ) contains
edges (•A,A→•), and (A→•, A•).
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� For each production A→u1u2...ur

• V (Γ ) contains (r+1)nodes labeledA→•u1...ur,A→u1•...ur, ...,A→u1...ur•,
• E(Γ ) contains entry edge (•A,A→•u1...ur), and exit edge (A→u1...ur•, A•),
• for each ui ∈ T , E(Γ ) contains a scan edge
(A→u1...ui−1•ui..ur, A→u1...ui•ui+1..ur) labeled ui,

• for each ui ∈ N , E(Γ ) contains a call edge (A→u1...ui−1•ui...ur, •ui) and
a return edge (ui•, A→u1...ui•ui+1...ur).
Node A→u1...ui−1•ui...ur is a call node, and matches the return node
A→u1...ui•ui+1...ur.

� Edges other than scan edges are labeled with ε.

When the grammar is obvious from the context, a GFG will be denoted byG=(V,E).
Note that start and end nodes are the only nodes that can have a fan-out greater than one.
This fact will be important when we interpret the GFG as a nondeterministic automaton
in Section 2.3.

Fig. 1. Grammar Flow Graph example
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Table 1. Classification of GFG nodes: a node can belong to several categories. (A,B ∈ N ,
t ∈ T , and α, γ ∈ (T +N)∗)

Node type Description
start Node labeled •A

end Node labeled A•

call Node labeled A→α•Bγ

return Node labeled A→αB•γ

entry Node labeled A→•α

exit Node labeled A→α•

scan Node labeled A→α•tγ

2.2 Balanced Paths

The following definition is standard.

Definition 2. A path in a GFG G=(V,E) is a non-empty sequence of nodes v0, . . . , vl,
such that (v0, v1), (v1, v2), ..., (vl−1, vl) are all edges in E.

In a given GFG, the notation v1�v2 denotes the edge from v1 to v2, and the notation
v1�∗vn denotes a path from v1 to vn; the symbol “→” is reserved for productions and
derivations. If Q1:v1�∗vm and Q2:vm�∗vr are paths in a GFG, the notation Q1+Q2

denotes the concatenation of paths Q1 and Q2. In this spirit, we denote string concate-
nation by + as well. It is convenient to define the following terms to talk about certain
paths of interest in the GFG.

Definition 3. A complete path in a GFG is a path whose first node is •S and whose last
node is S•.

A path is said to generate the word w resulting from the concatenation of the labels
on its sequence of edges. By convention, w = ε for a path with a single node.

The GFG can be viewed as a nondeterministic finite-state automaton (NFA) whose
start state is •S, whose accepting state is S•, and which makes nondeterministic choices
at start and end nodes that have a fan-out more than one. Each complete GFG path
generates a word in the regular language recognized by this NFA. In Figure 1, the path
Q: •S � S→•E � •E � E→•(E + E) � E→(•E + E) � •E � E→•int �
E→int• � E• � S→E• � S• generates the string ”( int”. However, this string is not
generated by the context-free grammar from which this GFG was constructed.

To interpret the GFG as the representation of a context-free grammar, it is necessary
to restrict the paths that can be followed by the automaton. Going back to the intuition
that the GFG is similar to an inter-procedural call graph, we see that Q is not an inter-
procedurally valid path [11]: at E•, it is necessary to take the return edge to node
E→(E• +E) since the call of E that is being completed was made at node E→(•E +
E). In general, the automaton can make a free choice at start nodes just like an NFA,
but at end nodes, the return edge to be taken is determined by the call that is being
completed.

The paths the automaton is allowed to follow are called complete balanced paths in
this paper. Intuitively, if we consider matching call and return nodes to be opening



8 K. Pingali and G. Bilardi

and closing parentheses respectively of a unique color, the parentheses on a complete
balanced path must be properly nested [12]. In the formal definition below, if K is a se-
quence of nodes, we let v,K,w represent the sequence of nodes obtained by prepending
node v and appending node w to K .

Definition 4. Given a GFG for a grammar Γ=<N, T, P, S>, the set of balanced se-
quences of call and return nodes is the smallest set of sequences of call and return
nodes that is closed under the following conditions.

– The empty sequence is balanced.
– The sequence (A→α•Bγ),K, (A→αB•γ) is balanced if K is a balanced sequence,

and production (A→αBγ) ∈ P .
– The concatenation of two balanced sequences v1...vf and y1...ys is balanced if

vf �= y1. If vf = y1, the sequence v1...vfy2...ys is balanced.

This definition is essentially the same as the standard definition of balanced se-
quences of parentheses; the only difference is the case of vf = y1 in the last clause,
which arises because a node of the form A→αX•Y β is both a return node and a call
node.

Definition 5. A GFG path v0 �∗ vl is said to be a balanced path if its subsequence of
call and return nodes is balanced.

Theorem 1. If Γ=<N, T, P, S> is a context-free grammar and w ∈ T ∗, w is in the
language generated by Γ iff it is generated by a complete balanced path in GFG(Γ ).

Proof. This is a special case of Theorem 4 in the Appendix.

Therefore, the parsing problem for a context-free grammar Γ can be framed in GFG
terms as follows: given a string w, determine if there are complete balanced paths in
GFG(Γ ) that generate w (recognition), and if so, produce a representation of these
paths (parsing). If the grammar is unambiguous, each string in the language is generated
by exactly one such path.

The parsing techniques considered in this paper read the input string w from left to
right one symbol at a time, and determine reachability along certain paths starting at
•S. These paths are always prefixes of complete balanced paths, and if a prefix u of w
has been read up to that point, all these paths generate u. For the technical development,
similar paths are needed even though they begin at nodes other than •S. Intuitively, these
call-return paths (CR-paths for short) are just segments of complete balanced paths;
they may contain unmatched call and return nodes, but they do not have mismatched
call and return nodes, so they can always be extended to complete balanced paths.

Definition 6. Given a GFG, a CR-sequence is a sequence of call and return nodes
that does not contain a subsequence vc,K, vr where vc ∈ call, K is balanced, vr ∈
return, and vc and vr are not matched.

Definition 7. A GFG path is said to be a CR-path if its subsequence of call and return
nodes is a CR-sequence.

Unless otherwise specified, the origin of a CR-path will be assumed to be •S, the
case that arises most frequently.



A Graphical Model for Context-Free Grammar Parsing 9

2.3 Nondeterministic GFG Automaton (NGA)

Figure 2 specifies a push down automaton (PDA), called the nondeterministic GFG
automaton (NGA), that traverses complete balanced paths in a GFG under the control of
the input string. To match call’s with return’s, it uses a stack of “return addresses” as is
done in implementations of procedural languages. The configuration of the automaton is
a three-tuple consisting of the GFG node where the automaton currently is (this is called
the PC), a stack of return nodes, and the partially read input string. The symbol �−→
denotes a state transition.

The NGA begins at •S with the empty stack. At a call node, it pushes the matching
return node on the stack. At a start node, it chooses the production nondeterministi-
cally. At an end node, it pops a return node from the stack and continues the traversal
from there. If the input string is in the language generated by the grammar, the automa-
ton will reach S• with the empty stack (the end rule cannot fire at S• because the stack
is empty). We will call this a nondeterministic GFG automaton or NGA for short. It is
a special kind of pushdown automaton (PDA). It is not difficult to prove that the NGA
accepts exactly those strings that can be generated by some complete balanced path in
GFG(Γ ) whence, by Theorem 1, the NGA accepts the language of Γ . (Technically,
acceptance is by final state [13], but it is easily shown that the final state S• can only be
reached with an empty stack.)

The nondeterminism in the NGA is called globally angelic nondeterminism [14]
because the nondeterministic transitions at start nodes have to ensure that the NGA
ultimately reaches S• if the string is in the language generated by the grammar. The
recognition algorithms described in this paper are concerned with deterministic imple-
mentations of the globally angelic nondeterminism in the NGA.

NGA configuration (PC × C ×K), where:

Program counter PC ∈ V (Γ ) (a state of the finite control)
Partially-read input strings C ∈ T ∗ × T ∗

(C = (u, v), where prefix u of input string w = uv has been read)
Stack of return nodes K ∈ VR(Γ )∗, where VR(Γ ) is the set of return nodes

Initial Configuration: <•S, [ ], •w>
Accepting configuration: <S•, [ ], w•>

Transition function:

CALL <A→α•Bγ,C,K> �−→ <•B,C, (A→αB•γ,K)>

START <•B,C,K> �−→ <B→•β,C,K> (nondeterministic choice)

EXIT <B→β•, C,K> �−→ <B•, C,K>

END <B•, C, (A→αB•γ,K)> �−→ <A→αB•γ,C,K>

SCAN <A→α•tγ, u•tv,K> �−→ <A→αt•γ, ut•v,K>

Fig. 2. Nondeterministic GFG Automaton (NGA)
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2.4 Relationship between NFA and GFG for Regular Grammars

Every regular grammar is also a context-free grammar, so a regular grammar has two
graphical representations, an NFA and a GFG. A natural question is whether there is a
connection between these graphs. We show that applying the continuation-passing style
(CPS) optimization [1,2] to the NGA of a context-free grammar that is a right-linear
regular grammar1 produces an NFA for that grammar.

For any context-free grammar, consider a production A→αB in which the last sym-
bol on the righthand side is a non-terminal. The canonical NGA in Figure 2 will push
the return node A→αB• before invoking B, but after returning to this exit node, the
NGA just transitions to A• and pops the return node for the invocation of A. Had a
return address not been pushed when the call to B was made, the NGA would still rec-
ognize the input string correctly because when the invocation of B completes, the NGA
would pop the return stack and transition directly to the return node for the invocation
of A. This optimization is similar to the continuation-passing style (CPS) transforma-
tion, which is used in programming language implementations to convert tail-recursion
to iteration.

To implement the CPS optimization in the context of the GFG, it is useful to intro-
duce a new type of node called a no-op node, which represents a node at which the NGA
does nothing other than to transition to the successor of that node. If a production for a
non-terminal other than S ends with a non-terminal, the corresponding call is replaced
with a no-op node; since the NGA will never come back to the corresponding return
node, this node can be replaced with a no-op node as well. For a right-linear regular
grammar, there are no call or return nodes in the optimized GFG. The resulting GFG
is just an NFA, and it is a variation of the NFA that is produced by using the standard
algorithms for producing an NFA from a right-linear regular grammar [13].

3 Parsing of General Context-Free Grammars

General context-free grammars can be parsed using an algorithm due to Earley [3].
Described using derivations, the algorithm is not very intuitive and seems unrelated
to other parsing algorithms. For example, the monograph on parsing by Sippu and
Soisalon-Soininen [10] omits it, Grune and Jacobs’ book describes it as “top-down
restricted breadth-first bottom-up parsing” [5], and the “Dragon book” [4] mentions it
only in the bibliography as “a complex, general-purpose algorithm due to Earley that
tabulates LR-items for each substring of the input.” Cousot and Cousot use Galois con-
nections between lattices to show that Earley’s algorithm is an abstract interpretation of
a refinement of the derivation semantics of context-free grammars [6].

In contrast to these complicated narratives, a remarkably simple interpretation of
Earley’s algorithm emerges when it is viewed in terms of the GFG: Earley’s algorithm
is the context-free grammar analog of the well-known simulation algorithm for non-
deterministic finite-state automata (NFA) [4]. While the latter tracks reachability along
prefixes of complete paths, the former tracks reachability along prefixes of complete
balanced paths.

1 A right-linear regular grammar is a regular grammar in which the righthand side of a produc-
tion consists of a string of zero or more terminals followed by at most one non-terminal.
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Fig. 3. Earley parser: example

3.1 NFA Simulation Algorithm

As a step towards Earley’s algorithm, consider interpreting the GFG as an NFA (so non-
deterministic choices are permitted at both start and end nodes). The NFA simulation
on a given an input word w[1..n] can be viewed as the construction of a sequence of
node sets Σ0, ..., Σn. Here, Σ0 is the ε-closure of {•S}. For i = 1, . . . , n, set Σi is the
ε-closure of the set of nodes reachable from nodes in Σi−1 by scan edges labeled w[i].
The string w is in the language recognized by the NFA if and only if S• ∈ Σn.

Figure 3(a) shows the GFG of Figure 1, but with simple node labels. Figure 3(b)
illustrates the behavior of the NFA simulation algorithm for the input string “7+8+9”.
Each Σi is associated with a terminal string pair Ci=u.v, which indicates that prefix u
of the input string w = uv has been read up to that point.
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(a) NFA Simulation of GFG

Sets of GFG nodes Σ: P(V (Γ ))
Partially-read input strings C : T ∗ × T ∗

Recognizer configurations (Σ × C)+

Acceptance: S• ∈ Σ|w|

INIT
(•S ∈ Σ0) ∧ (C0 = •w)

CALL
A→α•Bγ ∈ Σj

•B ∈ Σj

START
•B ∈ Σj

B→•β ∈ Σj

EXIT
B→β• ∈ Σj

B• ∈ Σj

END
B• ∈ Σj

A→αB•γ ∈ Σj

SCAN
A→α•tγ ∈ Σj Cj = u•tv

(A→αt•γ ∈ Σj+1) ∧ (Cj+1 = ut•v)

(b) Earley recognizer

Non-negative integers: N
Sets of tagged GFG nodes Σ: P(V (Γ )×N )
Partially-read input strings C : T ∗ × T ∗

Recognizer configurations (Σ × C)+

Acceptance: <S•, 0> ∈ Σ|w|

INIT
(<•S, 0> ∈ Σ0) ∧ (C0 = •w)

CALL
<A→α•Bγ, i> ∈ Σj

<•B, j> ∈ Σj

START
<•B, j> ∈ Σj

<B→•β, j> ∈ Σj

EXIT
<B→β•, k> ∈ Σj

<B•, k> ∈ Σj

END
<B•, k> ∈ Σj <A→α•Bγ, i> ∈ Σk

<A→αB•γ, i> ∈ Σj

SCAN
<A→α•tγ, i> ∈ Σj Cj = u•tv

(<A→αt•γ, i> ∈ Σj+1) ∧ (Cj+1 = ut•v)

(c) Earley parser

Non-negative integers: N
Program counter PC: V (Γ )×N
Stack of call nodes K: VR(Γ )∗

Parser configurations: (PC ×N ×K)
Acceptance: final configuration is <<•S, 0>, 0, [ ]>

INIT <<S•, 0>, |w|, [ ]>

CALL
−1 <<•B, j>, j, (<A→α•Bγ, i>,K)> �−→ <<A→α•Bγ, i>, j,K>

START
−1 <<B→•β, j>, j,K> �−→ <<•B, j>, j,K>

EXIT
−1 <<B•, k>, j,K> �−→ <<B→β•, k>, j,K>

if (<B→β•, k>∈Σj)(non−determinism)

END
−1 <<A→αB•γ, i>, j,K> �−→ <<B•, k>, j, (<A→α•Bγ, i>,K)>

if (<B•, k>∈Σj and <A→α•Bγ, i>∈Σk)(non−determinism)

SCAN
−1 <<A→αt•γ, i>, (j + 1),K> �−→ <<A→α•tγ, i>, j,K>

Fig. 4. NFA, Earley recognizer, and Earley parser: input word is w
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The behavior of this NFA ε-closure algorithm on a GFG is described concisely by
the rules shown in Figure 4(a). Each rule is an inference rule or constraint; in some
rules, the premises have multiple consequents. It is straightforward to use these rules
to compute the smallest Σ-sets that satisfy all the constraints. The INIT rule enters •S
into Σ0. Each of the other rules is associated with traversing a GFG edge from the node
in its assumption to the node in its consequence. Thus, the CALL, START, END, and
EXIT rules compute the ε-closure of a Σ-set; notice that the END rule is applied to all
outgoing edges from END nodes.

3.2 Earley’s Algorithm

Like the NFA ε-closure algorithm, Earley’s algorithm builds Σ sets, but it computes
reachability only along CR-paths starting at •S. Therefore, the main difference between
the two algorithms is at end nodes: a CR-path that reaches an end node should be
extended only to the return node corresponding to the last unmatched call node on
that path.

One way to find this call node is to tag each start node with a unique ID (tag) when
it is entered into a Σ-set, and propagate this tag through the nodes of productions for
this non-terminal all the way to the end node. At the end node, this unique ID can be
used to identify the Σ-set containing corresponding start node. The last unmatched
call node on the path must be contained in that set as well, and from that node, the
return node to which the path should be extended can easily be determined.

To implement the tag, it is simple to use the number of the Σ-set to which the start
node is added, as shown in Figure 4(b). When the CALL rule enters a start node into
a Σ set, the tag assigned to this node is the number of that Σ set. The END rule is
the only rule that actually uses tags; all other rules propagate tags. If <B•, k> ∈ Σj ,
then the matching start and call nodes are in Σk, so Σk is examined to determine
which of the immediate predecessors of node •B occur in this set. These must be call
nodes of the form A→α•Bγ, so the matching return nodes A→αB•γ are added to Σj

with the tags of the corresponding call nodes. For a given grammar, this can easily be
done in time constant with respect to the length of the input string. A string is in the
language recognized by the GFG iff Σn contains <S•, 0>. Figure 3(c) shows the Σ
sets computed by the Earley algorithm for the input string “7+8+9”.

We discuss a small detail in using the rules of Figures 4(a,b) to construct Σ-sets for a
given GFG and input word. The existence of a unique smallest sequence of Σ-sets can
be proved in many ways, such as by observing that the rules have the diamond property
and are strongly normalizing [15]. A canonical order of rule application for the NFA
rules is the following. We give a unique number to each GFG edge, and associate the
index 〈j,m〉 with a rule instance that corresponds to traversing edge m and adding the
destination node to Σj ; the scheduler always pick the rule instance with the smallest
index. This order completes the Σ sets in sequence, but many other orders are possible.
The same order can be used for the rules in Figure 4(b) except that for the END rule,
we use the number on the edge (B•, A → αB•γ).

Correctness of the rules of Figure 4(b) follows from Theorem 2.

Theorem 2. For a grammar Γ=<N, T, P, S> and an input word w,< S•, 0 >∈ Σ|w|
iff w is a word generated by grammar Γ .
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Proof. See Section A.2.

The proof of Theorem 2 shows the following result, which is useful as a charac-
terization of the contents of Σ sets. Let w[i..j] denote the substring of input w from
position i to position j inclusive if i ≤ j, and let it denote ε if i > j. It is shown that
<A→α•β, i> ∈ Σj iff there is a CR-path P : •S �∗ •A �∗ (A → α•β) such that

1. •S �∗ •A generates w[1..i], and
2. •A �∗ (A → α•β) is balanced and generates w[(i + 1)..j].

Like the NFA algorithm, Earley’s algorithm determines reachability along certain
paths but does not represent paths explicitly. Both algorithms permit such implicitly
maintained paths to share “sub-paths”: in Figure 3(c), E• in Σ1 is reached by two CR-
paths, Q1: (•S � p � •E � g � h � E•), and Q2: (•S � p � •E � i � •E �
g � h � E•), and they share the sub-path (•E � g � h � E•). This path shar-
ing permits Earley’s algorithm to run in O(|w|3) time for any grammar (improved to
O(|w|3/log|w|) by Graham et al [16]), and O(|w|2) time for any unambiguous gram-
mar, as we show in Theorem 3.

Theorem 3. For a given GFG G = (V,E) and input word w, Earley’s algorithm re-
quires O(|w|2) space and O(|w|3) time. If the grammar is unambiguous, the time com-
plexity is reduced to O(|w|2).

Proof. See Section A.2

Earley Parser. The rules in Figure 4(b) define a recognizer. To get a parser, we need a
way to enumerate a representation of the parse tree, such as a complete, balanced GFG
path, from the Σ sets; if the grammar is ambiguous, there may be multiple complete,
balanced paths that generate the input word.

Figure 4(c) shows a state transition system that constructs such a path in reverse;
if there are multiple paths that generate the string, one of these paths is reconstructed
non-deterministically. The parser starts with the entry <S•, 0> in the last Σ set, and
reconstructs in reverse the inference chain that produced it from the entry <•S, 0> in
Σ0; intuitively, it traverses the GFG in reverse from S• to •S, using the Σ set entries to
guide the traversal. Like the NGA, it maintains a stack, but it pushes the matching call
node when it traverses a return node, and pops the stack at a start node to determine
how to continue the traversal.

The state of the parser is a three-tuple: a Σ set entry, the number of that Σ set, and
the stack. The parser begins at <S•, 0> in Σn and an empty stack. It terminates when
it reaches <•S, 0> in Σ0. The sequence of GFG nodes in the reverse path can be output
during the execution of the transitions. It is easy to output other representations of parse
trees if needed; for example, the parse tree can be produced in reverse post-order by
outputting the terminal symbol or production name whenever a scan edge or exit node
respectively is traversed in reverse by the parser.

To eliminate the need to look up Σ sets for the EXIT−1 and END−1 rules, the rec-
ognizer can save information relevant for the parser in a data structure associated with
each Σ set. This data structure is a relation between the consequent and the premise(s)
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of each rule application; given a consequent, it returns the premise(s) that produced that
consequent during recognition. If the grammar is ambiguous, there may be multiple
premise(s) that produced a given consequent, and the data structure returns one of them
non-deterministically. By enumerating these non-deterministic choices, it is possible to
enumerate different parse trees for the given input string. Note that if the grammar is

cyclic (that is, A
+→ A for some non-terminal A), there may be an infinite number of

parse trees for some strings.

3.3 Discussion

In Earley’s paper, the call and start rules were combined into a single rule called
prediction, and the exit and end rules were combined into a single rule called comple-
tion [3]. Aycock and Horspool pre-compute some of the contents of Σ-sets to improve
the running time in practice [17].

Erasing tags from the rules in Figure 4(b) for the Earley recognizer produces the
rules for the NFA ε-closure algorithm in Figure4(a). The only nontrivial erasure is for
the end rule: k, the tag of the tuple <B•, k>, becomes undefined when tags are deleted,
so the antecedent <A→α•Bγ, i> ∈ Σk for this rule is erased. Erasure of tags demon-
strates lucidly the close and previously unknown connection between the NFA ε-closure
algorithm and Earley’s algorithm.

4 Preprocessing the GFG: Look-Ahead

Preprocessing the GFG is useful when many strings have to be parsed since the invest-
ment in preprocessing time and space is amortized over the parsing of multiple strings.
Look-ahead computation is a form of preprocessing that permits pruning of the set of
paths that need to be explored for a given input string.

Given a CR-path Q: •S �∗ v which generates a string of terminals u, consider the
set of all strings of k terminals that can be encountered along any CR extension of Q.
When parsing a string u�z with � ∈ T k, extensions of path Q can be safely ignored if �
does not belong to this set. We call this set the context-dependent look-ahead set at v for
path Q, which we will write as CDLk(Q) (in the literature on program optimization,
Q is called the calling context for its last node v). LL(k) and LR(k) parsers use context-
dependent look-ahead sets.

We note that for pruning paths, it is safe to use any superset of CDLk(Q): larger
supersets may be easier to compute off-line, possibly at the price of less pruning on-
line. In this spirit, a widely used superset is FOLLOWk(v), associated with GFG node
v, which we call the context-independent look-ahead set. It is the union of the sets
CDLk(Q), over all CR-paths Q: •S �∗ v. Context-independent look-ahead is used
by SLL(k) and SLR(k) parsers. It has also been used to enhance Earley’s algorithm.
Look-ahead sets intermediate between CDLk(Q) and FOLLOWk(v) have also been
exploited, for example in LALR(k) and LALL(k) parsers [10].

The presentation of look-ahead computations algorithms is simplified if, at every
stage of parsing, there is always a string � of k symbols that has not yet been read. This
can be accomplished by (i) padding the input string w with k $ symbols to form w$k,
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where $ /∈ (T +N) and (ii) replacing Γ=<N, T, P, S>, with the augmented grammar
Γ ′= <N ′=N ∪ {S′}, T ′=T ∪ {$}, P ′=P ∪ {S′→S$k}, S′>.

Figure 5(a) shows an example using a stylized GFG, with node labels omitted for
brevity. The set FOLLOW2(v) is shown in braces next to node v. If the word to be
parsed is ybc, the parser can see that yb /∈ FOLLOW2(v) for v = S→•yLab, so it can
avoid exploration downstream of that node.

The influence of context is illustrated for node v = L→•a, in Figure 5(a). Since the
end node L• is reached before two terminal symbols are encountered, it is necessary to
look beyond node L•, but the path relevant to look-ahead depends on the path that was
taken to node •L. If the path taken was Q: •S′ �∗ (S→y•Lab) � (•L) � L→•a, then
relevant path for look-ahead is L• � (S→yL•ab) �∗ S′•, so that CDL2(Q) = {aa}.
If the path taken was R: •S′ �∗ (S→y•Lbc) � (•L) � L→•a, then the relevant path
for look-ahead is (L•) � (S→yL•bc) �∗ S′•, and CDL2(R) = {ab}.

We define these concepts formally next.

Definition 8. Context-dependent look-ahead: If v is a node in the GFG of an aug-
mented grammar Γ ′=<N ′, T ′, P ′, S′>, the context-dependent look-ahead CDLk(Q)
for a CR-path Q: •S′ �∗ v is the set of all k-prefixes of strings generated by paths
Qs : v �∗ S′• where Q+Qs is a complete CR-path.

Definition 9. Context-independent look-ahead: If v is a node in the GFG for an aug-
mented grammar Γ ′=<N ′, T ′, P ′, S′>, FOLLOWk(v) is the set of all k-prefixes of
strings generated by CR-paths v �∗ S′•.

As customary, we let FOLLOWk(A) and FOLLOW (A) respectively denote
FOLLOWk(A•) and FOLLOW1(A•).

The rest of this section is devoted to the computation of look-ahead sets. It is con-
venient to introduce the function s1 +k s2 of strings s1 and s2, which returns their
concatenation truncated to k symbols. In Definition 10, this operation is lifted to sets of
strings.

Definition 10. Let T ∗ denote the set of strings of symbols from alphabet T .

– For E ⊆ T ∗, (E)k is set of k-prefixes of strings in E.
– For E,F ∈ T ∗, E +k F = (E + F )k .

If E={ε, t, tu, abc} and F={ε, x, xy, xya}, (E)2={ε, t, tu, ab} and (F )2=
{ε, x, xy}.E+2F=(E+F )2={ε, x, xy, t, tx, tu, ab}. Lemma 1(a) says that concatena-
tion followed by truncation is equivalent to “pre-truncation” followed by concatenation
and truncation; this permits look-ahead computation algorithms to work with strings
of length at most k throughout the computation rather than with strings of unbounded
length truncated to k only at the end.

Lemma 1. Function +k has the following properties.

(a) E +k F = (E)k +k (F )k.
(b) +k is associative and distributes over set union.
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4.1 Context-Independent Look-Ahead

FOLLOWk(v) can be computed by exploring CR-paths from v to S′•. However, for
the “bulk” problem of computing these sets for many GFG nodes, such as all entry
nodes in a GFG, coordination of path explorations at different nodes can yield greater
efficiency.

Although we do not use this approach directly, the GFG permits FOLLOWk com-
putation to be viewed as an inter-procedural backward dataflow analysis problem [11].
Dataflow facts are possible FOLLOWk sets, which are the subsets of T k, and which
form a finite lattice under subset ordering (the empty set is the least element). For an
edge e with label t, the dataflow transfer function Fe(X) is {t}+k X (for ε edges, this
reduces to the identity function as expected). For a path Q with edges labeled t1, ...tn,
the composite transfer function is ({t1} +k ({t2} +k ...({tn} +k X)), which can be
written as ({t1}+k {t2}+k ...{tn}) +k X because +k is associative. If we denote the
k-prefix of the terminal string generated by Q by FIRSTk(Q), the composite trans-
fer function for a path Q is FIRSTk(Q) +k X . The confluence operator is set union.
To ensure that dataflow information is propagated only along (reverse) CR-paths, it is
necessary to find inter-procedural summary functions that permit look-ahead sets to be
propagated directly from a return node to its matching call node. These summary func-
tions are hard to compute for most dataflow problems but this is easy for FOLLOWk

computation because the lattice L is finite, the transfer functions distribute over set
union, and the +k operation is associative. For a non-terminal A, the summary function
is FA(X) = FIRSTk(A) +k X , where FIRSTk(A) is the set of k-prefixes of termi-
nal strings generated by balanced paths from •A to A•. The FIRSTk relation can be
computed efficiently as described in Section 4.1. This permits the use of the functional
approach to inter-procedural dataflow analysis [11] to solve the FOLLOWk computa-
tion problem (the development below does not rely on any results from this framework).

FIRSTk Computation. For Γ=<N, T, P, S>, FIRSTk(A) for A ∈ N is defined
canonically as the set of k-prefixes of terminal strings derived from A [10]. This is
equivalent to the following, as we show in Theorem 4.

Definition 11. Given a grammar Γ=<N, T, P, S>, a positive integer k and A ∈ N ,
FIRSTk(A) is the set of k-prefixes of terminal strings generated by balanced paths
from •A to A•.

Following convention, we write FIRST (A) to mean FIRST1(A).

Definition 12. FIRSTk is extended to a string u1u2...un ∈ (N ∪ T )∗ as follows.

FIRSTk(ε) = {ε}
FIRSTk(t ∈ T ) = {t}
FIRSTk(u1u2...un) = FIRSTk(u1) +k ...+k FIRSTk(un)

FIRSTk sets for non-terminals can be computed as the least solution of a system of
equations derived from the grammar.
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Algorithm 1. For Γ=<N, T, P, S> and positive integer k, let M be the finite lattice
whose elements are sets of terminal strings of length at most k, ordered by containment
with the empty set being the least element. The FIRSTk sets for the non-terminals are
given by the least solution in M of this equational system:

∀A ∈ N FIRSTk(A) =
⋃

A→α

FIRSTk(α)

Figure 5(a) shows an example.

FOLLOWk Computation

Algorithm 2. Given an augmented grammar Γ ′=<N ′, T ′, P ′, S′> and positive in-
teger k, let L be the lattice whose elements are sets of terminal strings of length k,
ordered by containment with the empty set being the least element. The FOLLOWk

sets for non-terminals other than S′ are given by the least solution of this equational
system:

FOLLOWk(S) = {$k}

∀B ∈ N − {S, S′}.FOLLOWk(B) =
⋃

A→αBγ

FIRSTk(γ) +k FOLLOWk(A)

Given FOLLOWk sets for non-terminals, FOLLOWk sets at all GFG nodes are
computed by interpolation:
FOLLOWk(A→α•β) = FIRSTk(β) +k FOLLOWk(A).

Figure 5(a) shows an example. M occurs in three places on the righthand sides of the
grammar productions, so the righthand side of the equation for FOLLOWk(M) is the
union of three sets: the first from S→M •, the second from M→M •M , and the third
from M→MM •.

Using Context-Independent Look-Ahead in the Earley Parser. Some implementa-
tions of Earley’s parser use a context-independent look-ahead of one symbol at start
nodes and end nodes (this is called prediction look-ahead and completion look-ahead
respectively) [3]. The practical benefit of using look-ahead in the Earley parser has
been debated in the literature. The implementation of Graham et al does not use look-
ahead [16]; other studies argue that some benefits accrue from using prediction look-
ahead [5]. Prediction look-ahead is implemented by modifying the START rule in Fig-
ure 4(b):the production B→β is explored only if β might produce the empty string
or a string that starts with the first look-ahead symbol. For this, the following formula
is added to the antecedents of the START rule: (ε ∈ FIRST (β)) ∨ (Cj = u.tv ∧ t ∈
FIRST (β)).

Completion look-ahead requires adding the following check to the antecedents of the
END rule in Figure 4(b):
(Cj = u.tv) ∧ (t ∈ FIRST (γ)∨ (ε ∈ FIRST (γ)∧ t ∈ FOLLOW (A))).
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4.2 Context-Dependent Look-Ahead

LL(k) and LR(k) parsers use context-dependent k-look-ahead. As one would expect, ex-
ploiting context enables a parser to rule out more paths than if it uses context-independent
look-ahead. One way to implement context-dependent look-ahead for a grammar Γ is
to reduce it to the problem of computing context-independent look-ahead for a related
grammar Γ c through an operation similar to procedure cloning.

In general, cloning a non-terminal A in a grammar Γ creates a new grammar in
which (i) non-terminalA is replaced by some number of new non-terminalsA1,A2,...Ac

(c ≥ 2) with the same productions as A, and (ii) all occurrences of A in the righthand
sides of productions are replaced by some Aj (1 ≤ j ≤ c). Figure 5(b) shows the result
of cloning non-terminal L in the grammar of Figure 5(a) into two new non-terminals
L1, L2. Cloning obviously does not change the language recognized by the grammar.

The intuitive idea behind the use of cloning to implement context-dependent look-
ahead is to create a cloned grammar that has a copy of each production in Γ for each
context in which that production may be invoked, so as to “de-alias” look-ahead sets.
In general, it is infeasible to clone a non-terminal for every one of its calling contexts,
which can be infinitely many. Fortunately, contexts with the same look-ahead set can be
represented by the same clone. Therefore, the number of necessary clones is bounded by
the number of possible k-look-ahead sets for a node, which is 2|T |k . Since this number
grows rapidly with k, cloning is practical only for small values of k, but the principle is
clear.

Algorithm 3. Given an augmented grammar Γ ′=(N ′, T ′, P ′, S′), and a positive inte-
ger k, Tk(Γ

′) is following grammar:

– Nonterminals: {S′} ∪ {[A,R]|A ∈ (N ′−S′), R ⊆ T ′k}
– Terminals: T’
– Start symbol: S′

– Productions:
• S′→α where S′→α ∈ Γ ′

• all productions [A,R]→Y1Y2...Ym where for some A→X1X2X3...Xm ∈ P ′

Yi = Xi if Xi is a terminal, and
Yi = [Xi, F IRSTk(Xi+1...Xm) +k R] otherwise.

Therefore, to convert the context-dependent look-ahead problem to the context-
independent problem, cloning is performed as follows. For a given k, each non-terminal
A in the original grammar is replaced by a set of non-terminals [A,R] for everyR ⊆ T k

(intuitively, R will end up being the context-independent look-ahead at [A,R]• in the
cloned grammar). The look-ahead R is then interpolated into each production of A to
determine the new productions as shown in Algorithm 3.Figure 5(b) shows the result
of full 2-look-ahead cloning of the grammar in Figure 5(a) after useless non-terminals
have been removed.

5 Related Work

The connection between context-free grammars and procedure call/return in program-
ming languages was made in the early 1960’s when the first recursive-descent parsers
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were developed. The approach taken in this paper is to formulate parsing problems as
path problems in the GFG, and the procedure call/return mechanism is used only to
build intuition.

In 1970, Woods defined a generalization of finite-state automata called recursive
transition networks (RTNs) [7]. Perlin defines an RTN as “..a forest of disconnected
transition networks, each identified by a nonterminal label. All other labels are termi-
nal labels. When, in traversing a transition network, a nonterminal label is encountered,
control recursively passes to the beginning of the correspondingly labeled transition
network. Should this labeled network be successfully traversed, on exit, control returns
back to the labeled calling node” [18]. The RTN was the first graphical representation
of context-free grammars, and all subsequent graphical representations including the
GFG are variations on this theme. Notation similar to GFG start and end nodes was
first introduced by Graham et al in their study of the Earley parser [16].

The RTN with this extension is used in the ANTLR system for LL(*) grammars [8].
The key difference between RTNs and GFGs is in the interpretation of the graphical

representation. An interpretation based on a single locus of control that flows between
productions is adequate for SLL(k)/LL(k)/LL(*) languages but inadequate for handling
more general grammars for which multiple paths through the GFG must be followed, so
some notion of multiple threads of control needs to be added to the basic interpretation
of the RTN. For example, Perlin models LR grammars using a chart parsing strategy in
which portions of the transition network are copied dynamically [18]. In contrast, the
GFG is a single graph, and all parsing problems are formulated as path problems in this
graph; there is no operational notion of a locus of control that is transferred between
productions. In particular, the similarity between Earley’s algorithm and the NFA sim-
ulation algorithm emerges only if parsing problems are framed as path problems in a
single graph. We note that the importance of the distinction between the two viewpoints
was highlighted by Sharir and Pnueli in their seminal work on inter-procedural dataflow
analysis [11].

The logic programming community has explored the notion of “parsing as deduc-
tion” [19,20,21] in which the rules of the Earley recognizer in Figure 4(b) are consid-
ered to be inference rules derived from a grammar, and recognition is viewed as the
construction of a proof that a given string is in the language generated by that grammar.
The GFG shows that this proof construction can be interpreted as constructing complete
balanced paths in a graphical representation of the grammar.

An important connection between inter-procedural dataflow analysis and reachabil-
ity computation was made by Yannakakis [9], who introduced the notion of CFL-paths.
Given a graph with labeled edges and a context-free grammar, CFL-paths are paths that
generate strings recognized by the given context-free grammar. Therefore, the context-
free grammar is external to the graph, whereas the GFG is a direct representation of a
context-free grammar with labeled nodes (start and end nodes must be known) and
labeled edges. If node labels are erased from a GFG and CFL-paths for the given gram-
mar are computed, this set of paths will include all the complete balanced paths but in
general, it will also include non-CR-paths that happen to generate strings in the lan-
guage recognized by the context-free grammar.
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6 Conclusions

In other work, we have shown that the GFG permits an elementary presentation of LL,
SLL, LR, SLR, and LALR grammars in terms of GFG paths. These results and the
results in this paper suggest that the GFG can be a new foundation for the study of
context-free grammars.

Acknowledgments. We would like to thank Laura Kallmeyer for pointing us to the
literature on parsing in the logic programming community, and Giorgio Satta and Lillian
Lee for useful discussions about parsing.
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A Appendix

A.1 Derivations, Parse Trees and GFG Paths

The following result connects complete balanced paths to parse trees.

Theorem 4. Let Γ=<N, T, P, S> be a context-free grammar and G = GFG(Γ ) the
corresponding grammar flow graph. Let A ∈ N . There exists a balanced path from •A
to A• with ncr call-return pairs that generates a string w ∈ T ∗ if and only if there exists
a parse tree for w with nint = ncr + 1 internal nodes.

Proof. We proceed by induction on ncr. The base case, ncr = 0, arises for a produc-
tion A→u1u2 . . . ur where each uj is a terminal. The GFG balanced path contains the
sequence of nodes

•A,A→•u1u2 . . . ur, . . . A→u1u2 . . . ur•, A•

The corresponding parse tree has a root with label A and r children respectively labeled
u1, u2, . . . , ur (from left to right), with nint = 1 internal node. The string generated by
the path and derived from the tree is w = u1u2 . . . ur.

Assume now inductively the stated property for paths with fewer than ncr call-return
pairs and trees with fewer than nint internal nodes. Let Q be a path from •A to A• with
ncr call-return pairs. Let A→u1u2 . . . ur be the “top production” used by Q, i.e., the
second node on the path is A→•u1u2 . . . ur. If uj ∈ N , then Q will contain a segment
of the form

A→u1 . . . uj−1•uj . . . ur, Qj , A→u1 . . . uj•uj+1 . . . ur

where Qj is a balanced path from •uj to uj•, generating some word wj . Let Tj be a
parse tree for wj with root labeled uj , whose existence follows by the inductive hypoth-
esis. If instead uj ∈ T , then Q will contain the scan edge

(A→u1 . . . uj−1•uj . . . ur, A→u1 . . . uj•uj+1 . . . ur)

generating the word wj = uj . Let Tj be a tree with a single node labeled wj = uj . The
word generated by Q is w = w1w2 . . . wr. Clearly, the tree T with a root labeled A
and r subtrees equal (from left to right) to T1, T2, . . . , Tr derives string w. Finally, it is
simple to show that T has nint = ncr + 1 internal nodes.

The construction of a balanced path generating w from a tree deriving w follows the
same structure.

A.2 Correctness and Complexity of Earley’s Algorithm

The following result is an “inductive version” of Theorem 2, which asserts the correct-
ness of the rules for the Earley parser.

Theorem 5. Consider the execution of Earley’s algorithm on input string
w = a1a2 . . . an. Let z be a GFG node and i and j be integers such that 0 ≤ i ≤ j ≤ n.
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The following two properties are equivalent.

(A) The algorithm creates an entry <z, i> in Σj .

(B) There is a CR-path Q = (•S)Q′z (represented as a sequence of GFG nodes begin-
ning at •S and ending at z) that generates a1a2 . . . aj and whose prefix preceding the
last unmatched call edge generates a1a2 . . . ai.

Proof. Intuitively, the key fact is that each rule of Earley’s algorithm (aside from ini-
tialization) uses an entry <y, i′> ∈ Σj′ and a GFG edge (y, z) to create an entry
<z, i> ∈ Σj , where the dependence of i and j upon i′ and j′ depends on the type
of edge (y, z). For a return edge, a suitable entry <z′, k> ∈ Σi′ is also consulted. In
essence, if a CR-path can be extended by an edge, then (and only then) the appropriate
rule creates the entry for the extended path. The formal proof is an inductive formula-
tion of this intuition and carries out a case analysis with respect to the type of edge that
extends the path.

Part I. B ⇒ A (from CR-path to Earley entry). The argument proceeds by induction
on the length (number of edges) � of path Q.
- Base cases (� = 0, 1).
The only path with no edges is Q = (•S), for which i = j = 0. The INIT rule produces
the corresponding entry <•S, 0> ∈ Σ0. The paths with just one edge are also easily
dealt with, as they are of the form Q = (•S)(S → •σ), that is, they contain one ENTRY
edge.
- Inductive step (from �− 1 ≥ 1 to �).
Consider a CR-path Q = (•S)Ryz of length �. It is straightforward to check that Q′ =
(•S)Ry is also a CR-path, of length �− 1. Hence, by the inductive hypothesis, an entry
<y, i′> is created by the algorithm in some Σj′ , with Q′ generating a1a2 . . . aj′ and
with the prefix of Q′ preceding its last unmatched call edge generating a1a2 . . . ai′ .

Inspection of the rules for the Earley parser in Figure 4 reveals that, given <y, i′> ∈
Σj′ and given the presence edge (y, z) in the CR-path Q, an entry <z, i> ∈ Σj is
always created by the algorithm. It remains to show that i and j have, with respect to
path Q, the relationship stated in property (B).

- Frame number j. We observe that the string of terminals generated by Q is the same
as the string generated by Q′, except when (y, z) is a scan edge, in which case Q does
generate a1a2 . . . aj′+1. Correspondingly, the algorithm sets j = j′, except when (y, z)
is a scan edge, in which case it sets j = j′ + 1.

- Tag i. We distinguish three cases, based on the type of edge.

– When (y, z) is an entry, scan, or exit edge, Q has the same last unmatched call edge
as Q′. Correspondingly, i = i′.

– When (y, z) is a call edge, then (y, z) is the last unmatched call edge on Q. The
algorithm correctly sets i = j′ = j.

– Finally, let (y, z) be a return edge, with y = B• and z = A → αB•γ. Since Q is
a CR-path, (y, z) must match the last unmatched call edge in Q′, say, (z′, y′), with
z′ = A → α•Bγ, and y′ = •B. We can then write Q = (•S)Q1z

′y′Q2yz where
Q2 is balanced, whence Q and (•S)Q1z

′ have the same last unmatched call edge,
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say (u, v). Let i′ be such that the prefix of Q ending at z′ generates a1a2 . . . ai′

and let k ≤ i′ be such that the prefix of Q ending at u generates a1a2 . . . ak. By
the inductive hypothesis, corresponding to path (•S)Q1z

′, the algorithm will have
created entry <z′ = A → α•Bγ, k> ∈ Σi′ . From entries <y = B•, i′> ∈ Σj′

and <z′ = A → α•Bγ, k> ∈ Σi′ as well as from return edge (y, z), the END rule
of the algorithm, as written in Figure 4, creates <z = A → αB•γ, i = i′> ∈ Σj .

Part II. A ⇒ B (from Earley entry to CR-path). The argument proceeds by induction
on the number q of rule applications executed by the algorithm when entry <z, i> is
first added to Σj . (Further “discoveries” that <z, i> ∈ Σj are possible, but the entry is
added only once.)
- Base case (q = 1). The only rule applicable at first is INIT, creating the entry<•S, 0> ∈
Σ0, whose corresponding path is clearly Q = (•S).
- Inductive step (from q − 1 ≥ 1 to q). Let the q-th rule application of the algorithm
be based on GFG edge (y, z) and on entry <y, i′> ∈ Σj′ . Also let <z, i> ∈ Σj be
the entry created by the algorithm as a result of said rule application. By the inductive
hypothesis, there is a CR-path (•S)Q′y generating a1a2 . . . aj′ and with the prefix of
Q′ preceding its last unmatched call edge generating a1a2 . . . ai′ . To show that to entry
<z, i> ∈ Σj there corresponds a CR-path Q as in (B), we consider two cases, based
on the type of edge (y, z).

– When (y, z) is an entry, scan, exit or call edge, we consider the path Q = (•S)Q′yz.
Arguments symmetric to those employed in Part I of the proof show that path the Q
does satisfy property (B), with exactly the values i and j of the entry <z, i> ∈ Σj

produced by the algorithm.
– When (y, z) is a return edge, the identification of path Q requires more care. Let

y = B• and z = A → αB•γ. The END rule of Earley’s algorithm creates entry
<z, i> ∈ Σj based on two previously created entries to each of which, by the
inductive hypothesis, there corresponds a path, as discussed next.
To entry <y = B•, k> ∈ Σj , there correspond a CR-path of the form Q′ =
(•S)Q′

1x
′y′Q2y, with last unmatched call edge (x′, y′), where y′ = •B and Q2 is

balanced.
To entry <z′ = A → α•Bγ, i> ∈ Σk there correspond a CR-path of the form
Q′′ = (•S)Q1z

′, where z′ = A → α•Bγ.
From the above two paths, as well as from return edge (y, z), we can form a third
CR-path Q = (•S)Q1z

′y′Q2yz. We observe that is is legitimate to concatenate
(•S)Q1z

′ with y′Q2y via the call edge (z′, y′) since y′Q2y is balanced. It is also
legitimate to append return edge (y, z) to (•S)Q1z

′y′Q2y (thus obtaining Q), since
such edge does match (z′, y′), the last unmatched call edge of said path.
It is finally straightforward to check that the frame number j and the tag i are
appropriate for Q.

Proof of Theorem 3. For a given GFG G = (V,E) and input word w, Earley’s algo-
rithm requires O(|w|2) space and O(|w|3) time. If the grammar is unambiguous, the
time complexity is reduced to O(|w|2).
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Proof. – Space complexity: There are |w| + 1 Σ-sets, and each Σ-set can have at
most |V ||w| elements since there are |w| + 1 possible tags. Therefore, the space
complexity of the algorithm is O(|w|2).

– Time complexity: For the time complexity, we need to estimate the number of dis-
tinct rule instances that can be invoked and the time to execute each one (intuitively,
the number of times each rule can “fire” and the cost of each firing).
For the time to execute each rule instance, we note that the only non-trivial rule is
the end rule: when <B•, k> is added to Σj , we must look up Σk to find entries of
the form <A→α•Bγ, i>. To permit this search to be done in constant time per en-
try, we maintain a data structure with each Σ set, indexed by a non-terminal, which
returns the list of such entries for that non-terminal. Therefore, all rule instances
can be executed in constant time per instance.
We now compute an upper bound on the number of distinct rule instances for each
rule schema. The init rule schema has only one instance. The start rule schema has
a two parameters: the particular start node in the GFG at which this rule schema
is being applied and the tag j, and it can be applied for each outgoing edge of that
start node, so the number of instances of this rule is O(|V | ∗ |V | ∗ |w|); for a given
GFG, this is O(|w|).
Similarly, the end rule schema has four parameters: the particular end node in the
GFG, and the values of i, j, k; the relevant return node is determined by these
parameters. Therefore, an upper bound on the number of instances of this schema
is O(|V ||w|3), which is O(|w|3) for a given GFG.
A similar argument shows that the complexity of call, exit and scan rule schema
instances is O(|w|2).
Therefore the complexity of the overall algorithm is O(|w|3).

– Unambiguous grammar: As shown above, the cubic complexity of Earley’s algo-
rithm arises from the end rule. Consider the consequent of the end rule. The proof
of Theorem 2 shows that <A→αB•γ, i> ∈ Σj iff w[i..(j − 1)] can be derived
from αB. If the grammar is unambiguous, there can be only one such derivation;
considering the antecedents of the end rule, this means that for a given return node
A→αB•γ and given values of i and j, there can be exactly one k for which the an-
tecedents of the end rule are true. Therefore, for an unambiguous grammar, the end
rule schema can be instantiated at most O(|w|2) times for a given grammar. Since
all other rules are bounded above similarly, we conclude that Earley’s algorithm
runs in time O(|w|2) for an unambiguous grammar.

A.3 Look-Ahead Computation

Proof of correctness of Algorithm 1:

Proof. The system of equations can be solved using Jacobi iteration, withFIRSTk(A) =
{} as the initial approximation for A ∈ N . If the sequence of approximate solutions for
the system is X0;X1; ..., the set Xi[A] (i ≥ 1) contains k-prefixes of terminal strings
generated by balanced paths from •A to A• in which the number of call-return pairs is
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at most (i−1). Termination follows from monotonicity of set union and+k, and finiteness
of M.

Proof of correctness of Algorithm 2:

Proof. The system of equations can be solved using Jacobi iteration. If the sequence
of approximate solutions is X0;X1; ..., then Xi[B] (i ≥ 1) contains the k-prefixes of
terminal strings generated by CR-paths from B• to S′• in which there are i or fewer
unmatched return nodes.
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Abstract. Compiler plugins enable languages to be extended with new func-
tionality by adding compiler passes that perform additional static checking, code
generation, or code transformations. However, compiler plugins are often diffi-
cult to build. A plugin can perform arbitrary code transformations, easily allow-
ing a developer to generate incorrect code. Moreover, the base compiler assumes
many complex, sometimes undocumented invariants, requiring plugin developers
to acquire intimate knowledge of the design and implementation of the compiler.
To address these issues in the context of the Scala compiler plugin framework,
we introduce Piuma. Piuma is a library that provides, first, an API to perform
many common refactoring tasks needed by plugin writers, and, second, a DSL
to eliminate much of the boilerplate code required for plugin development. We
demonstrate the usefulness of our library by implementing five diverse compiler
plugins. We show that, using Piuma, plugins require less code and are easier to
understand than plugins developed using the base Scala compiler plugin API.

Keywords: Scala, compiler extensions, refactoring.

1 Introduction

To build complex applications more easily and efficiently, developers often use domain-
specific languages (DSLs) [4, 22]. These special-purpose languages have abstractions
tailored for specific problem domains. Often, DSLs are implemented on top of a general-
purpose programming language like Scala [33], Ruby [15], Haskell [34], or Java [18].
This approach has the advantage that the DSL can reuse all the existing tools and infras-
tructure of the host language, such as IDEs, profilers, and debuggers. However, building
a DSL on top of a general-purpose host language requires the host language to be easily
extensible, allowing changes to both its semantics and syntax.

The Scala programming language [33] is a multi-paradigm language implemented on
the Java virtual machine, that supporting both object-oriented and functional program-
ming features. The language provides an expressive static type system and supports
extending the syntax with new operators.

Moreover, like other recent languages including Java [18], C� [16, 21], and X10 [9],
Scala provides an API to extend its compiler. Developers write compiler plugins to
add new passes to the base Scala compiler. Compiler plugins are a useful tool in DSL
development because they allow passes to, for instance, perform additional static anal-
ysis, to instrument code with additional dynamic checks, to perform optimizations, or
to generate code for new language features.

© Springer-Verlag Berlin Heidelberg 2015
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Plugin developers can make nearly arbitrary changes to the base compiler, permitting
implementation of complex language features, but unfortunately also permitting plug-
ins to violate invariants assumed by the compiler. Breaking these often undocumented
invariants may cause the compiler to generate incorrect Java bytecode or even to crash.

There are many ways to generate malformed bytecode using Scala compiler plugins.
For example, a compiler plugin can add a “ghost” field to a class that can be seen by the
Java VM when running the code, but not by the Scala compiler itself when importing
the generated bytecode. This problem occurs because the Scala compiler embeds Scala-
specific type information into the generated Java bytecode. If a plugin where to add a
field but omit this extra information, another instance of the Scala compiler would not
even see the field even though the field is present in the Java bytecode. This can result
in other compilation units failing to compile correctly.

Since plugins add passes to the Scala compiler, running a plugin at the wrong point
in the compilation can also allow bad code to be generated. For instance, a plugin could
rename a field to have the same name as an existing field. If the plugin did this after
the Scala type-checker runs, the error would not be detected and the bytecode would
contain a duplicate field.

Based on an evaluation of several existing Scala compiler plugins, we developed
Piuma, a refactoring library for the Scala compiler that enables easy implementation of
correct compiler plugins. The library provides a set of refactoring methods commonly
needed in compiler plugins. These methods are used, for instance, to safely rename
definitions, to add new class, trait, or object members, and to extract expressions into
methods. The library also provides a DSL for generating the boilerplate code necessary
for writing Scala compiler plugins.

The rest of the paper is organized as follows: Section 2 introduces Piuma and moti-
vates its usefulness. Section 3 covers the Piuma DSL. In Section 4, we demonstrate the
design and usage of Piuma’s refactoring libraries through code examples and use cases.
We evaluate the library in Section 5 using a set of five case studies. Related work is
discussed in Section 6. Finally, Section 7 concludes with a discussion of future work.

2 Overview

Scala offers a rich compiler API. However, because this API was designed primarily to
implement the Scala compiler, merely exposing it to plugin developers does not pro-
vide the high-level abstractions for performing many of the common tasks in compiler
plugins. For instance, a plugin might need to add a parameter to a method, to extract
code into a method, or to rename a field. Performing these tasks with the Scala compiler
plugin API requires the developer to implement complex AST transformations and to
manage auxiliary data associated with the ASTs. Furthermore, exposing the entire com-
piler API permits programmers to perform potentially unsafe operations that can lead
to exceptions during compilation, or worse, can generate malformed bytecode.

These shortcomings were the main motivation for Piuma, a refactoring framework
for Scala compiler plugins. Piuma is composed of two components, a DSL that facili-
tates defining a compiler plugin without tedious boilerplate code, and a rich library of
refactoring utilities. In the remainder of this section, we describe these two components
and motivate their usefulness in more detail.
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// define a new extension
class Example(val global: Global) extends Plugin {

val components = List[PluginComponent ](new Phase1(this))
}

// define a compilation phase
class Phase1(val plugin: Example) extends PluginComponent

with Transform
with TypingTransformers {

val global: plugin.global.type = plugin.global
override val runsRightAfter = Some("typer")
val runsAfter = List[String]("typer")
override val runsBefore = List[String]("patmat")
val phaseName = "example"

def newTransformer (unit: CompilationUnit ) =
new Phase1Transformer (unit)

class Phase1Transformer (unit: CompilationUnit )
extends TypingTransformer (unit) {

override def transform(tree: Tree): Tree =
super.transform(tree)

}
}

Fig. 1. A simple Scala compiler extension

2.1 The Piuma DSL

The Scala compiler gives plugins access to nearly all features of the base Scala com-
piler, and gives them the flexibility to extend the semantics of the Scala language almost
arbitrarily. Plugins can create and manipulate ASTs and symbols, extend the type sys-
tem, and generate code. The design of the compiler follows the “cake pattern” [48],
which allows both datatype extension by adding new ASTs, and procedural extension
by adding more operations to existing AST nodes. However, this flexibility comes at
the cost of ease-of-use and safety. Even simple extensions require a lot of complex boil-
erplate code. As an example, Fig. 1 shows the minimum setup required to create an
extension with a single phase that does nothing more than traversing the AST.

To better understand how plugins are used and implemented, we performed a small
survey of several publicly available Scala compiler plugins, including Avro [45], Scala-
Dyno [3], Miniboxing [46], Uniqueness [19], and Continuations [35]. We found that
none of these plugins added new types of AST nodes, while all added new functionality
to existing AST node types. Based on this survey, we conclude that only procedural
extension is needed for the majority of Scala compiler plugins. Adding AST node types
is rarely necessary due to Scala’s already flexible syntax.
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// define a new extension
@plugin(Phase1)
class Example

// define a compilation phase
@treeTransformer ("example")
class Phase1 {
rightAfter("typer")
before(List("patmat"))

def transform(tree: Tree): Tree = super.transform(tree)
}

Fig. 2. Piuma DSL version of the simple compiler extension from Fig. 1

We have designed a macro-based DSL for implementing such extensions. Fig. 2
demonstrates how the same simple plugin as shown in Fig. 1 is implemented using this
DSL. The DSL program defines a new plugin Example with a single phase Phase1.
The phase performs a tree transformation, in this case the identity transformation. It
runs immediately after the Scala typer and before the Scala compiler’s pattern matcher
phase. In Section 3 we describe this DSL in detail, using this example and others.

2.2 The Piuma Library

Suppose a developer is writing a plugin that performs partial evaluation [17, 23]. In
the implementation, she creates specialized versions of a method, adding them into the
class’s companion object.1 If the companion object does not exist, the plugin introduces
one. This can be a tedious task, as shown in Fig. 3.

Every AST node in Scala has a Symbol attached to it, which includes type and other
information about the node. The code first introduces a symbol for the companion ob-
ject, called a “module” in the Scala compiler API. The code then initializes the symbol
with its owner (its containing package or class), its type, and its parents (its supertypes).
It then updates the owner of the method we want to insert into the module (code elided).
It introduces a default constructor that calls the constructor of the new object’s super-
class, AnyRef, and appends the new constructor to the body of the module. Finally, it
types the module tree. Failing to do any of these steps may lead to an exception during
compilation, or worse, the compiler might silently generate malformed bytecode. With
Piuma we can introduce a companion object in just a few lines of code, as shown in
Fig. 4. The library ensures the object has a correct constructor and handles the symbol
management for the new object and the method added to it, ensuring that other phases
of the compiler can correctly access the object and method. In Section 4 we describe
the design of the Piuma utilities.

1 Scala, unlike Java, does not support static fields or methods. Instead, each class has a com-
panion object, a singleton object with the same name as the class that contains the “static”
members for the class.
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// clazz: the symbol of the class for which we
// want to create a companion object
// mthd: a method we want to include in the object
val moduleName = clazz.name
val owner = clazz.owner
val moduleSymbol = clazz.newModule(moduleName.toTermName,

clazz.pos.focus, Flags.MODULE)
val moduleClassSymbol = moduleSymbol .moduleClass
moduleSymbol .owner = owner
moduleClassSymbol .owner = owner

val parents = List(Ident(definitions.AnyRefClass ))
val moduleType = ClassInfoType (parents.map(_.symbol.tpe),

newScope , moduleClassSymbol )
moduleClassSymbol setInfo moduleType
moduleSymbol setInfoAndEnter moduleClassSymbol .tpe

// elided code: plugin writer needs to fix the owner
// of mthd and its children

val constSymbol =
moduleClassSymbol .newClassConstructor (moduleSymbol .pos.focus)

constSymbol.setInfoAndEnter (MethodType(Nil, moduleSymbol.info)

val superCall = Select(Super(This(tpnme.EMPTY), tpnme.EMPTY),
nme.CONSTRUCTOR)

val rhs = Block(List(Apply(superCall, Nil)),
Literal(Constant(())))

val constructor = DefDef(constSymbol , List(Nil), rhs)

localTyper.typed {
ModuleDef(moduleSymbol , Template(parents , noSelfType,

List(cnstrct , mthd)))
}

Fig. 3. This listing shows how a new companion object with a single method is created for a class
using the Scala compiler API

// clazz: the symbol of the class for which we
// want to create a companion object
// mthd: a method we want to include in the object
val module0 = clazz.mkCompanionObject
val module = module0.addMember(mthd)

Fig. 4. This listing shows how a new companion object with a single method is created for a class
using the Piuma DSL
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3 The Piuma DSL

The Piuma DSL extends Scala with features for defining compiler plugins and their
components. In this section, we explain the design and use of this DSL in detail. We
start by describing the general structure of a Scala compiler plugin and then describe
the DSL constructs and the functionality they provide. Finally, we briefly describe how
the DSL is implemented.

The Scala compiler consists of a sequence of compilation phases. Developers ex-
tend the compiler by creating plugins, composed of one or more phases inserted into
this sequence. Compiler plugins are implemented by extending the Plugin class and
providing a list of PluginComponent. Each of these components specifies a compiler
phase and where it occurs in the compilation sequence. They also provide factory meth-
ods for creating the tree and symbol transformers that implement the phase.

The Piuma DSL extends Scala with four class annotations: @plugin, @checker,
@treeTransformer, and@infoTransformer. The@plugin annotation generates boil-
erplate code for a compiler plugin itself. The other annotations generate boilerplate code
for differentPluginComponent implementations:@checkergenerates a type-checking
component, @treeTransformer generates an AST-transforming component, and
@infoTransformer generates a type-transforming component. Since the Scala com-
piler requires plugins and phases to be concrete classes, these annotations cannot appear
on traits, abstract classes, or singleton objects. Annotated classes may still implement
other traits. Fig. 5 shows the syntax of a compiler extension in the DSL.

The Piuma DSL is implemented using Scala’s annotation macros [8]. For each an-
notation, macro expansion modifies the annotated class to extend a corresponding class
from the Scala compiler API. It then mixes-in appropriate Piuma traits to facilitate ac-
cess to the Piuma library.

3.1 The @plugin Annotation

The @plugin annotation is placed on a class that implements a compiler plugin. After
macro expansion, the annotated class automatically extends the Scala class Plugin.
The list of components provided by the plugin are specified as annotation arguments.
Optionally, the class may provide a short description of its purpose, used when gener-
ating command-line usage information for the compiler.

3.2 Component Annotations

The three annotations @checker, @treeTransformer, and @infoTransformer are
used to annotate classes that implement plugin components. Macro expansion generates
boilerplate code in the annotated class for inserting the phase into the execution order.
These annotations also specify the name of the phase using an annotation parameter.

In the body of a class annotated with one of the phase annotations, the programmer
can optionally specify the class of the compiler plugin itself using the syntax plugin
PluginClass. This introduces a field of the appropriate type into the class that refers to
the plugin object. This field can be used to share information across the plugin’s various
compiler phases.
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@plugin(MyChecker, MyTransformer , MyInfoTransformer )
class MyPlugin {
describe("short�description")
...

}

@checker("my_checker")
class MyChecker {
plugin MyPlugin // optional

after(List("phase1", "phase2", ...)) // optional
rightAfter("phase1") // optional
before(List("phase1", "phase2", ...)) // optional

def check(unit: CompilationUnit ): Unit = ...
...

}

@treeTransformer ("my_transformer ")
class MyTransformer {
plugin MyPlugin // optional

after(List("phase1", "phase2", ...)) // optional
rightAfter("phase1") // optional
before(List("phase1", "phase2", ...)) // optional

def transform(tree: Tree): Tree = ...
...

}

@infoTransformer ("my_info_transformer ")
class MyInfoTransformer {
plugin MyPlugin // optional

after(List("phase1", "phase2", ...)) // optional
rightAfter("phase1") // optional
before(List("phase1", "phase2", ...)) // optional

def transform(tree: Tree): Tree = ...
def transformInfo (sym: Symbol , tpe: Type): Type = ...
...

}

Fig. 5. Syntax of the Piuma DSL
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@checker. This annotation is placed on classes that implement type-checking phases.
A checker phase cannot perform AST transformations but can perform static anal-
ysis of a compilation unit. The class must implement a method with the signature:
check(CompilationUnit): Unit. After macro expansion, the class extends the
PluginComponentclass from the Scala compiler API and implements a factory method
for creating compiler phase objects that invoke the checkmethod for each compilation
unit.

@treeTransformer. The @treeTransformer annotation is placed on component
classes that implement AST transformations. Annotated classes must implement a
method with the signature: transform(Tree): Tree. After expansion, the class ex-
tends PluginComponent with TypingTransform. The expanded class creates a
TreeTransformer that traverses the AST and invokes the providedtransformmethod
at each node.

@infoTransformer. The last annotation is @infoTransformer, which is placed on
classes that transform types in the AST. The annotation is similar to@treeTransformer;
however, classes must provide not only a transform(Tree): Treemethod, but also a
transformInfo(Symbol, Type): Type method. After expansion, an annotated class
will extendPluginComponentwithInfoTransform. A generatedInfoTransformer
class traverses the AST and invokes the providedtransform andtransformInfometh-
ods for each node and symbol encountered.

4 The Piuma Library

Piuma offers a rich set of utilities for generating and refactoring Scala compiler ASTs.
In general, these methods implement common refactoring and creation patterns when
writing compiler plugins. They are implemented using the AST generators of the Scala
compiler API, and Scala’s quasiquotes, which are a notation that permits generating
trees directly from code snippets [39]. We aimed to provide a library that is easy to
use, yet flexible and expressive. Library users can use the Scala compiler API alongside
library code if they need lower-level access to the compiler internals.

In this section, we discuss the design of the refactoring library and demonstrate its
use through use cases and code examples. The library is divided into four main cate-
gories, as shown in Fig. 6. The reader can refer to Piuma’s project page2 for documen-
tation and more examples.

4.1 Tree Extractors

Methods in the tree extractor category permit the selection of a sequence of ASTs to be
placed in another, compatible class, object, trait, method or variable. Since Scala ASTs
are immutable, extractor operations generate new ASTs and do not affect the original
tree to which they are applied.

2 https://github.com/amanjpro/piuma
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Fig. 6. The high-level design of Piuma’s Library

Fig. 7(a) shows a code snippet that demonstrates a refactoring using a pair of tree
extractor functions. Fig. 7(b) and (c) show the effect of applying the refactoring to a
small method. The extractor function splitAfter scans the AST of the body of the
original method foo in Fig. 7(b). When splitAfter finds the first occurrence of an
AST node that satisfies a given predicate and returns the AST before and include the
node and the AST after the node. In the example, the predicate matches a call to the
splitMemethod, specified using the Scala quasiquotes library [39]. Thus splitAfter
returns the AST for the body of foo up to and including the call to splitMe, and
another AST for the rest of the body.

It is possible to insert either or both of the ASTs returned by splitAfter into ASTs.
In Fig. 7(c), suffix becomes the body of a new method bar. This is done by calling
extractMethod, which takes a list of trees and a new method name as parameters. The
new name must be unique in its scope, otherwise an exception is thrown.

The extractMethod operation handles free variables in the given method’s body
by adding parameters to the extracted method. That is, all free variables in suffix
become parameters of bar. extractMethod also creates the AST of the new method
and types it, and generates a call to the extracted method that can be substituted into the
original method, as described in the next section. Piuma also creates a symbol for the
new method, rebinding symbols of the extracted trees to their new owner, and placing
them in the symbol table of the method owner. Without Piuma, the programmer would
have to perform all these operations manually using the Scala compiler API.
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// orig: the original method
// body: the body of orig

// Split body after the call to splitMe(),
val (prefix, suffix) = body.splitAfter((x:Tree) => x == q"splitMe()")

// Extract the code after the split into method bar
val (extracted, apply) = extractMethod(

suffix, // The body of the extracted method
"bar" // the name of the extracted method
orig.symbol // the symbol of the original method
).get

// Replace the extracted code with a call to the new method
orig.updateRHS(Block(prefix, apply))

(a) Refactoring using Piuma tree extractor and tree modifier utilities

def foo(a: Int, b: String,
c: Int): Int = {

println(a)
val d = c
splitMe()
println(d)
a + b.size

}

(b) Before applying the refactoring in (a)

def foo(a: Int, b: String,
c: Int): Int = {

println(a)
val d = c
splitMe()
bar(a, b, d)

}
def bar(a: Int, b: Int,

d: Int): Int = {
println(d)
a + b.size

}

(c) After applying the refactoring in (a)

Fig. 7. A short example of refactoring with Piuma

Other useful Piuma extractors allow member extraction. It is possible, for instance,
to extract an inner class and make it an outer class (using extractClass), to convert
a local variable to a field (using extractVar or extractVal), or to move fields or
methods across classes.

4.2 Tree Modifiers

Tree modifier utilities change AST nodes, for instance, adding or removing method pa-
rameters (addParam and removeParam, respectively), modifying a class or trait’s body
(updateBody, addMember, and removeMember) or its supertypes (updateParents).
The renamemethod is used to change the name of a class, method, or variable. When a
field is renamed, Piuma handles renaming its setters and getters as well. The tree modi-
fiers also support updating method bodies (updateRHS). As an example, we can modify
method foo from Fig. 7(b) to call the extracted method, as shown in Fig. 7(c). We do
this with the call to updateRHS, as shown in Fig. 7(a).
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// orig: the method to be specialized
// p: the parameter we want to specialize
// v: the value that we want to specialize p with
val specialized = orig.duplicate("new_name").removeParam(p, v)

Fig. 8. A simple example showing how a tree duplicator works

4.3 Tree Duplicators

Tree duplicators are mainly used to implement other Piuma functionalities, but can
also be useful when writing plugins. For example, if a programmer needs to specialize
a method, they can duplicate it first, then remove the specialized parameter from the
duplicated tree, and substitute it with a value, as shown in Fig. 8.

Piuma’s duplicatemethod differs from the compiler API’s duplicatemethod in
that it handles the creation of a new symbol for the new tree, and changes the binding
of the node’s children’s symbols from their original owner to the duplicate.

The fixOwner method traverses an AST that has been duplicated and inserted into
the AST at another location. It rebinds symbols in the traversed AST to change their
owner (i.e., containing method, class, etc.) to the symbol at the new location in the AST.

4.4 Tree Generators

Piuma offers various AST generators that are simpler to use than the Scala compiler API
tree generators. For instance, they handle setting the required flags that distinguish trees
used to represent more than one syntactic construct (e.g., var and val, or class and trait
trees). Symbol creation and binding is also handled for a generated AST, including all
its descendant ASTs. Piuma generators facilitate other tasks that require multiple setup
steps, such as surrounding the body of a method with a synchronization block, creating
constructor parameters and constructor calls, and others.

5 Evaluation

To evaluate the design of Piuma, we performed a case study by reimplementing five
Scala compiler plugins. In our selection, we considered plugins with varying purposes
and which use a wide range of Scala compiler API functions. Below, we describe the
original plugin and how Piuma is used to implement the plugin. We discuss the ease
of implementation and compare the sizes of the Piuma version of the plugin with the
original. All the plugins can be found at the Piuma project page. The five plugins and
our results are summarized in Table 1. We used CLOC [10] to measure the number of
lines in each plugin, ignoring comments and blank lines.

5.1 Memoization Plugin

This compiler plugin enables memoization of computations by introducing simple an-
notations in code. The design of this plugin is influenced by CEAL [20], a C-based
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Table 1. Lines of code of the compiler plugin case studies

Lines of code
Plugin Original Piuma

Memoization 1190 410 (34.5%)
HPE 2007 1422 (70.9%)
Atomic 510 209 (41.0%)
ScalaDyno 209 169 (80.9%)
Avro 914 681 (74.5%)

language for self-adjusting computation [1]. Using the plugin, programmers annotate
a variable to be modifiable, indicating that the variable may be modified throughout
the program execution and that any computations that depend on the variable are to be
recomputed incrementally when the variable is modified. A modifiable variable can be
read or written like any other variable.

The plugin is implemented as a code transformation. When the plugin encounters a
read of a modifiable variable in a given method, it extracts the continuation of the read
within that method into a new method. The extracted statements are replaced with a
call to a closure, which takes the parameters of the extracted method and the modifiable
variable, and only calls the extracted method if it has not already been called for the
same arguments. The original plugin has a single phase, and uses the Scala compiler
API to perform mainly AST creation and transformation.3

We mostly relied on splitAfter, extractMethod and addMembermethods from
the Piuma library, in addition to Piuma DSL’s annotations. The first two methods per-
form AST refactoring as described in Section 4. The methods take care of binding sym-
bols of the transformed trees to their new owners, as well as rebinding the symbols of
all their children AST nodes. This avoids errors when rebinding symbols manually. The
addMembermethod is a tree generator that generates type-checked trees. Using Piuma,
the source code is clearer and easier to understand, as the complexity of the above tasks
is implemented in the library. We were able to reduce the size of the plugin from 1190
to 410 lines, a reduction of 65.6%.

5.2 Hybrid Partial Evaluation Plugin

Hybrid-partial evaluation (HPE) [40] borrows ideas from both online and offline par-
tial evaluation. It performs offline-style specialization using an online approach without
static binding-time analysis. We constructed a Scala plugin that implements HPE by al-
lowing programmers to annotate variables that should be evaluated at compile time. The
main transformation performed by the plugin is method specialization, which requires
AST transformation and generation.4

We used mkCompanionObject,duplicate, and removeParam functions, and other
AST transformation utilities, in addition to Piuma DSL’s annotations. We were able to

3 The original plugin was developed by the first author and can be found at
https://github.com/amanjpro/piuma/tree/kara/kara

4 The original plugin was developed by the first author and can be found at
https://github.com/amanjpro/mina

https://github.com/amanjpro/mina
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reduce the code size from 2007 to 1422 (a reduction of 29.2%). Piuma’s usefulness here
comes from its ability to automatically change method symbol information after adding
or removing parameters.

5.3 Atomic Scala Plugin

This plugin is a port of Java’s atomic sets [47] implementation. It allows declaring
atomic memory regions, to which object fields may be added. Fields in the same atomic
set are protected by the same lock, and the compiler acquires this lock whenever one
of the fields in the atomic set is used in a public method. The syntax of this plugin is
expressed using Scala annotations, which are processed using the plugin to insert (pos-
sibly nested) synchronization blocks in public method bodies. The plugin is composed
of six phases, one performs type-checking, another two process annotations and store
global information to be shared with other phases, and the rest perform AST creation
and transformation operations: adding fields to classes, changing constructor signatures
and altering constructor calls accordingly, and surrounding method bodies with syn-
chronization blocks.5

Various tree generators and modifiers were employed, as well as Piuma DSL’s an-
notations. The code size was reduced from 510 to 209 lines (a 59.0% reduction), again
making code clearer and more concise, due to hiding the boilerplate of creating trees
and managing their symbols, as well as the symbols of their owners and child-ASTs.

5.4 ScalaDyno Plugin

ScalaDyno [3] simulates dynamic typing in Scala. It works by replacing any compila-
tion errors encountered by the compiler with warnings, postponing type checking to run
time. This was the smallest plugin we reimplemented, with only 209 lines of code. It
mainly performs info-transformation. Still, we were able to reduce its size to 169 lines
of code, a reduction of 19.14%, by applying Piuma’s type-transformation functions and
by using the Piuma DSL’s annotations. The main source of code reduction was the DSL,
which eliminated the boilerplate code for declaring the plugin and its phases.6

5.5 Avro Records Plugin

This compiler plugin is used to auto-generate Avro serializable classes [2] from case
class definitions. Avro is a framework developed by Apache’s Hadoop group for remote
procedure calls and data serialization. The programmer mixes in the AvroRecord trait
into their case classes; at compile time, the plugin automatically generates the necessary
methods to make these classes Avro-serializable. The plugin mostly generates compan-
ion objects, adds methods and fields to classes. Other than using the Scala compiler

5 The original plugin was developed by the second author and can be found at
https://github.com/nosheenzaza/as

6 The source of the original plugin can be found at
https://github.com/scaladyno/scaladyno-plugin

https://github.com/nosheenzaza/as
https://github.com/scaladyno/scaladyno-plugin
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API, it also employs Scala’s TreeDSL [38], which aims to make the AST generation
code simpler and more readable.7

This plugin was written for the Scala 2.8 compiler runtime. To use Piuma, we needed
to port the plugin to Scala 2.11. We mostly relied on the tree generators mkVar,
mkSetterAndGetter, and mkCompanionObjectand on the tree modifiers addMember
and updateRHS, as well as Piuma DSL’s annotations. Even though the original plugin
used a DSL that is more concise than Scala compiler API, we were still able to reduce
the code size from 914 to 681 lines (a 25.49% reduction), again, mainly because symbol
creation and binding was handled under the hood by Piuma rather than by the plugin
code itself. Our line count results compare the Piuma version with the original Scala
2.8 version of the plugin.

5.6 Discussion

Piuma led to a reduction in code size for all benchmarks. The resulting code was more
concise and easier to understand. The main advantage of using Piuma is its ability to
hide the complexity of tree and symbol creation, binding, and tree typing. Symbol bind-
ing is especially tedious when refactoring already existing ASTs. The library also pro-
vides many functions to perform common AST refactoring tasks.

Applying Piuma’s library functions can sometimes yield malformed trees. For exam-
ple, classes in Scala, as in many other languages cannot contain a return statement, so
attempting to add a block that contains a return statement causes a type-checking error.
We rely on Scala’s type checker to report such errors to the programmer, and we found
it to be an adequate aid when we performed evaluation.

While reimplementing the plugins in Piuma, we noticed and took advantage of op-
portunities to extend the library to support commonly occurring refactoring patterns.
Three of the case study plugins were originally implemented by the first two authors of
this paper. The authors found that reimplementing the plugins using Piuma was far less
time consuming and error-prone than writing the original implementation. While this
observation is highly subjective, we feel it is worth mentioning.

6 Related Work

Language and compiler extensibility has been well studied for decades. This work
includes macros [12, 41, 44], extensible compiler frameworks [13, 32], and language
frameworks [25, 27].

Scala recently introduced a Lisp-like macro system [7]. Scala limits macro imple-
mentation to statically accessible modules. To make writing macros easier, Scala also
provides quasiquotes [39], which Piuma uses also for AST generation and matching.
Quasiquotes in Scala are not hygienic [26], nor are they statically type checked. A num-
ber of DSLs are already implemented using Yin-Yang [24], a macro-based framework
for implementing DSLs, for instance, OptiML [43], a DSL for machine learning.

7 The source of the original plugin can be found at
https://code.google.com/p/avro-scala-compiler-plugin/

https://code.google.com/p/avro-scala-compiler-plugin/
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Unlike compiler plugins, macros can fall short when it comes to modifying the static
semantics of the programming language. Macros can only manipulate the ASTs on
which they are explicitly invoked. This limitation makes implementing something like
the partial evaluation plugin impossible with macros, as it needs to access and modify
non-local ASTs.

Lightweight Modular Staging [36, 37] and the Scala-virtualized extension [30] are
used to implement deep embedded DSLs. Users programmatically generate ASTs, tak-
ing advantage of Scala-virtualized’s more expressive operator overloading features to
support domain-specific syntax.

In Java, one can add type checkers using JavaCOP [29], the Checker framework [11],
or the standard annotation processor mechanism found in Java 6 [5]. Java 8 type an-
notations, defined by JSR308 [14], are based on the Checker framework. All these ap-
proaches allow a developer to extend the type system with pluggable type checkers,
but they do not allow any code transformation [6]. Piuma, on the other hand, permits
code transformation, which is inherently more problematic than the restrictive compiler
extensions that only perform static checking [31].

Scala has a refactoring library [42] which provides a set of refactoring utilities to
be used within IDEs. The .NET compiler platform [16] also provides an API for code
analysis and refactoring. Wrangler [28] is a refactoring framework for Erlang that inte-
grates with Emacs and Eclipse. What makes our work different from these is that Piuma
provides refactoring for the ASTs to be used in compiler plugins, while the others focus
on source code refactoring for use in IDEs.

Extensible compiler frameworks such as JastAdd [13] and Polyglot [32] are used
for implementing new languages on top of a base language compiler. Unlike compiler
plugins, these frameworks are designed to allow arbitrary changes to the base language.
Many of the issues that occur with compiler plugins occur also with these frameworks.

7 Conclusions and Future Work

Our evaluation shows Piuma’s usefulness to plugin writers. All plugins became more
concise and clearer. Plugins written in Piuma can concern themselves more with the
plugin logic rather than with tedious details of AST transformations or symbol man-
agement.

The Scala compiler assumes many complex, undocumented invariants. While de-
veloping Piuma we discovered many of these invariants by trial-and-error, that is by
inadvertently violating them and observing the compiler crash or generate incorrect
bytecode. We are investigating ways to test plugins for correctness and ways to auto-
matically re-establish invariants that do get broken.

Implementing a refactoring library inside a complex compiler such as Scala’s en-
ables not only compiler extensibility through plugins. The Piuma library could also be
leveraged for implementing refactorings in an IDE, in optimization tools, or in other
refactoring tools. We plan to extend the Piuma framework with more refactorings and
implement additional static analyses to ensure that plugin writers have more assurance
that the refactorings are being used correctly.
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Abstract. High-level languages come with significant readability and maintain-
ability benefits. Their performance costs, however, are usually not predictable, at
least not easily. Programmers may accidentally use high-level features in ways
that compiler writers could not anticipate, and they may thus produce underper-
forming programs as a result.

This paper introduces feature-specific profiling, a profiling technique that re-
ports performance costs in terms of linguistic constructs. With a feature-specific
profiler, a programmer can identify specific instances of language features that
are responsible for performance problems. After explaining the architecture of
our feature-specific profiler, the paper presents the evidence in support of adding
feature-specific profiling to the programmer’s toolset.

1 Weighing Language Features

Many linguistic features,1 come with difficult-to-predict performance costs. First, the
cost of a specific use of a feature depends on its context. For instance, use of reflection
may not observably impact the execution time of some programs but may have disas-
trous effects on others. Second, the cost of a feature also depends on its mode of use; a
higher-order type coercion tends to be more expensive than a first-order coercion (see
section 2).

When cost problems emerge, programmers often turn to performance tools such as
profilers. A profiler reports costs, e.g., time or space costs, in terms of location, which
helps programmers focus on frequently executed code. Traditional profilers, however,
do little to help programmers find the cause of their performance woes or potential solu-
tions. Worse, some performance issues may have a unique cause and yet affect multiple
locations, spreading costs across large swaths of the program. Traditional profilers fail
to produce actionable observations in such cases.

To address this problem, we propose feature-specific profiling, a technique that re-
ports time spent in linguistic features. Where a traditional profiler may break down exe-
cution time across modules, functions, or lines, a feature-specific profiler assigns costs
to instances of features—a specific type coercion, a particular software contract, or an
individual pattern matching form—whose actual costs may be spread across multiple
program locations.

1 With “linguistic feature” we mean the constructs of a programming language itself,
combinator-style DSLs as they are especially common in the Haskell world, or “macros” ex-
ported from libraries, such as in Racket or Rust.
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Feature-specific profiling complements a conventional profiler’s view of program
performance. In many cases, this orthogonal view makes profiling information action-
able. Because these profilers report costs in terms of specific features, they point pro-
grammers towards potential solutions, e.g., using a feature differently or avoiding it in
a particular context.

In this paper, we

– introduce the idea of feature-specific profiling,
– explain the architecture of our prototype and its API for feature plug-ins,
– and present an evaluation of our prototype covering both the actionability of its

results and the effort required to implement plug-ins.

The rest of this paper is organized as follows. In section 2 we describe the features that
we chose to support in our prototype. In section 3 we outline the architecture of our
framework and provide background on its instrumentation technique. In sections 4 and
5 we describe the implementation in detail. We present evaluation results in section 6,
then explain the limitations of our architecture, relate to existing work, and conclude.

2 Feature Corpus

In principle, a feature-specific profiler should support all the features that a language of-
fers or that the author of a library may create. This section presents the Racket (Flatt and
PLT 2010) features that our prototype feature-specific profiler supports, which includes
features from the standard library, and from three third-party libraries. The choice is
partially dictated by the underlying technology; put differently, the chosen technology
can deal with linguistic features whose dynamic extent obeys a stack-like behavior.

The list introduces each feature and outlines the information the profiler provides
about each. We provide additional background for three features in particular—contracts,
Marketplace processes (Garnock-Jones et al. 2014), and parser backtracking—which are
key to the evaluation case studies presented in section 6.1.

We have identified the first four features below, as well as contracts and parser back-
tracking, as causes of performance issues in existing Racket programs. Marketplace
processes hinder reasoning about performance while not being expensive themselves.
The remaining constructs are considered expensive, and are often first on the chopping
block when programmers optimize programs, but our tool does not discover a signifi-
cant impact on performance in ordinary cases. A feature-specific profiler can thus dispel
the myths surrounding these features by providing measurements.

Output. Our tool traces time programs spend in Racket’s output subsystem back to
individual console, file or network output function call sites.

Generic sequence dispatch. Racket’s iteration forms can iterate over any sequence
datatype, which includes built-in types such as lists and vectors as well as user-defined
types. Operating generically requires dynamic dispatch and imposes a run-time cost.
Our profiler reports which iteration forms spend significant time in dispatch and thus
suggests which ones to replace with specialized iteration forms.
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Type casts and assertions. Typed Racket, like other typed languages, provides type
casts to help programmers get around the constraints of the type system. Like Java’s
casts, Typed Racket’s casts are safe and involve runtime checks, which can have a
negative impact on performance. Casts to higher-order types wrap values with proxies
and are therefore especially expensive. Our tool reports time spent in each cast and
assertion.

Shill security policies. The Shill scripting language (Moore et al. 2014) restricts how
scripts can use system resources according to user-defined security policies. Shill en-
forces policies dynamically, which incurs overhead on every restricted operation.
Because Shill is implemented as a Racket extension, it is an ideal test case for our
feature-specific profiler. Our tool succeeds in reporting time spent enforcing each policy.

Pattern matching. Racket comes with an expressive pattern matching construct. Our
profiler reports time spent in individual patterns matching forms, excluding time spent
in form bodies.

Optional and keyword argument functions. Racket’s functions support optional as well
as keyword-based arguments. To this end, the compiler provides a special function-call
protocol, distinct from, and less efficient than, the regular protocol. Our tool reports
time spent on this protocol per function.

Method Dispatch. On top of its functional core, Racket supports class-based object-
oriented programming. Method calls have a reputation for being more expensive than
function calls. Our tool profiles the time spent performing method dispatch for each
method call site, reporting the rare cases where dispatch imposes significant costs.

2.1 Contracts

Behavioral software contracts are a linguistic mechanism for expressing and dynami-
cally enforcing specifications. They were introduced in Eiffel and have since spread to
a number of platforms including Python, JavaScript, .NET and Racket.

When two components—e.g., modules or classes—agree to a contract, any value
that flows from one component to the other must conform to the specification. If the
value satisfies the specification, program execution continues normally. Otherwise, an
exception is raised. Programmers can write contracts using the full power of the host
language. Because contracts are checked dynamically, however, computationally inten-
sive specifications can have a significant impact on program performance.

For specifications on objects (Strickland and Felleisen 2010), structures (Strickland
et al. 2012) or closures (Findler and Felleisen 2002), the cost of checking contracts
is non-local. The contract system defers checking until methods are called or fields
are accessed, which happens after crossing the contract boundary. To predict how of-
ten a given contract is checked, programmers must understand where the contracted
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value may flow. Traditional profilers attribute costs to the location where contracts are
checked, leaving it to programmers to trace those costs to specific contracts.

Figure 1 shows an excerpt from an HTTP client library. It provides make-fetcher,
which accepts a user agent and returns a function that performs requests using that user
agent. The HTTP client accepts only those requests for URLs that are on a whitelist,
which it enforces with the underlined contract. The driver module creates a crawler
that uses a fetching function from the http-client module. The crawler then calls
this function to access web pages, triggering the contract each time. Because checking
happens while executing crawler code, a traditional profiler attributes contract costs to
crawl, but it is the contract between http-client and driver that is responsible.

driver.rkt

(require "http-client.rkt" "crawler.rkt")
(define fetch (make-fetcher "fetcher/1.0"))
(define crawl (make-crawler fetch))
... (crawl "etaps.org") ...

http-client.rkt

(provide (contract-out [make-fetcher (-> user-agent? (-> safe-url? html?))]))
(define (make-fetcher user-agent) (lambda (url) ...))
(define (safe-url? url) (member url whitelist))

Fig. 1. Contract for an HTTP client

Because of the difficulty of reasoning about the cost of contracts, performance-
conscious programmers often avoid them. This, however, is not always possible. First,
the Racket standard library uses contracts pervasively to preserve its internal invariants
and provide helpful error messages. Second, many Racket programs combine untyped
components written in Racket with components written in Typed Racket. To preserve
the invariants of typed components, Typed Racket inserts contracts at typed-untyped
boundaries (Tobin-Hochstadt and Felleisen 2006). Because these contracts are neces-
sary for Typed Racket’s safety and soundness, they cannot be avoided.

To provide programmers with an accurate view of the costs of contracts and their
actual sources, our profiler provides several contract-related reports and visualizations.

2.2 Marketplace Processes

The Marketplace library allows programmers to express concurrent systems function-
ally as trees of sets of processes grouped within task-specific virtual machines (VMs)2

that communicate via publish/subscribe. Marketplace is especially suitable for building
network services; it has been used as the basis of an SSH server (see section 6.1.2) and
a DNS server. While organizing processes in a hierarchy of VMs has clear software
engineering benefits, deep VM nesting hinders reasoning about performance. Worse,

2 These VMs are process containers running within a Racket OS-level process. The relationship
with their more heavyweight cousins such as VirtualBox, or the JVM, is one of analogy only.
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different processes often execute the same code, but because these processes do not
map to threads, traditional profilers may attribute all the costs to one location.

Our feature-specific profiler overcomes both of these problems. It provides process
accounting for their VMs and processes and maps time costs to individual processes,
e.g., the authentication process for an individual SSH connection, rather than the au-
thentication code shared among all processes. For VMs, it reports aggregate costs and
presents their execution time broken down by children.

2.3 Parser Backtracking

The Parsack parsing library3 provides a disjunction operator that attempts to parse al-
ternative non-terminals in sequence. The operator backtracks in each case unless the
non-terminal successfully matches. When the parser backtracks, however, any work it
did for matching that non-terminal does not contribute to the final result and is wasted.

For this reason, ordering non-terminals within disjunctions to minimize backtrack-
ing, e.g., by putting infrequently matched non-terminals at the end, can significantly
improve parser performance. Our feature-specific profiler reports time spent on each
disjunction branch from which the parser ultimately backtracks.

3 The Profiler’s Architecture

Because programmers may create new features, our feature-specific profiler consists
of two parts: the core framework and feature-specific plug-ins. The core is a sampling
profiler with an API that empowers the implementors of linguistic features to create
plug-ins for their creations.

The core part of our profiler employs a sampling-thread architecture to detect when
programs are executing certain pieces of code. When a programmer turns on the profiler,
a run of the program spawns a separate sampling thread, which inspects the stack of the
main thread at regular intervals. Once the program terminates, an offline analysis deals
with the collected stack information, looking for feature-specific stack markers and
producing programmer-facing reports.

The feature-specific plug-ins exploit this core by placing markers on the control stack
that are unique to that construct. Each marker indicates when a feature executes its
specific code. The offline analysis can then use these markers to attribute specific slices
of time consumption to a feature.

For our Racket-based prototype, the plug-in architecture heavily relies on Racket’s
continuation marks, an API for stack inspection (Clements et al. 2001). Since this API
differs from stack inspection protocols in other languages, the first subsection recalls the
idea. The second explains how the implementor of a feature uses continuation marks to
interact with the profiler framework for structurally simple constructs. The last subsec-
tion presents the offline analysis.

3 https://github.com/stchang/parsack

https://github.com/stchang/parsack
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3.1 Inspecting the Stack with Continuation Marks

Any program may use continuation marks to attach key-value pairs to stack frames and
retrieve them later. Racket’s API provides two main operations:

– (with-continuation-mark key value expr), which attaches (key, value)
to the current stack frame and evaluates expr.

– (current-continuation-marks [thread]), which walks the stack and re-
trieves all key-value pairs from the stack of an optionally specified thread, which
defaults to the current thread. This allows one thread to inspect the stack of another.

Programs can also filter marks to consider only those with relevant keys using

– (continuation-mark-set->list marks key), which returns the list of val-
ues with that key contained in marks.

Outside of these operations, continuation marks do not affect a program’s semantics.4

Figure 2 illustrates the working of continuation marks with a function that traverses
binary trees and records paths from roots to leaves. Whenever the function reaches an
internal node, it leaves a continuation mark recording that node’s value. When it reaches
a leaf, it collects those marks, adds the leaf to the path and returns the completed path.

; Tree = Number | [List Number Tree Tree]
; paths : Tree -> [Listof [Listof Number]]
(define (paths t)

(cond
[(number? t)
(list (cons t (continuation-mark-set->list (current-continuation-marks) 'paths)))]

[else
(with-continuation-mark 'paths (first t)

(append (paths (second t)) (paths (third t))))]))

> (paths '(1 (2 3 4) 5))
'((3 2 1) (4 2 1) (5 1))

Fig. 2. Recording paths in a tree with continuation marks

Continuation marks are extensively used in the Racket ecosystem, notably for the
generation of error messages in the DrRacket IDE (Findler et al. 2002), an algebraic
stepper (Clements et al. 2001), the DrRacket debugger, for thread-local dynamic bind-
ing, and for exception handling. Serializable continuations in the PLT web server (Mc-
Carthy 2010) are also implemented using continuation marks.

Beyond Racket, continuation marks have also been implemented on top of Mi-
crosoft’s CLR (Pettyjohn et al. 2005) and JavaScript (Clements et al. 2008). Other
languages provide similar mechanisms, such as stack reflection in Smalltalk and the
stack introspection used by the GHCi debugger (Marlow et al. 2007) for Haskell.

4 Continuation marks also preserve proper tail call behavior.
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3.2 Feature-Specific Data Gathering

During program execution, feature-specific plug-ins leave feature markers on the stack.
The core profiler gathers these markers concurrently, using a sampling thread.

Marking. The author of a plug-in for the feature-specific profiler must change the im-
plementation of the feature so that instances mark themselves with feature marks. It
suffices to wrap the relevant code with with-continuation-mark. These marks al-
low the profiler to observe whether a thread is currently executing code related to a
feature.

Figure 3 shows an excerpt from the instrumentation of Typed Racket assertions. The
underlined conditional is responsible for performing the actual assertion. The feature
mark’s key should uniquely identify the construct. In this case, we use the symbol
'TR-assertion as key. Unique choices avoid false reports and interference by distinct
plug-ins. As a consequence, our feature-specific profiler can present a unified report to
users; it also implies that users need not select in advance the constructs they deem
problematic.

The mark value—or payload—can be anything that identifies the instance of the
feature to which the cost should be assigned. In figure 3, the payload is the source
location of a specific assertion in the program, which allows the profiler to compute the
cost of individual assertions.

Writing such plug-ins, while simple and non-intrusive, requires access to the imple-
mentation of the feature of interest. Because it does not require any specialized profiling
knowledge, however, it is well within the reach of the authors of linguistic constructs.

(define-syntax (assert stx)
(syntax-case stx ()

[(assert v p) ; the compiler rewrites this to:
(quasisyntax

(let ([val v] [pred p])
(with-continuation-mark 'TR-assertion (unsyntax (source-location stx))

(if (pred val) val (error "Assertion failed.")))))]))

Fig. 3. Instrumentation of assertions (excerpt)

Antimarking. Features are seldom “leaves” in a program; feature code usually runs user
code whose execution time may not have to count towards the time spent in the feature.
For example the profiler must not count the time spent in function bodies towards the
function call protocol for keyword arguments.

To solve this problem, a feature-specific profiler expects antimarks on the stack. Such
antimarks are continuation marks with a distinguished value that delimit a feature’s
code. Our protocol dictates that the continuation mark key used by an antimark is the
same as that of the feature it delimits and that they use the 'antimark symbol as
payload. Figure 4 illustrates the idea with code that instruments a simplified version of
Racket’s optional and keyword argument protocol. In contrast, assertions do not require
antimarks because user code evaluation happens outside the marked region.
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(define-syntax (lambda/keyword stx)
(syntax-case stx ()

[(lambda/keyword formals body) ; the compiler rewrites this to:
(quasisyntax

(lambda (unsyntax (handle-keywords formals))
(with-continuation-mark 'kw-opt-protocol (unsyntax (source-location stx))

(; parse keyword arguments, compute default values, ...
(with-continuation-mark 'kw-opt-protocol 'antimark

body)))))])) ; body is use-site code

Fig. 4. Use of antimarks in instrumentation

The analysis phase recognizes antimarks and uses them to cancel out feature marks.
Time is attributed to a feature only if the most recent mark is a feature mark. If it is an
antimark, the program is currently executing user code, which should not be counted.

Sampling. During program execution, our profiler’s sampling thread periodically col-
lects and stores continuation marks from the main thread. The sampling thread has
knowledge of the keys used by feature marks and collects marks for all features at once.

3.3 Analyzing Feature-Specific Data

After the program execution terminates, the core profiler analyzes the data collected by
the sampling thread to produce a feature cost report.

Cost assignment. The profiler uses a standard sliding window technique to assign a
time cost to each sample based on the elapsed time between the sample, its predecessor
and its successor. Only samples with a feature mark as the most recent mark contribute
time towards features.

Payload grouping. As explained in section 3.2, payloads identify individual feature
instances. Our accounting algorithm groups samples by payload and adds up the cost of
each sample; the sums correspond to the cost of each feature instance. Our profiler then
generates reports for each feature, using payloads as keys and time costs as values.

Report composition. Finally, after generating individual feature reports, our profiler
combines them into a unified report. Constructs absent from the program or those inex-
pensive enough to never be sampled are pruned to avoid clutter. The report lists features
in descending order of cost, and does likewise for instances within feature reports.

Figure 5 shows a feature profile for a Racket implementation of the FizzBuzz5 program
with an input of 10,000,000. Most of the execution time is spent printing numbers not
divisible by either 3 or 5 (line 16), which includes most numbers. About a second is
spent in generic sequence dispatch; the range function produces a list, but the for
iteration form accepts all sequences and must therefore process its input generically.

5 http://imranontech.com/2007/01/24/

http://imranontech.com/2007/01/24/
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10 (define (fizzbuzz n)
11 (for ([i (range n)])
12 (cond
13 [(divisible i 15) (printf "FizzBuzz\n")]
14 [(divisible i 5) (printf "Buzz\n")]
15 [(divisible i 3) (printf "Fizz\n")]
16 [else (printf "∼a\n" i)])))
17
18 (feature-profile
19 (fizzbuzz 10000000))

Output accounts for 68.22% of
running time (5580 / 8180 ms)

4628 ms : fizzbuzz.rkt:16:24
564 ms : fizzbuzz.rkt:15:24
232 ms : fizzbuzz.rkt:14:24
156 ms : fizzbuzz.rkt:13:24

Generic sequences account for 11.78%
of running time (964 / 8180 ms)

964 ms : fizzbuzz.rkt:11:11

Fig. 5. Feature profile for FizzBuzz

4 Profiling Rich Features

The basic architecture assumes that the placement of a feature and the location where
it incurs a run-time costs are the same or in one-to-one correspondence. In contrast
to such structurally simple features, some, such as contracts, cause time consumption
in many different places, and in other cases, such as Marketplace processes, several
different instances of a construct contribute to a single cost center. We call the latter
kind of linguistic features structurally rich.

While the creator of a structurally rich feature can use a basic plug-in to measure
some aspects of its cost, it is best to adapt a different strategy for evaluating such fea-
tures. This section shows how to go about such an adaptation. Section 6.2 illustrates
with an example how to migrate from a basic plug-in to one appropriate for a struc-
turally rich feature.

4.1 Custom Payloads

Instrumentation for structure-rich features uses arbitrary values as mark payloads in-
stead of locations.

Contracts. Our contract plug-in uses blame objects as payloads. A blame object ex-
plains contract violations and pinpoints the faulty party; every time an object traverses
a higher-order contract boundary, the contract system attaches a blame object. Put dif-
ferently, a blame object holds enough information—the contract to check, the name of
the contracted value, and the names of the components that agreed to the contract—to
reconstruct a complete picture of contract checking events.

Marketplace processes. The Marketplace plug-in uses process names as payloads.
Since current-continuation-marks gathers all the marks currently on the stack,
the sampling thread can gather core samples.6 Because Marketplace VMs are spawned
and transfer control using function calls, these core samples include not only the current
process but also all its ancestors—its parent VM, its grandparent, etc.

6 In analogy to geology, a core sample includes marks from the entire stack.
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(define (random-matrix)
(build-matrix 200 200

(lambda (i j) (random))))

(feature-profile
(matrix* (random-matrix) (random-matrix)))

Contracts account for 47.35% of running time (286 / 604 ms)
188 ms : build-matrix (-> Int Int (-> any any any) Array)
88 ms : matrix-multiply-data (-> Array Array [...]))
10 ms : make-matrix-multiply (-> Int Int Int (-> any any any) Array)

Fig. 6. Module graph and by-value views of a contract boundary

Parser backtracking. The Parsack plug-in combines three values into a payload: the
source location of the current disjunction, the index of the active branch within the
disjunction, and the offset in the input where the parser is currently matching. Because
parsing a term may require recursively parsing sub-terms, the Parsack plug-in gathers
core samples that allow it to attribute time to all active non-terminals.

While storing rich payloads is attractive, plug-in writers must avoid excessive computa-
tion or allocation when constructing payloads. Even though the profiler uses sampling,
payloads are constructed every time feature code is executed, whether or not the sampler
observes it.

4.2 Analyzing Rich Features

Programmers usually cannot directly digest information generated via custom payloads.
If a feature-specific plug-in uses such payloads, its creator should implement an analysis
pass that generates user-facing reports.

Contracts. The goal of the contract plug-in is to report which pairs of parties impose
contract checking, and how much the checking costs. Hence, the analysis aims to pro-
vide an at-a-glance overview of the cost of each contract and boundary.

To this end, our analysis generates a module graph view of contract boundaries. This
graph shows modules as nodes, contract boundaries as edges and contract costs as labels
on edges. Because typed-untyped boundaries are an important source of contracts, the
module graph distinguishes typed modules (in green) from untyped modules (in red).
To generate this view, our analysis extracts component names from blame objects. It
then groups payloads that share pairs of parties and computes costs as discussed in
section 3.3. The top-right part of figure 6 shows the module graph for a program that
constructs two random matrices and multiplies them. This code resides in an untyped
module, but the matrix functions of the math library reside in a typed module. Hence
linking the client and the library introduces a contract boundary between them.

In addition to the module graph, our feature-specific profiler provides other views
as well. For example, the bottom portion of figure 6 shows the by-value view, which
provides fine-grained information about the cost of individual contracted values.
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Marketplace Processes. The goal of our feature-specific analysis for Marketplace pro-
cesses is to assign costs to individual processes and VMs, as opposed to the code they
execute. Marketplace feature marks use the names of processes and VMs as payloads,
which allows the plug-in to distinguish separate processes executing the same code.

Our analysis uses full core samples to attribute costs to VMs based on the costs of
their children. These core samples record the entire ancestry of processes in the same
way the call stack records function calls. We exploit that similarity and reuse standard
edge profiling techniques to attribute costs to the entire ancestry of a process.

==============================================================
Total Time Self Time Name Local%
==============================================================
100.0% 32.3% ground

(tcp-listener 5999 ::1 53588) 33.7%
tcp-driver 9.6%
(tcp-listener 5999 ::1 53587) 2.6%
[...]

33.7% 33.7% (tcp-listener 5999 ::1 53588)
2.6% 2.6% (tcp-listener 5999 ::1 53587)
[...]

Fig. 7. Marketplace process accounting (excerpt)

Figure 7 shows the accounting from a Marketplace-based echo server. The first entry
of the profile shows the ground VM, which spawns all other VMs and processes. The
rightmost column shows how execution time is split across the ground VM’s children.
Of note are the processes handling requests from two clients. As reflected in the profile,
the client on port 53588 is sending ten times as much input as the one on port 53587.

Parser backtracking. The feature-specific analysis for Parsack determines how much
time is spent backtracking for each branch of each disjunction. The source locations
and input offsets in the payload allows the plug-in to identify each unique visit that the
parser makes to each disjunction during parsing.

We detect backtracking as follows. Because disjunctions are ordered, the parser must
have backtracked from branches 1 through n − 1 once it reaches the nth branch of a
disjunction. Therefore, whenever the analysis observes a sample from branch n of a
disjunction at a given input location, it attributes backtracking costs to the preceding
branches. It computes that cost from the samples taken in these branches at the same
input location. As with the Marketplace plug-in, the Parsack plug-in uses core samples
and edge profiling to handle the recursive structure of the parsing process.

Figure 8 shows a simple parser that first attempts to parse a sequence of bs followed
by an a, and in case of failure, backtracks in order to parse a sequence of bs. The right
portion of figure 8 shows the output of the feature-specific profiler when running the
parser on a sequence of 9,000,000 bs. It confirms that the parser had to backtrack from
the first branch after spending almost half of the program’s execution attempting it.
Swapping the $a and $b branches in the disjunction eliminates this backtracking.



60 V. St-Amour, L. Andersen, and M. Felleisen

26 (define $a (compose $b (char #\a)))
27 (define $b (<or> (compose (char #\b) $b)
28 (nothing)))
29 (define $s (<or> (try $a) $b))
30
31 (feature-profile (parse $s input))

Parsack Backtracking
====================================
Time (ms / %) Disjunction Branch
====================================
2076 46% ab.rkt:29:12 1

Fig. 8. An example Parsack-based parser and its backtracking profile

5 Instrumentation Control

As described, plug-ins insert continuation marks regardless of whether a programmer
wishes to profile or not. We refer to this as active marking. For features where individ-
ual instances perform a significant amount of work, such as contracts, the overhead of
active marks is usually not observable. For other features, such as fine-grained console
output where the aggregate cost of individually inexpensive instances is significant, the
overhead of marks can be problematic. In such situations, programmers want to control
when marks are applied on a by-execution basis.

In addition, programmers may also want to control where mark insertion takes place
to avoid reporting costs in code that they cannot modify or wish to ignore. For instance,
reporting that some function in the standard library performs a lot of pattern matching
is useless to most programmers; they cannot fix it.

To establish control over the when and where of continuation marks, our framework
introduces the notion of latent marks. A latent mark is an annotation that, on demand,
can be turned into an active mark by a preprocessor or a compiler pass. We distin-
guish between syntactic latent marks for use with features implemented using meta-
programming and functional latent marks for use with library or runtime functions.

5.1 Syntactic Latent Marks

Syntactic latent marks exist as annotations on the intermediate representation (IR) of
user code. To add a latent mark, the implementation of a feature leaves tags7 on the
residual program’s IR instead of directly inserting feature marks. These tags are dis-
carded after compilation and thus have no run-time effect on the program. Other meta-
programs or the compiler can observe latent marks and turn them into active marks.

Our implementation uses Racket’s compilation handler mechanism to interpose the
activation pass between macro-expansion and the compiler’s front end with a command-
line flag that enables the compilation handler. The compilation handler then traverses
the input program, replacing any syntactic latent mark it finds with an active mark.
Because latent marks are implicitly present in user code, no library recompilation is
necessary. The programmer must merely recompile the code to be profiled.

7 We use Racket’s syntax property mechanism, but any IR tagging mechanism would apply.



Feature-Specific Profiling 61

This method applies only to features implemented using meta-programming. Be-
cause Racket relies heavily on syntactic extension, most of our plug-ins use syntactic
latent marks.

5.2 Functional Latent Marks

Functional latent marks offer an alternative to syntactic latent marks. Instead of tagging
the programmer’s code, a preprocessor or compiler pass recognizes calls to feature-
related functions and rewrites the programmer’s code to wrap such calls with active
marks. Like syntactic latent marks, functional latent marks require recompilation of
user code that uses the relevant functions. They do not, however, require recompiling
libraries that provide feature-related functions, which makes them appropriate for func-
tions provided as runtime primitives.

6 Evaluation

Our evaluation addresses two promises concerning feature-specific profiling: that mea-
suring in a feature-specific way supplies useful insights into performance problems,
and that it is easy to implement new plug-ins. This section first presents case studies
that demonstrate how feature-specific profiling improves the performance of programs.
Then it reports on the amount of effort required to implement plug-ins. The online ver-
sion of this paper8 includes an appendix that discusses run-time overhead.

6.1 Case Studies

To be useful, a feature-specific profiler must accurately identify specific uses of features
that are responsible for significant performance costs in a given program. Furthermore,
an ideal profiler must provide actionable information, that is, its reports must point
programmers towards solutions. Ideally, it will also provide negative information, i.e.,
confirm that some constructs need not be investigated.

We present three case studies suffering from the overhead of specific features. Each
subsection describes a program, summarizes the feature-specific profiler’s feedback,
and explains the changes that directly follow from the report. Figure 9 presents the re-
sults of comparing execution times before and after the changes. It also includes results
from two additional programs—a sound synthesis engine and a Shill-based automatic
grading script—which we do not discuss due to a lack of space.

Maze Generator. Our first case study employs a Typed Racket version of a maze
generator, due to Olin Shivers. For scale, the maze generator is 758 lines of code. The
program generates a maze on a hexagonal grid, ensures that it is solvable, and prints it.

According to the feature profile, 55% of the execution time is spent performing
output. Three calls to display, each responsible for printing part of the bottom of
hexagons, stand out as especially expensive. Printing each part separately results in a

8 http://www.ccs.neu.edu/racket/pubs/#cc15-saf

http://www.ccs.neu.edu/racket/pubs/#cc15-saf


62 V. St-Amour, L. Andersen, and M. Felleisen

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

mazemazemazemazemazemazemazemazemaze sshsshsshsshsshsshsshsshssh mdmdmdmdmdmdmdmdmd synthsynthsynthsynthsynthsynthsynthsynthsynth gradegradegradegradegradegradegradegradegrade
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

Before
After

Program Problem feature(s) Negative Infomation

maze Output Casts

ssh
Processes, Pattern matching,

contracts generic sequences

markdown Backtracking Pattern matching

synth Contracts
Generic sequences,

output

grade Security policies -

Results are the mean of 30 executions on a 6-core 64-bit Debian GNU/Linux system with 12GB of RAM.

Because Shill only supports FreeBSD, results for grade are from a 6-core FreeBSD system with 6GB of RAM.

Error bars are one standard deviation on either side.

Fig. 9. Execution time after profiling and improvements (lower is better)

large number of single-character output operations. This report suggests fusing all three
output operations into one. Following this advice results in a 1.39× speedup.

Inside an inner loop, a dynamic type assertion enforces an invariant that the type
system cannot guarantee statically. Even though this might raise concerns with a cost-
conscious programmer, the profile reports that the time spent in the cast is negligible.

Marketplace-Based SSH Server. Our second case study involves an SSH server9 writ-
ten using the Marketplace library. For scale, the SSH server is 3,762 lines of code. To
exercise it, a driver script starts the server, connects to it, launches a Racket read-eval-
print-loop on the host, evaluates the expression (+ 1 2 3 4 5 6), disconnects and
terminates the server.

As figure 10 shows, our feature-specific profiler brings out two useful facts. First, two
spy processes—the tcp-spy process and the boot process of the ssh-session VM—
account for over 25% of the total execution time. In Marketplace, spies are processes
that observe other processes for logging purposes. The SSH server spawns these spy
processes even when logging is ignored, resulting in unnecessary overhead.

Second, contracts account for close to 67% of the running time. The module view,
of which figure 11 shows an excerpt, reports that the majority of these contracts lie at
the boundary between the typed Marketplace library and the untyped SSH server. We
can selectively remove these contracts in one of two ways: by adding types to the SSH
server or by disabling typechecking in Marketplace.

Disabling spy processes and type-induced contracts results in a speedup of around
4.41×. In addition to these two areas of improvement, the feature profile also provides

9 https://github.com/tonyg/marketplace-ssh

https://github.com/tonyg/marketplace-ssh
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negative information: pattern matching and generic sequences, despite being used per-
vasively, account for only a small fraction of the server’s running time.

Marketplace Processes
================================================================
Total Time Self Time Name Local%
================================================================
100.0% 3.8% ground

ssh-session-vm 51.2%
tcp-spy 19.9%
(tcp-listener 2322 ::1 44523) 19.4%
[...]

51.2% 1.0% ssh-session-vm
ssh-session 31.0%
(#:boot-process ssh-session-vm) 14.1%
[...]

19.9% 19.9% tcp-spy
7.2% 7.2% (#:boot-process ssh-session-vm)
[...]

Contracts account for 66.93% of running time (3874 / 5788 ms)
1496 ms : add-endpoint (-> pre-eid? role? [...] add-endpoint?)
1122 ms : process-spec (-> (-> any [...]) any)
[...]

Pattern matching accounts for 0.76% of running time (44 / 5788 ms)
[...]

Generic sequences account for 0.35% of running time (20 / 5788 ms)
[...]

Fig. 10. Profiling results for the SSH server (excerpt)

Fig. 11. Module graph view for the SSH server (excerpt)

Markdown Parser. Our last case study involves a Parsack-based Markdown parser,10

due to Greg Hendershott. For scale, the Markdown parser is 4,058 lines of Racket code.
To profile the parser, we ran it on 1,000 lines of sample text.11

As figure 12 shows, backtracking from three branches took noticeable time and ac-
counted for 34%, 2%, and 2% of total execution time, respectively. Based on the tool’s

10 https://github.com/greghendershott/markdown
11 An excerpt from "The Time Machine" by H.G. Wells.

https://github.com/greghendershott/markdown
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report, we moved the problematic branches further down in their enclosing disjunction,
which produced a speedup of 1.40×.

For comparison, Parsack’s author, Stephen Chang, manually optimized the same ver-
sion of the Markdown parser using ad-hoc, low-level instrumentation and achieved a
speedup of 1.37×. Using our tool, the second author, with no knowledge of the parser’s
internals, was able to achieve a similar speedup in only a few minutes of work.

The feature-specific profiler additionally confirmed that pattern matching accounted
for a negligible amount of the total running time.

Parsack Backtracking
===================================================
Time (ms / %) Disjunction Branch
===================================================
5809.5 34% markdown/parse.rkt:968:7 8
366.5 2% parsack/parsack.rkt:449:27 1
313.5 2% markdown/parse.rkt:670:7 2
[...]

Pattern matching accounts for 0.04% of running time (6 / 17037 ms)
6 ms : parsack/parsack.rkt:233:4

Fig. 12. Profiling results for the Markdown parser (excerpt)

6.2 Plug-in Implementation Effort

Writing feature-specific plug-ins is a low-effort endeavor. It is easily within reach for the
authors of linguistic libraries because it does not require advanced profiling knowledge.
To support this claim, we start with anecdotal evidence from observing the author of
the Marketplace library implement feature-specific profiling support for it.

Mr. Garnock-Jones, an experienced Racket programmer, implemented the plug-in
himself, with the first author acting as interactive documentation of the framework. Im-
plementing the first version of the plug-in took about 35 minutes. At that point, Mr.
Garnock-Jones had a working process profiler that performed the basic analysis de-
scribed in section 3.3. Adding a feature-specific analysis took an additional 40 minutes.
Less experienced library authors may require more time for a similar task. Nonetheless,
we consider this amount of effort to be quite reasonable.

Feature Instrumentation LOC Analysis LOC

Output 11 -
Generic sequences 18 -
Type casts and assertions 37 -
Shill security policies 23 -
Pattern matching 18 -
Optional and keyword arguments 50 -
Method dispatch 12 -
Contracts 183 672
Marketplace processes 7 9
Parser non-terminals 18 60

Fig. 13. Instrumentation and analysis LOC per feature
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For the remaining features, we report the number of lines of code for each plug-in
in figure 13. The third column reports the number of lines of domain-specific analy-
sis code. The basic analysis is provided as part of the framework. The line counts for
Marketplace and Parsack do not include the portions of Racket’s edge profiler that are
re-linked into the plug-ins, which account for 506 lines. With the exception of con-
tract instrumentation—which covers multiple kinds of contracts and is spread across
the 16,421 lines of the contract system—instrumentation is local and non-intrusive.

7 Limitations

Our specific approach to feature-specific profiling applies only to certain kinds of lin-
guistic constructs. This section describes cases that our feature-specific profiler should
but cannot support. Those limitations are not fundamental to the idea of feature-specific
profiling and could be addressed by different approaches to data gathering.

Control features. Because our instrumentation strategy relies on continuation marks,
it does not support features that interfere with marks. This rules out non-local control
features that unroll the stack, such as exception raising.

Non-observable features. The sampler must be able to observe a feature in order to
profile it. This rules out uninterruptible features, e.g., struct allocation, or FFI calls,
which do not allow the sampling thread to be scheduled during their execution. Other
obstacles to observability include sampling bias (Mytkowicz et al. 2010) and instances
that execute too quickly to be reliably sampled.

Diffuse features. Some features, such as garbage collection, have costs that are dif-
fused throughout the program. This renders mark-based instrumentation impractical.
An event-based approach, such as Morandat et al.’s (2012), would fare better. The use
of events would also make feature-specific profiling possible in languages that do not
support stack inspection.

8 Related Work

Programmers already have access to a wide variety of performance tools that are com-
plementary to feature-specific profilers. This section compares our work to those ap-
proaches that are closely related.

8.1 Traditional Profiling

Profilers have been successfully used to diagnose performance issues for decades. They
most commonly report on the consumption of time, space and I/O resources. Tradi-
tional profilers group costs according to program organization, be it static—e.g., per
function—or dynamic—e.g., per HTTP request. Feature-specific profilers group costs
according to linguistic features and specific feature instances.
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Each of these views is useful in different contexts. For example, a feature-specific
profiler’s view is most useful when non-local feature costs make up a significant portion
of a program’s running time. Traditional profilers may not provide actionable informa-
tion in such cases. Furthermore, by identifying costly features, feature-specific profilers
point programmers towards potential solutions, namely correcting feature usage. In con-
trast, traditional profilers often report costs without helping find solutions. Conversely,
traditional profilers may detect a broader range of issues than feature-specific profilers,
such as inefficient algorithms, which are invisible to feature-specific profilers.

8.2 Vertical Profiling

A vertical profiler (Hauswirth et al. 2004) attempts to see through the use of high-level
language features. It therefore gathers information from multiple layers—hardware per-
formance counters, operating system, virtual machine, libraries—and correlates them
into a gestalt of program performance.

Vertical profiling focuses on helping programmers understand how the interaction
between layers affects their program’s performance. By comparison, feature-specific
profiling focuses on helping them understand the cost of features per se. Feature-specific
profiling also presents information in terms of features and feature instances, which is
accessible to non-expert programmers, whereas vertical profilers report low-level infor-
mation, which requires a deep understanding of the compiler and runtime system.

Hauswirth et al.’s work introduces the notion of software performance monitors,
which are analogous to hardware performance monitors but record software-related per-
formance events. These monitors could possibly be used to implement feature-specific
profiling by tracking the execution of feature code.

8.3 Alternative Profiling Views

A number of profilers offer alternative views to the traditional attribution of time costs
to program locations. Most of these views focus on particular aspects of program perfor-
mance and are complementary to the view offered by a feature-specific profiler. Some
recent examples include Singer and Kirkham’s (2008) profiler, which assigns costs to
programmer-annotated code regions, listener latency profiling (Jovic and Hauswirth
2011), which reports high-latency operations, and Tamayo et al.’s (2012) tool, which
provides information about the cost of database operations.

8.4 Dynamic Instrumentation Frameworks

Dynamic instrumentation frameworks such as Valgrind (Nethercote and Seward 2007)
or Javana (Maebe et al. 2006) serve as the basis for profilers and other kinds of perfor-
mance tools. These frameworks resemble the use of continuation marks in our frame-
work and could potentially be used to build feature-specific profilers. These frameworks
are much more heavy-weight than continuation marks and, in turn, allow more thorough
instrumentation, e.g., of the memory hierarchy, of hardware performance counters, etc.,
though they have not been used to measure the cost of linguistic features.
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8.5 Optimization Coaching

Like a feature-specific profiler, an optimization coach (St-Amour et al. 2012) aims to
help non-experts improve the performance of their programs. Where coaches focus on
enabling compiler optimizations, feature-specific profilers focus on avoiding feature
misuses. The two are complementary.

Optimization coaches operate at compile time whereas feature-specific profilers, like
other profilers, operate at run time. Because of this, feature-specific profilers require
representative program input to operate, whereas coaches do not. On the other hand, by
having access to run time data, feature-specific profilers can target actual program hot
spots, while coaches must rely on static heuristics to prioritize reports.

9 Conclusion

This paper introduces feature-specific profiling, a technique that reports program costs
in terms of linguistic features. It also presents an architecture for feature-specific pro-
filers that allows the authors of libraries to implement plug-ins in their libraries.

The alternative view on program performance offered by feature-specific profilers
allows easy diagnosis of performance issues due to feature misuses, especially those
with distributed costs, which might go undetected using a traditional profiler. By point-
ing to the specific features responsible, feature-specific profilers provide programmers
with actionable information that points them towards solutions.
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Abstract. Modeling languages for hybrid systems are cornerstones of
embedded systems development in which software interacts with a phys-
ical environment. Sequential code generation from such languages is im-
portant for simulation efficiency and for producing code for embedded
targets. Despite being routinely used in industrial compilers, code gen-
eration is rarely, if ever, described in full detail, much less formalized.
Yet formalization is an essential step in building trustable compilers for
critical embedded software development.

This paper presents a novel approach for generating code from a hy-
brid systems modeling language. By building on top of an existing syn-
chronous language and compiler, it reuses almost all the existing infras-
tructure with only a few modifications. Starting from an existing syn-
chronous data-flow language conservatively extended with Ordinary Dif-
ferential Equations (ODEs), this paper details the sequence of source-to-
source transformations that ultimately yield sequential code. A generic
intermediate language is introduced to represent transition functions.
The versatility of this approach is exhibited by treating two classical
simulation targets: code that complies with the FMI standard and code
directly linked with an off-the-shelf numerical solver (Sundials CVODE).

The presented material has been implemented in the Zélus compiler
and the industrial Scade Suite KCG code generator of Scade 6.

1 Introduction

Hybrid systems modeling languages allow models to include both software and
elements of its physical environment. Such models serve as references for simula-
tion, testing, formal verification, and the generation of embedded code. Explicit
hybrid systems languages like Simulink/Stateflow1 combine Ordinary Dif-
ferential Equations (ODEs) with difference and data-flow equations, hierarchical
automata in the style of Statecharts [15], and traditional imperative features.

� Examples in Zélus and the extension of Scade 6 with hybrid features are available
at http://zelus.di.ens.fr/cc2015/ .

1 http://mathworks.org/simulink
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Models in these languages mix signals that evolve in both discrete and contin-
uous time. While the formal verification of hybrid systems has been extensively
studied [8], this paper addresses the different, but no less important, question of
generating sequential code (typically C) for efficient simulations and embedded
real-time implementations.

Sequential code generation for synchronous languages [5] like Lustre [14]
has been extensively studied. It can be formalized as a series of source-to-source
and traceable transformations that progressively reduce high-level programming
constructs, like hierarchical automata and activation conditions, into a minimal
data-flow kernel [10]. This kernel is further simplified into a generic intermediate
representation for transition functions [6], and ultimately turned into C code.
Notably, this is the approach taken in the Scade Suite KCG code generator of
Scade 62, which is used in a wide range of critical embedded applications.

Yet synchronous languages only manipulate discrete-time signals. Their ex-
pressiveness is deliberately limited to ensure determinacy, execution in bounded
time and space, and simple, traceable code generation. The cyclic execution
model of synchronous languages does not suffer the complications that accom-
pany numerical solvers. Conversely, a hybrid modeling language allows discrete
and continuous time behaviors to interact. But this interaction together with
unsafe constructs, like side effects and while loops, is not constrained enough,
nor specified with adequate precision in tools like Simulink/Stateflow. It
can occasion semantic pitfalls [9,4] and compiler bugs [1]. A precise description
of code generation, that is, the actual implemented semantics, is mandatory in
safety critical development processes where target code must be trustworthy.
Our aim, in short, is to increase the expressiveness of synchronous languages
without sacrificing any confidence in their code generators.

Benveniste et al. recently proposed a novel approach for the design and im-
plementation of a hybrid modeling language that reuses synchronous language
principles and an existing compiler infrastructure. They proposed an ideal syn-
chronous semantics based on non standard analysis [4] for a Lustre-like lan-
guage with ODEs [3], and then extended the kernel language with hierarchical
automata [2] and a modular causality analysis [1]. These results form the founda-
tion of Zélus [7]. This paper describes their validation in an industrial compiler.

Paper Contribution and Organisation Our first contribution is to precisely
describe the translation of a minimal synchronous language extended with ODEs
into sequential code. Our second contribution is the experimental validation in
two different compilers: the research prototype Zélus [7] and the Scade Suite
KCG code generator. In the latter it was possible to reuse all the existing in-
frastructure like static checking, intermediate languages, and optimisations, with
little modification. The extensions for hybrid features require only 5% additional
lines of code. Moreover, the proposed language extension is conservative in that
regular synchronous functions are compiled as before—the same synchronous
code is used both for simulation and for execution on target platforms.

2 http://www.esterel-technologies.com/products/scade-suite/

http://www.esterel-technologies.com/products/scade-suite/
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Fig. 1. Basic structure of a hybrid simulation algorithm

The paper is organised as follows. Section 2 recalls the classical simulation
loop of hybrid systems. Section 3 describes the overall compiler architecture as
implemented in KCG. Section 4 defines the input language, Section 5 defines
a clocked intermediate language, and Section 6 defines the target imperative
language. Code generation is defined in Section 6.1. We illustrate the versatility
of the compiler in two typical practical situations: generating code that complies
with the FMI standard and generating code that incorporates an off-the-shelf
numerical solver (Sundials CVODE). Practical experiments in KCG and Zélus
are presented in Section 7. Section 8 discusses extensions and related work. We
conclude in Section 9.

2 The Simulation Loop of Hybrid Systems

The first choice to make in implementing a hybrid system is how to solve ODEs.
Creating an efficient and numerically accurate numerical solver is a daunt-
ing and specialist task. Reusing an existing solver is more practical, with two
possible choices: either (a) generate a Functional Mock-Up Unit (FMU) using
the standardized Functional Mock-Up Interface (FMI) and rely on an existing
simulation infrastructure [19]; or (b) use an off-the-shelf numerical solver like
CVODE [16] and program the main simulation loop. The latter corresponds to
the co-simulation variant (CS) of FMI, where each FMU embeds its own solver.

The simulation loop of a hybrid system is the same no matter which option
is chosen. It can be defined formally as a synchronous function that defines four
streams t(n), lx (n), y(n), and z(n), with n ∈ N. t(n) ∈ R is the increasing
sequence of instants at which the solver stops.3 lx (n) is the value at time t(n) of
the continuous state variables, that is, of all variables defined by their derivatives
in the original model. y(n) is the value at time t(n) of the discrete state. z(n)
indicates any zero-crossings at instant t(n) on signals monitored by the solver,
that is, any signals that become equal to or pass through zero.

The synchronous function has two modes: the discrete mode (D) contains
all computations that may change the discrete state or that have side effects.
The continuous mode (C) is where ODEs are solved. The two modes alternate
according to the execution scheme summarized in Figure 1.

3 In Simulink, these are called major time steps.
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The Continuous Mode (C). In this mode, the solver computes an approximation
of the solution of the ODEs and monitors a set of expressions for zero-crossings.
Code generation is independent of the actual solver implementation. We abstract
it by introducing a function solve(f)(g) parameterized by f and g where:

– x′(τ) = f(y(n), τ, x(τ)) defines the derivatives of continuous state variables x
at instant τ ∈ R;

– upz(τ) = g(y(n), τ, x(τ)) defines the current values of a set of zero-crossing
signals upz, indexed by i ∈ {1, . . . , k}.

The continuous mode C computes four sequences s, lx , z and t such that:

(lx , z, t, s)(n+ 1) = solve(f)(g)(s, y, lx , t, step)(n)

where

s(n) is the internal state of the solver at instant t(n) ∈ R. Calling solve(f)(g)
updates the state to s(n+ 1).

x is an approximation of a solution of the ODE,

x′(τ) = f(y(n), τ, x(τ))

It is parameterized by the current discrete state y(n) and initialized at
instant t(n) with the value of lx(n), that is, x(t(n)) = lx (n).

lx (n+1) is the value of x at t(n+ 1), that is:

lx (n+ 1) = x(t(n+ 1))

lx is a discrete-time signal whereas x is a continuous-time signal.

t(n+ 1) is bounded by the horizon t(n)+ step(n) that the solver has been asked
to reach, that is:

t(n) ≤ t(n+ 1) ≤ t(n) + step(n)

z(n+1) signals any zero-crossings detected at time t(n + 1). An event occurs
with a transition to the discrete mode D when horizon t(n) + step(n)
is reached, or when at least one of the zero-crossing signals upz(i), for
i ∈ {1, . . . , k} crosses zero,4 which is indicated by a true value for the
corresponding boolean output z(n+ 1)(i).

event = z(n+ 1)(0) ∨ · · · ∨ z(n+ 1)(k) ∨ (t(n+ 1) = t(n) + step(n))

If the solver raises an error (for example, a division by zero or an inability to
find a solution), we consider that the simulation fails.

4 The function solve(f)(g) abstracts from the actual implementation of zero-crossing
detection. To account for a possible zero-crossing at the horizon t(n) + step(n), the
solver may integrate over a strictly larger interval [t(n), t(n) + step(n) + margin],
where margin is a solver parameter.

z(n+ 1)(i) =
(∀T ∈ [t(n), t(n+ 1)[ . upz(T )(i) < 0)

∧ ∃m ≤ margin . (∀T ∈ [t(n+ 1), t(n+ 1) +m] . upz(T )(i) ≥ 0)

This definition assumes that the solver also stops whenever a zero-crossing expression
passes through zero from positive to negative.
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The Discrete Mode (D). All discrete changes occur in this mode. It is entered
when an event is raised during integration. During a discrete phase, the function
next defines y, lx , step, encore, z, and t:

(y, lx , step, encore)(n+ 1) = next(y, lx , z, t)(n)

z(n+ 1) = false

t(n+ 1) = t(n)

where

y(n+ 1) is the new discrete state; outside of mode D, y(n+ 1) = y(n).

lx (n+ 1) is the new continuous state, which may be changed directly in the
discrete mode.

step(n+ 1) is the new step size.

encore(n+1) is true if an additional discrete step must be performed. Function
next can decide to trigger instantaneously another discrete event
causing an event cascade [4].

t(n) (the simulation time) is unchanged during discrete phases.

The initial values for y(0), lx (0) and s(0) are given by an initialization function
init. Finally, solve(f)(g) may decide to reset its internal state if the continuous
state changes. If init solve(lx (n), s(n)) initializes the solver state, we have:

reinit = (lx (n+ 1) �= lx (n))

s(n+ 1) = if reinit then init solve(lx (n+ 1), s(n)) else s(n)

Taken together, the definitions from both modes give a synchronous interpre-
tation of the simulation loop as a stream function that computes the sequences
lx , y and t at instant n + 1 according to their values at instant n and an in-
ternal state. Writing solve(f)(g) abstracts from the actual choice of integration
method and zero-crossing detection algorithm. A more detailed description of
solve(f)(g) would be possible (for example, an automaton with two states: one
that integrates, and one that detects zero-crossings) but with no influence on the
code generation problem which must be independent of such simulation details.

Given a program written in a high-level language, we must produce the func-
tions init , f , g, and next . In practice, they are implemented in an imperative
language like C. Code generation for hybrid models has much in common with
code generation for synchronous languages. In fact, the following sections show
how to extend an existing synchronous language and compiler with ODEs.

3 Compiler Architecture

The compiler architecture for hybrid programs is based on those of existing
compilers for data-flow synchronous languages like Scade 6 or Lucid Synchrone,
as described for instance in [6]. After initial checks, it consists in successive
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Fig. 2. Compiler architecture (modified passes are gray; new ones are also dashed)

rewritings of the source program into intermediate languages, and ending with
sequential code in the target language (typically C). The different passes are
shown in Figure 2:

1. Parsing transforms code in the source language, described in Section 4, into
an abstract syntax tree;

2. Typing checks programs according to the system of [3]. In the language ex-
tended with ODEs, this system distinguishes continuous and discrete blocks
to ensure the correct separation of continuous and discrete behaviors;

3. Causality analysis verifies the absence of causality loops [1]. It is readily
extended to deal with the new constructs;

4. Control structures are encoded into the purely data-flow kernel with clocks
defined in Section 5, using an extension of the clock-based compilation of [6].
A small modification accounts for the fact that transitions are executed in a
discrete context whereas the bodies of states are continuous;

5. Traditional optimizations (dead-code removal, common sub-expression elim-
ination, etc.) are performed;

6. Scheduling orders equations according to data dependencies, as explained in
Section 5.2;

7. Code is translated into an intermediate sequential object language called
SOL, defined in Section 6 together with the translation. This language ex-
tends the one presented in [6] to deal with the new constructs (continuous
states, zero-crossings) which translation to sequential code must be added;

8. Slicing specializes the sequential function generated for each node into func-
tions f , g, and next , as described in Section 6.2;

9. Dead-code removal eliminates useless code from functions. For instance,
derivatives need not be computed by the next function and values of zero-
crossings are surely false during integration;

10. The sequential code is translated to C code.

The compiler passes in gray in Figure 2 are those that must be modified in,
or added to (dashed borders), a traditional synchronous language compiler. The
modifications are relatively minor—around 10% of each pass—and do not require
major changes to the existing architecture. Together with the new passes, they
amount to 5% of the total code size of the compiler.
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d ::= let x= e | let k f(pi) = pi where E | d; d
e ::= x | v | op(e, . . . , e) | pre(e) | e -> e | last x | f(e, . . . , e) | (e, . . . , e) | up(e)
p ::= x | (x, . . . , x)
pi ::= xi | xi, . . . , xi
xi ::= x | x last e | x default e

E ::= p = e | derx = e | if e thenE elseE | present e then E else E
| reset E every e | local pi in E | do E and . . . E done

k ::= D | C | A

Fig. 3. A synchronous kernel with ODEs

4 A Synchronous Language Kernel with ODEs

We consider a synchronous language extended with control structures and ODEs.
The synchronous sub-language, that is, with ODEs removed, is the subset of
Scade 6 [13] described in [10]. Compared to Zélus [7], the language considered
here does not include hierarchical automata, but they can be translated into the
presented kernel [2]. The abstract syntax given in Figure 3 is distilled from the
two concrete languages on which this material is based.

A program is a sequence of definitions (d), of either a value (letx= e) that
binds the value of expression e to x, or a function (let k f(pi) = pi where E). In
a function definition, k is the kind of the function f , pi denotes formal parame-
ters, and the result is the value of an expression e which may contain variables
defined in the auxiliary equations E. There are three kinds: k = A (omitted in
the concrete syntax) signifies a combinational function like, for example, addi-
tion; k = D (written node in the concrete syntax) signifies a function that must
be activated at discrete instants (typically a Lustre or Scade node); k = C

(written hybrid in the concrete syntax) signifies a function that may contain
ODEs and which must be activated in continuous-time. An expression e is ei-
ther a variable (x), an immediate value (v), for example, a boolean, integer or
floating point constant, the point-wise application of an imported function (op)
like +, ∗, or not(·), an uninitialized delay (pre(e)), an initialization (e1 -> e2),
the previous value of a state variable (lastx), a function application (f(e)), a
tuple (e, . . . , e) or a rising zero-crossing detection (up(e)). A pattern p is a list
of identifiers. pi is a list of parameters where a variable x can be assigned a
default value e (x default e) or declared as a state initialized with e (x last e).
An equation (E) is either an equality between a pattern and an expression
which must hold at every instant (p = e); the definition of the current deriva-
tive of x (derx = e); a conditional that activates a branch according to the
value of a boolean expression (if e thenE1 elseE2), or a variant that oper-
ates on event expressions (present e then E1 else E2); a reset on a condition e
(reset E every e); a localization of variables (local xi in E); or a synchronous
composition of zero or more equations (do E and . . . E done).
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In this language kernel, a synchronous function taking input streams tick
and res, and returning the number of instants when tick is true, reset every
time res is true, is written: ♣5

let node counting(tick, res) = o where

reset

local c last 0 in

do if tick then do c = last c + 1 done and o = c done

every res

The if/then abbreviates a conditional with an empty else branch. c is declared
to be a local variable initialized to 0 (the notation is borrowed from Scade 6).
Several streams are defined in counting such that ∀n ≥ 0, o(n) = c(n) with:

1. (lastc)(0) = 0 and ∀n > 0, lastc(n) = if res(n) then 0 else c(n− 1)
2. c(n) = if tick(n) then lastc(n) + 1 else last c(n)

The node keyword (k = D) in the definition signals that this program is purely
synchronous. As a first program in the extended language we write the classic
‘bouncing ball’ program with a hybrid (k = C) declaration: ♣
let hybrid bouncing(y0, y’0) = (y last y0) where

local y’ last y’0 in

do der y = y’

and present up(-. last y) then do y’ = -0.8 *. last y’ done

else do der y’ = -. g done

where g is a global constant for gravity. Given initial position y0 and speed y’0,
this program returns the current position y. The derivative of y’ is −g and y’ is
reset to −0.8 · last y′ when last y′, the left-limit of the signal y, becomes zero.

In the following, we suppose that programs have passed the static checking
defined in [3] and that they are causally correct [1].

5 A Clocked Data-Flow Internal Language

We now introduce the internal clocked data-flow language into which the input
language is translated. Its syntax is defined in Figure 4. Compared to the pre-
vious language, the body of a function is now a set of equations of the form
(xi = ai)xi∈I where the xi are pairwise distinct variables and each ai is an
expression e annotated with a clock ck : e is only evaluated when the boolean
formula ck evaluates to true. The base clock is denoted base; it is the constant
true. ck on a is true when both ck and a are true. An expression eck with clock
ck = (base on a1 · · · ) on an is evaluated only when for all 1 ≤ i ≤ n, ai is true.
An expression e is either a variable (x), an immediate value (v), the application
of an operator (op(a, . . . , a)), the i-th element of a tuple a (get(a, i)), a delay
initialized with a constant (v fby a), an uninitialized delay (pre(a)), an integra-
tor whose derivative is a1 and whose output is a2 (integr(a1, a2)), a function

5 The ♣’s link to http://zelus.di.ens.fr/cc2015/, which contains both examples
in Zélus and Scade hybrid, and the C code generated by the latter’s compiler.

http://zelus.di.ens.fr/cc2015/index.html#counting
http://zelus.di.ens.fr/cc2015/index.html#bouncing
http://zelus.di.ens.fr/cc2015/
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d ::= letx= c | let k f(p) = a where C | d; d
a ::= eck

e ::= x | v | op(a, . . . , a) | get(a, i) | v fby a | pre(a) | integr(a, a)
| f(a, . . . , a) every a | (a, . . . , a) | up(a) | merge(a, a, a) | a when a

p ::= x | (x, . . . , x)
C ::= (xi = ai)xi∈I

ck ::= base | ck on a

k ::= D | C | A
Fig. 4. A clocked data-flow internal language

application reset when a signal a is true (f(a1, . . . , an) everya), an n-tuple of
values (a1, . . . , an), the zero-crossing detection operator (up(a)), the combina-
tion of signals a1 and a2 according to the boolean signal a (merge(a, a1, a2)), or
a signal a1 sampled on condition a2 (a1 when a2),

This clocked internal representation is a Single Static Assignment (SSA) rep-
resentation [11]. Every variable x has a single definition and the clock expression
defines when it is computed.

The main novelty with respect to the clocked internal language of [6] is the
introduction of operators integr(a1, a2) and up(a).

5.1 Translation

The translation from a synchronous data-flow language with the control struc-
tures if/then/else, present/else and reset/every into clocked data-flow
equations is defined in [10]. The Scade Suite KCG code generator follows the
same algorithm. We illustrate the translation on three kinds of examples.

Translation of Delays and Conditionals. In the example below, z is an input, x1

and x2 are local variables, and the last value of x1 is initialized with 42:

local x1 last 42, x2 in

if z then do x1 = 1 + lastx1 and x2 = 1 + (0 fby (x2 + 2)) done

else do x2 = 0 done

The translation of the above program returns the following set of clocked equa-
tions. To simplify the notation, we only expose the clocks of top-level expressions.

x1 = merge(z, 1 + (m1 when z),m1 when not(z))
base

m1 = (42 fby x1)
base

x2 = merge(z, 1 +m2, 0)
base

m2 = (0 fby ((x2 when z) + 2))
base on z
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In this translation, the conditional branch for when z is false is implicitly com-
pleted with the equation x1 = lastx1, that is, x1 is maintained. The value of
lastx1 is stored in m1. It is the previous value of x1 on the clock where x1 is
defined: here, the base clock. The initialized delay 0 fby x2 is local to a branch,
and thus equal to the last value that was observed on x2. This observation is
made only when z is true, that is, when clock base on z is true.

Translation of Nested Resets. The second example illustrates the translation of
the reset construct and its effect on unit delays.

reset

if c then do x1 = 1 else x1 = (0 fby x1) + 1 done

reset

x2 = (1 fby x2) + 1
every k2

every k1

The condition of a reset is propagated recursively to every stateful computation
within the reset. This is the case for unit delays and applications of stateful
functions. The above program is first translated into:

x1 = merge(c, 1,m1 + 1)
base

x2 = (m2 + 1)
base

m1 = (0 fby x1)
base on not(c) every k1

base

m2 = (1 fby x2)
base

every k1
base or k2

base

The notation (0 fby x1)
base on not(c)

every k1
base defines the sequence m1 whose

value is reset to 0 every time k1 is true. Resets of unit delays are translated into
regular clocked equations. We replace the equations for m1 and m2 with:

m1 = merge(k1, 0, r1 when not(k1))
base

r1 = (0 fby merge(c,m1 when c, x1 when not(c)))base

m2 = merge(k1, 1, merge(k2, 1, r2) when not(k1))
base

r2 = (1 fby x2)
base

Translation of Integrators. The bouncing ball program from Section 4 becomes:

y = (y0 -> ly)
base

ly = integr(y′, y)base

ly′ = integr(t1, y
′)base

y′ = merge(z,−0.8∗.ly ′ when z, ly ′ when not(z))
base

t1 = merge(z, 0.0,−.g)base

z = up(−. ly)
base
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The variable y′ changes only when z is true and keeps its last value ly ′ otherwise.
The operation integr(a1, a2) defines a signal as the integration of a1 in the
continuous mode (C) and as a2 in the discrete mode (D). The derivative of ly ′

is −.g when z is false and otherwise it is 0.0 (constant ly ′).

5.2 Static Data-Flow Dependencies and Well Formed Schedules

Code is generated in two steps: (a) equations are first statically scheduled accord-
ing to data-flow dependencies, (b) every equation is translated into an imperative
statement in a target sequential language. Data-flow dependencies are defined
as in Lustre [14]: an expression a which reads a variable x, must be scheduled
after x. The dependency relation is reversed when x is defined by a delay like,
for example, x = v fby a1. In this case a must be scheduled before x. In other
words, delays break dependency relations. The integrator x = integr(a1, a2)
plays the role of a delay: x does not depend instantaneously on variables in a1
or in a2, and any read of x must be performed before x is defined.

Equations are normalized so that unit delays, integrators, function calls, and
zero-crossings appear only at the roots of defining expressions. We partition
expressions into three classes: strict (se), delayed (de) and controlled (ce). An
expression is strict if its output depends instantaneously on its inputs, otherwise
it is delayed. A controlled expression ce is strict.

eq ::= x = ceck | x = f(sa, . . . , sa) every sa
ck | x = deck

sa ::= seck

ca ::= ceck

se ::= x | v | op(sa, . . . , sa) | get(sa, i) | (sa, . . . , sa) | sa when sa
ce ::= se | merge(sa, ca, ca) | ca when sa
de ::= pre(ca) | v fby ca | integr(ca, ca) | up(ca)

A controlled expression is essentially a tree of merge(·, ·, ·) expressions termi-
nated by the application of a primitive, a variable, or a constant. Merges are
implemented as nested conditionals.

Let Read(a) denote the set of variables read by a. Given a set of normalized
equations C = (xi = ai)xi∈I , a valid schedule Schedule(·) : I → {1 . . . |I|} is a
one-to-one function such that, for all xi ∈ I and xj ∈ Read(ai) ∩ I:

1. if ai is strict, Schedule(xj) < Schedule(xi), and,
2. if ai is delayed, Schedule(xi) ≤ Schedule(xj).

Checking that a given sequence of equations fulfills the well formation rules
can be done in polynomial time. Schedules can be obtained by topological sorting
but the resulting code is poor. Finding a schedule that minimizes the number of
openings and closings of control structures is NP-hard [22]. In the following, if
C = (xi = ai)xi∈I , we suppose the existence of a scheduling function SchedEq(C)
that returns a sequence of scheduled equations.

We are now ready to define the sequential target language.
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md ::= letx= c | let f = class〈M, I, (method i(pi) = ei where Si)i∈[1..n]〉 | md ;md

M ::= [x : m[= v]; . . . ;x : m[= v]]

I ::= [o : f ; . . . ; o : f ]

m ::= Discrete | Zero | Cont
e ::= v | lv | get(e, i) | op(e, . . . , e) | o.method (e, . . . , e) | (e, . . . , e)
S ::= () | lv ← e | S ; S | var x, . . . , x in S | if c thenS elseS

R,L ::= S; . . . ;S

lv ::= x | lv .field | state (x)

Fig. 5. A simple object-based language

6 A Sequential Object Language

We define a simple object-based language called SOL to serve as an intermediate
language in the translation. It is designed to be easily translatable into target
languages like C and Java and resembles the language introduced in [6] and
used in KCG. Each stateful function in the source language is translated into a
class with an internal memory that a collection of methods act on. The syntax
is given in Figure 5.

A program is a sequence of constant and class definitions (md). Class def-
initions take the form class〈M, I, (method i(pi) = ei where Si)i∈[1..n]〉 and
comprise a list M of memories, a list I of instances and a list of methods. A
memory entry [x : m[= v]] defines a variable x of kind m, optionally initialized
to a constant v. A memory x is either a discrete state variable (Discrete), a zero-
crossing (Zero), or a continuous state variable (Cont). An instance entry [o : f ]
stores the internal memory of a nested function f . The memories, instances, and
methods in a class must be pair-wise distinct.

An expression (e) is either an immediate value (v), an access to the value of
a variable (lv), an access to a tuple (get(e, i)), an application of an operation to
an argument (op(e, . . . , e)), a method invocation (o.method(e, . . . , e)), or a tuple
((e1, . . . , en)). An instruction (S) is either void (()), an assignment of the value
of e to a left value lv (lv ← e), a sequence (S1 ; S2), the declaration of local
variables (var x1, . . . , xn in S), or a conditional (if e thenS1 elseS2).

To make an analogy with object-oriented programming, memories are in-
stance variables of a class. The value of a variable x of kind Discrete is read
from state (x) and is modified by writing state (x) ← c. Variables x of kind
Zero are used to compile up(e) expressions. Each x has two fields: state (x).zin
is a boolean set to true only when a zero-crossing on x has been detected, and
state (x).zout stores the current value of the expression for monitoring during in-
tegration. A variable x of kind Cont is a continuous state variable: state (x).der
is its instantaneous derivative and state (x).pos its value.

We do not present the translation from SOL to C code (see [6] for details).
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6.1 Producing a Single Step Function

We now describe the translation of the clocked internal language into SOL code.
Every function definition is translated into a class with two methods: a method
reset which initializes the internal memory and a method step which, given
an internal memory and current input value, returns an output and updates
the internal memory. The translation follows the description given in [6] and
implemented in KCG. Here we describe the novelties related to ODEs and zero-
crossings. Given an environment ρ, an expression e, and an equation E:

– TrExp(ρ)(e) returns an expression of the target language.
– TrIn(ρ)(lv)(a) translates a and returns an assignment S that stores the

result of a into the left value lv.
– TrEq(ρ)(eq) = 〈I, R, L〉 translates an equation eq and returns a set of in-

stances I, a sequence of instructions R to be executed at initialization, and
a sequence of instructions L to be executed at every step.

– TrEq(ρ)(eq1 · · · eqn) = 〈I, R, L〉 translates sequences of equations eq1 · · · eqn.
An environment ρ associates a name and a kind to every local name in the source
program. A name is either a variable (kind Var) or a memory (kind Mem(m)).
We distinguish three kinds of memories: discrete (Discrete), zero-crossing (Zero),
and continuous (Cont). Memories can optionally be initialized.

ρ ::= [ ] | ρ, x : s s ::= Var | Mem(m) | Mem(m) = v

The main function translates global definitions of values and functions into global
values and classes. It uses auxiliary functions whose definitions follow.6

TrDef (let k f(p) = a where C) =
let ρ = Env(C) in let M, (x1, . . . , xn) = mem(ρ) in

let [eq1 · · · eqn] = SchedEq(C) in

let (〈Ii, Ri, Li〉 = TrEq(ρ)(eqi))i∈[1..n] in

let e = TrExp(ρ)(a) in

let I = I1 + · · ·+ In and R = R1; . . . ;Rn and L = L1; . . . ;Ln in

let f = class〈M, I, reset = R step(p) = e where var x1, . . . , xn in L〉
TrDef (letx= e) = letx=TrExp([ ])(e)

First of all, equations in C must conform to the well formation rules defined
in Section 5.2. Env(C) builds the environment associated to C and ρ(xi) defines
the kind associated to a defined variable from C:

Env({x1 = a1, . . . , xn = an}) = Env (x1 = a1) + · · ·Env(xn = an)

Env(x = pre(a)
ck
) = [x : Mem(Discrete)]

Env(x = up(e)ck) = [x : Mem(Zero)]

Env(x = integr(a1, a2)
ck
) = [x : Mem(Cont)]

Env(x = a) = [x : Var ] otherwise

6 The let used in defining the translation function is not the syntactic let of programs.
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TrExp(ρ)(v) = v

TrExp(ρ)(x) = state(ρ)(x)

TrExp(ρ)(get(a, i)) = get(TrExp(ρ)(a), i)

TrExp(ρ)(op(a1, . . . , an)) = let (ci = TrExp(ρ)(ai))i∈[1..n] in op(c1, . . . , cn)

TrExp(ρ)((a1, . . . , an)) = let (ci = TrExp(ρ)(ai))i∈[1..n] in (c1, . . . , cn)

TrExp(ρ)(a1 when a2) = TrExp(ρ)(a1)

TrIn(ρ)(lv)(a1 when a2) = TrIn(ρ)(lv)(a1)

TrIn(ρ)(lv)(merge(a1, a2, a3)) = ifTrExp(ρ)(a1) thenTrIn(ρ)(lv)(a2)
elseTrIn(ρ)(lv)(a3)

TrIn(ρ)(lv)(a) = lv ← TrExp(ρ)(a) otherwise

Fig. 6. The translation function for combinatorial expressions

mem(ρ) returns a pair M, (x1, . . . , xn) where M is an environment of memories
(kind Mem(m)), and (x1, . . . , xn) is a set of variables (kind Var).

The set of equations C is statically scheduled with an auxiliary function
SchedEq(C). Every equation is translated into a triple 〈Ii, Ri, Li〉. The set of
instances I1, . . . , In are gathered, checking that defined names appear only once.
Finally, the code associated to f is a class with a set of memories M , a set of
instances I and two methods: reset is the initialization method used to reset all
internal states, and step is the step function parameterized by p.

Given a clock expression ck and an instruction S, Control(ck )(S) returns an
instruction that executes S only when ck is true. We write if e then S as a
shortcut for if e thenS else ().

Control (base)(S) = S

Control(ck on e)(S) = Control (ck)(if e then S)

The translation function for expressions is defined in Figure 6 and raises no
difficulties. It uses the auxiliary function state(ρ)(x):

state(ρ)(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

state (x) if ρ(x) = Mem(Discrete)

state (x).zin if ρ(x) = Mem(Zero)

state (x).pos if ρ(x) = Mem(Cont)

x otherwise

Access to a discrete state variable is written state (x). The current value of a
zero-crossing event (kind = Zero) is stored into state (x).zin while the current
value of a continuous state variable (kind = Cont) is stored into state (x).pos .

The translation function for equations is given in Figure 7:
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TrEq(ρ)(x = (f(a) every eck
′
)
ck
) = let (ei = TrExp(ρ)(ai))i∈[1..n] in

let e = TrExp(ρ)(eck
′
) in

let L = Control(ck ′)(if e then o.reset);
Control(ck)(x ← o.step(e1, . . . , en))

in 〈[o : f ], o.reset , L〉

TrEq(ρ)(x = pre(a)ck) = let S = TrIn(ρ)(state (x))(a) in

〈[ ], [ ],Control(ck)(S)〉

TrEq(ρ)(x = v fby ack ) = let S = TrIn(ρ)(state (x))(a) in

〈[ ], state (x) ← v,Control (ck)(S)〉

TrEq(ρ)(x = integr(a1, a2)
ck ) = let S1 = TrIn(ρ)(state (x).der)(a1) in

let S2 = TrIn(ρ)(state (x).pos)(a2) in

〈[ ], [ ],Control (ck)(S1;S2)〉

TrEq(ρ)(x = up(a)ck ) = Control(ck)(TrIn(ρ)(state (x).zout)(a))

TrEq(ρ)(x = eck ) = Control(ck)(TrIn(ρ)(state(ρ)(x))(a)) otherwise

Fig. 7. The translation function for equations

1. The translation of a function application (f(a1, . . . , an) every e
ck′

)
ck

defines
a fresh instance [o : f ]. This instance is reset by calling method o.reset every
time ck′ on e is true. It is activated by calling method o.step when ck is true.

2. A unit delay pre(a) or v fby a is translated into a clocked assignment to a
state variable.

3. An integrator is translated into two assignments: one defining the current
derivative state (x).der , and the other defining the current value of the
continuous state state (x).pos .

4. A zero-crossing is translated into an equation that defines the current value
of the signal to observe (state (x).zout).

6.2 Slicing

The translation to SOL generates a step method for each function declaration.
Functions declared to be discrete-time (k = D) are regular synchronous func-
tions and they require no additional treatment. But functions declared to be
continuous-time (k = C) require specializing the method step to obtain the three
functions f , g and next introduced in Section 2:

– The next function is obtained by copying the body of step and removing
the computation of derivatives, that is, writes to the state (x).der field of
memories of kind Cont , and the computation of zero-crossings, that is, writes
to the state (z).zout field of memories of kind Zero.
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– A method called cont is added to compute the values of derivatives and
zero-crossing signals. Functions f and g call this method and then return,
respectively, the computed derivatives and the computed zero-crossings. The
cont method is obtained by removing all code activated on a discrete clock,
that is, by replacing all reads of the state (z).zin fields of memories of kind
Zero with false . Indeed, we know that the status z of zero-crossings is always
false in the continuous mode C. Writes to the state (x).pos field of mem-
ories of kind Cont can also be removed. Finally, all conditions on an event
(variables of type zero) are replaced with the value false .

The goal of this transformation is to optimize the generated code and to avoid
useless computation. The behavior of the generated code is not changed—the
code removed, for a given mode, is either never activated or computes values
that are never read. Traditional optimizations like constant propagation and
dead-code removal can be applied after slicing to further simplify each method.

6.3 Transferring Data to and from a Solver

The transformations described above scatter the values of continuous states and
zero-crossings across the memories of the objects that comprise a program. Nu-
merical solvers must able to read and write these memories in order to perform
simulations. A simple solution is to augment each object with new methods that
copy values to and from the memory fields and arrays provided by a solver. When
generating C code, another approach is to define a global array of pointers to
the continuous states that can be used to read and write directly to memory
fields. Zélus implements the first solution; KCG implements the second.

7 Practical Experiments

7.1 Zélus with SUNDIALS

Zélus is, at its core, essentially the language defined in Section 4. It is compiled
into the intermediate language defined in Section 6, which is, in turn, translated
directly into OCaml. To produce working simulations, the loop described at a
high-level in Section 2 is implemented in two parts: (a) additional methods in
the intermediate language, and, (b) a small run-time library.

The additional methods derivatives and crossings are specializations of
the generated step function that present the interface expected by the run-
time library. These functions contain assignments that copy between the vectors
passed by a numerical solver and the internal variables described in Section 6.1.

Another additional method implements the looping implied by the transition
labelled ‘encore’ in Figure 1. It makes an initial step that only updates the
internal values of ‘last’ variables, then a discrete step with zero-crossings from
the solver, and then further discrete steps, without solver zero-crossings, until
the calculated horizon exceeds the current simulation time. There is a trade-off
to make between code generated by the compiler and code implemented in the
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run-time library. In this case, looping within the generated code allows us to
exploit several invariants on the values of internal variables.

The run-time library implements the other transitions of Figure 1 and man-
ages numerical solver details. The library declares generic interfaces for ‘state
solvers’ and ‘zero-crossing solvers’. The state solver interface comprises functions
for initialization, reinitialization, advancing the solution by one step, and inter-
polating between the last step and the current step. The zero-crossing solver in-
terface includes almost the same functions, but with different arguments, except
that interpolation between steps is replaced by a function for finding instants
of zero-crossing between two steps. Modules satisfying these two interfaces are
combined by generic code to satisfy the ‘solver’ interface described in Section 2.

7.2 SCADE with FMIs

In a second experiment, we extended the Scade Suite KCG code generator of
SCADE 6 using the ideas presented in earlier sections. This generator produces
a C code instantiation of a ‘Functional Mockup Unit’ (FMU) that respects the
FMI for Model Exchange 1.0 standard [19]. An FMU describes a mix of ODEs
and discrete events. It is simulated, with or without other components, by an
external solver provided by a host. The execution model of FMI [19, Section 2.9]
resembles the scheme described in Section 2 and is readily adapted to give the
behavior described by Figure 1.

The code generated by the compiler is linked to a run-time library which
implements the functions required by the FMI standard. There are generic func-
tions to instantiate and terminate the FMU, to enable logging, to set the sim-
ulation time, and so on. The implementation of the set function for continuous
states (fmiSetContinuousStates), called by the host before an event, copies
the given inputs to the corresponding continuous states lx . The get function
(fmiGetContinuousStates) returns the new value of lx to the solver after an
event. Similar functions exist for inputs, outputs, and zero-crossings (termed
event indicators in FMI). At any instant, the first of these set or get functions
calls the cont method of the root node; subsequent calls used cached values. In
response to a discrete event (fmiEventUpdate), the step method is called once,
and then repeatedly while encore(n+1) is true. For the additional calls, the sta-
tus of z(n) is computed by comparing the current value of zero-crossing signals
with their values after the previous discrete step. The reinit flag, which is set if
a continuous state is reset, corresponds to the stateValuesChanged field of the
fmiEventInfo input structure of fmiEventUpdate.

8 Discussion and Related Works

This work is related to the definition of an operational semantics for block dia-
gram languages that mix discrete and continuous time behaviors [17]. A unified
semantics is given to PtolemyII [21] in which basic operators are characterized
by four atomic step functions that depend on input, internal state, and simu-
lation time and that act on an internal state according to a calling policy [23].
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This semantics is modular in the sense that any composition of operators results
in the same four functions. It generalizes the operational semantics of explicit
hybrid modelers presented in [17] and [12]. The idea that a state transformer
can be represented by a collection of atomic functions is much older and has
been implemented since the late 1990s in Simulink s-functions7. It is also the
basis of the FMI and FMU standards for model exchange and co-simulation. In
our compiler organization, the four functions would correspond to four methods
of a SOL machine. The novelty is not the representation of a state transformer
as a set of methods but rather the production of those methods in a traceable
way that recycles an existing synchronous compiler infrastructure. The result is
not an interpreter, as in [23], but a compiler that produces statically scheduled
sequential code.

The observation that the synchronous model could be leveraged to model
the simulation engine of hybrid systems was made by Lee and Zheng [18]. Our
contribution is the use of a synchronous compiler infrastructure to effectively
build a hybrid modeling language.

The present work deliberately avoids considering the early compiler stages
that perform static typing and causality analysis. These stages are defined in [3,1]
for a similar language kernel. Presented with a program that has not passed static
checking and causality analysis, code generation either fails or generates incor-
rect code. For instance, the equation x = x + 1 cannot be statically scheduled
according to Section 5.2 and code generation thus fails. Activating an equation
x = 0 -> pre x + 1 in a continuous block would produce imperative code that
increments x during integration.

Previous work on Zélus [7] compiled ODEs to purely synchronous code by
adding new inputs and outputs to each continuous node. For each continuous
state, the node takes as input the value computed by the solver and returns
the derivative and the new value of the continuous state. We have chosen here
to delay this translation to the generation of sequential code. This approach is
much easier to integrate into more complex languages like Scade 6 with higher-
order constructs like iterators [20]. It also avoids the cost of copying the added
arguments at every function call.

9 Conclusion

This full-scale experimental validation confirms the interest of building a hybrid
systems modeling language on top of a synchronous language. We were surprised
to discover that the extension of Scade 6 with hybrid features required only 5%
extra lines of code in total. It confirms the versatility of the compiler architecture
of Scade 6, which is based on successive rewritings of the source program into
several intermediate languages.

Moreover, while sequential code generation in hybrid modeling tools is rou-
tinely used for efficient simulation, it is little used or not used at all to produce
target embedded code in critical applications that are submitted to strong safety

7 http://www.mathworks.com/help/pdf_doc/simulink/sfunctions.pdf

http://www.mathworks.com/help/pdf_doc/simulink/sfunctions.pdf
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requirements. This results in a break in the development chain: parts of appli-
cations must be rewritten into either sequential or synchronous programs, and
all properties verified on the source model cannot be trusted and have to be re-
verified on the target code. The precise definition of code generation, built on the
proven compiler infrastructure of a synchronous language avoids the rewriting
of control software and may also increase confidence in simulation results.
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Abstract. Generalized LL (GLL) parsing is an extension of recursive-
descent (RD) parsing that supports all context-free grammars in cubic
time and space. GLL parsers have the direct relationship with the gram-
mar that RD parsers have, and therefore, compared to GLR, are easier
to understand, debug, and extend. This makes GLL parsing attractive
for parsing programming languages.

In this paper we propose a more efficient Graph-Structured Stack
(GSS) for GLL parsing that leads to significant performance improve-
ment. We also discuss a number of optimizations that further improve
the performance of GLL. Finally, for practical scannerless parsing of pro-
gramming languages, we show how common lexical disambiguation filters
can be integrated in GLL parsing.

Our new formulation of GLL parsing is implemented as part of the
Iguana parsing framework. We evaluate the effectiveness of our approach
using a highly-ambiguous grammar and grammars of real programming
languages. Our results, compared to the original GLL, show a speedup
factor of 10 on the highly-ambiguous grammar, and a speedup factor of
1.5, 1.7, and 5.2 on the grammars of Java, C#, and OCaml, respectively.

1 Introduction

Developing efficient parsers for programming languages is a difficult task that
is usually automated by a parser generator. Since Knuth’s seminal paper [1] on
LR parsing, and DeRemer’s work on practical LR parsing (LALR) [2], parsers of
many major programming languages have been constructed using LALR parser
generators such as Yacc [3].

Grammars of most real programming languages, when written in their most
natural form, are often ambiguous and do not fit deterministic classes of context-
free grammars such as LR(k). Therefore, such grammars need to be gradually
transformed to conform to these deterministic classes. Not only is this process
time consuming and error prone, but the resulting derivation trees may also con-
siderably differ from those of the original grammar. In addition, writing a deter-
ministic grammar for a programming language requires the grammar writer to
think more in terms of the parsing technology, rather than the intended gram-
mar. Finally, maintaining a deterministic grammar is problematic. A real-world
example is the grammar of Java. In the first version of the Java Language Spec-
ification [4], the grammar was represented in an LALR(1) form, but this format
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has been abandoned in later versions, most likely due to the difficulties of main-
taining an LALR(1) grammar as the language evolved.

Generalized LR (GLR) [5] is an extension of LR parsing that effectively han-
dles shift/reduce conflicts in separate stacks, merged as a Graph Structured
Stack (GSS) to trim exponentiality. As GLR parsers can deal with any context-
free grammar, there is no restriction on the grammar. Moreover, GLR can behave
linearly on LR grammars, and therefore, it is possible to build practical GLR
parsers for programming languages [6,7].

Although GLR parsers accept any context-free grammar, they have a compli-
cated execution model, inherited from LR parsing. LR parsing is based on the
LR-automata, which is usually large and difficult to understand. As a result, LR
parsers are hard to modify, and it is hard to produce good error messages. Many
major programming languages have switched from LR-based parser generators,
such as Yacc, to hand-written recursive-descent parsers. For example, GNU’s
GCC and Clang, two major C++ front-ends, have switched from LR(k) parser
generators to hand-written recursive-descent parsers1.

Recursive-descent (RD) parsers are a procedural interpretation of a gram-
mar, directly encoded in a programming language. The straightforward execu-
tion model of RD parsers makes them easy to understand and modify. However,
RD parsers do not support left-recursive rules and have worst-case exponen-
tial runtime. Generalized LL (GLL) [8] is a generalization of RD parsing that
can deal with any context-free grammar, including the ones with left recur-
sive rules, in cubic time and space. GLL uses GSS to handle multiple function
call stacks, which also solves the problem of left recursion by allowing cycles
in the GSS. GLL parsers maintain the direct relationship with the grammar
that RD parsers have, and therefore, provide an easy to understand execution
model. Finally, GLL parsers can be written by hand and can be debugged in
a programming language IDE. This makes GLL parsing attractive for parsing
programming languages.

Contributions. We first identify a problem with the GSS in GLL parsing that
leads to inefficient sharing of parsing results, and propose a new GSS that pro-
vides better sharing. We show that the new GSS results in significant perfor-
mance improvement, while preserving the worst-case cubic complexity of GLL
parsing. Second, we discuss a number of other optimizations that further im-
prove the performance of GLL parsing. Third, we demonstrate how common
lexical disambiguation filters, such as follow restrictions and keyword exclusion,
can be implemented in a GLL parser. These filters are essential for scannerless
parsing of real programming languages. The new GSS, the optimizations, and
the lexical disambiguation filters are implemented as part of the Iguana parsing
framework, which is available at https://github.com/cwi-swat/iguana.

Organization of the paper. The rest of this paper is organized as follows. GLL
parsing is introduced in Section 2. The problem with the original GSS in GLL

1 http://clang.llvm.org/features.html#unifiedparser

http://gcc.gnu.org/wiki/New_C_Parser
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parsing is explained in Section 2.3, and the new, more efficient GSS is intro-
duced in Section 3. Section 4 gives a number of optimizations for implementing
faster GLL parsers. Section 5 discusses the implementation of common lexical
disambiguation mechanisms in GLL. Section 6 evaluates the performance of GLL
parsers with the new GSS, compared to the original GSS, using a highly am-
biguous grammar and grammars of real programming languages such as Java,
C# and OCaml. Section 7 discusses related work on generalized parsing and dis-
ambiguation. Finally, Section 8 concludes this paper and discusses future work.

2 GLL Parsing

2.1 Preliminaries

A context-free grammar is composed of a set of nonterminalsN , a set of terminals
T , a set of rules P , and a start symbol S which is a nonterminal. A rule is written
as A ::= α, where A (head) is a nonterminal and α (body) is a string in (T ∪N)∗.
Rules with the same head can be grouped as A ::= α1 |α2 | . . . |αp, where each
αk is called an alternative of A. A derivation step is written as αAβ⇒αγβ,
where A ::= γ is a rule, and α and β are strings in (T ∪N)∗. A derivation is a

possibly empty sequence of derivation steps from α to β and is written as α
∗⇒β.

A derivation is left-most if in each step the left most nonterminal is replaced by
its body. A sentential form is a derivation from the start symbol. A sentence
is a sentential form that only consists of terminal symbols. A sentence is called
ambiguous if it has more than one left-most derivation.

2.2 The GLL Parsing Algorithm

The Generalized LL (GLL) parsing algorithm [8] is a fully general, worst-case
cubic extension of recursive-descent (RD) parsing that supports all context-free
grammars. In GLL parsing, the worst-case cubic runtime and space complex-
ities are achieved by using a Graph-Structured Stack (GSS) and constructing
a binarized Shared Packed Parse Forest (SPPF). GSS allows to efficiently han-
dle multiple function call stacks, while a binarized SPPF solves the problem of
unbounded polynomial complexity of Tomita-style SPPF construction [9]. GLL
solves the problem of left recursion in RD parsing by allowing cycles in the GSS.

GLL parsing can be viewed as a grammar traversal process guided by the
input string. At each point during execution, a GLL parser is at a grammar slot
(grammar position) L, and maintains three variables: cI for the current input
position, cU for the current GSS node, and cN for the the current SPPF node. A
grammar slot is of the form X ::= α · β and corresponds to a grammar position
before or after any symbol in the body of a grammar rule, similar to LR(0)
items. A GSS node corresponds to a function call in an RD parser, and is of the
form (L, i), where L is a grammar slot of the form X ::= αA · β, i.e., after a
nonterminal, and i is the current input position when the node is created. Note
that the grammar slot of a GSS node effectively records the return grammar
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position, needed to continue parsing after returning from a nonterminal. A GSS
edge is of the form (v, w, u), where v and u are the source and target GSS nodes,
respectively, and w is an SPPF node recorded on the edge.

GLL parsers produce a binarized SPPF. In an SPPF, nodes with the same
subtrees are shared, and different derivations of a node are attached via packed
nodes. A binarized SPPF introduces intermediate nodes, which effectively group
the symbols of an alternative in a left-associative manner. An example of a
binarized SPPF, resulting from parsing "abc" using the grammar S ::= aBc |Ac,
A ::= ab, B ::= b is as follows:

a, 0, 1

b, 1, 2

A, 0, 2A ::= aB · c, 0, 2

S, 0, 3

c, 2, 3

B, 1, 2

A binarized SPPF has three types of nodes. Symbol nodes of the form (x, i, j),
where x is a terminal or nonterminal, and i and j are the left and right extents,
respectively, indicating the substring recognized by x. Intermediate nodes of
the form (A ::= α · β, i, j), where |α|, |β| > 0, and i and j are the left and
right extents, respectively. Terminal nodes are leaf nodes, while nonterminal
and intermediate nodes have packed nodes as children. A packed node (shown as
circles in the SPPF above) is of the form (A ::= α · β, k), where k, the pivot, is
the right extent of the left child. A packed node has at most two children, both
non-packed nodes. A packed node represents a derivation, thus, a nonterminal
or intermediate node having more than one packed node is ambiguous.

As mentioned before, a GLL parser holds a pointer to the current SPPF
node, cN , and at the beginning of each alternative, cN is set to the dummy
node, $. As the parser traverses an alternative, it creates terminal nodes by
calls getNodeT(t, i, j), where t is a terminal, and i and j are the left and right
extents, respectively. Nonterminal and intermediate nodes are created by calls
getNodeP(A ::= α · β,w, z), where w and z are the left and right children, re-
spectively. This function first searches for an existing nonterminal node (A, i, j),
if |β| = 0, or intermediate node (A ::= α ·β, i, j), where i and j are the left extent
of w and the right extent of z, respectively. If such a node exists, it is retrieved,
otherwise created. Then, w and z are attached to the node via a packed node,
if such a packed node does not exist.

In GLL parsing, when the parser reaches a non-deterministic point, e.g., a
nonterminal with multiple alternatives, it creates descriptors, which capture the
parsing states corresponding to each choice, and adds them to a set, so that
they can be processed later. A descriptor is of the form (L, u, i, w), where L
is a grammar slot, u is a GSS node, i is an input position, and w is an SPPF
node. A GLL parser maintains two sets of descriptors:R for pending descriptors,
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and U for storing all the descriptors created during the parsing, to eliminate the
duplicate descriptors. A descriptor is added to R, via a call to function add, only
if it does not exist in U . In addition, a set P is maintained to store and reuse the
results of parsing associated with GSS nodes, i.e., the elements of the form (u, z),
where z is an SPPF node. A GLL parser has a main loop that in each iteration,
removes a descriptor from R, sets cU , cI , and cN to the respective values in the
descriptor, and jumps to execute the code associated with the grammar slot of
the descriptor. An example of a GLL parser is given below for the grammar Γ0:
A ::= aAb | aAc | a.

R := ∅;P := ∅;U := ∅

cU := (L0, 0); cI := 0; cN := $

L0 :if(R �= ∅) LA :add(A ::= .aAb, cU , cI , $)

remove(L, u, i, w) from R add(A ::= .aAc, cU , cI , $)

cU := u; cI := i; cN := w; goto L add(A ::= .a, cU , cI , $)

else if (there exists a node (A, 0, n)) goto L0

report success

else report failure

L·aAb :if(I[cI ] = a) L·aAc :if(I[cI ] = a)

cN := getNodeT(a, cI , cI + 1) cN := getNodeT(a, cI , cI + 1)

else goto L0 else goto L0

cI := cI + 1 cI := cI + 1

cU := create(A ::= aA · b, cU , cI , cN ) cU := create(A ::= aA · c, cU , cI , cN )

goto LA goto LA

LaA·b :if(I[cI ] = b) LaA·c :if(I[cI ] = c)

cR := getNodeT(b, cI , cI + 1) cR := getNodeT(c, cI , cI + 1)

else goto L0 else goto L0

cI := cI + 1 cI := cI + 1

cN := getNodeP(A ::= aAb·, cN , cR) cN := getNodeP(A ::= aAc·, cN , cR)

pop(cU , cI , cN ); goto L0 pop(cU , cI , cN ); goto L0

We describe the execution of a GLL parser by explaining the steps of the parser
at different grammar slots. Here, and in the rest of the paper, we do not include
the check for first/follow sets in the discussion. We also assume that the input
string, of length n, is available as an array I. Parsing starts by calling the start
symbol at input position 0. At this moment, cU is initialized by the default
GSS node u0 = (L0, 0), where L0 does not correspond to any actual grammar
position. LetX be a nonterminal defined asX ::= α1 |α2 | . . . |αp. A GLL parser
starts by creating and adding descriptors, each corresponding to the beginning
of an alternative: (X ::= ·αk, cU , cI , $). Then, the parser goes to L0.

Based on the current grammar slot, a GLL parser continues as follows. If the
grammar slot is of the form X ::= α · tβ, the parser is before a terminal. If
I[cI ] �= t, the parser jumps to L0, terminating this execution path, otherwise
a terminal node is created by getNodeT(t, cI , cI + 1). If |α| ≥ 1, the terminal
node is assigned to cR, and an intermediate or nonterminal node is created by
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getNodeP(X ::= αt · β, cN , cR), and assigned to cN . The parser proceeds with
the next grammar slot.

If the grammar slot is of the form X ::= α ·Aβ, i.e., before a nonterminal, the
create function is called with four arguments: the grammar slot X ::= αA · β,
cU , cI , and cN . First, create either retrieves a GSS node (X ::= αA · β, cI) if
such a node exists, or creates one. Let v be (X ::= αA · β, cI). Then, a GSS
edge (v, cN , cU ) is added from v to cU , if such an edge does not exists. If v was
retrieved, the currently available results of parsing A at cI are reused to continue
parsing: for each element (v, z) in P , a descriptor (X ::= αA·β, cU , h, y) is added,
where y is the SPPF node returned by getNodeP(X ::= αA · β, cN , z), and h
is the right extent of z. Finally, the call to create returns v, which is assigned
to cU . Then, the parser jumps to the definition of A and adds a descriptor for
each of its alternatives.

If the grammar slot is of the form A ::= α·, the parser is at the end of an
alternative, and therefore, should return from A to the calling rule and continue
parsing. This corresponds to the return from a function call in an RD parser. The
pop function is called with three arguments: cU , cI , cN . Let (L, j) be the label
of cU . First, the element (cU , cN) is added to set P . Then, for each outgoing
edge (cU , z, v) from cU , a descriptor of the form (L, v, cI , y) is created, where
y is the SPPF node returned by getNodeP(L, z, cN). Parsing terminates and
reports success if all descriptors in R are processed and an SPPF node labeled
(S, 0, n), corresponding to the start symbol and the whole input string, is found,
otherwise reports failure.

2.3 Problems with the Original GSS in GLL Parsing

To illustrate the problems with the original GSS in GLL parsing, we consider the
grammar Γ0 (Section 2.2) and the input string "aac". Parsing this input string
results in the GSS shown in Figure 1(a). The resulting GSS has two separate
GSS nodes for each input position, 1 and 2, and each GSS node corresponds to
an instance of A in one of the two alternatives: aAb or aAc. This implies that,
for example, the following two descriptors, corresponding to the beginning of the
first alternative of A, are created and added to R: (A ::= ·aAb, u1, 1, $), which is
added after creating u1, and (A ::= ·aAb, u2, 1, $), which is added after creating
u2. Although both descriptors correspond to the same grammar position and
the same input position, they are distinct as their parent GSS nodes, u1 and
u2, are different. The same holds for the following descriptors corresponding
to the other alternatives of A: (A ::= ·aAc, u1, 1, $), (A ::= ·aAc, u2, 1, $) and
(A ::= ·a, u1, 1, $), (A ::= ·a, u2, 1, $). This example demonstrates that, although
the results of parsing A only depend on the alternatives of A and the current
input position, GLL creates separate descriptors for each instance of A, leading
to multiple executions of the same parsing actions.

However, the calls corresponding to different instances of A at the same in-
put position are not completely repeated. As can be seen, sharing happens one
level deeper in GSS. For example, processing (A ::= ·aAb, u1, 1, $) or (A ::=
·aAb, u2, 1, $) matches a, increases input position to 2 and moves the grammar
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L0, 0

u1

A ::= aA · b, 1

A ::= aA · c, 1 A ::= aA · c, 2
u3

A ::= aA · b, 2

u2

u4

(a) Original GSS

A, 0 A, 1 A, 2

A ::= aA · b A ::= aA · b

A ::= aA · c A ::= aA · c

(b) New GSS

Fig. 1. Original and new GSS for parsing "aac" using A ::= aAb | aAc | a

pointer before A, leading to the call to the same instance of A at input position
2, which is handled by the same GSS node u4 connected to u1 and u2. This shar-
ing, however, happens per nonterminal instance. For example, if we consider the
input string "aaacc", a can be matched at input position 2, and therefore, the
same result but associated with different instances of A will be stored in set P
as (u3, (A, 2, 3)) and (u4, (A, 2, 3)). Both nodes u3 and u4 will pop with the same
result (A, 2, 3), and given that both u3 and u4 are shared by u1 and u2, de-
scriptors that, again, encode the same parsing actions, but account for different
parent GSS nodes, will be created: (A ::= aA·b, u1, 3, w1), (A ::= aA·b, u2, 3, w1)
and (A ::= aA·c, u1, 3, w2), (A ::= aA·c, u2, 3, w2), where w1 = (A ::= aA·b, 0, 3)
and w2 = (A ::= aA · c, 0, 3).

3 More Efficient GSS for GLL Parsing

In this section, we propose a new GSS that, compared to the original GSS,
provides a more efficient sharing of parsing results in GLL parsing. We use the
fact that all calls corresponding to the same nonterminal and the same input
position should produce the same results, and therefore, can be shared, regardless
of a specific grammar rule in which the nonterminal occurs. The basic idea is
that, instead of recording return grammar positions in GSS nodes, i.e., grammar
slots of the form X ::= αA ·β, names of nonterminals are recorded in GSS nodes,
and return grammar positions are carried on GSS edges. Figure 1(b) illustrates
the new GSS resulting from parsing "aac" using Γ0.

First, we introduce new forms of GSS nodes and edges. Let X ::= α · Aβ be
the current grammar slot, i be the current input position, u be the current GSS
node, and w be the current SPPF node. As in the original GLL, at this point, a
GSS node is either retrieved, if such a node exists, or created. However, in our
setting, such a GSS node is of the form (A, i), i.e., with the label that consists
of the name of a nonterminal, in contrast to X ::= αA · β in the original GSS,
and the current input position. Let v be a GSS node labeled as (A, i). As in the
original GLL, a new GSS edge is created from v to u. However, in our setting,
a GSS edge is of the form (v, L, w, u), where, in addition to w as in the original
GSS, the return grammar position L, i.e., X ::= αA · β, is recorded.

Second, we remove the default GSS node u0 = (L0, 0), which requires a special
label that does not correspond to any grammar position. In our setting, the initial
GSS node is of the form (S, 0) and corresponds to the call to the grammar start
symbol S at input position 0, e.g., (A, 0) in Figure 1(b).
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Finally, we re-define the create and pop functions of the original GLL to
accommodate the changes to GSS. We keep the presentation of these functions
similar to the ones of the original GLL algorithm [8], so that the difference
between the definitions can be easily seen. The new definitions of the create and
pop functions are given below, where L is of the form X ::= αA · β, |α|, |β| ≥ 0,
u and v are GSS nodes, and w, y, z are SPPF nodes.

create(L, u, i, w) {
if (there exists a GSS node labeled (A, i)) {

let v be the GSS node labeled (A, i)

if (there is no GSS edge from v to u labeled L,w) {
add a GSS edge from v to u labeled L,w

for ((v, z) ∈ P) {
let y be the SPPF node returned by getNodeP(L,w, z)

add(L, u, h, y) where h is the right extent of y

}
}

} else {
create a new GSS node labeled (A, i)

let v be the newly-created GSS node

add a GSS edge from v to u labeled L,w

for (each alternative αk of A) { add(A ::= ·αk, v, i, $) }
}
return v

}

pop(u, i, z) {
if ((u, z) is not in P) {

add (u, z) to P
for (all GSS edges (u,L,w, v)) {

let y be the SPPF node returned by getNodeP(L,w, z)

add(L, v, i, y)

}
}

}
The create function takes four arguments: a grammar slot L of the form X ::=
αA · β, a GSS node u, an input position i, and an SPPF node w. If a GSS
node (A, i) exists (if-branch), the alternatives of A are not predicted at i again.
Instead, after a GSS edge (v, L, w, u) is added, if such an edge does not exist,
the currently available results of parsing A at i, stored in P , are reused. For each
result (v, z) in P , an SPPF node y is constructed, and a descriptor (L, u, h, y)
is added to continue parsing with the grammar slot X ::= αA · β and the next
input position h, corresponding to the right extent of y. If a GSS node (A, i) does
not exist (else-branch), such a node is first created, then, an edge (v, L, w, u) is
added, and finally, a descriptor for each alternative of A with the input position
i and parent node v is created and added.

The pop function takes three arguments: a GSS node u, an input position i,
and an SPPF node z. If an entry (u, z) exists in P , the parser returns from the
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function. Otherwise, (u, z) is added to P , and, for each outgoing GSS edge of u,
a descriptor is added to continue parsing with the grammar slot recorded on the
edge, the current input position and the SPPF node constructed from w and z.

As the signatures of the create and pop functions stay the same as in the
original GLL, replacing the original GSS with the new GSS does not require
any modification to the code generated for each grammar slot in a GLL parser.
Also note that the new GSS resembles the memoization of function calls used
in functional programming, as a call to a nonterminal at an input position is
represented only by the name of the nonterminal and the input position.

3.1 Equivalence

As illustrated in Sections 2 and 3, in the original GLL, sharing of parsing results
for nonterminals is done at the level of nonterminal instances. On the other
hand, in GLL with the new GSS, the sharing is done at the level of nonterminals
themselves, which is more efficient as, in general, it results in less descriptors
being created and processed. In Section 6 we present the performance results
showing that significant performance speedup can be expected in practice. In
this section we discuss the difference between GLL parsing with the original
and new GSS for the general case, and show that the two GLL versions are
semantically equivalent.

The use of the new GSS, compared to the original one, prevents descriptors of
the form (L, u1, i, w) and (L, u2, i, w) to be created. These descriptors have the
same grammar slot, the same input position, the same SPPF node, but different
parent GSS nodes. In GLL with the original GSS, such descriptors may be added
to R when, in the course of parsing, calls to different instances of a nonterminal,
say A, at the same input position, say i, are made. Each such call corresponds to
a parsing state where the current grammar slot is of the form X ::= τ ·Aμ (i.e.,
before A), and the current input position is i. To handle these calls, multiple
GSS nodes of the form (X ::= τA · μ, i), where the grammar slot corresponds to
a grammar position after A, are created during parsing. We enumerate all such
grammar slots with Lk, and denote GSS nodes (Lk, i) as uk.

When a GSS node uk is created, descriptors of the form (A ::= ·γ, uk, i, $) are

added. If a1a2 . . . an is the input string and A
∗⇒ ai+1 . . . aj , uk will pop at j,

and processing descriptors of the form (A ::= ·γ, uk, i, $) will lead to creation of
descriptors of the form (A ::= αB · β, uk, l, w), i ≤ l ≤ j, i.e., in an alternative
of A, and of the form (A ::= γ·, uk, j, (A, i, j)), i.e., at the end of an alternative
of A. All these descriptors encode the parsing actions that do not semantically
depend on a specific uk. Indeed, starting from the same grammar position in an
alternative of A, say A ::= α ·β, regardless of a specific uk, the parsing continues
with the next symbol in the alternative and the current input position, and either
produces an (intermediate) SPPF node, which does not depend on uk, moving
to the next symbol in the alternative, or fails. Finally, when descriptors of the
form (A ::= γ·, uk, j, (A, i, j)) are processed, the same SPPF node (A, i, j) will
be recorded in set P for each uk.
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In the original GLL, when uk is being popped, for each (uk, z) in set P , where z
is of the form (A, i, j), and each outgoing edge (uk, w, v), a descriptor (Lk, v, j, y),
where y is the SPPF node returned by getNodeP(Lk, w, z), is added to continue
parsing after A. Let v be a GSS node with index h, then h and j are the left
and right extents of y, respectively. In the following we show how using the new
GSS, descriptors equivalent to (Lk, v, j, y) are created, but at the same time, the
problem of repeating the same parsing actions is avoided.

In GLL with the new GSS, when calls to different instances of a nonterminal,
say A, at the same input position, say i, are made, a GSS node u = (A, i) is
retrieved or created. Similar to the original GLL, when u is created, descriptors
of the form (A ::= ·γ, u, i, $) are added, and if A

∗⇒ ai+1 . . . aj , descriptors of the
form (A ::= αB · β, u, l, w), i ≤ l ≤ j, and of the form (A ::= γ·, u, j, (A, i, j))
will also be added. The essential difference with the original GLL is that the
label of u is A, and therefore, the descriptors corresponding to parsing A at i
are independent of the context in which A is used. Upon the first call to A at
i, regardless of its current context, such descriptors are created, and the results
are reused for any such call in a different context. Finally, when descriptors of
the form (A ::= γ·, u, j, (A, i, j)) are processed, the SPPF node z = (A, i, j) is
recorded as a single element (u, z) in set P .

In GLL parsing with the new GSS, whenever the parser reaches a state with
a grammar slot of the form X ::= τ ·Aμ, and the input position i, there will be
an edge (u, Lk, w, v) added to u, where Lk is of the form X ::= τA · μ. Finally,
for each (u, z) in set P and each edge (u, Lk, w, v), the descriptor (Lk, v, j, y) will
be added, where y is the SPPF node returned by getNodeP(Lk, w, z).

3.2 Complexity

In this section we show that replacing the original GSS with the new GSS does
not affect the worst-case cubic runtime and space complexities of GLL parsing.
To introduce the new GSS into GLL parsing, we changed the forms of GSS
nodes and edges. We also re-defined the create and pop functions to accommo-
date these changes. However, all these modifications had no effect on the SPPF
construction, the getNode functions, and the code of GLL parsers that uses
create and pop to interact with GSS. Specifically, this implies that when the
main loop of a GLL parser executes, and the next descriptor is removed from
R, the execution proceeds in the same way as in the original GLL parsing until
the call to either create or pop is made.

First, we show that the space required for the new GSS is also at most O(n3).
In the new GSS, all GSS nodes have unique labels of the form (A, i), where
0 ≤ i ≤ n. Therefore, the new GSS has at most O(n) nodes. In the new GSS,
all GSS edges have unique labels of the form (u, L,w, v), where L is of the form
X ::= αA · β, the source GSS node u is of the form (A, i), and the target GSS
node v is of the form (X, j). The label of an edge in the new GSS consists of
L and w, where w has j and i as the left and right extents, which are also
the indices of v and u, respectively. Given that 0 ≤ j ≤ i ≤ n, the number of
outgoing edges for any source GSS node u is at most O(n), and the new GSS
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has at most O(n2) edges. Thus the new GSS requires at most O(n) nodes and
at most O(n2) edges.

The worst-case O(n3) runtime complexity of the original GLL follows from
the fact that there are at most O(n2) descriptors, and processing a descriptor
may take at most O(n) time, by calling pop or create. Now, we show that
the worst-case complexity of both create and pop is still O(n), and the total
number of descriptors that can be added to R is still at most O(n2). All elements
in set P are of the form (v, z), where v is of the form (A, i), and z has i and j
as the left and right extents, respectively, where 0 ≤ i ≤ j ≤ n. Therefore, the
number of elements in P , corresponding to the same GSS node, is at most O(n).
Since a GSS node has at most O(n) outgoing edges, P has at most O(n) elements
corresponding to a GSS node, and the new GSS and P can be implemented using
arrays to allow constant time lookup, both create and pop have the worst-case
complexity O(n).

Finally, a descriptor is of the form (L, u, i, w), where w is either $ or has j and
i as the left and right extents, respectively, and j is also the index of u. Thus
the total number of descriptors that can be added to R is at most O(n2).

4 Optimizations for GLL Implementation

The GLL parsing algorithm [8] is described using a set view, e.g., U and P , which
eases the reasoning about the worst-case complexity, but leaves open the chal-
lenges of an efficient implementation. The worst-case O(n3) complexity of GLL
parsing requires constant time lookup, e.g., to check if a descriptor has already
been added. Constant time lookup can be achieved using multi-dimensional ar-
rays of size O(n2), however, such an implementation requires O(n2) initialization
time, which makes it impractical for near-linear parsing of real programming lan-
guages, whose grammars are nearly deterministic.

For near-linear parsing of real programming languages we need data structures
that provide amortized constant time lookup, without excessive overhead for
initialization. One way to achieve this is to use a combination of arrays and
linked lists as described in [10]. In this approach the user needs to specify, based
on the properties of the grammar, which dimensions should be implemented as
arrays or linked lists.

In this section we propose an efficient hash table-based implementation of
GLL parsers. We show how the two most important lookup structures, U and P ,
can be implemented using local hash tables in GSS nodes. The idea is based on
the fact that the elements stored in these data structures have a GSS node as a
property. Instead of having a global hash table, we factor out the GSS node and
use hash tables that are local to a GSS node. In an object-oriented language, we
can model a GSS node as an object that has pointers to its local hash tables.
In the following, we discuss different implementations of U and P . We consider
GLL parsing with new GSS, and assume that n is the length of the input, and
|N | and |L| are the number of nonterminals and grammar slots, respectively.
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Descriptor elimination set (U): set U is used to keep all the descriptors created
during parsing for duplicate elimination. A descriptor is of the form (L, u, i, w),
where L is of the form A ::= α·β, u is of the form (A, j), and w is either a dummy
node, or a symbol node of the form (x, j, i), when α = x, or an intermediate node
of the form (L, j, i). As can be seen, in a descriptor, the input index of the GSS
node is the same as the left extent of the SPPF node, and the input index of the
descriptor is the same as the right extent of the SPPF node. Also note that the
label of the GSS and SPPF node is already encoded in L. Thus we can effectively
consider a descriptor as (L, i, j). We consider three implementations of U :

– Global Array: U can be implemented as an array of size |L| × n × n, which
requires O(n2) initialization time.

– Global hash table: U can be implemented as a single global hash table holding
elements of the form (L, i, j).

– Local hash table in a GSS node: U can be implemented as a local hash table
in a GSS node. This way, we only need to consider a descriptor as (L, i).

Popped elements (P): The set of popped elements, P , is defined as a set of (u,w),
where u is a GSS node of the form (A, i), and w is an SPPF node of the form
(A, i, j). For eliminating duplicates, P can effectively be considered as a set of
(A, i, j). We consider three implementations of P :

– Global Array: P can be implemented as an array of size |N | × n× n, which
requires O(n2) initialization time.

– Global hash table: P can be implemented as a global hash table holding
elements of the form (A, i, j).

– Local hash table in a GSS node: P can be implemented as a local hash table
in a GSS node. This way we can eliminate duplicate SPPF nodes using a
single integer, the right extent of the SPPF node (j).

Hash tables do not have the problem of multi-dimensional arrays, as the initial-
ization cost is constant. However, using a global hash table is problematic for
parsing large input files as the number of elements is in order of millions, leading
to many hash collisions and resizing. For example, for a C# source file of 2000
lines of code, about 1,500,000 descriptors are created and processed.

Using local hash tables in GSS nodes instead of a single global hash table
provides considerable speedup when parsing large inputs with large grammars.
First, by distributing hash tables over GSS nodes, we effectively reduce the num-
ber of properties needed for hash code calculation. Second, local hash tables will
contain fewer entries, resulting in fewer hash collisions and requiring fewer resiz-
ing. In the Iguana parsing framework we use the standard java.util.HashSet

as the implementation of hash tables. Our preliminary results show that, for
example, by using a local hash table for implementing U instead of a global one,
we can expect speedup of factor two. Detailed evaluation of the optimizations
presented in this section, and their effect on memory usage, is future work.
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There are two algorithmic optimizations possible that further improve the
performance of GLL parsers. These optimizations remove certain runtime checks
that can be shown to be redundant based on the following properties:

1) There is at most one call to the create function with the same arguments.
Thus no check for duplicate GSS edges is needed.
The properties of a GSS edge (v, L, w, u) are uniquely identified by the arguments
to create: L, u, i, w, where L is of the form X ::= αA · β, and v = (A, i).
Therefore, if it can be shown that there is at most one call to create with the
same arguments, the check for duplicate GSS edges can be safely removed.

Let us consider a call create(X ::= αA ·β, u, i, w). This call can only happen
if a descriptor of one of the following forms has been processed, where τ is a
possibly empty sequence of terminals and j ≤ i: (1) (X ::= ·αAβ, u, j, $) when
α = τ ; or (2) (X ::= γB · τAβ, u, j, z) when α = γBτ , |γ| ≥ 0. Therefore, for the
call to happen more than once, the same descriptor has to be processed again.
However, this can never happen as all the duplicate descriptors are eliminated.

2) There is at most one call to the getNodeP function with the same arguments.
Thus no check for duplicate packed nodes is needed.
Let us consider a call getNodeP(A ::= α ·β,w, z), where w is either $ or a non-
packed node having i and k as the left and right extents, and z is a non-packed
node having k and j as the left and right extents. This call may create and add a
packed node (A ::= α ·β, k) under the parent node, which is either (A, i, j) when
|β| = 0, or (A ::= α · β, i, j) otherwise. Clearly, the same call to getNodeP will
try to add the same packed node under the existing parent node.

Now suppose that the same call to getNodeP happens for the second time.
Given that a GSS node is ensured to pop with the same result at most once
(set P and pop), the second call can only happen if a descriptor of one of the
following forms has been processed for the second time, where u = (A, i) and
τ is a possibly empty sequence of terminals: (1) (A ::= ·αβ, u, i, $) when either
α = τ or α = τX ; or (2) (A ::= γB · σβ, u, l, y), i ≤ l ≤ k, when α = γBσ,
|γ| ≥ 0, and either σ = τ or σ = τX . This can never happen as all the duplicate
descriptors are eliminated.

Note that the second optimization is only applicable for GLL parsers with
the new GSS. In the original GLL, u can be of the form (X ::= μA · ν, i),
and therefore, multiple descriptors with the same grammar slot, the same input
position, the same SPPF node, but different parent nodes, corresponding to
multiple instances of A, can be added, resulting in multiple calls to getNodeP
with the same arguments.

5 Disambiguation Filters for Scannerless GLL Parsing

Parsing programming languages is often done using a separate scanning phase
before parsing, in which a scanner (lexer) first transforms a stream of characters
to a stream of tokens. Besides performance gain, another important reason for
a separate scanning phase is that deterministic character-level grammars are
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virtually nonexistent. The main drawback of performing scanning before parsing
is that, in some cases, it is not possible to uniquely identify the type of tokens
without the parsing context (grammar rule in which they appear). An example is
nested generic types in Java, e.g., List<List<T>>. Without the parsing context,
the scanner cannot unambiguously detect the type of >> as it can be either a
right-shift operator or two closing angle brackets.

Scannerless parsing [11,12] eliminates the need for a separate scanning phase
by treating the lexical and context-free definitions the same. A scannerless parser
solves the problems of identifying the type of tokens by parsing each character in
its parsing context, and provides the user with a unified formalism for both syn-
tactical and lexical definitions. This facilitates modular grammar development
at the lexical level, which is essential for language extension and embedding [13].

A separate scanning phase usually resolves the character-level ambiguities
in favor of the longest matched token and excludes keywords from identifiers.
In absence of a separate scanner, such ambiguities should be resolved during
parsing. In the rest of this section we show how most common character-level
disambiguation filters [14] can be implemented in a GLL parser.

To illustrate character-level ambiguities, we use the grammar below, which
is adapted from [14]. This grammar defines a Term as either a sequence of two
terms, an identifier, a number, or the keyword "int". Id is defined as one or
more repetition of a single character, and WS defines a possibly empty blank.

Term ::= Term WS Term | Id | Num | "int"

Id ::= Chars

Chars ::= Chars Char | Char

Char ::= 'a' | .. | 'z'
Num ::= '1' | .. |'9'
WS ::= ' ' | ε

This grammar is ambiguous. For example, the input string "hi" can be parsed
as either Term(Id("hi")), or Term(Term(Id("h")),Term(Id("i"))). Follow-
ing the longest match rule, the first derivation is the intended one, as in the sec-
ond one "h" is recognized as an identifier, while it is followed by "i". We can use
a follow restriction ( /−−) to disallow an identifier to be followed by another char-
acter: Id ::= Chars -/- Char. Another ambiguity occurs in the input string
"intx"which can be parsed as either Term(Id("intx")) or Term(Term("int"),
Term(Id("x"))).We can solve this problem by adding a precede restriction ( \−−)
as follows: Id ::= Char -\- Chars, specifying that Id cannot be preceded by
a character. Finally, we should exclude the recognition of "int" as Id. For this,
we use an exclusion rule: Id ::= Chars \"int".

Below we formally define each of these restrictions and show how they can be
integrated in GLL parsing. For follow and precede restrictions we only consider
the case where the restriction is a single character, denoted by c. This can be
trivially extended to other restrictions such as character ranges or arbitrary
regular expressions. We assume that I represents the input string as an array of
characters and i holds the current input position.
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Follow restriction. For a grammar rule A ::= αxβ, a follow restriction for the
symbol x is written as A ::= αx /−− cβ, meaning that derivations of the form

γAσ⇒γαxβσ
∗⇒γαxcτ are disallowed. For implementing follow restrictions, we

consider the grammar position A ::= αx·β. If x is a terminal, the implementation
is straightforward: if i < |I| and I[i] = c, the control flow returns to the main
loop, effectively terminating this parsing path. If x is a nonterminal, we consider
the situation where a GLL parser is about to create a descriptor for A ::= αx ·β.
This happens when pop is executed for a GSS node (x, j) at i. While iterating
over the GSS edges, if a GSS edge labeled A ::= αx · β is reached, the condition
of the follow restriction associated with this grammar position will be checked.
If I[i] = c, no descriptor for this label will be added.

Precede Restriction. For a grammar rule A ::= αxβ, a precede restriction for
the symbol x is written as A ::= αc \−− xβ, meaning that derivations of the

form γAσ⇒γαxβσ
∗⇒τcxβσ are disallowed. The implementation of precede re-

strictions is as follows. When a GLL parser is at the grammar slot A ::= α · xβ,
if i > 0 and I[i − 1] = c, the control flow returns to the main loop, effectively
terminating this parsing path.

Exclusion. For a grammar rule A ::= αXβ, the exclusion of string s from the
nonterminal X is written as A ::= αX\sβ, meaning that the language accepted
by the nonterminal X should not contain the string s, i.e., L(X\s) = L(X) −
{s}, where L defines the language accepted by a nonterminal. Similar to the
implementation of follow restrictions for a nonterminal, when a GSS node (X, j)
is popped at i, and the parser iterates over the outgoing GSS edges, if an edge
A ::= αX · β is found, the condition of the exclusion is checked. If the substring
of the input from j to i matches s, no descriptor for the grammar position
A ::= αX · β is added, which effectively terminates this parsing path.

6 Performance Evaluation

To evaluate the efficiency of the new GSS for GLL parsing, we use a highly
ambiguous grammar and grammars of three real programming languages: Java,
C# and OCaml. We ran the GLL parsers generated from Iguana in two different
modes: new and original, corresponding to the new and original GSS, respec-
tively. Iguana is our Java-based GLL parsing framework that can be configured
to run with the new or original GSS, while keeping all other aspects of the algo-
rithm, such as SPPF creation, the same. The optimizations given in Section 4,
with the exception of removing checks for packed nodes, which is only applicable
to GLL parser with the new GSS, are applied to both modes.

We ran the experiments on a machine with a quad-core Intel Core i7 2.6 GHz
CPU and 16 GB of memory running Mac OS X 10.9.4. We executed the parsers
on a 64-Bit Oracle HotSpotTM JVM version 1.7.0 55 with the -server flag. To
allow for JIT optimizations, the JVM was first warmed up, by executing a large
sample data, and then each test is executed 10 times. The median running time
(CPU user time) is reported.



104 A. Afroozeh and A. Izmaylova

0 100 200 300 400

0
20

00
0

40
00

0

Number of b's

C
P

U
 u

se
r 

ti
m

e 
(m

il
li

se
co

n
d
s) Original GSS

New GSS

Fig. 2. Running the GLL parsers for grammar S ::= SSS |SS | b

Table 1. The result of running highly ambiguous grammar on strings of b’s

size
time (ms) # GSS nodes # GSS edges

new original new original new original

50 6 35 51 251 3877 18 935
100 45 336 101 501 15 252 75 360
150 151 1361 151 751 34 127 169 285
200 386 4080 201 1001 60 502 300 710
250 791 9824 251 1251 94 377 469 635
300 1403 18 457 301 1501 135 752 676 060
350 2367 32 790 351 1751 184 627 919 985
400 3639 50 648 401 2001 241 002 1 201 410

6.1 Highly Ambiguous Grammar

To measure the effect of the new GSS for GLL parsing on highly ambiguous
grammars, we use the grammar S ::= SSS |SS | b. The results of running a
GLL parser with the new and original GSS for this grammar on strings of b’s
is shown in Figure 2. As can be seen, the performance gain is significant. The
median and maximum speedup factors for the highly ambiguous grammar, as
shown in Figure 3, are 10 and 14, respectively. To explain the observed speedup,
we summarize the results of parsing the strings of b’s in Table 1. Note that
the number of nodes and edges for the original GSS are slightly more than the
numbers reported in [8], as we do not include the check for first and follow sets.
As can be seen, GLL with the new GSS has n+1 GSS nodes for inputs of length
n, one for each call to S at input positions 0 to n. For GLL with the original
GSS, there are 5 grammar slots that can be called: S ::= S · SS, S ::= SS · S,
S ::= SSS·, S ::= S · S, and S ::= SS·, which lead to 5n + 1 GSS nodes. In
such a highly ambiguous grammar, most GSS nodes are connected, therefore,
the iteration operations over edges in the create and pop functions will take
much more time, as explained in Section 3.1.



Faster, Practical GLL Parsing 105

●● ●● ●● ●● ●● ●● ●●● ●● ●●●●●● ●●●● ●● ●●● ●●● ● ●●●●●●●●● ● ●● ● ●● ●●● ●●● ●●● ● ●● ●● ● ●● ●●● ●●●●●●●●● ●● ●●●●●● ●●●●

● ●●● ●●● ●● ●● ●● ●●●● ●●●● ●●●● ●●● ●●●● ●● ●●● ●●●●● ● ● ●● ●● ●●●●● ●● ●● ●●●●●●● ● ●● ●● ●●● ●●● ●●● ● ●●● ●●●●●●●● ●● ● ●●

●●●● ●●●●●●

A
m

b
O

C
am

l
C

#
J
av

a

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 3. Comparing the speedup factor of the new and original GSS

6.2 Grammars of Programming Languages

To measure the effect of the new GSS on the grammars of real programming
languages, we have chosen the grammars of three programming languages from
their language reference manual.

Java: We used the grammar of Java 7 from the Java Language Specification [15]
(JLS). The grammar contains 329 nonterminals, 728 rules, and 2410 grammar
slots. We have parsed 7449 Java files from the source code of JDK 1.7.0 60-b19.
As shown in Figure 3, the median and maximum speedup factors for Java are
1.5 and 2.3, respectively.

C#: We used the grammar of C# 5 from the C# Language Specification [16].
The grammar contains 534 nonterminals, 1275 rules, and 4195 grammar slots.
The main challenge in parsing C# files was dealing with C# directives, such as
#if and #region. C# front ends, in contrast to C++, do not have a separate
preprocessing phase for directives. Most C# directives can be ignored as com-
ment, with the exception of the conditional ones, as ignoring them may lead to
parse error. As the purpose of this evaluation was to measure the performance of
GLL parsers on C# files, and not configuration-preserving parsing, we ran the
GNU C preprocessor on the test files to preprocess the conditional directives.
The rest of the directives were treated as comments. We have parsed 2764 C#
files from the build-preview release of the Roslyn Compiler. As shown in Figure 3,
the median and maximum speedup factors for C# are 1.7 and 3, respectively.

OCaml: We used the grammar of OCaml 4.0.1 from the OCaml reference manual
[17]. The grammar of OCaml is different from Java and C# in two aspects.
First, OCaml is an expression-based language, as opposed to Java and C#.
This provides us with a grammar with different characteristics for testing the
effectiveness of the new GSS. Second, the reference grammar of OCaml is highly
ambiguous, having numerous operators with different associativity and priority
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levels. We used a grammar rewriting technique [18] to obtain an unambiguous
grammar. The rewritten grammar contains 685 nonterminals, 5728 rules, and
27294 grammar slots. We have parsed 871 files from the OCaml 4.0.1 source
release. As shown in Figure 3, the median and maximum speedup factors for
OCaml are 5.2 and 13, respectively. The rewriting technique used in [18] to
encode precedence rules leads to more rules. This can be one reason for the
more significant speedup for the OCaml case, compared to Java and C#. The
other possible reason is the nature of OCaml programs that have many nested
expressions, requiring high non-determinism. The case of OCaml shows that the
new GSS is very effective for parsing large, complex grammars, such as OCaml.

7 Related Work

For many years deterministic parsing techniques were the only viable option
for parsing programming languages. As machines became more powerful, and
the need for developing parsers in other areas such as reverse-engineering and
source code analysis increased, generalized parsing techniques were considered
for parsing programming languages. In this section we discuss several related
work on applying generalized parsing to parsing programming languages.

Generalized parsing. Generalized parsing algorithms have the attractive property
that they can behave linearly on deterministic grammars. Therefore, for the
grammars that are nearly deterministic, which is the case for most programming
languages, using generalized parsing is feasible [19]. For example, the ASF+SDF
Meta-Environment [7] uses a variation of GLR parsing for source code analysis
and reverse engineering.

The original GLR parsing algorithm by Tomita [5] fails to terminate for some
grammars with ε rules. Farshi [20] provides a fix for ε rules, but his fix requires
exhaustive GSS search after some reductions. Scott and Johnstone [21] provide
an alternative to Farshi’s fix, called Right Nulled GLR (RNGLR), which is more
elegant and more efficient. GLR parsers have worst-case O(nk+1) complexity,
where k is the length of the longest rule in the grammar [9]. BRNGLR is a
variation of RNGLR that uses binarized SPPFs to enable GLR parsing in cubic
time. Elkhound [6] is a GLR parser, based on Farshi’s version, that switches to
the machinery of an LR parser on deterministic parts of the grammar, leading
to significant performance improvement. Another faster variant of GLR parsing
is presented by Aycock and Horspool [22], which uses a larger LR automata,
trading space for time.

Disambiguation. Disambiguation techniques that are used in different parsing
technologies can be categorized in two groups: implicit or explicit disambigua-
tion. Implicit disambiguation is mostly used in parsing techniques that return
at most one derivation tree. Perhaps the name nondeterminism-reducer is a
more correct term, as these techniques essentially reduce non-determinism dur-
ing parsing, regardless if it leads to ambiguity or not. Yacc [3], PEGs [23] and
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ANTLR [24] are examples of parsing techniques that use implicit disambiguation
rules. For example, in Yacc, shift/reduce conflicts are resolved in favor of shift,
and PEGs and ANTLR use the order of the alternatives. These approaches do
not work in all cases and may lead to surprises for the language engineer.

Explicit disambiguation is usually done using declarative disambiguation rules.
In this approach, the grammar formalism allows the user to explicitly define the
disambiguation rules, which can be applied either during parsing, by pruning
parsing paths that violate the rules, or be applied after the parsing is done,
as a parse forest processing step. Post-parse filtering is only possible when us-
ing a generalized parser that can return all the derivations in form of a parse
forest. Aho et. al show how to modify LR(1) parsing tables to resolve shift/re-
duce conflicts based on the the priority and associativity of operators [25]. In
Scannerless GLR (SGLR) which is used in SDF2 [26], operator precedence and
character-level restrictions such as keyword exclusion are implemented as parse
table modifications, but some other disambiguation filters such as prefer and
avoid as post-parse filters [14]. Economopoulos et al. [27] investigate the imple-
mentation of SDF disambiguation filters in the RNGLR parsing algorithm and
report considerable performance improvement.

8 Conclusions

In this paper we presented an essential optimization to GLL parsing, by propos-
ing a new GSS, which provides a more efficient sharing of parsing results.
We showed that GLL parsers with the new GSS are worst-case cubic in time
and space, and are significantly faster on both highly ambiguous and near-
deterministic grammars. As future work, we plan to measure the effect of the new
GSS and the optimizations presented in Section 4 on memory, and to compare
the performance of our GLL implementation with other parsing techniques.

Acknowledgments. We thank Alex ten Brink who proposed the modification
to the GSS in GLL recognizers. Special thanks to Elizabeth Scott and Adrian
Johnstone for discussions on GLL parsing, and to Jurgen Vinju for his feedback.
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Abstract. In many data processing tasks, declarative query program-
ming offers substantial benefit over manual data analysis: the query pro-
cessors found in declarative systems can use powerful algorithms such as
query planning to choose high-level execution strategies during compi-
lation. However, the principal downside of such languages is that their
primitives must be carefully curated, to allow the query planner to cor-
rectly estimate their overhead. In this paper, we examine this challenge
in one such system, PQL/Java. PQL/Java adds a powerful declarative
query language to Java to enable and automatically parallelise queries
over the Java heap. In the past, the language has not provided any sup-
port for custom user-designed datatypes, as such support requires com-
plex interactions with its query planner and backend.

We examine PQL/Java and its intermediate language in detail and
describe a new system that simplifies PQL/Java extensions. This sys-
tem provides a language that permits users to add new primitives with
arbitrary Java computations, and new rewriting rules for optimisation.
Our system automatically stages compilation and exploits constant in-
formation for dead code elimination and type specialisation. We have
re-written our PQL/Java backend in our extension language, enabling
dynamic and staged compilation.

We demonstrate the effectiveness of our extension language in several
case studies, including the efficient integration of SQL queries, and by
analysing the run-time performance of our rewritten prototype backend.

1 Introduction

Modern CPUs are equipped with increasingly many CPU cores. Consequently,
parallel execution is becoming more and more important as a means for higher
software performance. However, traditional general-purpose mechanisms for par-
allel programming (such as threads and locks) come with complex semantics [17]
and may increase code size substantially, raising the risk of program bugs. Hence,
modern languages are beginning to provide language facilities that simplify com-
mon parallel patterns.
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Our past work, PQL/Java [14], presented one such system, implemented as
a language extension that adds a Parallel Query Language (PQL) on top of
Java. PQL/Java provides easy access to embarrassingly parallel computations
(computations that can be completed in constant time with enough CPU cores)
and fold -like reductions, both constructing and querying Java containers. Unlike
other parallel language extensions such as Java 8 Streams and Parallel LINQ,
PQL/Java automatically decides which part of a query to parallelise, and how.

Consider a simple example: a user wishes to compute the intersection of two
hash sets, s1 and s2, and at the same time eliminate all set elements e that have
some property, such as e.x < 0. In Java 8 streams, such a computation can be
parallelised with a parallel stream and a filter, as follows:

s1.parallelStream()

.filter(e -> s2.contains(e) && e.x >= 0).collect(Collectors.toSet());

This prescribes the following execution: Java will iterate over s1, possibly in
parallel (after partitioning the set), and for each set element (a) check if it is also
contained in s2, and, if so, (b) also check if it satisfies the filtering condition. All
elements that pass are then collected in an output set.

The same intent can be expressed in PQL as the following:

query(Set.contains(e)):
s1.contains(e) && s2.contains(e) && e.x >= 0;

PQL, unlike Java Streams, does not prescribe an execution strategy for the
above. The PQL/Java system may choose to evaluate the above query ex-
actly as in the Java Streams example, or it may choose to test e.x >= 0 before
s2.contains(e) (since the former will typically be much faster and will elimi-
nate some of the latter checks), it may choose to iterate over s2 instead of s1,
and it may even choose to execute the query sequentially if it predicts that the
overhead for parallel execution would be too high.

PQL can thus perform complex strategic optimisations over parallel queries
that are beyond the scope of other parallel language extensions. Partly this is
due to more restricted semantics of operations (e.g., guarantee of no side-effects,
which allows the order of two conditions to be exchanged).

However, even within a more restricted semantic framework, the ability to
optimise comes at a price:

– PQL must be aware of different execution strategies for language constructs.
For our example above, it must be aware both of the iteration strategy and
of the is-contained-check strategy.

– PQL requires a cost model for each execution strategy in order to be able to
choose between different implementation alternatives.

For example, if a user wishes to query a custom matrix datatype, PQL will
not be able to help, as PQL has no built-in knowledge about this type. The user
can at best convert the datatype, but support for custom queries (such as ‘sum
up all matrix elements for all rows at column 2’) or for parallelism would require
changes to the compiler.
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We have therefore designed an extension specification language PQL-ESL that
simplifies the task of extending PQL, to allow programmers to easily add support
for their own datatypes and computations. In addition to providing PQL-ESL for
language extensions, we have re-implemented the PQL/Java backend in PQL-
ESL. This has allowed us to perform additional optimisations, particularly run-
time query optimisation.

Run-time query optimisation applies common ideas from staged execution to
query processing: we re-optimise queries as new information becomes available.
In our earlier example, the dynamic execution system may determine the sizes of
s1 and s2 before deciding which execution strategy to apply. This is critical for
efficient execution: recall that we iterate over one set and check for containment
in the other. Iteration is O(n) over the size of the set, but containment checks are
O(1) for hash sets. Iterating over the smaller set therefore provides substantial
performance benefits.

Our contributions in this paper are as follows:

– We describe PQL-ESL, an extension specification language for our paral-
lel declarative query programming language PQL/Java. PQL-ESL allows
programmers to provide compact, human-readable implementations of exe-
cution strategies, while exploiting static and dynamic information about the
program (static and dynamic types of query parameters).

– We show how PQL-ESL can be used to facilitate run-time query optimisation
in PQL/Java.

– We describe an implementation of PQL mostly in PQL-ESL, and compare
the performance of the PQL/Java system with and without PQL-ESL.

– We provide five case studies to show how PQL-ESL allows users to quickly
extend PQL with new primitives, including an SQL connector.

Section 2 provides background to our PQL/Java system and summarises rele-
vant aspects, with a focus on our intermediate language. Section 3 then describes
our extension specification language, and Section 4 describes how we process and
compile the language. Section 5 evaluates our new backend. Section 6 discusses
related work, and Section 7 concludes.

2 Background

PQL/Java consists of several layers: The query language PQL itself, which we
summarise in Section 2.1, the intermediate language PQIL, basis for our optimi-
sations, which we describe in section 2.2, and the PQL runtime, which supports
all of the above. We expand the description of our pre-existing work from [14]
in this section before discussing our new extension mechanism in Section 3.

2.1 PQL

With parallelism becoming increasingly important, we designed the Parallel
Query Language (PQL) to guarantee that everything written in the language
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can be parallelised effectively. As we learned from the research area of “Descrip-
tive Complexity” [12], the complexity class that most closely corresponds to our
notion of ‘embarrassingly parallel’ problems matches first-order logic over finite
structures. We thus designed PQL on top of first-order logic, with an extension
to support fold -like reductions (which are not embarrassingly parallel, but are
present in most practical parallel frameworks, such as Map-Reduce).

Our goal is to guarantee that any computation expressed in PQL is either
trivial or highly parallelisable. This is certainly the case with our original set of
primitives. While user extensions and convenience support for user data types
may violate this guarantee, our compiler can be set up to issue suitable warnings.

Below is a brief PQL example:

exists int x: s1.contains(x) && x > 0;

Here, x is a logically quantified variable of type int. This query tests whether
there exists any element in set s1 that is greater than zero and returns true or
false accordingly. Analogously, we provide universal queries via forall.

PQL queries may include Java expressions as logical constants, as long as
these expressions do not depend on logically quantified variables. For example:

exists int x: s1.contains(x) && x > arbitraryMethod();

Here, we treat the subexpression arbitraryMethod() as a logical constant—we
execute it precisely once, and supply its constant result to the query. Note that
we do not allow PQL programs to use arbitraryMethod(x), as x is a logically
quantified variable. This is a design decision to ensure that programmers don’t
have to worry about the order of side effects if arbitraryMethod is not pure.

We further provide query, which constructs a container; we have already seen
it used to construct sets, but it can also construct arrays and maps:

query(Map.get(int x) = int y): s1.contains(x) && y==x*x;

constructs a map from all values in s1 to their square values.
reduce signifies a value reduction:

reduce(addInt) int x: s1.contains(x);

sums up all values from set s1. Here, addInt can be a user-defined static binary
method that we require to be associative, and annotated with a neutral element
(0 in this case, to be returned in case s1 is empty). We require the method to be
associative, to permit parallel computation with subsequent merging. Note that
in the above we will reduce all viable x values, meaning that x determines both
the set of possibilities we consider and the bag of values we combine. In some
cases, these are not the same and x may occur more than once; to support this
scenario, we provide the following syntax:

reduce(addInt) int x over int y: x = a[y] * b[y];

which computes a vector dot product over all vector indices y.
Our query constructions may be nested freely. For example,

query(Map.get(int x) = int y):

s1.contains(x) && y = reduce(mulInt) int z: range(0, x, z);
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would compute a map from all values in s1 to their factorial values. Here, range
is a method that constructs a set of values from 0 to x and tests whether z

is contained within; our system has special support for evaluating this method
efficiently (i.e., without generating an intermediate set).

In addition, our query expressions may contain any Java expressions, though
only some of them may contain logical variables. Specifically, logical variables
may occur in any primitive computation or expression (i.e., we model all unary
and binary operators, including instanceof and the ?: ternary operator), as well
as .contains(), get(), and array index accesses on sets, maps, and arrays. We
further simplify syntax so that map and array accesses can use the same notation.

2.2 The PQL Intermediate Language, PQIL

Our focus in this paper is on our system’s backend, which operates on our re-
lational intermediate language, PQIL. Every operator in the language can be
viewed as a predicate, i.e., a virtual (not necessarily physically materialised)
database table. Our system performs computations as a generalised version of
a database join. We use the term ‘join operators’ for the PQIL primitives, and
each operator takes a number of parameter variables. For example, the PQL ex-
pression s1.contains(x) && s2.contains(x) may be represented by the following
PQIL program, consisting of two primitive operators in sequence within a block:

{ Contains(s1, x); Contains(s2, x); }

The above will compute a join over s1 and s2, with Contains(s1, x) iterating
over all possible values for x, and Contains(s2, x) filtering out all values that are
not also in s2. We thus translate logical expressions that would have a boolean

value in Java into queries that search for the exact values that will make the
expression come true.

In the above example, Contains(s1, x) writes x and Contains(s2, x) reads
x. PQIL can make this distinction explicit by marking the variables as ‘?x’
for reading and ‘!x’ for writing, i.e., {Contains(?s1, !x);Contains(?s2, ?x); }.
Variables being in ‘read mode’ or ‘write mode’ thus describes the operational be-
haviour of each join operator: Contains(?s1, !x) must write !x and thus iterates
over ?s1, while Contains(?s2, ?x) only reads its parameters and thus performs
a containment check. For optimisation purposes, we support a further variable
mode, ‘ ’, which stands for ‘ignore’: this can be useful e.g. in the PQL query

query(Set.contains(x)): exists y: a[x] = y;

where y is immaterial and we only care about the index values of array a. Here,
our PQIL representation is ArrayLookup〈int〉(?a, !x, ) which our backend can
exploit to generate efficient code that never dereferences any array elements.

Each PQIL program has a program context that assigns each variable v a type
τ(v) and a value binding val(v). Whenever the value is not a known constant, we
set val(v) = �. For example, when performing a range check range(1, 10, x),
the numbers 1 and 10 will be represented by variables with such a known value.
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Join operators are typed; for example, Range(x : int, y : int, z : int) joins
over three integer variables. PQIL allows mismatching actual parameter types;
our backend generates implicit conversion code, including (un)boxing, as needed.

PQL provides join operators to support all of Java’s unary, binary, and ternary
operators, as well as operators to interface with sets, maps, and arrays, as well
as to support conversions, field accesses, and container accesses. Each operator
is monomorphic, so we use different variants for all viable types. Figure 1 lists
some of our operators.

Field〈τ, f〉(o1, o2) o2 = ((τ )o1).f
Contains(s, v) s.contains(v)
RangeContains〈τ 〉(s, e, v) for τ in int, long: s ≤ v ≤ e
ArrayLookup〈τ 〉(a, k, v) a[k] = v
Type〈τ 〉(v) Checks that v has type τ ; checks bounds for integral types

Fig. 1. List of five of our primitive PQIL predicates (“join operators”). The remaining
operators are analogous.

The semantics of each operator is that it will attempt to produce all viable
bindings for all parameter variables !x that match any given, previously bound
variables ?y and then proceed. We may later backtrack to the same operator, at
which point it may proceed again. If no more bindings are available, the operator
aborts. For example, Contains(?s, !x) on a set with three elements will succeed
three times, then abort. We treat ( ) as write-mode variables with fresh names.

We permit duplicate variable bindings where appropriate, so that PQIL ob-
serves a Bag semantics. Formost primitive operators, such asAdd〈int〉(?x, ?y, !z),
variables can only be bound once (there is only one z for any given x and y such
that integer addition yields z = x + y), but for other operators, especially con-
tainer accesses, multiple bindings are possible (as in Contains).

The alternative Add〈int〉(?x, ?y, ?z) reads and compares z and produces one
binding (succeeds, if z = x+ y) or zero bindings (aborts, otherwise).

In addition to the above primitive operators, PQIL provides a number of con-
trol structures: boolean materialisation (translating successful/failed bindings
into true/false values), disjunctive and conjunctive blocks, and reductions.

We have already used conjunctive blocks in our earlier examples (denoted by
curly braces, { j0, ..., jk }). The semantics of such a block are j0 �� . . . �� jk,
i.e., we join each primitive with its neighbour (again with bag semantics). PQIL
also supports a disjunctive block to model the semantics of the ‘or’ operator.

Finally, we use the reduction operator Reduce to express generalised reduc-
tions, which include map, set, and array construction. For example, we express
the PQL query reduce(Map.get(x) == y) : s1.contains(x) && y == x+1 as:

Reduce[MAP(?x, ?y, !m)] {Contains(?s1, !x);Add〈int〉(?x, 1, !y); }

Here, MAP(?x, ?y, !m) is a reductor that specifies that for each viable binding
produced by the body of the reduction (the block containing Contains and
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Add), the fresh map m obtains a mapping from x to y. Multiple mismatching
bindings for x cause an exception. The reduction provides a singular binding of
variable m. Reductions can construct sets, maps, maps with default values, and
arrays, or fold (reduce) values through a user-supplied method.

2.3 Optimising PQIL

Before compiling PQIL to Java bytecode, we perform high-level optimisations:

– Nested Block Flattening splices conjunctive blocks into their parent conjunc-
tive block, if it exists (analogously with disjunctive blocks).

– Common Sub-Join Elimination combines redundant primitive join operators
within the same conjunctive block, if one is equal to or generalises the other.

– Type Bound Elimination eliminates unnecessary occurrences of Type〈τ〉(x).
– Access Path Selection re-orders join primitives (see below).
– Map Reduction Nesting merges nested reductions that are part of a map/ar-
ray construction into a single reduction [14].

– Read/Write Assignment assigns each variable occurrence a flag to determine
whether the variable is read, written, or ignored (Section 2.2). The accom-
panying must-define flow analysis is an important subroutine in Access Path
Selection, and it enables Common Sub-Join Elimination.

Access path selection (or ‘query planning’) is a standard database optimisa-
tion [15] that we apply to each conjunctive block. This technique searches for
the most efficient strategy for satisfying a sequence of constraints (as expressed
in our join operators). PQL uses a single-phase access path selector that re-
orders individual join operators within a conjunctive block. This optimisation is
mandatory in our compilation process, as it assigns variables’ read/write modes.

Consider the intermediate code in Figure 2 (‘Unoptimised’). The reduction
here contains five primitive join operators, of which Type Bound Elimination can
eliminate one (Type〈Point〉(e)). Access path selection can re-order the remain-
ing four. Our access path selection employs a beam search strategy (retaining
the best partial access paths found so far) to limit the search space.

We model the cost for executing each join operator in four cost attributes :

– size: how many bindings do we expect the operator to generate?
– cost : how much does generating one binding cost?
– selectivity: what fraction of past bindings will our current join not filter out?
– parallel : is this join operator parallelisable?

Not all of this information is available at compile time, and estimate where
necessary. This can lead to sub-optimal decisions (Section 5), highlighting the
need for staged compilation.

We use the parallel flag to discount size, but only if the join operator occurs
in the head of its block, which is where our backend can parallelise the operator.

Each join operator can have different sets of cost attributes depending on its
variables’ access modes. For example, the size of Contains(?s, ?v) is always 1,
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import static edu.umass.pql.Query;
public class C {
public static void main(...) {

int[] a = ...;
Set<Point> r =

query(Set.contains(Point e)):
s1.contains(e) && s2.contains(e)

&& e.x >= 0;...
} }

C.class

C$$PQL0.class

Reduce[SET(e, r)] {
Type〈Point〉(e);
Contains(s1, e);
Contains(s2, e);
Field〈Point, x〉(e, t0);
GE〈int〉(t0, 0); }

Reduce[SET(?e, !r)] {
Contains(?s1, !e);
Field〈Point, x〉(?e, !t0);
GE〈int〉(?t0, 0);
Contains(?s2, ?e); }

Reduce[SET(?e, !r)] {
Contains(?s2, !e);
Field〈Point, x〉(?e, !t0);
GE〈int〉(?t0, 0);
Contains(?s1, ?e); }

javac

Frontend

OptOpt

Unoptimised

Plan 1 Plan 2

Backend

Fig. 2. An example of PQL compilation. Here,GE is the join operator for greater-than-
or-equal. The frontend emits PQIL (Section 2.2), which we then optimise (Section 2.3).
Access path selection identifies multiple query plans (Plan 1, Plan 2) and chooses the
most efficient one. The backend generates Java bytecode either to disk (depicted) or
into memory at runtime (Section 4).

whereas the size of Contains(?s, !v) is exactly the size of the set s. Some com-
binations of access modes are disallowed, if our system lacks an implementation.

Each variable x is marked as ‘write’ (!x) precisely the first time it appears (or
never, if it is a logical constant and val(x) �= �), so our search algorithm can
unambiguously determine access modes and the correct cost from our model.
In our example, the possible solutions cannot start with Field〈Point, x〉(e, t0)
because e is not bound yet. Similarly, we cannot start with GE〈int〉(t0, 0) be-
cause t0 is not bound yet. Our algorithm will only consider Contains(?si, !e)
(for i ∈ {1, 2}) as initial join operation in the block. Filtering by set is slower yet
equally selective to loading and comparing an integer field, so our access path
selector will generate either Plan 1 or Plan 2 here.

3 PQL Extension Specification Language

Reflecting PQL, our intermediate language PQIL is a powerful language with a
large degree of variability in how each of its join operators might be implemented.
This poses a challenge for implementing new join operators or extending existing
ones. We thus opted for an extension specification language, PQL-ESL, which
allows us to compactly (re-)implement old and new operators.

We designed PQL-ESL so that it should be (a) easy to compile to efficient Java
bytecode, (b) simplify the implementation of PQIL and future extensions, and
(c) be compact and expressive. To that end, we based our language syntax and
semantics on Java’s, for expressions, statements, and method definitions, and
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borrowed from Java’s annotation syntax for special attributes. The language
includes a number of changes and adds several features:

– Reference semantics for operator parameters
– Type inference (parameters and locals need not be explicitly typed)
– Access mode specifications and tests
– sections
– Control operators to signal successful variable binding, or binding failure
– PQIL property tests for parameters
– Templates
– Explicit parallelism support
– Cost model attribute computations

Figure 3 summarises the most salient features of our grammar. In the fol-
lowing, we discuss some of the more interesting features from the above list by
looking at examples from our specifications.

3.1 Access Mode Specifications

Consider the following example:

1 @accessModes{rr}

2 lt(val1, val2) {

3 local:
4 if ( @type{int} val1 < val2) proceed;
5 else abort;
6 }

This program describes the implementation of the PQIL operator for ‘less
than’. The first line describes the possible access modes for all parameter vari-
ables, which we here restrict to be read mode (r) for both. We permit listing
multiple access modes, with read, write (w), and wildcard mode ( ) annotations,
plus a meta-wildcard (.) operator for any of r, w, .

Line 2 specifies the operator and its parameters. PQL-ESL infers variable
types automatically in most cases, so users need not specify them here.

3.2 Sections

Line 3 is a section specifier. Each PQL-ESL program can describe up to four
sections: global, which marks one-time initialisation code (which we don’t need
here), local, which marks code that must be executed each time we start evalu-
ating the PQIL operator, iterate, which marks code that we must evaluate every
time we backtrack to this operator due to the failure of a subsequent operator,
and model, which computes cost model attributes (Section 3.7). Section markers
may be conditional: we use this to permit conditionally moving computations
from the local to the global section.

Lines 4 and 5 contain a standard Java conditional. The only noteworthy fea-
ture is the use of @type{int}, which can resolve type ambiguity in overloaded
operators. This is optional (Section 3.5); omitting the specification would permit
our implementation to compare any numeric type.



120 H. Ackermann et al.

opdef ::= 〈generic〉∗ (〈init〉 ‘{’ 〈stmt〉∗ ‘}’)?
init ::= 〈accessm〉 ID ‘(’ (ID (‘,’ ID )∗)? ‘)’
generic ::= ‘@generic’ ‘{’ ID ‘}’ ‘{’ STR (‘,’ STR)∗ ‘}’
accessm ::= ‘@accessModes’ ‘{’ (ACC (‘,’ ACC)∗)? ‘}’
stmt ::= 〈if〉 | 〈section〉 | 〈goto〉 | 〈return〉 | 〈while〉 | 〈do〉 | 〈assign〉 | 〈call〉
return ::= ‘abort’ ‘;’ | ‘proceed’ ‘;’ | ‘proceed’ ‘on’ ID ‘?=’ 〈expr〉 ‘;’
assign ::= 〈typeinfo〉? ID ‘=’ 〈expr〉 ‘;’
typeinfo ::= ‘@type’ ‘{’ TYPE ‘}’

Fig. 3. Partial EBNF grammar for PQL-ESL, eliding more standard language con-
structions (nested expressions, while loops, new object constructions, method calls,
etc.) that are syntactically similar or identical to Java

3.3 Special Control Operators

Finally, lines 4 and 5 also describe what we should do if the comparison succeeds
(proceed) and what we should do if it fails (abort). Here, proceed signals a
successful evaluation of the PQIL operator, proceeding e.g. to the next nested
operator in a conjunctive block or to a reductor that aggregates a successful con-
clusion of a reduction body. abort, meanwhile, signals that the reductor cannot
produce any (or any more) bindings and must backtrack. It then backtracks to
the most closely nested operator that provides an iterate section. All control
flow must end with an explicit abort or proceed; we do not permit leaving the
body of an PQL-ESL program implicitly.

3.4 Property Tests on Parameter Variables

Since each operator may supply multiple access modes, PQL-ESL code provides
a means for testing these access modes, using the operator isMode( (a1, ...,

an), (m1 || ... || mk) ), which evaluates to ‘true’ iff the access modes for
variables a1 to an match one of the access modes mi (1 ≤ i ≤ k).

As an example, consider the following (slightly simplified) fragment from our
original implementation of negation, Neg(a, b):

if (isMode( (b), (r) )) {

tmp = !a;

if (b == tmp) proceed;
else abort;

} else {

b = !a;

proceed; }

This shows the variability when dealing with two access modes (read vs. write)
for the second parameter: if b is in read mode, we must compare to determine
if we should proceed or abort, if it is in write mode, we assign to it. Wildcard
mode would require another isMode check.
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We have found the above to be a very common pattern expression and function
operators so we provide a short form, proceed on v ?= expr, that expands to
the above and also handles wildcard mode. The proceed-on operator simplifies
the above example to proceed on b ?= !a;

We provide a second test on parameters, isConst(x), which evaluates to
‘true’ iff val(x) �= �; we use it to move initialisations related to x from the local
section to the global section to reduce initialisation overhead to constant time.

3.5 Templates

Our earlier definition of lt is not the actual code that we use, as that would
require a substantial amount of repetition both to support PQL’s primitive nu-
meric types and to support similar operations. Instead, PQL-ESL provides a
template programming mechanism that allows us to re-use such specifications,
as in the example below:

@generic{operator}{"<=", "<"}

@generic{type}{"int", "long", "double"}

@accessModes{rr}

lt_lte(val1, val2) {

local:
if ( @type{#type#} val1 #operator# val2)

proceed;
else abort;

}

This program has two template parameters: operator, which can be ‘less-than
or equal’ (<=) or ‘less-than’ (<), and type, which can be int, long, and double.
The PQL-ESL template processor generates all 6 possible pairs of substitutions
for the two parameters. Such instantiation is critical for performance, as each
of the 6 different operations uses different bytecode operations. Note that we
could omit @type{#type#} and the explicit template specification for type, as
type inference will implicitly introduce suitable template parameters as needed.

3.6 Explicit Parallelism

Support for parallel execution is a centralPQL feature, soPQL-ESLprovides a spe-
cial interface for parallel access. Operator specifications call isParallelMode()
to detect whether the operator should run in parallel. In parallel mode, two pre-
defined variables are available: __thread_index (indicating the current operator’s
thread ID) and __threads_nr (indicating the total number of threads in use).

For example, an implementation of ArrayLookup(?a, !i, !v) may explore the
array a in parallel on multiple cores. It reads __thread_index and __threads_nr

and computes the beginning and end of the array indices it should explore; the
perspective of the individual operator is that it will explore only that fraction
of the index space. Each operator implementation provides its own solution for
parallel execution.
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3.7 Cost Attributes

Effective language extensions for PQL must also be able to provide cost models
to our access path selection mechanism; otherwise we may use them ineffectively
(i.e., pick a less efficient access path over a more efficient one). We therefore
provide a special section, model, that only serves to compute cost attributes.
This model section is divided into three subsections: size, cost and selectivity
(cf. Section 2.3). Let’s have a look at the formulas to calculate the cost of an
entire given conjunctive block:

c0 = 0, cn = (cn−1 + costn) · sn−1

s0 = 1, sn = sn−1 ·sizen ·selectivityn

c1 = (c0 + cost1) · s0 =
(0 + 2.5) · 1 = 2.5
s1 = s0 · size1 · selectivity1 =
1 · 1024 · 0.04 = 40.96

c2 = (c1 + cost2) · s1 =
(2.5 + 1) · 40.96 = 143.36
s2 = s1 · size2 · selectivity2 =
40.96 · 1 · 1 = 40.96

c3 = (c2 + cost3) · s2 =
(143.36+1)· 40.96 = 5872.0256
s3 = s2 · size3 · selectivity3 =
40.96 · 1 · 0.5 = 20.48

Contains(?set, !e)
cost1 = 2.5
size1 = size(set) = 1024
selectivity1 = 0.04

Field〈Point, x〉(?e, !t0)
cost2 = 1
size2 = 1
selectivity2 = 1

GE〈int〉(?t0, 0)
cost3 = 1
size3 = 1
selectivity3 = 0.5

.

.

.

In this example we calculated the cost for the earlier example Plan 1 of figure 2.
The cost till operator i is respectively in ci. Assignments to distinguished variables
in these sections (e.g., size), are handed to the access path selector. Note that
the parallel cost attribute need not be specified, as we can infer it from uses of
isParallelMode().

Since this section is part of the specification body, it can take advantage
of access mode, constantness, and parallelism information, as well as dynamic
properties (such as actual container sizes).

4 Translation with PQL-ESL

PQL-ESL allows us to specify what bytecode we should generate for which join
operator. However, the exact bytecode can vary substantially based on (a) access
modes for each parameter x, (b) type information τ(x) and value bindings val(x),
as provided by the program context (where known), and (c) whether we are
generating code for parallel execution or for sequential execution.

We first precompile all PQL-ESL specifications into Java code; this step is
only required to add or change PQIL operators. Precompilation reads PQL-ESL
specifications, performs name and type analysis as well as template expansion,
and generates the PQL-ESL static compiler backend.

At static compile time (invoking our extended javac), we process any PQL
source code as per Figure 2, then feed the resultant PQIL into this PQL-ESL
backend. Static compilation determines all compilation possibilities for each of
our PQIL operators in the given context. For each viable configuration of each
operator, it generates a snippet, consisting of bytecode (via ASM [3]) and meta-
data for linking. The dynamic compiler later chooses between snippets.
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4.1 Static Compilation and Snippets

The static compiler backend takes in a PQIL program (passed down from the
compiler frontend, Figure 2) and compiles it to a dynamic code generator. Since
each PQIL operator may be compiled in one of several alternative ways (de-
pending on access modes, etc.), the static compiler performs various checks to
determine which compilation patterns to apply. We derive these checks directly
from each PQL-ESL specification. Consider compiling Contains(s, v). To pro-
vide a correct translation, we must check for numerous alternatives:

(a) What is the mode of v? Read, write, or wildcard? (b) What is the type
of s? An unknown/user-defined set type that we cannot parallelise, or a known
set type whose internal representation we know how to parallelise? (c) Are we
performing parallel access in write or wildcard mode?

As we discussed in the previous section, PQL-ESL can capture all possibilities
concisely. Consider the following example:

1 local:
2 if (isConst(s))

3 global:

4 if (s instanceof PSet) ...

First, consider line 4. Here, we check whether s is of type PSet or a general
set, where PSet is PQL’s set implementation, specially optimised for parallel
evaluation. Additional parallelisable set types can be supported easily.

The default interpretation of the above instanceof check is that we should per-
form it locally, i.e., every time we enter the operator for the first time (possibly
with a new s). This correctly captures the possibility that s might change fre-
quently. Lines 2 and 3 capture a first optimisation: if we know that s is going
to be constant during the evaluation of the query, we only need to execute this
code once (which we accomplish by moving it into the global section).

Thus, the code explicitly handles the distinction between evaluation at oper-
ator execution vs. evaluation at query execution start time. Our system handles
remaining distinctions automatically: if the dynamic compiler knows whether s
is constant and/or whether its dynamic type will be a subtype of PSet, it will
perform constant folding/dead code elimination, though we precompute this op-
timisation at static compile time. That is, the static compiler compiles the same
operator multiple times under different assumptions, such as known PSet (only
compiling the true branch), known not PSet (only compiling the false branch),
and unknown whether PSet (compiling both branches and a dynamic check).

The result of static compilation is a multitude of different bytecode sequences
that contains all of the variations that are plausible from the static compiler’s
perspective. We further separate this bytecode into the static and local+iterate
sections, as these need to be executed at different times. We accompany the
resultant bytecode sections with a brief relocation table, to resolve back-tracking
jumps to the iterate section start. Each such combination we refer to as a snippet.
Simultaneously, our static compiler generates a composition scaffold for each
operator, which is effectively a nested switch table to pick the optimal snippet.
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4.2 Dynamic Compilation

Of our PQIL optimisations (Section 2.3), two (Type Bound Elimination and Ac-
cess Path Selection) potentially benefit from run-time information. Since access
path selection can have a substantial impact on the execution time of a query, our
dynamic compiler re-runs access path selection before dynamic code generation,
factoring in newly available information (e.g., run-time container sizes).

The result is a re-ordered PQIL specification, which we then pass into the
composition scaffold. The scaffold examines each operator parameter’s access
modes and may further examine constantness, dynamic types, and whether the
operator is to be compiled for parallel execution. It then picks the optimally
specialised snippet for each operator and configuration, and links it against its
neighbouring snippets, emitting bytecode that is ready for execution.

5 Evaluation

To test the utility of our PQL-ESL language, we used it to re-implement our
PQL/Java bytecode backend. We found the language to be entirely suitable
to this task, though implementing the Field operator’s field access operation
required the addition of a single PQL-ESL feature.

To further evaluate our language, we performed three forms of evaluation: We
evaluated the usability of PQL-ESL by implementing four new extensions, we ex-
amined in detail the performance of our dynamic compiler with four pre-existing
PQL benchmarks [14] and two new synthetic benchmarks and we implemented
support for communicating with SQL data sources via JDBC.

5.1 Case Studies

To evaluate the generality of our language, we selected four language extensions
that we did not previously support in PQL and added them to our system.

sqrt: Our first extension was a square-root function on doubles. This addition
permits two access modes, one for computing and one for testing the square root.

primes: We further added support for prime numbers. We added two ex-
tensions, PrimeCheck, which determines whether a number is prime by try-
ing to divide by all smaller non-even numbers up to the number’s square root,
and PrimeRange, which computes all prime numbers in a given range, us-
ing the Sieve of Eratosthenes. Our rewriting engine automatically introduces
PrimeRange when PrimeCheck and Range affect the same variable.

Java 8 streams: To bridge the gap between Java 8 streams and PQL, we
added a StreamContains(s, v) operator analogous to our Contains(s, v) op-
erator. In access mode Contains(?s, ?v), it uses a Java 8 EqualityPredicate to
text whether v is contained in the stream s. For access mode Contains(?s, !v),
it iterates over all stream elements and binds them to v, again unifying two
mechanisms into a single interface.
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Extension LOC Snippets

Sqrt 5 4

PrimeCheck 20 2

PrimeRange 42 4

StreamContains 21 4

Modulo 8→61 16→32

Fig. 4. Sizes of our new operators, count-
ing global, local, and iterate sections.
The arrows for the pre-existing Modulo
operator indicate changes due to our ex-
tensions.

Benchmark Snippets Bytes

threegrep 16 1155

wordcount 8 1747

bonus 18 1773

webgraph 16 1608

setnested 8 1407

arraynested 10 993

Fig. 5. Snippet statistics for our bench-
marks. Here, total bytes is the size of
all bytecodes in the final linked bytecode
for the query, in bytes.

modulo: For our last extension, we modified the existing Modulo(x, y, z) op-
erator, for int and long parameters, to permit access modes Modulo(?x, !y, ?z)
and Modulo(!x, ?y, ?z), allowing users to find all x for a given y and z such
that x mod y = z (analogously for y).

Figure 4 summarises the sizes of our extensions, counting their lines of code
and number of snippets. Despite the large amount of variability in many of the
extensions, we found the code sizes to be very manageable.

5.2 JDBC Link

Our JDBC link adds three new user-facing operators: one that represent a
database, one that represents a table in the database, and one that represents
access to a field in the database. In an approach comparable to that of Che-
ung et al.’s QBS [7] we then automatically promote PQL operators to database
operators where possible, using our rewriting engine. We further filter expect-
ed/required result fields automatically through a custom PQIL analysis. In total,
this link uses ten custom operators with 9–53 lines of code. Operators include
a single highly-polymorphic operator that represents all numeric comparisons
between fields and constants, operators for simplified access to three particular
database systems, and the SQL LIKE operator. Automatic promotion to joins
between tables is not supported yet, though the PQL-ESL-specified operators
are as expressive as JDBC permits them to be.

While database access via JDBC can inherently not be parallelised, our JDBC
link allows users to take advantage of our query language and to optimise inter-
actions with data sources on the Java heap.

5.3 Performance Evaluation

We examined our system with the following benchmarks:

– threegrep, which find all strings (in a set of 100-character strings) that contain
the substring “012” [8].
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– wordcount, which computes the absolute numbers of occurrences of words in
documents. We represent words by unique integer IDs. The result is a map
from word IDs to the number of times they occur in a set of documents.

– bonus, which is a well-known example from the databases literature [19] that
computes employee salary boni, given each employee’s department, the de-
partment’s bonus policy, and the employee’s accumulated bonus. The result
is again a map, from each employee to their aggregate bonus.

– webgraph, as defined by Yang et al. [19], in which we compute the set of all
documents in a graph structure that point to themselves via one point of
indirection.

– setnested, which computes the intersection of two random sets of integers,
plus a size bound (similar to our initial motivating example, but without a
field access). One of the sets contains only a single element, while the other
contains 500,000.

– arraynested, which computes the set intersection of two random arrays, again
with a size bound. Sizes of the arrays are identical to setnested.

Figure 5 summarises the number of snippets for each benchmark. Even for
our four more complex benchmarks, our static compiler is effective at keeping
the number of relevant alternatives small. While some important snippets can
reach a substantial size (up to around 650 bytes for a snippet in wordcount that
represents a nested reduction into a default map, to aggregate the total counts),
the size of the ultimately generated bytecode remains below 2kB, within the size
of what we might expect for such a computation.

We took each benchmark’s PQL implementation and compiled it both with
our original backend [14] and with the new PQL-ESL backend. For comparison,
we also ran best-effort manual implementations. We ran all benchmarks 13 times,
discarding the first 3 runs as warm-up runs. Compared to our earlier backend, we
configured our benchmarks to ‘50% mode’, which reduces the workload for each
benchmark by at least 50%, thereby making the dynamic compilation overhead
more easily visible and putting our original system at a deliberate advantage.

We ran all benchmarks on the Oracle JDK 1.8.0 05, on a Sun SPARC64 (Sparc
v9) Enterprise-T5120 system, with 8 cores at 8 SMT threads each. We left all
system configuration at its defaults, other than increasing the default heap size
to 13200 MiB. Access path selection used a search window size of 16.

Our current PQL-ESL backend does not yet serialise snippets to class files.
For our experiments, we therefore ran the static and dynamic compilation phases
in the same JVM, taking care to separate the execution phases. We avoided
including the rest of the PQL/Java compiler by separately compiling all PQL
source code into PQIL and feeding the result directly into our backend.

Figure 6 shows our total execution time, excluding dynamic recompilation
time. The quality of the code generated by our new backend is competitive with
our existing backend for all existing benchmarks, outperforming it in webgraph
and, for small and large numbers of threads, in bonus.

Figure 6 separately shows dynamic recompilation time, which is currently
in the millisecond range, meaning that dynamic recompilation is only effective
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Fig. 6. Benchmark execution times: Execution time (y axis) by number of threads
(x axis). The figure shows manual java implementation (manual), the new backend
(v2 ) and the original backend (comp).
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Fig. 7. Dynamic compilation overhead, split into snippet-based code generation, access
path selection, and remaining initialisation (allocating supporting data structures)
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Fig. 8. Execution times (y axis) for queries with increasing workloads (x axis), in
benchmarks that rely on dynamic access path selection, running single-threaded
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for large data sets. We can leverage this insight to use suitable heuristics that
determine whether dynamic optimisation is warranted from the size of any in-
put containers, and default to execution without dynamic compilation for small
workloads, where sub-optimal access paths are not critical.

Dynamic compilation overhead is the price we pay for dynamic optimisation.
We see the value that we gain for this price in Figure 8, which again shows
our benchmarks setnested and arraynested. Both benchmarks operate over two
containers with substantially different sizes. Performance depends on picking the
larger container to iterate over, and the smaller container to check containment
in; this is only possible with run-time information.

For each benchmark, we scale the sizes of both containers by the factor on
the x axis. In our graphs, comp and v2 show our old and new backend, re-
spectively. As we can see, our new backend outperforms the old backend even
without recompilation. However, execution time increases exponentially for both
implementations if they choose the less optimal container for iteration. v2 opt
shows our new backend with dynamic re-compilation, with near constant-time
performance. Initialisation overheads are again shown separately, in Figure 6.

Overall, we found performance of PQL-ESL to be on par with our current
system when not factoring in dynamic optimisation. With dynamic optimisation,
our PQL-ESL backend can greatly outperform our existing system. At the same
time, re-writing our backend in PQL-ESL has given us the flexibility to re-target
compilation to static or dynamic compile time, to add new language features
quickly, and to apply further language-based optimisations in the future.

6 Related Work

Extensible query languages are widely known in the literature. For example, the
Meteor language for the Stratosphere platform [11] can be extended with new
operators, as can PigLatin [13]. FlumeJava [5], PLINQ [9] and Java 8 Streams,
which act as internal DSLs, can be extended by implementing predefined inter-
faces. All of the above systems thus permit users to add new operators.

However, to the best of our knowledge none of these systems utilise a special-
purpose extension language to simplify optimisation, multi-stage or otherwise.
Similarly, none of the above systems will automatically select between different
modes of user-defined operators, as permitted by our read/write mode distinc-
tion. The only optimisations they can apply to language extensions are therefore
optimisations provided by the host language compiler. As we have shown, this
suggests that these systems may be missing optimisation opportunities.

Delite, a framework for highly-optimised domain-specific languages, includes a
query language, OptiQL [16] that can conceptually integrate with other domain-
specific languages, performing parallelisation and other optimisations across
DSLs. However, we are not aware of OptiQL supporting custom operators.
StreamJIT [2], a commensal compiler framework, treats IRs as libraries and
permits IR-level optimisation. Instead of code generation, commensal compila-
tion relies on compiler optimisations; however, it is unclear that complex control
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flow between operators such as ours could be inlined automatically (and without
inline guards) by standard JVM JIT inlining.

Meanwhile, general-purpose Turing-complete languages geared at easing ac-
cess to parallelism, such as Chapel [4], Fortress [1], and X10 [6] allow user-defined
extensions through standard abstractions (functions, classes). However, these
languages provide control over parallel primitives (task distribution, atomic re-
gions) rather than automating parallelisation, and being Turing-complete, they
may be too powerful for effective automatic parallelisation. By contrast, PQL/-
Java strives first to be easy to parallelise, foregoing expressivity to achieve this
goal, with PQL-ESL bridging the gap to our Turing-complete host language.

Our focus in this paper has been on extending the PQL/Java backend. Com-
plementary frontend extensions could be based on techniques from the literature,
such as those found in Sugar [10] or Silver [18].

7 Conclusion

PQL-ESL is a mechanism for extending the PQL/Java backend with support for
new primitives and for more effectively optimising existing primitives. Leveraging
PQL-ESL with a two-stage compiler permits us to compile PQL queries statically
and dynamically re-optimising as new information becomes available.

We have shown that PQL-ESL is effective at describing PQL primitives by
re-implementing our compiler backend in it, and effective at describing new prim-
itives by adding four extensions to PQL. Furthermore, our experiments demon-
strate that our execution performance is competitive with our previous backend.
For some queries, dynamic compilation enables optimisations that permits the
PQL-ESL backend to outperform our previous backend by reducing the algo-
rithmic overhead from O(n) to O(1). Our implementation is publicly available1.
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Abstract. Bug checker tools for Java require fine-grained heap abstrac-
tions including object-sensitive call graphs, field information for objects,
and points-to sets for program variables to find bugs in source codes. How-
ever, heap abstractions coined commonly as points-to analysis, have high
runtime-complexity especially when the points-to analysis is context-
sensitive, and, hence, state-of-the-art points-to analyses do not scale for
large code bases.

In this paper, we introduce a new points-to framework that facilitates
the computation of context-sensitive points-to analysis for large code
bases. The framework is demand-driven, i.e., a client queries the points-
to information for some program variables. The novelty of our approach
is a pre-analysis technique that is a combination of staged points-to anal-
yses with program slicing and program compaction. We implemented the
proposed points-to framework in Datalog for a proprietary bug checker
that could identify security vulnerabilities in the OpenJDKTM library
which has approximately 1.3 million variables and 500,000 allocation-
sites. For the clients that we have chosen, our technique is able to elimi-
nate about 73% of all variables and about 95% of allocation-sites. Thus
our points-to framework scales for code bases with millions of program
variables and hundreds of thousands of methods.

1 Introduction

With the wide-spread use of bug checking and productivity tools [4,8,5], the
scalability of static program analysis for large code bases is imminent. Object-
oriented languages heavily rely on the state of the heap and for static program
analyses it is crucial to reason about the state by using a heap abstraction.
For most bug checking tools one cannot consider software components in isola-
tion [19] easily. For example, Octeau et al. [19] argue that a high-fidelity anal-
ysis of component interaction is required for a comprehensive security analysis,
and hence a comprehensive heap abstraction is required. A heap abstraction
over-approximates the connectivity of the objects on the heap, which program
variables may point to which objects, and resolves virtual dispatches to con-
struct a call-graph. Static program analysis for object-oriented languages relies
on the precision of the heap abstraction, i.e., how the effect of heap operations
are abstracted including object creations, variable references, and read/write
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operations on object fields. The heap abstraction is computed via a points-to
analysis, for which there exists a cornucopia of methods [21,18,12,24,23,17].

The standard context-insensitive points-to algorithm [2] has insufficient pre-
cision for many applications including security analysis [19,11]. To improve the
precision of points-to, context sensitive analyses have been introduced [15,23].
There are various notions of contexts. For instance, method invocations on differ-
ent receiver objects are treated differently. One could also combine the receiver
object with the caller object to create the context to distinguish invocations.
In the context of computing a precise points-to relation Smaragdakis et al. [23]
present a number of context-sensitive analyses and identify situations where the
various context-sensitive analysis can be used. In their experimental study, the
authors show that the 2-Object+1-Heap context sensitive points-to relation is
the most precise for object-oriented programs.

Computing the context-sensitive points-to sets for large-scale software is not
viable due to high computational costs. Scalable points-to analysis for object-
oriented languages such as Java has attracted a lot of attention. To overcome
the performance bottleneck of context-sensitive points-to analysis, approaches
that rely on refinement, demand-driven analysis and pre-analysis have been ex-
plored [24,25,22,27]. For example, to overcome the precision versus scalability
trade-off for large-scale software, demand-driven analysis [28,25] is one of the
most popular approaches that computes a points-to analysis for a client. The
client issues specific points-to queries and for only parts of the program that af-
fect the points-to queries, a points-to set is computed. Other approaches include
preprocessing the input [22] which may increase the efficiency of context-sensitive
analysis. But the presented approach is unable to compute the 2-Object+1-Heap
context-sensitive points-to relations for the programs hsqld and jython from the
DaCapo benchmark suite [6] which are much smaller than real-world code bases
including the source code of the JDK library. Similarly, pre-analysis to measure
potential impact on the final result [20] could also increase the overall efficiency.
But the results reported in the paper are on relatively small programs.

The problem we address in this paper is how to compute a precise but expen-
sive demand-driven context-sensitive points-to analysis, such as the 2-Object+1-
Heap, for very large code-bases. A client issues a query that refers to variables
located in a method, for which the client queries the points-to set. Thus only
parts of the program that affect the client’s queries are considered. However,
converting a context-sensitive points-to analysis into a demand-driven analy-
sis is challenging even for alias analysis [27]. The main issues in converting a
context-sensitive points-to analysis to a demand-driven problem stems from the
nature of the problem: context-sensitivity is obtained in a forward fashion (from
the program start to a location) and hence can only be converted to a backward
problem for the demand-driven approach with great difficulties.

Our approach overcomes this issue by employing static program slicing and
program compaction for given points-to queries. The program slicing and com-
paction that we employ reduces the input program to a semantically equivalent
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for the points-to queries1, for which the context-sensitive points-to analysis is
exhaustively run in a forward-fashion. The program compaction is a program
transformation that eliminates variables and their assignments that can be ex-
pressed by other variables. Since context-sensitive analysis are sensitive to the
number of statements and variables in a method, program compaction is a key
ingredients for scalable context-sensitive points-to.

However, program slicing and compaction is insufficient on its own for achiev-
ing scalability for input programs used in our experimental study. To achieve
scalability for programs with millions of program variables, points-to analysis has
to be performed in stages. A lightweight (context-insensitive) points-to analysis
is performed on the reduced input program. The lightweight points-to analysis
enables the construction of a more precise call graph, since virtual dispatches
can rely on a may-points-to analysis rather than the pure syntactic type infor-
mation. With the improved call-graph, another round of program slicing and
compaction is performed, which further reduces the input program. We refer to
the first stage, i.e., program slicing and compaction with the light-weight points-
to analysis as a pre-analysis, since its points-to result is not actually used beside
construction a refined reduced input program. One of the advantages of our
framework is that existing state-of-the-art points-to analyses can be employed.

For our experimental case study, we use Java’s OpenJDK library, that consists
of approximately 1.3 millions of variables, 200 thousand methods, 600 method
invocations, and 400 thousand object creation sites. We have chosen clients that
produce points-to query sets for tasks related to security analysis for a propri-
etary security analysis tool for Java. We are able to compute context-sensitive
points-to relation with our points-to framework under 8 hours. Without our
staged points-to framework, deep context-sensitive points-to analysis is not com-
putable for problem sizes in the scale of Java’s OpenJDK library.

The main contributions of our work are:

– We introduce a points-to framework that can use off-the-shelf exhaustive
context-sensitive points-to analysis for large-scale code bases. The framework
uses a refinement approach, i.e., points-to analyses of various complexity are
performed in stages in conjunction with static program slicing and com-
paction. A preceding stage produces points-to information to further reduce
the input program by refining the call-graph.

– We introduce the notion of program compaction that compacts a flow-
sensitive program representation.

– We perform experiments on a large-scale code to show that our points-to
framework is feasible.

This paper is organised as follows. In Section 2 we give an overview of our
approach. In Section 3 we illustrate our technique by an example. In Section 4 the
details of our staged approach is explained. Our implementation of the approach
as well as its usefulness is described in Section 5. We conclude the paper by

1 Note that the reduced input program may not be executable and may not produce
semantically correct information for other queries which were not specified.
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comparing our work with related work in the literature and highlighting the
novelty of our work in Section 6.

2 Staged Points-To Framework

Our framework produces high-precision points-to analysis results for large-scale
software. To overcome the complexity issue of high-precision points-to analysis,
we specialise the points-to analysis for a client that issues points-to queries.
Points-to queries concern variables for which the client desires the points-to set.
The specialisation is performed by using static program slicing and program
compaction such that an off-the-shelf points-to analysis is performed on the
reduced input program. The reduced input program produces for the points-to
query set the same results as the original input. However, specialisation is not
sufficient on its own. For large-scale software we observed that a refinement is
necessary, i.e., the points-to analysis is performed in stages. In each stage a more
refined reduced input-program is produced. The refined input-program is smaller
than the previous one due to the points-to analysis of the stage such that a later
points-to analysis has less work to perform.

The process to obtain a context-sensitive points-to information in stages using
specialisation and refinement is illustrated in Figure 1. First, the client provides
the set of points-to queries that are passed on to the step that computes the
initial slice of the program. The initial slice is computed based on syntax infor-
mation only rather than performing any points-to analysis. After this the slice
is compacted, i.e., variables that are not of interest or are not actual/formal
parameters, and return values are eliminated. The compacted slice is passed on
a flow-insensitive and field-sensitive points-to analysis. The points-to analysis
builds a heap-abstraction and hence field sensitivity is taken into account. A
related issue is the construction of the call-graph [26]. Virtual method resolu-
tion could be done in conjunction with the points-to analysis. This leads to a
mutual dependency between the points-to analysis and the construction of the
call-graph. The context-insensitive analysis thus builds a call-graph that is more
precise than the initial call-graph constructed using the Class Hierarchy Analysis
(CHA).

Client

Refined &
Compacted

Slice

Context-
Insensitive
Points-To
Analysis

Refined &
Compacted

Slice

Context-
Sensitive
Points-To
Analysis

Fig. 1. Staged process of slicing and analysis for context-sensitive points-to analysis
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The points-to and the call-graph relations are used to compute the final slice
to refine the virtual dispatch of call-sites. The final slice is passed on to perform
the context-sensitive analysis. The use of the less expensive points-to analysis
and slicing can be viewed as a particular instance of pre-analysis for the final
context sensitive points-to analysis. The pre-analysis enables us to compute the
context-sensitive points-to set in an effective fashion. Note that we are able
to use the context-insensitive points-to results to further slice the program as
it is an over-approximation of the desired result. In general, we can use any
points-to relation that is computable on the initial slice provided it is a sound
over-approximation of the desired points-to relation. Thus, context-insensitive
and 2-Object+1-Heap can be seen as an instance of our approach.

3 Motivating Example

In this section we present an example program and show the effect of the syntac-
tic based and context-insensitive based slicing. The aim is to remove unnecessary
variables and objects. This example is representative of actual code fragments
on which our analysis is performed. Consider the program in Listing 1.1. It has
trusted and untrusted objects which can be used in a secure or an insecure set-
ting. The client’s query is only interested in the use of untrusted objects in a
secure setting. Thus non-security related actions and trusted objects are removed
by our analysis.

Listing 1.1. Original Program

1 class SecurityApplication {
2 public static void main(String[] args) {
3 String result = setup(args);
4 System.out.println(result);
5
6 SecurityFactory uFactory = new UntrustedSecurityFactory();
7 SecurityFactory tFactory = new TrustedSecurityFactory();
8
9 SecurityObject uObject = uFactory.getSecurityObject();

10 SecurityObject tObject = tFactory.getSecurityObject();
11
12 doSecurity(uObject, tObject);
13 }
14
15 private static void doSecurity(SecurityObject secObj1,
16 SecurityObject secObj2) {
17 SecurityAction action1 = new SecurityAction();
18 SecurityAction action2 = new SecurityAction();
19 action1.object = secObj1;
20 action2.object = secObj2;
21
22 Object res1 = action1.invoke();
23 Object res2 = action2.invoke();
24
25 doOtherThings(res1, res2);
26 }
27
28 private static String setup(String[] args) { · · · }
29
30 private static void doOtherThings(Object result1, Object result2) { · · · }
31 }
32
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33 interface SecurityFactory {
34 public SecurityObject getSecurityObject();
35 }
36
37 class UntrustedSecurityFactory implements SecurityFactory {
38 public SecurityObject getSecurityObject() {
39 SecurityObject newObj = new UntrustedSecurityObject();
40 return newObj;
41 }
42 }
43
44 class TrustedSecurityFactory implements SecurityFactory {
45 public SecurityObject getSecurityObject() {
46 SecurityObject newObj = new TrustedSecurityObject();
47 return newObj;
48 }
49 }
50
51 class SecurityAction {
52 public SecurityObject object;
53 public Object invoke() {
54 SecurityObject storedObject = this.object;
55 return invoke0(storedObject);
56 }
57 private static native Object invoke0(SecurityObject obj);
58 }
59
60 class SecurityObject {· · ·}
61 class UntrustedSecurityObject extends SecurityObject {· · ·}
62 class TrustedSecurityObject extends SecurityObject {· · ·}

Specifically, assume that the client’s query is: “whether at the invocation of
invoke0 (at line 55) the parameter storedObject points-to an untrusted heap
object of type UntrustedSecurityObject.” In the example, the only alloca-
tion of the untrusted object is on line 39. It can be seen that variables such as
args, result, res1, res2 and methods such as setup and doOtherThings
have no influence on the desired result. Hence they can be removed from the initial
slice.

Given the initial slice, the points-to analysis needs to determine if the variable
storedObject at line 55 can point to the new object created at line 39. The
variable uObject on line 9 will point to the untrusted object as it holds the
return value of the invocation to the getSecurityObject method. The value
now flows from uObject to secObj1 and then to action1.object on line 19.
The method action1.invoke results in the untrusted object being used in the
call of invoke0. As there is no other value flow, we can safely ignore the other
variables. That is, the context-insensitive points-to indicates that variables such
as tFactory (on line 7), tObject (on line 10) and action2 (on line 20) do not
point to an untrusted heap object. Hence these variables and the allocation sites
they point-to can be removed from the slice. Note that the method doSecurity
now has only one parameter in the computed slice. The main points-to relation
where the variables are in rectangular boxes and allocation-sites are in circles
is shown in Figure 2. The figure also shows objects that are pruned (indicated
via being crossed out) by the slicing operation. The resulting slice is shown in
Listing 1.2.
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Fig. 2. Removal of Objects

Listing 1.2. Final Slice

1 class SecurityApplication {
2 public static void main() {
3 SecurityFactory uFactory = new UntrustedSecurityFactory();
4 SecurityObject uObject = uFactory.getSecurityObject();
5 doSecurity(uObject);
6 }
7
8 private static void doSecurity(SecurityObject secObj1) {
9 SecurityAction action1 = new SecurityAction();

10 action1.object = secObj1;
11 action1.invoke();
12 }
13 }
14
15 interface SecurityFactory {
16 public SecurityObject getSecurityObject();
17 }
18
19 class UntrustedSecurityFactory implements SecurityFactory {
20 public SecurityObject getSecurityObject() {
21 SecurityObject newUObj = new UntrustedSecurityObject();
22 return newUObj;
23 }
24 }
25
26 class SecurityAction {
27 public SecurityObject object;
28 public Object invoke() {
29 SecurityObject storedObject = this.object;
30 return invoke0(storedObject);
31 }
32 private static native Object invoke0(SecurityObject obj);
33 }
34
35 class SecurityObject {· · ·}
36 class UntrustedSecurityObject extends SecurityObject {· · ·}

4 Steps of the Staged Points-To Framework

In order to express the key aspects of our staged points-to analysis, we first
define a small flow-insensitive object-oriented language that includes core Java
features. The language has types so that class and sub-class relationships and
interfaces can be expressed. We also use the notion of types for object-fields,
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call-sites and method signatures to model virtual dispatch. We assume variables
reside in a single method and are unique. A variable has attached a declared type
that may not be identical to object type of the object it is referring to. Each
method has a special variable self that denotes the instance object itself. Every
method is defined in a class, and is inherited by its sub-class (if not overridden).
A method may consist of one or more of the following statements:

[L1] Heap allocations: x = new C() creates a new instance of variable C.
[L2] Assignment: x = y assigns variable x the value of variable y. Note that the

variable self is pre-defined and cannot be assigned a value.
[L3] Assignment Cast: x = (T )y assigns variable x the value of variable y by

casting the value to type T .
[L4] Loading of a field: x = y.f loads a value from the field f from the value in

variable y and assigns the loaded to the variable x.
[L5] Storing of a field: x.f = y stores the value present in variable y in the field

f of the value in variable x.
[L6] Return Statement: return u returns the value u.
[L7] Call-Site: y = o.s(x1, . . . , xk) calls method a method m that is declared in

type of variable o or any suitable super-class.

Note that we do not consider control-flow constructs in the language, since it
was shown that flow sensitive analysis is less important than a context sensitive
analysis [14,16]. Note that for real implementation we need to consider static
fields, static method calls, calls to super, etc. For sake of simplicity, we do not
discuss them here. In addition, we do not consider reflection mechanisms either.

4.1 Computing the Initial Slice

Here we describe the computation of a slice.The initial slice is computed by
tracing the dataflow of the client specified query variables backwards by the
assignment relation. The slice S is a multi-set containing variables, field types,
and methods of a program. We use the auxiliary function τ(x) which identifies
the type of a variable. Initially, the slice contains the query variables and the
methods where the variables reside in. We use a model theoretic approach to
describe the set that contains the initial slice. We search for the smallest set S
for which following conditions hold:

[S1] All query variables v and methods m that contain variable v are in S.
[S2] If there is an object creation x = newC() and x ∈ S, then {C, consC} ⊆ S

where consC is the object constructor for the type C.
[S3] If there is an assignment x = y and x ∈ S, then y ∈ S.
[S4] If there is an assignment cast x = (T )y and x ∈ S, then y ∈ S.
[S5] If there is a load x = y.f and x ∈ S, then τ(y).f ∈ S, and y ∈ S.
[S6] If there is a store x.f = y in method m, and there is t′.f ∈ S that is

compatible with τ(x).f , then {m,x, y} ⊆ S.
[S7] If there is a callsite y = o.s(x1, . . . , xk) residing in method m, and callsite

o.s is compatible with a method m′ ∈ S, then m ∈ S and o ∈ S.
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[S8] If there is a callsite y = o.s(x1, . . . , xk) residing in method m, callsite o.s is
compatible with a method m′(z1, . . . , zk) ∈ S, and zi ∈ S, then xi ∈ S.

[S9] If there is a callsite y = o.s(x1, . . . , xk), y ∈ S, then for all methods m that
are compatible with the call-site o.s and for all return z residing in m, then
{m, z} ⊆ S.

Rule [S2] extends the slice to include types and the constructors methods of
objects that are created. Rule [S3] extends the slice to the source of the assign-
ment, if the destination of the assignment is in the slice. Rule [S4] extends the
slice for assignment casts. Rule [S5] adds the field τ(y).f if the result of the load
operation on a field is in the slice. Note that we add all variables whose type
is compatible with the loading of the field f . Rule [S6] adds the method m and
the variables x and y to the slice, if a compatible field type can be found in the
slice. Rule [S7] adds the caller to the slice and the instance object. Rule [S8]
adds the actual parameters to a slice, if the formal parameter of a method are
in the slice. Rule [S9] adds the return variables to the slice if the result variable
is in the slice.

4.2 Compaction

The compaction process eliminates variables that do not contribute directly or
indirectly to the points-to query. In addition, variables that store intermediate
results can be eliminated. For example, in a method without points-to queries,
the only variables which should remain are variables of object-creation sites,
actual/formal parameters, instance variables, and return variables. The com-
paction reduces the size of the data-flow graph of a method, and, hence speeds
up the convergence of the points-to analysis. The compaction can be perceived
as an orthogonal process to slicing.

The implementation of compaction is based on standard techniques such as
reaching-definitions, copy propagation and dead and redundant code elimina-
tion schemes [3,10] suitably adapted for object-oriented programs. Since there
is no control-flow, the computation reduces to the computation of equivalence
classes via the assign relation. This assign relation builds a value flow graph and
involves the query variables, formal arguments/actual arguments, return state-
ments, object creation sites, receiver objects of method invocations at call-sites.

The example on the left in Figure 3 is rewritten to the example on the right.
The intermediate variables z and y are eliminated as assignments to them are
redundant. That is, the assignment z = x is not necessary as all occurrences
of z can be replaced by x. Formally, the variables x, y and z are in the same
equivalence class while the variables a and b are in another equivalence class.

In the above example only one definition reached the use. That is, only x
reaches z and only a reaches b. In general, various definitions could reach a point
of use. Our solution is to maintain a subset of definitions that reach a variable.
The subset in then used to identify all the assignments that are necessary. An
example of this situation is shown in Figure 4.
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1 int foo(int x) {
2 z = x;
3 y = x;
4 a = goo(z);
5 b = a;
6 return b;
7 }

1 int foo(int x) {
2 a = goo(x);
3 return a;
4 }

Fig. 3. Example of Compaction

1 int foo(int arg0, int arg1,
2 int arg2) {
3 x = arg0;
4 y = arg1;
5 z = x;
6 z = y; z : {arg0, arg1}
7 a = arg2;
8 a = z; a : {arg0, arg1, arg2}
9 goo(a);

10 z = a; z : {arg0, arg1, arg2}
11 return z;
12 }

1 int foo(int arg0, int arg1,
int arg2) {

2 arg0arg1arg2 = arg0;
3 arg0arg1arg2 = arg1;
4 arg0arg1arg2 = arg2;
5 goo(arg0arg1arg2);
6 return arg0arg1arg2;
7 }

Fig. 4. Multiple values: Compaction

In general we replace variables by reusing subsets of reaching definitions. Note
that this is sound in our context as we are computing a may-point-to relation.
The subsets of reaching definitions can be arranged in a Hasse-diagram repre-
senting the partial order. The assignments can then be derived by reusing the
assignments used for the relevant subsets and taking into account the variables
from the reaching definitions that have been covered. An example of a partial
order and the generated assignments is given in Figure 5. The emphasised vari-
ables are those that are introduced by compaction whereby variables a to d are
program variables of the input program. All other intermediate variables that
contributed to the partial order are elided.

{a, b, c, d}

{a, b} {c, d} {b, d}

1 ab = a; ab = b;
2 cd = c; cd = d;
3 bd = b; bd = d;
4 abcd = ab; abcd = cd;

Fig. 5. Partial Order and Assignments
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4.3 Context-Insensitive Points-To Analysis

The improvement of the context-insensitive field-sensitive point-to analysis is the
heap-abstraction, i.e., fields are analysed and hence more precise information is
obtained for resolving virtual method dispatches. For each instance variable, the
points-to set consisting of object-creation sites is computed, which we denote
by pt(v). For each field of an object-creation site, a set of object-creation sites
that this field may point to, which we denote by fpt(o, f), is also computed. An
object-creation site has associated an actual type that is used to compute more
precise virtual method dispatches. We search for the smallest points-to set for
the current slice such that following points-to rules hold:

[P1] If there exists a heap allocation a : x = new C(. . .) in a method m ∈ S,
then a ∈ pt(x).

[P2] If there exists an assignment x = y in a method m ∈ S, then pt(y) ⊆ pt(x).
[P3] If there exists an assignment cast x = (T )y in a method m ∈ S, then

o ∈ pt(x), for all o ∈ pt(y) and τ(o) ≤ T .
[P4] If there exists a load statement x = y.f in a method m ∈ S, then pt(o.f) ⊆

pt(x) for all o ∈ pt(y).
[P5] If there exists a store statement x.f = y in a method m ∈ S, then pt(y) ⊆

fpt(o, f) for all o ∈ pt(x).
[P6] If there exists a call-site y = o.s(x1, . . . , xk) in a method m ∈ S, and for all

methods m′(z1, . . . , zk) that are compatible with s and the types in pt(o),
then pt(xi) ⊆ pt(zi) for all i, 1 ≤ i ≤ k, pt(o) ⊆ pt(m′.self), and pt(y) ⊆ pt(u)
for all return u residing in m′(z1, . . . , zk).

Note that the above rules are standard [21] for a field-sensitive context-insensitive
points-to analysis. The points-to relation is used to obtain the final slice. The
slice produced by using the context-insensitive points-to analysis will include
variables, methods, heap allocation sites along with points-to facts for the client’s
query. While the rules are similar in structure as the rules in the variable-based
slicing, there are some subtle differences as we now have the actual object cre-
ation sites for each variable and field-sensitivity.

[S’1] If o ∈ pt(v) such that (v, o) is part of the facts for the client’s query and m
is the method that contains v, then {(o, v),m} ⊆ S.

[S’2] If (v, h) ∈ S, then {v, h} ⊆ S. Similarly if (o, f, o′) ∈ S then {o, f, o′} ⊆ S.
[S’3] If there is an assignment x = y and (x, o) ∈ S, and o ∈ pt(y) then y ∈ S.
[S’4] If there is a load x = y.f and (x, o) ∈ S and o′ ∈ pt(y) such that o ∈

fpt(o′, f), then {(o′, f, o), (y, o′)} ⊆ S.
[S’5] If there is a store x.f = y in method m, and o ∈ pt(x), o′ ∈ pt(y), (o, f, o′) ∈

S, then {m, (x, o), (y, o′)} ⊆ S.

The rule [S’1] adds all the facts that are relevant to the client’s query to the
slice. The rule [S’2] adds all the constituent elements of the points to and field-
points-to relation in the slice to the slice. The rule [S’3] extends the slice with the
variable on the right hand side of the assignment provided it points-to an object
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in the slice. The rule [S’4] adds the points-to facts related to a load operation to
the slice provided the variable which has result of the load operation is in the
slice. The rule [S’5] adds the method m and the points-to facts for the variables
x and y to the slice, if a field is stored into and the field-points-to relation is
part of the slice.

4.4 Context-Sensitive Points-To Analysis

The context-sensitive points-to analysis is the final stage of the analysis. It uses
the last slice to compute the most precise points-to information. The contexts as
well as the points-to relation is computed only on the slice and thus the analysis
can use the standard techniques [23]. The construction of the slice guarantees
that if o belongs to cpt(c, x), then o will also belong to pt(x) where cpt represents
the context-sensitive points-to relation and c the context. So as long as the
result of our context-sensitive analysis is a strict refinement of the results of the
context-insensitive analysis, the result of the pre-analysis can be used for the
context-sensitive analysis. The context-sensitive analysis further refines the call-
graph. The points-to analysis will use the notion of a method being reachable
in a context and use it to compute the points-to set. As noted in Section 1, one
can use a method’s receiver object and the object that allocates this receiver
object as the context. As the resolution of the virtual method being invoked will
depend on the type of the receiver object, certain methods will not be reachable
in certain contexts. More details on this is available in the literature [7,23]. We
use reach(c,m) to indicate that method m is reachable in context c. Contexts
are updated when a method is invoked or when an object is created. We use
extend(c, st) to identify the new context, where st is a statement that represents
an invocation or an object creation. The rules for assignment and the linking of
actual to formal parameters in a method invocation is shown below.

[CSP1] If there exists an assignment x = y in a method m ∈ S, and reach(c,m)
then cpt(c, y) ⊆ cpt(c, x).

[CSP2] If there exists a call-site y = o.s(x1, . . . , xk) in a method m ∈ S with
reach(c,m) and for all methods m′(z1, . . . , zk) that are compatible with s
and cpt(c, o), then cpt(c, xi) ⊆ cpt(c′, zi) for all i, 1 ≤ i ≤ k where c′ =
extend(c, o.s(x1, . . . , xk))

One can show that for any program P , if v is a variable in a client’s query
then cptP (c, x) = cptS(c, x) where cptP and cptS represent the context-sensitive
points-to set computed for the entire program P and slice S respectively. That
is, our slicing technique does not lose any relevant information.

5 Implementation and Results

In this section we demonstrate both the ineffectiveness of using off-the-shelf
context-sensitive points-to analysis and the effectiveness of our staged points-to
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Table 1. Context Sensitive Analysis: Not computable over the JDK

Context Sensitive Analysis Outcome

1-Call-site-sensitive Does not terminate after 20 hours

1-Object-sensitive Does not terminate after 20 hours

2-Call-site-sensitive+1-Heap Does not terminate after 20 hours

2-Object-sensitive+1-Heap Out of memory

framework using specialisation (i.e. program slicing and compaction) and refine-
ment (i.e. staging points-to). We have implemented our technique with Data-
log [1] based on the DOOP [7] framework. We use OpenJDK 7 build 147 (rt.jar)
as the artefact that is subject to various analyses. We ran our experiments on an
Intel Xeon E5-2660 (2.2GHz) machine with 256GB RAM using the LogicBlox
engine [13].

We report results of our experiments with some of the existing context-
sensitive points-to analysis that was not computable in general for the OpenJDK
library without specialisation and refinement. OpenJDK 7 (rt.jar) has more than
2 million lines of Java code. Note that lines of code is not necessarily an accurate
indication of the complexity for the points-to analysis. The number of variables
and allocation sites is a better indication of the effort required to perform points-
to analysis. The OpenJDK 7 library has close to 1.3 million variables and about
500,000 heap allocation sites and goes well beyond the largest benchmarks sizes
such as DaCapo [6] mainly used for points-to research in literature.

The results of points-to without specialisation and refinement are shown in
Table 1. We terminated many of the analyses after 20 hours as that was well
over our self-imposed time budget of 8 hours.

Choice of Client. As results of our analysis is dependent on the client’s query,
we choose different security analysis clients. We choose four security analysis
that relate to access control and are derived from section 9 of the Java Se-
cure Coding guidelines (JSCG) [9]. The guidelines specify certain properties
where security sensitive methods are invoked. Examples of security sensitive
methods include AccessController.doPrivileged(), Class.forName
() and Class.newInstance(). The restrictions on the invocation of such
methods require appropriate permissions, use of untainted objects and escaping
of results from the JDK to the application.

Typically a client is interested in identifying locations in the program that
violate the Java Security Guidelines. For this purpose the client identifies invo-
cations to the security sensitive methods that are potential violations. Points-to
information is required to determine properties such as taintedness of any of
the arguments and results escaping from the JDK to the application. From a
security view point other invocations that do not influence the security related
invocations are not relevant. Note that although security is the principal mo-
tivation, we do not report any security specific results here. The focus here is
purely on client driven calculation of a suitable context-sensitive points-to set.
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5.1 Staged Points-To Framework Results

In this section we present the results of our analysis. We show that

(a) the reduction in the number of variables and allocation-sites due to program
slicing and compaction,

(b) the size of the various points-to relations and
(c) the size of the call-graph

Table 2. Number of Variables

Client
Variables in Variables in Variables after

Client’s Query Initial Slice Context
Insensitive
Analysis

CSM 3,885 895,100 228,054

CSM-Escape 1,321 891,641 224,707

CSM-Taint 847 797,217 222,192

doPrivileged 12,202 799,484 266,558

The reduction in the number of program variables using our pre-analysis is
given in Table 2. The behaviour is uniform across all clients (see Figure 6(a))
and there is no obvious link between the number of variables in the client’s
query and the number of variables in the various reduced input programs. The
variables used either as parameters or as the base in the relevant invocations
yields the variables that are in the client’s query. The variable based slicing
reduces the number of potentially relevant variables by approximately 30%. The
context insensitive analysis on the slice further reduces the number of relevant
variables by approximately 73%. This results in a slice with only about 18% of the
original set of variables. The reduction in the number of allocation-sites is shown
in Table 3. The variable based slice does not significantly reduce the number of
allocation sites. But the context insensitive analysis marks only around 5.0%
of the original set of allocation sites as relevant (shown in Figure 6(b)). This

(a) Variables (b) Allocation Sites

Fig. 6. Size Reduction
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Table 3. Number of Allocation Sites

Client
Allocation Sites in Allocation Sites after

Initial Slice Context-Sensitive
Analysis

CSM 494,560 23,215

CSM-Escape 494,111 22,928

CSM-Taint 492,821 22,850

doPrivileged 494,560 28,298

Table 4. Size of Points-To Relation

Client

Context-
Insensitive

Context-Sensitive Context-Sensitive

(No Context)

CSM 115,470,090 435,721,445 1,895,206

CSM-Escape 115,374,473 434,238,551 1,885,825

CSM-Taint 107,538,308 296,998,797 1,585,422

doPrivileged() 141,053,434 413,813,791 1,952,346

massive reduction in the number of allocation sites combined with a significant
reduction in the number of variables is the key reason for the success of our
technique.

The size of the points-to relation is shown in Table 4. For all the clients there
are more than 100 million points-to relations in the context-insensitive points-to
set. They are refined to more than 400 million points-to relations, except in the
case of CSM-Taint where 296 million facts are generated, an increase by a factor
of more than 3.5. If the contexts from the context-sensitive relation are elided,
there are about 1.9 million facts, except in the case of CSM-Taint where there
are about 1.6 million facts. The sheer size indicates the memory required to hold
these relations.

The average number of objects a variable points to gives insight to the prob-
lem. In the context-insensitive case it is about 140 objects per variable while in
the context-sensitive case it is only about 8 objects per variable. This is shown
in Table 5.

Table 5. Average Number of Allocation Sites Per Variable

Client Context-Insensitive Context-Sensitive

CSM 129.0 8.3

CSM-Escape 129.4 8.4

CSM-Taint 134.9 7.1

doPrivileged() 176.4 7.3
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The call-graph relation generated by the context-insensitive points-to analysis
contains approximately 300,000 points-to relations. This is refined to more than
80 million facts, except in the case of CSM-Taint where close to 59 million
facts are generated. This represents an increase in the size by a factor of 247.
However, if just the call-graph edges are (without the contexts) examined, there
are approximately 140,000 edges. So the context-sensitive analysis reduces the
number of edges from the context-insensitive relation by about 60%.

Table 6. Size of Call-Graph Relation

Client

Context-
Insensitive

Context-Sensitive Context-Sensitive

(No Context)

CSM 337,658 83,472,063 141,066

CSM-Escape 337,482 83,415,055 140,535

CSM-Taint 332,135 58,926,898 137,809

doPrivileged() 373,991 77,723,735 153,079

Despite the size of the call-graph edges and the context-sensitive points-to set,
slicing enables the computation of the context-sensitive points-to and call-graph
relations in under 4 hours and 45 minutes which is well under our limit of about
8 hours. The break up of the time taken by each stage is shown in Table 7. All
times are given in seconds.

Table 7. Timing Information

Client
Initial Context Context

Total
Slice Insensitive Sensitive

CSM 285 1,913 14,936 17,134
(4.76hrs)

CSM-Escape 293 1,903 14,790 16986
(4.72hrs)

CSM-Taint 233 1,694 5,959 7886
(4.05hrs)

doPriv() 256 2,508 11,844 7886
(4.05hrs)

To summarise, our experiments show that the reduction in the number of
variables and allocation sites using our points-to framework. Our experiments
provides insight into the sizes of the various relations that are computed on
the reduced input program. From our experimentation it is hard to establish a
relationship between number of variables specified by client and performance.
Ultimately it depends on the size of the reduced input program, which is hard
to estimate purely from the client’s query.
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Limitation of the Experiment

Firstly, all experiments are conducted on various versions of JDK. Although we
have reported results only on the OpenJDK 7, the results on other versions of JDK
are similar. All large code bases may not have the same characteristics as the JDK.
Hence our analysis might produce different results. But given that we have anal-
ysed the JDK in its entirety gives us confidence that the staged approach can be
applied to other large systems. The second issue relates to the security related
queries. All of them were related to access control and derived from the Java Se-
curity Coding Guidelines. While the coding guidelines cover key security related
situations, there are many aspects of security that we have not covered. However,
an initial analysis of the JDK shows that the security sensitive operations are re-
lated to each other which is why the number of variables and allocation sites are
in the initial slice are independent on the client. We believe that clients derived
from other secure coding guidelines will produce similar results.

6 Related Work

The novelty of our approach is using well known demand-driven points-to anal-
yses and the notion of slicing and combining them in the right order to ob-
tain a scalable demand-driven refinement technique to compute context sensitive
points-to relations for large systems. We have demonstrated that our approach
can compute the 2-Object-sensitive+1-Heap context-sensitive points-to set for
security related analysis of the JDK. No existing work has reported results on
any program that is as large as the JDK.

Most of the existing works report results on programs from standard bench-
marking suites such as DaCapo [6]. All the programs in these suites are much
smaller than the JDK. Jython, which is part of the DaCapo suite [6] is used as
an example of a typically large example for static analysis [24,23]. Smaragdakis
et al. [23] report that they were unable to compute the entire 2-Object+1-Heap
sensitive points-to relation for Jython. As the JDK has about 10 times the num-
ber of heap allocation sites and about 6 times the number of variables of Jython,
the standard DOOP technique cannot be used to compute the context-sensitive
points-to relation for the JDK.

It is difficult to perform an accurate comparison of our approach with other
approaches. This is because the analysis depends on both the size of the input
program as well as the query that is used in the demand-driven refinement
process. For instance, [22] achieve a 30% reduction in the number of variables;
but that is independent of any client query. But they do not reduce the number
of heap objects as they do not compute a relevant slice. None of the existing
work use security analysis for their refinement nor do they use slicing to get a
handle on complexity.

Sridharan and Bod́ık [24] use refinement with cast checking and disjoint anal-
ysis of factory methods as the criteria. Yan et al. [27] do not use refinement –
they compute the may alias relation directly in a demand driven fashion using
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CFL reachability. They develop a specific context-sensitive analysis based on
reachability and summarisation and do not compute the points-to relation.

Pre-analysis is used to selectively compute the context-sensitive points-to set
[20]. They use the pre-analysis to estimate the potential benefit before they
compute context-sensitive facts. Thus for the same program they have context-
insensitive facts for some program fragments while other fragments have context-
sensitive facts. Our approach is orthogonal to their work as we compute the
context-sensitive facts for the entire slice where the slice is identified using a
demand-driven approach. Furthermore, their approach is for C programs and it
is not clear how easily it can be applied to object-oriented programs. Finally,
their results are on all relatively small programs (the largest program they use
is a2ps-4.14 which has fewer than 65K lines of code).

Table 8 summarises the key differences between the different approaches.

Table 8. Comparison of Different Approaches

Approach
CFL Based Alias

Heap reduction
Client Based Reduction

or or
Variable Reduction Selective Contexts

Set based pre-processing
✓ ✗ ✗

[22]

Demand-driven
✓ ✗ ✓

alias analysis [27]

Selective context-sensitive
✗ ✗ ✓

analysis [20]

Our Work ✓ ✓ ✓

7 Conclusion

In this paper we introduced a staged demand-driven points-to framework that
uses specialisation and refinement. The specialisation is achieved by static pro-
gram slicing and program compaction. The refinement is achieved by staging the
points-to analysis, i.e., a pre-analysis refines the reduced input program for the
later stage. We have implemented our technique using the DOOP framework and
have presented our results on the OpenJDK version 7 build 147 using 4 security
related client queries. We have observed that our technique is able to reduce
the number of variables and allocation sites which enables the computation of
the 2-Object+1-Heap context-sensitive points-to well within our time bound of
8 hours. Our technique produces high-precision points-to analysis information
for code bases with million of program variables and thousands of invocation
sites going beyond the state-of-the-art.
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Abstract. Loop tiling is a loop transformation widely used to improve
spatial and temporal data locality, to increase computation granularity,
and to enable blocking algorithms, which are particularly useful when
offloading kernels on computing units with smaller memories. When
caches are not available or used, data transfers and local storage must
be software-managed, and some useless remote communications can be
avoided by exploiting data reuse between tiles. An important parameter
of tiling is the sizes of the tiles, which impact the size of the required local
memory. However, for most analyzes involving several tiles, which is the
case for inter-tile data reuse, the tile sizes induce non-linear constraints,
unless they are numerical constants. This complicates or prevents a para-
metric analysis with polyhedral optimization techniques.

This paper shows that, when tiles are executed in sequence along tile
axes, the parametric (with respect to tile sizes) analysis for inter-tile
data reuse is nevertheless possible, i.e., one can determine, at compile-
time and in a parametric fashion, the copy-in and copy-out data sets
for all tiles, with inter-tile reuse, as well as sizes for the induced local
memories. When approximations of transfers are performed, the situa-
tion is much more complex, and involves a careful analysis to guarantee
correctness when data are both read and written. We provide the math-
ematical foundations to make such approximations possible. Combined
with hierarchical tiling, this result opens perspectives for the automatic
generation of blocking algorithms, guided by parametric cost models,
where blocks can be pipelined and/or can contain parallelism. Previous
work on FPGAs and GPUs already showed the interest and feasibility
of such automation with tiling, but in a non-parametric fashion.

1 Introduction

Todays’ hardware diversity increases the need for optimizing compilers and
runtime systems. A difficulty when using hardware accelerators (FPGA, GPU,
dedicated boards) is to automatically perform kernel/function offloading (a.k.a.
outlining as opposed to inlining) between the host and the accelerator, and to or-
ganize data transfers between the different memory layers (e.g., in a GPU, from
remote to global memory, and from global to shared memory, or even registers).
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This requires static analysis to identify the kernel input (data read) and output
(data produced), and code generation for transfers, synchronizations, and com-
putations. In general, such tasks are done by the programmer who has to express
the communications, to allocate and size the intermediate buffers, and to decom-
pose the kernel into fitting chunks of computation. When each kernel is offloaded
in a three-phase process (i.e., upload, compute, store back), such programming
remains feasible. For GPUs, developers can use OpenCL or CUDA, or they can
rely on higher-level abstractions (e.g., compilation directives as in OpenACC or
garbage collector mechanisms as in [9]), static analysis as in OpenMPC [24], run-
time approaches as in [23], or mixed compile/runtime optimizations as in [26].
These approaches mainly work at the granularity of variable names, still defined
by the programmer, but they can be used to optimize remote transfers when
several kernels are successively launched. Things get more complicated when a
given kernel is decomposed into smaller kernels (and the initial arrays into array
regions) to get blocking algorithms, thanks to loop tiling. Indeed, iteration-wise
loop analysis and element-wise array analysis are needed to enable intra- and
inter-tile data reuse. Moreover, the choice of tile sizes is driven by hardware
capabilities such as memory bandwidth, size, and organization, computational
power, and such codes are very hard to obtain without automation and some cost
model. With this objective, our contribution is a parametric (w.r.t. tile sizes)
polyhedral analysis technique for inter-tile data reuse and a mathematical
framework to reason with approximations of data accesses and transfers.

Loop tiling is a well-known transformation used to improve data locality [35],
increase computation granularity, and control the use and size of local memories
for out-of-core computations (see [37] for details on semantics, validity condi-
tions, and code generation). It was first introduced for a set of perfectly nested
loops, as a grouping of iterations into supernodes [20], which are atomic (i.e., can
be executed without any communication/synchronization with other supernodes
except for live-in/live-out data at beginning/end of a tile execution), identical by
translation, bounded, and form a partition of the whole iteration space. Validity
conditions were given in terms of dependence cones and hyperplane partition-
ing, which define tiles as hyper-rectangles (after some possible change of basis)
and establish a link with affine scheduling and the generation of permutable
loops. Now, tiling is also used for non-perfectly nested loops [7], thanks to multi-
dimensional affine loop transformations: as in the perfectly nested case, some
permutable dimensions can be used to perform tiling, even if not all instruc-
tions have the same iteration domain. Analysis and code generation may involve
more complex sets, but the principles are similar. Today, loop tiling is still a key
loop transformation for performance (speed, memory, locality) and the subject
of many new advanced developments, including non-rectangular tiling.

Loop tiling can be viewed as a composition of strip-mining and loop inter-
change, after a preliminary change of basis. It transforms n nested loops into n
tile loops iterating over the tiles, surrounding n intra-tile loops iterating within a
tile. Dependence analysis and code generation for loop tiling is well-established in
the polyhedral model [14], i.e., for a set of nested for loops, writing and reading
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multi-dimensional arrays and scalar variables, where loop bounds, if conditions,
and array access functions are affine expressions of surrounding loop counters
and structure parameters. In this case, loop iterations can be represented by a
polyhedral iteration domain. When tile sizes are numerical constants, parametric
(w.r.t. program counters and structural parameters) polyhedral optimizations
(e.g., linear programming) can be used although loop tiling transforms n loops
into 2n loops. Indeed, the image by tiling of an n-dimensional polyhedral itera-
tion domain can be expressed as a 2n-dimensional polyhedral iteration domain,
because the set of points after tiling with fixed sizes can be described by affine
inequalities.1 In general, parametric tiling refers to the case where tile sizes
are parameters too. Parametric analysis within a tile is in general feasible as the
set of points in a tile is defined with affine constraints from the tile sizes and the
tile origin (first corner of the tile). However, when an analysis involves several
tiles, it becomes more intricate, if not unsolvable, as a priori expressing the tiled
space with tile sizes as parameters induces quadratic constraints. For example,
the tiling theory developed in [36], the code generation schemes of [20,15,7], the
data movement and scratch-pad optimizations of [22,21,6,4,28,34] are not para-
metric. Recently, efficient code generation for parametric tiling [30,19] as well as
some form of symbolic scheduling for tiled codes [8] have been developed.

In the context ofhigh-level synthesis (HLS), inter-tile data reusewasproposed [2]
(then automated [4]), as a source-to-source process on top of Altera C2HHLS tool,
to offload small computation kernels to FPGAs while optimizing communications
from a remote (in this case external) DDRmemory. Similar results with data reuse
between two successive tiles only were then demonstrated for AutoESL Xilinx
tool [28]. Different (and more restricted) forms of inter-tile data reuse were also
designed for programmable accelerators such as GPUs [5,17,34]. None of these ap-
proaches are parametric w.r.t. tile sizes. In this paper, we show thatmaximal inter-
tile data reuse can be expressed in the parametric case, even in an approximated
situation. The trick to get around a quadratic formulation is to work with all pos-
sible tiles – not just the tiles that are part of the iteration space partitioning and
whose origins belong to a lattice – but the difficulty is to make sure that exact-
ness and correctness aremaintained. Our contributions, mostly at the level of code
analysis, are the following:

– When read/write accesses can be described in an exact way using polyhedral
representations, we show how to derive, thanks to manipulations of integer
sets, the copy-in and copy-out sets for each tile, with parametric tile sizes.
This gives a full parametric generalization of the inter-tile data reuse of [4].

– We extend this parametric analysis to handle approximations, which make
the analysis more complex when some data may be both read and written
by the tiles, as loading too much may not be safe. We introduce the concept
of pointwise functions for which no additional loss of accuracy is induced.

– Using similar analysis principles, we show how such a parametric analysis
can be exploited in the following steps of the compilation, in particular to
perform parametric array contraction for the definition of local arrays.

1 However, difficulties due to large coefficients are possible.
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2 Prerequisites

2.1 Notations and Definitions

We write all vectors with bold letters such as i, with components i1, . . . , in.
The vector 0 (resp. 1) has all components equal to 0 (resp. 1) and a ◦ b is the
product (component-wise) of a and b. We denote by � the lexicographic total
order on vectors of arbitrary size and by ≤ the component-wise partial order on
vectors with same size, defined by i ≤ j if and only if (iff) ik ≤ jk for all k.

We will not elaborate on how to build and interpret the different affine func-
tions for tiling non-perfectly nested loops. To simplify the discussion and no-
tations, we only focus on the n dimensions to be tiled. We assume that each
statement S with polyhedral iteration domain DS (scanned with the iteration
vector i) is tiled, after a first affine mapping i �→ i′ = θ(S, i), by canonical tiles
whose sizes are specified by a vector s. In other words, a point i is mapped to

the tile indexed by T where Tk = � i′k
sk
�, or equivalently skTk ≤ (θ(S, i))k <

sk(Tk +1), for k ∈ [1..n], i.e., 0 ≤ θ(S, i)− s◦T ≤ s−1. Also, we restrict to the
case where the original and the tiled programs are both executed sequentially.2

Several orders of iterations in the tiled program are possible, we consider that the
tiled code is executed following the lexicographic order on the 2n-dimensional
vectors (T , i′). The tiled iteration domain for statement S is then:

TS = {(T , i′) | ∃i ∈ DS , i
′ = θ(S, i), 0 ≤ i′ − s ◦ T ≤ s− 1}

If θ is a one-to-one mapping and DS the set of integer points in a polyhedron,
then i can be eliminated and TS is also the set of integer points in a polyhedron.

Example We illustrate the concepts and steps of our technique with the kernel
jacobi_1d_imper from PolyBench [29], with a time loop, and tiled in 2D. For
the code in Fig. 1, the Pluto compiler [27] generates the following mapping:

θ(S1, (t, i)) = (t, 2t+ i, 0) θ(S2, (t, j)) = (t, 2t+ j + 1, 1)
DS1 = DS2 = {(t, i) | 0 ≤ t ≤ M − 1, 0 ≤ i ≤ N − 2}

for (t = 0; t < M; t++) {

for (i = 1; i < N - 1; i++)

S1: B[i] =

(A[i-1] + A[i] + A[i+1])/3;

for (j = 1; j < N - 1; j++)

S2: A[j] = B[j];

}

Fig. 1. Original kernel.

for (t = 0; t < M; t++)

for (i’ = 2t+1; i’ < 2t + N; i’++) {

S0: i = i’-2t;

S1: if (i<N-1) B[i] =

(A[i-1] + A[i] + A[i+1])/3;

S2: if (i>1) A[i-1] = B[i-1];

}

Fig. 2. Transformed kernel.

2 However, parallelism inside a tile is possible, as well as hierarchical tiling, which
enables to play with the extent of the tiled domain. Parallel execution are also possi-
ble by defining a partial execution order, if execution follows the axes defining tiles.
Other cases seem possible but with additional complications and approximations.
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This means shifting S2 by 1 in the j loop, fusing the i and j loops, then skewing
by 2 the inner loop, to get the code of Fig. 2. Then, several tiled code generations
are possible depending on how iterators are defined and how tiles are aligned,
i.e., what the underlying lattice of the tiling is. With the relation Tk = � ik

sk
�,

tiles are aligned with the canonical basis obtained after the transformation θ
(see Fig. 3 for tiles of size 2× 3, drawn in the original basis to save space). With
the “outset” code generation scheme of [30], for tile sizes s1 × s2, we get:

for (T1 = 0; T1 < M; T1+=s1) {

lb = 2T1+1-(s2-1); lb = s2*ceiling(lb/s2);

for (T2 = lb; T2 < 2T1 + N + 2(s1 - 1); T2+=s2)

for (t=max(0,T1); t<min(M,T1+s1); t++)

for (i’=max(2t+1,T2); i’<min(2t+N,T2+s2); i’++) {

S0: i = i’-2t;

S1: if (i<N-1) B[i] = (A[i-1] + A[i] + A[i+1])/3;

S2: if (i>1) A[i-1] = B[i-1];

}

}

For our scheme, it would also be valid to shift, after tiling, the inner tile-loop
w.r.t. the outer tile-loop, i.e., to move up or down each column in Fig. 3. �

2.2 Inter-Tile Data Reuse

The inter-tile reuse problem we formalize here is the kernel offloading with op-
timized remote accesses presented in [2,4], even if other variations are possible.
A kernel is tiled and offloaded, tile by tile, to a computing accelerator (a FPGA
in [2,4]). Initially, all data are in remote memory, while all computations are
performed on the accelerator. Each tile T consists of three successive phases:
a loading phase where data are copied from remote memory to local memory,
enabling burst communications, then a compute phase where the original com-
putations corresponding to the tile are performed on the local memory, and
finally a storing phase where data are copied to remote memory. In addition, all
compute (resp. loading and storing) phases are performed in sequence, following
the lexicographic order on tile indices. Nevertheless, loads and stores can be done

t

i

Non-empty 2 × 3 tiles drawn
w.r.t the original space. In-
struction S1 in red. Instruc-
tion S2 in green.

Are also shown some flow de-
pendences, due to reads of B,
at distance (0, 1), and reads
of A, at distance (1, 0), (1,−1),
(1,−2) in the (t, i) space.

Fig. 3. jacobi1d kernel and skewed tiling.
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concurrently with the computations of other tiles, enabling pipelining, compu-
tation/communication overlapping, and execution similar to double buffering.
Inter-tile reuse makes this possible even when data are both read and written.3

Then, the “maximal inter-tile data reuse problem” is to define the loading
and storing sets Load(T ) and Store(T ) for each tile T so that a data element
is never loaded from remote memory if it is already available in local memory,
i.e., if it has already been loaded or computed (as, in this latter case, the remote
memory is not necessarily up-to-date). This inter-tile reuse is performed for each
tile strip (subspace of tiles corresponding to inner tile dimensions). In [4], a tile
strip is one-dimensional, but the technique can be applied to multi-dimensional
strips. This choice however impacts the size of the local memory.

Note: there are some similarities with the reuse analysis of [16]. Given a “slid-
ing window” of iterations, one analyzes the data that each iteration needs to
bring because they were not already present due to previous iterations in the
sliding window. But the communications are not coalesced out of the tile, they
are still at the iteration level. In other words, this is a reuse analysis at constant
(possibly parametric) distance (the sliding window), but with no granularity or
scheduling (through tiling) reorganization, which makes the problem different.

The technique of [4], based on parametric linear programming [13], consists
in performing loads (resp. stores) as late (resp. as soon) as possible, i.e., a data
element is loaded just before the first tile that accesses it, if this access is a read,
and is stored just after the last tile that writes it. Among all schemes that exploit
a full inter-tile reuse in a strip, this tends to reduce the size of the local memory.
We illustrate this technique again on the jacobi_1d_imper example.

Example (cont’d) For the tiling of Fig. 3, a 1D tile strip is vertical, indexed
by T1 = � t

s1
�. To simplify explanations, we only consider the array A (the ar-

ray B is not live-in of a tile strip). We compute the first operation (following
the order defined by the tiling) that accesses A[m]. This means computing, with
(i1, i2) = (t, i) and parameters M , N , m, T1, the lexicographic minimum of
(T2, i

′
1, i

′
2, k, i1, i2) in a set defined by a disjunction of two conjunctions of affine

inequalities derived from the program (iteration domains and access functions):

{−1 ≤ m− i2 ≤ 1, 0 ≤ i1 ≤ M − 1, 1 ≤ i2 ≤ N − 2, k = 0,
i′1 = i1, i

′
2 = 2i1 + i2, 0 ≤ i′1 − 2T1 ≤ 1, 0 ≤ i′2 − 3I2 ≤ 2

∨{
m = i2, 0 ≤ i1 ≤ M − 1, 1 ≤ i2 ≤ N − 2, k = 1, i′1 = i1,
i′2 = 2i1 + i2 + 1, 0 ≤ i′1 − 2T1 ≤ 1, 0 ≤ i′2 − 3T2 ≤ 2

The first set of constraints corresponds to reads in S1 and specifies that A[m] is
A[i-1], A[i], or A[i+1], that iterations in tiles are valid ((T1, T2, i

′
1, i

′
2) ∈ TS),

and k = 0 is the third component of θ(S1, (t, i)) (i.e., S1 is the first executed
statement in the loop body). The second set of constraints corresponds to writes

3 Without inter-tile reuse, full pipelining of tiles is not always possible if a data is
locally written, then read in a subsequent tile. Indeed, one would then need to wait
for the data to be stored in remote memory before loading it again. Inter-tile reuse
enables to break such a cycle of synchronizations and avoid considering latencies.
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in S2 (with k = 1, i.e., second executed statement in the loop body). The lexico-
graphic minimum is expressed as a disjunction of cases (a QUAST or quasi affine
solution tree [13]). Then, all solutions (i.e., leaves of the tree) that correspond to
a write operation are removed. Here, all first accesses are reads, no simplification
is needed. It remains to project out the variables i′1, i′2, i1, i2, k, to get a relation
between tile index T and array element m, which describes Load(T ) as a union:

Load(T ) =
{m | 0 ≤ 2T1 ≤ M − 1, 2 ≤ m ≤ N − 1, 1 ≤ m+ 4T1 − 3T2 ≤ 3}

∪
{m | 0 ≤ m ≤ 1, 3 ≤ N, 0 ≤ 2T1 ≤ M − 1, −1 ≤ 4T1 − 3T2 ≤ 1}

The second set loads the additional A[0] and A[1] for the unique tile in the
strip that contains an iteration (t, 1) on its first column (squares in Fig. 3). �

As can be seen from the inequalities involved in the previous example with
s = (2, 3) (and in the definition of TS), considering the components of the size
vector s as parameters generates quadratic constraints. In other words, this
formulation is inherently not linear in the tile sizes. The goal of this paper is to
show that, surprisingly, the problem can nevertheless be solved, both for exact
inter-tile reuse (as in the previous example) and with approximations.

3 Dealing with Unaligned Tiles

The first key idea to break the non-linearity constraint is to represent each tile
not with its tile index T defined earlier, but with the index I of its origin (first
element in the tile in the lexicographic order). The first difference is that tiles
are scanned with loops with increments equal to 1 when T is used and equal
to s when I is used. The second difference is that, when I is used instead of T ,
the set of elements i in a tile is affine in s: this is the set of all i such that
I ≤ i ≤ I + s− 1. In other words, parametric analysis inside a tile is possible.
This representation is not new, it is used for analysis in PIPS [18, Fig. 6] and
for the parametric code generation [30] used for the tiled code of Section 2.1.
However, when reasoning with different tiles, the non-linearity is coming back.
Indeed, in a given execution, the tile origins I are restricted to the lattice L
defined by I ∈ L iff I = s ◦ J for some integer vector J . The second key
idea is to show how these quadratic constraints can nevertheless be ignored, by
reasoning on the set of all tiles of size s, not just those restricted to L. The
inter-tile reuse problem then becomes (piece-wise) affine in s as we will show.

Note that, with standard conditions for tiling (i.e., when all dependence dis-
tances are non-negative along the dimensions being tiled [20]), if a tiling is valid,
any translation of it is valid too. In other words, considering all tile origins
I = s ◦ J + I0 for some vector I0 defines a valid tiling too. This has the same
effect as defining the tiling from the shifted mapping i �→ σ(S, i)− I0 for all S.
Hereafter, we say that two tiles are aligned if they belong to the same tiling.

3.1 Exact Approach with Set Equations

In Section 2.2, maximal inter-tile data reuse was expressed as a linear pro-
gramming optimization, following [4]. It can be equivalently formulated with
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set equations [3], expressed in terms of In(T ) and Out(T ), the standard live-in
and live-out sets for tile T , as defined for example for array region analysis [10]:

Load(T ) = In(T ) \
⋃

T ′≺T

(In ∪Out)(T ′) = In(T ) \ (In ∪Out)(T ′ ≺ T )}

Store(T ) = Out(T ) \
⋃

T ′�T

Out(T ′) = Out(T ) \Out(T ′ 
 T )

Here, as indicated in the previous formulas, X(T ′ ≺ T ) is a shortcut to denote
the union of all setsX(T ′) for all tiles T ′ executed before T (lexicographic order)
in the same tile strip as T . Expressing X(T ′ ≺ T ) from X(T ′) is done simply by
adding the constraint T ′ ≺ T and specifying that T ′ is in the strip where reuse
is exploited. The previous set equations state that we load what is live-in for T
and not previously live-in (redundant load) or live-out (defined locally), and we
store what is live-out, but not again live-out later (redundant store). One could
expect to rather subtract Load(T ′ ≺ T ) from Load(T ) and Store(T ′ 
 T ) from
Store(T ), but such recursive implicit definitions are not usable.

We now rephrase these equations when tiles T are represented by their tile
origins I as previously explained. We also consider all tiles with size s, not
just those whose origins belong to the lattice L, i.e., even those that will not
be executed in a given tiling. These tiles contain valid iterations (which will
be executed as part of an aligned tile), but their Load and Store sets will not
generate transfers during the execution. We define two relations on tiles:

– I′ �s I iff I′ ≺ I and I − I′ ∈ L. This is equivalent to the lexicographic
order T ′ ≺ T for the corresponding tile indices.

– I′ ≺s I iff, for some k ∈ [1..n], I ′i ≤ Ii for all i < k and I ′k ≤ Ik − sk where n
is the dimension of I and I′. This is a variation of the lexicographic order.

The standard reflexive extensions �s and �s of these relations are clearly partial
orders. Fig. 4 shows all tile origins I′ strictly smaller (in blue) or strictly larger
(in red) than the tile origin I (in yellow), for the orders �s and �s. Note that
tiles comparable for �s are always aligned with each other. An alternate, maybe
more intuitive, definition of ≺s is as follows: I′ ≺s I iff, in the tiling induced
by I (the same is true with I′, this is symmetric), every point in the tile I′ is
executed before any point in the tile I (but I and I′ may not be aligned).

Here s = (2, 2)I �s I′I′ �s I

I

I2

I1

I′ ≺s I I ≺s I′

I

I2

I1

Fig. 4. Orders �s and �s. Points are tile origins.
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With tile origins, the previous Load/Store equations can be rewritten as:

Load(I) = In(I) \ (In ∪Out)(I′ �s I) (1)

Store(I) = Out(I) \Out(I′ �s I) (2)

The key is now to show that these sets can also be defined equivalently as:

Load(I) = In(I) \ (In ∪Out)(I′ ≺s I) (3)

Store(I) = Out(I) \Out(I′ 
s I) (4)

This is not obvious as the contribution of unaligned tiles (i.e., not in the same
tiling as I) is also subtracted, thus the Load/Store sets could now be too small.
Nicely, these sets only involve affine constraints as the relation ≺s is, by
definition, piece-wise affine (this is also the case for a similar “happens-before”
relation defined on iteration points). They can thus be computed with a library
such as isl [32]. Before proving these formulas, we first illustrate their use.

Example (cont’d) The following sets were computed thanks to the isl calculator
iscc [33] with the generic script of Fig. 5, for jacobi_1d_imper (see Fig. 3).

Load(I) = {A(m) | 1 ≤ m+ 2I1 − I2 ≤ s2, s1 ≥ 1, I1 ≥ 0, m ≥ 1, I1 ≤ −1 +M,
I2 ≥ 2− s2 + 2I1, m ≤ −1 +N, N ≥ 3}

∪ {A(m) | m ≥ 1 + I2, m ≥ 1, M ≥ 1, m ≤ −1 +N, I1 ≤ −1,
I1 ≥ 1− s1, I2 ≥ 2− s2, N ≥ 3, m ≤ s2 + I2}

∪ {
A(1) | I2 = 1 + 2I1 ∧ 0 ≤ I1 ≤ −1 +M, N ≥ 3, s1 ≥ 1, s2 ≥ 1

}
∪ {

A(m) | 0 ≤ m ≤ 1, I2 = 1 ≤ s2, 1− s1 ≤ I1 ≤ −1, M ≥ 1, N ≥ 3
}

∪ {
A(0) | 0 ≤ I1 ≤ M − 1, N ≥ 3, s1 ≥ 1, 1 ≤ I2 − 2I1 ≥ 2− s2

}
∪ {

A(0) | 1− s1 ≤ I1 ≤ −1, M ≥ 1, N ≥ 3, I2 ≥ 2− s2, I2 ≤ 0
}

Store(I) = {B(m) | m ≥ 1, m ≥ 2− 2M + s2 + I2, m ≤ −2 +N,
I1 ≥ 1− s1, 2 ≤ m+ 2s1 + 2I1 − I2 ≤ 1 + s2, s1 ≥ 1}

∪ {B(m) | m ≥ 1, s1 ≥ 1, m ≤ −2 +N, I1 ≤ −1 +M, m ≤ 1− 2M+s2+I2,
m ≥ 2− 2s1 − 2I1 + I2, I1 ≥ 1− s1, M ≥ 1, m ≥ 2− 2M + I2}

∪ {A(m) | m ≥ 1, m ≥ 1− 2M + s2 + I2, m ≤ −2 +N,
I1 ≥ 1− s1, 1 ≤ m+ 2s1 + 2I1 − I2 ≤ s2, s1 ≥ 1}

∪ {A(m) | m ≥ 1, s1 ≥ 1, m ≤ −2 +N, I1 ≤ −1 +M, m ≤ −2M + s2 + I2,
m ≥ 1− 2s1 − 2I1 + I2, I1 ≥ 1− s1, M ≥ 1, m ≥ 1− 2M + I2}

The fact that the array B appears in the Store set may be surprising as B is
recomputed in each tile strip (this is why it does not appear in the Load set).
This is because the script of Fig. 5 considers each tile strip in isolation. To be
able to remove B from the Store set, one would need a similar analysis on tile
strips to discover that B is actually overwritten by subsequent tile strips. Then,
only the last tile strip should store B, in case it is live-out of the program.

It can be checked (e.g., with iscc) that the set Load(I) above is indeed a
generalization of the set Load(T ) derived earlier for the canonical tiling with
s = (2, 3). It is the complete expression, parameterized by s, of all cases, includ-
ing incomplete tiles, and even tilings obtained by translation of L. Note that
simply changing the object Strip (see Fig. 5) from {[I_1,I_2]->[I_1,I_2’]} to
{[I_1,I_2]->[I_1’,I_2’]} gives 2D inter-tile reuse, i.e., in the whole space, as
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# Inputs

Params := [M, N, s_1, s_2] -> { : s_1 >= 0 and s_2 >= 0 };

Domain := [M, N] -> { # Iteration domains

S_1[i_1, i_2] : 1 <= i_2 <= N-2 and 0 <= i_1 <= M-1;

S_2[i_1, i_2] : 1 <= i_2 <= N-2 and 0 <= i_1 <= M-1; } * Params;

Read := [M, N] -> { # Read access functions

S_1[i_1, i_2] -> A[m] : -1 + i_2 <= m <= 1 + i_2;

S_2[i_1, i_2] -> B[i_2]; } * Domain;

Write := [M, N] -> { # Write access functions

S_1[i_1, i_2] -> B[i_2];

S_2[i_1, i_2] -> A[i_2]; } * Domain;

Theta := [M, N] -> { # Preliminary mapping

S_1[i_1, i_2] -> [i_1, 2 i_1 + i_2, 0];

S_2[i_1, i_2] -> [i_1, 1 + 2 i_1 + i_2, 1]; };

# Tools for set manipulations

Tiling := [s_1, s_2] -> { # Two dimensional tiling

[[I_1, I_2] -> [i_1, i_2, k]] -> [i_1, i_2, k] :

I_1 <= i_1 < I_1 + s_1 and I_2 <= i_2 < I_2 + s_2 };

Coalesce := { [I_1, I_2] -> [[I_1, I_2] -> [i_1, i_2, k]] };

Strip := { [I_1, I_2] -> [I_1, I_2’] };

Prev := { # Lexicographic order

[[I_1, I_2] -> [i_1, i_2, k]] -> [[I_1, I_2] -> [i_1’, i_2’, k’]] :

i_1’ <= i_1 - 1 or (i_1’ <= i_1 and i_2’ <= i_2 - 1)

or (i_1’ <= i_1 and i_2’ <= i_2 and k’ <= k - 1) };

TiledPrev := [s_1, s_2] -> { # Special ‘‘lexicographic’’ order

[I_1, I_2] -> [I_1’, I_2’] : I_1’ <= I_1 - s_1 or

(I_1’ <= I_1 and I_2’ <= I_2 - s_2) } * Strip;

TiledNext := TiledPrev^-1;

TiledRead := Tiling.(Theta^-1).Read;

TiledWrite := Tiling.(Theta^-1).Write;

# Set/relation computations

In := Coalesce.(TiledRead - (Prev.TiledWrite));

Out := Coalesce.TiledWrite;

Load := In - ((TiledPrev.In) + (TiledPrev.Out));

Store := Out - (TiledNext.Out);

print coalesce (Load % Params); print coalesce (Store % Params);

Fig. 5. Script iscc for the Jacobi1D example.

the first dimension is not a fixed parameter anymore. The strict order ≺s is
defined by TiledPrev while Load and Store, at the end of the script, express
Eqs. (3) and (4). Constraints on parameters or on I can be added in Params, e.g.,
to get simplified Load/Store sets for complete tiles, for large tiles, etc. Note how-
ever that isl uses coalescing heuristics to simplify expressions and, depending
on the constraints, the outcome can be simpler or more complicated (although
equivalent). Here, replacing s1 ≥ 0 by s1 > 0 changes the final expression. �

To prove that we can use ≺s (in Eqs. (3) and (4)) instead of �s (in Eqs. (1)
and (2)), we define the concept of pointwise functions. This is a bit more than
what we need for the proofs, but this concept makes easier to understand the
underlying problems, related to the equality (or not) of some unions of images
of sets, which will be even more subtle when dealing with approximations.
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3.2 Pointwise Functions

If A is a set, P(A) denotes the set of subsets of A (sometimes also written 2A).
Hereafter, the function F is typically a function such as Out, which maps a tile,
i.e., a subset of the tile strip (A), to a subset of all data elements (B).
Definition 1. Let A and B be two sets, C ⊆ P(A). The function F : C → P(B)
is pointwise iff there exists f : A → P(B) such that ∀X ∈ C, F (X) =

⋃

x∈X

f(x).

In other words, a function F is pointwise if the image of any set where F is defined
(not necessarily all sets) can be summarized by the contributions (through f) of
the points it contains. In our case, A is the set of iterations in the tile strip to be
analyzed and C is the set of all tiles (aligned or unaligned) intersected with A.

If all written values are live-out, then Out(I) = Write(I), the values written
in I. Otherwise, this set should be intersected with Liveout, the set of all elements
live-out of the tile strip. The function Write is, by definition, pointwise, because
it is the union, for all points i in I, of the set of values write(i) written at
iteration i. Also, even if I �→ In(I) may not be pointwise, any element read but
not written in I is live-in for I, thus (In∪Write)(I) = (Read∪Write)(I), which
is pointwise, by introducing read(i) the set of points read at iteration i. We get:

Load(I) = In(I) \ (In ∪Write)(I′ �s I) = In(I) \
⋃

I′�sI

⋃

i∈I′
(read ∪ write)(i)

= In(I) \
⋃

I′≺sI

⋃

i∈I′
(read ∪ write)(i) = In(I) \ (In ∪Write)(I′ ≺s I)

This is because ∪I′≺sII
′ = ∪I′�sII

′. Indeed, since all tiles aligned with I form
a partition of A, the points covered by the two unions are the same: these are
all the points executed before any point in I. The same is true for Store(I),
which is equal to Liveout∩ (Write(I) \Write(I′ �s I)), or equivalently equal to
Liveout∩(Write(I)\Write(I′ 
s I)). This concludes the proof in the exact case.

In summary, because tiles represent points exactly and because the “happens-
before” relation (the fact that a point, resp. a tile, happens, during tiled execu-
tion, before another point, resp. tile) can be represented by a piece-wise affine
relation, it is possible to perform a parametric analysis of inter-tile data reuse.

The equality of the unions of the images for I′ �s I and for I′ ≺s I is actually
a general property, and even a characterization, of pointwise functions. As the
following theorem shows, pointwise functions are exactly those that induce the
desired “stability” property on union of sets, i.e., if two unions of sets cover
the same points, then the union of their contributions through F are the same.
This a more general property than distributive functions (for ∪), those for which
F (A ∪B) = F (A) ∪ F (B) because, in our case, F (A ∪B) may not be defined.

Theorem 1. F : C → P(B) is pointwise if and only if ∀C′ ⊆ C, ∀C′′ ⊆ C,⋃
X∈C′ X =

⋃
X∈C′′ X ⇒

⋃
X∈C′ F (X) =

⋃
X∈C′′ F (X).

Note that the previous property on unions is equivalent to ∀X ∈ C, ∀C′ ⊆ C,
X ⊆

⋃
X′∈C′ X ′ ⇒ F (X) ⊆

⋃
X′∈C′ F (X ′), i.e., if a set is covered by a union of

sets, then its image is contained in the union of the images of these sets.
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Fig. 6. “Double squares” (red), F (image of red & green), non pointwise situations.

A third equivalent characterization is possible, which explicitly builds a func-
tion f for a pointwise function F . If F and G are from C to P(B), we write F ⊆ G
if ∀X ∈ C, F (X) ⊆ G(X). Theorem 2 also identifies the “largest” pointwise
under-approximation of F . All missing proofs are provided in [11] (appendix).

Theorem 2. For F : C ⊆ P(A) → P(B), let F◦ be the pointwise function
defined from f◦(x) =

⋂
Y ∈C, x∈Y F (Y ). Then F◦ is the largest pointwise under-

approximation of F , i.e., F◦ ⊆ F and, if F ′ is pointwise, F ′ ⊆ F ⇒ F ′ ⊆ F◦.
In particular, F is pointwise if and only if F = F◦.

To get the intuition for these concepts, it is simpler to consider objects more
general than rectangular tiles. Let C be the set of all possible “double squares”
(in 2D) defined as two diagonally-neighboring squares as depicted on the left
of Fig. 6 (red points in two boxes). Suppose each point i has an image f(i).
If F (I) is defined for a “double-square” I as the union of all f(i) for i ∈ I,
it is pointwise by definition. Now, suppose F (I) is defined as the union of all
f(i) for i in the convex hull of I (red + green points). The first situation on
the right of Fig. 6 shows that each point i is included in two “double-squares”
whose images by F have only f(i) in common. Thus F0 is not equal to F (the
image of green points are missing) unless f has some additional property and,
according to Theorem 2, F is not pointwise. The second situation on the right of
Fig. 6 shows that a “double-square” is fully contained in two “double-squares”,
but the image of its green points (if f is injective) is not covered by the image
of these two “double-squares” so, according to Theorem 1, F is not pointwise.

3.3 The Case of Approximations

We will use the previous properties of pointwise functions for approximations.
There are at least four reasons why approximations of the various sets In, Out,
Load, and Store may be used in an automatic code analyzer and optimizer.

– The execution of S at iteration i is not guaranteed, for example when it
depends on a non-analyzable (e.g., data-dependent) if condition.

– The access functions are not fully analyzable (e.g., indirect accesses).
– The In/Out sets are approximated on purpose (e.g., they are restricted to

polyhedra or hyper-rectangles) due to the algorithms used for analysis.
– The Load/Store sets are approximated to make them simpler, or to get

transfer sets of some special form (e.g., vector/array communications).
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In the first two cases, the approximation is pointwise, so the Read/Write func-
tions remain pointwise. In the last two cases, it is more likely that In ∪ Out is
not pointwise anymore. We first recall and extend the principles stated in [3] for
approximations, assuming that the sets In, Out, and Out are given such that
In(I) ⊆ In(I) and Out(I) ⊆ Out(I) ⊆ Out(I). Here, the under-approximations
(that could benefit from [10,31]) are not used for correctness, only for accuracy.

Non-Parametric Case. The first step is to define the Store sets, as exactly as
possible from the Out sets, i.e., the sets of data possibly written:

Store(I) = Liveout ∩ (Out(I) \Out(I′ �s I)) (5)

Then, any over-approximation Store(I) of Store(I) can be used. Eq. (5) means
that a possibly-defined element is always stored to remote memory, in case it is
indeed written at runtime. But what if this is not the case? We add it to the set
of input elements so that its initial value is stored back instead of garbage:

In
′
(I) = In(I) ∪ (Store(I) \Out(I)) (6)

Following [3, Thm. 3], loads are defined, as exactly as possible, from the sets

Out, Out, and In
′
(i.e., after Store is defined). They are valid if for any tile I:

Load(I′ �s I) contains Ra(I) = In
′
(I) \Out(I′ �s I) (7)

Load(I) ∩Out(I′ �s I) = ∅ (8)

Eq. (7) means that all data possibly defined outside of the tile strip – the remote
accesses Ra(I) – have to be loaded before I. Eq. (8) means that data possibly
defined earlier in the tile strip should not be loaded, as this could overwrite some
valid data. Eq. (9) below gives a non-recursive definition of Load(I), simpler (and
more usable) than the formula of [3, Thm. 6] (although it is equivalent):

Load(I) = RaI ∩ ((In
′ ∪Out)(I) \ (In′ ∪Out)(I′ �s I)) (9)

where RaI denotes all remote accesses for the tile strip w.r.t. I, i.e., the union
of all Ra(I′), as defined in Eq. (7), for all I′ that belong to the same tiling as I.
The mechanism of Eq. (9) is actually simple: unlike for the exact case, a remote

access live-in for I (i.e., in In
′
(I)) cannot be loaded just before I if it may be

written earlier (i.e., in Out(I′ �s I)). Otherwise, the load will erase the right
value if, at runtime, it was indeed written earlier. Instead, the trick is to load
the element before the first tile I′ that may write it. This way, either the value
is defined locally and the read in I gets this value, or it is not defined and the
read gets the original value. Thm. 3 (see the proof in [11]) states more formally
the correctness and exactness of Eq. (9). Then, any over-approximation Load(I)
of this “exact” Load(I) can be used (even if it may induce some useless loads)
as long as it still satisfies Load(I) ∩Out(I′ �s I) = ∅, as required by Eq. (8).

Theorem 3. Eq. (9) defines valid loads, which are “exact” w.r.t. the In
′
, Out,

and Out sets (no useless or redundant loads) and performed as late as possible.

We write ΔF the function defined from F by ΔF (I) = F (I)\F (I′ �s I). Then,

with F = In
′ ∪Out, we get Load(J) = RaI ∩ΔF (J) for all J aligned with I.
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Parametric Case. Our goal is to reformulate Eqs. (5) and (9) so that the Store
and Load sets can be computed with the tile sizes s as parameter. Can we just
replace the order �s by �s as in the exact case (Section 3.1)? No. Doing so may,
in general, be incorrect, resulting in missing loads or stores for I, if subtracting
the contribution of unaligned tiles (i.e., those that will not be executed) remove
additional elements. This is where pointwise functions come, again, into play.

The easy case is when approximations are at the level of iterations, i.e., the
accesses of each iteration i are approximated with write(i) ⊆ write(i) ⊆ write(i)
and read(i) ⊆ read(i), resulting in pointwise functions Write, Write, and Read.
If the sets Out, In, then Store are derived from Write and Read with no further

approximation, then, as for the exact case, Out and In
′ ∪Out are pointwise too.

Thus, a Store(I) can be computed with Eq. (5), in a parametric way, with 
s

instead of �s. The same is true for the central part of Load(I) in Eq. (9) with ≺s

instead of �s. It remains to compute RaI from Ra(I) = In
′
(I) \ Out(I′ �s I).

As the tiles in L cover the whole iteration space, RaI is the set of all data that
are maybe read (or written for stores) and possibly not written before, i.e., live-
in for the tile strip, for the schedule induced by the tiling aligned with I. But
if the mapping θ used for tiling was considered legal with the same pointwise
approximation of reads and writes, then any shifted tiling (with standard validity
conditions) preserves anti, flow, and output dependences, thus RaI does not
depend on I. It is even equal to the live-in data for the tile strip when considering
the original order of the code and, thus, can be computed, independently on s.

The previous approach can be used when Load/Store sets are computed “ex-
actly” but from a pointwise approximation of accesses. We now consider the case
where, in addition to this pointwise approximation, even the sets Out, In, Store,
and Load can be over-approximated further, for whatever reason. For example,
Store(I) can contain data that are not even in Out or In, and thus not remote
in the strict sense. However, transfers still need to be correct. We first consider

how to handle Out in Eq. (5) and In
′ ∪Out in Eq. (9), which, a priori, have no

reason to be pointwise. We deal with the computation of RaI later.
We first mention an interesting intermediate situation that works with no

further difficulties, even if the approximations are not pointwise. If a pointwise
function F is over-approximated through its domain (the iterations) instead of
its range (the data), i.e., F (I) = F (I) with I ⊆ I, then it may be the case that,
when computing the unions (either with �s or ≺s), no new iterations are added
with the approximated domains. This is what happens with the approximated
“double-squares” of Fig. 6, typical from parallel tiles. Then F (I′ �s I) equals:

⋃

I′�sI

⋃

i∈I′

f(i) =
⋃

I′�sI

⋃

i∈I′
f(i) =

⋃

I′≺sI

⋃

i∈I′
f(i) =

⋃

I′≺sI

⋃

i∈I′

f(i) = F (I′ ≺s I)

In this case, even without pointwise functions, parametric approximations can be
designed, with a careful analysis of the “shape” (the sets I) of approximations.
But, this situation does not cover the case where approximations are made in
the range of F and cannot be converted into approximations in the domain of F ,
as it is the case for pointwise functions. We now address this general case.
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The key point for approximation is that loading earlier and storing later always
keeps correctness. As noticed earlier, Load(I) has the form RaI ∩ΔF (I) with
ΔF (I) = F (I) \ F (I′ �s I), thus ΔF (I′ �s I) = F (I′ �s I). If we define F ◦

pointwise such that F ⊆ F ◦, then ΔF (I′ �s I) ⊆ ΔF ◦(I′ �s I), i.e., possibly
more data are loaded (but no load is delayed), thus the validity condition of
Eq. (7) is satisfied with RaI ∩ ΔF ◦. The same is true for Store(I) with �s:
possibly more data are stored but no store is advanced. Finally, Eq. (8) is satisfied
too as Out(I′ �s I) ⊆ F (I′ �s I) ⊆ F ◦(I′ �s I), which is subtracted in ΔF ◦.
Thus, such an over-approximation mechanism (making F bigger) is always valid.

Thm. 4 below shows how to build such a function F ◦ with the additional
property that loads in ΔF that correspond to “pointwise loads” are still loaded
for the same tile with ΔF ◦, i.e., not earlier (thus with no lifetime increase).
Indeed, the goal is to try to avoid the naive solution where all data are loaded
(resp. stored) before (resp. after) the whole computation of the tile strip.

Theorem 4. Let C be the set of all tiles of size s and F : C → P(B). Define F ◦

by F ◦(I) = ∪J, I∈JF (J), where I ∈ J means that I is in the tile with origin J.
Then F ⊆ F ◦ and F ◦ is pointwise. Moreover, if y is such that ∀I, y ∈ F (I) ⇒
y ∈ F◦(I) (F◦ is defined in Thm. 2), then ∀I, y ∈ ΔF ◦(I) ⇒ y ∈ ΔF (I), i.e.,
over-approximating F by F ◦ does not load “pointwise” elements earlier.

The same technique can be used for Store(I) but with an expression such as
F ◦(I) = ∪J ,J∈IF (J). It remains to see what to do with the set RaI . We can
compute, with s as parameter, Ra(I) = In(I) \Out(I′ ≺s I), thus replacing �s

by ≺s. We get a priori a smaller set, which could be problematic because of the
intersection in Eq. (9). However, it is still correct and, actually, even more precise.

Indeed, as Out is exact, we have In
′
(I) \ Out(I′ �s I) = In

′
(I) \ Out(I′ ≺s I)

and what is actually important in Eq. (7) is that this set is indeed loaded. Thus,
considering Ra(I) = In(I) \ Out(I′ ≺s I) in Eq. (7) is fine as it is a superset.
Finally, to compute RaI =

⋃
J ,J−I∈L Ra(J), we drop the lattice constraint. If

Ra is not pointwise, we get a possibly larger set: this is suboptimal, but correct.
This completes the theory for parametric tiling with inter-tile reuse and ap-

proximations. In practice, it needs to be adapted to each approximation scheme
but it still provides some general mathematical means to reason on the correct-
ness of approximations for parametric tiling. A possible approximation (to reduce
complexity) consists in removing, in all intermediate computations such as Out,
Store, In′, all existential variables (projection) and to manipulate only integer
points in polyhedra. Another possibility is to rely on array region analysis tech-
niques [10]. This is left for future work. We point out however that generalizing
such a parametric inter-tile reuse to more general tilings, where tiles (rectangular
or not) are not executed following the axes that define them, will be more difficult
if the iteration space covered by tiles that “happen before” a given tile cannot be
defined by a piece-wise affine relation. One can still define approximations, even

not necessarily pointwise, as long as (In
′ ∪Out)(I′ ≺s I) = (In

′ ∪Out)(I′ �s I)
(and similar equalities), as illustrated with the “double-squares” of Fig. 6. How-
ever such approximations are more difficult to define systematically and may
require unacceptable (i.e., too rough) additional over-approximations.
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4 Next Step: Deriving Local Memory Sizes

One of the interests of computing the Load/Store sets in a parametric fashion
is that, now, the size of the resulting local memory (e.g., obtained by bounding
boxes or lattice-based array contraction [12]) can also be computed in a para-
metric fashion. Such a parametric scheme seems almost mandatory in a context
such as described in [4,28], for HLS from C to FPGA. Indeed, as explained
in [4], some manual (though systematic) changes must be done to the tiled code
so that it is accepted by the HLS tool. Doing these changes for all interesting
tile sizes is not reasonable. Also, as explained in [28], identifying the right tile
sizes may require executions of multiple scenarios. Parametric code generation
would help speeding up such a design space exploration. With this parametric
inter-tile reuse, combined with parametric code generation [30] and buffer siz-
ing [1], one should be able to derive a fully automatic scheme, with parametric
tile sizes. This also makes the design and use of analytical cost models possible,
in particular to explore hierarchical tiling, which impacts the local memory size.

To illustrate such applications, we extended the buffer sizing of [1] – which
requires lifetime information of array elements to use memory reuse for array
contraction – to the case where s is a parameter, and for partial orders of compu-
tations, e.g., those expressing pipeline executions. As for inter-tile reuse, we con-
sider all tiles, not just those aligned w.r.t. a given lattice. Again, one can make
sure that no rough approximation is performed that would result in an over-
estimated memory size. These results are out of the scope of this paper. We only
report here some examples, for two schedules, as illustration. The first schedule
performs all computations in sequence: tiles are serialized and each tile performs
its loads, then its computations, then its stores before a new tile is computed. The
second one is a double-buffering-style schedule (in each tile strip) defined with
the following precedences: a) if I1, I2, I3 are three successive tiles for�s, transfer
requests are serialized as Load(I2) → Store(I1) → Load(I3) → Store(I2) → . . .,
b) tile computations are done sequentially following �s, and c) each tile I loads
its set Load(I), then computes, then stores its set Store(I). All other overlap-
pings (in particular parallelism between computations and transfers) can arise
at runtime, achieving a kind of double-buffering-style computation.

Example (cont’d) The jacobi_1d_imper code of Fig. 1 has two parameters N
and M defining the loop bounds. The proposed tiling has also two tile size
parameters s1 and s2. There could be a 5th parameter to specify each tile strip,
but we chose to derive mappings valid for all tile strips (as for all examples
hereafter). After Load/Store analysis and memory folding with modulos, we get
(after simplification) to following sizes for A and B, for the sequential schedule:

– size(B) = min(N − 2, 2M + s2 − 1, 2s1 + s2 − 1).
– size(A) = min(N, 2M + s2, 2s1 + s2).

and, with the pipeline schedule:

– size(B) = min(N − 2, 2M + 2s2 − 2, 2s1 + 2s2 − 2).
– size(A) = min(N, 2M + 2s2, 2s1 + 2s2).
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These expressions are actually expressed as disjunctions, each term that con-
tributes to the minimum being specified by conditions on parameters. One can
also of course easily retrieve (this time in a parametric fashion) the expression
of the memory size for the product of 2 polynomials analyzed in [4]. �

We are still working on an automated implementation of our algorithms with
isl, to be integrated into PPCG [34], an optimizer for GPUs. For the moment,
we manually adapted an iscc script for some PolyBench [29] examples. The
reader interested in the details can consult the table provided in the appendix
of [11]. The transformations θ were given by the isl scheduler, which gives results
similar to those of Pluto [27]. We tiled the largest consecutive tilable dimensions
(underlined in the table) for which dependences are nonnegative. Some examples
were omitted, either because the isl scheduler did not exhibit any “tileability”4

– at least without preliminary transformations such as array expansion –, or
because they had too many instructions5 or variables6 and would not fit in
the table (these examples were not tried: they may – but maybe not – reveal
complexity issues, which will be explored with the automatic implementation
in isl, as well as different approximation schemes). Moreover, parameters were
restricted so that each kernel domain contains at least one strip with at least two
consecutive full tiles, and tile sizes are at least 2: this avoids many special cases
(their generation is possible however) that, again, would not fit in the table.

The results we provided in the table of [11] are the array sizes after memory
folding. We computed a memory allocation compatible for all tile strips, depend-
ing on the program parameters and the counters of the loops surrounding the
tiled loops. Another choice could have been to compute a memory allocation de-
pending on the strip, potentially saving space for boundary strips. The memory
size was computed for both sequential and pipelined (double buffering) execution
with inter-tile data reuse, using the successive modulo approach of Lefebvre and
Feautrier [25]. We are still working on the approximations, not provided in the
table, as well as on techniques to speed-up and simplify both the expressions of

intermediate sets such as In
′
and the final ones such as Load and memory sizes.

Double buffering, as expected, usually doubles the local memory size in terms
of the innermost tile size. Some arrays require almost all data to be live during
a strip, thus causing the whole array to be stored into local memory (e.g., x in
trisolv). Furthermore, modulo allocation has limitations. It is really apparent
on floyd warshall where memory conflicts are spread in such a way that only
a modulo bigger than k + 1 and n− k on both dimensions is valid. Thus, while
the number of conflicting memory addresses is proportional to the tile area, the
allocation is not. A tighter memory allocation could be obtained with a piece-
wise modulo allocation scheme, allocating accesses to path[i, k] and path[k, j]
differently from the accesses to path[i, j]. More generally, it is more likely that
automating such schemes, with pipelining, parallelism, and hierarchical trans-
fers, will require more advanced communication and allocation strategies.

4 Kernels durbin, ludcmp, cholesky, and symm
5 Kernels adi, fdtd-apml, gramschmidt, 2mm, 3mm, correlation, and covariance
6 Kernels bicg, gemver, and gesummv
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5 Conclusion

This work provides the first parametric solution for generating memory transfers
with data reuse when a kernel is offloaded to a distant accelerator, tile by tile
after loop tiling, and when all intermediate results are stored locally on the ac-
celerator. In this case, when a value has been loaded or defined in a previous tile,
it is read from the local memory and not loaded from the remote memory, which
is not yet up-to-date. Our solution is parametric in the sense that we can derive
the copy-in/copy-out sets for each tile, exploiting both intra- and inter-tile data
reuse, with tile sizes as parameters. Such a result is quite surprising as paramet-
ric tiling is often considered as necessarily involving quadratic constraints, i.e.,
not analyzable within the polyhedral model. We solve it in an affine way with a
different reasoning that considers, in the analysis, all (unaligned) possible tiles
obtained by translation and not just the tiles of a given tiling. A similar technique
can be used to parameterize the computations of local memory sizes, thanks to
parametric lifetime analysis and array contraction with parametric modulos (or
bounded boxes), even for pipeline schedules similar to double buffering.

This reasoning can also be extended in the case of approximations, which are
needed when dealing with kernels that are not fully affine, or because approxi-
mations of communications are desired for code simplicity, complexity issues, or
architectural constraints (e.g., vector communication). The main difficulty with
approximation is that, when some data can be both read and written, load-
ing blindly from remote memory, in an over-approximate way, is not safe as it
may not be up-to-date. We address the problem thanks to the introduction of the
concept of pointwise functions, well suited to deal with unaligned tiles. This con-
cept may be useful for other applications linked to extensions of the polyhedral
model as it turns out to be fairly powerful. For the moment, our study provides
the mathematical foundations to discuss the correctness of approximation tech-
niques that still need to be designed, even if some simple schemes are already
possible. The full implementation, from the analysis down to code generation,
is still a development challenge. Full experiments will be needed to validate the
approach and help designing cost models for tile size selection. Nevertheless, the
different performance studies with inter-tile data reuse for GPUs [16,17,34] or
FPGAs [4,28], for non-parametric tile sizes, already demonstrate its interest.

“Guessing” the right size of the tiles can be laborious, especially when dealing
with multi-level tiling and multi-level caches. The search space can become so
wide that even iterative compilation might not be sufficient. As said, our para-
metric technique provides a direct expression of the copy-in/copy-out sets for
each tile, and can then be used for performing array contraction on the acceler-
ator still in a parametric fashion. It is only with such a parametric description
that we can hope to design cost models for compile-time tile size selection in the
context of tiling with inter-tile data reuse. Such static compilation techniques
could then be integrated on top of intermediate languages such as OpenACC
or OpenCL, or directly generate lower-level code, providing an automatic way
to derive blocking algorithms for accelerators. Other applications are certainly
possible, as soon as data reuse among tiles or pages has to be analyzed.
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Abstract. Every compiler comes with a set of local optimization rules,
such as x + 0 → x and x & x → x, that do not require any global anal-
ysis. These rules reflect the wisdom of the compiler developers about
mathematical identities that hold for the operations of their intermediate
representation. Unfortunately, these sets of hand-crafted rules guarantee
neither correctness nor completeness. Optgen solves this problem by
generating all local optimizations up to a given cost limit. Since Opt-
gen verifies each rule using an SMT solver, it guarantees correctness
and completeness of the generated rule set. Using Optgen, we tested
the latest versions of GCC, ICC and LLVM and identified more than
50 missing local optimizations that involve only two operations.

Keywords: Intermediate Representations, Local Optimizations, Super-
optimization.

1 Introduction

Every compiler comes with a set of local optimization rules, like x + 0 → x or
simple constant folding. By definition, such rules exhibit a left-hand side of
limited size and require no global analysis. Thus, they can be applied at any
time during the compile run.

So far, the local optimizations provided by state-of-the-art compilers are in-
complete. For instance, GCC 4.9 and ICC 15 do not support the local op-
timization x | (x⊕ y) → x | y1 whereas LLVM 3.5 fails to perform the op-
timization -((x - y) + z) → y - (x + z). Furthermore, all three compilers miss
some optimizations with non-trivial constants, like x & (0x7FFFFFFF - x) →
x & 0x80000000 for 32-bit integer types. Moreover, the compiler does not guaran-
tee the correctness of the supported optimization rules. This raises the question
for a generator that systematically enumerates and verifies all local optimizations
up to a given pattern size.

On the assembly level, superoptimizers solve a related problem: They try to
generate a better version for a fixed sequence of instructions, while preserving
the semantics of the sequence. In order to guarantee the correctness of their
transformation, they transform the instruction sequences into SAT or SMT for-
mulas. Then, they use the corresponding solver to verify the equivalence of the
constructed formulas. Later, generators for peephole optimizers used the same
1 ⊕ stands for bitwise exclusive or, | for bitwise or, and & for bitwise and.
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technique to verify correctness but also aim for completeness. However, they all
used a limited set of constants, like {0, 1,−1}.

The dilemma of supporting all constants is revealed when creating constant
folding rules. On a 32-bit architecture, we would create 264 constant folding rules
for every binary operation: 0 + 0 → 0, 0 + 1 → 1, and so on. Obviously, enumer-
ating all these rules is far too expensive and impractical for end users. Thus, the
handling of constants is the key challenge when aiming for completeness of the
generated rule set.

In contrast to peephole optimizations, local optimizations work on the in-
termediate representation (IR). Since modern IRs in static single assignment
form model data dependencies explicitly, local optimizations match these data
dependencies instead of instruction sequences. This allows to perform local op-
timizations on patterns that span the whole function.

In this paper, we present Optgen2, a generator for local optimization rules.
Optgen takes a set of operations, their costs, and a cost limit as input pa-
rameters. It then generates all local optimizations up to the given cost limit and
provides them in textual or graphical form. Furthermore, it generates a test suite
that finds missing local optimizations in existing compilers. The contributions
of this paper are:

– A generator for all local optimization rules up to a given cost limit.
– An approach how to cope with constants that can be backported to genera-

tors for peephole optimizers.
– An optimization that combines local optimization rules with global analyses.
– An evaluation of state-of-the-art compilers that reveals more than 50 missing

local optimizations that involve only two operations.

The remainder of the paper is structured as follows. In Section 2, we discuss
preliminaries and related work. Section 3 presents design and implementation
techniques of Optgen. In Section 4, we combine local optimization rules with
global analysis information. In Section 5, we evaluate Optgen, state-of-the-art
compilers, and the global optimization phase. Finally, Section 6 concludes and
discusses future work.

2 Preliminaries and Related Work

The goal of Optgen is to generate a set of local optimization rules that is correct
and complete. In this section, we present related work that mostly focuses on
assembly level. Along the way, we learn the advantages and drawbacks of working
on the IR level rather than on the assembly level.

2.1 Superoptimization Research

During the compilation of a program, the compiler performs many optimizations
to improve the resulting code with respect to execution speed, code size, or some
other criterion. Although the term optimization suggests optimal results, modern
compilers fail to produce optimal code even for small inputs.
2 http://pp.ipd.kit.edu/optgen/

http://pp.ipd.kit.edu/optgen/
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In 1987, Massalin presented a program that can compute the shortest sequence
of assembly instructions to realize a given instruction sequence [7]. Since his ap-
proach guarantees optimality and the term optimization was already occupied,
he called his program superoptimizer. The superoptimizer takes a set of instruc-
tions and enumerates sequences of them. It then translates the sequence into a
boolean expression and compares the resulting minterms with the minterms of
the original instruction sequence to decide whether they are equivalent.

Massalin presented two techniques to speed up the superoptimizer. First, he
created a set of test inputs and compared the results of the generated sequence
and the original one. In his experience, this filters out almost all sequences that
are not equivalent. The second speed-up technique is to reject generated se-
quences that contain a known non-optimal subsequence. With both techniques,
the superoptimizer is able to generate sequences of up to 13 instructions in a
reasonable amount of time.

In 2002, Joshi et al. presented their superoptimizer Denali that allows to find
larger optimal sequences [4]. In contrast to Massalin’s approach, Denali takes a
set of equivalences that should be used to optimize the program. Thus, Denali’s
task is to find the optimal representation of the input program regarding the
given equivalences.

Joshi et al. decided to use E-graphs for a very compact representation of mul-
tiple equivalent representations [8]. Denali iteratively applies the given equiva-
lences until the E-graph contains all possible program realizations. Then, Denali
constructs a boolean formula that is satisfiable if, and only if, the program can
be computed within k cycles. If the formula is satisfiable, Denali can construct a
program from the corresponding logical interpretation that uses exactly k cycles.
Furthermore, if the formula for k−1 is not satisfiable, the previously constructed
program uses the minimal number of cycles.

More recently, Schkufza et al. propose to use a Markov chain Monte Carlo
sampler to find better versions of a given instruction sequence [9]. Their imple-
mentation STOKE sacrifices optimality for the capability to generate optimized
sequences of more than 15 instructions. This allows to find sequences that differ
algorithmically, which may result in larger speed-ups than an optimal approach
that is limited to fewer instructions. In a follow-up paper, Schkufza et al. ex-
tended their approach to floating-point arithmetic [10].

2.2 Generators for Peephole Optimizers

Superoptimizers aim to optimize small performance-critical parts of a larger pro-
gram. In particular, the runtime of a superoptimization run is too high to form
an optimization phase of a general-purpose compiler. However, the idea of having
some kind of fast superoptimization for arbitrary programs is very attractive.

Bansal and Aiken tackle this problem by using training programs to create a
peephole optimization database [1]. The compiler’s peephole optimization phase
can then use a simple look-up to find an applicable optimization for the con-
sidered sequence of instructions. Their approach works as follows: First, they
compile a set of training programs. Then, the harvester extracts all instruction
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sequences that are candidates for optimizations. The candidates are inserted
into a hash table, where the hash is based on the execution of some fixed test
inputs. In the second step, they enumerate all instruction sequences up to a
given length. For each sequence they perform a look-up in the hash table. If the
look-up succeeds, the generated sequence is an optimization candidate for the
sequence in the hash table. Thus, they compare both sequences on a larger set
of test inputs and finally use a SAT solver to decide whether both sequences are
equivalent.

2.3 Generated Optimizations for Intermediate Representations

The tools discussed so far work on the assembly level. This allows to fully leverage
the available instruction set and to formulate a precise cost model. However, if we
generate optimizations for multiple target architectures, we notice some common
optimizations. Following an idiom in compiler design, we should perform these
common optimizations on the intermediate representation.

In fact, all compilers come with a set of local optimizations. These optimiza-
tions consist of small rules that require no global analysis. Thus, the compiler can
use these rules at any time, even during construction of an SSA-based IR [2].
In contrast to peephole optimizations, local optimizations have a more global
view on the program. They can follow the data dependencies and the sharing of
values is not obscured by spilling and other backend phases. Figure 1 illustrates
the advantages of working on the IR level. Due to the explicit data dependency,
we can model the local optimization as a graph rewrite rule. Figure 1a shows the
graph rewrite rule for the optimization x | (x⊕ y) → x | y that can be applied
on the IR in Figure 1b. However, a peephole optimizer cannot apply this rule on
the assembly level, since the instructions of basic blocks 2 and 3 occur between
the instructions that belong to the optimization rule.

Currently, the compiler’s local optimizations are handcrafted and reflect the
knowledge of the compiler developers. Thus, the optimization rules guarantee

|

⊕

x y

|

x y

(a) Graphical representation of
the rule x | (x⊕ y) → x | y.

v0: x
v1: y
v2: v0 ⊕ v1

. . . . . .

v3: v0 | v2

1

2 3

4

(b) Program in SSA form.

mov x, r0
mov y, r1
xor r0, r1, r2
. . .
. . .
or r0, r2, r3

(c) Generated
assembly code.

Fig. 1. The local optimization of Figure 1a can be applied on the IR of Figure 1b.
However, on the assembly level of Figure 1c, the generated code of basic blocks 2 and
3 prevent the application of the corresponding peephole optimization.
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neither correctness nor completeness. Regarding correctness, the ALIVe tool [6]
demonstrates a possible approach to verify local optimizations. A promising
solution to get the completeness guarantee is to port the idea of a generator
for peephole optimizations to the IR level. So far, there is only little research
regarding this idea. For instance, Tate et al. pick up the ideas of Denali and
apply them to their intermediate representation [12]. However, to the best of
our knowledge, there is no approach that tackles the systematic generation of
local optimizations.

3 Rule Generation

In this chapter, we present and discuss our tool Optgen that generates local
optimizations. When creating Optgen, our idea was to generate all local opti-
mizations up to a given cost limit. The main challenge for this purpose is the
handling of constants: Since a 32-bit architecture has 232 constants, enumerat-
ing all constant folding rules for a binary operation would result in 264 rules.
Obviously, this cannot be accomplished in a reasonable amount of time. In the
following, we present the general design of Optgen and explain how we tackle
the large amount of available constants.

3.1 General Design of Optgen

Optgen’s task is to generate all local optimizations up to a given cost limit. Thus,
Optgen takes the considered operations and their costs, as well as the cost limit,
as input parameters. Furthermore, the user must specify the bit width of the op-
erations. It then generates the local optimizations and outputs them in textual
and graphical form. Furthermore, it can generate a test suite that can be used to
find missing optimizations in existing compilers. Currently,Optgen supports the
unary integer operations ∼ and -, as well as the binary integer operations +, &, |,
- and ⊕. However, adding a new operation only requires a mapping to the SMT
solver and a method to evaluate the operation for constant operands.

We use Figure 2 and a running example to demonstrate the work flow of
Optgen: We want Optgen to generate all local optimizations up to cost 2 for
the 8-bit operations & and |, which both have cost 1. Before Optgen starts
the actual generation, it creates a number of random test inputs. Later, we will
use these random tests to compute a semantic hash for each expression. The
underlying idea is that if two expressions evaluate to different values for the test
inputs, the considered expressions cannot be semantically equivalent.

Optgen now generates all expressions for each cost. For cost 0 the generator
generates the variable x and the constants 0 to 255. The generator passes each of
these expressions to the matcher. The matcher checks whether we have already
found an optimization rule that applies to the given expression. Since we have
found no optimization rule yet, the matcher passes the expression to the semantic
checker. The semantic checker computes the semantic hash and looks up a list of
possibly equivalent expressions in the semantic hash table. Assuming a perfect
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Fig. 2. General design of Optgen

hash function, the lookup finds no such expression in our example. Thus, the
semantic checker inserts the expression into the list of expression as well as into
the semantic hash table.

Before Optgen generates the expressions with cost 1, it realizes that we
have a binary operation with cost 1 and introduces a new variable y. Then,
it starts the actual generation process by applying the available operations to
the already generated expressions. The first generated expression is x & x. Since
we have found no optimization rule yet, the matcher passes the expression to
the semantic checker. The semantic checker now computes the semantic hash
and looks up a list of possibly equivalent expressions. Assuming a perfect hash
function, our list only contains the expression x. The semantic checker now uses
an SMT solver to determine whether both expressions are equivalent. In our case,
the expressions are equivalent. Since x is cheaper than x & x, Optgen creates a
new optimization rule x & x → x and inserts it into the list of rules. In the next
step, Optgen creates the optimization rule x & 0 → 0 in a similar fashion.

The next generated expression is x & 1. Again, the matcher finds no existing
optimization rule and passes the expression to the semantic checker that looks
up possibly equivalent expressions in the semantic hash table. Let us assume the
hash table lookup finds some candidate, e.g., the expression 1. In this case, the
following SMT check fails. Thus, we insert the expression x & 1 into the list of
candidates for the computed hash value.

When generating expressions with cost 2, another interesting case occurs: Pro-
cessing the expression (x & y) & 0, the matcher finds the applicable optimization
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rule x & 0 → 0. In this case, we skip the generated expression. Otherwise, the se-
mantic checker would create the optimization rule (x & y) & 0 → 0 that is sub-
sumed by the existing optimization rule x & 0 → 0.

3.2 Handling Constants

For our running example, Optgen generates many similar constant folding rules
like 1 & 2 → 0 and 1 & 3 → 1. Returning each of these rules to the user is incon-
venient. Instead, the user is interested in a single constant folding rule for each
operation. Thus, Optgen provides a rule generalizer that tries to generalize
the generated rules. In our running example, we want to create a rule c0 & c1
→ eval(c0& c1), where c0 and c1 are symbolic constants and eval performs
constant folding.

Before we can start the generalization, we need to find sets of syntactically
equivalent rules. We solve this problem by computing a syntax hash for each
expression that only depends on the structure of the expression, i.e., ignoring
the values of the constants. Thus, we can use a syntax hash table to efficiently
find syntactically equivalent rules. As shown in Figure 2, the semantic checker
is responsible for filling the syntax hash table with rules that contain constants.

Given a set of syntactically equivalent rules, the rule generalizer first tries
to find expressions that compute the constants of the right-hand side using the
constants of the left-hand side. Currently, it does this by considering the already
enumerated expressions. In our running example, we have one constant on the
right-hand side and two constants on the left-hand side. Hence, the rule gener-
alizer searches a function f(x,y) such that f(1,2)= 0, f(1,3)= 1 and so on.
If it finds an appropriate function, it creates the corresponding rule and checks
its correctness using an SMT solver. If the check succeeds, the rule generalizer
found a rule that supersedes the considered rules. Otherwise, it continues the
search for an appropriate function. In our running example, the rule generalizer
finds f(x,y)= x & y and verifies the resulting rule c0 & c1 → eval(c0& c1).

An interesting situation occurs for the rules (x | 2) & 1 → x & 1, (x | 1) & 2 →
x & 2 and so on. In general, the optimization (x | c1) & c2 → x & c2 is not valid.
However, it becomes valid if c1 and c2 are bitwise disjoint. Optgen tackles
such cases by using conditional rules. By definition, a conditional rule is valid if
the corresponding condition evaluates to true. Furthermore, the condition must
be a function that only depends on the symbolic constants that appear on the
left-hand side of the rule.

The rule generalizer solves the problem of finding a condition by searching
a condition expression that evaluates to 0 if, and only if, the condition holds.
Finding a condition expression is similar to finding the computations for con-
stants on the right-hand side of a rule: We simply check the already enumerated
expressions for an appropriate one. Since the enumerated expressions are sorted
according to their costs, simpler condition expressions are considered before
complex ones. For our example, Optgen finds the appropriate condition ex-
pression c1 & c2 and creates the conditional rule (c1 & c2) == 0 ⇒ (x | c1) & c2
→ x & c2.
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The main advantage of symbolic constants is their independence of the bit
width. Thus, the SMT solver can verify the local optimization rule (c1 & c2) == 0
⇒ (x | c1) & c2 → x & c2 for 8 bits as well as for 32 bits. If we generalize every
non-trivial set of syntactically equivalent rules, we can easily extend the verifi-
cation from 8 bits to 32 bits. For the remaining rules with particular constants,
Optgen expands the 8-bit constants to 32 bits by padding the most significant
or least significant bits with zeros or ones and checks all four resulting rules using
an SMT solver. In our experience, this approach is sufficient to find the corre-
sponding 32-bit rule. Thus, we can generate all local optimizations for 8 bits,
extend the resulting rules to 32 bits, and verify them for the latter bit width.
Whether the rule set of the extended bit width is also complete depends on
the operations and the bit width used during generation. A proven approach to
achieve completeness is to increase the generation bit width until the generated
rule set for the extended bit width remains unchanged. For instance, generating
all 3-bit rules with cost limit 3 for the bitwise operations ∼, &, | and ⊕ creates
the same 32-bit rule set as generating all 4-bit rules.

Currently, Optgen can only generalize rules if the required condition ex-
pression and computations of the symbolic constants on the right-hand side are
enumerated expressions. A more general solution would use superoptimization
techniques to find the appropriate expressions. The basic idea is that the existing
optimization rules define partial functions for the condition expression and com-
putations of the symbolic constants that appear on the right-hand side of the
generalized rule. These functions are partial, because we skip expressions that
are matched by existing optimization rules. For instance, the generalized rule
(c1 & c2) == 0 ⇒ (x | c1) & c2 → x & c2 covers the optimization rule (x | 1) & 0
→ x & 0. However, we will never create the latter one because we can apply x & 0
→ 0 on its left-hand side.

Based on the partial functions, we can use superoptimization techniques to
find the appropriate expressions. This may require to limit the cost of each
expression to guarantee termination. If we found an expression for each partial
function, we can use the SMT solver the verify the corresponding rule. If the SMT
check fails, the SMT solver can generate a counterexample for these expressions.
Thus, we can use this counterexample to refine our partial functions and continue
the search for appropriate expressions.

3.3 Performance Tuning

In this section, we present some speed-up techniques implemented in Optgen.
The key insight regarding performance is that SMT checks are slow. Thus, we

need to avoid them if possible. The main source of unnecessary SMT checks are
collisions in the semantic hash table. In this case, a created expression could have
multiple candidates of equivalent expressions that are compared via SMT checks.
However, at most one of them can be equivalent to the expression at hand.

Our solution to this problem are witnesses : A set of test inputs such that
each pair of expressions of the hash table bucket evaluates to a different result
for at least one witness. Since each hash table bucket has it own set of witnesses,
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these sets are usually very small. For a new expression with multiple candidates,
we first evaluate the witnesses and compare the results with the results of the
available candidates. By definition, at most one candidate can compute the same
results for all witnesses. Thus, we need at most one SMT check per generated
expression. Whenever this SMT check fails, we insert the new expression into
the hash table bucket. Hence, we need a new witness to distinguish the two
expressions. Fortunately, the SMT solver also generates a counterexample as a
result of the failing SMT check. Thus, we simply use this counterexample as a
new witness for the checked expressions.

Another performance-critical task is to check the applicability of existing rules
to expressions. Optgen performs such checks for each generated expression.
Furthermore, Optgen uses these checks to identify rules that are covered by
more general ones. For an efficient matching, we use an n-ary tree structure
that can be indexed by the available operation types. If we find a new optimiza-
tion rule, we traverse the nodes of the left-hand side in preorder and insert the
corresponding nodes into the tree. The created leaf contains a reference to the
inserted rule. Figure 3 shows the search tree after inserting the rules x & 0→ 0
and (c1 & c2) == 0 ⇒ (x | c1) & c2 → x & c2.

Assume we want to find a rule that matches (x | 3) & 1. In order to use our
data structure, we process our expression in preorder. The type of the first
operation is &. The matcher now descends into every child that corresponds to
a type that matches &. Thus, it visits node 1 and proceeds with the | node of
the expression. Since both existing children of the search tree are labeled with
matching types, we must visit them both.

Let us assume the matcher first descends into node 2. Since the variable matches
the whole subexpression x | 3, the matcher skips the corresponding nodes of the
expression and proceeds with the constant 1. In the next step, the matcher reaches
the leaf that contains the rule x & 0→ 0. Thus, it tries to apply the rule to the
expression. Unfortunately, the constant 0 does not match the constant 1.

The matcher continues its search by descending from node 1 to node 3. Since
the path to the second rule fits our expression, the matcher tries to apply the
rule (c1 & c2) == 0 ⇒ (x | c1) & c2 → x & c2. This time the condition of the
rule is not fulfilled. Thus, the matcher continues its search. Since the matcher
has already processed the interesting paths of the search tree, it stops and reports
that no matching rule exists.

3.4 Applications of Optgen

Optgen supports the compiler developer by providing an optimization test suite.
The test suite helps to find missing optimizations of the developed compiler. Fur-
thermore, it identifies optimization applications that should be prevented by the
compiler in case of shared subexpressions. Figure 4 shows such a situation: Apply-
ing the local optimization -((x - y) + z) → y - (x + z) increases the global costs,
because of the shared subexpression (x - y) + z. However, if the value (x - y) + z is
already present the optimization is worthwhile. A possible solution to this problem
wouldbe to conservatively prevent optimizations in case of shared subexpressions.
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(c1 & c2) == 0 ⇒ (x | c1) & c2 → x & c2.

Fig. 3. Tree data structure to find applicable rules for an expression. Each inner node
can be indexed by the available operations types. For an insert or lookup operation the
operation types of the expression are considered in preorder.
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Fig. 4. The compiler should prevent the application of the local optimization rule
-((x - y) + z) → y - (x + z), since the subexpression (x - y) + z has another user

4 Combining Local Optimizations with Global Analyses

Local optimizations have the advantage that they do not require any prior analy-
sis. Thus, they can be applied at any time, e.g., directly after the construction of
an operation. In our experience, it is also worthwhile to have a compiler phase that
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applies all local optimizations until it reaches a fixpoint. During this phase, we can
provide analysis information that improves the existing local optimizations.

In the following, we present two analyses that allow a compact and power-
ful implementation of the local optimizations generated by Optgen. As we
will see, the generated local optimization rules with symbolic constants are
crucial to our approach. We start with a simple optimization rule to moti-
vate our idea: (x + 2) & 1→ x & 1. Optgen covers this rule by the generalized
rule ((c0 | -c0) & c1) == 0⇒ (x + c0) & c1→ x & c1. The condition ensures that
adding the constant c0 only influences bits that are masked out by the constant
c1. Our plan is to stepwise relax the condition to apply this optimization in even
more cases.

4.1 Constant-Bit Analysis

Our first insight to improve the optimization (x + 2) & 1→ x & 1 is that the second
operand of the addition can be an arbitrary expression as long as the rightmost bit
is not set. For instance, (x + (y & 42)) & 1→ x & 1 is also a valid optimization rule.

This motivates us to implement a constant-bit analysis that indicates bits that
are always set or not set, respectively. For the expression y & 42, the analysis
computes 00?0 ?0?0 for the rightmost 8 bits, where 0 indicates bits that are
guaranteed to be zero and ? indicates bits that are not constant. Similarly,
y | 42 results in ??1? 1?1?. The bit information is stored in two bit vectors. The
bit vector zeros contains a cleared bit if the corresponding bit is guaranteed to
be cleared and a set bit otherwise. Likewise, the bit vector ones contains a set
bit if the corresponding bit is guaranteed to be set and a cleared bit otherwise.

The Constant-bit analysis is a forward data flow analysis that generalizes sparse
conditional constant propagation [13]. Since the data-flow analysis is optimistic,
it initializes the zeros bit vector with zeros and the ones bit vector with ones.
Then, it applies the transfer function until the analysis reaches the fixpoint.

Some of the transfer functions are straight-forward.For constants we set the bit
vectors according to the bits of the constants. For loads from memory we set all bits
of the zeros vector and clear the bits of the ones vector. The bitwise operations
& and | can be transformed by applying the same operation to corresponding bit
vectors of the operands. For instance, ones(x& y) = ones(x)& ones(y). For the
bitwise complement ∼ we must apply the operation to the other bit vector of the
operand: ones(∼x) =∼zeros(x), zeros(∼x) =∼ones(x). Contrarily, the trans-
fer function for the exclusive or ⊕ is more complex:
ones(x⊕ y) = (ones(x)&∼zeros(y))| (ones(y)&∼zeros(x)),
zeros(x⊕ y) = (zeros(x)&∼ones(y))| (zeros(y)&∼ones(x)).

Transfer functions for arithmetic operations also reuse the operation itself.
For the addition x + y, we first add the ones and zeros of the operands: vo =
ones(x)+ ones(y) and vz = zeros(x)+ zeros(y). Then, we compute bit vec-
tors that indicate which bits are not constant: xnc = ones(x)⊕ zeros(x), ync
= ones(y)⊕ zeros(y) and vnc = vo⊕ vz. This allows us to determine the non-
constant bits of the result: nc = xnc | ync | vnc. Finally, we can compute the
constant-bit information of x + y: ones(x+ y) = vz &∼nc and zeros(x+ y) =
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vz | nc. Due to the use of the add operation, we handle carry bits correctly. For
instance, 00?? 1110 + 10?? 1?10 results in 1???1?00.

A typical use case for constant-bit information is to determine the equivalence
of multiple operations. If the operands of an addition have disjoint bits set, we
can also use a | or ⊕ operation. Thus, the optimizer may apply local optimiza-
tions that are valid for the | operation but not in general for the addition.

4.2 Don’t Care Analysis

The second insight to improve the optimization (x + 2) & 1→ x & 1 is that due
to the &, we only care for the least significant bit of the sum. The don’t care
analysis provides exactly this information: Its result is a bit vector that indi-
cates relevant (1) and irrelevant (0) bits [11]. This allows to specify the more
compact optimization rule care(x+ 2) == 1 ⇒ x + 2→ x, which also covers
(x + 2) |∼1→ x |∼1.

In contrast to the constant-bit analysis, the don’t care analysis is a backward
data-flow analysis. At the beginning of the analysis, all bits are set to irrelevant.
Since the transfer functions of return or store operations always care for their
operands, they create some initial relevant bits. These bits will then propagate
through the program until the analysis reaches its fixpoint.

There are several expressions that can create more irrelevant bits for at least
one of their operands: x | 1, x * 2, x & 2, and so on. In most cases, the don’t care
analysis uses known bits from one operand and derives irrelevant bits for the
other one. Thus, we extend the don’t care analysis to consider the constant-bit
information. In consequence, if we use constant-bit information to gain precision,
we must care for the bits that provided this constant-bit information.

4.3 Generalizing the Optimization Rules

Starting with the optimization rule (x+ 2) & 1→ x & 1, we manually derived the op-
timization ((zeros(y)| -zeros(y))& care(x+ y)) == 0⇒ x + y→ x. The gener-
alized rule encapsulates the essential optimization, while using the global analysis
information to check whether the rule can be applied. This allows to perform the
optimization even in complex scenarios.

The presented analyses allow an even more compact optimization: The cre-
ation of occult constants [11]. This optimization can be performed if all rele-
vant bits are known to be constant: ((zeros(x)⊕ ones(x))& care(x))== 0⇒
x→ eval(zeros(x)& care(x)). For instance, the constant 2 of the expression
(x + 2) & 1 is an occult constant that can be optimized to zero. However, in
a larger program the constant 2 can have other users that render more bits
relevant.

Currently, Optgen does not derive local optimization rules that use the pre-
sented analysis information. The constant-bit analysis would require another
analysis that determines whether we need a conservative approximation of the
set or cleared bits. For the don’t care analysis, we would just need to perform
the analysis for the expressions of the rule. Furthermore, we would need to adapt
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the generated formulas for the SMT solver. Similar to the generation of symbolic
rules discussed in Section 3.2, superoptimization techniques could be helpful to
find appropriate conditions for the derived rules.

5 Evaluation

In this section, we evaluate Optgen’s runtime and compare its generated op-
timizations with state-of-the art compilers. All measurements are performed on
an Intel Core i7-3770 3.40GHz with 16GB RAM. The machine runs a 64-bit
Ubuntu 14.04 LTS distribution that uses the 3.13.0-37-generic version of the
Linux kernel. For Optgen, we use Z3 4.3.1 as SMT solver [3].

5.1 Optgen Runtime

In order to evaluate the runtime of the generation of local optimizations, we run
Optgen in multiple configurations. All runs include the unary operations ∼ and
-, as well as the binary operations +, &, |, - and ⊕. Table 1 shows the different
configurations as well as the resulting runtime and maximum memory usage for
each configuration. The configurations differ in the used bit width for the rule
generation, in the number of involved operations and in the usage of constants.

For a fixed number of operations, the results suggest two aspects that heavily
influence the runtime: The use of constants and the bit width used during the rule
generation. We already argued that the use of constants increases the number of
generated rules and, thus, the runtime. However, the bit width only influences the
SMT checks. Since the generation for two 8-bit operations is significantly faster
than the generator for two 32-bit operations, the SMT solver does not scale
very well with increasing bit width. Consequently, using different bit widths for
generation and verification dramatically improves the runtime.

5.2 Testing State-of-the-Art Compilers

In order to give valuable feedback to compiler engineers, we let Optgen generate
an optimization test suite. This test suite includes a test for each generated

Table 1. Runtime and maximum memory usage of Optgen for different configurations

Operations Bit width Constants Runtime Memory Usage

Generation Verification

2 8 32 � 6h 7min 0 s 1 046 568 kB
2 8 32 × 1 s 7456 kB
2 32 32 × 6min 21 s 19 892 kB
3 8 32 × 36 s 17 900 kB
4 8 32 × 8 h 27min 16 s 686 104 kB
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optimization. Using these tests, it lets the compiler of interest generate x86-
64 assembly and then counts the number of generated arithmetic instructions.
If the compiler generates more instructions than expected, we found a missing
optimization for the compiler.

We use the run of Optgen with two operations and constants to test state-
of-the-art compilers. Table 2 shows the missing optimizations for GCC 4.9,
LLVM 3.5, and ICC 15. In total, Optgen found 63 optimizations that are
missing in at least one of the compilers. The optimizations include rules without
constants (20.), rules with symbolic constants (54.), and rules with particular

Table 2. Missing local optimizations of state-of-the-art compilers. A � indicates that
the corresponding optimization is supported, whereas a × indicates a missing opti-
mization.

Optimization Compiler

LLVM GCC ICC

1. -∼x → x + 1 � � ×
2. -(x & 0x80000000) → x & 0x80000000 × � ×
3. ∼-x → x - 1 � � ×
4. x +∼x → 0xFFFFFFFF � � ×
5. x + (x & 0x80000000) → x & 0x7FFFFFFF × × ×
6. (x | 0x80000000) + 0x80000000 → x & 0x7FFFFFFF � × ×
7. (x & 0x7FFFFFFF) + (x & 0x7FFFFFFF) → x + x � � ×
8. (x & 0x80000000) + (x & 0x80000000) → 0 � � ×
9. (x | 0x7FFFFFFF) + (x | 0x7FFFFFFF) → 0xFFFFFFFE � � ×

10. (x | 0x80000000) + (x | 0x80000000) → x + x � � ×
11. x & (x + 0x80000000) → x & 0x7FFFFFFF � × ×
12. x & (x | y) → x � � ×
13. x & (0x7FFFFFFF - x) → x & 0x80000000 × × ×
14. -x & 1 → x & 1 × � ×
15. (x + x)& 1 → 0 � � ×
16. is_power_of_2(c1) && c0 & (2 * c1 - 1) == c1 - 1

⇒ (c0 - x) & c1 → x & c1 × × ×
17. x | (x + 0x80000000) → x | 0x80000000 � × ×
18. x | (x & y) → x � � ×
19. x | (0x7FFFFFFF - x) → x | 0x7FFFFFFF × × ×
20. x | (x⊕ y) → x | y � × ×
21. ((c0 | -c0) &∼c1) == 0 ⇒ (x + c0) | c1→ x | c1 � × �
22. is_power_of_2(∼c1) && c0 & (2 *∼c1 - 1) ==∼c1 - 1

⇒ (c0 - x) | c1 → x | c1 × × ×
23. -x | 0xFFFFFFFE → x | 0xFFFFFFFE × × ×
24. (x + x) | 0xFFFFFFFE → 0xFFFFFFFE � � ×
25. 0 - (x & 0x80000000) → x & 0x80000000 × � ×
26. 0x7FFFFFFF - (x & 0x80000000) → x | 0x7FFFFFFF × × ×
27. 0x7FFFFFFF - (x | 0x7FFFFFFF) → x & 0x80000000 × × ×
28. 0xFFFFFFFE - (x | 0x7FFFFFFF) → x | 0x7FFFFFFF × × ×
29. (x & 0x7FFFFFFF) - x → x & 0x80000000 × × ×
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Table 2. (Continued)

Optimization Compiler

LLVM GCC ICC

30. x⊕ (x + 0x80000000) → 0x80000000 � × ×
31. x⊕ (0x7FFFFFFF - x) → 0x7FFFFFFF × × ×
32. (x + 0x7FFFFFFF)⊕ 0x7FFFFFFF → -x × × ×
33. (x + 0x80000000)⊕ 0x7FFFFFFF → ∼x � � ×
34. -x⊕ 0x80000000 → 0x80000000 - x × × ×
35. (0x7FFFFFFF - x)⊕ 0x80000000 → ∼x × � ×
36. (0x80000000 - x)⊕ 0x80000000 → -x × � ×
37. (x + 0xFFFFFFFF)⊕ 0xFFFFFFFF → -x � � ×
38. (x + 0x80000000)⊕ 0x80000000 → x � � ×
39. (0x7FFFFFFF - x)⊕ 0x7FFFFFFF → x × × ×
40. x - (x & c) → x &∼c � � ×
41. x⊕ (x & c) → x &∼c � � ×
42. ∼x + c → (c - 1) - x � � ×
43. ∼(x + c) → ∼c - x � × ×
44. -(x + c) → -c - x � � ×
45. c -∼x → x + (c + 1) � � ×
46. ∼x⊕ c → x⊕∼c � � ×
47. ∼x - c → ∼c - x � � ×
48. -x⊕ 0x7FFFFFFF → x + 0x7FFFFFFF × × ×
49. -x⊕ 0xFFFFFFFF → x - 1 � � ×
50. x & (x⊕ c) → x &∼c � � ×
51. -x - c → -c - x � � ×
52. (x | c) - c → x &∼c × × ×
53. (x | c)⊕ c → x &∼c � � ×
54. ∼(c - x) → x +∼c � × ×
55. ∼(x⊕ c) → x⊕∼c � � ×
56. ∼c0 == c1 ⇒ (x & c0)⊕ c1 → x | c1 � � ×
57. -c0 == c1 ⇒ (x | c0) + c1 → x &∼c1 × × ×
58. (x⊕ c) + 0x80000000 → x⊕ (c + 0x80000000) � � ×
59. ((c0 | -c0) & c1) == 0 ⇒ (x⊕ c0) & c1→ x & c1 � � ×
60. (c0 &∼c1) == 0 ⇒ (x⊕ c0) | c1→ x | c1 � × ×
61. (x⊕ c) - 0x80000000 → x⊕ (c + 0x80000000) � � ×
62. 0x7FFFFFFF - (x⊕ c) → x⊕ (0x7FFFFFFF - c) × × ×
63. 0xFFFFFFFF - (x⊕ c) → x⊕ (0xFFFFFFFF - c) � � ×
Sum 23 27 62

constants (26.). Since Optgen currently considers only generated expressions
for conditional rules, the conditions of the rules 16, 21, 22, and 59 are created
by hand.

As discussed in Section 4.3, we further tested whether the compilers prevent
optimizations if all subexpressions are shared. Since such cases do not appear
with two operations, we used the optimizations with three operations but without
constants. Table 3 shows all cases, where at least one compiler increases the cost
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by applying the corresponding optimization. For instance, the first optimization
∼(x |∼y)→ ∼x & y is supported by GCC and LLVM. However, only GCC pre-
vents the application if the subexpression (x |∼y) is used by another operation.

5.3 Global Optimization Phase

In Section 4, we claimed that it is worthwhile to perform local optimizations until
a fixpoint is reached. We used the libFirm compiler [5] and the SPEC CINT2000
benchmark to prove our claim. Table 4 shows the number of executed instructions

Table 3. State-of-the-art compilers apply optimization rules even if the operands are
shared. If the compiler supports the optimization �/× indicates whether the compiler
prevents the optimization in case of shared operands. If the compiler does not support
the optimization the item is left blank.

Optimization Compiler

LLVM GCC ICC

1. ∼(x |∼y) → ∼x & y × �
2. ∼(x &∼y) → ∼x | y × �
3. (x + x) & (y + y) → (x & y) + (x & y) ×
4. (x + x) | (y + y) → (x | y) + (x | y) ×
5. (x & y) | (z & y) → y & (x | z) � × �
6. x - ((x - y) + (x - y)) → y +(y - x) � ×
7. (x - y) - (x + z) → -(y + z) � � ×
8. ((x - y) + (x - y)) - x → x - (y + y) � � ×
9. (x + x)⊕ (y + y) → (x⊕ y) + (x⊕ y) ×

10. (x & y)⊕ (z & y) → y & (x⊕ z) � × �

Table 4. Effect of local optimizations phase. The table compares the number of exe-
cuted instructions of the generated code with and without an optimization phase that
applies local optimizations until a fixpoint is reached.

Benchmark Without Local Phase With Local Phase Without Local Phase
With Local Phase

164.gzip 306,800,522,532 290,253,056,191 105.70%
175.vpr 215,443,006,054 203,496,140,283 105.87%
176.gcc 150,470,998,502 149,081,148,091 100.93%
181.mcf 48,034,571,679 48,924,041,098 98.18%
186.crafty 192,013,840,675 184,861,683,227 103.87%
197.parser 313,187,450,212 291,055,655,200 107.60%
253.perlbmk 1,147,112,186 1,106,164,617 103.70%
254.gap 220,455,529,344 216,480,669,077 101.84%
255.vortex 329,083,783,116 311,764,008,973 105.56%
256.bzip2 285,176,110,773 278,769,705,624 102.30%
300.twolf 293,847,320,971 293,190,467,622 100.22%

Average 103.22%
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Table 5. Effect of constant-bit and don’t care analyses. The table compares the number
of executed instructions of the generated code with and without the constant-bit and
don’t care analyses.

Benchmark Without Analyses With Analyses Without Analyses
With Analyses

164.gzip 290,253,056,191 285,201,958,027 101.77%
175.vpr 203,496,140,283 203,495,172,137 100.00%
176.gcc 149,081,148,091 146,088,405,963 102.05%
181.mcf 48,924,041,098 48,969,263,250 99.91%
186.crafty 184,861,683,227 179,226,675,963 103.14%
197.parser 291,055,655,200 291,053,327,116 100.00%
253.perlbmk 1,106,164,617 1,106,163,127 100.00%
254.gap 216,480,669,077 216,345,138,043 100.06%
255.vortex 311,764,008,973 311,764,025,981 100.00%
256.bzip2 278,769,705,624 278,229,736,806 100.19%
300.twolf 293,190,467,622 293,190,431,795 100.00%

Average 100.64%

of the generated binaries. On average, the application of local optimizations until
the fixpoints reduces the number of executed instructions by 3.22%.

Furthermore, we evaluated the effect of the constant-bit and don’t care anal-
yses. Table 5 shows that using the analyses further improved the overall perfor-
mance by 0.64%. The enabled analyses achieve their best improvement for the
186.crafty benchmark that contains a lot of bit operations. Here, the analyses
discover an occult constant that results in an improvement by 3.14%.

6 Conclusion and Future Work

In this paper, we presented the local optimization generatorOptgen. In contrast
to generators for peephole optimizers, Optgen generates optimization rules that
work on the IR level. This allows a more abstract view on the program behavior
than working on assembly level.

A unique feature of Optgen is its full support of constants. This includes the
generalization of syntactically equivalent rules to a rule with symbolic constants.
Furthermore, we demonstrated that it is sufficient to generate rules for a small
bit width and later extend them to a larger bit width. Together, these techniques
allow the efficient generation of all rules that involve constants.

We further generalized the generated rules of Optgen by using the analysis
information of the constant-bit and don’t care analyses. This compacts the rule
specification and allows to apply the local optimizations in more cases. Using the
SPEC CINT2000 benchmark, we obtain an reduction of the executed instructions
by up to 3.14%, when using the analysis information.

We used Optgen to find unsupported optimizations in the state-of-the-art
compilers GCC, ICC and LLVM. For these compilers, we identified more than
50 missing optimizations that involve at most two operations. Furthermore, we
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showed that compilers should prevent the application of some optimization rules
due to shared subexpressions. For the state-of-the-art compilers, we identified
ten optimizations that are applied in such scenarios.

During the development of Optgen, we identified three interesting research
topics for future work. The first idea is the use of superoptimization techniques
to derive appropriate conditions during the rule generalization as discussed at
the end of Section 3.2. Furthermore, such techniques can be used to find opti-
mal implementations for the transfer functions of the constant-bit analysis. The
second idea is to extend Optgen to automatically derive condition expressions
that are based on constant-bit and don’t care information as discussed at the end
of Section 4.3. The third research topic concerns the sharing of subexpressions.
Here, algorithms that reassociate existing expression to allow the application of
local optimizations or to improve the sharing with existing subexpressions would
be worthwhile for state-of-the-art compilers.
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Abstract. Context-Free Language Reachability (CFL-R) is a search
problem to identify paths in an input labelled graph that form sentences
in a given context-free language. CFL-R provides a fundamental for-
mulation for many applications, including shape analysis, data and con-
trol flow analysis, program slicing, specification-inferencing and points-to
analysis. Unfortunately, generic algorithms for CFL-R scale poorly with
large instances, leading research to focus on ad-hoc optimisations for spe-
cific applications. Hence, there is the need for scalable algorithms which
solve arbitrary CFL-R instances.

In this work, we present a generic algorithm for CFL-R with im-
proved scalability, performance and/or generality over the state-of-the-
art solvers. The algorithm adapts Datalog’s semi-näıve evaluation
strategy for eliminating redundant computations. Our solver uses the
quadtree data-structure, which reduces memory overheads, speeds up
runtime, and eliminates the restriction to normalised input grammars.
The resulting solver has up to 3.5x speed-up and 60% memory reduction
over a state-of-the-art CFL-R solver based on dynamic programming.

Keywords: program analysis, context-free language reachability, semi-
näıve evaluation, quad-trees, matrix multiplication.

1 Introduction

The Context-Free Language Reachability (CFL-R) problem has been re-
searched extensively since it was initially identified by Yannakakis [29]. In a
pleasing symmetry to our own work, he viewed the problem as a means of solv-
ing a sub-class of Datalog queries via CFL-R. Not limited to logic programming
though, CFL-R soon proved to be useful for diverse computational tasks, from
formal security analysis [8] to a wide range of program analysis problems [22].

The importance of CFL-R as a program analysis framework cannot be under-
stated.CFL-Rencompasses shapeanalysis [22], data- [23] andcontrol-flow [27], set-
constraints [15] [18], specification-inferencing [3], object-flow [31], and a plethora
of context, flow and field sensitive and insensitive alias [33] [17] [35] [25] [28] anal-
yses, to name a few. We attribute this extensive utility to the fact that such anal-
yses rely on dynamic reachability queries for program graphs, which is a common
enough problem to deserve its own complexity class [11], and is expressed naturally
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by CFL-R. The continuous stream of CFL-R research since the 90s indicates that
it will remain an important problem into the future.

Unfortunately, the promise of CFL-R cannot be reached by the current state-of-
the-art solvers. The original dynamic-programming algorithm, due to Melski and
Reps [18], has cubic time-complexity. More recently, Chaudhuri [5] improved pre-

vious work slightly with an O( n3

logn ) algorithm utilising the Four Russians’ Trick,
which offers a relatively minor speedup at the cost of a significant memory in-
crease. The complexity issue, coined the “cubic bottleneck” [11], spurs research in
restricted sub-classes of CFL-R [31] [33] which have better time complexities, but
limited applicability. To provide a general CFL-R framework for a large range of
applications, our work restricts neither the graph nor the grammar classes.

It is unlikely [21] that algorithmic improvement will be made to the current

O( n3

logn ) lower-bound. This work, therefore, focuses on improving performance in
practice, by removing redundant computations and memory inefficiencies which
occur for the current state-of-the-art solvers. The new approach has worse theo-
retical properties, but achieves better practical runtime performance by adapting
efficient machinery from a similar problem-space. Thus, in a reversal of Yan-
nakakis’ formulation, we turn to Datalog as a scaffolding for the development of
a new CFL-R algorithm. Redundant computations, which occur in the Melski-
Reps algorithm, can be eliminated by an intelligent evaluation strategy. We spe-
cialise the machinery used in Datalog engines, called semi-näıve evaluation,
to the CFL-R context. The adapted algorithm is implemented on top of an ef-
ficient quadtree binary-relation representation. Together, the quadtree-based
semi-näıve algorithm achieves more efficient memory usage, improves the prac-
tical runtime performance, especially for sparse problems, and obviates the need
for an expensive grammar-normalisation operation.

We outline our contributions as follows:

– We specialise the semi-näıve evaluation strategy from the Datalog context
to CFL-R. This leads to a new algorithm with fewer redundant calculations,
and performant behaviour for non-normalised input graphs.

– We present quadtrees as a vehicle for representing the input graph and eval-
uating the solution. Quadtrees provide further advantages to our approach,
since they give new-information-tracking for free and have efficient memory
utilisation for sparse problems.

– We experimentally verify the advantages of the new technique, showing up
to 3.5x speedup and 60% memory reduction, on a Java points-to analysis
problem.

Our paper is organised as follows: Section 2 provides background material
about the CFL-R problem, and introduces the current state-of-the-art solvers.
An explanation of our contributions is presented in Section 3, which includes our
adaptation of the semi-näıve evaluation strategy, the explanation of quadtrees,
and the reasons that normalisation is unnecessary. Section 4 presents our exper-
imental findings, specifically on the superior memory and runtime performance
of our approach. We survey the related literature in Section 5, and conclude our
findings and plans for future work in Section 6.
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Fig. 1. Running CFL-R Example, its grammar is P = {[S → aSb], [S → ε]}. Dashed
edges represent solutions to the CFL-R problem, lowercase letters are terminal symbols,
and the non-terminal start-symbol is S.

2 Context-Free Language Reachability

We use the standard terminology to define the CFL-R problem as a 6-tuple L =
(Σ,N ,P , S, V, E), of terminals Σ, non-terminals N , production rules P , a start
symbol S, vertices V , and edges E. For notational convenience we say E ⊆ V ×
V × (Σ ∪N ), such that an edge is a triple (u, v,X) ∈ E, denoting that vertex u is
connected to v via an edge labelled with the terminal or non-terminalX . We will
refer to the elements of an edge triple as its source, destination and label respec-
tively. Henceforth, let n count the number of vertices in the input problem, and k
the sum of the left and right-hand sides of all the production rules.

CFL-R is a generalisation of graph reachability and context-free recognition.
Informally, we search a graph for those paths between vertices, whose labels con-
catenate to form a sentence in the context-free language. We use the standard
notions [13] of production expansion and sentences here, so a sentence in the lan-
guage must be reachable by finitely many production-rule expansions beginning
with the start symbol. In this way the CFL-R problem can express both transi-
tive reachability (according to a grammar [S → a∗]) and context-free language
recognition (reachability in a line graph). Figure 1 illustrates a CFL-R problem.
Solutions to the problem are displayed with dashed lines, and summarise paths
in the graph which traverse some (possibly zero) “a” labelled edges, followed by
the same number of “b” edges.

We make use of two extensions to aid expressivity of the grammars. A non-
terminal symbol may be parametric (written Af ), which is simply a stand-in for
the distinct non-terminal A f to make the grammar’s presentation concise. Also,
for notational convenience, symbols in the right-hand-side of the production may
indicate the transposed relation, using overline. In a CFL-R instance, this refers
to reverse edges, which could be tracked by their own productions [22], but this
would lengthen the grammar. The rule [A → BCD ] matches paths which travel
backwards along the C edge.
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Algorithm 1. Generalised worklist-based CFL-R algorithm

1: procedure Worklist(L = (Σ,N ,P , S, V,E))
2: for all v ∈ V, [X → ε] ∈ P do
3: add (v, v,X) to E
4: end for
5: W ← E
6: while W �= ∅ do
7: remove (u, v, Y ) from W
8: for all [Z → X0 . . .XaYXb . . .XL] ∈ P do
9: B ← {u}
10: for i = a to 0 do
11: B ← {n : (n, u′, Xi) ∈ E, u′ ∈ B}
12: end for
13: F ← {v}
14: for j = b to L do
15: F ← {n : (v′, n, Xj) ∈ E, v′ ∈ F}
16: end for
17: W ← W ∪ ({(u′, v′, Z) : u′ ∈ B, v′ ∈ F} \E)
18: E ← E ∪W
19: end for
20: end while
21: end procedure

The state-of-the-art scalable algorithm for CFL-R is due to Melski and Reps
[18]. The reader should note that Chaudhuri has introduced an improvement [5]
using a fast-set representation. However, the fast-set representation requires at
least Θ(kn2) memory, such that even the smallest benchmark used in our exper-
imental evaluation (cf. Section 4) would require over 138GB. The difficulty of
using Chaudhuri’s approach for Java benchmarks was similarly observed in [33].
A modified version of the Melski-Reps algorithm is shown in Algorithm 1. The
O(kn2)-sized worklist must, for each edge, check O(k) production rules in an at-
tempt to find L-length paths containing the dequeued edge. Extending the path
in general requires findingO(kn2) edges that join temporaryB or F nodes to new
nodes, resulting in a worst-case runtime complexity of O(Lk3n4). Typically, the
worklist algorithm requires the production rules to be normalised to a binary
normal-form [16], which creates new non-terminals that break up productions
with more than two symbols on their right-hand-side. Our modification to the
algorithm allows it to work (albeit inefficiently) with non-normalised grammars.
Importantly, though, the complexity becomes the expected O(k3n3) [18] when
the grammar is normalised, because the path is only expanded once, from a sin-
gle node, requiring O(kn) work instead of O(Lkn2). The cubic-time required by
this algorithm is well understood in the literature to be the bottleneck for many
program analyses [11].
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3 Novel CFL-R Algorithm

3.1 Semi-näıve Evaluation

The CFL-R algorithm due to Melski and Reps [18], as shown in Algorithm 1,
introduces inefficiencies. Consider Figure 1: the Melski-Reps algorithm would
discover the (2, 5, S) edge up to nine times, since there are three potential paths
(〈2, 1, 5〉, 〈2, 1, 2, 4, 5〉 and 〈2, 1, 2, 1, 3, 4, 5〉), and each one can be expanded from
either the “a”, “b” or “S” edge. The actual number of times it is discovered
depends on which order edges are dequeued from the worklist, so the evaluation
is also chaotic. This issue has been solved in the Datalog context before by a
bottom-up strategy known as semi-näıve evaluation [2].

Datalog is a declarative programming model which derives information from
base facts according to expansion rules. Facts are written A(1, 5), meaning that
the relation A contains a pairing between 1 and 5. A rule composes relations, so
that S(u, x) :- A(u, v), S(v, w), B(w, x) implies new S relations can be derived by
stringing A, S, and B relations together. The example 1 could be translated to a
Datalog program in this fashion.

When Datalog begins bottom-up evaluation, the relations are empty. Facts
are inserted into the relations, and the bodies of the rules are evaluated to
obtain new knowledge. Since Datalog relations are bounded, a fixed-point will
be reached after a finite number of iterations, which constitutes the solution. A
näıve implementation of the bottom-up strategy, would iterate over the bodies
of clauses several times with the same knowledge over and over, rediscovering
already-known relations many times. Yet worse, if a relation is already stable
in an iteration (i.e. more iterations do not obtain more knowledge), the relation
is re-computed in all subsequent iterations. To overcome the problem of re-
computation, the semi-näıve evaluation was introduced.

The semi-näıve evaluation strategy is two-fold. Firstly, it uses the new in-
formation discovered in the previous iteration (or, initially, the base facts) to
derive new information for the current iteration, called the Δ relation. Secondly,
it only derives new information for relations whose dependant relations (those
appearing in the rule body) have stabilised, or reflexive-transitively depend on
it (such as recursive rules), until that relation stabilises. For a more in-depth
presentation of semi-näıve evaluation, refer to [2].

Yannakakis, in his seminal work [29], introduced the fundamental relation-
ship between Datalog and CFL-R, i.e., clauses in chain-rule format become
productions:

[X → Y1Y2 ...Yk ] ⇔ X(a, c) :- Y1(a, b1), Y2(b1, b2), ..., Yk(bk−1, c)

and facts X(u, v) become labelled edges (u, v,X) ∈ E in the CFL-R input graph.
In this way, labels in the CFL-R problem and binary relations in the Data-
log formulation are conceptually identical. Yannakakis’ original intention was
to convert sub-classes of Datalog to CFL-R, obtaining an efficient solving vehi-
cle. For our new algorithm, we use the semi-näıve evaluation as a scaffolding,
and translate CFL-R instances to Datalog programs in the reverse direction of
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Yannakakis’ reduction. We specialise Datalog’s semi-näıve evaluation to obtain
a new algorithm for CFL-R, which is efficient by virtue of avoiding redundant
computations.

Firstly, the evaluation strategy must only use recently discovered information
to determine new information. We record a label’s new information in a Δ rela-
tion, which is updated during the evaluation of production rules, and zeroed after
it has been used, avoiding redundancy. The semi-näıve strategy also specifies that
we should not compose label relations if the labels on which they depend have not
stabilised. The correct order for these micro-fixed-point calculations is deduced
from the dependency graph G = ((Σ ∪ N ), {(X,Y ) : [X → ...Y ...] ∈ P}),
whose nodes are labels and whose edges express dependencies between two la-
bels. The left-hand-side label in a production depends on all the labels on the
right. In the case the dependency is cyclic, we simply iteratively evaluate the
production rules until all inter-dependant relations reach a fixed-point.

The semi-näıve-based algorithm is presented in Algorithm 2. This algorithm
assumes a binary-relation representation, where the label Y has a relational
representation Y = {(a, b) : (a, b, Y ) ∈ E}. Instead of using relational alge-
bra operations [2] for evaluating the body of a CFL-R clause, we observe that
the CFL-R clauses resemble cascaded equi-joins, which are further reduced to
relational compositions, i.e.,

{(a, c) : (a, b1) ∈ Y1 ∧ (b1, b2) ∈ Y2 ∧ . . . ∧ (bk−1, c) ∈ Yk} =

{(a, c) : Y1(a, b1) �� Y2(b1, b2) �� . . . �� Yk(bk−1, c)} =

Y1 ◦Y2 ◦ ... ◦Yk

where P ◦Q = {(r, t) : (r, s) ∈ P, (s, t) ∈ Q}.

3.2 Quadtrees

The Datalog formulation from Section 3.1 performs relational composition, set-
difference and union operations (Algorithm 2, Line 14). We therefore require
a data-structure with low space and runtime overheads for these operations.
In this work the quadtree representation of Boolean matrices is chosen as a
suitable data structure. Quadtrees have better time-complexity operations than,
for example, adjacency lists [18], and smaller memory utilisation than a dense-
matrix representation [5].

Initially, we examine Boolean matrices as a vehicle for relational composition.
A binary relation A can be represented as a Boolean matrix Â whose elements
are defined by:

Âij =

{
1, if (i, j) ∈ A

0, otherwise

Assuming a one-to-one mapping between the domains of the relation and the
indices of the matrix, the well-known identity Â ◦B = Â · B̂ can be estab-
lished, permitting the computation of CFL-R using matrix calculus. Used in
this way, Boolean-matrix relational-composition would increase the complexity
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Algorithm 2. Semi-näıve CFL-R algorithm using quadtrees(c.f. Section 3.2)

1: procedure Quadtree(L)
2: 〈C1, . . . , Cq〉 ← reverse topological strongly connected comps(P)
3: for all [X → ε] ∈ P do
4: X ← X ∪ {(v, v) : v ∈ V }
5: end for
6: for all X ∈ Σ ∪N do
7: ΔX ← X � All Δs initialised to the problem state.
8: end for
9: for Ci = C1 to Cq do
10: while ∃Z ∈ Ci s.t. |ΔZ| > 0 do
11: Temp ← ΔZ
12: ΔZ ← 0
13: for all [Y → X0 , . . . ,Z , . . . ,XL] ∈ P do
14: ΔY ← ΔY ∪ (X0 ◦ . . . ◦Temp ◦ . . . ◦XL) \Y
15: Y ← Y ∪ΔY
16: end for
17: end while
18: end for
19: end procedure

of the solver from O(k3n3) to O(k3n2BMM (n)), where the time complexity
of Boolean-Matrix-Multiplication, BMM (n), is roughly O(n2.3) [7]. This time
bound is derived from Algorithm 2, which loops Line 10 at most kn2 times, and
propagates the chosen delta to at most k non-terminals each loop, requiring k
matrix multiplications for each propagation.

To minimise the overhead imposed by the matrix-formulation we turn to a
quadtree representation. Quadtrees are a well-known matrix representation in
the field of computer graphics, and they have some useful theoretical properties.
Figure 2 shows a quadtree and the Boolean matrix it represents. For the CFL-R
application, we are interested in the time requirements for set-difference and
multiplication operations, as well as the memory requirements of quadtrees. Our

+ + + + + + +

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
1 0 1 1
1 0 1 1

⎞
⎟⎟⎠

Fig. 2. Quadtree representation of a 4x4 Boolean matrix
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intuition here relies on the fact that quadtrees perform very well for sparse
matrices, let m be the number of set bits in the matrix, i.e. m < n2.

Lemma 1. The quadtree requires O(min(n2,m logn)) space to store.

The absolute size of the quadtree is bounded above by O(n2). Consider the 1-
matrix with side-length n, it is clearly maximal, as all nodes have the maximum
number of children. Its quadtree has n2 leaves, each representing a single 1
element, with each layer having 1

4 as many nodes as the layer below it. The total
number of nodes is at most:

∞∑

f=0

n2 1

4f
=

n2

1− 1
4

=
4n2

3

For a more practical bound, we say that m bits are set. In this case, each set
bit requires at most logn nodes joining it to the root of the tree, thus no more
than m logn nodes are needed for m set bits. This count is bounded above by
the known n2 limit, requiring min(n2,m logn) nodes.

Corollary 1. The time complexity of the elementary operations: union, inter-
section, set-difference and deep-copy, is also O(min(n2,m logn)).

Multiplication of two Boolean matrices is defined intuitively for quadtrees:

(
A0 A1

A2 A3

)
·
(
B0 B1

B2 B3

)
=

(
A0B0 ∪ A1B2 A0B1 ∪ A1B3

A2B0 ∪ A3B2 A2B1 ∪ A3B3

)
(1)

Unfortunately, it is difficult to quantify the expected runtime of the recursive
algorithm derived from that definition. In this paper we prove an upper-bound
on the runtime, and provide an intuition as to the expected runtime for fixed m.

Lemma 2. Multiplication of two quadtrees requires O(n3) time.

Via application of the master theorem for recurrence relations. The recursive
algorithm for Equation 1 requires eight sub-multiplications and four sub-unions,
and recurses to a depth of log2 n. We know the unions have O(n2) complexity,
from Corollary 1, hence the recurrence equation of this system is:

Ix = 8Ix−1 + 4x2 + 1 ⇒ O(8log2 n) = O(n3)

Note that though this worst-case complexity does occur in practice (for two
complete matrices), the time required can vary substantially. Furthermore, the
computational load for matrices with m set-bits is difficult to reason about.
Adverse arrangements of inputs with m = O(n) can incur output matrices with
all or none of their bits set.

An intuition on the average-case complexity for fixed m arises by examining
the case of balanced quadtrees. We call this a J-tree (jellyfish), because its nodes
have maximal children towards the root (the bell) and at most one child below
the bell (the tentacles).
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· · ·
· · ·

· · · · · · · · ·

log4 m

log2 n− log4 m

m

Fig. 3. A J-tree, showing the distinction between bell (upper semi-circle) and tentacles.
Nodes in the bell have maximal branching factor, whilst tentacle nodes have at most
one child. The height of a quadtree is always log2 n, so the height of the tentacle section
is that height less the log4 m-high bell.

Lemma 3. Multiplication of two J-trees requires O(m
3
2 +m logn) time.

The structure of the J-tree allows us to break up the multiplication into the
bell and tentacle components according to the depth of the recursion. We see
that if the recursion depth is above log4 m then the nodes of both trees typically
have 4 children, which imposes the most computational work. Conversely, if we
are below a recursion depth of log4 m then the nodes have 1 child, and very little
computational work is required. To reason about the necessary computations we
will analyse work done above the log4 m cutoff, the bell, separately from the
tentacles below.

The bell’s computation is slightly different to that from Lemma 2. Instead

the recurrence is to a depth of log4 m, which yields O(8log2 m
1
2 ) = O(m

3
2 ). This

is a true upper bound for J-trees, as nodes with fewer than 4 children impose
strictly less work.

The tentacle nodes all have 1 child, so atmost oneof the eight sub-multiplications
are necessary and none of the unions. There arem tentacles on each J-tree, since
there arem set bits, thus the recursion’s breadth is alsom. Unlike for the bell, the
two single-child nodes of the input will incur atmost one sub-multiplication and no
sub-unions, because each node only has one child. Each tentacle is log2n− log4m
nodes long,with one subroutine-call per node, hence in total them tentacles require
m logn subroutine calls or fewer. Each call simply checkswhich of the sub-matrices
it needs to recurse to and makes the call in constant time. Hence the total work
required is the O(m3/2) work for the bell, andO(m) lots ofO(log n) work for each
tentacle, totallingO(m3/2 +m logn).

This section has shown the favourable properties of quadtrees, which makes
them useful to our adapted semi-näıve Algorithm 2. Quadtree multiplication is a
means of performing the relational composition operation ◦, and had a favourable
O(min(m logn, n2)) memory footprint. The typical quadtree operations have
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favourable time-complexities in the worst and average case, and we intuit that
multiplication itself takes O(m3/2 + m logn) time, making it very efficient for
sparse problems.

3.3 Notes on Normalisation

Conventional algorithms for CFL-R require the input grammar to be normalised,
either to Chomsky normal-form, or the less restrictive binary normal-form. Nor-
malisation increases the size of the grammar, typified by the Chomsky require-
ment that right-hand sides contain exactly two non-terminals, causing the num-
ber of non-terminals to double and the number of rules to expand quadratically.

From a complexity-theoretic standpoint, normalisation is acceptable, since it
is computationally cheap, and the size of the grammar is often not a compo-
nent of the algorithm’s time complexity. In practice, liberal expansion of the
grammar incurs large overhead in the memory requirements of the algorithm.
Chaudhuri’s sparse-set method [5] typifies this, as it requires Θ(kn2) memory,
requiring terabytes of RAM for typically sized problems.

In this work, we choose to remove the requirement that grammars be pre-
normalised. As Section 2 showed, the time complexity of Algorithm 1 increases
without normalisation. The Melski-Reps formulation’s inner loop can no longer
rely on the fixed-form of grammar rules. Searching the graph for paths whose
labels exactly match the right-hand-side of a production can näıvely require
k(kn2) steps, making the complexity O(k4n4), clearly worse than O(k3n3) when
the grammar is normalised. The adapted semi-näıve method, Algorithm 2, com-
poses binary relations via matrix multiplication. Its presentation already allows
for arbitrarily long production rules, and therefore retains the O(k3n2BMM(n))
running time.

From a theoretical standpoint, normalising the grammar makes no differ-
ence to our quadtree-based-semi-näıve formulation. Shortening the length of the
matrix multiplication chains directly increases the number of such chains that
must be evaluated. Indeed, normalisation may even be considered an unnecessary
overhead, since despite having the same computational complexity, a normalised
grammar imposes excess memory requirements by retaining the edge and Δ in-
formation for intermediate nonterminals.

4 Experimental Results

For the experimental evaluation of our new CFL-R algorithm we use a case study
of Java based points-to analysis. We evaluate our algorithm in comparison to the
Melski-Reps worklist algorithm [18]. Specifically we are interested in the execu-
tion time, memory utilisation, and sensitivity towards grammar normalisation
for both approaches.

The competing implementations will be referred to as the worklist and quadtree
methods, and refer to Algorithms 1 and 2 (using quadtrees) respectively. Both al-
gorithms were implemented in C++ making partial use of the STL library. The
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source code of both algorithms is available online [12]. Our experimental evalua-
tion is performed on a 32 core Intel Xeon E5-2450 at 2.1GHz, with 128GB ram.

Case Study. Our CFL-R case study is a points-to analysis expressed in CFL-
R for Java. As a benchmark suite we choose the Dacapo benchmarks Version
2006-10. For extracting the labelled input graphs from the Java source code in
the Dacapo benchmarks, we have used the DOOP extractor [4]. The extractor
produces a set of relations representing input programs in relational format. The
DOOP relations are sufficient to generate a labelled input graph for a context-
insensitive, flow-insensitive, and field-sensitive points-to analysis, with minimal
textual preprocessing. A vertex in the input problem is either a program variable
or an object creation site (i.e. representing an object to the program analysis).
The input edges are labelled with the following terminals:

– New: relating program variables to their object creation sites
– Assign: relating a source variable with a destination variable of an assign-

ment statement
– PutFieldf , GetFieldf : for each field f , relating base variables of field

loads/stores to the program variables that load/store information from/into
the object of the base variable

– GetInstanceField, PutInstanceField: self-edges identifying base vari-
ables of field loads/stores

– Castt: relating program variables to the variables they are t-cast from
– IsHeapt: self-edge identifying all polymorphic types t of an object

The Java points-to analysis uses the grammar shown in Figure 4. The result of
the CFL-R algorithm produces output edges labelled with the following non-
terminals:

– VPT: relating program variables to heap objects that they may point to
– Alias: relating two program variables if they may reference the same heap

object
– DAssign: relating program variables which are assigned indirectly by field

store and load
– GetInstanceVPT, PutInstanceVPT: relating the heap objects to the

subset of variables which point to them that are derived by field load/stores

The CFL-R grammar is an extension of the grammar presented by Sridharan
et al. in [25]. Field sensitivity is ensured by the DAssign production, which is
equivalent to

[flowsTo → flowsTo putFieldf alias getFieldf ]

from the Sridharan et al. formulation. We have extended the grammar to capture
a type-safe casting with rule [VPT → Castt VPT IsHeapt ]. Types are encoded
in the input graph by a self edge (h, h, IsHeapt) for all types t which the h
object can take. For performance reason, we compute Alias relation only for
base variables of field loads/stores.
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[Alias → GetInstanceVPT PutInstanceVPT ]

[DAssign → PutFieldf Alias GetFieldf ] for all fields f

[GetInstanceVPT → GetInstanceField VPT ]

[PutInstanceVPT → PutInstanceField VPT ]

[VPT → New ]

[VPT → Assign VPT ]

[VPT → DAssign VPT ]

[VPT → Castt VPT IsHeapt ] for all types t

Fig. 4. The parameterised grammar for field-sensitive context-insensitive Java points-
to analysis used in our experiments. We adapt the grammar by Sridharan et al.
from [25]. The parameters f and t take arbitrary values depending on the fields and
types in the input problem.

Problem Sizes. Table 1 shows the relationship between the problem size and
the intermediate and output relation sizes. The n, m(avg) and m(max) columns
respectively show: the number of vertices in the input graph, the number of
edges (averaged across all relations) after running the CFL-R algorithm, and
the maximum number of edges of all labels. Unparameterised nonterminals are
counted as-is, but parameterised nonterminals are counted together, so that the
Load relation is the sum of the sizes of all Loadfield sub-relations. We also chart
the associated sizes of the quadtrees (total number of nodes in the tree) in a
similar fashion. As we have shown in Section 3.2, the quadtree’s size is bounded
by O(m logn) nodes, yet the actual sizes are significantly better, the Norm.
column shows the normalised fraction QTmax/(mmax logn), and improves our
intuition on the quadtrees practical size.

The Labels and Labels-nf columns of Table 1 show the number (input and
normalised, respectively) of labels in the problem. They show that normalisation
imposes a 35%-43% increase in the number of labels. Here we acknowledge that
this is an artefact of the grammar we are using. Nevertheless, the fact that our
method obviates the need for normalisation still proves useful, as it will be no
worse, and definitely can improve memory efficiency.

The sparse nature of the problem is difficult to see from the tables, and is
better shown in Figure 5. Here we show the logarithmic index of m in terms of
n, knowing that the theoretical maximum is two (i.e. an edge between every pair
of nodes). In practice (at least for points-to) m is on average less than n1, and
even in the worst cases is only n1.14 in the jython benchmark. This validates our
intuition from Section 3.2, that CFL-R problems are highly sparse. We observe
a pattern of increasing log-indices according to the size of the problem, which we
attribute to over-approximation in the analysis as the potential for more edges
increases.
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Table 1. Statistical information for the Dacapo benchmarks (ordered by problem
size n). Includes: the number of Labels (|Σ ∪ N|) for the input and normalised (-nf)
grammar, the problem size (n) and the size of the average and maximum output set-
bits (m) and quadtree node-count (QT). Norm shows the ratio between the expected
quadtree size O(m log n) and the maximum’s actual size.

Benchmark Labels Labels-nf n m (avg) m (max) QT (avg) QT (max) Norm.

luindex 1653 2301 22699 3413.62 12993 16391 60986 0.32
pmd 1755 2399 32295 12833.23 54660 41645.92 143505 0.18
antlr 1095 1520 32927 5916.85 21891 25573.31 93252 0.28
eclipse 2257 3172 33912 4748.08 21313 23861.54 99813 0.31
bloat 1900 2650 40989 9068.77 57829 35733.54 177415 0.2
xalan 2449 3436 46780 8606.54 42461 38492.15 155194 0.24
chart 2914 4166 49893 8717.85 39753 40075.77 160375 0.26
fop 3495 4742 53851 8591.54 38802 41334.15 160827 0.26

hsqldb 2817 3974 63281 24412.38 200762 86334.77 592910 0.19
jython 3351 4588 78639 40349.77 383917 135013.23 1102813 0.18

Table 2. Absolute runtime (s) of points-to analysis for the Dacapo benchmarks by
Worklist and Quadtree implementations of the solver with (-nf) and without grammar
normalisation

Benchmark Worklist Worklist-nf Quadtree Quadtree-nf

luindex 2.518 2.05 0.726 0.862
pmd 25.348 18.462 8.806 8.436
antlr 3.218 2.614 0.968 1.038
eclipse 7.326 5 1.794 2.042
bloat 12.61 9.548 2.724 2.99
xalan 14.81 11.554 3.9 4.296
chart 17.392 13.782 4.266 4.602
fop 13.828 10.756 3.318 3.812

hsqldb 47.282 36.132 12.218 12.636
jython 96.688 73.264 24.72 24.208

Runtime. We first compare the execution time for the standard worklist algo-
rithm. Table 2 records the absolute runtime (in seconds) of the Dacapo bench-
marks for the Worklist and Quadtree implementations, with (-nf) and without
grammar-normalisation.

Since we are interested in the performance and scaling behaviour of the quadtree
implementation, Figure 6 plots the relative speedup of those implementations nor-
malised to Worklist-nf. Observe that quadtrees universally outperform the work-
list, with an average 2.93x speedup. The largest speedup occurs for the bloat

benchmark, at 3.51x, and the smallest is pmd, with 2.10x. It is interesting that the
extreme speedups/slowdowns do not occur with the largest and smallest bench-
marks, jython and luindex respectively, which show 2.96x and 2.82x speedups.
This is strong evidence that, although the worst-case complexity of CFL-R via
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Fig. 5. Graphical plot for sparsity (logn m) from Table 1, showing that the average
and maximum set-bits (m) range from n0.8 to n1.2 for all benchmarks

quadtrees is much worse, in practice it scales in the same manner as the worklist
algorithm.

In support of our choice not to normalise the grammar, Figure 6 shows the
effects of normalisation. We see the expected speed-increase for the worklist al-
gorithm (which has historically been presented exclusively for normalised gram-
mars). We also see virtually no change in execution times for the quadtree im-
plementation, which intrinsically performs the work of the normalised grammar
via intermediate matrices.

Memory Consumption. The peak memory consumption of the Worklist and
Quadtree implementations in binary normal-form (-nf) and as-is, is recorded in
Table 3. To assist understanding, relative memory usage against the normalised
Worklist-nf implementation is plotted in Figure 7. We observe clear trends in
the memory usage both between the implementations, and according to the
normalisation of the grammar.

Firstly, the quadtree implementation clearly has a smaller memory footprint.
Comparing the more favourable normalised worklist results against the non-
normalised quadtree, we see universally less usage of memory, averaging to 0.39x.
The greatest reduction occurs for hsqldb, one of the larger benchmarks, and the
least for antlr, a smaller one. Furthermore, the smallest and largest benchmarks
(luindex and jython) have 0.48x and 0.43x memory consumption respectively.
Our results indicate that memory reduction does not seem to scale with problem
size, but is more likely dependant on problem-specific information (such as the
order of information).

We are also interested in how normalisation impacts memory usage. The work-
list algorithm clearly benefits from normalisation in the expected manner, where
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Fig. 6. Relative speedup of the Worklist, Quadtree and normalised Quadtree-nf against
the normalised Worklist-nf implementation. Larger values show faster runtimes

Table 3. Absolute memory usage (MB) of points-to analysis for the Dacapo bench-
marks by Worklist and Quadtree implementations of the solver with (-nf) and without
grammar normalisation

Benchmark Worklist Worklist-nf Quadtree Quadtree-nf

luindex 149.86 72.5 34.87 35.13
pmd 347.88 163.29 53.73 89.31
antlr 149.43 80.07 51.46 51.71
eclipse 401.09 151.27 53.04 53.3
bloat 375.48 164.59 61.46 76.93
xalan 513.27 214.72 73.7 77.05
chart 568.72 239.61 79.84 81.65
fop 614.94 255.34 82.3 84.39

hsqldb 853.08 433.1 109.55 164.72
jython 868.43 415.32 177.75 277.91

memory consumption drops on average 0.46x. This result is not particularly
interesting, since the worklist algorithm is not the focus of our research, however
the reader should note that this memory drop must be attributed to the large
intermediate-result set that is computed for longer rule chains. In comparison,
we see a slight increase in memory consumption when normalising the grammar
for the quadtree algorithm. Unlike other metrics, the experiments do show that
the larger benchmarks jython and hsqldb show the largest increases, more than
1.5x. This result is to be expected, and motivates the ideas of Section 3.3, which
is that maintaining intermediate results permanently becomes problematic for
particularly large problems.
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Fig. 7. Relative memory usage of the Worklist, Quadtree and normalised Quadtree-
nf against the normalised Worklist-nf implementation. Smaller values show a reduced
memory footprint

5 Related Work

Recognition of context free languages is one of the oldest formalisms in theoreti-
cal computer science. The first efficient algorithms for recognition were proposed
independently by Cocke [6], Younger [30] and Kasami [14], and subsequently im-
proved by Valiant [26] and generalised by Okhotin [20].

The reachability variant of CFL was formalised by Yannakakis [29] as a data-
flow evaluation strategy. Our work relies on reversing this encoding, so that
we can apply data-flow techniques to a new context. It was later, through
Reps [22] [23] [18] [24] [21], that the problem was popularised as as a vehicle
for solving a range of computational problems.

In particular, CFL-R has been identified as a viable solver for many analyses.
Notable ones are: shape analysis [22], constant propagation [24], control-flow
analysis [27], set-constraint solving [18] [15], but particularly points-to anal-
ysis. There is much demand in the literature for fast and scalable points-to
analysis [10] [19]. CFL reachability is valuable in this context because it pro-
vides a queryable “as-needed” framework, useful in incremental [17] or demand-
driven [35] [25] [28] contexts. For this reason, our work uses the points-to bench-
marks as a case-study for viable CFL-R algorithms.

Another line of research focuses on improving CFL-R algorithms. Very fast
algorithms have been developed for restricted cases, particularly Dyck-grammars
and bi-directed graphs:

P = {[S → ε], [S → SS ], [S → Af SÂf ]}
∀u, v ∈ V ∧ Af , Âf ∈ Σ : (u, v, Af ) ∈ E ⇔ (v, u, Âf ) ∈ E

Here f is a parameter which can take any value according to the input being
solved. Yuan and Eugster first formulated an efficient Dyck-reachability algorithm
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for bi-directed trees in [31]. Their work was later improved and extended by Zhang
et al. in [33], which is able to solve bi-directed graphs in O(n+m logm) and trees
inO(n). In that work, the authors noticed that when a graph is bi-directed, Dyck-
reachability forms an equivalence relation, whose equal members can be collapsed
to representative nodes. Successively stratifying the intra-reachable sets in this
way grants the significantly reduced time complexities which they reported. Un-
surprisingly, there are few problem contexts in which the graph is naturally bi-
directed. Introducing reverse edges for every parenthesis label leads the analysis
to report an over-approximation of the actual reachable sets, which can still be
useful depending on the problem context. The work in [33] is therefore of greatest
use as a fast pre-processing step for a more precise and expensive analysis.

Unfortunately, results by Heintze and McAllester [11] and Reps [21] imply
that the Dyck results are unlikely to generalise. Indeed, only Chaudhuri [5], using
the Four Russians’ Trick, has been able to improve on the long-standing cubic-
time algorithm. As was stated in Section 2, we are unable to use Chaudhuri’s
advancement, since the memory required is excessive, though work by Zhang et
al. has found a means of adapting it for C points-to analysis whilst retaining
subcubic runtime [34].

Matrix multiplication has been used in the CFL context since Valiant [26].
Much of the theory surrounding matrices is concerned with efficient computa-
tions and representations of matrices in the natural domain, most famously the
Coppersmith and Winograd algorithm for fast matrix-matrix multiplication [7].
For our CFL-R context, we are concerned with Boolean matrices, which are
typically sparse. Long-standing algorithms for sparse matrix multiplication [9]
have been improved recently by Yuster and Zwick [32]. This paper favours the
quadtree representation, which was shown to be efficient both for memory and
computations by Abdali and Wise in [1].

6 Conclusions

In this paper we present a radically different approach to the evaluation of CFL-R
problems. Our work draws from well-researched ideas in the Datalog community,
and applies them to a new context. We have successfully adapted the semi-näıve
evaluation strategy of Datalog by using the memory-efficient quadtree represen-
tation both as a means of trackingΔ-information and as a relational-composition
vehicle. The algorithm we develop has theoretical advantages over the traditional
Melski-Reps approach [18], by eliminating many redundant calculations, and
Chaudhuri’s subcubic approach [5], by making efficient use of memory. Our ad-
vances have been implemented as a CFL-R solver, and compared experimentally
with the current scalable state-of-the-art solver. The experimentation shows that
our CFL-R algorithm brings up to 3.5x speedup and 60% memory reduction. Go-
ing forward, we intend to fully understand the average and worst-case runtime
of quadtree-based semi-naive evaluation, to characterise the nature of real-world
CFL-R problems, and to assess the viability of alternate data structures within
the semi-näıve framework.
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Safe MPI Code Generation Based on Session Types
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Abstract. This paper presents a code generation framework for type-
safe and deadlock-free Message Passing Interface (MPI) programs. The
code generation process starts with the definition of the global topology
using a protocol specification language based on parameterised multi-
party session types (MPST). An MPI parallel program backbone is au-
tomatically generated from the global specification. The backbone code
can then be merged with the sequential code describing the application
behaviour, resulting in a complete MPI program. This merging process
is fully automated through the use of an aspect-oriented compilation
approach. In this way, programmers only need to supply the intended
communication protocol and provide sequential code to automatically
obtain parallelised programs that are guaranteed free from communica-
tion mismatch, type errors or deadlocks. The code generation framework
also integrates an optimisation method that overlaps communication and
computation, and can derive not only representative parallel programs
with common parallel patterns (such as ring and stencil), but also dis-
tributed applications from any MPST protocols. We show that our tool
generates efficient and scalable MPI applications, and improves produc-
tivity of programmers. For instance, our benchmarks involving repre-
sentative parallel and application-specific patterns speed up sequential
execution by up to 31 times and reduce programming effort by an average
of 39%.

1 Introduction

Message Passing Interface (MPI) [25] library is the most widely used API stan-
dard for programming high performance parallel applications using the message
passing paradigm. MPI is a relatively low-level programming library, and ac-
cording to a survey [12] the most common MPI programming error is the com-
munication mismatch between senders and receivers. This type of error directly
leads to lost messages, communication deadlocks and subtle calculation errors.

In this work, rather than directly verifying the correctness of a given piece
of MPI code, we explore a compilation approach that automates the generation
of a communication deadlock-free and type-safe MPI program, using as inputs
the sequential code defining the algorithmic behaviour of the application and a
language-independent interaction protocol. Code generation using abstractions
of common parallel programming patterns (also known as algorithmic skeletons)

c© Springer-Verlag Berlin Heidelberg 2015
B. Franke (Ed.): CC 2015, LNCS 9031, pp. 212–232, 2015.
DOI: 10.1007/978-3-662-46663-6_11
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is a well-developed field, and [15,31] survey a number of existing tools and frame-
works supporting high-level structured parallel programming. More recently, this
code generation technique has been used to teach undergraduate students paral-
lel programming, and is reported to reduce programming errors [14,42], showing
how accessible the technique is.

Our code generation framework is based on a novel approach which, in addi-
tion to common parallel programming patterns, supports general or application-
specific communication patterns. The framework is driven by a theoretically-
founded protocol language called Pabble [27]. Pabble is a protocol language
based on the theory of multiparty session types (MPST) [19]. It is designed for
expressing indexed and grouped processes interaction patterns in parallel algo-
rithms based on the theories in [11], and distributed applications including web
services [26].

Writing a program using the Pabble language starts with the specification of
the global communication protocol, which is translated automatically to end-
point protocols. The endpoint protocols are localised projection versions of the
global protocol. Our previous work type-checks C distributed parallel applica-
tions written with a customised API [28] or MPI [27] by a programmer against
endpoint protocols. This paper presents the first session-based approach to auto-
matically guarantee (by construction), type-safety, communication-safety (i.e. no
communication mismatch) and deadlock-freedom for MPI applications.

Because of the expressiveness of parameterised MPST [10,11], our compilation
framework can support parallel algorithms included in the Dwarf benchmarks [2]
(i.e. algorithmic methods that capture common pattern of communication and
computation). We can generate safe MPI programs using not only fixed topolo-
gies such as pipelines or stencils, but also any well-formed Pabble protocols. As a
portable standard, MPI is being adapted as a common interface to different kinds
of programming models, including FPGAs [32], stream programming [23] and
fault tolerant [13]. General MPI applications exhibit more complex communica-
tion patterns than well-known, connected topologies found in scientific comput-
ing. The generality of MPST can provide a more flexible pattern programming
approach based on code generation. In addition, structured session types can
guide the optimisation process using MPI immediate operators, without com-
promising the safety properties of the original code. Through our Pabble-based
workflow, snippets of sequential code are automatically combined to generate a
distributed memory parallel application, exploiting the parallelism of multiple
nodes and increasing programming productivity and reusability: the use of de-
sign patterns means that programmers do not need to write an application from
scratch, and can reuse the same protocols and/or sequential code according to
their needs.

Pabble Code Generation Workflow. Fig. 1 shows the overview of our
approach. (a) Programmers decide which Pabble communication protocol to
use for code generation: (a-1) If a standard protocol such as a ring, stencil or
matrix is used, programmers can reuse a protocol from the Pabble repository so
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Fig. 1. Pabble-based code generation workflow. Shaded boxes indicate user inputs

that they do not have to write Pabble, or (a-2) If programmers wish to use a
more specific protocol which is not provided in Pabble repository, they can write
the intended protocol. In this case, the tool automatically checks whether the
protocol is well-formed or not; (b) As the second step, the programmer needs
to write sequential computation code (kernels) in C99 and annotate their code
with pragmas to link the kernels with the protocol specification; (c) The tool
generates an MPI backbone from the Pabble protocol in (a); (d) The kernels
are automatically injected into the MPI backbone using the LARA [6] weaver,
an aspect-oriented compilation tool, resulting in a complete MPI application
(e) As part of the merging project, the LARA weaver can optionally perform
optimisations against previously generated source code, such as overlapping com-
munication and computation, to improve the runtime performance.

Challenges. The technical challenges of this work include bridging the gap
between the high-level Pabble specification describing the global communication
protocol, and the low-level C kernels and MPI calls that realise computation and
communication, requiring several implementation details to be automatically in-
ferred. We are cautious to avoid unnecessary assumptions between the Pabble
specification and the C code defining the behaviour of the application, by provid-
ing a simple and minimally intrusive interface for their interoperation. The use
of session types to define communication patterns separately from computation
means that data-dependent and non-deterministic protocols are not supported,
but sufficient enough to generate safe representative algorithms (see Section 5).

Outline. Section 2 outlines the application development workflow through a
running example; Section 3 explains the first of two stages of compilation, the
generation of MPI backbone from protocol; Section 4 explains the second stage
of compilation, merging the backbone with kernels and optimisation; Section 5
gives a number of case studies including scientific computations and flexible grid
computations, and performance evaluation of our framework showing the flexi-
bility and productivity. The Pabble homepage [30] includes the code generation
framework information, including the Pabble library and benchmark results.
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1 const N = 1..max;
2 global protocol Stencil(role P[1..N][1..N]) {
3 rec Steps {
4 LeftToRight(T) from P[r:1..N][c:1..N-1] to P[r][c+1];
5 RightToLeft(T) from P[r:1..N][c:2..N] to P[r][c-1];
6 UpToDown(T) from P[r:1..N-1][c:1..N] to P[r+1][c];
7 DownToUp(T) from P[r:2..N][c:1..N] to P[r-1][c];
8 continue Steps;
9 }

10 }

Stencil Protocol

Listing 1. Pabble protocol for 5-point stencil

LeftToRight

DownToUp

RightToLeft

UpToDown

Fig. 2. Messages received by
a process in a stencil protocol

2 Application Development Workflow

2.1 Interaction Protocols with the Pabble Protocol Language

Pabble [27], or Parameterised Scribble [33],represents interaction types as para-
metric protocols, such that the protocols are scalable over the number of partic-
ipants (i.e. compute nodes) given as parameters.

Listing 1 presents an example of a Pabble protocol which defines a 5-point sten-
cil design pattern, where N ×N processes are arranged in a 2-dimensional grid,
and each participant exchanges messages with its 4 neighbours (except for edge
participants). A Pabble protocol consists of a preamble and a definition. Line 1
defines N to be in the range between 1 and max, where max corresponds to the
maximum integer. The concrete value of N is known only at run time, and stays
constant in the duration of the instantiated protocol. N can be used in the pro-
tocol body as indices for role definition, which is the mechanism used by Pabble
to support parameterised protocols. The protocol definition starts from Line 2,
with the keywords global protocol followed by the protocol name Stencil.
The parameters to the protocols are the role declarations, role P[1..N][1..N],
which declares a 2-dimensional role P, with N ×N participants. Individual par-
ticipants can be addressed by integer indices, e.g. P[1][1], similar to an array
access. A valid Pabble protocol ensures that all participants referenced in the
protocol body are declared and within the index bounds ([27] provides a de-
tailed list of well-formed conditions). For example, the following protocol is not
well-formed because participants P[5] and P[i+1] are undefined when i is 3.

1 global protocol BadProtocol(role P[1..3]) {
2 Msg(T) from P[1] to P[5];
3 Msg(T) from P[i:1..3] to P[i+1]; }

Non well-formed protocol

Pabble protocols provide a guarantee of communication safety and deadlock
freedom between participants in the protocol; this guarantee also extends to
scalable protocols, where the number of participants are not known statically,
and well-formed conditions ensure that the indexing of participants does not go
beyond specified bounds. A Pabble protocol describes (1) the structured message
interaction patterns of the application, and (2) the control-flow elements, exclud-
ing the logic related to actual computation, so that a Pabble protocol defining a
parallel design pattern can be reused for different applications (see Section 5).
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We provide a repository of common Pabble protocols describing common inter-
action patterns used by parallel applications. The Stencil protocol in Listing 1
is one example, and the other patterns in the repository include ring pipeline,
scatter-gather, master-worker and all-to-all.

Our protocol body starts with a rec block, which stands for recursion, and
is assigned with the label Steps. The recursion block does not specify the loop
condition because a Pabble protocol only describes the interaction structure while
implementation details are abstracted away. In the body of the recursion, we have
4 lines of interaction statements (Line 4-7), one for each direction. Interaction
statements describe the sending of a message from one participant to another. For
example, in Line 4 a message with label LeftToRight and with a generic payload
type T is sent from P[r:1..N][c:1..N-1] to P[r][c+1]. The index expression
r:1..Nmeans that r is bound and iterated through the list of values in the range
1..N, so the line encapsulates N × (N − 1) individual interaction statements.
The other interaction statements in Listing 1 can be similarly interpreted. Fig. 2
shows the messages received from neighbours for participant P[2][2] in a 3× 3
grid, which is defined in the protocol as role P[1..3][1..3].

2.2 Computation Kernels

Computation kernels are C functions that describe the algorithmic behaviour of
the application. Each message interaction defined in Pabble (e.g. Label(T)from
Sender to Receiver) can be associated to a kernel by its label (e.g. Label).

Sender Process Receiver Process

(1) Execute Label kernel
Send ReceiveMessage of type T

(2) Execute Label kernel

The figure on the left
shows how kernels are in-
voked in a message-passing
statement between two pro-
cesses named Sender and
Receiver respectively. Since

a message interaction statement involves two participants (e.g. Sender and
Receiver), the kernel serves two purposes: (1) produce a message for send-
ing and (2) consume a message after it has been received. The two parts of the
kernel are defined in the same function, but runs on the sending process and
the receiving process respectively. The kernels are top-level functions and do
not send or receive messages directly through MPI calls. Instead, messages are
passed between kernels and the MPI backbone (derived from the Pabble proto-
col) via a queue API: in order to send a message, the producer kernel (e.g. (1))
of the sending process enqueues the message to its send queue; and a received
message can be accessed by a consumer kernel (e.g. (2)), dequeuing from its
receive queue. This allows the decoupling between computation (as defined by
the kernels) and communication (as described in the MPI backbone).

Writing a kernel. We now explain how a user writes a kernel file, which con-
tains the set of kernel functions related to a Pabble protocol for an application. A
minimal kernel file must define a variable meta of meta_t type, which contains the
process id (i.e. meta.pid), total number of spawned processes (i.e. meta.nprocs
) and a callback function that takes one parameter (message label) and returns
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the send/receive size of message payload (i.e. unsigned int meta.bufsize(

int label)). The meta.buflen function returns the buffer size for the MPI
primitives based on the label given, as a lookup table to manage the buffer sizes
centrally. Process id and total number of spawned processes will be populated
automatically by the backbone code generated. The kernel file includes the defi-
nitions of the kernel functions, annotated with pragmas, associating the kernels
with message labels. The kernels can use file (i.e. static) scope variables for
local data storage. Our stencil kernel file starts with the following declarations
for local data and meta:

1 typedef struct { double* values; int rows; int cols; } local_data_t;
2 static local_data_t *local;
3

4 unsigned int buflen(int label) { return local->rows - 2; } // local rows - halo rows/cols
5

6 meta_t meta = {/*pid*/0, /*nprocs*/1, MPI_COMM_NULL, &buflen};

Kernel header

Initialisation. Most parallel applications require explicit partitioning of in-
put data. In these cases, the programmer writes a kernel function for partitioning,
such that each participant has a subset of the input data. Input data are usually
partitioned with a layout similar to the layout of the participants. In our sten-
cil example where processes are organised in a 2D grid, we partition the input
data in a 2D-grid of sub-matrices. The sub-matrices are calculated for each of
the process using the meta.pid and meta.nprocs which are known at runtime
when the kernel functions are called. Below is an example of the main part of
the initialisation function.

6 #pragma pabble kernel Init
7 void init(int id, const char *filename)
8 { FILE *fp = fopen(filename, "r");
9 local = (local_data_t *)malloc(sizeof(local_data_t));

10 local->rows = 0; local->cols = 0; local->values = NULL;
11 ...
12 int proc_per_row = sqrt(meta.nprocs); // Participant per row
13 int proc_per_col = sqrt(meta.nprocs); // Participant per column
14 int row_offset = (meta.pid / proc_per_row) * row_size; // Start row of data
15 int col_offset = (meta.pid % proc_per_col) * col_size; // Start column of data
16 ...
17 if (within_range) { fscanf(fp, "%f", &local->values[i]); } // Copy data to local
18 ...
19 fclose(fp); }

Kernel: Init

Computation and Queues. The kernels are void functions with at least
one parameter, which is the label of the kernel. Inside the kernel, no MPI prim-
itive should be used to perform message passing. Data received from another
participant or data that need to be sent to another participant can be accessed
using a receive queue and send queue. Consider the following kernel for the label
LeftToRight in the stencil example:
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20 #pragma pabble kernel LeftToRight
21 void accumulate_LeftToRight(int id)
22 { // Sender sends right col of submatrix and Recver receives left col.
23 if (!pabble_recvq_isempty() && pabble_recvq_top_id() == id) {
24 tmp[HALO_LEFT] = (double *)pabble_recvq_dequeue(); // Get received value.
25 } else { tmp[HALO_RIGHT] = (double *)calloc(meta.buflen(id), sizeof(double));
26 /* populate tmp[HALO_RIGHT] */
27 pabble_sendq_enqueue(id, tmp[HALO_RIGHT]); // Put buffer to be sent
28 }
29 }

Kernel: LeftToRight

Each kernel has access to a send and receive queue local to the whole process,
which holds pointers to the buffer to be sent and the buffer containing the
received messages, respectively. The queues are the only mechanism for kernels
to interface the MPI backbone. The simplest kernel is one that forwards incoming
messages from the receive queue directly to the send queue. In the above function,
when the kernel function is called, it either consumes a message from the receive
queue if it is not empty (i.e. after a receive), or produce a message for the send
queue (i.e. before a send).

1 int main(int argc, char *argv[])
2 { MPI_Init(&argc, &argv);
3 MPI_Comm_rank(MPI_COMM_WORLD, &meta.pid);
4 MPI_Comm_size(MPI_COMM_WORLD, &meta.nprocs);
5 #pragma pabble type T
6 typedef void T; ⇒ typedef double T;
7 MPI_Datatype MPI_T; ⇒ MPI Datatype MPI T = MPI DOUBLE;
8

9 T *bufLeftToRight_r, *bufLeftToRight_s;
10 /** Other buffer declarations **/
11 /** Definitions of cond0, cond1, ... **/
12 #pragma pabble predicate Steps
13 while (1) { ⇒ while(iter())
14 if (cond0) { /*if P[i:0..(N-1)][j:1..(N-1)]*/
15 bufLeftToRight_r = (T *)calloc(meta.buflen(LeftToRight), sizeof(T));
16 MPI_Irecv(bufLeftToRight_r, meta.buflen(LeftToRight), MPI_T, /*P[i][(j-1)]*/...);
17 MPI_Wait(&req[0], &stat[0]);
18 pabble_recvq_enqueue(LeftToRight, bufLeftToRight_r);
19 #pragma pabble kernel LeftToRight ⇒ accumulate LeftToRight(LeftToRight);
20 }
21 if (cond1) { /*if P[i:0..(N-1)][j:0..(N-2)]*/
22 #pragma pabble kernel LeftToRight ⇒ accumulate LeftToRight(LeftToRight);
23 bufLeftToRight = pabble_sendq_dequeue();
24 MPI_Isend(bufLeftToRight, meta.buflen(LeftToRight), MPI_T, /*P[i][(j+1)]*/...);
25 MPI_Wait(&req[1], &stat[1]);
26 free(bufLeftToRight);
27 }
28 /** similarly for RightToLeft, UpToDown and DownToUp **/
29 MPI_Finalize();
30 }
31 return EXIT_SUCCESS; }

Generated MPI Backbone

Listing 2. Sequential stencil code using kernels

Kernels can have extra parameters. For example, in the init function above,
filename is a parameter that is not specified by the protocol (i.e. Init()).
When such functions are called, all extra parameters are supplied by command-
line arguments in the final generated MPI application.
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In the next two sections we describe: (1) the compilation process to generate
the MPI backbone and (2) the merging process in which we combine the MPI
backbone and the kernels.

3 Compilation Step 1: Protocol to MPI Backbone

This section describes the MPI backbone code generation from Pabble protocols.
First the generated MPI backbone code of the running example is shown, then
the translation rules from Pabble statements to MPI code are explained along
with details of how to map Pabble participants into MPI processes.

3.1 MPI Backbone Generation from Stencil Protocol

Based on the Pabble protocol (e.g. Listing 1), our code generation framework
generates an MPI backbone code (e.g. Listing 2). First it automatically generates
endpoint protocols from a global protocol as an intermediate step to make MPI
code generation more straightforward. For reference, the endpoint protocol of
the Stencil protocol is listed in [22]

An MPI backbone is a C99 program with boilerplate code for initialising
and finalising the MPI environment of a typical MPI application (Line 2-4 and
29 respectively), and MPI primitive calls for message passing (e.g. MPI_Isend
/MPI_Irecv). Therefore the MPI backbone realises the interaction between par-
ticipants as specified in the Pabble protocol, without supporting any specific
application functionality. The backbone has three kinds of #pragma annotations
as placeholders for kernel functions, types and program logic. The annotations
are explained in Section 4. The boxed code in Listing 2 represents how the back-
bone are converted to code that calls the kernel functions in the MPI program.

In Lines 5 and 6, generic type T and MPI_T are defined datatypes for C and
MPI respectively. T and MPI_T are refined later when an exact type (e.g. int or
composite struct type) is known with the kernels.

Following the type declarations, are other variable declarations including the
buffers (Line 9), and their allocation and deallocation are managed by the back-
bone. They are generated as guarded blocks of code, which come directly from
the endpoint protocol. Line 14-20 shows a guarded receive that correspond to
if P[i:0..(N-1)][j:1..(N-1)] LeftToRight(T)from P[i][j-1] in the pro-
tocol and Line 21-27 for if P[i:0..(N-1)][j:0..(N-2)] LeftToRight(T)to

P[i][j+1].

3.2 MPI Backbone Generation from Pabble

Table 1 and 2 show how each Pabble construct is translated into MPI blocks
for statements that involve P2P interactions and control-flow respectively. The
online appendix [22] lists additional cases, the internal iteration and choice con-
structs).

1. Interaction. An interaction statement in a Pabble protocol is projected
in the endpoint protocol as two parts: receive and send.
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The first line of the endpoint protocol shows a receive statement, written
in Pabble as if P[dstId] from P[srcId]. The statement is translated to a
block of MPI code in 3 parts. First, memory is dynamically allocated for the
receive buffer (Line 2), the buffer is of Type and its size fetched from the
function meta.bufsize(Label). The function is defined in the kernels and re-
turns the size of message for the given message label. Next, the program calls
MPI_Recv to receive a message (Line 3) from participant P[srcRole] in Pab-
ble. role_P(srcIdx) is a lookup macro from the generated backbone to return
the process id of the sender. Finally, the received message, stored in the receive
buffer buf, is enqueued into a global receive queue with pabble_recvq_enqueue

() (Line 4), followed by the pragma indicating a kernel of label Label should be
inserted. The block of receive code is guarded by an if-condition, which executes
the above block of MPI code only if the current process id matches the receiver
process id.

The next line in the endpoint protocol is a send statement, converse of the receive
statement, written as if P[srcIdx] Label(Type)to P[dstIdx]. The MPI code
begins with the pragma annotation, then dequeuing the global send queue with
pabble_sendq_dequeue() and sends the dequeued buffer with MPI_Send. After
this, the send buffer, which is no longer needed, is deallocated. The block of send

Table 1. Pabble interaction statements and their corresponding code

1. Interaction

Label(Type) from P[srcIdx] to P[dstIdx];

Global Protocol

if P[dstIdx] Label(Type) from P[srcIdx];
if P[srcIdx] Label(Type) to P[dstIdx];

Projected Endpoint Protocol

1 if (meta.pid == role_P(dstIdx)) {
2 buf = (Type *)calloc(meta.bufsize(Label), sizeof(Type));
3 MPI_Recv(buf, meta.bufsize(Label), MPI_Type, role_P(srcIdx), Label, ...);
4 pabble_recvq_enqueue(Label, buf);
5 #pragma pabble kernel Label
6 }
7 if (meta.pid == role_P(srcIdx)) {
8 #pragma pabble kernel Label
9 buf = pabble_recvq_dequeue();

10 MPI_Send(buf, meta.bufsize(Label), MPI_Type, dstIdx, Label, ...); free(buf);
11 }

Generated MPI Backbone

2. Parallel interaction

Label(Type) from P[i:1..N-1] to P[i+1];

Global Protocol
if P[i:2..N] Label(Type) from P[i-1];
if P[i:1..N-1] Label(Type) to P[i+1];

Projected Endpoint Protocol

1 if (role_P(2)<=meta.pid&&meta.pid<=role_P(N)) {
2 buf = (Type *)calloc(meta.bufsize(Label), sizeof(Type));
3 MPI_Recv(..., prevRank = meta.pid-1, Label, ...);
4 pabble_recvq_enqueue(Label, buf);
5 #pragma pabble kernel Label
6 }
7

8 if (role_P(1)<=meta.pid&&meta.pid<=role_P(N-1)) {
9 #pragma pabble kernel Label

10 buf = pabble_sendq_dequeue();
11 MPI_Send(..., nextRank = meta.pid+1, Label, ...); free(buf);
12 }

Generated MPI Backbone
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code is similarly guarded by an if-condition to ensure it is only executed by the
sender. By allocating memory before receive and deallocating memory after send,
the backbone manages memory for the user systematically.

2. Parallel interaction. A Pabble parallel interaction statement is written as
Label(Type)from P[i:1..N-1] to P[i+1], meaning all processes with indices
from 1 to N-1 send a message to its next neighbour. P[1] initiates sending to
P[2], and P[2] receives from P[1] then sends a message to P[3], and so on. As
shown in the endpoint protocol which encapsulates the behaviour of all P[1..
N] processes, the statement is realised in the endpoint as conditional receive
followed by a conditional send, similar to ordinary interaction. The difference
is the use of a range of process ids in the condition, and relative indices in the
sender/receiver indices. The generated MPI code makes use of expression with
meta.pid (current process id) to calculate the relative index.

3. Iteration and 4. For-loop. rec and foreach are iteration statements.
Specifically rec is recursion, where the iteration conditions are not specified
explicitly in the protocol, and translates to while-loops. The loop condition is
the same in all processes. This may otherwise be known as collective loops. The
loop generated by rec has a #pragma pabble predicate annotation, so that
the loop condition can be later replaced by a kernel (see Section 4).

The foreach construct, on the other hand, specifies a counting loop, iterating
over the integer values in the range specified in the protocol from the lower bound
(e.g. 0) to the upper bound value (e.g. N-1). This construct can be naturally
translated into a C for-loop.

5. Scatter, 6. Gather and 7. All-to-all. Collective operations are written
in Pabble as multicast or multi-receive message interactions. While it is possible
to convert these interactions into multiple blocks of MPI code following the
rules in Table 2, we take advantage of the efficient and expressive collective
primitives in MPI. Table 3 shows the conversion of Pabble statements into MPI
collective operations. We describe only the most generic collective operations,
i.e. MPI_Scatter, MPI_Gather and MPI_Alltoall.

Translating collective operations from Pabble to MPI considers both global
Pabble protocol statements and endpoint protocol. If a statement involves the
__All role as sender, receiver or both, it is a collective operation. Table 3 shows
that translated blocks of MPI code do not use if-statements to distinguish
between sending and receiving processes. This is because collective primitives

Table 2. Pabble statements and their corresponding code

3. Iteration

rec LoopName { ... continue LoopName; }

Global/Endpoint Protocol

1

2 #pragma pabble predicate LoopName
3 while (1) {
4 ... }

Generated MPI Backbone

4. For-loop

foreach (i:0..N-1) { ... }

Global/Endpoint Protocol

1

2 for (int i=0; i<=N-1; i++) {
3 ...
4 }

Generated MPI Backbone
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Table 3. MPI collective operations and their corresponding Pabble statements

5. Scatter
Label(Type) from P[rootRole] to __All;

Global Protocol

1 rbuf = (Type *)calloc(meta.buflen(Label), sizeof(Type));
2 #pragma pabble kernel Label
3 sbuf = pabble_sendq_dequeue();
4 MPI_Scatter(sbuf, meta.buflen(Label), MPI_Type,
5 rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);
6 pabble_recvq_enqueue(Label, rbuf);
7 #pragma pabble kernel Label
8 free(sbuf);

Generated MPI Backbone

6. Gather
Label(Type) from __All to P[rootRole];

Global Protocol

1 rbuf = (Type *)calloc(meta.buflen(Label)*meta.nprocs,
2 sizeof(Type));
3 #pragma pabble kernel Label
4 sbuf = pabble_sendq_dequeue();
5 MPI_Gather(sbuf, meta.buflen(Label), MPI_Type,
6 rbuf, meta.buflen(Label), MPI_Type, role_P(rootRole), ...);
7 pabble_recvq_enqueue(Label, rbuf);
8 #pragma pabble kernel Label
9 free(sbuf);

Generated MP Backbone

7. All-to-All
Label(Type) from __All to __All;

Global Protocol

1 rbuf = (Type *)calloc(meta.buflen(Label)*meta.nprocs,
2 sizeof(Type));
3 #pragma pabble kernel Label
4 sbuf = pabble_sendq_dequeue();
5 MPI_Alltoall(sbuf, meta.buflen(Label), MPI_Type,
6 rbuf, meta.buflen(Label), MPI_Type, ...);
7 pabble_recvq_enqueue(Label, rbuf);
8 #pragma pabble kernel Label
9 free(sbuf);

Generated MPI Backbone

in MPI are executed by both the senders and the receivers, and the runtime
decides whether it is a sender or a receiver by inspecting the rootRole parameter
(which is a process rank) in the MPI_Scatter or MPI_Gather call. Otherwise the
conversion is similar to their point-to-point counterparts in Table 2.

Process scaling. In addition to the translation of Pabble statements into
MPI code, we also define the process mapping between a Pabble protocol and a
Pabble-generated MPI program. Typical usage of MPI programs can be parame-
terised on the number of spawned processes at runtime via program arguments.
Hence, given a Pabble protocol with scalable roles, we describe the rules below
to map (parameterised) roles into MPI processes.

A Pabble protocol for MPI code generation can contain any number of constant
values (e.g. const M = 10), which are converted in the backbone as C constants
(e.g. #define M 10), but it can use at most one scalable constant [27]. A scalable
constant is defined as:

const N = 1..max;

The constant can then be used for defining parameterised roles, and used in
indices of parameterised message interaction statements. For example, to declare
an N ×N role P, we write in the protocol:
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global protocol P (role P[1..N][1..N])

which results in a total of N2 participants in the protocol, but N is not known
until execution time. MPI backbone code generated based on this Pabble protocol
uses N throughout. Since the only parameter in a scalable MPI program is its
size (i.e. number of spawned processes), the following code is generated in the
backbone to calculate, from size, the value of C local variable N:

MPI_Comm_size(MPI_COMM_WORLD, &meta.nprocs); // # of processes
int N = (int)pow(meta.nprocs, 1/2); // N = sqrt(meta.nprocs)

4 Compilation Step 2: Aspect-Oriented Design-Flow

This section focuses on the final stage of our code generation framework, which
merges two input components to derive the complete MPI program: (1) the com-
munication safeMPI backbone derived automatically from a Pabble protocol (Sec-
tion 3.1), and (2) the user supplied kernels capturing application functionality.

The MPI backbone is automatically annotated with pragma statements refer-
encing all the labels defined in the protocol; the programmer, on the other hand,
must manually annotate each kernel with the corresponding label. This way, our
code generation framework can automatically merge both components.

Our approach takes a similar path as OpenMP [8] and OpenACC [41], which
parallelise sequential programs using non-invasive #pragma annotations. The dif-
ference is that while OpenMP operates on a shared memory architecture model
and OpenACC operates via a host-directed execution (co-processor) model, our
approach allows applications to target customised platform topologies defined
by Pabble, since MPI works on both shared and distributed memory platforms.

LARA language. To support an automated merging process, our program-
ming framework uses an aspect-oriented programming (AOP) language called
LARA [6]. As far as we know, LARA is the only aspect-oriented approach that
targets all stages of a development process allowing static code analysis and
manipulation (e.g. source-level translation and code optimisation), toolchain ex-
ecution (e.g. for design-space exploration) and application deployment (e.g. to
extract dynamic behaviour). These various tasks, which are often performed
manually and independently, can be described in a unified way as LARA as-
pects. These aspects can then drive LARA weavers to apply a particular strat-
egy in a systematic and automated way. In our code generation framework, we
use LARA’s ability to analyse and manipulate C code to automate the merg-
ing process between the MPI backbone and the kernels sources (Section 4.1),
and also to further optimise the MPI code by overlapping communication and
computation (Section 4.2).

4.1 Merging Process

To combine the MPI backbone with the kernels, our aspect-oriented design-flow
inserts kernel function calls into the MPI backbone code. The insertion points
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are realised as #pragmas in the MPI backbone code, generated from the input
protocol as placeholders where functional code is inserted. There are multiple
types of annotations whose syntax is given as:

#pragma pabble [<entry point type>] <entry point id> [(param0, ...)]

where entry point type is one of kernel, type or predicate, and entry point id
is an alphanumeric identifier.

Kernel Function. #pragma pabble kernel Label defines the insertion
point of kernel functions in the MPI backbone code. Label is the label of the inter-
action statement, e.g. Label(T)from Sender to Receiver, and the annotation is
replaced by the kernel function associated to the label Label. Programmers must
use the same pragma to manually annotate the implementation of the kernel func-
tion. The first row in Table 4 shows an example.

Datatypes. #pragma pabble type TypeName annotates a generic type name
in the backbone, and also annotates the concrete definition of the datatype in
the kernels. In the second row of Table 4, the C datatype T is defined to be
void since the protocol does not have any information to realise the type. The
kernel defines T to be a concrete type of double, and hence our tool trans-
forms the typedef in the backbone into double and infers the corresponding
MPI_Datatype (MPI derived datatypes) to the built-in MPI integer primitive
type, i.e. MPI_Datatype MPI_T = MPI_DOUBLE. Our tool also supports generat-
ing MPI datatypes for structures of primitive types, e.g. struct { int x, int

y, double m } is transformed to its MPI-equivalent datatype.
Conditionals. #pragma pabble predicate Label is a pragma for annotating

predicates, e.g. loop conditions or if-conditions, in the backbone. Since a Pabble
communication protocol (and transitively, the MPI backbone) does not specify a
loop condition, the default loop condition is 1, i.e. always true. This annotation
introduces a way to insert a conditional expression defined as a kernel function.
It precedes the while-loop, as shown in the third row of Table 4, to label the loop
with the name Label. The kernel function that defines expressions must use the
same annotation as the backbone, e.g. #pragma pabble predicate Label. After
the merge, this kernel function is called when the loop condition is evaluated.

Table 4. Annotations in backbone and kernel

Generated MPI backbone User supplied kernel Merged code
Kernel
function #pragma pabble kernel Label

#pragma pabble kernel Label
void kernel_func(int label)
{ ... }

kernel_func(Label);

Datatypes
#pragma pabble type T
typedef void T;
MPI_Datatype MPI_T;

#pragma pabble type T
typedef double T;

typedef double T;
MPI_Datatype MPI_T

= MPI_DOUBLE;

Conditionals
#pragma pabble predicate Cond
while (1)
{ ... }

#pragma pabble predicate Cond
int condition()
{ ... return bool; }

while (condition())
{ ... }
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4.2 Performance Optimisation for Overlapping Communication and
Computation by MPI Immediate Operators

When designing a protocol with a session-based approach such as Pabble proto-
col, the resulting MPI backbone guarantees communication safety, i.e. the struc-
tures of interactions between the processes are compatible. However, that does
not necessarily guarantee the most efficient communication pattern. For example
the pipeline Pabble statement T() from P[i:0..N-1] to P[i+1] results in a com-
munication safe pattern of Receive-Send for P[1] to P[N]. The protocol implies
there is a dependency between the received message and the send message, hence
each process in the pipeline must wait for the messages sent by processes up the
pipeline, before they can start sending a message to processes down the pipeline.
This is not optimal because the stall time between the beginning of the pipeline
and when the first message is received is a waste of CPU resources. Often parallel
applications can be modified such that the dependencies within the same iteration
are removed, so the message passing can start sending straight away and overlap
with receive using asynchronous messaging mode.

The use of asynchronous communication is dependent on the kernel function-
ality and how message dependencies must be handled. For this reason, program-
mers can use the async directive when annotating their kernels, e.g. #pragma
pabble async kernel LABEL, in order to trigger this optimisation.

The LARA aspect-oriented weaver transforms the generated code without
changing the ordering of the MPI message passing primitives, and hence pre-
serves the communication safety guarantees of the MPI backbone.

This optimisation relies on the placement of MPI’s immediate communica-
tion primitives, which is made up of two parts: (1) a primitive call (MPI_Isend
or MPI_Irecv) to initiate the message transfer which returns immediately and
after which the buffer should not be accessed, and a (2) second primitive call
(MPI_Wait) to block and wait for the transfer to complete. Between the initial
call and the wait, the application can perform computation in parallel with the
message transfer to realise the communication-computation overlap.

The optimisation overlaps the computation which generates results to be sent
in the following iteration and the communication of sending and receiving results
of previous iteration to and from a neighbouring process. Since all computations
are executed in parallel, and the communication overlaps with the computation,
we achieve a speed-up for the parallel application over the sequential version of
the same application.

Below we show an example before the optimisation (left) and after the opti-
misation (right) where the MPI_Wait is issued as late as possible:

1 if (cond) {
2 #pragma pabble Label
3 buffer = pabble_sendq_dequeue();
4 MPI_Send(buffer, ...);
5 free(buffer);
6 }

Original 1 if (cond) {
2 buffer = pabble_sendq_dequeue();
3 MPI_Isend(buffer, ..., request); }
4 ...
5 if (cond) {
6 #pragma pabble Label
7 MPI_Wait(request); free(buffer); }

Optimised



226 N. Ng, J.G. de Figueiredo Coutinho, and N. Yoshida

Note that our transformation preserves the ordering of communication defined
in the unoptimised backbone. The following presents an example that splits an
ordinary MPI receive/send as in the Stencil example into a set of statements
that interleave asynchronous receive/send.

1 MPI_Recv(...);
2 MPI_Send(...);

Original 1 MPI_Irecv(..., request1);
2 MPI_Isend(..., request2);
3 /* Interleave with computation */
4 MPI_Wait(request1, ...);
5 MPI_Wait(request2, ...);

Optimised

Since MPI_Wait is an operation that blocks until the send and receive buffers
can be accessed, we can ensure that MPI_Isend(..., request1) is completed
before MPI_Irecv(..., request2) even if the transmission of data for the latter
primitive is finished before the former.

5 Evaluation

In this section, we first demonstrate that our protocols can automatically gener-
ate MPI programs using different parallel patterns, including application-specific
patterns (flexibility); and save efforts in the development of MPI applications
(productivity and reusability). Then we measure the performance and efficiency
of the generated MPI programs.

5.1 Productivity and Reusability

The table below presents a comparison of different parallel algorithms developed
using our approach. The second and third columns show the input Pabble pro-
tocol and whether it is available in our protocol repository. The Dwarf column
denotes the categorisations of parallel computational and structural patterns de-
fined in [2]; SG stands for ‘Structured Grid’, PM is ‘Particle Methods’; DM is
‘Dense Matrix’; and S is ‘Spectral (FFT)’. The next three columns show lines of
code in the input Pabble protocol, the generated backbone, and the input user
kernel file. The final column shows the effort ratio of user written code against
the total ( Kernels

Backbone+Kernels for protocols in repository or Kernels+Pabble
Backbone+Kernels ). The

higher the ratio, relatively more effort is needed to write an equivalent program
from scratch.

Protocol Repo. Dwarf Pabble Backbone Kernels Effort

heateq [3] stencil � SG 15 154 335 0.69
nbody ring � PM 15 93 228 0.71
wordcount scatter-gather � 8 76 176 0.70
adpredictor [17] scatter-gather � 8 76 182 0.71
montecarlo scatter-gather � 8 76 70 0.48
montecarlo-mw master-worker � 10 82 70 0.46
LEsovler [27] wrapround mesh SG 15 132 208 0.66
matvec custom [29] DM 15 130 117 0.41
fft64 6-step butterfly S 11 64 134 0.68



Protocols by Default 227

heateq is an implementation of the heat equation based on [3], and uses the
stencil protocol in our running example. nbody is a 2D N-body simulation imple-
mented with a ring topology; it is optimised with the asynchronous messaging
mode described in Section 4.2. wordcount is a simple application that counts
the number of occurrences of each word in a given text, implemented using the
scatter-gather pattern. adpredictor is an implementation of Microsoft’s AdPre-
dictor [17] algorithm for calculated click-through rate, also implemented in the
same scatter-gather pattern, but with a different set of kernel functions. LEsolver
is a linear equation solver parallelised with a custom wraparound mesh topology
outlined in [27]. montecarlo is Monte-Carlo π simulation, implemented with two
different patterns, scatter-gather and master-worker. A remarkable difference
between the two patterns is that the former uses collective operations and all
processes are involved in the main calculation, whereas with the master-worker
pattern workers are coordinated by a central master process by P2P communica-
tion that does not perform the main calculation. Note that the kernels used for
both implementations are the same (except with different kernel labels). matvec
is matrix-vector multiplication parallelised using the MatVec protocol outlined
in [29]. fft64 is an implementation of the Cooley-Tukey FFT between 64 processes
using 6 steps of butterfly exchange between pairs of processes.

Reusability. Both our implementations of wordcount and adpredictor use the
scatter-gather pattern. They exemplify the advantages of pattern programming
– common parallel patterns are collected and stored in our protocol repository,
and they are maintained separately from the user kernels so new parallel appli-
cations can be constructed by writing new kernels only. In addition to reusable
protocols, some kernels can also be reused with different protocols. The scenarios
for kernels to be reused are less common since partitioning of input data are usu-
ally dependent on the protocol, and the kernels are designed to be parallelised
with a single protocol. For example, we show two montecarlo implementations,
one with scatter-gather and another with master-worker pattern. Since the al-
gorithm is embarrassingly parallel and does not depend on input data, both
implementations can share the same kernel.

Our results show that our workflow saves development and debugging efforts
for MPI parallel applications, especially for novice parallel programmers. The
user can focus on developing and maintaining the functional behaviour of their
application, knowing that the merging of updated kernels and the respective
MPI backbones are correct.

5.2 Performance

We evaluate our approach with 4 parallel applications which uses 3 different
Pabble protocols. All implementations are evaluated on cx11, a general purpose
multi-core cluster, and compiled with icc with optimisation level -O3, and tested
using Intel’s MPI library.

1 http://www.imperial.ac.uk/ict/services/hpc/facilities

http://www.imperial.ac.uk/ict/services/hpc/facilities
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In Fig. 3 we compare the performance of nbody with and without asynchronous
optimisation described in Section 4.2. The optimisation overlaps the main calcu-
lation with the communication, and the results show significant improvements
over the unoptimised version. Fig. 4 presents the runtime performance of LEsolver
which uses a custom wraparound mesh protocol with asynchronous optimisation.
In comparison with nbody, the optimisation effect on LEsolver has less impact.
This is partly because the asynchronous kernel implemented by nbody is more
complex than the kernel implemented by LEsolver, so the time spent on com-
munication is dominant. The asynchronous kernel in LEsolver also represents a
smaller proportion of the total computations, hence it has the less effect on the
overall runtime.

Fig. 5 shows the results of two implementations, wordcount and adpredictor,
both of which use the scatter-gather pattern and a different set of kernels. They
follow a similar trend in scalability, which is dependent on the size of the input.

Fig. 6 compares implementations in our framework running in 64 processes
against sequential C versions. Results show speedup for all algorithms except
fft64 due to communication overhead of the more complex butterfly topology.

6 Conclusion and Related Work

This paper presents a session-based framework for generating safe and scalable par-
allel applications based on flexible protocols that capture parallel design patterns.
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The framework consists of two parts: a compilation tool that derives a safe-by-
construction parallel backbone from a Pabble protocol description, and an aspect-
oriented compilation framework that mechanically inserts computation code into
the backbone, and performs asynchronous optimisation.We demonstrate that our
tool generates efficient and scalable MPI applications, and improves productivity
of parallel application development with reusable patterns.

Pattern-Based Structured Parallel Programming. Analgorithmic skele-
ton framework [15] is a high-level parallel programming approach which provides
reusable parallel communication and interaction patterns programmers can pa-
rameterise to generate a specific parallel program. [15,31] describe a number of
tools that were developed in the past decade, andmost of the tools target a similar
set of skeletons, including farm (master-slave), pipeline, iterations and map. Our
approach uses Pabble language to define the patterns of the skeletons, and is able
to represent all common patterns above. In addition, custom patterns can be de-
fined as Pabble protocols, and the formal MPST basis of Pabble ensures that valid
protocols are guaranteed to be communication-safe and deadlock-free, and these
properties hold for our generated MPI backbones (i.e. skeletons) by construction.
Sklml [37], an implementation of P3L language in OCaml supports the common
patterns above but without extensibility. Recently, pattern programming was em-
ployed as a parallel programming teaching tool for undergraduate students [42,14].
They used a pragma approach, and obtained positive feedback from the students.
Thismotivatedus to use the pragma annotation for sequential kernels for flexibility
and preciseness. Other than teaching, most works in the field now target heteroge-
neous and embedded computing, for example, Fast Flow [20,4] for CPU/GPUcode
generation, which can take advantage of the high-level abstraction of skeletons to
target and coordinate between different hardware, each with different program-
ming style.

Verification of MPI. The state-of-the-art in MPI program verification has
been surveyed in [16]. Verification approaches in [16] are diverse and we focus
on works that verify and detect deadlocks in MPI. ISP [40] is a runtime model
checker based on in-situ partial order as a heuristic to avoid state explosion.
DAMPI [39] is a dynamic verifier for MPI based on ISP, but uses a distributed
scheduling algorithm to allow scaling. Both of the tools suffer from interleaving
explosion, where some execution schedule expands exponentially. MSPOE [34]
improves on ISP’s partial ordering algorithm to overcome the defect and detect
orphaning deadlocks. All above tools are test-based and verify correctness with
a fixed harness suite. MUST [18] is another scalable, MPI dynamic verification
tool, which combines two MPI verification tools, Marmot [21] and Umpire [38],
and overcomes scalability challenges in previous tools by comprehensive analy-
sis of the semantics of the primitives. TASS [35] employs model checking and
symbolic execution, but is also able to verify user-specified assertions for the
interaction behaviour of the program and functional equivalence between MPI
programs and sequential ones [36]. A user needs to specify the maximum number
of processes (see [24] for further comparisons with protocol-based approaches).
The concept of parallel control-flow graphs is proposed in [5] for static analysis of
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MPI programs, e.g., as a means to verify sender-receiver matching in MPI source
code. An extension to dynamic analysis is presented in [1]. As far as we know, no
other work focuses on communication deadlock-free MPI code generation based
on types or backbones.

Session-based Parallel Programming. Session C [28] is a programming
framework designed for parallel programming with multiparty session types.
Users implement endpoint programs using session-based APIs and type-check
them against its endpoint protocols. The framework differs from this work that it
does not use a parameterised type for type-checking and the approach presented
here are top-down code generation as opposed to type checking. Similarly, the
work [27] introduces Pabble and type-checking MPI by Pabble, but it does not
consider code generation. [24] proposes another type-checking tool for MPI based
on multiparty session types. It treats a fine-grained index analysis by using
VCC [7] where a program requires annotations for loops, which can be semi-
automatically generated by the program annotator. All of these session-based
works study type-checking endpoint programs written by developers. As far as we
know, this work is the first to automatically generate a complete, communication-
safe MPI code specified by a protocol specification language.

Future Work. includes extending our approach to generate MPI one-sided
communication from the current point-to-point messaging abstraction in Pab-
ble, which is more efficient in some categories of communication patterns; and
supporting recursive, divide-and-conquer parallel pattern, which is possible with
recent advances in session types on sub-protocols [9].
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Abstract. The Static Single Assignment (SSA) form is a predominant
technology in modern compilers, enabling powerful and fast program
optimizations. Despite its great success in the implementation of pro-
duction compilers, it is only very recently that this technique has been
introduced in verified compilers. As of today, few evidence exist on that,
in this context, it also allows faster and simpler optimizations. This work
builds on the CompCertSSA verified compiler (an SSA branch of the
verified CompCert C compiler). We implement and verify two prevail-
ing SSA optimizations: Sparse Conditional Constant Propagation and
Global Value Numbering. For both transformations, we mechanically
prove their soundness in the Coq proof assistant. Both optimization
proofs are embedded in a single sparse optimization framework, factoring
out many of the dominance-based reasoning steps required in proofs of
SSA-based optimizations. Our experimental evaluations indicate both a
better precision, and a significant compilation time speedup.

1 Introduction

Single Static Assignment (SSA) is an intermediate representation of code in
which variables are assigned at most once in the program text, and φ-functions
are used to merge values at control-flow join points. Introduced in the late
1980’s [1, 14], it has gained over the years a considerable interest in the compi-
lation community. Indeed, although the static single assignment property looks
simple, it entails fundamental structural properties in the program control-flow
graph. These properties, materialized by e.g. the dominator-tree, or use-def
chains, are in turn smartly exploited by program optimizations, whose implemen-
tations become simpler than on regular, non-SSA programs. In a way, converting
a program into SSA can be seen as a pre-processing that embeds, explicitly in
the program syntax, some rich semantic invariants of the program. By the same
token, SSA-based optimizations can enjoy precision and efficiency improvement.
It is hence not surprising that SSA has constituted, for over a decade now,
the state-of-the-art technique in modern, production compilers, such as GCC
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or LLVM. For instance, LLVM optimization middle-end includes numerous op-
timizations (25+ phases), including dead code elimination, loop invariant code
motion, sparse conditional constant propagation, and aggressive common sub-
expression elimination based on global-value numbering, all of them working
on SSA. Moreover, SSA is increasingly used in just-in-time (JIT) compilers,
operating on high-level target-independent program representations (e.g. Java
byte-code, .NET CLI byte-code, or LLVM bitcode), which gives even stronger
evidence of the efficiency of SSA-based optimizations.

Undoubtedly, though these sophisticated optimizations are conceptually sim-
pler, implementing them is far from trivial. Indeed, they exploit the subtle se-
mantic invariants of the SSA form, and rely on highly efficient data structures
for better performance. In the literature, it is well-known that the simplicity of
SSA has sometimes been over-estimated, and designing bug-free (i.e. semantics-
preserving) implementations is not so easy [4]. The recent work of Yang et al. [20]
shows that bugs remain frequent in mainstream compilers. Compiler correctness
aims to provide rigorous proofs that compilers preserve the behavior of pro-
grams they compile. After 40 years of rich history, the field is entering into a
new era, with the advent of realistic and mechanically verified compilers. This
new generation of compilers was initiated with CompCert [10], a compiler that
is programmed and verified in the Coq proof assistant and generates compact
and efficient assembly code for from C. The CompCert project has now reached
the maturity to compete with non-verified compilers, such as GCC. However, it
does not rely on an SSA-based middle-end.

Recently, the Vellvm [22, 21] and CompCertSSA [2] projects have been con-
ducted, introducing SSA techniques in verified compilers. Despite the consid-
erable progresses that these works made on the formalization of the semantics
of SSA, and of several important of its properties, SSA-based verified compilers
still suffer from two main bottlenecks, that clearly limit their application in real
world scenarios. First, on the implementation side, verified compilers are usually
restricted. Indeed, verified compilers must find a balance between efficiency and
verifiability, and directly proving the correctness of the transformations they
perform often requires to consider less optimized (i.e. less efficient, or precise)
implementations. To by-pass this problem for the most efficiency-critical parts of
the compiler, one can employ the technique of translation validation[12]. In this
setting, an un-verified tool performs the required computations, and a verified
checker ensures, a posteriori, the correctness of these results before they are put
back in the verified tool chain, thus providing the same formal guaranties as
a transformation that would be directly programmed and proved in Coq. This
technique is increasingly favored in mechanically verified developments [18, 17].
We argue that this technique allows to achieve good performance in practice: the
compilation overhead introduced by the checker does not exceed the performance
loss induced by implementations that are easier to verify but less efficient. The
second obstruction to the development of SSA-based verified compilers lies in the
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fact that, when it comes to proving, working on SSA can be quite constraining.
In fact, the structural properties provably holding on the input program must
be proved to be preserved by each transformation. In addition, compared to
pen-and-paper proofs in which some technical arguments can be elided, mech-
anizing proofs requires making explicit every single reasoning steps. Previous
proof efforts on SSA provide some general lemmas and proof architectures (e.g.
the equation lemma of [2], or the scoping lemma about SSA strictness of [21]),
but lack a systematic, formalized proof technique that would follow the usual
dominance-based reasoning one uses when proving SSA-based optimizations1.

This present work aims to make some progress in these two directions. More
specifically, after recalling in Section 2 some background about the CompCert
compiler, our on-going CompCertSSA project, and a brief overview of the two
optimizations we consider in this paper, we present the following contributions
in verified SSA-based optimizations. We provide realistic implementations, in
a verified compiler chain, of leading SSA optimizations, namely Sparse Condi-
tional Constant Propagation (SCCP) and Common Sub-Expression Elimination
based on Global Value Numbering (GVN). Their implementations closely follow
the choices made in production compilers, for techniques of intra-procedural and
scalar optimizations. Hence, they are realistic in terms of efficiency (compilation
time) and precision (number of instructions optimized). The GVN implemen-
tation is a major revision of the work presented in [2], and performs an order
of magnitude faster. We resort on the use of efficient, verified, a-posteriori val-
idators that do not practically penalize compilation time, even in regards of the
efficient optimization implementations. On the proof side, we propose a generic
proof framework (Section 3) that makes explicit the reasoning on dominated
regions, an emblematic reasoning schema of paper-proofs of SSA optimizations.
Factoring out many of domination-based reasoning makes the proof effort more
lightweight. The proof framework also captures the SSA sparseness adage (it
is enough to propagate dataflow information directly from definitions to uses,
instead of along the control-flow graph). Indeed, our framework is parameterized
by a generic, flow-insensitive, static analysis underlying the optimization. And
we prove that, at each program point, it is sufficient to establish the correctness
of the analysis for the variables that strictly dominate this program point. The
correctness proofs of SCCP and GVN (Sections 4 and 5) are done by instantiating
the framework on these two optimizations, and their underlying static analysis.
Hence, compared to [2], the checker and soundness proof of GVN has been deeply
revised. All our proofs are done within the Coq proof assistant, extending the
CompCertSSA middle-end, an extension of the verified CompCert C compiler.
Finally, we conduct an experimental validation of the Ocaml extracted compiler
on a benchmark suite (Section 6), demonstrating that our middle-end is able to
scale properly to large programs, with improved optimization opportunities. Our
full development is available online at http://www.irisa.fr/celtique/ext/ssa opt.

1 Both works identified the need of such a framework, and the benefits it would permit.

http://www.irisa.fr/celtique/ext/ssa_opt
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2 Background

2.1 The Verified CompCert Compiler

CompCert is a realistic, formally verified compiler that generates PowerPC,
ARM or x86 code from source programs written in a large subset of C. CompCert
formalizes the operational semantics of a dozen intermediate languages, and
proves a semantics preservation theorem for each phase.

Preservation theorems are expressed in terms of program behaviors, i.e. finite
or infinite traces of external function calls (a.k.a. systems calls producing ob-
servable events), that are performed during the execution of the program, and
claim that individual compilation phases preserve behaviors.

A consequence of the theorems is that for any C program p that does not go
wrong (i.e. it does not reach a non-final state where no execution step is valid),
and target program tp output by the successful compilation of p by the compiler
compcert compiler, the set of behaviors of p contains all behaviors of the target
program tp. The formal theorem is:

Theorem compcert_compiler_correct: forall (p: C.program)(tp: Asm.program),

(not_wrong_program p /\ compcert_compiler p = OK tp) ->

(forall beh, exec_asm_program tp beh -> exec_C_program p beh).

Each phase of the compiler is formally proved relying on simulation tech-
niques, and the formal development of CompCert provides the general correct-
ness theorems of these simulation diagrams. We will build on these generic lem-
mas to prove the semantic preservation of GVN and SCCP (see Sections 4 and 5).
The main lemmas to prove take the form of a forward lock-step simulation:

Variable prog:program. (* initial program *)

Variable tprog:program. (* target program *)

Hypothesis opt_ok: optimization prog = OK tprog. (* optim. succeeded *)

Lemma match_step : forall s1 t s2 s1’,

(step (genv prog) s1 t s2) /\ (match_states s1 s1’) ->

exists s2’, step (genv tprog) s1’ t s2’ /\ match_states s2 s2’.

where binary relation match states between semantic states (before and after
optimization) carries the invariants needed for proving behavior preservation.

Some parts of the CompCert compiler are not directly proved in Coq. This
is the case for register allocation, which is based on a graph coloring algorithm.
The interference graph coloring algorithm is written in OCaml, and then vali-
dated a posteriori by a checker written in Coq [13]. The correctness proof of the
checker (stating that if a coloring is accepted by the validator, then it is indeed
a valid coloring) ensures this compilation phase provides the same guarantees as
a transformation written and proved directly in Coq, with the additional benefit
of abstracting away complex implementation details and heuristics.
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Definition reg := ... (* type of variables *)

Inductive instr := (* instructions ( excerpt ) *)

| Inop (pc: node)

| Iop (op: operation) (args: list reg) (res: reg) (pc: node)

| Iload (chk:chunk) (addr:addressing) (args: list reg) (res: reg) (pc: node)

| Istore (chk:chunk) (addr:addressing) (args:list reg) (src: reg) (pc: node)

| Icall (sig: signature) (fn:ident) (args: list reg) (res: reg) (pc: node)

| Icond (cond: condition) (args: list reg) (ifso ifnot: node)

| Ireturn (src: option reg).

Definition code := PTree.t instr. (* type of code graph *)

(* partial map from nodes to instr *)

Inductive phiinstr := Iphi (args: list reg) (res: reg). (* φ-functions *)

Definition phiblock:= list phiinstr. (* type of φ-blocks *)

Definition phicode := PTree.t phiblock.(* type of φ-blocks graph: partial

map from nodes to phiblock *)

Record function := {

fn_sig: signature; (* function signature *)

fn_params: list reg; (* parameters *)

fn_stacksize: Z; (* activation record size *)

fn_code: code; (* code graph *)

fn_phicode: phicode; (* φ-blocks graph *)

fn_entrypoint: node }. (* entry node *)

Fig. 1. SSA abstract syntax

2.2 The Verified CompCertSSA Compiler

In a previous work [2], we developed CompCertSSA, that builds on top of
CompCert, by enriching it with an SSA-based middle-end. It is plugged in at the
level of RTL (a non-structured, CFG based, three-address like representation),
and generates from it a pruned SSA intermediate form. After optimizing on the
SSA form, the middle-end deconstructs it naively back to RTL, and then leaves
the remainder of CompCert’s backend generating machine code. In this section,
we recall the required material and results achieved in this previous work. We
refer the reader to [2] for further details.

The SSA Language. The abstract syntax of the SSA form is given in Figure 1.
Functions (function records), are defined at the bottom of the figure. Their code
is organized into two distinct graphs: one for the regular instructions (of type
instr), and another one for φ-blocks (of type phiinstr). The idea is to attach
a φ-block at node pc whenever the φ-block must be executed before the regular
instruction at node pc. We will present in more detail the semantics of this
language in the next paragraph.

In addition, we equip the notion of SSA programs with a well-formedness
predicate capturing essential structural properties of SSA forms [2]. First, it
requires the single static assignment property of the function, i.e. the uniqueness
of variable definition points (we omit the formal definition). Next, it demands
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Inductive state :=

| State (stack: list stackframe) (* call stack *)

(f: function) (* current function *)

(sp: val) (* stack pointer *)

(pc: node) (* current program point *)

(rs: regset) (* register state *)

(m: mem) (* memory state *)

| Callstate (stack: list stackframe) (f: fundef) (args: list val) (m: mem)

| Returnstate (stack: list stackframe) (v: val) (m: mem).

Inductive step: genv -> state -> trace -> state -> Prop :=

| ex_Inop_njp: forall ge s f sp pc rs m pc’,

fn_code f pc = Some(Inop pc’) ->

~ join_point pc’ f ->

step ge (State s f sp pc rs m) nil (State s f sp pc’ rs m)

| ex_Inop_jp: forall ge s f sp pc rs m pc’ phi k,

fn_code f pc = Some(Inop pc’) ->

join_point pc’ f ->

fn_phicode f pc’ = Some phi ->

index_pred f pc pc’ = Some k ->

step ge (State s f sp pc rs m) nil (State s f sp pc’ (phistore k rs phi) m)

| ex_Iop: forall ge s f sp pc rs m pc’ op args res v,

fn_code f pc = Some(Iop op args res pc’) ->

eval_operation sp op (rs##args) m = Some v ->

step ge (State s f sp pc rs m) nil (State s f sp pc’ (rs#res <- v) m)

Fig. 2. Semantics of SSA (excerpt)

that the function is in strict SSA form: each variable use must be dominated by
its (unique) definition point. Formally:

Definition strict (f: function) : Prop :=

forall (x:reg) (u d: node), (use f x u) /\ (def f x d) -> dom f d u.

Finally, it requires that the instruction code of the function is normalized, in the
following sense: the only possible instruction that can lead to a junction point
in the CFG of the function is an Inop. This design choice can look quite minor,
but this greatly simplifies the definition of the semantics (φ-blocks can only be
executed after an Inop), and subsequently the proofs about SSA optimizations,
and the SSA destruction (as it entails an edge-split property). Note that these
Inop will be easily removed by subsequent compilation phases.

SSA Semantics. The SSA language is provided with a small-step operational
semantics, given in Figure 2. Here, we only describe the semantic states, and
the main cases in the definition of the transition relation. We refer the reader
to the full development for extra details. Depending on the execution phase of
the program, there are three possible kinds of execution states: (i) regular,
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intermediate execution states (constructor State), (ii) call states (constructor
Callstate), reached immediately after executing a function call, indicating the
next function to execute and (iii) return states (Return), indicating, in addition
to the current state of the stackframe and memory, the potential value to return.

Then, the small-step semantic transition relation, step, formalizes what it
means for each instruction to be executed. For instance, in Figure 2, executing
an Inop, when no φ-block is attached to the successor pc’ of pc, just leaves the
semantic state unchanged, except for the program pointer. If pc’ is a junction
point (rule ex Inop jp), then the φ-instructions in the φ-block phib will be
executed on local registers rs, through the function phistore. This function
basically performs the parallel copy of the k-th arguments of φ-functions to
their respective destination registers. All other instructions have the expected,
traditional operational semantics. For instance, executing an Iop instruction
(rule ex Iop) evaluates the operator op on the values of its arguments args in the
current register state rs, and updates rs by setting the destination register res
to the result value v. For the rules we selected, no observable event is produced,
hence the empty trace nil is emitted.

Equation Lemma. The main result we previously achieved is the so-called
equation lemma. This semantic lemma establishes a strong, global invariant, that
allows to see SSA function as a set of equations relating variables and the right-
hand side of their defining instructions. Its formal statement is indicated below.
It considers well-formed SSA programs (all of its functions are well-formed), and
states that in any reachable execution state, if a variable x is defined at point d in
function f (condition (def f x d)), then the value of x in this state evaluates
to (rhs f x i) (typically an arithmetic instruction Iop) in that exact same
state, provided that execution state is in a region of the CFG that is strictly
dominated by d (condition (sdom f d pc)).

Definition eq_lemma f sp rs pc := forall x d i,

(def f x d) /\ (rhs f x i) /\ (sdom f d pc) ->

[f, sp, rs]|= x == i.

Theorem reachable_eq_lemma : forall prog s f sp pc rs m,

(wf_ssa_program prog) /\ (reachable prog (State s f sp pc rs m)) ->

eq_lemma f sp rs pc.

This lemma makes it clear that syntactic information in SSA functions is rich,
thanks to dominance-based structural properties of their CFG. This is what
makes SSA so easy to manipulate in program optimizations. In our proof frame-
work, we aim at exploiting the semantic counterparts of these constraints, to
simplify our proofs. Indeed, we will make extensive use of the above invariant
on SSA program in the proof of GVN (Section 5), and our framework helps to
systematize the dominance-based reasoning steps.
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Fig. 3. Example of constant propagation (SCCP algorithm)

2.3 SSA-Based Optimizations

In SSA, flow-insensitive analyses are both simpler to implement and less memory
expensive as their flow-sensitive counterparts, while giving rise to the same preci-
sion. SSA also provides a simplified notion of def-use chains that can be exploited
to speedup fixpoint iteration. Below we briefly overview the two optimizations
we consider in this paper.

Sparse Conditional Constant Propagation. Constant propagation (CP) is
a key compiler optimization. It infers whether a variable will be assigned the
same constant value on all feasible paths reaching that assignment. In that case,
the assignment can be replaced by a simpler instruction, that just assigns that
constant (instead of a more intricate expression) to the variable. Modern compil-
ers like GCC and LVVM implement CP using the Wegman-Zadeck algorithm [19]
called Sparse Conditional Constant Propagation (SCCP).

SCCP is a very fast constant propagation analysis that is able to perform a
program transformation in almost linear time (size of the CFG, plus size of the
SSA graph). It not only detects constants but also some unfeasible branches.
Dead code and constant analysis are performed simultaneously, so that they
benefit one from each-other.

Figure 3 illustrates this mutual benefit. In order to discover the constant 3
at node 5, it is necessary to prove that edge (1, 3) is not feasible. This fact is
discovered thanks to the propagation of the constant equality x0 = 1 from node
0 to the conditional statement at node 1. While iterating traditional constant
propagation and program simplification could achieve the same result, SCCP is
able to generate it in one (fast) run.

SCCP is traditionally implemented with an ad hoc iterative workset algorithm.
The computation maintains three worksets:w� is a set of SSA variables that have
been assigned a “I don’t know” information (�); wvar is a set of SSA variables
whose constant information may depend on recently updated variables and must
hence be reconsidered in a future iteration of the algorithm; wedges is a workset of
feasible edges. Initially, the entry edge is considered as feasible and every function
parameter is assigned a � information. Elements in w� are processed in priority
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during each round, as they may speedup fixpoint convergence.When the abstract
information of a variable belonging to either w� or wvar is updated, the algorithm
exploits a SSA def-use chains data-structure to directly enable the recomputa-
tion of the abstract information associated to the variables which depend on that
variable.When an edge inwedges is considered, we only add to the workset the suc-
cessor edges that are feasible according to the current abstract information given
by each variable used in this node.

Global Value Numbering (GVN). Global Value Numbering [1, 5] is a com-
mon subexpression elimination optimization that discovers equivalence classes
between program variables. Variables belonging to the same class evaluate to
the same value. Each class is given a number that characterizes it.

Several implementation techniques has been proposed to perform fast num-
bering on SSA programs. The technique chosen by the current version of the
LLVM compiler is the RPO algorithm [5]. It scans the CFG of the program
in reverse-post-order and manages the numbering with a mutable hash-table
assigning a number to each symbolic expression encountered in the program
syntax. A complete explanation of the algorithm is out of the scope of this pa-
per but two facts are worth mentioning. First, efficient implementations require
mutable data-structures like hash-tables, which are not currently available when
programming in Coq. The use of an external GVN solver, written in OCaml,
is thus mandatory to achieve the efficiency of modern compilers. Second, the
analysis does not fit the classical monotone framework generally considered in
verified static analysis [10]: the computed fixpoint is wrong if not built using the
RPO order, which makes a direct proof of this algorithm particularly difficult.
Therefore, GVN is a perfect candidate for a posteriori validation.

CompCert includes a common subexpression elimination optimization based
on Local Value Numbering (LVN). It does not work on SSA, applies on extended
basic blocks only, and does not infer equalities across loop boundaries. Still, it
handles intra-procedural redundant load elimination; GVN would require major
adaptations. This extension is out of scope of this paper.

3 Generic Framework

We now present the general framework, in which we embed the formalization of
SCCP and GVN. It is intended to capture a variety of SSA-based optimizations,
and to provide the backbone of their correctness proof, by factoring out many
of the required dominance-based reasoning steps.

It is made of three parts. The first part consists of the description of a
generic optimization, satisfying some basic constraints ensuring the preserva-
tion of strict-SSA well-formedness. This optimization relies on the result of a
static analysis, whose formalization, the second part of the framework, axiom-
atizes some of its properties and invariants. The last part of the framework is
dedicated to the proof of a dominance-based invariant correctness result of the
analysis, under the assumption that the analysis conforms to its specification.
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The formalization of the analysis correctness invariant relies on a 3-place
predicate (dsd f x n), that holds whenever in function f, the definition point
of variable x strictly dominates the CFG node n. In our framework, we provide
general lemmas about that predicate, and case-analysis proof schemes, that help
structuring proofs. Intuitively, dominance-based reasoning is relatively easy for
straight-line code, but conducting proofs in Coq can sometimes add a significant
overhead. Reasoning about join points makes the reasoning even more intricate.
In our development, we make use of the following two lemmas

Lemma dsd_not_joinpoint : forall f n1 n2 x,

(is_edge f n1 n2) /\ (~join_point n2 f) /\ (dsd f x n2) ->

(assigned_code f n1 x)

\/ (ext_params f x /\ n1 = fn_entrypoint f)

\/ (dsd f x n1 /\ ~ assigned_code f n1 x)

Lemma dsd_joinpoints : forall f n1 n2 x,

(is_edge f n1 n2) /\ (join_point f n2) /\ (dsd f x n2) ->

(assigned_phi f n2 x)

\/ (ext_params f x /\ n1 = fn_entrypoint f)

\/ (dsd f x n1 /\ ~ assigned_phi f n2 x).

which provide helpful case-analysis schemes. When proving lemmas taking the
form of a subject-reduction property under the hypothesis that (dsd f x pc),
each of the cases provides sufficient information for either knowing exactly the
definition point of register x, or knowing that definition of x strictly dominates
one of the predecessors of pc, allowing to use the dsd hypothesis to conclude.

Generic Optimization. The generic SSA-based optimization first assumes
that the underlying static analysis has the following type:

Variable approx : Type.

Definition result := reg -> approx.

Variable analysis : function -> (result * m_exec).

It takes an SSA function as input, and returns (i) a flow-insensitive result (of
type result), mapping to SSA variables an element of type approx (typically,
an abstract domain formalized as a lattice) and (ii) a map (of type m exec), from
control-flow edges to execution flags (booleans) indicating feasibility of edges. In
the most general case, the function analysis will compute simultaneously these
two pieces of information so that the two corresponding static analyses can inter-
act and benefit one from each other. On top of the analysis, we assume that the
optimization relies on a per-instruction transformation function transf intr,
that is mapped on the whole SSA code. More specifically:

Variable transf_instr : result -> node -> instruction -> instruction.

Definition transf_function (f: function) : function :=

let (res,exec) := analysis f in

map_code (transf_instr res) f.
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Note exec is not used by transf instr, but improves precision of res, and is
kept track of for proof purposes. On top of these basic assumptions, we require
that for each instruction optimized by transf instr, the changes of variable
uses and definitions do not break the strictness of SSA:

Hypothesis new_code_same_or_Iop : forall f pc ins,

(wf_ssa_function f) /\ ((fn_code f)!pc = Some ins) ->

transf_instr (fst (analysis f)) pc ins = ins

\/ transf_instr_preserves_strict f ins.

Here, predicate transf instr preserves strict means that the optimization
can change any local variable definition for a simpler statement of the form Iop

(e.g. an arithmetic constant or a register move) assigning the same variable, so
long as all newly introduced uses remain dominated by their definition. Other
statements are not allowed to be optimized ((un)-conditional branches stay un-
touched, as we focus on optimizations that do not change functions CFG).

Under the hypothesis new code same or Iop, we can prove that the generic
optimization (mapped to all functions of a given program) preserves the well-
formedness of the initial SSA program:

Theorem transf_program_preserve_wf_ssa : forall prog,

wf_ssa_program prog -> wf_ssa_program (transf_program prog).

This lemma is absolutely necessary to be able to compose several SSA op-
timizations passes. In addition, it has a high practical impact. Indeed, once
the optimization has been defined with the help of this framework, proving
new code same or Iop is the only thing we need to get the well-formedness
preservation. Without this framework, the proof of this result would be du-
plicated for every optimization. It hence allows to focus the proof effort on more
interesting aspects.

Analysis Specification. We turn now our attention to the axiomatic specifi-
cation of the analysis function. In the sequel, to lighten the notations, we will
assume to work only with well-formed SSA functions, and will write (A r f) for
the first component of (analysis f).

This specification is packed into the Coq record shown in Figure 4. First, we
need to formulate the interpretation of the execution flags map returned by the
analysis of a function. Hence, we assume a 2-place predicate (exec f pc), char-
acterizing feasible CFG nodes. Essentially, it must be proved (by the developer
of a specific analysis) coherent with the dynamic semantics of the function, i.e.
the analysis must not infer a node as not non-executable if its predecessor in
the CFG is analyzed as executable, and the function can make as step from the
predecessor to that node.

The main part of the axiomatisation consists in specifying a concretisation
relation between abstract values associated to SSA variables and concrete, run-
time values they can take. This is done by predicate (G rs a v). It is intended
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Record AnalysisProp := {

exec : function -> node -> Prop

; G : regset -> approx -> val -> Prop

; is_at_Top: result -> reg -> Prop

; G_top : forall R r rs,

is_at_Top R r -> G rs (R r) (rs# r)

; is_at_Top_eq : forall R r r’,

(is_at_Top R r) /\ (R r = R r’) -> is_at_Top R r’

; A_intra : forall f pc r,

(exec f pc) /\ (assigned_inter_mem_params f pc r) ->

is_at_Top (A_r f) r }.

Fig. 4. Axiomatisation of the generic analysis

to hold whenever, in a context described by register state rs, the abstract value
a is a correct approximation of the concrete value v.2

The third component we require is predicate (is at Top R r), whose intent
is to characterize when, in a given result R, a register r is associated to the static
information “I don’t know”. The type of this predicate alone is not sufficient
to express this. We hence include in the specification record a proof obligation
(field G top) asking that a register whose analysis result is at � concretises to
any possible value (rs# r, where register state rs is universally quantified).

Field is at Top eq is required for more technical reasons than the others,
but is quite natural to have, and can read as a sanity check on the definition of
is at Top. This proof obligation asks that, whenever a register r is associated
to � for a given result R, then any other register r’ whose static information is
equal to the one of r is also associated to � in R.

The last field of the specification record, A intra, is a proof obligation saying
that the analysis under consideration is intra-procedural, and deal with local
variables of the function only. Indeed, it states that for any register r of the
function, whenever, syntactically, it is a function parameter, or its value depends
on the memory or function calls, then the analysis infers a � information for it.
This is only required for registers defined at executable CFG nodes.

Generic Analysis Correctness Proof. Assuming that the generic analysis
fits in AnalysisProp, proving the (instantiated) optimization requires to prop-
agate the correctness of the analysis. We state this as an invariant of its result:

Definition gamma (f:function) (pc:node) (rs:regset) :=

forall x, (dsd f x pc) /\ (exec f pc) -> G rs (A_r f x) (rs# x).

where predicate (G rs (A r f x) (rs# x)), reads as “the static information
computed for register x correctly approximates the concrete run-time value of
x in register state rs”. We must stress the fact that, as can be seen in this

2 Our development also keeps track of a global environment and stack pointer to,
eventually, deal with symbolic information about read-only globals and offsets values.
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definition, the correctness of the analysis needs only to hold on variables whose
definitions dominate the current program point (dsd f x pc), and only when
pc has been analysed as executable by the analysis (condition (exec f pc)).

The final invariance theorem we want to achieve in the framework is the
correctness of the analysis (in the sense of gamma), for any state reachable during
the execution of the program:

Theorem analysis_correct : forall prog s f sp pc rs m,

reachable prog (State s f sp pc rs m) -> gamma f pc rs.

To do so, the analysis must satisfy two extra properties (giving rise to two
other proof obligations). First, one must show that the analysis must compute
a correct abstraction for Iop instructions:

Hypothesis iop_correct : forall f pc op args res pc’ v rs ge sp m x,

forall (SINV: eq_lemma f sp rs pc)

(CODE: (fn_code f) ! pc = Some (Iop op args res pc’))

(EVAL: eval_operation ge sp op (rs ## args) m = Some v)

(gamma f pc rs) /\ (exec f pc) /\ (dsd f x pc’) ->

G (rs # res <- v) (A_r f x) ((rs # res <- v) # x).

which can read as follows: if gamma holds before executing the Iop instruction,
it will hold after its execution, in the updated register state. In particular (when
x and res are equal), the static information computed for res correctly ap-
proximates the concrete value v obtained by executing the instruction. Note the
SINV hypothesis, which makes possible to exploit the equation lemma of the
current function. The second proof obligation requires the gamma predicate to be
preserved by φ-blocks execution:

Hypothesis gamma_step_phi: forall f pc pc’ phib k rs,

forall (REACHED: reached f pc) (EXE: exec f pc)

(PC : (fn_code f) ! pc = Some (Inop pc’))

(PC’: (fn_phicode f) ! pc’ = Some phib)

(PRED: index_pred f pc pc’ = Some k)

gamma f pc rs -> gamma f pc’ (phi_store k phib rs).

In the next two sections, we explain how to instantiate the framework on
SCCP and GVN. Also, each of the section briefly comments on the correctness
proof of the optimization itself (its semantics-preserving theorem). For both
of them, we show a lock-step forward simulation lemma, where the matching
relation between semantics states carries the invariants about (i) the well-
formedness of SSA functions, (ii) the equational lemma and (iii) the correctness
of the analysis through a gamma predicate on the current state.

4 Verifying SCCP in Coq

4.1 Overview of the Implementation

As explained in Section 2.3, SCCP simultaneously detects constants and in-
feasible paths in the control-flow graph of a function, and replaces arithmetic
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expressions detected to always evaluate to a constant by that constant. More
precisely, our SCCP optimization is built from the following constituents.

The type approx of the underlying analysis is instantiated to the elements
of the semi-lattice of constants. This lattice is rather standard and was already
available in the CompCert compiler distribution. We just recall its definition for
the sake of completeness3:

Inductive approx : Type :=

| Novalue (* No value possible, code unreachable. *)

| Unknown (* All values possible, no compile-time information *)

| I (i:int) (* A known integer value. *)

| F (f:float) (* A known floating-point value. *)

We implement a data-flow solver on this constant lattice. The dataflow im-
plementation is new. It iterates on both the CFG (for detecting dead branches)
and the SSA graph (also called def-use chains) to propagate constant analysis
information, following the algorithms described informally in Section 2.3.

The result of the dataflow solver is of the form (const,exec) where const

maps variables to elements of type approx, and exec stores the execution flag
of CFG edges, indicating whether or not an edge may be taken at run-time.
We then send the result of the solver to a formally verified checker ensuring
this result is a post-fixpoint of the usual equation system for dataflow constant
analysis, augmented with extra equations on execution flags.

The optimization itself consists in propagating the constants detected by the
analysis. Every (Iop op args res ) instruction, where args have been in-
ferred to be constant are replaced by a (Iop (opconst k) nil res ) instruc-
tion. Note that it does not need to optimize instructions on paths inferred as
infeasible.

4.2 Correctness Proof

The correctness of SCCP is relatively simple, once the post-fixpoint property is
proved. Below, we explain how the analysis fits in our framework and give an
intuition on how the proof obligations are discharged. The good news is that
the instantiation is straightforward and intuitive for an optimization as simple
as SCCP (the framework does not introduce extra overhead in the proof effort).

Analysis. To instantiate the specification of Section 3, the relation G between
abstract and concrete values is standard.We reuse the definition fromCompCert’s
Constant Propagation on RTL, and define predicate is at Top accordingly:

Definition G rs a v := match a with

| Unknown => True | Novalue => False

| I p => v = Vint p | F p => v = Vfloat p

end.

Definition is_at_Top (R: result) (r: reg) : Prop := (R r = Unknown).

3 The type approx is also equipped with the expected partial order and join operator.
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The interesting proof obligations of AnalysisProp are iop correct and
gamma step phi. The crux of the proof of iop correct is that, as the SSA
function is strict and well-formed, we know that all of the arguments args of the
instruction (Iop op args res pc’) have a definition that strictly dominates
the program point of the instruction. Hence, by hypothesis, we know that the
analysis is correct for these, in the previous register state. In addition, the post-
fixpoint checker ensures that the abstract value for res, (A r f res) is greater
(in the constants lattice) than the static evaluation of the operator op on ar-
guments args. By correctness of the static evaluation, we get that it matches
(in the sense of G) the concrete evaluation v of the instruction. Hence, (A r f

res) will, a fortiori, be a correct approximation of v. We show that for other
registers, the correctness of the approximation is not altered, using the case-
analysis dsd not joinpoint. The first case is a contradiction thanks to the SSA
property, the second case is easily discharged by G top, and in the third case,
we use the hypothesis on gamma in the previous register state to conclude. The
proof of gamma step phi is similar.

Optimization Correctness. The analysis and optimization described previ-
ously satisfy the various proof obligations of Section 3. First, we remark that
it is simple to prove that the strictness condition is preserved, as SCCP only
removes variable uses, and does not introduce any new definition. In proving the
optimization correct, the main case is where an (Iop op args r ) instruction
is optimized into a (Iop (opconst k) nil r ). But this is done only when
(A r f r) is a constant. Thanks to the post-fixpoint property, we hence know
that its abstract value matches the concrete value k we assigned the register to
in the optimized function.

5 Verifying GVN in Coq

5.1 Overview of the Implementation

Our implementation of GVN follows LLVM design choices. We rely on a reverse-
post-order iteration and a mutable hash table that assigns numbers to symbolic
expressions. Each number represents an equivalence class for program variables
that hold the same runtime value. For each class we choose a representing vari-
able whose definition must dominate all variables in the same class. Having an
efficient dominance test is a keystone of the optimization efficiency. We rely on
a fast immediate dominator tree [9] computation and a depth graph traversal
numbering that allows constant time dominance test. Our GVN does not handle
execution flags, we hence use a trivial map (all edges may be executable).

Then, we implement and prove correct in Coq a checker for that result. The
checker is ensuring three properties. First, that the analysis puts in a singleton
class any variable assigned through a memory load or function call. For variables
defined by means of an Iop instruction, the checker ensures that either it is its
own representative, or that the following condition is met: whenever at pc, we
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have the instruction (Iop op args r ), and the representative (A r f r) of r
is not r itself, then (A r f r) is defined at a node pcr who strictly dominates pc,
and (A r f r) and r are congruent (i.e. the arguments used in their respective
defining instruction have a common representative). A similar check is done by
the checker on each φ-block of the function: a variable defined by a φ-instruction
at node pc has either itself as a representative, or another φ-defined variable in
the same block, and their respective φ-arguments have the same representative.
Finally, the checker ensures that representatives are canonical for all classes.

The optimization itself consists in replacing all instructions of the form (Iop

op args r pc’) at a node pc, where the operator op does not depend on mem-
ory, by a simple register move (Iop OMove ((A r f r)::nil) r pc’), under
the assumption that r and (A r f r) are distinct.

5.2 Proof of Correctness

Analysis. The case of GVN is a bit more intricate than SCCP. The first diffi-
culty we must overcome is to deal with the intrinsic relational nature of GVN.
Indeed, in essence, the GVN external tool computes equivalence classes among
variables of a SSA function. Our framework as presented earlier strives for sim-
plicity (so that we can factor out proofs as much as possible), and has a more
non-relational flavor, as the analysis is supposed to associate an approximation
to each variable.

By looking closer at how the optimization utilizes the result of the analysis,
we observe that each time an instruction is optimized, an arithmetic operation is
replaced by a variable which represents, symbolically, that arithmetic expression.
This naturally leads us to formalizing the analysis as associating, to each vari-
able, another variable (its representative), which concretizes to a single value,
its value in the current context:

Definition approx : Type := reg.

Definition G rs a v : Prop := (rs# a = v).

Now, we must characterize the set of variables for which the analysis does not
manage to infer any useful information (or “I don’t know”). Following the same
approach, the � information is associated to a variable if that variable is alone
in its equivalence class. Therefore, we define predicate is at Top as follows:

Definition is_at_Top (R: result) (a: approx) : Prop :=

(R a = a) /\ (forall a’, R a’ = a -> a’ = a).

In this setup, we can prove that the analysis satisfies the first two conditions
of AnalysisProp. For proving the last obligation, we resort on the specification
provably established by our checker. The proof of iop correct relies on the
equation lemma of SSA: we need to prove that the value v of variable x assigned
by an Iop instruction is correctly abstracted by (A r f x). In the interesting
case, x �= (A r f x), and the equation lemma applies, since (A r f x) strictly
dominates x. Hence, we get that (A r f x) equals the evaluation of its defining
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Fig. 5. Transformation times. Left: absolute time in seconds. Right: percentage.

right-hand side. By the correctness of the checker, (A r f x) is congruent to x,
and their respective Iop arguments have equal representatives. We conclude by
using the gamma hypothesis and strictness of SSA. Here again, other cases are
tackled using dsd not joinpoint (which applies by the normalization of SSA
code). The preservation proof of gamma by the execution of φ-blocks follows the
same idea, using the representatives specification of φ-defined variables, and the
case-analysis scheme provided by dsd joinpoint.

Correctness of the Optimization. Here again, the specification enforced by
the checker helps us discharge the obligation transf instr preserves strict.
The proof of semantic preservation of the optimization goes smoothly with the
choice of definition for predicate G. Indeed, when an Iop instruction is optimized,
then the variable x that it defines will be, after the optimization, defined by
variable move from (A r f x) to x. By correctness of the analysis, and the
definition of G, the arguments of the Iop defining (A r f x) evaluate to the
same values as their representatives. But, by the congruence specification, they
also evaluate to the same values as the arguments of the Iop defining x.

6 Experiments

We evaluate the performances of the verified SSA middle-end by extracting its
Coq implementation into OCaml code, and running it on some realistic C pro-
gram benchmarks. These include around 130.000 lines of C code, and fall into
the following categories of programs: compression algorithms, a raytracer, the
Spass theorem prover, the hmmer and mcf from the SPEC2006 benchmarks and
nsichneu and papabench coming from WCET-related reference benchmarks.
These programs range from hundreds of lines of C code, to several thousands.

Below, we evaluate the middle-end according to the following criteria: (i) com-
pilation time of SCCP and GVN, compared to the CompCert’s corresponding
optimizations on the RTL non-SSA form (Constant Propagation and a Com-
mon Subexpression Elimination based on a Local Value Numbering), (ii) the
efficiency of the SCCP and GVN checkers, relatively to the time required for
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analysing the code, and optimizing it and (iii) the gain in precision for SCCP
and GVN, compared to CompCert’s corresponding optimizations.

To evaluate the middle-end scalability in extreme conditions, we force the
compiler to always inline functions below 1000 nodes. We classify our results
by categories of function size (number of CFG nodes): [500; 1000[ (196 func-
tions), [1000; 2000[ (98 functions), [2000; 4000[ (89 functions), [4000; 8000[ (38
functions), [8000; 18000] (23 functions). Experiments are run on a MacBook OSX
10.8.5, 2.9GHz Intel Core i7, 8GB 1600MHz DDR3.

Optimization times. Figure 5 shows the average time, in seconds and by category,
required to compile the functions in this category. The left graph measures the
absolute time, while the right graph shows the timing distribution among the
various optimizations. As expected, the results show that SCCP, compared to a
flow-sensitive analysis like Constant Propagation (CP), scales very well on huge
CFG graphs. As for GVN, its computation time is of course higher than the
Local Value Numbering of CompCert, but the latter is only block-local, and
GVN’s computation time keeps reasonable.

Checkers efficiency. On our benchmarks, the SCCP checker represents between
17% and 23% of the whole SCCP optimization, and is amortized as the function
CFG grows. The GVN checker represents between 8% and 12% of the whole
GVN-based CSE optimization, uniformly on all five categories of function sizes.

Precision. For measuring the precision gain brought by SCCP compared to
Constant Propagation, we measure, for both optimizations, the number of non-
constant Iop instructions that are optimized to a numeric, constant Iop instruc-
tion in the optimized program (and this only for feasible paths, as detected by
SCCP, which, on average, detects around 14% of dead-branches). For measuring
the precision of GVN compared to LVN, we count how many arithmetic Iop

instructions were optimized into register moves. The numbers are given below.

arcode hmmer lzss lzw mcf nsichneu papabench raytracer spass
SCCP 90 587 80 51 9 0 40 0 472
GVN 66 235 102 152 40 0 700 0 5900

7 Related Work

Most well known achievements in the area of mechanized proof of compilers
are the CompCert C compiler [10], Chlipalas’s compiler for an impure func-
tional langage [6] and the CakeML compiler [8] that is able to bootstrap itself.
All these works are major achievements in verification of semantics preserving
transformations but few of them provides advanced program optimizations.

Tristan and Leroy [18, 17] have applied the verified validation approach to
instruction scheduling and lazy code motion but their optimizations are more
local than GVN, able to infer global loop invariant to perform common subex-
pression elimination. Leroy has also performed a direct verification of a Local
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Value Numbering (LVN) optimization [10] without requiring an SSA form but
it is limited to extended basic blocks.

The first attempt to formalize SSA semantics was done by Blech et al.[3],
using the Isabelle/HOL proof assistant. They verified the generation of machine
code from a representation of SSA programs that relies on term graphs. Mansky
and Gunter [11] uses Isabelle/HOL to formalize and verify the conversion of
CFG programs into SSA. None of these works consider program optimizations.

Zhao et al. [22, 21] formalize the LLVM SSA intermediate form and its gen-
eration algorithm in Coq. Their work follow closely the LLVM design and their
verified transformation can be run inside the LLVM platform itself. However,
their work doesn’t provide leading optimizations such as SCCP or GVN, and
doesn’t consider compilation time.

Unverified translation validators have been designed to validate some LLVM
optimizations. Stepp et al. [15] uses a technique named Equality Saturation to
infer symbolic equalities between source and target. Tristan et al. [16] indepen-
dently report on a translation validator for LLVM’s inter-procedural optimiza-
tions, based on Gated-SSA.

8 Conclusion and Perspectives

Our work provides two major verified SSA optimizations. Their implementation
closely follows the design choices of realistic compilers (LLVM). We extend the
CompCertSSA verified compiler with a new proof framework able to capture the
soundness proof of these two optimizations. We also demonstrate the scalability
of our optimizations in terms of compiler efficiency and precision.

We foresee two ambitious extensions to this work. First, we would like to
extend our optimizations to memory accesses. Modern compilers perform these
kinds of memory optimizations but they differ in the way they incorporate alias
analysis inside their SSA form. GCC provides a specific program representation
with explicit definitions and uses of memory locations. Such a design suffers
from compiler memory consumption issues. LLVM proposes a more lightweigth
approach with well-chosen queries to alias information. Understanding which
approach fits best a verified compiler requires a specific study, taking into account
proof engineering and efficiency concerns. A second extension should consider
code motion and partial redundancy elimination [7]. GVN provides an important
pre-processing for these optimizations.
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