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Abstract. The construction of a verifiable random function (VRF) with large in-
put space and full adaptive security from a static, non-interactive complexity as-
sumption, like decisional Diffie-Hellman, has proven to be a challenging task. To
date it is not even clear that such a VRF exists. Most known constructions either
allow only a small input space of polynomially-bounded size, or do not achieve
full adaptive security under a static, non-interactive complexity assumption.

The only known constructions without these restrictions are based on non-
static, so-called “q-type” assumptions, which are parametrized by an integer q.
Since q-type assumptions get stronger with larger q, it is desirable to have q as
small as possible. In current constructions, q is either a polynomial (e.g., Hohen-
berger and Waters, Eurocrypt 2010) or at least linear (e.g., Boneh et al., CCS
2010) in the security parameter.

We show that it is possible to construct relatively simple and efficient veri-
fiable random functions with full adaptive security and large input space from
non-interactive q-type assumptions, where q is only logarithmic in the security
parameter. Interestingly, our VRF is essentially identical to the verifiable unpre-
dictable function (VUF) by Lysyanskaya (Crypto 2002), but very different from
Lysyanskaya’s VRF from the same paper. Thus, our result can also be viewed as
a new, direct VRF-security proof for Lysyanskaya’s VUF. As a technical tool, we
introduce and construct balanced admissible hash functions.

1 Introduction

Verifiable random functions. Verifiable random functions (VRFs) can be seen as the
public-key equivalent of pseudorandom functions. Each function Vsk is associated with
a secret key sk and a corresponding public verification key vk . Given sk , an element
X from the domain of Vsk , and Y = Vsk (X), it is possible to create a non-interactive,
publicly verifiable proof π that Y was computed correctly. For security, unique prov-
ability is required. This means that for each X only one unique value Y such that the
statement “Y = Vsk (X)” can be proven may exist. Note that unique provability is a
very strong requirement: not even the party that creates sk (possibly maliciously) may
be able to create fake proofs. These additional features should not affect the pseudo-
randomness of the function on other inputs. Verifiable random functions are strongly
related to verifiable unpredictable functions (VUFs), where the weaker notion of un-
predictability instead of pseudorandomness is required.
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Their strong properties make VRFs useful for applications like resettable zero-
knowledge proofs [30], lottery systems [31], transaction escrow schemes [26], updat-
able zero-knowledge databases [27], or e-cash [3,4]. VRFs can also be seen as verifiably
unique digital signatures (called invariant signatures in [23]), their uniqueness makes
them strongly unforgeable [10,35].

The difficulty of constructing VRFs. In particular the unique provability requirement
makes it very difficult to construct verifiable random functions. For instance, the natural
attempt of combining a pseudorandom function with a non-interactive zero-knowledge
proof system fails, since zero-knowledge proofs are inherently simulatable, which con-
tradicts uniqueness. More generally, any reduction which attempts to prove pseudoran-
domness of a candidate construction faces the following problem.

– On the one hand, the reduction must be able to compute the unique function value
Y := Vsk (X) for preimages X selected by the attacker, along with a proof of
correctness π. Due to the unique provability, there exists only one unique value Y
such that the statement “Y = Vsk (X)” can be proven, thus the reduction is not able
to “lie” by outputting false values Ỹ .
Note that this stands in contrast to typical reductions for pseudorandom functions,
like the Naor-Reingold construction [33] for instance, where due to the absence of
proofs the reduction is be able to output incorrect values.

– On the other hand, the reduction must not be able to compute Y ∗ = Vsk (X
∗) for

a particular X∗, as it must be able to use an attacker that distinguishes Y ∗ from
random to break a complexity assumption.

Most previous works [29,28,16,17,1] constructed VRFs with only small input spaces
of polynomially-bounded size.1 The only two exceptions are due to Hohenberger and
Waters [25] and Boneh et al. [9], who constructed verifiable random functions with full
adaptive security that allow an input space of exponential size.

VRFs with large input spaces from non-interactive assumptions. Hohenberger and Wa-
ters [25] provided the first fully-secure VRF with exponential-size input space whose
security is based on a non-interactive complexity assumption. The security proof relies
on a q-type assumption, where an algorithm receives as input a list of group elements

(g, h, gx, . . . , gx
q−1

, gx
q+1

, . . . , gx
2q

, T ) ∈ G
2q+1 ×GT

where e : G×G → GT is a bilinear map. The assumption is that no efficient algorithm
is able to distinguish T = e(g, h)x

q

from a random group element with probability
significantly better than 1/2. The proof given in [25] requires that q = Θ(Q · k), where
k is the security parameter and Q is the number of function evaluations Vsk (X) queried
by the attacker in the security experiment. Note that in particular Q can be very large,
as it is only bounded by a polynomial in the security parameter.

1 Or, alternatively but usually equivalently, based on interactive complexity assumptions or with
only weaker selective security.
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The construction of Boneh et al. [9] is based on the assumption where the algorithm
receives as input a list of group elements

(g, h, gx, . . . , gx
q

, T ) ∈ G
q+2 ×GT

and the algorithm has to distinguish T = e(g, h)1/x from random. The proof in [9]
requires q = Θ(k). Is it possible to construct VRFs with large input and full adaptive
security from weaker q-type assumptions?

Our contribution. We construct verifiable random functions with exponential-size input
space, full adaptive security, and based on a q-type assumption with very small q . More
precisely, q = O(log k) depends only logarithmically on the security parameter. The
VRF construction essentially corresponds to the verifiable unpredictable function of
Lysyanskaya [28], which inspired many very similar VRF constructions with either
weaker security or based on stronger assumptions [25,1,16].

As a technical tool, we introduce the notion of balanced admissible hash functions
(balanced AHFs), which are standard admissible hash functions [8] with an extra prop-
erty (cf. the explanations below and in Section 4), and may be useful for applications
beyond VRFs. We show how to construct balanced AHFs from codes with suitable
minimal distance.

VRF construction. Let G,GT be groups with bilinear map e : G × G → GT , and let
C : {0, 1}k → {0, 1}n be a hash function. We construct a VRF with domain {0, 1}k
and range GT . The verification key of our VRF consists of C along with 2n+2 random
elements of G

vk =
(
g, h, (gi,j)(i,j)∈[n]×{0,1}

)

The secret key consists of the discrete logarithms αi,j such that gαi,j = gi,j for (i, j) ∈
[n]× {0, 1}.

The function is evaluated on input X ∈ {0, 1}k by first computing

(C1, . . . , Cn) := C(X) and αX :=

n∏

i=1

αi,Ci

and finally
Vsk (X) := e(g, h)αX

A proof that Vsk (X) = e(g, h)αX consists of group elements (π1, . . . , πn) where

πi := π
αi,Ci

i−1

for i ∈ [n] and with π0 := g. Correctness of proofs is verified with the bilinear map.

Similarity to Lysyanskaya’s VUF. We note that our VRF construction is nearly identical
to a VUF (resp. unique signature) construction of Lysyanskaya [28], but very different
from the VRF construction of [28]. To explain this in more detail, recall that Lysyan-
skaya [28] followed a much more complex approach:
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1. Construct a VUF based on a “computational” complexity assumption (in contrast
to a “decisional” complexity assumption)

2. Turn this VUF into a VRF with single-bit output, by using a Goldreich-Levin
hard-core predicate [22]. This step is not as simple as it may appear, because
Micali et al. [29] show in their initial VRF paper that this only yields a VRF
with polynomially-bounded input space (due to the fact that the randomness of the
Goldreich-Levin hard-core predicate must be public to allow verifiability, which in
turn leads to the problems discussed in [34]).

3. Turn this single-bit-VRF into a VRF with many-bit output (still with poly-bounded
input space), by applying a generic construction from [29]. Note that this generic
construction requires many evaluations of the underlying single-bit VRF.

4. In order to extend the VRF to a larger input space, apply another generic tree-
based construction of [29]. Note that again this requires many evaluations of the
underlying VRF.

In contrast, our direct VRF security proof of (essentially) the VUF-construction of
Lysyanskaya yields directly a – in comparison much more simple and efficient – VRF
with exponential-sized input space, adaptive security, and many-bit output. We rely on
the new notion of balanced admissible hash functions in our security analysis.

Our security analysis and the need for balanced AHFs. We prove security under the
qDDH-assumption, which states that given

(g, h, gx, . . . , gx
q

, T )

it is hard to distinguish T = e(g, h)x
q+1

from random.
A qDDH-challenge is embedded into the view of the attacker by setting

gi,j := gx+αi,j

where αi,j
$← Z|G| is a random blinding term, but only for O(log k) carefully selected

indices (i, j). This careful embedding essentially partitions the domain {0, 1}k of the
VRF into two sets X0,X1, such that

– For all values X ∈ X1 we have

Vsk (X) = e(g
∏q

i=0 γix
i

, h) and πj = g
∏q

i=0 γj,ix
i ∀1 ≤ j ≤ n (1)

where the γi and γj,i are integers in Z|G| which are known to the reduction. Note
that the polynomials in the exponent of Equations (1) have degree at most q, thus
Vsk (X) and π1, . . . , πn can be computed, given the values (g, gx, . . . , gx

q

) from
the qDDH challenge and the integers γi, γj,i.

– For all values X∗ ∈ X0 the reduction is able to compute integers γi such that

Y ∗ = e(g
∏q

i=0 γix
i

, h) · T γq+1

such that if T = e(g, h)x
q+1

then it holds that Y ∗ = Vsk (X
∗). Note that if T is

random, then so is Y ∗.
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Let {X(1), . . . , X(Q)} denote the set of inputs on which the VRF-attacker queries the
evaluation of the VRF with corresponding proof, and let X∗ denote the element such
that the attacker attempts to distinguish Vsk (X

∗) from random. The reduction will suc-
ceed, if it holds that {X(1), . . . , X(Q)} ⊆ X1 and X∗ ∈ X0.

Instantiating C with an admissible hash function ensures that with non-negligible
probability it simultaneously holds that {X(1), . . . , X(Q)} ⊆ X1 and X∗ ∈ X0. How-
ever, unfortunately this is not yet sufficient to make the analysis of the success proba-
bility of our reduction go through, due to the incompatibility of partitioning proofs with
“decisional” complexity assumptions, like qDDH. Intuitively, the problem stems from
the fact that two different sequences of queries made by the attacker may cause the
simulator to abort with different probabilities. This issue was explained in great detail
in [37,5,14].

Therefore we introduce the stronger notion of balanced AHFs. Essentially, a bal-
anced AHF ensures that the upper bound γmax and the lower bound γmin on the proba-
bility in

γmax ≥ Pr[{X(1), . . . , X(Q)} ⊆ X1 ∧ X∗ ∈ X0] ≥ γmin

are reasonably close. This is a typical requirement for partitioning proofs based on deci-
sional complexity assumptions, it occurs both in reductions with and without the “artifi-
cial abort” [37,5]. This suggests that the notion of balanced AHFs may find applications
beyond the construction of VRFs.

We stress that we achieve a reduction from a q-type assumption with q = O(log k)
only if we instantiate the VRF construction with a specific AHF, essentially the code-
based AHF of [19,28]. The reason is that this is the only construction we are aware of
which allows us to embed the given qDDH-challenge into at most O(log k) carefully
selected public-key elements gi,j in the way described above. We still have to prove that
their AHF is also a balanced AHF.

More related work. VRFs were introduced by Micali, Rabin, and Vadhan [29], along
with verifiable unpredictable functions (VUFs), a generic conversion from VUFs to
VRFs based on Goldreich-Levin hard-core predicates [22], and a VUF-construction
(with small input space) based on the RSA assumption. Specific, number-theoretic
constructions of VRFs can be found in [29,28,16,17,1,25,9]. Note that most of these
constructions either do not achieve full adaptive security for large input spaces, or are
based on much stronger, interactive complexity assumptions. In particular, the VRF
construction of Dodis [16] with outer error-correcting code is based on a q-type as-
sumption (there called the sf-DDH assumption of order q ) with q = O(log k), but this
assumption is interactive. We wish to avoid interactive assumptions to prevent circular
arguments, as explained by Naor [32].

Abdalla et al. gave generic constructions of VRFs from so-called VRF-suitable
identity-based KEMs [1,2]. While the conference version of this paper [1] considered
only selective security, the full version [2] contains proofs that the construction from [1]
achieves full security, under either under the complexity assumption from [25] with
polynomially-bounded q, or, alternatively, under a q-type assumption with q = O(k)
when combined with an admissible hash function.

Brakerski et al. [11] introduced the relaxed notion of weak VRFs, along with sim-
ple and efficient constructions, and proofs that neither VRFs, nor weak VRFs can be
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constructed (in a black-box way) from one-way permutations. Fiore and Schröder [18]
proved that verifiable random functions are not even implied (in a black-box sense)
by trapdoor permutations. Several works introduced related primitives, like simulatable
VRFs [12] and constrained VRFs [21].

At Eurocrypt 2006, Cheon [15] described an algorithm, which computes the discrete
logarithm x on input (g, gx, . . . , gx

q

). This algorithm is faster by a factor of
√
q than

generic algorithms for the standard discrete logarithm problem where only (g, gx) is
given. This shows that q-type assumptions are particularly problematic when q is large.
The security loss must be compensated with larger group parameters, at the cost of
efficiency. We stress that Cheon’s algorithm is only much faster than generic algorithms
for the standard discrete logarithm problem if q is very large (say, q = 240). However,
Cheon’s algorithm gives no apparent reason to criticise q-type assumptions for small q,
like q ≤ 40.

On avoiding q-Type assumptions altogether. Chase and Meiklejohn [13] present a con-
version that allows to replace q-type assumption in certain applications with a static
(that is, not q-type) subgroup hiding assumption, by leveraging the dual-systems tech-
niques of Waters [36]. It is natural to ask whether these techniques can be used to
construct verifiable random functions from static assumptions. Unfortunately, the con-
version of [13] requires to add randomization. Thus, when applying it to known VRF
constructions like [17], then this contradicts the unique provability requirement. Ac-
cordingly, Chase and Meiklejohn were able to prove that the VRF of Dodis and Yam-
polski [17] forms a secure pseudorandom function under a static assumption, but not
that it is a secure verifiable random function.

We leave the construction of a verifiable random function with large input space and
full adaptive security from a static assumption, like Decisional Diffie-Hellman, as an
open problem.

2 Preliminaries

For a vector K ∈ {0, 1}n we write Ki to denote the i-th component of K . If A is a
finite set, then a

$← A denotes the action of sampling a uniformly random from A. If
A is a probabilistic algorithm, then we write a

$← A to denote the action of computing
a by running A with uniformly random coins. We define [n] := {1, . . . , n} ⊂ N as the
set of all positive integers up to n.

2.1 Verifiable Unpredictable/Random Functions

Let (Gen,Eval,Vfy) be the following algorithms.

– Algorithm (vk , sk)
$← Gen(1k) takes as input a security parameter k and outputs a

key pair (vk , sk). We say that sk is the secret key and vk is the verification key.
– Algorithm (Y, π)

$← Eval(sk , X) takes as input secret key sk and X ∈ {0, 1}k,
and outputs a function value Y ∈ Y , where Y is a finite set, and a proof π. We
write Vsk (X) to denote the function value Y computed by Eval on input (sk , X).
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– Algorithm Vfy(vk , X, Y, π) ∈ {0, 1} takes as input verification key vk , X ∈
{0, 1}k, Y ∈ Y , and proof π, and outputs a bit.

Initialize :

b
$← {0, 1}

(vk , sk)
$← Gen(1k)

Return vk

Evaluate(X) :

(Y, π)
$← Eval(sk , X)

Return (Y, π)

Challenge(X∗) :

(Y0, π)
$← Eval(sk , X∗)

Y1
$← Y

Return Yb

FinalizeVUF(X∗, Y ∗) :

(Y, π)
$← Eval(sk , X∗)

If Y ∗ = Y then
Return 1

Else Return 0

FinalizeVRF(b′) :
If b′ = b then

Return 1
Else Return 0

Fig. 1. Procedures defining the security experiments for VUFs and VRFs

Definition 1. We say that (Gen,Eval,Vfy) is a verifiable random function (VRF) if all
the following properties hold.

Correctness. Algorithms Gen, Eval, Vfy are polynomial-time algorithms, and for all
(vk , sk)

$← Gen(1k) and all X ∈ {0, 1}k holds: if (Y, π)
$← Eval(sk , X), then

Vfy(vk , X, Y, π) = 1 .

Unique Provability. For all (vk , sk)
$← Gen(1k) and all X ∈ {0, 1}k, there does

not exist any tuple (Y0, π0, Y1, π1) such that Y0 �= Y1 and Vfy(vk , X, Y0, π0) =
Vfy(vk , X, Y1, π1) = 1.

Pseudorandomness. Consider an attacker A with access (via oracle queries) to the
procedures defined in Figure 1. Let GA

VRF denote the game where A first queries
Initialize, then Challenge, thenFinalizeVRF, where the output of FinalizeVRF

is the output of the game. Moreover,A may arbitrarily issue Evaluate-queries, but
only after querying Initialize and before querying FinalizeVRF. We say that A is
legitimate, if A never queries Evaluate(X) and Challenge(X∗) with X = X∗

throughout the game.
We define the advantage of A in breaking the pseudorandomness as

AdvVRFA (k) := 2 · Pr[GA
VUF = 1]− 1

Definition 2. We say that (Gen,Eval,Vfy) is a verifiable unpredictable function (VUF)
if the correctness and unique provability properties from Definition 1 hold, and we have:

Unpredictability. Consider an attacker A with access (via oracle queries) to the pro-
cedures defined in Figure 1. Let GA

VUF denote the game where A first queries
Initialize, then an arbitrary number of Evaluate-queries, then FinalizeVUF,
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and the output of FinalizeVUF is the output of the game. We say that A is le-
gitimate, if A never queries Evaluate(X) and Challenge(X∗) with X = X∗

throughout the game.
We define the advantage of A in breaking the unpredictability as

AdvVUFA (k) := Pr[GA
VUF = 1]

2.2 q-Diffie-Hellman Assumptions

In the sequel let G,GT begroups of prime order, with bilinear map e : G×G → GT .

InitializeqCDH :

g, h
$← G;x

$← Z|G|
Return (g, gx, . . . , gx

q

, h)

FinalizeqCDH(T ) :

If T = e(gx
q+1

, h) then Return 1
Else Return 0

InitializeqDDH :

g, h
$← G;x

$← Z|G|; b
$← {0, 1}

T0 := e(g, h)x
q+1

, T1
$← GT

Return (g, gx, . . . , gx
q

, h, Tb)

FinalizeqDDH(b′) :
If b′ = b then Return 1
Else Return 0

Fig. 2. Procedures defining the q-Diffie Hellman assumptions

Definition 3. Let GqDDH
B be the game with B and the procedures defined in Figure 2,

where B calls InitializeqDDH, then FinalizeqDDH, and the output of FinalizeqDDH

is the output of the game. We denote with

AdvqDDH
B (k) := 2 · Pr

[
GqDDH

B = 1
]
− 1

the advantage of A in breaking the qDDH-assumption in (G,GT ).

Definition 4. Let GqCDH
B be the game with B and the procedures defined in Figure 2,

where B calls InitializeqCDH, then FinalizeqCDH, and the output of FinalizeqCDH is
the output of the game. We denote with

AdvqCDH
B (k) := Pr

[
GqCDH

B = 1
]

the advantage of A in breaking the qCDH-assumption in (G,GT ).

3 Main Construction

Let G,GT be groups of prime order with bilinear map e : G×G → GT , such that each
group element has a unique representation, and that group membership can be tested
efficiently.
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Let VF = (Gen,Eval,Vfy) be the following construction.

Generation. Algorithm Gen(1k) chooses an admissible hash function C : {0, 1}k →
{0, 1}n and two random generators g, h

$← G. Then it computes gi,j := gαi,j ,

where αi,j
$← Z|G| and for (i, j) ∈ [n]× {0, 1}. The keys are defined as

vk :=
(
C, g, h, (gi,j)(i,j)∈[n]×{0,1}

)
and sk := (αi,j)(i,j)∈[n]×{0,1}

Evaluation. On input X ∈ {0, 1}k, algorithm Eval(sk , X) first computes C(X). For
i ∈ [n] let C(X)i denote the i-th bit of C(X) ∈ {0, 1}n. Then the algorithm
determines the function value by computing aX :=

∏n
i=1 αi,C(X)i and setting

Y := e(g, h)aX .

The corresponding proof π = (π1, . . . , πn) is computed recursively by first defin-
ing π0 := g and then setting

πi := π
αi,C(X)i

i−1 for all i ∈ [n]

The algorithm outputs (Y, π).
Verification. Algorithm Vfy(vk , X, Y, π) checks the consistency of π using the bilin-

ear map. It first tests if X and π contain only valid group elements. Then it com-
putes C(X) = (C(X)1, . . . , C(X)n) ∈ {0, 1}n, defines π0 := g, and outputs 1 if
and only if all the following equations are satisfied.

e(πi, g) = e(πi−1, gi,C(X)i) for all i ∈ [n]

Y = e(πn, h)

It is straightforward to verify that the above construction is correct in the sense of
Definitions 1 and 2. Furthermore, the unique provability follows from the group struc-
ture and the fact that even an unbounded attacker is not able to devise a proof π for a
different group element. It remains to prove pseudorandomness.

4 Balanced Admissible Hash Functions

Standard admissible hash functions (AHFs) were introduced by Boneh and Boyen [8],
a simplified definition was given by Freire et al. [19]. For our application, we will
need AHFs with stronger properties, therefore we have to extend the notion of AHFs
to balanced AHFs. The essential difference between balanced AHFs and the standard
definition (e.g. [20, Definition 3]) is that previous works required only a reasonable
lower bound on the probability in Equation (3) below. In contrast, the security analysis
of our VRF construction will essentially require reasonable upper and lower bounds,
and that these bounds are sufficiently close.

Definition 5. Let k ∈ N and n = n(k) be a polynomial, and let C : {0, 1}k →
{0, 1}n(k) be an efficiently computable function. Let FK : {0, 1}k → {0, 1} be defined
as

FK(X) :=

{
0, if ∀i : C(X)i = Ki ∨ Ki = ⊥
1, else.

(2)
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We say that C is a balanced admissible hash function (balanced AHF), if there
exists an efficient algorithm AdmSmp(1k, Q, δ), which takes as input (Q, δ) where
Q = Q(k) ∈ N is polynomially bounded and δ = δ(k) ∈ (0, 1] is non-negligible,
and outputs K ∈ {0, 1,⊥}n such that for all X(1), . . . , X(Q), X∗ ∈ {0, 1}k with
X∗ �∈ {X(1), . . . , X(Q)} holds that

γmax(k) ≥ Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0] ≥ γmin(k) (3)

where γmax(k) and γmin(k) satisfy that the function τ(k) defined as

τ(k) := 2 · γmin(k) · δ(k)− γmax(k) + γmin(k) (4)

is non-negligible. The probability is taken over the choice of K .

Remark 1. The definition of τ essentially condenses two requirements, namely (1) that
γmin is non-negligible, and (2) that the difference γmax − γmin is “reasonably” small,
where “reasonably” depends on γmin and δ. The definition of function τ may appear
very specific, however, such a term appears typically in security analyses that follow
the approach of Bellare and Ristenpart [5]. Therefore we think this is exactly what is
needed for typical applications of balanced AHFs. See Lemma 1, for instance.

Instantiating balanced admissible hash functions. Efficient standard admissible hash
functions are known to exist [28,8,19]. For instance, there is a simple construction from
codes with suitable minimal distance [28,19]. In this section we will show that such
codes also yield a balanced AHF. In contrast to [28,19], we have to show both upper
and lower bounds, and choose certain parameters more carefully to ensure that (4) is a
non-negligible function.

Theorem 1. Let (Ck)k∈N with Ck : {0, 1}k → {0, 1}n be a family of codes with
minimal distance nc for a constant c. Then (Ck)k∈N is a family of balanced admissible
hash functions. Moreover, AdmSmp(1k, Q, δ) outputs K ∈ {0, 1,⊥}n with exactly

d =
⌊
ln(2Q+Q/δ)
− ln((1−c))

⌋
components not equal to ⊥.

Proof. Consider the algorithm AdmSmp which sets

d :=

⌊
ln(2Q+Q/δ)

− ln((1 − c))

⌋

and chooses K uniformly random from ({0, 1}∪{⊥})n with exactly d components not
equal to ⊥.2

Fix X(1), . . . , X(Q), X∗ ∈ {0, 1}k with X∗ �∈ {X(1), . . . , X(Q)} for the analysis of
this algorithm.

Upper bound. Note that we have Pr[FK(X∗) = 0] = 2−d, and thus

γmax := 2−d = Pr[FK(X∗) = 0]

≥ Pr[FK(X∗) = 0] · Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 | FK(X∗)]

= Pr[FK(X∗) = 0 ∧ FK(X(1)) = · · · = FK(X(Q)) = 1].

2 Note that this algorithm is identical to the algorithm from [20, Theorem 2], except that we
have chosen d slightly differently.
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Lower bound. We first observe that for any two strings X,X∗ ∈ {0, 1}k with X �= X∗

holds that
Pr[FK(X) = 0 | FK(X∗) = 0] ≤ (1− c)d.

To see this, consider an experiment where two code words C(X) and C(X∗) are given,
with X,X∗ ∈ {0, 1}k and X �= X∗, and we sample d pairwise distinct positions

i1, . . . , id
$← [n]. Since C(X) and C(X∗) differ in at least nc positions, the probability

that C(X)i1 = C(X∗)i1 is at most (n−nc)/n = 1−c. The probability that C(X)ij =
C(X∗)ij for all j ∈ [d] is thus at most (1− c)d.

A union bound yields that

Pr[FK(X(1)) = 0 ∨ · · · ∨ FK(X(Q)) = 0 | FK(X∗) = 0] ≤ Q(1− c)d

which implies

Pr[FK(X(1)) = 1 ∧ · · · ∧ FK(X(Q)) = 1 | FK(X∗) = 0] ≥ 1−Q(1− c)d

This yields the lower bound

γmin :=(1 −Q(1− c)d) · 2−d

≤Pr[FK(X(1)) = 1 ∧ · · · ∧ FK(X(Q)) = 1 | FK(X∗) = 0] · Pr[FK(X∗) = 0]

=Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0]

Balancedness of bounds. Finally, it remains to show that for polynomial Q and non-
negligible δ the function τ from (4) is non-negligible. We first compute (omitting the
parameter k from functions to simplify notation):

τ :=2 · δ · γmin − γmax + γmin

=2 · δ · (1−Q(1− c)d) · 2−d − 2−d + (1 −Q(1− c)d) · 2−d

=2−d · (2δ − (2δ + 1) ·Q(1− c)d
)

Now we will show that if d is chosen as above, then both 2−d and 2δ−(2δ+1)·Q(1−c)d

are non-negligible. Thus, their product is non-negligible as well.
We have

2−d = 2−� ln(2Q+Q/δ)
− ln((1−c)) � ≥ 2

ln(2Q+Q/δ)
ln((1−c))

and

2δ − (2δ + 1) ·Q(1− c)d = 2δ − (2δ + 1) ·Q(1− c)� ln(2Q+Q/δ)
− ln((1−c)) �

≥ 2δ − (2δ + 1) ·Q(2Q+Q/δ)−1

= 2δ − (2δQ+Q)(2Q+Q/δ)−1

= 2δ − δ(2δQ+Q)(2δQ+Q)−1 = δ

which both are non-negligible since c is a constant, Q ∈ N, and δ ∈ (0, 1] is non-
negligible.
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5 VF is a Verifiable Random Function

Theorem 2. If VF is instantiated with the balanced admissible hash function from
Theorem 1, then for any legitimate attacker A that breaks the pseudorandomness of
VF in time tA with advantage AdvVRFA by making at most Q Eval-queries, there exists

an algorithm B that breaks the q-DDH assumption with q =
⌊
ln(2Q+Q/δ)
− ln((1−c))

⌋
− 1 in time

tB ≈ tA and with advantage

AdvqDDH
B (k) ≥ τ(k)

where 2 · δ is a non-negligible lower bound on AdvVRFA (k), and τ(k) is a non-negligible
function.

Initialize :

bad := 0

K
$← AdmSmp(1k, Q, δ)

For (i, j) ∈ [n]× {0, 1} do

αi,j
$← Z|G|

If Ki = j then gi,j := gx+αi,j

Else gi,j := gαi,j

vk :=
(
C, g, h, (gi,j)(i,j)

)

Return vk

Evaluate(X) :

(Y, π) := ⊥
If FK(X) �= 1 then

bad := 1;
Else

Y := e(gPK,n,X(x), h)
For j ∈ [n] do
πj := gPK,j,X(x)

π := (π1, . . . , πn)
Return (Y, π)

Challenge(X∗) :
Y ∗ := ⊥
If FK(X) = 1 then

bad := 1
Else

Compute γ0, . . . , γq+1 s.t.
PK,n,X∗(x) =

∑q+1
i=0 γix

i

Y ∗ := T γq+1 ·∏q
i=1 e((g

xi

)γi , h)
Return Y ∗

FinalizeVRF(b′) :

If bad = 1 then c′ $← {0, 1}
Else c′ := b′

Return c′

Fig. 3. Procedures for the simulation of the VRF pseudorandomness experiment by B

Proof. Algorithm B receives as input (g, gx, . . . , gx
q

, h, T ) and runs algorithm A as a
subroutine. Whenever A queries Initialize, Evaluate, Challenge, or Finalize, B
executes the corresponding procedure from Figure 3. Let us give some remarks on these
procedures.
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Initialization. The values (g, h, gx) in Initialize are from the qDDH-challenge. Recall
that 2 · δ is a non-negligible lower bound on AdvVRFA (k), and Q is the upper bound on
the number of Evaluate-queries.

Note that B computes the gi,j-values exactly as in the original Gen-algorithm, by

choosing αi,j
$← Z|G| and setting gi,j := gαi,j , but with the exception that

gi,Ki := gx+αi,Ki .

for all (i, j) ∈ [n] × {0, 1} with Ki = j. Due to our choice of an admissible hash
function according to Theorem 1, there are exactly q + 1 components Ki of K which
are not equal to ⊥.

Finally, note that all gi,Ki-values are distributed correctly, and that this set-up defines
the secret key implicitly as sk := (logg gi,j)(i,j)∈[n]×{0,1}. Thus, the function Vsk (X)
is well-defined for all X (but B will not be able to evaluate Vsk on all inputs X , as
explained below).

Helping definitions. In order to explain how B responds to Evaluate and Challenge
queries made by A, let us define two sets IK,w,X and JK,w,X , which depend on an
AHF key K , a VRF input X ∈ {0, 1}k, and integer w ∈ N with 1 ≤ w ≤ n, as

IK,w,X := {i ∈ [w] : Ki = C(X)i} and JK,w,X := [w] \ IK,w,X

Note that IK,w,X denotes the set of all indices i ∈ [w] ⊆ [n] such that Ki = C(X)i,
and JK,w,X denotes the set of all indices in [w] which are not contained in IK,w,X .
Based on these sets, we define polynomials PK,w,X(x)

PK,w,X(x) =
∏

i∈IK,w,X

(x+ αi,Ki) ·
∏

i∈JK,w,X

αi,Ki ∈ Z|G|[x]

Now we can make the following observations:

1. For all X with FK(X) = 1, the set IK,w,X contains at most q elements, and thus
the polynomial PK,w,X(x) has degree at most q.
This implies that if FK(X) = 1, then B can efficiently compute gPK,w,X(x) for all
w ∈ [n]. To this end, B first computes the coefficients γ0, . . . , γq of the polynomial
PK,w,X(x) =

∑q
i=0 γix

i with degree at most q, and then

gPK,w,X(x) := g
∑q

i=0 γix
i

=

q∏

i=0

(gx
i

)γi

using the terms (g, gx, . . . , gx
q

) from the q-DDH challenge.
2. If FK(X) = 0, then PK,n,X(x) has degree q + 1. We do not know how B can

efficiently compute gPK,n,X(x) in this case.

Responding to Evaluate-queries. If FK(X) = 1, then procedure Evaluate com-
putes the group elements gPK,w,X (x) as explained above. Note that in this case the re-
sponse to the Evaluate(X)-query of A is correct. However, if FK(X) = 0, then the
response of B is incorrect.
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Responding to the Challenge-query. If FK(X∗) = 0, then procedure Challenge
computes

Y ∗ := T γq+1 ·
q∏

i=1

e((gx
i

)γi , h) = T γq+1 · e(g
∑q

i=1 γix
i

, h)

where γ0, . . . , γq+1 are the coefficients of the degree-(q+1)-polynomialPK,n,X∗(x) =
∑q+1

i=0 γix
i. Note that if T = e(g, h)x

q+1

, then it holds that Y ∗ = Vsk (X
∗). Moreover,

if T is uniformly random, then so is Y ∗.

Analysis of B’s running time. The running time tB of B consists essentially of the
running time tA of A plus a minor number of additional operations, thus we have tB ≈
tA.

Analysis of B’s success probability. The simulation of the challenger by B is per-
fect, unless bad := 1 is set. This happens only if A queries Evaluate(X) with
FK(X) �= 1, or Challenge(X∗) with FK(X∗) = 1. Since the AHF key K is
information-theoretically hidden in vk , the terms γmax and γmin from Equation (3) are
upper and lower bounds on the probability that bad := 1 is never set throughout the
experiment.

Lemma 1.
AdvqCDH

B (k) ≥ 2 · γmin · δ − γmax + γmin

The proof of Lemma 1 follows the approach of Bellare and Ristenpart [5] very
closely, therefore it is deferred to Appendix A. This approach allows us to provide
an analysis without the “artificial abort” of Waters [37]. The latter has also been used to
analyze the VRF of Hohenberger and Waters [24], but leads to a less tight reduction.

Remark 2. Note that the lower bound on AdvqCDH
B (k) in Lemma 1 is only useful, if δ

and γmin are non-negligible and γmax and γmin are sufficiently close. This is where we
need the balancedness of admissible hash function C.

Observe that since we instantiate C with a balanced AHF and δ is a non-negligible
lower bound on AdvVRFA (k)/2, the function

τ(k) := 2 · γmin · δ − γmax + γmin

is non-negligible. This concludes the proof of Theorem 2.

6 VF is a Verifiable Unpredictable Function

In this section we prove that construction VF also is a secure VUF. Note that this
construction is essentially identical to the VUF of Lysyanskaya [28], only the proof is
based on a different complexity assumption.

The main purpose of this section is to show that for the VUF-security proof of VF an
even weaker (but still O(log k)) q-type assumption is sufficient. We can base security
on a qCDH assumption that is weaker in two ways. First, it is the computational version
of the qDDH assumption. Second, we need only q = �(ln 2Q)/c�−1. Thus, in contrast
to the VRF-security proof, q is independent of the advantage of the attacker.
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6.1 Admissible Hash Functions

In order to prove that VF is a VUF, it will suffice to instantiate VF with a standard
(that is, not necessarily balanced) admissible hash function C. We recall the standard
definition of admissible hash functions (AHFs) from Freire et al. [19].

Definition 6 ([19]). Let k ∈ N and n = n(k) be a polynomial, and let C : {0, 1}k →
{0, 1}n(k) be an efficiently computable function. Let FK : {0, 1}k → {0, 1} be defined
as in Equation (2). We say thatC is an admissible hash function (AHF), if there exists an
efficient algorithm AdmSmp(1k, Q), which takes as input polynomial Q = Q(k) ∈ N,
and computes K ∈ ({0, 1} ∪ {⊥})n such that for all X(1), . . . , X(Q), X∗ ∈ {0, 1}k
with X∗ �∈ {X(1), . . . , X(Q)} holds that

Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0] ≥ γmin(k) (5)

such that γmin(k) non-negligible. The probability is taken over the choice of K .

Instantiating Admissible Hash Functions. A simple and efficient construction of AHFs
can be found in [19] (based on [28]), we capture their existence in the following lemma.

Lemma 2 ([28,19]). Let S be a set and (Ck)k∈N with Ck : {0, 1}k → Sn be a family
of codes, with minimal distance nc for a constant c and such that |S| is bounded by
a polynomial in k. Then (Ck)k∈N is an admissible hash function, where AdmSmp(Q)
outputs K ∈ S ∪ {⊥}n with exactly d := �(ln 2Q)/c� components not equal to ⊥ and
γmin ≥ (1 −Q(1− c)d) · 2−d.

Remark 3. Note that even though the last two statements of the above theorem were
not made explicit in previous works, they are implicitly contained in the proof of [20,
Theorem 2].

6.2 Security Analysis

Theorem 3. If VF is instantiated with the admissible hash function from Lemma 2,
then for any legitimate attacker A that breaks the unpredictability of VF in time tA
with advantage AdvVUFA by making at most Q Eval-queries, there exists an algorithm B
that breaks the qCDH assumption with q = �(ln 2Q)/c� − 1 in time tB ≈ tA and with
advantage

AdvqCDH
B (k) ≥ AdvVUFA (k) · (1−Q(1− c)d) · 2−d

where d := �(ln 2Q)/c� = q + 1.

The proof of this theorem is nearly identical to the proof of Theorem 2, but the analy-
sis of the success probability of B is much simpler, because we consider unpredictability
instead of pseudorandomness. Therefore we only sketch the proof.

Proof. Algorithm B receives as input (g, gx, . . . , gx
q

, h, T ) and runs algorithm A as
a subroutine. Whenever A issues a query (Initialize, Evaluate, Finalize), then B
executes the corresponding procedure from Figure 4.
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Initialize(X) :

bad := 0

K
$← AdmSmp(1k, Q, δ)

For (i, j) ∈ [n]× {0, 1} do

αi,j
$← Z|G|

If Ki = j then hi,j := gx+αi,j

Else hi,j := gαi,j

vk :=
(
C, g, h, (hi,j)(i,j)

)

Return vk

Evaluate(X) :

(Y, π) := ⊥
If FK(X) �= 1 then
bad := 1;

Else
Y := e(gPK,n,X(x), h)
For j ∈ [n] do

πj := gPK,j,X(x)

π := (π1, . . . , πn)
Return (Y, π)

FinalizeVUF(X∗, Y ∗) :
If FK(X∗) = 0 then
bad := 1

If bad = 1 then Return ⊥
Compute γ0, . . . , γq+1

s.t. PK,n,X∗(x) =
∑q+1

i=0 γix
i

T :=
(
Y ∗/e(g

∑q
i=1

γix
i

, h)
)1/γq+1

Return T

Fig. 4. Procedures for the simulation of the VUF unpredictability experiment by B

The running time tB of B consists essentially of the running time tA of A plus a
minor number of additional operations, thus we have tB ≈ tA. Note that B simulates
the original VUF security experiment perfectly, if bad = 0 throughout the game. Note
also that

Y ∗ = e(g, h)
∑q+1

i=0 γix
i

=⇒ T = e(g, h)x
q+1

The choice of K is information-theoretically hidden in vk . Thus,

AdvqCDH
B (k) ≥ AdvVUFA (k) · Pr[bad = 0]

≥ AdvVUFA (k) · γmin(k) = AdvVUFA (k) · (1−Q(1− c)d) · 2−d

Acknowledgements. We thank the anonymous reviewers of TCC 2015 for their helpful
comments.

References

1. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from identity-based key en-
capsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 554–571. Springer,
Heidelberg (2009)

2. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: Relations to identity-based
key encapsulation and new constructions. Journal of Cryptology 27(3), 544–593 (2014)



Verifiable Random Functions from Weaker Assumptions 137

3. Au, M.H., Susilo, W., Mu, Y.: Practical compact e-cash. In: Pieprzyk, J., Ghodosi, H., Daw-
son, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 431–445. Springer, Heidelberg (2007)

4. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact e-cash and simulatable
VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 114–
131. Springer, Heidelberg (2009)

5. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof and im-
proved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)

6. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof and
improved concrete security for Waters’ IBE scheme. Cryptology ePrint Archive, Report
2009/084 (2009), http://eprint.iacr.org/

7. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based
game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–
426. Springer, Heidelberg (2006)

8. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)

9. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom functions with
improved efficiency from the augmented cascade. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM CCS 2010, Chicago, Illinois, USA, October 4–8, pp. 131–140.
ACM Press (2010)

10. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational
Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

11. Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak verifiable random
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 558–576. Springer, Hei-
delberg (2009)

12. Chase, M., Lysyanskaya, A.: Simulatable VRFs with applications to multi-theorem NIZK.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322. Springer, Heidelberg
(2007)
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A Proof of Lemma 1

Let GqDDH
B(A) denote the qDDH security experiment with B running A as a subroutine as

described above. Let good denote the event that variable bad is never set to 1. Then,
since B outputs a random bit if bad := 1 is set, it holds that

Pr[GqDDH
B(A) = 1] = Pr[GqDDH

B(A) = 1 ∧ good] + Pr[¬good] · Pr[GqDDH
B(A) = 1 | ¬good]

= Pr[GqDDH
B(A) = 1 ∧ good] + Pr[¬good] · 1/2

and therefore

AdvqDDH
B (k) = 2 · Pr[GqDDH

B(A) = 1]− 1

= 2 · Pr[GqDDH
B(A) = 1 ∧ good]− Pr[good] (6)

Thus, it remains to derive suitable bounds on Pr[GqDDH
B(A) = 1∧good] and Pr[good]. We

will need the following lemma from [5,7].

Lemma 3 ([5,7]). Let Gi and Gj be two games which proceed identical until bad = 1.
Then

– Pr[Gi sets bad = 1] = Pr[Gj sets bad = 1]
– Pr[Gi = b ∧ Gi does not set bad = 1] = Pr[Gj = b ∧ Gj does not set bad = 1]

for any b.

A simpler-to-analyze game. Following Bellare and Ristenpart [5], we now gradually
make changes to game GqDDH

B(A) , until we reach game G3, which will be easier to analyze.
In the sequel let goodi denote the event that bad is never set to bad = 1 in Game i.

Game 0. We define G0 := GqDDH
B(A) , which implies

Pr[GqDDH
B(A) = 1 ∧ good] = Pr[G0 = 1 ∧ good0] and Pr[good] = Pr[good0]

Game 1. In this game the procedures Initialize1, Evaluate1, Challenge1, and
Finalize1 described in Figure 5 are used. Note that Initialize1 generates a normal
VRF key pair (vk , sk), and Evaluate1 and Challenge1 use the secret key sk to
evaluate the VRF and to create the challenge.

However, note that sk is only used in Evaluate1(X)-queries with FK(X) = 1,
and Challenge1(X

∗)-queries with FK(X∗) = 0. This mimics the simulation of B
perfecty, in particular all outputs computed by these procedures are distributed exactly
like in Game 0. This implies that

Pr[G1 = 1 ∧ good1] = Pr[G0 = 1 ∧ good0] and Pr[good1] = Pr[good0]
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Procedures for Game G1:

Evaluate1(X) :

(Y, π) := ⊥
If FK(X) �= 1 then

bad := 1
Else

(Y, π)
$← Eval(sk , X)

Return (Y, π)

Challenge1(X
∗) :

Y ∗ := ⊥
If FK(X) = 1 then

bad := 1
Else

If b = 1 then
(Y ∗, π) $← Eval(sk , X)

Else Y ∗ $← GT

Return Y ∗

Finalize1(b
′) :

If bad = 1 then c′ $← {0, 1}
Else c′ := b′

If c′ = b then Return 1
Else Return 0

Initialize1(X) :

bad := 0
(vk , sk)

$← GenC(1
k)

b
$← {0, 1}

K
$← AdmSmp(1k, Q, δ)

Return vk

Procedures for Game G2 (new instructions are highlighted in boxes):

Evaluate2(X) :

(Y, π) := ⊥
If FK(X) �= 1 then

bad := 1

(Y, π)
$← Eval(sk , X)

Else
(Y, π)

$← Eval(sk , X)
Return (Y, π)

Challenge2(X
∗) :

Y ∗ := ⊥
If FK(X) = 1 then

bad := 1
If b = 1 then

(Y ∗, π) $← Eval(sk , X)

Else Y ∗ $← GT

Else
If b = 1 then

(Y ∗, π) $← Eval(sk , X)

Else Y ∗ $← GT

Return Y ∗

Finalize2(b
′) :

If bad = 1 then c′ := b′

Else c′ := b′

If c′ = b then Return 1
Else Return 0

Procedures for Game G3 (new instructions are highlighted in boxes):

Evaluate3(X) :

X := X ∪ {X}
(Y, π)

$← Eval(sk , X)
Return (Y, π)

Challenge3(X
∗) :

If b = 1 then
(Y ∗, π) $← Eval(sk , X)

Else Y ∗ $← GT

Return Y ∗

Initialize3(X) :
bad := 0
(vk , sk)

$← GenC(1
k)

b
$← {0, 1}

X := ∅
Return vk

Finalize3(b
′) :

K
$← AdmSmp(1k, Q, δ)

For X ∈ X do

If FK(X) �= 1 then bad := 1

If FK(X∗) = 1 then bad := 1

c′ := b′

If c′ = b then Return 1
Else Return 0

Fig. 5. Procedures defining the sequence of games in the proof of Lemma 1
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Game 2. In this game we set Initialize2 := Initialize1, and define Finalize2,
Evaluate2, and Challenge2 as depicted in Figure 5. Note that Games G2 and G1
proceed identical until bad is set, thus by Lemma 3 we have

Pr[G2 = 1 ∧ good2] = Pr[G1 = 1 ∧ good1] and Pr[good2] = Pr[good1]

Game 3. Note that the outputs of procedures Evaluate2 and Challenge2 are inde-
pendent of K , only Finalize2 depends on K . Therefore we can simplify our descrip-
tion of the game, by choosing K only at the end of the game, and checking only then if
bad needs to be set to bad := 1.

Formally, in Game G3 the procedures Initialize3, Evaluate3, Challenge3, and
Finalize3 described in Figure 5 are used. All changes are purely conceptual, thus we
have

Pr[G3 = 1 ∧ good3] = Pr[G2 = 1 ∧ good2] and Pr[good3] = Pr[good2]

Note also that now K is chosen only after A asks Finalize3.

Analysis of Game G3. It remains to derive bounds on Pr[G3 = 1 ∧ good3] and
Pr[good3]. Let X denote the set

X := {(X(1), . . . , X(Q), X∗) : X∗ �= X(i), 1 ≤ i ≤ Q}

of all sequences of queries a legitimate attacker A may ask, and let X∗ ∈ X . Let γ(X∗)
denote the probability of good3 (over the choice of K), if the particular sequence X∗

of queries is asked. Note that γ(X∗) equals the probability in Equation (3), so that γmin

is a lower bound on the smallest value of γ(X∗) over all X∗ ∈ X , and γmax is an upper
bound on the largest value of γ(X∗) over all X∗ ∈ X . Let Q(X∗) denote the event that
the execution of Game G3 results in the particular sequence X∗. Then we can state the
following lemma (which corresponds to [6, Lemma 3.4]).

Lemma 4. For any X∗ as defined above holds that

Pr[G3 = 1 ∧ good3 ∧ Q(X∗)] = γ(X∗) · Pr[G3 = 1 ∧Q(X∗)]
Pr[good3 ∧ Q(X∗)] = γ(X∗) · Pr[Q(X∗)]

The proof of Lemma 4 is nearly identical to the proof of [6, Lemma 3.4], and therefore
deferred to Appendix B.
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Now we can compute

AdvqDDH
B (k) = 2 · Pr[GqDDH

B(A) = 1 ∧ good]− Pr[good] (7)

= 2 · Pr[G3 = 1 ∧ good3]− Pr[good3] (8)

= 2 ·
∑

X∗∈X
Pr[G3 = 1 ∧ good3 ∧Q(X∗)]−

∑

X∗∈X
Pr[good3 ∧Q(X∗)]

(9)

= 2 ·
∑

X∗∈X
γ(X∗) · Pr[G3 = 1 ∧ Q(X∗)]−

∑

X∗∈X
γ(X∗) · Pr[Q(X∗)]

(10)

≥ 2 · γmin ·
∑

X∗∈X
Pr[G3 = 1 ∧ Q(X∗)]− γmax ·

∑

X∗∈X
Pr[Q(X∗)]

= 2 · γmin · Pr[G3 = 1]− γmax (11)

= 2 · γmin · (AdvVF
A (k) + 1)/2− γmax

= γmin · AdvVF
A (k)− γmax + γmin

≥ 2 · γmin · δ − γmax + γmin (12)

Here, (7) is due to Equation (6), (8) follows from the sequence of games described
above, (9) and (11) follow from the fact that we sum over mutually exclusive events
Q(X∗) with

∑
X∗∈X Pr[Q(X∗)] = 1, (10) is by Lemma 4, and (12) by the definition

of δ ≤ AdvVF
A (k)/2.

B Proof of Lemma 4

The execution of AdmSmp in Game 3 uses random coins which are independent of the
rest of the game. Therefore, the set of random coins underlying Game 3 can be seen as
a cross product Ω = Ω′×RK , where each member is a pair (ω′, rK) ∈ Ω such that rK
denotes the random coins used by algorithm AdmSmp, and ω′ denotes all other coins
of the experiment and the attacker.

Note that that any particular choice X∗ of a sequence of queries made by A depends
only on ω′, because in Game 3 algorithm AdmSmp is executed in the Finalize3-
procedure, when the sequence of queries X∗ issued by the attacker is already fixed.
Thus, for all X∗ ∈ X let Ω′(X∗) denote the set of all ω′ ∈ Ω′ that produce the partic-
ular sequence of queries X∗. Similarly, note that the probability that Game 3 outputs 1
depends only on Ω′.

Let Ω′
1 ⊆ Ω′ denote the set of all ω′ ∈ Ω′ such that the experiment outputs 1. Let

Rgood(X
∗) ⊆ RK denote the set of all coins leading to an AHF key K such that for

X∗ = (X(1), . . . , X(Q), X∗) holds that

FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0

Then the set of coins such that G3 = 1 is Ω′
1 × RK , and the set of coins leading to

good3 ∧ Q(X∗) is Ω′(X∗)×Rgood(X
∗). Now we can compute
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Pr[G3 = 1 ∧ good3 ∧ Q(X∗)] =
|(Ω′

1 ×RK) ∩ (Ω′(X∗)×Rgood(X
∗))|

|Ω′ ×RK |
=

|(Ω′
1 ∩Ω′(X∗))×Rgood(X

∗)|
|Ω′ ×RK |

=
|Ω′

1 ∩Ω′(X∗)| · |Rgood(X
∗)|

|Ω′| · |RK |
=

|Ω′
1 ∩Ω′(X∗)| · |RK |

|Ω′| · |RK | · |Rgood(X
∗)|

|RK |
=

|(Ω′
1 ∩Ω′(X∗))×RK |

|Ω′ ×RK | · |Rgood(X
∗)|

|RK |
= Pr[G3 = 1 ∧ Q(X∗)] · γ(X∗)

and

Pr[good3 ∧ Q(X∗)] =
|Ω′(X∗)×Rgood(X

∗)|
|Ω′ ×RK |

=
|Ω′(X∗)| · |Rgood(X

∗)|
|Ω′| · |RK |

=
|Ω′(X∗)| · |RK |

|Ω′| · |RK | · |Rgood(X
∗)|

|RK |
=

|Ω′(X∗)×RK |
|Ω′ ×RK | · |Rgood(X

∗)|
|RK |

= Pr[Q(X∗)] · γ(X∗)
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