
Anomaly Detection from Log Files Using Data
Mining Techniques

Jakub Breier1,2 and Jana Branǐsová3

1Physical Analysis and Cryptographic Engineering, Temasek Laboratories@NTU
2School of Physical and Mathematical Sciences, Division of Mathematical Sciences,

Nanyang Technological University, Singapore
jbreier@ntu.edu.sg

3Faculty of Informatics and Information Technologies, Slovak University of
Technology, Bratislava, Slovakia

branisovaj@gmail.com

Abstract. Log files are created by devices or systems in order to provide
information about processes or actions that were performed. Detailed
inspection of security logs can reveal potential security breaches and it
can show us system weaknesses.
In our work we propose a novel anomaly-based detection approach based
on data mining techniques for log analysis. Our approach uses Apache
Hadoop technique to enable processing of large data sets in a parallel
way. Dynamic rule creation enables us to detect new types of breaches
without further human intervention. Overall error rates of our method
are below 10%.

Keywords: Log Analysis, Anomaly Detection, Data Mining, Apache
Hadoop, MapReduce

1 Introduction

A system or a device can provide information about its state in the form of
log files. These files contain information if it works properly or which actions
or services have been executed. By analyzing such information we can detect
anomalies which can reveal potential security breaches. Since complex systems
provide huge amounts of log records, it is not feasible to analyze them manually,
therefore it is necessary to use automatized methods for this purpose. Outcomes
of this process can help with a correct setup of network devices, it is possible to
reveal non-privileged access to the system or even to find a person who performed
the breach [8].

There are various types of logging. Security logging encompasses obtaining
information from security systems and can be used to reveal potential breaches,
malicious programs, information thefts and to check the state of security controls.
These logs also include access logs, which contain data about user authentication.
Operational logging reveals information about system errors and malfunctions,
it is useful for a system administrator that needs to know about current system

� Springer-Verlag Berlin Heidelberg 2015
K.J. Kim (ed.), Information Science and Applications,
Lecture Notes in Electrical Engineering 339, DOI 10.1007/978-3-662-46578-3_53

449



state. Compliance logging provides information about compliance with security
requirements and it is sometimes similar to security logging. There are two sub-
types of these logs: logging of security of information systems with respect to
data transfer and storage, e.g. PCI DSS or HIPAA standard compliance, and
logging of system settings.

In our work we focus on anomaly detection in log files with the help of data
mining techniques. By comparing different approaches of anomaly and breach
detection we decided to use a method based on dynamic rule creation with the
data mining support. The main advantage of this method is its ability to reveal
new types of breaches and it minimizes the need of manual intervention. We have
also investigated possibilities for more effective log analysis of large data volumes
because of the size and amount of log files, which has increasing tendency. By
implementing the Apache Hadoop technology we created a single node cluster
for parallel log processing using the MapReduce method. Time needed for log
analysis has greatly increased and the algorithm implemented in Hadoop was
able to process data faster than the standard algorithm using tree-based struc-
ture. Also, by adding more computing nodes it is easy to improve processing
time, if necessary.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work in this area. Section 3 describes methods that could be used for
anomaly detection. In section 4 we present the design of our solution, and finally,
section 6 concludes this paper.

2 Related Work

There are several works proposing usage of data mining methods in log file
analysis process or in detecting security threats in general.

Schultz et al. [6] proposed a method for detecting malicious executables using
data mining algorithms. They have used several standard data mining techniques
in order to detect previously undetectable malicious executables. They found out
that some methods, like Multi-Label Naive Bayes Classification can achieve very
good results in comparison to standard signature-based methods.

Grace, Maheswari and Nagamalai [4] used data mining methods for analyzing
web log files, for the purposes of getting more information about users. In their
work they described log file formats, types and contents and provided an overview
of web usage mining processes.

Frei and Rennhard [2] used a different approach to search for anomalies in log
files. They created the Histogram Matrix, a log file visualization technique that
helps security administrators to spot anomalies. Their approach works on every
textual log file. It is based on a fact that human brain is efficient in detecting
patterns when inspecting images, so the log file is visualized in a form that it is
possible to observe deviations from normal behavior.

Fu et al. [3] proposed a technique for anomaly detection in unstructured
system logs that does not require any application specific knowledge. They also

450 J. Breier and J. Branisová



included a method to extract log keys from free text messages. Their false positive
rate using Hadoop was around 13% and using SILK around 24%.

Makanju, Zincir-Heywood and Milios [5] proposed a hybrid log alert detection
scheme, using both anomaly and signature-based detection methods.

3 Detection Methods

According to Siddiqui [7], there are three main detection methods that are used
for monitoring malicious activities: scanning, activity monitoring and integrity
check. Scanning is the most widely used detection method, based on searching
for pre-defined strings in files. Advanced version of scanning includes heuristic
scanning which searches for unusual commands or instructions in a program.
Activity monitoring simply monitors a file execution and observes its behav-
ior. Usually, APIs, system calls and hybrid data sources are monitored. Finally,
integrity checking creates a cryptographic checksum for chosen files and period-
ically checks for integrity changes.

Data mining is relatively new approach for detecting malicious actions in the
system. It uses statistical and machine learning algorithms on a set of features
derived from standard and non-standard behavior. It consists of two phases:
data collection and application of detection method on collected data. These
two phases sometimes overlap in a way that selection of particular detection
method can affect a data collection.

Data can be analyzed either statically or dynamically. Dynamic analysis ob-
serves a program or a system during the execution, therefore it is precise but time
consuming. Static analysis uses reverse-engineering techniques. It determines be-
havior by observing program structure, functionality or types of operation. This
technique is faster and it does not need as much computational power as dy-
namic analysis, but we get only approximation of reality. We can also use hybrid
analysis - first, a static analysis is used and if it does not achieve correct results,
dynamic analysis is applied as well.

3.1 Parallel Processing

A huge amount of log data is generated every day and it is presumed that this
amount will grow over time. Therefore, it is necessary to improve the process of
the log analysis and make it more effective. We have chosen Apache Hadoop1

technology for this purpose with theMapReduce [1] programming model.MapRe-
duce is used for processing large data sets by using two functions. Map function
processes the data and generates a list in the key-value form. Reduce function
can be then used by the user for joining all the values with the same key. Hadoop
architecture is based on distributing the data on every node in the system. The
resulting model is simple, because MapReduce handles the parallelism, so the
user does not have to take care about load balancing, network performance or

1 http://hadoop.apache.org/

Anomaly Detection from Log Files Using Data Mining Techniques 451



fault tolerance. Hadoop Distributed File System can then effectively store and
use the data on multiple nodes.

4 Design

The main idea for the design of our solution is to minimize false positives and
false negatives and to make the anomaly identification process faster.

The steps of the algorithm are following. First, a testing phase is performed
and rules are made from the testing data set. The outcome of this phase is an
anomaly profile that will be used to detect anomalies in network devices log
files. For creating rules, log file is divided into blocks instead of rows. A block is
identified by the starting time, session duration and type of a service. We will
use a term ’transaction’ for particular block. This approach allows us to create
a rule based on several log files from different devices or systems, so that one
transaction can contain information from various sources. For creating uniform
data sets, which can be processed by different algorithms, each transaction is
transformed in a binary string form. For a spatial recognition of a log record in
transaction, each record in the original log file will be given a new attribute -
transaction ID.

For the detection program it is necessary to be able to process various log
file formats, therefore we decided to use configuration files which will help to
determine each attribute position.

4.1 Data Transformation

Data transformation includes creation of a new data set that contains the binary
data only. The advantage of such data representation is ability to process it with
various algorithms for association rules creation. Example of such a transforma-
tion is depicted in Table 1.

Table 1. Binary Transformation Example.

Session Time Type of Service

00:00:02 telnet

00:00:04 http

00:00:05 telnet

Session Time ST

Type of Service ToS

ST1 ST2 ST3 ToS1 ToS2

1 0 0 1 0

0 1 0 0 1

0 0 1 1 0

ST1 00:00:02

ST2 00:00:04

ST3 00:00:05

ToS1 telnet

ToS2 http

To avoid a problem with large dimension number by using binary represen-
tation of log records, we propose a data reduction. This reduction is achieved by

452 J. Breier and J. Branisová



inserting values into categories and using an interval representative instead of
a scalar or time value. Binary string contains a numerical value of 1 for values
which are present in the record and a numerical value of 0 otherwise. However,
some of the values are unable to reduce, such as IP addresses or ports.

4.2 Transaction and Rule Creation

Transaction and rule creation algorithm works as follows. It loads each record
from log files line by line and stores them in the same block if they were created
in the same time division, within the same session and if the IP addresses and
ports are identical. If they can be identified as related, a transaction is created.
Then it is decided whether this transaction fulfills conditions to be included in
the anomaly profile. If yes, a new rule is created, if no, this transaction is ignored
for the further rule creation process.

A rule contains attributes in a binary form that are defined in configura-
tion file. It always contains some basic attributes related to time and session
parameters and also a device ID, from which particular log record originates.

The anomaly finding algorithm first loads a set of previously created rules
from the database. Then it sequentially processes the log files intended for anal-
ysis and creates transactions from these files. This transaction is then compared
with the set of rules and if it is identified as an anomaly, it is stored for further
observations.

4.3 Processing of Large Data Sets

As stated in Section 3.1, we decided to use Hadoop technology with MapReduce
programming model to process large data sets. Hadoop enables us to easily add
processing nodes of independent device types. After program starts, JobTracker
and TaskTracker processes are started, which are responsible for Job coordina-
tion and for execution of Map and Reduce methods. JobTracker is a coordinator
process, there exists only one instance of this process and it manages TaskTracker
processes which are instantiated on every node. MapReduce model is depicted
in Fig. 1, however in our case, only one Reduce method instance is used. First,
a file is loaded from Hadoop Distributed File System (HDFS) and it is divided
into several parts. Each Map method accepts data from particular part line by
line. It then processes the line and stores them until a rule is created (if all the
conditions are met). The rule is then further processed by the Reduce method,
which identifies redundant rules and if the rule is unique, it is written into the
HDFS.

To allow nodes to access same files in the same time, but without loading
them onto the each node separately, a Hadoop library for distributed cache is
used.

Anomaly Detection from Log Files Using Data Mining Techniques 453



sort/merge

sort/merge

copy

Output HDFS
Input HDFS

Part 2

Part 1

sort/merge

sort/merge

reduce

reduce

map

map

map

Split 0

Split 1

Split 2

Split 3

Split 4

Fig. 1. MapReduce Algorithm.

5 Testing

Our anomaly detection method was implemented in Java programming language.
For testing, we used Intel i7-4500U CPU with 8 GB of RAM, running Ubuntu
12.04 operating system. For testing purposes, two data sets were used: 1998
DARPA Intrusion Detection Evaluation Set2, that was created by monitoring a
system for two weeks, and Snort logs, created by analyzing the DARPA data
set3. Snort logs contain information, if the attack was performed, or not. Based
on that, we were able to determine if our anomaly detection method was able
to successfully identify an intrusion, or not.

Testing was performed on a log records set of a size of 442 181 records. This
set was made by merging DARPA and Snort data sets. We have split this data
set into ten subsets for cross-validation purposes. In a cross-validation, a set is
divided into subsets with similar sizes and each subset is used as many times as
is the number of subsets. In each testing, one subset is used as a test set and
the other subsets are used as training sets. For our validation, we split the main
data set in a way that each subset contained log records from every day when
monitoring was performed.

5.1 Data Transformation

After data sets merging, it was necessary to determine how many unique values
are present in each table column. These values are stated in Table 2.

As we have already stated, high-dimensional data increases memory require-
ments of anomaly detection algorithm. It is possible to reduce some of the at-
tribute values so that it can still be able to detect anomalies on a reduced set.
We can analyze the ’Session Time’ attribute and a process of reducing its values
into intervals. These intervals are stated in Table 3.

Since the majority of records has a session time value 00:00:01, it was decided
to take this value as a standalone interval. The same holds for value 00:00:02.

2 http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
3 https://www.snort.org

454 J. Breier and J. Branisová



Table 2. Occurrence of Unique Values in Merged Data Set.

Attribute Unique Values Min Max

Date 10 07/20/1998 07/31/1998

Time 63 299 00:00:00 23:59:59

Session Time 884 00:00:01 17:50:36

Service 4664 n/a n/a

Source Port 38 637 - 65 404

Destination Port 7887 - 33 442

Source IP 1 565 000.000.000.000 209.154.098.104

Destination IP 2 640 012.005.231.198 212.053.065.245

Attack Occurred 2 0 1

Attack Type 47 n/a n/a

Alert 61 n/a n/a

Table 3. Intervals with Highest Number of Occurences.

Session Time 00:00:01 00:00:02 (00:00:02,01:00:00> (01:00:00,18:00:00)

Occurrences 795 421 13 873 7 987 759

Two other intervals cover longer time sessions, but since there are not many
values present in each of these intervals, it was possible to make the reduction.
Therefore, after reduction it was possible to change the range of values from 884
to 4 in this case, which enables significantly faster data processing.

5.2 Error Rate

Overall accuracy of the algorithm can be determined by Equation 1, where FP =
false positives, FN = false negatives, TP = true positives, TN = true negatives.

Error Rate =
FP + FN

TP + TN + FP + FN
(1)

The anomaly detection algorithm was implemented both in Java and in Hadoop.
Table 4 shows values for both implementations. The table shows us that Hadoop
implementation has around 1% lower error rate than Java implementation.

Table 4. Error Rate for Each Subset Using Java and Hadoop Implementations.

Error Rate Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10

Java 0.095 Set 0.087 0.144 0.091 0.093 0.090 0.090 0.086 0.087 0.123

Overall 0.098576

Hadoop 0.087 Set 0.077 0.142 0.083 0.083 0.083 0.080 0.077 0.077 0.121

Overall 0.091465

Anomaly Detection from Log Files Using Data Mining Techniques 455



5.3 Processing Speed

Important factor in anomaly detection is both speed of rules generation and
speed of data processing. We compared our algorithm with two other anomaly
detection algorithms, Apriori and FP-Growth. Apriori algorithm serves as a
base for several rule-creation methods. Its disadvantage is that it needs to pro-
cess the data set several times. FP-Growth algorithm uses tree-based storages
for storing intermediate values. We used Weka libraries4 for these algorithms
implementations. Testing results are stated in Table 5. We can see that Hadoop
implementation was the fastest among the tested algorithms. Therefore we can
conclude that parallelization can bring very good results in terms of speed into
the rule generation process.

Table 5. Comparison of Rule Generation Speed.

Algorithm Java Implementation Hadoop Implementation Apriori FP-Growth

Time (s) 163.1 15.6 226 93

Speed of data set processing for anomaly detection is stated in Table 6.
We were comparing standard implementation in Java and implementation in
Hadoop. Tests were performed on three data sets of sizes 10, 50, and 500 GB.
As we can see, Hadoop can speed up this process more than ten times, even
by using a single node. The Hadoop configuration was set to pseudo-distributed
operation, which allowed it to run on a single-node. It is, of course, possible to
add more nodes in order to improve throughput. We have tested a 10 GB data
set on a three-node cluster, one node was configured as a master+slave, the other
two nodes were configured as slaves only. Running time was 2040s, which gives
us approximately 1.55 times better throughput than using a single-node.

Table 6. Comparison of Anomaly Detection Speed.

Data Size 10 GB 50 GB 500 GB

Number of Records (in millions) 84 423 851

Java Implementation Time (s) 32 622 164 050 330 152

Hadoop Implementation Time (s) 3 164 13 531 29 042

6 Conclusion

In our work we have proposed a way for anomaly-based breach detection from
log files. We have chosen an approach based on dynamic rule creation using data

4 http://www.cs.waikato.ac.nz/ml/weka/

456 J. Breier and J. Branisová



mining techniques. The main advantage of such an approach is minimization
of tasks requiring human interference and it is possible to detect new types of
breaches.

The second goal was to reduce the time required for the log analysis, since
log files are becoming larger and their number grows. We have implemented the
application using Hadoop technology. We have created a single-node cluster for
parallel processing, using MapReduce technology. This allowed us to make analy-
sis more than ten times faster compared to using standard Java implementation.
Also, it is easy to add more nodes for improving the analysis speed.

Log records were aggregated into transactions, identified by the time, session
time and service type, so the manipulation with the data became more con-
venient. After that these transactions were transformed into binary format for
faster processing.

Acknowledgement This work was supported by VEGA 1/0722/12 grant enti-
tled ”Security in distributed computer systems and mobile computer networks.”

References

1. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clus-
ters. Commun. ACM, 51(1):107–113, January 2008.

2. A Frei and M. Rennhard. Histogram matrix: Log file visualization for anomaly
detection. In Availability, Reliability and Security, 2008. ARES 08. Third Interna-
tional Conference on, pages 610–617, March 2008.

3. Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly detection in distributed
systems through unstructured log analysis. In Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, ICDM ’09, pages 149–158, Washington,
DC, USA, 2009. IEEE Computer Society.

4. L.K.J. Grace, V. Maheswari, and D. Nagamalai. Web log data analysis and mining.
In Natarajan Meghanathan, BrajeshKumar Kaushik, and Dhinaharan Nagamalai,
editors, Advanced Computing, volume 133 of Communications in Computer and
Information Science, pages 459–469. Springer Berlin Heidelberg, 2011.

5. A Makanju, A.N. Zincir-Heywood, and E.E. Milios. Investigating event log analysis
with minimum apriori information. In Integrated Network Management (IM 2013),
2013 IFIP/IEEE International Symposium on, pages 962–968, May 2013.

6. M.G. Schultz, E. Eskin, E. Zadok, and S.J. Stolfo. Data mining methods for de-
tection of new malicious executables. In Security and Privacy, 2001. S P 2001.
Proceedings. 2001 IEEE Symposium on, pages 38–49, 2001.

7. M. A. Siddiqui. Data mining methods for malware detection. ProQuest, 2011.
8. R. Winding, T. Wright, and M. Chapple. System Anomaly Detection: Mining Fire-

wall Logs. In Securecomm and Workshops, 2006, pages 1–5, Aug 2006.

Anomaly Detection from Log Files Using Data Mining Techniques 457


	53Anomaly Detection from Log Files Using Data Mining Techniques
	1 Introduction
	2 Related Work
	3 Detection Methods
	3.1 Parallel Processing

	4 Design
	4.1 Data Transformation
	4.2 Transaction and Rule Creation
	4.3 Processing of Large Data Sets

	5 Testing
	5.1 Data Transformation
	5.2 Error Rate
	5.3 Processing Speed

	6 Conclusion
	Acknowledgement
	References




