
Software Defect Prediction in Imbalanced Data Sets
Using Unbiased Support Vector Machine

Teerawit Choeikiwong, Peerapon Vateekul

Department of Computer Engineering, Faculty of Engineering
Chulalongkorn University, Bangkok, Thailand

Teerawit.Ch@student.chula.ac.th, Peerapon.V@chula.ac.th

Abstract. In the software assurance process, it is crucial to prevent a program
with defected modules to be published to users since it can save the mainte-
nance cost and increase software quality and reliability. There were many prior
attempts to automatically capture errors by employing conventional classifica-
tion techniques, e.g., Decision Tree, k-NN, Naïve Bayes, etc. However, their
detection performance was limited due to the imbalanced issue since the num-
ber of defected modules is very small comparing to that of non-defected mod-
ules. This paper aims to achieve high prediction rate by employing unbiased

-
anced classes. The experiment was conducted in the NASA Metric Data Pro-
gram (MDP) data set. The result showed that our proposed system outper-
formed all of the major traditional approaches.

Keywords: software defect prediction; imbalanced issue; threshold adjustment

1 Introduction

Software defect is any flaw or imperfection in a software product or process. It is also
referred to as a fault, bug, or error. It is considered as a major cause of failures to
achieve the software quality, and the maintenance cost can be very high in order to
amend all of the defects in the software production stage. Hence, it is very important
to detect all of the bugs as early as possible before publishing the program. Software
defect prediction is recognized as an important process in the field of software engi-
neering. It is an attempt to automatically predict the possibility of having a defect in
the software. Note that the detection can be in many levels, i.e., method, class, etc.

Data miners have been aware of the software defect issue and proposed several
works in defect prediction applying conventional classification techniques[1, 2, 3, 4,
5, 6]. Although their experimental results were reported showing a promising detec-
tion performance, all of them were evaluated based on accuracy, which is not a proper
metric in this domain. For example, assume the percentage of defected modules is
only 10%, while the remaining modules (90%) are non-defected. Although the detec-
tion system incorrectly classifies all modules as non-defected ones, the accuracy is
still 90%!

� Springer-Verlag Berlin Heidelberg 2015
K.J. Kim (ed.), Information Science and Applications,
Lecture Notes in Electrical Engineering 339, DOI 10.1007/978-3-662-46578-3_110

923

For the sake of comparison, it is necessary to evaluate the system based on stand-
ard benchmarks. NASA Metrics Data Program (MDP) [7] is a publicly available and
widely used data set. There are 12 projects described by many software metrics, such

mark, including MDP, that the number of defected modules is very small comparing
to the non-defected ones. In the MDP benchmark, an average of the defected modules
in all of the projects is 20%, and the PC2 project has the lowest percentage of defect-
ed modules with only 2.15%

rmance. There were
many works [1, 2, 3, 4, 5, 6] using the MDP benchmark; however, most of them ig-
nore the imbalanced issue, so their reported results should be impaired.

In this paper, we aim to propose a novel defect prediction system by applying a
support vector machine - [8] that is
customary to induce SVM in the imbalanced training set. In R-SVM, the separation
hyperplane is adjusted to reduce a bias from the majority class (non-defect). The ex-
periment is conducted based on the MDP benchmark and, then, the result is compared
to several classification techniques: Naive Bayes, Decision Tree, k-NN, SVM (Line-
ar), and SVM (RBF) in terms of the measures including PD, PF, F1, and G-mean.

The rest of paper is organized as follows. Section 2 presents an overview of the re-
lated work. Section 3 describes the proposed method in details. The description of the
data sets and tools are found in Section 4. Section 5 shows the experimental results.
Finally, this paper is concluded in Section 6.

2 Related Work

2.1 Software Metrics

Measurement is known as a key element in engineering process. It can be used to
control the quality and complexity of software. For building one product or system,
we use many software measures to assess the quality of product and also to define the
product attribute like in the MDP benchmark. These software metrics provide various
benefits, and one of the major benefits is that it offers information for software defect
prediction. Currently there are many metrics for defect prediction in software.

McCabe's cyclomatic complexity [9] [10] are ones of the
well-known software metrics. They can be applied into any program languages and

tware
 complexity of a program. From a pro-

gram source code, it can directly measure the number of linearly independent paths.
Moreover, it can be used as an ease of maintenance metric. Halstead s theory is wide-
ly used to measure complexity in a software program and the amount of difficulty
involved in testing and debugging of software development. In addition, there are also
other metrics, e.g., the Chidamber and Kemerer metrics [11]
information flow complexity.

Table 1 shows the features used in the MDP benchmark, which does not only de-
pend on M but also the statistics of program codes,
Line Count.

924 T. Choeikiwong and P. Vateekul

Table 1. The software metrics used as features in the MDP benchmark.

McCabe
(4 metrics)

v(G) cyclomatic_complexity
ev(G) essential_complexity
iv(G) design_complexity

loc loc_total(one line = one count)

Line Count
(5 metrics)

loc_blank
loc_code_and_comment
loc_comments
loc_executable
branch_count

Halstead
(12 metrics)

1N num_operands V volume: 2logNV

2N num_operators D difficulty: LD /1

1 num_unique_operands E effort: LVE /
2 num_unique_operators T prog_time: 18/ET seconds

B error_est L level: VVL /* where *2log*2* 222V

N length: 21 NNN I content: VLI where
2

2

1

2
N

L

2.2 Prior Works in Defect Prediction

In the field of software defect prediction, there were many trials in applying machine
learning techniques to the MDP benchmark. Menzies et al. [1] applied Naïve Bayes to
construct a classifier to predict software defects. There was an investigation on the
feature selection using information gain. The proposed system obtained 71 % of the
mean probability detection (PD) and 25 % of the mean false alarm rate (PF). Bo et al.
[2] - uilt around SVM and used Genetic
Algorithm (GA) to improve the cost sensitive parameter in SVM. The result showed
that it achieved a promising performance in terms of AUC. Seliya et al. [3] introduced
an algorithm called RBBag ncepts into two choices of
classifiers: Naïve Bayes and C4.5. The result showed that RBBag outperformed the
classical models without the bagging concept. Moreover, RBBag is more effective
when it applied to Naïve Bayes than C4.5. Unfortunately, all of these works discard
the imbalanced issue, so their reported results should be limited.

Shuo et al. [4] was aware of the imbalanced issue in the software defect prediction.
There was an investigation on many strategies to tackle the imbalanced issue includ-
ing resampling techniques, threshold moving, and ensemble algorithms. The result
showed that AdaBoost.NC is the winner, and it also outperformed other conventional
techniques: Naïve Bayes and Random Forest. Furthermore, a dynamic version of
AdaBoost.NC was proposed and proved to be better than the original one.

Recently, support vector machine (SVM) have been applied in the field of software
defect prediction showing a good prediction performance. Gray et al. [5] employed
SVM to detect errors in the MDP data set. The analysis from the SVM results re-
vealed that if a testing module has a large average of the decision values (SVM
scores), there is high chance to found defects in it. Elish et al. [6] compared SVM to
eight traditional classifiers, such as DT, NB, etc., on the MDP data set. The experi-
ment demonstrated that SVM is the winner method. Thus, this is our motivation to

-

Software Defect Prediction in Imbalanced Data Sets Using … 925

2.3 Assessment in Defect Prediction

In the domain of binary classification problem (defect vs. non-defect), it is necessary
to construct a confusion matrix, which comprises of four based quantities: True Posi-
tive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) as shown
in Table 2.

Table 2. A confusion matrix.
 Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN

These four values are used to compute Precision (Pr), Probability of Detection

(PD), Probability of False Alarm (PF), True Negative Rate (TNR), F-measure [11],
and G-mean [12], which is a proper metric that frequently used to tackle the class
imbalance problem as shown in Table 3.

Table 3. Prediction Performance Metrics
Metrics Definition Formula

Precision (Pr) a proportion of examples predicted as defective against
all of the predicted defective FPTP

TP

Probability of Detection
(PD), Recall, TPR

a proportion of examples correctly predicted as defective
against all of the actually defective FNTP

TP

Probability of False
Alarm (PF), FPR

a proportion of examples correctly predicted as non-
defective against all of the actually non-defective FPTN

FP

True Negative Rate
(TNR)

a proportion of examples correctly predicted as non-
defective against all of the actually non-defective FPTN

TN

G-mean the square root of the product of TPR (PD) and TNR TNRTPR

F-measure a weighted harmonic mean of precision and recall
RePr

RePr2

3 Our Proposed Method
3.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) [13, 14] is one of the most famous classification
techniques which was presented by Vapnik. It was shown to be more accurate than
other classification techniques, especially in the domain of text categorization. It con-
structs a classification model by finding an optimal separating hyperplane that max-
imizes the margin between the two classes. The training samples that lie at the margin
of the class distributions in feature space called support vectors.

The purpose of SVM is to induce a hyperplane function (Equation 1), where w is
a weight vector b is a bias.

 bxwbwh , (1)

The optimization function to construct SVM hyperplane is shown in (2), where C
is a penalty parameter of misclassifications.

n
i i

T

bw
CwwMinimize 1

,, 2
1

 0,1 iii

T
i bxwytosubject (2)

926 T. Choeikiwong and P. Vateekul

In a non-linear separable problem, SVM handles this by using a kernel function
(non-linear) to map the data into a higher space, where a linear hyperplane cannot be
used to do the separation. A kernel function is shown in (3).

jiji xxxxK , (3)

Unfortunately, although SVM has shown an impressive result, it still suffers from
the imbalanced issue like other traditional classification techniques.

3.2 Threshold Adjustment (R-SVM)

Although SVM has shown a good classification performance in many real-world data
sets, it often gives low prediction accuracy in an imbalanced scenario. R-SVM [8] is
an our earlier attempt that focuses to tackle this issue by applying the threshold ad-
justment strategy. To minimize a bias of the majority class, it translates a separation
hyperplane in (1) without changing the orientation w by only adjusting b. After the
SVM hyperplane has been induced from the set of training data mapped to SVM
scores, L. The task is to find a new threshold, , that selected from the set of candi-
dates thresholds, , which gives the highest value of a user-defined criterion,
perf (e.g., the

1F metric):
 ,max Lperf (4)

To avoid overfitting issue, the output is an average of the thresholds obtained
from different training subsets. Finally, the SVM function is corrected as below:

ii xhxh* (5)

Fig. 1 y s downward in the bottom graph
corrects the way SVM labels the three positive examples misclassified by the original

ation is unchanged).

+

+ +

+

Positive class (y = +1)

Negative class (y = -1)

+ +
+

x1

x2

(a) SVM hyperplanes before threshold adjustment.

+

+ +

+

h*=h-

Positive class (y = +1)

Negative class (y = -1)

+ +
+

x1

x2

 (b) SVM hyperplanes after threshold adjustment.

Fig. 1. SVM hyperplanes before (a) and after (b) threshold adjustment. The classification of
three examples is corrected.

However, the enhanced hyperplane can reach an overfitting issue since the adjust-
ment is based on just a single training data set. To increase a generalizability of the
model, the resampling concept is applied to R-
Moreover, the under-sampling concept is also employed in order to speed up the ad-
justment process.

Software Defect Prediction in Imbalanced Data Sets Using … 927

4 Data Set and Tools
4.1 Data Set

The benchmark used in this experiment is the NASA Metric Data Program (MDP) [7]
that comes from the NASA IV&V Facility MDP Repository, which contains a series
of real software defect data from NASA spacecraft software. In this benchmark, there
are 12 projects (data sets). The defect statistics is shown in Table 4. From the statis-
tics, it has shown that the MDP data set suffers from the imbalanced issue. An aver-
age percentage of the defects is 20%, and the minimum percentage is only 2.15% in
the PC2 data sets.

Table 4. Defect Statistics for Each Data Set.

Name CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 Avg.

#Samples 327 7782 1183 194 1988 125 253 705 745 1077 1287 1711 1448
#Attributes 38 22 22 40 39 40 38 38 37 38 38 39 36

Defect
Class 42 1672 314 314 46 44 27 61 16 134 177 471 277

Non-Defect
Class 285 6110 869 158 1942 81 226 644 729 943 1110 1240 1195

%Defect 12.84 21.49 26.54 66.53 2.31 35.20 10.67 8.65 2.15 12.44 13.75 27.53 20

4.2 Tools

WEKA [15] is a popular machine learning software for data mining tasks. It is a
product of University of Waikato in New Zealand and was first implemented in 1997.
It supports several data mining process, such as preprocessing, regression, classifica-
tion, and so on. All comparison methods in this experiment are carried out in Weka.

HR-SVM [16] is our SVM software that handles the imbalanced issue by using the
threshold adjustment strategy. It is built on top of LIBSVM and HEMKit, and can run
in any operating system. Moreover, it supports any kinds of classification tasks: single
label classification (Binary classification), multi-class classification, multi-label clas-
sification, and hierarchical multi-label classification. - -
SVM software that is used for multiclass and multi-label data.

5 Experiments and Results
5.1 Experimental Setup

In this section, shows how to conduct the experiments in this paper. It starts from the
data preprocessing by scaling all values into a range of [0, 1], which is suggested in
[17]. Then, we compare the detection performance among different approaches as in
the following steps. Note that all experiments are based on 10 fold-cross validation
and measured using PD, PF, F1, and G-mean.

 Step1: find the baseline method which is the winner of the famous traditional
classifiers: Naïve Bayes (NB), Decision Tree, k-NN, and SVM.

 Step2: find the best setting for R-SVM whether or not the feature selection is
necessary.

 Step3: compare R-SVM (Step2) to the baseline method (Step1) along with a
significance test using unpaired t-test at a confidence level of 95%

928 T. Choeikiwong and P. Vateekul

5.2 Experimental Results

The comparison of the conventional methods. In order to get the baseline for each
data set, five classifiers: Naïve Bayes (NB), Decision Tree (DT), k-NN, SVM (Line-
ar), and SVM (RBF), were tested and compared in terms of PD, PF, F1, and G-Mean
(Table 5 8). For each row in the tables, the boldface method is a winner on that data
set. From the result, k-NN and NB showed the best performance in almost all data
sets, while the standard SVM gave the worst performance since it cannot detect any
errors resulting 0% detection in many data sets. For Table 7 8, it is interesting that
F1 and G-mean unanimously showed the same winners. Since F1 and G-mean are
suitable metrics for imbalanced data, we selected the winner as a baseline using F1
and G-mean as summarized in Table 9.

 Table 5. Prediction performance: PD Table 6. Prediction performance: PF
Name Prediction model Name Prediction model

DT k-NN NB SVM DT k-NN NB SVM
CM1 0.190 0.143 0.262 0.000 CM1 0.091 0.147 0.130 0.000
JM1 0.228 0.333 0.189 0.090 JM1 0.091 0.176 0.056 0.020
KC1 0.354 0.417 0.322 0.048 KC1 0.113 0.181 0.124 0.028
KC3 0.333 0.139 0.389 0.028 KC3 0.101 0.146 0.114 0.000
MC1 0.065 0.304 0.311 0.000 MC1 0.005 0.011 0.088 0.000
MC2 0.523 0.545 0.386 0.364 MC2 0.185 0.198 0.086 0.111
MW1 0.148 0.259 0.000 0.037 MW1 0.044 0.115 0.000 0.009
PC1 0.213 0.426 0.350 0.000 PC1 0.032 0.053 0.071 0.002
PC2 0.000 0.000 0.125 0.000 PC2 0.007 0.021 0.080 0.000
PC3 0.261 0.336 0.903 0.000 PC3 0.066 0.077 0.744 0.000
PC4 0.525 0.492 0.375 0.198 PC4 0.059 0.085 0.048 0.004
PC5 0.482 0.495 0.206 0.161 PC5 0.143 0.187 0.053 0.033
Avg. 0.277 0.324 0.318 0.077 Avg. 0.078 0.116 0.133 0.017
SD 0.172 0.166 0.219 0.112 SD 0.054 0.066 0.196 0.032

 Table 7. Prediction performance: F1 Table 8. Prediction performance: G-mean

Name Prediction model Name Prediction model
DT k-NN NB SVM DT k-NN NB SVM

CM1 0.211 0.133 0.244 0.000 CM1 0.416 0.349 0.477 0.000
JM1 0.292 0.337 0.271 0.155 JM1 0.455 0.524 0.422 0.298
KC1 0.424 0.435 0.386 0.289 KC1 0.560 0.585 0.531 0.420
KC3 0.375 0.156 0.412 0.054 KC3 0.547 0.344 0.587 0.167
MC1 0.102 0.341 0.122 0.000 MC1 0.255 0.549 0.533 0.000
MC2 0.561 0.571 0.500 0.478 MC2 0.653 0.662 0.594 0.576
MW1 0.195 0.233 0.000 0.067 MW1 0.376 0.479 0.000 0.192
PC1 0.271 0.430 0.331 0.000 PC1 0.454 0.635 0.570 0.000
PC2 0.000 0.000 0.053 0.000 PC2 0.000 0.000 0.339 0.000
PC3 0.303 0.357 0.254 0.000 PC3 0.494 0.557 0.481 0.000
PC4 0.554 0.486 0.447 0.324 PC4 0.703 0.671 0.598 0.444
PC5 0.519 0.498 0.307 0.259 PC5 0.643 0.634 0.442 0.395
Avg. 0.317 0.332 0.277 0.136 Avg. 0.416 0.499 0.465 0.208
SD 0.178 0.171 0.155 0.164 SD 0.455 0.191 0.166 0.213

The comparison of R-SVM with and without feature selection. In this section,
we intend to provide the best setting for R-SVM by testing whether or not the feature
selection can improve the prediction performance. The F1-results in Table 10 illus-
trate that the feature selection should not be employed into the system since it tre-

Software Defect Prediction in Imbalanced Data Sets Using … 929

mendously decreased the performance. This should be because the number of attrib-
utes in the data sets is already small, so it cannot be further reduced.

Table 9. The winner of the baseline method

for each data set in terms of F1 and Gmean.

Name Winner F1 G-mean
CM1 NB 0.244 0.477
JM1 k-NN 7 0.524
KC1 k-NN 0.435 0.585
KC3 NB 0.412 0.587
MC1 k-NN 0.341 0.549
MC2 k-NN 0.571 0.662
MW1 k-NN 0.233 0.479
PC1 k-NN 0.430 0.635
PC2 NB 0.053 0.339
PC3 k-NN 0.357 0.557
PC4 DT 0.554 0.703
PC5 DT 0.519 0.643
Avg. - 0.374 0.562
SD - 0.149 0.099

Table 10. A comparison of R-SVM between
With and Without Feature Selection.

Name F1 of R-SVM
With Without

CM1 0.000 0.354**
JM1 0.008 0.411**
KC1 0.847 0.853
KC3 0.900 0.891
MC1 0.000 0.126*
MC2 0.333 0.574*
MW1 0.000 0.456**
PC1 0.000 0.392**
PC2 0.000 0.095*
PC3 0.000 0.384**
PC4 0.155 0.573**
PC5 0.845 0.846
Avg. 0.257 0.496
SD 0.379 0.264

Table 11. Comparison prediction performance measures between R-SVM and the baseline
method. the boldface method is a winner on that dataset.

Name
PD PF F1 G-mean

Baseline R-SVM Baseline R-SVM Baseline R-SVM Baseline R-SVM

CM1 0.262 0.405 0.091** 0.130 0.244 0.354 0.477 0.593**
JM1 0.333 0.587** 0.020** 0.301 7 0.411** 0.524 0.616**
KC1 0.354 0.952** 0.028** 0.777 0.435 0.853** 0.585** 0.461
KC3 0.389 0.956** 0.101** 0.722 0.412 0.891** 0.587 0.508
MC1 0.311 0.174 0.005** 0.030 0.341* 0.126 0.549** 0.409
MC2 0.545 0.591 0.086** 0.346 0.571 0.574 0.662 0.657
MW1 0.259 0.481 0.009** 0.075 0.233 0.456* 0.479 0.667**
PC1 0.426 0.492 0.002** 0.096 0.430 0.392 0.635 0.667
PC2 0.125 0.125 0.007** 0.033 0.053 0.095 0.339 0.348
PC3 0.903** 0.463 0.066** 0.135 0.357 0.384 0.557 0.633**
PC4 0.525 0.729** 0.004** 0.130 0.554 0.573 0.703 0.796**
PC5 0.495 0.950** 0.033** 0.764 0.519 0.846 0.643** 0.458
Avg. 0.411 0.575 0.038 0.295 0.374 0.496 0.562 0.568
SD 0.197 0.282 0.038 0.293 0.149 0.264 0.099 0.131

* and ** represent a significant difference at a confidence level of 95% and 99%, respectively.

The comparison of R-SVM and the baseline methods. In this section, we compare
R-SVM to the baseline methods, which are obtain from the first experiment as shown
in Table 5-8. In Table 11 shows a comparison in terms of PD, PF, F1, and G-mean.
All of the metrics give the same conclusion that R-SVM outperforms the baseline
methods in almost all of the data sets. From 12 data sets, R-SVM significantly won 5,
3, and 5 on PD, F1, and G-mean, respectively. On average, F1-result of R-SVM out-
performs that of the baselines for 32.62%, especially for the KC3 data set showing
116.26% improvement. Hence, this illustrates that it is effective to apply R-SVM as a
core mechanism to early detect erroneous software modules.

930 T. Choeikiwong and P. Vateekul

6 Conclusion
Early defect detection is an important activity in the software development. Unfortu-
nately, most of the prior works discarded the imbalanced issue, which is commonly
found in the field of defect prediction, and it has known to severely affect the predic-
tion accuracy. To tackle this issue, we proposed to employ our version of SVM called

- reduces a bias of the majority class by using the concept of thresh-
old adjustment. The NASA Metric Data Program (MDP) was selected as our bench-
mark. It comprises of 12 projects (data sets). In the experiment, we compared R-SVM
to five traditional classification techniques: Naïve Bayes, Decision Tree, k-NN, SVM
(Linear), and SVM (RBF). The results showed that R-SVM overcame the imbalanced
issue and significantly surpassed those classifiers.

References
[1] Menzies, T., Greenwald, J., Frank, A.: Data Mining Static Code Attributes to Learn

Defect Predictors. In: IEEE Transactions on SE, vol. 33(1), pp. 2-13 (2007)
[2] Bo, S., Haifeng, L., Mengjun, L., Quan, Z., Chaojing, T.: Software Defect Prediction

Using Dynamic Support Vector Machine. In: 9th International Conference on
Computational Intelligence and Security (CIS), 2013, pp. 260-263. China (2013)

[3] Seliya, N., Khoshgoftaar, T.M., Van Hulse, J.: Predicting Faults in High Assurance
Software. In: 2010 IEEE 12th International Symposium on High-Assurance Systems
Engineering (HASE), pp. 26-34. San Jose, CA(2010)

[4] Shuo, W., Xin, Y.: Using Class Imbalance Learning for Software Defect Prediction. In:
IEEE Transactions on Reliability, vol. 62(2), pp. 434-443 (2013)

[5] Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: Software defect prediction
using static code metrics underestimates defect-proneness. In: The 2010 International
Joint Conference on Neural Networks (IJCNN), pp. 1-7. Barcelona (2010)

[6] Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support vector
machines. In: Journal of System Software. vol. 81(5), pp. 649-660 (2008)

[7] NASA IV & V Facility. Metric Data Program, http://MDP.ivv.nasa.org/.
[8] Vateekul, P., Dendamrongvit, S., Kubat, M.: Improving SVM Performance in Multi-

Label Domains: Threshold Adjustment. International Journal on Artificial Intelligence
Tools (2013)

[9] McCabe, T.J.: A Complexity Measure. Software Engineering, In: IEEE Transactions on
SE, vol. 2(4), pp. 308-320 (1976)

[10] Halstead, M.H.: Elements of Software Science. Elsevier Science Inc., (1977)
[11] Chidamber, S. R., Kemerer, C. F.: A metrics suit for object oriented design. In: IEEE

Transactions on SE, vol. 20, pp. 476-493 (1994)
[12] Kubat, M., Matwin, S.: Addressing the curse of imbalanced training seta: One-sided

selec-tion, pp. 179-186, 1997
[13] Han, J., Kamber, M.,: Data Mining: Concepts and Techniques, 2 ed., s.l.: Morgan Kauf-

mann, 2006.
[14] Cortes, C., Vapnik,V.: Support-Vector Networks. Machine Learning, pp.273-297(1995)
[15] WEKA, http://www.cs.waikato.ac.th.nz/m1/weka.
[16] Vateekul, P., Kubat, M., Sarinnapakorn, K.: Top-down optimized SVMs for

hierarchical multi-label classification: A case study in gene function prediction.
Intelligent Data Analysis (in press)

[17] Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification.
Department of Computer Science and Information Engineering, National Taiwan
University, (2003)

Software Defect Prediction in Imbalanced Data Sets Using … 931

	110 Software Defect Prediction in Imbalanced Data Sets Using Unbiased Support Vector Machine
	1 Introduction
	2 Related Work
	2.1 Software Metrics
	2.2 Prior Works in Defect Prediction
	2.3 Assessment in Defect Prediction

	3 Our Proposed Method
	3.1 Support Vector Machine (SVM)
	3.2 Threshold Adjustment (R-SVM)

	4 Data Set and Tools
	4.1 Data Set
	4.2 Tools

	5 Experiments and Results
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion
	References

