
Chapter 43
An Optimal Data Fusion Algorithm Based
on the Triple Integration of PPP-GNSS,
INS and Terrestrial Ranging System

Wei Jiang, Yong Li and Chris Rizos

Abstract This paper describes the integration of Locata, GNSS and INS technol-
ogies within a loosely-coupled triple integration algorithm. The conventional
methods for multi-sensor integration can be classified as either centralised filtering
or decentralised filtering. Centralised Kalman filtering (CKF) provides globally
optimal state estimation by directly combining measurement data. However CKF
system has some disadvantages such as a comparatively large computational burden
and poor fault detection and isolation ability. Decentralised Kalman filtering (DKF)
addresses such defects while aiming to achieve the same accuracy as a centralised
filter. On the other hand global optimal filtering (GOF) can achieve a higher
accuracy than the traditional CKF because it utilises more information resources
than the CKF. In the information space, the information resources that can be used
for estimation include the measurements, the local predictions, and the global
predictions. In order to evaluate the system performance, a field experiment was
conducted on a vehicle with different kinds of maneuvers, including circular motion
and accelerated motion. The results indicate that: (1) GOF-based PPP-GNSS/
Locata/INS integration system can provide better positioning accuracy compared
with CFK and federated Kalman filtering; (2) covariance analysis shows that the
GOF improves the system estimation covariance; and (3) a comparison of GOF with
local filters confirms the superiority of a GOF-based triple integration system.
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43.1 Introduction

Although Global Navigation Satellite System (GNSS) technology has been widely
used to satisfy positioning and navigation requirements in many application fields,
the major disadvantage of GNSS still remains: signal blockage due to obstructions,
and power attenuation of the signals when operated indoors. The combination of
GNSS with other sensors, such as a self-contained inertial navigation system (INS),
provides an ideal position and attitude determination solution which can not only
mitigate the weakness of GNSS, but also bound the INS error that otherwise would
grow with time when the INS operates alone. However, the navigation accuracy
provided by GNSS/INS is strongly dependent on the quality and geometry of the
GNSS observations, the INS technology used, and the integration model applied.

In general, with limited GNSS availability, the navigation accuracy can only be
maintained at the metre-level for no more than a few minutes even if a reasonably
high quality INS is used. Many advanced fusion algorithms have been investigated
to mitigate this problem however during longer GNSS outages navigation solutions
may not meet the accuracy requirement of the application [1, 2].

It is possible to incorporate an auxiliary sensor system to augment GNSS/INS
navigation. “Locata” is a terrestrial, radio-frequency based technology which uses a
local “constellation” of signal transmitters to provide continuously time syn-
chronised ranging signals in difficult GNSS environments, such as where there is
poor satellite geometry: signal blockages in tunnels, urban canyons, and deep open-
cut mines etc.

In this paper, in order to satisfy accuracy and reliability performance parameters,
GNSS, based on the precise point positioning (PPP) data processing methodology,
and Locata are integrated with an INS to provide robust global navigation solutions.

The fundamental challenge of integrated navigation systems is information
fusion. The commonly used method is the centralised Kalman filtering (CKF) [3, 4]
which ensures globally optimal state estimation by processing all sensor
measurements at a central site. However, the CKF can result in a large computa-
tional burden and large data memory demands [5]. From the point of view of fault
tolerance, the centralised complementary Kalman filter is not convenient to adap-
tively detect and isolate sensor faults, thus CKF-based navigation systems have
limited reliability [6, 7].

Another approach is based on decentralised Kalman filtering (DKF), where the
information from local estimators can yield global optimal or sub-optimal state
estimation according to certain information fusion criteria. The advantage of this
approach is that the communications load and processing demands are decreased,
and the input data rates could be increased due to the use of parallel structures.
Moreover, decentralised filtering leads to easy fault detection and isolation.
Recently developed multi-sensor data fusion via the information space approach
has shown that the global optimal filtering (GOF) can achieve a higher accuracy
than the traditional CKF [8]. In order to take advantage of decentralised filtering
and to improve the estimation accuracy, the GOF approach is applied in this paper.
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According to the information space concept, the optimal data fusion can be
expressed as the projection of the state vector to all kinds of information spaces.
Thus the more information resources are utilised, the better the system performance.
In the information space, the measurements, the local predictions, and the global
predictions are resources for the estimation process. The GOF utilises all the
information resources, and hence differs from the traditional CKF and the Federated
Kalman filter (FKF) that utilise only a portion of the available information
resources.

In this paper GOF is applied to implement a PPP-GNSS/Locata/INS integrated
navigation algorithm. This approach overcomes the disadvantages of conventional
decentralised fusion by utilising all of the information resources. A decentralised
estimation fusion method is established for individual integrations of PPP-GNSS
and Locata with INS to independently obtain the local predictions and local
estimation. The local and global information is further fused to generate the global
optimal state estimation of the triple-integrated navigation system. Experimental
results are presented to demonstrate the performance of the proposed method.

43.2 System Model and Conventional Fusion Algorithms

INS is used to establish the inertial navigation model. The system dynamic equation
is described by:

_X tð Þ ¼ F tð ÞX tð Þ þW tð Þ ð43:1Þ

where X tð Þ is the state vector of the system, F tð Þ is the dynamic matrix of the
system, W tð Þ is the system noise. X tð Þ is defined as:

X tð Þ ¼½wN ;wE;wD; drN ; drE; drD; dvN ; dvE; dvD; ex; ey; ez;

rx;ry;rz; dgLx; dgLy; dgLz; dgGx; dgGy; dgGz�T
ð43:2Þ

where wN ;wE;wDð Þ is the attitude angle error, drN ; drE; drDð Þ is the position error,
dvN ; dvE; dvDð Þ is the velocity error, ex; ey; ez

� �
is the gyroscope’s constant bias,

rx;ry;rz
� �

is the accelerator’s bias, dgLx; dgLy; dgLz
� �

is the Locata lever arm
components with respect to the inertial measurement unit (IMU) centre,
dgGx; dgGy; dgGz
� �

is the GNSS lever arm estimation with respect to the IMU
centre.

The observation information of the integrated PPP-GNSS/Locata/INS system
includes the position and velocity (PV) information from Locata and PPP-GNSS,
and PV information from the INS. For centralised filtering, the measurements are
described by the stacked observation vector:
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Z tð Þ ¼ ZL; ZG½ �T¼ rL � rINS; vL � vINS; rG � rINS; vG � vINS½ �T ð43:3Þ

The system observation equation can be written as:

Z tð Þ ¼ H tð ÞX tð Þ þ V tð Þ ð43:4Þ

where H tð Þ and V tð Þ are the observation matrix and observation noise of the
integrated navigation system respectively.

Applying the discrete process, the system Eqs. (43.1) and (43.3) become:

x kð Þ ¼ F kð Þx k � 1ð Þ þ x kð Þ ð43:5Þ

z kð Þ ¼ H kð Þx kð Þ þ v kð Þ ð43:6Þ

It is assumed that x kð Þ, v kð Þ are zero-mean white sequences uncorrelated with
each other, and E x kð Þx kð ÞT� � ¼ Q kð Þ, E v kð Þv kð ÞT� � ¼ R kð Þ. The initial state x 0ð Þ
is a zero-mean Gaussian random vector, x 0ð Þ�N �x 0ð Þ;P 0ð Þð Þ, and is independent
of x kð Þ and v kð Þ.

The Kalman filter algorithm is composed of time and measurement updates. The
prediction of the state~x kð Þ, and its covariance matrix ~P kð Þ, are obtained from the
time-updating step:

~x kð Þ ¼ F kð Þx̂ k � 1ð Þ ð43:7Þ

~P kð Þ ¼ F kð ÞP̂ k � 1ð ÞFT kð Þ þ Q kð Þ ð43:8Þ

When the measurements are available the state vector x̂ kð Þ is updated as:

K kð Þ ¼ ~P kð ÞHT kð Þ H kð Þ~P kð ÞHT kð Þ þ R kð Þ� ��1 ð43:9Þ

P̂ kð Þ ¼ I � K kð ÞH kð Þ½ �~P kð Þ ð43:10Þ

x̂ kð Þ ¼~x kð Þ þ K kð Þ z kð Þ � H kð Þ~x kð Þ½ � ð43:11Þ

where K kð Þ is the Kalman gain, and P̂ kð Þ is the covariance matrix of the state.
For a decentralised system, the sub-systems for the Locata and GNSS sensors

independently observe the output of the INS. The two local filters estimate the state
of the INS using the observed data. Since the two local filters share the INS
navigation model, the dynamic equations of the two local systems are the same. The
model of the ith (i = 1, 2) local filter is described by the following equations:

x kð Þ ¼ F kð Þx k � 1ð Þ þ x kð Þ ð43:12Þ
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zi kð Þ ¼ Hi kð Þx kð Þ þ vi kð Þ ð43:13Þ

where zi kð Þ is the output of the ith subsystem, and vi kð Þ is the measurement noise of
the local system, which is assumed to be white noise. The covariance of the
measurement noise in the local filter is defined by the general accuracy of the local
Locata and PPP-GNSS solutions, which is set in this evaluation as:

RLocata ¼ diag 0:2ð Þ2 0:3ð Þ2 0:1ð Þ2 0:1ð Þ2 0:1ð Þ2 0:1ð Þ2
� �

RPPP�GNSS ¼ diag 0:2ð Þ2 0:1ð Þ2 0:1ð Þ2 0:1ð Þ2 0:1ð Þ2 0:1ð Þ2
� �

Each local filter generates the optimal estimation of the local state by using the
Kalman filter formulas (43.7)–(43.11).

After completing the computations of the two decentralised local filters, two
local optimal state estimations x̂1ðkÞ and x̂2ðkÞ can be obtained and further fused
using the global filter.

43.3 GOF for PPP-GNSS/Locata/INS Integrated
Navigation

The multi-sensor optimal estimation is resolved in two approaches, in terms of the
random vector space (RVS) approach and the information space approach [8]. In
the RVS framework, the sources of information have been identified and used as the
bases of the space. The estimation is mathematically described as the procedure for
finding the projection of the state vector on the bases of the space. The fusion
algorithm therefore describes how the global state estimate is combined by the
projections and associated bases.

Differing from the RVS approach, from the point of view of the information
space, optimal fusion is implemented by a series of transformations between the
information spaces. The transformations map the source information vectors from
the measurement information spaces to the estimate information space to produce
the fused information vector. The information space approach provides a means by
which the accuracies of different algorithms can be compared on a theoretical basis.

As the RVS approach is similar to the widely applied Kalman filtering forms, it
is used below to discuss the nature of GOF.

Assume a linear discrete system x̂i i ¼ 1; 2; . . .; nð Þ is the unbiased estimators of
the stochastic vector x. If x̂i are orthogonal vectors, the estimate of x can be
expressed as the sum of the projection of x̂i in a random vector space (RVS) H [8]:

H ¼ x̂jx̂ ¼
Xn
i¼1

Cix̂i

( )
ð43:14Þ
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The optimal state estimation and its covariance can be written as:

x̂ ¼ P̂
Xn
i¼1

STi P̂
�1
i x̂i

 !
ð43:15Þ

P̂ ¼
Xn
i¼1

STi P̂
�1
i Si

 !�1

ð43:16Þ

where Si is the mapping matrix between x̂ and x̂i, and x̂i ¼ Six̂; P̂i is the corre-
sponding posteriori estimate error covariance of x̂i, which is calculated epoch by
epoch to the convergence status. The initial setting of Pi does not affect the estimate
convergence, and it can be set according to the approximate accuracy of initial
xi 0ð Þ. It can be seen that the more information that is used, represented here as x̂i,
the smaller the trace of P̂ that is obtained. Hence the system could have improved
performance.

For a better understanding, recall the Kalman filter’s measurement updating
Eq. (43.11). This prediction form indicates that the state prediction is corrected
when the measurement is made available. It can be rewritten in the following fusion
form:

x̂ kð Þ ¼ I � K kð ÞH kð Þ½ �~x kð Þ þ K kð Þz kð Þ ð43:17Þ

It also can be regarded as the random vector space below [8]:

H ¼ x̂jx̂ ¼ C1~xþ C2 kð Þzf g ð43:18Þ

where C1 ¼ P̂~P�1, and C2 ¼ P̂HTR�1

The estimation x̂ can be seen as a point or vector in the space H, which is
expressed as the projections C1 and C2 on the bases of~x and z.

Similarly, the RVS of the CKF can be expanded by the measurements z1, z2 and
the global prediction~x:

HCKF ¼ x̂jx̂ ¼ C~xþ C1 kð Þz1 þ C2 kð Þz2f g ð43:19Þ

where C ¼ P̂~P�1, C1 ¼ P̂HT
1 R

�1
1 , C2 ¼ P̂HT

2 R
�1
2

An optimal multi-sensor estimation in turn requires information from the bases
and the determination of the associated projections. The following random vectors
in a multi-sensor system can be used as the bases [8]:

Measurements: zi kð Þ, i ¼ 1; 2
Local predictions:~xi kð Þ, i ¼ 1; 2
Global predictions:~x kð Þ
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Utilising different sources as the bases of RVS leads to different fusion algo-
rithms. From Eq. (43.19), CKF uses global prediction and all local measurement
information, FKF uses local estimates and global prediction. However, in order to
ensure the same accuracy of the CKF, the local predictions of the FKF are
computed from the global prediction using the so-called information-sharing
principle [9, 10].

To further improve the accuracy of decentralised filtering, the GOF uses all the
information sources, including the measurements, the local and global predictions
to achieve global optimality, which can be represented as:

H ¼ x̂ kð Þjx̂ kð Þ ¼
X2
i¼1

ai kð Þ~xi kð Þ þ
X2
i¼1

bi kð Þzi kð Þ þ c kð Þ~x kð Þ
( )

ð43:20Þ

The measurements and the local predictions support local Kalman filtering
fusion, thus they can be replaced by the local state estimates. The GOF configu-
ration is shown in Fig. 43.1. The RVS of GOF in Eq. (43.20) can be rewritten as:

H ¼ x̂ kð Þjx̂ kð Þ ¼ c kð Þ~x kð Þ þ d1 kð Þx̂1 kð Þ þ d2 kð Þx̂2 kð Þf g ð43:21Þ

where ai, bi, c, d1 and d2 represent the projections of the global estimate vector x̂ on
the bases.

In Fig. 43.1, one can see both Locata and PPP-GNSS outputs are combined with
INS solution in the local filters, thus the local estimates x̂1 and x̂2 are correlated with
previous feedback-INS solution, represents the previous state estimate here. On the
other hand, the current global prediction is also computed from the previous global
estimate. That means the two local estimates and the current global prediction are
oblique to each other, not orthogonal. Therefore these three vectors need to be
orthogonalised [8]. The reconstructed orthogonal global prediction and local
estimates are represented as ~x and ~xi:

Fig. 43.1 System configuration of GOF
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~x1 kð Þ ¼ x̂1 kð Þ; ~x2 kð Þ ¼ x̂2 kð Þ; ~x kð Þ ¼ a1x̂1 kð Þ þ a2x̂2 kð Þ þ a~x kð Þ ð43:22Þ

The corresponding covariance of reconstructed global prediction is:

~P kð Þ ¼ a~P kð ÞaT þ
X2
i¼1

aiP̂i kð ÞaTi þ
X2
i¼1

a~Pi kð ÞaTi þ
X2
i¼1

ai~P
T
i kð ÞaT ð43:23Þ

where

~Pi ¼ cov ~x;~xið Þ ¼ F kð ÞP̂ k � 1ð ÞFT kð Þ~P�1
i kð ÞP̂i kð Þ ð43:24Þ

As global prediction ~x and local estimates x̂i are all unbiased estimates, the
orthogonalised global prediction ~x is also unbiased, hence E ~x� xð Þ ¼ 0, from
which one can derive:

a1 þ a2 þ a ¼ I ð43:25Þ

Since the reconstructed global prediction ~x and local estimation ~x1, ~x2 are
orthogonal to each other. Thus cov ~x;~x1ð Þ ¼ 0, cov ~x;~x2ð Þ ¼ 0, from which one can
obtains:

a ¼ I � ~P1P̂
�1
1 � ~P2P̂

�1
2

� ��1
; a1 ¼ �a~P1P̂

�1
1 ; a2 ¼ �a~P2P̂

�1
2 ð43:26Þ

According to the optimal state estimation Eq. (43.15) and its covariance
Eq. (43.16), the optimal fused global estimation is:

x̂ kð Þ ¼ P̂ kð Þ ~P�1 kð Þ~x kð Þ þ P̂�1
1 kð Þx̂1 kð Þ þ P̂�1

2 kð Þx̂2 kð Þ� � ð43:27Þ

P̂ kð Þ ¼ ~P�1 kð Þ þ P̂�1
1 kð Þ þ P̂�1

2 kð Þ� ��1 ð43:28Þ

43.4 Experiment and Analysis

The integrated test was conducted at Locata’s Numerella Test Facility (NTF),
located in a rural area outside of the city of Canberra, Australia. The NTF covers an
area of approximately three hundred acres and is ideally suited for real-world nav-
igation system testing area. A number of Locata transmitters were set up to cover the
NTF area. The devices that were used in the test include two Leica dual-frequency
GNSS receivers (one used as the rover receiver, and the other as the base station),
one H764 IMU, and one Locata rover unit. The GNSS antenna and Locata antenna
were mounted with the IMU on the top of a truck. The GNSS data rates and Locata
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data rates were both set to 10 Hz, while the IMU’s data rate was 256 Hz. Both Locata
and IMU measurements were synchronised with those from GNSS.

The PPP-GNSS and Locata solutions were post-processed independently. The
initial convergence period of PPP-GNSS was excluded from this triple integration
evaluation. The GNSS integer ambiguity-fixed differential carrier phase positioning
solution computed by the Leica Geo Office (LGO) software was served as the

Fig. 43.2 Trajectory from triple-integration system at NTF

Fig. 43.3 Position comparison between CKF and GOF solutions
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ground-truth as it had a nominal accuracy of a few centimetres. The trajectory of the
field test is shown in the Fig. 43.2.

The field test included circular motion and accelerated motion. As CKF and FKF
provide solutions of the same accuracy, Fig. 43.3 shows the comparison only
between the GOF and CKF solutions. Since the experiment was conducted across
relatively flat terrain, a vertical constraint was applied to account for the poor
vertical component observability of Locata. It can be seen that the vertical solutions
of the two systems are almost the same. However in the horizontal north and east
directions the GOF provides a more accurate and a smoother solution. In particular
during the circular motion from 250 to 600 s, the GOF solution is obviously better.
The Radial Spherical Error (MRSE) of the 3D position error is displayed in
Table 43.1. The MRSE of the GOF-based triple-integration solution is 0.132 m,

Table 43.1 MRSE comparison of triple-integration system and local systems

Triple-integration solution Local system solutions

MRSE (m) GOF CKF FKF PPP-GNSS/INS Locata/INS

0.132 0.141 0.141 0.144 0.192

Fig. 43.4 Position and velocity precision comparison
ffiffiffiffiffiffiffiffiffi
P̂ kð Þ

q� �
between CKF and GOF during

the last 100 s of the test
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which is lower than that of CKF and FKF’s 0.142 m. This is an improvement of
6.4 %.

The posteriori estimate error covariance P̂ kð Þ was computed. Figure 43.4 shows

the square root of the converged position and velocity error covariance
ffiffiffiffiffiffiffiffiffi
P̂ kð Þ

q
of

the CKF and GOF during the last 100 s of the test. The blue colour and red colour
denote the CKF and GOF solutions respectively. The left three plots compare the
position error covariance in the three direction components, and the right three plots
are the corresponding velocity error covariance. It can be seen that the GOF esti-
mate position and velocity error covariance are improved for all three directions in
comparison with the results of conventional centralised filtering.

Further comparisons of the solutions of the local systems PPP-GNSS/INS and
Locata/INS with respect to the triple-integration system are made. Figure 43.5 shows
the position comparison of the two local systems with the GOF solutions. It can be
seen that the triple-integration approach provides the best positioning solutions for
the horizontal (north and east) direction components. From Table 43.1 it can be seen

Fig. 43.5 Position difference comparison between GOF-based triple-integration system and local
systems
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that the MRSEs of the PPP-GNSS/INS and Locata/INS solutions are 0.144 and
0.192 m respectively, while the MRSE of the GOF-based triple-integration solution
is 0.132 m. This is lower than either the PPP-GNSS/INS or Locata/INS solutions.

As in the case of Fig. 43.4, the position and velocity precisions were investi-
gated. The square root of the a posteriori estimate error covariance was also
computed. Figure 43.6 shows the comparison of the square root of the estimated
covariance for the GOF-based triple-integration system and the local systems
during the last 100 s of the test. The triple-integration solution is plotted in red, and
those of the local systems PPP-GNSS/INS and Locata/INS are plotted in blue and
green respectively. The left three plots are the comparison of the positioning error
covariance in three direction components, and the right three plots illustrate the
velocity error covariance. It can be seen that the GOF-based triple-integration
system has the smallest estimated position and velocity error covariance.

Fig. 43.6 Position and velocity precision comparison between GOF-based triple-integration
solution local PPP-GNSS/INS system solution, and local Locata/INS system solution for the last
100 s of the test
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43.5 Concluding Remarks

This paper describes a PPP-GNSS/Locata/INS triple-integration algorithm imple-
mented using a loosely-coupled filtering approach. Conventional centralised
filtering and decentralised filtering were discussed. In order to keep the reliability
character of decentralised filtering, but to improve its accuracy, the GOF algorithm
was developed, based on the recently developed information space concept. The
GOF utilises all the information resources, including the raw measurements, the
local predictions, and the global predictions. In order to evaluate the system
performance, a field experiment was conducted. The comparison between GOF,
CKF and FKF triple-integration approaches indicated that the GOF approach does
indeed provide the most accurate positioning solution. The a posteriori error
covariance for the GOF solution is also smaller than in the case of the other two
algorithms. A comparison of the GOF-based triple-integration solution with the
local PPP-GNSS/INS and Locata/INS solutions shows that the GOF-based
approach is superior to the alternative approaches.
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