
KODEGEN: A Code Generation and Testing
Tool Using Runnable Knowledge

Iaakov Exman(&), Anton Litovka, and Reuven Yagel

Software Engineering Department,
The Jerusalem College of Engineering – Azrieli,

POB 3566, 91035 Jerusalem, Israel
{iaakov,robi}@jce.ac.il, antonli@post.jce.ac.il

Abstract. KDE – Knowledge Driven Engineering – is a generalization of
MDE – Model Driven Engineering – to a higher level of abstraction than the
standard UML software models, aiming to be closer to the system designer
concepts. But in order to reach an effective technology applicable in industry,
one needs to implement it in a tool using Runnable Knowledge, i.e. which can be
run and tested. This work describes KODEGEN – a KDE tool for testing while
generating code – whose input consists of system ontologies, ontology states
and scenario files. Incidental concepts not part of the ontologies are replaced by
mock objects. The implementation uses a modified Gherkin syntax. The tool is
demonstrated in practice by generating the actual code for a few case-studies.

Keywords: KDE � Runnable knowledge � Ontology � Ontology states � Model
testing � Mock objects

1 Introduction

Software system development starting from the natural system concepts facilitates the
system designer work and its understanding. KDE – Knowledge Driven Engineering –

is a generalization of MDE (or MDA [6]) to a higher abstraction level than UML
models, exactly to support a conceptually neat approach to system development.

From a slightly different point of view, “earlier bug discovery reduces costs”, is a
widely accepted wisdom [5]. Within KDE earlier means higher abstraction levels.
Thus, also from this aspect, KDE offers novel development perspectives.

Exman et al. [9] have recently proposed Runnable Knowledge – bare concepts and
their states – as the highest system abstraction level. Exman and Yagel [10] made a
further step by proposing their Runnable Ontology Model, starting from ontologies and
ontology states, and incorporating concrete scenario files for code generation and testing.

This paper embodies the latter proposal in the KODEGEN tool. One assumes for a
certain domain the a priori given relevant ontology and its states. KODEGEN gener-
ates, from the ontology and its states, classes of the system under development (SUD),
while submitting them to tests to be applied according to given scenario specifications.

KODEGEN is being built to gradually develop software systems in a semi-auto-
matic approach, at times with human intervention. The interactions refine the SUD and
KODEGEN itself. The ultimate goal in our vision is to automatically generate the
running code from the abstract model and its tests.

© Springer-Verlag Berlin Heidelberg 2015
A. Fred et al. (Eds.): IC3K 2013, CCIS 454, pp. 260–275, 2015.
DOI: 10.1007/978-3-662-46549-3_17



1.1 Related Work: From Executable Specifications to Code Generation

A concise literature review is presented here. The Agile software movement has
stressed in recent years early testing methods, e.g. Freeman and Pryce [11]. Its main
purposes are faster understanding of the software under development obtained by short
feedback loops, and guiding the software system development in rapidly changing
environments.

Early testing methods stemmed from Test Driven Development (TDD), the unit-
testing practice by Beck [4]. In such methods, scripts demonstrate the various system
behaviors, instead of just specifying the interface and a few additional modules. Since
the referred scripts’ execution can be automated, the referred methods are also known
as automated functional testing.

Among TDD extensions one finds Acceptance Test Driven Development (ATDD)
also known as Agile Acceptance Testing, see e.g. Adzic [2]. Another such extension is
Behavior Driven Development (BDD) North [14], emphasizing readability and
understanding by stakeholders. Recent representatives are Story Testing, Specification
with examples Adzic [3] or Living/Executable Documentation, e.g. Smart [19].

There exist common tools to implement TDD practices. FitNesse by Martin [1] is a
wiki-based web tool for non-developers to write formatted acceptance tests, e.g. tabular
example/test data. The Cucumber (Wynne and Hellesoy [21], see also [8]) and Spec-
Flow [20] tools directly support BDD. They accept stories in plain natural language
(English and a few dozen others). They are easily integrated with unit testing and user/
web automation tools. Yagel [22] reviews extensively these practices and tools.

An introductory overview of ontologies in the software development context is
found in Calero et al. [7]. Ontology-driven software development papers are found in
Pan et al. [16]. The combination of ontology technologies with Model Driven Engi-
neering is discussed at length in Pan et al. [16] and in Parreiras [17].

In the remaining of the paper we introduce the Ontology abstraction level (Sect. 2),
describe testing with the modified Gherkin syntax of the Cucumber tool (Sect. 3), study
code generation implemented in the KODEGEN tool (Sect. 4), describe three case
studies (Sect. 5) and conclude with a discussion (Sect. 6).

2 Runnable Knowledge: The Ontology Abstraction Level

Runnable Knowledge (Exman et al. [9]) is an abstraction level above standard UML
models. Since UML models separate modeling structure and behavior into different
diagrams – typically class diagrams and statecharts – Runnable Knowledge, the highest
abstraction level, is also designed to separate structure from behavior.

Ontologies – mathematical graphs with concepts as vertices and relationships as
edges – represent the static semantics of software systems. From ontologies one can, by
means of appropriate tools, to naturally generate UML structures, viz. classes.

Ontology states – mathematical graphs with concepts’ states as vertices and labeled
transitions as edges – are our representation of the dynamic semantics of software
systems. From ontology states one can, by means of appropriate tools, to naturally

KODEGEN: A Code Generation and Testing Tool 261



generate UML behaviors, viz. statecharts. Ontology states are a higher abstraction of
statecharts, abstracting detailed attributes, functions and parameters. Ontology states
are not the only alternative to represent dynamic semantics (see e.g. Pan et al. [16]).

For illustration, Fig. 1 displays a graphical representation of a simplified version of
an ATM (Automatic Teller Machine) ontology. An ATM appears later on in the case
studies – in Sect. 5.

3 Modified Gherkin Syntax for Testing

To test ontologies and ontology states, we use a modified Gherkin Syntax specification
as in Fig. 2. This file is usually developed by the system’s stakeholders.

The keywords shown in blue in Fig. 2 are:

(a) Feature – provides a general title to the specification;
(b) Scenario – provides a title for a specific walk through;
(c) Given – pre-conditions before some action is taken;
(d) When – an action that triggers the scenario;
(e) Then – the expected outcome.

For further details see [21] and our previous work [10].

Fig. 1. An ontology for an ATM – Five concepts standing for five possible ATM operations are
displayed, besides the ATM concept itself.

Feature:  Account Withdrawal 

Scenario: Successful withdrawal from an account 
Given an account has a balance of <amount>$100 
When <amount>$20 are withdrawn from an ATM 
Then the account <balance>balance should be $80 

Fig. 2. ATM withdrawal operation specification – It specifies successful cash withdrawal from
an ATM. It is expressed in the modified Gherkin style. Tags are added by the developer – marked
in bold red within angular brackets – to facilitate test script generation (see Sect. 5).

262 I. Exman et al.



Running this specification alone fails as it lacks supporting code. A domain model
is needed. A tool like Cucumber can suggest steps to satisfy the given specification.
Mock objects could also stand for the concepts missing in the ontologies.

Cucumber’s mode of usage is iteration and refinement until the specification is
complete. This is checked by test scripts. These may catch software regressions caused
by new system features.

KODEGEN goes a step further and fills the generated steps with actual code that
exercises the interactions between the ontology classes. The ontology may not be
complete, or the specifications, sometimes written by non-technical persons, may
contain yet more gaps. KODEGEN is designed to maximize automation with the
known ontologies. Thus, KODEGEN hints to the developer to slightly modify the
specification with tags to be used to generate the code.

4 KODEGEN Software Modules: Generation
of Running Code

KODEGEN, whose software modules are seen in Fig. 3, has three inputs:

• Initial Specification – a scenario obtained by elicitation of system requirements;
• Ontology – obtained by specialization of generic domain ontologies;
• Ontology States – obtained by setting transitions between concept states.

Fig. 3. KODEGEN software modules – modules are round (white) rectangles, while inputs and
outputs are regular (yellow) rectangles. Mock-Objects may be needed to complement generated
code. The wide arrow upwards means that test-script is used to the test the MUT (Model Under
Test) (Color figure online).

KODEGEN: A Code Generation and Testing Tool 263



The fusion module coordinates two sub-modules: a model generator and a test gen-
erator. These use ontology concepts and their states to generate the outputs:

• MUT – code skeletons of the Model Under Test;
• Test Scripts – unit tests to test the MUT (using e.g. NUnit [15]).

If there are concepts in the scenario that do not appear in the ontologies, KODEGEN
inserts them into the generated code by means of a Mock Objects library (see e.g. Moq
[13], RSpec [18]). Mock objects are a fast and efficient addendum to Runnable
Knowledge to obtain an actually running model.

If the tests results are negative, one should modify the specifications and/or the
ontology and then repeat the loop. Otherwise the system model is approved.

The Runnable Knowledge model – i.e. the ontologies and their states – is the utmost
abstract level in the software layers hierarchy. It is runnable in the sense that, a suitable
tool can make transitions between states.

5 Case Studies

Here we describe two case studies from the given input, to the generated code. The first
is an ATM, Automatic Teller Machine, with cash withdrawal transactions. We further
elaborate this example in Subsect. 5.3.

5.1 ATM

Two ontologies, ATM and bank Account, are used in the initial ATM example. In Fig. 4
these ontologies are displayed side-by-side in two formats: a- a schematic graphical
format for easy reader comprehension (in the left-hand-side); b- a corresponding XML
format, for internal KODEGEN usage, providing more details (in the right-hand-side).
Both ontologies show their operations, such as withdraw and dispense-cash. The
Account ontology also shows a property, viz. account Balance.

The respective ontology states are shown in Fig. 5. Also in this figure one discerns
two formats: a- a schematic graphical format, purposefully very similar to a statechart;
b- a corresponding XML format. The ATM and Account are parallel states, meaning
that they are orthogonal or “independent”, as they should be. In other words, an
Account can certainly exist independently of its use by means of an ATM. An ATM
machine is certainly built and tested independently of any specific Account.

Generated Model and Running Code Implementation. KODEGEN is fed with an
XML ontology and say, the ATM specification in Fig. 2. It generates model classes and
a test script. Here the classes are in the Ruby language (Fig. 6).

KODEGEN also generates a test script, seen in Fig. 7, which realizes the specifi-
cation – code snippets executed sequentially – and exercise the various classes.

264 I. Exman et al.



<?xml version="1.0"?>
<state_machine>
<ontology_state>

<class_name>Account</class_name>
<state>

<state_name>Updated</state_name>
<edge> <edge_name>Verify_balance
</edge_name> <edge_to>Withdrawal_

Operation</edge_to> </edge> </state>
</ontology_state>
<ontology_state>
<class_name>Account</class_name>

<state>
<state_name>Withdrawal_operation
</state_name>

<edge><edge_name>Authorize</edge_name>
<edge_to>withdrawal_operation
</edge_to> </edge>

</state>
</ontology_state>

</state_machine>

Fig. 5. Ontology states of the ATM and bank account ontology – In the left hand side the ATM
and account parallel states display the states for a cash withdrawal operation. In the right hand
side an XML representation of the partial account ontology states, for internal manipulation
within KODEGEN.

<?xml version="1.0"?>
<ontology>

<class>
<name>ATM</name>
<attribute id="0">Deposit

</attribute>
<attribute id="1">Withdraw

</attribute>
<attribute id="2">Verify account

</attribute>
<attribute id="3">Dispense cash

</attribute>
<attribute id="4">Accept cash

</attribute>
</class>
<class>

<name>Account</name>
<attribute id="0">Cash operation

</attribute>
<attribute id="1">Request

Balance</attribute>
<attribute id="2"> Balance

</attribute>
</class>

</ontology>

Fig. 4. ATM and bank account ontologies – a graphical representation is in the left hand side.
The concepts in the ATM ontology (upper) are operations performed by the ATM. The concepts
in the account ontology (lower) are operations (cash-operation and request-balance) and a
property (balance) of the account. The XML representation is in the right hand side.

KODEGEN: A Code Generation and Testing Tool 265



5.2 Internet Purchase

Here we describe an internet purchase case study. Its classes are the shopping cart and
products (that can be put in the cart). We show its ontologies (in Fig. 8) and states (in
Fig. 9), directly in the internal XML representation. Testing of these classes is shown
by a transaction in which two product types are purchased.

A Gherkin specification file is given in Fig. 10.

class ATM
attr_accessor :deposit
attr_accessor :Verify_account
attr_accessor :dispense_cash
attr_accessor :Accept_cash

def withdraw(amount)
end

end

class Account
attr_accessor :Cash_operation
attr_accessor :request_balance
attr_accessor :balance

end

Fig. 6. ATM: Extracted model – Ruby generated classes.

require "test/unit/assertions"
require "/usr/lib/ruby/vendor_ruby/cucumber/rspec/doubles"
World(Test::Unit::Assertions)

Given /^account has a balance of <balance> \$(\d+)$/ do |balance|
@account = Account.new
@account.balance = balance

end

When /^<amount> \$(\d+) are withdrawn from ATM$/ do |amount|
atm = ATM.new
atm.withdraw( amount )

end

Then /^the account balance should be <balance> \$(\d+)$/ do |balance|

@account.stub(:balance).and_return(balance)
assert balance == @account.balance.to_s

end

Fig. 7. ATM: Runnable test script – The stub (here and in subsequent figures) is a method with a
signature, but not implemented yet, needed to pass the test.

266 I. Exman et al.



Figure 11 contains the generated model classes.
Figure 12 displays the Shopping cart case study test script. In contrast to the ATM

case study, here mock objects are applied (we used the RSpec-Mocks library [18]). The

<?xml version="1.0"?>
<ontology>

<class>
<name>shopping cart</name>
<attribute id="0">products</attribute>
<attribute id="1">items per product</attribute>
<attribute id="2">tax</attribute>
<attribute id="3">current price</attribute>
<attribute id="4">total price</attribute>

</class>
<class>

<name>product</name>
<attribute id="0">name</attribute>
<attribute id="1">price</attribute>
<attribute id="2">serial number</attribute>
<attribute id="3">part number</attribute>

</class>
</ontology>

Fig. 8. XML representation of shopping cart and product ontologies – The shopping cart
ontology shows objects contained by the cart (product and items-per-product) and purchase
properties (total-price, current-price and tax). The product concepts are just its properties.

<?xml version="1.0"?>
<state_machine>

<ontology_state>
<class_name>shopping cart</class_name>
<state>

<state_name>wait</state_name>
<edge>

<edge_name>add</edge_name>
<edge_to>wait</edge_to>

</edge>
<edge>

<edge_name>contains</edge_name>
<edge_to>calculated</edge_to>

</edge>
</state>

</ontology_state>
</state_machine>

Fig. 9. XML representation of shopping-cart ontology states – The cart default is empty. A
product can be added, its price or final price-&-tax calculated, ending the transaction.

KODEGEN: A Code Generation and Testing Tool 267



mock expectations are met by adding calls to stub objects – in bold red in Fig. 16. The
script adds products A and B to empty cart, applies tax and make assertions.

Once the mock expectations were set and the test script is ready, it only remains to
run it in a test runner tool (see the screenshot in Fig. 13). This test script can later be
reused and re-issued to check correctness of the actual developing implementation.

Feature: Adding to a shopping cart
Scenario: Add items to shopping
cart

Given An empty shopping cart
When I add 1 item of Product A

($10)
And I add 2 items of Product B

($20 each)
And the tax is 8%
Then the shopping cart contains

3 items
And the total price is 54$

Feature: Adding to a shopping cart
Scenario: Add items to shopping
cart

Given empty shopping cart
When I add <quantity> 1 of

Product <name> "A" to shopping
cart

And I add <quantity> 2 items of
Product <name> "B" to shopping
cart

And tax is <tax> 8% percent
Then shopping cart contains

<quantity> 3 items

Fig. 10. Shopping-cart – Adding items to a shopping cart. In the left-hand-side one sees a simple
Gherkin specification. In the right-hand-side a tagged specification, augmented with modifier tags
in bold red within angular brackets, to facilitate code generation.

class Shopping_cart
attr_accessor :products
attr_accessor :items_per_product
attr_accessor :tax
attr_accessor :current_price
attr_accessor :total_price

def add(quantity, product)
end
def contains
end

end
class Product

attr_accessor :name
attr_accessor :price
attr_accessor :serial_number
attr_accessor :part_number

end

Fig. 11. Shopping-cart: Extracted model – Ruby generated classes.

268 I. Exman et al.



Lastly for this case study, Fig. 13 is a screenshot resulting from running the
generated test script with Cucumber. The steps from the scenario are marked green
meaning that the test tool could successfully run and all expectations were met.

require "test/unit/assertions"
World(Test::Unit::Assertions)

Given /^empty shopping cart$/ do
@shopping_cart = Shopping_cart.new

end
When /^I add <quantity> (\d+) of Product <name> "(.*?)"

to shopping cart$/ do |quantity, name|
product = Product.new
product.name = name
@shopping_cart.add(quantity , product)

end
When /^I add <quantity> (\d+) items of Product <name> "(.*?)"

to shopping cart$/ do |quantity, name|
product = Product.new
product.name = name
@shopping_cart.add(quantity , product)

end
When /^tax is <tax> (\d+)% percent$/ do |tax|

@shopping_cart.tax = tax
end
Then /^shopping cart contains <quantity> (\d+) items$/

do |quantity|
@shopping_cart.stub(:contains).and_return(3)
assert quantity == @shopping_cart.contains( )

end

Fig. 12. Shopping-cart: Runnable test script.

Fig. 13. Shopping-cart: Running test results – screenshot of running of the above test script with
Cucumber. It is a passing test, since all expectations where met by the models, all of the steps in
the test script were successfully done.

KODEGEN: A Code Generation and Testing Tool 269



5.3 Extended ATM-Account System with a Card

In this case study we extend the ATM-Account system (Sect. 5.1) with a Card, whose
ontology is seen in Fig. 14. The respective ontology states are seen in Fig. 15.

<?xml version="1.0"?>
<ontology>
<class>
        <name>Card</name>
        <attribute>accepted</attribute>
        <attribute>returned</attribute>
        <attribute>retained</attribute>
    </class>
</ontology>

Fig. 14. XML representation of card ontology – This is the third ontology to be added to the two
ontologies of the ATM-account system.

<?xml version="1.0"?>
<state_machine>
    <ontology_state>
        <class_name>Card</class_name>
        <state> <state_name>insertion</state_name>

                 <edge><edge_name>password_entered</edge_name>
                        <edge_to>validation</edge_to> </edge>
        </state>
    </ontology_state>
    <ontology_state>
        <class_name>Card</class_name>
        <state> <state_name>validation</state_name>
            <edge> <edge_name>valid</edge_name>
                         <edge_to>validated</edge_to> </edge>
        </state>
    </ontology_state>
    <ontology_state>
        <class_name>Card</class_name>
        <state> <state_name>validation</state_name>
            <edge><edge_name>not_valid</edge_name>
                <edge_to>rejected</edge_to>
            </edge>
        </state>
    </ontology_state>
    <ontology_state>
        <class_name>Card</class_name>
        <state> <state_name>validated</state_name>

                 <edge><edge_name>operation_completed</edge_name>
                        <edge_to>returned</edge_to> </edge>
        </state>
    </ontology_state>
</state_machine>

Fig. 15. XML representation of card ontology states – The states are: insertion, validation,
validated.

270 I. Exman et al.



The next system input is the set of scenarios, now involving the Card, seen in
Fig. 16.

In the next Fig. 17, one can see the Ruby code generated by KODEGEN with the
testing steps.

The work order in a test script (such as in Fig. 17) is as follows: objects are created
in the Given part; messages are printed in the When part; verification occurs in the Then
part. A metaclass is used to save a message to be verified in the Then part. This is an
example of a Ruby meta-programming feature to dynamically add methods to (yet)
non-existing model classes and later test the right interaction with them.

Finally, Fig. 18 displays a screenshot of the respective testing run.

Feature: Account Withdrawal 
Scenario: Successful withdrawal from an account 

Given Account has a balance of <balance> $100 
When <amount> $20 are withdrawn from ATM  
Then the account balance should be <balance> $80 

Scenario: Account has sufficient funds 
Given the account balance is <balance> $100 
And the card is valid
And the ATM contains <amount> $500 
When the Account request cash <amount> $20 
Then the ATM should dispense cash <dispense_cash> $20 
Then the account balance should be <balance> $80 
And the card should be <returned> "returned" 

Scenario: Account has insufficient funds 
Given the account balance is <balance> $10 
And the card is valid
And the ATM contains <amount> $50 
When the Account Holder withdraw <amount> $20 from ATM 

Then the ATM should Print <message>"there are insufficient funds" 
And the account balance should be <balance> $10 
And the card should be <returned> "returned" 

Scenario: Card has been disabled 
Given account 
And the card is not valid 
And the ATM contains <amount> $500 
When the Account request cash <amount> $20 
Then the card should be <retained>"retained" 

And the ATM should Print <message>"the card has been retained" 

Fig. 16. Scenarios involving a card in the ATM-account system – The card may be valid (in
bold green color) and it is returned, but still there may be sufficient or insufficient funds for a
withdrawal operation. If the card is not valid (in bold red color, within the last scenario), it is
retained. This scenario is based upon a user story found in http://dannorth.net/whats-in-a-story/
(Color figure online).

KODEGEN: A Code Generation and Testing Tool 271

http://dannorth.net/whats-in-a-story/


require "/usr/lib/ruby/vendor_ruby/cucumber/rspec/doubles" 
require "test/unit/assertions" 
World(Test::Unit::Assertions) 

Given /^Account has a balance of <balance> \$(\d+)$/ do |balance| 
 @account = Account.new 
 @account.balance = balance                                    end 
When /^<amount> \$(\d+) are withdrawn from ATM$/ do |amount| 
 atm = ATM.new 
 atm.withdraw(amount)                                            end 
Then /^the account balance should be <balance> \$(\d+)$/ do |balance| 
 @account.stub(:balance).and_return(balance) 
 assert balance == @account.balance.to_s                end 
Given /^the account balance is <balance> \$(\d+)$/ do |balance| 
 @account = Account.new 
 @account.balance = balance                                    end 
Given /^the Card is valid$/ do 
 @card = Card.new 
 @card.valid()                                                           end 
Given /^the ATM contains <amount> \$(\d+)$/ do |amount| 
 @atm = ATM.new 
 @atm.contains = amount 
 print_manager=mock("Print_Manager") 
 metaclass = class << print_manager; self; end 
 metaclass.send :attr_accessor, :text 
 def print_manager.print(text) 
  @text = text             end 
 @atm.print_manager=print_manager                       end 
When /^the Account request cash <amount> \$(\d+)$/ do |amount| 
 @account.request(amount)                                       end 
Then /^the ATM should dispense cash <dispense_cash> \$(\d+)$/ do |dispense_cash| 
 @atm.stub(:dispense_cash).and_return(dispense_cash) 
 assert dispense_cash == @atm.dispense_cash.to_s  end 
Then /^the card should be <returned> "(.*?)"$/ do |returned| 
 @card.stub(:returned).and_return(returned) 
 assert returned == @card.returned.to_s                    end 
When /^the Account Holder withdraw <amount> \$(\d+) from ATM$/ do |amount| 
 account_holder = mock( "Account_Holder ") 
 account_holder.stub!( :withdraw ).with( amount ) do  
  @atm.withdraw( amount )     end 
 account_holder.withdraw( amount )                          end 
Then /^the ATM should Print <message>"(.*?)"$/ do |message| 
 @atm.print_manager.print( message ) 
 assert @atm.print_manager.text == message             end 
Given /^account$/ do 
 @account = Account.new                                          end 
Given /^the card is not valid$/ do 
 @card = Card.new 
 @card.not_valid()                                                       end 
Then /^the card should be <retained>"(.*?)"$/ do |retained| 
 @card.stub(:retained).and_return(retained) 
 assert retained == @card.retained.to_s                        end 

Fig. 17. KODEGEN generated Ruby code with testing steps – Mock objects for concepts (as
printer and account_holder) not appearing in the system ontologies are stressed in bold red
(Color figure online).

272 I. Exman et al.



6 Discussion

The KODEGEN tool, as applied to the case studies described in this work, clearly
demonstrate the feasibility of the approach, for applications in their scale range. Thus,
the concrete realization of a specification into a running test script is done through
KODEGEN. We have opened and resolved a series of specific issues resulting into an
evolution of the tool itself.

Next we discuss some of the characteristics of KODEGEN.

6.1 KODEGEN Characteristics

KODEGEN is written in Java, and the source code with the discussed examples can be
obtained here [12].

KODEGEN embodies quite a significant knowledge as a set of rules to handle
common patterns and idioms when dealing with inputs. For example, during the test
script generation, an object under test is recognized according to the ontology and by
its appearance in the specification. Thereafter, the actions performed in the following
steps are related implicitly or explicitly to this object under test. We continue growing
this set as we use the tool for different domains and input sizes.

A significant step taken in the tool evolution was the modification of the Gherkin
syntax through the introduction of <tags>, needed to fill certain gaps between ontol-
ogies and executable specification.

Fig. 18. Account withdrawal test run for the four scenarios – A screenshot showing that all the
steps in all the four scenarios were passed, after a few interactive improvement iterations.

KODEGEN: A Code Generation and Testing Tool 273



Mock object libraries are not necessarily mandatory – as only concepts not essential
for the system ontologies need to be implemented by mocks. But mock objects may be
used to pass tests, to enable the system developer to test the model integrity.

6.2 Future Work

Among issues still open to investigation is the extent of KODEGEN automation: will it
remain a useful quasi-automatic tool? Or will the automation gap be safely and sig-
nificantly covered, approaching the efficiency and reliability of current compilers?

In this work the tools produce code in Ruby which is more concise than, e.g., C#/
Java. One can also use specific language features to improve the produced scripts, e.g.,
using partial classes in C# to separate expectations from the test script. Will a certain
language assume a definitive role for KDE?

The case studies in the current work still are of limited scope. Can we extend the
current tool and techniques to industrial production of large scale software systems?
We are also building a GUI based tool that will better support the iterative human aided
process needed for growing the models for a large project.

Given a set of ontologies, how to determine the amount of scenarios needed to
develop a consistent and stable system?

Finally, a most important issue is the ability to overcome gradual, ad hoc and
localized improvements, to reach a stage of generalized techniques that are independent
of specific applications.

6.3 Main Contribution

The main contribution of this work is the usage of code generation as a fast imple-
mentation means to check system design while still in the highest Runnable Knowledge
abstraction level.

References

1. Adzic, G.: Test Driven .NET Development with FitNesse. Neuri, London (2008)
2. Adzic, G.: Bridging the Communication Gap: Specification by Example and Agile

Acceptance Testing. Neuri, London (2009)
3. Adzic, G.: Specification by Example – How Successful Teams Deliver the Right Software.

Manning, New York (2011)
4. Beck, K.: Test Driven Development: By Example. Addison-Wesley, Boston (2002)
5. Boehm, B.W.: Software engineering economics. IEEE Trans. Softw. Eng. 10, 4–21 (1984)
6. Brown, A.W.: Model driven architecture: principles and practice. Softw. Syst. Model 3,

314–327 (2004). doi:10.1007/s10270-004-0061-2
7. Calero, C., Ruiz, F., Piattini, M. (eds.): Ontologies in Software Engineering and Software

Technology. Springer, Heidelberg (2006)

274 I. Exman et al.

http://dx.doi.org/10.1007/s10270-004-0061-2


8. Chelimsky, D., Astels, D., Dennis, Z., Hellesoy, A., Helmkamp, B., North, D.: The RSpec
Book: Behaviour Driven Development with RSpec, Cucumber, and Friends. Pragmatic
Programmer, New York (2010)

9. Exman, I., Llorens, J., Fraga, A.: Software knowledge. In: Exman, I., Llorens, J., Fraga, A.
(eds.) Proceedings of SKY 2011, 2nd International Workshop on Software Knowledge
(2010)

10. Exman, I., Yagel, R.: ROM: a runnable ontology model testing tool. In: Fred, A., Dietz, J.L.G.,
Liu, K., Filipe, J. (eds.) Knowledge Discovery, Knowledge Engineering and Knowledge
Management, pp. 271–283. Springer, Heidelberg (2012)

11. Freeman, S., Pryce, N.: Growing Object-Oriented Software, Guided by Tests. Addison-
Wesley, Boston (2009)

12. KODEGEN – the tool (2013). https://github.com/AntonLitovka/KODEGEN
13. Moq – the simplest mocking library for .NET and Silverlight (2012). http://code.google.

com/p/moq/
14. North, D.: Introducing Behaviour Driven Development. Better Software Magazine (2006).

http://dannorth.net/introducing-bdd/
15. NUnit (2012). http://www.nunit.org
16. Pan, J.Z., Staab, S., Assmann, U., Ebert, J., Zhao, Y. (eds.): Ontology-Driven Software

Development. Springer, Heidelberg (2013)
17. Parreiras, F.S.: Semantic Web and Model-Driven Engineering. John Wiley and IEEE Press,

Hoboken (2012)
18. RSpec mocks library (2013). https://github.com/rspec/rspec-mocks
19. Smart, J.F.: BDD in Action Behavior-Driven Development for the Whole Software

Lifecycle. Manning, New York (2014)
20. SpecFlow – Pragmatic BDD for .NET (2010). http://specflow.org
21. Wynne, M., Hellesoy, A.: The Cucumber Book: Behaviour Driven Development for Testers

and Developers. Pragmatic Programmer, New York (2012)
22. Yagel, R.: Can executable specifications close the gap between software requirements and

implementation? In: Exman, I., Llorens, J., Fraga, A. (eds.) Proceedings of SKY 2011
International Workshop on Software Engineering, pp. 87–91. SciTePress, France, (2011)

KODEGEN: A Code Generation and Testing Tool 275

https://github.com/AntonLitovka/KODEGEN
http://code.google.com/p/moq/
http://code.google.com/p/moq/
http://dannorth.net/introducing-bdd/
http://www.nunit.org
https://github.com/rspec/rspec-mocks
http://specflow.org

	KODEGEN: A Code Generation and Testing Tool Using Runnable Knowledge
	Abstract
	1 Introduction
	1.1 Related Work: From Executable Specifications to Code Generation

	2 Runnable Knowledge: The Ontology Abstraction Level
	3 Modified Gherkin Syntax for Testing
	4 KODEGEN Software Modules: Generation of Running Code
	5 Case Studies
	5.1 ATM
	5.2 Internet Purchase
	5.3 Extended ATM-Account System with a Card

	6 Discussion
	6.1 KODEGEN Characteristics
	6.2 Future Work
	6.3 Main Contribution

	References


