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Abstract. In the software assurance process, it is crucial to prevent a program 
with defected modules to be published to users since it can save the mainte-
nance cost and increase software quality and reliability. There were many prior 
attempts to automatically capture errors by employing conventional classifica-
tion techniques, e.g., Decision Tree, k-NN, Naïve Bayes, etc. However, their 
detection performance was limited due to the imbalanced issue since the num-
ber of defected modules is very small comparing to that of non-defected mod-
ules. This paper aims to achieve high prediction rate by employing unbiased 

-
anced classes. The experiment was conducted in the NASA Metric Data Pro-
gram (MDP) data set. The result showed that our proposed system outper-
formed all of the major traditional approaches. 
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1 Introduction 

Software defect is any flaw or imperfection in a software product or process. It is also 
referred to as a fault, bug, or error. It is considered as a major cause of failures to 
achieve the software quality, and the maintenance cost can be very high in order to 
amend all of the defects in the software production stage. Hence, it is very important 
to detect all of the bugs as early as possible before publishing the program. Software 
defect prediction is recognized as an important process in the field of software engi-
neering. It is an attempt to automatically predict the possibility of having a defect in 
the software. Note that the detection can be in many levels, i.e., method, class, etc. 

Data miners have been aware of the software defect issue and proposed several 
works in defect prediction applying conventional classification techniques[1, 2, 3, 4, 
5, 6]. Although their experimental results were reported showing a promising detec-
tion performance, all of them were evaluated based on accuracy, which is not a proper 
metric in this domain. For example, assume the percentage of defected modules is 
only 10%, while the remaining modules (90%) are non-defected. Although the detec-
tion system incorrectly classifies all modules as non-defected ones, the accuracy is 
still 90%! 
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For the sake of comparison, it is necessary to evaluate the system based on stand-
ard benchmarks. NASA Metrics Data Program (MDP) [7] is a publicly available and 
widely used data set. There are 12 projects described by many software metrics, such 

mark, including MDP, that the number of defected modules is very small comparing 
to the non-defected ones. In the MDP benchmark, an average of the defected modules 
in all of the projects is 20%, and the PC2 project has the lowest percentage of defect-
ed modules with only 2.15%

rmance. There were 
many works [1, 2, 3, 4, 5, 6] using the MDP benchmark; however, most of them ig-
nore the imbalanced issue, so their reported results should be impaired. 

In this paper, we aim to propose a novel defect prediction system by applying a 
support vector machine - [8] that is 
customary to induce SVM in the imbalanced training set. In R-SVM, the separation 
hyperplane is adjusted to reduce a bias from the majority class (non-defect). The ex-
periment is conducted based on the MDP benchmark and, then, the result is compared 
to several classification techniques: Naive Bayes, Decision Tree, k-NN, SVM (Line-
ar), and SVM (RBF) in terms of the measures including PD, PF, F1, and G-mean. 

The rest of paper is organized as follows. Section 2 presents an overview of the re-
lated work. Section 3 describes the proposed method in details. The description of the 
data sets and tools are found in Section 4. Section 5 shows the experimental results. 
Finally, this paper is concluded in Section 6. 

2 Related Work 

2.1 Software Metrics 

Measurement is known as a key element in engineering process. It can be used to 
control the quality and complexity of software. For building one product or system, 
we use many software measures to assess the quality of product and also to define the 
product attribute like in the MDP benchmark. These software metrics provide various 
benefits, and one of the major benefits is that it offers information for software defect 
prediction. Currently there are many metrics for defect prediction in software. 

McCabe's cyclomatic complexity [9] [10] are ones of the 
well-known software metrics. They can be applied into any program languages and 

tware 
 complexity of a program. From a pro-

gram source code, it can directly measure the number of linearly independent paths. 
Moreover, it can be used as an ease of maintenance metric. Halstead s theory is wide-
ly used to measure complexity in a software program and the amount of difficulty 
involved in testing and debugging of software development. In addition, there are also 
other metrics, e.g., the Chidamber and Kemerer metrics [11] 
information flow complexity. 

Table 1 shows the features used in the MDP benchmark, which does not only de-
pend on M  but also the statistics of program codes, 
Line Count. 
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Table 1. The software metrics used as features in the MDP benchmark. 

McCabe 
(4 metrics) 

v(G) cyclomatic_complexity 
ev(G) essential_complexity 
iv(G) design_complexity 

loc loc_total(one line = one count) 

Line Count 
(5 metrics) 

loc_blank 
loc_code_and_comment 
loc_comments 
loc_executable 
branch_count 

Halstead 
(12 metrics) 

1N  num_operands V volume: 2logNV  

2N  num_operators D difficulty: LD /1  

1  num_unique_operands E effort: LVE /  
2  num_unique_operators T prog_time: 18/ET  seconds 

B error_est L level: VVL /*     where *2log*2* 222V

N length: 21 NNN  I content: VLI   where 
2

2

1

2
N

L  

 

2.2 Prior Works in Defect Prediction 

In the field of software defect prediction, there were many trials in applying machine 
learning techniques to the MDP benchmark. Menzies et al. [1] applied Naïve Bayes to 
construct a classifier to predict software defects. There was an investigation on the 
feature selection using information gain. The proposed system obtained 71 % of the 
mean probability detection (PD) and 25 % of the mean false alarm rate (PF). Bo et al.
[2] - uilt around SVM and used Genetic 
Algorithm (GA) to improve the cost sensitive parameter in SVM. The result showed 
that it achieved a promising performance in terms of AUC. Seliya et al. [3] introduced 
an algorithm called RBBag ncepts into two choices of 
classifiers: Naïve Bayes and C4.5. The result showed that RBBag outperformed the 
classical models without the bagging concept. Moreover, RBBag is more effective 
when it applied to Naïve Bayes than C4.5. Unfortunately, all of these works discard 
the imbalanced issue, so their reported results should be limited.  

Shuo et al. [4] was aware of the imbalanced issue in the software defect prediction. 
There was an investigation on many strategies to tackle the imbalanced issue includ-
ing resampling techniques, threshold moving, and ensemble algorithms. The result 
showed that AdaBoost.NC is the winner, and it also outperformed other conventional 
techniques: Naïve Bayes and Random Forest. Furthermore, a dynamic version of 
AdaBoost.NC was proposed and proved to be better than the original one. 

Recently, support vector machine (SVM) have been applied in the field of software 
defect prediction showing a good prediction performance. Gray et al. [5] employed 
SVM to detect errors in the MDP data set. The analysis from the SVM results re-
vealed that if a testing module has a large average of the decision values (SVM 
scores), there is high chance to found defects in it. Elish et al. [6] compared SVM to 
eight traditional classifiers, such as DT, NB, etc., on the MDP data set. The experi-
ment demonstrated that SVM is the winner method. Thus, this is our motivation to 

-  
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2.3 Assessment in Defect Prediction 

In the domain of binary classification problem (defect vs. non-defect), it is necessary 
to construct a confusion matrix, which comprises of four based quantities: True Posi-
tive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) as shown 
in Table 2.  

Table 2. A confusion matrix. 
 Predicted Positive Predicted Negative 

Actual Positive TP FN 
Actual Negative FP TN 

 
These four values are used to compute Precision (Pr), Probability of Detection 

(PD), Probability of False Alarm (PF), True Negative Rate (TNR), F-measure [11], 
and G-mean [12], which is a proper metric that frequently used to tackle the class 
imbalance problem as shown in Table 3.  

 

Table 3. Prediction Performance Metrics 
Metrics Definition Formula 

Precision (Pr) a proportion of examples predicted as defective against 
all of the predicted defective FPTP

TP  

Probability of Detection 
(PD), Recall, TPR 

a proportion of examples correctly predicted as defective 
against all of the actually defective FNTP

TP  

Probability of False 
Alarm (PF), FPR 

a proportion of examples correctly predicted as non-
defective against all of the actually non-defective FPTN

FP  

True Negative Rate 
(TNR) 

a proportion of examples correctly predicted as non-
defective against all of the actually non-defective FPTN

TN  

G-mean the square root of the product of TPR (PD) and TNR TNRTPR  

F-measure a weighted harmonic mean of precision and recall 
RePr

RePr2  

3 Our Proposed Method 
3.1 Support Vector Machine (SVM) 

Support Vector Machine (SVM) [13, 14] is one of the most famous classification 
techniques which was presented by Vapnik. It was shown to be more accurate than 
other classification techniques, especially in the domain of text categorization. It con-
structs a classification model by finding an optimal separating hyperplane that max-
imizes the margin between the two classes. The training samples that lie at the margin 
of the class distributions in feature space called support vectors. 

The purpose of SVM is to induce a hyperplane function (Equation 1), where w  is 
a weight vector b is a bias. 

 

 bxwbwh ,  (1) 
 

The optimization function to construct SVM hyperplane is shown in (2), where C  
is a penalty parameter of misclassifications. 

 
n
i i

T

bw
CwwMinimize 1

,, 2
1

 
 0,1 iii

T
i bxwytosubject  (2) 
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In a non-linear separable problem, SVM handles this by using a kernel function 
(non-linear) to map the data into a higher space, where a linear hyperplane cannot be 
used to do the separation. A kernel function is shown in (3). 
 

jiji xxxxK ,  (3) 

Unfortunately, although SVM has shown an impressive result, it still suffers from 
the imbalanced issue like other traditional classification techniques. 

3.2 Threshold Adjustment (R-SVM) 

Although SVM has shown a good classification performance in many real-world data 
sets, it often gives low prediction accuracy in an imbalanced scenario. R-SVM [8] is 
an our earlier attempt that focuses to tackle this issue by applying the threshold ad-
justment strategy. To minimize a bias of the majority class, it translates a separation 
hyperplane in (1) without changing the orientation w  by only adjusting b. After the 
SVM hyperplane has been induced from the set of training data mapped to SVM 
scores, L. The task is to find a new threshold, , that selected from the set of candi-
dates thresholds, , which gives the highest value of a user-defined criterion, 
perf (e.g., the 

1F  metric): 
 ,max Lperf  (4) 

To avoid overfitting issue, the output  is an average of the thresholds obtained 
from different training subsets. Finally, the SVM function is corrected as below: 
 

ii xhxh*  (5) 
 

Fig. 1 y s downward in the bottom graph 
corrects the way SVM labels the three positive examples misclassified by the original 

ation is unchanged). 

+

+ +

+

Positive class (y = +1)

Negative class (y = -1)

+ +
+

x1

x2

(a) SVM hyperplanes before threshold adjustment. 

+

+ +

+

h*=h-

Positive class (y = +1)

Negative class (y = -1)

+ +
+

x1

x2

 (b) SVM hyperplanes after threshold adjustment. 
 

Fig. 1. SVM hyperplanes before (a) and after (b) threshold adjustment. The classification of 
three examples is corrected. 

 

However, the enhanced hyperplane can reach an overfitting issue since the adjust-
ment is based on just a single training data set. To increase a generalizability of the 
model, the resampling concept is applied to R-
Moreover, the under-sampling concept is also employed in order to speed up the ad-
justment process. 
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4 Data Set and Tools 
4.1 Data Set 

The benchmark used in this experiment is the NASA Metric Data Program (MDP) [7] 
that comes from the NASA IV&V Facility MDP Repository, which contains a series 
of real software defect data from NASA spacecraft software. In this benchmark, there 
are 12 projects (data sets). The defect statistics is shown in Table 4. From the statis-
tics, it has shown that the MDP data set suffers from the imbalanced issue. An aver-
age percentage of the defects is 20%, and the minimum percentage is only 2.15% in 
the PC2 data sets. 

Table 4. Defect Statistics for Each Data Set. 

Name CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 Avg. 

#Samples 327 7782 1183 194 1988 125 253 705 745 1077 1287 1711 1448 
#Attributes 38 22 22 40 39 40 38 38 37 38 38 39 36 

Defect 
Class 42 1672 314 314 46 44 27 61 16 134 177 471 277 

Non-Defect 
Class 285 6110 869 158 1942 81 226 644 729 943 1110 1240 1195 

%Defect 12.84 21.49 26.54 66.53 2.31 35.20 10.67 8.65 2.15 12.44 13.75 27.53 20 

4.2 Tools 

WEKA [15] is a popular machine learning software for data mining tasks. It is a 
product of University of Waikato in New Zealand and was first implemented in 1997. 
It supports several data mining process, such as preprocessing, regression, classifica-
tion, and so on. All comparison methods in this experiment are carried out in Weka. 

HR-SVM [16] is our SVM software that handles the imbalanced issue by using the 
threshold adjustment strategy. It is built on top of LIBSVM and HEMKit, and can run 
in any operating system. Moreover, it supports any kinds of classification tasks: single 
label classification (Binary classification), multi-class classification, multi-label clas-
sification, and hierarchical multi-label classification. - -
SVM software that is used for multiclass and multi-label data. 

5 Experiments and Results 
5.1 Experimental Setup 

In this section, shows how to conduct the experiments in this paper. It starts from the 
data preprocessing by scaling all values into a range of [0, 1], which is suggested in 
[17]. Then, we compare the detection performance among different approaches as in 
the following steps. Note that all experiments are based on 10 fold-cross validation 
and measured using PD, PF, F1, and G-mean. 

 Step1: find the baseline method which is the winner of the famous traditional 
classifiers: Naïve Bayes (NB), Decision Tree, k-NN, and SVM. 

 Step2: find the best setting for R-SVM whether or not the feature selection is 
necessary. 

 Step3: compare R-SVM (Step2) to the baseline method (Step1) along with a 
significance test using unpaired t-test at a confidence level of 95% 
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5.2 Experimental Results 

The comparison of the conventional methods. In order to get the baseline for each 
data set, five classifiers: Naïve Bayes (NB), Decision Tree (DT), k-NN, SVM (Line-
ar), and SVM (RBF), were tested and compared in terms of PD, PF, F1, and G-Mean 
(Table 5  8). For each row in the tables, the boldface method is a winner on that data 
set. From the result, k-NN and NB showed the best performance in almost all data 
sets, while the standard SVM gave the worst performance since it cannot detect any 
errors resulting 0% detection in many data sets. For Table 7  8, it is interesting that 
F1 and G-mean unanimously showed the same winners. Since F1 and G-mean are 
suitable metrics for imbalanced data, we selected the winner as a baseline using F1 
and G-mean as summarized in Table 9.  

      Table 5. Prediction performance: PD          Table 6. Prediction performance: PF 
Name Prediction model   Name Prediction model 

DT k-NN NB SVM   DT k-NN NB SVM 
CM1 0.190 0.143 0.262 0.000   CM1 0.091 0.147 0.130 0.000 
JM1 0.228 0.333 0.189 0.090   JM1 0.091 0.176 0.056 0.020 
KC1 0.354 0.417 0.322 0.048   KC1 0.113 0.181 0.124 0.028 
KC3 0.333 0.139 0.389 0.028   KC3 0.101 0.146 0.114 0.000 
MC1 0.065 0.304 0.311 0.000   MC1 0.005 0.011 0.088 0.000 
MC2 0.523 0.545 0.386 0.364   MC2 0.185 0.198 0.086 0.111 
MW1 0.148 0.259 0.000 0.037   MW1 0.044 0.115 0.000 0.009 
PC1 0.213 0.426 0.350 0.000   PC1 0.032 0.053 0.071 0.002 
PC2 0.000 0.000 0.125 0.000   PC2 0.007 0.021 0.080 0.000 
PC3 0.261 0.336 0.903 0.000   PC3 0.066 0.077 0.744 0.000 
PC4 0.525 0.492 0.375 0.198   PC4 0.059 0.085 0.048 0.004 
PC5 0.482 0.495 0.206 0.161   PC5 0.143 0.187 0.053 0.033 
Avg. 0.277 0.324 0.318 0.077   Avg. 0.078 0.116 0.133 0.017 
SD 0.172 0.166 0.219 0.112   SD 0.054 0.066 0.196 0.032 

       Table 7. Prediction performance: F1      Table 8. Prediction performance: G-mean 

Name Prediction model   Name Prediction model 
DT k-NN NB SVM   DT k-NN NB SVM 

CM1 0.211 0.133 0.244 0.000   CM1 0.416 0.349 0.477 0.000 
JM1 0.292 0.337 0.271 0.155   JM1 0.455 0.524 0.422 0.298 
KC1 0.424 0.435 0.386 0.289   KC1 0.560 0.585 0.531 0.420 
KC3 0.375 0.156 0.412 0.054   KC3 0.547 0.344 0.587 0.167 
MC1 0.102 0.341 0.122 0.000   MC1 0.255 0.549 0.533 0.000 
MC2 0.561 0.571 0.500 0.478   MC2 0.653 0.662 0.594 0.576 
MW1 0.195 0.233 0.000 0.067   MW1 0.376 0.479 0.000 0.192 
PC1 0.271 0.430 0.331 0.000   PC1 0.454 0.635 0.570 0.000 
PC2 0.000 0.000 0.053 0.000   PC2 0.000 0.000 0.339 0.000 
PC3 0.303 0.357 0.254 0.000   PC3 0.494 0.557 0.481 0.000 
PC4 0.554 0.486 0.447 0.324   PC4 0.703 0.671 0.598 0.444 
PC5 0.519 0.498 0.307 0.259   PC5 0.643 0.634 0.442 0.395 
Avg. 0.317 0.332 0.277 0.136   Avg. 0.416 0.499 0.465 0.208 
SD 0.178 0.171 0.155 0.164   SD 0.455 0.191 0.166 0.213 

The comparison of R-SVM with and without feature selection. In this section, 
we intend to provide the best setting for R-SVM by testing whether or not the feature 
selection can improve the prediction performance. The F1-results in Table 10 illus-
trate that the feature selection should not be employed into the system since it tre-
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mendously decreased the performance. This should be because the number of attrib-
utes in the data sets is already small, so it cannot be further reduced. 

 
Table 9. The winner of the baseline method 

for each data set in terms of F1 and Gmean. 

Name Winner F1 G-mean 
CM1 NB 0.244 0.477 
JM1 k-NN 7 0.524 
KC1 k-NN 0.435 0.585 
KC3 NB 0.412 0.587 
MC1 k-NN 0.341 0.549 
MC2 k-NN 0.571 0.662 
MW1 k-NN 0.233 0.479 
PC1 k-NN 0.430 0.635 
PC2 NB 0.053 0.339 
PC3 k-NN 0.357 0.557 
PC4 DT 0.554 0.703 
PC5 DT 0.519 0.643 
Avg. - 0.374 0.562 
SD - 0.149 0.099 

Table 10. A comparison of R-SVM between 
With and Without Feature Selection.  

Name F1 of R-SVM 
With Without 

CM1 0.000 0.354** 
JM1 0.008 0.411** 
KC1 0.847 0.853 
KC3 0.900 0.891 
MC1 0.000 0.126* 
MC2 0.333 0.574* 
MW1 0.000 0.456** 
PC1 0.000 0.392** 
PC2 0.000 0.095* 
PC3 0.000 0.384** 
PC4 0.155 0.573** 
PC5 0.845 0.846 
Avg. 0.257 0.496 
SD 0.379 0.264 

Table 11. Comparison prediction performance measures between R-SVM and the baseline 
method. the boldface method is a winner on that dataset.  

Name 
PD  PF  F1  G-mean 

Baseline R-SVM  Baseline R-SVM  Baseline R-SVM  Baseline R-SVM 

CM1 0.262 0.405  0.091** 0.130  0.244 0.354  0.477 0.593** 
JM1 0.333 0.587**  0.020** 0.301  7 0.411**  0.524 0.616** 
KC1 0.354 0.952**  0.028** 0.777  0.435 0.853**  0.585** 0.461 
KC3 0.389 0.956**  0.101** 0.722  0.412 0.891**  0.587 0.508 
MC1 0.311 0.174  0.005** 0.030  0.341* 0.126  0.549** 0.409 
MC2 0.545 0.591  0.086** 0.346  0.571 0.574  0.662 0.657 
MW1 0.259 0.481  0.009** 0.075  0.233 0.456*  0.479 0.667** 
PC1 0.426 0.492  0.002** 0.096  0.430 0.392  0.635 0.667 
PC2 0.125 0.125  0.007** 0.033  0.053 0.095  0.339 0.348 
PC3 0.903** 0.463  0.066** 0.135  0.357 0.384  0.557 0.633** 
PC4 0.525 0.729**  0.004** 0.130  0.554 0.573  0.703 0.796** 
PC5 0.495 0.950**  0.033** 0.764  0.519 0.846  0.643** 0.458 
Avg. 0.411 0.575  0.038 0.295  0.374 0.496  0.562 0.568 
SD 0.197 0.282  0.038 0.293  0.149 0.264  0.099 0.131 

* and ** represent a significant difference at a confidence level of 95% and 99%, respectively. 

The comparison of R-SVM and the baseline methods. In this section, we compare 
R-SVM to the baseline methods, which are obtain from the first experiment as shown 
in Table 5-8. In Table 11 shows a comparison in terms of PD, PF, F1, and G-mean. 
All of the metrics give the same conclusion that R-SVM outperforms the baseline 
methods in almost all of the data sets. From 12 data sets, R-SVM significantly won 5, 
3, and 5 on PD, F1, and G-mean, respectively. On average, F1-result of R-SVM out-
performs that of the baselines for 32.62%, especially for the KC3 data set showing 
116.26% improvement. Hence, this illustrates that it is effective to apply R-SVM as a 
core mechanism to early detect erroneous software modules. 
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6 Conclusion 
Early defect detection is an important activity in the software development. Unfortu-
nately, most of the prior works discarded the imbalanced issue, which is commonly 
found in the field of defect prediction, and it has known to severely affect the predic-
tion accuracy. To tackle this issue, we proposed to employ our version of SVM called 

- reduces a bias of the majority class by using the concept of thresh-
old adjustment. The NASA Metric Data Program (MDP) was selected as our bench-
mark. It comprises of 12 projects (data sets). In the experiment, we compared R-SVM 
to five traditional classification techniques: Naïve Bayes, Decision Tree, k-NN, SVM 
(Linear), and SVM (RBF). The results showed that R-SVM overcame the imbalanced 
issue and significantly surpassed those classifiers.  
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