
Chapter 3

Problems and Limitations of Bionic

Optimization

Tatiana Popova, Iryna Kmitina, Rolf Steinbuch, and Simon Gekeler

We have seen that Bionic Optimization can be a powerful tool when applied to

problems with non-trivial landscapes of goals and restrictions. This, in turn, led us

to a discussion of useful methodologies for applying this optimization to real

problems. On the other hand, it must be stated that each optimization is a time

consuming process as soon as the problem expands beyond a small number of free

parameters related to simple parabolic responses. Bionic Optimization is not a

quick approach to solving complex questions within short times. In some cases it

has the potential to fail entirely, either by sticking to local maxima or by random

exploration of the parameter space without finding any promising solutions. The

following sections present some remarks on the efficiency and limitations users

must be aware of. They aim to increase the knowledge base of using and encoun-

tering Bionic Optimization. But they should not discourage potential users from this

promising field of powerful strategies to find good or even the best possible designs.

3.1 Efficiency of Bionic Optimization Procedures

Iryna Kmitina and Tatiana Popova

Bionic Optimization strategies have proven to be efficient in many applications,

especially where there are many local maxima to be expected in parameter spaces

of higher dimensions. In structural mechanics, the central question is whether one

particular procedure is to be preferred generally or if there are different problem

types where some procedures are more efficient than others. Evolutionary
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Optimization with some sub-strategies, Particle Swarm Optimization, Artificial

Neural Nets, along with hybrid approaches that couple the aforementioned methods

have been investigated to some extent. These approaches are not uniquely defined,

but rather imply many variants in the definition and selection of next-generation

members, varying settings of the underlying processes, and criteria for changing

strategies. Some simple test problems were used to quantify the performance of

these different approaches. The measure of the procedures performance was the

number of individuals which needed to be studied in order to come up with a

satisfactory solution. As our main concern is problems with many parameters to be

optimized, artificial neural nets do not show sufficient convergence velocities in our

class of optimization studies to be included. Evolutionary Optimization, including

its subclasses of Fern Optimization, and Particle Swarm Optimization prove to be

of comparable power when applied to the test problems. It is important to note that,

for all these approaches, some experience of the optimization parameters has to be

gathered. In consequence, the total number of runs or individuals necessary to do

the final optimization is essentially larger than the number of runs during this final

optimization. Good initial proposals prove to be the most important factor for all

optimization processes.

3.1.1 Comparing Bionic Optimization Strategies

As discussed in many sections of this book, Bionic Optimization may be defined by

many different approaches. In this section, we deal with some of the most com-

monly accepted classifications, without taking into account all the many

sub-classifications that might be found in the literature. The central approaches

we compare are:

– Evolutionary Strategy (EVO, Sect. 2.1) (Rechenberg 1994; Steinbuch 2010)—

where paired or crossed parents have children by the combination and mutation

of their properties. These children, or some of them, are parents in the next

generation.

– Fern Strategy (FS, Sect. 2.2)—which may be regarded as a simplification of

Evolutionary Optimization. Individuals have offspring by mutation only, not by

crossing properties with other members of the parent generation.

– Particle Swarm Optimization (PSO, Sect. 2.3) (Coelho and Mariani 2006;

Plevris and Papadrakakis 2011)—where a population drifts through the possible

solution space. The swarm’s coherence is given by simple rules about the

velocity of the individuals.

– Artificial Neural Nets (ANN, Sect. 2.4) (Berke et al. 1993; Lagaros and

Papadrakakis 2004; Widmann 2012)—where training of the net yields an under-

standing of the solution space and allows the prediction of the system’s response
to given input. As ANN are not very efficient when applied to problems with

many free parameters, we do not discuss them here (Widmann 2012).
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3.1.2 Measuring the Efficiency of Procedures

To quantify the efficiency of the different optimization strategies, we must intro-

duce a measure that allows us to uniquely define the amount of work required to

achieve a predefined quality. From previous experience, we propose using the

number of individuals to be analyzed before coming close to an accepted good

value. This requires knowledge of what a good solution would be, which is

generally not known when we start studying new problems.

To consider the violation of boundary conditions (cf. Sect. 2.9) we restrict our

present study to the use of penalty functions. The geometric input is set to the

minimum or maximum value, if the randomly produced data exceed the respective

limits. For PSO, we invert the particle’s previous velocity, if it violates given limits

in addition to the penalty value. This combined approach has the advantage of

simple applicability.

3.1.3 Comparing the Efficiency of Bionic Optimization
Strategies

Optimization is an expensive and time consuming process. We need to understand

which procedure and which combinations of parameters may lead to a good and

acceptable result within a reasonable amount of time.

Test Examples

Figure 3.1 depicts the five test examples used while Table 3.1 summarizes their

data. We want to minimize the mass of the frames by varying the rods’ cross

sections without exceeding their maximum stresses and displacements. The grid

size of the examples is 1000 mm, except for example F2 where the grid size is

360 in. Example F2 used imperial units (in., kip) the other frames use mm and

Newton.

To come up with comparable results, we performed a series of 20 loops for each

problem and each strategy to avoid having only one or few very good or very bad

results. Also, the optimization settings we used were based on previous experience

with the underlying problems, so the number of runs presented does not come from

naı̈vely starting a procedure, but includes some preliminary work which is impos-

sible to quantify.
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Input and Results of the Test Examples

Tables 3.2, 3.3 and 3.4 list the inputs of the test runs used. Table 3.5 and Fig. 3.2

(individuals per loop) summarize the results of the test runs. The most important

data are the number of individuals analyzed to find a sufficient good design labelled

as ‘Individuals [1000]’. The number given multiplied by 1000 gives the total

number of individuals required to find the proposed design. mean and stddev
(standard deviation) and best are descriptions of the results of the 20 runs. The

ratio of the difference between the best and the average result divided by the

standard-deviation (reldev) gives an idea of the stability of the strategy.

Fig. 3.1 Test frames with loads and supports. (a) F1: 6 rods frame. (b) F2: 10 rods frame. (c) F3:

13 rods frame. (d) F4: 58 rods frame. (e) F5: 193 rods frame

Table 3.1 Data of test problems

Frame Free param. Grid size Amax/Amin E-Mod σmax dmax

F1 6 1000 mm 600/20 mm2 200 GPa 120 MPa 0.5 mm

F2 10 360 in. 35/0.1 in.2 10 Msi 25 ksi 2.0 in.

F3 13 1000 mm 400/20 mm2 200 GPa 50 MPa 0.5 mm

F4 58 1000 mm 400/20 mm2 200 GPa 100 MPa 2.0 mm

F5 193 1000 mm 600/20 mm2 200 GPa 450 MPa 20 mm

Parameters: # of rods in frame; grid size: horizontal or vertical distance between the nodes; Amax,

Amin: maximum and minimum allowed cross section area of the rods; E-Mod: Young’s modulus;

σmax: maximum allowed stress in rod; dmax: maximum allowed displacement of nodes
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Interpretation of the Results

EVO, FS and PSO prove to be of a comparable efficiency when applied to the four

smaller problems (F1, F2, F3, F4). Figure 3.2 indicates that there might be a nearly

linear relation between the number of optimization variables and the individuals

required to find good proposals. For the largest problem, F5, FS displays a perfor-

mance that is essentially weaker than EVO and PSO. EVO and PSO seem to be of

comparable power when applied to the problem class which we discuss here. FS

shows promising results if the number of free parameters is not too large, but is less

successful in random search in high dimensional spaces. The scatter indicator

reldev proposes that PSO has a more stable tendency to find solutions near the

best, while EVO and FS show a larger range after the 20 runs.

Some knowledge may be gleaned from the results of these series of studies.

Foremost, that optimization, especially Bionic Optimization, is a process that

consumes large amounts of time and computing power. Furthermore the results

Table 3.2 Optimization settings used for EVO

Model Parents Kids Mut. rad. max Mut. rad. min Generations

F1 10 20 0.5 0.05 60

F2 5 10 0.5 0.05 40

F3 5 10 0.5 0.05 50

F4 50 100 0.5 0.05 100

F5 100 200 0.5 0.05 200

Table 3.3 Optimization settings used for FS

Model Parents Kids/parent Mut. rad. max Mut. rad. min Generations

F1 10 5 0.5 0.05 100

F2 10 4 0.5 0.05 50

F3 20 5 0.5 0.05 100

F4 100 5 0.5 0.05 200

F5 200 5 0.5 0.05 200

Mutation radius reduced for EVO and FS: 0–25 % of generations: rmut¼ 0.50, 25–50 % of

generations: rmut¼ 0.20, 50–75 % of generations: rmut¼ 0.10, 75–100 % of generations:

rmut¼ 0.05

Table 3.4 Optimization

settings used for PSO
Model Particles Generations

F1 10 100

F2 10 50

F3 20 100

F4 100 200

F5 200 200

Weighting factors: c1¼ 0.08, c2¼ 0.005, c3¼ 2.0
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presented in this section would not have been found without a large number of

preliminary studies providing experience in the field of frame optimization.

The input characteristics used in the test runs is derived from these preliminary

studies. For example the selection of the three weighting factors {c1, c2, c3} for the
PSO required 100,000 runs. The proposal of the reduction of the mutation range for

EVO and FS is the result of many studies as well. The proposal to use a number of

initial parents or individuals in the size of the number of free variables for EVO and

PSO is based on many studies, as well as the idea to use a large number of initial

parents and a small number of children in FS.

Table 3.5 Results of 20 optimization runs per problem

Strategy Model Mean Stddev Best Reldev Individuals [1000]

EVO F1 1.62e6 0.716e3 1.62e6 1.50 12

F2 6.33e4 4.50e3 5.47e4 1.90 8

F3 2.56e6 6.99e4 2.48e6 1.11 20

F4 1.03e7 4.18e5 8.65e6 3.92 200

F5 1.98e7 1.07e6 1.58e7 3.65 800

FS F1 1.66e6 4.49e4 1.62e6 0.81 28

F2 6.39e4 4.43e3 5.45e4 2.09 25

F3 2.50e6 2.29e4 2.47e6 1.19 46

F4 9.91e6 2.77e5 9.39e6 1.86 189

F5 2.33e7 4.18e5 2.25e7 2.15 2570

PSO F1 1.65e6 1.71e4 1.62e6 1.61 6

F2 5.87e4 5.61e3 5.15e4 1.27 8

F3 2.50e6 2.53e4 2.48e6 1.02 32

F4 8.90e6 1.68e5 8.68e6 1.22 200

F5 1.54e7 0.18e4 1.53e7 1.70 1120

Fig. 3.2 Efficiency of the

three Bionic Optimization

strategies tested
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One central fact about all optimization may be learned from Fig. 3.3. If there is a

good initial design, the number of optimization runs to be done may decrease

significantly. If an experienced engineer proposes an initial design with a goal of

e.g. 2.7� 106, we need only 20 generations or 50 % of the workload required to

solve the task with a random initial design.

Further Test Examples

In addition to the trusses (Fig. 3.1) representing static structural optimization

problems, there are many other test examples available (Surjanovic and Bingham

2015). Most of them are defined by mathematic functions and because of their

characteristics and the known data of global and local optima, they are most

suitable for algorithm testing. A selection of such benchmark problems is

listed in Table 3.6. Some of them can be expanded to an arbitrary number of

dimensions d. Especially in field of optimization they are useful in algorithm

development or to improve existing procedures. Furthermore, with awareness of

these problems, users can gain experience in optimization strategies, check their

efficiency and learn how to choose proper optimization settings.

3.1.4 Conclusions

The quality of the initial proposals is the most important component of any

optimization. If experienced and motivated engineers propose designs that are

close to the optimal ones, there is a good chance that at least a local optimum
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Table 3.6 Common test functions used for testing optimization algorithms

Eggholder function

f p1; p2ð Þ ¼ � p2 þ 47ð Þsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ p1

2
þ 47

�� ��q� �
� p1sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 � p2 þ 47ð Þj jp� �
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Free parameters:
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Search domain:
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Global optimum (min):

f (512, 404.2319)¼�959.6407

Schwefel function

f pð Þ ¼ 418:9829 � d �
Xd
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pi � sin
ffiffiffiffiffiffiffi
pij jp� �
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Free parameters:

i ¼ 1, . . ., d

Search domain:
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Global optimum (min):

f ( pi ¼ 420.9687)¼ 0

Ackley function

f pð Þ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Xd
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p2i
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i ¼ 1, . . ., d
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Global optimum (min):

f ( pi ¼ 0)¼ 0

(continued)
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will be found which is not too far away from the best solution possible. If we are

close to good proposals, gradient methods will improve the free parameters in a

short time and with reasonable effort.

As soon as we doubt that our initial designs are close to the optimal ones, EVO or

PSO have the capacity to propose better designs. Nevertheless, the number of

function evaluations may be large. Which of the two is preferred for a particular

problem must be decided with some preliminary test. Often, the particle swarm

shows a faster tendency towards the assumed best values, but some examples

indicate that the swarm might have the tendency to stick to local maxima, just as

do gradient methods.

Switching to Gradient Optimization if approaching a maximum closely is

always an interesting option. But experience of the problem and methodology is

required there as well.

In every case, the optimization of large problems consumes time and resources.

There is no way to avoid the evaluation of many individual solutions and there is no

guarantee that the absolute best solution will be found at all.

3.2 The Curse of Dimensions

Rolf Steinbuch

One of the most problematic properties of optimization tasks with higher numbers

of free parameters is “the curse of dimensions”. It appears to be one of the most

governing drawbacks and sets the strongest limits on any attempt to accelerate the

progress of all optimization strategies when dealing with higher numbers of free

Table 3.6 (continued)

Goldstein-Price function

f p1; p2ð Þ ¼ 1þ p1 þ p2 þ 1ð Þ2 19� 14p1 þ 3p21 � 14 p2 þ 6p1 p2 þ 3p22
� �h i

* 30þ 2p1 � 3p2ð Þ2 18� 31 p1 þ 12 p21 þ 48 p2 � 36 p1 p2 þ 27p22
� �h i
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piE [�2, 2]

Global optimum (min):

f (0, �1)¼ 3
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parameters. We may compare it to the search for a needle in a haystack. If the needle

has a length of ln¼ 6 cm and the haystack is one-dimensional with a length on

lh¼ 1 m¼ 100 cm, it is relatively easy to find the needle. We subdivide the length lh
in intervals l1i¼ 5 cm< lh. Now we check at each end of the intervals if there is a

needle traversing the interval border. After 19 checks at maximum, we found the

needle. For a 2D haystack covering a square of 1 m2 the procedure becomes more

expensive. We need a mesh of width l2i¼ 4 cm< 6/
ffiffiffi
2

p
cm to cover the area of the

haystack and have now to check 625 mesh edges. Correspondingly, we need a 3D

mesh with a side length of l3i¼ 3.333 cm< 6/
ffiffiffi
3

p
cm to cover the 3D haystack and

need to check 36,000 faces of the cubes defining the mesh. We may continue to

higher dimensions even if we fail to imagine higher dimensional haystacks. Evi-

dently, the higher the dimension is, then the larger the effort to find the needle.

Example 3.1 If we return to optimization, we may assume a local optimum in 1D

given by one function such as

goalðp1Þ ¼
1

2
ð1þ cos ðπ*p1ÞÞ

visualized in Fig. 3.4a. In the interval�1< p1< 1 the 2D area below the function is

V1 ¼ 1 ¼ 0, 5 � V0,1, ð3:1Þ

where V0,1 ¼ 2 the area of the surrounding rectangle. If we step to a 2D problem,

the corresponding function becomes

goal p1; p2ð Þ ¼ 1

4
1þ cos π*p1ð Þð Þ 1þ cos π* p2ð Þð Þ ð3:2Þ

(Fig. 3.4b) and the volume below the hill is

V2 ¼ 1 ¼ 0, 25 � V0,2, ð3:3Þ

where V0,2¼ 4 the volume of the surrounding cube.
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We realize that the higher the number of dimensions n, the smaller the ratio

Vn

V0,n
¼ 1

2

� 	n

: ð3:4Þ

The probability to find the hill gets smaller and smaller as the number of dimen-

sions increases. The hills of local optima degenerate to needles, as Fig. 3.5 tries to

demonstrate. Even worse is the fact that the gradient of the goal on the plane

between the needles is close to zero; there is no strong force driving the optimiza-

tion process in the direction of the needles. So we are bound to do many studies and

repeat many searches to come close to promising designs. This problem is often

called the curse of dimensions. It limits the maximum achievable velocity to first

find a promising region and then converge to a solution. The only work-around is a

reduction of the problem’s dimension, which reduces the power of the optimization

range or the reduction of the search space, which may exclude interesting regions.

Therefore we have to live with the curse of dimensions if we are dealing with the

optimization of problems with many free parameters.

3.3 Acceleration of Bionic Optimization Processes

Tatiana Popova

Optimization today is a very promising area and is used as a standard method to

decrease production costs or the weight of a part or assembly. From the point of

mechanical calculation, optimization methods enable designers to choose the best

variant of a design with the best allocation of resources, reduction of the cost of

materials, energy, and etc. All parts of the optimization procedure are important,

from identification of variables and initial algorithm parameters to identification of

Fig. 3.5 Local optima as steep needles in higher dimensional spaces
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the correct fitness function. Optimization as a subject receives serious attention

from engineers, scientists, managers and anyone else involved with manufacturing,

design, or business. This focus on optimization is driven by competition in quality

assurance, cost of production and, finally, in success or failure of businesses.

Throughout the past century, optimization has developed into a mature field that

includes many specialized branches, such as linear conic optimization, convex

optimization, global optimization, discrete optimization, etc. Each of these methods

has a sound theoretical foundation and is supported by an extensive collection of

sophisticated algorithms and software. With rapidly advancing computer technol-

ogy, computers are becoming more powerful, and correspondingly, the size and the

complexity of the problems being solved using optimization techniques are also

increasing.

The requirements for optimization is the possibility of achieving good results

within a short processing time. Gradient methods can be sufficient, but the increase

of complexity of optimized components often leads gradient methods to wrong

proposals at local optima. Gradient methods are sufficient when the task is to find a

local optimum. Gradient methods are not applicable for global optima search. The

methods stop at one hill of the goal function without investigating the others, which

could possibly contain better results. This situation necessitates the investigation

and research into new optimization methods that could deal with complicated

optimization problems.

Traditional optimization algorithms often depend on the quality of the objective

function, but many objective functions are usually highly non-linear, steep, multi-

peak, non-differential or even discontinuous, and have many continuous or discrete

parameters. Almost all problems need vast amounts of computation. Traditional

optimization techniques are incapable of solving these problems. Bionic engineer-

ing copies living systems with the intention of applying their principles to the

design of engineering systems. In recent years, bionic engineering has been actively

developed globally. Much bionic scientific research has been conducted, and new

products have been designed and developed. Biomimetic structural optimization

methods, for example, aim at the improvement of design and evaluation of load-

bearing structures.

The quality of algorithms depends not only on the problem’s complexity, but

also on the individual adjustment of the parameters of the corresponding optimi-

zation methods. Incorrect choices for algorithm parameters could lead to a decrease

in search time or even to false results. This shows the importance of collecting the

results of an algorithm’s parameters variation to understand their influence. The

investigation’s goal is to find sets of parameters that could provide stable results for

the wide problem range.

The efficiency of the algorithms should be proven. Optimization testing func-

tions are used to estimate the quality of algorithms. These functions (e.g. in

Table 3.6) were chosen because they represent the common difficulties seen in

isolated optimization problems. By comparing and contrasting these functions, a

user can make judgments about the strengths and weaknesses of particular

algorithms.
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Essential for optimization problems is the identification of the point when

convergence is reached, so as not to lose time on future unnecessary investigations.

This is especially valuable for optimizations with a high number of variables and

relatively long fitness function evaluation time.

To find an acceptable optimization calculation time, accelerating strategies must

be found. Some are based on the fact that not all parameters have the same impact

on the object. Decreasing the number of parameters handled may help to reach

areas with good objective values. Other strategies use statistical predictions to

estimate the best values of the objective function in early stages. From those

estimations, a decision on whether the reached objective value is promising could

be derived. Unfortunately these predictions, again, need many runs to yield reliable

data. Nevertheless, accelerated optimization may be a tool to find reliable results at

acceptable time and cost.

3.3.1 Selecting Efficient Optimization Settings

Tatiana Popova

We have been discussing different ways to perform Bionic Optimizations. How-

ever, we are missing some guidelines for running a real task, i.e. how many parents,

kids, individuals to use, how to define crossing and mutation, which weighting

factors will perform well, and which will be less effective.

As there are unlimited possible problems and different strategies tend to perform

differently in different applications, general rules are hard to propose. Nevertheless,

here we try to give some hints for starting a process. Motivated users will soon learn

how to accelerate their studies. They will optimize the optimization process, also

known as meta-optimization. We discuss specific strategies for each of the three

most important Bionic Optimization methods respectively.

Evolutionary Optimization

The optimization data we may access are:

– Number of parents

– Number of kids

– Survival of parents

– Way of crossing

– Mutation radius

– Number of generations

As a general rule, we realize, the larger the number of individuals, the greater the

probability to find promising results. But the time required for analysis limits these

numbers, so we need some starting data. From our previous experiences, we
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propose to use a number of parents in the range of 0.5–2 times the number of free

parameters. The higher the number of parents, the better the performance will

be. From Fig. 3.6 we learn that the number of kids should be about double the

number of parents, while less is not efficient, higher values seem also not to be as

efficient because the computational effort increases with the rising number of

individuals, without achieving much better results. In this study we used the 10

rods frame problem (Fig. 3.1b) and did multiple optimization runs with different

number of kids, related to the number of parents, and fixed values for the other

optimization settings (nparents¼ 15, ngen¼ 40, mutrad¼ 25 %, parents survive).

For each variation, we repeated in a loop of 50 runs.

Survival of parents is generally recommended, as it removes the danger of

deleting some good proposed designs. It might be a good idea to limit the number

of generations an individual may survive, e.g., to a maximum of five generations,

but this does not increase the performance of the process in a very powerful way.

Crossing might be accomplished by using the ideas outlined in Sect. 2.1. From

our experience, averaging parents’ properties is quite a good idea.

Mutation might be done to each parameter individually. Using large mutation

radii leads to a pure random search, where the properties of the parents no longer

influence those of the kids. Too small mutation radii correspond to a local search

around the parents’ values. If a local search is intended, it is better to use a gradient
method. We generally recommend starting with a mutation radius in the range of

15–25 % of a parameter’s range. After a certain number of generations, these

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5,0

5,5

6,0

6,5
fit

ne
ss

k (with nkids = k*nparents)

mean
single optimization run

x 104

Fig. 3.6 Minimization of goal with multiple of number of kids related to # of parents. Taking # of

kids¼ 2� # of parents seems a good guess
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mutation radii might be reduced to values of 5–10 %. A switch to a gradient method

could be a good idea as well.

The number of generations should not be less than the number of free parame-

ters. To avoid unnecessary repetitions, it is recommended to monitor the process

and to kill it if no further progress is observed. We realize that the method does not

often show any further improvement, so it is appropriate to stop the run. If restarting

the process at any generation is possible, it might save time and computing power.

Fern Optimization

Fern Optimization is, from our experience, recommended for problems with small

numbers of free parameters. Figure 3.2 using the models of frames introduced in

Sect. 3.1 indicates that, for more than 50 parameters, PSO and EVO are essentially

more efficient. Using Fern Optimization, we are concerned with:

– Numbers of parents

– Numbers of kids per parent

– Mutation radius

– Number of generations

– Killing underperforming families (cf. Fig. 2.6)

Again, the number of parents should not be essentially smaller than the number

of free parameters, as this number supports the coverage of the parameter space.

The number of kids should be about 3–5 per parent; more is better, but increases

computing time. These kids are generated by the mutation of one parent’s proper-
ties. To reiterate, a not too large mutation radius of 15–25 % is recommended at the

onset of the study. Keep in mind: as soon as good designs have been approached,

the mutation radius can be decreased or the optimization could switch to a gradient

method.

Additionally, it is important that a sufficient number of generations should be

calculated. The process can be terminated if it approaches saturated levels, which

can be monitored.

The decision to remove a family, the offspring of one initial parent from the

process, is possible, but should not start too early as indicated by Fig. 2.6.

Particle Swarm Optimization

PSO generally tends to give very promising results as long as some basic criteria are

met. The definition of the optimization parameters covers:

– Number of individuals

– Number of time steps

– Initial velocities

– Weighting of contributions to velocity update
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The number of individuals seems to be the most important input for PSO. At

least, the number of free parameters should be covered. Again, the larger the

number, the better the results, but the larger the computational effort as well. On

the other hand, we often observe the particle swarm sticking to local optima. This

might be dependent on the number of individuals, so again, larger numbers are to be

preferred. The number of time steps must not be too large, as often 10–20 gener-

ations yield interesting designs, and a restart option allows continuing processes

that have not yet converged. The initial velocities should be in the range of 10–25 %
of the parameter range for each of the optimization parameters.

Many discussions deal with the definition of the weighting factors in the

equation (cf. Eq. (2.1) and the associated declaration)

v jðtþ 1Þ ¼ c1v jðtÞ þ c2r1∘ðpPb, j � p jðtÞÞ þ c3r2∘ðpGb � p jðtÞÞ:

Generally, a large value of c1 (inertia) yields a broad search of the parameter space,

but suppresses convergence to the best values. Large values of c3 (social) accelerate
the convergence, but might stick to early found local optima. The weighting of c2
(cognitive) has a smaller effect on the performance. As a coarse rule we often use

– 0.4 < c1 < 1

– 0 < c2 < 0.5

– 0.5 < c3 < 2.

These proposals might help to get started more effectively using Bionic Opti-

mization methods, but are not guaranteed to be the best ones for every problem.

3.3.2 Parallelization and Hardware Acceleration

Simon Gekeler

Using Bionic Optimization procedures requires computing and evaluating many

different design variants. It is a time consuming process, but offers the chance to

find the global optimum or at least a good solution, even in a large and complex

design space with many local optima. If a single design evaluation, e.g., a

non-linear FEM simulation, takes an excessive amount of computation time, it is

no longer efficient to integrate a population-based optimization method, like PSO or

EVO, into the usual design development process. The number of evaluated variants

is limited by schedules and processing capabilities. We need strategies for applying

these methods in an acceptable period of time.

To reduce process times, first check the model being optimized and its compu-

tation time, before trying to accelerate the optimization algorithm itself. In FEM

simulations, for example, we should verify if the model is adequately simplified to

be calculated quickly with sufficient result accuracy. Additionally, it is worthwhile
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to allot some time for an accurate parameterization of the design. Especially in case

of geometry parameters, good parameterization is important for the prevention of

inconsistent situations during automated variance of the parameters in the optimi-

zation process, which leads to aborted processes and needless waste of

development time.

To perform a quick and efficient optimization run, which means to achieve

satisfying results with fewer design computations, choosing the right strategy is

critical, including the choice of optimization method and algorithm settings (see

Sect. 3.1.1) for the specific type of problem. To reach that goal, there are different

ways to proceed, e.g., run the optimization in several stages, maybe using different

methods, limited parameter ranges, or just using the most significant parameters for

an exploration phase first, and following with an detailed phase in a localized area

but increased parameter space. Furthermore, hybrid optimization methods, such as

PSO with an automated switch to the Gradient method in the final stage (Plevris and

Papadrakakis 2011) or meta models (cf. Sect. 2.7), can greatly reduce optimization

time. Preliminary investigations, such as sensitivity analysis, can help to reduce

computation effort with more information about the problem, choosing the impor-

tant parameters and neglecting the insignificant ones. For highly complex problems,

where the computation time is expected to be large to find the global optimum, the

most efficient method could be finding an already acceptable local optimum by

using the relatively fast gradient method with a good starting position.

If the optimization job is well prepared and ready for efficient execution, we can

possibly gain an additional and drastic reduction of processing time by accelerating

the computation time with using faster computer hardware or with using further

computer resources.

Parallel Jobs for Speeding Up Optimization Processes

In Bionic Optimization procedures, such as EVO or PSO, in one generation or

iteration we compute many different design variants, before the design’s results are
evaluated and the next loop starts with the computation of newly generated designs

Thus, in this section of the optimization algorithm, each job can be processed

independently of each other. This allows for the possibility of running the jobs in

parallel, enabling an enormous acceleration of these optimization procedures. The

ability of optimization algorithms for parallelization depends on the ratio of the

sequential workflow and tasks which can be done in parallel. For example, with

EVO we can increase the number of parallel tasks by increasing the number of kids

to be calculated in one generation. However, we rely on adequate optimization

settings to improve calculation times.

When processing Bionic Optimization tasks in parallel, we are referring to

parallel computation of design variants on different workstations connected by a

Local Area Network (LAN). An architecture for the distribution of jobs to be run in

parallel is depicted in Fig. 3.7. The optimization algorithm is running on one

workstation (master), which distributes the tasks to be run in parallel to different
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workstations (nodes) in the cluster. Afterward, the results of computed jobs are

collected by the master computer and inserted into the optimization algorithm for

further processing and generating new designs for the next optimization loop. In

this example the exchange of input and output data is similar to outer loop

optimization (cf. Sect. 4.1.2) by generating and reading files, which are stored on

a network drive, accessible to all computers.

For the management of this distributed computing, appropriate software or

generated code is required, which must fulfill the following functions:

– Write/modify input-files for the particular type of solver on node computers

– Identify status of nodes in cluster: busy, standby, results available, etc.

– Distribute and launch individual jobs in the cluster

– If necessary, copy and offer additional files required for solving jobs on nodes

– Collect available results and prepare for further processing in optimization

algorithm

– Perform error management: error in result, no response of node (time out),

handle loss of node in cluster, etc.

It should be clear that, with this organization (distributing jobs, writing/reading

of data for the exchange, and waiting time) in addition to the optimization algorithm

runtime and the computation of the designs, parallelization includes an extra effort.

Compared to the time saved overall, this time cost, the so-called overhead, should

be small. It is obvious that parallelization is more efficient as the computation time

for one individual design increases. On the other hand, if individual designs can be

computed quickly, it is possible that the overhead causes even slower process times

when using parallelization than in a common sequential procedure on only one

workstation. In Fig. 3.8 we can see the speed-up for problems with different

computation times when using parallelization. For each problem (small, medium,

Fig. 3.7 Parallelization of optimization processes in a computer cluster
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large), we compute 50 variants with a various number of nodes. Furthermore, the

theoretical maximum achievable speed-up is indicated, without the time cost for the

distribution of jobs.

Efficient computer clusters have all nodes at full capacity and without unneces-

sary waiting times. For example, if there are 10 parallel tasks to be processed, it

would be absurd to use nine nodes in the cluster with eight of them waiting 50 % of

the time. With 5 nodes we can reach the same decrease of process time, but using

10 nodes would be ideal. We need to coordinate the number of nodes with the

number of jobs we can compute in parallel. Furthermore, the performance of all

nodes in the cluster should be comparable to prevent bottlenecks due to diverse

computation times of design evaluation.

The relative speed-up Sp of parallel jobs can be calculated by

S p ¼ T1

T p
;

where T1 is the time needed for the sequential process on one computer and Tp is the
time when using p computers in a cluster to parallelize jobs.

Howmany nodes we use in a cluster depends on not only the number of available

nodes, but also on the specific optimization task. When using commercial solvers,

the number of available software licenses can also limit the number of nodes.

Currently, most FEM software providers offer particular license packages for

parallel computing.

Benefit of Hardware Raising

Another way to reduce computation time and accelerate the optimization process is

the use of well-equipped workstations with appropriate hardware. Here we focus

especially on the performance of the Central Processing Unit (CPU), the Random-

Fig. 3.8 Parallelization speed-up for problems with different computation time
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Access Memory (RAM), the hard disk, and (growing more and more important and

very promising) the Graphics Processing Unit (GPU), which can be used in addition

for computation, often in FEM and CFD (Ohlhorst 2012).

For quick computation, the most important component of a workstation is a

powerful CPU, as it is responsible for the computer’s overall performance. After

architecture, the clock rate, which defines the speed of data processing, of the CPU

is the most important. Further increases to the performance of a single CPU are

limited by economic and mechanical concerns. Currently, the use of multi-core

processors with several processing units is standard. Current FEM software is able

to use multiple cores in parallel.

Also important, is sufficient RAM. The more RAM the better, as long as the

FEM simulation consumes the presented memory and the operating system allo-

cates properly. There are different types of RAM with different RAM speeds. If the

system, especially the motherboard, can be upgraded to faster RAM, this will

enhance performance, too.

The massive amount of data in an FEM simulation must be handled by large hard

drives. To prevent a bottleneck when using high performance CPUs, it is important

that the storage component offers sufficient read and write capability. Today Solid-

State-Drives (SSD) provide excellent properties for fast processes.

The newest, very efficient strategy for hardware acceleration is the inclusion of

high performance GPUs in general-purpose computing. CPUs are developed for

universal use and sequential processing. In contrast, the architecture of GPUs is

designed for massive parallel processing. In FEM, we can release the equation

solving part, which takes about 70 % of the total evaluation time, to the highly

efficient GPUs (Güttler 2014). To take advantage of increased process speed by

using GPUs, there are special license packages offered by commercial software

suppliers.

In general, it is important when buying or upgrading a workstation to verify all

components of the system to avoid bottlenecks. All parts must interact well to

guarantee a high efficiency and enable fast computation processes.

Conclusions

With the emergence of commercial software for optimization, sensitivity studies, or

the evaluation of robustness and reliability, the information of many design variants

can be considered and handled. Often computation time limits such detailed

investigations, especially when we have complex multi-physics simulations. Cur-

rently, parallelization and hardware acceleration with GPUs is a common tool to

accelerate such time consuming studies.

But when applying the optimization methods mentioned in this book, the correct

strategy, previous experience in optimization, and good preparation are also impor-

tant for a quick route to the optimal design. Optimization is not simply pressing the

start button and waiting for a result. We need to study and understand the problem,

find additional information about its parameters and reuse this for the next
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optimization steps. Well thought-out action is more significant than computing a lot

of different variants. Time saving also entails preventing failures or wrong defini-

tions that lead to meaningless results in optimization. However, if an optimization

run is canceled, it is beneficial to have access to the results obtained in the partial

run to identify and resolve conflicts for further studies.
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