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Abstract. In this paper, we apply support vector machine (SVM) and
behavior knowledge space (BKS) to the disulfide connectivity predic-
tion problem. The problem aims to establish the disulfide connectivity
pattern of the target protein. It is an important problem since a disul-
fide bond, formed by two oxidized cysteines, plays an important role
in the protein folding and structure stability. The disulfide connectivity
prediction problem is difficult because the number of possible patterns
grows rapidly with respect to the number of cysteines. We discover some
rules to discriminate the patterns with high accuracy in various methods.
Then, the pattern-wise and pair-wise BKS methods to fuse multiple clas-
sifiers constructed by the SVM methods are proposed. Finally, the CSP
(cysteine separation profile) method is also applied to form our hybrid
method. We perform some simulation experiments with the 4-fold cross-
validation on SP39 dataset. The prediction accuracy of our method is
increased to 69.1 %, which is better than the best previous result 65.9 %.

Keywords: Disulfide bond · Cysteine · Connectivity pattern · Support
vector machine · Behavior knowledge space

1 Introduction

A disulfide bond, also called SS-bond or SS-bridge, is a single covalent bond which
is usually formed from the oxidation of two thiol groups (-SH). The transforma-
tion is described as

2RSH → RS-SR + 2H+ + 2e− (1)

where R represents the carbon-containing group of atoms.
In proteins, only the thiol groups of cysteine residues can form the disul-

fide bonds by oxidation. The goal of the disulfide connectivity prediction (DCP)
problem is to figure out which cysteine pair would be cross-link from all possible

c© Springer-Verlag Berlin Heidelberg 2015
A. Fred et al. (Eds.): IC3K 2013, CCIS 454, pp. 66–79, 2015.
DOI: 10.1007/978-3-662-46549-3 5



The Application of Support Vector Machine and Behavior Knowledge Space 67

candidates. It may be conducive to the solution of protein structure prediction
problem if precise disulfide connectivity information is available.

There are two main ways for connectivity pattern prediction in previous
works, pair-wise and pattern-wise. The pair-wise method focuses on the bonding
potential of each cysteine pair, and encodes the target based on cysteine pairs.
The pattern-wise method makes a comprehensive survey of whole connectivity
pattern and usually ranks the connectivity patterns by their possibilities, so the
prediction ability may be limited to the diversity of patterns in a training set.

The prediction task is difficult because the number of possible connectivity
patterns grows rapidly with respect to the number of cysteines. Most previous
studies are limited by the number of disulfide bonds from two to five. It is well
known that the number of possible patterns is given as follows:

N =
C2B

2 × C2B−2
2 × . . . × C2

2

B!
= (2B − 1)!! (2)

where B denotes the number of disulfide bonds in the protein. For instance, if
we have known which cysteines are oxidized in advance, N = 945 when B = 5,
and N is up to 10395 when B = 6.

Some statistical analyses [1–4] have been applied to the disulfide connec-
tivity prediction problem. Many researchers tried to solve the problem with
machine learning methods, such as neural network (NN) [5–10] and support
vector machine (SVM) [2,11–17].

Before 2005, many studies [5,8] were devoted to the connectivity prediction,
but most of their accuracies are below 50 %. In 2005, Zhao et al. [18] utilized the
global information of a protein, called cysteine separation profile (CSP), which
represents the separations among all oxidized cysteines in a protein sequence. In
2007, Lu et al. [2] proposed a novel concept of the CP2 representation, which
uses every two cysteine pairs (four cysteines) as one sample, and applied the
genetic algorithm (GA) to the optimization of feature selection.

In 2012, Wang et al. [19] built a hybrid model based on SVM and the weighted
graph matching, with accuracy 65.9 %. They extracted different feature sets
depending on whether the number of disulfide bonds in a protein is odd or even.
The main difference of the feature sets for the two submodels is the secondary
structure information around the oxidized cysteines.

The rest of this paper is organized as follows. We introduce some preliminary
knowledge, including support vector machine and behavior knowledge space in
Sect. 2. In Sect. 3, we present our hybrid method for solving the DCP problem.
The experimental results are given in Sect. 4, and we also describe the perfor-
mance comparison between our method and some previous works. Finally, our
conclusion is given in Sect. 5.

2 Preliminary

In this section, we introduce some background knowledge used in this paper,
including support vector machine and behavior knowledge space.
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2.1 Support Vector Machine

Support Vector Machine (SVM) is a machine learning method for classification
and regression. It was first introduced by Vapnik [20] in 1999. SVM seeks to
create a hyperplane to discriminate different labels of the vectors in the training
set and utilizes the model to predict the labels of other data. To discover the
discriminative features is the key point for applying SVM. Figure 1 shows an
example of the SVM solution with maximum margin which means the distance
between the hyperplane and the given objects.

W

W X       b = 0

Margin

T

Fig. 1. An example of the SVM solution with maximum margin.

For SVM implementation, we use the LIBSVM package [21] which is an easy-
to-use tool for support vector classification (SVC) and support vector regression
(SVR). The SVC function classifies the data with their probabilities, and the
SVR function generates the regression value of each target data element.

2.2 Behavior Knowledge Space

Behavior knowledge space (BKS) [22] is a kind of method for fusing multiple
classifiers. It is a table look-up approach for estimating the probability of every
vote combination. Assume there are m classifiers composing an ensemble for a
classification task of n labels. The BKS table contains nm entries, the number
of all possible combinations of m classifiers’ outputs. And each entry records the
distribution of n true labels in the training set.

Table 1 illustrates an example of the BKS table for the 3-label classifica-
tion problem with two classifiers. The ‘C1’ and ‘C2’ represent the predicted
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outputs from the two classifiers, and the entries below them are all possible
prediction combinations. Cells below ‘Real label’, ‘L1’, ‘L2’, and ‘L3’, are the
distribution of the true labels associated with the predicted label vectors. For
example, when ‘C1’=‘L1’ and ‘C2’=‘L3’, the fused answer should be ‘L2’ since
it is the most possible label. And, if we have ‘C1’=‘L3’, ‘C2’=‘L2’, the fused
answer should go to ‘L3’.

Table 1. An example of the BKS table.

Predicted label Real label

C1 C2 L1 L2 L3

L1 L1 23 8 2

L1 L2 5 0 4

L1 L3 2 7 1

...
...

...
...

...

L3 L2 1 1 5

L3 L3 1 3 12

3 Algorithms for Connectivity Prediction

We observe that the prediction accuracies of Chung et al. [23] and Wang et al.
[19] are 63.5 % and 65.9 %, respectively. It may be hard to find more features
with good discrimination capability for a single SVM method in the connectivity
prediction. However, we may get better accuracies if we fuse the advantages of
the multiple models.

Our method utilizes BKS to fuse the results obtained from SVM models. The
features and cysteine-pair representation we adopted are inspired by Wang et al.
[19] and Lu et al. [2]. In addition, we also combine the CSP method [18] to our
hybrid method.

3.1 Feature Extraction

In the past, the bonding states of each cysteine pair are usually used to describe
the disulfide pattern and used as the samples of SVM. Lu et al. [2] call it as
the CP1 representation. Lu et al. further proposed a novel concept of the CP2

representation which use every two cysteine pairs (four cysteines) as the samples.
In our method, we adopt the features used by Wang et al. [19]. In addition, we
encode the CP2 representation as the permutation order, which is also included
in our feature set. The definition of the permutation order is given as follows.

Permutation Order: This feature implies the order of feature extraction in
each cysteine window. For every cysteine-pair combination in the CP2 represen-
tation, we encode the samples in three permutations illustrated in Table 2. For
example, C1-C3-C2-C4 means that the first and third cysteines form a disulfide
bond in these four cysteines, and the second and fourth form the other bond.
This bond pattern is represented by the feature vector (0.25, 0.75, 0.5, 1).
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Table 2. The feature vector of the permutation order.

Permutations Feature vector

C1-C2-C3-C4 (0.25, 0.5, 0.75, 1)

C1-C3-C2-C4 (0.25, 0.75, 0.5, 1)

C1-C4-C2-C3 (0.25, 1, 0.5, 0.75)

3.2 SVM Method

We implement three SVM models with different feature sets, CP1F521,CP1F623

and CP2Label2, as shown in Table 3. These features are encoded by the seg-
ments of every cysteine pair. The cysteine segment is a window centering at a
target cysteine. Many previous works [2,4,8,9,12,14,16,17,24–26] also adopted
the similar idea of the window approach. Here we set the window size to 13. In
other words, 2k + 1 = 13. So there are 521 features in CP1F521 and 623 features
in CP1F623.

Table 3. The feature sets used in our three models.

Feature size Ma Mb Mc

Distance of cysteines 1 Y Y Y

Cysteine order 2 Y

Protein weight 1 Y

Protein length 1 Y

Amino acid composition 20 Y

PSSM around cysteine (2k + 1) × 20 × 2 Y Y Y

Secondary structure around cysteine (2k + 1) × 3 × 2 Y

Permutation order 4 Y
a CP1F521 model.
b CP1F623 model.
c CP2Label2 model.

Table 4. The details of the probability intervals for the BKS method, where B denotes
the number of bonds in a target protein.

B Type of BKS Probability intervals

2 Pattern-wise (0, 0.15, 0.2, 0.25, 0.3, 0.35, 0.5, 1)

3 Pattern-wise (0, 0.25, 0.5, 1)

4 Pair-wise (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)

5 Pair-wise (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)
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3.3 BKS Method

We adopt the concept of the behavior knowledge space (BKS) to fuse the
above SVM classifiers. We design two BKS models, pattern-wise BKS and pair-
wise BKS, combined with the probability intervals, where the probabilities are
obtained from the prediction of SVM classifiers. The details of the probability
intervals for the proteins with various number of disulfide bonds are shown in
Table 4.

Pattern-Wise BKS Method. After the two classifiers CP1F521 and CP1F623

finish the pattern prediction, the probability of each bonding pattern is obtained.
Then, the pattern-wise BKS is constructed according to the prediction probabil-
ities. We adopt the pattern-wise BKS method for the prediction of proteins with
two or three bonds. Table 5 illustrates an example of the partial pattern-wise
BKS table for 2-bond proteins. For example, in the second row, the probabilities
of the predicted pattern 1-1-2-2 for the two classifiers locate in (0.15, 0.2). In
this case, 5, 3 and 1 proteins have the true patterns 1-1-2-2, 1-2-1-2 and 1-2-2-1,
respectively. Thus, the fused answer is decided to be 1-1-2-2.

We set the threshold of the patterns supported in the pattern-wise BKS table
to 2, and reject to give an answer in the case below the threshold. Table 6 shows
some examples for 3-bond proteins whose prediction can be corrected by the
pattern-wise BKS method.

Table 5. An example of the partial pattern-wise BKS table for 2-bond proteins.

CP1F521 Interval CP1F623 Interval 1-1-2-2 1-2-1-2 1-2-2-1

1-1-2-2 (0.15, 0.2) 1-1-2-2 (0, 0.15) 0 1 0

1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.15, 0.2) 5 3 1

1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.2, 0.25) 4 0 0

1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.25, 0.3) 0 0 0

1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.3, 0.35) 0 0 0

1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.35, 0.5) 1 0 0

1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.5, 1) 0 0 0

Table 6. Examples for 3-bond proteins corrected by the pattern-wise BKS method.

Proteins Real patterns CP1F521 CP1F623 Predicted by BKS

CXOA CONMA 1-2-3-1-2-3 1-2-1-3-2-3 1-2-1-3-2-3 1-2-3-1-2-3

HST1 ECOLI 1-2-3-1-2-3 1-2-1-3-2-3 1-2-1-3-2-3 1-2-3-1-2-3

HCYA PANIN 1-1-2-2-3-3 1-1-2-2-3-3 1-1-2-3-3-2 1-1-2-2-3-3

CXOB CONST 1-2-3-1-2-3 1-2-1-3-2-3 1-2-1-3-2-3 1-2-3-1-2-3
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Pair-Wise BKS Method. The pattern-wise BKS method is not suitable for
the prediction of all proteins. The number of all possible combinations of patterns
grows rapidly with respect to the number of bonds, so the number of the training
samples is relatively not enough. We propose the pair-wise BKS method for the
prediction of proteins with four or five bonds. The pair-wise BKS table records
the ratio of the pairs truly bonded or not in various probability intervals from the
two classifiers, CP1F521 and CP2Label2. Table 7 shows an example of the partial
pair-wise BKS table for 5-bond proteins. For every cysteine pair, we advisably
adjust the original probability from CP1F521 method according to the ratio
of the truly bonded pairs in the pair-wise BKS table. Table 8 illustrates the
adjustment rules. Eventually, the predicted pattern is derived from the top N
maximum weighted graph matching by the adjusted weighted matrix until the
matching pattern belongs to a real pattern in PDB dataset according to our
statistics, where the probabilities obtained by SVM classifiers are input as the
edge weights in graph matching.

Table 7. An example of the partial pair-wise BKS table for 5-bond proteins.

Pairs from CP1F521 Pairs from CP2Label2 Truly bonded Not bonded

(0.3, 0.4) (0, 0.1) 0 0

(0.3, 0.4) (0.1, 0.2) 0 1

(0.3, 0.4) (0.2, 0.3) 6 5

(0.3, 0.4) (0.3, 0.4) 4 6

(0.3, 0.4) (0.4, 0.5) 6 6

(0.3, 0.4) (0.5, 1) 1 12

Table 8. The adjustment rules for the pair-wise BKS method.

Truly bonded Not bonded Adjustment ratio

0 0 1

[1, 10) 0 4

≥ 10 0 8

0 [1, 10) 0.25

0 ≥ 10 0.125

x x 1

[x, 2x) x 2

≥ 2x x 4

x [x, 2x) 0.5

x ≥ 2x 0.25
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3.4 Hybrid Method

Instead of a large amount of features used by the SVM method, Zhao et al. [18]
adopted only one feature, CSP (cysteine separations profile), to achieve nearly
50 % accuracy in the dataset with insufficient information. The CSP of protein
x with 2n oxidized cysteines (n disulfide bonds) is defined as

CSPx = (δ1, δ2, . . . , δ2n−1) = (ρ2 − ρ1, ρ3 − ρ2, . . . , ρ2n − ρ2n−1) (3)

where ρi denotes the sequence position of the ith oxidized cysteine in the protein
and δi denotes the separation distance between oxidized cysteines i and i + 1.

The divergence (D) of two CSPs for two proteins x and y is defined [18] as
follows:

D =
i=2n−1∑

i=1

|δx,i − δy,i|. (4)

It has been shown that the CSP is an important global feature for the disulfide
connectivity prediction, so we also combine the CSP method into our hybrid
method. Figure 2 exhibits the flow chart of our work. Our hybrid method for
predicting the disulfide connectivity pattern is described as follows.

Algorithm. The hybrid method.
Input: A protein sequence and the bonding states of its all cysteines.
Output: The predicted disulfide connectivity pattern.
Case 1: For a 2-bond or 3-bond protein.

– Step 1.1: Apply the maximum weighted graph matching algorithm to derive
the pattern from the CP1F521 method for 2-bond proteins (the CP1F623

method for 3-bond proteins). If the normalized weight of one pattern is greater
than or equal to 0.5, report this pattern as the predicted pattern.

– Step 1.2: If the condition meets a predefined threshold in the pattern-wise
BKS method, report this pattern as the predicted pattern.

– Step 1.3: If the minimum divergence obtained by the CSP search is less than or
equal to a predefined threshold, report this pattern as the predicted pattern.

– Step 1.4: For the remaining, take the original maximum weighted pattern from
the CP1F521 method for 2-bond proteins (the CP1F623 method for 3-bond
proteins) as the predicted result.

Case 2: For a 4-bond or 5-bond protein.

– Step 2.1: Apply the maximum weighted graph matching algorithm to derive
the pattern from the CP1F521 method. If the normalized weight of one pattern
is greater than or equal to 0.5, report this pattern as the predicted pattern.

– Step 2.2: If the minimum divergence obtained by the CSP search is less than or
equal to a predefined threshold, report this pattern as the predicted pattern.

– Step 2.3: Adjust the original weight (probability) of each pair from the CP1F521

method according to the pair-wise BKS table and report the pattern derived
from weighted graph matching algorithm as the predicted result.
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Fig. 2. The system flow chart of our method.
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4 Experimental Results

In this section, we introduce our testing dataset and performance evaluation
criteria of the disulfide connectivity prediction. In addition, we show the exper-
imental results of various methods.

4.1 Dataset

For the fair comparison of the prediction accuracy with previous works, we use
SP39 dataset, which is the same dataset adopted in some previous works, for
our training and testing. Table 9 illustrates the summary of SP39 dataset. This
dataset contains 446 proteins with two to five disulfide bonds, derived from the
SWISS-PROT release no. 39. It was first used by Vullo and Frasconi [10]. We also
use the same way as Wang et al.’s [19] to divide SP39 dataset into four subsets
for the 4-fold cross-validation. The sequence identity of proteins between any
two subsets is less than 30 %.

Table 9. The summary of SP39 dataset.

Number of proteins by the number of bonds Number of cysteines

B = 2 B = 3 B = 4 B = 5 B = 2 · · · 5 Oxidized Total

SP39a 156 146 99 45 446 2742 4401
a Defined by Vullo and Frasconi [10].

4.2 Performance Evaluation

The definition of k-fold cross-validation is given as follows. A dataset D is divided
into k subsets D1,D2, . . . , Dk, which are disjoint to each other. Each time, we
take a subset Di, 1 ≤ i ≤ k, as the testing set and use the other k−1 subsets for
training. Repeat this procedure k times until each subset is tested once. Here,
we adopt the 4-fold cross-validation. For the measurement of the performance
in connectivity pattern prediction, the accuracy is calculated as follows:

Qp =
Cp

Tp
, (5)

where Cp denotes the number of proteins whose connectivity patterns are cor-
rectly predicted, and Tp is the total number of proteins for testing.

4.3 Results

In the CP1F521 method, combined by the SVM method with the maximum
weighted graph matching [27], we discover that the prediction accuracy is very
high when the normalized weight of one predicted pattern is greater than or
equal to 0.5 (half). Table 10 shows the ratio and accuracies of these patterns. In
other words, the confidence of such prediction is very high. Thus, in Step 1.1 or
Step 2.1 of our method, the answer is settled down for these predictions.
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Table 10. The accuracy and ratio of the predicted patterns, whose normalized weights
are greater than or equal to 0.5 (half) by CP1F521 method in SP39 dataset.

B = 2 B = 3 B = 4 B = 5 B = 2 · · · 5
Accuracy (Qp) 100 93.0 93.9 92.9 96.0

Ratio in the dataset 37.8 29.5 33.3 31.1 33.4

Table 11. The accuracy and ratio of the pattern-wise BKS method in SP39 dataset
when the threshold is set to 2.

B = 2 B = 3

Accuracy (Qp) 94.0 95.7

Ratio in the dataset 53.2 31.5

Table 12. The Qp and ratio of the divergence of the CSP in SP39 dataset.

B = 2 B = 3 B = 4 B = 5

CSP Qp Ratio Qp Ratio Qp Ratio Qp Ratio

0 100 13 100 5 100 2 N/A 0

≤ 5 90 38 96 34 100 24 100 11

≤ 10 78 54 77 57 84 31 100 13

≤ 15 71 67 72 66 73 37 100 13

≤ 20 73 71 72 66 52 55 62 29

≤ 25 71 76 71 66 48 59 53 33

We use the BKS as a supporting role in our method. For the two kinds of
the BKS, the performance of the pattern-wise BKS is more effective than the
pair-wise BKS. Table 11 illustrates the details of the pattern-wise BKS method
when we set the threshold to 2 for 2-bond and 3-bond proteins.

Our hybrid method is combined by the SVM method and the BKS method.
In addition, we also take the CSP method into consideration. Table 12 shows the
Qp and ratio of the divergence of the CSP. Take 3-bond proteins as an example.
There are 34 % proteins with CSP search less than or equal to 5, and the Qp

of these proteins reaches up to 96 %. According to the observation, we set the
applicable thresholds of CSP to pick out the patterns as results. Here, we set
the threshold of CSP to 0, 5, 10, and 15 for proteins with two to five bonds,
respectively.

Table 13 shows the Qp of our methods and some previous works in SP39
dataset. The accuracies of the three SVM models are derived from the patterns
with the maximum weighted graph matching. However, we find that it is hard
to improve the accuracy by one single SVM model. Although the performance
of CP2Label2 is not better than CP1F521 or CP1F623, CP2Label2 provides the
effect for pair-wise BKS since CP2Label2 represents another concept of pair
extraction. Eventually, the prediction accuracy of our hybrid method with SVM
and BKS reaches 65.9 %, and up to 69.1 % combined with CSP method.
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Table 13. The Qp of our methods and previous works in SP39 dataset.

Method B = 2 B = 3 B = 4 B = 5 B = 2 · · · 5
CSPa 72.4 54.1 33.3 17.8 52.2

Wang’s methodb 84.0 60.3 55.6 44.4 65.9

CP1F521 84.0 53.4 55.6 46.7 63.9

CP1F623 78.2 60.3 53.5 44.4 63.5

CP2Label2 75.0 49.3 52.5 40.0 58.1

CP1F521 + BKS 84.0 56.8 55.6 55.6 65.9

CP1F521 + BKS + CSP 84.0 64.4 57.6 57.8 69.1
aProposed by Zhao et al. [18].
bProposed by Wang et al. [19].

5 Conclusion

According to the study of Wang et al. [19], which focuses SVM models on varied
features, and the concept of different cysteine-pair representations proposed by
Lu et al. [2], we do many integrated experiments. However, the improvement of
the pure SVM methods is not so significant although the SVM method is still
relatively better, compared with other machine learning methods. Some studies
[28,29] combine the SVM method with CSP or sequence alignment to raise the
accuracy. The key step of the CSP method and the sequence alignment method
is to search for a good template set. However, the accuracy of these two methods
depends on the pattern varieties in the template set.

We think that the design of hybrid methods is the trend in the disulfide con-
nectivity prediction problem. In this paper, we gather some statistics about the
disulfide bonds, and have successfully found some rules to discriminate the pat-
terns with high accuracy in several methods. Furthermore, we adopt the pattern-
wise and pair-wise BKS methods to fuse multiple SVM models, and use the
predicted patterns from the original SVM method for the rest of proteins.

In the future, we may examine our hybrid method to other datasets, and
explore more methods for fusing multiple classifiers, such as the weighted major-
ity vote. We may try the CSP method with the inter-bond template dataset to
explore more possibilities of the development with the concept of subpatterns.
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