
Chapter 49
Instantaneous and Controllable GNSS
Integer Aperture Ambiguity Resolution
with Difference Test

Jingyu Zhang, Meiping Wu and Kaidong Zhang

Abstract In the Global Navigation Satellite System (GNSS), integer ambiguity
resolution (IAR) is critical to highly precise, fast positioning and attitude deter-
mination. The combination of ambiguity resolution and validation is usually named
as integer aperture (IA) ambiguity resolution, which provides the foundation for the
ambiguity validation. Based on the IA ambiguity resolution theory, fixed failure-
rate (FFR) approach is proposed to realize the controlling of failure rate. Though
fixed failure-rate approach can be applied for many acceptance tests, it is time-
consuming and cannot be precisely realized in instantaneous scenario. In order to
overcome these problems, this contribution will introduce an instantaneous and
controllable (iCON) IA ambiguity resolution approach based on difference test for
the first time. It has the following advantages: (1) It can independently compute the
critical value by the required failure rate and GNSS model Q without external
information such as look-up table; (2) It is instantaneous, and the stronger GNSS
model, the better performance IA estimator will behave; (3) It can balance the
instantaneous and precise quality control by adjusting the number of pull-in
regions. The simulation experiment based on single and multi-frequencies, multi-
GNSS systems verify the advantages of this approach. It completely solves the time
consumption in precise quality control and has the same performance as the FFR
approach based on Monte Carlo integral. It is available for instantaneous and
precise GNSS applications, such as carrier phase based positioning, PPP-RTK,
attitude determination, and will be a better choice the multi-frequency, multi-GNSS
ambiguity resolution.
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49.1 Introduction

In the rapid and high precision GNSS applications, IAR is a fundamental and
difficult problem. Once the integer ambiguities are fixed, users can take advantage
of the precise pseudo range data in positioning and navigation. Many GNSS models
are developed for IAR applications. The principle of them can refer to [1, 2].

As the point of departure, most of GNSS models can be casted in the following
conceptual frame of linear(ized) observation equations:

EðyÞ ¼ Aaþ Bb;DðyÞ ¼ Qyy ð49:1Þ

where Eð�Þ and Dð�Þ are the expectation and dispersion operators, and y the
‘observed minus computed’ single- or dual-frequency carrier phase or/and code
observations. Qyy is the variance covariance (vc)-matrix of observations y.

The procedure of IAR usually consists of four steps. In the first step, the integer
constraint of ambiguities a 2 Z

n is disregarded. The float solutions together with
their vc-matrix are estimated based on least-square adjustment as
â
b̂

� �
;

Qââ Qâb̂
Qb̂â Qb̂b̂

� �
. Their estimation formulas are given as

â ¼ ð�ATQ�1
yy

�AÞ�1 �ATQ�1
yy y

b̂ ¼ ðBTQ�1
yy BÞ�1BTQ�1

yy ðy� AâÞ
ð49:2Þ

where �A ¼ P?
BA; P

?
B ¼ Im � PB and PB ¼ BðBTQ�1

yy BÞ�1BTQ�1
yy . With the metric

of Qyy; PB is the projector that projects orthogonally onto the range space of B.
Quality control steps, such as detection, identification and adaption of outliers are
implemented in this step.

The second step takes into the previous integer constraint, and realizes the fixing
process of float ambiguities. It can be described as a many-to-one mapping

a^ ¼ SðâÞ; S : Rn ! Z
n ð49:3Þ

The mapping process is realized by many integer estimators, such as integer
rounding (IR), integer bootstrapping (IB), and integer least-square (ILS). Among
them, ILS is the optimal one and can maximize the success rate of estimation [3].
Due to the influence of correlation between different ambiguities, the efficiency of
integer estimators is often very low. In order to tackle this problem, LAMBDA
method [4]; Teunissen [5–7] is introduced to improve the estimation efficiency and
success rate [8].

After integer mapping, the third step is to test whether the fixed solutions should
be accepted. This step is also called ambiguity validation and realized by many
acceptance tests, including F-ratio test (FT) [9], R-ratio test (RT) [10], W-ratio test
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(WT) [11], Difference test (DT) [12], Projector test (PT) [13]. Note that the function
of testing is to exclude the suspected integers, and accept the most possible one,
since most of times we do not know the correct ambiguity.

According to previous testing result, other parameters can be adjusted based on
the estimated ambiguities in the last step

b
^ ¼ b̂�Qb̂âQ

�1
ââ ðâ� a^Þ ð49:4Þ

where Qb̂â is the vc-matrix between ambiguity vector and other parameters. After
four steps, the carrier phase observations based on correctly fixed result will behave
as the high precision range data.

In this contribution, we will focus on the third step. As is known, the combi-
nation of second step and third step is the so-called IA estimator. Be different from
ILS estimator, there are three judgments after IA estimation: success, failure or
undecided. The undecided part is formed by the intervals or holes between different
aperture pull-in regions [14]. The benefit of IA estimators is that their failure rates
and success rates can be adjusted by the controlling to critical values of acceptance
tests. Since failure rate is the critical indicator for the performance of ambiguity
resolution, In order to realize its controlling, FFR approach based on Monte Carlo
integral is proposed by [15]. The IA estimation theory and FFR approach provide
the ambiguity validation foundation and an initial solution to this problem.
However, there still exist the following problems in this solution and the theory:

1. The critical values of IA estimators are determined by Monte Carlo integral with
the GNSS models as input. Its precision depends on the simulation times.
Hence, if we want to obtain a precise value, a large amount of simulation
samples must be generated which is rather time-consuming. Since the pull-in
regions of IA estimators are constructed by complicated geometries, most of the
relations between critical value and success rate or failure rate are nonlinear. The
computation for them cannot be realized analytically. The only choice is Monte
Carlo integral, though we can improve the precision of Monte Carlo integral
with more effective sampling methods, such as sample average approximation,
importance sampling, stratified sampling [16], the contradiction between pre-
cision and time cost still hinders its application;

2. The practical way to apply the FFR approach is to create the look-up table for
certain acceptance test. This work was firstly completed for RT in [17]. The
look-up table is created based on numerous GNSS samples with FFR approach
for local and global applications. It is constructed according to the number of
satellites and failure rates and must satisfy the failure rate requirement for any
GNSS samples for certain location. Hence, the choice of critical values in the
table is chosen for the worst GNSS model with certain number of satellites.
Essentially, the fixed failure-rate approach realized by look-up table actually
constraints the failure rate within the user’s requirement. Though this approach
is applicable, it will be a huge workload for the global application and various
acceptance tests;
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3. At present, the research about the IA estimators and its application mainly focus
on RT-IA estimator. Though properties of other IA estimator are investigated in
[18, 19], the gaps between IA estimation theory and practice still have not been
bridged. One of the difficult problems is the probability evaluation to IA esti-
mators. Those popular estimators, such as RTIA, and optimal IA estimator, do
not have analytical expression for the IA success rates and failure rates, which
hinder the further investigation.

Fortunately, recent research about DT reveals the clue to resolve these problems.
In [20], RT and DT are compared based on a large number of GNSS samples. Then in
[21], the essence between their differences are revealed from geometry and mathe-
matical analysis, which proves that DT is more suitable to the multi-frequency and
multi-GNSS applications. According to the results in [22], the properties of DT-IA is
derived and its analytical expression for success rate and failure rate are firstly given.
This provides the necessary tools to realize the application of DT-IA estimator.

In this contribution, we will introduce an effective method to realize instanta-
neously controlling to the failure rate of DTIA estimator. This method takes full
advantage of DT in strong GNSS scenarios. By using the relationship between ILS
and IA probability evaluations of pull-in regions, the failure rate of DT-IA estimator
can be effectively and instantaneously controlled by using the constraint of the pre-
setting failure rate.

The whole contribution is organized as follows. In Sect. 49.2, we briefly review
the previous research about DTIA estimator and present its corresponding prop-
erties. The analytical expressions for the success rates of ILS and DTIA estimators
are presented. The probability ratio to connect both probability evaluations is
defined and analyzed. Then the new controllable IA ambiguity resolution method is
introduced in Sect. 49.3. Its principle is detailed presented. In order to verify the
effectiveness of this method, simulation experiments based on multi-frequencies,
multi-GNSS are implemented. The experiment results show that this method can
instantaneously realize the controlling of failure rate within certain range, which has
the same performance as FFR approach. The stronger GNSS model, the better
instantaneity and the stronger capacity of quality control the iCON method will
have.

49.2 Difference Test and Its Properties

49.2.1 Aperture Pull-in Regions Based on DT

The purpose of acceptance test is to exclude the suspected ambiguities. This is
realized by the aperture pull-in region in geometry. If the float ambiguity falls into
the aperture pull-in region, it will be more likely fixed to the corresponding integer
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vector than those in integer pull-in region. Hence, it is a necessary quality control
step. The overall definition of aperture pull-in region is given in [23]

Xz ¼ fx 2 R
n; z 2 Z

njSðxÞ ¼ z; cðxÞ� lg ð49:5Þ

where cð�Þ is the acceptance testing function and μ its critical value. Then the IA
estimator is defined as

�aIA ¼ z if â 2 Xz

â if â 62 Xz

�
ð49:6Þ

The aperture pull-in regions satisfy the following properties

[
z2Zn

Xz ¼ X; X � R
n

IntðXuÞ \ IntðXvÞ ¼ ;; u 6¼ v
Xz ¼ zþX0

8><
>:

Thus the aperture pull-in regions Xz are no overlapping subsets of R
n. The

explicit expression of DT is given below

â� a^2

��� ���2
Qââ

� â� a^1

��� ���2
Qââ

� lDT ð49:7Þ

with a^1 and a^2 the best and second best integer candidates, and lDT the critical
value. The geometry of origin-center pull-in region for DTIA is

X0;DTIA ¼ fâ 2 R
njSðâÞ ¼ 0; â� uk k2Qââ

� âk k2Qââ
� lDTg

¼ fâ 2 R
njSðâÞ ¼ 0;

uQ�1
ââ â

uk kQââ

� uk k2Qââ
� lDT

2 uk kQââ

g
ð49:8Þ

with u 2 Z
nnf0g. It means that X0;DTIA are formed by intersecting half-spaces that

are constrained by hyper-planes orthogonal to u and passing through the points
1
2 ð1� lDT

uk k2Qââ

Þu. The two-dimensional geometry construction of aperture pull-in

region is demonstrated in Fig. 49.1. The two dimensional vc-matrix is
0:0865 �0:0364
�0:0364 0:0847

� �
.

49.2.2 Probability Evaluations of DTIA Estimator

In [22], the definition of DTIAB is firstly given, which can be seen as the gen-
eralized IA bootstrapping estimator. Its success rate is given as
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Ps;DTIAB ¼
Yn
i¼1

2Uðjxij
rijI

Þ � 1
� �

ð49:9Þ

with jxij the intersecting points between DTIAB and coordinate axes and rijI the
standard deviation from the LDL decomposition of Qẑẑ, Qẑẑ ¼ ZTQââZ, with Z the
decorrelation matrix of Qââ. The analytical expression to compute jxij can be
determined in decorrelated space when the GNSS model Qẑẑ and critical value lDT
are given, just as shown below

xi ¼
cik k2Qẑẑ

�lDT
2 cik k2Qẑẑ

; i ¼ 1; 2; . . .; n ð49:10Þ

where ci is the canonical vector with 1 at the i-th entry and 0 for other entries.
Actually, DTIA and DTIAB have the same intersecting points between correct pull-
in regions and coordinate axes. This means that the scaling ratios are the same for
DTIA and DTIAB in the coordinate directions, which is consistent with the rela-
tionship between IB and ILS [22]. Hence, we can use the properties of DTIAB to
approximate DTIA estimator after decorrelation step.

Based on the scaling ratios in different directions, the size of DT-IAB pull-in
region can be derived as

VDTIAB ¼
Yn
i¼1

2 xij j ¼
Yn
i¼1

1� lDT
cik k2Qẑẑ

�����
����� ð49:11Þ

There exists the maximization condition for computation of Eq. (49.11), and the
proof is given in [22]. According to the formula (49.11), the size of DTIAB is
variant and depends on lDT and Qââ, and the decorrelation step is helpful to
improve the success rate of DTIAB.
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Just as proven in [22], Ps;DTIAB can be seen as the lower bound for that of DTIA.
Hence, we also can use it to approximate the success rate of DTIA. Its upper bound
can be constrained by the scaling Euclidean ball based on ADOP. It is given below

Ps;DTIA �Pðv2ðn,0Þ� 2�x2cn
ADOP2Þ ð49:12Þ

with �x ¼
Pn

i¼1 jxij
n

, cn ¼
ðp
2
Cðp

2
ÞÞp2

p
and ADOP ¼ ffiffiffiffiffiffiffiffiffiffijQẑẑj

p 1
n.

Actually this is a rather loose upper bound for DTIA estimator. A little sharper
bound can be given, which is also based on ADOP and derived from the DTIAB

Ps;DTIAB �
Yn
i¼1

2Uð b
ADOP

Þ � 1
� �

ð49:13Þ

with b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQn

i¼1 xij j1
n
p

. After enlarging twice by β and ADOP, the upper bound for
DTIAB can be regarded as the upper bound of DTIA.

The effectiveness of these probability evaluations are verified in [22].

49.2.3 Probability Evaluations for Pull-in Regions
of ILS and DTIA

In practice, the success rate is the probability evaluation to the correct or central
pull-in region. It can provide the information about the GNSS model strength and
reliability. Actually, probabilities of other pull-in regions are also important. They
give us the reference for the design of ambiguity resolution. In this part, we will
give the global analytical expressions for all pull-in regions, including ILS and
DTIA pull-in regions.

Since DTIA can be seen as the generalized IALS which have different scaling
ratios in different directions [22]. ILS can be seen as the special case for DTIA or
IALS. Hence, we will take similar approach in the approximation of probability
evaluations for both estimators.

The ILS probability evaluation for the correct integer vector can be approxi-
mated by

Ps;ILS �
Yn
i¼1

2Uð 1
2rijI

Þ � 1
� �

ð49:14Þ

This is the probability of central pull-in region. For the probabilities of other
pull-in region, or the failing pull-in region, we have
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Pf;ILSðiÞ �
Yn
i¼1

Uð xi
rijI

Þ �Uðxi � 1
rijI

Þ
����

���� ð49:15Þ

where i is the i-th integer candidate, xi ¼ 1
2 þ zi,zi 2 Z is the intersecting element

for each entry of integer vector.
Corresponding to the probabilities of ILS pull-in regions, the probabilities of the

DTIA pull-in regions can also be derived

Pf;DTIAðiÞ �
Yn
i¼1

Uð vi
rijI

Þ �Uðvi � 2xi
rijI

Þ
����

���� ð49:16Þ

where xi is given in (49.10) and vi ¼ xi þ zi.
In order to find the relationship between ILS and DTIA pull-in regions, here we

give the definition to the ratio between probabilities of pull-in regions

RðiÞ ¼ Pf;DTIAðiÞ
Pf;ILSðiÞ ð49:17Þ

where Pf;DTIAðiÞ and Pf;ILSðiÞ are the i-th failure rate of the pull-in region, and
calculated based on (49.16) and (49.15). Actually, RðiÞ is within the range ½0, 1�.

Based on the GNSS model matrix given in Figs. 49.1 and 49.2 gives the trend of
probability ratios for different integer candidates.

Hence, the value of RðiÞ is basically a monotone decreasing function of different
integer candidates. This is a useful property in approximation, which will be used in
the computation of critical values for acceptance tests.
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49.3 Instantaneous and Controllable IA Ambiguity
Resolution

49.3.1 FFR Approach Based on Monte Carlo Integral

As the beginning of the discussion to tackle the IA ambiguity resolution, we will
start from the review to Monte Carlo integral. The start point to use Monte Carlo
integral is to resolve the problem of multivariate integral for irregular figures. Since
the geometries of pull-in regions is not the regular shape, most of times we cannot
directly compute their size. The computation of the probability evaluations for
points falling into the pull-in regions are based on the multivariate integral for
certain probability density function. One of the most direct and convenient
approach is to implement Monte Carlo integral. It is firstly proposed by [24]. The
procedures to determine the critical value of FFR IA estimator can be summarized
into the following steps [19]:

1. Generate N float ambiguity samples which have normal distribution and con-
form to âi 	Nð0;QââÞ;

2. Set the fixed failure rate Pf . Implement ambiguity resolution to each float
ambiguities and compute the values of acceptance tests;

3. Based on the root finding method and pre-setting Pf , determine the critical value
μ which satisfies the fixed failure rate so that PfðlÞ � Pf ¼ 0;

4. Count the number of failing samples Nf and successful samples Ns, then the
failure rate and success rate can be determined Pf ¼ Nf

N ,Ps ¼ Ns
N .

According to the principle of Monte Carlo integral, the precision of this method
will improve as the increase of simulation times. An enough large number of
samples can ensure the optimality of this method. However, though we can obtain
the critical value which has enough precision, it is rather time-consuming and has
limited reference value for the instantaneous application. Here we give the rela-
tionship between simulation samples and critical values in Fig. 49.3, which is based
on the GNSS model matrix

Q ¼
0:0865 �0:0357 0:0421
�0:0357 0:0847 �0:0258
0:0421 �0:0258 0:0797

2
4

3
5:

In Fig. 49.3, it is obvious that as the increase of simulation times, the variation of
critical values keep steady. It proves that large simulation times can improve the
precision of FFR approach. However, the huge time-consumption makes it almost
unavailable in practice.

Even if the FFR approach is realized by look-up table, it is essentially to realize
the controlling of failure rate below the certain failure. Strictly speaking, fixed
failure rate cannot be realized.
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In order to tackle this problem, we propose the instantaneous and CONtrol-
lable (iCON) IA ambiguity resolution method. Based on its characteristics, we
name it as iCON.

49.3.2 ICON IA Ambiguity Resolution

In order to overcome the disadvantages of Monte Carlo integral, the iCON method
is proposed here. Its procedures are listed below

(1) Set the fixed failure rate and initial critical value as Pf , l0 and P0. Calculate the
probability evaluations for pull-in regions of ILS and determine the number of
pull-in regions needed by the equation

Ps;ILS þ
Xn
i¼1

Pf;ILSðiÞ ¼ P0 ð49:18Þ

where n is the number of pull-in regions used below. P0 can be set as 1� Pf

for the first time;
(2) Calculate the probabilities of n IA pull-in regions and the value of probability

ratio in (49.17)

RðnÞ ¼ Pf;DTIAðnÞ
Pf;ILSðnÞ ð49:19Þ

(3) According to the probability ratio in step 2, we can determine the critical value
lDT for certain GNSS model by
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Fig. 49.3 Relationship
between simulation times and
corresponding critical values
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Xn
i¼1

Pf;DTIAði; lDTÞ þ RðnÞ 
 Pf ¼ Pf ð49:20Þ

In this method, two elements are the critical points. The first one is P0. The
larger P0, the more pull-in regions needed in step 1 and 3. Since the resolution in
step 3 is a recursive process, the most time-consumption for this method lies on this
step. The other one is the GNSS model Qââ. Though it does not appear in previous
equations, it determines the values of Ps;ILS, Pf;ILS, Pf;DTIA and RðnÞ. In other
words, it indirectly influences the number of pull-in regions and time-consumption
in this method. The stronger GNSS model, the less pull-in regions can be required
and the less time the iCON method needed.

Equation (49.20) is the critical step to realize the controlling of failure rate.
According to this equation, even if we can give precisely evaluation to Ps;DTIAðiÞ
and Ps;ILS, we still can constrain the range of approximation error in the left side by
the constraining of Pf . It is because

RðnÞ 
 Pf\Pf ð49:21Þ

In the FFR approach, Eq. (49.20) should be written as

X1
i¼1

Pf;DTIAði,lDTÞ ¼ Pf ð49:22Þ

Equation (49.20) is essentially the approximation for the pull-in regions which
can almost be neglected. At the same time

Xn
i¼1

Pf;DTIAði,lDTÞ\Pf ð49:23Þ

Hence, the range of the controlled failure rate is 0; 2Pfð Þ. If we want to obtain the
same failure rate range as Monte Carlo by iCON, we can apply Pf

2 into this
approach.

49.4 Experiment Verification

In order to verify the performance of the iCON algorithm, we design the simulation
experiment for a medium length baseline with the basic setting in Table 49.1. The
Pf in FFR approach and iCON are both chosen as 0.001. Here, the Monte Carlo
simulation times is chosen as 50,000. The flow diagram of the simulation experi-
ment is presented in Fig. 49.4.
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In Fig. 49.4, Pf; iCON,Pf;MC, liCON, lMC,TiCON and TMC are the failure rates,
critical values and time consumptions based on iCON and FFR approach.

Since if the model strength is weak, the IA success rates will be very low. It is
not significant to analyse the GNSS samples whose success rates are very low.
Hence, we set a threshold to do the comparison for GNSS model strength. If their
ILS success rates are larger than 0.8, we will implement previous comparison.

Table 49.1 Simulation
settings for GNSS models Items Settings

Systems GPS, BeiDou, Galileo and
their combinations

Frequency L1, L2, L5, E1 (L1), E5a,
E5b, B1, B2, B3

Time July 12–13, 2014

Location Changsha, China

Sampling intervals 300 s

Troposphere delay ZTD estimated

STDa of ionosphere delay 0.01 m

STD of undifference observations Code: 20 cm; phase: 2 mm
a STD means the standard deviation

fP

Monte CarloiCON

ˆâaQ

iCONµ MCµ

50000 epochs ambiguity resolution 

Termination

f ,iCONP f ,MCP
iCONT MCT

Set the initial values
for simulation system

Generate the GNSS 
model samples

s,ILSP 0.8>

No

Yes

Fig. 49.4 The flow diagram
for the simulation experiment
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Here we give the comparison of time consumptions and failure rates for both
methods based on ‘GPS + BeiDou + Galieo’combination within 1 day in Figs. 49.4
and 49.5, whose statistics are summarized in Table 49.2.

According to Table 49.2, it is obvious that the iCON has rather shorter time
consumptions in the computation of critical values, which can be realized instan-
taneously. Besides this, the controlling of failure rates is within the theoretical
range. The controlling of iCON is also more precise than FFR approach. This
comparison reveals one problem in FFR approach in Fig. 49.6. In order to keep its
failure rate within the required range, its simulation times must be large enough,
and the critical value should choose the worst GNSS scenario so that others can be
satisfied. However, iCON method does not have these considerations. This proves
that iCON is a better choice than the FFR approach based on Monte Carlo integral.

In order to explicitly demonstrate the relations between time consumptions and
IA success rates of both methods, we generate more GNSS samples based on the
settings in Table 49.1. Their experiment results are demonstrated in Figs. 49.7 and
49.8.
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Fig. 49.5 The comparison of time consumptions between iCON and FFR approach within 1 day

Table 49.2 Statistics for FFR and iCON comparison

Items Timea mean (s) Time STD (s) Pfb mean Pf STD

Monte Carlo 23.860 3.3627 10e-4 2.108e-4

iCON 0.3309 0.0942 7.4e-4 2.083e-4
a Time means the time consumptions
b Pf means the failure rates

49 Instantaneous and Controllable GNSS Integer Aperture … 587



According to Fig. 49.7, it is obvious that as the increase of IA success rate, the
time consumptions will gradually increase. This is due to that FFR approach relies
on the time cost of ambiguity resolution. The more dimension of ambiguity, the
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Fig. 49.6 The comparison of failure rates between iCON and FFR approach within 1 day
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more time it will take in ambiguity resolution. Notice that there exist some gaps for
the IA success (0.8, 0.9). This is due to the number of simulation samples. How-
ever, the maximizations of time consumptions increase as the GNSS models
become strong. Besides this, the minimizations of the time consumptions basically
keep constant. Since the strengthening of GNSS models can be realized by using
several epochs in one estimation step. Then the dimension of GNSS model will
keep constant and their time consumptions also do not change.

However, in Fig. 49.8 we can see that the time consumption gradually decreases
as the increase of IA success rate. It means that the stronger model can decrease the
number of pull-in regions needed, and then less time consumption of iCON method
will be taken in the recursive process. Actually, the number of pull-in regions taken
into consideration in the approximation process is no more than 300. The less time
consumptions in iCON, the more pull-in regions can be added by enlarging P0 to
increase the precision of failure rate controlling. Note that the increasing trend
within (0, 0.1) is caused by the insufficient samples at that interval, since the ILS
success rates of GNSS samples must be larger than 0.8.

49.5 Conclusions

Ambiguity validation is an important step to realize the quality control of ambiguity
resolution. Its foundation is based on the IA ambiguity resolution theory and can be
realized by many acceptance tests.
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Fig. 49.8 Relations between IA success rates and time consumptions for iCON method
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Due to the good properties of DT in previous research, this contribution firstly
introduced the properties of DT. Then, the FFR approach based on Monte Carlo
integral was introduced and analysed. Though the FFR approach can realize the
controlling of failure rate, it is time-consuming and its precision relies on simulation
times. In order to overcome these disadvantages, this contribution proposed the
iCON method. This method can instantaneously compute the critical value of
acceptance test based on pre-setting failure rate and constrain the failure rate within
certain range. Both time consumptions and controlling of failure rate can be better
than Monte Carlo integral. Besides this, as the GNSS models become strong, iCON
will have better performance in time consumption and failure rate control. The
simulation experiment based on single and multi-frequency, single and multi-GNSS
combinations proves the effectiveness of this method. It will be a better choice in
the instantaneous scenarios of next generation GNSS.

Furthermore, the iCON method can be used by any IA estimator whose success
rate and failure rates have analytical expressions, such as the IAB, IALS and
ellipsoid IA estimators. This will be the topic studied in the future.
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