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Abstract. Assuming the existence of indistinguishability obfuscation
(i0), we show that a number of prominent transformations in the random-
oracle model are uninstantiable in the standard model. We start by
showing that the Encrypt-with-Hash transform of Bellare, Boldyreva and
O’Neill (CRYPTO 2007) for converting randomized public-key encryp-
tion schemes to deterministic ones is not instantiable in the standard
model. To this end, we build on the recent work of Brzuska, Farshim
and Mittelbach (CRYPTO 2014) and rely on the existence of iO for
Turing machines or for circuits to derive two flavors of uninstantiability.
The techniques that we use to establish this result are flexible and lend
themselves to a number of other transformations such as the classical
Fujisaki-Okamoto transform (CRYPTO 1998) and transformations akin
to those by Bellare and Keelveedhi (CRYPTO 2011) and Douceur et al.
(ICDCS 2002) for obtaining KDM-secure encryption and de-duplication
schemes respectively. Our results call for a re-assessment of scheme design
in the random-oracle model and highlight the need for new transforms
that do not suffer from iO-based attacks.

Keywords: Random oracle, uninstantiability, indistinguishability ob-
fuscation, deterministic encryption, UCE, Fujisaki-Okamoto transform,
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1 Introduction

1.1 Background

The random-oracle model (ROM) [18] is an idealized model of computation
where all parties, honest or otherwise, have oracle access to a uniformly cho-
sen random function. Random oracles model ideal hash functions and have
found a plethora of applications in cryptography. They have enabled the security
proofs of a wide range of practical cryptosystems which include, amongst oth-
ers, digital signature schemes, CCA-secure encryption, key-exchange protocols,
identity-based encryption, cryptosystems that are resilient to related-key and
key-dependent-message attacks, as well as more advanced security goals such
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as deterministic encryption of high-entropy messages, de-duplication schemes,
and point-function obfuscators. After designing and analyzing the scheme in the
random-oracle model, one then instantiates the oracle via a concrete, possibly
keyed, hash function. In this paper we revisit this methodology and show that
a number of prominent ROM cryptosystems cannot be securely instantiated in
the standard model.

1.2 Uninstantiability

The power and practicality of random oracles drew early attention to their
standard-model instantiations. Canetti, Goldreich and Halevi (CGH) [33] demon-
strated a general negative result by constructing digital signature and encryption
schemes which are secure in the random-oracle model but become insecure as
soon as the oracle is instantiated with any concrete hash function. Such unin-
stantiable schemes rely on the existence of a compact description for concrete
hash functions and lack of one for truly random functions. Roughly speaking,
the idea is to take a secure ROM scheme and tweak it slightly so that it behaves
securely unless it is run on messages that match the code of the hash function
used in the instantiation, in which case it does something “obviously insecure’
(e.g., returns the signing key or the message).

A number of other works have further studied uninstantiability problems as-
sociated with random oracles. In a follow-up work [34], CGH extend their result
to signature schemes which only support short messages. Bellare, Boldyreva and
Palacio [8] show that no instantiation of the hashed ElGamal key-encapsulation
mechanism composes well with symmetric schemes, even though it enjoys this
property in the ROM. Goldwasser and Kalai [44] study the Fiat—Shamir heuristic
and establish uninstantiability results for it. Nielsen [51] gives an uninstantiable
cryptographic task, namely that of non-interactive, non-committing encryption,
which although achievable in the ROM, is infeasible in the standard model. CGH-
type uninstantiability has been adapted to other models of computations such
as the ideal-cipher model [21] and the generic-group model [36].

A number of recent works have looked into ROM (un)instantiability in light
of the recently proposed candidate for indistinguishability obfuscation (iO) [39].
A secure indistinguishability obfuscator guarantees that the obfuscations of any
two functionally equivalent programs (modeled as circuits or Turing machines)
are computationally indistinguishable. On the positive side, Hohenberger, Sahai
and Waters [46] show how to instantiate the hash function in full-domain hash
(FDH) signatures using i0. Bellare, Stepanovs and Tessaro [19] show the first
standard-model construction for polynomially many hardcore bits for any one-
way function. Recently, Brzuska and Mittelbach [31] have shown how to use
iO to instantiate certain forms of Universal Computational Extractors (UCEs).
UCE is a novel framework of security notions introduced by Bellare, Hoang and
Keelveedhi [12] and can be used to generically instantiate random oracles in
many protocols.
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On the negative side, Brzuska, Farshim and Mittelbach [27] show that un-
der the existence of iO, several security notions in the UCE framework are
uninstantiable in the standard model, and proposed fixes to salvage many of
the applications. Brzuska and Mittelbach [30] show that assuming iO, multi-bit
output point-function obfuscation secure in the presence of auxiliary information
cannot be realized. Both results can be interpreted as conditional uninstantiabil-
ity results as ROM constructions for both UCEs [12,50] and strong multi-output
bit point obfuscation [48] exist. Bitansky et al. [20] show that indistinguishabil-
ity obfuscation rules out the existence of certain types of extractable one-way
function families which can be constructed in the random-oracle model [32].

1.3 Owur Results

Our work continues the study of uninstantiability of random oracles and shows
that a number of well-known and widely deployed ROM transforms are provably
uninstantiable if indistinguishability obfuscators exist. More specifically, we are
interested in ROM transformations TRO that take as input any standard-model
scheme S which is guaranteed to satisfy a mild form of security, and convert S
into a new scheme TRO[S] in the random-oracle model that meets a stronger level
of security. A fundamental question for such transforms is their instantiability,
that is, whether or not there exists an efficient hash function H such that TH[S] is
strongly secure for any mildly secure S. We show a number of negative results in
this direction, which take the form: there is a mildly secure scheme S* such that
no matter which hash function H is picked, scheme TH[S*] is provably insecure.

Our results come in two flavors depending on the class of programs that the
indistinguishability obfuscator supports. Assuming iO for circuits of a priori
bounded size b, we show there is a ROM cryptosystem which is uninstantiable
with respect to keyed hash functions of description size at most b. This means
that there exists a scheme Sy such that for any hash function H of description
size at most b the scheme TH[S}] is insecure. This, in particular, yields an unin-
stantiability result for any fixed and finite set of hash functions. This result,
however, does not rule out instantiating the oracle with hash functions which
have larger description size and are in some sense “more complex” than the base
scheme. By assuming the existence of iO for Turing machines we are able to
further strengthen this result to one which rules out instantiations with respect
to any, possibly scheme-dependent, hash function.

Overview of BFM. We build on techniques of Brzuska, Farshim and Mittel-
bach (BFM) [27] to construct our uninstantiable schemes and briefly recall their
technique here. BFM utilize the power of indistinguishability obfuscation to
show that a recent notion of security for hash functions known as UCEL is



Random-Oracle Uninstantiability from Indistinguishability Obfuscation 431

uninstantiable in the standard model.! To this end, BFM construct an adversary
which outputs an indistinguishability obfuscation of the Boolean circuit

C[l‘,y](hk) = (H(hk,l‘) = y) )

where x is a random domain point and y is the corresponding hash value
which could be real or ideal. That is, the circuit C[z,y] has « and y hard-coded
into it and gets as input a hash key hk, computes H(hk, z) and outputs 1 if and
only if this value is equal to y.

BFM need to argue that an indistinguishability obfuscation of this circuit
hides « whenever y is truly random (and not computed by applying the hash-
function to x). They prove this by a counting argument that establishes that,
under appropriate restrictions on the lengths of y and the length of the key
hk, the above circuit implements the constant zero circuit with overwhelming
probability. They then employ the security of the obfuscator to conclude as
the zero circuit is independent of z. The restriction that they require, is that
the number of hash keys hk is much smaller than the size of the range 2!¥!,
which means that y (with overwhelming probability) is outside the image of the
function H(-,z) that has a fixed x and maps hash-keys hk to H(hk,z). On the
other hand, the above circuit returns 1 when the hash value y is computed as
H(hk, z) and hk as the correct hash key is plugged into C[z,y].

Techniques. In our uninstantiability results for encryption, we will embed an
obfuscated program into the ciphertext.? We now describe this program which
is a universal variant of the BFM circuit. This program takes as input the full
description of a hash function Hyy, including its key hk if there is one, and returns
the result of running the BFM circuit on the input hash-function description. It
performs the latter in the standard way by using a universal evaluator UEval,
which could be a universal Turing machine or a universal circuit evaluator, de-
pending on the considered model of computation.

Plz, yl(Hnk) := (UEval(Hhk, z) = y) .

So, the program P[z, y] has « and y hard-coded and takes as input a description of
Hpk, computes Huk(x) and checks whether this value is equal to y. In other words,
we no longer consider a fixed keyed hash function, but instead (potentially) look
at the set of all hash functions on a given range and domain.? (Similar ideas have

! In UCE1 (later renamed to UCE[S®P]) security a two-stage adversary needs to
distinguish a hash function from a random oracle. The first-stage adversary is given
oracle access to either the hash function under a random key or the random oracle.
It does not get to see the hash key but can leak a message to the second-stage
adversary on termination, which additionally gets the hash key and outputs a bit.
The second-stage adversary can no longer call the oracle. UCEL security requires
that the leaked message should be such that it does not computationally reveal any
of the oracle queries when the oracle is a random function.

2 We speak of programs which can be modeled either as circuits or as Turing machines.

3 Alternatively, we are looking at the universal hash function.
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been used by Brzuska and Mittelbach [30] to study the feasibility of multi-bit
output point function obfuscation in the presence of auxiliary inputs under the iO
assumption.) Note that P[x,y] is either a circuit or a Turing machine depending
on the underlying universal evaluator UEval. In adopting this approach, a number
of technicalities need to be addressed, which we discuss next.

Our ultimate goal is to derive a strong result which rules out instantiations (of
a transformation) by arbitrary hash functions. This means that program P above
should accept inputs of arbitrary length. This, however, lies beyond the powers of
the circuit model of computation which current indistinguishability obfuscators
support. We address this problem in two incomparable ways. First, we weaken
target uninstantiability and under iO for circuits rule out instantiations by a
priori bounded-size hash functions. Second, in order to strengthen this result to
full uninstantiability, we consider a stronger form of iO which supports Turing
machines. For our purposes, the crucial difference between iO for circuits and
iO fro Turing machines is that an obfuscated Turing machine is still a Turing
machine which can process inputs of arbitrary length. (Note that the actual
Turing machine that we need to obfuscate is a universal Turing machine and has
an a priori fixed size.) Our theorem statements will therefore contain two parts
to reflect this trade off between the strength of assumptions and the reach of the
uninstantiability result obtained.

A second problem arises from the fact that the number of possible hash func-
tion descriptions might be greater than 2!¥! so that we cannot directly apply
BFM’s counting argument. We overcome this obstacle by composing both sides
of the equality in P with a pseudorandom generator (PRG) and look at

Plz, y](Hnk) := (PRG(UEval(Hnk, z)) = PRG(y)) .

This does not affect the success probability of the attack and allows us to argue
that = remains hidden as follows: First note that the right-hand side PRG(y) is
a constant that does not depend on the program input and can thus be hard-
coded into the program. Now, in a first step we can replace the right hand-
side value with a truly random value by the security of the PRG. Note that in
this step we do mot rely on the security of the obfuscator and merely use the
indistinguishability of program descriptions. Indeed, the two programs might
implement significantly different functionalities. Next, we use the fact that a
truly random value is, with overwhelming probability, outside the range of a PRG
with sufficiently long stretch. Hence, the obfuscations of the above program are
computationally indistinguishable from those of the zero program. We note that
our usage of the PRG is somewhat similar to that by Sahai and Waters in their
construction of a CCA-secure PKE scheme from iO [55], the range extension of
Matsuda and Hanaoka [49] of a multi-bit point function to obtain shorter point
values, the range-extension of a UCE1l-secure hash function by Bellare, Hoang
and Keelveedhi [14], and the negative result of Brzuska and Mittelbach [30] on
multi-bit point-function obfuscation with auxiliary inputs.
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Assumptions. Garg et al. [39] construct an indistinguishability obfuscator for N'C 1
circuits based on intractability assumptions related to multi-linear maps, and show
how to bootstrap it to support all polynomial-time circuits via a fully homomor-
phic encryption scheme with a decryption circuit in NC!. The authors validate
their multi-linear intractability assumption in a generic model of computation. Re-
cent results show how to improve the assumptions used in constructing indistin-
guishability obfuscators [52,26,4,3,42], further supporting their plausibility.
Indistinguishability obfuscation for Turing machines has been constructed in
the works of Boyle, Chung and Pass [25] and Ananth et al. [2]. The authors
study a stronger primitive called extractability or differing-inputs obfuscation
(diO) which extends iO to circuits (and Turing machines) that are not necessarily
functionally equivalent. The requirement is that any adversary that can break the
indistinguishability property can be converted to an extractor that can output
a point on which the two circuits differ. Boyle, Chung and Pass [25] and Ananth
et al. [2] show how to build iO for Turing machines assuming diO for circuits.
The plausibility of differing-inputs obfuscation, however, has become somewhat
controversial due to a recent result of Garg et al. [40]. These authors show that
the existence of a special-purpose obfuscator for a signature scheme implies that
diO with arbitrary auxiliary input cannot exist. Although we currently do not
know how to build this special-purpose obfuscator, its existence appears to be a
milder assumption than diO, one can consider its existence to be more likely. It is
therefore important to seek alternative instantiations of iO for Turing machines
from assumptions that are weaker than diO for circuits. Indeed, very recently and
shortly after the appearance of this work, Koppula, Lewko and Waters [47] have
succeeded in constructing iO for Turing machines without relying on diO, and
using i0 for circuits, one-way functions and injective pseudorandom generators.

Deterministic encryption. Our first result establishes the uninstantiability of
the Encrypt-with-Hash (EwH) transform of Bellare, Boldyreva and O’Neill [7],
whereby one converts a randomized IND-CPA public-key encryption scheme into
a deterministic public-key encryption (D-PKE) scheme D-PKE by extracting the
randomness needed for encryption via hashing the message and the public key,
that is, the encryption algorithm D—PKE.EncRO("')(m, (hk, pk)) first computes
random coins r < RO(hk, pk|lm) and then invokes the base encryption algo-
rithm on message m, public key pk and random coins r to generate a ciphertext.
This simple transformation meets the strongest notion of security that has been
proposed for deterministic encryption (that is, PRIV security) in the ROM if
the underlying encryption scheme is IND-CPA secure. Standard-model construc-
tions, on the other hand, achieve weaker levels of security, e.g., security against
block sources [10,22] or g-bounded adversaries [38,29]. To this end, we ask if any
hash function can be used to instantiate the random oracle within the EwH trans-
form. Assuming iO for circuits/Turing machines, we build an IND-CPA secure
encryption scheme such that when the EwH transform is applied to this specially
devised encryption scheme together with some (b-bounded) hash-function, the
resulting scheme is not PRIV-secure, not even for block-sources or 1-bounded
PRIV-security.



434 C. Brzuska P. Farshim, and A. Mittelbach

Starting with an arbitrary scheme PKE we consider a new scheme PKE* which
includes an indistinguishability obfuscation of the following program as part of
its ciphertexts.

P[pk, m,r](Hnk) := if (PRG(UEval(Hhk, pk||m)) = PRG(r))
return m

else return 0

This program performs a check similar to that of the universal BFM circuit,
but instead of returning a Boolean value returns the encrypted messages when
the check passes. That is, in P[pk, m, r], the public-key pk, the message m and the
randomness r are parameters, and the program takes as input a hash-function
Hhk (potentially with some hard-coded key hk), evaluates Hnk on pk||m to get
some value y. Then, it applies PRG to y and checks whether PRG(y) is equal to
PRG(r). If this is the case, it returns the message m. Else, it returns 0.

We can use an obfuscation of this program to attack the security of EwH"! [PKE"].
The second stage of the adversary runs this program on the description Hpy of the
hash function that is used in the instantiation (with hard-coded hk) to obtain the
encrypted message. A corollary of this result is that under iO, no security assump-
tion (single or multi-staged, falsifiable or not) is strong enough to build D-PKEs
via EwH. In particular, a new UCE assumption used to instantiate EwH [15] is
uninstantiable assuming iO for Turing machines (and b-bounded uninstantiable
assuming iO for circuits). We remark that our results are incomparable to those of
Wichs [57] who shows an unconditional unprovability result for D-PKEs using ar-
bitrary techniques from single-stage assumptions. (Our results are conditional and
show uninstantiability of EwH regardless of the assumptions used.) This result nat-
urally extends to the Randomized-Encrypt-with-Hash [9] transform for building
hedged PKEs.

The Fujisaki—Okamoto transform. The above result generalizes to a wider class
of (possibly randomized) admissible transformations that use their underlying
PKE schemes in a structured way and admit recovery algorithms that satisfy
certain correctness properties. (We leave the details to the main body.) Some-
what surprisingly, the Fujisaki-Okamoto (FO) transform for converting CPA
into CCA security is admissible and thus suffers from uninstantiability. The FO
transform, which dates back to the 1990s, is a simple and flexible technique
to boost security of various schemes and has been widely used in identity-based
encryption [24], its hierarchical and fuzzy variants [43,56], forward-secure encryp-
tion [35], and certificateless and certificate-based encryption [1,41] to mention
a few. Our results, once again, come in two flavors depending on the strength
of the underlying obfuscator. Our techniques can be further tweaked to show
that one cannot instantiate the oracle used within the asymmetric component
of the FO transform. This means that the POWHF-encryption assumption of
Boldyreva and Fischlin [23] used for partial instantiation of the oracles in FO is
also uninstantiable if 10 /10O for Turing machines exists.
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Other constructs. The uninstantiability problems arising from the existence of
indistinguishability obfuscators are not limited to deterministic encryptions and
its generalizations. We revisit the work of Bellare and Keelveedhi (BK) [16] on
authenticated and misuse-resistant encryption of key-dependent data and show
that it too suffers from uninstantiability problems. Roughly speaking, BK give a
transformation called RHtE to convert authenticated encryption into one which
resists key-dependent-message (KDM) attacks. This is done by hashing the key
with a random nonce to derive the actual key used in encryption: one encrypts
m as (N, Enc(H(hk, N||k),m)) for a random nonce N. Our iO-based uninstan-
tiability result describes an IND-CPA and INT-CTXT-secure authenticated en-
cryption (AE) scheme whose BK transformation is not KDM secure.

Interestingly, BK require the base scheme to meet a stronger security level
than IND-CPA: ciphertexts should be indistinguishable from random strings.
BK do not consider this difference to be of major importance; in the abstract
of their paper they write that they present a RO-transform RHtE that endows
any AFE-scheme with this security. Our result brings this stronger requirement
to light, and shows that assuming that ciphertexts are pseudorandom might be
a way to circumvent uninstantiability as the current state-of-the-art obfuscators
produce programs that are structured and do not look random. Conversely, if an
indistinguishability obfuscator can produce obfuscations of the zero circuit that
look random,* then reverting to the stronger security notion would no longer be
of any help.

As a final example we show that the Convergent-Encryption transform of
Douceur et al. [37] formalized by Bellare, Keelveedhi and Ristenpart (BKR) [17]
for building message-locked encryption is also uninstantiable. Once again, BKR
formally rely on pseudorandomness of ciphertexts but similar observation to
those given above for BK apply here too.

Comparison with CGH. Recall that Canetti, Goldreich and Halevi (CGH) [33]
show the uninstantiability of certain ROM digital signature and encryption
schemes without relying on iO. Their technique is to give a (contrived) scheme
that is secure in the random oracle model but behaves anomalously on cer-
tain inputs that are related to a compact description of the hash function. Our
uninstantiability results share these features, that is, neither their nor our unin-
stantiability results apply to “natural” schemes. For instance, it is not known
if Encrypt-with-Hash when used with ElGamal is uninstantiable or not. On the
other hand, our results apply to natural transformations.

It is natural to ask if CGH-like techniques can be directly applied here so as to
obtain uninstantiability results that do not rely on the iO machinery. For unin-
stantiability with respect to unkeyed hash functions, one can indeed construct
anomalous PKE schemes which follow the CGH paradigm and give the desired

4 Note that generally, obfuscations of circuits cannot look random, because obfusca-
tion maintains functionality and thus, the obfuscations of the zero circuit would be
distinguishable from those of the constant one circuit. This trivial attack, however,
does not apply here if we require pseudorandomness only for the zero circuit.
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uninstantiability result for Encrypt-with-Hash. For keyed hash functions, on the
other hand, there seems to be an inherent limitation to CGH-like techniques.
For instance, the security model for D-PKEs do not allow message distributions
to depend on the hash key as this value is included in the public key and the
latter is denied to the first-stage adversary. Consequently there is no way to
generate messages which contain the full description of the hash function used,
including its key, which seems to be necessary when applying CGH-like tech-
niques. It might appear that this issue can be easily resolved by noting that the
encryption routine does have access to the hash key, and a full description of
the hash function can be formed at this point. The caveat, however, is that such
an uninstantiable scheme no longer falls under the umbrella of schemes arising
from the Encrypt-with-Hash transform. More precisely, although we can freely
modify the base PKE to prove uninstantiability, the transformation is fized and
it only allows black-box access to the hash function and denies encryption access
to the hash key.? This observation applies to other transformations as well. For
instance, in the FO transformation the message that is asymmetrically encrypted
is chosen uniformly at random and thus cannot be set to the description of the
hash function. To summarize, although the description of the hash function will
be eventually made public, the adversarial scheme never gets to the hash func-
tion in full and needs to coordinate the attack with the actual adversary, who
sees the hash key, to be successful. Indistinguishability obfuscation allows this
distributed attack to be carried out.

Concurrent work. In concurrent and independent work, Green et al. [45] use 10
and techniques similar to ours to demonstrate the uninstantiability of random-
oracle schemes. Like us, they embed an obfuscated program into schemes in
order to make them uninstantiable. Our results, however, rule out the instantia-
bility of (existing) random-oracle transformations whereas Green at al. construct
uninstantiable schemes for primitives which cannot be targeted with CGH-like
techniques. For instance bit encryption falls outside the reach of CGH as its
input space is too short and cannot be made to behave anomalously on special
long inputs. Green et al. show that indistinguishability obfuscation can be used
to extended CGH to such constrained primitives.

Primitive design. The shortcomings of ROM primitives that we have identified
call for a re-assessment of primitives whose security analyses have only been
carried out in idealized models of computation. To highlight the importance of
this task, we propose a new transform for building deterministic encryption that
is specifically designed to bypass our attacks. In this transform one encrypts
two values independently across two invocations of the underlying encryption
algorithm to make sure that the information needed for the attack is not available
to any of the invocations. (This transform, in particular, is not admissible.) We
prove this scheme secure in the ROM, but show that the program that one

® Despite this, CGH-like techniques render Encrypt-with-Hash uninstantiable when
stronger notions of security are considered [53].
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would need to successfully attack the construction (assuming the availability of
all needed information) can be split into several programs such that by feeding
obfuscations of one program into the obfuscations of another an attack can be
launched. We leave the characterization of the class of transformations which
fall prey to extensions of the iO attack as an interesting open problem.

We believe that the structural soundness of ROM schemes should be fur-
ther validated by studying if attacks similar to those given in this work can be
launched against them. To provably rule out such attacks one needs to reduce se-
curity to assumptions, which although strong, are not known to be uninstantiable
under existence of (d)iO. Candidate examples include UCEs against statistically
and/or strongly unpredictable sources [27,31] and indeed indistinguishability ob-
fuscation itself. We note that recently Bellare and Hoang [11] have proposed a
D-PKE transform starting from lossy trapdoor function and statistical UCEs.
This approach can be further combined with stronger assumptions on the base
schemes (such as pseudorandomness of ciphertexts). Indeed, it would be inter-
esting to derive positive results that circumvent iO-based uninstantiability by
merely exploiting the pseudorandomness of ciphertexts, even for somewhat arti-
ficial tasks. These would strengthen our confidence in applying the random-oracle
methodology despite the broad uninstantiability results presented in this paper.

2 Preliminaries

Notation. We denote the security parameter by A € N and assume that it is
implicitly given to all algorithms in the unary representation 1*. We denote the
set of all bit strings of length ¢ by {0, 1}, the set of all bit strings of finite length
by {0,1}*, the length of x € {0,1}* by |z|, the concatenation of two strings
x1,x2 € {0,1}* by z1||z2, and the exclusive-or of two strings z1,z2 € {0,1}*
of the same length by x1 @ x2. The i-th bit of a string x is indicated by x[i].
We denote the empty string by €. A vector of strings x is written in boldface,
and x[i] denotes its i-th entry. The number of entries of x is denoted by |x]|.
For a finite set X, we denote the cardinality of X by |X| and the action of
sampling x uniformly at random from X by z<+-s X. For a random variable X
we denote the support of X by [X]. A real-valued function v(A) is negligible if
v(\) € O(A~*W)). We denote the set of all negligible functions by negl.

An algorithm is a randomized, stateless Turing machine unless otherwise
stated. We call an algorithm efficient or PPT if its runtime on any choice of
inputs and random coins is at most a polynomial function of the security pa-
rameter. The action of running an algorithm A on input  and random coins r
is denoted by y + A(z;r). If A is randomized and no randomness is specified,
then we assume that A is run with freshly and uniformly generated random
coins and write y+s A(z). An adversary is a tuple of stateful PPT algorithms.
We omit explicit input and output states to ease notations. When an adversary
A = (A1, Az) consists of two stages A; and As, these two stages are assumed to
be distinct algorithms that do not share any state, unless explicitly permitted
to do so by a game.
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Turing machines and circuits. Throughout the paper we consider two models of
computation: Turing machines and circuits. Recall that a Turing machine can
take inputs of arbitrary length whereas the input length to a circuit is fixed.
We denote the runtime of a Turing machine M on input z by timem(z) and
its description size by |M|. We denote the size (a.k.a. runtime) of a circuit C
by |C|. A wuniversal Turing machine UM is a machine that takes two inputs
(M, z), interprets M as the description of a Turing machine and returns M(x).
A wuniversal circuit UC is defined analogously on descriptions of circuits C and
inputs « for them. Note that UC only accepts inputs (C,x) of a specific total
length, whereas UM can take inputs of arbitrary length. In order to simplify the
presentation we use the term program to refer to either a Turing machine or a
circuit. We may, therefore, speak of a universal program UEval, which denotes
either a universal Turing machine UM or a universal circuit UC, and evaluates
a program P on some input z. When defining a program, we use the notation
P[z](:) to emphasize the fact that the value z is hard-coded into P.

Indistinguishability obfuscation. We define indistinguishability obfuscation for
circuits and Turing machines under a single definition. Roughly speaking, an
indistinguishability obfuscator (i0) ensures that the obfuscations of any two
functionally equivalent programs (that is, circuits or Turing machines) are
computationally indistinguishable. Indistinguishability obfuscation was originally
proposed by Barak et al. [6,5] as a potential weakening of the virtual-black-
box obfuscation property, for which wide infeasibility results are known. Here
we give a game-based definition of indistinguishability obfuscation in the style
of [19] with extensions to also cover obfuscation for Turing machines [2]. We only
consider the setting where both the sampler and distinguisher are uniform but
allow the sampler to output inequivalent programs with negligible probability.
This game-based formulation is convenient for use in proofs of security.

A PPT algorithm iO is called an indistinguishability obfuscator for a program
class P = {P»}ren if iO on input the security parameter 1* and (the description
of) a program P outputs a program P’ and furthermore the following conditions
are satisfied:

— CORRECTNESS. For all A € N, all P € Py, and all P+ iO(1*,P), the
programs P and P’ are functionally equivalent. That is, P(z) = P’(z) for all
input values x.

— SUCCINCTNESS. There is a polynomial poly such that for all A € N, all P € P,
and all P’ < iO(1*, P) we have that |P’| € O(poly(\ + |P])).

— INPUT-SPECIFIC RUNTIME. There is a polynomial poly such that for all A € N,
all P € Py and all P/« iO(1*,P) and all input values = we have that
Timep/(x) € O(poly(A + Timep(x))).

— SECURITY. For any pair of PPT adversaries (S, D), where S is an equivalent
sampler, i.e., where

Adv'(A) := Pr[Fzs.t. Po(z) # Pi(z) V Timep, (z) # Timep, () :
(Po, Py, aux) < S(l)‘)]
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is negligible, we have that
AV 5, p(N) =2 Pr [TOZP (V)] — 1€ negl,

where game 10 is shown in Figure 1 on the left.

When working with circuits, succinctness and runtime requirements are redun-
dant and follow from the facts that iO is polynomial time and that the size and
runtime of a circuit are identical.

Garg et al. [39] prove that under intractability assumptions related to multi-
linear maps an indistinguishability obfuscator supporting all NC! circuits exists.
Assuming the existence of a perfectly correct, leveled fully homomorphic en-
cryption scheme and a perfectly sound non-interactive witness-indistinguishable
proof system, they also show how to extended this to support all polynomial-size
circuits, i.e., the family C := {Cy(x)} xen Where b is a polynomial and

Ch(n) = {C: Cis a valid circuit of size at most b(\)} .

Several follow-up works improved the assumptions underlying indistinguishabil-
ity obfuscators as well as the performance [52,26,3,4,42]. As mentioned above,
circuits and obfuscations thereof admit fixed-length inputs only.

Remark. We define indistinguishability obfuscation with respect to circuit sam-
plers that are overwhelmingly equivalent, i.e., where

Advgl()) € negl .

Although we allow samplers to not always output functionally equivalent circuits,
the randomized sampler only errs with negligible probability. For any bound b,
existence of iO for Cy,(y) under our definition is implied by the (non-uniform)
definition of Garg et al. [39].

Ananth et al. [2] and Boyle et al. [25] give constructions of indistinguishability
obfuscators for Turing machines which admit inputs of arbitrary lengths. Their
constructions achieve the stronger notion of differing-inputs (a.k.a. extractabil-
ity) obfuscation, initially also suggested in the work of Barak et al. [6,5]. This
type of obfuscation can be regarded as a generalization of indistinguishability
obfuscation to programs which are not necessarily functionally equivalent. We
recall [2, Theorem 3] and refer the reader to the original works for details and
discussion.

Theorem 1 (Ananth et al. [2]). Under the existence of CPA-secure leveled
fully homomorphic encryption, succinct non-interactive arguments of knowledge
(SNARKs), differing-inputs obfuscation for all circuits in P /poly, and collision-
resistant hash functions, there exists a differing-inputs obfuscator for the class
of all Turing machines M := { My} en, where

My :={M : M is a valid Turing machine of description size at most A} .

Koppula, Lewko and Waters [47] have succeeded in constructing iO for Turing
machines without relying on diO, and using iO for circuits, one-way functions
and injective pseudorandom generators.
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1057 () IND-CPA# () INDALA2(N)

(Po,P1,auz) s S(1) (s, pk) s PKEKg(1*)  (mo,my) ¢ A; (1*)

b+s{0,1} (mo, m1) <s A(pk) (sk, pk) <s D-PKE.Kg(1%)

P’ s i0(1%,Py) b<s{0,1} b+s{0,1}

b «s D(P', aux) c+s PKE.Enc(pk, mys) for i=1...|mg|do

return (b=1b") b s Alc) c[i] + D-PKE.Enc(pk, m,[i])
return (b =1") b s Az(pk, c)

return (b=1")

Fig. 1. Left: IO game defining the security of an indistinguishability obfuscator. Mid-
dle: The IND-CPA game for a public-key encryption scheme. Right: The IND security
game for deterministic PKEs.

Public-key encryption. A public-key encryption scheme PKE := (PKE.Kg,
PKE.Enc, PKE.Dec) consists of three PPT algorithms as follows. On input the
security parameter, the randomized key-generation algorithm PKE.Kg(1*) gener-
ates a key pair (sk, pk). The randomized encryption algorithm PKE.Enc(pk, m;r)
gets a message m, a public key pk and possibly some explicit random coins r and
outputs a ciphertext c. The deterministic decryption algorithm PKE.Dec(sk, ¢) is
given a ciphertext ¢ and secret key sk and outputs a plaintext m or a special sym-
bol L. We denote the supported message length by PKE.il(\) and the maximum
length of random strings used to encrypt a PKE.il(\)-bit message by PKE.rl(}\).
We say that scheme PKE is correct if for all A € N, all m € PKE.il(}\), all
(sk, pk) € [PKE.Kg(1*)] and all ¢ € [Enc(pk, m)] we have that PKE.Dec(sk, ¢) = m.
We say that PKE is IND-CPA secure, if the advantage of any PPT adversary A
in the IND-CPA game (shown in Figure 1; center) defined by

AdvePi(A) == 2 Pr[IND-CPAZ (V)] — 1
is negligible.

Function families. Following [19], we define a function family FF as a five tuple
of PPT algorithms (FF.Kg, FF.Ev, FF.kI, FF.il, FF.ol) where the algorithms FF.kl,
FF.il, and FF.ol are deterministic and on input 1* specify the key, input, and out-
put lengths, respectively. The key-generation algorithm FF.Kg gets the security
parameter 1% as input and outputs a key fk € {O,l}FF'k'()‘). The determinis-
tic evaluation algorithm FF.Ev takes as input the security parameter 1*, a key
fk, a message € {0,1}FFN) and generates a hash value FF.Ev(1*,fk,z) €
{0, 1}FFoI) We will often refer to function families as hash functions in this
work.

PRFs and PRGs. We say that a function family FF is pseudorandom if for any
PPT adversary A we have that

AV 4 () 1= Pr| ATFEMI (1) = 1] = Pr[ ARCO (1Y) = 1] € negl .
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In the first term above, the probability is taken over a random choice of a key
fk € {0,1}FFKN) and in the second over a random choice of RO with domain
{0, 1}FF1(\) and range {0, 1}FFoI(0),

We say (PRG, PRG.il, PRG.ol) is a secure pseudorandom generator if PRG on
strings of length PRG.il(\) outputs strings of length PRG.ol(\) and for any PPT
adversary A we have that

AdvBEz 4 () == Pr[A(1* PRG(s)) = 1 :5 = {0, 1}PREIV]
— Pr[A(1Y,y) = 1 : y ¢ {0, 1} PRGNV

is negligible.

Keyed random oracles. Most random-oracle transformations and schemes in the
literature are analyzed in the “unkeyed” random-oracle model, and this reflects
the fact that a fixed unkeyed hash function will be used in their instantiations.
Keyed hash functions, however, are more powerful when it comes to instantiating
random oracles and this leaves the question of how the scheme is to be instantiated
with a keyed hash function, that is, how the hash key is to be generated and who
gets access to it is rather unclear. For example, if we consider a transformation of
symmetric encryption schemes, the hash key could be part of the key-generation
process in which case it remains hidden from the adversary, or it could be a param-
eter generated during set-up, in which case it would be available to the adversary.
We therefore use a generalization of the standard random-oracle model whereby
all parties get access to a keyed random function. More precisely, in the (kl, il, ol)-
ROM, where (kl, il, ol) specify various lengths as before, on security parameter A
all parties get access to a random function of the form

RO(,) . {0’1}kl(>\) % {07 1}i|(/\) N {0’1}ol(/\) .

Note that we recover the standard unkeyed random-oracle model when kl(A) =0
(there is only one key ¢, the empty string). In defining the security of a cryptosys-
tem, the underlying probability space is extended to include a random choice
of a keyed function (and choices of random key as specified by the scheme).
Whether or not a party gets to see the hash key depends on the specification of
the scheme and its security model. For instance, if a keyed ROM scheme includes
hash keys under its public keys, an honest or malicious party gets to sees the
hash key whenever it gets to see the public key. As our result is a negative result,
it suffices to consider weak adversaries that do not get oracle access and/or the
hash key in some of their stages, because weaker adversaries correspond to a
stronger negative result.

(Un)instantiability. Given a scheme in the keyed ROM, we consider its standard-
model instantiations via (concrete) keyed hash functions. Formally, this entails:
(1) using a hash function that has key, input and output lengths that are identical
to those of the keyed random oracle, (2) running the key-generation algorithm
whenever a hash key is generated in the ideal scheme, and (3) calling the evalu-
ation routine of the hash function whenever an oracle query is placed. Given a
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keyed ROM scheme and a security model for it, we say that the scheme is in-
stantiable if there exists a hash function which when used to instantiate the
scheme (and its security model) results in a secure scheme (with respect to the
instantiated security model). Conversely, we say that a scheme is (strongly) unin-
stantiable if no hash function can securely instantiate the ideal scheme. Finally,
for a polynomial bound p, we call a scheme b-uninstantiable, if no hash function
of size at most b(\) can securely instantiate the scheme.

3 Deterministic Encryption

We start by studying the Encrypt-with-Hash (EwH) transform of Bellare,
Boldyreva and O’Neill (BBO) [7] for building deterministic encryption from
standard (randomized) encryption schemes. We show that under the existence
of indistinguishability obfuscation there is an IND-CPA public-key encryption
scheme that cannot be safely used within EwH. We begin by formally defining
the syntax and security of deterministic PKEs and the EwH transform. We then
prove uninstantiability, and end with two corollaries of this result.

3.1 Definitions

Deterministic public-key encryption. Deterministic public-key encryption was
first introduced by Bellare, Boldyreva and O’Neill [7]. The syntax and cor-
rectness of a deterministic public-key encryption (D-PKE) scheme D-PKE :=
(D-PKE.Kg, D-PKE.Enc, D-PKE.Dec) is defined similarly to a randomized PKE
scheme with the difference that the encryption routine is deterministic (i.e.,
D-PKE.rl(A) = 0). BBO [7] model the security of D-PKEs via a form of simulation-
based notion called PRIV. In later works, Bellare et al. [10] and independently
Boldyreva, Fehr and O’Neill [22] introduce an indistinguishability-based notion
called IND and show that it implies is equivalent to PRIV security. The IND
game is formally defined in Figure 1 on the right.® Roughly speaking, an IND
adversary A := (A1, Az) consists of two stages. On input the security parameter,
adversary A; outputs a pair of message vectors (mg, m;) of the same dimension
that have distinct components and component-wise contain messages of the same
length. (Adversary A; does not get to see the public key.) Furthermore, each
component is required to have super-logarithmic min-entropy. This condition is
formalized by requiring that for any = € {0, 1}P-PKEIN) "any b € {0,1} and any
i € [Jmyl],
Pr[z = my[i] : (mg, my) < A;(1*)] € negl .

A key pair (pk, sk) <—s D-PKE.Kg(1%) is then chosen, and according to the chal-
lenge bit b, one of the two message vectors is encrypted component-wise. The
second-stage adversary Ay is run on the resulting vector of ciphertexts and the

5 Bellare et al. [10] allow an additional zeroth-stage adversary to output shared state
for adversaries A; and As. As we prove an impossibility result we choose the weaker
definition where this shared state is empty.
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public key, and wins the game if it correctly guesses the hidden bit b. We define
the advantage of an adversary A in the IND game (see Figure 1) against scheme
D-PKE by

in Ay LA
AdVD—Cli:’KE,AhAQ(/\) =2-Pr [INDD-PKE M-1.

We say that scheme D-PKE is IND secure if the advantage of any PPT adversary
A = (A1, A2) in the IND game is negligible. The 1-bounded version of this
security model demands that the two vectors (mg,m;) only contain a single
message each.

The Encrypt-with-Hash transform. The Encrypt-with-Hash (EwH) transform
constructs a deterministic public-key encryption scheme from a (randomized)
public-key encryption scheme PKE in the random-oracle model [7]. We present
this transform in the keyed ROM, and note that it matches the original transform
for singleton key spaces. The keyed RO is assumed to have a range which matches
the randomness space of the PKE scheme and a domain which consisting of all bit
strings of length the maximum length of public keys plus the length of messages.
The EwH transform operates as follows.

The key-generation generates a key pair using the key-generation algorithm
of the base PKE scheme. It also generates a hash key hk <s {0, 1}““) and re-
turns (sk, (hk, pk)). Algorithm D-PKE.Enc®OC+) (m, (hk, pk)) first computes ran-
dom coins r < RO(hk, pk|lm) and then invokes the base encryption algorithm
on m and pk and coins r to generate a ciphertext. The decryption routine is iden-
tical to that of the underlying scheme (plus a ciphertext re-computation check
to ensure non-malleability). EwH results in an IND-secure D-PKE scheme in the
keyed ROM when starting from an IND-CPA public-key encryption scheme.

Key access in EwH. With the formalism introduced above, both adversaries A;
and Ay get oracle access to RO(:, -). The first-stage adversary, however, does not
get to see hk since the hash key is distributed as a component of the public keys.
The second-stage adversary, on the other hand, does get to see it. A stronger
model where the hash key is given out in the first stage can be considered. EwH
meets this stronger notion of security, but since our results are negative we use
the conventional (and weaker) IND model.

3.2 Uninstantiability of EwH

When the EwH transformation is instantiated with an unkeyed random oracle
a CGH-style uninstantiability result can be directly established [33]. (This in
particular shows that the use of a keyed hash function is necessary to instan-
tiate EwH.) Given an arbitrary PKE scheme PKE, consider a tweaked variant
of it PKE’ which first interprets parts of the message m as the description of a
hash function H (together with its single key) and checks if the provided random
coins r match the hash value H(pk||m). If so, it returns O||m and else it returns
1||PKE.Enc(pk, m;r). Scheme PKE' is still IND-CPA secure because the proba-
bility that a truly random value r matches H(pk|jm) is negligible. On the other
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hand, when the random coins are generated deterministically by applying a hash
function, an IND adversary which asks for encryptions of m;||H for any two high
min-entropy messages mg and mj; which differ, say, on their most significant
bits can easily win the game.” The standard IND game, however, restricts the
first-stage adversary not to learn the public key, and thus, it cannot guess the
(high min-entropy) hash key.

We show how to use indistinguishability obfuscation to extend the above
uninstantiability to keyed hash functions. As mentioned in the introduction, our
result comes in the weak and strong flavors depending on the programs that the
obfuscator is assumed to support. Assuming iO for Turing machines we obtain a
strong uninstantiability result: there exists an IND-CPA encryption scheme that
cannot be securely used in EwH in conjunction with any keyed hash function.
Assuming the weaker notion of iO for circuits, we get b-uninstantiability: for any
polynomial bound b there exists an IND-CPA scheme that cannot be securely
used in EwH for any hash function whose description size is at most b. The latter
result is still quite strong as, in particular, it means that for any finite set of
hash functions (e.g., those which are standardized), we can give a PKE scheme
that when used within EwH yields an insecure D-PKE scheme for any choice of
hash function from the set. We note that the adversarial PKE scheme that we
construct depends only on an upper bound on description sizes and not on their
implementation details.

Theorem 2 (Uninstantiability of EwH). Assuming the existence of indistin-
guishability obfuscation for Turing machines M (resp. b-bounded circuits Cy,),
the EwH transform is uninstantiable (resp. b-uninstantiable) with respect to IND
security in the standard model.

We start by giving a high-level description of the proof before presenting the de-
tails. We may assume, without loss of generality, that an IND-CPA-secure PKE
scheme exists as otherwise uninstantiability trivially holds. This, in turn, implies
that we can also assume the existence of a secure pseudorandom generator.

Now given an IND-CPA-secure PKE scheme PKE, we construct a tweaked
scheme PKE* that is also IND-CPA secure but the D-PKE scheme EwH" [PKE*]
fails to be IND secure.

To construct the adversarial scheme PKE* we follow a similar strategy to CGH.
The fundamental difference here is that PKE*.Enc does not have access to the
hash key. To overcome this problem, we consider the obfuscation of a program
P’ that implements a universal variant of the BFM circuit [27], i.e., it takes as
input the description of a hash function H(hk,-), with a hard-wired key, runs it
on two values m and pk embedded into P’, and outputs m if the result matches
a third hard-wired value 7:

P’ [pk, m, ] (H(hk, )) := if H(hk, pk||m) = r return m else return 0 .

" This attack generalizes to the setting where the first-stage adversary can guess the
hash key with non-negligible probability and in particular, EwH is uninstantiable
with respect to the stronger IND model discussed above.
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The tweak that we introduce in PKE" is that the encryption operation appends
obfuscations of P’/[pk, m,r] to its ciphertexts, where pk, m and r are the values
input to the encryption routine.

We need to argue (1) that this tweak allows an adversary to break the scheme
whenever the hash function is instantiated and (2) that outputting such an
indistinguishability obfuscation of P’ does not hurt the IND-CPA security of
PKE*.

For (1), note that given an obfuscation of P’[pk, m, r| as well as a description
of H(hk, -), an adversary can recover m by running the above circuit on H(hk, ).
Now the second stage of the IND adversary gets the public key and thus the
description of the hash-function H(hk,-). Furthermore, it also gets a ciphertext
which contains an obfuscation of P’[pk, m, r]. Hence, the second-stage adversary
has all the information needed to break the IND security of the deterministic
encryption scheme EwH" [PKE*].

Now, intuitively, this insecurity might have nothing to do with the transform
because the tweaked scheme PKE™ is already insecure anyway. Hence, we also
need to argue that PKE", as a randomized encryption scheme, is IND-CPA secure.
Following BFM, we try to prove this by showing that the obfuscated circuit
is functionally equivalent to the zero circuit and hence it does not leak any
information about m.

We would like to argue that for a truly random r—such an r is used in ran-
domized encryption—P’ implements the constant zero program Z. Indeed, if r is
sufficiently longer than |pk| + |m/| then for any fixed H(hk, -), over a random choice
of r the check performed by P’ would fail with all but negligible probability. This,
however, does not necessarily mean that the circuit is functionally equivalent to Z
as there could ezist a hash function H(hk, -) which passes the check. Contrary to
BFM, we cannot bound the probability of this event via the union bound as the
number of hash descriptions might exceed the size of the randomness space.

To resolve this issue, we consider a further tweak to the base scheme. We
consider a scheme which has a much smaller randomness space and instead
uses coins that are pseudorandomly generated. This ensures that the randomness
space used by PKE is sparse within the set of all possible coins, allowing a
counting argument to go through. We adapt the program above to cater for the
new tweaks:

Ppk, m, PRG(r)] (H(hk, -)) .= if PRG(H(hk, pk|[m)) = PRG(r)

return m

else return O .

At this point it might appear that no progress has been made as the above
program, for reasons similar to those given above, is not functionally equiva-
lent to Z. We note, however, that for a truly random s € {0,1}PRG°IN) the
program P[pk, m,s] has a description which is indistinguishable from that of
P[pk, m, PRG(r)] down to the security of PRG. Furthermore for such an s, this
program can be shown to be functionally equivalent to the zero circuit with
overwhelming probability as s will be outside the range of the PRG with over-
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whelming probability. These two steps allow us to prove that obfuscations of P
leak no information about m, and show that scheme PKE* is IND-CPA secure.

Finally, notice that obfuscations of P (similarly to those of P’) allow an IND
adversary to break the resulting EwH-transformed scheme: simply run the ob-
fuscation of P on the description of the hash function used in the instantiation
(with a hard-wired key) to recover the encrypted message.

Not that formally program P will use a universal program evaluator to run
its input hash-function descriptions. If the (obfuscated) program is a Turing
machine, it can be run on arbitrary large descriptions and arbitrarily sized hash
functions are ruled out. On the other hand, if the program is a circuit, it has
an a priori fized input length, and thus can only be run on hash functions that
respect the input-size restrictions. We next formalize this proof intuition.

Proof (of Theorem 2). Let PKE be an IND-CPA-secure public-key encryption
scheme, PRG be a pseudorandom generator of appropriate stretch and iO be an
indistinguishability obfuscator supporting either Turing machines or circuits. We
define a modified PKE scheme PKE" as follows. The key-generation algorithm
is unchanged. The adapted encryption algorithm is defined as shown below by
appending an obfuscated program P to its outputs. UEval denotes a universal
program evaluator. The modified decryption algorithm ignores the P component
and decrypts as in the base scheme.

Arco. PKE*.Enc(pk, m;r||r’) Proa. P[pk, m, s|(H(hk,-))
s < PRG(r) 7|7’ < UEval(H(hk, -), pk||m)
¢ + PKE.Enc(pk,m;s) s’ < PRG(r)

P <« iO(P[pk, m, s](-); ") if (s = 5) then return m
return (c, P) return 0

When we consider the above construction with respect to circuits, we need to
specify an extra parameter b that upper-bounds the size of the inputs to the
universal circuit evaluator. This maximum size of programs that the universal
circuit admits corresponds to the maximum size of the hash functions that our
uninstantiability proof applies to. Note that when the construction is considered
for Turing machines, the input size is arbitrary.

We show that the above tweaked scheme PKE* is IND-CPA secure via a
sequence of four games that we describe next. We present the pseudocode in
Figure 2.

Gameg: This game is identical to the IND-CPA game for the randomized base
scheme PKE* and an arbitrary adversary A.

Game;: In this game the randomness s used in encryption is no longer generated
via a PRG call and is sampled uniformly at random.

Games: In this game the ciphertext component P is generated as an indistin-
guishability obfuscation of the zero program (that is, Turing machine or
circuit) Z padded to the appropriate length (and running time).

We now show that each of the above transitions negligibly changes the game’s
output with respect to any adversary A.
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PRG i0

/\ /\
Gamep () Gamei () Gamez ()
b+s{0,1} bs{0,1} bs{0,1}
(sk, pk) <—s PKE.Kg(1*) (s, pk) s PKE.Kg(1") (sk, pk) <—s PKE.Kg(1)
(mo, m1) <s A(pk) (mo, m1) <s A(pk) (mo, m1) <s A(pk)
rllr’ =5 {0, TYPFEAN ) s {0, 1}PKETY | s {0, 13PRENOY
s « PRG(r) s {0, 1}PRGAIO) s {0, 1)PREAI)
¢ < PKE(pk,my; s) ¢ <+ PKE(pk, mp; s) ¢ < PKE(pk, mp; s)
P < iO(P[pk,my, ;") P « iO(P[pk, mu, s];7") P 4= iO(Z p(ph,my,s]3 )
b s A(c,P) b s A(c, P) b’ s A(c,P)
return (b’ = b) return (b’ = b) return (b’ = b)

Fig. 2. Hybrids used in the proof of Theorem 2. The highlighted lines show the changes
in game transitions.

Gamey to Game;. We bound the difference in these games by the security of
PRG. Note that a PRG adversary that gets as input y, a PRG image under a
uniformly random seed or a truly uniformly random value, can perfectly simulate
games Gameg and Game; for A by using y in place of s. If y is a PRG image,
then Gamey is run and if y is uniformly random the Game; is run:

Pr[Gameg())] — Pr[Game;(\)] < Advpge 4(A) -

Game; to Games. We show that this hop negligibly affects the winning proba-
bility of A down to the security of the indistinguishability obfuscator. We let S
to be the sampler which runs all the steps of Game; using the first phase of A
up to the generation of P. It then sets Py := P[pk,my, s], P1 := Zjp,| and auw
to be the ciphertext component ¢ and the internal state of the first phase of the
IND-CPA adversary. Algorithm D receives an obfuscationP of either Py or P,
and resumes the second phase of A on (¢, P) using the state recovered from aux.
When Py is obfuscated A is run according to the rules of Game; and when P; is
obfuscated A is run according to the rules of Games. Hence,

Pr[Game; ()] — Pr[Gamez())] < Advid s p(A) .

We must show that the sampler S constructed above outputs functionally equiv-
alent circuits with overwhelming probability. Assuming that the stretch of the
PRG is sufficiently large, i.e., PRG.ol(A) > 2-PRG.il()), by the union bound the
probability over a random choice of s that there ezxists an r € {0, 1}PRG'”(A) such
that PRG(7) = s is upper bounded by 2PRGI(N=PRG.oI(A) < 9=PRG.iI(N)  Hence,
the probability that Py is functionally inequivalent to the zero circuit is upper
bounded by 2-PRGIN) that is,

Pr[3zPy(z) # 0 : (Po, P1, auz) +—s S(1*)] < 27PRGIA)
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When working with Turing machines, we also need to ensure that the two pro-
grams used above respect the run-time requirements of the definition of a secure
indistinguishability obfuscator for Turning machines. Formally, we will imple-
ment the Turing machines P and Z obliviously as follows. We first consider an
oblivious Turing machine which takes in the description of the hash function and
a message as input and performs exactly the same computation that P does. We
then implement P by fixing the message input of this machine to that passed to
the encryption algorithm, retaining the machine’s oblivious structure. The same
strategy will be used in constructing the zero circuit, where the constant zero
message (of correct length) is hard-wired in. Since these machines are oblivious,
their runtimes depend only on the sizes of the message and the hash description
and hence coincide.

Gamey. We reduce the advantage of A in Gamey to the IND-CPA security of
scheme PKE. The only difference between this game and the usual IND-CPA
game for PKE is that an obfuscation of Zjp(,x,m,,s)| is attached to the ciphertexts.
This program has a public description and hence its obfuscations can be perfectly
simulated. Hence,

2-Pr[Games(\)] — 1 < Advg}g;?j\()\) .

THE ATTACK. To conclude the proof, we show there exists an adversary (A;, . Az)
that breaks the IND security of EwH"[PKE*] for any function H that respects
the input requirements of P (arbitrary if P is a Turing machine, and b-bounded if
a circuit). Adversary A; chooses two values xg, z; < {0, 1}PKEI) =1 yniformly
at random and outputs messages mg := zo||0 and m := x1]|1. Observe that 4,
adheres to the entropy requirements of admissible IND adversaries. Adversary
Aj gets as input the public key (pk, hk) and a ciphertext (¢, P). It then evaluates
P on the description of hash function H(hk,-) with key hk recovered from the
public key and hard-coded into the program description. (Note that if we are
considering circuits, the description of this circuit must have size at most b(\).)
Adversary As returns the least significant bit of P’s output. This adversary and
its operation within the IND game is shown in Figure 3. By the correctness of
the obfuscator, (A;, A2) always win IND with probability 1 irrespectively of the
message that is encrypted:

AdViDn-(IiDKE,Al,AQ()\) = ]' N

3.3 Consequences for UCEs

We turn to Universal Computational Extractors (UCEs), a novel notion intro-
duced by Bellare, Hoang and Keelveedhi (BHK) [12] to generically instantiate
random oracles across a number of cryptographic protocols. UCEs constitute a
set of assumptions that roughly speaking model the strong extractor properties
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INDALA2 ()

EwHH[PKE*]
11 b+s{0,1}

2 (mo,ml) s Al(lk)
Lo s {07 1}PKE4iI(A)—1
21 s {07 1}PKE4iI(>\)71
return (z0]|0, z1||1)

s: (sk, pk) <s D-PKE.Kg(1%)

11 hk<s HKg(1%)

. (¢, P) < EwH"[PKE*].Enc((pk, hk),ms)
|7’ < H.Ev(hk, pk||ms)
(c,P) + PKE*.Enc((pk, hk), mp; r||r")
s + PRG(r)
¢ < PKE.Enc(pk, ms; )
P < iO(P[pk, mw, s](-); ")
return (c,P)

o

return (c,P)

6 : b/ < A2(1A7 (pk, hk)v (Cv P))
my, < P(H(hk, "))
b < mp[|mes]]
return b’

7: return (b=10)

Fig. 3. The IND-security game for scheme EwH"[PKE*] with our adversary (A:, A2)
as constructed in the proof of Theorem 2. The boxed algorithms are to be understood
as subroutines.

enjoyed by (keyed) random oracles. One application of this new framework has
been to the EwH transform. BHK [15] show that if a scheme PKE is IND-CPA
secure and a hash function H meets what they call UCE[S®"P N Spkg] security
then EwH"[PKE] is IND secure. (We refer the reader to the May 2014 version
of the paper for the details.) We emphasize that this security definition depends
on the PKE scheme, because the source class Spkg is restricted to those which
run the PKE scheme as a subroutine. Our negative results on EwH show that
UCEI[S"P N Spke] security is uninstantiable.

Corollary 1 (UCE[S"P N Spke] Uninstantiability). Assuming the existence
of indistinguishability obfuscation for Turing machines M (resp. b-bounded cir-
cuits Cy ), UCE[S"P N Spke] security for hash functions is uninstantiable (resp.
b-uninstantiable) in the standard model.

We remark that BHK based the security of EwH on other stronger UCE as-
sumptions [12,13]. Our results also show the uninstantiability of these notions
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assuming indistinguishability obfuscation and in particular imply the negative
results of [27]. In particular, we can rule out the instantiatiability of the so-
called bounded paralell sources[13] by considering sources that internally run an
obfuscator. (This translates to D-PKE schemes which run an obfuscator in their
encryption routine as we constrcut above.) The results of BFM [27], however,
rule out a wider choice of parameters for bounded paralell sources.

3.4 Extension to Hedged PKEs

Hedged public-key encryption, introduced by Bellare et al. [9] models the security
of public-key encryption schemes where the random coins used in encryption
might have low entropy. Indistinguishability under chosen-distribution attacks
(IND-CDA) shown in Figure 4 formalizes the security of hedged PKEs. This
notion is similar to IND and the only difference is that the adversary additionally
to the two message vectors also outputs a randomness vector. The high min-
entropy restriction is spread over the message and randomness vectors. When
the length of the randomness entries is 0, one recovers the IND model for D-
PKEs. A transform similar to EwH, called Randomized Encrypt-with-Hash, can
be defined for hedged PKEs [9]: hash the message, public key and the randomness
to obtain new coins, and use them in encryption. Our uninstantiability result
can be immediately adapted to this transform as long as the message space has
super-polynomial size:

Proa. Plpk,m, s|(H, p)

r <— UEval(H, pk|jm||p)
s < PRG(r)
if (s’ = 5) then return m

return 0

That is, the program takes an additional input p that allows the attacker to
specify the randomness. We note that this requires the adversary to choose
the randomness in a predictable way, which does not violate the min-entropy
requirements as long as the min-entropy of the messages is sufficiently high. We
note that if one strengthens the IND-CDA notion to require the randomness
distribution to have super-logarithmic min entropy, our attacks would no longer
work. This in particular is the case if the message space of the scheme is small.

3.5 Other Uninstantiability Results

In the full version of the paper [28] we show that our uninstantiability results
can be further leveraged to rule out standard-model instantiations of a number
of other known transformations. We generalize the 1O attack to what we call
admissible transformations, and show that the classical and widely deployed
Fujisaki-Okamoto transformation [FO99] falls under it. We also show that a
generic approach to building secure symmetric encryption in the presence of
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IND-CDA; B2 (V)
b<s{0,1}
(mo, my, r) s A (17)
(sk, pk) +s H-PKE.Kg(1")
for i=1...|mg|do
c[i] < H-PKE.Enc(pk, m,[i]; r[i])
b s Az(pk, c)

return (b’ = b)

Fig. 4. The IND-CDA security game for hedged public-key encryption without initial
adversaries. Our results carry over to a setting where an initial adversary that passes
state to the first and second phase of the attack is present [54].

key-dependent messages, and another one for building de-duplication schemes
are uninstantiable.

In the full version, we also explore new classes of D-PKE transformations that
lie beyond those captured by admissible transformations. We present a candidate
transformation that is specifically designed to foil our iO attack. We first show
that this transformation is structurally sound by proving it secure in the ROM.
We then show how to extend our techniques to this (and potentially other classes
of) transformations. Our goal is to illustrate the flexibility of our main technique
and show that it can be tweaked and extended in many ways.

4 Concluding Remarks

The uninstantiability results presented in this paper (and the generalization pre-
sented in the full version [28]) demonstrate the applicability of our techniques to
a more general class of transforms beyond those captured by admissible transfor-
mations. It seems an intricate task to characterize the class of transformations
which are subject to our iO-based attacks. It is also an interesting and non-
trivial question to propose a D-PKE transformation that is not subject to our
uninstantiability result.

One promising avenue is to build schemes based on assumptions from the
framework of Universal Computational Extractors (UCEs) [15]. For instance,
Bellare, Hoang and Keelveedhi [15] show that message-locked encryption can be
based on UCE[S®"P], that is, UCEs with statistically unpredictable sources. This
result, however, is not generic with respect to symmetric encryption schemes
but rather fixes the base symmetric scheme. Note also that iO is not known
to contradict statistical UCEs [27]. Very recently, Bellare and Hoang [11] have
proposed a similar transform for D-PKE starting from lossy trapdoor functions.

Alternatively, one could switch to schemes that meet stronger notions of se-
curity. For instance, IND$-type security notions that require the ciphertexts to
be indistinguishable from random do not lend themselves to out attacks as it is
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unclear if obfuscation schemes can provide circuits which are indistinguishable
from random strings.
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