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Abstract. Linked Data (LD) overlays the World Wide Web of docu-
ments with a Web of Data. This is becoming significant as shown in the
growth of LD repositories available as part of the Linked Open Data
(LOD) cloud. At the instance-level, LD sources use a combination of
terms from various vocabularies, expressed as RDFS/OWL, to describe
data and publish it to the Web. However, LD sources do not organ-
ise data to conform to a specific structure analogous to a relational
schema; instead data can adhere to multiple vocabularies. Expressing
SPARQL queries over LD sources – usually over a SPARQL endpoint
that is presented to the user – requires knowledge of the predicates used
so as to allow queries to express user requirements as graph patterns.
Although LD provides low barriers to data publication using a single
language (i.e., RDF), sources organise data with different structures and
terminologies. This paper describes an approach to automatically derive
structural summaries over instance-level data expressed as RDF triples.
The technique builds on a hierarchical clustering algorithm that organ-
ises RDF instance-level data into groups that are then utilised to infer
a structural summary over a LD source. The resulting structural sum-
maries are expressed in the form of classes, properties and, relationships.
Our experimental evaluation shows good results when applied to different
types of LD sources.
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1 Introduction

In recent years there has been a significant growth in the amount of publicly
available structured data on the Web using a graph-based representation model
and a set of simple principles, the so-called Linked Data Principles [3]. A moti-
vation for the adoption of these principles is the fact that they are based upon
established web infrastructures (like URIs and HTTP) and semantic web stan-
dards (like RDF and RDFS), thus providing low barriers to data publication.
The adoption of these principles is apparent in the number of Linked Data
(LD) repositories that form the Linked Open Data (LOD) cloud1. An interest-
ing aspect of this kind of Web is that datasets are not only published in isolation
1 http://lod-cloud.net.
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but also interconnected with other datasets by the use of links. As the size of
the LOD graph is constantly growing, with billion of triples publicly available
from different domains, so does the need to consume data in this distributed
environment.

Accessing the LOD cloud follows paradigms previously used for the web of
documents. For example, various techniques from information retrieval are used
by LD search engines (e.g., SWSE [10]) to support keyword queries. However,
the web of data seems to provide the opportunity to move beyond keyword
search queries into more precise query answering using structural queries. Often
knowledge for answering a query is distributed across different datasets, so mul-
tiple queries need to be formulated and sent to more than one dataset for the
user to get the desired answer. For the web of data this support is provided by
SPARQL [18], the query language for RDF data sources. However, even though
SPARQL supports querying over RDF sources it may still be difficult to for-
mulate such queries. The basic building blocks for SPARQL queries require an
understanding of how concepts are represented that may not be readily avail-
able. The fact that the RDF model [12] does not impose any constraints on
the structure of a source makes it difficult to know what graph patterns can be
formulated over a given source.

Evaluating structured queries over a LD repository that exposes its data as
either a SPARQL endpoint or an RDF dump often requires the user to browse
the source or to issue exploratory queries (e.g., Listing 1.1) in order to under-
stand how the data are organised and what predicates are used to describe the
entities. This, however, is time consuming and requires queries to be formed and
asked manually. Although, it might be possible to browse a small RDF source,
usually the knowledge as to how the data are organised in a source requires
careful observation of the triples at the instance-level, which presents scalability
challenges for browsing.

SELECT DISTINCT ?concept
WHERE {

[ ] rdf:type ?concept .
}

SELECT DISTINCT ?concept ?prop
WHERE {

?s rdf:type ?concept .
?s ?prop ?v .

}
Listing 1.1. Exploratory SPARQL queries.

Generally, forming a meaningful query over a source is challenging without a
structural summary of the underlying RDF source, therefore, it is important to
have such an understanding. In relational databases, for instance, such an organ-
isation of data is achieved using a logical schema to which data must adhere.
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Such an organisation of data is not only useful for browsing the structure of the
database but also for formulating queries or even capturing statistics that could
enable query optimisation [6]. In contrast to the logical organisation imposed in
relational databases, an RDF source does not conform to any analogous struc-
ture. In the context of LD, a schema of an RDF source is a combination of
terms from various vocabularies that are used to represent the data, where their
semantics are defined in various RDFS/OWL vocabularies [9].

Problem and Approach. It is often good practice for RDF datasets to provide
a VoID2 description that captures various metadata about a source. By retrieving
such descriptions, users can get an idea about size statistics, which vocabularies
are used in the source, which classes or predicates are used to describe the data,
or how to access the source. Such descriptions however, lack sufficient structural
metadata to provide a detailed description as to how the data is organised in
a source. Typically, VoID descriptions are handcrafted by data publishers, and
are not always available. As of August 2011, only 32.2 % of the LOD cloud
data sources provided such descriptions3. In this paper we propose a technique
based on cluster analysis that, by looking at instance-level data from an RDF
source, can infer a structural summary (i.e., a schema) that captures information
about classes that the data instantiate, their properties and how they relate to
each other. Having such a structural summary over a source can be helpful
in many application scenarios, such as for discovering sources, understanding
the structure of a source, and supporting query formulation. Exploring such
challenges is outside the scope of this paper.

Contributions. We note that the vision of distributed query processing over
RDF sources can benefit from having structural summaries available for each
source. At the same time we recognise that the low barriers to data publication
introduced by the linked data principles must be preserved. We have proposed
in our previous work [16] that pay-as-you-go data integration [5] can be used
to enable distributed query processing over structurally heterogeneous and dis-
tributed LD sources. In such a context, there is a need to explore automatic
techniques that support structure inference from RDF sources. With the work
presented in this paper we take a step forward in this direction; our contributions
are as follows:

– We have designed and implemented a technique that allows structural sum-
maries to be inferred over RDF sources that contain explicitly stated instance-
level data.

– We describe an experimental evaluation of the approach using different use-
case scenarios that demonstrate its effectiveness.

In the remainder of this paper we begin by introducing a more formal defini-
tion of the problem in Sect. 2, followed by a detailed description of our technique
in Sect. 3. We elaborate on the methodology used for evaluating the approach in
Sect. 4, and we conclude in Sect. 6.
2 See Vocabulary of Interlinked Datasets: http://www.w3.org/TR/void/.
3 For more statistics, see http://www4.wiwiss.fu-berlin.de/lodcloud/state/.

http://www.w3.org/TR/void/
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2 Problem Description

By observing instance-level triples that are explicitly stated in a source, our aim
is to have a synopsis of the sources. Following [1], we define an RDF triple as
(subject, predicate, object) ∈ (R∪B)×P × (R∪B∪L), given a set of Resources
R identified with URIs, a set of Blank Nodes B, a set of Predicates P and a
set of Literals L. A set of RDF triples T forms an RDF Graph. Given T we are
interested to derive a schema description as follows:

Definition 1. A schema S is composed of a set of classes {C1, ..., Cµ}, where
each Ci(i = 1, ..., µ) contains a set of predicates {Ci.P1, ..., Ci.Pp}.
As pointed out earlier, at the instance-level an RDF source does not conform to
any specific structure that forces an organisation of the triples in the source and
thus can be considered as schema-less. The data do not adhere to any explicit
schema definition. The RDF model can describe resources with a mixture of
terms from different vocabularies, where there is no restriction on the number
of vocabularies or terms (i.e., predicates) used to describe a resource. Assume
that the RDF graph T describes resources with the set of predicates P , where
|P | = J . Then we define a description of a particular resource as a Candidate
Description:

Definition 2. A candidate description CD is a subset P ′ ⊆ P ; the subset com-
posed by a set of j ≤ J predicates of P.

Given CD, the set of all CDs, our target is to group (i.e., cluster) CD into
k clusters, where k is computed through the algorithm described in Sect. 3.2.
Our methodology will create a set of clusters U = {U1, ..., Uk}, where Ui ⊆
CD ∀ i = 1, ..., k. Optimally all CD’s in each Ui belong to the same class.

In brief, given an RDF graph, the technique looks for resource descriptions
that are potential instances of the same class by looking at the predicates used
to describe a resource and any RDF typing information available.

3 Method Description

In the following, we describe our technique for inferring a structural summary
over an RDF source. Our approach is based on the assumption that we can iden-
tify recurring structural patterns of a possible concept by observing instance-level
resource descriptions that are RDF triples. To detect such patterns we organ-
ise resource descriptions that are possible instantiations of a class together in
groups using cluster analysis. Simply put, the idea of cluster analysis is to dis-
cover groups from a set of objects. These groups are known as clusters and a
set of clusters is known as a clustering. The goal is to assign similar objects into
the same cluster and separate them from clusters that contain objects which are
not similar. Similarity between objects is measured by a distance function; more
details on the clustering algorithm can be found on Sect. 3.2. From this point
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onwards we refer to objects as individuals and we represent them as candidate
descriptions. Our technique uses a hierarchical clustering algorithm to detect
groups among a pool of individuals that are candidate descriptions (as in Defini-
tion 2); each group identified as a result of the clustering algorithm can inform the
identification of classes that instantiate data, their properties and their relation-
ships to other classes. We use a toy example in Fig. 1 to describe our technique.
The final inferred schema is represented by a simple Entity-Relationship (ER)

Fig. 1. (a) RDF triples represented with turtle (b) representation of individuals & clus-
tering (c) annotation of clusters (d) explanation of inferred ER constructs (e) inferred
schema represented as an ER diagram (f) inferred schema serialised as RDF-triples.
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diagram where classes are represented as entity types, properties as attributes
and relationships as entity type relationships.

3.1 Pre-processing

Initialisation. To gather instance-level information, the algorithm is presented
with a SPARQL endpoint or an RDF dump. Figure 1(a) shows a snapshot of
an RDF-graph represented in turtle notation. In the case of a SPARQL end-
point, such information is obtained by posing SPARQL queries such as the ones
shown in Listing 1.1. This is done to determine resources that are stated to be
instantiations of some class by looking for RDF typing information (i.e., rdf:type
statements). The resources that are determined as results of the queries are
stored locally in a triple store. The flexibility of the RDF model does not impose
any restriction on the use of rdf:type statements that determine whether a cer-
tain resource is an instantiation of some class. Thus we do not expect our simple
heuristic to work for every RDF source. In case of an RDF dump we do not
restrict the approach to resources that are instantiations of some class since the
algorithm can look at all resources identified as being similar by the distance
function and grouped in the same cluster, as we shall discuss later in Sect. 3.2.
The RDF dump is imported into a local triple store that is used by the algorithm
to access the resources.

Representing Individuals. Each resource identified with a unique URI is rep-
resented as a candidate description as in Definition 2. Examples of candidate
descriptions are shown in Fig. 1(b). Having a pool of CDs, the algorithm pro-
ceeds to organise them into clusters using the clustering algorithm described in
the following section.

3.2 Clustering Algorithm

To identify groups of similar instances, a hierarchical agglomerative clustering
algorithm (as described in Algorithm 1) is used to group candidate descriptions
into clusters. Our main criterion for choosing a hierarchical solution was the
fact that we do not know in advance the appropriate number of clusters, and
hierarchical clustering does not require any prior knowledge of this number. In
non-hierarchical techniques, such as the k -means algorithms, the number of clus-
ters needs to be specified in advance; this is in fact similar to deciding at which
level to cut the final dendrogram in hierarchical clustering. Our approach uses
the silhouette coefficient to determine the final number of clusters, as discussed
in this section.

Typical hierarchical algorithms use a similarity matrix to cache the similari-
ties of each pair of elements to be clustered. In our case the algorithm constructs
a |CD| × |CD| similarity matrix that holds the pairwise similarities between
clusters of CDs. To calculate the similarity between (CDi, CDj) the algorithm
represents each CD as a set of features. For example, given the following can-
didate description CD1 = {vocab:firstName, vocab:lastName, vocab:homePage,
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Algorithm 1. Cluster Candidate Descriptions

Require: Set of CD = {CD1, CD2, ..., CD|CD|}
1: m ← 0
2: Um ← {{CD1}, {CD2}, ..., {CD|CD|}}
3: Construct similarity matrix M = |CD| × |CD|
4: Let (Um

i , Um
j ) be the most similar pair in M :

5: argmax
(Um

i ,Um
j )∈M

cluster sim({Um
i }, {Um

j })

6: max ← cluster sim({Um
i }, {Um

j })
7: while (max ≥ t) do
8: m ← m + 1
9: Um

ij ← U
(m−1)
i ∪ U

(m−1)
j

10: Um ← (U (m−1) \ {U (m−1)
i , U

(m−1)
j } ∪ Um

ij )
11: C ← C ∪ Um

12: Update similarity matrix M
13: Let (Um

i , Um
j ) be the most similar pair in M :

14: argmax
(Um

i ,Um
j )∈M

cluster sim({Um
i }, {Um

j })

15: max ← cluster sim({Um
i }, {Um

j })
16: end while
17: return C

vocab: registeredTo} to find the set of features that characterises it we strip the
namespace prefix from each predicate pj ∈ P ′. The output set of features will
then be {firstName, lastName, homePage, registeredTo}. Let the function cd sim
(CDi, CDj) be the similarity measure between a pair of candidate descriptions
where i ≥ 1, j ≤ |CD|. We then use the Jaccard similarity coefficient as the
similarity measure, that is,

cd sim(CDi, CDj) = Jaccard(CDi, CDj) =
|CDi ∩ CDj |
|CDi ∪ CDj | ∈ [0, 1]. (1)

Having computed the similarity of each pair of CDs and stored it into the
similarity matrix, the clustering algorithm proceeds as follows. Initially each CD
is assigned to a singleton cluster. The algorithm keeps track of each iteration m
by assigning a sequence number 0,1, ...,(m-1 ) (Line 1). The set of clusters (i.e.,
clustering) produced at each iteration is denoted as Um, thus by assigning each
CD into its own cluster, U0 = {{CD1}, {CD2}, ..., {CD|CD|}} (Line 2). In Lines
4 and 5 the algorithm identifies the most similar pair of clusters to be merged
(according to our similarity measure). Then agglomerative hierarchical clustering
proceeds iteratively (Line 6) by merging the most similar pair of clusters to
form the next clustering m = m + 1 (Line 7) where U

(m−1)
i and U

(m−1)
j are

the clusters. As a result of the merge step at each iteration m, the number of
clusters decreases by one |Um| = |U (m−1)| − 1. The merge step produces a new
cluster, Um

ij = U
(m−1)
i ∪U

(m−1)
j and clustering (Lines 8–9). In addition, at each

step the algorithm stores each clustering (Line 10), to be used later as input for
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determining the best silhouette coefficient. Then the algorithm needs to update
the similarities between the new (merged) cluster and the other clusters from
the similarity matrix (Line 11). Numerous approaches have been developed for
computing the similarity between two clusters [23]. For our algorithm we define
the similarity between clusters Um

i and Um
j as the mean similarity between

elements of each cluster (a.k.a average linkage),

cluster sim(Um
i , Um

j ) =

∑

CDa∈Um
i

∑

CDb∈Um
j

cd sim(CDa, CDb)

|Um
i ||Um

j | ∈ [0, 1]. (2)

To compare the results of average linkage, we observed the results of running
our clustering algorithm with other cluster similarity measures, such as:

– SingleLinkage:The similaritybetween clustersUm
i andUm

j is calculatedbased
upon the maximal similarity between elements of each cluster, defined as,

cluster sim(Um
i , Um

j ) = max
CDa∈Um

i ,CDb∈Um
j

cd sim(CDa, CDb). (3)

– Complete Linkage: The similarity between clusters Um
i and Um

j is calcu-
lated based upon the minimum similarity between elements of each cluster,
defined as,

cluster sim(Um
i , Um

j ) = min
CDa∈Um

i ,CDb∈Um
j

cd sim(CDa, CDb). (4)

As discussed in Sect. 4.2, we have empirically determined that the above
similarity schemes tend to give similar results. As for the termination condi-
tion, the algorithm stops when the most similar pair of clusters is below a cer-
tain threshold t, that is cluster sim(Um

i , Um
j ) < t (we elaborate on the choice

of t in Sect. 4.2). To complete our discussion on the algorithm, by decreas-
ing the number of clusters at each step the output (Line 15) is a sequence of
clusterings.

Determining the Best Clustering. As explained in the previous section, sev-
eral clusterings are produced by the algorithm (as depicted in Fig. 2(a)). Deciding
which clustering best fits the data is a well known issue in cluster analysis [7],
and approaches to solve this problem build on techniques that assess the quality
of the clustering results. Usually such approaches determine the validity of a
clustering based on the ideas of (a) compactness, i.e., how close the elements of a
cluster are, and (b) separation, i.e., how distinct a cluster is from other clusters.
We would like to keep our technique independent of any external information
such as externally supplied class labels, thus we have used silhouette coefficients
for evaluating the various clusterings (for more on clustering validation see [7]).

A silhouette coefficient (SC) is calculated for each individual and is a measure
of how similar the individual is to other individuals in its own cluster compared to
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Fig. 2. (a) Hierarchical clustering result represented as a dendrogram with possible
cut points, (b) shows the average silhouette coefficient for different clusterings, and
(c) silhouette-plot that shows the silhouette coefficient calculated for each individual
in each cluster.
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other individuals from other clusters. Considering both cohesion and separation,
the SC is defined as follows [11],

sil(i) =
b(i) − a(i)

max{b(i), a(i)} ∈ [0, 1]. (5)

Given an individual i in some cluster U , a(i) is the average dissimilarity4

of i and all other individuals in cluster U and b(i) is the average dissimilarity
between i and individuals of the closest cluster to U . We follow the definition by
Kaufman and Rousseauw [11] which states that singleton clusters have sil(i) = 0.
Having the silhouette values for each individual we can calculate the average
silhouette width (ASW) for each cluster ASWcluster as the mean value of all
sil(i) ∀ i ∈ U and the ASWoverall for the entire population as the mean of
all individual sil(i) silhouettes. This is defined as,

ASWoverall(k) =

n∑

i=1

sil(i)

n
∈ [0, 1], (6)

where n denotes the number of all individuals. To determine the best clustering
and thus the number of clusters k we choose the clustering with the highest
ASWoverall. Using a dendrogram Fig. 2(a) visualises the outcome of running the
clustering algorithm with possible cut points that give rise to different number
of clusters, k. For each such clustering Fig. 2(b) shows the value of the silhouette
coefficient for different number of clusters whereas in more detail Fig. 2(c) is a
silhouette plot that shows the silhouette coefficient calculated for each individual
in each cluster.

In our example, the clustering algorithm terminates when the dissimilarity
between clusters is at the maximum (i.e., 1) and therefore there are no more
clusterings produced fewer than 4, which also happens to be the clustering with
the maximum silhouette coefficient; thus, k = 4 in this case.

3.3 Annotation of Clusters

Class Names. Each cluster contains individuals that are similar according to
the distance measure used. In the ideal case all similar individuals are grouped
in the same cluster. The resulting clustering suggests that individuals classified
in some group are possible instantiations of some class. By observing the indi-
viduals, any RDF typing information that is explicitly stated is used to annotate
each cluster with a descriptive label, as shown in Fig. 1(c). This label gives rise
to the names of the classes we are looking to infer. We have used a greedy algo-
rithm that suggests that the class label that occurs the most in a particular
cluster is chosen as the class name. As our evaluation in Sect. 4 shows, this sim-
ple approach yields good results. In the case of clusters that contain individuals
without rdf:type statements a special label, “Unknown” is used as the inferred
4 Is the opposite of a similarity.
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cluster label. One might then use the inference semantics of RDF graphs to infer
the RDF typing information in cases where such information is not available.
Finally, in cases where the clustering approach gives rise to different clusters
that partition individuals of the same type, the technique will have to choose
which cluster to use to infer a description for that class. A cluster with more of
the individuals with that rdf:type stands a better chance of containing sufficient
information that can guide the development of a schema, therefore the technique
prefers such a cluster. We discuss this case in our evaluation in Sect. 4.3. To sum
up, cluster labels represent the names of possible classes that organise data in
an RDF source; examples are Student and University as shown in Fig. 1(c).

Class Properties. The formal definition of an RDF triple (see Sect. 2) suggests
that an object could be either a literal, a blank node or a resource. The algorithm
follows a simple heuristic and takes into consideration predicates that are liter-
als to annotate a discovered class with its attributes. However, often resources
have predicates that point to blank nodes. In such cases the algorithm considers
blank nodes as evidence for identifying multi-valued or composite attributes for
our ER model representation, as depicted in Fig. 1(d). We have also observed
that the RDF model does not restrict resources, that are instantiations of the
same class to have the same number of attributes. For example, a resource that
is an instantiation of a class Student could use only predicates {firstName, last-
Name, registeredTo, homePage} whereas another resource could be described
using just {firstName, lastName, homePage}, omitting registeredTo. So as not
to miss any attributes the algorithm takes the union of the predicate labels in the
cluster as the list of identified attributes. For example, the Student class could
have attributes {firstName, lastName, registeredTo, homePage}. In addition,
this phenomenon of missing attributes could be due to cases of specialisation/-
generalisation relationships. With this reflected upon the instances the algorithm
chooses to union the properties identified in each cluster.

Class Relationships. To infer relationships between our identified class labels
we observe predicates that are URI-links to other resources rather than literals.
Simply put, we follow the heuristic: an RDF triple that is a URI-link rather than
a literal is a candidate relationship, and it is a relationship within the RDF graph
if it refers to another entity within the same RDF graph. For each identified class,
by observing the predicates of its individuals, we extract all predicates that are
candidate relationships according to our heuristic. This provides the algorithm
with enough information to identify relationships for inferred classes.

3.4 Schema Constructs

The simple Entity-Relationship (ER) conceptual model is expressive enough to
model our inferred schema, and we have used a simple set of mapping rules,
to express our inferred structure using ER constructs. As shown in Fig. 1(d),
inferred Classes are modelled as entity types, class properties that consist of sin-
gle atomic values are modelled as atomic attributes whereas ones that occurred
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multiple times are considered as evidence of multivalued attributes and are mod-
elled as such. Any properties that point to anonymous resources (i.e., a BNodes)
are modelled as composite attributes, and finally any properties that point to
other resources are modelled as relationship types. To depict the constructs of
an inferred schema we have used the classic diagrammatic conventions of ER.

3.5 Schema Construction and Serialisation

Finally, having collected enough information to annotate entity types with
attributes and relationships, the algorithm proceeds to infer a structural summary
over the imported RDF source. Figure 1(e) shows a simple schema (represented
as an ER-diagram) that has been inferred from a simple RDF source. To conform
with the context of LD, we have used a simple RDFS vocabulary to serialise the
inferred schema as RDF triples. To the best of our knowledge5 there is no RDFS
vocabulary that captures the constructs of the ER model. Thus, we have created
one and published it using best practises suggested by the Linked Open Vocabu-
laries (LOV) project, and then used it to serialise our inferred schema as an RDF
graph (see Fig. 1(f)). To conclude, we have noticed that there are some attempts
in the literature [4] to map ER diagrams to OWL ontologies. The outcome of our
structure inference technique can be used as an input to such techniques.

4 Empirical Evaluation

In the following, we present the methodology used for evaluating our technique.
To ensure diversity in the LD sources used for the evaluation we distinguish
between two different types of RDF sources: those that have been generated by
a translation from relational databases using a systematic approach (such as the
D2RServer tool [2]) and real-world Linked Data sources from the Web of Data.
We have categorised the sources into two groups according to their generation
method, as in Table 1.

Table 1. Linked Data sources used for evaluation.

Name # triples # classes BNodes generated by

1 cdShop 303 3 Y D2RServer

2 Conference 300 8 Y D2RServer

3 BIRT dba 28.5 k 8 N D2RServer

4 Jamendo 1.1 M 11 N DBTune.org

5 Magnatune 322 k 7 N DBTune.org
ahttp://www.eclipse.org/birt/phoenix/db.

5 Observing the vocabularies listed by the Linked Open Vocabularies (LOV) project:
http://lov.okfn.org/dataset/lov/.

http://www.eclipse.org/birt/phoenix/db
http://lov.okfn.org/dataset/lov/
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The RDF graphs that were used during the evaluation have been manually
downloaded and imported into a local triple store since some of the datasets
were not always accessible and some others were only published as RDF dumps.
For the evaluation of our technique we are looking to investigate whether the
individuals have been assigned to the actual classes according to some ground
truth. In addition, we would like to establish the extent to which our technique
can infer a structural summary of the LD sources by identifying the correct
classes, their properties and their relationships.

4.1 Experimental Methodology and Metrics

As previously mentioned, for each of the following experiments we are looking
to measure (a) how good the clustering solution is at grouping individuals, and
(b) how well the approach has identified the correct entity types, attributes and
relationships.

Quality of Clusterings. For measuring the quality of the clustering, we have
used the FScore measure [14]. This measure required us to manually assign class
labels to each individual to form the gold standard. Having the gold standard we
proceed to compute the FScore measure as follows. For each particular class label
Lr of size nr and cluster Ci of size ni, with nri being the number of individuals
in cluster Ci that belong to Lr, we measure the FScore of this class and cluster,
using,

FScore(Lr, Ci) =
2 × P (Lr, Ci) × R(Lr, Ci)
P (Lr, Ci) + R(Lr, Ci)

∈ [0, 1], (7)

where, P (Lr, Ci) is the precision value defined as nri/ni, and R(Lr, Ci) is the
recall value defined as nri/nr for the class Lr and cluster Ci. The FScore of the
class Lr is the maximum FScore. To understand how good the choice of the deter-
mined clustering solution is we also calculate the overall FScore, using the follow-
ing formula, where |L| is the number of classes and n the number of individuals,
that is,

Overall FScore =
|L|∑

r=1

nr

n
max(FScore(Lr, Ci)) ∈ [0, 1]. (8)

An ideal clustering solution is the one in which every class from the gold standard
has a corresponding cluster where all the individuals of that class made it to the
correct cluster, the higher the FScore the better the clustering.

Quality of Inferred Schemas. To measure how well our technique inferred
schemas for LD sources we measure Precision/Recall and FScore for each of the
ER constructs we are expecting (i.e., entity types, attributes and relationships).
We have manually designed the schemas that we are expecting and compared
them with the derived result. To design a gold standard, in cases that we had
access to, we have observed the SQL schemas that populate a relational version
of the data, otherwise we have just observed the resulting RDF-graphs.
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For entity-types we determine true positives, i.e. entity types needed and
inferred, false positives, i.e. entity types not needed but inferred, false negatives,
i.e. entity types needed but not inferred. For attributes and special types of
attributes (e.g., composite) we determine true positives, i.e. attributes needed
and inferred as attributes to the correct entity type, false positives, i.e. attributes
not needed on an entity type, but inferred, false negatives, i.e. missed attributes.
Finally, for binary relationships we determine true positives, i.e. relationships
inferred between the correct entity types, false positives, i.e. relationships incor-
rectly inferred between entity types, and false negatives, i.e. any relationships
missed.

Before discussing the results of our experiments, note that in the descrip-
tion of the clustering algorithm in Sect. 3.2 the termination condition of the
algorithm depends on what the algorithm considers as the minimum similarity
value for which a pair of clusters is considered as a candidate for merging. Thus
before discussing any results on measuring the effect of our schema inference
technique we elaborate on the choice of the minimum similarity value for merg-
ing and then we elaborate on the choice of the cluster-to-cluster similarity scheme
(i.e., average, single and complete linkage). For the experiments Sects. 4.3 and 4.4,
we have used as in Sect. 4.2, values for the above parameters that we have empir-
ically determined.

4.2 Determining Parameters

Min. Threshold for Merging. As explained in Sect. 3.2, the clustering algo-
rithm clusters together individuals with similar features. At each iteration the
algorithm selects the most similar pair of clusters to be merged. To characterise
that a pair of clusters is similar enough to be merged we have used a threshold
t, which is the minimum similarity value a pair of clusters should have, to be
considered as a candidate for merging. In this section we elaborate on the choice
of t, by observing its effect on the maximum average silhouette width, and thus
on the quality of the clustering. In doing so we have run the algorithm with
different values for t, iteratively increasing its value by 0.1 until t = 1.0. This is
shown in Fig. 3 where we have run our experiment using sources 1, 2 and 3 from
Table 1. As t varies closer to 1.0 the algorithm becomes stricter in the choice of
clusters to be merged. This means that individuals that are not similar enough
remain unclustered, thus causing the average silhouette width to decrease, for
the reason that most of the individuals remain in their singleton clusters. This
is reasonable since, from the definition of the silhouette coefficient [11], single-
ton clusters have a silhouette value of zero. Such drops are shown in Fig. 3 for
sources 2 and 3 when t is around 0.4 and 0.5 respectively. The values of the max.
average silhouette width seem to remain constant for choices of t closer to 0, for
the reason that the algorithm is more flexible in merging clusters that are not
so similar. Varying t closer to 0 allows more merge steps, thus more iterations
until termination. For each merge step the algorithm calculates the maximum
average silhouette width overall for the clustering, and therefore changing t does
not always have an effect on choosing the maximum ASWoverall.
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Fig. 3. Choice of t and its effect on the maximum average silhouette width.

Furthermore, in cases where most or all of the individuals from each class
are using the same or almost the same set of predicates the choice of t does not
seem to have any real effect, as in source 1. Because of the diversity of the data
in the sources we cannot be very strict on the choice of t, however from this
simple experiment it seems reasonable to choose a value for t to be in the range
of [0.4–0.5], therefore for the experiments to follow we choose t = 0.5.

Linkage Schemes. To complement our experiments on how good the clus-
tering solution is, we have empirically observed the behaviour of the clustering
algorithm using different linkage schemes for measuring the similarity between
clusters (as mentioned in Sect. 3.2). For each of the RDF sources in Table 1,
we have run the clustering algorithm and observed the effect of using a differ-
ent scheme on the value of the silhouette coefficient. As shown in Fig. 4, in most
cases the different schemes co-occur in identifying the number of clusters with the
exception of complete linkage. As depicted in Fig. 4(b), using complete linkage
the maximum average silhouette coefficient occurs when the number of clusters
is 14 where the real number of clusters in the dataset is 9. On the other hand
the alternative approaches are closer to identifying the real number of clusters.
For our purposes it seems reasonable to choose single or average linkage because
of their similar results, and in practise we have used the average linkage as the
default linkage scheme.

4.3 Experiment 1: Reverse Engineering

Relational databases played a key factor in expanding the LOD cloud as a source
for a large number of RDF triples. Tools like the D2R-Server [2] have been
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Fig. 4. Shows for each cluster similarity scheme, the top 10–20 occurrences of mean
silhouette coefficient. x-axis shows the number of clusters in each clustering and y-axis
the corresponding silhouette coefficient.
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essential in providing a standardised way of exposing relational databases as LD
sources on the Web. However, such datasets lack the organisation of a schema as
previously existed in the relational database. With this experiment we are look-
ing to demonstrate the effectiveness of our technique by reverse engineering the
schema of some RDF sources that have been generated from a relational data-
base (see Table 1). Before determining how well our technique inferred a schema,
we would like to gain some insights regarding the quality of the clustering deter-
mined by the algorithm. This is important since our technique aims at looking
for recurring patterns from the clusters formed, in order to infer the structure
of the source. Figure 5(a) shows the result for a small dataset with only a few
class labels. The algorithm has successfully assigned individuals to the correct
clusters except those from the Category label. This was done intentionally by
the algorithm since all instances of the Category class are represented as blank
nodes in the RDF source. This evidence has been treated by the algorithm as a
composite attribute, in our ER-model representation. This does not mean that
the algorithm has missed the individuals of the Category class, instead, know-
ing the existence of a composite attribute we can easily formulate a SPARQL
query to populate data from the Category class (e.g., Listing 1.2). The same also
happened in Fig. 5(b) with a source that has more labels, however in this source
some instances have not been classified in the correct classes. This is because
the particular source has instances of different classes that use the same pred-
icates. For example, Researcher and PhDStudent share {firstName, lastName,
address, homePage}. Figure 5(c) shows the results for an RDF source with no
blank nodes. The silhouette coefficient determined 17 clusters instead of 8 and
therefore some individuals have not been assigned to any cluster, or individu-
als of the same type have been partitioned into several clusters. The choice of
17 clusters has been determined by the highest ASWoverall. For 17 clusters the
average silhouette width is 0.976 and the second best, suggesting just 8 clusters
is 0.960. However, the effect of the clustering produced by the SC does not influ-
ence the post-processing tasks downstream and as such the algorithm manages
to get good results for the inferred structural summary (see Table 2).

Fig. 5. Quality of the clustering solution.
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To conclude this experiment, we observe how the quality of clustering influ-
ences the final inferred schema and the judgement of the algorithm in deter-
mining the schema of the source. Using the metrics described in Sect. 4.1 to
evaluate the effectiveness of our technique, the results are presented in Table 2.
For each of the sources we have compared the inferred schema results with the
gold standard. The important observation is that the technique managed to infer
a structure as expected with minor fallouts that influenced the performance.

Table 2. Evaluation of schema inference technique: (ET): Entity Types, (AT):
Attributes, (R): Relationships

cdShop Conference BIRT db

ET AT R ET AT R ET AT R

Precision 1 1 1 1 1 1 1 1 1

Recall 1 1 1 1 0.90 0.86 1 0.92 0.86

FScore 1 1 1 1 0.95 0.92 1 0.96 0.92

In more detail, we have noticed that in all cases the algorithm manages to
infer all the entity types (i.e., classes) that where expected. For classes that have
resources as BNodes the algorithm creates a special type of attribute instead,
thus we do not classify them as false negatives. Some instances translated from
relational tables have NULL values in some of their attributes. Thus, there are
cases where the algorithm misses some attributes. Regarding the identification of
relationships between classes, the algorithm performs well. We have only noted
some false positives in cases where classes participate in a class hierarchy. The
algorithm is not aware of this and, therefore sometimes misplaces some of the
relationships between different classes that participate in is-a relations. How-
ever, still the results are promising. We understand the diversity of LD sources
in terms of representing data with different structures and terminologies, how-
ever, our prototype technique performed well in terms of inferring the structure
of RDF sources that previously represented data as relational tables.

SELECT DISTINCT ?o ?category
WHERE {

eShop:CdNo9 eShop:category ?o .
?o eShop:name ?category .

}
Listing 1.2. Explore Category class triples.

4.4 Experiment 2: On Sources from the Web of Data

We repeated the previous experiment on real sources from the LOD cloud that
were not generated from existing schemas. For this experiment we have chosen
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LD sources from DBTune.org namely Jamendo and Magnatune. Figure 6(a)
shows the result from inferring the schema for Jamendo. In this source we
have observed that some URI resources do not have any rdf:type statements
therefore they have been classified as elements of our specialised “Unknown”
class. Without any RDF typing information the label of the class cannot be
determined. In such cases our technique creates several clusters labelled with
the “Unknown” label. As already mentioned, the inference semantics of RDF
graphs could provide an insight as to what could be a possible class label for our
“Unknown” classes. Nevertheless, despite the lack of class label information the
algorithm managed to infer the relationships and attributes for the “Unknown”
class. Although this class has been inferred by the algorithm during our evalua-
tion, we have considered it as a false positive, hence the decrease in the measures
for Entity Types. Similarly, the relationships identified for the “Unknown” class
are considered as false positives. This does not mean that the technique failed
to determine the relationships as it should have, but it was unaware of the
actual classes that participate in the relationship. Similarly, Fig. 6(b) depicts
the results of running the algorithm over Magnatune. According to the gold
standard designed for this source, the algorithm correctly inferred a structural
description of the source as expected. We have noticed that, overall, the schemas
of LD sources normally use a few classes to describe their resources and that the
algorithm can perform well in inferring structural summaries over published LD
sources.

Fig. 6. Evaluation of schema inference technique.

5 Related Work

As already mentioned, the widespread adoption of the RDF model has led to an
emerging need to access data from various heterogeneous and distributed data
sources. Since the data are distributed, and due to the schema-less nature of
the model, efficient retrieval of the data is a challenging task. In fact, several
challenges contribute to this, some of which are: (i) the challenge of locating
which datasets could possibly contribute answers to a given query, (ii) the lack of
a comprehensive instance-level summary of the data, and (iii) scalability issues.
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One approach to this challenge is based on materialisation, where a complete
replica of the RDF graphs is stored in a central triple-store which is then used for
query answering. However, such a central store assumes that the data remain
static or evolve slowly, and that the most current version of the data is not
required. Moreover, with the current size of the LD cloud, with more than 62
billion RDF triples6, maintaining a replica is resource intensive, and the lack
of an intensional description of the data makes query formulation a challenge.
In this section we summarise ongoing research on proposals for solving some of
the challenges related with efficient data management in the LOD ecosystem.
We begin by discussing related work on locating datasets that can possibly
contribute answers to a query, discovering RDF-specific schema knowledge from
datasets and finally proposals on distributed query processing. We then position
our work in relation to other proposals for discovering knowledge that can inform
the formulation of SPARQL queries over a given RDF source.

On Source Discovery. There has been some recent research on source selection
that provides summaries or descriptions of the RDF triples that can be found
in LD sources using index structures [13,21]. We refer to these as triple-level
summaries. An example of such work is SchemEX [13], which uses a stream-
based approach for extracting schema information from RDF triples that are
traversed from an RDF graph using a fixed-window. The extracted schema is
then used to guide the construction of an index structure by linking schematic
information to relevant datasets. Given a SPARQL query, SchemEX performs
a lookup in the index structure to find which datasets contain instances of a
specific RDF schema concept that can contribute to answering the query. As
such, SchemEX aims to deal with the challenge of providing a summary of the
kind of triples that can be found in a data source. By contrast, our work focuses
on inferring a summary of how individuals are organised in a single source that
can be used for query formulation, rather than on using the extracted schema
for constructing an index that is used for relevant source discovery. In addition,
both our approach and SchemEX utilise RDF typing information at the instance-
level, aim to support query execution, and model the outcome of the extraction
processes as RDF triples.

Harth, et al. [8] propose the use of an approximate multidimensional indexing
structure (i.e., QTrees) as a data summary for determining which sources can
potentially contribute answers to a query. The construction of an index struc-
ture is made possible by applying hash functions over the individual components
of RDF triples (subject, predicate, object) contained in the datasets, to obtain
data points that correspond to a three-dimensional QTree. A certain set of sim-
ilar triples is then approximated by minimal bounding boxes (MBBs). At query
time a set of MBBs is returned for each triple pattern in the query that suggest
relevant sources that can contribute to the query result. Our work differs from
the above approach since we would like to have an understanding of how con-
cepts are represented in the sources and not a summary of what triples exist in
which source. Thus the emphasis in [8], as exploited in [17], is on providing an
6 http://stats.lod2.eu/.

http://stats.lod2.eu/
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instance-level summary that can inform efficient query evaluation, whereas the
emphasis in our work is on providing a schema-level summary that can inform
data integration.

On Knowledge Discovery and Ontology Mining. In a complementary app-
roach, Zong, et al. [24] explored a method to dynamically generate a concept
hierarchy using LD sources from the bio-medical domain. In doing so, their
method utilises RDF typing information at the instance-level and builds upon
hierarchical clustering. This is similar to our technique where a pre-processing
step is necessary for determining the similarities between pairs of individuals
using a distance function. The pair-wise similarities are then used as an input to
the clustering step (as in Sect. 3). A similar work-flow is followed by their tech-
nique, where the similarity between a pair of individuals is measured over the
predicate values that are URIs, whereas our technique computes the similarity
by considering the local names of all predicates that are used in either RDF-links
or literal triples. Despite the similarities, their approach builds on sources that
use a single ontology to organise data, and is restricted in terms of dynamically
identifying relationships between the inferred concepts, whereas in our proposal
the discovery of domain/range axioms is made possible; captured as entity type
relationships.

Another example of relevant work is from Völker, et al. [22], on mining ontolo-
gies from RDF data, an approach referred to as Statistical Schema Induction.
In contrast to our technique that builds on clustering, their approach mines
association rules from RDF data sources to acquire schema-level knowledge.
Association rules that satisfy a user-provided confidence threshold contribute to
the construction of the ontology. In our technique, the silhouette coefficient is
used (as described in Sect. 3.2) to determine the clusters to be considered when
inferring structural summaries. Finally, resources need to explicitly provide some
RDF typing information for their approach to work. Although this is also useful
for our technique, our approach is not as restricted since it organises resources
into groups despite the existence of rdf:type statements and looks for recurring
patterns that can guide the development of a schema.

Distributed Query Processing. Having an understanding of a schema can
also support Distributed Query Processing (DQP) over RDF sources. DQP
requires an understanding of how concepts are represented, but such information
is typically not available for LD sources. Quilitz and Leser [19] propose DARQ, an
engine for federated SPARQL queries. Transparent access to multiple SPARQL
endpoints is provided by making use of hand-crafted source descriptions that
summarise the URIs of RDF properties that are used by the source to describe
the data. Our technique can provide similar structural summaries automatically.
Rather than using indices of the content of each RDF source or statistical infor-
mation (e.g., VoiD) FedX [20] does not require any metadata upfront; instead, it
uses SPARQL ASK queries for source selection at query time to annotate triple
patterns in the query with relevant sources, and relies on join order heuristics
for efficient SPARQL query processing over several LD sources. Our approach
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suggests that structural summaries that can be used to inform query formulation
can inferred automatically.

6 Conclusions and Future Work

This paper described a technique that uses a hierarchical agglomerative cluster-
ing approach and a set of simple heuristics to determine a structural summary
over RDF sources, with the aim of informing query formulation and supporting
query processing over LD sources. We have shown that having a schema for an
RDF source that can be inferred automatically does not contradict the schema-
free nature of RDF sources. The flexibility of the RDF model is preserved since
we are not forcing the data to adhere to any specific structure; the data are
just used to guide the creation of such structural summaries over the sources.
In addition, having a structural summary over LD sources aligns with recent
trends on publishing datasets that are annotated with metadata, such as VoID
descriptions. We propose to organise individuals into clusters which can then
used to search for recurring patterns, with the aim of inferring structural sum-
maries over LD sources. Our empirical evaluation over sources that have been
constructed from a direct translation from relational databases as well as on
real sources from the Web of Data validated that our technique generates good
results.

While our results are promising, there remain several challenges to be further
explored. In the following we attempt to highlight some of these challenges along
with possible solutions on how to improve our structural inference technique:

Identification of class hierarchies. Our evaluation revealed two cases where
it might be possible for the approach to determine subsumption relations. Dis-
covering class hierarchies can be an important feature of the approach, we discuss
it here with an abstract example however we leave this feature as a potential
future work. Let us assume the existence of a single cluster c1 that does not
overlap with any other cluster and that the set of individuals of c1 suggest more
that one class label for the cluster. This might be possible when individuals,
that potentially belong to different concepts, end up in the same cluster c1 for
the reason that they are using the same set of predicates to describe their data
but have different RDF typing information. Another possible case for observing
potential subsumption relations is when clusters overlap. Assume the existence
of two overlapping clusters c1 and c2, where, some individuals belong to both
clusters, this is the set given by their intersection c1 ∩ c2. Potentially a simple
heuristic based on counts can determine is-a relations, we leave this feature
and its evaluation as a possible future direction for improving the presented
technique.

Lack of RDF typing information. It is often the case that RDF sources do
not explicitly state rdf:type information for every resource that appears in the
source, in fact, there might exist cases of RDF sources which entirely neglect such
information. As previously discussed, RDF typing information is useful for our
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technique, however, the lack of such knowledge causes the technique to assign the
specialised “Unknown” label to discovered classes. Ideas to discover additional
knowledge that can assist our approach into discovering a suitable class label
in such cases are, among others, (i) to utilise the inference semantics of RDF
sources with the use of a reasoner [15] that is used over the explicitly stated
RDF data to reveal more knowledge, including RDF typing information, that
could be utilised by our technique, and (ii) to take advantage of the dereference
capabilities of predicate URIs to obtain access to their semantics as specified in
semantic web ontologies described in RDFS/OWL. For instance, the semantics
of rdfs:domain as appeared in the definition of properties can suggest that a
particular instance is a member of some class. Further investigation of these
proposals is left as a future work.

Distance function. In Sect. 3.2 we discuss a simple distance function based
on the use of Jaccard similarity over localnames of predicates to determine the
pairwise similarities between individuals. There might be cases where localnames
alone provide insufficient knowledge for suggesting a similarity between a pair of
candidate descriptions. In the simplest case of introducing typos in localnames
the current distance function will not be able to determine any similarity. For
example, the Jaccard similarity between {firstName, lastName, homePage}
and, {frsName, lstName, hmPage} produces zero, which is unacceptable. It is
also quite frequent in complex LD sources that predicates from different vocab-
ularies are using identical localnames. Such cases will cause our distance func-
tion to derive a misleading conclusion on judging that they are identical. The
design of a distance function that overcomes such weaknesses is desirable. This
is important for our approach since the pairwise similarities are the foundations
on which the clustering algorithm is making its decisions; into forming the right
clusters that will then give rise to possible classes, properties and relationships.
An improved distance function can perhaps consider several sources of evidence
for judging the similarity of a pair of individuals. A possible suggestion is to
take into account the predicate values of triples that are RDF-links (i.e., triples
that their object’s values are URIs). Again, in cases where is possible, derefer-
encing predicate URIs may reveal additional semantic evidence that could be
used as additional knowledge for judging their similarity. Finally, to deal with
typos a syntactic distance metric such as edit-distance could be used. We leave
the design of an improved distance function that considers the above suggestions
and its evaluation as a future direction.
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