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Abstract. Text mining services can be used to extract and categorize
entities from textual information on the web. Merging results from mul-
tiple services could improve extraction quality. This requires to have an
integrated extraction taxonomy and corresponding mappings between
individual taxonomies that are used for categorizing extracted informa-
tion. However, current ontology matching approaches cannot be applied
since the available meta data within most taxonomies is weak.

In this article we propose a novel taxonomy alignment process that
allows us to automatically identify equal, hierarchical and associative
mappings and integrate those mappings in a global taxonomy. We broadly
evaluate our matching approach on real world service taxonomies and
compare to state-of-the-art approaches.

Keywords: Instance-based matching · Text mining · Taxonomy
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1 Introduction

Analysts estimate that up to 80 % of all business relevant information within
companies and on the web is stored as unstructured textual documents [1]. Being
able to exploit such information for example for market analysis, trending or web
monitoring is a competitive advantage for companies. To support the extraction
of information from unstructured text, a multitude of text mining techniques
were proposed in literature (see [2]) and some were publicly made available as
Web Services (e.g., [3,4]). These services are able to classify text documents,
recognize entities and relationships or identify sentiments. Individual services
often have specific strengths and weaknesses. By combining them the overall
extraction quality and amount of supported features can be increased [5].

Unfortunately, merging the results from multiple extraction services is prob-
lematic since individual services rely on different taxonomies or sets of categories
to classify or annotate the extracted information (e.g., entities, relations, text
categories). To illustrate the problem we show the results of extracting entities
from a news text in Fig. 1.

Entities have been annotated by several text mining services (OpenCalais [3],
Evri [6], AlchemyAPI [4], FISE [7]) that rely on different taxonomies to annotate
found entities. For instance the text sequence Airbus is annotated with three
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Fig. 1. Analysis of a business news by several named entity recognition services
(retrieved on March 9, 2011).

different entity types: Organization (by FISE), Company (by AlchemyAPI and
OpenCalais) and AerospaceCompany (by Evri).

To be able to combine and merge extraction results from multiple services a
mapping between different taxonomy types and a merged taxonomy is required.
Finding such mappings manually is not feasible as the taxonomies can be very
large and evolve over time (e.g., AlchemyAPI uses a taxonomy with more than
400 entity types). Unfortunately applying existing (semi-)automatic ontology
and schema matching techniques [8,9] does not provide the requested quality
since the available meta data within existing service taxonomies is weak (i.e., no
descriptions are available, the taxonomies have a flat structure). Moreover, exist-
ing matching approaches are not able to identify relations between the taxonomy
types (i.e., if two types are equal or if one type is a subtype of the other).

To overcome those limitations, we introduce a novel taxonomy alignment pro-
cess that enables the merging of taxonomies for text mining services. The following
contributions are made within this article:

– We introduce a novel taxonomy alignment approach that is based on generated
instances of input taxonomies.

– In particular, a novel metric for instance-based matchers is proposed that is
able to identify equal, hierarchical and associative mappings.

– Based on the automatically computed mappings a cluster-based taxonomy
merging process is described.

– The taxonomy alignment process is compared to state-of-the-art instance-
based alignment methods. For evaluation, reference mappings between a num-
ber of real-world text mining services and their taxonomies were created
through an online survey with numerous participants.

The remainder of the article is structured as follows: In Sect. 2 we formally des-
cribe the problem and introduce the notation being used within this article.
Section 3 introduces our taxonomy alignment process and presents the metric for
instance-based matching as well as the combined matching strategy used within
our process. The experimental setup and the results of our evaluation can be found
in Sects. 4 and 5. We introduce a taxonomy merging approach that makes use of
the introduced taxonomy alignment process in Sect. 6 before we review related
work in Sect. 7. Section 8 closes with conclusions and an outlook to future work.
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2 Problem Description

Combining the results of multiple text mining services is promising as it can
increase the quality and functionality of text mining. This requires us to have a
mapping between the underlying taxonomies of the individual extraction ser-
vices. However, finding such a mapping is challenging. A review of existing
text mining services and their taxonomies revealed that the taxonomies dif-
fer strongly in granularity, naming and their modeling style. Many taxonomies
are only weakly structured and most taxonomy types are lacking any textual
description. Therefore manually defining a mapping between text-mining tax-
onomies is a complex, challenging and time consuming task.

Within this article we want to apply ontology- and schema matching tech-
niques [8,9] to automatically compute mappings between text mining taxonomies.
Matching systems take a source and a target ontology as input and compute map-
pings (alignments) as output. They employ a set of so called matchers to compute
similarities between elements of the source and target and assign a similarity value
between 0 and 1 to each identified correspondence. Some matchers primarily rely
on schema-level information whereas others also include instance information to
compute element similarities. Typically, the results from multiple of such match-
ers are combined by an aggregation operation to increase matching quality. In a
final step a selection operation filters the most probable correspondence to form
the final alignment result.

Unfortunately existing matching approaches solve the challenges of matching
text mining taxonomies only partly. Schema-based matchers can only be applied
to identify mappings between equal concepts (e.g., by using a name-matcher) as
the scarcity of broader meta data disables the use of more enhanced matchers
(e.g., retrieving hierarchical mappings through the comparison of the taxonomy
structure). Instance-based approaches are mainly limited to equal mappings. The
few instance-based approaches that support hierarchical mappings still suffer
from limited accuracy as we show in our evaluation (see Sect. 7 for a broader
review of related work).

To overcome the aforementioned limitations, we proposed an instance enrich-
ment algorithm in [10] that populates the taxonomy types with meaningful
instances. This allows us to apply instance-based matchers and similarity met-
rics like Jaccard and Dice [11,12] to identify mapping candidates. Since those
metrics can only be used to identify equality mappings we introduce a novel
metric that allows to identify hierarchical and associative mappings like broader-
than, narrower-than or is-related to. We integrate the instance enrichment and
instance matching together with some optimizations in a novel taxonomy align-
ment process that we describe below.

To sharpen the description of our contributions, we formalize the problem.
The overall goal of the taxonomy alignment process is to integrate the tax-
onomies T1, T2, ..., Tn of the text mining services S1,S2, ...,Sn into one global
taxonomy G. We make the assumption that each service Si uses its own tax-
onomy Ti to classify the text mining results. In order to align two taxonomies
Ts and Tt mappings between the types of the taxonomies need to be identified.
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A mapping M is a triple (Tsj , Ttk, R) in which R ∈ {≡, <,>,∼} indicates a
relation between a type Tsj ∈ Ts and a type Ttk ∈ Tt. (Tsj , Ttk,≡) means that
the taxonomy types Tsj and Ttk are equivalent, (Tsj , Ttk, <) indicates that Tsj

is a subtype of Ttk (i.e., Tsj is narrower than Ttk), (Tsj , Ttk, >) is the inverse
subsumption relation (i.e., Tsj is broader than Ttk). (Tsj , Ttk,∼) represents an
associative relation (e.g., car and truck are associated). The set of instances
annotated by a type Tij is specified by I(Tij), its cardinality by |I(Tij)|. When
matching two dissimilar taxonomies we speak of inter-matching whereas match-
ing the types of a taxonomy with itself (Ts = Tt) is called intra-matching. Since
equal mappings are not relevant in the intra-matching case the set of relevant
relations is R ∈ {<,>,∼}.

3 Taxonomy Alignment Process

Initially, the overall taxonomy alignment process is described. Section 3.2 intro-
duces our new metric that is applied within the alignment process. The matching
process applying instance- and schema-based matching is detailed in Sect. 3.3.

3.1 Overall Alignment Process

The general taxonomy alignment process is depicted in Fig. 2. The overall idea
is to retrieve mappings for the taxonomy types by a matching process and sub-
sequently integrate those mappings to form a global taxonomy G (see Sect. 6 for
the integration). This taxonomy G reflects all types of the individual taxonomies
Ti and the relations between the particular types (expressed in the mappings).
Additionally, the mappings can optionally be cleaned (e.g., by detecting cycles
within the graph) and complemented by new mappings (e.g., by exploiting the
given hierarchical structure) in mapping rewrite steps as done by existing ontol-
ogy matching tools like ASMOV [13]. In order to integrate n taxonomies

(n
2

)

inter-matching processes and n intra-matching processes are applied within our
taxonomy alignment process. Each of these inter-matching processes takes two
taxonomies as input and identifies equivalence, hierarchical and associative map-
pings between the types of these taxonomies. The intra-matching processes dis-
cover hierarchical and associative mappings within one taxonomy in order to
validate and correct/enhance the existing taxonomy structures.

The inter-matching process is implemented by a combined matcher consisting
of a schema-based and an instance-based matcher. The schema-based matcher
exploits the names of the taxonomy types (e.g., T1.a and T2.i in Fig. 2) and is
able to identify candidates for equivalence mappings. If sufficient meta data is
available for the taxonomies, the schema-based matcher can be extended with
matchers that additionally take into account the descriptions or the structures
of the input taxonomies. The instance-based matcher exploits the instances of
the taxonomy types to identify mapping candidates. The instances of the taxon-
omy types are retrieved by a new iterative instance enrichment algorithm that
was presented in [10]. Furthermore the instance-based matcher applies a novel
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Fig. 2. Taxonomy alignment process.

similarity metric – the intersection ratio triple (IRT) – that allows to identify
equivalence, hierarchical as wells as associative relations between the taxonomy
types. We will present the metric in Sect. 3.2 and give details on the inter- and
intra-matching process in Sect. 3.3.

The intra-matching process uses a slightly adjusted version of the instance-
based matcher. A combination with a schema-based matcher is not necessary
as equivalence mappings are irrelevant here. The results of the intra-matching
process can be used to bring structure into flat taxonomies and check and correct
given taxonomy structures.

3.2 IRT Metric

In this section, we present our novel similarity metric for instance-based match-
ers that is able to indicate equivalence, hierarchical and associative relations
between the elements of two taxonomies Ts and Tt. Additionally it allows to
identify hierarchical and associative relations within one taxonomy, when used
with slightly changed parameters.

It is a common technique within instances-based matchers to rate the sim-
ilarity of two taxonomy elements Tsj ∈ Ts and Ttk ∈ Tt by analyzing instance
overlaps and to represent them by a similarity metric. We propose a novel met-
ric that consists of three single values to represent equivalence, hierarchical and
associative relations. The metric adopts the corrected Jaccard coefficient pre-
sented by [11]:

JCcorr(Tsj , Ttk) =

√
|I(Tsj) ∩ I(Ttk)| × (|I(Tsj) ∩ I(Ttk)| − c)

|I(Tsj) ∪ I(Ttk)|

In contrast to the original Jaccard coefficient, that is the ratio of the instance
intersection size and the size of the union of the instances, the corrected Jaccard
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Fig. 3. Example for quality restrictions.

coefficient considers the frequency of co-occurring instances with its correction
factor c. For details how to configure c please refer to [11].

We rely on this basic metric as it allows us to deal with possible data sparseness
of the instances determined with our instance enrichment process. Additionally,
the instances retrieved from text mining services have some quality restrictions
that need to be handled. Text mining faces the problem of potentially being inac-
curate. Thus, the instances can include false positives (i.e., instances having been
extracted wrongly) and for some services miss false negatives (e.g., instances that
should be extracted, but having eventually only been extracted by some services).

In order to handle these quality restrictions, we propose an extension of the
corrected Jaccard metric as follows: We introduce a weakening factor w that redu-
ces a negative effect of instances only found by one of the services. The factor is
trying to correct the influence of the false positives and negatives of the extraction
process. Therefore the set of distinct instances Id(Tsj) and Id(Ttk) that were only
extracted by one of the services (independent from the entity type assigned to
them) are integrated in the corrected Jaccard factor weakened by w:

JCcorr+ (Tsj , Ttk) =

√
|I(Tsj) ∩ I(Ttk)| × (|I(Tsj) ∩ I(Ttk)| − c)

|I(Tsj) ∪ I(Ttk)| − w |Id(Tsj)| − w |Id(Ttk)|

with Id(Tsj) ⊆ I(Tsj)\
⋃

A∈Tt

I(A), Id(Ttk) ⊆ I(Ttk)\
⋃

B∈Ts

I(B) and 0 ≤ w ≤ 1

Figure 3 exemplarily depicts the interrelationships between the quality restric-
tions (e.g., “EADS” as false negative annotation for OpenCalais) and the distinct
instances (data was retrieved from Fig. 1).

The similarity value retrieved by the JCcorr+ coefficient enables decisions
on the equality of two taxonomy types. If the value is close to 1 it is likely that
the type Tsj is equal to Ttk, if the value is 0, the two taxonomy types seem to
be unequal. However, the similarity value does not provide an insight into the
relatedness of the two types, when the value is neither close to 1 nor 0. Let
us consider the type Company and the type AerospaceCompany. The extended
corrected Jaccard value would be very small – only those company instances of
the Company type that are aerospace companies might be in the intersection,
whereas the union set is mainly determined by the instance size of the type
Company. In order to detect subtype and associative relations we introduce two
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more measures JCcorr+Tsj
and JCcorr+Ttk

rating the intersection size per type:

JCcorr+Tsj
(Tsj , Ttk) =

√
|I(Tsj) ∩ I(Ttk)| × (|I(Tsj) ∩ I(Ttk)| − c)

|I(Tsj)| − w |Id(Tsj)|

JCcorr+Ttk
(Tsj , Ttk) =

√
|I(Tsj) ∩ I(Ttk)| × (|I(Tsj) ∩ I(Ttk)| − c)

|I(Ttk)| − w |Id(Ttk)|
These coefficients are the ratio of the intersection size of the instance sets of
the two elements Tsj and Ttk and the size of one of the instance sets (the
instance set I(Tsj) and I(Ttk) respectively). All three intersection values together
(JCcorr+, JCcorr+Tsj

, JCcorr+Ttk
) form the intersection ratio triple (IRT). We

can monitor the following states for the values of the IRT metric:

– If all three values are very high, it is very likely that the elements for which
the measures were calculated are equal, i.e., the mapping (Tsj , Ttk,≡) can be
derived.

– If JCcorr+Tsj
is high and the difference diffTtk

of JCcorr+ and JCcorr+Ttk
is

close to zero, it is an indication that the element Tsj is a subtype of Ttk, i.e.,
the mapping (Tsj , Ttk, <) can be derived.

– If JCcorr+Ttk
is high and the difference diffTsj

of JCcorr+ and JCcorr+Tsj
is

close to zero, it is an indication that the element Ttk is a subtype of Tsj , i.e.,
the mapping (Tsj , Ttk, >) can be derived.

– If none of the three states above yields, but at least one of the IRT-values is
clearly above zero the elements Tsj and Ttk are associated, i.e., the mapping
(Tsj , Ttk,∼) can be derived.

The IRT metric can also be applied for intra-matching processes. However, the
weighting factor is set to 0, i.e., the corrected Jaccard coefficient (and the modi-
fied corrected Jaccard coefficients for the second and the third value of the IRT)
is used in fact. In the following we show how our novel metric is used within our
combined matcher.

3.3 The Matching Process

As already described we use a complex matching strategy that combines both
schema-based and instance-based matcher in a single matching process. The
combination strategy is visualized in Fig. 4.

The strategy consists of a number of operators that are commonly used in
schema matching such as selection (Sel), aggregation (Agg) and matching (mat).
Moreover two additional operators (Trans and Diff) are included that are
needed for processing the IRT matcher results. The process starts by executing
the schema- and our instance-based matcher (matschema and matinst). They
take as input the two taxonomies Ts and Tt and calculate a similarity matrix
consisting of |Ts|×|Tt| entries (Sim and SimIRT ). Each entry of the Sim-matrix
is a value between 0 and 1 with 0 representing low and 1 representing high sim-
ilarity between two pairs of elements from the input taxonomies. The similar-
ity values of this matrix are calculated by a simple name-matcher as proposed
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Fig. 4. Combined matching strategy.

in COMA++ [14]. In contrast to that, the entries of the SimIRT -matrix are
composed of the three values computed by our IRT metric (see an exemplary
IRT-matrix in Fig. 2).

For equal mappings, we trust in the most likely matching candidates identi-
fied by the schema-based matcher. As discussed, the naming of taxonomy types
is typically clear and precise and therefore name-matchers tend to have a very
high precision. With a selection operation Selt the most probable matching
candidates are extracted. This operation sets all matrix entries below a given
threshold to 0 and all others to 1. We pick a high selection threshold (0.8) to
minimize the chance to select wrong mappings.

To simplify the combination of the SimIRT matrix and the Simsel matrix, the
SimIRT matrix is transformed by a transformation operation Trans. It maps the
three IRT values to one value that expresses the probability that the two taxon-
omy elements are equal. Different transformation operations are possible. A triv-
ial transformation operation transtriv just takes the first IRT value (the extended
corrected Jaccard coefficient JCcorr+) or the average of all three values. However,
such a trivial transformation may lead to false positive equal mappings since some
identified candidates may rather be subtype mappings. As already mentioned in
Sect. 3.2 a very low difference value diffTsj

and diffTtk
respectively, may indicate a

hierarchical relation. We therefore propose a transformation that lowers the sim-
ilarity values for such cases:

trans =transtriv − corrsub

corrsub =

⎧
⎪⎪⎨

⎪⎪⎩

0 max diff of IRT values<0.2

z · e
−λ·diffTsj JCcorr+

Tsj
< JCcorr+

Ttk

z · e−λ·diffTtk JCcorr+
Tsj

> JCcorr+
Ttk

with λ > 0 and 0 ≤ z ≤ 1

The transformation relies on an exponential function to weight the influence of
the difference values (diffTsj

or diffTtk
) on the transformation result. In particular

when the three IRT values are not very close to each other (i.e., having a maximal
difference greater than 0.2) the exponential function is applied. The subtype cor-
rection corrsub has the biggest value if the difference is zero and then exponentially
decreases to zero. The λ value defines how strong the value decreases. Example:
With λ = 20 and a difference value of 0.05 the value transtriv is decreased by
0.368. For λ = 100 the decrease is only 0.007. The correction value can be further
adapted by a weight z that can be based on the value of JCcorr+Tsj

and JCcorr+Ttk

respectively.



Integration of Text Mining Taxonomies 47

The selected similarity matrix Simsel is combined with the transformed sim-
ilarity matrix Simtrans of the instance-based matcher with a MAX-Aggregation
operation Aggmax. For each pair of entity pairs the maximum of the two matrix
entries (one entry from the Simsel and one from Simtrans matrix) is taken. The
result of the mapping aggregation still contains up to |Ts|×|Tt| correspondences.
From these correspondences the most probable ones need to be selected. A num-
ber of selection techniques have been proposed in literature (see [14]). We apply
the MaxDelta selection from [14] in Seldelta since it has shown to be an effec-
tive selection strategy. MaxDelta takes the maximal correspondence within a
row (or column) of a similarity matrix. Additionally, it includes correspondences
from the row (or column) that are within a delta-environment of the maximal
correspondence. The size of the delta environment depends on the value of the
maximal element for each row (or column). Both sets of maximal correspon-
dences for each row and correspondences for each column are intersected to get
the final selection result Simequal. Finally, equality mappings are created from
the selected matrix Simequal for each matrix entry above a given threshold.

Subtype and associative mappings are directly derived from the SimIRT

matrix. However, all equality mapping candidates are eliminated from the matrix
(Diff) before a fine granular selection operation SelIRT is applied. SelIRT

derives subtype mappings if JCcorr+Tsj
(or JCcorr+Ttk

) is above a given thresh-
old and if diffTtk

(or diffTsj
) is smaller than a distance threshold. All remaining

matrix entries that are not selected as subtype mappings but indicate a certain
overlap of the instances are categorized as associative mappings if one of the
three IRT values is significantly above zero.

The presented strategy can be adaptively fine-tuned by analyzing the results
of the schema-based matcher. Differing strength and performance of the extrac-
tion services for which taxonomies are matched can be identified. For instance,
if the text mining service Ss is consistently stronger than the service St, we
can observe the following: The instance set I(Ttk) is included in the instance set
I(Tsj) even if the two taxonomy types Tsj and Ttk are identical (i.e., the schema-
based matcher indicates an equivalence relation). For those cases a transforma-
tion which corrects subtypes is not recommended. Additionally the selection
thresholds can be adapted by observing the instance-matching values for which
equivalence relations hold.

4 Experimental Setup

Before we present the results of our experiments in matching entity taxonomies
of text mining services in Sect. 5, we give an overview of the experimental setup.
The goal of the experiments was to evaluate if our automatic matching approach
is applicable for matching taxonomies of text mining services and if our novel
metric performs better than traditional approaches. All datasets and manually
created gold standards are available upon request.
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4.1 Dataset

We evaluated our approach on three entity taxonomies of public and well known
text mining services, that are OpenCalais [3], AlchemyAPI [4] and Evri [6]. We
only considered the taxonomies that are provided for English text. The entity
taxonomy of OpenCalais is documented on the service website and consists of 39
main entity types that are partially further specified with predefined attributes
(e.g., the entity Person has the attributes PersonType, CommonName, Nation-
ality). In total it contains 58 entity types. AlchemyAPI documented its entity
types classified in a two-level hierarchy on the service website. We observed that
not all types AlchemyAPI extracts are listed on the service website. That is why
we extended the taxonomy with types having been extracted during the instance
enrichment process. All together the taxonomy then consists of 436 types. Evri
does not provide an overview of the entity types the service can extract. How-
ever, it was possible to extract information via service calls. The Evri taxonomy
constructed from the service calls is made up of 583 types.

4.2 Gold Standard

So far no mappings between the taxonomies of text mining services existed. In
order to evaluate the quality of the mappings retrieved with our approach, we
manually produced a gold standard in [10] through an online evaluation.

We use three values to rate the quality of the retrieved mappings compared
to the gold standard: precision, recall and F-measure. Precision is the ratio of
accurately identified mappings (i.e., the ratio of the retrieved mappings being
in the gold standard and the retrieved mappings). Recall marks the ratio of
mappings within the gold standard that were identified by the matcher. The
F-measure is the harmonic mean of precision and recall and is a common metric
to rate the performance of matching techniques. We consider a matcher to be as
good as the F-measure is.

4.3 Matcher Configurations

We experimented with different configurations of our instance-based matcher and
determined the best setting - a Jaccard correction factor c = 0.6 and a weight
w to 0.95 (i.e., integrated the instances only retrieved by one of the services to
five percent into the calculations). We achieved good results with a transforma-
tion operation using the average of the three IRT values slightly corrected by
the exponential function as given in Sect. 3.3. We scaled this correction down or
rather ignored it, when observing strongly differing service strength (that was
the case, when matching the taxonomy of the OpenCalais service with the tax-
onomies of the weaker services AlchemyAPI and Evri). The selection threshold
for retrieving equality mappings was set to 0.2 when used stand alone and to
0.5 when used in the combined matcher. For the subtype selection operation we
used a threshold of 0.65 and a distance threshold of 0.05 within inter-matching
processes and a threshold of 0.9 and 0.001 within intra-matching processes.
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(a) Equal (b) Subtype

Fig. 5. Comparison of similarity metrics.

We compared our instance-based matching approach and the IRT metric to
common metrics of instance-based matching systems: for equality mappings we
compared against the Dice and the corrected Jaccard metric, for hierarchical
mappings against the SURD metric. The selection thresholds of Dice and cor-
rected Jaccard were set to those values for which the highest average F-measure
could be retrieved (Dice: 0.1, corrected Jaccard with correction factor 0.8: 0.05).
For SURD we used the threshold proposed in [15] – ratios below 0.5 are low
values, ratios above 0.5 are high values. Independent from the used metric the
instance intersections were determined by comparing the strings of the instances
and only accepting exact matches for the intersection. Moreover, the Seldelta
selection techniques described in Sect. 3.3 was applied in all cases.

5 Experimental Results

In the following we present our experimental results proving that our approach
is applicable for matching taxonomies of text mining services. We start com-
paring the IRT metric to state-of-the-art metrics for instance-based matching
in Sect. 5.1. Afterwards we rate the performance of the overall intra- and inter-
matching processes in Sect. 5.2.

5.1 Comparison of Similarity Metrics

We compared the IRT metric to Dice, corrected Jaccard and SURD and analyzed
the performance regarding the identification of equal and subtype mappings
(see Sect. 4.3 for the matcher configurations). The results of the comparison are
depicted in Fig. 5, in which OC-AA indicates the matching process between the
OpenCalais and the AlchemyAPI taxonomy, OC-E between OpenCalais and
Evri, E-AA between Evri and AlchemyAPI and avg the average between the
three values.

Figure 5(a) shows the F-Measure for retrieving equality mappings. We were
able to slightly increase the average F-measure compared to the classical metrics
Dice and corrected Jaccard. When individually setting the threshold (e.g., by
using the schema-based matcher as indicator) the F-measure as well as precision



50 K. Pfeifer and E. Peukert

(a) intra matching (b) inter matching equal (c) inter matching subtype

Fig. 6. Performance of our matching approach.

and recall can be again increased (IRT ideal). Independent from the specific
metric used the performance for the matching process between Evri and Alche-
myAPI is worse than the other two matching processes. Reasons for this are on
the one hand relatively few instances used for the matching and on the other
hand the big performance difference of the two services. We detected that in
average equal types only have 30 % in common and it is therefore very hard to
detect all mappings correctly.

Figure 5(b) presents the results for the identification of subtype mappings.
One can see, that the IRT metric can significantly raise the recall (nearly 30 %) by
keeping the same good precision like the SURD metric. Thereby the F-measure
can be increased by nearly 20 % which proves that our IRT metric is suited much
better for the matching of text mining taxonomies.

5.2 Overall Matching Process

We applied the instance enrichment algorithm, the IRT metric and the com-
bined matching strategy for the intra- and the inter-matching processes for the
three services and their taxonomies. The performance results are given in Fig. 6.
We compared the mapping results of the intra-matcher to the relations given
within the taxonomy structure (Fig. 6(a)). Our approach covered exactly the
relations given within the OpenCalais taxonomy. On the contrary, the mappings
retrieved by our matching approach and the relations of the AlchemyAPI and
Evri taxonomy differed. However, this discrepancy is not a result of the inability
of our approach, but rather an indication that the taxonomies are not structured
accurately. AircraftDesigner is for example listed as a Person subtype in the tax-
onomy used by AlchemyAPI. In practice aircraft designing companies instead of
persons are annotated with this type. On the other hand, the flat structure of
the taxonomies ignores relations within the subtypes of an entity. USPresident
and Politician are both subtypes of Person (which is given in the taxonomy) and
the former is in addition a subtype of the latter (this information was retrieved
by our approach, but is not represented in the taxonomy). The results show
that overreliance on the given taxonomy structures is not reasonable. Instead
our approach should be used to validate and correct the taxonomy structure.

The results for the inter-matching processes clearly show that a combination
of schema- and instance-based matcher improves quality. The F-measure has
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Fig. 7. Taxonomy examples and mapping.

been raised by more than 15 % compared to the instance-based matcher only
approach (see Fig. 5). An average F-measure of 85 % for equal (Fig. 6(b)) and
77 % for subtype (Fig. 6(c)) shows that an automatic matching of text mining
taxonomies is possible. We observed that in average 63 % of the wrong sub-
type mappings and 16 % of the missed subtype mappings can be traced back to
instance scarcity (i.e., have five or less instances in the intersection). One quarter
of the missed equal mappings result from instance scarcity too. Increasing the
amount of instances (e.g., by allowing more iterations in the instance enrichment
process) and adapting the parameters for each matching process separately (e.g.,
by using the name-matcher as an indication for the thresholds) quality can be
increased.

6 Cluster-Based Taxonomy Merging

To be able to make use of the identified taxonomy mappings the individual
taxonomies need to be merged to build a global taxonomy. That global taxonomy
could serve as an interface to the combined extraction service. Given a number
of taxonomies T1, T2, . . . , Tn, a mapping between each possible pair of input
taxonomy needs to be computed. The example in Fig. 7 consists of three simple
taxonomies that need to be merged and the computed set of mappings. Each
mapping entry in the table consists of source, target, relation and confidence.
The matching process from above is able to retrieve the mappings and assign
confidences to each computed mapping entry. Due to the automatic instance
enrichment and matching not all possible mappings are in fact identified and
some might be incorrect or questionable like A.Company > C.Car.

In the example three equal mappings have been identified, that is between
the A.Person category from Taxonomy A and B.Person category from Tax-
onomy B, between A.Politician and B.Person Political and between A.Product
and B.Product. Moreover, a number of subtype mappings have been found. In
particular with subtype mappings it often happens that a category is a subtype
of multiple other categories which is natural. The US-President is both a Person
and a Politician. The equal and subtype mappings are complemented by related
mappings. Only one related mapping is listed in the example. Finally also intra
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Fig. 8. Clustering and Merging.

mappings were computed that later help to structure the final merged taxon-
omy and correct the given taxonomy structures. In the following a process is
described that builds an integrated global taxonomy that can be exposed for the
merged service and that can be used for annotating results.

1. From the found mappings a graph is build. For each type of mapping a differ-
ent edge is used in the example Fig. 8 (a undirected edge for equal, a directed
edge for subtype and a dotted undirected one for associated). Obviously there
is still some ambiguity that needs to be resolved and the different categories
need to be merged.

2. We identify strongly connected components in the graph of equal matches.
The output are clusters of strongly connected elements (illustrated by the
grey ovals in the left side of Fig. 8). These clusters build the new categories.
Cluster names are assigned from the category that collected most instances
in the instance enrichment example.

3. If a cluster also consists of subtype matches then such matches are changed
to equal matches.

4. The edges from categories within a cluster pointing to categories outside
of a cluster are now changed to edges between the clusters instead of the
individual categories. Multiple similar edges between clusters are replaced by
one. However the single edge remembers how many and which representatives
formally existed.

5. In the next step, the transitivity relation is exploited to remove unnecessary
subtype matches between clusters. That means, if a cluster A is subtype B
and B is subtype C then all subtype edges between A and C can be removed.

6. The remaining edges between the clusters are further cleaned. If there is a
subtype and an equal edge between clusters - then the subtype edge is taken
and the equal edge is removed. If there are equal edges between clusters the
edge is replaced by related edges. If subtype edges point in both directions
then the edge with smaller edge count is removed.

There can be further rules to correct the graph such as removing possible cycles
of subtype edges. The final merged taxonomy A+B+C is shown in Fig. 8. Note,
that this taxonomy is not a tree, it is rather a graph of categories. The mapping
result from above can also be filtered with higher thresholds to remove some
mappings with low confidence. The final merged taxonomy structure then has
higher credibility. However, the number of categories could increase and the final
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taxonomy might be less structured. For each service that should be merged the
merged taxonomy needs to be recomputed. This ensures that the order of addi-
tion has no influence on the result. Note that for each cluster in the taxonomy,
the original cluster is retained as a mapping between the individual taxonomies
and the global taxonomy. First evaluations of the cluster-based merging process
are promising and a first use case to illustrate the value of computing taxon-
omy alignments between extraction services was implemented with a web news
analysis application [10].

7 Related Work

A number of matching systems have been developed that are able to semi-
automatically match meta data structures like taxonomies, ontologies or XSD
schemata (see [9,16]). Most of these systems rely on schema-based matching tech-
niques, that consider names, structure or descriptions of elements for matching.
For some test-cases they are able to identify equal mappings as we show in our
evaluation. However, schema-based techniques are not suited to generate subtype
or associative mappings when dealing with flat taxonomies.

A number of existing matching systems like QuickMig [17], COMA++ [14],
RiMOM [18] or Falcon [19] rely on instance-based matching techniques to find
further correspondences when schema-based matchers are not sufficient. Some
of them look for equality of single instances [17–19], others employ metrics that
rely on the overlap of instance sets [14]. The latter rely on similarity metrics
like Jaccard, corrected Jaccard, Pointwise Mutual Information, Log-Likelihood
ratio and Information Gain (see [11]). Massmann and Rahm [12] apply the dice
metric to match web directories from Amazon and Ebay. All of these similarity
metrics can only be applied to retrieve equal mappings. Moreover, they only
perform well when instance sets are quite similar and strongly intersect. They
do not consider inaccurate and incomplete instances, like we do with our IRT
metric.

The PARIS system [20] employs a probabilistic approach to find alignments
between instances, relations and classes of ontologies. The system is mainly able
to identify equivalence relations but the authors also introduce an approach to
find subclass relations. However, they neither presented how to apply this app-
roach in order to decide for equivalence or subtype relations of classes nor have
they evaluated the identification of subclasses. Reference [15] recently proposed
a metric of two coefficients to resolve the question how to identify hierarchical
relationships between ontologies. This metric is similar to our IRT metric, but
does not consider failures within the instances. Moreover, due to relying on only
two values and basic heuristics this metric is more inaccurate than the IRT met-
ric presented in this article. By relying on three coefficients we can further refine
relationships and besides identifying equivalence and hierarchical relations also
identify associative relations between the types of two taxonomies which can
not be done with metrics proposed so far. Moreover, we are the first to apply
ontology matching techniques for matching text mining taxonomies.
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For merging taxonomies most approaches apply merging based on an algo-
rithm where one structure is integrated into another one like PORSCHE [21]
or ATOM [22]. The order of merging with these approaches is crucial and can
change the resulting global structure. In contrast to that, cluster-based merging
approaches do not rely on the order of merges and always reflect an optimal
global schema as was also done in ARTEMIS [23] or by Dragut et al. [24] when
integrating web data source schemata. Our approach goes beyond existing work
since it includes subtype edges and internal structure in the merge process which
creates a global schema of higher quality similar to MOMIS [25].

8 Conclusions and Future Work

In this article we presented a number of contributions that help to automatically
match and integrate taxonomies of text mining services and therewith enable the
combination of several text mining services. In particular we proposed a general
taxonomy alignment process that applies a new instance-based matcher using
a novel metric called IRT. This metric allows us to derive equality, hierarchical
and associative mappings. Our evaluation results are promising, showing that
the instance enrichment and matching approach returns good quality mappings
and outperforms traditional metrics. Furthermore, the matching process again
indicated that the results of different text mining services are very different,
i.e., the instances of semantically identical taxonomy types are only partly over-
lapping (partly only 5 % of the instances overlap). This emphasizes the results
from [5] that the quality and quantity of text mining can be increased through
the aggregation of text mining results from different services. The presented tax-
onomy alignment process will allow us in future to automate the matching of
text mining taxonomies and subsequently the automatic merging of text mining
results from different services (see [26]).
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