
Separations in Circular Security

for Arbitrary Length Key Cycles

Venkata Koppula, Kim Ramchen, and Brent Waters�

University of Texas at Austin, Austin, USA
{kvenkata,kramchen,bwaters}@cs.utexas.edu

Abstract. While standard notions of security suffice to protect any mes-
sage supplied by an adversary, in some situations stronger notions of
security are required. One such notion is n-circular security, where ci-
phertexts Enc(pk1, sk2),Enc(pk2, sk3), . . . ,Enc(pkn, sk1) should be indis-
tinguishable from encryptions of zero.

In this work we prove the following results for n-circular security,
based upon recent candidate constructions of indistinguishability obfus-
cation [18,16] and one way functions:

– For any n there exists an encryption scheme that is IND-CPA secure
but not n-circular secure.

– There exists a bit encryption scheme that is IND-CPA secure, but
not 1-circular secure.

– If there exists an encryption system where an attacker can distin-
guish a key encryption cycle from an encryption of zeroes, then in
a transformed cryptosystem there exists an attacker which recovers
secret keys from the encryption cycles.

The last result is generic and applies to any such cryptosystem.

1 Introduction

The classical notion of secure encryption, due to Goldwasser and Micali [20]
demands that random encryptions of two messages submitted by the adversary
should be indistinguishable. However this security notion makes no guarantees
about the security of encrypting messages which the adversary is unable to gen-
erate - indeed this was observed by Goldwasser and Micali. Of particular interest
is when an adversary can receive encryptions of messages which depend upon
the secret key. The resulting notion of security against key dependent message
attacks was first studied by Black et al [8].
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A particularly prominent special case of KDM security, introduced by Ca-
menisch and Lysyanskaya [14], is n-circular security. Let pk1, . . . , pkn be public
keys. An encryption scheme is said to be n-circular secure, if an adversary is
unable to distinguish Enc(pk1, sk2),Enc(pk2, sk3), . . . ,Enc(pkn, sk1) from corre-
sponding zero encryptions. Camenisch and Lysyanskaya used circular secure en-
cryption to build an anonymous credentials scheme with “all or nothing” sharing
[14]. In fact, circular security for n ≥ 1 arises naturally in many other applica-
tions. A common scenario is when a disk utility is used to encrypt a partition
on which the secret key has been stored. Another situation is Gentry’s “boot-
strapping” of a somewhat homomorphic encryption to a fully homomorphic en-
cryption [19]. In this case the decryption circuit associated with the secret key
is encrypted and published in the public parameters and used to “refresh” a
ciphertext periodically. Finally, circular security is used in formal methods to
prove the soundness of symbolic protocols [2,22].

There have been several postive results on circular security and more generally
KDM security. In the random oracle model, Black et al. [8] and independently
Camenisch and Lysyanskaya [14] gave constructions for KDM secure encryption.
Some time later Boneh, Hamburg, Halevi and Ostrovsky gave the first construc-
tion of circular secure encryption in the standard model [9]. Their construction
provided instantiations of n-circular secure encryption for arbitrary n and in
fact provided security for a broader class of key dependent messages - namely
all affine functions of the secret key. Continuing in this vein, Applebaum et al
[5] presented efficient constructions for affine functions under the LWE and LPN
assumptions - the former for public key encryption and both for symmetric key
encryption. Later works [21,11,7,12,4,23,13,3] focussed on extending the class of
functions and improving efficiency of the constructions.

While there have been many positive advances for circular secure encryption
and related functionalities, fewer negative results are known. One fundamental
question is whether it might be possible that circular security is implied by se-
mantic security? If this held, then it would have important consequences for
the design of cryptographic primitives. In particular, an affirmative answer for
any n would imply a method to construct secure fully homomorphic encryption
from mildly or leveled homomorphic encryption. For small n concrete negative
results are known. Indeed for n = 1, a folklore counterexample exists. For n = 2,
Acar et al. [1] presented a counterexample under the SXDH assumption. Cash
et al. [15] showed how to strengthen this result, with a counterexample for n = 2
under a weaker definition of circular security. Despite these advances, for n > 2
the problem has largely remained open.

A related question is whether bit-by-bit encryption might suffice for protecting
the secret key, i.e. ensure 1-circular security. Again there is partial negative
information in that Rothblum [25] has showed, interestingly, that if there exist
l-multilinear groups of order p, with p ≤ 2l, in which the SXDH assumption
holds, then there exists a semantically secure encryption scheme which is not 1-
circular secure. Unfortunately, existing candidates for multilinear group schemes
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[17,16] do not meet the SXDH requirement.1 Consequently there are no existing
candidates for the Rothblum counterexample. As Rothblum observes, if bit by bit
encryption implied circular security, this would give another avenue for utilizing
Gentry’s bootstrapping.

1.1 Our Contribution

We present the following results:

Counterexample for n-Circular Security. We construct an encryption
scheme that is IND-CPA secure but not n-circular secure.

Bit Encryption Counterexample. We construct a bit encryption scheme
that is IND-CPA secure, but not circular secure.

Key Recovery from n-Circular Insecurity. Suppose there exists an IND-
CPA secure encryption system where there exists an adversary that can dis-
tinguish an encryption cycle from the encryption of zeroes. We show how to
transform this into an IND-CPA security cryptosystem where the adversary
can recover the secret keys from the encryption cycle.

Both the constructions utilize the recent construction of indistinguishability
obfuscation for polynomial sized circuits by Garg et al. [18] and one way func-
tions. An indistinguishability obfuscation of a program g is a program iO(g)
with a weaker security guarantee: if two programs g and g′ have the same input-
output behavior, then iO(g) and iO(g′) are computationally indistinguishable.
As argued by [18,27], indistinguishability obfuscation is the weakest definition of
obfuscation, and unlike black box obfuscation, there are no known impossibility
results for indistinguishability obfuscation.

Counterexample for n-circular security: We begin by giving intuition for our
encryption scheme. Let us consider any IND-CPA secure encryption scheme
PKE = (Keygen,Encrypt,Decrypt). We show how this encryption scheme can
by modified by providing some auxiliary information as part of the ciphertext,
so that the scheme is n-circular insecure, and at the same time, remains IND-CPA
secure. We approach the problem in two steps. We first design an approach that
works with black box obfuscation. Then we design new techniques to move our
construction and proof of security to use indistinguishability obfuscation.

To construct our counterexample we begin with a standard encryption system
and then modify the encryption algorithm. When encrypting a message m, in
addition to the PKE ciphertext c, we also give out a cycle detection program gm

which can be used to detect whether a cycle is present or not. The program gm

has m hardwired, takes n inputs c1, . . . , cn, and works as follows: It decrypts,
if possible, c2 using m to obtain m2, c3 using m2 to obtain m3 and so on.

1 One interesting question is whether there is a simple modification of Rothblum’s
candidate construction and proof that can be modified to work under the current
multilinear candidates. Neither we nor the author of the construction are aware of
any such modification [26].
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If any decryption fails, it aborts and outputs 0. If it reaches the end of cycle, it
outputs 1.

Let us consider a polynomial time adversary who is given n ciphertexts
ct1, . . . , ctn, where each cti consists of a PKE ciphertext ci and a program gi.
The adversary runs program g1 with inputs c1, . . . , cn. If these are encryptions of
secret keys sk2, . . . , skn, sk1 respectively, then g1 runs to completion outputting
1, else it outputs 0. Therefore, using this additional information, we can detect
whether there is a cycle or not. However, this scheme in itself is not IND-CPA
secure since gm may leak the value m. Therefore, as part of the ciphertext, we
publish a black box obfuscation of gm: O(gm). One can then argue that black
box obfuscation ensures that the value m is not leaked, and hence it is IND-CPA
secure.

Unfortunately, as shown by [6], it is not possible to achieve general black box
obfuscation even for simple functionalities;2 therefore, we modify our construc-
tion so as to use the weaker indistinguishability obfuscation. Our key idea is to
have a set of valid and invalid public keys for each secret key such that the valid
and invalid public keys are computationally indistinguishable from just the pub-
lic key, but validity is discernible given a secret key. In our system we use such
keys. In addition, at the end of the cycle detection program, we add a validity
check, to ensure that pk1 is a valid public key corresponding to mn.

While this modification still ensures that the scheme is n-circular insecure,
we need to prove IND-CPA security. Our proof of this proceeds in two hybrid
steps. First, since the valid and invalid keys are indistinguishable, the real IND-
CPA security game is computationally indistinguishable from one in which we
substitute invalid public keys for the real ones. Next, we observe that these
invalid public keys must necessarily fail the validity check at the end of the
cycle detection program, and therefore the program always outputs 0. Therefore,
instead of outputting an obfuscation of the cycle detection program, if we output
the obfuscation of a program that always outputs 0, the two hybrids remain
indistinguishable by the property of indistinguishability obfuscation. Finally, a
program that always aborts leaks no information about m, and therefore the
scheme is IND-CPA secure.

One potential view of this is as a novel and extreme application of punctured
programming [27]. Once we alter the keys to be invalid, we can completely gut the
obfuscated program to be one that simply outputs 0. In indepedent and concur-
rent work Boneh and Zhandry [10] apply a notion similar to our invalid/valid key
structure (although they do not use that terminology) to building multi-party
key exchange, broadcast and traitor tracing systems. An important contribution
of both papers is that they demonstrate the power of altering the structure of
public keys in combination with indistinguishability obfuscation.

2 It is of course possible that black box obfuscation is obtainable for this particular
functionality. However, we view obtaining our negative result under indistinguisha-
bility obfuscation as an important goal.
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Bit encryption counterexample: We now consider the problem of bit encryption.
We first observe that the aforementioned ‘chasing the cycle’ technique cannot
be used for bit encryption. However, in this case, all encryptions use the same
public key. As a result, we can now give out useful auxiliary cryptographic ma-
terial as part of the public key. Here we again use the valid-invalid public keys
technique. In particular, we modify the Keygen algorithm. Suppose we have a
Keygen algorithm for a valid-invalid PKE system as described above that out-
puts pk, sk. Let pk′ be the part of pk used for checking whether pk is a valid
public key corresponding to sk, and sk′ the part of sk used for decrypting ci-
phertexts. Now consider the program gpk

′,sk′ that has pk′, sk′ hardwired, and
takes l inputs c1, . . . , cl. Program gpk

′,sk decrypts each of the inputs using sk′

and checks (using pk′) whether pk is a valid public key corresponding to the
resulting string. In our modified encryption scheme, in addition to pk, we also
give out an indistinguishability obfuscation of program gpk

′,sk′ .
Clearly, this encryption scheme is not bit circular secure. To prove IND-CPA

security, we use similar hybrids as before. In the first hybrid experiment, we
switch from valid to invalid public keys. Since the valid and invalid public keys
are computationally indistinguishable, these hybrid experiments are computa-
tionally indistinguishable. Finally, we output an obfuscation of a program that
always aborts, thereby ensuring that no information about the secret key sk is
leaked by the program obfuscation.

Key recovery from n-circular insecurity: One interesting question posed in the
setting of circular security is what is the right definition of security. While pre-
venting against cycle detection is seemingly the strongest notion, in many ap-
plications such as Gentry’s bootstrapping it might be sufficient if the system
remained semantically secure (for other messages) in the presence of a key cycle,
even if the key cycle itself were detectable. Likewise, a counterexample for such
a weaker notion of security would be a stronger result. Cash et al. [15] improved
upon the work of Acar et al. [1] by giving a such a stronger counterexample
which allowed for an attacker to completely recover private keys for the case of
key cycles of length two.

The key-recovery from cycles technique of Cash et. al. was tailored specifically
to the case of bilinear maps. In this work, we show that if for any n there exists
an encryption system where an attacker can distinguish a key encryption cycle
from a encryption of zeroes, then we can create a transformed cryptosystem
where there exists an attacker which recovers secret keys from the encryption
cycles. Thus, for obtaining a strong key recovery counterexample, one only needs
to work to obtain a cycle detection counterexample.

Our methods here are in spirit similar to Rothblum’s result in [25] for the bit
encryption case. When encrypting a message, we also publish a hint for each bit
of the message, indicating whether the bit is 0 or 1. To determine the bit, we
use the cycle detection algorithm. As a consequence, this hint works if and only
if we have a cycle of secret keys, therefore ensuring both IND-CPA security and
key recovery.
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Relation to [24] On October 2013, we initially posted on eprint a paper that
contained our three main results: (i) a construction of a public key encryption
scheme that is IND-CPA secure but not n-circular secure, (ii) the construction
of a bit encryption scheme that is IND-CPA secure but not 1-circular secure and
(iii) a transformation of an encryption scheme in which key cycles can be distin-
guished from encryption of zeroes into one which secret keys can be recovered
from encryption cycles. The first two results are based upon indistinguishability
obfuscation [18], the last result is completely generic.

Very shortly thereafter, Marcedone and Orlandi [24] showed how to construct
a public key encryption scheme that is IND-CPA secure but not n-circular secure
using the virtual black box [6] notion of obfuscation. This result was similar to
our result (i); however, they used virtual black box obfuscation instead of in-
distinguishability obfuscation. Four months later, the authors added a result
showing an n-circular security counterexample using indistinguishability obfus-
cation, thus matching one of the results contained in this work. (There are no
analogues of the other two results in their paper.) The ideas used by [24] 3 for
the counterexample posted in February 2014 are very similar to the ones we
used in our result (i), posted in October 2013. We strongly view our paper as
the origination of the ideas behind this result.

2 Preliminaries

Definition 1 (Public Key Encryption). A public key encryption scheme
PKE is a set of three algorithms (Keygen, Encrypt, Decrypt) satisfying the fol-
lowing properties :

– Key Generation Keygen(1λ) is a randomized algorithm that takes as input
the security parameter λ and outputs public key pk and secret key sk.

– Encryption Encrypt(pk,m) is a randomized algorithm that takes as input a
public key pk, message m and outputs a ciphertext ct.

– Decryption Decrypt(sk, ct) is a deterministic algorithm that takes as input
a secret key sk, a ciphertext ct and outputs m.

For correctness, we require that for all m,

Pr[Decrypt(sk,Encrypt(pk,m)) �= m : (pk, sk) ← Keygen(1λ)] ≤ negl(λ).

A public key cryptosystem is called a bit encryption scheme if its message space
is {0, 1}.

We define various security notions for public key cryptosystems.

3 The updated draft [24] was accepted in SCN 2014.
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Definition 2 (IND-CPA Security).
Let PKE = (Keygen,Encrypt,Decrypt) be a public key cryptosystem. Consider

the following game between challenger C and adversary A :

IND-CPA :

1. C computes (pk, sk) ← Keygen(1λ) and sends pk to A.
2. A sends challenge plaintext messages m0,m1 such that |m0| =

|m1| to C.
3. C chooses a bit b

$← {0, 1}, computes ct ← Encrypt(pk,mb) and
sends ct to A.

4. A outputs a bit b′

The advantage of A is AdvA = Pr[b = b′]− 1
2 .PKE is said to be IND-CPA secure if for all PPT algorithms A, AdvA ≤ negl(λ).

2.1 Circular Security

Definition 3 (n-Circular Security [14]).
Let PKE = (Keygen,Encrypt,Decrypt) be a public key cryptosystem. Consider

the following game between challenger C and adversary A :

n-Circular Security :

1. C computes (pki, ski) ← Keygen(1λ) for 1 ≤ i ≤ n

2. C chooses a bit b
$← {0, 1}.

– If b = 0, C computes yi = Encrypt(pki, sk(i mod n)+1) for
1 ≤ i ≤ n

– Else C computes yi = Encrypt(pki, 0
|sk(i mod n)+1|) for 1 ≤

i ≤ n
3. C sends (pk1, . . . , pkn, y1, . . . , yn) to A.
4. A outputs b′.

The advantage of A is AdvA = Pr[b = b′]− 1
2 .PKE is said to be n-circular secure if for all PPT algorithms A, AdvA ≤ negl(λ)

A weak notion of circular security was defined in [15] as follows :

Definition 4 (n-Weak Circular Security). Let PKE = (Keygen,Encrypt,
Decrypt) be a public key cryptosystem. Consider the following game between chal-
lenger C and adversary A :
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n-Weak Circular Security :

1. C computes (pki, ski) ← Keygen(1λ) for 1 ≤ i ≤ n.
Next, it computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n.
It sends (pk1, . . . , pkn, y1, . . . , yn) to A.

2. A sends challenge plaintext messages m0,m1 such that |m0| =
|m1| and j ∈ [1, n] to C

3. C chooses a bit b
$← {0, 1} and sends Encrypt(pkj ,mb) to A.

4. A outputs b′

The advantage of A is AdvA = Pr[b = b′]− 1
2 .PKE is said to be n-weak circular secure if for all PPT algorithms A, AdvA ≤

negl(λ)

Definition 5 (n-Circular Security with respect to Key Recovery). Let
PKE = (Keygen,Encrypt,Decrypt) be a public key cryptosystem. Consider the
following game between challenger C and adversary A :

n-Circular Security with respect to Key Recovery :

1. C computes (pki, ski) ← Keygen(1λ) for 1 ≤ i ≤ n.
Next, it computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n.
It sends (pk1, . . . , pkn, y1, . . . , yn) to A.

2. A outputs sk′1.

The advantage of A is AdvA = Pr[sk1 = sk′1].
PKE is said to be n-circular secure with respect to key recovery if for all PPT
algorithms A, AdvA ≤ negl(λ)

Remark. If a public key encryption scheme is n-circular secure, then it is also
n-weak circular secure. Similarly, if a scheme is n-weak circular secure, then it
is also n-circular secure with respect to key recovery.

The notion of circular security can be extended to bit encryption schemes.
The following definition is actually equivalent to Definition 3 in the case that
n = 1, but will be slightly more convenient to work with.

Definition 6 (1-Circular Security of Bit-by-bit Encryption). Let PKE =
(Keygen,Encrypt,Decrypt) be a bit encryption scheme. Consider the following
game between challenger C and adversary A :
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1-Circular Security of Bit-by-bit Encryption :

1. C chooses b
$← {0, 1}. C generates the public key and secret key

(pk, sk) ← Keygen(1λ) and sends pk to A.
2. For a polynomial number of queries

(a) A queries for encryption of jthi bit of sk.
(b) If b = 1, C sends ct ← Encrypt(pk, skji). Else C sends ct ←

Encrypt(pk, 0).
3. A outputs b′

The advantage of A is AdvA = Pr[b = b′]− 1
2 .PKE is said to be bit circular secure if for all PPT algorithms A, AdvA ≤ negl(λ)

Rothblum in [25] showed that this notion of bit circular security, which he
called circular security with respect to indistinguishability of oracles, is equiv-
alent to the seemingly stronger notion where the adversary must extract the
entire secret key, given encryptions of the secret key bits. Therefore, it suffices
to restrict our attention to this notion of bit circular security.

2.2 Indistinguishability Obfuscation

Next, we recall the definition of indistinguishability obfuscation from [27].

Definition 7. (Indistinguishability Obfuscation) A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies
the following conditions:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C′(x) = C(x) where C′ ← iO(λ,C).

– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher (Samp,D), there exists a negligible function negl(·) such that
the following holds: if for all security parameters λ ∈ N,Pr[∀x,C0(x) =
C1(x) : (C0;C1;σ) ← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(λ,C0)) = 1 : (C0;C1;σ) ← Samp(1λ)]−
Pr[D(σ, iO(λ,C1)) = 1 : (C0;C1;σ) ← Samp(1λ)]| ≤ negl(λ)

In a recent work, [18] showed a candidate indistinguishability obfuscator for the
circuit class P/poly.

3 Counter Example for n-Circular Security

In this section, we describe how to build for any n, a cryptosystem PKE that is
IND-CPA secure, but not n-circular secure.

Let PKEA = (KeygenA,EncryptA,DecryptA) be a public key encryption scheme
with message space MA = {0, 1}2l, key space KA ⊆ {0, 1}l and ciphertext space
CA. Let G : {0, 1}l → {0, 1}2l be a PRG family. We construct cryptosystem PKE
= (Keygen, Encrypt, Decrypt) as follows:
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– Keygen(1λ): Let (skA, pkA) ← KeygenA(1
λ). Let r

$← {0, 1}l and t = G(r).
Set sk = (skA, r). Set pk = (pkA, t).

– Encrypt(pk,m, r): Parse pk = (pkA, t). Let C ← EncryptA(pkA,m).
Let CycleFind be a circuit defined as follows :

CycleFind :
Inputs : C1, . . . , Cn ∈ CA
Constants : m, t.
1. Parse m = (sk2, r).
2. For i=2 to n

(a) Let (sk(i mod n)+1, r(i mod n)+1) = DecryptA(ski, Ci) or out-
put ⊥ if DecryptA fails.

3. If G(r1) = t output 1, else output ⊥.

The circuit CycleFind takes as input n ciphertexts C1, . . . , Cn, and has con-
stants m, t hardwired, where the circuit is appropriately padded to be of the
same size as the corresponding ones in the security proof.
Compute obfuscation of circuit CycleFindm,t as O ← iO(λ,CycleFindm,t).
The ciphertext ct = (C,O).

– Decrypt(sk, ct):Parse sk = (skA, r) and ct = (C,O). OutputDecryptA(skA, C).
String O is ignored.

Correctness follows immediately from the correctness of the original scheme
PKEA.

3.1 The Attack

Proposition 1. The above construction is n-circular insecure.

Proof. We construct a polynomial time adversary A that breaks the n-circular
security of the above construction as follows. A receives (pk1, . . . , pkn, y1, . . . , yn)
from the challenger. A parses yi as (Ci,Oi) where Oi is a circuit. A outputs
the value b ← O1(C1, . . . , Cn). By construction this is 1 iff (y1, . . . , yn) is an
encryption cycle with respect to PKE .

3.2 IND-CPA Security

In order to show that our construction is IND-CPA secure, we construct a series
of hybrid experiments as follows.

Game 0: IND-CPA Game

1. Choose r
$← {0, 1}l and set t = G(r).

2. Let (skA, pkA) ← KeygenA(1
λ).

3. Let sk = (skA, r) and pk = (pkA, t).
4. Suppose A sends m0,m1 : |m0| = |m1|.
5. Choose b

$← {0, 1}.
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6. Let C = EncryptA(pkA,mb).
7. Let O = iO(λ,CycleFind) where CycleFind is the circuit described above.
8. Let ctb = (C,O). Send ctb to A.
9. Let b′ ← A2(δ, ctb).

A wins if b = b′ and has advantage AdvA = Pr[b = b′]− 1/2.

Game 1: This game proceeds identically as the IND-CPA game, except we modify
Step 1 as follows.

1. Choose r
$← {0, 1}l and choose t

$← {0, 1}2l. Note that r is information
theoretically hidden in this experiment.

Game 2: This game proceeds identically as Game 1, except we modify Step 7
as follows.
Let CycleReject be the following circuit:

CycleReject :
Inputs : C1, . . . , Cn ∈ CA
Constants : 0w

′

1. Output ⊥

The circuit CycleReject takes as input n ciphertexts C1, . . . , Cn, has zero
padding of length w′. The constant w in circuit CycleFind and w′ in circuit
CycleReject are chosen such that the size of circuits CycleFind and CycleReject
are equal.
Let O = iO(λ,CycleReject).

Proposition 2. Suppose that there exists a polynomial time adversary A such
that Game0AdvA−Game1AdvA = ε. Then there exists a polynomial time adver-
sary B who distinguishes the output of G from random with advantage εPRG = ε.

Proof. The only modification is that t is computed as random 2l-bit string rather
than the output of G. The algorithm B is defined as follows :

1. B receives t ∈ {0, 1}2l from PRG Challenger C, where t is either a pseudo-
random string generated by G or a truly random string.

2. B computes (skA, pkA) ← KeygenA(1
λ). It sets pk = (pkA, t) and sends it to

A.
3. A sends challenge messages m0,m1.

4. B chooses b
$← {0, 1}. It sets C = EncryptA(pkA,mb). Next, it defines circuit

CycleFind, which has mb and t hard-wired. Therefore, B can define CycleFind,
and hence compute O ← iO(λ,CycleFind). Hence it sets ct = (C,O) and
sends it to A.

5. A outputs a bit b′. If (b = b′) B outputs that the string was pseudorandom.
Else B outputs the string was random.
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If C sends an output of G, then this experiment corresponds to Game 0. If C sends
a truly random string t, then this corresponds to Game 1. Therefore, if A can
distinguish between Game 0 and Game 1 with advantage ε, then B distinguishes
a pseudorandom string form a truly random string with advantage ε.

Proposition 3. Suppose that there exists a polynomial time adversary A such
that Game1AdvA - Game2AdvA = ε. Then there exists a polynomial time ad-
versary B who breaks the indistinguishability obfuscation with advantage εiO = ε.

Proof. Recall that B should comprise a pair of adversaries (Samp,D) as in
Definition 2.2. We construct these adversaries as follows.
Samp(1λ) :

1. Choose r
$← {0, 1}l and t

$← {0, 1}2l.
2. Let (skA, pkA) ← KeygenA(1

λ).
3. Let sk = (skA, r) and pk = (pkA, t).
4. Let (m0,m1) ← A(pk) : |m0| = |m1|.
5. Choose b

$← {0, 1}.
6. Let CycleFind be the circuit described in our construction with constants

(mb, t, 0
w) hardwired.

Let CycleReject be the circuit described in Game 2 with constant 0w
′
hard-

wired.
7. Output (g0 = CycleFind, g1 = CycleReject).
8. Set σ = (b,m0,m1, pk).
D(σ, iO(λ, gz)) :
1. Let C = EncryptA(pkA,mb), let O = iO(λ, gz).
2. Let ct = (C,O).
3. Let b′ ← A(ct, pk).
4. D guesses 1 if b = b′.

We first prove that B produces circuits g0, g1 which are equivalent on all inputs,
with overwhelming probability. Observe that with overwhelming probability t is

not in the range of G since t
$← {0, 1}2l and hence CycleFind(x) outputs ⊥ for all

x. Thus Samp produces circuits CycleReject and CycleFind which are equivalent
on all inputs with overwhelming probability, by the random choice of t.

All that remains is to show AdvB = ε. Let pz = Pr[D(σ, iO(λ, gz)) = 1]
for z = 0, 1. Note that g0 = CycleFind, hence when z = 0 the event b = b′

occurs iff A wins Game 1. Similarly g1 = CycleReject, hence when z = 1, the
event b = b′ occurs iff A wins Game 2. Then p0 = 1/2 + Game1AdvA, while
p1 = 1/2+Game2AdvA. Thus AdvB = p0−p1 = Game1AdvA−Game2AdvA = ε.

Finally, we need to show that any polynomial time adversary has only negli-
gible advantage in Game 2. This follows from the fact that PKEA is IND-CPA
secure.

Proposition 4. If there exists a polynomial time adversary A with non negligi-
ble advantage ε in Game 2, then there exists a polynomial time algorithm B that
can break the IND-CPA security of PKEA with advantage εA = ε.
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Proof. Suppose A has advantage ε in Game 2. We define B as follows :

1. B receives pkA from the IND-CPA Challenger C. It chooses t $← {0, 1}2l and
sends public key pk = (pkA, t) to A.

2. A sends challenge messages m0,m1, which are passed on to C, and receives
ciphertext C.

3. B computes O ← iO(λ,CycleReject) and sends ciphertext ct = (C,O) to A.
4. A sends bit b′, which B passes on to C.
Note that if A wins Game 2, then B wins the IND-CPA game. Hence the result
follows.

The advantage of any polynomial time IND-CPA adversary against PKE is at
most εPRG + εiO + εA. Therefore we have the following theorem.

Theorem 1. Assuming that G is a secure PRG family, iO is an indistinguisha-
bility obfuscator and PKEA is an IND-CPA secure encryption scheme, PKE is
IND-CPA secure but not n-circular secure.

4 Counter Example for 1-Circular Security of Bit-by-bit
Encryption

In this section, we describe a bit encryption scheme that is IND-CPA secure, but
is not 1-circular secure.
Let PKEA = (KeygenA,EncryptA, DecryptA) be a bit encryption cryptosystem
with key space KA ⊆ {0, 1}l and ciphertext space CA. Let G : {0, 1}l → {0, 1}2l
be a PRG. We construct a bit encryption cryptosystem PKE = (Keygen,Encrypt,
Decrypt) as follows :

– Keygen(1λ) : Let (pkA, skA) ← KeygenA(1
λ). Choose r

$← {0, 1}l and com-
pute t = G(r). Define a circuit BitCycleFind as follows :

BitCycleFind :
Inputs : C1, . . . , Cl ∈ CA
Constants : skA, t, 0

w for an appropriately chosen w
1. For i = 1 to l

(a) Let xi = DecryptA(skA, Ci) or output ⊥ if DecryptA fails.
2. Let x = x1 . . . xl. If G(x) = t output 1, else output ⊥.

The circuit takes as input l ciphertexts, and has constants skA, t and 0w

hardwired. As in the multi-bit encryption, the zero padding is required for
the security proof.
Compute obfuscation of circuit BitCycleFind as O ← iO(λ,BitCycleFind). Set
pk = (pkA, t, O) and sk = (skA, r).

– Encrypt(pk,m) : Parse pk = (pkA, t, O). Compute ciphertext ct ←
EncryptA(pkA,m).

– Decrypt(sk, ct) : Parse sk = (skA, r). Output Decrypt(skA, ct).

The correctness of PKE follows directly from the correctness of PKEA.
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4.1 The Attack

Proposition 5. The above construction is not bit circular secure.

Proof. We construct a polynomial time adversary A that breaks the bit cir-
cular security of the above construction as follows. A receives public key pk =
(pkA, t, O). Next, it queries for encryptions of the last l bits of the second compo-
nent of the secret key, and receives ct1, . . . , ctl. A outputs b = O(ct1, . . . , ctl). By
construction, it follows that A outputs 1 iff the challenger outputs encryptions
of the bits of the secret key sk.

4.2 IND-CPA Security

In this section, we show that our construction PKE = (Keygen, Encrypt, Decrypt)
is IND-CPA secure.
As before we construct a sequence of hybrid experiments, and show that the
outputs of the hybrid experiments are computationally indistinguishable.

Game 0: IND-CPA

1. Choose r
$← {0, 1}l and set t = G(r).

2. Let (pkA, skA) ← KeygenA(1
λ).

3. Let O = iO(λ,BitCycleFind) as described in the construction.
4. Let sk = (skA, r) and pk = (pkA, t, O). Send pk to A.

5. Choose b
$← {0, 1}.

6. Let ctb ← EncryptA(pkA, b). Send ct to A.
7. Let b′ ← A(ctb).

A wins if b = b′ and has advantage AdvA = Pr[b = b′]− 1/2.

Game 1: This game proceeds identically as the IND-CPA game, except we modify
Step 1 as follows.

1. Choose r
$← {0, 1}l and choose t

$← {0, 1}2l. Note that r is information
theoretically hidden in this experiment.

Game 2: This game proceeds identically as Game 1, except we modify Step 3
as follows.
Let BitCycleReject be the following circuit:

BitCycleReject :
Inputs : C1, . . . , Cl ∈ CA
Constants : 0w

′

1. Output ⊥
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The circuit BitCycleReject takes as input l ciphertexts C1, . . . , Cl, has zero
padding of length w′. The constants w in circuit BitCycleFind and w′ in circuit
BitCycleReject are chosen such that |BitCycleFind| = |BitCycleReject|
Let O = iO(λ,BitCycleReject).

The proofs of the following indistinguishability results are similar to those of
the previous section and are included in Appendix A.

Proposition 6. Suppose that there exists a polynomial time adversary A such
that Game0AdvA - Game1AdvA = ε. Then there exists a polynomial time adver-
sary B who distinguishes the output of G from random with advantage εPRG = ε.

Proposition 7. Suppose that there exists a polynomial time adversary A such
that Game1AdvA - Game2AdvA = ε. Then there exists a polynomial time ad-
versary B who breaks the indistinguishability obfuscation with advantage εiO = ε.

Proposition 8. If there exists a polynomial time adversary A with non-negligible
advantage ε in Game 2, then there exists a polynomial time algorithm B that can
break the IND-CPA security of PKEA with advantage εA = ε.

Then, combining the above results, we have the following theorem.

Theorem 2. Assuming that G is a secure PRG family, iO is an indistinguisha-
bility obfuscator and PKEA is an IND-CPA secure bit encryption scheme, PKE
is IND-CPA secure but not 1-circular secure.

5 Key Recovery from Circular Insecurity

In this section we show how to transform any IND-CPA encryption scheme which
is n-circular insecure into a new IND-CPA scheme which is n-circular insecure
with respect to key recovery. An interesting point of comparison is a result of Cash
et al. [15]. As described in the introduction their counterexample is particular to
a specific construction for n = 2 length key cycles. We show how to generically
‘leap’ from any cycle detection insecure construction to one which is insecure
against key recovery, but maintains IND-CPA security.

Our generic transformation proceeds in two steps. We begin with an IND-CPA
encryption system that is insecure against cycle detection attacks. That is there
exists a polynomial p(·) and an infinite set S ⊆ N where the advantage of the
attacker is greater than 1/p(λ) for all λ ∈ S. We show that if such a system
exists, then there exists a cryptosystem with an attacker that has advantage of
1/2−negl(λ) for all λ ∈ S. (i.e. the probability of winning the game is 1−negl(λ)
for all λ ∈ S.) This effectively amplifies the probability of winning within that
restricted set. Our amplification technique is just a simple repetition.

Next, we show how such an amplified cycle detection encryption system can
be transformed into one where a key recovery attack is possible. Our approach is
to create an encryption system where the encryption algorithm will go through
the message M bit by bit and encode each 1 as a M and each 0 and a string
of 0’s. Then if there is a key cycle, the underlying cycle detection algorithm can
recover the bits of M one by one using the cycle detection algorithm/attacker
of the underlying scheme.
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5.1 A Circular Key Recoverable Cryptosystem

Amplification We first state our amplification lemma which is proved in Ap-
pendix B.1.

Claim 1 Let PKE ′
A be an IND-CPA secure public key cryptosystem that is n-

circular secure i.e. there exists a polynomial time algorithm D′ and a polynomial
p(·) such that for infinitely many λ ∈ N, AdvD′(λ) > 1/p(λ). Then there exists
an IND-CPA secure public key cryptosystem PKEA, which is constructed using
PKE ′

A as a black box, for which there exists an n-circular security adversary D
with advantage 1/2−negl(λ) (i.e. with probability 1−negl(λ)) for all such λ ∈ N.

Our Transformation Let PKEA be an IND-CPA encryption scheme for which
there exists an n-circular security adversary D with AdvD(λ) ≥ 1/2 − negl(λ)
for infinitely many λ ∈ N. Let MA = {0, 1}l be the message space. For an l-bit
message M , we will let M [i] denote the i-th bit of M where i ∈ [l]. We construct
an IND-CPA encryption scheme PKE which is n-circular insecure with respect
to key recovery as follows.

IND-CPA n-Circular key recoverable PKE :
Inputs : IND-CPA n-Circular insecure PKEA.

– Keygen(1λ): Let (skA, pkA) ← KeygenA(1
λ). Let sk = skA,

pk = pkA. Output (sk, pk).
– Encrypt(pk,M):

• Let CH = EncryptA(pk,M).
1. For i = 1 . . . l

Let Ci = EncryptA(pk,M) if M [i] = 1, else Ci =
EncryptA(pk, 0

|M|).
2. Output ct = (CH , C1, . . . , Cl).

– Decrypt(sk, ct): Compute M ← DecryptA(sk, CH) and M ′
i ←

DecryptA(sk, Ci) for i = 1, . . . , l. If ∀i ∈ [l] M ′
i = M · M [i]

output M , otherwise output ⊥.

The proof of the following claim is straightforward and is included in Ap-
pendix B.2.

Claim 2 PKE is IND-CPA secure if PKEA is IND-CPA .

We now formally show that if the old cryptosystem PKEA is n-circular insecure,
the new cryptosystem PKE is n-circular insecure with respect to key recovery.
We rely on the following result which is proved in Appendix B.3. Claim 3 states
that any circular security adversary can be used to distinguish an encryption
cycle from a modified encryption cycle in which a zero encryption has been
substituted in the last position. The proof utilizes a hybrid argument.

Claim 3 Let PKEA be an IND-CPA public key cryptosystem. Suppose that D
has advantage AdvD(λ) in the circular security game against PKEA. Then D
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distinguishes the following distributions with advantage AdvD(λ) − negl(λ).

D0 = [pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, sk1) :

(pki, ski) ← KeygenA(1
λ)]

D1 = [pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, 0
|sk1|) :

(pki, ski) ← KeygenA(1
λ)]

Armed with the above claims we are now ready to prove the following lemma.

Lemma 1. Suppose there exists an algorithm D with advantage AdvD(λ) =
1/2− negl(λ) in the n-circular security game against PKEA for infinitely many
λ ∈ N. Then there exists an algorithm R with advantage at least 1/2 − negl(λ)
in the n-circular key recovery security game against PKE for all such λ ∈ N.

Proof. Let D be an algorithm such with advantage in the n-circular security
game against PKEA at least 1/2− negl(λ) for infinitely many λ ∈ N. Consider
the following algorithm R interacting with the n-circular security with respect
to key recovery challenger C:

1. C runs (pki, ski) ← Keygen(1λ).
2. C computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n.
3. C sends (pk1, . . . , pkn, y1, . . . , yn) to R.
4. R parses yi = (Ci,H , Ci,1, . . . Ci,l) for 1 ≤ i ≤ n.
5. R for j = 1 . . . l.

(a) Forms the vector wj = (C1,H , . . . , Cn−1,H , Cn,j).
(b) Lets sk1[j] ← D(pk1, . . . , pkn, wj).

6. R output sk1.

Fix any such λ ∈ N. Note that Cn,j is either a random encryption of sk1 or
0. Note that D distinguishes an n-encryption cycle from n zero encryptions
with advantage at least 1/2 − negl(λ). Thus Claim 3 implies that D on input
(pk1, . . . , pkn, wj) distinguishes whether Cn,j is an encryption of sk1 or 0 with
advantage at least AdvD′(λ)−negl(λ) = 1/2−negl(λ). Thus D fails to recover the
j-th bit of sk1 with probability at most negl(λ). Then R recovers sk1 correctly
except with probability atmost n · negl(λ), which is negligible.

Combining Claim 1 and Lemma 1, we get the following theorem.

Theorem 3. Suppose there exists an algorithm D with non-negligible advantage
in the n-circular security game against PKE ′

A for infinitely many λ ∈ N. Then
there exists an algorithm R with advantage at least 1/2−negl(λ) in the n-circular
key recovery security game against PKE for all such λ ∈ N.
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A Counter Example for 1-Circular Security of Bit-by-bit
Encryption

Proposition 6. Suppose that there exists a polynomial time adversary A such
that Game0AdvA - Game1AdvA = ε. Then there exists a polynomial time adver-
sary B who distinguishes the output of G from random with advantage εPRG = ε.

Proof. In Game 0, t is an output of G, while in Game 1, t is a truly random
2l-bit string. The algorithm B is defined as follows :

1. B receives t ∈ {0, 1}2l from PRG Challenger C, where t is either a pseudo-
random string generated by G or a truly random string.

2. B computes (pkA, skA) ← KeygenA(1
λ). Next, it computes O =

iO(λ,BitCycleFind) as described in Game 0. It sets pk = (pkA, t, O) and
sends it to A.

3. B chooses b
$← {0, 1}. It sets ctb ← EncryptA(pkA, b) and sends it to A.

4. A outputs a bit b′. If (b = b′) B outputs that t was pseudorandom. Else B
outputs that t was random.
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http://eprint.iacr.org/
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Clearly, as shown in Proposition 2, if A wins the game with non negligible
probability, then so does B.
Proposition 7. Suppose that there exists a polynomial time adversary A such
that Game1AdvA - Game2AdvA = ε. Then there exists a polynomial time ad-
versary B who breaks the indistinguishability obfuscation with advantage εiO = ε.

Proof. B comprises a pair of adversaries (Samp,D) as in Definition 7. We con-
struct these adversaries as follows.
Samp(1λ) :

1. Choose r
$← {0, 1}l and t

$← {0, 1}2l.
2. Let (skA, pkA) ← KeygenA(1

λ).
3. Let BitCycleFind be the circuit described in our construction with constants

(skA, t, 0
w) hardwired and BitCycleReject be the circuit described in Game 2

with constant 0w
′
hardwired.

4. Output (g0 = BitCycleFind, g1 = BitCycleReject).
5. Set σ = (pkA, t).
D(σ, iO(λ, gz)) :
1. Parse σ = (pkA, t). Set pk = (pkA, t, iO(λ, gz))

2. Let b
$← {0, 1}. ct ← EncryptA(pkA, b).

3. Let b′ ← A(pk, ct).
4. D guesses 1 if b = b′.
Note that since t is chosen uniformly at random, except with negligible proba-
bility, t is not in the range of G. Hence BitCycleFind(x) outputs ⊥ for all x. Thus
Samp produces circuits BitCycleReject and BitCycleFind which are equivalent on
all inputs with overwhelming probability, by the random choice of t.

Similar to the proof for Proposition 3, we can argue that if A distinguishes
between the outputs of Game 1 and Game 2 with advantage ε, then B breaks
the indistinguishability obfuscation with advantage ε.

Proposition 8. If there exists a polynomial time adversary A with non-negligible
advantage ε in Game 2, then there exists a polynomial time algorithm B that can
break the IND-CPA security of PKEA with advantage εA = ε.

Proof. Suppose A has advantage ε in Game 2. We define B as follows :

1. B receives pkA, ct from the IND-CPA Challenger C. It chooses t $← {0, 1}2l and
computes O ← iO(λ,BitCycleReject). It sends public key pk = (pkA, t, O)
and ciphertext ct to A.

2. A sends bit b′, which B passes on to C.
Note that if A wins Game 2, then B wins the IND-CPA game. Hence the result
follows.

B Key Recovery From Circular Insecurity

B.1

Claim 1 Let PKE ′
A be an IND-CPA secure public key cryptosystem that is n-

circular secure i.e. there exists a polynomial time algorithm D′ and a polynomial
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p(·) such that for infinitely many λ ∈ N, AdvD′(λ) > 1/p(λ). Then there exists
an IND-CPA secure public key cryptosystem PKEA, which is constructed using
PKE ′

A as a black box, for which there exists an n-circular security adversary D
with advantage 1/2−negl(λ) (i.e. with probability 1−negl(λ)) for all such λ ∈ N.

Proof. Let PKE ′
A = (Keygen′A,Encrypt

′
A,Decrypt

′
A). Let t(λ) = λ · p(λ)2 be the

amplification factor. We now define PKEA = (KeygenA,EncryptA,DecryptA) as
follows.

– KeygenA(1
λ) : Compute t public key, secret key pairs. (pki, ski)

$←
Keygen′A(1

λ) for 1 ≤ i ≤ t. The public key pk = (pk1, . . . , pkt) and the
secret key is (sk1, . . . , skt).

– EncryptA(pk,m) : Parse pk = (pk1, . . . , pkt) and m = (m1, . . . ,mt) such

that |mi| = |mj | for all i, j. Compute t ciphertexts ct1, . . . , ctt, where cti
$←

Encrypt′A(pki,mi). The ciphertext ct = (ct1, . . . , ctt).
– DecryptA(sk, ct) : Parse sk = (sk1, . . . , skt) and ct = (ct1, . . . , ctt). Output

Decrypt′A(sk1, ct1).

IND-CPA security of PKEA follows from hybrid argument. We need to show that
there exists an algorithm D such that for infinitely many λ, AdvD(λ) > 1/2 −
negl(λ) in the n-circular security game. Note that each ciphertext cti consists
of t ciphertexts (cti1, . . . , ctit), and for all 1 ≤ j ≤ t, either (ct1j , . . . , ctnj) is
an encryption cycle or an encryption of zeroes. By construction, it follows that
each of these cycles is independent, since we have t independent invocations of
Keygen′A during KeygenA.

D is defined as follows :

D′ :

1. For 1 ≤ i ≤ t, compute di
$← D′(ct1i, . . . , ctni)

2. Output majority of {d1, . . . , dt}.

If we have an encryption cycle, then, for each 1 ≤ j ≤ t, we have
Pr[D′(ct1i, . . . , ctni) = 1] > 1/2+1/p(λ). Since we have t = λ ·p(λ)2 invocations,
using Chernoff bounds, it follows that Pr[D(ct1, . . . , ctn) = 1] > 1− negl(λ).

Similarly, if we have encryptions of zeroes, then for each 1 ≤ j ≤ t,
Pr[D′(ct1i, . . . , ctni) = 1] < 1/2 − 1/p(λ). Using Chernoff bounds, we get that
Pr[D(ct1, . . . , ctn) = 1] < negl(λ).

B.2

Claim 2 PKE is IND-CPA secure if PKEA is IND-CPA .

Proof. To prove this claim it will be convenient to define C0 =: CH and M [0] =:
1. Suppose that adversary A has advantage ε(λ) in the IND-CPA game against
PKE . We construct an adversary B which has advantage ε(λ)/(l + 1) in the
IND-CPA game against PKEA.
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1. B receives pkA from the challenger and forwards it to A.
2. A makes some ciphertext queries to Encrypt which are answered using

EncryptA.
3. B receives two l-bit message M0,M1 from A.

4. B chooses i∗ $← {0, . . . , l} and forms M ′
0 = M0 ·M0[i

∗] and M ′
1 = M1 ·M1[i

∗].
If M ′

0 = M ′
1 it aborts, otherwise it sends M ′

0 and M ′
1 to the challenger.

5. B receives ct′b = EncryptA(M
′
b) from the challenger.

6. B forms the ciphertext ct = (C0, . . . Cl) where

Ci =

⎧
⎨

⎩

EncryptA(pk,M0 ·M0[i]) : i < i∗

ct′b : i = i∗

EncryptA(pk,M1 ·M1[i]) : i > i∗

and forwards ct to A.
7. B receives bit z from A.
8. Step 2 may be repeated.
9. B sends guess b′ = z to the challenger.

Define for i = 0 . . . l, pi = Pr[b′ = 0|i∗ = i, b = 0] and qi = Pr[b′ = 0|i∗ =
i, b = 1]. Since A has advantage ε in the IND-CPA game against PKE , we have

ε = 1/2 · (pl − q0). By inspection pi−1 = qi hence ε = 1/2 · (∑l
i=0(pi − qi)).

Then ε = 1/2 · (∑l
i=0 pi −

∑l
i=0 qi) = 1/2 · (Pr[b′ = 0|b = 0] − Pr[b′ = 0|b =

1])·(l+1) = AdvB ·(l+1). Thus B has advantage ε/(l+1) which is non-negligible
if ε is non-negligible.

B.3

Claim 3 Let PKEA be an IND-CPA public key cryptosystem. Suppose that D
has advantage AdvD(λ) in the circular security game against PKEA. Then D
distinguishes the following distributions with advantage AdvD(λ) − negl(λ).

[pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, sk1) :

(pki, ski) ← KeygenA(1
λ)]

[pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, 0
|sk1|) :

(pki, ski) ← KeygenA(1
λ)]

Proof. In order to prove this result, we define n intermediate hybrid experiments
Hj : 1 ≤ j ≤ n, and show that D has overwhelming advantage in each of the
hybrids. Hybrid Hj is defined as follows :
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Hj :

1. C computes (pki, ski) ← KeygenA(1
λ) for 1 ≤ i ≤ n

2. C chooses a bit b
$← {0, 1}.

– If b = 0, C computes yi = EncryptA(pki, sk(i mod n)+1) for
1 ≤ i ≤ n

– Else C computes yi = EncryptA(pki, sk(i mod n)+1) for i < j

and yi = EncryptA(pki, 0
|sk(i mod n)+1|) for i ≥ j

3. C sends (pk1, . . . , pkn, y1, . . . , yn) to D.
4. D outputs b′.

H1 corresponds to the n-circular security game, whileHn corresponds to the case
where an encryption cycle might be modified by substituting a zero encryption in
the last position. Let AdvD(Hj) denote the advantage of D in hybrid experiment
Hj . Suppose AdvD(Hj) − AdvD(Hj+1) is non-negligible. Then there exists a
polynomial time adversary A that can break the IND-CPA security of PKE using
D.

1. A receives public key pk from the IND-CPA challenger C.
2. A generates n − 1 public key, secret key pairs (pki, ski)

$← Keygen(1λ) for
2 ≤ i ≤ n.

3. A sends skj+1, 0
|skj+1| as challenge messages to C and receives ct as the

ciphertext.
4. A computes the remaining n − 1 ciphertexts (ct1, . . . , ctj−1, ctj+1, . . . , ctn)

as in the hybrids, and then runs D on this input.
5. Depending on the output of D, A sends its guess to C.
Note that the advantage of A is equal to AdvD(Hj) − AdvD(Hj+1). We have
AdvD(H1) = ε. Therefore, the advantages of D in each of the successive hybrids
is ε− negl(λ), and in particular, its advantage in Hn is ε− negl(λ).
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