
Chapter 6

Current Fields of Interest

Rolf Steinbuch, Iryna Kmitina, and Nico Esslinger

Research in structural optimization started with the onset of structural mechanics.

The availability of powerful computers and efficient simulation tools such as FEM,

BEM or MBS have led to many optimization methods using closed loops that

require no or little user interaction during their implementation. Today, much of the

commercial and open source software has more or less integrated the optimization

modules, based on various principles. As we can see in many other fields, this

possibility did not only result in positive response from the users, but it also

increased the demand for easily enabled optimization. We observe an increasing

demand for optimization and as a consequence a growing number of tools that help

designers to improve on their original ideas.

Gradient based optimization and sensitivity studies are common options in

CAE-systems today, and so we recommend that engineers change their software

packages, if their existing system does not provide these capabilities.

External software packages such as optiSLang (http://www.dynardo.de/soft

ware/optislang, retrieved 15.04.2015) or the codes developed by Reutlingen

Research Institute (RRI) or other institutes provide enhanced possibilities supplied

by the different codes by outer loop optimization (cf. Sect. 4.1.2). We believe that

such overlays will contribute fundamentally to the expansion of optimization in

structural design and other engineering fields as well.

If we review the research done in the field of optimization, the following topics

appear to be the focus of current development:

– Optimization under uncertainties, taking into account the inevitable scatter of

parts, external effects and internal properties. Reliability and robustness both
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have to be taken into account when running optimizations, so the name Robust

Design Optimization (RDO) came into use.

– Multi-Objective Optimization (MOO) handles situations in which different

participants in the development process are developing in different directions.

Typically we think of commercial and engineering aspects, but other constella-

tions have to be looked at as well, such as comfort and performance or price and

consumption.

– Process development of the entire design process, including optimization from

early stages, might help avoid inefficient efforts. Here the management of virtual

development has to be re-designed to fit into a coherent scheme.

– Further improvement of the bionic and other related non-deterministic strate-

gies, especially the reduction of the number of jobs and increasing quality of the

prediction, will undergo continual evolution.

There are many other fields where interesting progress is being made. We limit

our discussion to the first three questions, as we discuss the performance of bionic

methods throughout this book, especially in Sect. 3.1.

6.1 Reliability and Robustness

Iryna Kmitina

Uncertainty is inevitable in engineering design. Every component, every material

and all load sets are not given by exact data, but tend to scatter around some

predefined values. Therefore research about design under uncertainty has been

growing over the last years and is now used in a wide range of fields from simple

product components to designing complex systems. Terms such as “Robust

Design” and “Reliability Based Design Optimization” have been introduced in

some design software packages. But their application to parametric uncertainty is

difficult and limited. Robust design is mainly exploited to improve the quality of a

product and to achieve the required level of performance. While this can be done by

minimizing the effect of the scatter; however, the causes are not eliminated. The

reliability-based design tries to keep the failure probability below an acceptable

level.

We have learned already that numerical optimization of mechanical designs

using simulation systems such as FEM requires much computing power in terms of

jobs, capacity and time. The additional effort to provide sufficient information for

the evaluation of the reliability or robustness of the design may become even larger.

In consequence, efficient strategies must be used to ensure reliability or robustness.
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6.1.1 Reliability-Based Design

Reliability-based Design Optimization (RBDO), as one paradigm of design under

uncertainty, seeks optimal designs with low probabilities of failure within the

expected scatter of the produced parts. Mathematically, a basic formulation of

RBDO is described as (Wang et al. 2010; Du and Chen 2004):

min
d,μX

f d;X;Cð Þ
subject to Prob gi d;X;Cð Þ � 0f g � R, i ¼ 1, 2, . . . ,Ng

dL � d � dU, μL
X � μX � μU

X ;

ð6:1Þ

where

– f(·) is an objective function;

– d is a vector of deterministic design variables;

– X is a vector of random design variables;

– C is a vector of random parameters (not changeable and not controllable in the

design process);

– μX is the vector of mean values of random design variables;

– gi is the ith limit state function and Ng is the total number of limit state functions;

– Prob{·} denotes a probability of failure;

– R is desired reliability level.

As we know that a reliability analysis is computationally expensive, we need to

find relatively efficient methods to handle it. Among such methods, analytical

approximations of the goal and the restrictions are often used. The limit state

function, for example, is represented by a first or second order Taylor series

expansion, so we speak about First Order Reliability Method (FORM) or Second

Order Reliability Method (SORM). It is often assumed that the higher order

estimation produces precise estimations. Unfortunately this is not always true.

The approximation methods consist of just a few steps. In the first step, the

random variables are transformed from their original distribution into a standard

normal distribution by means of the so-called Rosenblatt transformation. This

corresponds to the replacement of the original distribution with a normal distri-

bution with the same mean and standard deviation, then mapping this new random

variable to a normalized one. Now all random variables cover the same range,

disregarding their real physical values (Fig. 6.1a). The resulting multidimensional

distribution is sketched in Fig. 6.1b. All random variables cover the same range.

There is no difference between their appearances. In addition we now use FORM or

SORM to quantify the measure of the failure area by approximating the restriction

by linear or quadratic hyper-surfaces shown in Fig. 6.1b as well (Gekeler and

Steinbuch 2014).

The shortest distance from the constraint function gð p1, p2Þ ¼ 0 to the origin in

a standard normal space is called reliability index β. The point that has the highest
probability density on the constraint function is called the Most Probable Point
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(MPP). A design can fall into the safe region that is defined by gðp1, p2Þ < 0—

reliability, or into the forbidden region gðp1, p2Þ > 0—failure.

We should realize that the use of FORM or SORM is not necessarily conserva-

tive. In Fig. 6.3 as we indicate, there are regions in the 2D space which are not

defined as violating the given restriction g > 0 by FORM or SORM.

6.1.2 Robust Design

Robust Design Optimization (RDO) seeks a product design which is not too

sensitive to changes of environmental conditions or noise. The task of robust design

is different from reliability-based design. RDO tries to minimize the mean and the

variation of the objective function simultaneously under the condition that con-

straints are satisfied (Wang et al. 2010; Tu et al. 1999). Mathematically a basic

formulation of RDO is described as

Fig. 6.1 Transformation of random variables to a normalized multidimensional distribution. (a)

Rosenblatt transformation of random variables. (b) Optimum (Opt), Restriction, MPP, FORM and

SORM
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min
d,μX

f μ f d;X;Cð Þ, σ f d;X;Cð Þ� �
subject togi d;X;Cð Þ � 0, i ¼ 1, 2, . . . ,N

dL � d � dU, μL
X � μX � μU

X ;

ð6:2Þ

where μf is the mean value and σf is standard deviation of the objective function,

N is the number of deterministic constraints. This is a Multi-Objective Optimization

(MOO, cf. Sect. 6.2) problem. We often manage it with the weighted sum method

or another appropriate method (Du et al. 2004).

6.1.3 Reliability and Robustness Integration

For optimization under uncertainty, it is necessary to take both the probabilistic

design constraints and the design objective robustness into account. In Fig. 6.2 one

can observe that unreliable parts are not robust, as they fail to comply with the

restrictions. This corresponds to unacceptable values of the objective (Gekeler and

Steinbuch 2014).

The integration of both robustness and reliability considerations can be

expressed using Eqs. (6.1) and (6.2)

min
d,μX

f μ f d;X;Cð Þ, σ f d;X;Cð Þ� �
subject to Prob gi d;X;Cð Þ � 0f g � R, i ¼ 1, 2, . . . ,Ng

dL � d � dU, μL
X � μX � μU

X :

ð6:3Þ

Fig. 6.2 Reliability and robustness
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In order to overcome the difficulty of choosing the weighting factors, a unified

framework method has been suggested (Wang et al. 2010).

6.1.4 A Sketch of a Formulation of a Unified Reliability
and Robustness Strategy

To overcome the difficulty of choosing weighting factors, Wang et al. (2010) tried

to formulate general unified framework for integrating reliability-based and robust

design. The optimization task is to minimize the probabilistic objective function

under the condition that constraints are satisfied, in other words, the design points

appear in the safe region. In the case with normal distributed objective functions a

unified framework is provided by

min
d,μX

μ f þ k∗σ f

subject to Probfgiðd,X,CÞ � 0g � R, i ¼ 1, 2, . . . ,Ng

dL � d � dU, μL
X � μX � μU

X , ð6:4Þ

where k is a constant expressing the weighting of the mean and standard deviation.

This weight also predicts the satisfaction’s probability of objective function. For

instance, k ¼ 3 means that the Prob f � μ f þ kσ f

� �¼ 99.87 %.

The Sequential Optimization and Reliability Assessment (SORA) method may

be used to solve the optimization problem with normal distributed objective

functions (Yin and Chen 2006). The SORA approach consists of an idea called

decoupled reliability assessment (RA) and the Deterministic Optimization (DO).

The design solution obtained from DO is verified by checking the feasibility of

probabilistic constraint in RA. In the next cycle, DO includes the predicted inverse

MPP from RA. The process will stop if the feasibility and convergence criterion are

satisfied. As this idea is beyond our topic of bionic optimization, we recommend

interested readers to refer to the literature cited for further details.

6.1.5 Robust Optimization

Many engineers use FORM or SORM successfully to perform optimization and

reliability or robustness applications. But, due to some difficulties, they are not

suitable for every optimization case. The most important problems related to

FORM and SORM are (Gekeler and Steinbuch 2014):
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– scattering input data have to be independent when they are considered as random

variables. They must follow a normal distribution or have been transformed into

a normal distribution;

– the linear or quadratic approximation of the restrictions hyper-plane may not be

conservative. In Fig. 6.3 (F) indicates the region where FORM and SORM are

not conservative, while (S) adds the region where SORM is not conservative;

– the normalization of the random variables requires a good guess of the mean and

standard deviation of the multidimensional random variables which may be

found only after a large number of tests;

– the approaches primarily hold only for one critical restriction, and they may fail

or become less applicable as soon as there is a second restriction active as shown

in Fig. 6.3.

As the proposed approaches to carrying out reliability and robustness studies

consume much time and computing power, faster steps to come up with acceptable

results were proposed (Gekeler and Steinbuch 2014). These proposals, found by the

optimization techniques, may be used as input for manufacturing without having to

consider uncertainty at all.

To take into account stochastic problems, a more general definition was

suggested. The objective function is described as:

z ¼ z p1; p2; . . . ; pn p
� �T

; ð6:5Þ

where z is a vector composed of two other vectors, s and r:

Fig. 6.3 Second restriction

and non-conservativeness

of FORM (F) and SORM

(S)
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z ¼ s; rð ÞT ¼ s1; s2; . . . ; sng ; r1; r2; . . . ; rm
� �T

; ð6:6Þ

Here s stands for the vector of ng optimization goals, while r represents the set of

m restrictions. We confine the idea here to single-objective optimization i.e. s ¼ s1.
In general there are given limits to the design parameters like before

pi,min � pi � pi,max, i ¼ 1 . . . n p: ð6:7Þ

In addition all pi may show some scatter indicated by

pi ¼ pi � Δ pi: ð6:8Þ

As mentioned above, some authors, e.g., (Wang et al. 2010), distinguish sets of

non-scattering design or optimization parameters d, scattering design or optimiza-

tion parameters X, and scattering non-optimization parameters C. If one allows

Δ pi ¼ 0 for some set of parameters and pi,min ¼ pi,max for another set or even the

same set of the same parameters, these three classes will be reduced to one set of

optimization parameters p as proposed in Eqs. (6.5)–(6.8). Some of them do not

essentially scatter, and some of them are fixed within their tolerances. This allows

for a more simple annotation without losing the generality of the idea.

The main concern of stochastic mechanics is to use a sufficient amount of test

data to provide acceptable probabilistic measures. One common and efficient way

to solve this problem is using a Response Surface (RS, cf. Sect. 2.7) approach in all

components of z ¼ s; rð ÞT . It provides an approximation of the distribution and

allows for an estimation of the mean and standard deviation of all the components

of z. In this formulation, the goal and the restrictions are defined respectively as

s and r.

In most cases, RS are often first or second order degree polynomials (cf. Sect.

2.7) in the optimization parameters. Since frequently better data are not available,

one may use them to perform the reliability or the robustness analysis. The main

disadvantage of this approach is that a large number of tests are required

(i.e. FE-jobs or experimental measurements). The RS is defined by its coefficients:

RS p1; p2; . . . ; pn p
� � ¼ a0 þ

X
i

ai pi þ
X
i

X
k�i

aik pi pk: ð6:9Þ

The number of coefficients for a second order Response Surface is

nc ¼ n p þ 1þ n p þ 1
� �

n p=2;

where np denotes the number of optimization parameters. Non-design parameters

C as defined at the beginning of this section might be omitted to reduce the number

of studies. To find the RS by a least squares method, the number of tests should be

about twice the number of coefficients. In consequence one ought to run
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approximately n2p tests. For large nonlinear studies and some (e.g., n p ¼ 10 )

optimization parameters, where one job may take some hours, the total computation

time may become absolutely unacceptable. Reduction of the number of coefficients

in Eq. (6.9) by omitting the mixed terms to

RS p1; p2; . . . ; pn p
� � ¼ a0 þ

X
i

ai pi þ
X
i

aii p
2
ii ð6:10Þ

may sometimes help to accelerate the process, as there are only 2n p þ 1 unknowns

and one has to run about 4np tests. But this simplification may essentially reduce the

quality of the approximation. The response surfaces found by any means may be

used to estimate the goal or the reliability as shown in Fig. 6.4. The short vertical

lines indicate the test data and their distance to the RS.

To continue, it is assumed that the RS are sufficiently good representations of the

distribution of the studies’ results. The estimation of the reliability by using the RS

can be done afterwards. It would be appropriate to assume the RS to be scattering as

well. Their standard deviation might be guessed from the deviation of the difference

between the RS and the test data

σ2RS ¼
1

n� 1

Xn
i¼1

�
testðpiÞ � RSðpiÞ

�
2: ð6:11Þ

Here pi represents the vector of all design variables at the test # i including the

scattering and non-scattering design variables. It is evident, that the better the

Response Surface is able to represent the data, the smaller the estimated standard

deviation σ2RS becomes.

In many cases the optimum and the MPP (cf. Fig. 6.3) coincide. If the random

variables are following normal distributions, one may find the probability at

parameter values from the mean and the standard deviation. The reliability close
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Fig. 6.4 Approximation of a goal or restriction by a second order response surface
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to the MPP and Optimum becomes 50 % because β ¼ 0. In consequence, one has to

move away from the MPP along the gradient of the restriction into allowed (g < 0)

regions. In this way the distance to not only MPP but also to the optimum will be

increased to raise the reliability.

A high quality of the Response Surfaces to reproduce the data input makes the

prediction of the failure probability more realistic and not over-conservative. In

Fig. 6.5, the deterministic reliability curves correspond to 50 % if MPP ¼ OPT. To

improve the reliability, the corresponding scatters of the restriction and the pro-

posed design have to be taken into account.

The assumption of a normal distribution of all random variables may cause

large standard deviations. This decreases the power of the always doubtful

stochastic statements. To reduce both weak components and to improve the per-

formance, better approximations for the distributions could be used. With know-

ledge of the type of the distributions and their moments, they can be used for some

or all optimizations. It is assumed that the random variables, optimization param-

eters and the scattering design data are each distributed independently. Then the

total probability density will be the product of the probability density pri of the
parameters:

Prtotal ¼
Y

i
pri pið Þ, i ¼ 1, . . . , n p ð6:12Þ

For all of the parameters’ distributions, the quality of approximation is tested by

using different known distributions such as, e.g., normal, uniform, Chi-squared,

log-normal, Poisson, Maxwell, Weibull or any other distributions that are assumed

to be helpful. The squared error between all configurations of the distributions is

minimized with appropriate moments (μ, σ) and the test data available:

min
�
error Prtotal pið Þ � test pið Þð Þð Þ2 ð6:13Þ

This minimization may be done by a bionic approach to deal with local optima. This

optimization helps to find estimates for the distribution’s moments that produce

good approximations. Even if this search requires many loops to check all possible

Fig. 6.5 Reliability and

scatter, dots indicate the
combined probability of

goal and restriction
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combinations of distributions, the time for this search will be smaller compared to

the time required for real FE-jobs.

After selecting an appropriate distribution, the problem of estimating the

resulting failure probability still remains. For a normal distribution, one can mea-

sure the length of the β-vector and compare its length to the standard deviation. For

mixed type product distribution and scattering restrictions, a realistic guess of the

length and the interpretation of β are required. This question may be solved by some

tests of the design on the line between optimum and MPP or along the gradient of

the restriction g through the MPP. From these tests, approximations of the distri-

bution and the failure probability will be derived.

In many cases the optima found lie close to a restriction. In these cases, neither

reliability nor robustness requirements are fulfilled. If such an optimized design

does not provide sufficiently high reliability or robustness, its free parameters must

be modified to shift it away from the critical regime. This may be done by

translating the parameters along a direction close to the normal β or the gradient

of the restriction g from the MPP in Fig. 6.1. The normal on the restriction may not

be the direction of the fastest improvement of the reliability as long as the normal-

ized normal distribution is not used. Studies, such as the ones on the response

surfaces, may help to give acceptable representations of the preferable position of

the design. Care should be taken in the presence of more than one restriction

(Fig. 6.3). If other restrictions prohibit feasible solutions near the optimum, we

need to search other regions of the parameter space which are large enough to allow

for solutions that do not violate any restriction.

Example 6.1 We analyze the bending of an L-Profile fixed at its lower end while a

deflection of the upper end of 400 mm is applied. The goal is the minimization of

the mass of L-Profile. The length L1 and thickness T are defined as free parameters

(Fig. 6.6).

Fig. 6.6 L-Profile under displacement controlled bending load. (a) Overall view. (b) Free

parameters L1 and T
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Figure 6.7 indicates the meaning of the constraints on the force and energy.

– Force F uð Þ < Fmax,

– F umaxð Þ > Fmin

– Wmech > Wmin.

In order to generate the corresponding response surfaces, one needs to place

variants in the parameter space. This can be done using, for example, the Latin

Hypercube Sampling method. Afterward, response surfaces for the goal and the

constraints will be generated. Then the restrictions are applied to the Response

Surfaces (see Fig. 6.8).

The optimization is done on the response surface of the mass in order to find the

deterministic optimum. The search for the optimum without taking into account the

scattering is indicated in Fig. 6.9.

Now the reliability and robustness of the optimum must be guaranteed. We do it

by stepping away from the limits of the allowed parameter region, following the

expected scatter (Fig. 6.10). The quantification of this scatter must be provided by

real-world experiences of the manufacturing process and the material quality.

6.1.6 Conclusion

The question of robustness and reliability in optimization problems under uncer-

tainties must be studied with the aim of providing applicable strategies that may be

used in the design process. The proposed methods may help to understand of the

basic concepts.

Fig. 6.7 Definition of

constraints on force and

energy
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Fig. 6.9 Optimization on RS, which represents the mass in the acceptable parameter region

Fig. 6.10 Guess reliability and robustness by the use of the expected scatter of the input data
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As often only small numbers of test results or data of FE-Jobs are available, the

quality of the probabilistic interpretation should be considered with care. Approx-

imations using normal distributions include the danger of being non-conservative

and, in addition, may produce large scatter predictions, thus reducing the predicted

reliabilities.

Adapted approximations may reduce the scatter and yield more realistic pre-

dictions. If many restrictions must be considered, the search for regions with

feasible designs may become more tempting than the original optimization. In all

cases, the inherent uncertainties of such stochastic approaches need to be taken into

account, especially if the safety of human beings or large costs of failures are to be

considered. In every case, the rules of probability must not be disregarded to

guarantee a sufficient level of theoretical reliability.

6.2 Multi-Objective Optimization

Nico Esslinger

In the previous chapters, we discussed mono-objective optimization. The goal there

was to find the minimum or maximum of a defined scalar objective function. In

some cases, it may be difficult to define a problem with just one objective function.

Using just one objective function can also lead to a bias during the modeling phase.

To eliminate this limitation, the idea of Multi-Objective Optimization (MOO)

was developed. MOO handles problems with more than one objective function. For

example, we take the weight and the stress of a component as simultaneous goals in

the same optimization study.

6.2.1 Terms and Definitions

The introduction of multiple objective functions lead to the following mathematical

problem:

minimize=maximize zðpÞ
gðpÞ � 0

In this equation z(p) is a vector whose components contain the value of the different

objective functions, p are the free parameters and g(p) stands for the constraints.

We now have to define what we understand as the minimum of a vector. We avoid

this undefined situation if we look not at only one unique solution of the optimiza-

tion, but at a set of solutions Ωt. The interesting solutions of Ωt are often called

Pareto solutions. A Pareto optimum is a point in Ωt where it isn’t possible to
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improve one goal without decreasing another goal at the same time (Coello Coello

1999). The set of Pareto solutions after the Multi-Objective Optimization is called

the tradeoff surface. In Fig. 6.11, we see an abstract set of solutionsΩt plotted in the

(z1, z2)-plane. The subplots show the tradeoff surface for the different kinds of

optimization.

Tradeoff surfaces can assume many different shapes. The simplest one is the

convex surface shown in Fig. 6.11. But it is also possible that the Pareto-surface is

not convex (Fig. 6.12a) or consists of unconnected segments (Fig. 6.12b).

Example 6.2 As an example, we use a hollow beam under a given load F. The
optimization problem is shown in Fig. 6.13. As optimization parameters, we use the

height p1 and the width p2 of the rectangle inside of the hollow beam. The outside

dimensions h, w and l are constant during the optimization.

The goal is to minimize the mass m, as well as to minimize the maximum

displacement d of the hollow beam under the load F.

Fig. 6.11 Different types of Multi-Objective Optimization with two objective functions. (a)

Minimize z1, minimize z2. (b) Minimize z1, maximize z2. (c) Maximize z1, maximize z2. (d)
Maximize z1, minimize z2
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The mass is calculated by

z1 p1; p2ð Þ ¼ m p1; p2ð Þ ¼ w � h� p1 � p2ð Þ � l � ρ:

The maximum displacement d is calculated by

z2ðp1, p2Þ ¼ dðp1, p2Þ ¼
F � l3

3 � E � Iyð p1, p2Þ
,

with Iyð p1, p2Þ ¼
w � h3 � p2 � p13

12
:

Our design space is restricted by the upper and lower limit of the two input

parameters. The range is

10 � p1, p2 � 14:

The constant values for geometry and material are shown in Table 6.1.

Fig. 6.12 Possible shapes of the tradeoff surface when minimizing two objective functions. (a)

Non-convex tradeoff surface. (b) Tradeoff surface with unconnected segments

Fig. 6.13 The structure of the hollow-beam problem
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In Fig. 6.14 we see the set of possible results for the objective functions within

the parameter range. To generate this set, we randomly choose some values for the

parameters with p1, p2E[10, 14] and calculate the values of the objective functions.

The set of solution is plotted in the (z1, z2)-plane. In this example we can see that

there is not one singular solution with a minimum weight z1 and a minimum

displacement z2.

6.2.2 Strategies for MOO

In the previous example, we found the tradeoff surface by calculating many designs

and extracting the tradeoff surface from the results. This method is not very efficient

because we get many designs which we are not interested in. To calculate the Pareto

optimal points or the tradeoff surface directly, there are many different methods

Table 6.1 Input data used in

the hollow-beam problem
Constant Value

E 2.1� 105 N/mm2

ρ 7.85 g/cm3

w 15 mm

h 15 mm

l 100 mm

F 100 N
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Fig. 6.14 Tradeoff surface of the hollow-beam problem
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available. The following list shows the most used methods to calculate the tradeoff

surface.

– Compromise Method

– Weighted-Sum

– Distance-to-a-reference-objective Method

In this method we define a reference point with values for each objective

function. The new goal is to minimize the distance between the result of the

objective function and the selected reference point.

– Multiple Objective Genetic Algorithm (MOGA)

MOGA handles the multiple objective functions within the genetic algorithm. It

uses the values from each individual to calculate a corresponding efficiency. The

selection of the parents in the next iteration is in proportion to the efficiency.

There are many more methods to solve MOO problems. A good overview of

most of them can be found in (Collette and Siarry 2004). In the following sections

we will discuss the Compromise Method and the Weighted Sum in detail.

Compromise Method

The Compromise Method allows us to transform a Multi-Objective Optimization

problem into a mono-objective optimization problem with additional constraints.

Therefore, we choose one objective function as the remaining goal for the optimi-

zation. The k-1 additional objective functions are transformed into inequality

constraints. If we choose the first objective function z1 as the remaining goal, the

optimization problem is transformed as follows:

minimize z1ðpÞ
z2ðpÞ � ε2

⋮
zkðpÞ � εk
gðpÞ � 0

For an optimization task with initially two objectives, this new formulation leads to

an optimization problem visualized in Fig. 6.15. Here the second objective function

z2 is constrained by the value ε2. The goal is to minimize the objective function z1.
As result we obtain one Pareto point z1,min.

For the identification of other Pareto points and to obtain a tradeoff surface with

this method, we perform multiple optimization runs and vary the value ε2 of the

restricted objective function z2.

Example 6.3 To get an idea how the tradeoff surface is calculated in a real

problem, we use the hollow-beam problem introduced in Example 6.2. The objec-

tive function z1 is defined as the goal. The objective function z2 is transformed into a

constraint. As we expect displacement values d in the range of 0. . .0.6 mm within
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the defined parameter range, we choose five values 0.2, 0.3, 0.4, 0.5 and 0.6 for the

constraint value ε2. In Fig. 6.16, we see the Pareto optima for the five constraints.

We realize there is one severe disadvantage of this method. Due to the shape of the

tradeoff surface, there is no point calculated between the mass m¼ 40 and m¼ 80,

so we have no idea about the Pareto front in this region.

This might be resolved by switching the goal and restricting the objective z1 (the
mass of the hollow beam) with values ε1 in the range of m¼ 40. . .80.

Fig. 6.15 Behavior of the compromise method
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Fig. 6.16 Compromise method for the hollow-beam problem
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Weighted Sum

The Weighted Sum method is also a very common method to solve MOO problems

(Marler and Arora 2010). Just as the Compromise Method, we try to convert the

problem into a mono-objective optimization problem. Therefore, we build a

resulting objective zeq by a weighted sum of the different partial objectives and

by an appropriate set of weights wi.

zeq pð Þ ¼
Xk
i¼1

wi � zi pð Þ ð6:14Þ

By adjusting the weight for each objective function, it is possible to define the

importance of each value for the optimum. This new formulation leads to the

behavior shown in Fig. 6.17.

The line L1 represents the relation of the weighting factors. In Fig. 6.17a, we get

one unique solution, here with an equal weight for both objective functions. By

variation of the weights, we get different Pareto optimal points on the tradeoff surface.

In Fig. 6.17b, we can see that the basic Weighted-Sum method cannot cover

non-convex areas of the tradeoff surface. This is the biggest drawback of this method

so extended methods attempt to overcome this issue (Kim and de Weck 2006).

Example 6.4 As an example, again we use the hollow-beam problem (Example

6.2). The two objective functions z1( p1, p2), the mass, and z2( p1, p2), the displace-
ment, are transformed into the new goal function

zeq pð Þ ¼ w1 � d p1; p2ð Þ þ w2 � m p1; p2ð Þ:

The values of the displacement and the weight must be normalized, because they

don’t share the same units. We choose five combinations [0.3, 0.7], [0.4, 0.6],

Fig. 6.17 Behavior of the Weighted-Sum method. (a) Convex tradeoff surface. (b) Non-convex

tradeoff surface
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[0.5, 0.5], [0.6, 0.4] and [0.7, 0.3] for the weights [w1,w2]. In Fig. 6.18 we see the

resulting Pareto optima.

6.3 Optimization and Process Management of the Virtual

Development Process

Rolf Steinbuch

Among the most important but most troublesome tasks in CAE is the management

of large amounts of data. Increased Quality Assurance (QA) requires the documen-

tation of every step, every component and every detail of the virtual product

development and the real lifetime of a system. This affects the design process as

well. Because the optimization is included in the design, the optimization process

together with all its assumptions has to be documented as well. But it is impossible

to collect all the ideas designers had while working during the virtual development.

A collection of all misleading ideas would only add to the overflow of stored data,

which nobody is ever going to look at again.

But all this searching and trying and pursuing misleading directions creates a

rich experience-based knowledge that should be available to the next subsequent

projects. Design teams are supposed to produce a history of what to do, when and

why. We are not discussing if this needs to be integrated in the Product-Lifecycle-

Management (PLM) systems or not. But not building up a system of know-

ledge leads teams to repeated errors that could be easily avoided.
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Fig. 6.18 Weighted Sum method for the hollow beam problem
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An external summary of the main results to the PLM system should be done as

soon as there are results found that could be generalized. In Sect. 5.1, e.g., one of the

results was that, for the specific problem, Evolutionary Strategies were preferable to

Particle-Swarm Optimization. This could be kept in mind and be used as a rule for

this type of problem for the specific research group.

On the other hand, all the input necessary to do the robustness and reliability

studies will not work without a close interaction with the component’s total data.
Therefore we need to access the PLM to learn about scatter, defined and supposed

uncertainties, expected misuse and critical environmental conditions. So documen-

tation of both input and output of the optimization studies needs to become part of

the process management. Unfortunately, many designers and optimization analysts

are not very fond of documentation. So it remains an ongoing task to convince them

that they are not merely contributing to the documentation but that they are really

profiting from QA. It is worth it, and without it, there is no future for high level

development.
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