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Abstract. Proof problems have long been the main target for logical
problem solving. A problem in this class is a “yes/no” problem concern-
ing with checking whether one logical formula is a logical consequence
of another logical formula. Meanwhile, the importance of anther class of
problems, query-answering problems (QA problems), has been increas-
ingly recognized. A QA problem is an “all-answers finding” problem con-
cerning with finding all ground instances of a query atomic formula that
are logical consequences of a given logical formula. Several specific sub-
classes of QA problems have been addressed based on solution techniques
for proof problems, without success of finding general solutions. In order
to establish solution methods for proof problems and QA problems, we
integrate these two classes of problems by embedding proof problems
into QA problems. Construction of low-cost embedding mappings from
proof problems to QA problems is demonstrated. By such embedding,
proof problems can be solved using a procedure for solving QA problems.
A procedure for solving QA problems based on equivalent transformation
is presented. The presented work provides a new framework for integra-
tion of proof problems and QA problems and a solution for them by the
general principle of equivalent transformation.

Keywords: Query-answering problems · Proof problems · Equivalent
transformation · Solving logical problems

1 Introduction

Given a first-order formula K, representing background knowledge, and an atomic
formula (atom) a, representing a query, a query-answering problem (QA prob-
lem) is to find the set of all ground instances of a that are logical consequences
of K. Characteristically, it is an “all-answers finding” problem, i.e., all ground
instances of the query atom satisfying the requirement must be found. A proof
problem, by contrast, is a “yes/no” problem; it is concerned with checking
whether or not one given logical formula is a logical consequence of another
given logical formula.
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Historically, works on logic-based automated reasoning have been centered
around proof problems [5–7,10]. Methods for solving proof problems were devel-
oped, e.g., tableau-based methods [4] and resolution-based methods [11], and they
have been subsequently adapted to address other classes of logical problems,
including some specific subclasses of QA problems, e.g., QA problems on defi-
nite clauses [8]. As opposed to such a proof-centered approach, we present in this
paper a direct approach towards solving QA problems on the basis of the equiv-
alent transformation (ET) principle. We show that proof problems can naturally
be considered as QA problems of a special form; therefore, a method for solving
QA problems also lends itself to solve proof problems in a straightforward way.

In order to clearly understand the relation between proof problems and QA
problems, we introduce the notion of an embedding mapping from one problem
class to another problem class. Using an embedding mapping, we demonstrate
that proof problems can be formulated as a subclass of QA problems. We propose
a framework for solving QA problems by ET. A given input QA problem on first-
order logic is converted into an equivalent QA problem on an extended clause
space, called the ECLSF space, through meaning-preserving Skolemization [1].
The obtained QA problem is then successively transformed on the ECLSF space
by application of ET rules until the answer to the original problem can be readily
obtained. With an embedding mapping from proof problems to QA problems,
this framework can be used for solving proof problems.

To begin with, Sect. 2 formalizes QA problems and proof problems. Section 3
defines an embedding mapping and shows how to embed proof problems into
QA problems. Section 4 introduces extended clauses, the extended space ECLSF

and QA problems on this space. Section 5 presents our ET-based procedure for
solving QA problems. Section 6 defines unfolding transformation on the ECLSF

space and provides some other ET rules on this space. Section 7 illustrates appli-
cation of our framework. Section 8 concludes the paper.

2 QA Problems and Proof Problems

2.1 Interpretations and Models

In this paper, an atom occurring in a first-order formula can be either a usual
atom or a constraint atom. The semantics of first-order formulas based on a
logical structure given in [2] is used. The set of all ground usual atoms, denoted
by G, is taken as the interpretation domain. An interpretation is a subset of G.
A ground usual atom g is true with respect to an interpretation I iff g belongs
to I. Unlike ground usual atoms, the truth values of ground constraint atoms
are predetermined independently of interpretations. A model of a first-order
formula E is an interpretation that satisfies E. The set of all models of a first-
order formula E is denoted by Models(E). Given first-order formulas E1 and E2,
E2 is a logical consequence of E1 iff every model of E1 is a model of E2.

2.2 QA Problems

A query-answering problem (QA problem) is a pair 〈K, a〉, where K is a first-order
formula, representing background knowledge, and a is a usual atom, representing
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a query. The answer to a QA problem 〈K, a〉, denoted by answerqa(〈K, a〉), is
defined as the set of all ground instances of a that are logical consequences of
K. Using Models(K), the answer to a QA problem 〈K, a〉 can be equivalently
defined as

answerqa(〈K, a〉) = (
⋂

Models(K)) ∩ rep(a),

where rep(a) denotes the set of all ground instances of a. Accordingly, a QA
problem can also be seen as a model-intersection problem. When no confusion
is caused, answerqa(〈K, a〉) is often written as answerqa(K, a).

2.3 Proof Problems

A proof problem is a pair 〈E1, E2〉, where E1 and E2 are first-order formulas,
and the answer to this problem, denoted by answerpr(〈E1, E2〉), is defined by

answerpr(〈E1, E2〉) =

⎧
⎨

⎩

“yes” if E2 is a logical
consequence of E1,

“no” otherwise.
(1)

It is well known that a proof problem 〈E1, E2〉 can be converted into the problem
of determining whether E1 ∧ ¬E2 is unsatisfiable [5], i.e., whether E1 ∧ ¬E2 has
no model. As a result, answerpr(〈E1, E2〉) can be equivalently defined by

answerpr(〈E1, E2〉) =

⎧
⎨

⎩

“yes” if Models(E1 ∧ ¬E2)
is the empty set,

“no” otherwise.
(2)

When no confusion is caused, answerpr(〈E1, E2〉) is often written as answer
pr(E1, E2).

3 Embedding Proof Problems into QA Problems

3.1 Embedding Mappings

The notion of a class of problems and that of an embedding mapping are for-
malized below.

Definition 1. A class C of problems is a triple 〈Prob,Ans, answer〉, where

1. Prob and Ans are sets,
2. answer is a mapping from Prob to Ans.

The sets Prob and Ans are called the problem space and the answer space,
respectively, of C. Their elements are called problems and (possible) answers,
respectively, in C. Given a problem prb ∈ Prob, answer(prb) is the answer to
prb in C. ��
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Definition 2. Let C1 = 〈Prob1,Ans1, answer1〉 and C2 = 〈Prob2,Ans2,
answer2〉 be classes of problems. An embedding mapping from C1 to C2 is
a pair 〈π, α〉, where π is an injective mapping from Prob1 to Prob2 and
α is a partial mapping from Ans2 to Ans1 such that for any prb ∈ Prob1,
answer1(prb) = α(answer2(π(prb))). ��
Let C1 and C2 be classes of problems. Suppose that (i) there exists an embed-
ding mapping 〈π, α〉 from C1 to C2, (ii) there exists a procedure P for solving
problems in C2, and (iii) there also exist a procedure Pπ for realizing π and a
procedure Pα for realizing α. Then a procedure for solving problems in C1 can
be obtained by making the composition of the procedures Pπ, P and Pα. C1 is
regarded as a subclass of C2 iff there exists an embedding mapping 〈π, α〉 from
C1 to C2 such that π and α can be realized at low computational cost.

Fig. 1. Embedding proof problems into QA problems.

3.2 Embedding Proof Problems into QA Problems

Next, we show how to embed proof problems into QA problems. Assume that:

– Cqa = 〈Probqa,Ansqa, answerqa〉 is the class of QA problems defined by
Sect. 2.2, i.e., Probqa is the set of all QA problems, Ansqa is the power set
of G, and answerqa : Probqa → Ansqa is given by Sect. 2.2.

– Cpr = 〈Probpr,Anspr, answerpr〉 is the class of proof problems defined by
Sect. 2.3, i.e., Probpr is the set of all proof problems, Anspr = {“yes”, “no”},
and answerpr : Probpr → Anspr is given by Sect. 2.3.

Figure 1 gives a pictorial view of an embedding mapping from Cpr to Cqa. In
order to construct such an embedding mapping, we want to construct from
any arbitrary given proof problem 〈E1, E2〉 a QA problem 〈K, yes〉 such that
answerpr(E1, E2) = “yes” iff answerqa(K, yes) = {yes}, where yes is a 0-ary
predicate symbol and the atom yes occurs in neither E1 nor E2. The following
approaches can be taken for constructing such a formula K:

– Construct K such that every model of K contains yes iff answerpr(E1, E2) =
“yes”.

– Construct K such that K has no model iff answerpr(E1, E2) = “yes”.

We refer to the first approach as positive construction, and the second one as
negative construction. They are given below.



Integration of and a Solution for Proof Problems and QA Problems 219

Fig. 2. Embedding proof problems into QA problems: (a) Using positive construction;
(b) Using negative construction.

Embedding Using Positive Construction. Positive construction of an emb-
edding mapping from Cpr to Cqa can be obtained by Proposition 1.

Proposition 1. Let E1 and E2 be first-order formulas. Assume that:

1. yes is a 0-ary predicate symbol and yes occurs in neither E1 nor E2.
2. prb1 is the proof problem 〈E1, E2〉.
3. prb2 is the QA problem 〈yes ↔ (E1 → E2), yes〉.

Then answerpr(prb1) = “yes” iff answerqa(prb2) = {yes}. ��
As depicted by Fig. 2(a), Proposition 1 determines an embedding mapping 〈πa, αa〉
from Cpr to Cqa as follows:

– For any proof problem 〈E1, E2〉, πa(〈E1, E2〉) = 〈yes ↔ (E1 → E2), yes〉.
– αa({yes}) = “yes” and αa(∅) = “no”.

Embedding Using Negative Construction. The next proposition illumi-
nates negative construction of an embedding mapping from Cpr to Cqa.

Proposition 2. Let E1 and E2 be first-order formulas. Assume that:

1. yes is a 0-ary predicate symbol and yes occurs in neither E1 nor E2.
2. prb1 is the proof problem 〈E1, E2〉.
3. prb2 is the QA problem 〈E1 ∧ ¬E2, yes〉.
Then answerpr(prb1) = “yes” iff answerqa(prb2) = {yes}. ��
As shown in Fig. 2(b), Proposition 2 determines an embedding mapping 〈πb, αb〉
from Cpr to Cqa as follows:

– For any proof problem 〈E1, E2〉, πb(〈E1, E2〉) = 〈E1 ∧ ¬E2, yes〉.
– αb({yes}) = “yes” and αb(∅) = “no”.
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Fig. 3. Function variables vs. function symbols.

4 QA Problems on an Extended Space

To solve a QA problem 〈K, a〉 on first-order logic, the first-order formula K
is usually converted into a conjunctive normal form. The conversion involves
removal of existential quantifications by Skolemization, i.e., by replacement of
an existentially quantified variable with a Skolem term determined by a rele-
vant part of a formula prenex. The classical Skolemization, however, does not
preserve the logical meaning of a formula—the formula resulting from Skolem-
ization is not necessarily equivalent to the original one [5]. In [1], a theory for
extending the space of first-order formulas was developed and how meaning-
preserving Skolemization can be achieved in the obtained extended space was
shown. A procedure for converting first-order formulas into extended conjunc-
tive normal forms in an extended clause space, called the ECLSF space, was also
presented.

The basic idea of meaning-preserving Skolemization [1] is to use existen-
tially quantified function variables instead of usual Skolem functions. Figure 3
illustrates the basic difference between meaning-preserving Skolemization and
the conventional Skolemization, where h is a unary function variable, func is
a built-in predicate symbol, and f is a usual unary Skolem function. Function
variables, func-atoms, extended clauses, extended conjunctive normal forms, and
QA problems on ECLSF are introduced below.

4.1 Function Constants, Function Variables and func-Atoms

A usual function symbol, say f , in first-order logic denotes an unevaluated func-
tion; it is used for constructing from existing terms, say t1, . . . , tn, a syntactically
new term, e.g., f(t1, . . . , tn), possibly recursively, without evaluating the new
term f(t1, . . . , tn). A different class of functions is used in the extended space.
A function in this class is an actual mathematical function, say h, on ground
terms; when it takes ground terms, say t1, . . . , tn, as input, h(t1, . . . , tn) is eval-
uated for determining an output ground term. We called a function in this class
a function constant . Variables of a new type, called function variables, are intro-
duced; each of them can be instantiated into a function constant or a function
variable, but not into a usual term.

In order to clearly separate function constants and function variables from
usual function symbols and usual terms, a new built-in predicate symbol func is
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introduced. Given any n-ary function constant or n-ary function variable f̄ , an
expression func(f̄ , t1, . . . , tn, tn+1), where the ti are usual terms, is considered as
an atom of a new type, called a func -atom. When f̄ is a function constant and
the ti are all ground, the truth value of this atom is evaluated as follows: it is
true iff f̄(t1, . . . , tn) = tn+1.

4.2 Extended Clauses

An extended clause C is a closed formula of the form

∀v1, . . . ,∀vm : (a1 ∨ · · · ∨ an ∨ ¬b1 ∨ · · · ∨ ¬bp ∨ ¬f1 ∨ · · · ∨ ¬fq),
where v1, . . . , vm are usual variables, each of a1, . . . , an, b1, . . . , bp is a usual atom
or a constraint atom, and f1, . . . , fq are func-atoms. It is often written simply as
(a1, . . . , an ← b1, . . . , bp, f1, . . . , fq). The sets {a1, . . . , an} and {b1, . . . , bp, f1, . . . ,
fq} are called the left-hand side and the right-hand side, respectively, of the
extended clause C, denoted by lhs(C) and rhs(C), respectively. When n = 0, C
is called a negative extended clause. When n = 1, C is called an extended definite
clause, the only atom in lhs(C) is called the head of C, denoted by head(C), and
the set rhs(C) is also called the body of C, denoted by body(C). When n > 1, C is
called a multi-head extended clause. All usual variables in an extended clause are
universally quantified and their scope is restricted to the clause itself. When no
confusion is caused, an extended clause, a negative extended clause, an extended
definite clause and a multi-head extended clause will also be called a clause, a
negative clause, a definite clause and a multi-head clause, respectively.

An extended normal form called existentially quantified conjunctive normal
form (ECNF) is a formula of the form ∃vh1, . . . ,∃vhm : (C1 ∧ · · · ∧ Cn), where
vh1, . . . , vhm are function variables and C1, . . . , Cn are extended clauses. It is
often identified with the set {C1, . . . , Cn}, with implicit existential quantifica-
tions of function variables and implicit clause conjunction. Function variables in
such a clause set are all existentially quantified and their scope covers entirely
all clauses in the set.

4.3 QA Problems on ECLSF

The set of all ECNFs is referred to as the extended clause space (ECLSF). By the
above identification of an ECNF with a clause set, we often regard an element
of ECLSF as a set of (extended) clauses. With occurrences of function variables,
clauses contained in a clause set in the ECLSF space are connected through
shared function variables. By instantiating all function variables in such a clause
set into function constants, clauses in the obtained set are totally separated.

A QA problem 〈Cs, a〉 such that Cs is a clause set in ECLSF and a is a
usual atom is called a QA problem on ECLSF. Given a QA problem 〈K, a〉
on first-order logic, the first-order formula K can be converted equivalently by
meaning-preserving Skolemization, using the conversion procedure given in [1],
into a clause set Cs in the ECLSF space. The obtained clause set Cs may be
further transformed equivalently in this space for problem simplification, by
using unfolding and other transformation rules.
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5 Solving QA Problems

Using the notation introduced in Sects. 5.1 and 5.2, our ET-based procedure is
presented in Sect. 5.3.

5.1 Inclusion of Query Information

The following notation is used. A set A of usual atoms is said to be closed iff for
any a ∈ A and any substitution θ for usual variables, aθ belongs to A. Assume
that (i) A is the set of all usual atoms, (ii) A1 and A2 are disjoint closed subsets
of A, and (iii) φ is a bijection from A1 to A2 such that for any a ∈ A1 and
any substitution θ for usual variables, φ(aθ) = φ(a)θ. For any i, j ∈ {1, 2}, an
extended clause C is said to be from Ai to Aj iff all usual atoms in rhs(C) belong
to Ai and all those in lhs(C) belong to Aj .

Let 〈K, a〉 be a QA problem such that K is a first-order formula in which all
usual atoms belong to A1 and a ∈ A1. As will be detailed in Sect. 5.3, to solve this
problem using ET, K is transformed by meaning-preserving transformation into
a set Cs of extended clauses from A1 to A1 and a singleton set Q consisting only
of the clause (φ(a) ← a) from A1 to A2 is constructed from the query atom a.
The resulting QA problem 〈Cs∪ Q,φ(a)〉 is then successively transformed using
ET rules.

5.2 Triples for Transformation

In order to make a clear separation between a set of extended clauses from A1 to
A1 and a set of those from A1 to A2 in a transformation process of QA problems,
the following notation is introduced: Given a set Cs of extended clauses from A1

to A1, a set Q of extended clauses from A1 to A2 and an atom b in A2, let the
triple 〈Cs, Q, b〉 denote the QA problem 〈Cs∪Q, b〉. A QA problem 〈Cs, Q, b〉 can
be transformed by changing Cs, by changing Q, or by changing both Cs and Q.

Definition 3. A transformation of a QA problem 〈Cs, Q, b〉 into a QA prob-
lem 〈Cs′, Q′, b〉 is equivalent transformation (ET) iff answerqa(Cs ∪ Q, b) and
answerqa(Cs′ ∪ Q′, b) are equal. ��

5.3 A Procedure for Solving QA Problems by ET

Let A1 be a closed set of usual atoms. Assume that a QA problem 〈K, a〉 is given,
where K is a first-order formula in which all usual atoms belong to A1 and a ∈ A1.
To solve the QA problem 〈K, a〉 using ET, perform the following steps:

1. Transform K by meaning-preserving Skolemization into a clause set Cs in the
ECLSF space.

2. Determine (i) a closed set A2 of usual atoms such that A1 and A2 are disjoint
and (ii) a bijection φ from A1 to A2 such that for any a ∈ A1 and any
substitution θ for usual variables, φ(aθ) = φ(a)θ.
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3. Successively transform the QA problem 〈Cs, {(φ(a) ← a)}, φ(a)〉 in the ECLSF

space using unfolding and other ET rules (see Sect. 6).
4. Assume that the transformation yields a QA problem 〈Cs′, Q, φ(a)〉. Then:

(a) If Models(Cs′) = ∅, then output rep(a) as the answer.
(b) If Models(Cs′) �= ∅ and Q is a set of unit clauses such that the head of

each clause in Q is an instance of φ(a), then output as the answer the set

φ−1(
⋃

C∈Q

rep(head(C))).

(c) Otherwise stop with failure.

It is shown in [3] that the obtained answer is always correct.
The set A2 and the bijection φ satisfying the requirement of Step 2 can be

determined as follows: First, introduce a new predicate symbol for each predicate
symbol occurring in A1. Next, let A2 be the atom set obtained from A1 by
replacing the predicate of each atom in A1 with the new predicate introduced
for it. Finally, for each atom a ∈ A1, let φ(a) be the atom obtained from a by
such predicate replacement.

6 ET Rules on ECLSF

Next, ET rules for unfolding and definite-clause removal are presented, along
with some other ET rules.

6.1 Unfolding Operation on ECLSF

Assume that (i) Cs is a set of extended clauses, (ii) D is a set of extended definite
clauses, and (iii) occ is an occurrence of an atom b in the right-hand side of a
clause C in Cs. By unfolding Cs using D at occ, Cs is transformed into

(Cs − {C}) ∪ (
⋃

{resolvent(C,C ′, b) | C ′ ∈ D}),

where for each C ′ ∈ D, resolvent(C,C ′, b) is defined as follows, assuming that
ρ is a renaming substitution for usual variables such that C and C ′ρ have no
usual variable in common:

– If b and head(C ′ρ) are not unifiable, then resolvent(C,C ′, b) = ∅.
– If they are unifiable, then resolvent(C,C ′, b) = {C ′′}, where C ′′ is the clause

obtained from C and C ′ρ as follows, assuming that θ is the most general
unifier of b and head(C ′ρ):
• lhs(C ′′) = lhs(Cθ)
• rhs(C ′′) = (rhs(Cθ) − {bθ}) ∪ body(C ′ρθ).

The resulting clause set is denoted by Unfold(Cs,D, occ).
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6.2 ET by Unfolding and Definite-Clause Removal

Let Atoms(p) denote the set of all atoms having a predicate p. ET rules on
ECLSF for unfolding and for definite-clause removal are described below.

ET by Unfolding. Let 〈Cs, a〉 be a QA problem on ECLSF. Assume that:

1. q is the predicate of the query atom a.
2. p is a predicate such that p �= q.
3. D is a set of extended definite clauses in Cs that satisfies the following con-

ditions:
(a) For any C ∈ D, head(C) ∈ Atoms(p).
(b) For any C ′ ∈ Cs − D, lhs(C ′) ∩ Atoms(p) = ∅.

4. occ is an occurrence of an atom in Atoms(p) in the right-hand side of an
extended clause in Cs − D.

Then 〈Cs, a〉 can be equivalently transformed into the QA problem 〈Unfold
(Cs,D, occ), a〉.

ET by Definite-Clause Removal. Let 〈Cs, a〉 be a QA problem on ECLSF.
Assume that:

1. q is the predicate of the query atom a.
2. p is a predicate such that p �= q.
3. D is a set of extended definite clauses in Cs that satisfies the following con-

ditions:
(a) For any C ∈ D, head(C) ∈ Atoms(p).
(b) For any C ′ ∈ Cs − D, lhs(C ′) ∩ Atoms(p) = ∅.

4. For any C ′ ∈ Cs − D, rhs(C ′) ∩ Atoms(p) = ∅.

Then 〈Cs, a〉 can be equivalently transformed into the QA problem 〈Cs − D, a〉.

6.3 Some Other ET Rules on ECLSF

Next, ET rules for merging func-atoms having the same call pattern, for remov-
ing isolated func-atoms, and for removing subsumed clauses are presented. They
are used in examples in Sect. 7.

Mergingfunc-Atoms with the Same Invocation Pattern. Let 〈Cs, a〉 be
a QA problem on ECLSF. Suppose that C ∈ Cs and rhs(C) contains func-atoms
f1 and f2 that differ only in their last arguments. Then:

1. If the last arguments of f1 and f2 are unifiable, with their most general unifier
being θ, and C ′ is an extended clause such that
– lhs(C ′) = lhs(Cθ), and
– rhs(C ′) = (rhs(C) − {f2})θ,
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then 〈Cs, a〉 can be equivalently transformed into the QA problem 〈(Cs −
{C}) ∪ {C ′}, a〉.

2. If their last arguments are not unifiable, then 〈Cs, a〉 can be equivalently
transformed into the QA problem 〈Cs − {C}, a〉.

Elimination of Isolated func -Atoms. A func-atom func(h, t1, . . . , tn, v),
where v is a usual variable, is said to be isolated in an extended clause C iff
there is only one occurrence of v in C.

Now let 〈Cs, a〉 be a QA problem on ECLSF. Suppose that:

1. C ∈ Cs such that C contains a func-atom that is isolated in C.
2. C ′ is the extended clause obtained from C by removing all func-atoms that

are isolated in C.

Then 〈Cs, a〉 can be equivalently transformed into the QA problem 〈(Cs−{C})∪
{C ′}, a〉.

Elimination of Subsumed Clauses. An extended clause C1 is said to subsume
an extended clause C2 iff there exists a substitution θ for usual variables such
that lhs(C1)θ ⊆ lhs(C2) and rhs(C1)θ ⊆ rhs(C2).

A subsumed clause can be removed as follows: Let 〈Cs, a〉 be a QA problem
on ECLSF. If Cs contains extended clauses C1 and C2 such that C1 subsumes C2,
then 〈Cs, a〉 can be equivalently transformed into the QA problem 〈Cs−{C2}, a〉.

7 Examples

Example 1 demonstrates how the procedure in Sect. 5.3 solves a QA problem
using the ET rules in Sect. 6. Example 2 shows how to apply the procedure to
solve a proof problem based on the embedding mapping in Sect. 3.2.

Example 1. Consider the “Tax-cut” problem discussed in [9]. This problem is to
find all persons who can have discounted tax, with the knowledge that
(i) any person who has two children or more can get discounted tax, (ii) men and
women are not the same, (iii) a person’s mother is always a woman, (iv) Peter
has a child named Paul, (v) Paul is a man, and (vi) Peter has a child, who is
someone’s mother. This background knowledge is represented in first-order logic
as the formulas F1–F6 below, assuming that hc, ns, tc, mn, wm and mo stand,
respectively, for hasChild, notSame, TaxCut, Man, Woman and motherOf:

F1: ∀x : ((∃y1∃y2 : (hc(x, y1) ∧ hc(x, y2) ∧ ns(y1, y2))) → tc(x))
F2: ∀x∀y : ((mn(x) ∧ wm(y)) → ns(x, y))
F3: ∀x : ((∃y : mo(x, y)) → wm(x))
F4: hc(Peter,Paul)
F5: mn(Paul)
F6: ∃x : (hc(Peter, x) ∧ (∃y : mo(x, y)))
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Accordingly, the “Tax-cut” problem is formulated as the QA problem 〈K, tc(x)〉,
where K is the conjunction of F1–F6. Using the meaning-preserving Skolemiza-
tion procedure given in [1], the first-order formula K is transformed into a clause
set Cs consisting of the following extended clauses:

C1: tc(x) ← hc(x, y1), hc(x, y2),ns(y1, y2)
C2: ns(x, y) ← mn(x),wm(y)
C3: wm(x) ← mo(x, y)
C4: hc(Peter,Paul) ←
C5: mn(Paul) ←
C6: hc(Peter, x) ← func(h1, x)
C7: mo(x, y) ← func(h1, x), func(h2, y)

The clauses C6 and C7 together represent the first-order formula F6, where h1

and h2 are 0-ary function variables.
Assume that all usual atoms occurring in Cs belong to A1, ans is a newly

introduced unary predicate symbol, all ans-atoms belong to A2, and for any
term t, φ(tc(t)) = ans(t). Let

C0 = (ans(x) ← tc(x)).

To solve the QA problem 〈K, tc(x)〉, the QA problem 〈Cs, {C0}, ans(x)〉 is suc-
cessively transformed by applying the ET rules in Sect. 6 as follows:

1. By unfolding C0 at tc(x) using {C1}, C0 is replaced with:

C8: ans(x) ← hc(x, y1), hc(x, y2),ns(y1, y2)

2. By unfolding C8 at the last body atom using {C2}, C8 is replaced with:

C9: ans(x) ← hc(x, y1), hc(x, y2),mn(y1),wm(y2)

3. By unfolding C9 at the third body atom using {C5}, C9 is replaced with:

C10: ans(x) ← hc(x,Paul), hc(x, y2),wm(y2)

4. By unfolding C10 at the last body atom using {C3}, C10 is replaced with:

C11: ans(x) ← hc(x,Paul), hc(x, y2),mo(y2, z)

5. By unfolding C11 at the last body atom using {C7}, C11 is replaced with:

C12: ans(x) ← hc(x,Paul), hc(x, y2), func(h1, y2), func(h2, z)

6. By removing an isolated func-atom, C12 is replaced with:

C13: ans(x) ← hc(x,Paul), hc(x, y2), func(h1, y2)

7. By unfolding C13 at the first body atom using {C4, C6}, C13 is replaced with:

C14: ans(Peter) ← hc(Peter, y2), func(h1, y2)
C15: ans(Peter) ← func(h1,Paul), hc(Peter, y2), func(h1, y2)
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8. By merging func-atoms with the same invocation pattern, C15 is replaced with:

C16: ans(Peter) ← func(h1,Paul), hc(Peter,Paul)

9. Since C16 is subsumed by C14, C16 is removed.
10. By unfolding C14 at the first body atom using {C4, C6}, C14 is replaced with:

C17: ans(Peter) ← func(h1,Paul)
C18: ans(Peter) ← func(h1, y2), func(h1, y2)

11. By definite-clause removal, C1–C7 are removed.
12. By merging func-atoms with the same invocation pattern, C18 is replaced with:

C19: ans(Peter) ← func(h1, y2)

13. By removing an isolated func-atom, C19 is replaced with:

C20: ans(Peter) ←
14. Since C17 is subsumed by C20, C17 is removed.

The resulting QA problem is 〈∅, {C20}, ans(x)〉. Since Models(∅) �= ∅ and C20 is
a unit clause whose head is an instance of φ(tc(x)), the answer to the “Tax-cut”
problem 〈K, tc(x)〉 is determined by

φ−1(
⋂

{rep(head(C20))}) = φ−1({ans(Peter)}) = {tc(Peter)},

i.e., Peter is the only one who gets discounted tax. ��
Example 2. Refer to the description of the “Tax-cut” problem, the first-order
formulas F1–F6, the clauses C0–C20 and the clause set Cs = {C1, . . . , C7} in
Example 1. From the background knowledge of the “Tax-cut” problem, suppose
that we want to prove the existence of someone who gets discounted tax. This
problem is formulated as the proof problem 〈E1, E2〉, where E1 is the conjunction
of F1–F6 and E2 is the first-order formula ∃x : tc(x).

Using Proposition 2, this proof problem is converted into the QA problem
〈E1 ∧ ¬E2, yes〉. Using the procedure in Sect. 5.3, this QA problem is solved as
follows:

– Convert E1∧¬E2 by meaning-preserving Skolemization, resulting in the clause
set Cs ∪ {C ′

0}, where C ′
0 is the negative clause (← tc(x)).

– Transform the QA problem

〈Cs ∪ {C ′
0}, {(φ(yes) ← yes)}, φ(yes)〉

using ET rules. By following the transformation Steps 1–14 in Example 1
except that the initial target clause is C ′

0 instead of C0, the clauses C ′
8–C ′

20

are successively produced, where for each i ∈ {8, . . . , 20},
• lhs(C ′

i) = ∅, and
• rhs(C ′

i) = rhs(Ci),
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and C1–C7 are removed. As a result, Cs ∪ {C ′
0} is transformed into {C ′

20},
where C ′

20 = (←), and the QA problem

〈{C ′
20}, {(φ(yes) ← yes)}, φ(yes)〉

is obtained.
– Since C ′

20 is the empty clause, the clause set {C ′
20} has no model, i.e.,

Models({C ′
20}) = ∅. So the procedure outputs rep(yes) = {yes} as the answer

to the QA problem 〈E1 ∧ ¬E2, yes〉.
It follows from Proposition 2 that the answer to the proof problem 〈E1, E2〉 is
“yes”, i.e., there exists someone who gets discounted tax. ��

Fig. 4. (a) Conventional proof-centered approaches; (b) The proposed QA-problem-
centered approach.

8 Conclusions

As shown in Fig. 4(a), previous approaches to solving QA problems are proof-
centered. The classical first-order logic and the conventional Skolemization pro-
vide a foundation for solving proof problems. Based on them, several solution
methods for specific subclasses of QA problems have been developed; for exam-
ple, answering queries in logic programming and deductive databases can be
regarded as solving QA problems on definite clauses and those on a restricted
form of definite clauses, respectively. There has been no general solution method
for QA problems on full first-order formulas. The conventional first-order logic
and the conventional Skolemization are not enough for developing a general
solution for QA problems.

QA problems on full first-order logic are considered in this paper. We intro-
duced the concept of embedding and proposed how to embed proof problems
into QA problems. This embedding leads to a unified approach to dealing with
proof problems and QA problems, allowing one to use a method for solving QA
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problems to solve proof problems. It enables a QA-problem-centered approach
to solving logical problems, which is shown in Fig. 4(b).

Equivalent transformation (ET) is one of the most fundamental principles
of computation, and it provides a simple and general basis for verification of
computation correctness. We proposed a framework for solving QA problems by
ET. All computation steps in this framework are ET steps, including transfor-
mation of a first-order formula into an equivalent formula in the extended clause
space ECLSF and transformation of extended clauses on ECLSF. To the best of
our knowledge, this is the only framework for dealing with the full class of QA
problems on first-order formulas.

Since many kinds of ET rules can be employed, the proposed ET-based frame-
work opens up a wide range of possibilities for computation paths to be taken.
As a result, the framework enables development of a large variety of methods
for solving logical problems. The range of possible computation methods can
also be further extended by using computation spaces other than ECLSF. Proof
by resolution can be seen as one specific example of these possible methods.
As demonstrated in [2], it can be realized by using two kinds of ET rules, i.e.,
resolution and factoring ET rules, on a computation space that differs slightly
from ECLSF.
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