
Bionic
Optimization in
Structural Design

Rolf Steinbuch
Simon Gekeler Editors

Stochastically Based Methods to Improve
the Performance of Parts and Assemblies

Bionic Optimization in Structural Design

ThiS is a FM Blank Page

Rolf Steinbuch • Simon Gekeler

Editors

Bionic Optimization
in Structural Design

Stochastically Based Methods to Improve
the Performance of Parts and Assemblies

Editors
Rolf Steinbuch
Reutlingen University
Reutlingen
Germany

Simon Gekeler
Reutlingen University
Reutlingen
Germany

ISBN 978-3-662-46595-0 ISBN 978-3-662-46596-7 (eBook)
DOI 10.1007/978-3-662-46596-7

Library of Congress Control Number: 2015955744

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

Bionics has become more and more popular during the last few decades. Many

engineering problems are now solved by copying solutions found in nature. Espe-

cially the broad field of optimization has been inspired by the variety of methods to

accomplish tasks that can be observed in nature. Popularly known examples include

the strategies that ant colonies use to reduce their transport distances to feed their

always hungry population, the dynamics of swarms of birds or fishes, and even

replication of the brain’s learning and adapting to different challenges.

Over more than a decade, we have been studying Bionic Optimization at the

Reutlingen Research Institute (RRI). After early attempts to design optimization

solutions using parameterized CAD-systems and evolutionary strategies, our field

of interest became broader. Our work taught us how the different bionic optimiza-

tion strategies might be applied, which strong points and which weaknesses they

exhibited, and where they might be powerful and where inappropriate.

During a series of joint research projects with different partners and supported by

the German government and other sponsors, we studied many aspects of these

techniques. Additionally, the interest of the scientific community in Bionic Opti-

mization is increasing along with the fuller understanding of how engineering can

be influenced by non-deterministic phenomena. In this book we intend to give an

introduction to the use of Bionic Optimization in structural design. Readers should

be enabled to begin applying these nature inspired procedures. Furthermore, hints

about the implementation, useful parameter combinations, and criteria to accelerate

the processes are included.

To formulate most bionic optimization processes, scientists have attempted to

base the strategies on a strong and reproducible theoretical foundation. On the other

hand, most of these methods are so easy to understand that we realize they are

working even if we decline to base them on a strict mathematical background. In

this book we decided to explain the basic principles, show examples that are easy to

understand, and list easily reproducible pseudocode to help new users to start

working immediately. Comments on meaningful parameter combinations and

warnings on problems and critical configurations may motivate readers to verify

whether our proposals are justified, or if they can be expanded to broader regimes.

v

The work presented in this book mostly is a re-composition of different papers,

theses, work reports, and presentations written throughout the last decade. The

authors are former or current students at Reutlingen University, colleagues at the

RRI, people who like working in Bionics, and young engineers who had, and have,

plenty of ideas and are not too easily frustrated by flops. We have been following

many tangents, have done thousands of studies, and have found solutions to many

questions, but sometimes have failed to find the answers to others.

We begin with basic definitions and motivations, giving simple examples, and

explaining how to set up an optimization environment. Some more elaborate

applications then exhibit the power of these methods. Finally, a discussion about

the future developments indicates how we expect optimization to be used in the

future.

All this work would not have been possible without the support of many

different sponsors. Besides the financial support of the German government in

some research projects, many software companies and manufacturing enterprises

gave us the opportunity to scan the wide range of bionic optimization in industry.

We recognize their help, the fruitful discussions, and the generous handling of the

licensing of the software packages. Additionally, we would like to express our

gratitude to the heads of Reutlingen University, the RRI, and the faculty of

engineering all of whom gave us access to space, time, and nearly endless comput-

ing power. We want to express our gratitude to Springer, especially Mrs. Eva

Hestermann-Beyerle and her staff, who have helped so much to transform the

collection of many different papers in different formats into one readable book.

Reutlingen, Germany Simon Gekeler

April 2015 Rolf Steinbuch

vi Preface

Contents

1 Motivation . 1

Rolf Steinbuch

1.1 A Short Historical Look at Optimization 1

1.1.1 Optimization in Engineering History 2

1.1.2 Finding Relevant Numbers in Engineering 2

1.1.3 High Level Mechanical Methods 3

1.1.4 Drop of Hardware Costs and Better CAD Systems 3

1.2 Optimization and Simulation as Part of the Virtual Product

Development . 5

1.3 Optimization in Nature . 6

1.4 Terms and Definitions in Optimization . 7

1.5 Why Bionic Optimization? . 9

References . 10

2 Bionic Optimization Strategies . 11

Rolf Steinbuch, Julian Pandtle, Simon Gekeler, Tatiana Popova,

Frank Schweickert, Christoph Widmann, and Stephan Brieger

2.1 Evolutionary Optimization . 12

2.1.1 Terms and Definitions . 12

2.1.2 Description of the Evolutionary Strategy 14

2.1.3 Evolutionary vs. Genetic Strategy 16

2.1.4 Discussion . 18

2.2 Fern Optimization . 19

2.2.1 Description of the Approach . 19

2.2.2 Discussion . 20

2.3 Particle Swarm Optimization . 21

2.3.1 Terms and Definitions . 21

2.3.2 Description of the Particle Swarm Optimization 22

2.3.3 Dynamic Particle Inertia . 25

vii

2.3.4 Limitation of the Particles’ Velocity 27

2.3.5 Discussion . 27

2.4 Artificial Neural Net Optimization . 28

2.4.1 ANN Architecture . 29

2.4.2 Training ANNs . 30

2.4.3 Conclusion . 33

2.5 Ant Colony Optimization . 33

2.5.1 The Ant Colony Strategy in Bionic Optimization 34

2.5.2 Description of the Approach . 34

2.6 Non-parametric Optimization . 37

2.6.1 Topological Optimization . 38

2.6.2 Local Growth . 41

2.7 Meta Models . 42

2.8 Random or Deterministic Methods . 46

2.9 Violation of Boundary Conditions . 51

References . 54

3 Problems and Limitations of Bionic Optimization 57

Tatiana Popova, Iryna Kmitina, Rolf Steinbuch, and Simon Gekeler

3.1 Efficiency of Bionic Optimization Procedures 57

3.1.1 Comparing Bionic Optimization Strategies 58

3.1.2 Measuring the Efficiency of Procedures 59

3.1.3 Comparing the Efficiency of Bionic Optimization

Strategies . 59

3.1.4 Conclusions . 63

3.2 The Curse of Dimensions . 65

3.3 Acceleration of Bionic Optimization Processes 67

3.3.1 Selecting Efficient Optimization Settings 69

3.3.2 Parallelization and Hardware Acceleration 72

References . 77

4 Application to CAE Systems . 79

Rolf Steinbuch, Andreas Fasold-Schmid, Simon Gekeler,

and Dmitrii Burovikhin

4.1 Inner and Outer Loop Optimization . 81

4.1.1 Inner Loop Process . 82

4.1.2 Outer Loop Process . 84

4.2 Implementation in CAE-Systems . 86

4.2.1 Mono-objective Parametric Shape Optimization 88

4.2.2 Formulation of Structural Optimization Problem 89

4.2.3 Bionic Parametric Shape Optimization with PTC 90

4.2.4 Bionic Parametric Shape Optimization with

Siemens NX 9.0 . 94

References . 99

viii Contents

5 Application of Bionic Optimization . 101

Rolf Steinbuch, Iryna Kmitina, Tatiana Popova, Simon Gekeler,

Oskar Glück, and Ashish Srivastava

5.1 Earthquake Stability and Tuned Mass Dampers 102

5.1.1 Earthquake and Design for Earthquake Loading 102

5.1.2 Brief Introduction to Tuned Mass Dampers 103

5.1.3 A Simplified Approach to Study TMD in High

Buildings . 107

5.2 Metal Forming . 109

5.2.1 Deep Drawing . 110

5.2.2 Backward Extrusion . 112

5.3 Brake Squeal . 115

5.3.1 Types of Brake Noise . 115

5.3.2 Modeling of Brake Squeal . 116

5.3.3 Minimizing the Risk of Brake Squeal Using Bionic

Optimization . 121

References . 123

6 Current Fields of Interest . 125

Rolf Steinbuch, Iryna Kmitina, and Nico Esslinger

6.1 Reliability and Robustness . 126

6.1.1 Reliability-Based Design . 127

6.1.2 Robust Design . 128

6.1.3 Reliability and Robustness Integration 129

6.1.4 A Sketch of a Formulation of a Unified Reliability

and Robustness Strategy . 130

6.1.5 Robust Optimization . 130

6.1.6 Conclusion . 136

6.2 Multi-Objective Optimization . 138

6.2.1 Terms and Definitions . 138

6.2.2 Strategies for MOO . 141

6.3 Optimization and Process Management of the Virtual

Development Process . 145

References . 146

7 Future Tasks in Optimization and Simulation 147

Simon Gekeler and Rolf Steinbuch

7.1 Main Trends in Optimization . 147

7.2 Qualifications and Quality Assurance . 149

7.3 Interpretation of Simulation Results . 150

7.4 Believing in Standards and Defaults . 150

7.5 Linking Development and Manufacturing 151

7.6 New and Old Materials . 151

7.7 Reliable Loading Systems . 152

7.8 Preprocessing and Meshing . 152

Index . 155

Contents ix

ThiS is a FM Blank Page

About the Editors and Authors

About the Editors

Simon Gekeler, from Reutlingen, Germany, studied Mechanical Engineering at Reutlingen

University and finished his Master thesis in 2012. While preparing his Master thesis and during

the following years as a research assistant at Reutlingen Research Institute (RRI), he did research

in methods of structural optimization, sensitivity analysis and evaluation of design robustness and

design reliability.

Rolf Steinbuch, from Stuttgart, Germany, studied Mathematics and Physics at the University

of Ulm. After 5 years with Siemens Power Stations, he moved toMercedes-Benz. There he helped to

introduce non-linear simulation into design processes. Since 1993 he is responsible for Numerical

Structural Mechanics at Reutlingen University. His research focusses on optimization, acoustics

and nonlinear problems.

Contributing Authors

Stephan Brieger, from Nürtingen, Germany, studied Mechanical Engineering at Reutlingen

University and finished his Master thesis in 2006. While preparing his Master thesis and during

the following 2 years as a research assistant at Reutlingen Research Institute (RRI), he did research

in methods of structural optimization. Since 2009, he has been employed at Kolt Engineering in

B€oblingen as a Project Engineer, responsible for dynamics and vibration analysis.

Dmitrii Burovikhin, from Kotlas, Russia, completed his Bachelor and Master degrees in Mechan-

ical Engineering from 2006 to 2012 at St. Petersburg State Polytechnic University. He finished a

second Master degree in Mechanical Engineering at Reutlingen University in 2015. Within the

RRI simulation team, he is responsible for the design of optimization tools driving CAE-systems.

Nico Esslinger, from Oberndorf, Germany, finished his Master of Mechanical Engineering at

Reutlingen University in 2015. Since 2014, he has been a research assistant at Reutlingen

xi

University with the Reutlingen Research Institute. Currently, he is working in the field of Multi-

Objective Optimization.

Andreas Fasold-Schmid, from Reutlingen, Germany, completed his Bachelor in Mechanical

Engineering at Reutlingen University in 2013. He is now finishing his Masterthesis there in the

field of optimization.

Oskar Glück, from Reutlingen, Germany, studied Mechanical Engineering at Reutlingen Uni-

versity. Currently he is in the Masterclass for Mechanical Engineering at Reutlingen University

and is part of the RRI Simulation group, responsible for process acceleration.

Iryna Kmitina, from Dnipropetrowsk, Ukraine, studied Control and Automation at the National

Mining University of Ukraine from 2000 to 2005. She has worked as a research assistant at the

National Mining University of Ukraine, Department of Automation and Computer Systems. Since

2013 she has been working as a research assistant at Reutlingen University with the Reutlingen

Research Institute in the field of metal forming process optimization.

Julian Pandtle, from Reutlingen, Germany, studied Mechanical Engineering at Reutlingen

University and finished his Master thesis in 2011. During his thesis he worked with the RRI

dealing with EVO and PSO methodologies. Since 2011 he has been working at WAFIOS AG in

Reutlingen, responsible for nonlinear dynamics and metal forming.

Tatiana Popova, from St. Petersburg, Russia, completed her Master of Mechanical Engineering in

St. Petersburg, before joining the RRI. At Reutlingen University, she completed her second

Masters and has been working with metal forming process optimization.

Frank Schweickert, from Kirchheim unter Teck, Germany, studied Mechanical Engineering at

Reutlingen University, and finished his Bachelor thesis in 2014. Currently he is pursuing his

Masters degree in Biomimetics: Mobile Systems, at the University of Applied Sciences Bremen.

Ashish Srivastava, from Lucknow, India, received his Bachelor degree in Mechanical Engineer-

ing at Uttar Pradesh Technical University in 2010, then continued at the University of Duisburg-

Essen (Germany) to complete his Master of Science in Computational Mechanics in 2014. He has

worked at the University Duisburg-Essen and the Fraunhofer-Gesellschaft (SCAI) and is now at

RRI in the field of Robust Design Optimization.

Christoph Widmann, from Reutlingen, Germany, studied Mechanical Engineering at Reutlingen

University and finished his Masters thesis in 2012. During his thesis, he worked with the RRI

specializing in Neural Nets. Since 2012, he has been working at WAFIOS AG in Reutlingen,

where he is responsible for nonlinear dynamics, metal forming and vibration analysis.

xii About the Editors and Authors

Chapter 1

Motivation

Rolf Steinbuch

Since human beings started to work consciously with their environment, they have

tried to improve the world they were living in. Early use of tools, increasing quality

of these tools, use of new materials, fabrication of clay pots, and heat treatment of

metals: all these were early steps of optimization. But even on lower levels of life

than human beings or human society, we find optimization processes. The organi-

zation of a herd of buffalos to face their enemies, the coordinated strategies of these

enemies to isolate some of the herd’s members, and the organization of bird swarms

on their long flights to their winter quarters: all these social interactions are

optimized strategies of long learning processes, most of them the result of a kind

of collective intelligence acquired during long selection periods.

1.1 A Short Historical Look at Optimization

In consequence it is not surprising to find optimization approaches in more highly

organized human societies, focusing, for example, not only on the organization of

social life but also on craftsmanship as well. Qualified professionals learn, try, fail,

and improve until they are capable of performing their craft to certain perfection.

And then new workers come, with the desire to surpass their antecessors, and create

even better ideas and products. With increased productivity and the shorter lifetime

cycles of industrial production, the need to deliver higher qualities in shorter times

has become a continuous challenge. Today optimization is an inherent part of the

industrial process. Since engineering, especially the design of machinery, started to

R. Steinbuch (*)

Hochschule Reutlingen, Reutlingen Research Institute, Alteburgstraße 150, 72762 Reutlingen,

Germany

e-mail: Rolf.Steinbuch@Reutlingen-University.DE

© Springer-Verlag Berlin Heidelberg 2016

R. Steinbuch, S. Gekeler (eds.), Bionic Optimization in Structural Design,
DOI 10.1007/978-3-662-46596-7_1

1

mailto:Rolf.Steinbuch@Reutlingen-University.DE

become a discipline, more than merely an appendix of the manufacturing process,

the task of optimization has been incorporated within its precincts.

1.1.1 Optimization in Engineering History

The founding days of Technical Mechanics, starting with the analysis of simple

rods and beams, enabled engineers to predict the load carrying capability of a

theoretical part and to select acceptable variants. At these early stages, an essential

part of mechanical and civil engineering was devoted to finding methods, formulas,

and predictions of the response of systems and structures. Engineers used these

formulas to discover better solutions. Optimization might be regarded at least as

one of the central items in mechanical engineering. Good engineers understand the

processes they deal with, improve them, apply the relevant theoretical approaches,

work out the essential consequences of the theory, and interpret them in an

appropriate way. Following this approach, which is based on abstract thinking,

the optimization is then transferred to the physical models. Through this process,

engineers analyzed why the models did not work as expected, improved their

understanding of the processes, and then designed new and better models. Parallel

to this development, the efficiency of mathematical methods became more and

more important. Among the central difficulties at that time was dealing with

non-trivial formula, solving problems with more than two or three unknowns,

studies of processes in time and space, and many other mathematical problems

that required powerful handling of numerical tasks.

1.1.2 Finding Relevant Numbers in Engineering

Early on, finding the correct numbers for specific problems became a central

challenge in the mathematical analysis of engineering problems, so there were

many attempts to build calculators. Charles Babbage’s difference engine and

analytical engine, built at the beginning of the nineteenth century, was among the

first and certainly among the most famous. But it was not until the 1930s that

various developers, using electric current instead of mechanical contacts as leading

technology, succeeded to produce relatively fast and reliable computers. The

development of the transistor in the late 1940s allowed for the assembly of

computers which were not built with relays or electronic valves and which were

both very fast and very reliable compared to their predecessors. Up to today, we do

not see any limits to the growing calculation capacity of these transistorized

computers. In consequence, we are able to solve large problems with many

unknowns in a short time, and this has caused Technical Mechanics to lose much

of its frustrating aspects to engineers.

2 R. Steinbuch

1.1.3 High Level Mechanical Methods

Parallel to the development of computers, new methods in mechanics arose.

Beginning with early steps in the nineteenth century, Walter Ritz (1908) and

Boris Galerkin (1915) proposed a method to solve structural problems that might

be essentially more complex than the ones handled by the classical formula

(Fig. 1.1). Richard Courant (c. 1923) was the first mathematician to understand

the potential of their proposal, but development of these ideas was limited by lack

of computing power. However, during the Second World War and in the years

following it, scientists started to propose variants of these original ideas, which we

know today as the Finite Element Method (FEM). Parallel to the FEM, the

Boundary Element Method (BEM), often associated with Erich Trefftz, was devel-

oped and became an important tool in many engineering applications.

In the first years of use, the industrial application of both FEM and BEM was

restricted to applications in which minimizing cost was a lower priority. So, air- and

spacecraft, military weapons, nuclear industries, and some high level vehicle

applications were using the then expensive numerical tools. In addition to the

expense of computing power, up to the 1980s, the large effort to define and to

enter the geometrical properties such as nodes and elements in FEM reduced the

applications to simple problems and isolated studies. Consequently, in the early

1990s the meshing of a motor-head took about 6 months, not taking into account the

other 6 months required to develop the wireframe CAD-model that served as basis

for this FEM-model.

1.1.4 Drop of Hardware Costs and Better CAD Systems

In the 1990s two essential developments took place. 3D-CAD-Systems using solid

models were developed. They required many fast and well performing local

graphical systems be installed on powerful workstations. Since the workstations

Fig. 1.1 Walter Ritz (Ritz), Boris Galerkin (Galerkin), Richard Courant (Courant), Erich Trefftz

(Trefftz)

1 Motivation 3

of individual engineers could perform much of the computation, there was no

longer a need for large central mainframes. More importantly, the FEM-meshes

could be easily derived from the 3D-CAD-Models. Only with these advancements

would FEM became a tool available to more diverse segments of industry as well.

The new, less expensive application of FEM and other simulation systems, such

as BEM or the Finite Volume Method (FVM) for fluid mechanics problems, opened

up possibilities to apply field-integrated optimization (Fig. 1.2). It was once accept-

able to spend hours building a model. But it is far too expensive to spend many

hours on the repeated process than to build and study variants of the initial design.

a) b)

c) d)

Fig. 1.2 Examples of simulation tools. (a) CAD-model. (b) FEM-mesh. (c) Stresses around

tunnels in a mountain (BEM). (d) Flow through a nozzle pair (FVM)

4 R. Steinbuch

So in the late 1990, the first CAD- and FEM systems were introduced that did

essential parts of the optimization cycle automatically.

Because the increased power of PC’s reduced the price of computation even

more, application of optimization methods was no longer restricted by the hardware

costs. Simultaneously, the power of such very common systems grew exponen-

tially, as we see in Table 1.1. The frequently mentioned Moore’s law seems to still

be valid. The performance of computers is more than doubling every year while the

prices do not grow or even drop.

1.2 Optimization and Simulation as Part of the Virtual

Product Development

The expanding use of simulation tools in the design of components has caused the

transformation of development from mostly hands-on experience and experiment-

based to one with a new nature, namely, Virtual Product Development. Using

simulation tools, especially FEM for structural problems, Multi-Body-Systems

(MBS) for kinematic studies, and Finite Volumes (FVM) in Computational Fluid

Dynamic (CFD) for fluid mechanics problems, have enabled the analysis of many

variants, the isolation of critical details, and the improvement of basic proposals

until solutions had been found that perform essentially better than their predeces-

sors. The costs of even large numbers of studies have been decreasing to such small

amounts that there is no reason not to check yet more variants, try uncommon ideas,

and search for designs in regions of the parameter space that would never have been

checked in an experimental configuration, as the costs would be prohibitive.

These studies covering expanded segments of the free parameter space of the

component’s design cried out for automation. Why should an engineer repeatedly

produce variants when the CAE-system could be doing so by itself?

Table 1.1 Development of PC hardware performance and prices in 18 years

Year RAM (Mbyte) Disc (Mbyte) CPU (MHz) Price (€)

1994 8 400 80 2000

2012 24,000 4,000,000 12� 3200 2000

Growth 3000 10,000 480 1

Growth/year 2.72 3.16 2.16 1

RAM: core memory; Disc: storage on any type of disc; CPU: processor speed, # of operations/

second (frequency) multiplied by # of cores

1 Motivation 5

1.3 Optimization in Nature

Darwin’s discovery of the evolution and adaption of living structures to their

environment was one of the most shocking events in the history of human science

and culture. The fact that we are not an extraordinary species standing high above

the rest of our cohabitants, but that we are only one of many modifications of one

basic design which had been developing for more than 3 billions of years caused

widespread and heated debates, even leading to the prediction that Darwin’s
followers would be consigned to hell. On the other hand, people more open to

scientific understanding soon learned that a powerful tool was inherent within the

principles of species crossing, mutation, selection, and adaption. Some of them

were thus lead to observe nature’s design process and to attempt to adapt and copy it

to their specific tasks. They learned that some feathers at the end of a bird’s wing
improved the stability at higher flight velocities (Fig. 1.3a), different types of eyes

made different species fit to recognize prey or predator, and smooth connections

between trees trunks and branches reduced the danger of breaking (Fig. 1.3b). Many

other examples are known, such as in the organization of social systems from

human communities to ant colonies which perform efficient travels to keep their

large population fed and housed. Looking at nature from a designer’s point of view,
we see nothing but the preliminary results of never-ending optimization processes.

We understand today that, from a certain point of view, all living beings are the

results of optimization processes. Common to all these processes is that they have

been ongoing for a very long time, using many cycles and producing many less

successful variants. However, the different species would not have been able to

survive, if they had not been able to adapt to the ever-changing environment. In

fact, fascinating animals such as the famous dinosaurs, may have died out due to

their lacking the capability to adapt to the massive changes in their world. One

central question of the bionic evolution is still under debate by the scientific

community: are we observing the survival of the fittest or of the least unfit? As

a) b)

Fig. 1.3 Examples of optimization in engineering and nature. (a) Winglet of an airplane inspired

by birds of prey. (b) Connection of branches to a trunk

6 R. Steinbuch

this is a rather abstract position related to our topic of Bionic Optimization, we do

not want to deepen this debate.

1.4 Terms and Definitions in Optimization

To discuss optimization effectively in the next chapters, we have to agree on a

common language, i.e. the use of the same terms for the same phenomena. As

optimization research is done by various groups within various and diverse scien-

tific fields, and also in different regions of the earth, there is the real danger to get

confused as the meanings of terms may diverge from group to group. Thus, we must

clarify the set of terms used in this book. Most people involved in optimization

accept that for an optimization study:

– We need a given goal or objective z.
– This objective z depends on a set of free parameters p1, p2, . . . pn.
– Limits and constraints are given for the parameters values.

– There are restrictions of the parameter combinations to avoid unacceptable

solutions.

– We seek to find the maximum (or minimum) of z(p1, p2, . . . pn).

To better define our terminology, we use the following conventions and findings:

– The objective or goal must be defined �a priori and uniquely. Changing the

definition of the goal is not allowed, as this poses a new question and requires

a new optimization process.

– We need to define all free parameters and their acceptable value ranges we

might modify during the optimization studies.

– This value ranges or parameter range is the span of the free parameters given by

lower and upper limits. Generally it should be a continuous interval or a range of

integer numbers.

– The fewer free parameters we must take into account, the faster the optimization

advances. Consequently, accepting some parameters as fixed reduces the solu-

tion space and accelerates the process.

– Restrictions, such as unacceptable system responses or infeasible geometry,

must be taken into account. But sometimes restrictions limit the ranges of

parameters to be searched. Such barriers have the potential to prevent the

optimization process from entering interesting regions.

– Finding the maximum of z(p1, p2, . . . pn) is the same process as finding the

minimum of the negative goal�z p1, p2, . . . pnð Þ. There is no need to distinguish
between the search of maxima or minima.

Gradient based optimization methods are the most popular ways to find improve-

ments of given situations. From an initial position, the derivatives of the objective

1 Motivation 7

z(p1, p2, . . . pn) with respect to the free parameters are determined. As the deriva-

tives are often not to be found by analytical ways they are approximated by

∂z
∂ pk

� z p1, p2, . . . pk þ Δ p, . . . pnð Þ � z p1, p2, . . . pk � Δ p, . . . pnð Þ
2Δ p

ð1:1Þ

The column of these derivatives defines the gradient:

∇z ¼ ∂z
∂ p1

,
∂z
∂ p2

, . . .
∂z
∂ pn

� �T

ð1:2Þ

Jumping along this gradient, for example, by using a line search method such as

Sequential Quadratic Programming (SQP) (Bonnans et al. 2006), or any related

method, has the tendency to find the next local maximum in a small number of

steps, as long as the search starts not too far away from this local maximum

(Fig. 1.4).

Optimization using this climbing of the ascent of the gradient is often labelled as

the Gradient Method or included in the set of deterministic optimization methods.

Here each step is determined by the selection of the starting point. Unfortunately,

the determination of the gradient requires 2nþ 1 function evaluations per iteration,

which may be an extended effort if the number of parameters is large and the hill

not shaped nicely.

Fig. 1.4 Climbing up a hill using gradient methods

8 R. Steinbuch

1.5 Why Bionic Optimization?

Deterministic methods, such as gradient climbing discussed in Sect. 1.4, fail as soon

as there are many local hilltops to climb. Only the next local maximum is found if

problems occur such as the one shown in Fig. 1.5.

An alternative is using purely stochastic searches, which may consist of ran-

domly placed points into the parameter space. They guarantee discovery of the

optimum, but only if we allow for very large numbers of trials. For real engineering

applications, they are far too slow. A more powerful class of methods produces

some random or motivated initial points into the parameter space and uses them as

starting points for a gradient search. As long as the problem is of limited difficulty

and does not have too many local optima, this might be a successful strategy. For

problems that are more difficult to handle, the bionic methods presented in Chap. 2

prove to be more successful. They combine randomness and qualified search and

have a sufficient potential to cover large regions of high-dimensional parameter

spaces. Some randomly or intentionally placed initial designs are used to start an

exploration of the parameter space and propose designs that might be outstanding,

if not even the best. We discuss some of the Bionic Optimization methods in

Chap. 2 and give the basic ideas, examples of applications, and sketches of program

structures.

Fig. 1.5 Multi-Hill landscape with many local optima

1 Motivation 9

http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_2

References

Bonnans, J.‐F., Gilbert, J. C., Lemarechal, C., Sagastizábal, C. A. (2006).Numerical optimization –
theoretical and practical aspects. s.l. Berlin: Springer.

Courant. Picture from: Courant, Reid. C, 1996. s.l. Springer.
Galerkin, B. G. (1915). On electrical circuits for the approximate solution of the Laplace equation.

Vestnik Inzhenerov i Tekhnikov, 19, 897–908.
Galerkin. Boris Galerkin, picture from: Wikimedia Commons (27.04.15). http://www-groups.dcs.

st-and.ac.uk/~history/Mathematicians/Galerkin.html

Ritz, W. (1908). Über eine neue Methode zur L€osung gewisser Variationsprobleme der

mathematischen Physik. Journal f€ur die reine und angewandte Mathematik. 1908, 135, 1–61.
Ritz. Walter Ritz, picture from: Wikimedia Commons (27.04.15). http://www.archive.org/details/

gesammeltewerkew003778mbp

Trefftz. Erich Trefftz, picture from: Wikimedia Commons (27.04.15). Original: Journal “Deutsche
Mathematik”, Vol. 2, Issue 5 (22 Dec 1937), p. 582; included in an obituary “Erich Trefftz” by

Fritz Rehbock (p. 581–586).

10 R. Steinbuch

http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Mathematicians/Galerkin.html
http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Mathematicians/Galerkin.html
http://www.archive.org/details/gesammeltewerkew003778mbp
http://www.archive.org/details/gesammeltewerkew003778mbp

Chapter 2

Bionic Optimization Strategies

Rolf Steinbuch, Julian Pandtle, Simon Gekeler, Tatiana Popova,

Frank Schweickert, Christoph Widmann, and Stephan Brieger

The realization that nature is a continuous optimization process founded a new

engineering discipline. Beginning in the 1960s, various schools began to study and

to reproduce bionic processes to improve previous optimization solutions. One of

the most well-known examples is the winglet, an extension to the wings of aircrafts

to stabilize the flow around the end of the wing. Another application is the sandwich

structures of tailored blanks, where a sheet of material is subdivided into different

layers. Only the outer ones, which are most important to the stiffness, are made of

heavy and expensive metals. The filler, which only needs to keep the metal sheets

separated by a certain distance, is made from less expensive and light-weight

material. These blanks, especially honeycombs, are extremely stiff structures com-

posed of minimal amounts of material. Unfortunately, their properties are very

non-isotropic, so their use as load-carrying materials must be done with care and

understanding.

Different organizations specialize in bionics, such as the International Society of

Bionic Engineering (ISBE, http://www.isbe-online.org/, retrieved 15.04.2015) or

R. Steinbuch (*) • S. Gekeler • T. Popova

Hochschule Reutlingen, Reutlingen Research Institute, Alteburgstraße 150, 72762 Reutlingen,

Germany

e-mail: Rolf.Steinbuch@Reutlingen-University.DE; Simon.Gekeler@Reutlingen-University.

DE; Tatiana.Popova@Reutlingen-University.DE

J. Pandtle • C. Widmann

WAFIOS AG, Silberburgstraße 5, 72764 Reutlingen, Germany

e-mail: J.Pandtle@wafios.de; C.Widmann@wafios.de

F. Schweickert

Hochschule Bremen City University of Applied Sciences, Neustadtswall 30, 28199 Bremen,

Germany

e-mail: fschweickert@stud.hs-bremen.de

S. Brieger

KOLT Engineering GmbH, Schickardstraße 32, 71034 B€oblingen, Germany

e-mail: S.Brieger@kolt.de

© Springer-Verlag Berlin Heidelberg 2016

R. Steinbuch, S. Gekeler (eds.), Bionic Optimization in Structural Design,
DOI 10.1007/978-3-662-46596-7_2

11

http://www.isbe-online.org/
mailto:Rolf.Steinbuch@Reutlingen-University.DE
mailto:Simon.Gekeler@Reutlingen-University.DE
mailto:Simon.Gekeler@Reutlingen-University.DE
mailto:Tatiana.Popova@Reutlingen-University.DE
mailto:J.Pandtle@wafios.de
mailto:C.Widmann@wafios.de
mailto:fschweickert@stud.hs-bremen.de
mailto:S.Brieger@kolt.de

national networks such as BIOKON (http://www.biokon.de, retrieved 15.04.2015)

in Germany. At Georgia Tech University (http://www.ece.gatech.edu/research/

labs/gt-bionics, retrieved 15.04.2015) is a lab devoted to bionics; many other

universities are working with bionic questions around the world. So today, learning

optimization from nature is a broadly accepted method.

In this chapter we introduce methods to improve mechanical designs by bionic

methods. In most cases we assume that a general idea of the part or system is given

by a set of data or parameters. Our task is to modify these free parameters so

that a given goal or objective is optimized without violation of any of the existing

restrictions.

2.1 Evolutionary Optimization

Julian Pandtle

Evolutionary Optimization copies the way bionic beings reproduce and adapt to a

changing environment. The combination of the properties of different individuals

modifies the skills of their kids. In every generation the best kids will survive better

and create another generation of kids, which leads to a higher fitness of the overall

population (survival of the fittest). Just as in biological evolution, the properties that

are transferred to the generations’ kids derive from random mutation. The parents’
original properties are changed, dependent upon the mutation radius, without

knowing where the mutation leads. As the children within a reproducing population

are never identical, some of them will be better suited to adapt to the environmental

challenges. Over the sequence of generations, their genetic code may become

dominant within the population.

2.1.1 Terms and Definitions

Here the most important terms in Evolutionary Optimization are listed. There are

many other terms used in various papers, as there is no generally accepted vocab-

ulary. Users are advised to check carefully the definitions when reading papers from

various authors.

Individuals are the specific elements within the sets of parents and kids.

Generation is one step in the evolutionary process. It is given by a set of parents
or individuals. The creation of a new set of kids or new individuals defines the

genesis of a new generation.

Mutation is the modification of the parameter values of an individual. Mutation

may happen in many ways (Rechenberg 1994; Gen and Cheng 2000; Steinbuch

2010). Every parameter may be changed by a random value. Some parameters may

be changed in some correlated way. In some cases only a part of the parameters is

12 R. Steinbuch et al.

http://www.biokon.de
http://www.ece.gatech.edu/research/labs/gt-bionics
http://www.ece.gatech.edu/research/labs/gt-bionics

changed in every generation. There are infinite possibilities for mutations, so the

preferred types of mutation have to be checked carefully, until sufficient experience

determines otherwise. In this book we mostly mutate all free parameters by the

same mutation principle. We add the given mutation radius of each parameter

weighted by a random number�1 � r and � 1 to the initial value of the parameter.

The mutation radius r defines the amount that a parameter may be changed in a

mutation step. This value can be the same for all parameters or different for some or

all parameters. Often it is not given as an absolute value but as the percentage of the

total allowed range of a parameter. So the generation of the kids can generally be

defined by different approaches:

– Random mutation:

The n kids are randomly distributed within a restricting mutation radius around

their initial set of parameters (Fig. 2.1a).

– Mutation based on probability distribution:

The n kids are placed according to a distribution function around their initial

parameter set. Often we use a normal distribution (Fig. 2.1b), where the mutation

radius defines the standard deviation.

There are many other possibilities to do this mutation phase. For most of the

approaches, it is possible to change, evaluate and optimize the mutation radius over

the sequence of generations. It should be mentioned that the use of a small mutation

radius reduces the process to a local search for an optimum. On the other hand, a too

large mutation radius yields a similar performance as a pure random search.

The number of parents should be sufficiently large to cover some or many

possible parameter combinations. Its value should generally not fall short of 0.5–

5 times the number of free parameters.

The number of kids covers the parameter space. Again, a large number is

preferred. Common experience, which may not be applicable in every case, pro-

poses the number of kids to be 2–5 times the number of parents. See Sect. 3.3.1 for a

discussion of the selection of well performing combinations of these input data.

Fig. 2.1 Different mutation methods in Evolutionary Optimization. (a) Random mutation radius.

(b) Mutation based on normal distribution

2 Bionic Optimization Strategies 13

http://dx.doi.org/10.1007/978-3-662-46596-7_3

Pairing is the selection of two individuals of the parent generation to produce

one common child.

Crossing, the way by which two parents define the properties of one common

child, may happen in different ways. One of the first ideas is to average the

parameter values of both parents (Fig. 2.1). Another type of crossing could be

taking randomly one parameter from one parent only. Some weighted average of

the two parents’ data, e.g. preferring the better parent, is also a possibility (Gen and
Cheng 2000; Steinbuch 2010).

The quality of each individual is prescribed by its fitness. It can depend on one

single value or be the weighted result of different optimization interests (cf. Sect.

6.2).

Selection determines which kids of the current generation (including their

parents or not) should be the parents of the next generation. Often selection is

done by only taking the best kids as new parents. Experience suggests that at least

some lesser performing kids should be parents as well. For the sake of simplicity

and comparability, here we allow the old parents to be parents in following

generations and take the best of the total of old parents and kids to be parents in

the next generation. Sometimes it proves efficient to define a restricted lifetime for

such parents, given by a maximum number of generations.

2.1.2 Description of the Evolutionary Strategy

In the first step a number of individuals are randomly distributed within the design

space. We determine their fitness, and they are the parents in the first generation.

For proliferation, the selected individuals are arranged in pairs. Every pair

generates one kid only by combining the properties of their parameter sets. This

crossed parameter set is subject to some random modification prescribed by the

mutation. Then best kids and parents are chosen to be parents of the next generation.
The poorer performing kids are removed from the gene pool. A pseudocode for a

simple Evolutionary Optimization is shown in Table 2.1.

Variants

As there are different ways to cross, select and mutate individuals, we want to

discuss selected modifications that are thought to be important in Evolutionary

Optimization.

– Pairing Variants:

There are several ways of combining individuals to form a set of parents.

Possibilities include randomly chosen pairs of individuals from the number of

prospective parents, or the pairwise combination of individuals sorted by their

fitness (combining the fittest pair, the second fittest pair, see Fig. 2.2).

14 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_6

A possibility to affect the chosen sets of partners is combination based on the

similarity of their properties, just as for many organisms in nature. The choice of

partners depends strongly on similar interests, habitat, level of intelligence,

attractiveness and so on. This kind of pairing can lead to a faster convergence

because it concentrates the search only near optimal regions, and neglects the

spaces in-between (Fig. 2.3a). However, any optima in the neglected spaces will

not be found (Fig. 2.3b). Nevertheless, this method offers an interesting possi-

bility to force the optimization to run in a specific direction. Users can include

basic knowledge of the problem in the start of the optimization to affect the kinds

of optima they find.

Table 2.1 Pseudocode: Evolutionary Optimization

Initial: Define parameters:

– Number of parents, kids, generations

– Shall parents survive?

– Crossing scheme, mutation radius

– Define nparents parents; evaluate their performance and restriction violation

Start ngenerations loop:
– Define nkids pairs of parents
– Cross their properties

– Mutate the properties to define kids

– Evaluate the kids’ performance and restriction violation

– Select the next generation’s parents from the kids (including parents?)

End loop

Stop

Fig. 2.2 Schematic

diagram of Evolutionary

Optimization: six initial

individuals, four parents, six

kids, over three generations

2 Bionic Optimization Strategies 15

– Killing the parents:

Should the parents survive to be parents in the next generation as well? Dom-

inant parents reduce the chances of weaker children to find their way, but

excluding them removes previously found best solutions.

– Add new random parents:

Adding random parents in certain optimization steps increases the chance to cover

the whole design space. Although this method contradicts the idea of the optimi-

zation algorithms, it prevents the population from converging to local maxima.

2.1.3 Evolutionary vs. Genetic Strategy

Rolf Steinbuch

From the beginning of Evolutionary Optimization until now, there is a schism

between two schools. The first of them, often called evolutionary direction, uses

floating point representation of the parameters’ values. Crossing is done by

weighted averaging (cf. Fig. 2.1), where mutation means randomly changing

values. The other direction, the Genetic Algorithms school, as it often labels itself,

has a different view on the information stored in the genes of the parameter values

representation. We all know that DNA which carries genetic information uses a

Fig. 2.3 Examples of

pairing individuals with

limited distance. (a) Pairing

with limited distance lead to

fast convergence.

(b) Pairing with limited

distance failed to find

optimum

16 R. Steinbuch et al.

binary coding. Four nucleobases A, G, C, and T build ordered sequences in the helix

(Fig. 2.4a). The nucleobase A matches with T, G, with C, and so a binary structure is

defined. Copying is done by producing a negative of the original sequence and then

refilling it with nucleobases of the original type. In the same manner we may look at

the parameters’ values in their binary representation (Fig. 2.4b). We are no longer

interested in the numerical values they stand for, but only if the interesting binary

digits (bits) are O’s or I’s. Combination means then to take one bit of the two parents

(Fig. 2.4c), where mutation corresponds to a random change of single bits (Fig. 2.4d).

Generally there should be not a very large difference in the results of evolution-

ary or genetic processing. But in some cases, genetics may behave strangely.

Think of a parameter which takes values between 1 and 8. The binary represen-

tations of these values are as we all know

1. 0001
2. 0010
3. 0011
4. 0100
5. 0101
6. 0110
7. 0111
8. 1000

Fig. 2.4 From DNA to

binary representation of

crossing and mutation.

(a) Original sequence

of nucleobases.

(b) Corresponding binary

representation. (c) Crossing

parents, dominating parents

data printed bold. (d)

Mutation of a binary child,

mutated data printed bold

2 Bionic Optimization Strategies 17

From an evidence based point of view, the next neighbor, and so the most

probable mutation of 8, would be 7, as is closest to 8. But in a binary representation,

the one bit mutations of 8 in the range of [1–8] are

0000¼ 0,

1001¼ 9,

1010¼ 10 and,

1100¼ 12,

all of which are not included in the parameter space.

The two bit mutations within the allowed range are

0100¼ 4,

0010¼ 2,

0001¼ 1,

which are all rather far away from 8. All the one bit mutations 0000, 1001, 1010,

1100, fall out of the range [1–8] and are not allowed. As a result, there is no close

neighbor to 8 in the mutation set. A one bit mutation which produces a value close

to 8 is not possible. Furthermore, the use of binary representation provides a

different weighting of the mutation. If we mutate a real number within a range of

10 %, the absolute value of this number changes by a maximum of 10 %. If we

mutate a 10 bit binary representation of an integer number (0< x< 2047) by 10 %,

we change one bit. If this is the last bit, the value of the integer changes by 1, but if

we change the leading bit, the value changes by 1024. The meaning of a maximum

mutation radius would be completely useless. Small mutations in numbers of

changed bits create essential changes of values, and thus the appearance of designs.

We are somewhat skeptical of the use of binary parameter representation. Through-

out this book, we deal with floating point values and fractions of them, when

handling continuous parameters. Nevertheless, the genetic approach has its advan-

tages, and in many applications there are no great differences in the final results of

an optimization study using either school of thought. Chelouah and Siarry (2000)

provide a detailed discussion of the reasons, why they and many others prefer

genetic algorithms.

2.1.4 Discussion

One major advantage of Evolutionary Optimization is, in a design space with many

local optima, it has the tendency to converge to the best solution if there are

sufficiently large numbers of parents, kids, and generations, and if the mutation

radius is rather large. This advantage is relative, as the number of individuals

studied may become very large, even if the values driving the process are set in a

favorable range.

18 R. Steinbuch et al.

2.2 Fern Optimization

Julian Pandtle

In addition to proliferation by crossing two parents, ferns and germane plants in

nature also have the ability of asexual reproduction. This is the basic idea behind

Fern Optimization. Unlike sexual reproduction, there is only one parent which

generates kids without crossing its genes with other parents. The variation of the

individuals’ properties is only done by mutation (Smith et al. 2006).

2.2.1 Description of the Approach

A number of parents is chosen to reproduce themselves. Every parent generates

discrete and completely independent nkids so that the difference between the kids

and its parents varies only by the mutation radius. After that, the fitness of every kid
is evaluated. From each parent the best kid is chosen to be parent of the next

generation if it performs better than the parent (Fig. 2.5). These steps are repeated

until either a convergence criteria is reached or a predefined number of generations

have been calculated. The best individual of all kids of all initial parents over the

sequence of generations is considered the optimum of the process. The pseudocode

for Fern Optimization is shown in Table 2.2.

Periodically, in some generations we can check if the kids of the different initial

parents fail to come up with relatively good results. We then remove from the total

population those who seem to be not as fast in the current stage of the optimization

process (Fig. 2.6). This accelerates the process essentially, as the number of

Fig. 2.5 Schematic

diagram of Fern

Optimization: one initial

individual as parent, four

kids, over three generations

2 Bionic Optimization Strategies 19

individuals to be handled significantly decreases. On the other hand, it may

eliminate some good solutions that result from sequences of individuals that

perform poorly at the beginning of the process.

2.2.2 Discussion

Because of the randomly generated kids, the individuals do not progress in a

straight line. Due to this, Fern Optimization has the potential to ignore local

maxima. There is also the risk that the same values or regions will be calculated

several times. This may be avoided by equalizing individuals with small differences

in the parameter data.

The success of Fern Optimization depends on the range of the solution space that

the initial design covers. With increasing dimensions of the solution space, it

becomes less probable that the coverage of the initial individuals is sufficient to

find very good designs. But for smaller dimensions, Fern Optimization is able to

provide interesting results by an easily implemented method.

Table 2.2 Pseudocode: Fern Optimization

Initial: Define parameters:

– Number of parents, kids per parent, generations

– Mutation radius

– Define nparents parents; evaluate their performance and restriction violation

Start ngenerations loop:
– Define kids for each parent by mutation of its properties

– Evaluate the kids’ performance and restriction violation

– Select the best kid of each parent (or keep the parent) for the next generation

– After some generations, remove not promising families from the process

End loop

Stop

Fig. 2.6 Individuals

offspring goals during a

study—exclude slowly

improving ferns

20 R. Steinbuch et al.

There exist many variants of this Fern Optimization known e.g. as Tabu Search

(Glover et al. 1999) or Neighborhood Search (Hansen and Mladenović 2005).

2.3 Particle Swarm Optimization

Simon Gekeler, Tatiana Popova, and Frank Schweickert

The Particle Swarm Optimization (PSO) (Kennedy and Eberhardt 1995; Plevris and

Papadrakakis 2011) follows the observation that many groups of living beings have

a tendency to behave similar to a complex being itself by local interaction and

without centralized control. Well known examples are the swarms of fish or birds

that seem to be orchestrated by a common intellect, known as Swarm Intelligence.

The assumption is that they would not do so, if there was not an advantage

compared to the free individual swimming or flying, which may be observed as

well. We will not discuss here, what the advantage of coordinated behavior might

be for these populations, but we try to explain how to translate it to an optimization

strategy. Such as a swarm of fish looking for a food source in nature, in PSO a

population of individuals drifts through the space of possible solutions, interacting

as a swarm to find regions of good results. The basic assumption of PSO is that the

individuals know their current position and velocity. Additionally, each individual

remembers where its best position during the process has been, and it is informed

where the best position in the parameter space found up to now is located. PSO is a

global optimizer and able to solve constrained, non-linear problems in a

multidimensional search space containing plenty of local optima.

2.3.1 Terms and Definitions

In PSO there is population of a user defined number of individuals with individual

velocities, also referred to as particles, searching for possible optimization results

in the search space.

In every iteration, all particles do one step in the search space.

Each of a particle’s visited positions requires one objective function evaluation

and represents one possible solution of the optimization process.

All of the particles know about their personal best position in the history of

solution search.

In every iteration, the global best position is updated, which offers information

about the best solution found previously by the whole swarm of particles.

The particle’s velocity defines the individual direction and length of the parti-

cle’s current step to adopt a new position in the search space. This velocity is

2 Bionic Optimization Strategies 21

updated every iteration by using the information of personal best position, global

best position, and the particle’s previous velocity.
As global settings to influence the behavior of the swarm’s movement in the

search space, we define the importance of the different contributions for the

particle’s velocity updates. The weight for the global best position is called the

social parameter. The personal best position information is weighted by the

cognitive parameter. And the particle’s previous velocity is weighted by the inertia
parameter.

2.3.2 Description of the Particle Swarm Optimization

Initialization of the Particle Swarm Optimization starts with randomly distributed

particles within the upper and lower limits of the multidimensional search space.

The position pj of each particle j is given by the values of the free optimization

parameters. In addition, for each particle an initial velocity vj is induced. These

velocity vectors are set up with random values, where the maximum possible value

depends on the specific range of each optimization parameter. With the evaluation

of the initial particles’ fitness according to the objective function z(p), the first

global best position pGb is found. The particles’ current position equals the primal

personal best positions pPb,j.

Afterward, in each iteration we update the velocity according to Eq. (2.1) for

every particle j. Then the particles’ new position p j tþ 1ð Þ is found by adding the

new velocity vj tþ 1ð Þ to its current position pj(t) (cf. Eq. 2.2). Before starting the

next iteration, the fitness of all particles is evaluated and the global best and all

personal best positions are updated. This loop is continued until a stop criterion

e.g. the maximum number of iterations is reached.

vj tþ 1ð Þ ¼ c1vj tð Þ þ c2r1∘ pPb, j � p j tð Þ
� �

þ c3r2∘ pGb � p j tð Þ
� �

ð2:1Þ
p j tþ 1ð Þ ¼ p j tð Þ þ vj tþ 1ð Þ ð2:2Þ

Here, the inertia parameter c1 weights the previous particle velocityvj tð Þ, the inertia
tendency, forcing the particle to explore the search space by continuing its direction

of travel. The cognitive tendency makes the particle try to return to its individual

best position pPb,j discovered before. It is weighted by the cognitive parameter c2
and influenced by the random vector r1, with entries uniformly distributed in the

interval [0, 1]. The social parameter c3 and the random vector r2 weight the social

tendency, which pushes the particle to try to reach the best position found so far and

forces the particle swarm to converge. The product r∘p is the vector produced by

elementwise multiplication, the Hadamard product. The principle scheme of

updating a particle’s velocity in Eq. (2.1) is visualized in Fig. 2.7.

22 R. Steinbuch et al.

To define the weighting factors c1, c2 and c3, there is no rule generally, as it

depends on the optimization problem and the available computation time to find a

result. The interaction of all parameters is important. We can either force the

particle swarm to converge and obtain optimization results relatively fast or we

can attach importance to the exploration of the search space, trying to find the

global optimum with the cost of additional variants needed to be computed. Higher

values of the inertia parameter c1 cause a long exploration phase before the swarm

converges, likely to the global best position. However, more weighting by the social

parameter c3 leads to an earlier convergence. A limit value of the inertia parameter

c1< 0.95 is important, as otherwise the swarm will not converge and PSO will

behave similarly to a random search in the search space. Also, the social and

cognitive parameters should follow the rule 0 < c2 þ c3ð Þ < 4, as otherwise the

particles would oscillate around the global best position again without converging

(Perez and Behdinan 2007).

To handle constrained optimization problems, restrictions may be managed with

the penalty method (cf. Sect. 2.9).

A pseudocode of a simple PSO realization is shown in Table 2.3. The updating of

global and personal best information in the sequence of the particle swarm algo-

rithm might be done in two ways. If we update during the iteration loop, each time a

particle’s new position is evaluated, the swarm communicates quickly and next

particles are able to react directly to new global best positions. The other method is

to update the coordinates only once, at the end of each iteration. This offers the

possibility to parallelize the computation of particles (cf. Sect. 3.3.2).

Example 2.1 As an example of the PSO process, we optimize the well-known

benchmark problem 10 rods frame (cf. Sect. 3.1.1, Fig. 3.1b). To minimize the

frame’s mass, we use 15 particles and 40 iteration steps. With the weighting factors

of c1¼ 0.6, c2¼ 1.3 and c3¼ 1.7, the PSO is able to find the global optimum while

Fig. 2.7 Definition of the particles velocity components

2 Bionic Optimization Strategies 23

http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_3
http://dx.doi.org/10.1007/978-3-662-46596-7_3
http://dx.doi.org/10.1007/978-3-662-46596-7_3

considering the restrictions of maximum displacement and maximum stress. In

Fig. 2.8 we see the particles’ fitness alterations while trying to find good solutions in
the search space. The reason for excessive high peaks, especially at the end of the

process, is the punishment of fitness values by the penalty method when particles

exceed the stress or displacement limit. In addition, the convergence behavior of the

best solution, found in the particle swarm process, is plotted. It indicates that if we

want to use a stop criterion from the convergence of the best solution, the conver-

gence rate must be observed over several iteration steps before the algorithm is

stopped, as there could be a significant improvement after a period (e.g. iteration 4–

7) without any advance.

Variants

Since the first version of the PSO, developed by Kennedy and Eberhardt (1995),

was released, many different variants (Dorigo et al. 2008), hybrid procedures

(Plevris and Papadrakakis 2011) and modifications have arisen. Most of them are

adaptions to specific problems. One basic approach is the PSO procedure we have

been introducing. It adds the inertia weight coefficient to the former version of the

velocity update (Shi and Eberhart 1998). This enables further control of the

optimum search. Based on this approach there are multiple ways for the particles’
communication. We often use the global best neighborhood topology (Fig. 2.9a), in

which each particle is informed of the best position in the whole population so far.

The global best topology is a fast and reliable method for diverse optimization

problems, but there are also different local neighborhood topologies, which repre-

sent slower communications and thus force the exploration of the search space,

usually with higher computational costs (Kennedy 1999). The communication of

the particles is limited either to a specific geographic neighborhood region in the

search space or by a predefined particle linkage, as visualized in Fig. 2.9b, c.

Table 2.3 Pseudocode: Particle Swarm Optimization

Initial: Define parameters:

– Set number of particles and iterations

– Define social, cognitive and inertia weighting factor

– Generate initial individuals and assign random velocities

– Evaluate each individual; find global best position

Start loop:

– Define individual’s new velocity (Eq. 2.1) and position (Eq. 2.2)

– Evaluate individual’s new performance and restriction values

– Update individual’s best position and the global best position

End loop

Stop

24 R. Steinbuch et al.

Other basic PSO procedures:

– The Bare-Bones Particle Swarm Optimization (BBPSO), where the update of a

particle’s velocity is replaced by an update of the particle’s position following a

probability distribution (Kennedy 2003).

– For operations in discrete spaces, there is the Binary Particle Swarm Optimiza-
tion (Kennedy et al. 1997).

– The Fully Informed Particle Swarm (FIPS), where a particle’s velocity update

follows the information provided by all of its neighbors (Mendes et al. 2004).

In addition, the performance of the introduced PSO procedure may be increased by

implementing a dynamic inertia weight update or by limiting the particles’ velocity.
These modifications will be explained more in detail in the following sections.

2.3.3 Dynamic Particle Inertia

At first, when doing an optimization with many local optima, we need to find the

highest hill or deepest valley in the search space and then reach its peak or the

0 5 10 15 20 25 30 35 40
5000

5500

6000

6500

7000

7500

8000

number of iterations

go
al

: m
as

s
[lb

]

particles

best mass

Fig. 2.8 Convergence of the global best solution and fitness of the particles positions when

minimizing the mass of the 10 rods frame (cf. Sect. 3.1.3, Fig. 3.1b)

Fig. 2.9 Examples of neighborhood topologies for the particles communication in PSO.

(a) Global best topology. (b) Local ring topology. (c) Local von Neumann topology

2 Bionic Optimization Strategies 25

http://dx.doi.org/10.1007/978-3-662-46596-7_3
http://dx.doi.org/10.1007/978-3-662-46596-7_3

bottom, which represents the global optimum and the best possible optimization

result. As the inertia velocity term in Eq. (2.1) especially defines whether the swarm

is focusing its movement on search space exploration (c1¼ 0.5. . .0.95) or conver-
gence (c1¼ 0.2. . .0.5), a variation of the inertia weight during the optimization

process allows for the alteration of the search behavior of the particle swarm.

We can start with higher values for c1 and end the process with smaller particle

inertia.

There are many ways to update the inertia weight automatically, such as an

update dependend on the convergence rate or reducing the weight due to the recent

evaluated global best positions, e.g. force convergence if they are all located in the

same local region of the search space. A proven method, probably the easiest

implementation of an inertia weight update, depends on the number of iteration

steps we want to fulfill in our optimization. E.g. the implementation of a linear

decrease (Eq. 2.3) with the ongoing process time (Shi and Eberhart 1998).

c1, tþ1 ¼ c1,max � c1,max � c1,min
tmax

� t; ð2:3Þ

where tmax is the defined number of steps or iterations to perform, t is the current

iteration, c1,max and c1,min are the weight coefficients we want to have at the

beginning and at the end of our optimization process and c1, tþ1 is the weight we

apply in current iteration loop.

From this, Plevris and Papadrakakis developed a nonlinear weight update strat-

egy which shows even better performance for most problems, as we can switch

more quickly to the convergence phase (Plevris and Papadrakakis 2011). We use a

cubic interpolation of the 4 given points, shown in Fig. 2.10a, to obtain the inertia

weight update function. The calculation of coefficient b is

bþ aw� bþ aw
2 � b ¼ c1,max � c1,min

) b ¼ c1,max � c1,min
aw2 þ aw þ 1

:

Here aw influences the shape of the update function, as indicated in Fig. 2.10b.

We should keep in mind that a quick convergence in a population based

optimization does not guarantee the finding of the global optimum. A disadvantage

with the time dependent inertia updates occurs when we want to use a stop criterion

dependent on the convergence rate. It is evident that, if the particle swarm has

already found a good solution in the exploration phase, it is not recommended to

stop the algorithm. More iterations are required to further reduce the inertia

parameter to gain additional improvement in the swarms convergence phase.

26 R. Steinbuch et al.

2.3.4 Limitation of the Particles’ Velocity

Misfit settings of the velocity weights lead to poor results of the PSO process as the

swarm movement grows out of control. If the particle steps are too large they may

jump over promising regions in the search space, so the process behaves similarly to

a randommethod. Limiting the velocity can help to make such a PSO more reliable.

Of course, too strong velocity limitation will restrict the method’s exploration

ability. Using a half-width of the optimization parameters’ range should be not a

bad choice (Gekeler 2012).

Figure 2.11 compares the results found for the 13 rods frame (cf. Sect. 3.1.3,

Fig. 3.1c) for different weighting factors of the inertia and the social component of

the new velocity. We see a valley of efficient combinations of the velocity

weighting factors. This valley is limited by steep hills indicating less efficient

progress and weaker goals achieved by the PSO studies. Limiting the particle’s
velocity to a certain maximum value (Fig. 2.11b) has the potential to reduce the

height of the valley’s side walls, but reduces the convergence of the optimization

process (Gekeler et al. 2014).

2.3.5 Discussion

PSO has proven to be very successful if an appropriate set of particles and velocity-

weighting factors {c1, c2, c3} has been selected. This method has the tendency either

to stick to local optima or to perform similarly to a random search if these

parameters are not well chosen (cf. Fig. 2.11) (Gekeler et al. 2014). Especially

Fig. 2.10 Nonlinear dynamic inertia weight update in PSO according to Plevris and Papadrakakis

(2011). (a) Point coordinates, here e.g. tmax¼ 90, c1,max¼ 1, c1,min¼ 0.5 and aw¼ 2.0. (b) Influ-

ence of variable aw on the update function

2 Bionic Optimization Strategies 27

http://dx.doi.org/10.1007/978-3-662-46596-7_3
http://dx.doi.org/10.1007/978-3-662-46596-7_3

with the implementation of a dynamic inertia weight update, we differentiate two

stages of the PSO process, first the exploration phase and then the following

convergence phase. The weighting factors help the user either to focus the search

on the exploration of the search space or on fast convergence of the optimization

process. The latter forces a quick search to find satisfying solutions, but is probably

not the best choice, because of limited exploration in the search space. Hence,

getting experience of choosing proper PSO settings for the different optimization

problems is necessary. Section 3.3.1 offers proposals for the adequate definition of

the PSO parameters for the first trials of this optimization procedure. Please

remember, that PSO is a population based optimization method and the number

of function evaluations may be large.

2.4 Artificial Neural Net Optimization

Christoph Widmann

The human brain is one of the most complex of known structures and superior to

modern computers in its cognitive abilities. It consists of more than 100 billion

neurons which are connected by a net of up to 100 trillion links. To emulate and

exploit this biological organ for technological purposes, scientists have built arti-

ficial models that copy the structure of the brain. These so called artificial neural

nets (ANNs) are simplifications of the complex brain structure.

In optimization, ANNs are used to represent the behavior of the whole optimi-

zation problem in one neural net. Unlike Response Surfaces, (see Sect. 2.7), it is not

necessary to know anything about the dependencies of the design variables. ANNs

are able to learn those complex dependencies without knowing them at the begin-

ning. What has to be done at the beginning is to define the architecture of the ANN.

Fig. 2.11 Dependency of the power of PSO of weighting factors for 13 rodsframe, with and

without limitation of the particles velocity. (a) No limitation of the velocity. (b) Limitation of the

velocity

28 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_3
http://dx.doi.org/10.1007/978-3-662-46596-7_2

2.4.1 ANN Architecture

In contrast to the biological brain, ANNs are built up in different layers (Fig. 2.12).

The layers are divided into:

– the input layer where neurons receive signals from the environment

– one or more hidden layer which process the output signals from the input layer

and transmit them to the next hidden or output layer

– the output layer which is fed by the (last) hidden layer. The outputs of these

neurons represent the response of an input to the ANN.

Figure 2.12a shows an ANN with two input neurons, one hidden layer with six

neurons and one output neuron. These types of ANNs are also called feed forward

nets because the information is only transferred in one direction. In most applica-

tions of ANNs, only one or two hidden layers (Fig. 2.12b) are used, as they suffice

to represent even very non-regular outputs.

Every neuron of a layer is connected with all the neurons of the following and

preceding layer (Fig. 2.13). The special feature of the connection between the

neurons is that every signal, e.g. xi, is weighted by a specific weight factor w1,ij.

With this factor, the signal is increased or reduced. In these weighting factors, the

whole knowledge of the ANN is stored.

Like the biological model of neural nets, every neuron (except neurons of the

input layer) needs an activation potential. Every incoming (weighted) signal to a

neuron is summed up to a value, e.g. Aj. With a special transfer function T(Aj), the

value of the neuron, e.g. hj is calculated. There are many different transfer functions

known and discussed by, e.g. Lagaros (Lagaros and Papadrakakis 2004), but in

most ANNs the sigmoid function or a variant of it is being used:

Fig. 2.12 ANNs with two different networks. (a) Network: 2-6-1, three layers. (b) Network: 2-5-

7-2, four layers

2 Bionic Optimization Strategies 29

T Að Þ ¼ sig Að Þ ¼ 1

1þ e�A
ð2:4Þ

Many more ANN architectures are known and in some cases it can be necessary to

use a different net architecture see Zell (1997) and Günther et al. (2010).

2.4.2 Training ANNs

There are many different methods to train an ANN. All of these methods follow an

optimization process themselves. The goal of this optimization is to minimize the

squared error E (c.f. Eq. 2.5) between a training set of known input and expected

output values and the output generated by the ANN. This is done by modifying the

weighting factors. This most commonly used training method is called supervised

learning, where the number of necessary training sets is dependent on the architec-

ture and the complexity of the optimization problem.

E ¼ 1

2

X
p

X
k

dk p � yk p
� �2 ð2:5Þ

The error of one training pair is calculated by the squared difference of the net

output ykp and the expected output dkp were k is the index of the output neuron and

p is the index of the training pair. The total error is then the sum of training pair

errors E. To measure the training progress or the convergence of the ANN, it is

important to define a testing set as well. The error of the testing set is calculated

analogously to the training set error. In some cases it can be possible to over-train an

ANN, e.g. the representation of the problem becomes worse with ongoing training

when using an insufficient number of training sets or the architecture of the net

cannot handle the complexity of the problem. This can be indicated by steadily

Fig. 2.13 Determination of the output of a simple ANN

30 R. Steinbuch et al.

increasing error values for the testing set. In that case, it may be wise to save the

actual weight factors of the net.

Most of the many training techniques are based on gradient methods for the

weighting optimization. These methods include the Hebb-rule (Hebb 1949), Delta-

rule (Widrow and Hoff 1960) and the backpropagation algorithm. One optimized

backpropagation algorithm is the Quickprop algorithm by Scott Fahlman (Fahlman

and Lebiere 1991), who used a quadratic Gradient Method for the weight optimi-

zation. A nonlinear least square training method was proposed by Levenberg and

Marquardt (Hagan and Menhaj 1994). Compared to the previously mentioned

methods, the change in weights is done after a run throughout the whole training

set. It is also possible to use any other optimization technique to optimize the weight

factors, for example evolutionary algorithms.

Example 2.2 In the following example, an ANN was trained to approximate a part

of the Schwefel function (Fig. 2.14). The Schwefel function (Schwefel 1989) is

given by:

f xð Þ ¼ 418:9829 � d �
Xd

i¼1
xi � sin

ffiffiffiffiffiffi
xij j

p� �
; ð2:6Þ

where d is the dimension of the problem. In this example we use d¼ 2 and the

considered range within xi 2 1000; 2000½ �.
To begin, a set of design points has to be chosen. The number of designs depends

on the complexity of the problem and should cover the whole area of interest. In our

shown example, there are 100 designs distributed by a Latin Hypercube sampling.

The next step is to scale the input and output values (design pairs) in a way that

they are between [0. . .1]. This is a common use, needed for most ANN training

algorithms. If the design space varies in different dimensions too much, e.g. x1
[1. . .10] and x2 [100. . .1 * e

5], it might be necessary to scale each dimension

separately so that that there is no loss of information.

1000

1500

2000

1000

1500

2000
−4000

−3000

−2000

−1000

0

1000

2000

x
1

x
2

f(
x 1,x

2)

Fig. 2.14 2D-Schwefel

function used to be

interpolated by an ANN

2 Bionic Optimization Strategies 31

For our example of an ANN architecture, we used 20 neurons in one hidden

layer. It was trained with a standard backpropagation algorithm. Figure 2.15 shows

the ANN approximating the Schwefel function at different learning stages after

10, 100, 1000, 10,000, 50,000 and 100,000 training runs.

It can be seen that during the course of ANN training the approximation becomes

more sensitive to the training data. At the beginning, there was a nearly linear

approximation, later a more or less quadratic one, and at the end a complex dynamic

approximation. To measure the quality of the ANN approximation, the coefficient

of determination of the learning and test examples can be calculated. After training

1000
1500

2000

1000

1500

2000
−4000

−2000

0

2000

x
2

x
1

f(
)x

1000
1500

2000

1000

1500

2000
−4000

−2000

0

2000

x
2

x
1

f(
)x

1000
1500

2000

1000

1500

2000
−4000

−2000

0

2000

x
2

x
1

f(
)x

1000
1500

2000

1000

1500

2000
−4000

−2000

0

2000

x
2

x
1

f(
)x

1000
1500

2000

1000

1500

2000
−4000

−2000

0

2000

x
2

x
1

f(
)x

1000
1500

2000

1000

1500

2000
−4000

−2000

0

2000

x
2

x
1

f(
)x

a) b)

c) d)

e) f)

Fig. 2.15 Approximation of the Schwefel function with an ANN during its learning progress.

(a) After 10 runs learning. (b) After 100 runs learning. (c) After 1000 runs learning. (d) After

10,000 runs learning. (e) After 50,000 runs learning. (f) After 100,000 runs learning

32 R. Steinbuch et al.

the ANN, an optimization on the approximated surface might be done with one of

the algorithms discussed in this book.

2.4.3 Conclusion

The amount of computation to qualify a neural net may be large, but it is a powerful

tool if there are many function evaluations to be done, and a single evaluation

requires much computing power itself. The ANN acts as a meta-model (cf. Sect.

2.7) which is easily capable of producing the required output with a known

exactness. Based on this meta-model, an optimization might be done.

2.5 Ant Colony Optimization

Tatiana Popova

In a similar manner to swarms of birds or fishes, from which we got the idea for the

Particle Swarm Algorithm (see Sect. 2.3), ants live in very interesting social

hierarchies that exhibit complex behaviors. Ants have been attracting human

attention for many years. Ants are typical examples of the phenomena called

Swarm Intelligence. An ant colony consists of a set of individuals, the ants, with

relatively simple responses to their environment. The ants are not underneath global

control: they do not obey direct orders from a central command. Rather, they

organize themselves by communication between individuals within their colony.

Self-organization is provided by direct communication (visual or chemical contact)

or indirect communication (stigmergy) between the colony’s members. Using such

simple self-organization, even complex tasks can be accomplished.

In their colonies (ants, bees, etc.) many tasks need to be fulfilled. Some of them

are brood tending, foraging for resources or maintaining the nest. Division of labor

is the main challenge. The coordination of those tasks requires a dynamic allocation

of individuals to different tasks. This coordination may depend on the state of the

environment or needs of the colony. Consequently, a global assessment of the

colony’s current state is required to most effectively assign tasks to individuals.

But the individuals themselves are unable to make a global assessment. The ants’
solution seems to be the use of response threshold models.

An individual labelled i engages in task j with a probability that depends on the

structure of a stimulus:

2 Bionic Optimization Strategies 33

http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_2

pi j ¼
s2j

s2j þ δ2i j
ð2:7Þ

In Eq. (2.7), each individual i has an individual response threshold δij for each task

j and sj � 0 the stimulus of task j. When the stimulus sj is much smaller than the

response threshold δij the probability pij to engage in that task is close to 0. If the

stimulus sj is essentially greater than the response threshold δij the probability is

close to 1. With the proper stimulus, that ant will tackle that task. In such a manner,

labor division is organized within a colony.

2.5.1 The Ant Colony Strategy in Bionic Optimization

The most remarkable behavior for us is the formation of “ant streets.” According to

many researchers who have been studying ants in detail, one of their most surpris-

ing abilities is to find the shortest path (Dorigo and Stützle 2004; Stock et al. 2012;

Kramer 2009). It has been shown that the ants use communication based on

pheromones that they may deposit and smell. This behavioral pattern inspired

computer scientists to develop algorithms for the solution of optimization prob-

lems. The first attempts at applying this method appeared in the early 1990s, but had

no practical applications.

In the real world, ants ramble randomly, and upon finding food, return to their

colony. They deposit pheromone trails constantly marking the paths they have

chosen. If another ant finds such a path, it tends not to continue travelling at random,

but instead follows the trail, returning and reinforcing it if it finds food. The

importance of the trail is improved by additional ants travelling along it and

depositing yet more pheromones.

An example, improving the performance of foraging, may explain the impor-

tance of this street definition for following ants. To organize foraging by

transporting food to the nest, depicted in Fig. 2.16, ants coordinate their activities

via stigmergy. This stigmergy is a mechanism of indirect coordination between

agents, here the ants, or actions mediated by modifications of the environment. A

foraging ant deposits a chemical, the previously mentioned pheromone, on the

ground which increases the probability that other ants will follow the same path

(Dorigo and Stützle 2004).

2.5.2 Description of the Approach

Let’s imagine the situation shown in Fig. 2.16. Ants are free to move between the

nest and the food source. There are two ways to the food source: one long and one

short. Here, the short one is clearly more efficient for foraging, and needs to be

34 R. Steinbuch et al.

found. For every path, we identify τ1, τ2-artificial pheromone parameters. Each

indicates the expected benefit when choosing that path. As initially

τ1 ¼ τ2 ¼ c > 0, it is necessary to provide the same choice probability for both

paths at the beginning.

In the first iteration, every ant chooses one path according to its probability of

benefit for reaching the food source and then getting back to the nest. Thereby each

ant leaves pheromone on the traversed edge. In the algorithm, this requires an

update of the pheromone parameters according to Eq. (2.10), after the first ants have

returned to their nest and the covered distance li is known.
After the initial iteration, this probability is calculated according to the formulas:

p1 ¼
τ1

τ1 þ τ2
; ð2:8Þ

p2 ¼
τ2

τ1 þ τ2
; ð2:9Þ

where

τi,new ¼ τi,old þ 1

li
: ð2:10Þ

In consequence, the probability that the ants will choose the shorter path in the

following iteration increases as the probability is higher due to the update of

pheromone parameters in Eq. (2.10). Additionally, the trail of old pheromones

evaporates and non-promising paths will lose the chance to be chosen.

Fig. 2.16 Biological ants

order

2 Bionic Optimization Strategies 35

After some time or multiple iterations, all the ants chose to use only the short

branch with the stronger signal. For this simple example, Fig. 2.17 depicts the

percentage of ants taking the short path, for population of 10 and 100 ants. We can

see that an algorithm with 100 ants is essentially faster, but 10 ants are able to

converge to the shortest path as well.

It has been shown that it is often sufficient to consider a stigmergic, indirect

mode of communication to explain how social insects can achieve self-organiza-

tion. Ant algorithms use artificial stigmergy to coordinate societies of artificial

agents. An ant colony algorithm is a probabilistic technique for solving computa-

tional problems that can be reduced to find optimal paths through graphs.

Ant Colony Optimization (ACO) algorithms have been tested on a large number

of academic problems. These include traveling salesman problems (Fig. 2.18),

where the goal is to find the shortest route that visits all given places only once,

as well as assignment, scheduling, subset, and constraint satisfaction problems.

This success with academic problems has raised the attention of industrial users

who have started to use ACO algorithms for real world applications. For instance

ACO is applied to a number of various scheduling problems such as a continuous

two-stage flow shop problem with finite reservoirs or vehicle routing problems.

ACO algorithms are very successful and widely-recognized algorithmic tech-

niques based on ant behaviors. Their success is evidenced by the extensive array of

various different problems to which they have been applied, and moreover by the

fact that ACO algorithms are currently, for many problems, among the

top-performing algorithms. They could be used for design optimization as well,

but we have learned from experience that they do not perform too well, so we do not

extend the discussion here.

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

%
 o

f a
nt

s
us

in
g

th
e

sh
or

t p
at

h

iterations

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

%
 o

f a
nt

s
us

in
g

th
e

sh
or

t p
at

h
iterations

a) b)

Fig. 2.17 Percentage of ants taking short path for different population size. (a) 10 ants population.

(b) 100 ants population

36 R. Steinbuch et al.

2.6 Non-parametric Optimization

Stephan Brieger

A typical optimization problem in structural design is to find the optimal layout or

shape of a structure within a specific region. Often the only known quantities are

loads, supports, and constraints such as mass or material restrictions. With this

starting point, the problem is not easily represented by design parameters. The

purpose of non-parametric optimization is to give engineers a method to define a

design space in regions or whole components without the process of defining the

problem in design parameters. Frequently used non-parametric structural optimi-

zation methods are Topological and Local Growth Optimization (Bendsoe and

Sigmund 2003; Haftka and Gürdal 1992; Rozvany 1997; Vanderplaats 1984). In

the early stage of concept generation, Topological Optimization can be used to

develop an efficient structural layout. In a later process of product development,

Local Growth Optimization is an efficient tool to fine-tune the optimized structural

proposal.

In the process of these optimization methods, the software implementation

automatically does a parameterization of the design space. Standard mathematical

optimization techniques are often not suitable for these problem formulations due to

the high number internal design variables.

0 2 4 6 8 10
0

2

4

6

8

10

X

Y

Fig. 2.18 Traveling

salesman problem: find

shortest route to visit all

locations

2 Bionic Optimization Strategies 37

2.6.1 Topological Optimization

Topological Optimization is a method for optimizing material layout within a

defined design space with respect to loads and constraints. The process of Topo-

logical Optimization is similar to the process of bone mineralization in living

creatures (Fig. 2.19). This biological process leads to a stiffness-optimized structure

with minimum stresses and minimum weight by modifying the material distribution

towards highly loaded areas.

In general the implementation consists of a Finite Element Analysis combined

with an optimization technique for iterative updates to the material distribution. The

design space is divided into small regions of varying density. Here we often use

Finite Elements to define these regions. To find an optimized design, the density of

each element of the FE-meshed design space is adjusted by an optimizer to match

desired objective and constraints. No shifting of nodes is performed. In practice, the

material density has been adjusted by modifying the stiffness of the corresponding

Finite Element.

The result of a Topological Optimization run is a density field of the design

space, which needs to be interpreted in most cases. Domains with high stiffness

shape the structural design proposal of the component; domains with low stiffness

form void areas.

In general the resulting design proposal needs to be re-designed and fine-tuned to

satisfy manufacturing requirements. The main steps of Topological Optimization

are represented in Fig. 2.20. The corresponding pseudocode is shown in Table 2.4.

Structural proposals by Topological Optimization often are infeasible to manu-

facture. Because of this, most commercial CAE-Software for Topological Optimi-

zation is commonly extended with features for considering manufacturing

Fig. 2.19 Human bone—a

light-weight structure

(femur)

38 R. Steinbuch et al.

Fig. 2.20 Topological

Optimization: from problem

definition to structural

design proposal.

(a) Problem definition.

(b) Result of Topological

Optimization.

(c) Re-designed proposal

to satisfy manufacturing

requirements

Table 2.4 Pseudocode:

Topological Optimization
Initial: Define problem and parameters:

– Define design space

– Define boundary conditions

Start ngenerations loop:
– Evaluate FE-model

– Adjust density(and stiffness) of each FE-element

End loop

Stop

Derive structural design from proposal

2 Bionic Optimization Strategies 39

constraints, such as casting constraints (Fig. 2.21), symmetry and pattern con-

straints, or member sizing directly in the formulation of the optimization problem.

The fact that the user does not need to define complex design variables makes

Topological Optimization an excellent tool in the early stages of design processes

to find a first design proposal or to understand basic load paths.

Fig. 2.21 History of Topological Optimization of a trailer coupling, taking into account the

direction in which the casting tools are removed. (a) Given design space at t0. (b) Design proposal

at t1. (c) Design proposal at t2. (d) Design proposal at t3. (e) Design proposal at t4. (f) Final design

proposal at tend

40 R. Steinbuch et al.

2.6.2 Local Growth

Biological structures such as tree stems change their own shape by growth and shrink

their surfaces to adapt to external loads (c.f. Fig. 1.3b). Stress peaks are reduced by

adding material at high stressed surface areas. The volume in low stressed areas is

reduced in size by shrinking the surface. This biological growth rule creates light-

weight structures with minimized notch stresses and maximized stiffness. Since this

is often the preferred objective in structural optimization problems, the local surface

growth process is adapted as an optimization tool in many CAE-Systems. There are

various different approaches to solving these problems. With simple optimality

criteria methods or growth rules, one can get good results.

The process of simulated growth is based on an iterative process of

FE-simulations and an optimization technique that updates the surface to change

the shape of the structure to meet with objectives and constraints. The shape

perturbations are either manually defined by the user or automatically determined

by the CAE-System. A common way to describe the shape changes of the Finite

Element model is to define some shapes as a perturbation b of nodal coordinates r0.

r ¼ r0 þ b ð2:11Þ

The new design can be generated by doing a linear combination of these shape vectors.

The design variable is defined as the weighting factors wi of the shape vector,

r ¼ r0 þ
Xn
i¼0

wibi ð2:12Þ

where n is the number of shapes and design variables.

Figure 2.22 shows an example for optimizing notch stresses. We start with an

initial geometry. The defined region we want to optimize is given by a simple shape

Fig. 2.22 Notch stress

optimization results in

smooth change of shape.

(a) Problem definition.

(b) Optimized shape

2 Bionic Optimization Strategies 41

http://dx.doi.org/10.1007/978-3-662-46596-7_1

representation. After some iterations, we get a smooth shape with minimized notch

stress that takes into consideration the applied loads and constraints.

2.7 Meta Models

Rolf Steinbuch

When we do any optimization or sensitivity study, we produce sets of data of goals,

and restrictions and other information in a certain region of the space of possible or

acceptable parameters. As the computation of each of these variants may be costly

in terms of time and computing power, we generally should restrict the number of

variants to the absolute minimum. From this motivation came the idea of meta-

models. Surrogate models such as quadratic Response Surfaces (RS), which we will
discuss in more detail later, and polynomial chaos expansions or Kriging (which are

built from a limited number of runs of the original model) have been introduced as

substitutes for the original time consuming FE-job model to reduce the total

computational cost.

As designers in mechanical engineering, we are dealing with variants of a basic

design of a macroscopic component. As the changes of the parameters are limited,

the change of the systems response is limited and more or less smooth as well, when

examined as functions of their parameters. So why don’t we use a sufficient number

of data in an interesting region and approximate the responses by simple and

smooth functions? If there are no catastrophic changes in the results of the compu-

tation, their representation, often called Response Surface (RS), should be a fairly

regular function. Such functions often may be approximated by smooth functions.

There are many other ways to define meta-models see, e.g. McKay et al. (1979), Au

and Beck (1999), Das and Zheng (2000), Matthies et al. (2013), Dubourg

et al. (2013), Bourinet et al. (2011).

Often we use low-level polynomials to do the approximation, e.g. parabolic

interpolations. We restrict our presentation to these simple polynomial RS, as they

help to explain everything we want to demonstrate.

Example 2.3 For a 1D Problem, the second order RS is nothing more than the

polynomial found by the classical least square method. So if we take a set of,

e.g. five points {(p, s)}

p ¼ �2, � 1, 0, 1, 2f g; s ¼ 2; 3; 4; 4; 2f g

we may approximate them by

42 R. Steinbuch et al.

s ¼ �0:5 p2 þ 0:1pþ 4; ð2:13Þ

a parabola which is plotted together with the data points in Fig. 2.23. The squared

averaged error (Eq. 2.18) of this approximation would be

error ¼ 0:368:

If this error is small enough, we may use the approximation to do local studies.

For example, we can search for the position of the local maximum of this curve,

which is indicated in Fig. 2.23 as well, or may be found by

s0 ¼ � pþ 0:1 ¼ 0 ð2:14Þ

to be at the p-value

pmax ¼ 0:1:

In the general case of a n-dimensional problem, RSs are defined by low-order

polynomial functions of the free parameters as well. For a second order approxi-

mation, we may use the notation

S ¼ a0 þ a1 p1 þ a2 p2 þ . . .þ an pn
þa11 p1 p1 þ a12 p1 p2 þ . . .þ an�1,n pn�1 pn þ ann pn pn

¼ a0 þ
Xn
k¼1

ak pk þ
Xn
k¼1

Xn
l¼k

akl pk pl

¼ a0 þ PT∇Sþ 1

2
PTHP;

ð2:15Þ

Fig. 2.23 1D Response

Surface used to find the

optimum of a set of data

points

2 Bionic Optimization Strategies 43

where P ¼ p1; p2; . . . ; pnð ÞT stands for the difference of the centred parameter set

from a given centre P0 and the parameter set Pi belonging to the i-th evaluation

P ¼ Pi � P0. Higher order schemes may be used, but have the tendency to show

local oscillations or non-unique maxima or minima. So generally, the degree of the

polynomial approximation should not exceed the value of 2. The coefficients ai and
aik may be found by least squares from a sufficiently large set of function evalua-

tions of the optimization objective or goal z in the vicinity of an interesting

parameter set P0 ¼ p10; p20; . . . ; pn0ð ÞT . The coefficients of the linear terms

approximate the gradient∇S at the position of the function evaluation. The second
order terms approximate the Hessian H. The minimum (or maximum) of the

response surface may be found by

Pmin ¼ �H�1∇S; ð2:16Þ

which is often a good guess for the position of the exact optimum of z(p1, p2, . . ., pn)
as long as the function does not behave too irregularly. One sign that this is regular

is that the determinant H must not be singular. To be more specific, H should be

either positive or negative definite, meaning its Eigen values are all positive or all

negative. To determine the coefficients ai and aik, more than

ncoeff ¼ 1þ nþ n nþ 1ð Þ
2

ð2:17Þ

function evaluations are necessary, a number which may be rather large, especially

in the case of an optimization with many free parameters.

Both, gradient method (cf. Sect. 1.4) and Response Surface approximations

often help to locate an optimum faster than the bionic methods which locally do a

random search and tend to miss the exact solution.

There should be no doubt that this interpolation is only meaningful if there are

essentially more data points available than the coefficients we are trying to find.

Figure 2.24a shows an interpolated RS and the data points used to generate the

coefficients for a 2D problem. The quality of this surrogate may be again checked

by summing up the maximum differences between RS and input data f.

error ¼ 1

ndata

Xndata
i¼1

RS Pið Þ � f Pið Þð Þ2 ð2:18Þ

If this error is small enough, we may use the RS instead of performing more

function evaluations, e.g. by time consuming FEM-Jobs. As in the 1D case, the

optimum may be found by a solution using Eq. (2.16) or by an iterated search such

as indicated in Fig. 2.24b.

In Sect. 2.8 we shall return to this example to apply the response surface to a

numerical integration.

44 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_1
http://dx.doi.org/10.1007/978-3-662-46596-7_2

As the calculation of the coefficients in Eq. (2.15) does not take much time

compared to a finite element job, it is a good idea to determine the RS as soon as

there are enough data points available. The RS predicts a maximum given by

Eq. (2.16) which may indicate a region where to search for a local optimum by a

gradient method. The efficiency of such statements depends on the quality of the

approximation that is given by Eq. (2.18) or corresponding error estimators.

The RS must not always take into account all the allowable parameter combi-

nations that may occur in the study. It might be better to limit the data used to some

region where some or many promising solutions have been found.

Some care has to be taken to avoid clustering of the evaluation positions Pi in the

parameter space. The parameters should cover the interesting region in a less or

more homogenous way. On the other hand, a too regular grid of points may produce

problems of pseudo-representations (cf. Sect. 2.8). Therefore, anti-clustering

schemes like the Latin Hyper Cube are often used to produce strong but relatively

small sets of data points.

Example 2.4 To provide a more realistic problem, we try to accelerate the

optimization of the can extrusion (cf. Sect. 5.2.2). We have nine optimization

parameters, so the number of coefficients of the RS (cf. Eq. 2.18) is

ncoeff ¼ 1þ 9þ 9ð9þ 1Þ
2

¼ 55:

We should use about

ndata � 2 � ncoeff � 100

variants.

These 100 input data should suffice to have a nice representation of the data by

the RS. In consequence we do the first 100 studies, e.g. using a PSO optimization

scheme. From these 100 jobs, we build the RS and find the optimum by Eq. (2.16).

Continuing the search, we produce more results or variants of the design by the

Fig. 2.24 2D-RS set-up and use to find a local optimum. (a) Data points and RS generated. (b) RS

used to find optimum

2 Bionic Optimization Strategies 45

http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_5

PSO. After some steps, we take the new results, replace the worst from the initial set

and perform another RS-study. This procedure is repeated for some steps. Fig-

ure 2.25 indicates, that the meta model predicts designs that are essentially better

than the ones found by the PSO. So we either come to faster predictions of good

designs or find interesting improvements that are superior to the PSO-results after

long searches.

In a broader sense we could think of an artificial neural net (ANN, cf. Sect. 2.4)

as a meta model too. After some training, the ANN produces function values at

given input of the free variables. The ANN are not of a low-level polynomial type

but can approximate any function that depends on the free parameters. The quality

of prediction of the functions value depends on the coverage of the parameter range

and is measured during the testing phase.

2.8 Random or Deterministic Methods

Rolf Steinbuch

In Bionic Optimization we are in the field of non-deterministic methods, where the

next step in a sequence is not necessarily known in the preceding step. Therefore,

we should pay some attention to indeterminate problems. Certainly, we are not able

to discuss all the problems related to stochastic processes and the specific ways to

handle them. Other authors (e.g. Doltsinis 2012; Dreo and Siarry 2007) discuss

these aspects in greater detail. Here we focus on some basic phenomena that are

known to cause trouble with some optimizations.

All Bionic Optimization is at its core a random-based strategy. Variants of initial

designs or drafts are created by some random modification of their parameters.

Even if we use many different methods to avoid the search of the whole range of

allowable solutions, we do not know where our next versions will be placed in the

parameter space. Therefore, some discussion of random-based methods might help

Fig. 2.25 Apply meta

model improvement to can

backwards extrusion

46 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_2

to understand the difference between deterministic methods such as the gradient

based optimization and the bionic ones.

All random-based methods are hindered by slow convergence. From basic

statistics, we remember that there are laws that relate errors to the number of tests:

error e 1ffiffiffi
n

p ; ð2:19Þ

where n is the number of tests to be taken into account. So to reduce the error by

50 %, we need to increase the number of tests by a factor of 4. Furthermore,

according to Eq. (2.19), we state that the ratio between error and number of trials

for a given problem is roughly constant.

c � errori � ffiffiffiffi
ni

p ð2:20Þ

When using random-based methods, people tend to introduce accelerating strate-

gies to reduce the number of tests or, in our case of function evaluations, of time-

consuming numerical simulations. The unthinking search of blind stochastic pro-

cesses often takes too many trials to find good results. Intelligent users under

pressure of time and budgets hope to replace it by faster, more intelligence-based

methods.

Example 2.5 The Monte-Carlo integration of

Iex ¼
ð1
0

exdx ¼ e1 � 1 ¼ 1:71827 . . .

may help to understand the problem. Monte-Carlo-Integration is done by placing

nt random points in the rectangle 0; 1½ � � 0; 3½ � (Fig. 2.26a). We take the relative part

nb of points below ex as measure of Iex.

Iex � 3
nb
nt

From Table 2.5 we learn that the error follows Eq. (2.19), so we need to increase

the number of function evaluations by a factor of 4 to reduce the error of the

estimate by a factor of 2 as we expected from our knowledge of statistics.

If we place a regular grid of nx � ny points over the rectangle 0; 1½ � � 0; 3½ �
(Fig. 2.26b) and quadruple the number of points from step to step, we realize that

the error decreases proportionally close to the number of steps. We can guess more

efficiently by defining a linear or parabolic shaped segment around the values of ex

and sub-sectioning there. The dashed parallelogram in Fig. 2.26b indicates such a

region. It is evident, that, depending on the shape of the segment, the error would

2 Bionic Optimization Strategies 47

decrease even faster. The consequence is that we often tend to avoid purely random

methods. Unfortunately, such regular and intelligent approaches may lead to totally

erratic results. A simple example may help us to understand the danger of such

intelligent approaches.

Example 2.6 Let’s find the integral of a set of data which we may not access easily

but follows the (to us unknown) law (Fig. 2.27)

0 0.5 1
0

1

2

3

x

ex

0 0.5 1
0

1

2

3

x

ex

a) b)

Fig. 2.26 Random and regularly spaced integration points. (a) Random points to guess integral.

(b) Regularly spaced grid for integration, including a local sector to accelerate the convergence

Table 2.5 Averaged absolute

error (100 runs) for different

number of trials

n error
ffiffiffi
n

p
c � error*

ffiffiffi
n

p

100 0.1254 10.00 1.25

200 0.0874 14.14 1.24

400 0.0584 20.00 1.17

800 0.0401 28.28 1.13

1600 0.0315 40.00 1.25

3200 0.0206 56.57 1.17

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

x

si
n2 (π

*x
)

x−values: polynom 4th order

x−values: simpsons rule

x−values: trapezoidal rule

x−value: midpoint rule

Fig. 2.27 Plot of sin2(πx)

48 R. Steinbuch et al.

y ¼ sin 2ðπxÞ, x ¼ 0 . . . 8:

There is no doubt that

Iex ¼
ð8
0

sin 2 πxð Þdx ¼ 4

is the exact value of the integral. Doing a numerical study, we start by taking the

value of x ¼ 4, the centre of the interval as the starting value, multiply it by the

length of the interval and find I0 ¼ 0 (midpoint rule or rectangle method). Using the

trapezoidal rule yields

I1 ¼ 1

2
sin 2 0ð Þ þ sin 2 8πð Þ� �� 8 ¼ 0: ð2:21Þ

Then, using Simpson’s rule yields

I2 ¼ 1

6
sin 2 0ð Þ þ 4 � sin 2 4πð Þ þ sin 2 8πð Þ� �� 8 ¼ 0: ð2:22Þ

The x-values of the numerical integrations are indicated in Fig. 2.27; they all are

positioned at roots of sin2(πx).Further increasing the polynomial order from 2 to

4 or subdivision of the interval yields Inum ¼ 0 (Table 2.6) for at least two more

steps, so we might accept it. So our intelligent and correct results are all wrong.

If we take a set of random x-values in the interval [0, 8] and multiply the average

function value by the length of the interval to estimate the value of the integral, we

learn from Table 2.7 that there is a quick realistic guess of the true value. But even if

Table 2.6 Misleading

numerical integration of a

simple function

Degree of integration Label of method Value of integral

0 I0 0

1 I1 0

2 I2 0

4 I3 0

Table 2.7 Function

integration using random

x-values

of x-values Value of integral Error (%)

1 1.742 56.445

2 0.904 77.403

4 3.530 11.750

8 3.999 0.020

16 4.237 5.920

32 4.434 10.843

64 4.076 1.903

2 Bionic Optimization Strategies 49

the example shows nice data, the convergence to more exact values still follows the

error estimator from Eq. (2.19).

To avoid any confusion, it must be mentioned that really intelligent guesses

would use the benefit of the periodic characteristic of the sine function.

ð8
0

sin 2 πxð Þdx ¼ 16

ð1=2
0

sin 2 πxð Þdx ¼ 4: ð2:23Þ

As a consequence of this experience, it should be mentioned that deterministic

procedures generally are faster than stochastic ones. But their tendency to be based

on regular divisions inhibits the danger of failure, if the studied data follows a

corresponding regularity. A general rule could be to use either deterministic or

stochastic methods, but to be very careful when mixing them.

Example 2.7 Let’s return to the response surfaces (RS) to discuss a more efficient

way to solve the integral. We want to show how to use RS to approximate ex by a

small number of data points and use the approximation for an estimate of

Iex ¼
ð1
0

exdx ¼ e1 � 1 ¼ 1:71827 . . . : ð2:24Þ

In the range of x; yð Þ ¼ 0; 1½ � � 0; 3½ �, we define a set of nrand data points by a

random definition or by a more qualified scheme such as Latin Hypercubes (McKay

et al. 1979). For each of the points (xi, yi), we define a value

zi ¼ yi � exi : ð2:25Þ

These triples (xi, yi, zi) are used to define a polynomial in x and y using a least square
method or another appropriate scheme:

z x; yð Þ ¼ a0 þ a1xþ a2yþ a3x
2 þ a4xyþ a5y

2 ð2:26Þ

As we have six coefficients a0 . . . a5 to be determined,ndata ¼ 12 (at least twice the

number of coefficients) would be a sufficient number of data points. From z x; yð Þ
¼ 0 in Eq. (2.26), we find a curve y(x) that approximates ex. Using some data on this

curve allows for an approximation of the value of the integral. For 11–21 points and

using Simpson’s integration for the data, the error is in the range of 2–5 %. The use

of RS is essentially more efficient than the random methods above, at least in this

straightforward case. Figure 2.28 illustrates the process.

This is not very surprising, as seen in the Example 2.5, where we take into

account only whether a point lies below or above the ex-function. Here, we use the
distance from the function to improve our guess. Such an approach corresponds to

the increasing of the integration scheme in numerical integration, e.g. using

Simpson’s rule instead of the trapezoidal rule.

50 R. Steinbuch et al.

For our optimization problems we conclude that we always consider whether it

is appropriate to use bionic, random-based methods. If we do so, we employ them

only up to a certain point. If we realize that our method approaches a local optimum,

it could be a good idea to switch to a deterministic method to locate the exact value

of the optimum. But when we continue searching other optima, we return to the

bionic method we feel is adequate to the problem.

2.9 Violation of Boundary Conditions

Simon Gekeler

Beside keeping our optimization process to explore the given search space, defined

by the parameters’ upper and lower bounds, usually we need to comply with further

constraints to get an acceptable and feasible optimization result. In all sequences of

parameter sets based on random input, there is the potential of violating restrictions

or boundary conditions. There are problems related to the fact that some parameter

combinations cause infeasible geometries or unwanted geometry shapes, such as

too small wall thicknesses. Exceeding limits on physical responses, such as the

maximum stress or displacement, have to be taken into account as well. Thus, as

indicated in Fig. 2.29, our search space may contain forbidden regions and we do

not know where they are located.

The compliance of the defined parameter limits is not an onerous effort as we can

directly influence the generation of new variants or check the proposals of the

optimization algorithm before there is the computation of the new variants. Param-

eter values outside of the defined range can be corrected to keep the individuals

Fig. 2.28 Approximation of ex by a response surface to integrate the function

2 Bionic Optimization Strategies 51

exploring the desired region. The easiest way is to reset a lost individual exactly on

the exceeded parameter boundary. When doing this intervention, furthermore, the

characteristic of each optimization procedure should be considered. For the PSO

algorithm, for example, we recommend the modification of the particles’ current
velocity vector as well, as otherwise the inertia value drives the particle in the next

iteration above the parameter limit again, and this decreases the performance of the

optimization process (cf. Eq. 2.1).

We can only identify unacceptable parameter sets in the search space after the

computation of new designs. To recognize violations in the optimization process, in

general, every restriction, such as stress or displacement limits, is defined with an

inequality constraint represented by the formulation

g j pð Þ � 0

with

j ¼ 1 . . .m;

where g represents the restriction value depending on the optimization parameters

p and m is the number of restrictions for one optimization problem. To deal with

violated inequality constraints there are many different methods available (Koziel

and Michalewicz 1999; Gekeler et al. 2014).

The easiest way is to remove all unacceptable individuals from the population

and to continue to produce members of the respective set until the required number

of acceptable individuals is found. There is no reason not to use this selection type

Fig. 2.29 Search space with infeasible combinations of the parameter values

52 R. Steinbuch et al.

unless the cost of a specific function evaluation is too extensive to produce a

number of individuals that may be essentially larger than the number of usable

individuals for the optimization process. Typical examples for such expensive

individuals are non-linear FE-studies, where it takes some hours of computing

time to find each specific solution.

Another way to keep the population near to the feasible range is to punish all
violations of the given restrictions (Fig. 2.30). A penalty value pen weights the

intensity of violation. This penalty is added to or subtracted from the objective z of
the individual (Schumacher 2013). Then the optimization problem is

max ~z ðpÞ ¼ zðpÞ � r � penðpÞ

and use, e.g.

pen pð Þ ¼
Xm
j¼1

max g j pð Þ, 0
� �2

; ð2:27Þ

where r is an additional user defined weighting. In consequence the individual is

less attractive for the optimization procedure, while the non-punished individuals

have better chances to reproduce in EVO or act as an attractor in PSO. On the other

hand, punished individuals can also temporarily lead others to promising regions.

Thus every computed design offers information about the search space. Further-

more, the penalty method allows for the approach to an optimum, located near a

restriction boundary, from the infeasible region, too. The main disadvantage is that

an optimization method with the standard penalty method does not guarantee

−4 −3 −2 −1 0 1

−40

−20

0

20

40

60

80

100

120

p
1

go
al

:
 z

(p
1),

 z
(p

1)

~
allowable range

g(p
1
)

z(p
1
), with penalty

z(p
1
), without penalty

~

Fig. 2.30 Handling the violation of restriction g(p1)� 0 with the penalty method when doing a

maximization problem

2 Bionic Optimization Strategies 53

feasible results. But by increasing the weighting factor r, we can intensify the

punishment and raise the probability to obtain acceptable outcomes. There are

many variants and specific modifications in literature that may improve the perfor-

mance of the various optimization procedures, e.g. the multiple linear segment

penalty function for PSO, proposed by Plevris and Papadrakakis (2011).

A third idea among many others is to fix the parameters of the violating

individual on the border of the allowable space (Fig. 2.31). This may be easily

done for geometric input, but can be difficult if derived values such as stresses or

displacement have to be considered. In such cases, reducting the mutation from the

good parents’ data in EVO or limiting the particles’ velocity in PSO may be used. If

the parameters change less, then the objective and the derived values will change

less as well, so the violation may be avoided.

References

Au, S. K., & Beck, J. L. (1999). A new adaptive importance sampling scheme for reliability

calculations. Structural Safety, 21, 135–158.
Bendsoe, M., & Sigmund, O. (2003). Topology optimization: Theory, methods and applications.

Berlin: Springer.

Bourinet, J.-M., Deheeger, F., & Lemaire, M. (2011). Assessing small failure probabilities by

combined subset simulation and Support Vector Machines. Structural Safety, 33, 343–353.
Chelouah, R., & Siarry, P. (2000). A continuous genetic algorithm designed for the global

optimization of multimodal functions. Journal of Heuristics, 6, 191–213.
Das, P. K., & Zheng, Y. (2000). Cumulative formation of response surface and its use in reliability

analysis. Probabilistic Engineering Mechanics, 15, 309–315.
Doltsinis, I. S. (2012). Stochastic methods in engineering. Southampton: WIT Press.

Dorigo, M., de Oca, M. A. M., & Engelbrecht, A. (2008). Particle swarm optimization.

Scholarpedia, 3, 1486.
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.

Dreo, J., & Siarry, P. (2007). Stochastic Metaheuristics as sampling techniques using swarm

intelligence. In T. S. C. Felix & K. T. Manoj (Eds.), Swarm intelligence, focus on ant and

Fig. 2.31 Limitation of the

individuals jump to handle

the violation of boundary

conditions

54 R. Steinbuch et al.

particle swarm optimization. Vienna, Austria: InTech Education and Publishing. doi:10.5772/

5105. Available from: http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_

and_particle_swarm_optimization/stochastic_metaheuristics_as_sampling_techniques_using_

swarm_intelligence. ISBN 978-3-902613-09-7.

Dubourg, V., Sudret, B., & Deheeger, F. (2013). Metamodel-based importance sampling for

structural reliability analysis. Probabilistic Engineering Mechanics, 33, 47–57.
Fahlman, S., & Lebiere, C. (1991). The cascade-correlation learning architecture. Carnegie-

Mellon University Pittsburg School of Computer Science.

Femur. Femur fibre arrangement for strength, picture from: Wikimedia Commons (26.05.15).
Original: Popular Science Monthly Volume 42.

Gekeler, S. (2012). Die Partikelschwarmoptimierung in der Strukturmechanik. Master thesis,

Reutlingen University.

Gekeler, S., Pandtle, J., Steinbuch, R., &Widmann, C. (2014). Remarks on the efficiency of bionic

optimisation strategies. Journal of Mathematics and System Science, 4, 139–154.
Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization. New York:

Wiley.

Glover, F., & Laguna, M. (1999). Handbook of combinatorial optimization (pp. 2093–2229).
New York: Springer US.

Günther, D., & Wender, K. F. (2010). Neuronale netze. Würzburg: Huber Hans.

Haftka, R. T., & Gürdal, Z. (1992). Elements of structural optimization. Dordrecht: Kluwer.
Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt

algorithm. IEEE Transaction on Neural Networks, 5, 989–993.
Hansen, P., & Mladenović, N. (2005). Variable neighborhood search (pp. 211–238). New York:

Springer US.

Hebb, D. O. (1949). The organization of behavior. Bulletin of mathematical biophysics (Vol. 5).
New York: Wiley.

Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology on particle

swarm performance. Proceedings of the 1999 Congress on Evolutionary Computation, 3,
1931–1938.

Kennedy, J. (2003). Bare bones particle swarms. Proceedings of the IEEE Swarm Intelligence
Symposium. S. 80–87.

Kennedy, J., & Eberhardt, R. (1995). Particle swarm Optimization. IEEE International Confer-
ence on Neural Networks (pp. 1942–1948).

Kennedy, J., & Eberhardt, R. (1997). A discrete binary version of the particle swarm algorithm.

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
(pp. 4104–4108).

Koziel, S., & Michalewicz, Z. (1999). Evolutionary algorithms homomorphous mappings, and

constrained parameter optimization. MIT Press Journals, 7, 19–44.
Kramer, O. (2009). Computational intelligence: Eine Einf€uhrung. Berlin: Springer.
Lagaros, N. D., & Papadrakakis, M. (2004). Learning improvement of neural networks used in

structural optimization. Advances in Engineering Software, 35, 9–25.
Matthies, H. G., Litvinenko, A., Rosić, B. V., Kučerová, A., Sýkora, J., & Pajonk, O. (2013).

Stochastic setting for inverse identification problems. Report to workshop numerical methods
for PDE constrained optimization with uncertain data. Report No. 04/2013. DOI:10.4171/
OWR/2013/04, 27 January 2013

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code.

Technometrics, 21, 239–245.
Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: Simpler, maybe

better. IEEE Transactions on Evolutionary Computation, 8, 204–210.
Perez, R. E., & Behdinan, K. (2007). Particle swarm optimization in structural design. In F. T.

S. Chan & M. K. Tiwari (Eds.), Swarm intelligence: Focus on ant and particle swarm
optimization.

2 Bionic Optimization Strategies 55

http://dx.doi.org/10.5772/5105
http://dx.doi.org/10.5772/5105
http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/stochastic_metaheuristics_as_sampling_techniques_using_swarm_intelligence
http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/stochastic_metaheuristics_as_sampling_techniques_using_swarm_intelligence
http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/stochastic_metaheuristics_as_sampling_techniques_using_swarm_intelligence
http://dx.doi.org/10.4171/OWR/2013/04
http://dx.doi.org/10.4171/OWR/2013/04

Plevris, V., & Papadrakakis, M. (2011). A hybrid particle swarm—Gradient algorithm for global

structural optimization. Computer-Aided Civil and Infrastructure Engineering, 26, 48–68.
Rechenberg, I. (1994). Evolutionsstrategie’94. Stuttgart: Frommann-Holzboog.

Rozvany, G. I. N. (1997). Topology optimization in structural mechanics. Vienna: Springer.
Schumacher, A. (2013). Optimierung mechanischer Strukturen. Berlin: Springer.
Schwefel, H. P. (1989). Numerical optimization of computer models. Chichester: Wiley.

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. IEEE World Congress on

Computational Intelligence. Evolutionary Computation Proceedings (pp. 69–73).
Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., & Wolf, P. G. (2006). A

classification for extant ferns. Taxon, 55, 705–731.
Steinbuch, R. (2010). Successful application of evolutionary algorithms in engineering design.

Journal of Bionic Engineering, 7(Suppl), 199–211.
Stock, P., & Zülch, G. (2012). Reactive manufacturing control using the ant colony approach.

International Journal of Production Research, 50, 6150–6161.
Vanderplaats, G. N. (1984). Numerical optimization techniques for engineering design.

New York: McGraw-Hill Ryerson.

Widrow, B., & Hoff, M. E. (1960). Adaptiv switching circuits. IREWESCON Convention Record.

Zell, A. (1997). Simulation neuronaler Netze. München: Oldenbourg.

56 R. Steinbuch et al.

Chapter 3

Problems and Limitations of Bionic

Optimization

Tatiana Popova, Iryna Kmitina, Rolf Steinbuch, and Simon Gekeler

We have seen that Bionic Optimization can be a powerful tool when applied to

problems with non-trivial landscapes of goals and restrictions. This, in turn, led us

to a discussion of useful methodologies for applying this optimization to real

problems. On the other hand, it must be stated that each optimization is a time

consuming process as soon as the problem expands beyond a small number of free

parameters related to simple parabolic responses. Bionic Optimization is not a

quick approach to solving complex questions within short times. In some cases it

has the potential to fail entirely, either by sticking to local maxima or by random

exploration of the parameter space without finding any promising solutions. The

following sections present some remarks on the efficiency and limitations users

must be aware of. They aim to increase the knowledge base of using and encoun-

tering Bionic Optimization. But they should not discourage potential users from this

promising field of powerful strategies to find good or even the best possible designs.

3.1 Efficiency of Bionic Optimization Procedures

Iryna Kmitina and Tatiana Popova

Bionic Optimization strategies have proven to be efficient in many applications,

especially where there are many local maxima to be expected in parameter spaces

of higher dimensions. In structural mechanics, the central question is whether one

particular procedure is to be preferred generally or if there are different problem

types where some procedures are more efficient than others. Evolutionary

T. Popova • I. Kmitina • R. Steinbuch • S. Gekeler (*)

Hochschule Reutlingen, Reutlingen Research Institute, Alteburgstraße 150, 72762 Reutlingen,

Germany

e-mail: Tatiana.Popova@Reutlingen-University.DE; Iryna.Kmitina@Reutlingen-University.

DE; Rolf.Steinbuch@Reutlingen-University.DE; Simon.Gekeler@Reutlingen-University.DE

© Springer-Verlag Berlin Heidelberg 2016

R. Steinbuch, S. Gekeler (eds.), Bionic Optimization in Structural Design,
DOI 10.1007/978-3-662-46596-7_3

57

mailto:Tatiana.Popova@Reutlingen-University.DE
mailto:Iryna.Kmitina@Reutlingen-University.DE
mailto:Iryna.Kmitina@Reutlingen-University.DE
mailto:Rolf.Steinbuch@Reutlingen-University.DE
mailto:Simon.Gekeler@Reutlingen-University.DE

Optimization with some sub-strategies, Particle Swarm Optimization, Artificial

Neural Nets, along with hybrid approaches that couple the aforementioned methods

have been investigated to some extent. These approaches are not uniquely defined,

but rather imply many variants in the definition and selection of next-generation

members, varying settings of the underlying processes, and criteria for changing

strategies. Some simple test problems were used to quantify the performance of

these different approaches. The measure of the procedures performance was the

number of individuals which needed to be studied in order to come up with a

satisfactory solution. As our main concern is problems with many parameters to be

optimized, artificial neural nets do not show sufficient convergence velocities in our

class of optimization studies to be included. Evolutionary Optimization, including

its subclasses of Fern Optimization, and Particle Swarm Optimization prove to be

of comparable power when applied to the test problems. It is important to note that,

for all these approaches, some experience of the optimization parameters has to be

gathered. In consequence, the total number of runs or individuals necessary to do

the final optimization is essentially larger than the number of runs during this final

optimization. Good initial proposals prove to be the most important factor for all

optimization processes.

3.1.1 Comparing Bionic Optimization Strategies

As discussed in many sections of this book, Bionic Optimization may be defined by

many different approaches. In this section, we deal with some of the most com-

monly accepted classifications, without taking into account all the many

sub-classifications that might be found in the literature. The central approaches

we compare are:

– Evolutionary Strategy (EVO, Sect. 2.1) (Rechenberg 1994; Steinbuch 2010)—

where paired or crossed parents have children by the combination and mutation

of their properties. These children, or some of them, are parents in the next

generation.

– Fern Strategy (FS, Sect. 2.2)—which may be regarded as a simplification of

Evolutionary Optimization. Individuals have offspring by mutation only, not by

crossing properties with other members of the parent generation.

– Particle Swarm Optimization (PSO, Sect. 2.3) (Coelho and Mariani 2006;

Plevris and Papadrakakis 2011)—where a population drifts through the possible

solution space. The swarm’s coherence is given by simple rules about the

velocity of the individuals.

– Artificial Neural Nets (ANN, Sect. 2.4) (Berke et al. 1993; Lagaros and

Papadrakakis 2004; Widmann 2012)—where training of the net yields an under-

standing of the solution space and allows the prediction of the system’s response
to given input. As ANN are not very efficient when applied to problems with

many free parameters, we do not discuss them here (Widmann 2012).

58 T. Popova et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_2

3.1.2 Measuring the Efficiency of Procedures

To quantify the efficiency of the different optimization strategies, we must intro-

duce a measure that allows us to uniquely define the amount of work required to

achieve a predefined quality. From previous experience, we propose using the

number of individuals to be analyzed before coming close to an accepted good

value. This requires knowledge of what a good solution would be, which is

generally not known when we start studying new problems.

To consider the violation of boundary conditions (cf. Sect. 2.9) we restrict our

present study to the use of penalty functions. The geometric input is set to the

minimum or maximum value, if the randomly produced data exceed the respective

limits. For PSO, we invert the particle’s previous velocity, if it violates given limits

in addition to the penalty value. This combined approach has the advantage of

simple applicability.

3.1.3 Comparing the Efficiency of Bionic Optimization
Strategies

Optimization is an expensive and time consuming process. We need to understand

which procedure and which combinations of parameters may lead to a good and

acceptable result within a reasonable amount of time.

Test Examples

Figure 3.1 depicts the five test examples used while Table 3.1 summarizes their

data. We want to minimize the mass of the frames by varying the rods’ cross

sections without exceeding their maximum stresses and displacements. The grid

size of the examples is 1000 mm, except for example F2 where the grid size is

360 in. Example F2 used imperial units (in., kip) the other frames use mm and

Newton.

To come up with comparable results, we performed a series of 20 loops for each

problem and each strategy to avoid having only one or few very good or very bad

results. Also, the optimization settings we used were based on previous experience

with the underlying problems, so the number of runs presented does not come from

naı̈vely starting a procedure, but includes some preliminary work which is impos-

sible to quantify.

3 Problems and Limitations of Bionic Optimization 59

http://dx.doi.org/10.1007/978-3-662-46596-7_2

Input and Results of the Test Examples

Tables 3.2, 3.3 and 3.4 list the inputs of the test runs used. Table 3.5 and Fig. 3.2

(individuals per loop) summarize the results of the test runs. The most important

data are the number of individuals analyzed to find a sufficient good design labelled

as ‘Individuals [1000]’. The number given multiplied by 1000 gives the total

number of individuals required to find the proposed design. mean and stddev
(standard deviation) and best are descriptions of the results of the 20 runs. The

ratio of the difference between the best and the average result divided by the

standard-deviation (reldev) gives an idea of the stability of the strategy.

Fig. 3.1 Test frames with loads and supports. (a) F1: 6 rods frame. (b) F2: 10 rods frame. (c) F3:

13 rods frame. (d) F4: 58 rods frame. (e) F5: 193 rods frame

Table 3.1 Data of test problems

Frame Free param. Grid size Amax/Amin E-Mod σmax dmax

F1 6 1000 mm 600/20 mm2 200 GPa 120 MPa 0.5 mm

F2 10 360 in. 35/0.1 in.2 10 Msi 25 ksi 2.0 in.

F3 13 1000 mm 400/20 mm2 200 GPa 50 MPa 0.5 mm

F4 58 1000 mm 400/20 mm2 200 GPa 100 MPa 2.0 mm

F5 193 1000 mm 600/20 mm2 200 GPa 450 MPa 20 mm

Parameters: # of rods in frame; grid size: horizontal or vertical distance between the nodes; Amax,

Amin: maximum and minimum allowed cross section area of the rods; E-Mod: Young’s modulus;

σmax: maximum allowed stress in rod; dmax: maximum allowed displacement of nodes

60 T. Popova et al.

Interpretation of the Results

EVO, FS and PSO prove to be of a comparable efficiency when applied to the four

smaller problems (F1, F2, F3, F4). Figure 3.2 indicates that there might be a nearly

linear relation between the number of optimization variables and the individuals

required to find good proposals. For the largest problem, F5, FS displays a perfor-

mance that is essentially weaker than EVO and PSO. EVO and PSO seem to be of

comparable power when applied to the problem class which we discuss here. FS

shows promising results if the number of free parameters is not too large, but is less

successful in random search in high dimensional spaces. The scatter indicator

reldev proposes that PSO has a more stable tendency to find solutions near the

best, while EVO and FS show a larger range after the 20 runs.

Some knowledge may be gleaned from the results of these series of studies.

Foremost, that optimization, especially Bionic Optimization, is a process that

consumes large amounts of time and computing power. Furthermore the results

Table 3.2 Optimization settings used for EVO

Model Parents Kids Mut. rad. max Mut. rad. min Generations

F1 10 20 0.5 0.05 60

F2 5 10 0.5 0.05 40

F3 5 10 0.5 0.05 50

F4 50 100 0.5 0.05 100

F5 100 200 0.5 0.05 200

Table 3.3 Optimization settings used for FS

Model Parents Kids/parent Mut. rad. max Mut. rad. min Generations

F1 10 5 0.5 0.05 100

F2 10 4 0.5 0.05 50

F3 20 5 0.5 0.05 100

F4 100 5 0.5 0.05 200

F5 200 5 0.5 0.05 200

Mutation radius reduced for EVO and FS: 0–25 % of generations: rmut¼ 0.50, 25–50 % of

generations: rmut¼ 0.20, 50–75 % of generations: rmut¼ 0.10, 75–100 % of generations:

rmut¼ 0.05

Table 3.4 Optimization

settings used for PSO
Model Particles Generations

F1 10 100

F2 10 50

F3 20 100

F4 100 200

F5 200 200

Weighting factors: c1¼ 0.08, c2¼ 0.005, c3¼ 2.0

3 Problems and Limitations of Bionic Optimization 61

presented in this section would not have been found without a large number of

preliminary studies providing experience in the field of frame optimization.

The input characteristics used in the test runs is derived from these preliminary

studies. For example the selection of the three weighting factors {c1, c2, c3} for the
PSO required 100,000 runs. The proposal of the reduction of the mutation range for

EVO and FS is the result of many studies as well. The proposal to use a number of

initial parents or individuals in the size of the number of free variables for EVO and

PSO is based on many studies, as well as the idea to use a large number of initial

parents and a small number of children in FS.

Table 3.5 Results of 20 optimization runs per problem

Strategy Model Mean Stddev Best Reldev Individuals [1000]

EVO F1 1.62e6 0.716e3 1.62e6 1.50 12

F2 6.33e4 4.50e3 5.47e4 1.90 8

F3 2.56e6 6.99e4 2.48e6 1.11 20

F4 1.03e7 4.18e5 8.65e6 3.92 200

F5 1.98e7 1.07e6 1.58e7 3.65 800

FS F1 1.66e6 4.49e4 1.62e6 0.81 28

F2 6.39e4 4.43e3 5.45e4 2.09 25

F3 2.50e6 2.29e4 2.47e6 1.19 46

F4 9.91e6 2.77e5 9.39e6 1.86 189

F5 2.33e7 4.18e5 2.25e7 2.15 2570

PSO F1 1.65e6 1.71e4 1.62e6 1.61 6

F2 5.87e4 5.61e3 5.15e4 1.27 8

F3 2.50e6 2.53e4 2.48e6 1.02 32

F4 8.90e6 1.68e5 8.68e6 1.22 200

F5 1.54e7 0.18e4 1.53e7 1.70 1120

Fig. 3.2 Efficiency of the

three Bionic Optimization

strategies tested

62 T. Popova et al.

One central fact about all optimization may be learned from Fig. 3.3. If there is a

good initial design, the number of optimization runs to be done may decrease

significantly. If an experienced engineer proposes an initial design with a goal of

e.g. 2.7� 106, we need only 20 generations or 50 % of the workload required to

solve the task with a random initial design.

Further Test Examples

In addition to the trusses (Fig. 3.1) representing static structural optimization

problems, there are many other test examples available (Surjanovic and Bingham

2015). Most of them are defined by mathematic functions and because of their

characteristics and the known data of global and local optima, they are most

suitable for algorithm testing. A selection of such benchmark problems is

listed in Table 3.6. Some of them can be expanded to an arbitrary number of

dimensions d. Especially in field of optimization they are useful in algorithm

development or to improve existing procedures. Furthermore, with awareness of

these problems, users can gain experience in optimization strategies, check their

efficiency and learn how to choose proper optimization settings.

3.1.4 Conclusions

The quality of the initial proposals is the most important component of any

optimization. If experienced and motivated engineers propose designs that are

close to the optimal ones, there is a good chance that at least a local optimum

0 5 10 15 20 25 30 35 40
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4
x 10

6

 generation

go
al

 o
f 3

 b
es

t +
 w

or
st

 p
ar

en
t

Fig. 3.3 History of an Evolutionary Optimization for example F3 (Fig. 3.1)

3 Problems and Limitations of Bionic Optimization 63

Table 3.6 Common test functions used for testing optimization algorithms

Eggholder function

f p1; p2ð Þ ¼ � p2 þ 47ð Þsin
ffi
p2 þ p1

2
þ 47

�� ��q� �
� p1sin

ffi
p1 � p2 þ 47ð Þj jp� �

−500

0

500

−500
0

500

−1.0

0

1.0

p
1

p
2

 f(
p 1, p

2)

x 103

Free parameters:

i ¼ 1, 2

Search domain:

piE [�512, 512]

Global optimum (min):

f (512, 404.2319)¼�959.6407

Schwefel function

f pð Þ ¼ 418:9829 � d �
Xd
i¼1

pi � sin
ffiffiffiffiffiffiffi
pij jp� �

−500

0

500

−500

0

500

0

1.0

2.0

p
1

p
2

 f(
p 1, p

2)

x 103
Free parameters:

i ¼ 1, . . ., d

Search domain:

piE [�500, 500]

Global optimum (min):

f (pi ¼ 420.9687)¼ 0

Ackley function

f pð Þ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Xd
i¼1

p2i

vuut
0
@

1
A� exp 1

d

Xd
i¼1

cos 2π pið Þ
 !

þ 20þ exp 1ð Þ

−20
0

20

−20
0

20

0

10

20

 p
1

 p
2

f(
p 1, p

2)

Free parameters:

i ¼ 1, . . ., d

Search domain:

piE [�32.768, 32.768]

Global optimum (min):

f (pi ¼ 0)¼ 0

(continued)

64 T. Popova et al.

will be found which is not too far away from the best solution possible. If we are

close to good proposals, gradient methods will improve the free parameters in a

short time and with reasonable effort.

As soon as we doubt that our initial designs are close to the optimal ones, EVO or

PSO have the capacity to propose better designs. Nevertheless, the number of

function evaluations may be large. Which of the two is preferred for a particular

problem must be decided with some preliminary test. Often, the particle swarm

shows a faster tendency towards the assumed best values, but some examples

indicate that the swarm might have the tendency to stick to local maxima, just as

do gradient methods.

Switching to Gradient Optimization if approaching a maximum closely is

always an interesting option. But experience of the problem and methodology is

required there as well.

In every case, the optimization of large problems consumes time and resources.

There is no way to avoid the evaluation of many individual solutions and there is no

guarantee that the absolute best solution will be found at all.

3.2 The Curse of Dimensions

Rolf Steinbuch

One of the most problematic properties of optimization tasks with higher numbers

of free parameters is “the curse of dimensions”. It appears to be one of the most

governing drawbacks and sets the strongest limits on any attempt to accelerate the

progress of all optimization strategies when dealing with higher numbers of free

Table 3.6 (continued)

Goldstein-Price function

f p1; p2ð Þ ¼ 1þ p1 þ p2 þ 1ð Þ2 19� 14p1 þ 3p21 � 14 p2 þ 6p1 p2 þ 3p22
� �h i

* 30þ 2p1 � 3p2ð Þ2 18� 31 p1 þ 12 p21 þ 48 p2 � 36 p1 p2 þ 27p22
� �h i

−2

0

2

−2

0

2
0

5

10

x 10
5

 p
1 p

2

 f(
p 1, p

2)

Free parameters:

i ¼ 1, 2

Search domain:

piE [�2, 2]

Global optimum (min):

f (0, �1)¼ 3

3 Problems and Limitations of Bionic Optimization 65

parameters. We may compare it to the search for a needle in a haystack. If the needle

has a length of ln¼ 6 cm and the haystack is one-dimensional with a length on

lh¼ 1 m¼ 100 cm, it is relatively easy to find the needle. We subdivide the length lh
in intervals l1i¼ 5 cm< lh. Now we check at each end of the intervals if there is a

needle traversing the interval border. After 19 checks at maximum, we found the

needle. For a 2D haystack covering a square of 1 m2 the procedure becomes more

expensive. We need a mesh of width l2i¼ 4 cm< 6/
ffiffiffi
2

p
cm to cover the area of the

haystack and have now to check 625 mesh edges. Correspondingly, we need a 3D

mesh with a side length of l3i¼ 3.333 cm< 6/
ffiffiffi
3

p
cm to cover the 3D haystack and

need to check 36,000 faces of the cubes defining the mesh. We may continue to

higher dimensions even if we fail to imagine higher dimensional haystacks. Evi-

dently, the higher the dimension is, then the larger the effort to find the needle.

Example 3.1 If we return to optimization, we may assume a local optimum in 1D

given by one function such as

goalðp1Þ ¼
1

2
ð1þ cos ðπ*p1ÞÞ

visualized in Fig. 3.4a. In the interval�1< p1< 1 the 2D area below the function is

V1 ¼ 1 ¼ 0, 5 � V0,1, ð3:1Þ

where V0,1 ¼ 2 the area of the surrounding rectangle. If we step to a 2D problem,

the corresponding function becomes

goal p1; p2ð Þ ¼ 1

4
1þ cos π*p1ð Þð Þ 1þ cos π* p2ð Þð Þ ð3:2Þ

(Fig. 3.4b) and the volume below the hill is

V2 ¼ 1 ¼ 0, 25 � V0,2, ð3:3Þ

where V0,2¼ 4 the volume of the surrounding cube.

−1 −0.5 0 0.5 1
0

0,5

1

p
1

go
al

−1
0

1

−1
0

1
0

0,5

1

p
1

p
2

go
al

a) b)

Fig. 3.4 Decreasing volume of hills covered by cos functions. (a) 1D cos function. (b) 2D cos

function

66 T. Popova et al.

We realize that the higher the number of dimensions n, the smaller the ratio

Vn

V0,n
¼ 1

2

� 	n

: ð3:4Þ

The probability to find the hill gets smaller and smaller as the number of dimen-

sions increases. The hills of local optima degenerate to needles, as Fig. 3.5 tries to

demonstrate. Even worse is the fact that the gradient of the goal on the plane

between the needles is close to zero; there is no strong force driving the optimiza-

tion process in the direction of the needles. So we are bound to do many studies and

repeat many searches to come close to promising designs. This problem is often

called the curse of dimensions. It limits the maximum achievable velocity to first

find a promising region and then converge to a solution. The only work-around is a

reduction of the problem’s dimension, which reduces the power of the optimization

range or the reduction of the search space, which may exclude interesting regions.

Therefore we have to live with the curse of dimensions if we are dealing with the

optimization of problems with many free parameters.

3.3 Acceleration of Bionic Optimization Processes

Tatiana Popova

Optimization today is a very promising area and is used as a standard method to

decrease production costs or the weight of a part or assembly. From the point of

mechanical calculation, optimization methods enable designers to choose the best

variant of a design with the best allocation of resources, reduction of the cost of

materials, energy, and etc. All parts of the optimization procedure are important,

from identification of variables and initial algorithm parameters to identification of

Fig. 3.5 Local optima as steep needles in higher dimensional spaces

3 Problems and Limitations of Bionic Optimization 67

the correct fitness function. Optimization as a subject receives serious attention

from engineers, scientists, managers and anyone else involved with manufacturing,

design, or business. This focus on optimization is driven by competition in quality

assurance, cost of production and, finally, in success or failure of businesses.

Throughout the past century, optimization has developed into a mature field that

includes many specialized branches, such as linear conic optimization, convex

optimization, global optimization, discrete optimization, etc. Each of these methods

has a sound theoretical foundation and is supported by an extensive collection of

sophisticated algorithms and software. With rapidly advancing computer technol-

ogy, computers are becoming more powerful, and correspondingly, the size and the

complexity of the problems being solved using optimization techniques are also

increasing.

The requirements for optimization is the possibility of achieving good results

within a short processing time. Gradient methods can be sufficient, but the increase

of complexity of optimized components often leads gradient methods to wrong

proposals at local optima. Gradient methods are sufficient when the task is to find a

local optimum. Gradient methods are not applicable for global optima search. The

methods stop at one hill of the goal function without investigating the others, which

could possibly contain better results. This situation necessitates the investigation

and research into new optimization methods that could deal with complicated

optimization problems.

Traditional optimization algorithms often depend on the quality of the objective

function, but many objective functions are usually highly non-linear, steep, multi-

peak, non-differential or even discontinuous, and have many continuous or discrete

parameters. Almost all problems need vast amounts of computation. Traditional

optimization techniques are incapable of solving these problems. Bionic engineer-

ing copies living systems with the intention of applying their principles to the

design of engineering systems. In recent years, bionic engineering has been actively

developed globally. Much bionic scientific research has been conducted, and new

products have been designed and developed. Biomimetic structural optimization

methods, for example, aim at the improvement of design and evaluation of load-

bearing structures.

The quality of algorithms depends not only on the problem’s complexity, but

also on the individual adjustment of the parameters of the corresponding optimi-

zation methods. Incorrect choices for algorithm parameters could lead to a decrease

in search time or even to false results. This shows the importance of collecting the

results of an algorithm’s parameters variation to understand their influence. The

investigation’s goal is to find sets of parameters that could provide stable results for

the wide problem range.

The efficiency of the algorithms should be proven. Optimization testing func-

tions are used to estimate the quality of algorithms. These functions (e.g. in

Table 3.6) were chosen because they represent the common difficulties seen in

isolated optimization problems. By comparing and contrasting these functions, a

user can make judgments about the strengths and weaknesses of particular

algorithms.

68 T. Popova et al.

Essential for optimization problems is the identification of the point when

convergence is reached, so as not to lose time on future unnecessary investigations.

This is especially valuable for optimizations with a high number of variables and

relatively long fitness function evaluation time.

To find an acceptable optimization calculation time, accelerating strategies must

be found. Some are based on the fact that not all parameters have the same impact

on the object. Decreasing the number of parameters handled may help to reach

areas with good objective values. Other strategies use statistical predictions to

estimate the best values of the objective function in early stages. From those

estimations, a decision on whether the reached objective value is promising could

be derived. Unfortunately these predictions, again, need many runs to yield reliable

data. Nevertheless, accelerated optimization may be a tool to find reliable results at

acceptable time and cost.

3.3.1 Selecting Efficient Optimization Settings

Tatiana Popova

We have been discussing different ways to perform Bionic Optimizations. How-

ever, we are missing some guidelines for running a real task, i.e. how many parents,

kids, individuals to use, how to define crossing and mutation, which weighting

factors will perform well, and which will be less effective.

As there are unlimited possible problems and different strategies tend to perform

differently in different applications, general rules are hard to propose. Nevertheless,

here we try to give some hints for starting a process. Motivated users will soon learn

how to accelerate their studies. They will optimize the optimization process, also

known as meta-optimization. We discuss specific strategies for each of the three

most important Bionic Optimization methods respectively.

Evolutionary Optimization

The optimization data we may access are:

– Number of parents

– Number of kids

– Survival of parents

– Way of crossing

– Mutation radius

– Number of generations

As a general rule, we realize, the larger the number of individuals, the greater the

probability to find promising results. But the time required for analysis limits these

numbers, so we need some starting data. From our previous experiences, we

3 Problems and Limitations of Bionic Optimization 69

propose to use a number of parents in the range of 0.5–2 times the number of free

parameters. The higher the number of parents, the better the performance will

be. From Fig. 3.6 we learn that the number of kids should be about double the

number of parents, while less is not efficient, higher values seem also not to be as

efficient because the computational effort increases with the rising number of

individuals, without achieving much better results. In this study we used the 10

rods frame problem (Fig. 3.1b) and did multiple optimization runs with different

number of kids, related to the number of parents, and fixed values for the other

optimization settings (nparents¼ 15, ngen¼ 40, mutrad¼ 25 %, parents survive).

For each variation, we repeated in a loop of 50 runs.

Survival of parents is generally recommended, as it removes the danger of

deleting some good proposed designs. It might be a good idea to limit the number

of generations an individual may survive, e.g., to a maximum of five generations,

but this does not increase the performance of the process in a very powerful way.

Crossing might be accomplished by using the ideas outlined in Sect. 2.1. From

our experience, averaging parents’ properties is quite a good idea.

Mutation might be done to each parameter individually. Using large mutation

radii leads to a pure random search, where the properties of the parents no longer

influence those of the kids. Too small mutation radii correspond to a local search

around the parents’ values. If a local search is intended, it is better to use a gradient
method. We generally recommend starting with a mutation radius in the range of

15–25 % of a parameter’s range. After a certain number of generations, these

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5,0

5,5

6,0

6,5
fit

ne
ss

k (with nkids = k*nparents)

mean
single optimization run

x 104

Fig. 3.6 Minimization of goal with multiple of number of kids related to # of parents. Taking # of

kids¼ 2� # of parents seems a good guess

70 T. Popova et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_2

mutation radii might be reduced to values of 5–10 %. A switch to a gradient method

could be a good idea as well.

The number of generations should not be less than the number of free parame-

ters. To avoid unnecessary repetitions, it is recommended to monitor the process

and to kill it if no further progress is observed. We realize that the method does not

often show any further improvement, so it is appropriate to stop the run. If restarting

the process at any generation is possible, it might save time and computing power.

Fern Optimization

Fern Optimization is, from our experience, recommended for problems with small

numbers of free parameters. Figure 3.2 using the models of frames introduced in

Sect. 3.1 indicates that, for more than 50 parameters, PSO and EVO are essentially

more efficient. Using Fern Optimization, we are concerned with:

– Numbers of parents

– Numbers of kids per parent

– Mutation radius

– Number of generations

– Killing underperforming families (cf. Fig. 2.6)

Again, the number of parents should not be essentially smaller than the number

of free parameters, as this number supports the coverage of the parameter space.

The number of kids should be about 3–5 per parent; more is better, but increases

computing time. These kids are generated by the mutation of one parent’s proper-
ties. To reiterate, a not too large mutation radius of 15–25 % is recommended at the

onset of the study. Keep in mind: as soon as good designs have been approached,

the mutation radius can be decreased or the optimization could switch to a gradient

method.

Additionally, it is important that a sufficient number of generations should be

calculated. The process can be terminated if it approaches saturated levels, which

can be monitored.

The decision to remove a family, the offspring of one initial parent from the

process, is possible, but should not start too early as indicated by Fig. 2.6.

Particle Swarm Optimization

PSO generally tends to give very promising results as long as some basic criteria are

met. The definition of the optimization parameters covers:

– Number of individuals

– Number of time steps

– Initial velocities

– Weighting of contributions to velocity update

3 Problems and Limitations of Bionic Optimization 71

http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_2

The number of individuals seems to be the most important input for PSO. At

least, the number of free parameters should be covered. Again, the larger the

number, the better the results, but the larger the computational effort as well. On

the other hand, we often observe the particle swarm sticking to local optima. This

might be dependent on the number of individuals, so again, larger numbers are to be

preferred. The number of time steps must not be too large, as often 10–20 gener-

ations yield interesting designs, and a restart option allows continuing processes

that have not yet converged. The initial velocities should be in the range of 10–25 %
of the parameter range for each of the optimization parameters.

Many discussions deal with the definition of the weighting factors in the

equation (cf. Eq. (2.1) and the associated declaration)

v jðtþ 1Þ ¼ c1v jðtÞ þ c2r1∘ðpPb, j � p jðtÞÞ þ c3r2∘ðpGb � p jðtÞÞ:

Generally, a large value of c1 (inertia) yields a broad search of the parameter space,

but suppresses convergence to the best values. Large values of c3 (social) accelerate
the convergence, but might stick to early found local optima. The weighting of c2
(cognitive) has a smaller effect on the performance. As a coarse rule we often use

– 0.4 < c1 < 1

– 0 < c2 < 0.5

– 0.5 < c3 < 2.

These proposals might help to get started more effectively using Bionic Opti-

mization methods, but are not guaranteed to be the best ones for every problem.

3.3.2 Parallelization and Hardware Acceleration

Simon Gekeler

Using Bionic Optimization procedures requires computing and evaluating many

different design variants. It is a time consuming process, but offers the chance to

find the global optimum or at least a good solution, even in a large and complex

design space with many local optima. If a single design evaluation, e.g., a

non-linear FEM simulation, takes an excessive amount of computation time, it is

no longer efficient to integrate a population-based optimization method, like PSO or

EVO, into the usual design development process. The number of evaluated variants

is limited by schedules and processing capabilities. We need strategies for applying

these methods in an acceptable period of time.

To reduce process times, first check the model being optimized and its compu-

tation time, before trying to accelerate the optimization algorithm itself. In FEM

simulations, for example, we should verify if the model is adequately simplified to

be calculated quickly with sufficient result accuracy. Additionally, it is worthwhile

72 T. Popova et al.

to allot some time for an accurate parameterization of the design. Especially in case

of geometry parameters, good parameterization is important for the prevention of

inconsistent situations during automated variance of the parameters in the optimi-

zation process, which leads to aborted processes and needless waste of

development time.

To perform a quick and efficient optimization run, which means to achieve

satisfying results with fewer design computations, choosing the right strategy is

critical, including the choice of optimization method and algorithm settings (see

Sect. 3.1.1) for the specific type of problem. To reach that goal, there are different

ways to proceed, e.g., run the optimization in several stages, maybe using different

methods, limited parameter ranges, or just using the most significant parameters for

an exploration phase first, and following with an detailed phase in a localized area

but increased parameter space. Furthermore, hybrid optimization methods, such as

PSO with an automated switch to the Gradient method in the final stage (Plevris and

Papadrakakis 2011) or meta models (cf. Sect. 2.7), can greatly reduce optimization

time. Preliminary investigations, such as sensitivity analysis, can help to reduce

computation effort with more information about the problem, choosing the impor-

tant parameters and neglecting the insignificant ones. For highly complex problems,

where the computation time is expected to be large to find the global optimum, the

most efficient method could be finding an already acceptable local optimum by

using the relatively fast gradient method with a good starting position.

If the optimization job is well prepared and ready for efficient execution, we can

possibly gain an additional and drastic reduction of processing time by accelerating

the computation time with using faster computer hardware or with using further

computer resources.

Parallel Jobs for Speeding Up Optimization Processes

In Bionic Optimization procedures, such as EVO or PSO, in one generation or

iteration we compute many different design variants, before the design’s results are
evaluated and the next loop starts with the computation of newly generated designs

Thus, in this section of the optimization algorithm, each job can be processed

independently of each other. This allows for the possibility of running the jobs in

parallel, enabling an enormous acceleration of these optimization procedures. The

ability of optimization algorithms for parallelization depends on the ratio of the

sequential workflow and tasks which can be done in parallel. For example, with

EVO we can increase the number of parallel tasks by increasing the number of kids

to be calculated in one generation. However, we rely on adequate optimization

settings to improve calculation times.

When processing Bionic Optimization tasks in parallel, we are referring to

parallel computation of design variants on different workstations connected by a

Local Area Network (LAN). An architecture for the distribution of jobs to be run in

parallel is depicted in Fig. 3.7. The optimization algorithm is running on one

workstation (master), which distributes the tasks to be run in parallel to different

3 Problems and Limitations of Bionic Optimization 73

http://dx.doi.org/10.1007/978-3-662-46596-7_2

workstations (nodes) in the cluster. Afterward, the results of computed jobs are

collected by the master computer and inserted into the optimization algorithm for

further processing and generating new designs for the next optimization loop. In

this example the exchange of input and output data is similar to outer loop

optimization (cf. Sect. 4.1.2) by generating and reading files, which are stored on

a network drive, accessible to all computers.

For the management of this distributed computing, appropriate software or

generated code is required, which must fulfill the following functions:

– Write/modify input-files for the particular type of solver on node computers

– Identify status of nodes in cluster: busy, standby, results available, etc.

– Distribute and launch individual jobs in the cluster

– If necessary, copy and offer additional files required for solving jobs on nodes

– Collect available results and prepare for further processing in optimization

algorithm

– Perform error management: error in result, no response of node (time out),

handle loss of node in cluster, etc.

It should be clear that, with this organization (distributing jobs, writing/reading

of data for the exchange, and waiting time) in addition to the optimization algorithm

runtime and the computation of the designs, parallelization includes an extra effort.

Compared to the time saved overall, this time cost, the so-called overhead, should

be small. It is obvious that parallelization is more efficient as the computation time

for one individual design increases. On the other hand, if individual designs can be

computed quickly, it is possible that the overhead causes even slower process times

when using parallelization than in a common sequential procedure on only one

workstation. In Fig. 3.8 we can see the speed-up for problems with different

computation times when using parallelization. For each problem (small, medium,

Fig. 3.7 Parallelization of optimization processes in a computer cluster

74 T. Popova et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_4

large), we compute 50 variants with a various number of nodes. Furthermore, the

theoretical maximum achievable speed-up is indicated, without the time cost for the

distribution of jobs.

Efficient computer clusters have all nodes at full capacity and without unneces-

sary waiting times. For example, if there are 10 parallel tasks to be processed, it

would be absurd to use nine nodes in the cluster with eight of them waiting 50 % of

the time. With 5 nodes we can reach the same decrease of process time, but using

10 nodes would be ideal. We need to coordinate the number of nodes with the

number of jobs we can compute in parallel. Furthermore, the performance of all

nodes in the cluster should be comparable to prevent bottlenecks due to diverse

computation times of design evaluation.

The relative speed-up Sp of parallel jobs can be calculated by

S p ¼ T1

T p
;

where T1 is the time needed for the sequential process on one computer and Tp is the
time when using p computers in a cluster to parallelize jobs.

Howmany nodes we use in a cluster depends on not only the number of available

nodes, but also on the specific optimization task. When using commercial solvers,

the number of available software licenses can also limit the number of nodes.

Currently, most FEM software providers offer particular license packages for

parallel computing.

Benefit of Hardware Raising

Another way to reduce computation time and accelerate the optimization process is

the use of well-equipped workstations with appropriate hardware. Here we focus

especially on the performance of the Central Processing Unit (CPU), the Random-

Fig. 3.8 Parallelization speed-up for problems with different computation time

3 Problems and Limitations of Bionic Optimization 75

Access Memory (RAM), the hard disk, and (growing more and more important and

very promising) the Graphics Processing Unit (GPU), which can be used in addition

for computation, often in FEM and CFD (Ohlhorst 2012).

For quick computation, the most important component of a workstation is a

powerful CPU, as it is responsible for the computer’s overall performance. After

architecture, the clock rate, which defines the speed of data processing, of the CPU

is the most important. Further increases to the performance of a single CPU are

limited by economic and mechanical concerns. Currently, the use of multi-core

processors with several processing units is standard. Current FEM software is able

to use multiple cores in parallel.

Also important, is sufficient RAM. The more RAM the better, as long as the

FEM simulation consumes the presented memory and the operating system allo-

cates properly. There are different types of RAM with different RAM speeds. If the

system, especially the motherboard, can be upgraded to faster RAM, this will

enhance performance, too.

The massive amount of data in an FEM simulation must be handled by large hard

drives. To prevent a bottleneck when using high performance CPUs, it is important

that the storage component offers sufficient read and write capability. Today Solid-

State-Drives (SSD) provide excellent properties for fast processes.

The newest, very efficient strategy for hardware acceleration is the inclusion of

high performance GPUs in general-purpose computing. CPUs are developed for

universal use and sequential processing. In contrast, the architecture of GPUs is

designed for massive parallel processing. In FEM, we can release the equation

solving part, which takes about 70 % of the total evaluation time, to the highly

efficient GPUs (Güttler 2014). To take advantage of increased process speed by

using GPUs, there are special license packages offered by commercial software

suppliers.

In general, it is important when buying or upgrading a workstation to verify all

components of the system to avoid bottlenecks. All parts must interact well to

guarantee a high efficiency and enable fast computation processes.

Conclusions

With the emergence of commercial software for optimization, sensitivity studies, or

the evaluation of robustness and reliability, the information of many design variants

can be considered and handled. Often computation time limits such detailed

investigations, especially when we have complex multi-physics simulations. Cur-

rently, parallelization and hardware acceleration with GPUs is a common tool to

accelerate such time consuming studies.

But when applying the optimization methods mentioned in this book, the correct

strategy, previous experience in optimization, and good preparation are also impor-

tant for a quick route to the optimal design. Optimization is not simply pressing the

start button and waiting for a result. We need to study and understand the problem,

find additional information about its parameters and reuse this for the next

76 T. Popova et al.

optimization steps. Well thought-out action is more significant than computing a lot

of different variants. Time saving also entails preventing failures or wrong defini-

tions that lead to meaningless results in optimization. However, if an optimization

run is canceled, it is beneficial to have access to the results obtained in the partial

run to identify and resolve conflicts for further studies.

References

Berke, L., Patnaik, S. N., & Murthy, P. L. N. (1993). Optimum design of aerospace structural

components using neural networks. Computers and Structures, 48, 1001–1010.
Coelho, L. D. S., & Mariani, V. C. (2006). Particle swarm optimization with Quasi-Newton local

search for solving economic dispatch problem. IEEE International Conference on Systems,
Man and Cybernetics, 4, 3109–3113.

Güttler, H. (2014). TFLOP performance for ANSYS mechanical 2.0. Nürnberg: ANSYS Confer-

ence 32. CADFEM Users Meeting.

Lagaros, N. D., & Papadrakakis, M. (2004). Learning improvement of neural networks used in

structural optimization. Advances in Engineering Software, 35, 9–25.
Ohlhorst, F. J. (2012, December). Optimize workstations for faster simulations. In Desktop

Engineering – Technology for Design Engineering (pp. 68–70). Retrieved June 11, 2015,

from http://www.engineerquiz.com/issues/level5_desktopengineering_201212.pdf

Plevris, V., & Papadrakakis, M. (2011). A hybrid particle swarm—gradient algorithm for global

structural optimization. Computer-Aided Civil and Infrastructure Engineering, 26, 48–68.
Rechenberg, I. (1994). Evolutionsstrategie’94. Stuttgart: Frommann-Holzboog.

Steinbuch, R. (2010). Successful application of evolutionary algorithms in engineering design.

Journal of Bionic Engineering, 7(Suppl), 199–211.
Surjanovic, S., & Bingham, D. (2015). Virtual library of simulation experiments: Test functions

and datasets. Retrieved May 12, 2015, from http://www.sfu.ca/~ssurjano

Widmann, Ch. (2012). Strukturoptimierung mit Neuronalen Netzen. Master thesis, Reutlingen

University.

3 Problems and Limitations of Bionic Optimization 77

http://www.engineerquiz.com/issues/level5_desktopengineering_201212.pdf
http://www.sfu.ca/%7Essurjano

Chapter 4

Application to CAE Systems

Rolf Steinbuch, Andreas Fasold-Schmid, Simon Gekeler,

and Dmitrii Burovikhin

Due to the broad acceptance of CAD-systems based on 3D solids, the geometric

data of all common CAE (Computer-Aided Engineering) software, at least in

mechanical engineering, are based on these solids. We use solid models, where

the space filled by material is defined in a simple and easily useable way. Solid

models allow for the development of automated meshers that transform solid

volumes into finite elements. Even after some unacceptable initial trials, users are

able to generate meshes of non-trivial geometries within minutes to hours, instead

of days or weeks. Once meshing had no longer been the cost limiting factor of finite

element studies, numerical simulation became a tool for smaller industries as well.

In the early days of automated meshing development, there were discussions

over the use of tetragonal (Fig. 4.1) or hexagonal based meshes. But, after a short

period of time, it became evident, that there were and will always be many

problems using automated meshers to generate hexagonal elements. So today

nearly all automated 3D-meshing systems use tetragonal elements.

Another question arose about the adaption of the elements during a convergence

study of an analysis to the local geometry. Most systems relied on h-adaptivity,

which is based on the refinement of the mesh in regions of high stress concentration

(Fig. 4.2). Only a few systems proposed to use p-adaptivity, which increases the

degree of the polynomial interpolation of the element edges (Fig. 4.3). Today we

observe that most automated meshing and adapting systems in 3D use tetra 10 ele-

ments, a parabolic interpolation of the edges and h-adaption, a refinement of the

elements.

R. Steinbuch (*) • A. Fasold-Schmid • S. Gekeler • D. Burovikhin

Hochschule Reutlingen, Reutlingen Research Institute, Alteburgstraße 150, 72762 Reutlingen,

Germany

e-mail: Rolf.Steinbuch@Reutlingen-University.DE; Andreas.Fasold-Schmid@Student.

Reutlingen-University.DE; Simon.Gekeler@Reutlingen-University.DE; Dmitrii.

Burovikhin@Reutlingen-University.DE

© Springer-Verlag Berlin Heidelberg 2016

R. Steinbuch, S. Gekeler (eds.), Bionic Optimization in Structural Design,
DOI 10.1007/978-3-662-46596-7_4

79

mailto:Rolf.Steinbuch@Reutlingen-University.DE
mailto:Andreas.Fasold-Schmid@Student.Reutlingen-University.DE
mailto:Andreas.Fasold-Schmid@Student.Reutlingen-University.DE
mailto:Simon.Gekeler@Reutlingen-University.DE
mailto:Dmitrii.Burovikhin@Reutlingen-University.DE
mailto:Dmitrii.Burovikhin@Reutlingen-University.DE

Fig. 4.1 FE-Mesh of a 3D

geometry using automated

meshing and TETRA10

elements

Fig. 4.2 Local h-adaptive

refining of meshes near

critical segments of the part

80 R. Steinbuch et al.

4.1 Inner and Outer Loop Optimization

Andreas Fasold-Schmid, Simon Gekeler, and Rolf Steinbuch

When doing optimizations, the use of commercial simulation software, typically a

Finite Element code or a CAE-System with a more or less open simulation

subsystem is recommended, as it is not too easy to code a reliable simulation

package on one’s own.
Optimization then means to start a series of jobs of various different variants,

evaluate them, analyze the optimization’s step success and define the next set of

variants or designs to be studied. This cycle has to be repeated until a predefined

stop criterion is met. This stop criterion may be a maximum number of generations,

a level of the goal or no further improvement of the goal during some cycles.

To realize such an optimization using a given code, two different approaches are

used: inner and the outer loop optimization. The first one is integrated into the code

as part of its internal structure and data management. All variants, evaluations and

definitions of new designs are done within the code. The outer loop optimization

works more or less as an editor that modifies the input sent to the code without

Fig. 4.3 Comparing h and p-adaptive approximation of a curve. (a) h-adaptive: use more

intervals. (b) p-adaptive: use higher order polynomials

4 Application to CAE Systems 81

modifying the code itself. The results of the various jobs are read from output files,

entered into the external optimizer and used for evaluation and definition of the next

variants to be analyzed.

4.1.1 Inner Loop Process

Inner loop optimization is used in connection with simulation codes that allow the

users either to integrate their own functions or subroutines into the code

(e.g. FORTRAN User subroutines in MSC-MARC, Dassault ABAQUS, Intes

PERMAS) or offer a meta-system that allows for fast and easy access and manip-

ulation of data such as ANSYS APDL or NASTRAN DMAP. When using inner

loop optimization, the results of one or some preceding load steps are used to define

the parameters of the next generation or time step. After a new analysis, we evaluate

these new designs, find proposals for the following analysis and start the next cycle.

Data management is done by some local storage, e.g. using private COMMONs in

FORTRAN subroutines. The essential advantage of inner loop optimization is the

high velocity, as the simulation code is called only once, all calculations are done

within one executable program. No swapping from data between different programs

is required. On the other hand, inner loop optimization requires a deeper under-

standing of the code’s structure, the interaction between different routines and the

data management. In addition we have to adapt our optimization scheme to the

specific problem we are going to deal with. So the effort to define an inner loop

optimization may be essentially larger than for the outer loop optimization.

When trying to do an inner loop optimization, the users must check whether all

data they need for the optimization are accessible. These data should include the

values of the goal and the restrictions and the free parameters they want to modify

during the course of the optimization. In most cases the goal and the restrictions are

relatively easy to find, as they are the results of the jobs or of different load steps,

depending on the way the codes handle the repeated analysis of one problem during

the optimization process. The input data, which stand for the free parameters, need to

be modified to produce the variants of the studies. This should be not too difficult for

material or loading data. For the modification of geometric shapes, unfortunately a

new problem arises. We want to modify geometric entities, but in the codes often

only the nodes that define the elements are available. Therefore we need to relate the

shifting of nodes to the desired change in geometry. This may be not too complicated

if the simulation system is based on geometric data and does an automated remeshing

for each time step. If only the nodes are available, more care has to be taken.

Example 4.1 The idea of local growth in Sect. 2.6.2 to reduce notch stress by

shape smoothing is done by an inner loop optimization. It is a sequence of repeated

load steps, where each step uses the same material and loading, but a geometry that

is adapted to the local stresses and so remove local stress concentrations. We start

the job using a given initial geometry (Fig. 4.4a) which corresponds to a given

82 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_2

position of the nodes along the surface. Next we read the results of the first load

step, e.g. the stresses along the surface we are allowed to modify. For each of these

nodes, we decide whether to move to the outside to reduce high stresses or, if we

obtain low stresses, we move the nodes inside the geometry. These steps of moving

the nodes must not be too large to avoid loss of smoothness. After some steps, a

rather nicely shaped contour should be the result of our smoothening process

(Fig. 4.4b–d).

The stress distribution at the surface nodes for the steps a-d (Fig. 4.4) is depicted

in Fig. 4.5. With proceeding optimization the stresses along the surface converges

to the target stress value of 130 MPa.

Example 4.2 The Topological Optimization (Sect. 2.6.1) is mostly handled as an

inner loop optimization in commercial codes. We do an initial analysis of the space

filled with elements, and decide which one to reduce. In the next steps, these less

Fig. 4.4 Inner loop optimization: shaping geometry related to a given target stress value. (a)

Initial geometry. (b) Geometry after 9 steps. (c) Geometry after 41 steps. (d) Geometry after

65 steps

4 Application to CAE Systems 83

http://dx.doi.org/10.1007/978-3-662-46596-7_2

loaded elements are provided with a continuously smaller stiffness and density.

During a sequence of jobs for each element, there should be a trend whether to

keep it or to remove it. Finally for all elements there should be a classification whether

they are required, so they have the original stiffness, or whether they are not required,

so they are removed, which corresponds to very small stiffness. These decisions are

easily made within the simulation code. They could be made by an external code as

well, but the effort to access and modify all data could be essentially greater.

As a summary we might learn that inner loop optimization is a powerful tool, if

many internal data have to be accessed many times during a study. As it is

incorporated within the flow of the simulation code, it generally is relatively fast.

But as we have to access very specific data for each problem given, there is some

work necessary to establish the procedures. Furthermore some code providers have

the tendency to modify their data handling during introduction of new releases. In

such cases it may be inevitable to rewrite the whole inner loop process, which might

be some undesirable effort.

Table 4.1 in Sect. 4.1.2 offers a comparison of the characteristics of inner and

outer loop optimization.

4.1.2 Outer Loop Process

Outer loop optimization is used, if there exists access to the relevant data of a

problem by reading output files and editing input files of the models to be analyzed.

Just as a human user who tries to find an optimal design and therefore runs series of

variants of the initial design, the outer loop optimizers run jobs, vary their param-

eters and check the performance of the designs. Then any appropriate optimization

strategy will be used to find better solutions.

Fig. 4.5 Stress values at the surface nodes for step a–d in Fig. 4.4

84 R. Steinbuch et al.

Many of the commercial CAE-systems with integrated simulation tools offer such

access to the problems parameters. Then it is not too difficult to set up a code that does

the outer loop optimization. Figure 4.6 shows the program flow of such a code.

As preparation, first we need to set up the model we want to optimize in a usual

way in the CAE-system. After a computation we obtain the input file and at least one

output file.We use the input file, which contains all model information and the defined

computation task, as a template for the modification of the relevant parameters to

Table 4.1 Comparison of inner and outer loop optimization

Inner loop optimization Outer loop optimization

Quick data management (intern processed) Relative slow data management (write/read

input-/output files, start CAE-system)

Inflexible: optimization procedure needs to be

adapted to CAE-system, costly to do changes

Flexible due to changes in optimization

algorithm

Easy data management: internal handling of

variables and parameters

Complex data management: external data

transfer via input-/output files

Optimization process (if already implemented)

available without further preparation

Adaption of generating input files and reading

output files for different problems necessary

Optimization algorithm needs to be coded in

specific programming language

Optimization algorithm (external optimizer)

in optional programming language

Optimization algorithm only for specific

CAE-system

Optimization algorithm (external optimizer)

available for different CAE-systems

Often the CAE-system offers tools to do opti-

mization postprocessing

Optimization postprocessing needs to be

coded in external optimizer

Fig. 4.6 Workflow of outer loop optimization with commercial CAE-system

4 Application to CAE Systems 85

create the design variants. In the output file, we identify the structure of the results and

locate data of optimization goals and restrictions. After including this information in

the external optimizer, we start the optimization process in which the optimization

algorithm defines new design variants as specific input files and calls the CAE-system

to compute each job automatically. The quality of each design is evaluated by reading

the corresponding output file and, according to this result, new designs will be

generated until the optimization algorithm converges or will be stopped.

The coupled structure of an outer loop process makes the optimization procedure

itself independent from CAE-systems and thus it is flexible for improvements or

quick variations in the optimization strategy. Once the optimization algorithms are

established and available in the outer loop framework, using different CAE-systems

or different optimization parameters is simply done by adapting the modification of

input files and updating the identification of result data in the output files.

Example 4.3 Figure 4.7 represents an excerpt of the input and the output file for

one design variant when doing an outer loop optimization of the 10 rods frame

problem (cf. Fig. 3.1b). The optimization algorithm defines the cross section values

in the input file for each of the 10 rods (Fig. 4.7a). After computation of the design

variant with the commercial FEM-solver PERMAS, we read the results for weight,

which we want to minimize, and the values for displacement and stress which are

not allowed to exceed the limits to meet the defined restrictions (Fig. 4.7b).

Because of the high flexibility of coupling optimization algorithms with com-

mercial CAE-systems and the possibility of quick and easy changes in the optimi-

zation procedure itself, the use of outer loop processes in general is recommended.

Even including CAD-systems to realize complex geometric changes in the outer

loop process may be possible. This framework enables high accessibility on

possible optimization parameters. The disadvantage of relative slow data handling

compared to the inner loop process vanishes when doing larger problems with

longer computation times. Users must take care as there is the potential to make

mistakes when defining an automated process for the modification of input files and

reading of parameter values in the output files. Problems might appear when, due to

the computation task, output files will change their structure during the generation

of design variants. A comparison of the characteristics of inner and outer loop

optimization is listed in Table 4.1.

4.2 Implementation in CAE-Systems

Dmitrii Burovikhin

Shape optimization is an important part of today’s engineering process, enabling us
to design mechanical parts and structures with minimal costs and effort. Combined

with commercially available CAD software, it gives us a powerful tool for creating

efficient CAD models that can be used in production to minimize possible waste,

energy consumption and costs.

86 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_3#Fig1

:
$STRUCTURE

!
$COOR

1 7.200000E+02 3.600000E+02 .000000E+00
2 7.200000E+02 .000000E+00 .000000E+00
3 3.600000E+02 3.600000E+02 .000000E+00
4 3.600000E+02 .000000E+00 .000000E+00
5 .000000E+00 3.600000E+02 .000000E+00
6 .000000E+00 .000000E+00 .000000E+00

$END STRUCTURE
!

$SYSTEM
$ELPROP
ALLBARS MATERIAL = MAT1
1 GEODAT = P1
2 GEODAT = P2
3 GEODAT = P3
: :
: :

!
$GEODAT FLANGE CONT = SECTION NODES = ALL
P1 3.098100E+01
P2 1.000000E-01
P3 2.317140E+01
: :

:
> Element set ELEMDISP with 10 elements
+--------------------+--------------------+
| Type | Mass |
|--------------------+--------------------|
| Consistent | 5.062299E+03 |
+--------------------+--------------------+

> Nodal point displacements in component system (Book USR.DISP)
--
Load-Pattern 1 1 1

Nodes u v w
--

1 1.87613E-01 -2.00000E+00 0.00000E+00
2 -5.36340E-01 -1.99182E+00 0.00000E+00
3 2.35457E-01 -7.41984E-01 0.00000E+00
4 -3.06641E-01 -1.64107E+00 0.00000E+00

--

Elemental Stresses Load Pattern No. 1

Node Uniaxial Stress

Element No. 1 Type FLA2
5 6.5405E+00
3 6.5405E+00
: : :

a)

b)

Fig. 4.7 Excerpt of input and output file of the 10 rods frame problem in PERMAS. (a) Input file

defines cross sections of the rods. (b) Output file contains resulting weight, node displacements and

stress of each rod

4 Application to CAE Systems 87

The various mentioned optimization algorithms, such as Particle Swarm Opti-

mization and Evolutionary Optimization, or any other strategy, might be integrated

in CAD systems such as PTC Creo Parametric, Siemens NX or other CAE-Systems

that allow access to parametric models and running simulations with the modified

models (Burovikhin 2015). The optimization algorithms used in this chapter have

been written as code in Cþþ, and linked to the corresponding sections of the

original code or used as overlay (cf. Sect. 4.1). Such integration allows us to

optimize single CAD models, as well as entire assemblies to minimize or maximize

possible objectives such as the mass (volume or weight) of a mechanical structure,

maximum stress and maximum displacement or fit Eigen frequencies to restricted

ranges.

The type of optimization we present in this chapter is a mono-objective para-

metric shape optimization. The term “mono-objective” means that we have only

one goal function to be optimized, as opposed to “multi-objective” optimization.

Expansion to multi-objective optimizations (cf. Sect. 6.2) may be included without

many problems.

4.2.1 Mono-objective Parametric Shape Optimization

The basic terms of optimization have been introduced throughout the other chap-

ters, so we mention here only the specific terms we need for integration into

commercial CAE systems. In an unconstrained optimization problem, the area of

the search space is defined by the objective function and the set of parameter ranges.

However, here we deal with constrained optimization problems, where a defined set

of constraints restricts the area of the search space and delimits a restricted subspace

to be searched for an optimum solution.

We then search for an optimum by iteratively modifying the dimensions or any

other input of a CAD-model of a component or an assembly—the free parameters—

thus changing the shape or performance of the part. This is where the term “shape

optimization” comes from. As both PTC Creo and NX enable us to create para-

metric models where every dimension can be a parameter in the optimization

process, we easily have access to these parameters.

When it comes to mono-objective optimization, we have only one objective

function to optimize. By modifying the free parameters of a part according to a

certain optimization algorithm (PSO, EVO or others), we receive a set of so-called

responses in return. A response is a property of a part that is specific to a certain

combination of the design variables. The list of responses may include the value of

mass, volume, weight, the maximum stress, maximum displacement, etc. Out of

these responses we can choose our objective function and the constraints. A priori
an optimization algorithm does not distinguish between the responses. This means

that any response can be chosen either as the objective function or as a constraint.

Of course, the user should not choose implausible combinations of the responses

that have no application in real life.

88 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_6

4.2.2 Formulation of Structural Optimization Problem

A general continuous structural optimization problem can be stated as follows:

min zðpÞ, p ¼ ½p1, . . . , pn�T , p 2 n

subject to gkðpÞ � 0, k ¼ 1, . . . ,m
g ¼ ½g1, . . . ,gm�T ,

pL
i � pi � pU

i , i ¼ 1 . . . n

ð4:1Þ

where p is a vector of length n containing the design variables, z pð Þ : ℝn ! ℝ is the

objective function, which returns a scalar value to be minimized (for example, the

weight of the structure), the vector function g pð Þ : ℝn ! ℝm returns a vector of

length m containing the values of the inequality constraints evaluated at p, and pL,

p
U are two vectors of length n containing the lower and upper bounds of the design

variables, respectively. The above formulation contains only inequality constraints.

Equality constraints may be used in structural optimization as well. Generally they

tend to reduce the size of the parameter space.

A typical constraint k in structural optimization has the form

gk pð Þ ¼ qk pð Þ � qallow,k; ð4:2Þ

where qk(p) is a response measure (typically stress or displacement) for design

p and qallow,k is its maximum allowable absolute value. It should be noted that qk(p)
is often taken as the maximum (worst) value of the corresponding response measure

among all nodes or elements of the model (Plevris and Papadrakakis 2011).

For example, if the k-th constraint is a stress constraint of the type
�
�σ
�
� � σallow

that applies for all Ne model elements, then for this constraint a single response

measure is calculated as

qk pð Þ ¼
Ne

max

i ¼ 1

σij jf g: ð4:3Þ

To explain the implementation of the optimization into commercial codes, we give

examples of two commercial CAE-systems which are widely used in mechanical

engineering. This does not imply any preference for this CAE-Systems or rejection

of others, where similar ideas might be realized as well. We just want to indicate

that it is possible to do it, and to motivate other users to check, how to implement

comparable optimizers in their CAE-systems.

4 Application to CAE Systems 89

4.2.3 Bionic Parametric Shape Optimization with PTC

PTC Creo is a parametric, integrated 3D CAD/CAM/CAE solution created by

Parametric Technology Corporation (PTC). It was the first to market with paramet-

ric, feature-based, associative solid modeling software.

Trail Files

When it comes to automating PTC Creo jobs, a trail file is an integrated part of the

process. The trail file is a record of all menu choices, dialog-box choices, selections,

and keyboard entries for a particular interactive PTC Creo session. With trail files,

we can view the record of activity so that we can reconstruct a previous working

session or can recover from an abruptly terminated session. Trail files are editable

text files.

When we run a trail file, all the selections are replayed in the exact original order

in which they were made. Before running a trail file, we should rename it to avoid

confusion in the data sets.

If PTC Creo Parametric crashes, we have to edit the trail file up to the line where

the crash occurs or we will simply repeat all the commands leading up to the crash

and the crash itself. We can use the trail file feature to automate a series of actions

and create a routine that can be repeated over and over again every time we run the

trail file. In the framework of this chapter, we need to create a routine that updates

our part every time the free parameters are modified and then computes the value of

the objective function and the values of the constraints for the current particle

(PSO) or individual (EVO).

Running PTC Creo Parametric in a Batch Mode

If we want our application to perform operations on PTC Creo Parametric objects

without any user interaction or without Graphical User Interface (GUI), we can run

PTC Creo Parametric in batch mode. A useful technique when designing a batch-

mode application is to use command-line arguments to PTC Creo Parametric as a

way of signaling the batch mode and passing in the name of a batch control file. A

batch-mode operation should run without displaying any graphics. We can use trail

files to script the batch processing as it is shown above.

Example 4.4 Let’s consider a simple example: we have an I-beam made of steel,

with a fixed length l¼ 400 mm. The beam is fixed at one end, and there is a

distributed force F¼ 500 kN applied to the upper flange (Fig. 4.8). The I-beam

has six parameters (the dimensions of the cross-section) which can be modified

within certain ranges:

90 R. Steinbuch et al.

– p1 E [90, 150]
– p2 E [20, 60]
– p3 E [90, 150]
– p4 E [10, 30]
– p5 E [150, 200]
– p6 E [10, 30]

We also have restrictions for the maximum acceptable values of stress and

displacement

uj j < umax, σj j < σmax:

Our goal is to find minimum mass of the I-beam (the objective function), keeping

maximum stress below 360 MPa and maximum displacement smaller than 1 mm.

We create a procedure within the optimization code that returns the values of the

mass, stress, and displacement. All three values depend on the set of the free

parameters. These parameters are generated during the simulation run and then

passed to our procedure by the optimization algorithm. Then the procedure exports

these parameters into an external text file which is used by PTC Creo Parametric to

regenerate the model. When new values of the free parameters are exported into the

text file, the procedure opens a new session of PTC Creo Parametric where the

model is regenerated according to the values of the free parameters, and all the

necessary calculations are carried out. After it is done, PTC Creo Parametric creates

a folder containing the simulation results. The procedure extracts the values of

maximum stress and maximum displacement from one of the files in the folder and

passes it back to optimization algorithm.

Fig. 4.8 Dimensions of the I-beam used as free parameters for optimization

4 Application to CAE Systems 91

Parametric Model of the I-Beam

First of all, we need to build a parametric model of the I-beam in PTC Creo

Parametric and name all the dimensions we want to use as design variables.

Program Menu

To proceed further, the model should be programed. Each model in PTC Creo

Parametric contains a listing of major design steps and parameters that can be edited

when new design specifications arise. To program the model and include inputs for

the dimensions go to Model ▶ Model Intent ▶ Program and click Edit Design

from the PROGRAM menu to view the model design.

Now we need to create a text file containing the values of the free parameters.

Let’s call it INPUT.txt. This file should contain the following data:

Parameter1¼ 20

Parameter2¼ 53

. . .
ParameterN¼ 60

This file will be modified by the optimization code and then used to update the

model. To create a trail file for this particular problem, open PTC Creo Parametric

(if we have it open already, exit and launch it again), reopen the model and

regenerate it. PTC Creo will ask us if we want to read a file. Select the INPUT.txt

file we’ve created and the model will update. Perform a simulation study and exit

PTC Creo.

Copy the trail file that has been created during this session (we should be able to

find it in our working directory) under a new name with the extension *.txt. Let’s
take a look at the whole process one more time. We have a code for a specific

optimization algorithm (PSO or EVO). The code runs PTC Creo in a batch mode to

obtain the values of the mass, maximum stress and maximum displacement that

correspond to the current values of the free parameters. The values of the free

parameters are generated by the optimization algorithm and exported into a text file

(1) (cf. Fig. 4.9). Then a new session of PTC Creo Parametric is launched using a

trail file as an argument (2) meaning that all the commands in the trail file will be

carried out, such as opening of the model (3), regeneration of the model according

to the text file (4), simulation study (5) and creation of the results folder (6). After

that, the values of the maximum stress and displacement are extracted from one of

the result files (7).

The optimization results are shown in Fig. 4.10. We observe here that, with the

same number of objective function evaluations, EVO and PSO show similar

performance in the convergence of the best mass value. The accuracy of the final

solution also depends on the initial settings for the algorithms. The choice of the

settings depends on the problem at hand (cf. Sect. 3.1).

92 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_3

Fig. 4.9 General concept of optimization using PTC Creo

0 2 4 6 8 10 12 14 16 18 20
15

20

25

30

35

40

45

50

number of iterations

go
al

: m
as

s
[k

g]

particle 1

particle 2

particle 3

particle 4

particle 5

best mass

0 2 4 6 8 10 12 14 16 18 20
15

20

25

30

35

40

45

50

number of generations

go
al

: m
as

s
[k

g]

best mass

worst mass each generation

a)

b)

Fig. 4.10 Minimizing the mass of the beam (Fig. 4.8). (a) PSO results. (b) EVO results

4 Application to CAE Systems 93

4.2.4 Bionic Parametric Shape Optimization with Siemens
NX 9.0

Siemens NX is an integrated CAD/CAM/CAE/PLM (Product Lifecycle Manage-

ment) software package developed by Siemens PLM Software. Its latest version,

used here—NX9 (Windows x64 only)—was released on October 14, 2013. Sie-

mens NX is a direct competitor to PTC Creo Elements/Pro and CATIA.

NX Journaling

Journaling is a rapid automation tool that records, edits, and replays interactive NX

sessions. We can enhance journals by manually editing them with simple program-

ming constructs and user interface components.

Journals increase productivity through a variety of scenarios such as automating

repetitive tasks, automating procedural workflow, rapid creation of autotests, and as

an aid for creating more advanced automation programs.

We can automatically create journals by recording an interactive NX session, or

manually create them using any text editor. Automatically created journals produce

the same model data and history tree with playback as was originally created during

record, assuming the same start state. We can enhance journals by manually editing

them with simple programming constructs, such as local and global variables,

loops, arrays, mathematical expressions, branching, and conditionals.

On non-Windows systems, Java, or Cþþ journals must first be compiled and

then executed using the File tab>Execute>NX Open command. Replay of Visual

Basic journals is not supported on non-Windows systems (NX 9.0).

Run a Journal from the Command Prompt Window

On Windows, we can launch a journal from an NX Command Prompt shell using

the run_journal utility. To run a journal from the command line, we need to locate

the file called “run_journal.exe” and use the following command:

“run_journal.exe journal_file.vb”

The path to “run_journal.exe” will depend on the details of your installation. In

the same way, we can run an NX journal from within a code written in one of the

programming languages. For example, to execute a journal from within a Cþþ
code, we can use the command “system” and then specify the “path to run_journal.

exe” file and then the path to our journal:

system(“c:\crPROGRA~1\crSIEMENS\crNX9~1.0\crUGII\crRUN_JO~1.EXE

e:\crWork_Folder\crCþþ\crCubesAssembly\crModel\crResults_for_SOL_106.

vb”)

94 R. Steinbuch et al.

General Concept of the Outer Loop Optimization with Siemens NX 9.0

As the term “outer loop optimization” (compare Sect. 4.1.2) implies, our optimi-

zation algorithm has two loops—the inner loop and the outer loop. The outer loop is

the optimization code itself where the inner loop involves all the operations

performed by using the modelling update and the simulation part of the external

CAD software. As the process progresses, it launches interactive NX sessions to

find the values of the goal function and the constraints for the current particle (PSO)

or individual (EVO) by running simulation analysis in a batch mode (Fig. 4.11).

The values of the free parameters are generated by the optimization algorithm

and exported into a text file (1) (cf. Fig. 4.11). Then a new session of NX is

launched using journals (2). All the commands in the journals will be carried out,

such as changing the dimensions of the model (3), updating the mesh (4), simula-

tion study (5) and creation of the result files containing values of stress and

displacement (6). After that, the values of the maximum stress and displacement

are extracted from the result files (7) and passed back to the optimization code (8).

At the end of the optimization process, the final optimization results are exported

into the main result file (9).

Example 4.5 To understand how it all works, let us consider the example visual-

ized in Fig. 4.12. Let us assume that we have two I-beams, made of steel, in contact

with each other, and we want to minimize the mass of the structure (the objective

function) by modifying some of the dimensions (free parameters). Both I-beams,

each with a length of 400 mm, are fixed at one end, and there is a distributed force

Fig. 4.11 General concept of Bionic Optimization with Siemens NX9.0

4 Application to CAE Systems 95

F¼ 100 kN applied to the upper one. We assume that the maximum stress should

not exceed 300 MPa and that the maximum displacement should not exceed 3 mm

(optimization constraints).

In Fig. 4.12 we see the dimensions we use as optimization parameters for both

I-beams. We modify them within the ranges:

– p1, p7 E [90, 150];
– p2, p8 E [20, 60];
– p3, p9 E [90, 150];
– p4, p10 E [10, 30];
– p5, p11 E [150, 200];
– p6, p12 E [10, 30].

Creating a Parametric Model of the I-Beam

First of all, we need to create a parametric model of the I-beam. It includes creating

a set of the free parameters that are associated with the dimensions of the part we

want to modify. We also need to assign a material to the part here.

Fig. 4.12 Two beams in contact as an optimization problem. (a) Assembly of two beams in

contact. (b) Initial dimensions of the beams

96 R. Steinbuch et al.

Exporting the Value of Mass of a Part or an Assembly

To be able to obtain the value of mass for every particle (PSO) or individual (EVO),

we need to include it in the list of free parameters. First, open the part (or the

assembly file). Go to Analysis>Measure Bodies and select the model (or the

entire assembly). Click OK. Go to Tools>Expressions in the drop-down menu

under Listed Expressions selectMeasurements. We will see the list of parameters

associated with the measurements we’ve just created. We can rename these

parameters.

Note that if our part or assembly has been modified and we want to update our

measurements, go to Part Navigator and in Model History folder we will find

Body Measurement (#). Right-click on it, and choose Edit Parameters. Then, in

the popup window, click OK. Our measurements in Expressions dialog box should

be up to date. Now we can export these parameters into an external file. Go to

Tools>Expressions and click Export Expressions to File. The exported file is

generated by the system and ends with a *.exp file extension. If we need to examine

or edit the file, we can refer to the format rules shown below (NX 9.0).

Creating a FEM Model of the I-Beam

Go to File>Advanced Simulation. In the Simulation Navigator, right-click on

the part and choose New FEM. . . Save the FEM file. Now we can create a mesh.

Creating a SIM Model of the I-Beam

The next step is the SIM file. In the Simulation Navigator, right-click on the

FEM-model and choose New Simulation. . . Save the SIM file. Now we can apply

loads and constraints to the part and run a simulation. We will need four journals to

automate the job in NX. To execute the first journal, we need our *.exp file that we

have created earlier. Let’s name this file “input.exp”. The purpose of the first

journal is to update the part according to the data in the expression file, compute

the mass of the part and export this value into another expression file—let’s call it
“mass.exp”. The following sequence of commands is executed to record the first

journal (NX 9.0):

1. Start recording

2. Open the part.

3. Go to Tools>Expressions and click Import Expressions from File. Specify

the path to the expression file “input.exp”.

4. Go to Part Navigator, in the Model History folder right-click on Body

Measurement and in the popup menu select Edit Parameters. Click OK in

the popup window.

4 Application to CAE Systems 97

5. Go to Tools>Expressions and click Export Expressions to File. Specify the

path to the expression file “mass.exp”.

6. Save the changes and close the part.

7. Stop recording.

Since the geometry of the part has been modified by the first journal, we have to

update the mesh. This is where we need the second journal. The following sequence

of commands is executed to record the second journal:

8. Start recording

9. Open the FEM file.

10. Go to Simulation Navigator, right-click on the part file and select Load.

11. Go to Simulation Navigator, right-click on the FEM file and, in the popup

menu, select Update.

12. Save the changes and close the FEM file.

13. Stop recording.

The third journal opens the simulation file and runs the simulation job. The

following sequence of commands is executed to record the third journal:

14. Start recording

15. Open the SIM file.

16. Click Solve.

17. Close the SIM file

18. Stop recording.

The fourth journal creates the result files from which we can extract the values of

stress and displacement—our constraints. The following sequence of commands is

executed to record the fourth journal:

19. Start recording

20. Open the SIM file

21. In Simulation Navigator, go to the Results folder of our current solution.

Right-click on the Imported Results folder and select Import Results. Specify

the path to the binary result file with the extension .op2 that was previously

created during simulation analysis.

22. Go to the Results tab on the main toolbar and select the command called

Envelope. Select the type of results we want to output and create two result

files—one for the values of stress and another for the values of displacement.

23. Close the SIM file.

24. Stop recording.

Now we can just execute these four journals one by one every time we need to

obtain the value of the objective function and the values of the constraints for a

particle (PSO) or an individual (EVO). Figure 4.13 shows optimization results for

PSO and EVO.

As we can see, again PSO and EVO perform similar. Both optimization methods

show a decreasing mass value until the maximum number of iterations or

98 R. Steinbuch et al.

generations is reached. Continuing the process or switching to gradient methods

may provide further improvement. As we mentioned in Sect. 3.3.1, the convergence

rate and the time of execution for both algorithms can be improved by tuning the

initial settings.

References

Burovikhin, D. (2015).Multibody parametric shape optimization: Integration of CAD systems into
optimization algorithms. Master thesis, Reutlingen University.

NX 9.0. NX Documentation (Help). NX 9.0. Retrieved September 12, 2015, from http://www.

plm.automation.siemens.com

Plevris, V., & Papadrakakis, M. (2011). A hybrid particle swarm—gradient algorithm for global

structural optimization. Computer-Aided Civil and Infrastructure Engineering, 26, 48–68.

0 2 4 6 8 10 12 14 16 18 20
40

60

80

100

120

140

160

number of iterations

go
al

: m
as

s
[k

g]
particle 1

particle 2

particle 3

particle 4

particle 5

best mass

0 2 4 6 8 10 12 14 16 18 20
40

60

80

100

120

140

160

number of generations

go
al

: m
as

s
[k

g]

best mass

worst mass each generation

a)

b)

Fig. 4.13 Optimization results of the two beam-contact problem using EVO and PSO. (a) PSO

results. (b) EVO results

4 Application to CAE Systems 99

http://dx.doi.org/10.1007/978-3-662-46596-7_3
http://www.plm.automation.siemens.com
http://www.plm.automation.siemens.com

Chapter 5

Application of Bionic Optimization

Rolf Steinbuch, Iryna Kmitina, Tatiana Popova, Simon Gekeler,

Oskar Glück, and Ashish Srivastava

To illustrate the power and the pitfalls of Bionic Optimization, we will show some

examples spanning classes of applications and employing various strategies. These

applications cover a broad range of engineering tasks. Nevertheless, there is no

guarantee that our experiences and our examples will be sufficient to deal with all

questions and issues in a comprehensive way. As general rule it might be stated, that

for each class of problems, novices should begin with a learning phase. So, in this

introductory phase, we use simple and quick examples, e.g., using small

FE-models, linear load cases, short time intervals and simple material models.

Here beginners within the Bionic Optimization community can learn which param-

eter combinations to use. In Sect. 3.3 we discuss strategies for optimization study

acceleration. Making use of these parameters as starting points is one way to set the

specific ranges, e.g., number of parents and kids, crossing, mutation radii and,

numbers of generations. On the other hand, these trial runs will doubtless indicate

that Bionic Optimization needs large numbers of individual designs, and consider-

able time and computing power. We recommend investing enough time preparing

each task in order to avoid the frustration should large jobs fail after long calcula-

tion times.

As a general rule it must be stated, that if time is limited and a critical element,

then no automated optimization should be done. All optimization, deterministic or

random based, takes time. This time cannot be reduced, even if under the pressure

of unrealistic deadlines. If your management thinks they know better, we recom-

mend suggesting that they develop the optimal design themselves.

R. Steinbuch (*) • I. Kmitina • T. Popova • S. Gekeler • O. Glück • A. Srivastava

Hochschule Reutlingen, Reutlingen Research Institute, Alteburgstraße 150, 72762 Reutlingen,

Germany

e-mail: Rolf.Steinbuch@Reutlingen-University.DE; Iryna.Kmitina@Reutlingen-University.

DE; Tatiana.Popova@Reutlingen-University.DE; Simon.Gekeler@Reutlingen-University.

DE; Oskar.Glueck@Student.Reutlingen-University.DE; Ashish.Srivastava@Reutlingen-

University.DE

© Springer-Verlag Berlin Heidelberg 2016

R. Steinbuch, S. Gekeler (eds.), Bionic Optimization in Structural Design,
DOI 10.1007/978-3-662-46596-7_5

101

http://dx.doi.org/10.1007/978-3-662-46596-7_3
mailto:Rolf.Steinbuch@Reutlingen-University.DE
mailto:Iryna.Kmitina@Reutlingen-University.DE
mailto:Iryna.Kmitina@Reutlingen-University.DE
mailto:Tatiana.Popova@Reutlingen-University.DE
mailto:Simon.Gekeler@Reutlingen-University.DE
mailto:Simon.Gekeler@Reutlingen-University.DE
mailto:Oskar.Glueck@Student.Reutlingen-University.DE
mailto:Ashish.Srivastava@Reutlingen-University.DE
mailto:Ashish.Srivastava@Reutlingen-University.DE

5.1 Earthquake Stability and Tuned Mass Dampers

Rolf Steinbuch

Among the disasters people are exposed to, earthquakes are among the most

damaging. Large numbers of fatalities and significant economic losses are reported

in many cases. In consequence, engineers have tried in modern times to design

buildings that can withstand the dynamic forces or at least do not incur extensive

damage. The local physical impact of a seismic event may be modeled as a series of

horizontal and vertical shock waves that excite the base of a building. The build-

ing’s dynamic response may cause severe damage or even the total collapse of the

structure. The dynamic response of tall structures may also be increased by the large

deformability of the building. To prevent such destruction, various approaches are

available, and these may be classified into three strategies: increase the static

strength, isolate from the excited ground, or compensate by elastically coupled

masses spaced along the buildings’ height.
Tuned Mass Dampers (TMD) are one of several methods used to reduce the

impact of an earthquake on buildings. They do so by dampening the impact with

sets of masses, springs and dampers. Such a damping system with many degrees of

freedom may have many local maxima, thus, the optimization of a set of TMD’s
could be a non-trivial task. Bionic strategies like Evolutionary Strategy (EVO) or

Particle Swarm Optimization (PSO) may help to cover larger regions of the

parameter space and increase the probability of finding good values, perhaps even

the best ones. More details about this application may be found in Steinbuch (2011).

5.1.1 Earthquake and Design for Earthquake Loading

As the mass of the surrounding and shaking ground is essentially larger than the

building’s mass, the excitation may be considered as displacement controlled. The

Eigen frequencies, the Eigen forms and the amplitudes at a given excitation of a

dynamic system may be changed by adding new masses and springs. Figure 5.1a

presents acceleration records of the Kobe-Earthquake (Berkeley 2011). The dom-

inant frequencies are in the region of 1 Hz and last for seconds. Accelerations,

measured in different events, range to values a ¼ g ¼ 10 m/s2 or more (Fig. 5.1b).

As there are no specific types of earthquakes exclusively related to specific

places on Earth, earthquake protection in highly active seismic zones has to

withstand all typical types of excitation in magnitude and duration that can be

expected in the specific zone. We decompose the impact in displacement terms of

the ground ug into its k frequency components (Fig. 5.1b).

102 R. Steinbuch et al.

ug ¼
X
k

ugke
ikωt ð5:1Þ

Then we check the impact of each frequency on the dynamic system. As one result,

we have the response and sum up the elastic energy of the volume of the structure.

5.1.2 Brief Introduction to Tuned Mass Dampers

Tuned Mass Dampers (TMD), absorbers and compensators are terms used inter-

changeably for a class of systems that reduce the dynamic impact on structures. To

understand the premise of TMD, we start with a single mass oscillator. It is defined

by the mass m1, the stiffness k1 and the damping c1 (Fig. 5.2a). Stiffness and

damping are attached to some base which may be fixed in time (ug ¼ 0) or has

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [sec]

 a
cc

el
er

at
io

n
[g

]

direction: up−down

direction: north−south

direction: east−west

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

frequency [Hz]

 a
cc

el
er

at
io

n
[g

]

direction: up−down
direction: north−south
direction: east−west

a)

b)

Fig. 5.1 Earthquake: acceleration measurement and spectrum of Kobe earthquake 1995. (a)

Measured accelerations. (b) Spectrum of accelerations

5 Application of Bionic Optimization 103

defined displacements (ug ¼ ug tð Þ) in time. The system is excited by either the

ground motion ug(t) or a force F1(t) acting on the mass m1. The resulting displace-

ment history u1(t) may be found by integrating the ODE

m1€u1 þ c1 _u1 þ k1u1 ¼ F1 tð Þ: ð5:2Þ

The well-known solution for the amplitude vs. frequency ω is given by

u0 ωð Þj j ¼ F1=m1

ω2
0 � ω2 þ 2iγω

����
����: ð5:3Þ

To avoid the large amplitudes near the Eigen frequency, we introduce a TMD

(Fig. 5.2a).

0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

35

40

45

50

exciting frequency [Hz]

am
pl

itu
de

 u
1, u

2

u
2
 for different k

2

u
1
 no TMD

u
1
for different k

2

best choise of k
2
 for u

1

a)

b)

Fig. 5.2 1-mass oscillator without and with TMD. (a) Apply TMD to 1-mass oscillator. (b)

Dynamic response when varying stiffness k2 to get minimum of u1

104 R. Steinbuch et al.

m1 0

0 m2

� �
€u1

€u2

� �
þ c1 þ c2 �c2

�c2 c2

� �
_u1

_u2

� �
þ k1 þ k2 �k2

�k2 k2

� �
u1

u2

� �
¼ F1

0

� �
ð5:4Þ

Equation (5.4) may be used to derive some properties of TMD. The influence of a

TMD on the dynamic response of the initial mass may be learned from Fig. 5.2b.

The amplitudes “u1 with TMD” are significantly smaller at the original Eigen

frequency, but they have two maxima of a significant fraction of the initial

maximum amplitude. The mass of the TMD may be large as about 5–10 % of the

mass m1.

Multi-mass TMD Systems

For the sake of simplicity, we are restricting ourselves to one-dimensional chains of

masses, stiffness and TMD excitation at one end of the chain as indicated in

Fig. 5.3.

The corresponding ODE-system of the chain without TMD is given by

M€uþ C _u þKu ¼ F tð Þ ð5:5Þ

where M is a diagonal or consistent mass matrix, C represents an appropriate

damping and

K ¼

k12 þ kg �k12 0 . . . 0

�k12 k12 þ k23 �k23 � � � 0

0 �k23 k23 þ k34 � � � ⋮
⋮ ⋮ ⋮ ⋱ �kn�1,n

0 0 . . . �kn�1,n kn�1,n

0
BBBB@

1
CCCCA ð5:6Þ

stands for the chain’s stiffness matrix including kg, the stiffness connecting m1 to

the ground. Just as in the previous problem, we are primarily interested in the

harmonic response. We take the elastic energy stored in the system as an indication

of the potential damage.

Fig. 5.3 Multimass oscillators

5 Application of Bionic Optimization 105

To reduce the dynamic response, we may add some TMDs (cf. Fig. 5.3, where

each mass point has its own TMD). Again we use the summed elastic energy stored

in the system as an indication of the internally acting destructive load on the main

structure.

The optimization problem to minimize the energy in the chain is now

multidimensional. We use bionic approaches (cf. Chap. 2) to find efficient designs

for the TMDs’ mass and stiffness. After some searching of the space of possible

values for the mi, ci and ki, we find that the total energy stored in the system may be

reduced to about 55 % as indicated in Fig. 5.4 for a 16-mass main system with

16 TMD. The plot shows the fitness function, the elastic energy of the three best

parents and the worst parent vs. the generation of the optimization process. We used

an Evolutionary Strategy (cf. Sect. 2.1) with 20 parents, 60 kids and a large

mutation radius for 100 generations. Figure 5.4 also identifies an additional opti-

mization. Having found an energy level that is close to the minimum of the search

using an Evolutionary Strategy after 100 generations, we want to minimize the

summed mass of the TMDs. Figure 5.4 indicates that there might be some designs

with the same compensation efficiency but essentially smaller masses. The optimi-

zation strategy is able to find TMD systems which are nearly as efficient as the best

found so far but have a significantly smaller mass—about 20 % of the mass found

previously. Now we are able to propose efficient and relatively lightweight designs

for TMDs of the 16 masses problem. It is obvious that this approach may be

transferred to other dynamic models with an arbitrary number of masses. The

strategy used is one of various methods of a Multi-Objective Optimization

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

generation

go
al

: W
el

0

0.2

0.4

0.6

0.8

1
go

al
: t

ot
al

 T
M

D
 m

as
s

best parent 1

best parent 2

best parent 3

worst parent in generation

total TMD mass change goal

goal: minimize W
el

goal: minimize
total TMD mass

restriction:
Wel < 1.1 Wel best

Fig. 5.4 Reduction of elastic energy and TMD-mass for the 16-mass main system using an

Evolutionary Strategy

106 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_2

(MOO) in which we seek to optimize energy impact and mass. Section 6.2 discusses

more about such MOO.

5.1.3 A Simplified Approach to Study TMD in High
Buildings

To come up with quick and realistic proposals of the dimensioning of TMD in high

buildings under earthquake impact, we developed a simple beam element

representing a segment of a high and slender building including the TMD. Each

element is used to model one or more floors of the edifice under consideration. The

TMD are an integral part of these elements. The masses, dampers and stiffness

associated with these segments are the TMDs’ free variables in the optimization

process. Every node has 8 degrees of freedom (dof), 3 dof for the nodes’ trans-
lations, 3 dof for the nodes’ rotations and the 2 dof for the in plane displacements of

the TMD (Fig. 5.5a). We may use these beam elements to assemble a building by

assigning each beam typical stiffness and mass data for the corresponding floors

(Fig. 5.5b).

The mass, stiffness and damping of the compensators are used as free parameters

for an optimization using this reduced model. The elastic energy stored in the model

could be the objective to be minimized, a proposal of the corresponding TMD the

result.

Fig. 5.5 Simple beam-element represents a segment of a building including a TMD. (a) New

beam element. (b) The building represented by beam elements

5 Application of Bionic Optimization 107

http://dx.doi.org/10.1007/978-3-662-46596-7_6

Parameters of the Optimization Process

For the following example, we use a vertical solid steel body with a cross section of

5� 6 m2 and a height of 100 m. We divide this column into 10 floors. The base

excitation is given by the Kobe earthquake north-south (Fig. 5.1, Berkeley 2011).

Placing three compensators at the floors number 5, 7 and 9 showed very promising

responses.

Having decided about the number and position of compensators, we define a

range of the dimensions of the compensators’ masses, and stiffness. Here, once

more, contradictory effects have to be taken into account. Ranges too small prevent

the optimization search from finding interesting regions; ranges too large present a

danger that the process converges towards infeasible solutions, as, for example the

total weight of the compensators exceeds the building’s mass.

To compare the efficiency of the strategies, we run the optimization using EVO

and PSO, both with 20 particles or kids in each step/generation (Fig. 5.6a, b).

0 10 20 30 40
3

3.5

4

4.5

5
x 10

11

 generation

go
al

 o
f 3

 b
es

t +
 w

or
st

 p
ar

en
t

0 10 20 30 40
3

3.5

4

4.5

5
x 10

11

 iteration

go
al

 o
f i

nd
iv

id
ua

ls

0 50 100
3

3.5

4

4.5

5
x 10

11

 generation

go
al

 o
f 3

 b
es

t +
 w

or
st

 p
ar

en
t

0 50 100
3

3.5

4

4.5

5
x 10

11

 iteration

go
al

 o
f i

nd
iv

id
ua

ls

a) b)

c) d)

Fig. 5.6 Optimization of the 10 story building by EVO and PSO. (a) EVO: three best and worst

parents data show slow progress. (b) PSO: best individuals seem to stick at local maximum. (c)

EVO: increasing the number of generations yields better results. (d) PSO: no more sticking, better

results found, close to the ones of EVO

108 R. Steinbuch et al.

The tendencies of EVO shown in Fig. 5.6a for the three best and the worst parents

indicate that the optimization is far from being finished after the 40 generations. As

long as there is a significant span between the parents, there is a potential of further

improvement. The PSO (Fig. 5.6b) shows fast improvement in the first steps. Then

no further essential decrease of the objective is observed. It seems that the best

individual found a local maximum, and that, while some of the other particles tend

to join the best particle, we do not find any better solutions.

A new analysis of the same problem, now using 40 parents or particles and

100 generations/steps produces the results shown in Fig. 5.6c, d. The optima found

are better than the ones of the 40 generation runs, but here once more PSO is less

efficient than EVO. The results ought to motivate one to be concerned about the

quality of the results. Without a skeptical review, Bionic Optimization has the

potential to lead to weak or untrustworthy statements.

After the preliminary studies shown in Fig. 5.6, we would now decide to use

EVO for further analysis. Starting with a mutation radius of 15–30 % of the

parameter range may help during the initial studies, indicating which values to

use during the following analysis. We may reduce the mutation radius as soon as we

feel that we are close to an interesting region in the parameter space.

5.2 Metal Forming

Iryna Kmitina and Tatiana Popova

With increasing demands placed on metal forming companies, and the growing

complexity and variety of their products, simulation of forming processes is an

increasingly important field. Understanding how loads will act on a part is very

important for sizing forming tools and determining the process borders. Simulations

are used to control the quality of the final product at an early stage of the process

development, and their flexibility enables quick changes of process parameters, and

the evaluation of their effects. Here Bionic Optimization in combination with metal

forming simulation can help metal factories avoid defects in their production lines,

reduce testing and expensive mistakes, and improve efficiency in the metal forming

process.

An example of the metal forming simulation is represented in Fig. 5.7. This

example shows a hot forging process. This simulation was made using a finite-

element-method (FEM) solver and a finite-volume-method (FVM) solver. Hot

forging occurs at a temperature above the recrystallization point of the metal. For

mass production, fully automated multi-stage presses are unmatched worldwide.

This example was created and run with Simufact.forming software: a custom-

ized software solution for the analysis and optimization of forming processes.

Forming processes have a high potential for optimization. This section presents

possibilities for the verification of forming processes optimizations.

5 Application of Bionic Optimization 109

5.2.1 Deep Drawing

Deep drawing is a method of metal sheet forming. In this process a sheet metal

blank is radially drawn into a hollow cup (can) with a forming die and the axial

mechanical action of a punch. The end form is achieved by redrawing the interme-

diate form through a series of dies (Ping et al. 2012).

In our example the workpiece is a blank with predefined dimensions of radius

and height. The deep drawing process contains many components and steps. The

first forming, shown in Fig. 5.8, uses the following tools: a die (ring), a blank

holder, and two punches, which move together during the first stage. The blank lies

between the die and holder and then is drawn into a forming die. In the next stage

the tools include: a forming die with a smaller diameter, the first punch as a blank

holder, and a moving second punch. This intermediate form goes through three

ring-dies that make the can thinner. The second punch and bottom-die are used on

the bottom forming of a can, the last stage, after stretching.

Here, the optimization task is to achieve a uniform wall thickness distribution at

the can after the first forming stage, dependent on tool friction. The workflow of the

outer loop optimization process (Sect. 4.1.2), including the optimization method

and the Simufact simulation tool, is shown in Fig. 5.9.

Workflow description:

– The workflow starts with a run of control program (optimizer). For example,

when using PSO, in the first step, the values of input parameters will be selected

randomly within a certain range.

– The changed values are rewritten in the Simufact input data file.

– The simulation job is run in batch mode.

– After a simulation job is finished, the optimizer receives the output file of the last

simulation increment, converts it, and reads the results. If these results do not

satisfy the restrictions, then the goal value will be recalculated—maximized for

a minimization task or minimized for a maximization task (cf. Sect. 2.9). In this

way the unsuitable set of input parameters will be restricted, and next cycle of

optimization process will be executed. If activated, the program will verify the

Fig. 5.7 Multi-stage forming process—hot forging (Schmiedag GmbH Hagen)

110 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_4
http://dx.doi.org/10.1007/978-3-662-46596-7_2

completed job status by checking a stop criterion, for example, if the tolerance

between the new and the old fitness values has been reached, the optimizer will

be stopped. Otherwise, the input parameters will be recalculated and next cycle

of optimization process will run.

Significant variables that can be used for optimization of the deep drawing

process include: the properties of sheet metal, blank holder force, tool friction,

punch speed, the blank diameter to punch diameter ratio, the sheet thickness, the

clearance between the punch and the die, and the punch and die corner radii.

Fig. 5.8 The first stage of the deep drawing process. (a) Tools of the first step of deep drawing. (b)

First intermediate form of the workpiece—simulation indicates the effective plastic strain

Fig. 5.9 Optimization workflow for can optimization with Simufact

5 Application of Bionic Optimization 111

A Particle Swarm Optimization (PSO) algorithm was used for this example.

Settings parameters for outer loop optimization are listed below:

– Optimization method and FEM program! PSO, Simufact

– Optimization parameters! 10 particles, 6 iterations

– Input parameters and parameter range! friction coefficients of first punch and

die [0.05. . .0.4]
– Goal function!minimizing the difference between maximum and minimum

wall thickness value of the can without failure

– Restrictions! no restrictions

– Computing time! 14 h for the total optimization of the first stage

The convergence behavior and the optimization result is depicted in Fig. 5.10.

The figure shows the difference in wall thickness decreasing through iterative

process.

5.2.2 Backward Extrusion

Backward extrusion is a widely used cold forming process for the manufacturing of

hollow symmetrical, cylindrical products. It is usually performed on high-speed and

accurate mechanical presses. The punch descends at a high speed and strikes the

workpiece, extruding it upwards by means of high pressure. The die ring helps to

form the tube wall. The thickness of the extruded tubular section is a function of the

clearance between the punch and the die (Barisic et al. 2005). A schematic outline

of backward extrusion process is presented in Fig. 5.11.

For the simulation of the backward extrusion process, a simplified process model

could be used. For instance, all the punch parts could be represented as one single

part. All the tools of the backward extrusion process could be divided into three

0 1 2 3 4 5 6
0.3

0.35

0.4

0.45

0.5

0.55

 iteration

go
al

 o
f i

nd
iv

id
ua

ls
: Δ

 t w
al

l [m
m

]

Fig. 5.10 Optimization of the can’s wall thickness distribution in a deep drawing process using

PSO

112 R. Steinbuch et al.

groups according to their functions: punch, ring and housing base. The workpiece is

represented by an aluminum blank. Figure 5.12 illustrates the components of the

backward extrusion process in the commercial code Simufact.

The output of the process is the can with its wall thickness. The wall thickness

distribution depends on the tool dimensions. Parameter variations cause a thickness

distribution. Figure 5.13 depicts all the dimensions of the tools that could be

variables for the backward extrusion process optimization. In addition, the thick-

ness of the workpiece may be modified as well.

The goal of the optimization is to minimize the mass, using a PSO study. As a

first restriction the required can length of l¼ 201 mm should be reached in the

backward extrusion process. Furthermore, the final can has to resist an inside

pressure of p2¼ 21.6 bar, without large deformations up to p1¼ 18 bar. All restric-

tions are handled by a penalty method (Sect. 2.9). Figure 5.14 shows the fitness

value convergence through iterations of Bionic Optimization strategy—PSO

(16 iterations� 18 particles¼ 288 simulation runs). In this example, the fitness

value represents the workpiece mass. Optimization is obtained through modifica-

tions to the geometry. The figure contains the worst, average and best particles

curves. The Bionic Optimization method PSO finally proposes an 21 % mass

reduction from the initial 38 g to the optimized mass of 30.0 g.

Forming processes simulations require long calculation times because of the

complexity of these problems. Methods to reduce the calculation time lose quality

in the final result with simplifications of their models. The length of one calculation

can restrict optimization possibilities. Consequently, for increasing the use of

forming processes optimization, simulation acceleration is needed. On the other

hand, adaption of optimization strategies to specific problems or hybrid optimiza-

tion procedures can help to reduce the number of jobs in an optimization. In Sect.

Fig. 5.11 The backward extrusion process. (a) Tools of backward extrusion. (b) Can—result of a

backward extrusion simulation

5 Application of Bionic Optimization 113

http://dx.doi.org/10.1007/978-3-662-46596-7_2

Fig. 5.12 Simulation of the backward extrusion with a simplified model. (a) Tools of backward

extrusion. (b) Meshed workpiece

Fig. 5.13 Free parameters at backward extrusion tools to achieve an optimized shape of the can.

(a) Bottom forming tool. (b) Lower die. (c) Punch. (d) Ring

114 R. Steinbuch et al.

2.7, Example 2.3, we show the advantages of combining PSO and the meta-

modeling technique for optimization of the backward extrusion process.

Forming processes have a high potential for optimization. This section demon-

strated two examples of the forming processes optimization, which present prom-

ising results. Further developments of this kind of process optimization are possible

in the future with simulation acceleration.

5.3 Brake Squeal

Simon Gekeler, Oskar Glück, and Ashish Srivastava

When designing brake systems in automotive industry, the biggest challenge, after

the brake’s performance, is comfort. That is why brake noise, especially brake

squeal, is one of several problems engineers face in development. The main cause

of brake squeal in disc brakes is the sliding contact between brake pads and the disc,

which causes an imbalance of forces, and results in amplified oscillation. Theoret-

ically, higher damping and a less stiff system could reduce the tendency of a brake

to squeal. Since this directly affects the efficiency of the brake and the performance

of the car, it is necessary to find an optimal configuration of the main parameters,

providing high brake performance with less squeal. Here Bionic Optimization

strategies help to provide solutions (Losch 2013; Thelen 2013).

5.3.1 Types of Brake Noise

Figure 5.15 shows a classification of the brake noises by their cause and the relevant

frequency range, according to (Zeller 2012):

0 2 4 6 8 10 12 14 16

iterations

30

40

50

60

70
go

al
: c

an
 m

as
s

[g
]

worst particle
best paticle
average particles value

original mass: 36.872g

Fig. 5.14 Minimization of the can’s mass in a backward extrusion process with PSO

5 Application of Bionic Optimization 115

http://dx.doi.org/10.1007/978-3-662-46596-7_2

– Judder: Low frequency oscillations up to 500 Hz. It occurs during slight to

medium deceleration from high velocities as vibration in the steering wheel or

the brake pedal is accompanied by a humming sound.

– Control noise: Operating noise of the ABS-system, which is acoustically uncrit-

ical. A response in dangerous situations is required but may not distract the

driver.

– Groan: Caused by the alternating stick and slip of the brake pads on the disc

(stick-slip-effect).

– Squeal: Occurs at frequencies higher than 1000 Hz. It is almost not overlaid by

any other road noises due to its appearance at low driving speeds and thus is

particularly bothersome. The cause stems from self-excited vibrations based on

instabilities in the friction characteristic of the brake system. These vibrations

appear at critical interactions between in-plane-modes and by resonance of

bordering components caused out-of-plane-modes (Zeller 2012).

Judder and control noise results from wavering brake torque. They are a com-

bination of vibration and accompanying sounds and occur in lower frequency

ranges. Groan, moan, scratch and squeal are self-excited brake noises in the

acoustical area, which are caused by dynamical instabilities of the brake system.

They occur mainly at low driving speed, e.g., slowing down at traffic lights

(Schlagner 2010).

5.3.2 Modeling of Brake Squeal

The setup of a simulation model and the emergence of brake squeal are explained

by reference to an example of a brake disc model. With the help of complex Eigen

Fig. 5.15 Classification of

brake noise, according to

Zeller (2012)

116 R. Steinbuch et al.

value analysis, all unstable Eigen frequencies of a system can be encountered

during one simulation run. The results serve as indication of the instability of the

system and reveal a possible squeal tendency, which in reality does not necessarily

have to occur. Nevertheless, experiments have shown a good correlation between

the results of the complex Eigen value analysis and real-world squeal noises.

Figure 5.16 shows a basic procedure of the simulation of brake squeal, e.g., with

PERMAS, a Finite Elements analysis system developed by INTES GmbH (https://

www.intes.de/, April 2015).

To explain the analysis of brake squeal a simplified brake model is used

(Fig. 5.17). The model consists of a rotating disc with constant angular frequency

ωrot. The disc is constrained in all spatial directions at its inner diameter. The pads

are guided in x- and z-direction (in-plane) by rigid elements fixed to the caliper.

Normal to the disc (out-of-plane) they are supported against the caliper by springs.

For the contact between disc and pads, a constant sliding friction μ is assumed. The

pads are loaded by a constant pressure p (INTES GmbH 2014).

1. To determine the contact state and contact forces during the first computation

step, a static analysis with contact and friction under brake pressure and a

rotation ωrot is performed. The relative velocity vrel between brake pad vpad
and brake discvdisc is calculated and defines the direction of the friction forces Ff.

We get the magnitude of these forces according to Coulomb’s law of friction in

Eq. (5.7). Here the brake pressure is acting as normal force FN.

Fig. 5.16 Procedure of simulation of brake squeal (Carvajal et al. 2014)

5 Application of Bionic Optimization 117

https://www.intes.de/
https://www.intes.de/

F f ¼ μ � FN � vrel
vrelj j ð5:7Þ

The contact state is frozen for succeeding computation steps and provides

additional amounts to the stiffness and damping matrices.

In Fig. 5.18 the forces on the disc model and the relative velocity between the

disc and the pads are displayed. Here the stiffness term k and damping term

c represent the properties of the caliper.
As result of the rotating disc, we get the convective stiffnessKconv and also the

damping eCgyro and stiffness Kgyro caused by gyroscopic effects in a second

computation step. Those additional terms will be considered in the following

Eigen value analyses.

2. The Eigen modes of the brake disc can be determined by a real Eigen value

analysis. The differential equation for undamped free vibrations in Eq. (5.8)

together with the assumption of a periodic response in Eq. (5.9) deliver the Eigen

value problem in Eq. (5.10), which is extended by the previous calculated

stiffness terms resulting in Eq. (5.11) (Nasdela 2012).

M€uþKu ¼ 0 ð5:8Þ

u ¼ φ exp iωtð Þ ð5:9Þ

�λiMþKð Þ � φi ¼ 0 with λi ¼ ωi
2 ð5:10Þ

Fig. 5.17 Simplified brake disc model and its constraints

118 R. Steinbuch et al.

�� λMþ Kstructure þKconv þKGyro

� � �Φ ¼ 0 with Φ ¼ φ1 . . .φnð Þ ð5:11Þ

We look at the non-trivial-solutions:

i ¼ 1 . . . neig with neig, the number of interesting Eigen values

λi Eigen values

ωi ¼
ffiffiffiffi
λi

p
Eigen angular frequency

φi Eigen vector

3. From the differential equation for damped free vibrations in Eq. (5.12) and the

approach in Eq. (5.13), we derive the complex Eigen value problem in

Eq. (5.14).

M€uþ C _u þKu ¼ 0 ð5:12Þ

u ¼ φ*exp μtð Þ ð5:13Þ

μ2Mþ μCþK
� � �Φ* ¼ 0withΦ* ¼ φ*

1 . . .φ
*
n

� � ð5:14Þ

Non-trivial-solutions are:

μ1=2, i ¼ �δi � iωd, i complex Eigen value

δi damping coefficient

ωd,i angular frequency of the damped oscillation

φ�
i complex Eigen vector

To reduce the amount of degrees of freedom, and thus the computation time,

the complex Eigen value problem in Eq. (5.14) is performed in a subspace

according to the Craig-Bampton-Method (Nasdela 2012). A prerequisite,

Fig. 5.18 Representation of forces on the brake (Losch 2013)

5 Application of Bionic Optimization 119

therefore, is that the system is only slightly damped in order that the complex

Eigen vectors φ�
i can be approximated through a linear combination of

undamped Eigen vectors φi. By summation of the damping terms after the

subspace-projection follows the complex Eigen value problem in Eq. (5.15).

μ2 eM þ μ eCGyro þ eCmod

� 	
þ eKstructure þ eKconv þ eKGyro

� 	� 	
�Φ* ¼ 0 ð5:15Þ

The computation time is further reduced by introducing a reference frequency

and a linear scaling of the angular frequency. The time consuming contact

computation must be done only once. The equivalent damping ratio Di can be

seen as stability evaluation of the brake system.

Di ¼ δi
ωd, ij j ð5:16Þ

The equivalent damping ratios Di plotted over the rotational speed results in

separate Campbell-Diagrams for each mode. The following stability conditions,

depicted in Fig. 5.19, can occur:

– The equivalent damping ratio of one mode is positive for the whole range of

rotational speed:

D > 0, mode is stable, no tendency to cause squealing (Fig. 5.19, mode 1)

– At least one equivalent damping value is negative:

D < 0, mode is unstable, tendency to cause squealing (Fig. 5.19, mode 2 and

mode 3). However some modes can be ignored as they do not excite squealing.

Thus the real part of the Eigen value μi provides information of the stability, and

the imaginary part describes the angular frequency of this mode.

Fig. 5.19 Campbell

diagram with equivalent

damping ratio of Eigen

modes depending on

rotational speed

120 R. Steinbuch et al.

5.3.3 Minimizing the Risk of Brake Squeal Using Bionic
Optimization

The goal of the optimization is to provide a design with the least possibility to cause

squealing, without affecting brake performance. Negative equivalent damping

ratios of Eigen modes need to be avoided. Thus we want to find a design where

all relevant modes have positive equivalent damping ratios. Furthermore it is

necessary to understand the importance of how negative a damping characteristic

might be. Even small negative damping amounts could cause unstable vibration

behavior. With respect to the mentioned problems, it is vital to frame a suitable goal

function which meets these requirements.

We assume an existing design of a brake system. Hence, as a second goal, we do

not want to have large modifications in the design. Alterations to the free param-

eters should be as small as possible, while minimizing the squealing tendency. To

avoid the complexity of a Multi-Objective Optimization, we transform our first goal

(reduce squealing) into a restriction handled by the penalty method (Sect. 2.9). This

means, while achieving our goal of a minimum change in the current design, we

need to make sure that all Eigen modes have a positive (above ε¼ 10�4) equivalent

damping ratio in a range of a rotational speed ωrot from 0.5 Hz to 5.0 Hz. Otherwise,

a penalty value is applied on our goal (Losch 2013). For our simplified brake disc

model, we define Young’s modulus of the brake pads material E and the friction

coefficientμ between the pads and the disc as free parameters. Now we can describe

our optimization problem as

minΔμ,ΔE Δμ2 þ ΔE2
� � ð5:17Þ

D ωrot;Modeð Þ � ε ð5:18Þ
ωrot ¼ 0, 5 . . . 5Hz,Mode ¼ 1; 2; . . . ; 23f g;

where Δμ and ΔE are the normalized changes of the free parameters in their defined

limits [μmin, μmax] and [Emin,Emax] according to

Δμ ¼ μ� μ0
μmax � μmin

ð5:19Þ

ΔE ¼ E� E0

Emax � Emin

ð5:20Þ

The Campbell diagram in Fig. 5.20 indicates the squealing tendency of our simpli-

fied brake disc example. Following the numerical results, the complex modes

19 and 21 have negative equivalent damping ratios. The complex mode 11 and

mode 21 have low damping values, too. They risk becoming unstable when varying

parameter values in an optimization process. The corresponding mode shapes are

depicted in Fig. 5.21.

5 Application of Bionic Optimization 121

http://dx.doi.org/10.1007/978-3-662-46596-7_2

A Particle Swarm Optimization with 20 particles and 20 iterations gives us a

proposal of a non-squealing brake design, with few changes compared to the

original. Table 5.1 shows the changes in parameter values. The Campbell diagram

(Fig. 5.22) shows that no negative equivalent damping ratio occurs within the range

of rotational speed.

Fig. 5.20 Campbell diagram with critical complex Eigen modes for the simple brake disc model

(Losch 2013)

Fig. 5.21 Mode shapes of the critical complex Eigen modes (Losch 2013)

Table 5.1 Parameter values of original and optimized brake design (Losch 2013)

Friction coefficient

μ (–)

Young’s modulus pad

E (MPa)

Change in free parameters

Δμ2 þ ΔE2
� �

Original

design

0.700 500.0 0

Optimized

design

0.476 481.1 1.411� 10�1

122 R. Steinbuch et al.

References

Barisic, B., Car, Z., & Cukor, G. (2005). Analytical, numerical and experimental modeling and

simulation of backward extrusion force on Al Mg Si 1. In K. Kuzman (Ed.), 5th International
Conference on Industrial Tools, Velenje (pp. 341–347).

Berkeley. (2011). Kobe earthquake 1995/01/16 20:46. Station Takarazuka: Earthquake Engineer-

ing Research Center (PEER). http://ngawest2.berkeley.edu/

Carvajal, S., Wallner, D., Wagner, N., Klein, M. (2014). Hervorragender Geräuschkomfort durch

Simulation – Neue Methoden zur Berechnung von Stabilitätskarten. In INTES GmbH, &

Dr. Ing. h.c. F. Porsche AG (Eds.). Bamberg: NAFEMS Konferenz.

INTES GmbH. (2014). PERMAS examples manual. INTES Publication No. 550, Stuttgart.

PERMAS Version 15.00.112.

Losch, E. (2013). Inner Loop-Optimierung einer Bremsscheibe mit kontrollierter
Ger€auschentwicklung. Master thesis, Reutlingen University.

Nasdela, L. (2012). FEM-Formelsammlung Statik und Dynamik: Hintergrundinformationen,
Tipps und Tricks. Wiesbaden: ViewegþTeubner Verlag.

Ping, H., Ning,M., Li-zhong, L., &Yi-guo, Z. (2012). Theories, methods and numerical technology
of sheet metal cold and hot forming: Analysis, simulation and engineering applications.
London: Springer.

Schlagner, S. (2010). Schnelle Charakterisierung des Ger€auschverhaltens von KFZ-Schei-
benbremsen. Aachen: Shaker.

Schmiedag GmbH Hagen. picture from: Schmiedag GmbH Hagen, simufact.demos 2013, hot
forging – multistage processes.

Steinbuch, R. (2011). Bionic optimisation of the earthquake resistance of high buildings by tuned

mass dampers. Journal of Bionic Engineering, 8, 335–344.
Thelen, M. (2013). Outer Loop-Optimierung einer Bremsscheibe mit kontrollierter

Ger€auschentwicklung. Master thesis, Reutlingen University.

Zeller, P. (2012). Handbuch Fahrzeugakustik: Grundlagen, Auslegung, Versuch. Wiesbaden:

ViewegþTeubner.

Fig. 5.22 Campbell diagram with critical complex Eigen modes of original and optimized brake

design (Losch 2013)

5 Application of Bionic Optimization 123

http://ngawest2.berkeley.edu/

Chapter 6

Current Fields of Interest

Rolf Steinbuch, Iryna Kmitina, and Nico Esslinger

Research in structural optimization started with the onset of structural mechanics.

The availability of powerful computers and efficient simulation tools such as FEM,

BEM or MBS have led to many optimization methods using closed loops that

require no or little user interaction during their implementation. Today, much of the

commercial and open source software has more or less integrated the optimization

modules, based on various principles. As we can see in many other fields, this

possibility did not only result in positive response from the users, but it also

increased the demand for easily enabled optimization. We observe an increasing

demand for optimization and as a consequence a growing number of tools that help

designers to improve on their original ideas.

Gradient based optimization and sensitivity studies are common options in

CAE-systems today, and so we recommend that engineers change their software

packages, if their existing system does not provide these capabilities.

External software packages such as optiSLang (http://www.dynardo.de/soft

ware/optislang, retrieved 15.04.2015) or the codes developed by Reutlingen

Research Institute (RRI) or other institutes provide enhanced possibilities supplied

by the different codes by outer loop optimization (cf. Sect. 4.1.2). We believe that

such overlays will contribute fundamentally to the expansion of optimization in

structural design and other engineering fields as well.

If we review the research done in the field of optimization, the following topics

appear to be the focus of current development:

– Optimization under uncertainties, taking into account the inevitable scatter of

parts, external effects and internal properties. Reliability and robustness both

R. Steinbuch (*) • I. Kmitina • N. Esslinger

Hochschule Reutlingen, Reutlingen Research Institute, Alteburgstraße 150, 72762 Reutlingen,

Germany

e-mail: Rolf.Steinbuch@Reutlingen-University.DE; Iryna.Kmitina@Reutlingen-University.

DE; Nico.Esslinger@Reutlingen-University.DE

© Springer-Verlag Berlin Heidelberg 2016

R. Steinbuch, S. Gekeler (eds.), Bionic Optimization in Structural Design,
DOI 10.1007/978-3-662-46596-7_6

125

http://www.dynardo.de/software/optislang
http://www.dynardo.de/software/optislang
http://dx.doi.org/10.1007/978-3-662-46596-7_4
mailto:Rolf.Steinbuch@Reutlingen-University.DE
mailto:Iryna.Kmitina@Reutlingen-University.DE
mailto:Iryna.Kmitina@Reutlingen-University.DE
mailto:Nico.Esslinger@Reutlingen-University.DE

have to be taken into account when running optimizations, so the name Robust

Design Optimization (RDO) came into use.

– Multi-Objective Optimization (MOO) handles situations in which different

participants in the development process are developing in different directions.

Typically we think of commercial and engineering aspects, but other constella-

tions have to be looked at as well, such as comfort and performance or price and

consumption.

– Process development of the entire design process, including optimization from

early stages, might help avoid inefficient efforts. Here the management of virtual

development has to be re-designed to fit into a coherent scheme.

– Further improvement of the bionic and other related non-deterministic strate-

gies, especially the reduction of the number of jobs and increasing quality of the

prediction, will undergo continual evolution.

There are many other fields where interesting progress is being made. We limit

our discussion to the first three questions, as we discuss the performance of bionic

methods throughout this book, especially in Sect. 3.1.

6.1 Reliability and Robustness

Iryna Kmitina

Uncertainty is inevitable in engineering design. Every component, every material

and all load sets are not given by exact data, but tend to scatter around some

predefined values. Therefore research about design under uncertainty has been

growing over the last years and is now used in a wide range of fields from simple

product components to designing complex systems. Terms such as “Robust

Design” and “Reliability Based Design Optimization” have been introduced in

some design software packages. But their application to parametric uncertainty is

difficult and limited. Robust design is mainly exploited to improve the quality of a

product and to achieve the required level of performance. While this can be done by

minimizing the effect of the scatter; however, the causes are not eliminated. The

reliability-based design tries to keep the failure probability below an acceptable

level.

We have learned already that numerical optimization of mechanical designs

using simulation systems such as FEM requires much computing power in terms of

jobs, capacity and time. The additional effort to provide sufficient information for

the evaluation of the reliability or robustness of the design may become even larger.

In consequence, efficient strategies must be used to ensure reliability or robustness.

126 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_3

6.1.1 Reliability-Based Design

Reliability-based Design Optimization (RBDO), as one paradigm of design under

uncertainty, seeks optimal designs with low probabilities of failure within the

expected scatter of the produced parts. Mathematically, a basic formulation of

RBDO is described as (Wang et al. 2010; Du and Chen 2004):

min
d,μX

f d;X;Cð Þ
subject to Prob gi d;X;Cð Þ � 0f g � R, i ¼ 1, 2, . . . ,Ng

dL � d � dU, μL
X � μX � μU

X ;

ð6:1Þ

where

– f(·) is an objective function;

– d is a vector of deterministic design variables;

– X is a vector of random design variables;

– C is a vector of random parameters (not changeable and not controllable in the

design process);

– μX is the vector of mean values of random design variables;

– gi is the ith limit state function and Ng is the total number of limit state functions;

– Prob{·} denotes a probability of failure;

– R is desired reliability level.

As we know that a reliability analysis is computationally expensive, we need to

find relatively efficient methods to handle it. Among such methods, analytical

approximations of the goal and the restrictions are often used. The limit state

function, for example, is represented by a first or second order Taylor series

expansion, so we speak about First Order Reliability Method (FORM) or Second

Order Reliability Method (SORM). It is often assumed that the higher order

estimation produces precise estimations. Unfortunately this is not always true.

The approximation methods consist of just a few steps. In the first step, the

random variables are transformed from their original distribution into a standard

normal distribution by means of the so-called Rosenblatt transformation. This

corresponds to the replacement of the original distribution with a normal distri-

bution with the same mean and standard deviation, then mapping this new random

variable to a normalized one. Now all random variables cover the same range,

disregarding their real physical values (Fig. 6.1a). The resulting multidimensional

distribution is sketched in Fig. 6.1b. All random variables cover the same range.

There is no difference between their appearances. In addition we now use FORM or

SORM to quantify the measure of the failure area by approximating the restriction

by linear or quadratic hyper-surfaces shown in Fig. 6.1b as well (Gekeler and

Steinbuch 2014).

The shortest distance from the constraint function gð p1, p2Þ ¼ 0 to the origin in

a standard normal space is called reliability index β. The point that has the highest
probability density on the constraint function is called the Most Probable Point

6 Current Fields of Interest 127

(MPP). A design can fall into the safe region that is defined by gðp1, p2Þ < 0—

reliability, or into the forbidden region gðp1, p2Þ > 0—failure.

We should realize that the use of FORM or SORM is not necessarily conserva-

tive. In Fig. 6.3 as we indicate, there are regions in the 2D space which are not

defined as violating the given restriction g > 0 by FORM or SORM.

6.1.2 Robust Design

Robust Design Optimization (RDO) seeks a product design which is not too

sensitive to changes of environmental conditions or noise. The task of robust design

is different from reliability-based design. RDO tries to minimize the mean and the

variation of the objective function simultaneously under the condition that con-

straints are satisfied (Wang et al. 2010; Tu et al. 1999). Mathematically a basic

formulation of RDO is described as

Fig. 6.1 Transformation of random variables to a normalized multidimensional distribution. (a)

Rosenblatt transformation of random variables. (b) Optimum (Opt), Restriction, MPP, FORM and

SORM

128 R. Steinbuch et al.

min
d,μX

f μ f d;X;Cð Þ, σ f d;X;Cð Þ� �
subject togi d;X;Cð Þ � 0, i ¼ 1, 2, . . . ,N

dL � d � dU, μL
X � μX � μU

X ;

ð6:2Þ

where μf is the mean value and σf is standard deviation of the objective function,

N is the number of deterministic constraints. This is a Multi-Objective Optimization

(MOO, cf. Sect. 6.2) problem. We often manage it with the weighted sum method

or another appropriate method (Du et al. 2004).

6.1.3 Reliability and Robustness Integration

For optimization under uncertainty, it is necessary to take both the probabilistic

design constraints and the design objective robustness into account. In Fig. 6.2 one

can observe that unreliable parts are not robust, as they fail to comply with the

restrictions. This corresponds to unacceptable values of the objective (Gekeler and

Steinbuch 2014).

The integration of both robustness and reliability considerations can be

expressed using Eqs. (6.1) and (6.2)

min
d,μX

f μ f d;X;Cð Þ, σ f d;X;Cð Þ� �
subject to Prob gi d;X;Cð Þ � 0f g � R, i ¼ 1, 2, . . . ,Ng

dL � d � dU, μL
X � μX � μU

X :

ð6:3Þ

Fig. 6.2 Reliability and robustness

6 Current Fields of Interest 129

http://dx.doi.org/10.1007/978-3-662-46596-7_6

In order to overcome the difficulty of choosing the weighting factors, a unified

framework method has been suggested (Wang et al. 2010).

6.1.4 A Sketch of a Formulation of a Unified Reliability
and Robustness Strategy

To overcome the difficulty of choosing weighting factors, Wang et al. (2010) tried

to formulate general unified framework for integrating reliability-based and robust

design. The optimization task is to minimize the probabilistic objective function

under the condition that constraints are satisfied, in other words, the design points

appear in the safe region. In the case with normal distributed objective functions a

unified framework is provided by

min
d,μX

μ f þ k∗σ f

subject to Probfgiðd,X,CÞ � 0g � R, i ¼ 1, 2, . . . ,Ng

dL � d � dU, μL
X � μX � μU

X , ð6:4Þ

where k is a constant expressing the weighting of the mean and standard deviation.

This weight also predicts the satisfaction’s probability of objective function. For

instance, k ¼ 3 means that the Prob f � μ f þ kσ f

� �¼ 99.87 %.

The Sequential Optimization and Reliability Assessment (SORA) method may

be used to solve the optimization problem with normal distributed objective

functions (Yin and Chen 2006). The SORA approach consists of an idea called

decoupled reliability assessment (RA) and the Deterministic Optimization (DO).

The design solution obtained from DO is verified by checking the feasibility of

probabilistic constraint in RA. In the next cycle, DO includes the predicted inverse

MPP from RA. The process will stop if the feasibility and convergence criterion are

satisfied. As this idea is beyond our topic of bionic optimization, we recommend

interested readers to refer to the literature cited for further details.

6.1.5 Robust Optimization

Many engineers use FORM or SORM successfully to perform optimization and

reliability or robustness applications. But, due to some difficulties, they are not

suitable for every optimization case. The most important problems related to

FORM and SORM are (Gekeler and Steinbuch 2014):

130 R. Steinbuch et al.

– scattering input data have to be independent when they are considered as random

variables. They must follow a normal distribution or have been transformed into

a normal distribution;

– the linear or quadratic approximation of the restrictions hyper-plane may not be

conservative. In Fig. 6.3 (F) indicates the region where FORM and SORM are

not conservative, while (S) adds the region where SORM is not conservative;

– the normalization of the random variables requires a good guess of the mean and

standard deviation of the multidimensional random variables which may be

found only after a large number of tests;

– the approaches primarily hold only for one critical restriction, and they may fail

or become less applicable as soon as there is a second restriction active as shown

in Fig. 6.3.

As the proposed approaches to carrying out reliability and robustness studies

consume much time and computing power, faster steps to come up with acceptable

results were proposed (Gekeler and Steinbuch 2014). These proposals, found by the

optimization techniques, may be used as input for manufacturing without having to

consider uncertainty at all.

To take into account stochastic problems, a more general definition was

suggested. The objective function is described as:

z ¼ z p1; p2; . . . ; pn p
� �T

; ð6:5Þ

where z is a vector composed of two other vectors, s and r:

Fig. 6.3 Second restriction

and non-conservativeness

of FORM (F) and SORM

(S)

6 Current Fields of Interest 131

z ¼ s; rð ÞT ¼ s1; s2; . . . ; sng ; r1; r2; . . . ; rm
� �T

; ð6:6Þ

Here s stands for the vector of ng optimization goals, while r represents the set of

m restrictions. We confine the idea here to single-objective optimization i.e. s ¼ s1.
In general there are given limits to the design parameters like before

pi,min � pi � pi,max, i ¼ 1 . . . n p: ð6:7Þ

In addition all pi may show some scatter indicated by

pi ¼ pi � Δ pi: ð6:8Þ

As mentioned above, some authors, e.g., (Wang et al. 2010), distinguish sets of

non-scattering design or optimization parameters d, scattering design or optimiza-

tion parameters X, and scattering non-optimization parameters C. If one allows

Δ pi ¼ 0 for some set of parameters and pi,min ¼ pi,max for another set or even the

same set of the same parameters, these three classes will be reduced to one set of

optimization parameters p as proposed in Eqs. (6.5)–(6.8). Some of them do not

essentially scatter, and some of them are fixed within their tolerances. This allows

for a more simple annotation without losing the generality of the idea.

The main concern of stochastic mechanics is to use a sufficient amount of test

data to provide acceptable probabilistic measures. One common and efficient way

to solve this problem is using a Response Surface (RS, cf. Sect. 2.7) approach in all

components of z ¼ s; rð ÞT . It provides an approximation of the distribution and

allows for an estimation of the mean and standard deviation of all the components

of z. In this formulation, the goal and the restrictions are defined respectively as

s and r.

In most cases, RS are often first or second order degree polynomials (cf. Sect.

2.7) in the optimization parameters. Since frequently better data are not available,

one may use them to perform the reliability or the robustness analysis. The main

disadvantage of this approach is that a large number of tests are required

(i.e. FE-jobs or experimental measurements). The RS is defined by its coefficients:

RS p1; p2; . . . ; pn p
� � ¼ a0 þ

X
i

ai pi þ
X
i

X
k�i

aik pi pk: ð6:9Þ

The number of coefficients for a second order Response Surface is

nc ¼ n p þ 1þ n p þ 1
� �

n p=2;

where np denotes the number of optimization parameters. Non-design parameters

C as defined at the beginning of this section might be omitted to reduce the number

of studies. To find the RS by a least squares method, the number of tests should be

about twice the number of coefficients. In consequence one ought to run

132 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_2
http://dx.doi.org/10.1007/978-3-662-46596-7_2

approximately n2p tests. For large nonlinear studies and some (e.g., n p ¼ 10)

optimization parameters, where one job may take some hours, the total computation

time may become absolutely unacceptable. Reduction of the number of coefficients

in Eq. (6.9) by omitting the mixed terms to

RS p1; p2; . . . ; pn p
� � ¼ a0 þ

X
i

ai pi þ
X
i

aii p
2
ii ð6:10Þ

may sometimes help to accelerate the process, as there are only 2n p þ 1 unknowns

and one has to run about 4np tests. But this simplification may essentially reduce the

quality of the approximation. The response surfaces found by any means may be

used to estimate the goal or the reliability as shown in Fig. 6.4. The short vertical

lines indicate the test data and their distance to the RS.

To continue, it is assumed that the RS are sufficiently good representations of the

distribution of the studies’ results. The estimation of the reliability by using the RS

can be done afterwards. It would be appropriate to assume the RS to be scattering as

well. Their standard deviation might be guessed from the deviation of the difference

between the RS and the test data

σ2RS ¼
1

n� 1

Xn
i¼1

�
testðpiÞ � RSðpiÞ

�
2: ð6:11Þ

Here pi represents the vector of all design variables at the test # i including the

scattering and non-scattering design variables. It is evident, that the better the

Response Surface is able to represent the data, the smaller the estimated standard

deviation σ2RS becomes.

In many cases the optimum and the MPP (cf. Fig. 6.3) coincide. If the random

variables are following normal distributions, one may find the probability at

parameter values from the mean and the standard deviation. The reliability close

−5
0

5 −5

0

5

0

0.5

1

1.5

 d
at

a
po

in
ts

 +
 R

S

y−data

x−data

Fig. 6.4 Approximation of a goal or restriction by a second order response surface

6 Current Fields of Interest 133

to the MPP and Optimum becomes 50 % because β ¼ 0. In consequence, one has to

move away from the MPP along the gradient of the restriction into allowed (g < 0)

regions. In this way the distance to not only MPP but also to the optimum will be

increased to raise the reliability.

A high quality of the Response Surfaces to reproduce the data input makes the

prediction of the failure probability more realistic and not over-conservative. In

Fig. 6.5, the deterministic reliability curves correspond to 50 % if MPP ¼ OPT. To

improve the reliability, the corresponding scatters of the restriction and the pro-

posed design have to be taken into account.

The assumption of a normal distribution of all random variables may cause

large standard deviations. This decreases the power of the always doubtful

stochastic statements. To reduce both weak components and to improve the per-

formance, better approximations for the distributions could be used. With know-

ledge of the type of the distributions and their moments, they can be used for some

or all optimizations. It is assumed that the random variables, optimization param-

eters and the scattering design data are each distributed independently. Then the

total probability density will be the product of the probability density pri of the
parameters:

Prtotal ¼
Y

i
pri pið Þ, i ¼ 1, . . . , n p ð6:12Þ

For all of the parameters’ distributions, the quality of approximation is tested by

using different known distributions such as, e.g., normal, uniform, Chi-squared,

log-normal, Poisson, Maxwell, Weibull or any other distributions that are assumed

to be helpful. The squared error between all configurations of the distributions is

minimized with appropriate moments (μ, σ) and the test data available:

min
�
error Prtotal pið Þ � test pið Þð Þð Þ2 ð6:13Þ

This minimization may be done by a bionic approach to deal with local optima. This

optimization helps to find estimates for the distribution’s moments that produce

good approximations. Even if this search requires many loops to check all possible

Fig. 6.5 Reliability and

scatter, dots indicate the
combined probability of

goal and restriction

134 R. Steinbuch et al.

combinations of distributions, the time for this search will be smaller compared to

the time required for real FE-jobs.

After selecting an appropriate distribution, the problem of estimating the

resulting failure probability still remains. For a normal distribution, one can mea-

sure the length of the β-vector and compare its length to the standard deviation. For

mixed type product distribution and scattering restrictions, a realistic guess of the

length and the interpretation of β are required. This question may be solved by some

tests of the design on the line between optimum and MPP or along the gradient of

the restriction g through the MPP. From these tests, approximations of the distri-

bution and the failure probability will be derived.

In many cases the optima found lie close to a restriction. In these cases, neither

reliability nor robustness requirements are fulfilled. If such an optimized design

does not provide sufficiently high reliability or robustness, its free parameters must

be modified to shift it away from the critical regime. This may be done by

translating the parameters along a direction close to the normal β or the gradient

of the restriction g from the MPP in Fig. 6.1. The normal on the restriction may not

be the direction of the fastest improvement of the reliability as long as the normal-

ized normal distribution is not used. Studies, such as the ones on the response

surfaces, may help to give acceptable representations of the preferable position of

the design. Care should be taken in the presence of more than one restriction

(Fig. 6.3). If other restrictions prohibit feasible solutions near the optimum, we

need to search other regions of the parameter space which are large enough to allow

for solutions that do not violate any restriction.

Example 6.1 We analyze the bending of an L-Profile fixed at its lower end while a

deflection of the upper end of 400 mm is applied. The goal is the minimization of

the mass of L-Profile. The length L1 and thickness T are defined as free parameters

(Fig. 6.6).

Fig. 6.6 L-Profile under displacement controlled bending load. (a) Overall view. (b) Free

parameters L1 and T

6 Current Fields of Interest 135

Figure 6.7 indicates the meaning of the constraints on the force and energy.

– Force F uð Þ < Fmax,

– F umaxð Þ > Fmin

– Wmech > Wmin.

In order to generate the corresponding response surfaces, one needs to place

variants in the parameter space. This can be done using, for example, the Latin

Hypercube Sampling method. Afterward, response surfaces for the goal and the

constraints will be generated. Then the restrictions are applied to the Response

Surfaces (see Fig. 6.8).

The optimization is done on the response surface of the mass in order to find the

deterministic optimum. The search for the optimum without taking into account the

scattering is indicated in Fig. 6.9.

Now the reliability and robustness of the optimum must be guaranteed. We do it

by stepping away from the limits of the allowed parameter region, following the

expected scatter (Fig. 6.10). The quantification of this scatter must be provided by

real-world experiences of the manufacturing process and the material quality.

6.1.6 Conclusion

The question of robustness and reliability in optimization problems under uncer-

tainties must be studied with the aim of providing applicable strategies that may be

used in the design process. The proposed methods may help to understand of the

basic concepts.

Fig. 6.7 Definition of

constraints on force and

energy

136 R. Steinbuch et al.

35

40

45
1

1.5
2

2.5
3

0

100

200

300

400

500

 thickness T arm length L
1

 r
es

po
ns

e

W
mech

F
min

mass
F

max

Fig. 6.8 Response Surface with applied restrictions for L-Profile

35

40

45 1
1.5

2
2.5

3

0

100

200

300

 thickness T

 arm length L
1

m
as

s

deterministic
optimum

Fig. 6.9 Optimization on RS, which represents the mass in the acceptable parameter region

Fig. 6.10 Guess reliability and robustness by the use of the expected scatter of the input data

6 Current Fields of Interest 137

As often only small numbers of test results or data of FE-Jobs are available, the

quality of the probabilistic interpretation should be considered with care. Approx-

imations using normal distributions include the danger of being non-conservative

and, in addition, may produce large scatter predictions, thus reducing the predicted

reliabilities.

Adapted approximations may reduce the scatter and yield more realistic pre-

dictions. If many restrictions must be considered, the search for regions with

feasible designs may become more tempting than the original optimization. In all

cases, the inherent uncertainties of such stochastic approaches need to be taken into

account, especially if the safety of human beings or large costs of failures are to be

considered. In every case, the rules of probability must not be disregarded to

guarantee a sufficient level of theoretical reliability.

6.2 Multi-Objective Optimization

Nico Esslinger

In the previous chapters, we discussed mono-objective optimization. The goal there

was to find the minimum or maximum of a defined scalar objective function. In

some cases, it may be difficult to define a problem with just one objective function.

Using just one objective function can also lead to a bias during the modeling phase.

To eliminate this limitation, the idea of Multi-Objective Optimization (MOO)

was developed. MOO handles problems with more than one objective function. For

example, we take the weight and the stress of a component as simultaneous goals in

the same optimization study.

6.2.1 Terms and Definitions

The introduction of multiple objective functions lead to the following mathematical

problem:

minimize=maximize zðpÞ
gðpÞ � 0

In this equation z(p) is a vector whose components contain the value of the different

objective functions, p are the free parameters and g(p) stands for the constraints.

We now have to define what we understand as the minimum of a vector. We avoid

this undefined situation if we look not at only one unique solution of the optimiza-

tion, but at a set of solutions Ωt. The interesting solutions of Ωt are often called

Pareto solutions. A Pareto optimum is a point in Ωt where it isn’t possible to

138 R. Steinbuch et al.

improve one goal without decreasing another goal at the same time (Coello Coello

1999). The set of Pareto solutions after the Multi-Objective Optimization is called

the tradeoff surface. In Fig. 6.11, we see an abstract set of solutionsΩt plotted in the

(z1, z2)-plane. The subplots show the tradeoff surface for the different kinds of

optimization.

Tradeoff surfaces can assume many different shapes. The simplest one is the

convex surface shown in Fig. 6.11. But it is also possible that the Pareto-surface is

not convex (Fig. 6.12a) or consists of unconnected segments (Fig. 6.12b).

Example 6.2 As an example, we use a hollow beam under a given load F. The
optimization problem is shown in Fig. 6.13. As optimization parameters, we use the

height p1 and the width p2 of the rectangle inside of the hollow beam. The outside

dimensions h, w and l are constant during the optimization.

The goal is to minimize the mass m, as well as to minimize the maximum

displacement d of the hollow beam under the load F.

Fig. 6.11 Different types of Multi-Objective Optimization with two objective functions. (a)

Minimize z1, minimize z2. (b) Minimize z1, maximize z2. (c) Maximize z1, maximize z2. (d)
Maximize z1, minimize z2

6 Current Fields of Interest 139

The mass is calculated by

z1 p1; p2ð Þ ¼ m p1; p2ð Þ ¼ w � h� p1 � p2ð Þ � l � ρ:

The maximum displacement d is calculated by

z2ðp1, p2Þ ¼ dðp1, p2Þ ¼
F � l3

3 � E � Iyð p1, p2Þ
,

with Iyð p1, p2Þ ¼
w � h3 � p2 � p13

12
:

Our design space is restricted by the upper and lower limit of the two input

parameters. The range is

10 � p1, p2 � 14:

The constant values for geometry and material are shown in Table 6.1.

Fig. 6.12 Possible shapes of the tradeoff surface when minimizing two objective functions. (a)

Non-convex tradeoff surface. (b) Tradeoff surface with unconnected segments

Fig. 6.13 The structure of the hollow-beam problem

140 R. Steinbuch et al.

In Fig. 6.14 we see the set of possible results for the objective functions within

the parameter range. To generate this set, we randomly choose some values for the

parameters with p1, p2E[10, 14] and calculate the values of the objective functions.

The set of solution is plotted in the (z1, z2)-plane. In this example we can see that

there is not one singular solution with a minimum weight z1 and a minimum

displacement z2.

6.2.2 Strategies for MOO

In the previous example, we found the tradeoff surface by calculating many designs

and extracting the tradeoff surface from the results. This method is not very efficient

because we get many designs which we are not interested in. To calculate the Pareto

optimal points or the tradeoff surface directly, there are many different methods

Table 6.1 Input data used in

the hollow-beam problem
Constant Value

E 2.1� 105 N/mm2

ρ 7.85 g/cm3

w 15 mm

h 15 mm

l 100 mm

F 100 N

20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

z1 (mass m [g])

z 2 (d
is

pl
ac

em
en

t d
 [m

m
])

tradeoff surface

Fig. 6.14 Tradeoff surface of the hollow-beam problem

6 Current Fields of Interest 141

available. The following list shows the most used methods to calculate the tradeoff

surface.

– Compromise Method

– Weighted-Sum

– Distance-to-a-reference-objective Method

In this method we define a reference point with values for each objective

function. The new goal is to minimize the distance between the result of the

objective function and the selected reference point.

– Multiple Objective Genetic Algorithm (MOGA)

MOGA handles the multiple objective functions within the genetic algorithm. It

uses the values from each individual to calculate a corresponding efficiency. The

selection of the parents in the next iteration is in proportion to the efficiency.

There are many more methods to solve MOO problems. A good overview of

most of them can be found in (Collette and Siarry 2004). In the following sections

we will discuss the Compromise Method and the Weighted Sum in detail.

Compromise Method

The Compromise Method allows us to transform a Multi-Objective Optimization

problem into a mono-objective optimization problem with additional constraints.

Therefore, we choose one objective function as the remaining goal for the optimi-

zation. The k-1 additional objective functions are transformed into inequality

constraints. If we choose the first objective function z1 as the remaining goal, the

optimization problem is transformed as follows:

minimize z1ðpÞ
z2ðpÞ � ε2

⋮
zkðpÞ � εk
gðpÞ � 0

For an optimization task with initially two objectives, this new formulation leads to

an optimization problem visualized in Fig. 6.15. Here the second objective function

z2 is constrained by the value ε2. The goal is to minimize the objective function z1.
As result we obtain one Pareto point z1,min.

For the identification of other Pareto points and to obtain a tradeoff surface with

this method, we perform multiple optimization runs and vary the value ε2 of the

restricted objective function z2.

Example 6.3 To get an idea how the tradeoff surface is calculated in a real

problem, we use the hollow-beam problem introduced in Example 6.2. The objec-

tive function z1 is defined as the goal. The objective function z2 is transformed into a

constraint. As we expect displacement values d in the range of 0. . .0.6 mm within

142 R. Steinbuch et al.

the defined parameter range, we choose five values 0.2, 0.3, 0.4, 0.5 and 0.6 for the

constraint value ε2. In Fig. 6.16, we see the Pareto optima for the five constraints.

We realize there is one severe disadvantage of this method. Due to the shape of the

tradeoff surface, there is no point calculated between the mass m¼ 40 and m¼ 80,

so we have no idea about the Pareto front in this region.

This might be resolved by switching the goal and restricting the objective z1 (the
mass of the hollow beam) with values ε1 in the range of m¼ 40. . .80.

Fig. 6.15 Behavior of the compromise method

20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

z
1
 (mass m [g])

z 2 (
di

sp
la

ce
m

en
t d

 [m
m

])

Fig. 6.16 Compromise method for the hollow-beam problem

6 Current Fields of Interest 143

Weighted Sum

The Weighted Sum method is also a very common method to solve MOO problems

(Marler and Arora 2010). Just as the Compromise Method, we try to convert the

problem into a mono-objective optimization problem. Therefore, we build a

resulting objective zeq by a weighted sum of the different partial objectives and

by an appropriate set of weights wi.

zeq pð Þ ¼
Xk
i¼1

wi � zi pð Þ ð6:14Þ

By adjusting the weight for each objective function, it is possible to define the

importance of each value for the optimum. This new formulation leads to the

behavior shown in Fig. 6.17.

The line L1 represents the relation of the weighting factors. In Fig. 6.17a, we get

one unique solution, here with an equal weight for both objective functions. By

variation of the weights, we get different Pareto optimal points on the tradeoff surface.

In Fig. 6.17b, we can see that the basic Weighted-Sum method cannot cover

non-convex areas of the tradeoff surface. This is the biggest drawback of this method

so extended methods attempt to overcome this issue (Kim and de Weck 2006).

Example 6.4 As an example, again we use the hollow-beam problem (Example

6.2). The two objective functions z1(p1, p2), the mass, and z2(p1, p2), the displace-
ment, are transformed into the new goal function

zeq pð Þ ¼ w1 � d p1; p2ð Þ þ w2 � m p1; p2ð Þ:

The values of the displacement and the weight must be normalized, because they

don’t share the same units. We choose five combinations [0.3, 0.7], [0.4, 0.6],

Fig. 6.17 Behavior of the Weighted-Sum method. (a) Convex tradeoff surface. (b) Non-convex

tradeoff surface

144 R. Steinbuch et al.

[0.5, 0.5], [0.6, 0.4] and [0.7, 0.3] for the weights [w1,w2]. In Fig. 6.18 we see the

resulting Pareto optima.

6.3 Optimization and Process Management of the Virtual

Development Process

Rolf Steinbuch

Among the most important but most troublesome tasks in CAE is the management

of large amounts of data. Increased Quality Assurance (QA) requires the documen-

tation of every step, every component and every detail of the virtual product

development and the real lifetime of a system. This affects the design process as

well. Because the optimization is included in the design, the optimization process

together with all its assumptions has to be documented as well. But it is impossible

to collect all the ideas designers had while working during the virtual development.

A collection of all misleading ideas would only add to the overflow of stored data,

which nobody is ever going to look at again.

But all this searching and trying and pursuing misleading directions creates a

rich experience-based knowledge that should be available to the next subsequent

projects. Design teams are supposed to produce a history of what to do, when and

why. We are not discussing if this needs to be integrated in the Product-Lifecycle-

Management (PLM) systems or not. But not building up a system of know-

ledge leads teams to repeated errors that could be easily avoided.

20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

z
1
 (mass m [g])

z 2 (
di

sp
la

ce
m

en
t d

 [m
m

])

Fig. 6.18 Weighted Sum method for the hollow beam problem

6 Current Fields of Interest 145

An external summary of the main results to the PLM system should be done as

soon as there are results found that could be generalized. In Sect. 5.1, e.g., one of the

results was that, for the specific problem, Evolutionary Strategies were preferable to

Particle-Swarm Optimization. This could be kept in mind and be used as a rule for

this type of problem for the specific research group.

On the other hand, all the input necessary to do the robustness and reliability

studies will not work without a close interaction with the component’s total data.
Therefore we need to access the PLM to learn about scatter, defined and supposed

uncertainties, expected misuse and critical environmental conditions. So documen-

tation of both input and output of the optimization studies needs to become part of

the process management. Unfortunately, many designers and optimization analysts

are not very fond of documentation. So it remains an ongoing task to convince them

that they are not merely contributing to the documentation but that they are really

profiting from QA. It is worth it, and without it, there is no future for high level

development.

References

Coello Coello, C. A. (1999). An updated survey of evolutionary multiobjective optimization

techniques: state of the art and future trends. In Proceedings of the 1999 Congress on
Evolutionary Computation, 1999, CEC 99 (Vol. 1, pp. 13). doi:10.1109/CEC.1999.781901.

Collette, Y., & Siarry, P. (2004).Multiobjective optimization: Principles and case studies. Berlin:
Springer.

Du, X., & Chen, W. (2004). Sequential optimization and reliability assessment for probabilistic

design. ASME Journal of Mechanical Design, 126, 225–233.
Du, X., Sudjianto, A., & Chen, W. (2004). An integrated framework for optimization under

uncertainty using inverse reliability strategy. ASME Journal of Mechanical Design, 126,
562–570.

Gekeler, S., & Steinbuch, R. (2014). Remarks on robust and reliable design optimization.
METAHEURISTICS AND ENGINEERING, 15th Workshop of the EURO Working Group.

S. 77–82.

Kim, I. Y., & de Weck, O. L. (2006). Adaptive weighted sum method for multiobjective

optimization: A new method for Pareto front generation. Structural and Multidisciplinary
Optimization, 31, 105–116.

Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multiobjective optimization:

New insights. Structural and Multidisciplinary Optimization, 41(6), 853–862.
Tu, J., Choi, K. K., & Young, H. P. (1999). A new study on reliability-based design optimization.

ASME Journal of Mechanical Design, 121, 557–564.
Wang, Z., Huang, H., Liu, Y. (2010). A unified framework for integrated optimization under

uncertainty. ASME Journal of Mechanical Design, 132(5), 051008-1–051008-8.
Yin, X., & Chen, W. (2006). Enhanced sequential optimization and reliability assessment method

for probabilistic optimization with varying design variance. Structure and Infrastructure
Engineering, 2, 261–275.

146 R. Steinbuch et al.

http://dx.doi.org/10.1007/978-3-662-46596-7_5
http://dx.doi.org/10.1109/CEC.1999.781901

Chapter 7

Future Tasks in Optimization and Simulation

Simon Gekeler and Rolf Steinbuch

Broad acceptance of Finite-Element-based analysis of structural problems and the

increased availability of CAD-systems for structural tasks, which help to generate

meshes of non-trivial geometries, have been setting a standard for the evaluation of

designs in mechanical engineering in the last few decades. The development of

automated or semi-automated optimizers, integrated into the Computer-Aided

Engineering (CAE)-packages or working as outer loop machines, requiring the

solver to do the analysis of the specific designs, has been accepted by most

advanced users of the simulation community as well. The availability and inexpen-

sive processing power of computers is increasing without any limitations foreseen

in the coming years. There is little doubt that Virtual Product Development will

continue using the tools that have proved to be so successful and so easy to handle.

7.1 Main Trends in Optimization

Focusing on optimization alone, we could conclude that the doors opened in the last

few years have enabled many fruitful developments. We feel that the combination

of stochastic methods and optimization, such as reliability and robustness, will play

a major role in science and engineering in the next years. Not only can these

methods analyze broader ranges of a part’s design, but they can also estimate

loading over a lifetime as well. In consequence, the real loading situation will be

better understood. This understanding includes the response of aged parts—parts

that have been subject to long-term mechanical or corrosive loading, including

wear resulting from long continuous loads and the degeneration of the materials.

S. Gekeler • R. Steinbuch (*)

Hochschule Reutlingen, Reutlingen Research Institute, Alteburgstraße 150, 72762 Reutlingen,

Germany

e-mail: Simon.Gekeler@Reutlingen-University.DE; Rolf.Steinbuch@Reutlingen-University.DE

© Springer-Verlag Berlin Heidelberg 2016

R. Steinbuch, S. Gekeler (eds.), Bionic Optimization in Structural Design,
DOI 10.1007/978-3-662-46596-7_7

147

mailto:Simon.Gekeler@Reutlingen-University.DE
mailto:Rolf.Steinbuch@Reutlingen-University.DE

Even the amount of time and the power-consumption problem of Multi-

Objective Optimization (MOO, cf. Sect. 6.2) will yield reliable and fast procedures.

Whether it will be weighting of different goals or switching between goals and

restrictions, any further developed method must be evaluated by its efficiencies in

the industrial and scientific applications. On the other hand, there might yet be an

increased understanding of the MOO character of many engineering decisions, so

that even better decision-making criteria could be used.

One expected, important development in optimization is the deepening of the

applications. Today we are mostly concerned with the shape of a given part or

assembly. The integration of the solution for the design of the part and the design

methodology do not yet include the potential of Virtual Product Development.

However, the manufacturing methods available and the life-time history, including

the setup, are not yet within the scope of most optimization studies today. While an

expansion of the optimization process might be observed in this field, this might

develop in parallel to the stochastic approaches mentioned above.

Furthermore, optimization will be part of nearly all design processes. This even

includes studies of low-cost parts such as cans or bottles, which are not dealt with

today. Everyone uses them, but no one knows about the number of manufacturing

steps and corresponding optimization parameters.

A simple everyday example is an aluminum can. Currently to manufacture the

bottom, about four manufacturing processes with more than 10 free parameters

steps are required (Fig. 7.1a). But to produce the particular shape of the top of the

Fig. 7.1 Simple can as a high-end optimization problem. (a) Bottom defined by 10 parameters.

(b) Upper section defined by more than 200 parameters

148 S. Gekeler and R. Steinbuch

http://dx.doi.org/10.1007/978-3-662-46596-7_6

can, we need a repeated reduction of the radius in about 20 steps (Fig. 7.1b). Every

forming tool of these 20 steps is defined by at least 10, if not more, parameters. Just

to model the manufacturing of this simple can, we need to optimize a problem with

about 400 free parameters if we include the additional steps of the process. Looking

back at Fig. 3.2, where we plotted the number of variants required to do an

optimization as a function of the free parameters, we come to ntrial> 106 variants.

As we realize that each job or study of one can design takes more than 1 h, we

realize that our current approaches will not be sufficient to solve such problems,

even when using massive parallel computing. New methods of dealing with opti-

mization are required. But there should be no doubt that they will be found.

But—not disregarding this need for more powerful optimizations covering

larger aspects of the product’s history—optimization will continue to be available

to more and more users. Integration of all CAE-processes will allow even inexpe-

rienced engineers to do highly skilled studies. Optimization will be integrated into

the daily designer’s work.

7.2 Qualifications and Quality Assurance

The expansion of the community using advanced CAE-systems will have an impact

on optimization as well. First, more and less qualified engineers will be using these

systems, drawing their own conclusions and deriving real designs from them.

The inherent danger in this growth is the misinterpretation of the results: e.g. the

importance of a sufficient high reliability or robustness of the design may cause an

inexperienced engineer to have a too optimistic estimation of his or her proposal.

We all know that we do not read all the warnings a computer code or a Graphical

User Interface (GUI) gives after a solution has been found. Why should designers

with little background in simulation and optimization read all the comments which

they don’t really understand and that may only confuse them?

The automation of CAE-processes therefore needs a highly evolved Quality

Assurance (QA) strategy that prevents misunderstanding of the proposed solutions

found by processes which run without much understanding and much input from

the users. But how do we design a warning system to inform inexperienced users

that some appealing proposals are not recommended and to guarantee that the users

understand the importance of that statement?

Different institutions like NAFEMS, with a Professional Simulation Engineer

certification (http://www.nafems.org/professional_development/certification/,

retrieved 15.04.2015) or universities offer qualifications not only to students, but

to professionals as well. They focus not only on teaching more and more methods to

solve problems but also careful and critical reviews of the results. Perhaps it would

be a good idea to require some kind of formal qualification for all people who are

responsible for important decisions related to simulation results. The experience of

the authors and many other people involved in simulation proves however, that

there is not much support in industry for such proposals.

7 Future Tasks in Optimization and Simulation 149

http://dx.doi.org/10.1007/978-3-662-46596-7_3
http://www.nafems.org/professional_development/certification/

7.3 Interpretation of Simulation Results

Another problem not only related to optimization is the implicit potential of

CAE-systems to provide results without qualified input. To illustrate this danger,

we give a simple example. There are CAE-systems that do stress analysis studies

without requiring much understanding of the users. When asked for lifetime pre-

dictions, these systems use the tensile stress and the surface properties to predict the

fatigue properties of the material and produce approximations of the component’s
expected lifetime. Everyone who has ever worked with fatigue problems knows that

there are more contributing factors related to lifetime prediction than just ultimate

stress and surface quality. Nevertheless, some people use such user friendly systems

and rely on their results, without considering their validity. Consequently, it is no

surprise that the predicted lifetimes are not very close to the real ones.

To avoid such nonsense-results, there should be a requirement for the software

supply companies to qualify the methods they offer. But who has the qualifications

and resources to decide which approach is reliable? We once did a survey of

different commercial systems to predict the lifetime of parts using available sim-

ulation results. Experienced engineers would not be surprised to hear that the

predicted lifetimes differed by a factor of 10,000. This corresponds to the difference

between 1 h and 1 year.

Here, as in other engineering applications, the standardization of simulation

methods seems to be inevitable. But who will develop the standard? We feel that

the broader the simulation application becomes, the more conflicts will spring up

over the creation of such standards.

7.4 Believing in Standards and Defaults

We can easily expand the dangers resulting from inexperienced users of simulation

tools to users of optimization systems. How do we convince engineers working in

shops to repeat their studies, to use bionic methods, to do many variants, and many

generations when available optimizers integrated into CAE-systems produce prom-

ising results within short times? Why should they do reliability and robustness

analysis, when they don’t know much about the scatter of the properties of the parts

to be assembled? We are often confronted with either ignorance or misunderstand-

ing if we ask for more qualified research.

Here the approximations available through the optimization process might be

used to provide some idea if the solution found really is close to the best one, or if

there are reasons that other regions of the parameter space should be examined as

well. Structures of meta-modeling might be used to estimate the responses in the

unexplored range.

Nevertheless, the curse of the dimensions (cf. Sect. 3.2) and the always limited

time to produce proposals tend to prevent such additional searches. Perhaps

150 S. Gekeler and R. Steinbuch

http://dx.doi.org/10.1007/978-3-662-46596-7_3

automated systems that are more sensitive in less efficient regions of the solution

space will be able to propose and to perform such complementary processes during

times when there is free computing power. But experience up to now leads to the

expectation that the tendency of users to accept everything proposed by the

“system” will remain. Even worse, users are crying for yet more defaults, while

fewer questions are expected to be asked of them.

7.5 Linking Development and Manufacturing

Another important step that is expected in the evolution of optimization is the

connection between development and manufacturing. Virtual plants help to create

production lines that are close to optimal. But in many studies, the requirements of

the manufacturing process are not examined during the design process. The inte-

gration of design and production optimization could be an essential step towards

CAE-integrated development. In Sect. 7.1 we already mentioned such a problem.

The deepening use of CAE-tools should help to provide a better integration of the

total product genesis, from the idea to its creation in the final manufacturing

process.

The word of design according to the material is well known.We should expand it

to an integrated virtual development from the function of the part or system to the

manufacturing and the materials selection.

7.6 New and Old Materials

The use of new materials also needs to be integrated into the design stage. We use

material data bases for metals and many non-metallic materials. But for composites,

there is much more data required than for more or less isotropic and homogenous

materials. Here, some software developers, such as Digimat (http://www.

mscsoftware.com/de/product/digimat, retrieved 15.04.2015), are attempting to

establish methods to learn about the material response by modelling the

manufacturing process of such composites and then exporting these local material

models to the simulation codes.

On the other hand, we should be aware that many elements of material response

are not yet fully understood. If we check what material departments at our univer-

sities are researching, we find that many of them are working with metal fatigue

problems. This implies that we, the human race, have been using metals for about

3000 years, but do not understand why and how metals fail after some time of

service. How then could we be expected to understand the response of much more

complicated materials such as composites, fibers, or plastics?

Concluding that we are not able to do any reliable prediction of a material’s load
carrying capacity is not the point. But we need to be aware of the difficulties

7 Future Tasks in Optimization and Simulation 151

http://www.mscsoftware.com/de/product/digimat
http://www.mscsoftware.com/de/product/digimat

included in the interpretation of any stress analysis result for any material. Blind

faith in answers provided by automated systems is not the safe way. The interpre-

tation of material responses is still a task that must be handled with care and

responsibility, especially in the case of optimization, when hundreds or thousands

of variants are checked in a loop which no human being will ever fully examine.

7.7 Reliable Loading Systems

The extent and accuracy of loading systems, which is always a difficult point in the

setup and interpretation of numerical structural mechanics, might improve as the

importance of stochastic processes becomes more and more accepted by the

community. Whether this will yield more reliable and less biased views of the

loading is not yet clear. Nevertheless, all training on, and all discussion of,

simulation results should take into account that only realistic loads will help find

the system’s real response.
The availability of databases containing real loading systems, the possibility to

link such databases to stochastic processes, and increasing computing power will

help to find proposals that better describe the real loads acting on a part or a system.

But here nothing helps except going out in the field and learning what real current

customers do with our products. The simulation and the optimization need to reflect

not how we think customers use the products, but rather how they really use them.

Especially the changes of users’ habits may completely alter the landscape. For

example, change in the typical ownership of relatively expensive cars may under-

line the importance of realistic reviewing of loading. Twenty to thirty years ago,

expensive cars were mostly driven by older customers, who took painstaking care

of their precious vehicles. Today, an increasing number of these expensive cars are

owned by younger consumers with a great deal of money, but who don’t realize
how critical is the regular maintenance of their vehicle. Therefore, the loading

system has had to be re-designed in cases where the most typical owner is much

younger than previously was the case.

7.8 Preprocessing and Meshing

New meshers and pre-processor generations have been introduced in the past few

years. Whether they really produce better meshes and so enable simulation analyses

on available computers in acceptable time is not yet sure. Currently, automated

meshers often produce fine meshes in regions where there is no need for this

precision, while creating meshes at some critical regions where the elements are

far too coarse. The adaptive meshing available in many codes may help, but it may

deceive users that numerical results are reliable, because the automated re-meshing

guarantees numerical convergence.

152 S. Gekeler and R. Steinbuch

Future systems need to find acceptable meshes and corresponding element

types with a high reliability. For optimization jobs, this is of special interest. If

small differences in the results of a simulation are caused by numerics and not

by the variation of the design, misleading search directions could be stimulated.

This is especially true in regions where the gradient of the goal and the constraints

is very flat, while the sensitivity to numerical disturbances is rather high. New

automated systems should be able to provide counter measures to avoid such

numerical traps.

All these simulation problems influence the power of optimization tools even

more. If you have to reconfigure your material definition for each variant, such as in

the case of composites, the computing time per individual or variation will sub-

stantially increase. The total conceptualization of the simulation environment has to

be expanded by additional pre- and post-processing codes.

The acceleration necessary to perform optimization in a reasonable time is

overwhelmed by the larger scope of individual jobs. On the other hand, more and

more computing power is becoming available, so parallelization, in all its different

appearances, will help to reduce the calculation time for the many individual jobs of

Bionic Optimization studies.

Even if the difficulties mentioned do not vanish within a short time, and without

sufficient discussion about the necessity of qualified application of high-level tools,

there should be no doubt that the methods of Bionics and the upcoming trend of

stochastic interpretation of real processes will lead to a new understanding of the

total design of parts and assemblies. The fact that optimal designs often have a

certain similarity to structures we find in the nature is one of the most inspiring

insights to designers. Why don’t we send our designers into a forest to find

promising initial ideas? Why don’t we include the ability of natural designs to

withstand very different loading conditions, from strong winters while the ground is

soaked to dry summers without enough humidity, to allow a required ductility into

our conceptualization of designs? There is an old German engineering proverb that

states, “A good design is well shaped, adapted to materials properties, and light-

weight.” Does this proverb not include many of the ideas of reliable and robust

Bionic Optimization? Even if there are still many things to be learned, there should

be no doubt that Bionics are one of the most promising directions of the future

development of engineering.

7 Future Tasks in Optimization and Simulation 153

Index

A
Absorbers, 103

Accelerating strategies, 47, 69

Acceleration, 73, 76, 113, 115, 153

hardware, 72–77

parallelization, 72–77

Acceptable individuals, 52

Ackley function, 64

ACO. See Ant colony optimization (ACO)

Algorithm testing, 63

Amplified oscillation, 115

ANN. See Artificial neural net (ANN)
Ant colonies, 6

Ant colony optimization (ACO), 33–36

Ant streets, 34

Appropriate hardware, 75

Architecture, 73

Artificial agents, 36

Artificial neural net (ANN), 28–33, 58

architecture, 29–30

over-train, 30

training, 30–33

weighting factors, 29

Asexual reproduction, 19

Au, S.K., 42

Automated meshers, 79, 82, 152

Automated process, 86

Automated systems, 150, 152, 153

Automation programs, 94

B
Backpropagation algorithm, 31, 32

Backward extrusion, 112–115

Bare-bones particle swarm optimization, 25

Batch mode, 90, 92, 95, 110

Batch processing, 90

Beam element, 107

Beck, J.L., 42

BEM. See Boundary Element Method (BEM)

Bourinet, J.-M., 42

Biased views, 152

Binary particle swarm optimization, 25

Binary representation, 18

BIOKON, 12

Biological growth rule, 41

Biomimetic structural optimization, 68

Bionic methods, 12

Bionic processes, 11

Bone mineralization, 38

Bottlenecks, 75, 76

Boundary conditions, 51–54

Boundary Element Method (BEM), 3, 4, 125

Brake disc, 116–118, 121, 122

Brake noise, 115, 116

Brake squeal, 115–117

Branches, 6

Brieger, S., 11–54

Brood tending, 33

C
C++, 88, 94

CAD-model, 3, 4

CAD-systems, 79, 86, 147

Campbell diagram, 120–123

Can extrusion, 45

Central Processing Unit (CPU), 75

Chains of masses, 105

Chelouah, R., 18

© Springer-Verlag Berlin Heidelberg 2016

R. Steinbuch, S. Gekeler (eds.), Bionic Optimization in Structural Design,
DOI 10.1007/978-3-662-46596-7

155

Clock rate, 76

Cognitive tendency, 22

Colony, 36

Command-line arguments, 90

Compensation, 106

Compensators, 103, 107, 108

Complex Eigen value, 116, 119

Complex mode, 121

Composites, 151, 153

Compromise method, 142–143

Computational cost, 42

Computational Fluid Dynamic (CFD), 5

Computer clusters, 75

Computer-aided engineering, 147

Computing power, 3, 42, 151–153

Consistent mass, 105

Constraint function, 127

Constraints, 7, 51, 52, 89, 129, 130, 138

Contact forces, 117

Contradictory effects, 108

Convergence, 24, 47, 92, 99, 112, 130, 152

phase, 28

rate, 24

Convex surface, 139

Coupled masses, 102

Courant, R., 3

Critical regime, 135

Crossing, 6, 14, 17, 69, 70

Curse of dimensions, 65, 67

D
Das, P.K., 42

Data bases, 151

Deep drawing, 110–112

Degeneration, 147

Degrees of freedom (dof), 102, 107, 119

Design process, 145, 151

Design space, 40

Design variables, 28, 92, 127, 133

Deterministic methods, 9, 46–51

Deterministic optimization (DO), 130

Deterministic optimum, 136

Distance-to-a-reference-objective method, 142

Distribution, 127, 128, 132–134

DNA, 16, 17

Documentation, 145, 146

dof. See Degrees of freedom (dof)

Dubourg, V., 42

Dynamical instabilities, 116

Dynamic inertia weight update, 25, 27, 28

Dynamic system, 102, 103

E
Earthquake, 102, 103, 107, 108

Earthquake stability, 102–109

Eberhardt, R., 24

Economic losses, 102

Efficiency, 45, 57, 59, 62, 63, 76, 108, 109, 115

Eggholder function, 64

Eigen forms, 102

Eigen frequencies, 102, 104, 105, 117

Eigen modes, 118, 120–123

Eigen value, 117, 118, 120

Eigen vectors, 120

Elastic energy, 103, 105–107

Equivalent damping, 120–122

Esslinger, N., 125–146

Estimation, 132, 133

Evolution, 12

Evaluation of designs, 147

Evolutionary Optimization, 69–71

binary representation, 17

Evolutionary Strategy, 58

Excitation, 102, 108

Exploration, 9, 23, 26, 28

External optimizer, 82, 85, 86

External text file, 91

F
Failure probability, 126, 134, 135

Fahlman, S., 31

Fatigue properties, 150

Feasible results, 53

Feedforward nets, 29

FEM. See Finite element method (FEM)

Fern Optimization, 19–21, 71

Fern Strategy (FS), 58

Finite element method (FEM), 3, 4, 76, 97,

125, 126

Finite volume method (FVM), 4

First Order Reliability Method (FORM),

127, 128, 130, 131

Fitness, 14

Foraging, 33, 34

FORM. See First Order Reliability Method

(FORM)

Forming processes, 109, 113, 115

Forming tools, 109

Frames, 59, 60, 71

Free parameters, 7, 12, 138

Free vibrations, 118, 119

Fully informed particle swarm, 25

FVM. See Finite volume method (FVM)

156 Index

G
Galerkin, B., 3

Gekeler, S., 11–54, 57–77, 79–99, 101–123,

147–153

Gene pool, 14

Generations, 12, 19, 61, 69, 71

Genes, 16, 19

Genetic algorithms, 18

Genetic strategy, 16–18

Global best position, 21–23

Global best topology, 24

Global optimum, 73

Glück, O., 79–99, 101–123

Goal, 7, 12, 127, 132–134, 138, 143

Goldstein-Price function, 65

Gradient method, 8, 44, 65, 68, 71, 73

Graphics Processing Unit(GPU), 76

Grid size, 60

Ground motion, 104

Günther, D., 30

Gyroscopic effects, 118

H
h-adaptivity, 79

Hardware costs, 5

Hardware performance, 5

Hebb-rule, 31

Hessian, 44

Hexagonal elements, 79

Hidden layer, 29

Hints for starting a process, 69

Honeycombs, 11

Hot forging, 109, 110

Human brain, 28

Hybrid optimization, 24, 73, 113

I
Indeterminate problems, 46

Individuals, 12, 19, 21, 69

Inequality constraints, 52, 89

Inertia parameter, 22, 23, 26

Inertia velocity, 26

Infeasible geometries, 7, 51

Infeasible region, 53

Infeasible solutions, 108

Initial proposals, 19, 58, 63

Initial velocities, 72

Inner loop optimization, 82–85

In-plane-modes, 116

Input file, 87

Input layer, 29

Input neurons, 29

International Society of Bionic Engineering

(ISBE), 11

Iteration, 21

J
Journals, 94, 95, 97, 98

K
Kennedy, J., 24

Kids, 12, 13, 19, 61, 69, 71

Kill parents, 16

Kmitina, I., 57–77, 79–99, 101–123,

125–146

Kriging, 42

L
Lagaros, L.D., 29

Latin Hypercube sampling, 50, 136

Layers, 29

Learning phase, 101

Least squares method, 42, 50

Lifetime, 145, 147, 150

Lightweight designs, 106

Limits, 7

Line search method, 8

Load carrying capacity, 151

Loading systems, 152

Loads, 147, 152

Local Area Network (LAN), 73

Local growth, 82

Local Growth Optimization, 37

Local interaction, 21

Local maxima, 9, 102

Local optima, 9, 68

Local oscillations, 44

Local surface growth, 41

Low-level polynomials, 42

M
Manufacturing methods, 148

Master computer, 74

Material, 126, 150, 151, 153

Matthies, H.G., 42

Maximum, 7, 44

MBS. See Multi-Body-Systems (MBS)

McKay, M.D., 42

Meshers, 152

Meshing, 3, 79, 80, 152

Index 157

Meta model(ing), 33, 42–46, 115, 150

Metal forming, 109, 110

Minimum, 7, 44

Misleading search directions, 145, 153

Misunderstanding, 149, 150

Modifications, 34

Mono-objective, 88, 142

Monte-Carlo integration, 47

MOO. See Multi-objective optimization(MOO)

Moore’s law, 5
Most Probable Point (MPP), 127, 128, 130,

133–135

Multi-Body-Systems (MBS), 5, 125

Multi-objective, 88

Multi-objective optimization(MOO), 106, 107,

121, 126, 129, 138–145, 148

Multi-physics, 76

Multiple goals, 132, 138, 148

Multiple Objective Genetic Algorithm

(MOGA), 142

Multi-stage presses, 109

Mutation, 6, 12, 13, 17–19, 69–71

Mutation radius, 12, 13, 70, 71

N
NAFEMS, 149

Needle in a haystack, 66

Neighborhood topology, 24, 25

Neurons, 28, 29

Non-deterministic methods, 46

Non-parametric optimization, 37

Nonsense-results, 150

Normalization, 131

Normalized normal distribution, 135

Number of dimensions, 67

Number of generations, 71

Number of individuals, 72

Number of kids, 70, 71

Number of parameters, 69

Number of parents, 71

Numerical integration, 49, 50

O

Objective, 7, 12, 21, 38, 127, 129, 131, 132,

138, 139, 142, 143

optiSLang, 125

Outer loop framework, 86

Outer loop optimization, 74, 81, 84–86, 95,

110–112, 125

Output file, 87

Output layer, 29

Output neuron, 29

Overlay optimization, 88

P
p-adaptivity, 79

Pairing, 14, 16

Pandtle, J., 11–54

Papadrakakis, M., 26, 27, 54

Parabolic interpolations, 42

Parallel computing, 73, 75

Parallelization, 73, 74, 76, 153

Parameter boundary, 52

Parameter combinations, 7

Parameter range, 7

Parameter space, 51, 150

Parameters values, 7

Parametric model, 92, 96

Parents, 12, 13, 19, 61, 69–71

Parents survive, 16

Pareto optima, 143, 145

Pareto optimal points, 141, 144

Pareto solutions, 138

Pareto-surface, 139

Partial objectives, 144

Particle Swarm Optimization (PSO), 21, 58,

71–72

weighting factors, 23, 72

Particles, 21, 22, 25

Particles’ communication, 24

Particles’ velocity, 21–23, 25, 52
limitation, 27

Penalty method, 53

Performance, 61, 75, 76, 126

Personal best position, 21, 22

Pheromones, 34, 35

Pheromone trails, 34

Plevris, V., 26, 54

PLM system. See Product-Lifecycle-
Management (PLM) system

Popova, T., 11–54, 57–77, 79–99, 101–123

Population, 12, 21

Predictions, 46, 138, 150

Preliminary studies, 62

Pre-processor, 152

Probabilities of failure, 127

Process development, 126

Process management, 146

Production lines, 109, 151

Product-Lifecycle-Management (PLM)

system, 145, 146

Pseudocode

Evolutionary Optimization, 15

Fern Optimization, 20

Particle Swarm Optimization, 24

Topological Optimization, 39

Pseudo-representations, 45

PSO. See Particle Swarm Optimization (PSO)

PTC Creo Parametric, 88, 90–92

Punishment, 54

158 Index

Q
Qualified input, 150

Quality, 126, 150

Quality Assurance (QA), 145, 149

Quickprop, 31

R
RAM. See Random-Access Memory

(RAM)

Random methods, 48, 50

Random points, 47

Random variables, 127, 128, 131, 133, 134

Random-Access Memory (RAM), 76

RDO. See Robust Design Optimization

(RDO)

Real current customers, 152

Reduce testing, 109

Reference frequency, 120

Reliability, 76, 125–138, 147, 149, 150

Reliability index, 127

Reliability-based design, 126, 128

Reliability based design optimization

(RBDO), 126

Remove individuals, 52

Reproduce, 12, 19

Response surface (RS), 28, 42, 44, 45, 50, 51,

132, 133, 137

Responsibility, 152

Restricted lifetime, 14

Restrictions, 7, 12, 51–53, 127, 129, 131–135,

137, 138, 148

Result files, 95

Reutlingen Research Institute (RRI), 125

Ritz, W., 3

Robust design, 128–129

Robust Design Optimization

(RDO), 126, 128

Robustness, 76, 125–138, 147, 149, 150

Rosenblatt transformation, 127, 128

Rotational speed, 120

RS. See Response surface (RS)

S
Sandwich structures, 11

Scatter, 125–127, 132, 134, 136–138, 150

Schwefel function, 31, 32, 64

Schweickert, F., 11–54

Search space, 51

Second Order Reliability Method (SORM),

127, 128, 130, 131

Selection, 6, 13, 14

Self-excited vibrations, 116

Self-organization, 33, 36

Sensitivity analysis, 73, 76

Sequence of commands, 97, 98

Sequential Optimization and

ReliabilityAssessment (SORA), 130

Sequential Quadratic Programming

(SQP), 8

Shape optimization, 86, 88

Shape perturbations, 41

Shifting of nodes, 38, 82

Siarry, P., 18

Siemens NX, 88, 94–99

Sigmoid function, 29

Simufact, 109–113

Single mass oscillator, 103

Social hierarchies, 33

Social interactions, 1

Social parameter, 22, 23

Social systems, 6

Software licenses, 75

Solid models, 3, 79

SORA. See Sequential Optimization

and ReliabilityAssessment (SORA)

SORM. See Second Order Reliability Method

(SORM)

Speed-up, 74, 75

Squared averaged error, 43

Squealing, 120–122

Srivastava, A., 79–99, 101–123

Standard normal distribution, 127

Standardization, 150

Steinbuch, R., 1–9, 11–54, 57–77, 79–99,

101–123, 125–153

Stigmergy, 33, 34, 36

Stimulus, 33

Stochastic, 46, 47, 131, 132, 134, 138, 147,

152, 153

Stochastic searches, 9

Stop criterion, 22, 111

Stress analysis studies, 150

Structural design, 125

Structural mechanics, 125, 152

Structural optimization problem, 89

Supervised learning, 30

Surface nodes, 83, 84

Surface properties, 150

Surrogate models, 42, 44

Survival of the fittest, 6, 12

Swarm Intelligence, 21, 33

System of knowledge, 145

Index 159

T
Technical Mechanics, 2

10 rods frame, 23, 25, 60, 70, 86, 87

Tensile stress, 150

Test examples, 59, 63

Tetragonal elements, 79

Thickness distribution, 113

13 rods frame, 27, 28, 60

3D solids, 79

TMD. See Tuned Mass Dampers (TMD)

Trefftz, E., 3

Topological Optimization, 37–40, 83

Total probability, 134

Tradeoff surface, 139–142, 144

Trail file, 90, 92

Transfer function, 29

Traveling salesman, 36

Trees trunks, 6

Tuned Mass Dampers (TMD), 102–109

U
Uncertainties, 125–127, 129, 131, 136, 138

Unified framework, 130

Uniform wall thickness, 110

Untrustworthy statements, 109

Update the mesh, 98

V
Value ranges, 7

Vehicle routing problems, 36

Virtual plants, 151

Virtual Product Development, 5, 145

Void areas, 38

W
Waiting times, 75

Wang, Z., 130

Warnings, 149

Weight, 87, 138

Weighted-Sum method, 142

Weighting factors, 23, 27, 41, 144

Widmann, C., 11–54

Winglet, 6, 11

Workstations, 73, 75

Z
Zell, A., 30

Zeller, P., 116

Zheng, Y., 42

160 Index

	Preface
	Contents
	About the Editors and Authors
	Chapter 1: Motivation
	1.1 A Short Historical Look at Optimization
	1.1.1 Optimization in Engineering History
	1.1.2 Finding Relevant Numbers in Engineering
	1.1.3 High Level Mechanical Methods
	1.1.4 Drop of Hardware Costs and Better CAD Systems

	1.2 Optimization and Simulation as Part of the Virtual Product Development
	1.3 Optimization in Nature
	1.4 Terms and Definitions in Optimization
	1.5 Why Bionic Optimization?
	References

	Chapter 2: Bionic Optimization Strategies
	2.1 Evolutionary Optimization
	2.1.1 Terms and Definitions
	2.1.2 Description of the Evolutionary Strategy
	Variants

	2.1.3 Evolutionary vs. Genetic Strategy
	2.1.4 Discussion

	2.2 Fern Optimization
	2.2.1 Description of the Approach
	2.2.2 Discussion

	2.3 Particle Swarm Optimization
	2.3.1 Terms and Definitions
	2.3.2 Description of the Particle Swarm Optimization
	Variants

	2.3.3 Dynamic Particle Inertia
	2.3.4 Limitation of the Particles´ Velocity
	2.3.5 Discussion

	2.4 Artificial Neural Net Optimization
	2.4.1 ANN Architecture
	2.4.2 Training ANNs
	2.4.3 Conclusion

	2.5 Ant Colony Optimization
	2.5.1 The Ant Colony Strategy in Bionic Optimization
	2.5.2 Description of the Approach

	2.6 Non-parametric Optimization
	2.6.1 Topological Optimization
	2.6.2 Local Growth

	2.7 Meta Models
	2.8 Random or Deterministic Methods
	2.9 Violation of Boundary Conditions
	References

	Chapter 3: Problems and Limitations of Bionic Optimization
	3.1 Efficiency of Bionic Optimization Procedures
	3.1.1 Comparing Bionic Optimization Strategies
	3.1.2 Measuring the Efficiency of Procedures
	3.1.3 Comparing the Efficiency of Bionic Optimization Strategies
	Test Examples
	Input and Results of the Test Examples
	Interpretation of the Results
	Further Test Examples

	3.1.4 Conclusions

	3.2 The Curse of Dimensions
	3.3 Acceleration of Bionic Optimization Processes
	3.3.1 Selecting Efficient Optimization Settings
	Evolutionary Optimization
	Fern Optimization
	Particle Swarm Optimization

	3.3.2 Parallelization and Hardware Acceleration
	Parallel Jobs for Speeding Up Optimization Processes
	Benefit of Hardware Raising
	Conclusions

	References

	Chapter 4: Application to CAE Systems
	4.1 Inner and Outer Loop Optimization
	4.1.1 Inner Loop Process
	4.1.2 Outer LoopProcess

	4.2 Implementation in CAE-Systems
	4.2.1 Mono-objective Parametric Shape Optimization
	4.2.2 Formulation of Structural Optimization Problem
	4.2.3 Bionic Parametric Shape Optimization with PTC
	Trail Files
	Running PTC Creo Parametric in a Batch Mode
	Parametric Model of the I-Beam
	Program Menu

	4.2.4 Bionic Parametric Shape Optimization with Siemens NX 9.0
	NX Journaling
	Run a Journal from the Command Prompt Window
	General Concept of the Outer Loop Optimization with Siemens NX 9.0
	Creating a Parametric Model of the I-Beam
	Exporting the Value of Mass of a Part or an Assembly
	Creating a FEM Model of the I-Beam
	Creating a SIM Model of the I-Beam

	References

	Chapter 5: Application of Bionic Optimization
	5.1 Earthquake Stability and Tuned Mass Dampers
	5.1.1 Earthquake and Design for Earthquake Loading
	5.1.2 Brief Introduction to Tuned Mass Dampers
	Multi-mass TMD Systems

	5.1.3 A Simplified Approach to Study TMD in High Buildings
	Parameters of the Optimization Process

	5.2 Metal Forming
	5.2.1 Deep Drawing
	5.2.2 Backward Extrusion

	5.3 Brake Squeal
	5.3.1 Types of Brake Noise
	5.3.2 Modeling of Brake Squeal
	5.3.3 Minimizing the Risk of Brake Squeal Using Bionic Optimization

	References

	Chapter 6: Current Fields of Interest
	6.1 Reliability and Robustness
	6.1.1 Reliability-Based Design
	6.1.2 Robust Design
	6.1.3 Reliability and Robustness Integration
	6.1.4 A Sketch of a Formulation of a Unified Reliability and Robustness Strategy
	6.1.5 Robust Optimization
	6.1.6 Conclusion

	6.2 Multi-Objective Optimization
	6.2.1 Terms and Definitions
	6.2.2 Strategies for MOO
	Compromise Method
	Weighted Sum

	6.3 Optimization and Process Management of the Virtual Development Process
	References

	Chapter 7: Future Tasks in Optimization and Simulation
	7.1 Main Trends in Optimization
	7.2 Qualifications and Quality Assurance
	7.3 Interpretation of Simulation Results
	7.4 Believing in Standards and Defaults
	7.5 Linking Development and Manufacturing
	7.6 New and Old Materials
	7.7 Reliable Loading Systems
	7.8 Preprocessing and Meshing

	Index

