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LNCS Transactions on Large-Scale Data-
and Knowledge-Centered Systems (TLDKS)

Special Issue on Big Data and Linked Open Data

Linked Data and Big Data have been featured in recent years due to growing interest.
Proper use of enabling technologies meant for these two kinds of data is a critical
success factor in the evolution of the Web. The Linked Data perspective inspired
research efforts for building, maintaining, and exploiting the Web as a global database,
where resources are identified (by means of URIs), semantically described (by means of
RDF), and connected through RDF links. This perspective goes beyond the potential
of Web 2.0, enabling people and applications to discover new linked information in an
unexpected way, according to an explorative perspective. Big Data emphasizes the fact
that new techniques and infrastructures are required for the sustainable exploitation of a
huge amount of data. The Linked Data paradigm is often seen as an approach to coping
with Big Data, as it moves the attention from a Web of documents to a Web of rich data.

Nevertheless, the great availability of resources raises data management issues, that
must be faced in a dynamic, highly distributed, and heterogeneous environment, such
as the Web: (i) how to model large amounts of (linked) data, (ii) how to query data and
reason on them in a feasible way, (iii) how to exploit Big and Linked Data applications
in real-world scenarios. To solve these issues means to exploit the synergism between
the conceptual foundations of data management and logical foundations of Big and
Linked Data initiatives. At the same time, emerging Big Data technologies could be
useful in addressing data management issues within the Linked Data context. Among
them, modern distributed technologies based on the principles of CAP theorem, such as
NoSQL DBMS and Map/Reduce data processing.

This Special Issue collects four high-quality papers that aim at investigating Linked
Data and Big Data interleaving issues under a data management perspective: (a) two
papers propose the application of clustering techniques for performing inference and
search over (linked) data sources; (b) a paper leverages graph analysis techniques to
enable application-level integration of institutional data; (c) a paper describes an
approach for protecting users’ profile data from disclosure, tampering, and improper use.

January 2015 Devis Bianchini
Valeria De Antonellis
Roberto De Virgilio
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Structure Inference for Linked Data Sources
Using Clustering

Klitos Christodoulou(B), Norman W. Paton, and Alvaro A.A. Fernandes

School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

{christodoulou,norm,alvaro}@cs.man.ac.uk

Abstract. Linked Data (LD) overlays the World Wide Web of docu-
ments with a Web of Data. This is becoming significant as shown in the
growth of LD repositories available as part of the Linked Open Data
(LOD) cloud. At the instance-level, LD sources use a combination of
terms from various vocabularies, expressed as RDFS/OWL, to describe
data and publish it to the Web. However, LD sources do not organ-
ise data to conform to a specific structure analogous to a relational
schema; instead data can adhere to multiple vocabularies. Expressing
SPARQL queries over LD sources – usually over a SPARQL endpoint
that is presented to the user – requires knowledge of the predicates used
so as to allow queries to express user requirements as graph patterns.
Although LD provides low barriers to data publication using a single
language (i.e., RDF), sources organise data with different structures and
terminologies. This paper describes an approach to automatically derive
structural summaries over instance-level data expressed as RDF triples.
The technique builds on a hierarchical clustering algorithm that organ-
ises RDF instance-level data into groups that are then utilised to infer
a structural summary over a LD source. The resulting structural sum-
maries are expressed in the form of classes, properties and, relationships.
Our experimental evaluation shows good results when applied to different
types of LD sources.

Keywords: Schema · Linked Data · Clustering · Query formulation

1 Introduction

In recent years there has been a significant growth in the amount of publicly
available structured data on the Web using a graph-based representation model
and a set of simple principles, the so-called Linked Data Principles [3]. A moti-
vation for the adoption of these principles is the fact that they are based upon
established web infrastructures (like URIs and HTTP) and semantic web stan-
dards (like RDF and RDFS), thus providing low barriers to data publication.
The adoption of these principles is apparent in the number of Linked Data
(LD) repositories that form the Linked Open Data (LOD) cloud1. An interest-
ing aspect of this kind of Web is that datasets are not only published in isolation
1 http://lod-cloud.net.

c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XIX, LNCS 8990, pp. 1–25, 2015.
DOI: 10.1007/978-3-662-46562-2 1

http://lod-cloud.net


2 K. Christodoulou et al.

but also interconnected with other datasets by the use of links. As the size of
the LOD graph is constantly growing, with billion of triples publicly available
from different domains, so does the need to consume data in this distributed
environment.

Accessing the LOD cloud follows paradigms previously used for the web of
documents. For example, various techniques from information retrieval are used
by LD search engines (e.g., SWSE [10]) to support keyword queries. However,
the web of data seems to provide the opportunity to move beyond keyword
search queries into more precise query answering using structural queries. Often
knowledge for answering a query is distributed across different datasets, so mul-
tiple queries need to be formulated and sent to more than one dataset for the
user to get the desired answer. For the web of data this support is provided by
SPARQL [18], the query language for RDF data sources. However, even though
SPARQL supports querying over RDF sources it may still be difficult to for-
mulate such queries. The basic building blocks for SPARQL queries require an
understanding of how concepts are represented that may not be readily avail-
able. The fact that the RDF model [12] does not impose any constraints on
the structure of a source makes it difficult to know what graph patterns can be
formulated over a given source.

Evaluating structured queries over a LD repository that exposes its data as
either a SPARQL endpoint or an RDF dump often requires the user to browse
the source or to issue exploratory queries (e.g., Listing 1.1) in order to under-
stand how the data are organised and what predicates are used to describe the
entities. This, however, is time consuming and requires queries to be formed and
asked manually. Although, it might be possible to browse a small RDF source,
usually the knowledge as to how the data are organised in a source requires
careful observation of the triples at the instance-level, which presents scalability
challenges for browsing.

SELECT DISTINCT ?concept
WHERE {

[ ] rdf:type ?concept .
}

SELECT DISTINCT ?concept ?prop
WHERE {

?s rdf:type ?concept .
?s ?prop ?v .

}
Listing 1.1. Exploratory SPARQL queries.

Generally, forming a meaningful query over a source is challenging without a
structural summary of the underlying RDF source, therefore, it is important to
have such an understanding. In relational databases, for instance, such an organ-
isation of data is achieved using a logical schema to which data must adhere.
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Such an organisation of data is not only useful for browsing the structure of the
database but also for formulating queries or even capturing statistics that could
enable query optimisation [6]. In contrast to the logical organisation imposed in
relational databases, an RDF source does not conform to any analogous struc-
ture. In the context of LD, a schema of an RDF source is a combination of
terms from various vocabularies that are used to represent the data, where their
semantics are defined in various RDFS/OWL vocabularies [9].

Problem and Approach. It is often good practice for RDF datasets to provide
a VoID2 description that captures various metadata about a source. By retrieving
such descriptions, users can get an idea about size statistics, which vocabularies
are used in the source, which classes or predicates are used to describe the data,
or how to access the source. Such descriptions however, lack sufficient structural
metadata to provide a detailed description as to how the data is organised in
a source. Typically, VoID descriptions are handcrafted by data publishers, and
are not always available. As of August 2011, only 32.2 % of the LOD cloud
data sources provided such descriptions3. In this paper we propose a technique
based on cluster analysis that, by looking at instance-level data from an RDF
source, can infer a structural summary (i.e., a schema) that captures information
about classes that the data instantiate, their properties and how they relate to
each other. Having such a structural summary over a source can be helpful
in many application scenarios, such as for discovering sources, understanding
the structure of a source, and supporting query formulation. Exploring such
challenges is outside the scope of this paper.

Contributions. We note that the vision of distributed query processing over
RDF sources can benefit from having structural summaries available for each
source. At the same time we recognise that the low barriers to data publication
introduced by the linked data principles must be preserved. We have proposed
in our previous work [16] that pay-as-you-go data integration [5] can be used
to enable distributed query processing over structurally heterogeneous and dis-
tributed LD sources. In such a context, there is a need to explore automatic
techniques that support structure inference from RDF sources. With the work
presented in this paper we take a step forward in this direction; our contributions
are as follows:

– We have designed and implemented a technique that allows structural sum-
maries to be inferred over RDF sources that contain explicitly stated instance-
level data.

– We describe an experimental evaluation of the approach using different use-
case scenarios that demonstrate its effectiveness.

In the remainder of this paper we begin by introducing a more formal defini-
tion of the problem in Sect. 2, followed by a detailed description of our technique
in Sect. 3. We elaborate on the methodology used for evaluating the approach in
Sect. 4, and we conclude in Sect. 6.
2 See Vocabulary of Interlinked Datasets: http://www.w3.org/TR/void/.
3 For more statistics, see http://www4.wiwiss.fu-berlin.de/lodcloud/state/.

http://www.w3.org/TR/void/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
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2 Problem Description

By observing instance-level triples that are explicitly stated in a source, our aim
is to have a synopsis of the sources. Following [1], we define an RDF triple as
(subject, predicate, object) ∈ (R∪B)×P × (R∪B∪L), given a set of Resources
R identified with URIs, a set of Blank Nodes B, a set of Predicates P and a
set of Literals L. A set of RDF triples T forms an RDF Graph. Given T we are
interested to derive a schema description as follows:

Definition 1. A schema S is composed of a set of classes {C1, ..., Cµ}, where
each Ci(i = 1, ..., µ) contains a set of predicates {Ci.P1, ..., Ci.Pp}.
As pointed out earlier, at the instance-level an RDF source does not conform to
any specific structure that forces an organisation of the triples in the source and
thus can be considered as schema-less. The data do not adhere to any explicit
schema definition. The RDF model can describe resources with a mixture of
terms from different vocabularies, where there is no restriction on the number
of vocabularies or terms (i.e., predicates) used to describe a resource. Assume
that the RDF graph T describes resources with the set of predicates P , where
|P | = J . Then we define a description of a particular resource as a Candidate
Description:

Definition 2. A candidate description CD is a subset P ′ ⊆ P ; the subset com-
posed by a set of j ≤ J predicates of P.

Given CD, the set of all CDs, our target is to group (i.e., cluster) CD into
k clusters, where k is computed through the algorithm described in Sect. 3.2.
Our methodology will create a set of clusters U = {U1, ..., Uk}, where Ui ⊆
CD ∀ i = 1, ..., k. Optimally all CD’s in each Ui belong to the same class.

In brief, given an RDF graph, the technique looks for resource descriptions
that are potential instances of the same class by looking at the predicates used
to describe a resource and any RDF typing information available.

3 Method Description

In the following, we describe our technique for inferring a structural summary
over an RDF source. Our approach is based on the assumption that we can iden-
tify recurring structural patterns of a possible concept by observing instance-level
resource descriptions that are RDF triples. To detect such patterns we organ-
ise resource descriptions that are possible instantiations of a class together in
groups using cluster analysis. Simply put, the idea of cluster analysis is to dis-
cover groups from a set of objects. These groups are known as clusters and a
set of clusters is known as a clustering. The goal is to assign similar objects into
the same cluster and separate them from clusters that contain objects which are
not similar. Similarity between objects is measured by a distance function; more
details on the clustering algorithm can be found on Sect. 3.2. From this point
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onwards we refer to objects as individuals and we represent them as candidate
descriptions. Our technique uses a hierarchical clustering algorithm to detect
groups among a pool of individuals that are candidate descriptions (as in Defini-
tion 2); each group identified as a result of the clustering algorithm can inform the
identification of classes that instantiate data, their properties and their relation-
ships to other classes. We use a toy example in Fig. 1 to describe our technique.
The final inferred schema is represented by a simple Entity-Relationship (ER)

Fig. 1. (a) RDF triples represented with turtle (b) representation of individuals & clus-
tering (c) annotation of clusters (d) explanation of inferred ER constructs (e) inferred
schema represented as an ER diagram (f) inferred schema serialised as RDF-triples.
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diagram where classes are represented as entity types, properties as attributes
and relationships as entity type relationships.

3.1 Pre-processing

Initialisation. To gather instance-level information, the algorithm is presented
with a SPARQL endpoint or an RDF dump. Figure 1(a) shows a snapshot of
an RDF-graph represented in turtle notation. In the case of a SPARQL end-
point, such information is obtained by posing SPARQL queries such as the ones
shown in Listing 1.1. This is done to determine resources that are stated to be
instantiations of some class by looking for RDF typing information (i.e., rdf:type
statements). The resources that are determined as results of the queries are
stored locally in a triple store. The flexibility of the RDF model does not impose
any restriction on the use of rdf:type statements that determine whether a cer-
tain resource is an instantiation of some class. Thus we do not expect our simple
heuristic to work for every RDF source. In case of an RDF dump we do not
restrict the approach to resources that are instantiations of some class since the
algorithm can look at all resources identified as being similar by the distance
function and grouped in the same cluster, as we shall discuss later in Sect. 3.2.
The RDF dump is imported into a local triple store that is used by the algorithm
to access the resources.

Representing Individuals. Each resource identified with a unique URI is rep-
resented as a candidate description as in Definition 2. Examples of candidate
descriptions are shown in Fig. 1(b). Having a pool of CDs, the algorithm pro-
ceeds to organise them into clusters using the clustering algorithm described in
the following section.

3.2 Clustering Algorithm

To identify groups of similar instances, a hierarchical agglomerative clustering
algorithm (as described in Algorithm 1) is used to group candidate descriptions
into clusters. Our main criterion for choosing a hierarchical solution was the
fact that we do not know in advance the appropriate number of clusters, and
hierarchical clustering does not require any prior knowledge of this number. In
non-hierarchical techniques, such as the k -means algorithms, the number of clus-
ters needs to be specified in advance; this is in fact similar to deciding at which
level to cut the final dendrogram in hierarchical clustering. Our approach uses
the silhouette coefficient to determine the final number of clusters, as discussed
in this section.

Typical hierarchical algorithms use a similarity matrix to cache the similari-
ties of each pair of elements to be clustered. In our case the algorithm constructs
a |CD| × |CD| similarity matrix that holds the pairwise similarities between
clusters of CDs. To calculate the similarity between (CDi, CDj) the algorithm
represents each CD as a set of features. For example, given the following can-
didate description CD1 = {vocab:firstName, vocab:lastName, vocab:homePage,
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Algorithm 1. Cluster Candidate Descriptions

Require: Set of CD = {CD1, CD2, ..., CD|CD|}
1: m ← 0
2: Um ← {{CD1}, {CD2}, ..., {CD|CD|}}
3: Construct similarity matrix M = |CD| × |CD|
4: Let (Um

i , Um
j ) be the most similar pair in M :

5: argmax
(Um

i ,Um
j )∈M

cluster sim({Um
i }, {Um

j })

6: max ← cluster sim({Um
i }, {Um

j })
7: while (max ≥ t) do
8: m ← m + 1
9: Um

ij ← U
(m−1)
i ∪ U

(m−1)
j

10: Um ← (U (m−1) \ {U (m−1)
i , U

(m−1)
j } ∪ Um

ij )
11: C ← C ∪ Um

12: Update similarity matrix M
13: Let (Um

i , Um
j ) be the most similar pair in M :

14: argmax
(Um

i ,Um
j )∈M

cluster sim({Um
i }, {Um

j })

15: max ← cluster sim({Um
i }, {Um

j })
16: end while
17: return C

vocab: registeredTo} to find the set of features that characterises it we strip the
namespace prefix from each predicate pj ∈ P ′. The output set of features will
then be {firstName, lastName, homePage, registeredTo}. Let the function cd sim
(CDi, CDj) be the similarity measure between a pair of candidate descriptions
where i ≥ 1, j ≤ |CD|. We then use the Jaccard similarity coefficient as the
similarity measure, that is,

cd sim(CDi, CDj) = Jaccard(CDi, CDj) =
|CDi ∩ CDj |
|CDi ∪ CDj | ∈ [0, 1]. (1)

Having computed the similarity of each pair of CDs and stored it into the
similarity matrix, the clustering algorithm proceeds as follows. Initially each CD
is assigned to a singleton cluster. The algorithm keeps track of each iteration m
by assigning a sequence number 0,1, ...,(m-1 ) (Line 1). The set of clusters (i.e.,
clustering) produced at each iteration is denoted as Um, thus by assigning each
CD into its own cluster, U0 = {{CD1}, {CD2}, ..., {CD|CD|}} (Line 2). In Lines
4 and 5 the algorithm identifies the most similar pair of clusters to be merged
(according to our similarity measure). Then agglomerative hierarchical clustering
proceeds iteratively (Line 6) by merging the most similar pair of clusters to
form the next clustering m = m + 1 (Line 7) where U

(m−1)
i and U

(m−1)
j are

the clusters. As a result of the merge step at each iteration m, the number of
clusters decreases by one |Um| = |U (m−1)| − 1. The merge step produces a new
cluster, Um

ij = U
(m−1)
i ∪U

(m−1)
j and clustering (Lines 8–9). In addition, at each

step the algorithm stores each clustering (Line 10), to be used later as input for
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determining the best silhouette coefficient. Then the algorithm needs to update
the similarities between the new (merged) cluster and the other clusters from
the similarity matrix (Line 11). Numerous approaches have been developed for
computing the similarity between two clusters [23]. For our algorithm we define
the similarity between clusters Um

i and Um
j as the mean similarity between

elements of each cluster (a.k.a average linkage),

cluster sim(Um
i , Um

j ) =

∑

CDa∈Um
i

∑

CDb∈Um
j

cd sim(CDa, CDb)

|Um
i ||Um

j | ∈ [0, 1]. (2)

To compare the results of average linkage, we observed the results of running
our clustering algorithm with other cluster similarity measures, such as:

– SingleLinkage:The similaritybetween clustersUm
i andUm

j is calculatedbased
upon the maximal similarity between elements of each cluster, defined as,

cluster sim(Um
i , Um

j ) = max
CDa∈Um

i ,CDb∈Um
j

cd sim(CDa, CDb). (3)

– Complete Linkage: The similarity between clusters Um
i and Um

j is calcu-
lated based upon the minimum similarity between elements of each cluster,
defined as,

cluster sim(Um
i , Um

j ) = min
CDa∈Um

i ,CDb∈Um
j

cd sim(CDa, CDb). (4)

As discussed in Sect. 4.2, we have empirically determined that the above
similarity schemes tend to give similar results. As for the termination condi-
tion, the algorithm stops when the most similar pair of clusters is below a cer-
tain threshold t, that is cluster sim(Um

i , Um
j ) < t (we elaborate on the choice

of t in Sect. 4.2). To complete our discussion on the algorithm, by decreas-
ing the number of clusters at each step the output (Line 15) is a sequence of
clusterings.

Determining the Best Clustering. As explained in the previous section, sev-
eral clusterings are produced by the algorithm (as depicted in Fig. 2(a)). Deciding
which clustering best fits the data is a well known issue in cluster analysis [7],
and approaches to solve this problem build on techniques that assess the quality
of the clustering results. Usually such approaches determine the validity of a
clustering based on the ideas of (a) compactness, i.e., how close the elements of a
cluster are, and (b) separation, i.e., how distinct a cluster is from other clusters.
We would like to keep our technique independent of any external information
such as externally supplied class labels, thus we have used silhouette coefficients
for evaluating the various clusterings (for more on clustering validation see [7]).

A silhouette coefficient (SC) is calculated for each individual and is a measure
of how similar the individual is to other individuals in its own cluster compared to
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Fig. 2. (a) Hierarchical clustering result represented as a dendrogram with possible
cut points, (b) shows the average silhouette coefficient for different clusterings, and
(c) silhouette-plot that shows the silhouette coefficient calculated for each individual
in each cluster.
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other individuals from other clusters. Considering both cohesion and separation,
the SC is defined as follows [11],

sil(i) =
b(i) − a(i)

max{b(i), a(i)} ∈ [0, 1]. (5)

Given an individual i in some cluster U , a(i) is the average dissimilarity4

of i and all other individuals in cluster U and b(i) is the average dissimilarity
between i and individuals of the closest cluster to U . We follow the definition by
Kaufman and Rousseauw [11] which states that singleton clusters have sil(i) = 0.
Having the silhouette values for each individual we can calculate the average
silhouette width (ASW) for each cluster ASWcluster as the mean value of all
sil(i) ∀ i ∈ U and the ASWoverall for the entire population as the mean of
all individual sil(i) silhouettes. This is defined as,

ASWoverall(k) =

n∑

i=1

sil(i)

n
∈ [0, 1], (6)

where n denotes the number of all individuals. To determine the best clustering
and thus the number of clusters k we choose the clustering with the highest
ASWoverall. Using a dendrogram Fig. 2(a) visualises the outcome of running the
clustering algorithm with possible cut points that give rise to different number
of clusters, k. For each such clustering Fig. 2(b) shows the value of the silhouette
coefficient for different number of clusters whereas in more detail Fig. 2(c) is a
silhouette plot that shows the silhouette coefficient calculated for each individual
in each cluster.

In our example, the clustering algorithm terminates when the dissimilarity
between clusters is at the maximum (i.e., 1) and therefore there are no more
clusterings produced fewer than 4, which also happens to be the clustering with
the maximum silhouette coefficient; thus, k = 4 in this case.

3.3 Annotation of Clusters

Class Names. Each cluster contains individuals that are similar according to
the distance measure used. In the ideal case all similar individuals are grouped
in the same cluster. The resulting clustering suggests that individuals classified
in some group are possible instantiations of some class. By observing the indi-
viduals, any RDF typing information that is explicitly stated is used to annotate
each cluster with a descriptive label, as shown in Fig. 1(c). This label gives rise
to the names of the classes we are looking to infer. We have used a greedy algo-
rithm that suggests that the class label that occurs the most in a particular
cluster is chosen as the class name. As our evaluation in Sect. 4 shows, this sim-
ple approach yields good results. In the case of clusters that contain individuals
without rdf:type statements a special label, “Unknown” is used as the inferred
4 Is the opposite of a similarity.
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cluster label. One might then use the inference semantics of RDF graphs to infer
the RDF typing information in cases where such information is not available.
Finally, in cases where the clustering approach gives rise to different clusters
that partition individuals of the same type, the technique will have to choose
which cluster to use to infer a description for that class. A cluster with more of
the individuals with that rdf:type stands a better chance of containing sufficient
information that can guide the development of a schema, therefore the technique
prefers such a cluster. We discuss this case in our evaluation in Sect. 4.3. To sum
up, cluster labels represent the names of possible classes that organise data in
an RDF source; examples are Student and University as shown in Fig. 1(c).

Class Properties. The formal definition of an RDF triple (see Sect. 2) suggests
that an object could be either a literal, a blank node or a resource. The algorithm
follows a simple heuristic and takes into consideration predicates that are liter-
als to annotate a discovered class with its attributes. However, often resources
have predicates that point to blank nodes. In such cases the algorithm considers
blank nodes as evidence for identifying multi-valued or composite attributes for
our ER model representation, as depicted in Fig. 1(d). We have also observed
that the RDF model does not restrict resources, that are instantiations of the
same class to have the same number of attributes. For example, a resource that
is an instantiation of a class Student could use only predicates {firstName, last-
Name, registeredTo, homePage} whereas another resource could be described
using just {firstName, lastName, homePage}, omitting registeredTo. So as not
to miss any attributes the algorithm takes the union of the predicate labels in the
cluster as the list of identified attributes. For example, the Student class could
have attributes {firstName, lastName, registeredTo, homePage}. In addition,
this phenomenon of missing attributes could be due to cases of specialisation/-
generalisation relationships. With this reflected upon the instances the algorithm
chooses to union the properties identified in each cluster.

Class Relationships. To infer relationships between our identified class labels
we observe predicates that are URI-links to other resources rather than literals.
Simply put, we follow the heuristic: an RDF triple that is a URI-link rather than
a literal is a candidate relationship, and it is a relationship within the RDF graph
if it refers to another entity within the same RDF graph. For each identified class,
by observing the predicates of its individuals, we extract all predicates that are
candidate relationships according to our heuristic. This provides the algorithm
with enough information to identify relationships for inferred classes.

3.4 Schema Constructs

The simple Entity-Relationship (ER) conceptual model is expressive enough to
model our inferred schema, and we have used a simple set of mapping rules,
to express our inferred structure using ER constructs. As shown in Fig. 1(d),
inferred Classes are modelled as entity types, class properties that consist of sin-
gle atomic values are modelled as atomic attributes whereas ones that occurred
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multiple times are considered as evidence of multivalued attributes and are mod-
elled as such. Any properties that point to anonymous resources (i.e., a BNodes)
are modelled as composite attributes, and finally any properties that point to
other resources are modelled as relationship types. To depict the constructs of
an inferred schema we have used the classic diagrammatic conventions of ER.

3.5 Schema Construction and Serialisation

Finally, having collected enough information to annotate entity types with
attributes and relationships, the algorithm proceeds to infer a structural summary
over the imported RDF source. Figure 1(e) shows a simple schema (represented
as an ER-diagram) that has been inferred from a simple RDF source. To conform
with the context of LD, we have used a simple RDFS vocabulary to serialise the
inferred schema as RDF triples. To the best of our knowledge5 there is no RDFS
vocabulary that captures the constructs of the ER model. Thus, we have created
one and published it using best practises suggested by the Linked Open Vocabu-
laries (LOV) project, and then used it to serialise our inferred schema as an RDF
graph (see Fig. 1(f)). To conclude, we have noticed that there are some attempts
in the literature [4] to map ER diagrams to OWL ontologies. The outcome of our
structure inference technique can be used as an input to such techniques.

4 Empirical Evaluation

In the following, we present the methodology used for evaluating our technique.
To ensure diversity in the LD sources used for the evaluation we distinguish
between two different types of RDF sources: those that have been generated by
a translation from relational databases using a systematic approach (such as the
D2RServer tool [2]) and real-world Linked Data sources from the Web of Data.
We have categorised the sources into two groups according to their generation
method, as in Table 1.

Table 1. Linked Data sources used for evaluation.

Name # triples # classes BNodes generated by

1 cdShop 303 3 Y D2RServer

2 Conference 300 8 Y D2RServer

3 BIRT dba 28.5 k 8 N D2RServer

4 Jamendo 1.1 M 11 N DBTune.org

5 Magnatune 322 k 7 N DBTune.org
ahttp://www.eclipse.org/birt/phoenix/db.

5 Observing the vocabularies listed by the Linked Open Vocabularies (LOV) project:
http://lov.okfn.org/dataset/lov/.

http://www.eclipse.org/birt/phoenix/db
http://lov.okfn.org/dataset/lov/
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The RDF graphs that were used during the evaluation have been manually
downloaded and imported into a local triple store since some of the datasets
were not always accessible and some others were only published as RDF dumps.
For the evaluation of our technique we are looking to investigate whether the
individuals have been assigned to the actual classes according to some ground
truth. In addition, we would like to establish the extent to which our technique
can infer a structural summary of the LD sources by identifying the correct
classes, their properties and their relationships.

4.1 Experimental Methodology and Metrics

As previously mentioned, for each of the following experiments we are looking
to measure (a) how good the clustering solution is at grouping individuals, and
(b) how well the approach has identified the correct entity types, attributes and
relationships.

Quality of Clusterings. For measuring the quality of the clustering, we have
used the FScore measure [14]. This measure required us to manually assign class
labels to each individual to form the gold standard. Having the gold standard we
proceed to compute the FScore measure as follows. For each particular class label
Lr of size nr and cluster Ci of size ni, with nri being the number of individuals
in cluster Ci that belong to Lr, we measure the FScore of this class and cluster,
using,

FScore(Lr, Ci) =
2 × P (Lr, Ci) × R(Lr, Ci)
P (Lr, Ci) + R(Lr, Ci)

∈ [0, 1], (7)

where, P (Lr, Ci) is the precision value defined as nri/ni, and R(Lr, Ci) is the
recall value defined as nri/nr for the class Lr and cluster Ci. The FScore of the
class Lr is the maximum FScore. To understand how good the choice of the deter-
mined clustering solution is we also calculate the overall FScore, using the follow-
ing formula, where |L| is the number of classes and n the number of individuals,
that is,

Overall FScore =
|L|∑

r=1

nr

n
max(FScore(Lr, Ci)) ∈ [0, 1]. (8)

An ideal clustering solution is the one in which every class from the gold standard
has a corresponding cluster where all the individuals of that class made it to the
correct cluster, the higher the FScore the better the clustering.

Quality of Inferred Schemas. To measure how well our technique inferred
schemas for LD sources we measure Precision/Recall and FScore for each of the
ER constructs we are expecting (i.e., entity types, attributes and relationships).
We have manually designed the schemas that we are expecting and compared
them with the derived result. To design a gold standard, in cases that we had
access to, we have observed the SQL schemas that populate a relational version
of the data, otherwise we have just observed the resulting RDF-graphs.
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For entity-types we determine true positives, i.e. entity types needed and
inferred, false positives, i.e. entity types not needed but inferred, false negatives,
i.e. entity types needed but not inferred. For attributes and special types of
attributes (e.g., composite) we determine true positives, i.e. attributes needed
and inferred as attributes to the correct entity type, false positives, i.e. attributes
not needed on an entity type, but inferred, false negatives, i.e. missed attributes.
Finally, for binary relationships we determine true positives, i.e. relationships
inferred between the correct entity types, false positives, i.e. relationships incor-
rectly inferred between entity types, and false negatives, i.e. any relationships
missed.

Before discussing the results of our experiments, note that in the descrip-
tion of the clustering algorithm in Sect. 3.2 the termination condition of the
algorithm depends on what the algorithm considers as the minimum similarity
value for which a pair of clusters is considered as a candidate for merging. Thus
before discussing any results on measuring the effect of our schema inference
technique we elaborate on the choice of the minimum similarity value for merg-
ing and then we elaborate on the choice of the cluster-to-cluster similarity scheme
(i.e., average, single and complete linkage). For the experiments Sects. 4.3 and 4.4,
we have used as in Sect. 4.2, values for the above parameters that we have empir-
ically determined.

4.2 Determining Parameters

Min. Threshold for Merging. As explained in Sect. 3.2, the clustering algo-
rithm clusters together individuals with similar features. At each iteration the
algorithm selects the most similar pair of clusters to be merged. To characterise
that a pair of clusters is similar enough to be merged we have used a threshold
t, which is the minimum similarity value a pair of clusters should have, to be
considered as a candidate for merging. In this section we elaborate on the choice
of t, by observing its effect on the maximum average silhouette width, and thus
on the quality of the clustering. In doing so we have run the algorithm with
different values for t, iteratively increasing its value by 0.1 until t = 1.0. This is
shown in Fig. 3 where we have run our experiment using sources 1, 2 and 3 from
Table 1. As t varies closer to 1.0 the algorithm becomes stricter in the choice of
clusters to be merged. This means that individuals that are not similar enough
remain unclustered, thus causing the average silhouette width to decrease, for
the reason that most of the individuals remain in their singleton clusters. This
is reasonable since, from the definition of the silhouette coefficient [11], single-
ton clusters have a silhouette value of zero. Such drops are shown in Fig. 3 for
sources 2 and 3 when t is around 0.4 and 0.5 respectively. The values of the max.
average silhouette width seem to remain constant for choices of t closer to 0, for
the reason that the algorithm is more flexible in merging clusters that are not
so similar. Varying t closer to 0 allows more merge steps, thus more iterations
until termination. For each merge step the algorithm calculates the maximum
average silhouette width overall for the clustering, and therefore changing t does
not always have an effect on choosing the maximum ASWoverall.
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Fig. 3. Choice of t and its effect on the maximum average silhouette width.

Furthermore, in cases where most or all of the individuals from each class
are using the same or almost the same set of predicates the choice of t does not
seem to have any real effect, as in source 1. Because of the diversity of the data
in the sources we cannot be very strict on the choice of t, however from this
simple experiment it seems reasonable to choose a value for t to be in the range
of [0.4–0.5], therefore for the experiments to follow we choose t = 0.5.

Linkage Schemes. To complement our experiments on how good the clus-
tering solution is, we have empirically observed the behaviour of the clustering
algorithm using different linkage schemes for measuring the similarity between
clusters (as mentioned in Sect. 3.2). For each of the RDF sources in Table 1,
we have run the clustering algorithm and observed the effect of using a differ-
ent scheme on the value of the silhouette coefficient. As shown in Fig. 4, in most
cases the different schemes co-occur in identifying the number of clusters with the
exception of complete linkage. As depicted in Fig. 4(b), using complete linkage
the maximum average silhouette coefficient occurs when the number of clusters
is 14 where the real number of clusters in the dataset is 9. On the other hand
the alternative approaches are closer to identifying the real number of clusters.
For our purposes it seems reasonable to choose single or average linkage because
of their similar results, and in practise we have used the average linkage as the
default linkage scheme.

4.3 Experiment 1: Reverse Engineering

Relational databases played a key factor in expanding the LOD cloud as a source
for a large number of RDF triples. Tools like the D2R-Server [2] have been
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Fig. 4. Shows for each cluster similarity scheme, the top 10–20 occurrences of mean
silhouette coefficient. x-axis shows the number of clusters in each clustering and y-axis
the corresponding silhouette coefficient.
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essential in providing a standardised way of exposing relational databases as LD
sources on the Web. However, such datasets lack the organisation of a schema as
previously existed in the relational database. With this experiment we are look-
ing to demonstrate the effectiveness of our technique by reverse engineering the
schema of some RDF sources that have been generated from a relational data-
base (see Table 1). Before determining how well our technique inferred a schema,
we would like to gain some insights regarding the quality of the clustering deter-
mined by the algorithm. This is important since our technique aims at looking
for recurring patterns from the clusters formed, in order to infer the structure
of the source. Figure 5(a) shows the result for a small dataset with only a few
class labels. The algorithm has successfully assigned individuals to the correct
clusters except those from the Category label. This was done intentionally by
the algorithm since all instances of the Category class are represented as blank
nodes in the RDF source. This evidence has been treated by the algorithm as a
composite attribute, in our ER-model representation. This does not mean that
the algorithm has missed the individuals of the Category class, instead, know-
ing the existence of a composite attribute we can easily formulate a SPARQL
query to populate data from the Category class (e.g., Listing 1.2). The same also
happened in Fig. 5(b) with a source that has more labels, however in this source
some instances have not been classified in the correct classes. This is because
the particular source has instances of different classes that use the same pred-
icates. For example, Researcher and PhDStudent share {firstName, lastName,
address, homePage}. Figure 5(c) shows the results for an RDF source with no
blank nodes. The silhouette coefficient determined 17 clusters instead of 8 and
therefore some individuals have not been assigned to any cluster, or individu-
als of the same type have been partitioned into several clusters. The choice of
17 clusters has been determined by the highest ASWoverall. For 17 clusters the
average silhouette width is 0.976 and the second best, suggesting just 8 clusters
is 0.960. However, the effect of the clustering produced by the SC does not influ-
ence the post-processing tasks downstream and as such the algorithm manages
to get good results for the inferred structural summary (see Table 2).

Fig. 5. Quality of the clustering solution.
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To conclude this experiment, we observe how the quality of clustering influ-
ences the final inferred schema and the judgement of the algorithm in deter-
mining the schema of the source. Using the metrics described in Sect. 4.1 to
evaluate the effectiveness of our technique, the results are presented in Table 2.
For each of the sources we have compared the inferred schema results with the
gold standard. The important observation is that the technique managed to infer
a structure as expected with minor fallouts that influenced the performance.

Table 2. Evaluation of schema inference technique: (ET): Entity Types, (AT):
Attributes, (R): Relationships

cdShop Conference BIRT db

ET AT R ET AT R ET AT R

Precision 1 1 1 1 1 1 1 1 1

Recall 1 1 1 1 0.90 0.86 1 0.92 0.86

FScore 1 1 1 1 0.95 0.92 1 0.96 0.92

In more detail, we have noticed that in all cases the algorithm manages to
infer all the entity types (i.e., classes) that where expected. For classes that have
resources as BNodes the algorithm creates a special type of attribute instead,
thus we do not classify them as false negatives. Some instances translated from
relational tables have NULL values in some of their attributes. Thus, there are
cases where the algorithm misses some attributes. Regarding the identification of
relationships between classes, the algorithm performs well. We have only noted
some false positives in cases where classes participate in a class hierarchy. The
algorithm is not aware of this and, therefore sometimes misplaces some of the
relationships between different classes that participate in is-a relations. How-
ever, still the results are promising. We understand the diversity of LD sources
in terms of representing data with different structures and terminologies, how-
ever, our prototype technique performed well in terms of inferring the structure
of RDF sources that previously represented data as relational tables.

SELECT DISTINCT ?o ?category
WHERE {

eShop:CdNo9 eShop:category ?o .
?o eShop:name ?category .

}
Listing 1.2. Explore Category class triples.

4.4 Experiment 2: On Sources from the Web of Data

We repeated the previous experiment on real sources from the LOD cloud that
were not generated from existing schemas. For this experiment we have chosen
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LD sources from DBTune.org namely Jamendo and Magnatune. Figure 6(a)
shows the result from inferring the schema for Jamendo. In this source we
have observed that some URI resources do not have any rdf:type statements
therefore they have been classified as elements of our specialised “Unknown”
class. Without any RDF typing information the label of the class cannot be
determined. In such cases our technique creates several clusters labelled with
the “Unknown” label. As already mentioned, the inference semantics of RDF
graphs could provide an insight as to what could be a possible class label for our
“Unknown” classes. Nevertheless, despite the lack of class label information the
algorithm managed to infer the relationships and attributes for the “Unknown”
class. Although this class has been inferred by the algorithm during our evalua-
tion, we have considered it as a false positive, hence the decrease in the measures
for Entity Types. Similarly, the relationships identified for the “Unknown” class
are considered as false positives. This does not mean that the technique failed
to determine the relationships as it should have, but it was unaware of the
actual classes that participate in the relationship. Similarly, Fig. 6(b) depicts
the results of running the algorithm over Magnatune. According to the gold
standard designed for this source, the algorithm correctly inferred a structural
description of the source as expected. We have noticed that, overall, the schemas
of LD sources normally use a few classes to describe their resources and that the
algorithm can perform well in inferring structural summaries over published LD
sources.

Fig. 6. Evaluation of schema inference technique.

5 Related Work

As already mentioned, the widespread adoption of the RDF model has led to an
emerging need to access data from various heterogeneous and distributed data
sources. Since the data are distributed, and due to the schema-less nature of
the model, efficient retrieval of the data is a challenging task. In fact, several
challenges contribute to this, some of which are: (i) the challenge of locating
which datasets could possibly contribute answers to a given query, (ii) the lack of
a comprehensive instance-level summary of the data, and (iii) scalability issues.
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One approach to this challenge is based on materialisation, where a complete
replica of the RDF graphs is stored in a central triple-store which is then used for
query answering. However, such a central store assumes that the data remain
static or evolve slowly, and that the most current version of the data is not
required. Moreover, with the current size of the LD cloud, with more than 62
billion RDF triples6, maintaining a replica is resource intensive, and the lack
of an intensional description of the data makes query formulation a challenge.
In this section we summarise ongoing research on proposals for solving some of
the challenges related with efficient data management in the LOD ecosystem.
We begin by discussing related work on locating datasets that can possibly
contribute answers to a query, discovering RDF-specific schema knowledge from
datasets and finally proposals on distributed query processing. We then position
our work in relation to other proposals for discovering knowledge that can inform
the formulation of SPARQL queries over a given RDF source.

On Source Discovery. There has been some recent research on source selection
that provides summaries or descriptions of the RDF triples that can be found
in LD sources using index structures [13,21]. We refer to these as triple-level
summaries. An example of such work is SchemEX [13], which uses a stream-
based approach for extracting schema information from RDF triples that are
traversed from an RDF graph using a fixed-window. The extracted schema is
then used to guide the construction of an index structure by linking schematic
information to relevant datasets. Given a SPARQL query, SchemEX performs
a lookup in the index structure to find which datasets contain instances of a
specific RDF schema concept that can contribute to answering the query. As
such, SchemEX aims to deal with the challenge of providing a summary of the
kind of triples that can be found in a data source. By contrast, our work focuses
on inferring a summary of how individuals are organised in a single source that
can be used for query formulation, rather than on using the extracted schema
for constructing an index that is used for relevant source discovery. In addition,
both our approach and SchemEX utilise RDF typing information at the instance-
level, aim to support query execution, and model the outcome of the extraction
processes as RDF triples.

Harth, et al. [8] propose the use of an approximate multidimensional indexing
structure (i.e., QTrees) as a data summary for determining which sources can
potentially contribute answers to a query. The construction of an index struc-
ture is made possible by applying hash functions over the individual components
of RDF triples (subject, predicate, object) contained in the datasets, to obtain
data points that correspond to a three-dimensional QTree. A certain set of sim-
ilar triples is then approximated by minimal bounding boxes (MBBs). At query
time a set of MBBs is returned for each triple pattern in the query that suggest
relevant sources that can contribute to the query result. Our work differs from
the above approach since we would like to have an understanding of how con-
cepts are represented in the sources and not a summary of what triples exist in
which source. Thus the emphasis in [8], as exploited in [17], is on providing an
6 http://stats.lod2.eu/.

http://stats.lod2.eu/
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instance-level summary that can inform efficient query evaluation, whereas the
emphasis in our work is on providing a schema-level summary that can inform
data integration.

On Knowledge Discovery and Ontology Mining. In a complementary app-
roach, Zong, et al. [24] explored a method to dynamically generate a concept
hierarchy using LD sources from the bio-medical domain. In doing so, their
method utilises RDF typing information at the instance-level and builds upon
hierarchical clustering. This is similar to our technique where a pre-processing
step is necessary for determining the similarities between pairs of individuals
using a distance function. The pair-wise similarities are then used as an input to
the clustering step (as in Sect. 3). A similar work-flow is followed by their tech-
nique, where the similarity between a pair of individuals is measured over the
predicate values that are URIs, whereas our technique computes the similarity
by considering the local names of all predicates that are used in either RDF-links
or literal triples. Despite the similarities, their approach builds on sources that
use a single ontology to organise data, and is restricted in terms of dynamically
identifying relationships between the inferred concepts, whereas in our proposal
the discovery of domain/range axioms is made possible; captured as entity type
relationships.

Another example of relevant work is from Völker, et al. [22], on mining ontolo-
gies from RDF data, an approach referred to as Statistical Schema Induction.
In contrast to our technique that builds on clustering, their approach mines
association rules from RDF data sources to acquire schema-level knowledge.
Association rules that satisfy a user-provided confidence threshold contribute to
the construction of the ontology. In our technique, the silhouette coefficient is
used (as described in Sect. 3.2) to determine the clusters to be considered when
inferring structural summaries. Finally, resources need to explicitly provide some
RDF typing information for their approach to work. Although this is also useful
for our technique, our approach is not as restricted since it organises resources
into groups despite the existence of rdf:type statements and looks for recurring
patterns that can guide the development of a schema.

Distributed Query Processing. Having an understanding of a schema can
also support Distributed Query Processing (DQP) over RDF sources. DQP
requires an understanding of how concepts are represented, but such information
is typically not available for LD sources. Quilitz and Leser [19] propose DARQ, an
engine for federated SPARQL queries. Transparent access to multiple SPARQL
endpoints is provided by making use of hand-crafted source descriptions that
summarise the URIs of RDF properties that are used by the source to describe
the data. Our technique can provide similar structural summaries automatically.
Rather than using indices of the content of each RDF source or statistical infor-
mation (e.g., VoiD) FedX [20] does not require any metadata upfront; instead, it
uses SPARQL ASK queries for source selection at query time to annotate triple
patterns in the query with relevant sources, and relies on join order heuristics
for efficient SPARQL query processing over several LD sources. Our approach
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suggests that structural summaries that can be used to inform query formulation
can inferred automatically.

6 Conclusions and Future Work

This paper described a technique that uses a hierarchical agglomerative cluster-
ing approach and a set of simple heuristics to determine a structural summary
over RDF sources, with the aim of informing query formulation and supporting
query processing over LD sources. We have shown that having a schema for an
RDF source that can be inferred automatically does not contradict the schema-
free nature of RDF sources. The flexibility of the RDF model is preserved since
we are not forcing the data to adhere to any specific structure; the data are
just used to guide the creation of such structural summaries over the sources.
In addition, having a structural summary over LD sources aligns with recent
trends on publishing datasets that are annotated with metadata, such as VoID
descriptions. We propose to organise individuals into clusters which can then
used to search for recurring patterns, with the aim of inferring structural sum-
maries over LD sources. Our empirical evaluation over sources that have been
constructed from a direct translation from relational databases as well as on
real sources from the Web of Data validated that our technique generates good
results.

While our results are promising, there remain several challenges to be further
explored. In the following we attempt to highlight some of these challenges along
with possible solutions on how to improve our structural inference technique:

Identification of class hierarchies. Our evaluation revealed two cases where
it might be possible for the approach to determine subsumption relations. Dis-
covering class hierarchies can be an important feature of the approach, we discuss
it here with an abstract example however we leave this feature as a potential
future work. Let us assume the existence of a single cluster c1 that does not
overlap with any other cluster and that the set of individuals of c1 suggest more
that one class label for the cluster. This might be possible when individuals,
that potentially belong to different concepts, end up in the same cluster c1 for
the reason that they are using the same set of predicates to describe their data
but have different RDF typing information. Another possible case for observing
potential subsumption relations is when clusters overlap. Assume the existence
of two overlapping clusters c1 and c2, where, some individuals belong to both
clusters, this is the set given by their intersection c1 ∩ c2. Potentially a simple
heuristic based on counts can determine is-a relations, we leave this feature
and its evaluation as a possible future direction for improving the presented
technique.

Lack of RDF typing information. It is often the case that RDF sources do
not explicitly state rdf:type information for every resource that appears in the
source, in fact, there might exist cases of RDF sources which entirely neglect such
information. As previously discussed, RDF typing information is useful for our
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technique, however, the lack of such knowledge causes the technique to assign the
specialised “Unknown” label to discovered classes. Ideas to discover additional
knowledge that can assist our approach into discovering a suitable class label
in such cases are, among others, (i) to utilise the inference semantics of RDF
sources with the use of a reasoner [15] that is used over the explicitly stated
RDF data to reveal more knowledge, including RDF typing information, that
could be utilised by our technique, and (ii) to take advantage of the dereference
capabilities of predicate URIs to obtain access to their semantics as specified in
semantic web ontologies described in RDFS/OWL. For instance, the semantics
of rdfs:domain as appeared in the definition of properties can suggest that a
particular instance is a member of some class. Further investigation of these
proposals is left as a future work.

Distance function. In Sect. 3.2 we discuss a simple distance function based
on the use of Jaccard similarity over localnames of predicates to determine the
pairwise similarities between individuals. There might be cases where localnames
alone provide insufficient knowledge for suggesting a similarity between a pair of
candidate descriptions. In the simplest case of introducing typos in localnames
the current distance function will not be able to determine any similarity. For
example, the Jaccard similarity between {firstName, lastName, homePage}
and, {frsName, lstName, hmPage} produces zero, which is unacceptable. It is
also quite frequent in complex LD sources that predicates from different vocab-
ularies are using identical localnames. Such cases will cause our distance func-
tion to derive a misleading conclusion on judging that they are identical. The
design of a distance function that overcomes such weaknesses is desirable. This
is important for our approach since the pairwise similarities are the foundations
on which the clustering algorithm is making its decisions; into forming the right
clusters that will then give rise to possible classes, properties and relationships.
An improved distance function can perhaps consider several sources of evidence
for judging the similarity of a pair of individuals. A possible suggestion is to
take into account the predicate values of triples that are RDF-links (i.e., triples
that their object’s values are URIs). Again, in cases where is possible, derefer-
encing predicate URIs may reveal additional semantic evidence that could be
used as additional knowledge for judging their similarity. Finally, to deal with
typos a syntactic distance metric such as edit-distance could be used. We leave
the design of an improved distance function that considers the above suggestions
and its evaluation as a future direction.
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Abstract. The expansion of the Web and of our capacity of producing
and storing information have had a profound impact on the way we orga-
nize, manipulate and share data. We have seen an increased specialization
of database back-ends and data models to respond to modern application
needs: text indexing engines organize unstructured data, standards and
models were created to support the Semantic Web, Big Data require-
ments stimulated an explosion of data representation and manipulation
models. This complex and heterogeneous environment demands unified
strategies that enable data integration and, especially, cross-application,
expressive querying.

Here we present a new approach for the integration of structured
and unstructured data within organizations. Our solution is based on
the Complex Data Management System (CDMS), a system being devel-
oped to handle data typical of complex networks. The CDMS enables a
relationship-centric interaction with data that brings many advantages
to the institutional data integration scenario, allowing applications to
rely on common models for data querying and manipulation.

In our framework, diverse data models are integrated in a unifying
RDF graph. A novel query model allows the combination of concepts from
information retrieval, databases, and complex networks into a declarative
query language that extends SPARQL. This query language enables flex-
ible correlation queries over the unified data, enabling support for a wide
range of applications such as CMSs, recommendation systems, social net-
works, etc. We also introduce Mappers, a data management mechanism
that simplifies the integration of heterogeneous data and that is integrated
in the query language for further flexibility. Experimental results from real
data demonstrate the viability of our approach.

Keywords: Query model integration · Data integration · DB/IR
Integration · Graph data models · Graph query languages · Complex
data

1 Introduction

Digital data availability has grown to unprecedented levels and surpassed our
capacity of storage and analysis. This has led to the Big Data and NoSQL
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movements, aiming at tackling the increasing demands for scalability. A parallel
development regards the proportional increase in data complexity. Capturing
and processing greater amounts of data produces information that is correlated
in diverse and intricate ways. Furthermore, recent developments in processing
power, modeling, and algorithms enable the implementation of systems that
better explore the increased complexity of data. All these factors influenced and
enabled the dissemination of social networks and initiatives like the Linked Open
Data1.

Realizing the potential of the relationships inside the interconnected data
and developing the means for their analysis fueled the development of the areas
of complex networks [11] and link mining [14]. Related techniques have been
applied in several scenarios, such as systems biology, neuroscience, communica-
tion, transportation, power grids, and economics [10].

In this article we aim to show how the focus on relationship analysis is impor-
tant for institutional data and applications. Assessing properties of how data
is correlated is the basis for several tasks, such as document retrieval, item
recommendation and entity classification. We, therefore, advocate the vision
that institutional data can be seen as a big complex network and, most impor-
tantly, several modern and commonplace applications can be specified in terms
of link analysis tasks. A unified, relationship-centric framework for data and
applications can enable a new level of integration, encompassing data from
diverse sources (e.g. structured and unstructured) and applications (e.g. informa-
tion retrieval, machine learning, data mining). This application-level integration
allows developers to rely on common models for data interaction, simplifying
development of applications with information needs that span multiple querying
paradigms.

Institutional data and applications have, however, several requirements that
make it hard to apply link mining techniques directly. The size of the data, its
dynamic nature, and heterogeneity are not considered in traditional approaches.
The focus of complex network techniques is typically on homogeneous networks
with a single type of relationship (e.g. social networks), employing off-line algo-
rithms to assess snapshots of the data. Modern applications, on the other hand,
favor online access to subsets of the data, and must handle data heterogeneity
seamlessly.

Here we introduce the Complex Data Management System (CDMS), which
aims at providing query-based interaction for complex data. The proposed query
model allows users to specify information needs related to the topology of the
correlations among data. It also offers management mechanisms that are more
adequate to the increased importance of the relationships in the data.

The increased expressiveness in the new framework provides a better match
to the requirements in the described institutional settings. The online query
mechanism allows the composition of queries that explore diverse aspects of how
data is correlated. This not only allows the same query model to be used in
diverse application scenarios, but also allows queries that encompass concepts

1 http://www.w3.org/standards/semanticweb/data.

http://www.w3.org/standards/semanticweb/data.
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from multiple paradigms and data sources, such as in queries like “retrieve docu-
ments related to the keyword query ‘US elections’ and the topic politics, written
by democrat journalists, ranked by relevance to the keyword query and reputa-
tion of the author”.

To enable this type of interaction, the underlying institutional data must
be integrated. Here we describe how we are fostering web standards to enable
the required integration. Once the data is integrated, the CDMS is used to
provide the proposed querying infrastructure. To tackle the integration of data
models, we employ an RDF graph that interconnects data from diverse sources
and models. The flexibility of graph models allows easy mapping from otherwise
incompatible models (e.g. unstructured text and structured databases). Figure 1
contextualizes the elements in our proposal: several data sources are integrated
in a unifying graph, which allows our framework to enable a more expressive
interaction between users and data.

Fig. 1. Architecture of a CDMS deployed in a data integration scenario

As for integration at the query and application level, we acknowledge the
importance of the Information Retrieval (IR) and Databases (DB) fields – which
dominate data-driven applications in current settings – and describe how our new
query model, which leverages complex network analysis, unifies concepts from
these areas. To enable our query model over the unifying graph, we reinterpret
querying concepts from diverse areas into graph analysis tasks. We implement
this model in a new query language called in* (in star), which is an extension
grammar for existing languages such as SPARQL.
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We also address architectural issues related to the integration process, intro-
ducing the concept of mappers, which aim at simplifying relationship manage-
ment. Mappers are similar to stored procedures in databases, triggered when
nodes are created to carry customized tasks such as adding appropriate rela-
tionships or even other new nodes. Our mappers are integrated in the query
model for further flexibility.

We aim at contributing towards a more unified and expressive interaction
between users and data through this relationship-centric querying and data man-
agement framework. Experiments with real data are presented to demonstrate
the expressiveness and practicability of our framework.

This paper is organized as follows: Section 2 discusses the new challenges
for the current heterogeneous technological landscape. Section 3 introduces the
Complex Data Management System, which is the basis for our integration app-
roach. Section 4 describes the requirements for data access and model integration
in our framework as well as issues related to query model integration, a funda-
mental concept in our proposal. Section 5 details our integrated query model and
discusses usage scenarios. Section 6 introduces related data management issues
and describes our mapper mechanism. Section 7 demonstrates experiments for
our query language and the use of mappers in scenarios based on a large and
interlinked database of movies. Section 8 contextualizes related work in respect
to our proposal. Finally, Sect. 9 concludes the paper.

2 New Challenges for Institutional Data and Application
Integration

The new scenario of overwhelming accumulation of information has a profound
impact on the way we organize and manipulate data. We have seen an increased
specialization of database back-ends and data models to respond to modern
application needs: text indexing engines organize data on the Web, standards and
models were created to support the Semantic Web, Big Data requirements stimu-
lated an explosion of data representation and manipulation models labeled under
the NoSQL umbrella. This complex and heterogeneous environment demands
unified strategies that enable data integration and, more importantly, cross-
application, expressive querying.

Although data integration has been an active research topic for many decades,
most proposals depart from environments that do not take into account the
modern diversity of technological infrastructures. Federated databases, for exam-
ple, usually adopt the relational model to integrate data sources, with limited
capabilities when dealing with semi or unstructured data. Similarly, in typical
OLAP implementations, the benefits of integration are restricted by the adopted
query model: data analysts may answer complex questions, but there is no direct
benefit to other applications inside the institution. For example, Web develop-
ers cannot leverage the potential of the integration in their implementations of
recommendation systems because they typically work on very different query
models. Similar issues also appear in other contexts, such as the Semantic Web,
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which brings great benefits for data integration but querying capabilities do not
match the diversity of Web applications.

A level of integration that covers a wide range of data models and, more
importantly, data query models would not only allow applications to incorporate
more relevant information, but would also allow more expressive queries that
combine elements from different querying paradigms. For example, consider the
following queries:

– retrieve documents related to the keyword query “US elections” and the topic
politics, written by democrat journalists, ranked by relevance to the keyword
query and reputation of the author;

– retrieve employees relevant to a given project ranked by their reputation
among peers;

– retrieve profiles of people over 30 years old, ranked by similarity of hobbies on
their profiles to hobbies on my own;

– retrieve products not yet purchased by the client Bob that are relevant to him.

These queries cover a broad range of data models (e.g. unstructured docu-
ments, relational, graph) and applications (CMSs, social networks, recommen-
dation systems). The queries also combine concepts from diverse query models,
such as relational predicates, keywords, ranking, and metrics of relevance and
reputation. These and similar queries show up in many situations in typical
institutions, both for internal, administrative purposes or for Web applications
developed for external use. Answering these queries in current infrastructures
typically demands substantial amount of resources and engineering to design
ad-hoc subsystems.

To provide an overarching approach for querying, data model integration and
query model integration must be tackled simultaneously. Querying is especially
challenging, given the diversity of the data and the complexity of the information
needs. The central observation underlying this article is that these issues can be
mapped into complex network analysis tasks. Several tasks typically associated
with the information retrieval and machine learning fields – including document
retrieval, recommendation, and classification – draw inferences from how infor-
mation pieces are correlated. Even though the correlations are often not explicit,
it is intuitive to consider the data as a graph and notice the importance of the
relationships and the underlying topology for each task. Our hypothesis is that
an expressive query model that can capture topological properties in query time
can be used to integrate these information needs in a single conceptual frame-
work. We aim to show how the CDMS can be used in these scenarios, providing
expressive querying and data management mechanisms that are appropriate to
the heightened importance of relationships in the described scenarios.

3 Complex Data Management

The database framework used in our proposal is being developed to tackle issues
associated with Complex Networks. In a complex network [11], the patterns



The Web Within: Leveraging Web Standards and Graph Analysis 31

defined by the interconnections are non-trivial, deviating substantially from cases
where connections have the same probability (e.g. lattices or random graphs).
The techniques developed for complex network analysis have become important
resources in diverse fields such as systems biology, neuroscience, communication,
transportation, power grids, and economics [10]. These areas deal with complex
structures that requires specific techniques for analysis. In all cases, relationship
analysis is a major aspect for knowledge acquisition. Typically, these structures
generate emergent behavior, which are determined by the complex interactions
among their simple constituent elements.

As a result of increased capacity of data storage and processing, these scenar-
ios have come forth in other areas, such as enterprise data management, our focus
on this paper. A typical institution nowadays stores and processes many textual
documents alongside traditional structured data, communication and transac-
tion records, and fast changing data about market and competition. These data
are highly interlinked, by design or through intricate (and potentially imprecise)
data analysis procedures such as named entity recognition, sentiment analysis,
and recommendation systems.

Our CDMS is aimed at enabling querying and management of what we define
as complex data. Complex data is characterized when relationships are central
to data analysis. In these cases, the graph formed by data entities (nodes) and
relationships (links) present properties typical of complex networks. The CDMS
is aimed at providing adequate support for handling and querying complex data.
It differs from typical DBMSs in four main aspects: (i) data model, (ii) query
language, (iii) query evaluation, and (iv) data management mechanisms. Each
of these items is described below.

– Data model: The data in target CDMS applications typically do not com-
ply to pre-defined schemas. The high number and diversity of the relation-
ships require a model where relationships are first-class citizens. Graph models
are obvious choices in these settings. Their flexible modeling characteristics
enable easy mapping of most types of data. Nodes with immediate access to
neighbors is also an important feature for the type of computation involved.
The CDMS framework adopts weighted edge-labeled property multigraphs to
encode complex data. In this article, we leverage the RDF model to integrate
institutional data.

– Query language: Our CDMS query language is intended to be flexible
enough to allow correlation of data when little is known about how they are
linked and organized. We developed a declarative query language that extends
existing graph languages by introducing ranking based on a set of flexible
correlation metrics. The ranking metrics proposed are: relevance, connectiv-
ity, reputation, influence, similarity, and context. The proposed language is
designed as an extension for existing graph languages. In this article we show
how SPARQL can be extended to enable the new query model.

– Query evaluation: Our abstractions for query evaluation fully support the
query language while allowing for under-the-hood optimizations. We adopt a
variation of the spreading activation (SA) model as our main abstraction for
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query evaluation. The model allows the specification of the ranking metrics
that are the basis of our query language. The SA mechanism is based on
traversing the network from a initial set of nodes, activating new nodes until
certain stop conditions are reached. By controlling several aspects related to
this activation flow, it is possible to infer and quantify the relationships of the
initial nodes to the reached ones.

– Data management mechanisms: Relationship creation is an important
and defining operation for the described application scenarios. For exam-
ple, several text indexing tasks, such as topic modeling, derive relationships
between the text and more general concepts. In machine learning applications,
elements are associated with features or classification categories, for exam-
ple. In our framework, the creation of relationships is encapsulated in map-
pers. Mappers are very similar to stored procedures. What sets them apart are
(i) their integrated use in our ranking queries, and (ii) how they are hooked in
the databases’s API so that any new data that matches the mapping criterion
is passed through appropriate mappers.

The CDMS offers an architecture where relationships are central elements of the
database. It enables queries to tap into properties derived from topological char-
acteristics of the underlying graph. CDMS’s new query model and management
mechanisms allow for new levels of expressiveness for several tasks, simplifying
integration of data from diverse sources and allowing distinct applications to
employ the same query model over the integrated data.

4 Data and Query Model Integration

The level of integration that we aim at requires solutions to three main issues:
(i) unified data access, so that queries have access to all data, (ii) unified data
model, so that queries can reference data from diverse formats; and (iii) unified
query model, so that applications can have a single interface for interaction with
data. This level of integration allows applications to be based on the same under-
lying models to interact with data, what we call application-level integration.

4.1 The Local Unified Graph

Institutions face similar challenges to that of the Web: data produced by diverse
groups in distinct contexts must be integrated to allow for more capable and
outreaching applications. Although several research and products were devel-
oped to address these issues, we argue that revisiting this problem through the
perspective of the new developments in applications and standards of the Web
would allow for a more adequate interaction with modern institutional data.

The Semantic Web initiative has advertised the benefits of treating the
Web as an integrated Giant Global Graph (GGG) [5]. Similar benefits could
be achieved inside institutions by integrating all their data in a Large Local
Graph (LLG). A LLG lacks the diversity and magnitude of the GGG, but it
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allows higher levels of control over data and local processing power, enabling
better semantic integration among distinct data sources and more expressive
querying. Another advantage of creating LLGs is that it facilitates transference
of information to and from the GGG.

The framework proposed here assumes an underlying LLG. Although our
solutions have interesting applications also in the context of the Semantic Web,
we require levels of integration and processing power that are not currently
available for the GGG. We, therefore, focus on institutional data but expect
that in the future technological advances would allow similar interactions in a
broader context.

A LLG is meant to integrate a broad range of data from an institution.
Aggregation of external data from the GGG would also be important in many
scenarios. Integrating data across domains and models is important to allow rich
correlation queries between diverse data elements. The graph model is suiting for
this scenario. Its simplicity and flexibility allows the representation of most of the
popular data models [3,6]. Figure 2 shows a graph containing data derived from
documents and relational databases (more details on the mapping in Sect. 4.2).

Here we employ the RDF(S) model for the LLG for several reasons: it is a
stable and popular model, it implements a flexible graph model, classes facilitate
the mapping of other models (e.g. object, relational), integration with other
standards (e.g. URI, XML), standardized query language (SPARQL), simplified
data sharing, etc.

It is important to emphasize that the strategy to create the unified graph
is environment-specific. Although we provide general guidelines on how data
should be represented as nodes and edges, our framework assumes the data are
converted and interlinked in a coherent graph. What we want to show in this
paper, and our main contribution, is that popular query models can also be
translated into graph concepts, employing graph analysis in query processing.
To take full advantage of the model, users should be aware of the semantics of
the elements composing the graph. In that regard, our strategy is similar to an
OLAP environment, in which the query model assumes data are integrated in a
multidimensional schema – according to whichever strategy is adequate for the
specific environment.

4.2 Data Model Integration

There are several alternatives for mapping a given data model into graphs.
Although our framework works independently of the strategy adopted, we
provide guidelines on basic transformations of typical models.

Here we focus on the integration of text documents and the relational model.
The mapping for other models, such as semi-structured or NoSQL variations,
can be derived by similar approaches. There are several alternatives for map-
ping a relational scheme to an RDF graph [3,6]. There is even a W3C working
group2 to define standards for these mapping languages. Here, to simplify the

2 http://www.w3.org/2001/sw/rdb2rdf/.

http://www.w3.org/2001/sw/rdb2rdf/
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discussion, we assume that (i) table descriptions become RDF classes, (ii) rows
become instances of their respective tables, with their primary keys as identi-
fiers, (iii) columns become properties of the instances, with values corresponding
to literals and foreign keys becoming explicit links to other instances.

Graph representation of documents for IR purposes is also possible. An
inverted index (in the bag of words model) can be readily mapped into a graph
that connects terms and documents. More modern schemes to index documents
such as topic models [8] and explicit semantic analysis [25] also fit nicely into
this strategy, bringing the benefits of reduced dimensionality (i.e. avoiding cre-
ating an unnecessarily large graph containing entire postings list), less semantic
ambiguity, and more cognitive appeal.

In our framework, a keyword query is also represented as a (temporary)
node in the graph. The same indexing strategy used for the stored documents is
applied to generate the relationships of the query node (Fig. 2). This graph rep-
resentation of keyword queries allows them to be expressed alongside structured
predicates in the queries (Sect. 5.3).

To simplify data management in the complex integrated graphs, our frame-
work introduces mappers. Mappers play an important role in data model
integration, being the mechanism that encapsulates the creation of relationships
between elements of the graph.

Fig. 2. Data elements represented as a unified graph

Figure 2 shows a simplified example to illustrate diverse elements represented
as a unified graph. News articles about products are mapped into entities accord-
ing to mappers that implement an indexing/annotation technique (e.g. topic
modeling, named entity recognition, etc.). A keyword query is likewise mapped
into these entities, using the same mapper in query time. Relational data from
tables (Project, Employee) are also mapped into nodes in the graph and also
connected to the entities. More details on the use of mappers to bridge data
models are presented in Sect. 6.
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4.3 Query Model Integration

Data access and model integration brings many benefits to institutions, pro-
viding a unified path for interaction with data. This interaction is, however,
usually constrained by the data model and the query language employed for the
integration. For example, in a typical OLAP setting, data are integrated in a
data warehouse, but no direct benefit is gained by applications such as institu-
tional search engines. The problem is that there is a conceptual gap between the
interaction language in the integration infrastructure (OLAP) and the languages
used by the applications (keyword queries, SQL, etc.).

Our query model, on the other hand, is built on the assumption that inte-
gration should begin at the query or application level. The goal is to specify
a query model that can express concepts from diverse interaction models in a
unified and intuitive way. We focus on the applications related to the areas of
databases, information retrieval, and complex networks (Fig. 3). Our model can
also be used in machine learning tasks, as discussed in [16].

Fig. 3. CDMS in the intersection of multiple areas

The two main groups of models for data driven applications today are those
associated with Information Retrieval and Database Systems. It is natural that
these two areas attained such distinction over the last decades. They together
cover a broad range of the data structuring spectrum – from unstructured data
in documents to structured data in relations. Typical applications in IR include
search engines, recommendation systems, social networks etc. Applications tak-
ing advantage of DBMSs are ubiquitous, being through traditional relational
databases or the more recent models for document databases, XML and semi-
structured databases, graph databases and the NoSQL movement.

Complex networks, which have gained strong momentum in the last decade,
is the third area completing our picture. Complex networks, whose techniques
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are often applied in typical IR and DB tasks, is an important area to cover in
an integration framework. More importantly, we consider complex networks a
fundamental piece to establish the basis of the integrated framework. To specify
a query language that could be used in such a diverse scenario it is important
to unify characteristics of the different interaction models.

Keyword queries and ranking are important concepts from IR, as other inte-
gration approaches have identified [2,9,33]. Significant research efforts have been
dedicated to enable efficient ranking and keyword queries in a wider range of data
models (e.g. relational, XML). In databases, declarative languages offer effective
means for online interaction with data. Furthermore, the declarative approach
offers opportunities for transparent query optimization. Complex networks offer
a range of techniques to assess important characteristics of the data based on
the underlying connections. These techniques are employed in diverse scenarios,
such as the use of relevance metrics (e.g. HITS, PageRank) for IR purposes.

Here we defined a query model that embodies characteristics from all the
discussed areas, providing a declarative query language that can express struc-
tured predicates, keyword queries, network topology-aware metrics, and compose
results (optionally) as ranked lists. The challenge is to enable all these features
over the unified graph model (LLG) presented.

Declarative querying and traditional database concepts like selections, pro-
jections and aggregations are already provided by RDF query languages such as
SPARQL. The remaining issues are related to enabling IR-like ranking
metrics that now have to be reinterpreted in an RDF graph setting. To enable
this extended querying mechanism, we reinterpret this topology-aware metric in
a common graph processing model that we call Targeted Spreading Activation
(TSA), described in the following section.

5 Ranking Metrics and Language Integration

Correlating data is an important and defining characteristic for many of the
applications we want to cover. To enable a high level of flexibility for correla-
tions, we specify a set of ranking metrics which are influenced by information
retrieval applications and complex networks concepts. The selection of the spe-
cific metrics aims at covering a wide range of applications while also being simple
to use and understand. In the process of defining these metrics, we started with
some popular metrics used in IR and then expanded the set according to the
applications we wanted to cover. The set of metrics we define can be organized
in the taxonomy presented in Fig. 4.

The basis of our taxonomy is the concept of comparison. Our metrics are
meant to compare elements in the graph and generate a score that represents
the strength of the association. The peculiar aspect about our metrics is that the
scores are generated based on analysis of the topology of the graph, in contrast
to most ranking approaches that are based on attributes of the elements.

There are two main groups of comparisons. Set comparisons corresponds to
comparisons among elements from a finite set. Reputation and Influence are the
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Fig. 4. Taxonomy for the adopted ranking metrics

metrics in this category. They assess, using different strategies, how well a node
performs as a hub for information. The definitions of the metrics, as well as
details on their interpretation, are presented in the next section.

Pair comparisons are applied to individual pairs of nodes. They assess prop-
erties of the topology surrounding or connecting the two nodes. The similarity
and context metrics, classified under contextual comparison, assess the common-
alities in respect to elements (nodes or relationships) surrounding the compar-
ing nodes. Relevance and connectivity, classified under reachability comparison,
assess properties of the paths interconnecting the comparing nodes.

As far as we know, this is the first time that these metrics are considered and
defined under the same conceptual framework. These metrics express cognitive
processes or patterns that we use to assess correlation of entities in the real
world, and which are the basis of many data-driven applications, as we intend
to portray along the text. We now describe our metrics and define them from a
graph analysis perspective.

5.1 Graph Interpretation of the Metrics

The translation of the ranking metrics to the unified graph strategy is a chal-
lenging task. Here we adopt a Spreading Activation (SA) [12] model for our novel
interpretation of the metrics.

The Targeted Spreading Activation Model: Spreading Activation (SA)
processes [12] were developed to infer relationships among nodes in associative
networks. The mechanism is based on traversing the network from an initial
set of nodes, activating new nodes until certain stop conditions are reached. By
controlling several aspects related to this activation flow, it is possible to infer
and quantify the relationships of the initial nodes to the reached ones.
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This simple model has the fundamental requirements for the type of corre-
lations we want to provide for complex data:

(i) it can derive correlations among any two sets of initial nodes and destination
nodes; This is important to enable modeling of several correlation metrics,
as described in Sect. 5.1.

(ii) the final value of the correlations decreases as the length of the contributing
paths grows; This reflects the intuitive perception that closer elements are
more correlated. The model allows tuning of this characteristic through a
parameter for potential degradation.

(iii) the degradation of the potential imposes boundaries to query processing;
(iv) it can be implemented as graph traversal patterns [27]; The processing of

these patterns are centered in origin nodes, resulting in localized processing.
The computation of these patterns requires less memory than global ranking
metrics such as PageRank and HITS. This type of computation is supported
by several graph database systems3.

We tweak the basic SA model by adding mechanisms to (i) adapt the process to
the labeled graph model used, (ii) consider relationship weights, (iii) add a more
strict and predictable termination condition, and (iv) make the process aware
of the target elements. The last point is key to the semantics of the SA process
for querying complex data and also to improve optimization opportunities. We
named the proposed SA variation as Targeted Spreading Activation (TSA).

The TSA model used here is defined by the parameters G, N , I, O, a, t, d, c,
l, and dir described, alongside other definitions, in Table 1. A TSA process starts
with origin nodes initially activated with potential a. Output potentials for each
subsequent node are calculated by the function O. The output potential is spread
through all relationships whose labels are in l that follow directions in dir. The
potential for the reached nodes is calculated by function I. For the next iteration,
the potential is spread to subsequent nodes, restarting the process, as long as
the potential for reached nodes is higher than t and the number of iterations is
lower than c.

Although simple in its definition, this is a very expressive model to build
flexible correlation metrics. By specifying appropriate parameters and combining
subsequent executions of TSAs, it is possible to define metrics that encompass
concepts like relevance, reputation and similarity (Sect. 5.1). These metrics can
be integrated in a declarative language with applications to a wide range of
modern querying scenarios (Sect. 5.3).

Being the core of the querying process mechanism, the TSA process becomes
the main target for query optimization strategies. Like with any other data or
processing model, the practicability of TSA-based querying depends on architec-
tural mechanisms to support data access optimizations and heuristics to provide
approximate answers. Optimization issues were addressed in [15].

3 A good overview of applications and systems can be found in http://markorodriguez.
com/2013/01/09/on-graph-computing/.

http://markorodriguez.com/2013/01/09/on-graph-computing/
http://markorodriguez.com/2013/01/09/on-graph-computing/
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Table 1. Notation used in the definitions

Notation Description

SA(N) a set of activated nodes after the execution of the spread activation
process

SA(M)n value for the potential of node n after the execution of the spread
activation with initial activated nodes M

a, t, d, c respectively, initial activation potential, firing threshold, decay factor,
maximum number of iterations (depth)

l set of labels that determine valid nodes for traversal

dir dir ⊂ {inbound, outbound}; set of directions for traversal

dir dir ∩ {inbound, outbound}; reversed directions of dir

SA(m)n same as SA(m)n with reversed directions, i.e. dir ← dir

I(n) function that calculates the input potential of a node.

I(n) =
∑

m∈ant(n)

O(i) in the default case

O(n) function that calculates the output potential of a node.
O(n) = I(n) ∗ d in the default case

ant(n) set of antecedent nodes, i.e. nodes linked to n through relationships in
l that follow the directions in dir

sub(n) set of subsequent nodes, i.e. nodes linked to n through relationships in
l that follow the directions in dir

p(SA(N)) set of activation paths (for each node in SA(N))

|S| number of elements in set S

IR Metrics According to the TSA Model: In the TSA model, to assess the
rank of the relationship of nodes according to a metric, an activation potential is
placed at the target elements defined in the query. The potential is spread across
the topology of the graph, losing or gaining strength based on the IR metric,
length of the path, or properties of the traversed elements. The metric-specific
definitions of the TSA processes are presented below.

Definition 1. relevance(m,n) = SA({m})n,

with O(n) = I(n) ∗ d
|sub(n)|

Relevance between two nodes is a measure that encompasses correlation and
specificity. Correlation is proportional to the number of paths linking the two
nodes and inversely proportional to the length of the paths. Specificity favors
more discriminative paths (i.e. paths with fewer ramifications. It is easy to
observe that this definition resembles the definition of relevance between queries
and documents in a information retrieval setting. Traditional tf or idf term
weighting can be readily emulated in our scheme when terms, queries and doc-
uments become nodes of a graph. Our definition is, however, a generalization of
the concept that can be applied to any type of graph data and with any number
or type of relationships in between m and n.
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Definition 2. rrelevance(m,n) = SA({m})n + SA({n})m,

with O(n) = I(n) ∗ d
|sub(n)|

Reciprocal Relevance (RRelevance) between two nodes aggregates the
relevance in both directions. In an information retrieval setting, it would be
equivalent to aggregating tf and idf in the same metric.

Definition 3. connectivity(m,n) = SA({m})n

Connectivity between two nodes is a measure that assesses how interconnected
two nodes are. The score is proportional to the number of paths linking the
nodes in the network activated by the SA algorithm.

Definition 4. reputation(n,N) = SA(N)n

Reputation of a node measures how effective it is as a hub for information
flow. Here the nodes of interest are activated at the beginning and the rank-
ing scheme favors nodes that are revisited in the sequence of the SA process.
This is a simple but convenient interpretations in scenarios where the reputa-
tion cannot be pre-calculated due to high update rates, variability in the types
of relationships used for the queries, or need to bias the scores based on a set of
initial nodes (as in [34]).

Definition 5. influence(n) = |(SA({n}))|
Influence is a specialization of reputation where the only concern is the number
of nodes reached from the origin. The topology of the graph – in/outdegree or
cycles – do not influence the metric.

Definition 6. similarity(m,n) = |p(SA({n})) ∩ p(SA({m}))|
|p(SA({n})) ∪ p(SA({m}))|

Similarity measures the ratio of common relationships (same edge label linking
common nodes) between two nodes.

Definition 7. context(m,n) = |SA({n}) ∩ SA({m})|
|SA({n}) ∪ SA({m})|

Context is a specialization of similarity where edge labels do not matter.

5.2 Semantics of Ranking Metrics in Queries

Having the ranking metrics interpreted as graph analysis tasks, there is now the
need of integrating these metrics in a declarative language. As opposed to cre-
ating an entirely new query language, we decided to leverage existing languages
by defining an extension language that can be integrated into other languages.
To that extent, we first define the semantics of the intended integration.

In our model, the proposed ranking metrics are intended to be used with
graph query languages that offer: (i) means to reference individual nodes in the
graph, (ii) selection of match variables, and (iii) query results as a set of tuples
(or a graph representation of). These are basic components of graph languages
like SPARQL and Cypher. A ranking metric can refer to:
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– a single match variable (set of vertices), e.g.“rank papers from EDBT 2013
according to first author reputation”, where first author is the match variable
in question (e.g. “SELECT ?firstAuthor ...” in SPARQL);

– a given vertex4 and a match variable, e.g. “rank papers according to relevance
of their first author (match variable) to the topic data integration (vertex)”;

– two match variables, e.g.“rank papers according to relevance of the first author
to the topic in the first keyword of the paper”.

Conceptually, the ranking metrics are applied to query results, generating a
ranking value for each returned tuple. In practice, to speed up query processing,
results would be approximate and the rank would be generated for some of the
nodes based on access pattern heuristics.

5.3 Extending Declarative Queries

Having the ranking metrics interpreted as graph analysis tasks, it is possible
to integrate them in a declarative query language. As opposed to creating an
entirely new query language, we decided to leverage existing languages by defin-
ing an extension language.

A convenient way to integrate the ranking metrics into existing query lan-
guages is to add a “RANK BY” clause. The clause should enable an arbitrary
combination of metrics that expresses the global ranking condition defined by
the user. We encode the clause in the extension query language that we denom-
inated in* (or in star). in* can be used to extend other languages, for example,
extended SPARQL becomes inSPARQL by convention. More details about the
language and its design principles can be found in [17].

Fig. 5. Simplified BNF grammar for the proposed extension (terminators omitted)

4 as defined previously, a keyword query would also be a node in the graph.
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Note that the extension causes query semantics and result interpretation to
change, therefore, any extended language would be more adequately described
as new language based on the syntax of the original language. This suggests an
incidental meaning for an acronym like inSPARQL: recursively, “inSPARQL is
Not SPARQL”.

Figure 5 shows a simplified BNF grammar of the proposed extension. A rank-
ing can be specified as mix of weighted ranking metrics (lines 2 and 3). Weights
capture the relative importance of each metric. The scores generated by the
metrics are normalized before the calculation of the final weighted score.

Ranking metrics are unary or binary. Unary ranking metrics are applied to
a single match variable (lines 4 and 5). Binary ranking metrics can be applied
to a match variable and a named vertex or between two match variables.

The language allows for modifiers (lines 10 to 14) to be applied to the ranking
definitions. These modifiers define the parameters for the execution of the SA
algorithm. FOLLOW specifies valid edges for the algorithm to traverse. DEPTH
defines the maximum length for the traversal paths. DIRECTION sets the direc-
tion of traversal as outbound, inbound or both (default) edges. WEIGHTED
makes edge weights influence the degradation of the activation potential (the
potential is multiplied by the weight).

The combination of the IR-inspired metrics in a declarative querying set-
ting enables a high level of flexibility and expressiveness for the applications to
explore. In the next section we show and discuss some examples of queries that
can be used for practical applications.

5.4 Applications

This section presents examples of queries in the extended SPARQL language.
These queries are meant to demonstrate the expressiveness of the approach in a
wide range of applications.

Search engines/CMSs: Figure 6a shows a possible implementation for a doc-
ument retrieval query using topic modeling. The keyword query is expressed
by the function KWQUERY5 and the relevance is assessed as if the query was
a node in the graph. The query also takes into account the reputation of the
authors and the relevance of documents to the topic :Politics (assessed based on
the connections between the query node and documents that are created by a
Topic Modeling algorithm such as LDA). Data management aspects discussed
in the next section would be interesting matches to implement novel CMS archi-
tectures like in Ngomo et al. [26]. Our metrics would also allow query answering
based on the context of the user or a context defined by the user, implementing
a query model such as the one proposed by [28]. Graph-based term weighting [7]
could also be simulated in our query model.

Recommendation systems: Figure 6b shows a product recommendation query
that finds products that the client Bob (with uri :bob) has not purchased.
5 KWQUERY is a syntactical shortcut that represents an underlying mapper as in

Sect. 6.1.
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The query traverses Bob’s friendship network to find products purchased by
his friends that might be relevant to him. The spreading activation interpreta-
tion of this query evaluation also implies that products purchased by Bob, even
though they do not appear in the results, will be traversed on the way to cus-
tomers that have co-purchased these products, which in turn will activate other
products from these customers.

Social Networks: Figure 6c shows a query that could be used for friend sug-
gestion on a social network application. It ranks the top 5 persons over a given
age based on the similarity of hobbies and movie preferences of user Alice.

Collaborative filtering: Figure 6d shows a query that filters posts from pages
that friends of user Carol follow. The posts are ranked based on their influence
in the network.

Decision support: Figure 6e shows a query that can be used to prospect for
employees that would be good candidates to replace a manager (Charlie) in his
post. The query favors employees strongly related to a (presumably important)

Fig. 6. Examples of extended SPARQL queries (namespaces have been omitted)
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product (yPhone) and also those that have professional contexts similar to the
current manager.

Other applications: Similar queries could be used in several other scenarios,
especially the ones with richly interconnected data and that require complex
analysis of the correlations. Some examples are Semantic Web inference appli-
cations, were assessing correlations between classes and candidate instances can
be complex [1]. The scientific domain is another interesting application field. For
example, in a database with food network relationships, a query could identify
relevant species or areas for conservation efforts.

6 Relationship Management in the CDMS

We have so far discussed our data and query models, with little focus on implemen-
tation or architectural aspects. The proposed query model implies new require-
ments for user interaction, query processing and data management. The CDMS
is responsible for encompassing all these aspects in a coherent architecture.

The querying mechanism presented so far is based on the observation that
relationship analysis is central to several applications and the basis for evaluat-
ing the metrics introduced here. Besides providing a query language that enables
expressive correlation clauses, it is important to provide the CDMS with mech-
anisms to manage diverse aspects of relationship life cycle. Here we show how
such mechanisms could provide better support for data integration tasks and
increase the expressiveness of the query language.

6.1 Mappers

Relationship creation is an important and defining operation for the described
application scenarios. For example, several text indexing tasks, such as topic
modeling, derive relationships between the text and more general concepts. To
support these types of task, an integrated framework must provide mechanisms
to facilitate the creation of these relationships in the unified graph. The same
type of mapping between source data and the unified graph is required for other
types of data such as relational or semi-structured.

In our framework, the creation of relationships is encapsulated in MAP state-
ments. Figure 7 shows an example (detailed in the experiments section) of such
DML (Data Manipulation Language) query. The MAP statement (that triggers
a mapper) is also encoded as an extension of a graph query language (SPARQL,
in this case). The query selects all nodes of type ‘film’ and their respective labels.
The selected elements are used to call the mapper TokenMapper.

Mappers are very similar to stored procedures. What sets them apart are
(i) their integrated use in our ranking queries, and (ii) how they are hooked in
the databases’s API so that any new data that matches the mapping criterion
is passed through appropriate mappers. Point (ii) is not yet supported by our
framework. (i) is discussed in the experiment section.
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Fig. 7. MAP statement applying mapper TokenMapper to movies and their labels

Mappers are the mechanism that underlie the creation of the LLG. In a wider
perspective, mappings are however not restricted to model transformations, but
also allow transformations of data already in the unified graph, for example,
to infer new relationships based on correlations between nodes. These ad hoc
mappings are especially important for querying and analyzing data, enabling
users to manipulate the underlying data at query time without the obligation to
materialize the new relationships. For this reason, our approach addresses query
and mapping as an interdependent and symbiotic process of data analysis and
exploration.

A mapping process stores metadata related to the creation of the relation-
ships, which can be explored at query time. Since relationships are associated
with their mappers, multiple mappers can be used for the same type of relation-
ship. For example, multiple text indexing strategies can be used simultaneously,
then queries can specify the strategy that best fits the information need or simply
take advantage of the multiple connections created by the diverse mappers.

Metadata about creation time and usage statistics of the relationships can
also be used in a more expressive version of the extended query language pre-
sented here. Query modifiers could refer to this metadata to favor novelty or
popularity (also important concepts in IR) of the relationships.

7 Experiments

We now show experiments that aim at demonstrating what we envision as a
typical usage scenario for our framework. The database used in the experiments
is the Linked Movie Data Base (LinkedMDB) [19], which we think is a good rep-
resentative for the type of unified graph we aim at. The database integrates data
from several sources (FreeBase, OMDB, DBpedia, Geonames, etc.). The process
used to semantically integrate the distinct sources is similar to what is done
in a typical Data Warehouse and precisely what we envision to be the work-
flow for the usage scenarios of our framework (i.e. integration of institutional
data). The database contains 3,579,616 triples. The dataset has other important
characteristics: (i) it encompasses the bulk of the production in an important
area of human activity, (ii) data elements have clear semantics, (iii) data ele-
ments are organized based on several characteristics (type, genre, subject, etc.)
and correlated in a complex graph topology. These characteristics support the
applicability of our framework in real scenarios.

We implemented a basic mapper (TokenMapper) that maps input nodes into
tokens present in their labels. The tokens are themselves stored as nodes in the
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Fig. 8. Query that ranks movies according to relevance to a preferences text and to
the subject “Virtual Reality” (film subject/461)

graph database. The mapper receives as arguments the source node for the map-
pings and the text content to be mapped. This mapping uses a standard query
analyzer (from Lucene’s library) that simply lowercases, removes stop words, and
tokenizes the text. We are using this strategy for its simplicity and didacticism.
In a real scenario, more modern techniques such as NER (Named Entity Recog-
nition), LSA (Latent Semantic Analysis) or ESA (Explicit Semantics Analysis)
would provide more efficient and meaningful mappings.

Table 2. Top-15 ranked results for the first query

top 15 name

0.67 Avatar

0.67 Avatar

0.55 The Matrix

0.53 The Matrix Revolutions

0.53 The Matrix Reloaded

0.33 The Thirteenth Floor

0.33 EXistenZ

0.33 Lawnmower Man 2: Beyond Cyberspace

0.33 Storm Watch (aka Code Hunter)

0.33 Strange Days

0.33 The Lawnmower Man

0.33 Welcome to Blood City

0.21 The Favorite

0.19 The Matrix Online

0.19 The Matrix Revisited
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The DML query used for our mapping is shown in Fig. 7. We are mapping
the label of movies to tokens. Executing the query triggers the mapping of each
selected movie, generating the appropriate nodes for the tokens when needed.
This same mapper can be used in the ranking clause, as will be shown below.

We now present analysis of queries to demonstrate the use of the metrics
and mappers. At this point of development of our framework, we are focusing on
the relevance and connectivity metrics, which we regard as having widespread
applications and presenting the biggest challenges for query processing.

The first query (Fig. 8) retrieves and ranks movies relevant to a text stating
movie preferences and that are also relevant to the subject ‘Virtual Reality’.
This type of query can be derived from user’s profiles, for example. The query
also selects elements based on structured predicates, specifying that returned
movies should have a home page relationship and have been released after 1990.

The evaluation of this query can be divided in two phases: (i) graph matching
and structured selection, and (ii) ranking based on topological properties. This
separation in two distinct phases is only conceptual however. A query processor
is free to combine the phases in any fashion to optimize the evaluation.

In the graph matching and selection phase, the triple pattern is matched
against the data graph, the results are filtered according to the structured pred-
icates. In the second phase, the multiple ranking criteria are evaluated.

The first ranking criterion is relevance to the text. To assess the scores for this
metric, the query processor creates a temporary node and appropriate mappings
are made using the specified mapper (TokenMapper). The spreading activation
process is then executed to assess the correlation between each movie and the
temporary node. The process is set to follow the relationships created by the
mapper (hasToken). This is a typical mechanism for a keyword query type of
interaction in our framework. A system-wide default keyword query mapper can
be set so that queries can use the reserved KWQuery element, so that the parser
automatically assigns the appropriate mapper and relationships to follow (as in
Fig. 6a).

The second ranking criterion assesses correlation between movies and the
subject “Virtual Reality”. The resulting scores from each criterion are normal-
ized and aggregated, according to the specified weights, to generate the final
score. The results (Table 2) show contributions from both ranking criteria. The
movie Avatar is not directly related to the subject “Virtual Reality”, owing its
high ranking to the high tf*idf value of its name (note that tf*idfs are not calcu-
lated, this is an emergent property of the relevance metric which is not restricted
to text-based rankings)6. All movies from the Matrix franchise have scores com-
bining both criteria. Lower ranking results also provide insight into the interplay
between the rankings for this query (e.g. ‘The Favorite’ matches the keyword
query with a lower tf*idf-like score).

The second query (Fig. 9) uses the connectivity metric to discover films
correlated to ‘The Silence of the Lambs’. The query specifies that the analysis

6 The second Avatar record refers to a lesser known Singaporean film (introducing a
reputation metric in the query would certainly lower its score).
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Fig. 9. Query that retrieves films correlated to ‘The Silence of the Lambs’ (film:38145)

Table 3. Top-10 ranked results for the second query

top 10 name

1.0 The Silence of the Lambs

0.81 Man Bites Dog

0.80 Natural Born Killers

0.80 Butterfly Kiss

0.80 Freeway

0.79 Seven

0.79 Aileen Wuornos: The Selling of a Serial Killer

0.79 Serial Mom

0.79 Copycat

0.79 The Young Poisoner’s Handbook

Table 4. Top-10 ranked results for the first query

top 10 name

1.0 The Silence of the Lambs

0.34 Philadelphia

0.34 Cousin Bobby

0.25 Man Bites Dog

0.25 Natural Born Killers

0.25 Butterfly Kiss

0.24 Freeway

0.23 Seven

0.23 Aileen Wuornos: The Selling of a Serial Killer

0.23 Serial Mom
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should consider only the relationships ‘movie:director’ and ‘skos:subject’. It is
interesting to note that setting the modifier depth to 4 means that indirect cor-
relations are also considered. For example, a film could receive a positive score
even though it does not share a subject with ‘The Silence of the Lambs’, as long
as it is correlated with a film that does share a subject.

The results for the query are shown in Table 3. The output is strongly biased
towards scores generated by correlations through common subjects (which tend
to form tighter clusters). If the user wants to increase the importance of the
‘director’ relationship to retrieve more movies correlated to the director of ‘The
Silence of the Lambs’, the user can separate the relationships into two rank-
ing criteria. This type of user interactivity is another important advantage our
declarative querying scheme. The results of splitting the rankings in such a way
are presented in Table 4. The results are for a version of the query that used a
3:1 weight division favoring the director relationship.

8 Related Work

We now discuss related work on data integration in various levels: from data
access integration, through syntactic/semantic integration, and up to application
or query model integration. Integration at any level is highly dependent on the
lower levels.

8.1 Data Access Integration

The first level of integration must provide a unique access point for the data.
This can be accomplished by basically two approaches: centralizing the data
or connecting the data sources in an infrastructure that simulates a central-
ized repository. Centralized integration of institutional data is typically related
to the deployment of data warehouses or data marts [21]. Data centralization
approaches have also been proposed in the context of the Semantic Web [19],
and the DBpedia project7 is a notable example of this type of approach.

The research on Federated Databases aims at providing a unified view of the
data while maintaining the autonomy of the data sources [32]. In the context
of the Semantic Web, Schwarte et al. [31] have proposed a federation layer for
Linked Open Data. Schenk and Staab [30] have proposed a mechanism for the
specification of views over Linked Data, enabling declarative federation of data
sources.

Our framework is independent of the specific strategy chosen for data access
integration. The requirement is that all interaction is done as if the data was
integrated in a unified graph. Whether this integration is done through feder-
ation or physically integrating the data is an architectural decision based on
expectations of performance and requirements for preserving the autonomy of
data sources.

7 http://dbpedia.org/.

http://dbpedia.org/
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8.2 Data Model Integration

Data integration requires enabling data manipulation under a unified model.
Federated databases frequently employ the relational model (common among
data sources) for the integration. Data minig, which has application-specific
requirements, favors the multidimensional model [22].

In the Semantic Web, the adopted unifying model is the RDF graph. The
Resource Description Framework (RDF)8 is a general-purpose language created
for representing information about resources in the Web. The basic unit of infor-
mation is a statement triple, which contains a subject, a predicate, and an object.
All elements in a triple are identified by URIs (except for objects that can also be
literal values). Triples can refer to each other, forming a graph. The advantage
of the RDF model comes from its simplicity, enabling the representation of data
from a wide range of domains.

There has been a substantial amount of research in mapping other data mod-
els into RDF [3,6]. The W3C RDB2RDF Working Group9 is defining languages
and standards for mapping relational databases into RDF.

Besides having the data in a unified representation model, it is important to
correlate data from the diverse sources into unified concepts. In the relational
world, this process is know as record deduplication or linkage and is part of
the ETL (Extraction Transformation Loading) workflow [18]. In the Semantic
Web, the usual way to represent these correlations is the creation of sameAs
relationships between entities. These relationships can be created manually or
by automated processes. Hassanzadeh and Consens [19] employ several string
matching techniques to correlate Linked Open Data from diverse sources to
create an interlinked version of a movies database.

In this proposal, we assume that the institutional data is integrated in an
RDF graph. This allows us to take advantage of other standardized technologies
developed in the context of the WWW and the Semantic Web, such as universal
identification through URIs, semantic integration through sameAs relationships,
and the SPARQL query language.

8.3 Query Model Integration

Once data is integrated, it becomes possible to pose queries that could not
be answered before, producing more valuable information for institutions and
the public. The integration approaches, however, typically focus on integrating
data under a specific query model, such as the relational or OLAP. This usually
constrains the range of data models that can be integrate and, foremost, restricts
direct querying of the integrated data from applications that use other query
models.

Recently, there has been initiatives aimed at tackling integration at the appli-
cation/query level. The research community has identified the interplay between

8 http://www.w3.org/RDF/.
9 http://www.w3.org/2001/sw/rdb2rdf/.

http://www.w3.org/RDF/
http://www.w3.org/2001/sw/rdb2rdf/


The Web Within: Leveraging Web Standards and Graph Analysis 51

the fields of Databases (DB) and Information Retrieval (IR) as a means to
improve data integration and query expressiveness across applications [2,9]. The
drive to integrate the areas stems from the fact that they represent the bulk
of data stored and processed across institutions. Furthermore, either field has
been very successful by their own but still faces challenges when dealing with
interactions typical to the other field.

The integration of the IR and DB areas has been an important topic in the
agenda of the research community for many years. Following the initial identifica-
tion of challenges and applications, several successful approaches were proposed
and implemented [33]. Most prominent research focuses on keyword queries over
structured data and documents, top-k ranking strategies and extraction of struc-
tured information from documents.

Keyword query research draws from the simple yet effective keyword query
model to allow integrated querying over documents and structured data. Most
of the frameworks match keywords to documents, schema and data integrated
in a graph structure. The connected matches form trees that are ranked based
on variations of IR metrics such as tf*idf and PageRank. Some of the research
focus on optimizing the top-k query processing [23] while others implement more
effective variations of the ranking metrics [24].

Keyword queries over structured data are intended for tasks where the schema
is unknown to the user. The techniques are effective for data exploration, but there
is no support for more principled interactions. There are conceptual and struc-
tural mismatches among queries, data and results that make returned matches
hard to predict and interpret. Furthermore, the queries can only express relevance
between the provided keywords and database elements. Our query model can rep-
resent many more correlation criteria that can be combined arbitrarily in user-
defined expressions. More importantly, the queries can correlated any type of data
in the graph database.

The research on Top-k queries focus on enabling efficient processing of ranked
queries on structured and semi-structured data. Ranking is based on scores derived
from multiple predicates specified in the query. The main challenge is to compute
results avoiding full computation of the expensive joins. The proposals vary on
adopted query model, data access methods, implementation strategy, and assump-
tions on data and scoring functions (see [20] for a contextualized survey).

Scoring functions enable ranking based on properties of data elements. There
is, however, no simple means to rank results based on the context of elements
or how they are correlated, typical requirements for IR-like applications and a
defining characteristic of our SA-based ranking scheme.

This type of contextual ranking could only be implemented in an ad-hoc
fashion through complex scoring functions. Since the query processor would be
unaware of the semantics of the queries and the topology of the relationships,
there would be no opportunity for the optimizer to make sensible execution plans.
Furthermore, the relational model assumed in most research has no means to
reference individual data elements, an important requirement for effective data
correlation. Our focus is on offering predicates that allows ranking based on
contextual metrics not readily available as attributes. The proposal described
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here is complementary to regular top-k querying. It is important to support
both types of ranking, since they are recurrent to many applications.

Information Extraction refers to the automatic extraction from unstructured
sources of structured information such as entities, relationships between entities,
and attributes describing entities [29]. Information Extraction systems employ
two main techniques to harvest relationships (or facts) from text: extrapolating
extraction pattens based on example seeds [13] and employing linguistic patterns
to discover as many types of relationships as possible, task known as Open Infor-
mation Extraction [4]. Loading the extracted facts on a DBMS allows declarative
querying over the data. This is a one-way, data-centric type of integration of DB
and IR. The integration proposed here focuses on unified querying and data mod-
els. The framework proposed allows easy integration of Information Extraction
system’s output, maximizing the benefits of both approaches.

We argue that the mentioned approaches tend to focus on infrastructure
issues related to extremes of enabling the type interaction present in one area
over the data model of the other. In this paper we take a top-down approach to
modeling the integration, questioning what are the main and defining properties
of each area, and how to offer a unified, non-modal interaction over data and
query models.

9 Conclusion

We showed how modern standards and technologies developed to solve integra-
tion issues on the Web can be applied in a unifying framework for institutional
data. Representing the integrated data as a graph is a good strategy for data
model integration. Our main contribution is on extending this type of integration
to a higher level of abstraction, tackling integration of query models.

In our approach, the key to achieve more expressiveness at the query level
is the combination of flexible metrics in a declarative model. Our query model
redefines several metrics that rank entities based on the topology of their corre-
lations. To the best of our knowledge, this is the first time the metrics presented
are considered and formalized under the same model. Similarly, we are not aware
of other ranking strategies that enable the level of expressiveness offered by the
combination of our metrics and a declarative language. This combination allows
data correlation queries that cover a wide range of applications. The introduced
mappers play an important role as a data management mechanism to support
this high level of integration.

As suggested by the query examples presented (Fig. 6), it is possible to repre-
sent information needs that would require a level of data analysis that is beyond
current implementations of typical DB or IR systems. In fact, answering the type
of queries introduced here in a typical technological environment nowadays would
require substantial engineering for the implementation of ad-hoc solutions. The
expressiveness of the queries allowed by the extended languages sometimes blurs
the line between declarative queries and data analysis. Given the computational
requirements of such settings, it is important to introduce optimization mecha-
nisms and heuristics to compute approximate answers. Our declarative querying
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scenario opens many opportunities for query optimization. Details about the
mechanisms we are currently adopting are described in [15].

We expect query-level integration to become increasingly important as our
technological landscape continues to diversify. We showed how our model can
cover a broad range of models and applications. Our experiments indicate the
practicability of our approach, especially regarding the use of mappers to simplify
data integration and enable more expressive querying.
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Abstract. The plurality and heterogeneity of linked data features require
appropriate solutions for accurate matching and clustering. In this paper,
we propose a dimensional clustering approach to enforce (i) the capability
to select the set of features to use for data matching and clustering, that
are packaged into the so-called thematic dimension, and (ii) the capability
to make explicit the cause of similarity that generates each cluster. Ensem-
ble techniques for combining different single-dimension cluster sets into a
sort of multi-dimensional view of the considered linked data are also pre-
sented as a further contribution of the paper. Application to linked data
summarization and exploration is finally discussed.

1 Introduction

The main consequence of the adoption of the linked data principles by some
of the main providers of open and structured data on the web, such as DBpe-
dia and Freebase, is the availability of large collections of data that can be
accessed through public services and search endpoints [4]. Linked data are usu-
ally designed for answering to a general-purpose informative need and they are
characterized by a large number of features. Some of these features are related to
the internal structure of the linked data repository at hand (e.g., the name of the
user who inserted a data resource) and they are mostly useless for satisfying user
queries about specific interests. Some other features are intended to provide an
informative description of the real object represented by the linked data resource
(e.g., person names, locations, professions) and they are usually very numerous
and heterogeneous in kind. This plurality and heterogeneity of features need to
be properly considered for accurate matching and clustering processes [12,24].
State-of-the-art approaches for linked data clustering aggregate in the same clus-
ter semantically-related linked data resources based on similarity metrics pro-
portional to the number of common features between them [6,9]. However, with
a conventional clustering approach, all the features indifferently concur to deter-
mine the similarity value of different linked data resources and this is a limitation
for an effective exploitation of resulting linked data clusters. In fact, considering
all the features together in a flat way produces a “monolithic” classification,
where clusters are generally characterized by quite-low similarity values where
many pairs of resources with the same degree of similarity converge in the same
c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XIX, LNCS 8990, pp. 55–86, 2015.
DOI: 10.1007/978-3-662-46562-2 3



56 A. Ferrara et al.

cluster, but not necessarily originated by the same features. This way, it is also
difficult to mine the causes of similarity that generate a given cluster, making the
meaning understanding of the resulting cluster sometimes not very immediate
and easy.

In this paper, we overcome the above limitations of conventional linked data
clustering by proposing a dimensional clustering approach to create similarity-
based views of linked data by enforcing (i) the capability to select the set of
features to use for data matching and clustering, that are packaged into the so-
called thematic dimension, and (ii) the capability to make explicit the cause of
similarity that generates each cluster. As a result, different dimensional cluster
sets are produced, each one focused on a given thematic dimension. Resources
with the same degree of similarity but different set of matching features are
put in different clusters, resulting in a more accurate and focused classification
result. Moreover, we define ensemble techniques to enforce the combination of
different single-dimension cluster sets into multi-dimension cluster sets, to pro-
vide a sort of multi-dimensional view of a given set of linked data. Providing
advanced information retrieval and exploration services is strongly related to
the capability of reducing the data complexity by providing high-level, summary
views of semantically-related data. To this end, in the paper, we describe the
application of the proposed dimensional clustering techniques to support linked
data summarization and exploration.

The paper is organized as follows. In Sect. 2, we present the motivating
example of our work. The proposed approach to dimensional data clustering
is illustrated in Sect. 3. Matching and clustering techniques for dimensional data
clustering are discussed in Sects. 4 and 5, respectively. Techniques for cluster
ensemble are presented in Sect. 6. In Sect. 7, we envisage the application of
dimensional clustering to linked data exploration. In Sect. 8, we illustrate the
results of our experimental evaluation. Related work and concluding remarks
are finally provided in Sects. 9 and 10, respectively.

2 Motivating Example

Consider a corpus of linked data about a certain topic of interest, such as for
example famous scientists in the field of computer science. A user can be inter-
ested in exploring the corpus by viewing these scientists grouped according to
a specific perspective, like for example their professional qualifications (e.g., the
educational background, the awards they received). In such case, the user expec-
tation is that groups include scientists based on their similarity over those prop-
erties that describe the professional profile. The user can be also interested in
exploring the same corpus of linked data by viewing scientists grouped according
to another perspective, like for example the geographical one. In this case, the
user expectation is to view groups containing scientists with similar values over
properties like nationality, residence, and place of birth.

The dimensional clustering techniques we propose enforce the notion of the-
maticdimension.A thematic dimension is a set of linkeddataproperties/features
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D that are selected to express the perspective over the data to use for aggrega-
tion. A dimension is thematic in the sense that a cluster contains similar resources
according to the properties/features of D and it represents a particular “theme” in
the context of the considered dimension. In the above example about scientists in
computer science, Dpro = {field, almaMater, award, doctoralAdvisor, influencedBy,
influenced} and Dgeo = {nationality, residence, birthPlace, deathPlace} are exam-
ples of professional and geographical thematic dimensions, respectively. A cluster
containing scientists that studied in the same university is an example of theme for
the professional dimension Dpro.

Now, consider the three scientists shown in Fig. 1 that have been extracted
from the DBpedia repository1. By relying on conventional linked data matching
and clustering approaches, we evaluate the degree of similarity of the three sci-
entists by considering all their properties [7]. We obtain that Thacker and Culler
are similar since they have been both affiliated at the University of California
in Berkeley, while Thacker and Iverson are similar since they received the Turing
Award. These two pairs of resources have the same degree of similarity, in that
they have the same number of matching properties (i.e., almaMater and award,
respectively), though this set is completely different for the two pairs. Using such
similarities with a conventional hierarchical clustering algorithm [25], the three
scientists are placed into one single cluster (see Fig. 2(a)). However, by exploring
the contents of this cluster, it is difficult to recognize the cause of similarity
that generated the cluster, since the elements therein contained are similar on
different properties.

Charles_P._Thacker

LOD resource

feature value

Legenda:

Univ._of_Cal.,_Berkeley

Computer_Science

Savonburg,_Kansas

United_States

Pasadena,_California

Glen_Culler

Kenneth_E._Iverson

almaMater
almaMater

Electrical_engineering

Harvard_University

almaMater

almaMater

Turing_Award

award

award

IBM Fellow

award

nationality

birthPlace

birthPlace

birthPlace

Camrose, Alberta

Canada

birthPlace

birthPlace

Fig. 1. Example of computer scientists from DBpedia

1 For the sake of readability, only a subset of the available properties is reported
(http://www.dbpedia.org).

http://www.dbpedia.org
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A distinguishing feature of dimensional clustering is the capability to discrim-
inate the so-called cause of similarity that generated a cluster. Dimensional
clustering performs resource aggregation by taking into account both the degree
of similarity and the set of similarity properties. Resources with the same degree
of similarity, but different set of similar properties are put in different clusters. As
a result, we have that the elements of a cluster obtained through a dimensional
clustering are characterized by a common set of similarity properties. In our
example, according to dimensional clustering, the three scientists are put in two
different clusters for their profession: one containing Thacker and Culler that are
characterized by the matching property almaMater, and one containing Thacker
and Iverson that match on the property award (see Fig. 2(b)). Instead, by taking
into account their geographical features, such as the birthPlace, Thacker, Culler,
and Iverson are grouped in three different clusters according to the information
available about their place of birth.

Charles_P._Thacker Glen_Culler

clustering

hierarchical clustering

dimensional clustering

professional dimension geographic dimension

Charles_P._Thacker

Kenneth_E._Iverson

0.5 Charles_P._Thacker

David_Boggs

...

0.5 (birthPlace: United_States)

1.0 (birthPlace: Kansas, Savonburg)

Kenneth_E._Iverson

0.5 (birthPlace: Canada)

Charles_P._Thacker

Kenneth_E._Iverson

Charles_P._Thacker

Niklaus_Wirth

...

0.66 (almaMater: Univ._of_Cal.,_Berkeley)

Peter_Naur
...

0.44 (award: Turing_Award)

Kenneth_E._Iverson

Glen_Culler

Brian_Kernighan

Dennis_Ritchie
...

0.66 (almaMater: Harvard_University)

Kenneth_E._Iverson

Glen_Culler

Niklaus_Wirth

Glen_Culler

(a) (b)

Fig. 2. Example of (a) hierarchical clustering and (b) dimensional clustering

3 Dimensional Data Clustering

Dimensional data clustering enables to generate multiple similarity-based views
of a given corpus of linked data based on the use of thematic dimensions (see
Fig. 3). The process starts with the definition of the corpus C extracted from
a LOD (Linked Open Data) repository R (e.g., DBpedia, Freebase). The list
of thematic dimensions D1, . . . ,Dk is then specified to describe the different
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perspectives to consider for dimensional clustering. Matching and clustering are
executed to generate the corresponding cluster sets CLD1 . . . CLDk . Ensemble
operations are finally invoked to enable a user in combining the single-dimension
cluster sets with the goal to generate a multi-dimension cluster set CLD1...k

LOD repository (DBpedia)

C

Matching & Clustering

C + D1, ..., Dk

CLD
1, ..., CLD

k

Professional (Dpro)

almaMater
award
doctoralAdvisor

Geographical (Dgeo)

nationality
residence 
birthPlace
deathPlace

Charles_P._Thacker Glen_Culler Kenneth_E._Iverson

Peter_Naur Niklaus_Wirth David_Boggs

Charles_P._Thacker

Kenneth_E._Iverson

Peter_Naur
...

Charles_P._Thacker

Niklaus_Wirth

... Glen_Culler

Charles_P._Thacker

David_Boggs

...

Ensemble

CLD
1...k

Charles_P._Thacker

Kenneth_E._Iverson

Peter_Naur
...

David_Boggs

...

...

... ...

linked data items

dimensions

single-dimension
cluster sets

multi-dimension
cluster set

Fig. 3. The process of dimensional data clustering

For dimensional clustering, we stress that corpus definition and dimension
specification are executed only once for all the cluster sets to generate. Instead,
a specific execution of matching and clustering is required for each thematic
dimension Di ∈ {D1, . . . ,Dk} to produce a corresponding cluster set CLDi ∈
CLD1 . . . CLDk . Based on single-dimension cluster sets, the user exploits the
ensemble operations for interactive, on-the-fly creation of multi-dimension clus-
ter sets.

In the following, we first describe the steps of corpus definition and dimension
specification. Matching and clustering techniques are presented in Sects. 4 and 5,
respectively. Ensemble operations are finally discussed in Sect. 6.
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3.1 Corpus Definition

The corpus C is the dataset of linked data on which dimensional clustering is
performed. In line of principle, the corpus can coincide with the entire content of
a considered LOD repository R. In the practice, the user is generally interested
in a topic-oriented corpus extracted from R through a number of appropriate
queries. In this case, the notion of seed of interest is introduced for enabling the
user to indicate the argument/topic she/he is interested about. Two options are
available. As a first option, the seed of interest s can be a linked data URI of
R to use as point of origin for extraction. In this case, the extraction retrieves
those linked data of R that are pertinent to the seed s, namely those resources
that are connected to s through a property path of length ≤ d. The distance
d is a parameter to set the extension at which linked data extraction has to
be enforced. The choice of the d parameter has an impact on the number of
extracted linked data and thus on the size of the resulting dataset to consider
for clustering. In usual scenarios, a distance d = 2 is a good trade-off to obtain a
well-sized dataset of pertinent linked data about s. As a second option, the seed
of interest s can be a keyword. In this case, the extraction retrieves those linked
data that have s in a property value. Multiple seeds of interest can be specified
by the user to further enlarge the corpus of linked data to consider.

The linked data resources belonging to the corpus C are represented through
an internal data model based on the notion of linked data item (ldi), capturing
the features of interest for matching and clustering of linked data resources [8].
A ldi captures and properly represents the fact that a linked data is characterized
by a set of properties and types through the notion of feature which can have
multiple associated values. A ldi is defined as follows:

ldi = {f1, . . . , fn}

For each feature fi ∈ ldi, a set of feature values Vi = {v1, . . . , vk} is defined to
represent the set of values of the feature fi.

Given a resource URI1 extracted from the repository R, the corresponding
representation ldi1 ∈ C is created as follows2.

Creation of features from types. For each type t that characterizes URI1, a
feature fi = type and a corresponding Vi = {t} are created in the ldi1 structure.
As an example, consider the linked data resources of Fig. 1. The URI Glen Culler
is characterized by the types Person and ComputerPioneers. The following ldi
structure is created:

Glen Culler = {. . . , typei, . . .}
Vi = {Person,ComputerPioneers}

2 More technical details about the construction of linked data items from the RDF
statements of a repository R are provided in [5].
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Creation of features from properties. For each pair property/value 〈p, pv〉 that
is directly connected with URI1, a feature fi = p and a corresponding fea-
ture value vj = pv with vj ∈ Vi are created in the ldi structure. When a
set of pairs {〈p, pv1〉, . . . , 〈p, pvk

〉} is connected to URI1 for a given property
p, a value vj is inserted in Vi for each pvh

with h ∈ [1, k]. For example, the
URI Glen Culler is connected to the following set of pairs for the property field:
{〈field,Computer Science〉, 〈field,Electrical engineering〉}. The following ldi struc-
ture is created:

Glen Culler = {. . . , fieldi, . . .}
Vi = {Computer Science,Electrical engineering}

The complete ldi representation of the linked data resources of Fig. 1 is pre-
sented in Fig. 4.
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Fig. 4. The ldi representation for the linked data resources of Fig. 1
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3.2 Dimension Specification

The specification of a thematic dimension consists in selecting the set of features
that are involved in the dimension. In general, the user can specify a thematic
dimension by exploiting the list of available features, either properties or types,
in the corpus C. In defining a dimension, the user has to tick the features that
she/he considers as “distinguishing” in describing the perspective of interest,
such as for example the property field for a professional dimension. Furthermore,
the specification of a label is required to associate a dimension with an intuitive
name that describes the dimension purpose.

As a remark, we stress that features more commonly employed in the corpus
C have a higher impact on dimensional clustering rather than those that are
rarely used. This is due to the fact that a thematic dimension determines the
features to use for matching and clustering and a feature is important as long
as it is present in the ldi structures to match. As a consequence, a few (e.g.,
three) common features are sufficient to characterize a thematic dimension in
most situations.

As a further remark, we note that the step of dimension specification is
optional. A number of thematic dimensions can be predefined to cover most
common point of views on data. Personal, professional, geographical, and tem-
poral dimensions are examples of predefined dimensions that can be made avail-
able to all the interested users as default thematic dimensions. The dimensions
Dpro and Dgeo of Fig. 3 are examples of professional and geographic dimensions,
respectively. In this scenario, we consider the manual specification of a new the-
matic dimension as an exceptional event, that occurs when the user has the need
to consider peculiar data aspects that are not already captured by the default
dimensions. New dimensions are stored and they become available for subsequent
executions of dimensional clustering. Dimensions that are non-interesting for the
user and/or non-pertaining for the specific corpus at hand can be de-activated.

4 Matching Techniques

Matching linked data for dimensional clustering requires to consider that the
similarity evaluation is invoked over a specific thematic dimension. This means
that the matching operations focus only on the features belonging to the con-
sidered thematic dimension. Leveraging on the ldi structure, we define three
different matching functions to enforce matching of linked data at different level
of detail. Given a dimension D and two linked data items ldi1 and ldi2, we
present:

– The v-match function for matching two feature values vs and vt.
– The f-match function for matching two features fi and fj , based on the results

of the v-match function over their corresponding feature value sets Vi and Vj .
– The ldi-match function for determining a comprehensive similarity value of two

linked data items ldi1 and ldi2 based on the results of the f-match function
over their features involved in the thematic dimension D.
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The v-match function. The function v-match() → [0, 1] is defined to compare
two feature values vs and vt. According to the linked data paradigm, we observe
that a feature value can be a basic datatype value (e.g., a string, a number, a
date) or a resource (i.e., URI). When vs and vt are basic datatype values, v-
match is calculated through an appropriate function depending on the specific
datatype format. For instance, techniques for approximate string matching like
I-Sub, Q-Gram, Edit-distance, and Jaro-Winkler, can be employed when string
values are involved [17]. In case that vs and vt are resources, v-match is defined
as follows:

v-match(vs, vt) =
{

1 if vs ≡ vt
0 otherwise

This means that v-match returns 1 when the values vs and vt reference the same
resource, and 0 otherwise.

The f-match function. The function f-match() → [0, 1] is defined to compare
two features fi and fj by relying on the v-match function to determine the
number of matching values in Vi and Vj . To this end, a best matching strategy
is enforced. This means that for each element of Vi, the element in Vj with
the highest matching result is considered for feature matching evaluation. The
f-match function is calculated as follows:

f-match(fi, fj) =
∑k

s=1 max(v-match(vs, vt)) ∀t ∈ [1, h]
k

where vs ∈ Vi, vt ∈ Vj , k = |Vi|, and h = |Vj |. The choice to use best match-
ing instead of a more common strategy based on Dice/Jaccard coefficients is
motivated by the fact that usually the cardinalities |Vi| and |Vj | are different.
In such a case, Dice/Jaccard coefficients consider the absence of values to com-
pare as mismatching values, thus producing lower matching results than the
best matching strategy. Furthermore, we stress that the above f-match function
is not symmetric, meaning that f-match (fi, fj) 	= f-match(fj , fi) when k 	= h.
To overcome this situation, we always consider as first argument of f-match the
feature with the lower number of values between Vi and Vj . As a result, given fi
and fj to match, we calculate f-match (fi, fj) when k ≤ h and f-match (fj , fi)
otherwise.

As an example, we consider the feature award of ldi1 and ldi3, and the
corresponding feature values V 1

1 and V 3
1 of Fig. 4(a) and (c), respectively. Since

V 1
1 has less values than V 3

1 , we set V 1
1 as first argument when invoking f-match.

Through the v-match function, we find that V 1
1 has a corresponding matching

value in V 3
1 (i.e., Turing Award). Thus, we have:

f-match(award, award) =
1
1

= 1.0

The ldi-match function. The function ldi-match()→ [0, 1] is defined to pro-
duce a comprehensive similarity value between two linked data items ldi1 and
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ldi2 according to a given thematic dimension D. The result of the ldi-match
function is calculated by relying on the f-match function and it is based on
the similarity between the features of ldi1 and ldi2 that belong to the the-
matic dimension D. The ldi-match function along a dimension D is calculated
as follows:

ldi-matchD(ldi1, ldi2) =

∑n
i=1

∑m
j=1 f-match(fi, fj)

n

where fi, fj ∈ D, fi ∈ ldi1, fj ∈ ldi2, n = |ldi1|, and m = |ldi2|. For optimization
purposes, we stress that only corresponding features of ldi1 and ldi2 are matched
(i.e., fi = fj), while non-corresponding features are discarded. This means that
f-match is invoked on the features of ldi1 and ldi2 that have the same URI within
the considered thematic dimension D. As for the f-match function, we calculate
ldi-matchD(ldi1, ldi2) when n ≤ m and ldi-matchD(ldi2, ldi1) otherwise.

As an example, we calculate ldi-matchDpro(ldi1, ldi3) for the items of Fig. 4
(i.e., Charles P. Thacker and Kenneth E. Iverson, respectively) and the thematic
dimension Dpro of Fig. 3. To this end, we first calculate f-match for the corre-
sponding features of ldi1 and ldi3 (i.e., fi = fj with fi ∈ ldi1 and fj ∈ ldi3). Thus,
we have:

f-match(award, award) =
1
1

= 1

f-match(almaMater, almaMater) =
0
1

= 0

f-match(field, field) =
1
1

= 1

For the calculation of f-match(award, award), we observe that the set V1
1 of Fig. 4

is used as first argument of the function f-match according to our symmetrization
mechanism. As a final result, we obtain:

ldi-matchDpro(ldi1, ldi3) =
1 + 0 + 1

3
= 0.66

5 Clustering Techniques

Data clustering is enforced through the algorithm HCf+, a hierarchical cluster-
ing algorithm of agglomerative type based on feature similarity of ldis. Agglom-
erative refers to the fact that clusters are obtained through a series of successive
merging operations over ldis. Hierarchical refers to the fact that groups of simi-
lar ldis are organized into a tree according to decreasing matching values of ldis
starting from the tree leafs up to the root. Given a considered thematic dimen-
sion D, the algorithm HCf+ produces a cluster set CLD as a result. Each cluster
cl ∈ CLD is associated with a similarity coefficient σcl and a set of similarity
features πcl. When a single-link strategy is adopted [25], σcl represents the max-
imum matching value over the dimension D between any pair of ldis belonging to
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the cluster cl. With a complete-link strategy, σcl denotes the minimum matching
value over the dimension D between any pair of ldis in cl. Furthermore, with
respect to the classical algorithm for hierarchical clustering, HCf+ presents the
following distinguishing aspects:

– Capability to keep track of the causes of similarity. With HCf+, the feature
set πcl is introduced which contains those ldi features of D that match for
the items of cl. In other words, πcl lists the ldi features that generate cl in
the thematic dimension D and it represents the “motivation” for which cl has
been created.

– Support to overlapping clusters. With HCf+, a certain ldi can belong to more
than one cluster depending on its similarity with the cluster items over πcl.
A ldi1 can be placed in two clusters cl1 and cl2 having different set s πcl1 and
πcl2. This is due to the fact that ldi1 can match with the ldis of cl1 on the
features πcl1 and with the ldis of cl2 on the features πcl2, at the same time.

In the following, we rely on the complete-link strategy that produces a higher
number of smaller clusters than the single-link strategy due to the fact that a
minimum level of similarity is ensured between any pair ldis in a cluster. Such
an effect is well-suited for linked data aggregation where cluster homogeneity is
an important property for the overall relevance of the resulting clustering CLD

(see the experimental results of Sect. 8).
Consider a thematic dimension D and a corpus C of ldis to be clustered.

For HCf+ calculation, we define a similarity matrix σM where an element
σM [i, j] = ldi-matchD(ldii, ldij) represents the ldi-match value computed
between the items ldii and ldij along the dimension D. Moreover, we also define
the feature matrix πM where an element πM [i, j] ⊆ D is a set containing the
similarity features of ldii and ldij

3. The hierarchical clustering algorithm HCf+

is shown in Algorithm 1. Let k = |C| be the size of the corpus C. A singleton
cluster clr is created for each ldir ∈ C. Initially, σclr = 1 and πclr = D. The two
clusters cli and clj (with i 	= j) having the highest matching value in σM are
selected and merged in a cluster clk with σclk = σM [i, j] and πclk = πM [i, j].
A new line and column of order k is inserted in both σM and πM for the cluster
clk. The elements σM [z, k] and πM [z, k] are then calculated to determine the
similarity value and the set of similarity features between the new cluster clk and
each element z of σM and πM , respectively. In detail, according to the complete-
link strategy, σM [z, k] is the lower value between σM [z, i] and σM [z, j], while
πM [z, k] is the set of similarity features in common among πM [z, i], πM [z, j],
and πclk. We stress that σM [z, k] is set to zero when πM [z, k] = ∅. Two clusters
are candidate/considered for merging in HCf+ only if they have a non-empty
set of common similarity features in πM . Finally, the σM matrix is cleared by
setting to zero all those elements that are irrelevant for the merge operations of
further clusters. An element σM [i, k] is irrelevant when the corresponding set of
similarity features πM [i, k] is a subset of πM [i, j], meaning that the cluster clk

3 Since ldi-matchD(ldii, ldij) = ldi-matchD(ldij , ldii), we define σM and πM as upper
triangular matrices.
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already considers the features in πM [i, k]. Analogously, the element σM [k, j] can
be irrelevant and thus cleared from the matrix σM . The clustering algorithm
terminates when the σM is a zero matrix. The ending condition is guaranteed
by the fact that the elements of σM are progressively set to zero.

Algorithm 1. The HCf+ clustering algorithm

Input: C, D, σM, πM
Output: CLD

2: k ← size(C)

4: for all ldir ∈ C do � Creation of a new cluster
Create a cluster clr ← {ldir}

6: σclr ← 1
πclr ← D

8: end for

10: repeat
(i, j) ← position of the greatest value in σM (with i �= j)

12: Create new cluster clk ← cli ∪ clj
σclk ← σM [i, j]

14: πclk ← πM [i, j]

16: Create new line and column k in σM and πM

18: for z = 0 → k do
πM [z, k] ← πM [z, i] ∩ πM [z, j] ∩ πclk

20: if πM [z, k] �= ∅ then
σM [z, k] ← min(σM [z, i], σM [z, j])

22: else
σM [z, k] ← 0

24: end if
end for � Clearing of σM

26: for all z ≤ k do
if πM [i, k] ⊆ πM [i, j] then

28: σM [i, k] ← 0
end if

30:
if πM [k, j] ⊆ πM [i, j] then

32: σM [k, j] ← 0
end if

34: end for

36: k ← k + 1

38: until σM is a zero matrix
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As an example of HCf+, we take into account the ldis of Fig. 4. According
to the features of dimension Dpro, the similarity matrix among the resources
is shown in Fig. 5, with ldi1 = Charles P. Thacker, ldi2 = Glen Culler, and ldi3
= Kenneth E. Iverson. Given the similarity values of Fig. 5, a classic hierarchical
clustering procedure using the complete-link strategy will end up with a single
cluster including all the three ldis. In fact, in the first step the similarity value
σM [ldi1, ldi2] = 1.0 between Thacker and Culler is selected and ldi1 and ldi2
are included in a cluster. Subsequently, the matrix is updated and the value
of similarity between the new cluster and the resource ldi3 is calculated as the
minimum similarity between ldi3 and ldi1 and ldi3 and ldi2, which is equal to
0.5. Then, according to this approach, ldi3 will also be included in the same
cluster containing ldi1 and ldi2. Instead, HCf+ produces two different clusters
containing Thacker, Culler on one side and Thacker and Iverson on the other
side, due to their different causes of similarity. In detail, we initially select the
similarity value σM [ldi1, ldi2] = 1.0 and we create a cluster cl1 containing ldi1
and ldi2. This cluster is associated with a set of features πcl1 = πM [ldi1, ldi2] =
{field, almaMater} corresponding to the similarity features between Thacker and
Culler. Then, we take into account the similarity between the new cluster cl1 and
ldi3 and we try to insert the resource ldi3 into cl1. In doing this, we consider
the intersection between the labeling features πcl1 and the matching features
between ldi3 and the items of cl1, that are πM [ldi1, ldi3] = {field}. Thus, ldi3
cannot be inserted in the cluster because the field feature is not matching. Thus,
we consider the similarity between Thacker and Iverson and we create a second
cluster labeled with the features award and field. The final result is the creation
of two clusters, one describing computer scientists who won the Turing Award
(i.e., Thacker and Iverson), the other describing computer scientists who worked
in the University of Berkeley (i.e., Thacker and Culler), as shown in Fig. 2.

ldi1 ldi2 ldi3
ldi1 1.0 1.0 0.66
ldi2 1.0 0.5
ldi3 1.0

Fig. 5. Similarity matrix for Charles P. Thacker, Glen Culler, and Kenneth E. Iverson

6 Ensemble of Dimensional Cluster Sets

Clusters sets of different thematic dimensions can be mixed up to provide a sort
of “multi-dimension” view of the underlying corpus of ldis. To this end, we intro-
duce the ensemble operation to enforce the combination of different dimensional
cluster sets obtained over a given corpus of ldis.

Cluster-set ensemble. Given two dimensional cluster sets CLD1 and CLD2

over a corpus of linked data items C, ensemble is the merge operation that
generates a multi-dimension cluster set CLD12 by combining the clusters of CLD1

and CLD2 , respectively.
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In line of principle, a multi-dimension cluster set can be generated from
scratch by considering the whole set of features belonging to all the different
thematic dimensions when performing matching and clustering. As an example
based on Fig. 3, if we are interested in generating a cluster set based on both
personal and professional features, we can apply the dimensional clustering app-
roach of Sect. 3 by considering a thematic dimension D = D1 ∪ D2. Although
this is always possible, using ensemble has two main advantages. First, ensemble
enables the generation on-the-fly of a multi-dimension cluster set in a flexible
and rapid way, by relying on already-available single-dimension cluster sets. Sec-
ond, ensemble allows to select the dimensions to be considered for merging cluster
sets, thus enabling the construction of different and personalized similarity views
of the underlying corpus of ldis in a bottom-up fashion.

Given two dimensional cluster sets CLD1 and CLD2 , ensemble requires the
definition of:

– set operations, to specify how to merge the items in two selected clusters;
– criteria, to determine which pairs of clusters 〈cli, clj〉 are candidate for merging

in two cluster sets CLD1 and CLD2 , respectively;
– policies, to handle the situation of multiple candidate clusters clj ∈ CLD2

identified for a given cluster cli ∈ CLD1 .

6.1 Ensemble Set Operations

The goal of set operations is to create a multi-dimension cluster clk ∈ CLD12

out of the items belonging to the two clusters cli ∈ CLD1 and clj ∈ CLD2 .
Basically, the classical cluster union, cluster intersection, and cluster difference
set operations can be employed to this end.

Cluster union. The cluster clk is created by including the linked data items
that belong to either cli or clj (i.e., clk = cli ∪ clj). This operation generates a
multi-dimension cluster clk that provides a sort of “this or that” similarity view
of the items of the single-dimension clusters cli and clj . As an example, consider
the clusters cli and clj of Fig. 6 about computer scientists who won the Turing
Award and scientists from the United States, respectively. Merging cli and clj ;
the union operation creates a cluster representing scientists who won the Turing
Award or from the United States.

Cluster intersection. The cluster clk is created by including the linked data
items that belong to both cli and clj (i.e., clk = cli ∩ clj). This operation
generates a multi-dimension cluster clk that provides a sort of “this and that”
similarity view of the items of the single-dimension clusters cli and clj . With
respect to the example of Fig. 6, the merged cluster obtained through the inter-
section operation represents scientists from United States who won the Turing
Award.

Cluster difference. The cluster clk is created by including the linked data items
that belong to cli but not to clj (i.e., clk = cli\clj). This operation generates a
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multi-dimension cluster clk that provides a sort of “this but not that” similarity
view of the items of the single-dimension clusters cli and clj . With respect to the
example of Fig. 6, the merged cluster obtained through the difference operation
represents scientists who won the Turing Award that are from outside the United
States.

Cluster-intersection is set as the default ensemble set operation. However, we
expect that the choice of the ensemble set operation is manually performed by
the user according to the kind of combination that she/he aims to highlight in
the resulting multi-dimension cluster set.

Example. As an example of the three ensemble set operations, we suppose
to merge the first two dimensional clusters of Fig. 2. The results of the three
ensemble set operations are shown in Fig. 6.

Charles_P._Thacker

David_Boggs

...

0.5 (birthPlace: United_States)

Charles_P._Thacker

Kenneth_E._Iverson

Peter_Naur
...

0.44 (award: Turing_Award)

merge operations

Charles_P._Thacker

intersection
(Turing_Award and United_States)

...

union
(Turing_Award or United_States)

Charles_P._Thacker

Kenneth_E._Iverson

Peter_Naur
...

David_Boggs

difference
(Turing_Award and not United_States)

Kenneth_E._Iverson

Peter_Naur
...

cli clj

clk clk clk

Fig. 6. Example of the ensemble set operations

6.2 Ensemble Criteria

The goal of ensemble criteria is to determine the pairs of candidate clusters to
merge. In the literature about cluster ensemble, most of the existing techniques
for candidate detection are based on cluster overlaps. The idea is that the higher
is the number of common items between two clusters, the more the two clusters
are good candidate for merging [13,21]. However, the cluster overlap alone is
recognized as not adequate to all the situations, such as for example when the
number of common items is high for the majority of clusters in the considered
cluster sets [10]. Moreover, the overlap can be related to items that are mar-
ginal for the considered clusters, thus resulting in candidate clusters that are
poorly meaningful. For this reason, in the following, we propose three different
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criteria for detecting the pairs of clusters that are candidate for merging, namely
centrality-driven, mutuality-driven, and user-driven criteria. For each criterion,
given a cluster cli ∈ CLD1 , the goal is to find the set cand(cli) of merge-candidate
clusters containing those clusters clj ∈ CLD2 suggested for merging.

Centrality-driven criterion. This criterion relies on the notion of represen-
tative items to determine the candidate clusters to merge. Given a cluster cli ∈
CLD1 , the representative items RI(cli) of cli is a set containing the items of cli
with the highest similarity value within cli according to the ldi-match function,
namely:

RI(cli) = {ldik ∈ cli | MAX[ldi-matchD1(ldik, ldih)], ∀ldih ∈ cli, k 	= h}

The set RI(cli) can contain two or more items, depending on the number of
item pairs whose degree of similarity is equal to MAX[ldi-matchD1(ldik, ldih)].
Given a cluster cli ∈ CLD1 , the set of its merge-candidate clusters cand(cli)
is composed by those clusters of CLD2 having the highest number of common
representative items with cli (based on the Jaccard coefficient), that is:

cand(cli) = {clj | | RI(cli) ∩ RI(clj) |
| RI(cli) ∪ RI(clj) | ≥ thr}

where clj ∈ CLD2 and thr is the minimum threshold of common representa-
tive items required to a pair of clusters for being candidate to merge. The thr

value is defined during setup to configure the behavior of ensemble criteria.
A high threshold value (i.e., 0.6 ≤ thr ≤ 0.9) is set when a highly-selective app-
roach to the specification of candidate clusters is enforced, in that only clusters
with the same or very similar representative items are considered for merging.
On the opposite, a low threshold value (i.e., 0.2 ≤ thr ≤ 0.5) is set when a
loosely-selective approach is enforced, in that also clusters with poorly similar
representative items are considered for merging.

The centrality-driven criterion is the default criterion for defining the set of
candidate clusters to merge. In particular, this criterion is particularly appro-
priate when clusters have low homogeneity, meaning that some items are more
relevant/central than others for a considered cluster.

Mutuality-driven criterion. This criterion is borrowed from the notion of
adjusted mutual information, conceived for comparing two sets of clusters built
over the same corpus of items [19]. Given two random variables, mutual infor-
mation measures how much knowing one of these two variables reduces the
uncertainty about the other. This property suggests that the mutual informa-
tion can be used to measure the information shared by two cluster sets, and thus,
assess their similarity. To this end, we first introduce the measure p(i), that is
the probability of a cluster cli ∈ CLD1 . Suppose to pick an item at random from
the corpus C, then the probability that the item belongs to cli is:

p(i) =
| cli |
| C |
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where |C| is the cardinality of the corpus C. According to this, we introduce
the notion of ensemble degree that captures the mutual interdependence of two
clusters belonging to different cluster sets. Given a cluster cli ∈ CLD1 and a
cluster clj ∈ CLD2 , the ensemble degree I(cli, clj) is calculated as:

I(cli, clj) = p(i, j) log
p(i, j)

p(i)p′(j)

where p′(j) = |clj |/|C| and p(i, j) is the probability that a randomly picked item
belongs to both cli and clj and it is calculated as:

p(i, j) =
| cli ∩ clj |

| C |
According to the mutuality-driven criterion, the pairs of clusters with the higher
mutual information are candidate for merging. To this end, given a cluster cli ∈
CLD1 , the set of its merge-candidate clusters cand(cli) is defined as:

cand(cli) = {clj | I(cli, clj) ≥ thi}

where clj ∈ CLD2 and thi is a threshold defined to set the minimum level of
mutual information required to a pair of clusters for being candidate to merge.

The mutuality-driven criterion builds candidate clusters to merge on the basis
of their overlap. With respect to a simple metric based on a Jaccard coefficient to
measure this degree of overlap, our criterion based on mutual information is more
accurate, especially in those situations where the portion of overlapping items
is high [10]. As a general remark, we note that the mutuality-driven criterion is
appropriate when the goal is to merge clusters that have “something in common”
without being interested in the relevance/centrality of the overlapping items
with respect to the cluster they belong to. Thus, the mutuality-driven criterion
is recommended when clusters have high homogeneity, meaning that, given a
cluster, the relevance of the items therein contained is more or less the same for
all the cluster items.

User-driven criterion. The problem of detecting the pairs of clusters to merge
can also be addressed through a manual procedure. For cluster ensemble, the user
can browse two cluster sets CLD1 and CLD2 with the goal to manually choose
the pairs of clusters to merge according to her/his personal interests/knowledge.
Such a basic approach is always possible and it is suggested when the user is
interested in combining clusters according to a specific user-defined requirement.
In this case, given a cluster cli ∈ CLD1 , the set of merge-candidate clusters
cand(cli) is defined as the set of clusters clj ∈ CLD2 that are manually selected
by the user for possible merge. When large cluster sets with a high number of
clusters are considered, the manual choice of the cluster pairs to merge can be
difficult and ineffective. In this case, the use of automated criteria, such as the
mutuality-driven and the centrality-driven criteria, are well-suited alternatives
to obtain a set of candidate pairs of clusters to merge.
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Example. As an example, we consider the cluster cli obtained for the geo-
graphical dimension (Dgeo), which contains the items representing David Boggs,
Charles P. Thacker, Donald Knuth, Douglas Engelbart, Stephen Cole Kleene,
Jack Kilby, that are computer scientists born in the United States. Starting from
cli, we apply both the centrality-driven and the mutuality-driven criteria in
order to find a ordered list of candidates for merging in the cluster set of the
professional dimension Dpro. The results of the two criteria are shown in Fig. 7,
where we report the set cand(cli) and we highlight in bold the common items
between the starting cluster cli and the candidates. The example shows that
the centrality-driven criterion produces a smaller number of candidates than the
mutuality-driven one. The candidates produced by the centrality criterion cor-
respond to the top-5 clusters produced with mutuality. In fact, since mutuality
is less dependent from the most relevant items in the clusters, it considers as
candidates also clusters that are quite large even if they do not contain relevant
items.

Charles_P._Thacker

Donald_Knuth

Stephen_Cole_Kleene

Douglas_Engelbart

Jack_Kilby

David_Boggs

David_Boggs
Douglas_Engelbart

Stephen_Cole_Kleene

John_McCarthy_
(computer_scientist)

Donald_Knuth

Ivan_Sutherland Stephen_Cole_Kleene

Alan_Turing
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Fig. 7. Merge-candidate for cluster cli according to the centrality-driven and mutuality-
driven criteria

6.3 Ensemble Merge Policies

The goal of ensemble policies is to define how to exploit the candidates to merge.
In detail, the ensemble policy defines how to merge a cluster cli ∈ CLD1 with
the cluster(s) in cand(cli). If cand(cli) contains more than one candidate cluster,
different options are possible. An option is to choose only one cluster in cand(cli)
as the best candidate to use for merging operation (one-to-one policy). Another
option is to merge the cluster cli with all the candidates in cand(cli) (one-to-
many policy).
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One-to-one policy. In this policy, only the “best” candidate cluster clj ∈
cand(cli) is selected for merging with the cluster cli ∈ CLD1 . In the centrality-
driven criterion, for a cluster cli ∈ CLD1 , the best candidate is the cluster
clj ∈ cand(cli) with the highest Jaccard coefficient calculated on the sets of
representative items RI(cli) and RI(clj), respectively. In the mutuality-driven
criterion, the best candidate is the cluster maximizing the value of mutual infor-
mation I(cli, clj). In case more than one best candidate is retrieved, we merge cli
with all the best candidates in one single cluster. The one-to-one policy generates
a multi-dimension cluster set with a prefixed maximum number of clusters in it.
Given the cluster sets CLD1 and CLD2 , the multi-dimension cluster set CLD12

generated through the one-to-one policy is such that:

| CLD12 |≤| CLD1 |

In particular, |CLD12 | = |CLD1 | when at least one merge-candidate cluster exists
for each cluster cli ∈ CLD1 (i.e., |cand(cli)| ≥ 1, ∀cli ∈ CLD1). A cluster
cli ∈ CLD1 without merge-candidates is not considered for ensemble. In such
a case, |CLD12 | < |CLD1 |. Thus, we observe that the resulting multi-dimension
cluster set CLD12 is equivalent (or smaller) in size (i.e., number of clusters) with
respect to the single-dimension cluster set CLD1 .

The one-to-one policy is well-suited when we are interested in a selective
approach where only the most-interesting merge possibility of a cluster cli is
generated in the resulting multi-dimension cluster set.

One-to-many policy. In this policy, all the merge-candidate clusters clj ∈
cand(cli) are considered for merging with the cluster cli ∈ CLD1 . Estimating the
size of a multi-dimension cluster set generated through the one-to-many policy is
not possible since it depends on the number of candidate clusters |cand(cli)| for
each cli. In general, we observe that the one-to-many policy generates a multi-
dimension cluster set CLD12 larger in size with respect to the single-dimension
cluster set CLD1 . This is due to the fact that most of the clusters cli ∈ CLD1 have
more than one candidate cluster in cand(cli) (especially when the mutuality-
driven criterion is adopted).

The one-to-many policy is the default ensemble policy and it is well-suited
when we are interested in a conservative approach, assuming that all the candi-
date clusters cand(cli) are potentially-interesting merge possibilities for a cluster
cli and it is valuable to generate all of them in the resulting multi-dimension
cluster set.

Example. As an example of merge policies, we consider the cluster cli and the
candidates shown in Fig. 7. In the one-to-one policy with the centrality-driven
ensemble criterion, cli is merged with cla1 and cla2 and a single cluster is gener-
ated as a result since both cla1 and cla2 have the same number of representative
items. On the opposite, in the one-to-many policy with the mutuality-driven
ensemble criterion, cli is merged with each cluster clb1 . . . clb8 and eight clusters
are generated as a result.
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7 Application to Linked Data Exploration

In this section, we envisage summarization and exploration mechanisms for effec-
tive presentation/analysis of a cluster set CL obtained through dimensional clus-
tering and/or ensemble techniques over a considered linked data set of interest.

7.1 Linked Data Summarization

Summarization deals with the problem to provide a high-level, easy-to-read
summary-view of a given cluster set CL, either single-dimension created through
matching/clustering or multi-dimension created through ensemble. To this end,
summarization consists in cluster essential definition, proximity-link specifica-
tion, and prominence value calculation4.

Cluster essential definition. A cluster essential di = 〈TAGi, TY PEi〉 is a
keyword-based summary associated with a cluster cli to provide a bird-eye view
of the linked data items therein contained. TAGi is the set of top-occurring
tags extracted from the feature values of the ldis belonging to the cluster cli,
while TY PEi is the set of types featuring the ldis of cli. A cluster essential di
is represented as a square box attached to the corresponding cluster cli.

Proximity-link specification. A proximity link e(cli, clj) is an interconnection
between a pair of clusters cli, clj ∈ CL that is specified to denote a thematic rela-
tionship between the contents of the two clusters. The proximity link e(cli, clj) is
set when the two clusters cli and clj have a similar content, based on the number
of common ldis. A degree of proximity xij is associated with e(cli, clj) to express
the strength of such a relationship and it is proportional to the overlap (i.e.,
intersection) between the contents of the clusters cli and clj . A proximity link
e(cli, clj) is represented as an edge between the clusters cli and clj . The higher
is the degree of proximity xij , the stronger is the thickness of the associated
proximity link e(cli, clj).

Prominence value calculation. A prominence value pi is associated with
a cluster cli to express its importance within the overall cluster set CL. The
prominence value pi is calculated as the betweenness/centrality of the associ-
ated cluster cli with respect to the cluster set CL. Betweenness is calculated
by counting how often the cli is traversed by a random walk between two other
clusters of CL, using proximity links as path [18]. The higher is the prominence
value of a cluster cli, the higher is the size of cli to better capture the user
attention on such a cluster.

An example of summary-view for the multi-dimension cluster set CLD12 is pro-
vided in Fig. 8.
4 A detailed presentation of summarization techniques is out of the scope of this

work. Here, we outline how to generate a summary-view over a cluster set CL. For
the interested reader, a more technical presentation of cluster essential definition,
proximity-link specification, and prominence value calculation is provided in [5].
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Fig. 8. Example of summary-view for the multi-dimension cluster set CLD12

7.2 Linked Data Exploration

Exploration aims at supporting mechanisms to the user for effectively brows-
ing a cluster set CL based on summary views. Three different mechanisms
can be envisaged that can be switched-on according to the specific user prefer-
ences, namely exploration-by-topic, exploration-by-prominence, and exploration-
by-proximity.

Exploration-by-topic. This is the most intuitive exploration mechanism and
it is based on cluster essentials. An essential can be considered as a sort of
instantaneous picture of the associated cluster and linked data items therein
contained, thus allowing the user to rapidly choose the most preferred one for
starting the exploration and/or to execute a keyword search over clusters in
order to find those that contain items of interest. Once selected a cluster of
interest, a preview of the contained linked data is shown to the user for final
data visualization (see the example of Fig. 9(a)).

Exploration-by-prominence. This mechanism allows the user to organize the
exploration according to the prominence values associated with the clusters. The
idea is to support the user in browsing throughout the clusters according to their
relative importance with respect to the entire cluster set. In this mechanism, the
cluster essentials are shown in a sort of tag-cloud (see the example of Fig. 9(b)).
Moreover, clusters are ranked, according to their prominence, from the most
prominent to the less prominent one. By selecting a term of interest in the tag-
cloud, a preview of the associated linked data are shown to the user.

Exploration-by-proximity. This mechanism enables the user to move from
one cluster to another one by exploiting the proximity links. When a user is
exploring a certain cluster, the proximity links provide indication of its
fully/partially overlapping neighbors, thus suggesting the possible exploration
of clusters that are somehow related in content. This mechanism can be cou-
pled either with exploration-by-topic and exploration-by-prominence. Once that
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an element of interest is selected for exploration by the user, the links to other
related clusters are shown. The degree of proximity that features each proximity
link is used to rank the possible exploration paths from one cluster to the others.
In particular, in the example of Fig. 9(c), the link labeled “view neighbors” is
used in order to access the ranked list of clusters that have a proximity link with
the cluster at hand.

Exploration by
topic

Exploration by
prominence

(a)

(b)

(c)
Exploration by
proximity

Fig. 9. Examples of exploration mechanisms based on the summary-view of Fig. 8

8 Experimental Evaluation

The goal of our experimental evaluation is twofold: (i) to evaluate the quality of
our single-dimension cluster sets when compared against the classical hierarchical
clustering approach; (ii) to evaluate the quality of the multi-dimension cluster
sets produced through the proposed ensemble techniques.

8.1 Experimental Setting

Experiments have been executed on a corpus extracted from DBpedia about 101
well known computer scientists, described by the following features:

The total number of LOD resources included in the corpus is 404 and the
total number of triples is 518. Moreover, the corpus contains also 1055 LOD
types.
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Feature # of values % of unique values

almaMater 88 57%

award 102 52%

birthPlace 105 81%

deathPlace 48 88%

doctoralAdvisor 23 87%

field 76 29%

influenced 27 100%

influencedBy 6 100%

nationality 27 33%

residence 16 38%

Ground-Truth Definition. We asked a group of database experts to analyze
the LOD corpus in order to manually create two cluster sets. In performing this
activity, the experts directly queried DBpedia through a SPARQL endpoint. For
the creation of the first cluster set, we asked the experts to group LOD resources
by following a criterion based on the professional information available about
computer scientists and by focusing on the features included in the professional
dimension Dpro, which is composed by the features {almaMater, award, doctor-
alAdvisor, field, influenced, influencedBy}. For the creation of the second cluster
set, we asked the experts to focus on the geographic dimension Dgeo, which is
composed by the features {birthPlace, deathPlace, nationality, residence}. In the
remaining of this section we will refer to the manually created cluster sets as
category sets (and the clusters therein contained as categories) and they will
be denoted as LDpro and LDgeo , respectively. The category sets are used in the
evaluation as a ground-truth to rely on for comparison against single-dimension
and multi-dimension cluster sets.

Evaluation Measures. For evaluation, we use three well-known measures for
clustering comparison, namely Purity [26], F-measure [20] and the Rand coef-
ficient [11]. Purity is a measure based on the frequency of the correspondence
between the most common category and each cluster [1]. Given C as the clus-
ter set under evaluation, L as the category set, and N the number of clustered
resources, purity is defined as follows:

Purity(L,C) =
∑

i

|Ci|
N

maxj{Precision(Lj , Ci)}

where precision is defined as:

Precision(Lj , Ci) =
|Lj ∩ Ci|

|Ci|
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Purity is basically a redesign of the classical Information Retrieval precision
for the purpose of cluster sets comparison. Thus, purity measures the level of
correspondence between a cluster set generated by HCf+ and the category set
manually defined.

F-measure complements purity in that it takes into account not only the
precision of cluster sets but also their recall, namely the capability of a cluster
set to cover all the categories in the category set. F-measure is defined as follows:

F =
∑

i

|Li|
N

maxj{F (Li, Cj)}

where:

F (Li, Cj) =
2 · Recall(Li, Cj) · Precision(Li, Cj)
Recall(Li, Cj) + Precision(Li, Cj)

Recall(Li, Cj) =
|Li ∩ Cj |

|Li|
Finally, the Rand coefficient is based on a different approach to the evalu-

ation of cluster sets quality. The idea is to analyze pairs of resources and their
placement in clusters and categories. In particular, we calculate four statistics:
(i) TT , the number of resource pairs appearing in the same category and clus-
ter; (ii) TF , the number of resource pairs appearing in the same category but
different cluster; (iii) FT , the number of resource pairs appearing in the same
cluster but different category; (iv) FF , the number of resource pairs appearing
in different cluster and category [1]. In other words, TT + FF is the number
of resources that have been clustered consistently in a category as well as in a
cluster set, while TF + FT is the number of resources that have been clustered
differently in the category and the cluster set. According to these statistics, the
Rand coefficient is calculated as the total number of consistent results over the
total number of resource pairs:

Rand(Lj , Ci) =
TT + FF

TT + TF + FT + FF

In our evaluation, the Rand coefficient is used to check the robustness of the
results of purity and to provide a more analytical measure of correspondence,
based on individual resource pairs and their placement in the cluster sets.

8.2 Dimensional Data Clustering

In this evaluation, we analyze the results of single-dimension clustering with
respect to the results of classical hierarchical clustering. Two different tests are
executed. In the first test, the category set LDpro of the ground truth is compared
against (i) CLDpro , that is the cluster set obtained through dimensional cluster-
ing over the Dpro dimension, and (ii) H, that is the cluster set obtained through
the classical hierarchical clustering with the complete-link strategy. Similarly, in
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the second test, the category set LDgeo of the ground truth is compared against
CLDgeo and H. For each comparison between cluster sets and categories, purity,
F-measure and Rand coefficient have been calculated.

Purity. Purity evaluation results are shown in Fig. 10. We note that both
the professional dimension Dpro and the geographic dimension CLDgeo gener-
ated by our dimensional clustering provide better results than the hierarchical
algorithm H. Moreover, we note that the results of the geographic dimension
are better than the professional dimension. This is due to the fact that the pro-
fessional dimension contains the feature field, which has a low number of unique
values in the corpus. This produces many similarity values due to the field fea-
ture which is not a discriminating feature for the considered resources. For this
reason, the classical hierarchical clustering algorithm H, which does not discrim-
inate the causes of similarity, has a behavior quite similar to our dimensional
approach. Results are better for CLDgeo , where such non-discriminating similar-
ity values over the professional dimension are not considered in clustering. For
this reason, the purity of CLDgeo is significantly higher than the hierarchical
clustering H.

Fig. 10. Purity evaluation results

F-Measure. F-measure evaluation results are shown in Fig. 11. The F-measure
results confirm purity results for both the professional and the geographic dimen-
sions. This means that the dimensional clustering provides a better coverage of
the categories manually defined than the classical hierarchical clustering. As for
purity, we observe that the presence of a non-discriminating feature like field
downgrades the quality of both CLDpro and H.

Rand Coefficient. Rand evaluation results are shown in Fig. 12. As for purity
and F-measure, the Rand coefficient confirms that dimensional clustering per-
forms better than hierarchical clustering for both Dpro and Dgeo dimensions.
However, we observe that the results over the professional dimension are quite
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Fig. 11. F-measure evaluation results

poor for both CLDpro and H. This means that the expected results of the cat-
egory set LDpro , and thus of the experts that manually defined LDpro , is not
compliant with the two clustering algorithms, regardless their peculiar charac-
teristics. On the opposite, the results over the geographic dimension are excellent
for both CLDgeo and H, meaning that the two algorithms succeed in providing
the expected results of LDgeo .

Fig. 12. Rand coefficient evaluation results

8.3 Evaluation of Cluster Ensemble

In this evaluation, we compare the multi-dimension cluster sets obtained through
ensemble of CLDpro and CLDgeo against the cluster set ALL = CLDpro∪Dgeo

obtained through a single execution of matching and clustering over all the
features in Dpro ∪ Dgeo (that we call flat clustering).
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Ensemble Comparison. For this evaluation, we apply ensemble techniques
over CLDpro and CLDgeo by executing all the possible operations, criteria, and
modalities described in Sect. 6. As a result, we generate 12 cluster sets, each
one associated with a label describing the applied operation (‘I’ for intersection,
‘U’ for union, ‘D’ for difference), criterion (‘C’ for centrality-driven and ‘M’ for
mutuality-driven), and policy (‘O’ for one-to-one and ‘M’ for one-to-many). For
example, the cluster set ICO is obtained by applying the intersection operation,
the centrality-driven criterion, and the one-to-one policy.

The 12 cluster sets obtained through ensemble and the ALL cluster set are
compared against the category sets LDpro and LDgeo by using purity, F-measure,
and Rand coefficient. The results of this comparison are shown in Fig. 13. For
what concerns purity, the ensemble approach is better than the flat clustering
in all the considered situations, regardless the adopted operation, criterion, and
policy. For that concerns F-measure and Rand coefficient, the results of ensemble
and flat clustering are comparable, however, we note that ensemble outperforms
flat clustering in some situations. As a general remark, we note that the union
operation provides better results with respect to F-measure, while intersection
operation provides better results with respect to the Rand coefficient. This is
due to the fact that the union operation produces large clusters that have more
probability to cover the expected category set. On the opposite, the intersection
operation produces small clusters where resources are strictly coupled and, thus,
the probability to meet the expected result of the category set manually produced
by experts is high.

Ensemble Analysis. In order to better understand the ensemble results, we
execute a more analytic comparison between the cluster set ALL and the clus-
ter set IMM obtained through ensemble with intersection operation, mutuality-
driven criterion, and one-to-many policy. The IMM cluster set has been chosen
since it provides the best performance on average for purity, F-measure, and
Rand coefficient in both the category sets LDpro and LDgeo . Consider a cluster
cli ∈ ALL ∪ IMM and the associated feature set πcli that generated the cluster
cli in the execution of the HCf+ algorithm. We are interested in measuring how
much the cluster cli is professional and/or geographical oriented. To this end,
for a cluster cli, we calculate the professional coefficient pi and the geographic
coefficient gi as follows:

pi =
| πcli ∩ Dpro |

| πcli | , gi =
| πcli ∩ Dgeo |

| πcli |
For each cluster cli ∈ ALL ∪ IMM, the corresponding professional pi and

geographic gi coefficients are represented on the scatter plot of Fig. 14. The dis-
tribution of clusters along the professional and geographic dimensions show that
the ALL cluster set is mainly composed by mixed clusters, where the causes of
similarity are combined by professional and geographic features, except for a very
small number of clusters that contain resources mainly focused on professional
features (right-bottom side of the scatter plot). Instead, most of the clusters
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Fig. 13. Comparison of ensemble and ALL cluster sets against the category sets LDpro

and LDgeo

belonging to the IMM cluster set are balanced on professional and geographic
dimensions (central part of the scatter plot). A certain number of clusters where
one of the two dimensions (e.g., professional) is prevalent are also preserved
(right-middle side of the scatter plot). We can conclude that both cluster sets
succeed in preserving clusters that are mixed on the two dimensions. The IMM
cluster set outperforms the ALL cluster set in preserving clusters where one
dimension is prevailing on the other one.
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Fig. 14. Analysis of ALL and IMM cluster sets

9 Related Work

Work related to dimensional clustering is in the field of linked data matching,
data clustering, and cluster ensemble.

Linked data matching is emerging in the recent years and a number of
approaches and tools are being appearing [12,24]. Here, we focus on the prob-
lem of optimizing the matching process by reducing the number of comparisons
to perform. According to the survey in [7], our matching techniques presented in
Sect. 4 belong to the field of value-oriented techniques and rely on methods for
the reduction of the comparison costs based on feature selection. Similar tech-
niques are presented in [23] where a pre-matching phase is applied to find the
comparison classes in a given comparison space. In [23], to reduce the number of
matching comparisons, a standard text-normalization process is executed (e.g.,
converting the textual values in lower case, removing special characters, con-
verting all the numeric values to a common measure unit) and data values are
reduced according to a prefixed number of categories (e.g., “Rob”, “Robert” and
“Robbie”, in the field “Name”, are all represented by “Robert”). With respect to
the approach of [23], our matching techniques rely on dimensions to discriminate
between comparable and non-comparable features without any pre-processing
activity.

About data clustering, the dimension-based clustering techniques presented
in Sect. 5 can be defined as agglomerative and hierarchical according to the
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survey classification of clustering algorithm proposed in [3]. In this paper, we
focus on issues about the quality of the cluster sets resulting from dimension-
based application of the clustering algorithm [1,19]. In this respect, an interesting
work is [14] where a two-phase clustering procedure is presented. In a former step,
a feature set is extracted for each document and aggregated to obtain a collection
of feature sets. In a latter step, these feature sets are used as input for a soft
clustering algorithm. This approach is based on the use of features as aggregation
criterion and the items of a cluster can have different sets of common features as
a result. With respect to this solution, our HCf+ algorithm presents two main
differences. First, HCf+ is driven by the comprehensive similarity values among
items instead of relying on specific similarity values among features. Second,
HCf+ produces clusters with associated similarity features that are common
to all the cluster members. This means that clusters are cohesive with respect
to features. Similarly to HCf+, an approach focused on obtaining clusters with
homogeneous feature values is proposed in [27]. As a difference with such a
solution, HCf+ is focused only on feature similarity and it also supports cluster
overlaps.

Dimensional clustering is also concerned with cluster ensemble [22]. In this
field, techniques are used in two main contexts: knowledge reuse (e.g., for dis-
tributed-computing purposes) and cluster-accuracy improvement. For knowledge
reuse, the cluster ensemble is employed to merge the results of partial clustering
executions applied to subsamples of the available data. This allows a paralleliza-
tion of the clustering phase leading to a reduced execution time. In both [21]
and [15], an approach is proposed where the original dataset is divided into
multiple subsamples and the clustering results are finally merged relying on dif-
ferent cluster ensemble techniques. In [21], the cluster ensemble technique is
based on a notion of mutual information between clusters to choose the can-
didates for merging. In [15], a consensus-based technique is proposed, where
the partial clusterings are used to compute new similarity values between the
resources. The main idea of [15] is that the higher is the number of clusterings
where two resources appear in the same cluster, the higher will be the similarity
between these two resources. About [15], a number of techniques has been pro-
posed to select the cluster candidates for merging, by relying on mutual infor-
mation [19], best-match finding, interaction probability and cluster reduction
techniques [10]. For cluster-accuracy improvement, multiple clustering solutions
are computed (e.g., for different data representations) and ensemble techniques
are finally applied to obtain an overall clustering result. In [16], different approa-
ches for computing multiple clustering solutions are analyzed while in [2] the
focus is on obtaining a high-quality cluster set maximizing the dissimilarity with
a given previously-computed clustering. The goal is to consider all the differ-
ent aspects of the analyzed data. A similar approach is presented in [13], where
a further step is performed by proposing two different techniques for cluster
merging. With respect to the above approaches, we propose to use ensemble
techniques as a tool, enabling the user to effectively explore a (possibly) large
corpus of linked data. The generation of multiple dimension-based cluster sets is
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enforced to support different views of the same corpus and ensemble operations
and related techniques are provided to enable the “on-the-fly” combination of
these views according to the specific user preferences.

10 Concluding Remarks

In this paper, we presented techniques for dimensional clustering of linked data
based on thematic dimensions. In particular, we focused on techniques for (i) the
creation of a single-dimension cluster set through matching and clustering, and
(ii) the generation of a multi-dimension cluster set through clustering ensemble.
Single- and multi-dimension cluster sets are used to support effective exploration
of a given corpus of linked data under different and complementary thematic
perspectives.

Ongoing activities are about the development of a suite of prototype tools
implementing the various techniques presented in this paper for dimensional
data clustering and cluster ensemble. Future activities will be devoted to inte-
grate these prototype tools with the summarization and exploration mechanisms
outlined in Sect. 7.
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Abstract. WebID is a new identification approach of the W3C. It enables
managing profile data associated to persons and services at self-defined
places in the cloud. By relying on RDF vocabularies like FOAF for describ-
ing user profile data, WebID contributes to the Semantic Web vision.
While access to user profiles can be controlled with existing security mech-
anisms, they are not designed to protect sensitive data within user profiles
from unwanted retrieval, malicious manipulation, and improper use. This
article analyzes the risks that affect the knowledge stored in WebID-based
user profiles. It therefore describes potential attack scenarios and outlines
the challenges a solution must deal with. To tackle the problem of insuffi-
cient protection, we propose ProProtect3. This approach enables identity
owners (1) to create customized filters for sensitive data, (2) to verify the
profile data integrity, and (3) to restrict the rights of delegatees. For eval-
uating the ProProtect3 approach, we integrate it into a WebID identity
provider.

Keywords: Protection · Linked data · Identity · WebID · Social web ·
Privacy · Security · Integrity ·Authentication ·Delegation · Semantic web

1 Introduction

With increasing presence of social media in daily activities, the need for trust-
worthy collaboration is becoming more and more important [14,35]. Centralized
social networks like Facebook, Google+ or LinkedIn provide varied possibili-
ties for personal information exchange and networking, but try to lock-in users
within social network domains [45]. As recent security disclosures have shown,
such walled gardens allow for large scale analysis of user data [17]. Some of
the involved companies, e.g., Google, Yahoo! or Microsoft, also act as identity
providers. They offer single sign-on functionality for avoiding problems summa-
rized by the term password fatigue [24]. Although a growing number of social
networks tends to make parts of their collected knowledge available to the public
through APIs [31], users are not in full control of their identity data. Preventing
c© Springer-Verlag Berlin Heidelberg 2015
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the creation of data silos and enabling users to remain in control of their personal
data asks for a distributed online social network [45].

A distributed online social network can be implemented on the basis of W3C’s
WebID specification [38]. WebID represents a distributed identification approach
enabling users to globally authenticate themselves, connect to each other and
manage their identity data at a self-defined place [34]. The WebID approach
makes use of three important artifacts: the WebID URI, the WebID profile, and
the WebID certificate. These artifacts are shown in Fig. 1 and described below.

Fig. 1. Artifacts in WebID: Certificate, URI, and Profile

A WebID URI refers to an identity i ∈ I, where I is the set of all identities
and i typically is a person, but it can also be a robot or a group, or more
generally spoken an agent. Like a username in other identity systems, a WebID
URI w ∈ W ⊂ U is a URI denoting an identity i, where W is the set of all
WebID URIs and U the set of all URIs. Dereferencing a WebID URI w returns
a set of RDF triples T ∈ T that describe personal attributes of identity i using
Linked Data, where T is the set of all RDF triples. This is formalized in Eq. (1).
There, function d(u) yields T for URI u being a valid WebID URI.

W = {u|d(u) = T}, u ∈ U (1)

A WebID profile is a URI addressable resource, which is available at WebID
URI w and contains a set of RDF triples T describing identity i. Each triple t ∈ T
consists of subject t1, predicate t2, and object t3. As RDF is used for specifying
all personal data, an identity’s attributes are expressive, extensible and machine-
readable [28]. This is a major advantages to other identity systems, which are
restricted in assigning and exchanging user attributes. Such semantic profile
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descriptions facilitate large scale exploitation of profile data to optimize customer
services and improve the user experience [42]. While RDF allows for using various
ontologies, a WebID profile primarily relies on FOAF as a vocabulary for personal
data [6]. As a set of RDF triples T spans graph G = (V,E), G ∈ G, where G is
the set of all graphs, and graph G describes a set of triples describing identity i,
we formalize this equivalence in Eq. (2).

T ∼ G ⇔ ∀t = (t1, t2, t3) ∈ T : t1, t2, t3 ∈ V ∧ (t1, t2) ∈ E ∧ (t2, t3) ∈ E (2)

Besides being a semantic repository for personal data, a WebID profile also
contains a set of public keys described by triples TP ⊂ T . Each single public key
k ∈ K is described by triples Tk ⊆ TP , where K ⊂ K is the set of asymmetric
keys owned by identity i and K the set of all asymmetric keys. Tk specifies
diverse attributes of a public key k, including type, modulus and exponent.
A k-corresponding private key k−1 ∈ K is used to prove that an identity actually
owns the public key k. Equation (3) defines the relation between k and k−1 using
function a, which maps messages M and the set of keys K on the set of messages.

a : K × M → M a(k, a(k−1,m)) = m ∀m ∈ M (3)

A WebID certificate is an X.509 client certificate [9]. As formalized by Eq. (4),
a WebID certificate Ci,k ∈ Ci contains the WebID URI w of identity i and a
public key k owned by identity i, where Ci is the set of all WebID certificates
of i. Here, the Subject Alternative Name property of the certificate stores w.
WebID certificate Ci,k is signed with the corresponding private key k−1 or the
private key of a trusted party.

Ci,k = (w, k) (4)

An identity i = (w, T ) is described by a WebID URI w and personal data T
contained in the associated WebID profile. Unlike knowledge-based authenti-
cation approaches using username/password pairs as proof of identity, WebID
is an ownership-based authentication approach. For authentication, it relies on
public key data available in both WebID profile and certificate. An identity i is
authenticatable when i has a WebID certificate Ci,k containing a public key k
for which i owns the corresponding private key k−1, as defined in Eq. (5).

i = (w, T ) is authenticatable ⇔ ∃k : Tk ⊂ T,∃Ci,k,∃k−1 (5)

This part of the authentication is performed after the ownership of the private
key k−1 is proven during the TLS handshake [11].

Figure 2 illustrates the process1 of retrieving a resource from a server that
allows users to authenticate via WebID. This process shows how the previously
described WebID artifacts are used. There, a subject, called Alice, requests a
particular resource stored on the server. Having established a TLS-secured con-
nection in ©1 , Alice’s actual request sent in ©2 is directly intercepted by a guard
1 The sequence diagram is based on the WebID authentication sequence (cf. [34]).
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Fig. 2. WebID Authentication Sequence

shielding the server. The guard parses the request to detect access control set-
tings associated to the request target in ©3 . If the requested resource is access
controlled, Alice is asked to authenticate by providing a WebID certificate in ©4 .
Given that Alice selected a WebID certificate to which she has the private key,
the public key of the certificate is compared to a valid one found in Alice’s
WebID profile. The WebID verifier, being responsible for this check, automat-
ically retrieves Alice’s WebID profile by dereferencing the WebID URI stored
in WebID certificate provided by Alice. Here, the WebID profile is hosted on
another server. Assuming that both public keys are identified as equal in ©5 ,
Alice is potentially granted access to the requested resource in ©6 , which she
retrieves in ©7 .

Alice’s WebID profile has been retrieved during authentication for verifying
her proof of identity. Her profile has to be accessible to do so. The verification
routine processes her profile unaware of the integrity and the correctness of
data stored within. While today’s security mechanisms are designed to protect
resources against risks that originate from outside (cf. ©3 and ©6 ), they lack
providing adequate protection from threats that emerge from inside.
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In WebID, every user is enabled self-host an identity provider and self-assign
arbitrary identity data. So, special attention needs to be paid to protect the sys-
tems that host the user profile data. No other identity approach is known to the
authors that allows for using identity data in such an expressive, extensible and
machine-readable way. With only a small extent of user profile data available to
be disclosed, other approaches do not necessarily require sophisticated protec-
tion means. Centralized identity approaches can rely on some trained personnel
to protect a few central systems that host the user profiles.

1.1 Problem of Insufficiently Protected User Profile Data

An insufficiently protected WebID profile is a potential source of information
for subjects that collect, tamper, or improperly use user profile data. There are
different manifestations of this problem that affect the identity owner’s privacy
and reputation. They are outlined below.

Information stored within a WebID profile can be retrieved by known and
wanted, but also unknown and unwanted subjects. Since WebID profiles are parsed
during authentication to verify public key data, they must be accessible for other
services and agents. That is, also profile data irrelevant to the authentication pro-
cedure per se could be retrieved and collected without the identity owner’s notice.
So, data found within WebID profiles could be used for purposes identity owners
do not agree with, e.g., product marketing or social network analysis.

While data-collecting subjects can be considered as attackers from the outside,
a WebID profile could be also attacked from the inside. Malicious administrators
could tamper data stored within the profile when hosted on a non-trustworthy
server. Purposeful manipulation of WebID profile data enables defamation, e.g.,
by adding a wanted criminal as a social connection. Beyond that, it even facilitates
identity theft, e.g., by adding the identity thief’s public key to the WebID profile.

Above problem manifestations can happen without the identity owner’s intent
or knowledge. There is, however, another one which can take effect on the iden-
tity owner’s initiative. In a delegation scenario, the identity owner authorizes
somebody to do something on her behalf. This something needs to be pre-
cisely specified and enforced by appropriate measures. Otherwise, delegatees
could improperly use this authorization to do unspecified things in the iden-
tity owner’s name.

1.2 Contributions for an Improved Protection of User Profile Data

Todealwith the problemof insufficiently protected user profiles,we aimat enabling
identity owners to protect their WebID profile data from unwanted retrieval, tam-
pering, and improper use. Addressing all problem manifestations, we propose the
ProProtect3 approach that contributes achieving the following objectives:

1. To avoid unwanted retrieval of sensitive user profile data.
2. To detect malicious manipulations in WebID profiles.
3. To prevent improper use of profile data by delegatees.
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Even though WebID is still in development and has not reached a critical user
acceptance so far, not dealing with the problem will impede further adoption and
progress. We expect that solving the problem with ProProtect3 will contribute
to increase the user acceptance of WebID. The more secure a user identity is
considered to be, the more users WebID will gain. Allowing users to protect their
profiles as personal knowledge bases will add to advance the overall information
security in the context of knowledge centered systems and Linked Data.

Although there are other factors that affect the security in the WebID con-
text, this article’s scope is limited to the protection of data stored within WebID
profiles. One of these other factors is the procedure used for creating WebID cer-
tificates from within browsers. There, users risk to make wrong decisions, which
impair their privacy and security. We discuss this issue in [41].

The rest of the article is organized as follows: Sect. 2 describes scenarios to
highlight diverse problem facets. Section 3 derives the challenges from these sce-
narios a solution must deal with. Section 4 presents the ProProtect3 approach.
We explain how this threefold approach achieves protection against unwanted
retrieval in Sect. 5, against malicious manipulation in Sect. 6, and against
improper use in Sect. 7. Section 8 evaluates the approach based on a prototypi-
cal implementation in the Sociddea WebID identity provider. Section 9 discusses
related work. Section 10 concludes the article and points to future work.

2 Scenarios Indicating Insufficient Profile Protection

For highlighting the problem of insufficiently protected user profile data in the
context of WebID, we use different characters that pursue different goals:

Alice is a WebID identity owner. She intends to protect her profile against
various threats. However, Alice does not want to make too many efforts to achieve
this goal. Although Alice has basic IT knowledge, she is not that experienced.
At work, Alice acts as a delegator, i.e., a person who can delegate tasks to
co-workers.

Bob is a close friend to Alice. Alice trusts him and Bob trusts her. Bob is
allowed to see private data contained within her WebID profile.

Casey is another friend of Alice. Compared to Bob, he is not that close to
Alice. For instance, Casey could be a co-worker of her. While Alice trusts Casey
in work-related activities, she does not share any private data stored within her
profile with him. Since Alice also acts as a delegator at work, she can hand over
tasks to him. Here Casey is a delegatee, i.e., a person who is assigned to a task.

Dave is another friend of Alice having Casey’s characteristics.
Mallory is the bad guy; Alice’s enemy. He is the malicious attacker who

actively wants to impair or damage Alice’s identity and associated data contained
within her WebID profile. Mallory can be considered as the opposite of Bob with
regard to Alice. He intends to attack her user profile data at all costs. Mallory
acts as a malicious server operator.

Having described the personae that are used throughout this article, we
explain risk factors and attack scenarios next. They illustrate several aspects
of the problem of insufficiently protected user profile data in the WebID
context.
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Scenario 1. As a WebID identity owner, Alice intends to restrict her profile
data’s visibility. She wants to do this because all information available inside her
WebID profile could be easily retrieved, if not properly addressed by appropriate
access control mechanisms. Sensitive profile data could be used for purposes she
does not agree with, e.g., social network analysis, tailored advertisements or
product marketing. Although restricting access to her entire profile would be an
option, Alice is not interested in losing advantages like authentication or single-
sign-on to new yet unknown services. To keep associated services up-to-date,
Alice wants to permit monitoring specific profile parts by third-party entities
for changes. Alice wants to allow anyone to access profile data she marked as
visible, even if Alice is currently unavailable or unauthenticated.

Scenario 2. Bob wants to retrieve Alice’s current address data. As Alice knows
and trusts Bob, she granted him more visibility rights compared to the anony-
mous subjects in Scenario 1. While Bob is allowed to see Alice’s private address
data, Alice does not want to share this kind of data with her co-worker Casey.
Instead of private address data, only Alice’s office address data is visible to
Casey.

Scenario 3. Alice’s WebID profile is hosted on a server she trusted in the past.
Today, she does not trust the server operator any longer. Therefore, Alice plans
to switch the server hosting her WebID profile. Alice has distributed her WebID
profile data to separate resources for applying access rights at the resource level.
For migrating to a new hosting server, Alice has to find, consolidate, and transfer
all her user profile data being scattered among various resources. Additionally,
she has to adjust access control lists (ACLs) for these resources due to different
hosting locations, naming restrictions etc. As an identity owner, Alice must be
aware of all resources relevant to the migration. Depending on Alices setup used
for securing her personal data, this migration might be a complex undertaking.

Scenario 4. Alice’s WebID profile is hosted on a server operated by Mallory.
She controls access to her WebID profile at the resource level to avoid data
disclosure from the outside (cf. Scenarios 1 and 3). However, she cannot apply
the same access control for the inside. When hosting her profile there, Alice was
aware of the risk that Mallory could disclose all her profile data2. Apart from this
fact, Mallory can also manipulate Alice’s WebID profile data. As an example, he
would be enabled to change her email address to point to one of his own or add
new social connections linking to wanted criminals or Alice’s enemies. That is,
Mallory can tamper Alice’s user profile data without her knowledge and notice.

Scenario 5. Based on Scenario 4, Mallory wants to take full control of Alice’s
WebID profile. For this purpose, he adds his own public key to Alice’s profile.
Mallory creates a WebID certificate linking to her profile. That is, Mallory’s
WebID certificate contains the public key that is also available in Alice’s WebID
profile. As a consequence, Mallory is enabled to authenticate himself using Alice’s
2 This common risk affects all unencrypted files hosted on third party operated servers.
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identity. To make this even worse, he removes all other public keys from her
WebID profile. Thus, Alice cannot authenticate herself to other subjects any
longer. She has to inform all her social connections and services accessing her
profile about the forgery. Finally, she has to choose a new WebID URI and
re-create both her certificates and her profile.

Scenario 6. Mallory permanently tampered Alice’s user profile data in Scenar-
ios 4 and 5. Alice might find out about such malicious manipulations sooner or
later. To cover his tracks, Mallory adjusted his approach and only tampers her
WebID profile data on special occasions, now. That is, his modifications to Alice’s
profile are temporary instead of permanently. As an example, before authenti-
cating to a service as Alice, Mallory adds his public key to her WebID profile
(cf. Scenario 5). After making use of these services as Alice, Mallory reverses his
malicious changes by removing his public key. In the time between these events,
Mallory could send emails, book or order something in her name. In this case,
Alice probably will not discover that a malicious manipulation of her profile data
was the reason for future events and issues.

Scenario 7. As Alice is a busy person, she delegates tasks to other persons to
act on her behalf. These persons should have access to her WebID profile data
for using it to accomplish the task in her name. She knows that her authoriza-
tion would not be misused for other purposes, when she is delegating a task to a
person she fully trusts. While this is the case with Bob, Alice is not sure regard-
ing Casey as delegatee. When Casey uses Alice’s authorization intentionally, he
usually acts on her behalf within her specified scope, but sometimes he also does
other things in her name. This is an improper use of her authorization. Alice
therefore wants to be aware of Casey activities that are done on her behalf.

Scenario 8. In addition to Scenario 7, Casey has to work on Alice’s behalf on a
task having a fixed deadline, e.g., a project proposal. Alice does not want Casey
to work on that task on her behalf outside the specified time frame. She tries to
prevent Casey from misusing her authorization for other things. Unlike Casey,
Dave works in Alice’s name on a regular basis, e.g., for creating status report.

Scenario 9. In addition to Scenario 7, Alice delegates a task to Casey that
involves using a specific service, like a travel booking portal, on her behalf. Alice
does not want Casey to use other unspecified services in her name.

The scenarios describe potential risks and attacks. They deal with different
issues related to data stored in user profiles. We analyze them in the next section.

3 Analysis of Protection Needs

In this section, we discuss the findings gained from analyzing the scenarios
described in Sect. 2. We extract protection needs of identity owners and out-
line that applying today’s approaches cannot solve these issues completely. It is
furthermore shown that there is a research gap we try to close in this article.
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Scenario 1 shows a need that identity owners want to restrict access to sensi-
tive data within their profiles. They want to do this without impairing the fea-
tures introduced with WebID, e.g., certificate-based authentication and personal
data repositories. To allow monitoring by services an identity owner uses, WebID
profiles must remain accessible. This general protection is detailed in Scenario 2.
Identity owners have to be enabled to express whom exactly they want to make
specific user profile data available to. That is, it has to be possible to treat any
agent authenticated via WebID differently when accessing data of the identity
owner’s profile. This asks for a flexible mechanism to create customized views
on WebID profiles. It has to allow defining both specific profile parts and spe-
cific profile requesters. Due to the issues mentioned in Scenario 3 with respect to
migrating WebID profiles to new hosts, such mechanism for creating customized
profile views also has to produce portable as well as maintainable view
definitions.

To protect WebID profiles from unwanted access, data retrievals or tracking
attempts [5], the identity owner could set access control rights for WebID profile
resources [18]. Yet, existing mechanisms only provide coarse access control. They
focus on resources instead of represented data. So, enabling fine-grained access
control requires outsourcing WebID profile data to separate resources and set
proper permissions. This kind of profile data distribution, however, increases
complexity, and complicates modifications and transfers to other systems [22].

Based on the analysis of scenarios Scenarios 1 to 3 and existing mechanisms,
we infer that a fine-grained protection against retrieving user profile data by
specific subjects has to be flexible, portable, and maintainable. Defining filters
on profile data for specific requesters must be flexible and expressive. Identity
owners must be enabled to easily transfer filter specifications to other systems
without making major adjustments. Filter processors have to be either avail-
able or easy to implement within new ecosystems. Filters on profile data must
be standard-compliant to ease maintenance and avoid introducing too much
overhead.

As outlined in Scenario 4, identity owners want to secure their user profile
data against tampering. While identity owners cannot completely prevent or rule
out WebID profile data manipulation by malicious server operators or hackers,
they want to be aware of unintended changes to their profiles. We consider
moving from a managed WebID profile hoster to an own server not as an option
here. Profiles hosted on servers the identity owners own can also be vulnerable
to attacks, due to security holes at a different system level. To allow subjects to
detect profile data tampering, a mechanism to prove the profile’s data validity
has to be integrated into the authentication process. In consequence of Scenario 5,
a WebID profile has to be useless without a proof of its integrity by the identity
owner. The fact that malicious manipulations of WebID profile data can happen
on a temporary as well as on a permanent basis (cf. Scenario 6) necessitates
checking such a proof of correctness on every attempt to access the WebID
profile.
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To protect WebID profiles from malicious changes of sensitive user data,
the identity owner could digitally sign the WebID profile. However, signing a
WebID profile at the resource level is bound to a particular representation of this
WebID profile, such as N-Triples3, Notation3 4 or RDF/XML5. In addition to the
representation of the profile data, also the order of elements (RDF triples) is an
important factor. A different element order would change the hash6 calculated
from the resource. That is, it is required to sign the RDF graph or subgraph
of the WebID profile [7]. To avoid identity theft, as described in Scenario 5,
the WebID certificate could be signed by a trusted certificate authority, which
can verify the corresponding WebID profile. This causes a complex process of
creating a new tamper-proof protected WebID. A WebID identity owner like
Alice can sign her WebID profile using her private key that corresponds to the
public key within the WebID certificate and profile. Storing this digital signature
within her WebID profile does not protect the WebID profile. This is because an
attacker can exchange the public key stored in the WebID profile with his own.
Then, he can sign the WebID profile with his own private key.

From the discussion above, we derive the need to create tamper-proof WebID
profiles that are universally and easily applicable, backward-compatible and
independent of the specific WebID profile representation. Such tampering pro-
tection must ensure that data within a WebID profile was created by the WebID
identity owner and not by an attacker. It also has to secure WebID profile against
identity theft. The process of WebID authentication and retrieving a WebID pro-
file should be modified as little as possible in order to simplify the integration of
the protection. This also facilitates backward compatibility with WebID identity
providers that do not provide this feature. Creation of a tamper-proof WebID
profile should not come at the cost of additional effort for the users.

Delegating a task to a subject to do something on the delegator’s behalf
is a process involving some risks. The identity owner wants another subject
to act in her name, i.e., the delegator officially authorizes the delegatee. That
is, the identity owner has to trust another subject at least partially that the
authorization is properly used within the intended scope. However, this cannot
be guaranteed and, thus, we have to take the worst case into account As described
in Scenario 7 a delegatee should be enabled to access to the identity owner’s user
profile data in the context of WebID. The delegator’s WebID profile contains data
that might be required by other services and subjects when acting in her name.
While it is possible to create a copy of the delegator’s WebID profile for particular
delegatees, this causes issues like information redundancy and inconsistency due
to lost updates of profile data. Having only one WebID profile - and, therefore,
one WebID URI - that is used by the identity owner as well as the delegatees
requires a fine-grained access control to identify the real subject. Apart from this,
Scenario 8 exemplifies that the identity owner has to be in the position to control
3 N-Triples: A line-based syntax for RDF graphs, http://www.w3.org/TR/n-triples/.
4 Notation3 (N3): A readable RDF syntax, http://www.w3.org/TeamSubmission/n3/.
5 RDF/XML syntax specification, http://www.w3.org/TR/REC-rdf-syntax/.
6 Besides the identity owner’s private key, a hash is the basis of the digital signature.

http://www.w3.org/TR/n-triples/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TR/REC-rdf-syntax/
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the lifetime of a particular delegation. This would enable to limit improper use
outside the delegator’s intended time frame being required to complete the task.
In addition to controlling the validity period of a delegation, we can derive
from Scenario 9 the requirement of restricting a delegation to specific services.
While detecting and enforcing a time restriction is rather simple in this context,
identifying a specific service might be a more complex undertaking.

Concluding the analysis of Scenarios 7 to 9 indicates that there is a need for
additional protection of identity owners against improper use of their WebID
profile data in the context of delegation. A mechanism realizing this protection
has to detect who is requesting access to a service, i.e., either the real iden-
tity owner or one of the delegatees acting on the identity owner’s behalf. Even
though a delegatee is acting on an identity owner’s behalf and only using the
identity owner’s data, it is important to be aware of the actor and not just the
identity owner. The awareness resulting from this detection allows for logging
activities of delegatees and, consequently, improving transparency and traceabil-
ity for the identity owner. To support enforcing the identity owner’s intended
scope of delegation, appropriate measures have to be available.

Bottom line. The analysis shows that there are three main manifestations of
the problem. They include the disclosure of user data to unknown and unwanted
subjects retrieving the WebID profile. As another manifestation of the problem,
there is a risk of user data manipulation and even identity theft by malicious
server operators or subjects that hacked the WebID profile host. Finally, we
identified a third manifestation in terms of improper use of user profile data.
Especially in delegation scenarios, user profile data is vulnerable to improper
use by subjects that act on the identity owner’s behalf.

We can trace all problem manifestations back to insufficiently protected
WebID profile data. WebID identity owners have to be supported in protect-
ing their user profile data from this problem. It is necessary to create appropri-
ate mechanisms that assist identity owners in securing their sensitive data in a
flexible, maintainable, and easy to use way.

4 Protecting WebID Profile Data with ProProtect3

On the basis of the analysis results, we propose the ProProtect3 approach. Pro-
Protect3 is a threefold approach dealing with the problem of insufficiently pro-
tected WebID profile data. As this problem has three different manifestations
in terms of unwanted retrieval, malicious manipulation, and improper use of
WebID profile data, ProProtect3 treats each of them with particular attention.

For integrating the approach into the WebID authentication sequence,
we extend the original process illustrated in Fig. 2. There, Alice wanted to
retrieve an access-controlled resource and had to authenticate with her WebID
certificate before. Our extension to this process by the ProProtect3 approach is
highlighted in Fig. 3 and Fig. 4. Here, ©1 to ©5 are analogous to Fig. 2. The Pro-
Protect3 approach adds ©6 and ©7 , as shown in Fig. 3. These two extra steps are
responsible for coping with the problem of insufficient protection through veri-
fying both the profile data integrity and the delegation rights stored within the
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Fig. 3. ProProtect3 Approach for Service Providers

identity owner’s WebID profile. Both allow detecting tampering and improper
use of user profile data of WebID identity owners. As an example, this assists
discovering malicious requests originating by profile data compromised by attack-
ers, e.g., Mallory as server operator, or subjects acting in the identity owner’s
name. In addition to these verifications, ProProtect3 adds a mechanism to avoid
unwanted disclosure of user profile data, as depicted in Fig. 4. All three parts of
the approach are complementary and help to increase the protection of user pro-
file data. Unlike both verification mechanisms that are integrated on the service
provider’s system, the protection against unwanted disclosure is only available
on the server hosting the identity owner’s WebID profile. Since the server host-
ing the WebID profile serves incoming profile requests as well, the verification
mechanisms could be also integrated there in order to check requests initiated
by subjects authenticated via WebID.
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Fig. 4. ProProtect3 Approach for WebID Profile Hosters

The next three sections detail these parts of the ProProtect3 approach. While
Sect. 5 provides a solution against unwanted retrieval attempts (cf. Fig. 4), Sect. 6
explains how WebID profiles can be secured from malicious manipulation by
offering an integrity protection (cf. ©6 in Fig. 3). Section 7 presents the third part
of the ProProtect3 approach. There, we show our idea for avoiding improper use
by subjects acting on behalf of the identity owner (cf. ©7 in Fig. 3).

5 Protecting User Profile Data from Unwanted Retrieval

To improve the protection of WebID profiles, this part of the ProProtect3 app-
roach defines and applies a fine-grained filtering of data marked as sensitive
by the identity owner. We first present the conceptual model for preventing
unwanted retrieval of user profile data which we then extend by a technical
description.

5.1 Conceptual Contribution to Avoid Unwanted Retrieval

To avoid unwanted retrieval of profile data, we apply a filtering as a graph-to-
graph transformation. A WebID profile, e.g., Alice’s profile in Fig. 3, acts as filter
input. It is represented by graph G(V,E), as formalized in (2). Filter s maps
graph G to graph G′ depending on identity i ∈ I, as defined by Eq. (6).

s : G × I → G (6)
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Graph G′ represents identity owner’s m WebID profile filtered by sensitive data
requester r ∈ I is not allowed to retrieve. Equation (7) formalizes this filter.

s(G, r) = G′ = (V ′ ⊆ V,E′ ⊆ E) (7)

This part of the approach handles sensitive data as a subset of triples T ∼ G.
While all sensitive data is available in graph G, requester r is only allowed to
see data that is present in graph G′. Filter function f defines a mapping of a
set of triples on {0, 1} depending on the identity. While “1” means sensitive
data and, therefore, that the set of triples is present in graph G′, “0” means the
opposite. Consequently, whitelisting or blacklisting of sensitive WebID profile
data for particular requesters can be achieved using filter function f as defined
by (8).

f : I × {t} → {0, 1}, t ∈ T (8)

Function f yields 1 for each triple in graph G and identity owner m. Filter s(G, r)
uses f to create filtered graph G′ based on G for requester r. RDF triples T ′ ⊆ T
span graph G′ = (V ′, E′), T ′ ∼ G′ as defined in Eq. (9).

T ′ = {t|fr(t) = 1, t ∈ T} (9)

To relieve identity owner m from the need to define filter function fr for each
potential r, we introduce fallback function F (r) that yields the best possible
fallback entity for a given requester r. Possible fallback entities are:

– requesters authenticated using WebID Z ⊆ I,
– specific requesters defined by the identity owner S ⊆ Z,
– requesters who are friends of the identity owner K ⊆ Z, and
– anonymous requesters A ⊆ I,A ∩ Z = ∅.

Let R = {k, z, a, n} be a set of special entities: k for friend, z for authenticated
user, a for anonym, n for null. Equation (10) formalizes fallback function F (r).

F (r) = e =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r if ∃fr
k if ∃fk ∧ r ∈ K ∧ r /∈ S

z if ∃fz ∧ r ∈ Z ∧ r /∈ S ∧ r /∈ K e ∈ (R ∪ S)
a if ∃fa ∧ r ∈ A

n if �fr ∧ �fk ∧ �fu ∧ �fa

(10)

Filter function fn, cf. Eq. (11), implements a behavior as if no filtering is active.
This enables accessing profiles having no predefined filters.

fn(t) = 1 ∀t ∈ T (11)

To use F (r) as part of s(G, r), we refine Eq. (9) as shown in Eq. (12).

s(G,F (r)) = G′ ∼ T ′ = {t|fF (r)(t) = 1, t ∈ T} (12)
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Fig. 5. ProProtect3 for Protecting WebID Profile Data Against Unwanted Disclosure

Figure 5 illustrates the theoretical foundation for this part of our solution,
which has been extended from a first design proposed in [42]. It provides a
detailed view on the mechanism used in Fig. 4. When requester r tries to retrieve
data from the WebID profile of identity owner m, an appropriate filter is searched
for requester r using F (r). To protect sensitive profile data, identity owner m
has to specify eligible filters prior to this step. Filters are stored as filter speci-
fications in the identity owner’s WebID profile. Filter specifications are hidden
from anyone but identity owner m. Otherwise, this information is a potential
subject to social engineering, e.g., profile analyzers could conclude group affili-
ations utilizing knowledge about fr or F (r). Each filter specification consists of
entity e and filter s. Having detected a specification for e using F (r), the filter
s(G, e) converts graph G into graph G′ that represents a WebID profile filtered
by data marked as sensitive by m. That is, the profile retrieved by requester r
contains only data which satisfies the constraints defined by filter function fF (r).

5.2 Technical Contribution to Avoid Unwanted Retrieval

For implementing this part of the ProProtect3 approach, we introduce the WebID
Profile Filter Language (WPFL) and use the SPARQL CONSTRUCT query
form [21] as transformation and filter function. While we could have implemented
the filter facility using proprietary technologies like C#, we favored SPARQL for
the sake of homogeneity to the underlying profile data representation as RDF
triples. WPFL defines a filter specification. It consists of three elements: entity
name for e, filter command for s(G, e) and a specification element to bind them
together and connect the filter to the WebID profile. The specification element
allows storing filter specifications either in the owner’s profile, i.e., graph G,
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or separately as linked resources. These elements are described by three RDF
triples, as exemplarily shown in Turtle7 syntax below:

1 <WEBID URI > filter:specification [

2 filter:entity ENTITY;

3 filter:command COMMAND

4 ] .

The SPARQL CONSTRUCT query form facilitates constructing a new graph
G′ based on an existing graph G, as required by Eq. (7). It can include or exclude
data during construction of G′ ∼ T ′ and, hence, implements Eq. (9). A whitelist-
ing - as defined by this equation - mentioning all data to be available in graph
G′ is described by following filter command8:

1 CONSTRUCT { ?s ?p ?o } FROM <WEBID URI > WHERE { ?s ?p ?o .

2 FILTER (?s in (Subject1 , Subject2 , [...])) .

3 FILTER (?p in (Predicate1 , Predicate2 , [...])) .

4 FILTER (?o in (Object1 , Object2 , [...]))

5 }

As an example, if solely the foaf:knows predicate is mentioned, all contacts
are copied from G to G′. To increase filtering granularity, it is beneficial to also
mention subjects or objects of RDF triples, e.g., in order to include/exclude
specific contacts. This all together defines one filter directive. SPARQL’s UNION
keywords enable to use several filter directives in one filter command. We uti-
lize SPARQL Property Path [33] to cover filtering of context-dependent data.
For instance, street data could be context-dependent as they are element of an
address, which in turn could be element of either private or business contact
data. Property paths help to address relevant elements in graph G by speci-
fying the routes between them. For example, a filter command to construct a
new graph by including name and image of identity owner m as well as city
and country of his/her home - but not street, postal code etc. - is described as
follows9:

1 CONSTRUCT { ?s ?p ?o } FROM <WEBID URI > WHERE {

2 {?s ?p ?o . FILTER(?p in (foaf:name , foaf:img ))} UNION

3 {?s ?p ?o . ?t con:home ?o} UNION

4 {?s ?p ?o . ?t con:home/con:address ?o} UNION

5 {?s ?p ?o . ?t con:home/con:address/con:city ?o} UNION

6 {?s ?p ?o . ?t con:home/con:address/con:country ?o}

7 }

7 Turtle Terse RDF Triple Language, http://www.w3.org/TeamSubmission/turtle/.
8 In contrast to whitelisting, blacklisting data is also supported by SPARQL CON-

STRUCT queries via MINUS statements.
9 Lines 3 and 4 create the context needed to include city and country. Address data is

described via the PIM ontology, http://www.w3.org/2000/10/swap/pim/contact#.

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/2000/10/swap/pim/contact
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A dedicated SPARQL query uses the identity information provided by
requester r to select the best-matching available filter specification based on
the retrieved filter entity, as formalized in Eq. (10). Once an appropriate filter
specification is selected, the corresponding filter command is directly passed to
a SPARQL processor that executes the graph-to-graph transformation.

6 Protecting User Profile Data from Malicious Change

To improve the protection of WebID profiles against malicious manipulation,
this part of the ProProtect3 approach provides three components to enable the
data integrity verification of WebID profiles. Being aware that the data integrity
of potentially third-party hosted profiles cannot be protected, we aim at mak-
ing malicious manipulations visible to requesters and the identity owner. First,
we need to digitally sign the WebID profile for guaranteeing its authenticity
and integrity. Signing a WebID profile ensures that the statements provided
in the profile originate from the WebID identity owner [30]. Second, to pre-
vent malicious change of the public key, it must be bound to the WebID pro-
file in an unchangeable manner. Finally, the WebID authentication sequence
needs to be extended on this foundation to support automatic data integrity
checks of requested WebID profiles. We present the conceptual model for the
first two components which we then use for a technical description of the third
component.

6.1 Conceptual Contribution to Detect Malicious Manipulation

As WebID profile data can be expressed through RDF triples in various ways
using different syntaxes, we focus on RDF graphs that are the basis of WebID
profiles and use the equivalence formalized in Eq. (2). The ProProtect3 app-
roach defines a signature for each filtered representation of the WebID profile
(cf. Sect. 5). Carroll proposed in [7] how to sign a graph in a complexity of
O(n log n). Each filtered representation of a WebID profile builds a new graph
which can be signed. The procedure of signing a Minimum Self-contained Graph
(MSG) suggested by Tummarello et al. in [40] does not fit to our approach,
because the filters, described in Sect. 5, could exclude some blank nodes of a
MSG. Blank nodes in RDF are nodes without a URI reference and aggregate
concepts like a person’s address [28]. So, an agent verifying the integrity of a
WebID profile could receive a filtered representation of that profile, where some
blank nodes of a MSG are missing. Verifying the signature of the filtered profile
would fail because it was generated with blank nodes inside the graph [40]. Yet,
the profile data still originates from the correct subject, i.e., the identity owner.

In the ProProtect3 approach, signing a WebID profile involves four steps:
The first step consists in triggering the actual signing for each filter specified
in a given WebID profile. When the identity owner, like Alice, creates a new
filter for her profile data, this filter will be executed to generate the customized
view on her profile. Afterwards, the filtered profile data will be signed and the
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signature will be attached to the filter. When WebID profile data is changed by
the identity owner, each existing filter needs to be executed and each customized
profile view G′ ∈ G′, where G′ is the set of all filtered graphs of one profile, has
to be signed once again, as formalized in Eq. (13).

G′ = {G′|G′ = s(G, e), e ∈ (R ∪ S)} (13)

Without changing the semantic of the filtered WebID profile G′, the second step
transforms it into a canonical representation G′

c, as formalized in Eq. (14).

c(G′) = G′
c ∼ T ′

c ∀G′ ∈ G′ (14)

In the third step, we sign the filtered WebID profile in canonical representation
G′

c and attach the signature to the corresponding filter. To sign G′
c, we combine

the hashes of each statement h(tx) into a single value. The hash of a statement
is computed by concatenating the hashes of each subject, predicate and object,
which then will be hashed again, as formalized in Eq. (15). While Kasten and
Scherp in [26] create an overall hash of the sorted hashes, we deterministically
canonize the filtered WebID profile in ProProtect3. So, the hashes of all state-
ments can be concatenated again and a new hash can be calculated from them.

h(T ′
c) = h

(∑
h(t)

)
∀t ∈ T ′

c (15)

This hash of an entire filtered WebID profile and the main private key k′−1 of
the identity owner are used to create the signature of a filtered WebID profile,
as formalized in Eq. (16). A WebID profile can contain several public keys K
of the identity owners. The identity owner also owns the corresponding WebID
certificates and private keys. However, she can choose a main asymmetric key
pair (k′, k′−1) which is specially used to sign and verify the WebID profile data.

sig = a(k′−1, h(T ′
c)) (16)

In the fourth and final step, the signature sig is attached to the filter so that the
original WebID profile remains unchanged and the existing signatures of other
filters are still valid. If an agent requests a filtered WebID profile, our approach
responds with the requested filtered profile and the corresponding signature.

This part of ProProtect3 addresses protection against identity theft by putting
the identity owner’s main public key k′ inside the WebID URI. As signing a WebID
profile is insufficient to protect it against identity theft (cf. Scenario 5), also
verifying the signature of the WebID profile would fail. An attacker could sign
the WebID profile once again with his own private key that is associated to
the public key he recently added to the attacked WebID profile. By binding the
identity owner’s main public key k′ ∈ K to her WebID URI w′, as formalized
by Eq. (17) using function g, changing the main public key would invalidate the
owner’s WebID identity i = (w′, T ).

g(w′) = k′ (17)
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6.2 Technical Contribution to Detect Malicious Manipulation

ProProtect3 utilizes the WebID URI for storing the main public key, as defined
by Eq. (17), in a SHA-256 hashed form. Using a hash for the main public key
k′ is both easily applicable and secure against identity theft. Depending on the
key strength, public keys can be quite long, e.g., 2048-bit or 4096-bit. Here, a
hashed version is much shorter, e.g., 256-bit, without sacrificing security. This
makes integrity-enabled WebID URIs more manageable. We convert the hashed
public key via Base64 encoding with URL and filename safe alphabet [25] The
ProProtect3 approach uses the SHA-256 hash function which extends the WebID
URI by 44 characters.

To transform the filtered WebID profile G′ into a canonical representation, as
defined in Eq. (14), the RDF graph of the filtered WebID profile is transformed
into the N-Triples notation. This notation has to be sorted in lexicographic order,
because transforming an RDF graph into N-Triples notation does not indicate
any sort. A deterministic sort is needed to compute the same hash value of the
same graph. Afterwards, the one-step deterministic labeling proposed by Carroll
in [7] is applied to name blank nodes in a deterministic fashion. This is necessary
because the same blank node could have different identifiers without changing
the semantics. That is, different identifiers would cause different hash values
calculated from the same filtered WebID profile.

Detecting malicious manipulation of WebID profile data requires extend-
ing the WebID authentication sequence by the new security features described
above. Since this part of ProProtect3 deals with verifying the integrity of WebID
profiles, the corresponding process is illustrated by ©6 in Fig. 3. To get a more
detailed view, Fig. 6 focuses on the verification process and, thus, only shows
the WebID verifier and Alice’s WebID profile to provide context and facilitate
understanding.

Verification starts when the WebID verifier is called to verify a subject’s proof
of identity. As usual, Alice uses her WebID certificate as a potential proof of
identity. The WebID verifier transmits Alice’s WebID certificate to ProProtect3
for validating the integrity of her WebID profile (cf. ©1 in Fig. 6). ProProtect3
then extracts the WebID URI referring to Alice’s WebID profile from the subject
alternative name field inside her WebID certificate [9,34].

ProProtect3 requests Alice’s WebID profile from the hosting server specified
by the WebID URI afterwards (cf. ©2 ). In case the hosting server has a matching
filter for the request, the filter will be applied to Alice’s WebID profile before
responding with that profile. Otherwise, Alice’s WebID profile is included to the
response without filtering the profile (cf. ©3 ). The corresponding signature of the
filtered or not filtered WebID profile is attached to the response. ProProtect3
extracts the hashed public key from inside the WebID URI. If Alice’s WebID
profile is not integrity protected using the ProProtect3 approach, then there is no
hash available inside the WebID URI and ProProtect3 falls back to the standard
verification of a WebID profile defined by the WebID specification [34].

For each public key listed in Alice’s WebID profile, the same hash function
is computed and compared with the hash value from the URI (cf. ©4 ). If a hash
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Fig. 6. ProProtect3 for Protecting WebID Profile Data Against Tampering

value of one public key equals to the hash value in the URI, this is the main public
key, which can be used to verify the signature of Alice’s WebID profile. In case
there is no matching hash value, this indicates that Alice’s profile data has been
manipulated without her knowledge. This would result in a failed verification of
Alice’s WebID identity. A failure notification would be sent by ProProtect3 to
the WebID verifier, which declares the WebID verification as failed (cf. ©5 ).

On the contrary, ProProtect3 successfully verifies the signature of Alice’s
WebID profile with her main public key. The hash of this WebID profile is gen-
erated in the way described above. The integrity of Alice’s WebID profile can be
verified (cf. ©6 ) using the signature, the generated hash of the received WebID
profile, and the main public key. If the signature verification fails, then ProPro-
tect3 sends a failure notification to the WebID verifier. Otherwise, ProProtect3
passes Alice’s WebID profile to the WebID verifier. The WebID verifier then
checks Alice’s profile as defined in WebID specification (cf. ©7 in Fig. 6).
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7 Protecting User Profile Data from Improper Use

To fulfill the protection needs we identified in the analysis from the early begin-
ning, we designed a new delegation procedure that considers them as integral
parts. We first present the conceptual model for preventing improper use of pro-
file data in delegation scenarios which we then extend by a technical description.

7.1 Conceptual Contribution to Prevent Improper Use

For defining the delegation roles, the ProProtect3 approach reuses the WebID
artifacts as shown in Fig. 7. Here, a delegator iA, like Alice, enables a delegatee
iC , like Casey, to act on her behalf. This is formalized in Eq. (18), where wA is

Fig. 7. WebID Artifacts Used in ProProtect3’s Delegation Procedure
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the delegator’s WebID URI, TA represents the delegator’s WebID profile, wC is
the delegatee’s WebID URI, and TC represents the delegatee’s profile.

iA = (wA, TA) iC = (wC , TC) iA, iC ∈ I;wA, wC ∈ W ;TA, TC ∈ T (18)

While a delegator’s WebID certificate is according to Eq. (4), a delegatee’s WebID
certificate CiC ,kC

∈ CiC is as formalized in Eq. (19), where CiC ∈ C is the set of
WebID certificates owned by identity iC and C the set of all WebID certificates.
Not only does the delegatee’s WebID certificate contain the delegatee’s WebID
URI wC and a public key kC owned by the delegatee, but also the WebID URI
wA denoting the delegator iA. As usual, WebID certificate CiC ,kC

is signed with
the corresponding private key k−1

C or the private key of a trusted party.

CiC ,kC ,wA
= (wC , kC , wA) (19)

When the delegatee authenticates to a service with such certificate CiC ,kC
, it can

use the delegator’s WebID wA stored within the certificate to dereference the
delegator’s WebID profile represented by TA. The delegator’s profile contains a
set of delegations DA specified by delegator iA. While DA is described by triples
TA,D ⊂ TA, each delegation djwC

∈ DA is described by triples TA,d ⊆ TA,D.
Delegation djwC

, defined in Eq. (20), involves a task j to be done by delegatee
iC , referred to by WebID URI wC , taking a set of constraints Q into account.
This allows delegatee iC for acting on behalf of delegator iA (cf. Eq. (21)).

djwC
= (j, wC , Q) (20)

iC can act on behalf of iA ⇔ ∃wA, wC : ∃djwC
∈ DA,∃CiC ,kC ,wA

(21)

7.2 Technical Contribution to Prevent Improper Use

To identify the real subject which is using a service (cf. Scenario 7), ProProtect3
adds identifiers for both delegator Alice and delegatee Casey to a WebID cer-
tificate (cf. Eq. (19)). Here, ProProtect3 does not change the original semantics
of a WebID certificate because the Subject Alternative Name (SAN) field of the
certificate still contains the WebID URI denoting the subject that will primarily
use a service. In the delegation context, this is delegatee Casey iC . In addition
to the rather common data contained in Casey’s WebID certificate, the ProPro-
tect3 delegation procedure exploits the Issuer and the Issuer Alternative Name
(IAN) certificate fields. They are used to denote the delegator Alice iA, i.e., by
her name and her WebID URI wA referring to her WebID profile (cf. Eq. (18)).

While Casey’s WebID profile, represented by TC , remains as it is, Alice’s
WebID profile, represented by TA, needs to be extended for storing further dele-
gation parameters (cf. Eq. (20)). This extension is necessary to prevent attackers
to act in Alice’s name by creating such “delegation-enabled WebID certificate”,
cf. Eq. (19), on their own. Since Alice is the initiator of a delegation, we think this
extension of her WebID profile is justified. Although it is possible to store such
delegation statements in other resources Alice owns or trusts, the ProProtect3
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delegation procedure needs to be aware of them when processing a request of a
service trying to retrieve them. To be consistent with the vision of a distributed
online social network, the delegation parameters should at least be linked to. For
these reasons, it is recommended to include either the entire set of delegation
parameters or a reference to it in Alice’s WebID profile.

Addressing the analysis results of Scenarios 7, 8, 9, we introduce the WebID
Delegation Language (WDL) to specify a delegation’s task, its associated restric-
tions, and the potential delegatee that should work on the task on the delegator’s
behalf (cf. Eq. (20)). WDL is a vocabulary that can be expressed through RDF.
In WDL the description of a task is a URI pointing to a resource containing
further information about the work to be done. It is not included directly in
WDL to allow flexible descriptions and meta data to be attached to a task.
The way tasks are actually described is outside the scope of this article. WDL
enables delegators, like Alice, to define constraints regarding validity and
domain of a delegation. Here, the validity is represented by a time stamp indi-
cating the end of a delegation and, thus, the deadline of the assigned task. The
WDL domain constraint defines a restriction of services that Alice authorizes
Casey to use in her name. That is, by specifying the domain name of a service,
Casey is only allowed to do the task within this particular domain. WDL assists
identifying a delegatee through a WebID URI by means of another RDF triple.
The structure of WDL is exemplarily shown in Turtle syntax below:

1 <WEBID URI OF DELEGATOR > wdl:delegate [

2 wdl:task <URI POINTING TO TASK DESCRIPTION >;

3 wdl:contraints [

4 wdl:validity DEADLINE;

5 wdl:domain SERVICE

6 ];

7 wdl:delegatee <WEBID URI OF DELEGATEE > ].

By providing the definition of the WebID artifacts and vocabulary that are
used in the ProProtect3 delegation procedure, the foundation to implement the
delegation process has been created. It is described in the following.

Process of delegation. A successful task delegation requires (1) initializing
the delegation, (2) notifying potential delegatees, (3) accepting the delegation,
(4) performing the task by a delegatee on behalf of the delegator, (5) controlling
as well as monitoring, and (6) terminating the delegation.

Initializing a delegation. In the ProProtect3 approach, the process of del-
egation is driven by the delegator. Even though it is possible to switch the
roles driving the delegation, a delegator-driven procedure has various advan-
tages regarding the process’ purposefulness and the protection of a delegator’s
user profile data. These advantages will become evident in the following.

Alice as a delegator has to formalize her intention that another subject,
like Casey, should act on her behalf. Therefore, she defines the parameters of
a delegation using WDL. While we recommend assisting this formalization by
a graphical user dialog, this is not a part of our approach and depends on the
WebID identity providers and managers implementing it.
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Notifying potential delegatees. Knowing Casey’s WebID URI that Alice
assigned to the delegatee property in the WDL delegation parameters allows
exploiting further information about Casey on the basis of his WebID profile.
That is, Alice can inform Casey about her request to act on her behalf using
one of Casey’s preferred communication methods that are outlined in his profile.
Similar to the initialization of a delegation, also the notification can be supported
through appropriate techniques provided by the service integrating ProProtect3.

Accepting a delegation. Given that Casey received Alice’s notification, he can
read the description of the task Alice intends to entrust him with and, conse-
quently, either accept or reject her request. If Casey decides to work on this
task on behalf of Alice, he can create a delegation-enabled WebID certificate
in the way described above, containing both Alice’s and his own WebID URI.
We recommend assisting this step by automatically generating such certificate.
WebID identity providers could issue a certificate like this when Casey visits
Alice’s profile. Since Casey’s WebID URI is stored within the delegation para-
meters in Alice’s WebID profile and Casey’s WebID URI would be available
through authentication using his WebID certificate, a WebID identity provider
could easily detect this connection and take appropriate measures.

Executing a delegation. Having issued a delegation-enabled WebID certificate
to Casey, he can authenticate to a service that supports WebID authentication
and integrates ProProtect3. Figure 8 illustrates the authentication sequence as
a more detailed view of Figs. 3 and 4, but only focuses on the components and
activities that are important for this part of the approach. When Casey tries
authenticating to a server using ProProtect3, his valid delegation-enabled WebID
certificate is passed from the WebID verifier to ProProtect3 in ©1 . ProProtect3
parses Casey’s WebID certificate and extracts both his WebID URI and Alice’s
one from the certificate’s SAN and IAN field. Casey’s WebID profile is requested
in ©2 . As neither Casey’s WebID URI nor his WebID profile include a sign of
integrity protection, ProProtect3 cannot attest in ©3 that his profile data was
not manipulated. Alice’s WebID profile is requested in ©4 . Since Alice hosts her
WebID profile on a server that integrates ProProtect3, a customized view on her
profile data is automatically created in ©5 . This view on her profile data is specific
to the WebID identity which is used by the service requesting her profile. The
service is not aware of this profile customization. In ©6 , the integrity of Alice’s
profile is verified by our approach. Since Alice’s WebID URI suggests that her
WebID profile data is integrity-protected, ProProtect3 will abort the authenti-
cation when it finds any sign for manipulation (cf. Sect. 6). If the verification is
successful, both WebID profiles are passed to the WebID verifier.

The delegation parameters are analyzed in ©7 using Alice’s WebID profile,
which has been retrieved before. They must contain Casey’s WebID URI. Oth-
erwise, the verification of the delegation rights fails, i.e., either the entire authen-
tication fails or Casey is allowed to use the service on his own but not on Alice’s
behalf. This decision depends on the implementation of ProProtect3 by the ser-
vice. The delegation constraints defined by Alice are checked in ©8 and ©9 . Once a
constraint verification fails, the delegation fails as well and, similar to the failed
delegation rights check discussed above, possibly the entire authentication.
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Fig. 8. ProProtect3 for Protecting WebID Profile Data against Improper Use

Provided a successful authentication and delegation, Casey can perform the
task using this service on Alice’s behalf, as defined in Eq. (21). Even though the
service can access Alice’s profile data, Casey might have a customized view on
her WebID profile caused by filtering of profile data, as shown in ©5 and described
in Sect. 5.

Monitoring a delegation. Similar to other digital or traditional delegation
procedures, it is possible that Casey will face problems while working on a task
entrusted to him by Alice. Casey could discuss these issues with Alice to find
an appropriate solution or she could support him by adjusting the deadline
associated to the delegation accordingly.

Under certain circumstances, however, it is important to know the progress
made by the delegatee independently from his personal status reports (cf. Sce-
nario 7). For this purpose, Alice wants to login to the service used by Casey for
accomplishing this task. In the ProProtect3 delegation procedure the delega-
tor and the delegatee acting on the delegator’s behalf are handled as individual
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subjects having two different WebID identities each consisting of an individual
URI, profile, and certificate. This enables Alice to authenticate to the service
as well via her own WebID identity. When the service is offering status indica-
tors or activity logs to customers, then Alice can find out about Casey’s progress
with respect to the task assigned to him. Offering such mechanisms, however, is
the service’s responsibility.

Terminating a delegation. As soon as Casey has completed the task on the
delegator’s behalf before the deadline, he can optionally inform Alice about this
success using a suitable communication channel. If Casey was not able to finish
the task within the given time frame, then the delegation to act in Alice’s name
is no longer valid. As a consequence, ProProtect3 will not allow Casey to work
on the task after passing the deadline. The proposed approach also enables Alice
to terminate the delegation at any time. This might be necessary when the task
is expendable for some reason like priority shifts, when she observes that the
delegatee is not performing well and she wants to reassign the task to Dave, or
when she wants to do the task on her own. She can do this for the current task by
changing or removing the delegatee’s WebID URI from the delegation parame-
ters. For all types of completing a delegation it is required that the service using
ProProtect3 either checks the authentication or automatically authenticates the
delegatee again on a regular basis. This is needed to be aware of updates affecting
the delegation.

8 Evaluation

In this section we discuss the evaluation of our approach. Based on the analy-
sis conducted in Sect. 3, we argue that ProProtect3 assists identity owners to
improve the protection of their WebID profile data. We pay particular attention
to each part of the approach by outlining our expectations and explaining the
actual findings, which provide some quite interesting insights.

While the ProProtect3 approach is generic and can be implemented in many
systems, we demonstrate it using Sociddea [43]. Sociddea is a WebID iden-
tity provider and management platform developed with ASP.NET MVC4. With
Sociddea, a user can automatically create a new WebID URI, an underlying
WebID profile and an associated client certificate. Although Sociddea allows
users to host their WebID profiles in the ecosystem provided by Sociddea, there
is no constraint to do this. That is, users are also empowered to create new
client certificates for profiles hosted somewhere else. Sociddea can represent a
WebID profile in various ways. Figure 9 exemplifies an HTML and RDF/XML
representation for the same WebID profile hosted on Sociddea.

Protecting User Profile Data from Unwanted Retrieval. The proposed
approach enables profile owners to create filters on their WebID profile for spe-
cific requesters or groups of requesters. Sociddea therefore provides a graphical
user interface to configure filters for profile data to prevent unwanted disclosure.
Identity owners can switch from the common profile authoring to the filter spec-
ification mode. Here, all identity attributes presented in the profile authoring
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Fig. 9. Representations of a WebID profile hosted on Sociddea

mode can be used for specifying filters, i.e., each available identity attribute can
be marked as either visible or hidden. Profile owners can independently include
or exclude each RDF triple present in their profile using Sociddea’s graphical
filter editor, which supports predicate-based filtering, e.g., by first name, last
name or phone number. By selecting an available entity, an already existing fil-
ter specification is used to visualize the former identity attribute selection by
the user. ProProtect3’s fine-grained and context-aware filtering facility allows
identity owners to create customized profile views for diverse requesting entities.
Once the identity owner completed the selection for a specific entity, this configu-
ration is verified and sent to the Sociddea back-end. This fulfills the requirements
we have derived from Scenarios 1 and 2.

To enable machines to process this yet informal filter configuration, a SPARQL
CONSTRUCT statement is automatically created. Both whitelisting and black-
listing of RDF triples are supported by our solution. We recommend whitelist-
ing, because the exposed filters do not contain any information on hidden profile
parts. Exposing this kind of information can cause speculations. Additionally,
whitelisting eases constructing an empty graph representation of a profile, which
might be relevant for identity owners having stringent requirements for privacy
and, thus, want to forbid anonymous profile requests. Our solution also allows
creating filters that remove all filter specifications during construction of the
profile view. Consequently, profile requesters remain unaware of the filtering. As
whitelisting of attributes has been implemented, this SPARQL statement con-
tains all identity attributes declared as visible for the specific entity. All three
RDF triples relevant to specify the filter are stored within the identity owner’s
WebID profile. The process of creating such profile data filter is shown in Fig. 10.
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Fig. 10. Creation of Filter Specification Based on User Selection

Although the implementation generates SPARQL CONSTRUCT statements
based on the identity attributes selected by the identity owner, the solution
is not limited to this. For generating profiles filtered by certain attributes, an
identity owner is allowed to use any valid statement. The flexibility of ProPro-
tect3 also allows filtering even identity attributes unsupported by the graphical
user interface and facilitates to handle special cases like conditional filtering.
Both can be accomplished via appropriate SPARQL commands. Once the filter
specification has been created, it is automatically considered during all future
attempts to access the particular profile. When a requester tries to retrieve the
profile, the solution searches for an appropriate filter specification using the pro-
vided identity data and the filter:entity triples in the WebID profile. Having
found a matching filter entity, the filter:command triple belonging to the same
filter:specification is extracted and directly passed to a SPARQL proces-
sor, i.e., no modification is made to the command. While results produced by
the SPARQL processor are rendered as defined in the request, rendering as such
is not a part of the ProProtect3 approach. Figure 11 exemplifies the filtering of
a WebID profile for an anonymous requester using the previously created filter
specification.

The proposed solution does not require outsourcing data to separate resources
for implementing a flexible filtering. All necessary information can remain in
one place. User profile data and filter specifications are independently handled
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Fig. 11. WebID Profile Data Filtered for Anonymous Requester

in our solution. This simplifies updating, replacing or removing already existing
filter specifications. The fallback mechanism F (r) selects the most appropriate
filter based on availability and provided identity data. When a specific filter is
unavailable, the procedure falls back to an available, more unspecific filter which
matches at least some characteristics of the requester. Such fallback mechanism
is not part of any related work known to the authors (cf. Sect. 9).

To apply filtering of sensitive profile data by utilizing s(G, r), only the graph
representing the WebID profile and the requesting entity are used as input
parameters. This part of the ProProtect3 approach introduces only minimal
overhead with three RDF triples to define a filter specification for a specific
requester. The owner’s WebID profile can contain all filter specifications, i.e.,
while separation between profile data and filter specifications is allowed, it is
not required. To further ensure maintainability, we did not develop an own lan-
guage for filter commands, but use SPARQL as a well-established and proven
language. SPARQL allows creating flexible and complex filters, whereas related
work tries reducing complexity by defining a restricted vocabulary. We assume
that restricted vocabularies offer advantages in terms of usability, but they also
limit the possibilities of filtering and cause workarounds, like the necessity of
outsourcing sensitive user profile data. Independent of the chosen solution, we
expect that common profile owners do not have the skills required to create and
maintain filters without assistance through specialized user interfaces.

For seamlessly integrating this part of ProProtect3 into existing systems,
filter function fn implements a behavior as if no filtering were active. This
facilitates accessing profiles having no predefined filters. As identity owners are
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enabled to store all necessary filter details within their WebID profile using our
solution, the effort to transfer filter specifications to a new hosting system is
reduced (cf. Scenario 3). While other filtering and access control mechanisms, as
discussed in Sect. 9, rely on particular interpreters to execute filters, high avail-
ability of SPARQL processors for many platforms and architectures contributes
to our solution’s interoperability and, thus, filter portability. With only mini-
mal additional filtering logic to be interpreted in our ProProtect3 approach, a
SPARQL processor can directly apply the WPFL-based filter command to create
a new filtered graph. Supported by the fact that these processors were continu-
ously optimized during the last years [29], this allows an efficient execution.

Protecting User Profile Data from Malicious Change. Signing the
WebID profile facilitates detecting malicious manipulation of profile data. If Mal-
lory changes the email address or other significant data of Alice in her WebID
profile (cf. Scenario 4), verifying the signature of this profile fails because Mallory
cannot sign the WebID profile with Alice main private key.

The protection against theft of a WebID identity (cf. Scenario 5) is offered by
extending the WebID URI with the SHA-256 hash value of the main public key,
which is used for verifying the signature of the WebID profile. There are also hash
functions that generate much shorter output, e.g., MD5 (22 characters) or SHA-
1 (27 characters). Yet, they are either classified as insecure today or considered
to be unsafe in the next years. In contrast, SHA-256 is estimated as secure until
2030 [4]. When Mallory exchanges the main public key in the WebID profile by
his own one, he can sign the WebID profile with his corresponding private key,
but he cannot change the hash value of the public key in the WebID URI10.
Changing this hash value changes the identifier of Alice’s WebID identity, i.e.,
her WebID URI. As a failed attack, Mallory would create a new WebID identity
instead of hijacking Alice’s one. This protection also secures a WebID profile
against temporary manipulation or temporary identity theft (cf. Scenario 6).

A limitation of our approach against malicious change is that both the WebID
identity provider and the service provider need to integrate ProProtect3. This
is necessary for signature creation via the identity provider and for signature
verification via the service. An advantage of the ProProtect3 approach is its
backward-compatibility. There are two fallback mechanisms to achieve that.

The first fallback mechanism is already applied by following the design of the
WebID identification approach. A URI that refers to a ProProtect3-protected
WebID profile contains the hash value of the main public key. This URI is still
a valid WebID URI. When a ProProtect3-protected WebID identity is verified
at a host that does not support our approach, it is still possible to perform the
authentication, as specified in [34]. A WebID verifier can request the WebID
profile as usual. Furthermore, the signature appended to the WebID profile can
be ignored by the WebID verifier without losing any necessary user profile data.

The second mechanism employed in our approach detects when a non-
ProProtect3-protected WebID profile needs to be verified. Then, it falls back
10 Since we used security methods considered as safe, it is unlikely to find a collision to

the hash value in a WebID URI or to create a private key from a given public key.
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to the verification process specified by the W3C. Our approach saves the sig-
nature of a filtered WebID profile at the corresponding filter specification. It
is therefore not required to recreate all existing signatures when a new filter is
added. If data within the WebID profile is changed, only these signatures need
to be recreated that are affected by the change of associated customized WebID
profile views.

Verifying a ProProtect3-protected WebID profile does not require human
interaction. That is, the part of ProProtect3 proposed in Sect. 6 will verify the
integrity of a WebID profile by checking the WebID URI and by validating the
signature of the WebID profile. Unlike automatic integrity verification, modifying
WebID profile data requires the main private key of the identity owner to recreate
a valid signature of the updated data. This is a disadvantage of our approach.
Losing or compromising the main public/private key pair requires creating a
new WebID identity. That is, the identity owner needs to create a new main
public/private key pair for signing the profile. Due to the fact that the main
public key is encoded inside the WebID URI, the new main public key needs
to be stored there, too. Thus, the identity owner would create a new WebID
identity by changing the WebID URI.

Protecting User Profile Data from Improper Use. The way we designed
the delegation procedure takes protection into account as a first thought. Instead
of handing out the delegator’s credentials or WebID certificate to a delegatee,
the delegatee stays the same person when using a service. A service integrating
ProProtect3 can use the delegator’s WebID URI, which is additionally stored
in the WebID certificate, to retrieve and process the WebID profile data of the
delegator, like Alice, on her behalf. Delegator Alice could also define a customized
view on her profile data for an identifiable service retrieving her WebID profile.
Even though the delegatee authenticates to a service, the delegatee and the
service can have a different views on the delegator’s user profile data.

This makes interesting use cases possible: A delegatee could have a restricted
view on the delegator’s profile data, whereas a service used by the delegatee
could see further profile data. So, without having access to the delegator’s bank
account data, a delegatee could perform transactions on the delegator’s behalf.

ProProtect3 allows services for clearly distinguishing between individually
acting subjects (like Casey as Casey) and subjects acting on behalf of others (like
Casey as Alice). When preferred by the identity owner, this distinctness assists
fine-grained subject logging and addresses the need identified in Scenario 7.

The delegation facility enabled by ProProtect3 is backward-compatible. We
did not change anything on the existing semantics of the artifacts used in WebID.
That is, if a system does not integrate the proposed ProProtect3 approach, users
can still authenticate with their WebID certificates as usual. However, they will
lose benefits like filling forms with the delegator’s profile data.

While a WebID identity provider like Sociddea could generate a delegation-
enabled WebID certificate pointing to the WebID profiles of both the delegator
and the delegatee, they can also be created manually. Compared to a common
WebID certificate, the creation effort is almost the same, i.e., it requires only one
additional information for exactly referring to the delegator by a WebID URI.



118 S. Wild et al.

Besides having delegation-enabled WebID certificates, the approach takes
the needs into account that are evident in Scenarios 8 and 9. ProProtect3 allows
defining delegation constraints within the WebID profile of the delegator. Thus,
they are machine-readable. While we considered restricting time and service
location of a delegation at the moment, the way the approach handles constraints
makes flexible as well as extensible settings possible. That is, it would be easy
to add restriction types that become necessary in the future.

Most evaluation results for this part of the approach were positive yet antic-
ipated. Yet, we also discovered some issues: An identity owner must know the
person that should act on her behalf by explicitly specifying a WebID URI.
Furthermore, an identity owner can only delegate one task per delegatee at the
same time. Finally, it is not possible for Bob to further delegate11 a task to Casey,
when this task has been delegated to Bob from Alice before. It is controversial
whether the last issue is useful or intended. We are convinced that the issues do
not disqualify this part of ProProtect3 and can be addressed in future work.

Evaluating this part of the approach for threats and potential attacks indi-
cated that our solution provides a sufficient protection in the context of
delegation:

Assuming that Mallory knows about Alice’s intent to delegate a task to
Casey. He plans to anticipate Casey’s confirmation to Alice’s request to be in
the position to act in her name. Therefore, he creates a new WebID certificate
referring to Alice’s and his own WebID profile instead of Casey’s one. Here, it is
worth mentioning that a WebID identity provider integrating ProProtect3 does
not support Mallory in creating this certificate. Such identity provider is aware
of Alice’s real delegation target, i.e., Casey, which is specified inside her WebID
profile. Thus, it does not offer Mallory the facility to automatically generate
a WebID certificate for this delegation when visiting Alice’s profile represen-
tation. Given that Mallory constructed this WebID certificate on his own, he
can authenticate to a service as himself. However, a ProProtect3-enabled service
provider does not allow him to act on behalf of Alice because the WebID URI
stored within the delegation statement in Alice’s WebID profile does not link to
Mallory but to Casey. That is, the ProProtect3 approach protects the identity
owner against improper use of her user profile data.

At first we thought that the WebID certificate of a delegatee is the perfect
place to store the validity constraint specified by the delegator. All X.509 cer-
tificates have a validity field to define the “time interval during which the CA
warrants that it will maintain information about the status of the certificate” [9].
Alice would be this certificate authority (CA) and the delegator denoted by the
Issuer (Alternative) Name. However, as Casey could create a WebID certificate
on his own that contains his WebID URI and Alice’s WebID URI, he could
also include an adjusted validity period. This would allow him to improperly
use Alice’s authorization beyond the intended time frame. As a consequence, all
delegation constraints specified by the delegator must be also available in her
WebID profile.
11 Only Alice, as the primary delegator, can specify the person acting on her behalf.
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For the sake of conciseness, not all features of ProProtect3 are discussed
here, which we exemplarily implemented in the Sociddea platform. Yet, we offer
a public live demonstration of our solution, which is kept up to date and incor-
porates the latest developments we considered as stable. Further information on
page 38.

9 Related Work

This section briefly discusses work related to ours in the context of identity
systems in general, and - in particular - mechanisms for access controlling
WebID profiles, protecting their integrity and restricting their use in delegation
scenarios.

OpenID is an identity system that does not involve a central authority to
approve new OpenID identity providers or relying parties [15]. Similar to WebID,
it allows identifying users via URIs [12]. OpenID users are enabled to create
their own identity provider or choose an existing one [18]. Hackett and Hawkey
describe in [18] that OpenID’s adoption been initially hindered by “inconsis-
tencies in the sign-in interface”, but increased since major IT companies like
Google offered own OpenID identity providers. While not limited, OpenID is
typically deployed using passwords as proof of a user’s identity. Florencio and
Herley discuss in [16] that this can cause issues summarized by the term “pass-
word fatigue”, i.e., a vast number of passwords users need to remember, poor
password quality and high password redundancy. WebID users can self-manage
their profile data in a flexible, extensible, and machine-readable way, whereas
OpenID only offers limited handling of personal attributes [20]. Unlike WebID,
OpenID does not rely on client certificates, which makes it compatible with more
Web browsers.

Mozilla Persona is a single sign-on system which relies on email addresses as
identifiers instead of URIs used in WebID or OpenID [1,2]. To prove ownership of
an email address, an identity provider issues a certificate to a trusted user, which
expires within 24 hours [3]. WebID certificates do not have such static expiration
time. While email providers are primarily intended as certificate issuers, Mozilla
acts as a fallback. Both Persona and WebID allow users for deciding whether to
share their identity with a service provider [18]. Unlike other identity systems,
“Persona requires JavaScript”12 as it performs cryptographic operations directly
on the client side. Hackett and Hawkey discovered that Persona is vulnerable to
phishing attacks due to malicious manipulation of login Web pages [18].

Windows Cardspace tries to provide a consistent digital identity experience
by representing each identity of a user by a so-called InfoCard which is “anal-
ogous to physical membership card” [18,27]. An InfoCard links to an identity
provider storing the sensitive data [24]. Cardspace users require a specialized user
agent to select their identity [10]. That is, browser vendors would have to add
support for this technology [24]. Cardspace allows both self-asserted and man-
aged InfoCards [27], which are comparable to self-signed and CA-signed X.509
12 https://developer.mozilla.org/en-US/docs/Mozilla/Persona/FAQ.

https://developer.mozilla.org/en-US/docs/Mozilla/Persona/FAQ
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certificates. A user can assign values to an InfoCard’s attributes, but the set of
attributes is neither extensible nor machine-readable [27]. Although Microsoft
decided to stop all efforts for Cardspace in 2011, there are open-source projects
like Open InfoCard13 which adopted the InfoCard concept and evolved it.

The next paragraphs discuss access control mechanisms for WebID profiles.
Web Access Control (WAC) is a vocabulary to define access rights to resources

at the document level [23]. Requesting agents and agent classes are supported
as entities to define access rights to. ACLs specified by WAC14 are machine-
readable through RDF and can be stored independently from the resources they
protect. As described by Chudnovskyy et al. in [8], WAC is well-suited for scenar-
ios involving many resources to control access to. Yet, WAC does not support
directly controlling access to specific data within resources, e.g., data within
WebID profiles. Outsourcing specific data as self-contained resources enables
more control with WAC, but complicates maintenance. This is because the num-
ber of resources required for a less coarse-grained control increases with the
complexity of the data to control access to. For instance, a fine-grained control
at its best would result in outsourcing almost each triple of a WebID profile,
which describes diverse person attributes, to a separate resource. When apply-
ing changes, this approach is inflexible. Additionally, such data distribution and
related definition of corresponding ACLs comes along with declining portability.

Access Control Ontology (ACO) is similar to WAC, but adds support for
roles and enables directly mapping permissions to HTTP verbs [36]. To protect
data within resources with ACO, relevant data has to be outsourced to separate
resources. ACO and WAC share the same maintainability and portability issues.

The “data perspective” approach proposed by Tramp et al. customizes WebID
profile data for particular profile requesters by introducing sets of triples as alter-
native information sources [39]. For each combination of requested information,
requester and public key, a view is defined in terms of the set of triples to be
returned. While WAC and ACO only enable controlling access to resources, this
vocabulary allows manipulating data represented by resources. These view defi-
nitions increase flexibility by providing improved filter expressiveness, e.g., new
triples can be directly added to the profile view. However, profile data is dis-
tributed across both the view definitions and the actual WebID profile. This
decreases maintainability because updating requires changes in several places. If
view definitions are used as an additional layer of information, profile data would
be stored in two different places, which bears the risk of creating conflicts. Unlike
the approach proposed in this article, it does not support group-wise views.

After describing related access control facilities, the following part discusses
techniques for data integrity protection and verification of RDF documents.

The Public Key Infrastructure (PKI) is a set of hardware, software, people,
policies, and procedures needed to create, manage, store, distribute, and revoke
digital certificates [37]. A PKI is used for creating trustworthy certification chains
and provides an infrastructure to verify the integrity of signed certificates. The
PKI defines so-called Certification Authorities (CA) which issue certificates after

13 https://code.google.com/p/openinfocard/.
14 http://www.w3.org/ns/auth/acl.
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a strong review process, i.e., the owner of a CA-signed certificate has to prove
intensely to be the identity claimed. Due to this PKI validation process, a PKI
integration into WebID would increase the effort of creating new WebID certifi-
cates by users. While a PKI associates certificates with real world identities, a
WebID identity should be more anonymous to provide privacy. Additionally, a
PKI has several disadvantages discussed by Ellison and Schneier in [13].

To calculate hashes of RDF graphs, Sayers and Karp propose another app-
roach in [32]. While in the ProProtect3 approach RDF graphs are signed in there
canonical representation [7], Sayers and Karp expand the RDF graph to assign
a unique label to each blank node. These labels are defined as new statements
which should not change the semantic of the original RDF graph. To sign the
blank nodes within an RDF graph, they are named with these labels. So, the
hash value of an RDF graph does not depend on the blank node identifiers.

Finally, related work for delegation in the WebID context is explained next.
A widely adopted protocol for authorization is OAuth [19]. It has been

designed to allow users to grant third-party services access to their personal
resources without disclosing their private credentials. The protocol flow in brief:
The Client requesting access to a protected resource retrieves an Authorization
Grant from the Resource Owner. It presents this grant to the Authorization
Server, which validates it, and receives an Access Token. Using the token, the
Client can now request the protected resource from the Resource Server. Evi-
dently, this is a delegation of access rights from the Resource Owner to the
Client.

In [39] an extension of the WebID protocol for access delegation is discussed.
The approach distinguishes between a principal and a secretary role. A state-
ment specifying a trusted secretary’s WebID in the principal’s WebID profile
allows the secretary to act on behalf of the principal. The secretary adds an
X-On-Behalf-Of header to the HTTP request to get access on the principal’s
behalf. First, the server checks the provided WebID authenticating the secre-
tary. To check the claimed on-behalf-of relationship to the principal’s WebID
given in the request header, the server dereferences the principal’s WebID pro-
file. If it contains a :secretary statement confirming the claim, the secretary
is authorized to access the requested resource with the same access rights as the
principal.

Summary. Identity systems like OpenID, Persona etc. do not allow users to
maintain full control of their personal data when deployed by third parties.
They are limited in attaching and exchanging data to identities, whereas WebID
enables users to self-host, self-manage and publish their profile data in an expres-
sive, extensible and machine-readable way using Linked Data. Access control
mechanisms typically provide coarse-grained protection of resources. Fine-
grained protection often requires outsourcing data to diverse resources or creat-
ing additional data layers for specific requesters, which impairs maintainability
and portability. Unlike them, ProProtect3 enables fine-grained filters for profile
data which are expressive and fit into the way data is stored in WebID pro-
files. While a PKI based on CAs represents a centralized trust model that would
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allow for discovering profile data tampering and identity theft, ProProtect3 fol-
lows a different path that does not interfere with WebID’s decentralized app-
roach of empowering individuals instead of authorities. Similar to the delegation
approaches we have discussed, ProProtect3 facilitates separation between delega-
tee and delegator. Contrary to them, it only reuses the existing (WebID) artifacts
and infrastructure components (client, service provider, identity provider). Like
OAuth, ProProtect3 enables defining constraints for a delegation, e.g., service
or duration of delegation.

10 Conclusions and Future Work

In this article we proposed the ProProtect3 approach that allows identity own-
ers (1) to control the way their semantically-enabled profile data is exposed to
others, (2) to verify the data integrity of profiles, and (3) to prevent improper
use in delegation scenario by introducing restrictions. We presented and ana-
lyzed typical usage, risk, and attack scenarios. They indicated the need for an
extensive protection against unwanted retrieval, malicious change, and inappro-
priate use in the context of knowledge centered systems and Linked Data. By
developing both a theoretical foundation and practical implementations for fine-
grained profile views, profile protection against forgery, and restriction of rights
of persons acting on others’ behalves, we substantiated our threefold approach
relying on Linked Open Data and, thus, contributed to the Semantic Web vision.
We demonstrated ProProtect3 by its exemplary integration into the Sociddea
WebID identity provider.

Summary of main contributions. With the introduction of requester-
specific filters on WebID profile data, identity owners are enabled to keep control
about amount and nature of personal data being presented to entities requesting
their profile data. We defined a filter vocabulary for this purpose. This part of
ProProtect3 also established a fallback mechanism to automatically select the
best-matching filter depending on the requester. To cover almost all scenarios of
hiding and showing specifics within profiles, we used SPARQL CONSTRUCT
statements as filter commands. We recommend whitelisting non-sensitive profile
data per requester and exclude all filter specifications during filtering.

By verifying the data integrity of WebID profiles with ProProtect3, profile
requesters can ensure that data stored within was not manipulated. Neither on
the server hosting their WebID profiles nor during transmission. When data
disclosure would not be an issue, this theoretically enables users, who have only
a small IT skill set, to host their WebID profile on untrusted or insecure systems.
As another significant benefit of this contribution, subjects can easily prove that
they are in control of the resource representing their WebID profile. This can be
done by comparing the SHA-256 hash value of a public key contained within a
WebID certificate with the hash part of an integrity-enabled WebID URI.

With the design of a new delegation procedure considering security as a pri-
mary principle, the profile data of delegators is protected through ProProtect3
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against improper use by the subjects acting on their behalves. The ProPro-
tect3 delegation approach is backward-compatible and easy to combine with the
approaches for protection from tampering and unwanted retrieval. Tampering
of user profile data is detected by checking the WebID URI and profile of both
delegator and delegatee. Combined with ProProtect3’s disclosure protection, it
enables customized views on the profile data of an identity owner, who is also the
delegator, for the delegatee and for the service to be used. Besides allowing for
clearly distinguishing between the delegator and subjects acting on his behalf, a
delegator can set constraints to avoid improper use of profile data by delegatees.

Roadmap to future work. Having created a foundation to protect WebID
profile data with the ProProtect3 approach, future work will proceed from there
to substantiate and extend this approach, as explained in the following.

A comprehensive evaluation would allow for indicating the benefits and
deficits of the approach in practice. As a first step, a platform integrating Pro-
Protect3 must reach a critical user mass for enabling sound experimental valida-
tion results. By focusing the evaluation on performance and user acceptance, we
would be able to determine how much ProProtect3 contributes to the adoption
of WebID.

To evolve the fine-grained filtering of user profile data, we will analyze filter
cascades. We think applying several filters in specific sequences is beneficial for
combining protection needs. We also want to facilitate reusing filters by sharing
them between users of a distributed social network. Furthermore, it might be
interesting to apply customized views on user profile data which selectively add
or modify data. Finally, customized views based on more than one profile would
allow creating information sets about groups and keeping them up to date.

For substantiating ProProtect3’s protection against malicious change of pro-
file data, we would like to conduct a user study. Our intention behind this user
study is to find out how users get along with integrity-enabled WebID URIs.
While such WebID URIs are not an issue when processed by machines, they
might be problem for human beings. According to our experience, users choose
WebID URIs they can remember. They do this even though it is not necessary
because an issued WebID certificate includes the WebID URI linking to the asso-
ciated WebID profile. Besides this, further research is required on the topic of
using multiple keys for signature creation and verification. At the moment, an
identity owner is limited to use only one particular key pair, i.e., one WebID cer-
tificate, for this task. This has disadvantages in terms of flexibility, portability,
and operation, which we would like to address by allowing more than one key
pair for signing.

Web-based crowdsourcing enables to outsource tasks to a large yet undefined
group of individuals via an open call. Here, the potential delegation target is
unknown before accepting the task offer. To manage such scenario, the proposed
delegation procedure needs to relax the restriction of assigning a task to a par-
ticular delegatee. So, we will research the delegation involving groups of known
as well as unknown subjects while protecting the delegator’s WebID profile data
against improper use. We also want to perform a more extensive analysis on
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the constraints that might be significant for delegators, e.g., more precise ser-
vice restrictions or budget restrictions for travel bookings. Last but not least,
we plan to remove the restriction of only assigning one task per delegatee at the
same time by independently handling delegator and task descriptions.

Finally, we will further work towards our vision that WebID profiles are used
as descriptions of services and components of a Web system. Using WebID pro-
files would allow to store service-specific data in a machine-readable way and
enable authentication between services of a Web system. As an example, infor-
mation about a service’s connections as well as internal data on utilization, mean
time between failures, maintenance costs etc. could be presented to other autho-
rized services. We are of the view that analyzing this data will assist predicting
the evolution of Web systems and, consequently, enable to take appropriate
measures to guide the Web system’s evolution in the right direction as proposed
in [44].

Demonstration

Further information to our solution including a link to the Sociddea WebID
identity provider and profile management platform is available at:
http://vsr.informatik.tu-chemnitz.de/demo/sociddea/.
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Rienäcker for their first experimental results on JavaScript-based WebID certificate
creation and integrity protection, which have been partially used in this work.

References

1. Akhawe, D., Li, F., He, W., et al.: Data-Confined HTML5 Applications. Technical
Report, Electrical Engineering and Computer Sciences, UCB (2013)

2. Bai, G., Lei, J., Meng, G., et al.: AuthScan: Automatic extraction of web authen-
tication protocols from implementations. In: Proceedings of 20th Annual Network
& Distributed System Security Symposium (2013)

3. Bamberg, W., et al.: Persona - Protocol Overview (2013). https://developer.
mozilla.org/en-US/docs/Mozilla/Persona/Protocol Overview. Accessed 24 March
2014

4. Barker, E., Barker, W., Burr, W., et al.: NIST Special Publication 800–57: Recom-
mendation for Key Management - Part 1: General (Revision 3). Technical Report,
National Institute of Standards and Technology (2012)

5. Bonneau, J., Anderson, J., Anderson, R., Stajano, F.: Eight friends are enough:
Social graph approximation via public listings. In: Proceedings of the 2nd ACM
EuroSys Workshop on Social Network Systems, pp. 13–18 (2009)

6. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.99 (2014). http://xmlns.
com/foaf/spec/. Accessed 24 March 2014

http://vsr.informatik.tu-chemnitz.de/demo/sociddea/
https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview
https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/


ProProtect3: An Approach for Protecting User Profile Data 125

7. Carroll, J.J.: Signing RDF graphs. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.)
ISWC 2003. LNCS, vol. 2870, pp. 369–384. Springer, Heidelberg (2003)

8. Chudnovskyy, O., Wild, S., Gebhardt, H., Gaedke, M.: Data portability using
Webcomposition/Data grid service. Int. J. Adv. Internet Technol. 4(3 and 4), 123–
132 (2012)

9. Cooper, D.: Internet X.509 Public key infrastructure certificate and certificate
revocation list (CRL) profile (2008). http://tools.ietf.org/html/rfc5280. Accessed
10 August 2013

10. Dhamija, R., Dusseault, L.: The seven flaws of identity management: Usability and
security challenges. IEEE Secur. Priv. 6(2), 24–29 (2008)

11. Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2 (2008).
http://tools.ietf.org/html/rfc5246. Accessed 10 August 2013

12. El Maliki, T., Seigneur, J.M.: A survey of user-centric identity management tech-
nologies. In: International Conference on Emerging Security Information, Systems,
and Technologies. SecureWare 2007, pp. 12–17. IEEE (2007)

13. Ellison, C., Schneier, B.: Ten risks of PKI: What you’re not being told about public
key infrastructure. Comput. Secur. 16(1), 1–7 (2000)

14. European Commission: ICT - Work Programme 2013. EC (2012)
15. Fitzpatrick, B., Recordon, D., Hardt, D., Hoyt, J.: OpenID Authentication 2.0

- Final (2007). http://openid.net/specs/openid-authentication-2 0.html. Accessed
10 August 2013

16. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web, pp. 657–666. ACM
Press (2007)

17. Gellman, B., Poitras, L.: U.S., British Intelligence Mining Data from Nine U.S.
Internet Companies in Broad Secret Program. The Washington Post, 6 June 2013

18. Hackett, M., Hawkey, K.: Security, privacy and usability requirements for federated
identity. In: Workshop on Web 2.0 Security & Privacy (2012)

19. Hardt, D.: The OAuth 2.0 Authorization Framework (2012). http://tools.ietf.org/
html/rfc6749. Accessed 24 March 2014

20. Hardt, D., Bufu, J., Hoyt, J.: OpenID Attribute Exchange 1.0 - Final (2007).
http://openid.net/specs/openid-attribute-exchange-1 0.html. Accessed 24 March
2014

21. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language (2013). http://www.w3.
org/TR/sparql11-query/. Accessed 24 March 2014

22. Heitmann, B., Kim, J.G., Passant, A., et al.: An architecture for privacy-enabled
user profile portability on the Web of Data. In: Proceedings of the 1st International
Workshop on Information Heterogeneity and Fusion in Recommender Systems,
HetRec 2010, pp. 16–23. ACM (2010)

23. Hollenbach, J., et al.: Using RDF metadata to enable access control on the social
semantic web. In: Proceedings of the Workshop on Collaborative Construction,
Management and Linking of Structured Knowledge (2009)

24. Jøsang, A., Zomai, M.A., Suriadi, S.: Usability and privacy in identity management
architectures. In: Proceedings of the Fifth Australasian Symposium on ACSW
Frontiers, vol. 68, pp. 143–152. Australian Computer Society (2007)

25. Josefsson, S.: The Base16, Base32, and Base64 Data Encodings (2006). http://
tools.ietf.org/html/rfc4648. Accessed 24 March 2014

http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5246
http://openid.net/specs/openid-authentication-2_0.html
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648


126 S. Wild et al.

26. Kasten, A., Scherp, A.: Iterative signing of RDF(S) graphs, named graphs, and
OWL graphs: Formalization and application. Arbeitsberichte aus dem Fachbereich
Informatik 3, 3–28 (2013)

27. Maler, E., Reed, D.: The venn of identity: Options and issues in federated identity
management. IEEE Secur. Priv. 6(2), 16–23 (2008)

28. Manola, F., Miller, E.: RDF Primer (2004). http://www.w3.org/TR/rdf-primer/.
Accessed 29 January 2014
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