Chunking Complexity Measurement
for Requirements Quality
Knowledge Representation

David C. Rine' and Anabel Fragaz(%)

! George Mason University, Fairfax, VA, USA
davidcrine@yahoo. com
2 Carlos Il of Madrid University, Madrid, Spain
afraga@inf.uc3m. es

Abstract. In order to obtain a most effective return on a software project
investment, then at least one requirements inspection shall be completed. A
formal requirement inspection identifies low quality knowledge representation
content in the requirements document. In software development projects where
natural language requirements are produced, a requirements document sum-
marizes the results of requirements knowledge analysis and becomes the basis
for subsequent software development. In many cases, the knowledge content
quality of the requirements documents dictates the success of the software
development. The need for determining knowledge quality of requirements
documents is particularly acute when the target applications are large, compli-
cated, and mission critical. The goal of this research is to develop knowledge
content quality indicators of requirements statements in a requirements docu-
ment prior to informal inspections. To achieve the goal, knowledge quality
properties of the requirements statements are adopted to represent the quality of
requirements statements. A suite of complexity metrics for requirements state-
ments is used as knowledge quality indicators and is developed based upon
natural language knowledge research of noun phrase (NP) chunks. A formal
requirements inspection identifies low quality knowledge representation content
in the requirements document. The knowledge quality of requirements state-
ments of requirements documents is one of the most important assets a project
must inspect. An application of the metrics to improve requirements under-
standability and readability during requirements inspections can be built upon
the metrics shown and suggested to be taken into account.

Keywords: Requirements inspections + Chunking and cognition + Complexity
metrics + Cohesion * Coupling + NP chunk - Requirements - Software quality -
Information retrieval - Natural language understanding and processing

1 Introduction

Steven R. Rakitin [30] states “If you can only afford to do one inspection on a project,
you will get the biggest return on investment from a requirements inspection. A
requirements inspection should be the one inspection that is never skipped.” The formal
inspection makes significant knowledge quality improvements to the requirements

© Springer-Verlag Berlin Heidelberg 2015
A. Fred et al. (Eds.): IC3K 2013, CCIS 454, pp. 245-259, 2015.
DOI: 10.1007/978-3-662-46549-3_16

246 D.C. Rine and A. Fraga

document, or formally a software requirements specification (SRS), which is the single
artifact produced through the requirements engineering process. Kinds of knowledge in
an SRS include, functional requirements, non-functional requirements, system
requirements, user requirements, and so on [34]. The knowledge quality of the SRS
document unavoidably is the core of requirements management of which the formal
inspection is an important part. And the SRS, which is comprised of requirements, or
requirements statements, is a basis for developing or building the rest of the software,
including verification and validation phases. Despite abundant suggestions and
guidelines on how to write knowledge quality requirements statements, knowledge
quality SRS’s are difficult to find.

The goal of this research is to improve the knowledge quality of the SRS by the
identification of natural language knowledge defects derived from that of prior research
[12-15] and applies a set of metrics as quality indicators of requirements statements in
an SRS. Many research studies on software quality [6, 11, 16, 21, 23, 26], and various
quality factors have been proposed to represent the quality of software. The quality
factors adopted in this research are developed by Schneider (2002, 2000a, 2000b) and
are named as goodness properties.

Din and Rine [12-15] evaluated knowledge quality by means of Noun Phrase
Chunking complexity metrics. That research compared the NPC-Cohesion and NPC-
Coupling metrics with the cohesion and coupling metrics proposed earlier [3, 7, 8, 10,
18, 31, 36].

The evidence provided by Din and Rine [15] concludes that the “NPC complexity
metrics indicate the content goodness properties of requirements statements.” The
contribution of the research from [12-15] is “a suite of NP chunk based complexity
metrics and the evaluation of the proposed suite of metrics.”

The paper is organized as follows. Section 2 presents the research problem state-
ment and the importance of the research problem. The background of the research is
summarized in Sect. 3. Section 4 illustrates the detailed process of obtaining the
elements of measurement, Noun Phrase (NP) chunks, and then presents the proposed
suite of metrics. Section 5 summarizes the contributions of the research and
conclusions.

2 Research Problem and Importance

2.1 Research Problem

The research was designed to answer the following question: How can low natural
language knowledge quality requirements statements be identified in an SRS?
Although the research focuses on SRS’s, the conclusions of the research can be applied
to other requirements documents such as system requirements documents.

Certain requirements defects are hard to identify. The Fagan’s requirements
inspection [17] can be used to identify requirements defects, requirements inspections
can in the present practice “be effective when sections of an SRS are limited to 8-15
pages so that a requirements quality inspector can perform an inspection of a given
section within two hours’ time frame” [26, 34].

Chunking Complexity Measurement 247

Defects such as inconsistent or missing requirements statements can easily be
missed due to the spatial distance. The current requirements inspection practice does
not consider these kinds of requirements defects.

2.2 The Importance of the Research

The suite of NPC complexity metrics is supported by a software tool researched and
developed as part of this research [12—-15] to identify high knowledge complexity and
hence low knowledge quality requirements.

Low quality requirements are not only the source of software product risks but also
the source of software development resource risks, which includes cost overrun and
schedule delay [12-15].

Quality software “depends on a software manager’s awareness of such low quality
requirements, their ability to expediently assess the impacts of those low quality
requirements, and the capability to develop a plan to rectify the problem” [12—15]. The
proposed suite of complexity metrics expedites the process of identifying low quality
requirements statements. The subsequent risk analysis of those requirements can be
performed earlier. The rectification plan can hence be developed and carried out in a
timely manner. This process, from quickly identifying low quality requirements to
developing and carrying out the corresponding rectification plan, provides the foun-
dation for the development of high quality software.

3 Background

3.1 Quality and Content Goodness Properties

Schneider, in his Ph.D. Dissertation directed by Rine [32, 33], proposed eleven goodness
properties as a better coverage of quality factors 36]: Understandable, Unambiguous,
Organized, Testable, Correct, Traceable, Complete, Consistent, Design independence,
Feasible, and Relative necessity. Representing quality with a set of properties that are each
relatively easier to measure is an important step towards measuring quality. However, the
context of the current research focuses upon Understandable, Unambiguous, Organized,
and Testable, keys to natural language knowledge representation quality.

3.2 Complexity Metrics and Measurement

Complexity is a Major Software Characteristic That Controls or Influences Natural
Language Knowledge Representation Quality. It Has Been Widely Accepted as an
Indirect Indicator of Quality [19, 22, 25, 27] and Hence the Content Goodness Properties.

3.3 Readability Index

Difficult words are necessary to introduce new concepts and ideas, especially in edu-
cation and research.

248 D.C. Rine and A. Fraga

Coh-Metrix has developed readability indexes based on cohesion relations, inter-
action between a reader’s skill level, world knowledge, and language and discourse
characteristics. “The Coh-Metrix project uses lexicons, part-of-speech classifiers,
syntactic parsers, templates, corpora, latent semantic analysis, and other components
that are widely used in computational linguistics” [23].

The Coh-Metrix readability index is used to address quality of an entire written
document, such as an essay, rather than individual sections of technical documents,
such as software requirements documents.

Unfortunately, readability indexes, including Coh-Metrix, are not comparable with
this research [12—15] for the following reasons:

(1) The readability metrics are designed for the whole documents, instead of sections
of documents.

(2) The readability scores are not reliable indicators when the document under
evaluation has less than 200 words (McNamara, 2001). However, many of the
requirements statements have less than 50 words.

(3) Although Coh-Metrix attempts to measure the cohesion of texts, the definition of
cohesion used by Coh-Metrix is different from the definition of cohesion used in
Computer Science, and there are no coupling metrics in Coh-Metrix.

(4) Coh-Metrix does not have a single metric to represent the size, cohesion, or
coupling complexity. Coh-Metrix includes more than 50 metrics to measure very
specific aspects of texts. No composite metric that combines those specific aspects
of a document has been proposed.

(5) Coh-Metrix attempts to measure the cohesion of texts. Future work of Coh-Metrix
may address comprehension, or understandability. However, Coh-Metrix will
never address the issue of testability and many other goodness properties.

4 NP Chunk Based Complexity Metrics

4.1 Chunking, Cognition and Natural Language Quality

Humans tend to read and speak texts by chunks. Abney [1] proposed chunks as the
basic language parsing unit. Several categories of chunks include but are not limited to
Noun Phrase (NP) chunks, Verb Phrase (VP) chunks, Prepositional Phrase (PP)
chunks, etc. [1]. This research NP chunks and ignores other types of chunks.

4.2 Three Core Metrics

It has been recognized that it is not likely that a single metric can capture software
complexity [20, 24]. To deal with the inherent difficulty in software complexity, a
myriad of indirect metrics of software complexity have been proposed [29].

Multiple empirical studies indicate that Line of Code (LOC) is better or at least as
good as any other metric [2, 16, 35]. All these evidence and findings indicate that
counting should be one of the core software metrics. Zuse [37] also identified simple
counts in his measurement theory as one of the metrics that possesses all the desired
properties of an ideal metric.

Chunking Complexity Measurement 249

Many of the published metrics, either for procedural languages or for object-ori-
ented languages, include some variation of the cohesion and coupling metrics [4, 5].
Furthermore, cohesion and coupling metrics are ubiquitous across a wide variety of
measurement situations, including 4GLs, software design, coding and rework. Darcy
and Kemerer believe that cohesion and coupling are effective metrics and they can
represent the essential complexity measures for the general software design tasks [9].
Hence, NPC-Cohesion and NPC-Coupling are chosen to represent the complexity of
requirements. To assist the identification of low quality requirements, a composite
metric (NPC-Composite) that combine cohesion and coupling measures is also pro-
posed and studied in the research.

4.3 Requirements Documents Used
Two requirements documents are used as cases of study in this research:

(1) A public domain requirements document for Federal Aviation Agency (FAA).
The requirements document is available in Ricker’s dissertation [31], and [3, 7, 8,
10, 18, 36].

(2) Versions of the Interactive Matching and Geocoding System II (IMAGS 1II)
requirements documents for U. S. Bureau of Census. The IMAGS II, or IMAGS,
project has gone through several iterations of requirements analysis. Four versions
of the requirements documents are available for the research.

4.4 Sentence/Requirements Statement Level Complexity

The calculation can be expressed as follows.

Entry(ij
NPC — Sentence(sentence;) = Z ntry(i,))

~ (1)
15w 2o Enuy(i)
I<j<cC

where Entry(i, j) is the number of occurrence of NP chunk NPi in sentence;j,
1<i<N,1<j<C,Nis the total number of NP chunks, and C is the total number of
sentences. Intuitively, NPC-Sentence is a metric that measures the normalized count of
NP chunks in a sentence of a document.

The requirements statement level complexity metric, or NPC-Req(reqj), is the

aggregation of NPC-Sentence of the component sentences and can be expressed as
follows.

NPC — Req(req;) = Z NPC — Sentence(sentence;), (2)

sentence; €req.
i

where 1 <i< L;,1< j< M, L is the total number of sentences of requirement j,
and M is the total number of requirements.

250 D.C. Rine and A. Fraga

Example - From Partial Parsing to Sentence Level Complexity. The following three
requirements (four sentences) are extracted from the IMAGS Version 4 requirements
document. The requirements in the IMAGS requirements document are marked with a
label (e.g., “IM-WKASSIGN-4”) and a short description (e.g., “Assign Users to
WAASs”). Note that WAA stands for Work Assignment Area and is a collection of
counties. WAA is defined to facilitate the assignment of workload to individual users.

IM-WKASSIGN-4: Assign Users to WAAs. IMAGS 1I shall track and maintain
users’ assignment to WAAs. A user can be assigned to one or more WAAs, and a
WAA can have more than one user assigned.

IM-WKASSIGN-7: Assign Incoming Addresses on WAAs. IMAGS II shall assign
incoming addresses to users based upon their WAAs.

IM-WKASSIGN-8: Assign Multiple WAAs to Multiple Users. IMAGS 1I shall
provide a way to assign a list of WAAs to multiple users at once.

The results of the chunk parsing are as follows.

(S:
(0: <imags/NN> <ii/NN>)
<shall/MD>
<track/VB>
<and/CC>
<maintain/VB>
(1: <users/NNS> <'/POS> <assignment/NN>)
<to/TO>
<waas/VB>
<./.>

(2: <a/DT> <user/NN>)
<can/MD>

<be/VB>

<assigned/VBN>

<to/TO>

(3: <one/CD>)

<or/CcC>

(4: <more/JJR><waas/NNS>)
<, />

<and/CC>

(5: <a/DT> <waa/NN>)
<can/MD>

<have/VB>

<more/JJR>

<than/IN>

(6: <one/CD> <user/NN>)
<assigned/VBN>

<. /0>

Chunking Complexity Measurement

(7: <imags/NN> <ii/NN>)
<shall/MD>

<assign/VB>
<incoming/VBG>

(8: <addresses/NNS>)
<to/TO>

(9: <users/NNS>)
<based/VBN>

<upon/IN>

(10: <their/PRPS$><waas/NNS>)
<./.>

(11: <imags/NN> <ii/NN>)
<shall/MD>

<provide/VB>

(<12: <a/DT> <way/NN>)
<to/TO>

<assign/VB>

(<13: <a/DT> <list/NN>)
<of/IN>

(<14: <waas/NNS>)
<to/TO>

(<15: <multiple/NN> <users/NNS>)
<at/IN>

<once/RB>

<./.>

251

The chunk parsing results (1-2) in 16 NP chunks (see Table 1), where sentence is
abbreviated as “sent.” and requirement is abbreviated as “req.”. Note that the word
“WAASs” in the first sentence is tagged as “VB”, a verb. This is an error due to the
nature of statistical NLP process, which considers words after “to” as verbs. The stop

list indicated in the table is used to filter NP chunks that have little meanings.

Table 1. Example — parsing results.

Stop NP chunks:

req. 1 req. 2 req. 3
(a user), (one), (users), (a way), (a list)

sent. sent.

sent. 3 sent. 4
1 2

<imags/NN> <ii/NN> 0,7,11 1 0 1 1
<users/NNS> <'/POS> <assignment/NN> 1 1 0 0 0
<more/JJR> <waas/NNS> 4 0 1 0 0
<a/DT> <waa/NN> S 0 1 0 0
<one/CD> <user/NN> 6 0 1 0 0
<addresses/NNS> 8 0 0 1 0
<their/PRPS$> <waas/NNS> 10 0 0 1 0
<waas/NNS> 14 0 0 0 1
<multiple/NN><users/NNS> 15 0 0 0 1

By applying the stemming and text normalization techniques, the result is depicted in

Table 2.

252 D.C. Rine and A. Fraga

Table 2. Example — Stemming and Text Normalization.

Stop words:
(a user), (one), (users), (a way), (a list)

<imags/NN> <ii/NN>

<users/NNS> <'/POS> <assign/NN>
<waa/NN>

<user/NN>

<address/NN>

<multiple/NN><user/NN>

([0 774la

il
4,5,10,14
6

8

15

req. 1
sent. sent.
1 2

1 0

il 0

0 2

0 1

0 0

0 0

req. 2 req. 3
sent. 3 sent. 4
al 1

0 0

1 1

0 0

1 0

0 1

For the sake of example, it is assumed that the four sentences constitute the
complete requirements document. The resulting NPC-Sentence and NPC-Req are

shown in Table 3.

Table 3. Example — NPC-Sentence and NPC-Req.

Stop words:

(a wuser), (one), (users), (a
(a list)

<imags/NN> <ii/NN>

<users/NNS> <'/POS> <assign/NN>

<waa/NN>

<user/NN>

<address/NN>

<multiple/NN><user/NN>

NPC-Sentence

NPC-Req

4.5 Intra-section Level Complexity

way),

The formula (3) for NPC-Cohesion is as follows.

NPC — Cohesion(S;) =

req. 1 req. 2 req. 3
sent. 1 sent. 2 sent. 3 sent. 4
1 0 1 1
1 0 0 0
0 2 1 1
0 1 0 0
0 0 1 0
0 0 0 1
1/3+1 2/4+1 1/3+1/4+1= 1/3+1/4+1=
=13 =15 1.58 1.58
13+15=28 1.58 1.58
>~ ClusterSize(i,j)
1<i<M;
<i<M;)
L1 L >1
1L =1

3)

where Mj is the total number of clusters in section Sj, and Lj is the total number of

sentences in section Sj.

If a requirements section consists of a single sentence (L; = 1), the NPC-Cohesion
is 1. If all the adjacent sentences have common NP chunks, then the NPC-Cohesion is

also 1.

Chunking Complexity Measurement 253

For example, Fig. 1 shows three sections of the requirements. The first section
contains three sentences, the second section contains two sentences, and the third section
has one sentence. Section 1 has a cluster that covers the whole section, and the size of the
cluster is two. Section 2 has a cluster that covers the whole section, and the size of the
cluster is one. Section 3 does not have any cluster. Based upon the above formula (3),
the values of the NPC-Cohesion metric are as follows (4).

NPC — Cohesion(S1) =2/(3—1) =1,
NPC — Cohesion(S2) = 1/(2 — 1) = I, (4)
NPC — Cohesion(S3) = 1

001/00/1

Fig. 1. Clusters of NP chunks.

4.6 Inter-section Level Complexity

The proposed NPC-Coupling metric value is the sum of the spatial distances among NP
chunks and clusters that share the same NP chunks. Once a cluster is formed, the
cluster represents all the components NP chunks inside the cluster. One possible
algorithm to calculate the NPC-Coupling metric is as follows.

The NPC-Coupling metric of section Sj:
x = 0,
remarks: handle clusters coupling
for every cluster i in section S;,
for every NPy in cluster i,
for every sentence 1 outside section S,
if sentence 1 contains NPy,
calculate the distance between sentence 1 and the centroid of cluster i,
add the distance to x,
remarks: handle non-clusters coupling
for every NPy of section S; that does not belong to any cluster of S5,
for ecvery sentence 1 in section S,
if sentence 1 contains NPy,
for every sentence m outside section S,
if sentence m contains NPy,
calculate the distance between sentence 1 and sentence m,
add the distance to x,
return x

254 D.C. Rine and A. Fraga

Figure 2 shows the calculation of NPC-Coupling using the same requirements
sections in the previous example. The centroid of the cluster of the first section resides
in the second sentence. The centroid of the cluster of the second section resides
between sentence 4 and 5. Based upon the above formula (4-5), the values of the NPC-
Coupling metrics are as follows.

NPC - Coupling(S1) =4 +3 +2 +4 + 3 = 16,
NPC - Coupling(S2) =3 +2 =35, (5)
NPC - Coupling(S3) =4 +4 +3 =11

1
0
0
0
0
1
1
s3

Fig. 2. Calculation of coupling metrics.

4.7 A Composite Metric

It has been recognized that a single metric for a software product does not work. Multiple
metrics provide multiple views of the subject, and each view serves its own purpose.
Without carefully following engineering disciplines, operation, comparison, combination,
or manipulation of different metrics can result in meaningless measures [22].

To identify the low quality requirements sections, this research combines the
cohesion and coupling metrics into a single indicator. The formula used in the research
is as follows (6).

NPC — Composite(S;) = NPC — Cohesion; — a * (NPC — Coupling; — b), (6)

for all i,1 < i <S,S is the total number of requirements sections, where
b = min(NPC - Coupling;)and a = 1 / (max(NPC - Coupling;) - b)

The coefficients (6), a and b, are used to adjust the coupling metric so that (1) the
measure falls in the range between—1 and 1, and (2) both the cohesion and coupling
metrics use the same unit.

Cohesion Metrics: Based upon the proposed NPC-Cohesion metric defined previously,
the NPC-Cohesion measures are depicted in Fig. 3, together with the cohesion mea-
sures published in [28]. It is clear that the two metrics are consistent with each other
except in one section— Sect. 11 of the FAA requirements document.

Although NPC-Cohesion is able to identify low cohesion requirements in the above
example using syntactic categories of words, syntactic categories can sometimes mislead

Chunking Complexity Measurement 255

120 ——0n |__
= Ricker

U TR N
4 72 W

LNV A WY AN
- s — —

\23‘56789\311\121314

Requirements Sections

Mismatch

Fig. 3. Cohesion values between two methods.

the analysis. For example, the following two sentences are low cohesion sentences
according to NPC-Cohesion. “The computer program shall discretize the continuous
function f(t). Then, it shall approximate the integral using the discretization.”

One remedy to the weakness of NPC-Cohesion is to parse verb phrase (VP) chunks.
Part of the text normalization process is to transform words into its root form. Then
“discretize” and “discretization” can be normalized as the same chunk. However, the
incorporation of a second type of chunks, i.e., verb phrase (VP) chunks, to the proposed
metrics substantially increase the complexity of the parser and hence the processing
effort and time. The addition of the parsing process for VP chunks to cope with the
weakness that rarely occurs does not seem to be cost effective. Hence, it was decided to
focus on NP chunks for the research.

The mismatch between the two cohesion metrics can be explained as follows.
Section 11 of the FAA requirements document consists of two sentences. Here are the
sentences and the corresponding chunk parsing results.

Sentence 1: “The system shall provide flight plan outputs to a variety of operational
positions, collocated processors, and remote facilities.”

(S:
(0: <the/DT> <system/NN>)
<shall/MD>
<provide/VB>
(1: <flight/NN> <plan/NN> <outputs/NN>)
<to/TO>
(2: <a/DT> <variety/NN>)
<of/IN>
(3: <operational/JJ> <positions/NNS>)
<, /,>
<collocated/VBN>
(4: <processors/NNS>)
<,/,>
<and/CC>
(5: <remote/JJ> <facilities/NN>)
<./.>

Sentence 2: “The ACCC shall output data periodically, on request, or in accordance
with specified criteria (NAS-MD-311 and NAS-MD-314).”

256 D.C. Rine and A. Fraga

(6: <the/DT> <accc/NN>)
<shall/MD>
<output/VB>

(7: <data/NNS>)
<periodically/RB>

<, /,>

<on/IN>

(8: <request/NN>)

<, /,>

<or/CC>

<in/IN>

(9: <accordance/NN>)
<with/IN>
<specified/VBN>

(10: <criteria/NN>)
<(/ (>

(11: <nas-md-311/NN>)
<and/CC>

(12: <nas-md-314/NN>)
<)/)>

<./.>

There are 13 NP chunks. It is clear that there are no common NP chunks between
the two sentences. This is why the NPC-Cohesion metric gives a low cohesion measure
for the above requirements section. On the other hand, Ricker uses terms to measure
the cohesion of the section, and the word “output” appears in the first sentence as a
noun, while the word “output” appears in the second sentence as a verb. Ricker’s
algorithm does not consider syntactic categories and hence links the two sentences. It is
believed that a word in different forms, i.e., verbs and nouns, in different sentences
should not always be considered as cohesive, since the two words in the two forms can
refer to two totally different objects. By closely examining the two sentences, it can be
found that the word “output” in the two sentences indeed refers to two different things
or two different concepts. Hence, the proposed cohesion metrics is more effective.

Coupling Metrics: The coupling measures based on the NPC-Coupling metric and the
coupling metric in (Pleeger, 1993) are depicted in Fig. 4. The two metrics display
consistent results except in one section - Sect. 4 of the requirements document.

Coupling (%)

1 2 3 4 5 6 7 8 9 10
Requirement Section

Fig. 4. Coupling values between two methods.

Chunking Complexity Measurement 257

The evaluation criterion for cohesion is whether the two sets of metrics are strongly
consistent with each other. The derived data from this case study supports this
consistency.

Sensitivity/Accuracy: The NPC-Cohesion metrics are relative measures. They are
normalized and fall in the range of O to 1. Comparing such relative measures derived
from different requirements documents is not logical. In other words, it is not appro-
priate to compare the sensitivity and accuracy of the NPC-Cohesion metrics with
Ricker’s metrics.

Although the NPC-Coupling metrics are based upon spatial distance between NP
chunks and they are not normalized, comparing it with Ricker’s metric which uses
different units of measurement does not seem to be logical either.

Summary: Based upon the above analysis, it can be concluded that the derived data
from the case study met the evaluation criteria for the consistency hypothesis.

5 Summary of Contributions and Conclusions

This research derived from [12—-15] made two contributions: (1) the invention of a suite
of complexity metrics to measure the content goodness properties of requirements
documents and (2) the empirical case study to evaluate the invented suite of complexity
metrics.

The invented complexity metrics are researched and developed to identify low
quality requirements statements in SRS’s. These metrics are based on the NP chunks in
SRS’s. In the empirical two phased case study, it is concluded that the proposed metrics
can measure the content goodness properties of requirements statements.

This research provides evidence for the feasibility of using NP chunks as the
elements of measurement for complexity metrics. In addition the invented suite of
complexity metrics provides requirements engineers and managers with a tool to
measure the quality of the requirements statements. These metrics can be use to identify
low quality requirements statements. They can also be used to identify requirements
statements and requirements sections that may require more rigorous testing. Potential
flaws and risks can be reduced and dealt with earlier in the software development cycle.

At a minimum, these metrics should lay the groundwork for automated measures of
the quality of the requirements statements in SRS’s. Because those metrics are con-
structed by a software tool, their measures are easy to collect, a vital characteristics for
a quality measurement program [28].

During the research, and as stated by Genova et al. [22] and Fanmuy et al. [18], a
set of metrics to complement the chunk based metrics can be included in the set of
requirements metrics indicators in order to create a complete set of metrics of interest
for any systems requirement engineer. It includes a set of semantic metrics based on
natural language processing (NLP) and semantic notions assisted by a knowledge-
based system and requirements patterns.

258

D.C. Rine and A. Fraga

References

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Abney, S.: Parsing by chunks. In: Berwick, R., Abney, S., Tenny, C. (eds.) Principle-Based

Parsing. Kluwer Academic Publishers, Dordrecht (1991)

Basili, V.R.: Qualitative Software Complexity Models: A Summary, Tutorial on Models and
Methods for Software Management and Engineering. IEEE Computer Society Press, Los
Alamitors (1980)

Boegh, J.: A new standard for quality requirements. IEEE Softw. 25(2), 57-63 (2008)
Briand, L.C., Daly, J.W., Wust, J.K.: A unified framework for cohesion measurement in
object-oriented systems. IEEE Trans. Softw. Eng. 3(1), 65-117 (1998)

. Briand, L.C., Daly, J.W., Wust, J.K.: A unified framework for coupling measurement in

object-oriented systems. IEEE Trans. Softw. Eng. 25, 91-121 (1999)

Cant, S., Jeffery, D.R., Henderson-Sellers, B.: A conceptual model of cognitive complexity
of elements of the programming process. Inf. Softw. Technol. 37(7), 351-362 (1995)
Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software engineering.
In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling:
Foundations and Applications. LNCS, vol. 5600, pp. 363-379. Springer, Heidelberg (2009)
Costello, R.J., Liu, D.-B.: Metrics for requirements engineering. J. Syst. Softw. 29(1), 39-63
(1995)

Darcy, D.P., Kemerer, C.F., Software Complexity: Toward a Unified Theory of Coupling
and Cohesion, 8 February 2002

Davis, A., Overmyer, S., Caruso, J., Dandashi, F., Dinh, A.: Identifying and measuring
quality in a software requirements specification. In: Proceedings of the First International
Software Metrics Symposium, 21-22 May, pp. 141-152 (1993)

Demarco, T.: Controlling Software Projects. Yourdon Press, Englewood Cliffs (1982)
Din, C.Y.: Requirements content goodness and complexity measurement based on NP
chunks. Ph.D. thesis, George Mason University, Fairfax, VA, 2007, Reprinted by VDM
Verlag Dr. Muller (2008)

Din, C.Y., Rine, D.C.: Requirements content goodness and complexity measurement based
on NP chunks. In: Proceedings, Complexity and Intelligence of the Artificial Systems: Bio-
inspired Computational Methods and Computational Methods Applied in Medicine,
WMSCI 2008 Conference (2008)

Din, C.Y., Rine, D.C.: Requirements metrics for requirements statements stored in a
database. In: Proceedings of the 2012 International Conference on Software Engineering
Research and Practice, SERP 2012, July 16-19, pp. 1-7 (2012)

Din, C.Y., Rine, D.C.: Requirements Statements Content Goodness and Complexity
Measurement. International Journal of Next-Generation Computing. 4(1) (2013)
Evangelist, W.: Software complexity metric sensitivity to program structuring rules. J. Syst.
Softw. 3(3), 231-243 (1983)

Fagan, M.: Advances in Software Inspections. IEEE Trans. Softw. Eng. 12(7), 744-751
(1986)

Fanmuy, G., Fraga, A., Llorens, J.: Requirements Verification in the Industry. CSDM, Paris,
France (2011)

Farbey, B.: Software quality metrics: considerations about requirements and requirement
specifications. Inf. Softw. Technol. 32(1), 60-64 (1990)

Fenton, N.E., Neil, M.: Software metrics: roadmap. In: Proceedings of the International
Conference on Software Engineering (ICSE), pp. 357-370 (2000)

Fenton, N.E., Pleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.
International Thomson Computer Press, Boston (1997)

22.

23.

24.

25.

26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Chunking Complexity Measurement 259

Genova, G., et al.: A framework to measure and improve the quality of textual requirements.
Requirements Eng. 18(1), 25-41 (2013). doi:10.1007/s00766-011-0134-z. Url: http://dx.doi.
org/10.1007/s00766-011-0134-z

Graesser, A.C., Mcnamara, D.S., Louwerse, M.M., Cai, Z.: Coh-Metrix: analysis of text on
cohesion and language. Behav. Res. Methods Instrum. Comput. 36(2), 193-202 (2004)
Henderson-Sellers, B.: Object-Oriented Metrics textendash Measures of Complexity.
Prentice Hall PTR, New Jersey (1996)

Kemerer, C.F.: Progress, obstacles, and opportunities in software engineering economics.
Commun. ACM 41, 63-66 (1998)

Kitchenham, B.A., Pleeger, S.L., Fenton, N.E.: Towards a framework for software
measurement validation. IEEE Trans. Softw. Eng. 21, 929-943 (1995)

Klemola, T.: A cognitive model for complexity metrics, vol. 13 (2000)

Mcnamara, D.S.: Reading both high and low coherence texts: effects of text sequence and
prior knowledge. Can. J. Exp. Psychol. 55, 51-62 (2001)

Mcnamara, D.S., Kintsch, E., Songer, N.B., Kintsch, W.: Are good texts always better? Text
coherence, background knowledge, and levels of understanding in learning from text. Cogn.
Instr. 14, 1-43 (1996)

Pleeger, S.L.: Lessons learned in building a corporate metrics program. IEEE Softw. 10(3),
67-74 (1993)

Purao, S., Vaishnavi, V.: Product Metrics for Object-Oriented Systems. ACM Comput.
Surv. 35(2), 191-221 (2003)

Rakitin, S.: Software verification and validation: a practitioner’s guide (Artech House
Computer Library). Artech House Publishers, Norwood (1997). ISBN-10: 0890068895
ISBN-13: 978-0890068892

Ricker, M.: Requirements specification understandability evaluation with cohesion, context,
and coupling. Ph.D. thesis, George Mason University, Fairfax, VA (1995)

Schneider, R.E., Buede D.,: Criteria for selecting properties of a high quality informal
requirements document. In: Proceedings of the International Conference on Systems
Engineering, Mid-Atlantic Regional Conference, INCOSE-MARC, 5-8 April 2000a,
pp. 7.2-1-7.2-5 (2000)

Schneider, R.E., Buede D.: Properties of a high quality informal requirements document. In:
Proceedings of the Tenth Annual International Conference on Systems Engineering,
INCOSE, 16-20 July, 2000b, pp. 377-384 (2000)

Weyuker, E.: Evaluating software complexity measures. IEEE Trans. Softw. Eng. 14(9),
1357-1365 (1988)

Wnuk, K., Regnell, B., Berenbach, B.: Scaling up requirements engineering — exploring the
challenges of increasing size and complexity in market-driven software development. In:
Berry, D. (ed.) REFSQ 2011. LNCS, vol. 6606, pp. 54-59. Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/s00766-011-0134-z
http://dx.doi.org/10.1007/s00766-011-0134-z
http://dx.doi.org/10.1007/s00766-011-0134-z

	Chunking Complexity Measurement for Requirements Quality Knowledge Representation
	Abstract
	1 Introduction
	2 Research Problem and Importance
	2.1 Research Problem
	2.2 The Importance of the Research

	3 Background
	3.1 Quality and Content Goodness Properties
	3.2 Complexity Metrics and Measurement
	3.3 Readability Index

	4 NP Chunk Based Complexity Metrics
	4.1 Chunking, Cognition and Natural Language Quality
	4.2 Three Core Metrics
	4.3 Requirements Documents Used
	4.4 Sentence/Requirements Statement Level Complexity
	4.5 Intra-section Level Complexity
	4.6 Inter-section Level Complexity
	4.7 A Composite Metric

	5 Summary of Contributions and Conclusions
	References

