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Abstract. In this work, we present the first definitions and constructions
for functional encryption supporting randomized functionalities. The
setting of randomized functionalities require us to revisit functional en-
cryption definitions by, for the first time, explicitly adding security
requirements for dishonest encryptors, to ensure that they cannot improp-
erly tamper with the randomness that will be used for computing outputs.
Our constructions are built using indistinguishability obfuscation.

1 Introduction

Originally, encryption was thought of as a way to encrypt “point to point”
communication. However, in the contemporary world with cloud computing and
complex networks, it has become clear that we need encryption to offer more
functionality. To address this issue, the notion of functional encryption (FE) has
been developed [25,18,5,19,4,21]. In a functional encryption for a family F , it is
possible to derive secret keys Kf for any function f ∈ F from a master secret
key. Given an encryption of some input x, that user can use its secret key Kf to
obtain f(x), and should learn nothing else about x beyond f(x).
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A driving force behind functional encryption research has been to understand
what class of functions can be supported by functional encryption. This remark-
able line of research has progressed to now encompass all functions describable
by deterministic polynomial-size circuits [24,16,15,8,11]. We continue this line of
research to move even beyond deterministic polynomial-size circuits: specifically,
we consider the case of randomized functionalities. Indeed, not only are random-
ized functionalities strongly motivated by real-world scenarios, but randomized
functionalities present new challenges for functional encryption. Techniques de-
veloped in the context of functional encryption for deterministic circuit do not
directly translate into techniques for randomized circuits. To understand the
basic technical problem, below we give an illustrative example.

Let us illustrate the desiderata for functional encryption for randomized func-
tions by considering an example of performing an audit on an encrypted database
through random sampling. Suppose there is a bank that maintains large secure
databases of the transactions in each of its branches. There is an auditor Alice
who would like to gain access to a random sample of database entries from each
branch in order to manually audit these records and check for improper trans-
actions. We note that random sampling of transactions for manual analysis is
quite common during audits. There are two primary concerns:

– The auditor wants to ensure that cheating in a branch is caught with rea-
sonable probability.

– The organization wants to ensure that a malicious auditor cannot learn un-
desirable information (e.g., too much about a particular customer) from the
encrypted databases. In particular, it wants to ensure that a malicious audi-
tor cannot gain access to arbitrarily chosen parts of the database, but rather
is limited to seeing only a randomly selected sample for each branch.

If we try to solve this problem naively using functional encryption, by giving
the auditor a secret key SKf that lets it obtain a random subset of an encrypted
database CT, we are faced with the question: where does the randomness come
from? Clearly, the randomness cannot be specified in the ciphertext alone since
then a cheating encrypter (bank branch) could influence it. It cannot be specified
in the decryption key alone as well: then auditor would get the same (or corre-
lated) sample from the databases of different branches. (We also stress that since
functional encryption does not guarantee function privacy, randomness present
in the function f , even if chosen by a trusted party, would be known to Alice.)

Even if the randomness was chosen by an XOR of coins built into the decryp-
tion key and the ciphertext, this would allow malicious encryptors, over time,
to ensure correlations among the random coins used by the auditor when in-
specting different databases (or the same database after updates to it). Such
correlations could potentially be used to eventually learn completely the coins
embedded in the decryption key (based on the auditor’s actions in response to
planted improprieties in databases). Another option is to use a pseudorandom
function (PRF) whose key is inbuilt in the decryption key. However again, since
functional encryption does not guarantee function privacy, the PRF key could
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be completely leaked to a malicious auditor. As a result, the sample would not
be “random” anymore in the auditor’s view (since he knows the PRF key).

This scenario also illustrates the importance of dealing with dishonest en-
cryptors in the context of functional encryption for randomized functionalities,
because of the influence they can have on the choice of coins used in computing
the output. The issue of dishonest encryptors is, in fact, also relevant to the
case of deterministc functionalities.1 However, to the best of our knowledge, this
issue was never considered explicitly in previous work on functional encryption.
This is perhaps because in the context of deterministic functionalities, the issue
of dishonest encryptors seems very related to simple correctness, which is not
the case in the current work.

Defining functional encryption for randomized functionalities. To avoid the
problems sketched in the examples above, we define functional encryption for
randomized functionalities using the simulation paradigm: We want that an ad-
versary, given SKf and an honestly generated encryption of x, be simulatable
given only f(x; r) where r is true randomness that is completely unknown to the
adversary. At the same time, consider an adversary that can generate dishonest
ciphertexts ĈT and learn from outside the output of decrypting ĈT using a se-
cret key SKg (that is unknown to the adversary). We want such an adversary
to be simulatable given only g(x̂; r), where x̂ is an input that is information-

theoretically fixed by ĈT and r is again true randomness that is unknown to
the adversary. Note that a crucial feature of our definition is that if a party uses
a secret key SKf on a particular ciphertext CT, it will always get back f(x; r)
for the same randomness r. In other words, the user cannot repeatedly sample
the functionality to obtain multiple outputs for different random coins. This al-
lows users of our definition to more tightly control how much information an
adversary or user learns. However, given two distinct ciphertexts CT1 and CT2

both encrypting x, a malicious user possessing SKf should obtain exactly two
independent samples of the output of the function: f(x; r1) and f(x; r2).

Application to differentially private data release. A natural application of func-
tional encryption would be to provide non-interactive differentially private data
release with high levels of accuracy. Consider a scenario where a government
would like to allow researchers to carry out research studies on different hospital
patient record databases, but only if the algorithm that analyzes the patient
data achieves a sufficient level of differential privacy. Without using cryptogra-
phy, methods for allowing the hospitals to publish differentially private data that
would allow for meaningful and diverse research studies must incur very high ac-
curacy loss [10]. An alternative would be to have a government agency review a

1 For example, the FE schemes in [16,15] are not secure against a dishonest encryptor
who uses the simulator algorithm to create ciphertexts. Indeed, such an adversary can
force arbitrary outputs on an honest receiver. However, a straightforward compilation
of these schemes with simulation-sound NIZK proofs of knowledge yields security
against dishonest encryptors.
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specific research algorithm f , and if the algorithm guarantees sufficient privacy,
to issue a secret key SKf that the researcher could use to obtain the output of
her algorithm on any hospital’s encrypted patient records. Note that in such a
setting, the hospital patient record could be encrypted and stored without any
noise addition. The noise could be added by the algorithm f after computing
the correct output. Such a setting would ensure very high accuracy (essentially
the same as the interactive setting where the hospitals store data in clear and
answer the researcher queries after adding noise in an online fashion).

Note however, to achieve differential privacy, such an algorithm f must be ran-
domized. Furthermore, typical differentially private algorithms require that the
randomness used to compute the output must be correctly and freshly sampled
each time and be kept secret (or else the differential privacy could be com-
pletely compromised). By realizing functional encryption that would allow such
randomized function evaluation, we would simultaneously remove the need for
the hospital to participate in any study beyond simply releasing an encrypted
database, and remove the need for the researcher to share his hypothesis and
algorithm with any entity beyond the government regulatory body that issues
secret keys.

1.1 Our Results

We show how to formalize the definition sketched above, generalizing the
simulation-based security definitions given in [4,21]. We then construct a func-
tional encryption scheme supporting arbitrary randomized polynomial-size
circuits assuming indistinguishability obfuscation for circuits and one-way func-
tions. We prove security in the selective model that can be amplified to full
security using standard complexity leveraging.

While our focus is on simulation-based security, we note that it cannot be
realized for an unbounded number of messages [4,3]. Towards that end, in Sect.
2.1, we also provide indistinguishability based security definitions for random-
ized functions, generalizing the case of deterministic functions [4,21]. We prove
security in the selective model for an unbounded number of messages (again,
this can be amplified to full security using standard complexity leveraging2).

The starting point for our construction is the functional encryption scheme
of [11] for polynomial-size deterministic circuits. In that scheme, in essence the
secret key SKf is built upon obfuscating the function f using an indistinguisha-
bility obfuscator [2]. We show how to modify this construction to achieve our
notion of functional encryption for randomized functionalities by building upon
the recently introduced idea of punctured programming [26]. In particular, we
embed a psuedo-random function (PRF) key into the obfuscated program, which
is executed on the ciphertext, to obtain the randomness used to derive the out-
put. We adapt ideas from [9,23] to ensure that valid ciphertexts are unique.

2 Subsequent to our work, Waters [27] gave a construction of fully secure functional
encryption (for deterministic functions) from indistinguishability obfuscation, with-
out complexity leveraging. We leave the problem of adapting our techniques to the
scheme of [27] for future work.
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The core of our argument of security is to show that indistinguishability obfus-
cation guarantees the secrecy of the random coins derived by this method.

Our results immediately imply the application to differential privacy: Consider
two “neighboring” databases x0 and x1. Differential privacy guarantees that the
statistical distance between the distributions of outputs of the mechanism f for
these two databases is at most eε, a small (but non-negligible) quantity. Now
consider an adversary’s view given an encryption of x0. By our simulation-based
notion of security, the adversary’s view can be simulated given only f(x0; r)
where r is true (secret) randomness. This view is eε close to the view that would
be generated given only f(x1; r), by differential privacy of f . Finally we apply
our definition to show that this view is negligibly close to the real adversary’s
view given an encryption of x1. Thus, our functional encryption scheme when
applied to f yields a computationally differentially private mechanism.

1.2 Other Applications

Subsequent to our work, Garg et al. [12] use functional encryption for randomized
functions in NC1 as a crucial tool to construct fully secure functional encryption
for all circuits from multilinear maps. We refer the reader to their paper for more
details.

1.3 Related Work

In an independent and concurrent work, Alwen et al. [1] also study functional
encryption for randomized functions.3 The main difference between their work
and ours is that they do not consider security against malicious encryptors. In
particular, they provide a construction of FE for randomized functions from FE
for deterministic functions by encrypting a PRF key along with every message.
This PRF key is evaluated over the identifier associated with a function key
to sample randomness on the fly, which is then used to compute the function
output. Interestingly, they show that a 2-ary version of randomized FE can be
used to construct fully homomorphic encryption (see [1] for details). However,
they do not provide a construction of such an FE scheme.

We note that while the security definition of [1] suffices for their target appli-
cation, in this work, we model randomized functionalities following the standard
approach in secure computation where in the ideal world, no single party has
full control over the randomness used in the function evaluation and instead
the randomness is chosen by the trusted party. In particular, we require that
the randomness used for the computation is chosen uniformly even if either of
the parties is malicious. Indeed, as discussed earlier, this is the main source of
non-triviality in our results.

3 See [17] for the eprint version of our work.
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1.4 Organization

The rest of this paper is organized as follows. We start by presenting the formal
definitions for functional encryption for randomized functionalities (Sect. 2).
Next, we recall the definitions for various cryptographic primitives used in our
construction (Sect. 3). We then present our construction of functional encryption
for randomized functionalities (Sect. 4) and prove its security in the selective
model (Sect. 5).

2 Functional Encryption for Randomized Functions

In this section, we present definitions for functional encryption for randomized
functions (or rand-FE for short). We start by presenting the syntax for rand-FE
and then proceed to give the security definitions for the same.

Syntax. Throughout the paper, we denote the security parameter by 1κ. Let
X = {Xκ}κ∈N, R = {Rκ}κ∈N and Y = {Yκ}κ∈N be ensembles where each Xκ,
Rκ and Yκ is a finite set. Let F = {Fκ}κ∈N be an ensemble where each Fκ is a
finite collection of randomized functions. Each function f ∈ Fκ takes as input a
string x ∈ Xκ and randomness r ∈ Rκ and outputs f(x; r) ∈ Yκ.

A functional encryption scheme FE for randomized functions F consists of
four algorithms (rFE.Setup, rFE.Enc, rFE.Keygen, rFE.Dec):

– Setup rFE.Setup(1κ) is a PPT algorithm that takes as input the security
parameter κ and outputs the public key MPK and the master secret key
MSK.

– Encryption rFE.Enc(x,MPK) is a PPT algorithm that takes as input a
message x and the public key MPK and outputs a ciphertext CT.

– Key Generation rFE.Keygen(f,MSK) is a PPT algorithm that takes as
input a function f ∈ F and the master secret key MSK and outputs a secret
key SKf .

– Decryption rFE.Dec(CT, SKf ) is a deterministic algorithm that takes as
input a ciphertext CT, the public key MPK and a secret key SKf and outputs
a string y ∈ Yκ.

Definition 1 (Correctness). A functional encryption scheme FE for random-
ized function family F is correct if for every polynomial n = n(κ), every f ∈ Fn

κ

and every x ∈ Xn
κ , the following two distributions are computationally indistin-

guishable:

1. Real:
{
rFE.Dec

(
CTi, SKfj

)}n,n

i=1,j=1
, where:

– (MPK,MSK) ← rFE.Setup(1κ)
– CTi ← rFE.Enc(xi,MPK) for i ∈ [n]
– SKfj ← rFE.Keygen(fj ,MSK) for j ∈ [n]

2. Ideal: {fj (xi; ri,j)}n,ni=1,j=1 where ri,j ← Rκ
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Remark 1. We note that unlike the case of deterministic functions where it suf-
fices to define correctness for a single ciphertext and a single key, in the case
of randomized functions, it is essential to define correctness for multiple cipher-
texts and functions. To see this, consider the scenario where a secret key SKf

corresponding to a function f is implemented in such a way that it has some
“fixed” randomness r hardwired in it. Now, upon decrypting any ciphertext
CT ← rFE.Enc(x,MPK) with SKf , one would obtain the output f(x; r) w.r.t.
the same randomness r. Note that this clearly incorrect implementation of SKf

would satisfy the correctness definition for a single ciphertext and a single key,
but will fail to satisfy our definition given above.

2.1 Security for Functional Encryption

We now present our security definitions for rand-FE. We first observe that existing
security definitions for functional encryption only consider the malicious receiver
setting, in that they intuitively guarantee that an adversary who owns a secret
key SKf corresponding to a function f cannot learn anymore than f(x) from an
encryption of x. In this work, we are also interested in achieving security against
malicious senders. In particular, we would like to guarantee that an adversarial
encryptor cannot force “bad” outputs on an honest receiver. As discussed earlier,
this is particularly important when modeling randomized functions.

We consider a a unified adversarial model that captures both malicious re-
ceivers and malicious senders. We present both simulation-based and indistin-
guishability based security definitions. For simplicity, we present our security
definitions for the selective model, where the adversary must decide the chal-
lenge messages up front, before the system parameters are chosen.

Simulation Based Security. We now present a simulation-based security def-
inition (or, SIM-security) for rand-FE. If we only consider malicious receivers,
then our definition looks essentially identical to the standard (selective) SIM-
security definition for FE (for deterinistic functions) [4,21]. In order to provide
security against adversarial senders, we extend the existing definition. To under-
stand the main idea behind our definition, let us consider an honest receiver who
owns a secret key SKf corresponding to a function f . Then, in order to formalize
the intuition that an adversarial sender cannot force “incorrect” outputs on this
honest receiver, we allow the adversary to make decryption queries for arbitrary
ciphertexts4 w.r.t. the secret key SKf . In the ideal world, the simulator must
be able to“extract” the plaintext x from each decryption query and compute as
output f(x; r) for some true randomness r. We then require that the decryption
query in the real world yields an indistinguishable output.

We now proceed to give our formal definition. For simplicity, below we define
security w.r.t. black-box simulators, although we note that our definition can
be easily extended to allow for non-black-box simulation following [3,8]. Our
definition is parameterized by q that denotes the number of challenge messages.

4 This is similar in spirit to the standard chosen-ciphertext security notion for public-
key encryption.



332 V. Goyal et al.

Definition 2 (SIM-security for rand-FE). A functional encryption scheme FE
for the randomized function family F is said to be q-SIM-secure if there exists a
simulator S = (S1, S2, S3) such that for every PPT adversary A = (A1, A2, A3),
the outputs of the following two experiments are computationally indistinguishable:

Experiment REALFE
A (1κ):

(x, st1) ← A1 (1
κ) where x ∈ X q

κ

(MPK,MSK) ← rFE.Setup(1κ)

st2 ← A
O1(MSK,·), O2(MSK,·,·)
2 (MPK, st1)

CT∗
i ← rFE.Enc(xi,MPK) for i ∈ [q]

α ← A
O1(MSK,·), O2(MSK,·,·)
3 (CT∗, st2)

Output (x, {f} , {g} , {y}, α)

Experiment IDEALFE
A (1κ):

(x, st1) ← A1 (1
κ) where x ∈ X q

κ

(MPK,CT∗, st′) ← S1 (1
κ)

st2 ← A
O′

1(·), O′
2(·,·)

2 (MPK, st1)

α ← A
O′

1(·), O′
2(·,·)

3 (CT∗, st2)
Output

(
x,

{
f ′
}
,
{
g′
}
, {y′}, α)

where,

1. Real experiment: In this experiment, O1(MSK, ·) denotes the key gener-
ation oracle rFE.Keygen(·,MSK). The set {f} denotes the key queries made
by A2 and A3.
O2(MSK, ·, ·) denotes a decryption oracle that takes inputs of the form (CT, g)
where g ∈ F . If the query is from A3, then we require that CT �= CT∗

i . O2

computes SKg ← rFE.Keygen(g,MSK) and returns rFE.Dec(CT, SKg). The
set {g} denotes the functions that appear in the decryption queries of A2

and A3 and {y} denotes the responses of O2.
2. Ideal experiment: O′

1(·) denotes the simulator algorithm S2(st
′, ·) that

has oracle access to the ideal functionality KeyIdeal(x, ·). The functionality
KeyIdeal accepts key queries f ′ and returns f ′(xi, ri) for every xi ∈ x and
randomly chosen ri ∈ Rκ. The set {f ′} denotes the key queries made by S2

to KeyIdeal.
O′

2(·, ·) denotes the simulator algorithm S3(st
′, ·, ·) that has oracle access to

ideal functionality DecryptIdeal(·, ·). The functionality DecryptIdeal accepts
input queries (x, g′) and returns y′ = g′(x; r) for randomly chosen r ∈ Rκ.
The set {g′} denotes the functions that appear in the queries of S3 and {y′}
denotes the responses of DecryptIdeal.

We note that in the above selective security definition, pre-ciphertext key queries
are essentially redundant since an adversary can defer all such queries to the
post-ciphertext key query phase. Nevertheless, we present our definition in the
above form to remain syntactically consistent with the full security definition
that consists of two distinct key query phases.

Indistinguishability Based Security. Here we present indistinguishability-
based security definitions for rand-FE. We give two (incomparable) definitions:
the first definition, referred to as INDpre-security allows for adversaries that make
key queries before obtaining the public key. The second definition, referred to as
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INDpost-security, allows for key queries after the adversary receives the public
key, but puts additional constraints on the distribution of these queries. In both
cases, we strengthen the adversary by allowing decryption queries in a similar
manner as the SIM-security definition.

Security against key queries before public key. We first give a security definition
for the case where the adversary is restricted to making key queries before ob-
taining the public key. Similar to the FE definition for deterministic functions
[4,21], we consider two worlds: a left world where the adversary requests cipher-
texts for challenge message x0, and a right world where the challenge message is
x1. Our definition differs from standard definition for (deterministic) FE in two
ways. First, instead of requiring the outputs corresponding to x0 and x1 to be
equal (for every key query f), we now require them to be computationally indis-
tinguishable5 (given the auxiliary input of the adversary). Second, we strengthen
the adversary by allowing her to make decryption queries in the same manner
as the SIM-security definition.

Definition 3 (INDpre-secure rand-FE). A functional encryption scheme FE is
INDpre-secure if for every non-uniform PPT adversary A = (A1, A2, A3), every
z ∈ {0, 1}∗, the distributions Exp0FE,A(1

κ, z) and Exp1FE,A(1
κ, z) are computa-

tionally indistinguishable, where ExpbFE,A(1κ, z) is defined as follows :

Experiment ExpbFE,A(1κ, z):
(MPK,MSK) ← rFE.Setup(1κ)

(x0, x1, st1) ← A
rFE.Keygen(·,MSK)
1 (1κ, z) where x0, x1 ∈ Xκ

st2 ← A
O(MSK,·,·)
2 (MPK, st1)

CT∗ ← rFE.Enc(xb,MPK)
Output A3(CT

∗, st2)

In the above experiment:

1. Let {f} denote the list of key queries made by A1 to the key generation oracle.
Then, the distributions (z, {f (x0)}) and (z, {f (x1)}) are computationally
indistinguishable.

2. O(MSK, ·, ·) denotes a decryption oracle that takes inputs of the form (CT, g)
where g ∈ F . It then computes SKg ← rFE.Keygen(g,MSK) and returns
rFE.Dec(CT, SKg).

Remark 2 (Unbounded INDpre security). Definition 3 can be naturally extended
to allow for multiple challenge messages. The constraint on the key queries {f}
made by A2 will now be that given the challenge message vectors (x0,x1), for
every i, the distributions (z, {f (x0[i])}) and (z, {f (x1[i])}) are computationally
indistinguishable. We call this unbounded INDpre security.

Note that by a standard hybrid argument, INDpre security (for one message)
implies unbounded INDpre security.

5 We note that this condition cannot be verified efficiently.



334 V. Goyal et al.

Security against key queries after public-key. Next we give a security definition
for the case where the adversary is allowed to make key queries after obtaining
the public key. The crucial difference from the previous definition is that we
now require that the output distributions in the left and right world should be
statistically indistinguishable.

Definition 4 (INDpost-secure rand-FE). A functional encryption scheme FE
is INDpost-secure for the randomized function family F if for every non-uniform
PPT adversary A = (A1, A2), every z ∈ {0, 1}∗, the distributions Exp0FE,A(1κ, z)
and Exp1FE,A(1

κ, z) are computationally indistinguishable, where ExpbFE,A(1
κ, z)

is defined as follows :

Experiment ExpbFE,A(1κ, z):
(MPK,MSK) ← rFE.Setup(1κ)
(x0, x1, st1) ← A1(1

κ, z) where x0, x1 ∈ Xκ

CT∗ ← rFE.Enc(xb,MPK)

Output A
rFE.Keygen(·,MSK),O(MSK,·,·)
2 (MPK,CT∗, st1)

In the above experiment:

1. Let {f} denote the list of key queries made by A2 to the key generation
oracle. Then the distributions (MPK, z, {f (x0)}) and (MPK, z, {f (x1)}) are
statistically indistinguishable.

2. O(MSK, ·, ·) denotes a decryption oracle that takes inputs of the form (CT, g)
where CT �= CT∗ and g ∈ F . It computes SKg ← rFE.Keygen(g,MSK) and
returns rFE.Dec(CT, SKg).

Remark 3 (Unbounded INDpost security). Similar to Definition 3, the above def-
inition can also be naturally extended to capture security for multiple challenge
messages. We call this unbounded INDpost security. Note that one-message INDpost

security implies unbounded INDpost security.

Remark 4 (Statistical vs Computational Indistinguishability). Note that if we
modify Definition 4 by requiring the output distributions to be computationally
indistinguishable (as in Definition 3, then it may result in a circularity. Consider
a key query f from A2 that simply re-encrypts the plaintext underlying the
challenge ciphertext CT∗

b .
6 In this case, the requirement on the output distribu-

tions is the same as our desired security guarantee for the challenge ciphertexts,
which results in a vaccuous definition. By requiring the output distributions to
be statistically indistinguishable, we are able to break such circularity.

SIM implies IND. It is easy to see that SIM-security implies both INDpre and
INDpost security. Furthermore, since INDpre (resp., INDpost) security for one mes-
sage implies unbounded INDpre (resp., INDpost) security, we have that 1-SIM
security implies unbounded INDpre and INDpost security. We state it below:

6 Note that in Definition 3, such a query is not possible since the adversary is required
to make all the key queries before receiving the public key.
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Lemma 1. Let FE be a 1-SIM-secure FE scheme for randomized function fam-
ily F . Then FE is also unbounded INDpre-secure and unbounded INDpost-secure
for F .

The proof follows in the same manner as the case of deterministic functions [4].
We provide a sketch in Appendix B for the case of one message. Combining this
with remarks 2 and 3 yields the proof of lemma 1 for unbounded messages.

3 Preliminaries

In this section, we present definitions for various cryptographic primitives that we
shall use in our construction of functional encryption for randomized functions.
We assume familiarity with standard semantically secure public-key encryption
and strongly unforgeable signature schemes and omit their formal definition
from this text. Below, we recall the notions of indistinguishability obfuscation,
puncturable pseudorandom functions, non-interactive witness indistinguishable
proof systems and perfectly binding commitment schemes.

3.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation that was defined by
Barak et al. [2]. Intuitively speaking, we require that for any two circuits C1 and
C2 that are “functionally equivalent” (i.e., for all inputs x in the domain, C1(x) =
C2(x)), the obfuscation of C1 must be computationally indistinguishable from
the obfuscation of C2. Below we present the formal definition following the syntax
of [11].

Definition 5. (Indistinguishability Obfuscation) A uniform PPT machine iO is
called an indistinguishability obfuscator for a circuit class {Cκ} if the following
holds:

– Correctness: For every κ ∈ N, every C ∈ Cκ, every input x in the domain
of C, we have that

Pr[C′(x) = C(x) : C′ ← iO(C)] = 1

– Indistinguishability: For every κ ∈ N, for all pairs of circuits C0, C1 ∈ Cκ,
if C0(x) = C1(x) for all inputs x, then for all PPT adversaries A, we have:

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Recently, Garg et al. [11] gave the first candidate construction for an indistin-
guishability obfuscator iO for the circuit class P/poly. Subsequent to their work,
Pass et al [22] construct an indistinguishability obfuscator based on an “uber”
assumption on multilinear encodings. More recently, Gentry et al [13] construct
an indistinguishability obfuscator based on the multilinear subgroup elimination
assumption.
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3.2 Puncturable Pseudorandom Functions

Puncturable family of PRFs are a special case of constrained PRFs [6,7,20],
where the PRF is defined on all input strings except for a set of size polynomial
in the security parameter. Below we recall their definition, as given by [26].

Syntax A puncturable family of PRFs is defined by a tuple of algorithms (Key,
Eval, Puncture) and a pair of polynomials n(·) and m(·) :
– Key Generation Key(1κ) is a PPT algorithm that takes as input the se-

curity parameter κ and outputs a PRF key K
– Punctured Key Generation Puncture(K,S) is a PPT algorithm that

takes as input a PRF key K, a set S ⊂ {0, 1}n(κ) and outputs a punctured
key KS

– Evaluation Eval(K,x) is a deterministic algorithm that takes as input a
key K (punctured key or PRF key), a string x ∈ {0, 1}n(κ) and outputs
y ∈ {0, 1}m(κ)

Definition 6. A family of PRFs Key, Eval, Puncture is puncturable if it satisfies
the following properties :

– Functionality preserved under puncturing. Let K ← Key(1κ), KS ←
Puncture(K,S). Then, for all x /∈ S, Eval(K,x) = Eval(KS , x).

– Pseudorandom at punctured points. For every PPT adversary (A1, A2)
such that A1(1

κ) outputs a set S ⊂ {0, 1}n(κ), x ∈ S and state st, consider
an experiment where K ← Key(1κ) and KS ← Puncture(K,S). Then

∣
∣Pr[A2(KS , x,Eval(K,x), st) = 1]− Pr[A2(KS , x, Um(κ), st) = 1]

∣
∣ ≤ negl(κ)

where U� denotes the uniform distribution over � bits.

As observed by [20,6,7], the [14] construction of PRFs from one-way functions
easily yield puncturable PRFs.

Theorem 1 ([14,20,6,7]). If one-way functions exist, then for all polynomials
n(κ) and m(κ), there exists a puncturable PRF family that maps n(κ) bits to
m(κ) bits.

We note that in the above construction, the size of the punctured key KS

grows linearly with the size of the punctured set S.

3.3 Non-Interactive Witness Indistinguishable Proofs

In this section, we present the definition for non-interactive witness-
indistinguishable (NIWI) proofs. We emphasize that we are interested in proof
systems, i.e., where the soundness guarantee holds against computationally un-
bounded cheating provers.
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Syntax. Let R be an efficiently computable relation that consists of pairs (x,w),
where x is called the statement and w is the witness. Let L denote the language
consisting of statements in R. A non-interactive proof system for a language L
consists of a setup algorithm NIWI.Setup, a prover algorithm NIWI.Prove and a
verifier algorithm NIWI.Verify, defined as follows:

– Setup NIWI.Setup(1κ) is a PPT algorithm that takes as input the security
parameter 1κ and outputs a common reference string crs.

– Prover NIWI.Prove(crs, x, w) is a PPT algorithm that takes as input the
common reference string crs, a statement x along with a witness w. (x,w) ∈
R; if so, it produces a proof string π, else it outputs fail.

– Verifier NIWI.Verify(crs, x, π) is a PPT algorithm that takes as input the
common reference string crs and a statement x with a corresponding proof
π. It outputs 1 if the proof is valid, and 0 otherwise.

Definition 7 (NIWI). A non-interactive witness-indistinguishable proof system
for a language L with a PPT relation R is a tuple of algorithms (NIWI.Setup,
NIWI.Prove, NIWI.Verify) such that the following properties hold:

– Perfect Completeness: For every (x,w) ∈ R, it holds that

Pr[NIWI.Verify(crs, x,NIWI.Prove(crs, x, w)) = 1] = 1

where crs ← NIWI.Setup(1κ), and the probability is taken over the coins of
NIWI.Setup, NIWI.Prove and NIWI.Verify.

– Statistical Soundness: For every adversary A, it holds that

Pr[NIWI.Verify(crs, x, π) = 1 ∧ x /∈ L | crs ← NIWI.Setup(1κ); (x, π) ← A(crs)] = negl(1κ)

– Witness Indistinguishability: For any triplet (x,w0, w1) such that
(x,w0) ∈ R and (x,w1) ∈ R, the distributions {crs,NIWI.Prove(crs, x, w0)}
and {crs, NIWI.Prove(crs, x, w1)} are computationally indistinguishable,
where crs ← NIWI.Setup(1κ).

Recently, it was shown by Sahai and Waters [26] that NIWI proofs can be
constructed from indistinguishability obfuscation and one-way functions.

3.4 Commitment Schemes

A commitment scheme Com is a PPT algorithm that takes as input a string x
and outputs C ← Com(x). A perfectly binding commitment scheme must satisfy
the perfect binding and computational hiding properties :

– Perfectly Binding: This property states that two different strings cannot
have the same commitment. More formally, ∀x1 �= x2, s1, s2 Com(x1; s1) �=
Com(x2; s2)

– Computational Hiding: For all strings x0 and x1 (of the same length),
for all PPT adversaries A, we have that :

|Pr[A(Com(x0)) = 1]− Pr[A(Com(x1) = 1)]| ≤ negl(κ)
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For simplicity of exposition, we present our FE scheme in Sect. 4 using a non-
interactive perfectly binding scheme. We stress, however, that it is actually suffi-
cient to use a standard 2-round statistically binding scheme in our construction.
Such schemes can be based on one way functions.

4 Our Construction

Let F denote the family of all PPT functions. We now present a functional
encryption scheme FE for F . For any a priori bounded q = poly(κ), we prove
that FE is q-SIM-secure. Note that from Lemma 1, it follows that FE is also
unbounded INDpre and INDpost secure.

Note that in the case of SIM-security, the size of the secret keys in FE grows
linearly with q. It follows from [4,3,8] that such a dependence on q is necessary.

Notation. Let (NIWI.Setup, NIWI.Prove, NIWI.Verify) be a NIWI proof system.
Let Com be a perfectly binding commitment scheme. Let iO be an indistinguisha-
bility obfuscator for all efficiently computable circuits. Let (Key, Puncture, Eval)
be a puncturable family of PRF. Let (Gen, Sign, Verify) be a strongly unforge-
able one-time signature scheme. Finally, let (PKE.Setup, PKE.Enc, PKE.Dec) be
a semantically secure public-key encryption scheme.

Let c-len = c-len(1κ) denote the length of ciphertexts in (PKE.Setup, PKE.Enc,
PKE.Dec) . Let v-len = v-len(1κ) denote the length of verification keys in (Gen,
Sign, Verify). We shall use a parameter len = 2 · c-len+ v-len in the description of
our scheme. We now proceed to describe our scheme FE = (rFE.Setup, rFE.Enc,
rFE.Keygen, rFE.Dec).

Setup rFE.Setup(1κ): The setup algorithmfirst computes a CRS crs ← NIWI.Setup
for the NIWI proof system. Next, it computes two key pairs – (PK1, SK1) ←
PKE.Setup(1κ), (PK2, SK2) ← PKE.Setup(1κ) – of the public-key encryption
scheme. Finally, it computes a commitment C ← Com(0len).

The public key MPK = (crs, PK1, PK2, C) and the master secret key MSK =
SK1. The algorithm outputs (MPK,MSK).

Encryption rFE.Enc(x,MPK): To encrypt a message x, the encryption algo-
rithm first generates a key pair (sk, vk) ← Gen(1κ) of the one-time signature
scheme. It then computes ciphertexts c1 ← PKE.Enc(x, PK1; r1) and c2 ←
PKE.Enc(x, PK2; r2). Next, it computes a NIWI proof π ← NIWI.Prove(crs, z, w)
for the NP statement z = (z1 ∨ z2) where z1 and z2 are defined as follows:

z1 :=(∃x, s1, s2 such that c1 = PKE.Enc(x, PK1; s1)∧c2 = PKE.Enc(x, PK2; s2))
(1)

z2 := (∃s such that C = Com(c1‖c2‖vk, s) (2)

A witness wreal = (x, s1, s2) for z1 is referred to as the real witness, while a
witness wtrap = s for z2 is referred to as the trapdoor witness.
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The honest encryption algorithm uses the real witness wreal to compute π.
Finally, it computes a signature σ ← Sign(c1‖c2‖π, sk) on the string c1‖c2‖π
using sk. The output of the algorithm is the ciphertext CT = (c1, c2, π, vk, σ).

Key Generation rFE.Keygen(f,MSK): On input f ,the key generation algorithm
first chooses a fresh PRF key K ← Key(1κ). It then computes the secret key
SKf ← iO(Gf ) where the function Gf is described in Fig. 1. Note that Gf has
the public key MPK, the secret key SK1 and the PRF key K hardwired in it.

Input: Ciphertext CT
Constants: MPK, SK1, K, f

1. Parse CT = (c1, c2, π, vk, σ).
2. If Verify(σ, c1‖c2‖π, vk) = 0, then output ⊥ and stop, otherwise continue to

the next step.
3. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the

next step. Here z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding
to π.

4. Compute x ← PKE.Dec(c1, SK1).
5. Compute r ← Eval(K, c1‖c2‖vk).
6. Output f(x; r).

Fig. 1. Functionality Gf

The algorithm outputs SKf as the secret key corresponding to f .

Size of Function Gf . In order to prove that FE is q-SIM-secure, we require
the function Gf to be padded with zeros such that |Gf | = |Sim.Gf |, where the
“simulated” functionality Sim.Gf is described later in Fig. 2. In this case, the
size of SKf grows linearly with q.

Decryption rFE.Dec(CT, SKf ): On input CT, the decryption algorithm computes
and outputs SKf (CT).

This completes the description of FE . We prove the correctness of FE in
Appendix A.

Theorem 2. Assuming indistinguishability obfuscation for all polynomial-time
computable circuits and one-way functions, the proposed scheme FE is 1-SIM-
secure.

5 Proof of Theorem 2

We now prove that the proposed scheme FE is 1-SIM-secure. Our proof can be
naturally extended to q-SIM-security, for any a priori fixed q = poly(κ).
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We first construct an ideal world adversary aka simulator S in Sect. 5.1. Next,
in Sect. 5.2, we prove indistinguishability of the outputs of the real and ideal
world experiments via a hybrid argument.

5.1 Description of Simulator

We describe a simulator S = (S1, S2, S3) that makes black-box use of a real
world adversary A = (A1, A2, A3).

Algorithm S1. S1 first performs a simulated setup procedure. Namely, it first
computes a CRS crs ← NIWI.Setup(1κ) for the NIWI proof system and two
key pairs – (PK1, SK1) ← PKE.Setup(1κ) and (PK2, SK2) ← PKE.Setup(1κ) –
for the public-key encryption scheme. Next, it chooses a key pair for the sig-
nature scheme - (sk∗, vk∗) ← Gen(1κ). Then, it computes the commitment
C in the following manner: (a) First compute c∗1 ← PKE.Enc(0, PK1) and
c∗2 ← PKE.Enc(0, PK2). (b) Next, compute C ← Com(c∗1‖c∗2‖vk∗). Let s de-
note the randomness used to compute C .

S1 constructs a proof π∗ by using the trapdoor witness s, that is, π∗ ←
NIWI.Prove(crs, y, s), where the statement y = (c∗1, c

∗
2, vk

∗, PK1, PK2, C). Fi-
nally, it computes σ∗ ← Sign(c∗1‖c∗2‖π∗, sk∗). It sets MPK = (crs, PK1, PK2, C)
and challenge ciphertext CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗).

Algorithm S2. S2 simulates the key generation oracle. Whenever A2 or A3 makes
a key query for a function f , S2 performs the following sequence of steps:

1. Query the ideal functionality KeyIdeal on input f . Let y∗ be the output of
KeyIdeal .

2. Compute a PRF key K ← Key(1κ) and a punctured key K ′ ← Puncture(K,
c∗1‖c∗2‖vk∗).

3. Compute the secret key SKf ← iO(Sim.Gf ) where the functionality Sim.Gf

is described in Fig. 2. Sim.Gf has the public key MPK, secret key SK1, the
punctured key K ′, the challenge ciphertext CT∗ and the output value y∗

hardwired in it.
4. Return SKf .

Algorithm S3. S3 simulates the decryption oracle. Whenever A2 or A3 makes a
decryption query (CT, g) where CT = (c1, c2, π, vk, σ), S3 performs the following
sequence of steps:

1. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the
next step.

2. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to
the next step. Here z = (c1, c2, vk, PK1, PK2, C) is the statement corre-
sponding to π.

3. Compute x ← PKE.Dec(c1, SK1).
4. Return DecryptIdeal(x, g).
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Input: Ciphertext CT
Constants: MPK, SK1, K

′, f , CT∗ = (c∗1 , c
∗
2, π

∗, vk∗, σ∗), y∗

1. Parse CT = (c1, c2, π, vk, σ).
2. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the

next step.
3. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the

next step. Here z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding
to π.

4. If (c1‖c2‖vk = c∗1‖c∗2‖vk∗) output y and stop.
5. Compute x ← PKE.Dec(c1, SK1).
6. Compute r ← Eval(K′, c1‖c2‖vk).
7. Output f(x; r).

Fig. 2. Functionality Sim.Gf

5.2 Indistinguishability of the Outputs

We now describe a series of hybrid experiments H0, . . . ,H11, where H0 corre-
sponds to the real world and H11 corresponds to the ideal world experiment.

Hybrid H0: This is the real experiment. Here, each decryption query (CT, g) is
answered using a decryption key skg ← iO(Gg) where Gg is defined in the same
manner as Gf , except that it has function g hardwired in it.

Hybrid H1: This experiment is the same as H0 except in the manner in which
the key queries of the adversary are answered. Let CT∗ = (c∗1, c∗2, π∗, vk∗, σ∗)
denote the challenge ciphertext. Whenever the adversary A2 or A3 makes a key
query f , we perform the following steps:

1. Compute a PRF key K ← Key(1κ) and then compute a punctured key
K ′ ← Puncture(K, c∗1‖c∗2‖vk∗).

2. Compute r ← Eval(K, c∗1‖c∗2‖vk∗) and y∗ = f(x; r).
3. Compute the secret key SKf ← iO(Sim.Gf ) where the functionality Sim.Gf

is described in Fig. 2. Note that Sim.Gf has the public key MPK, master
secret key MSK, the punctured key K ′, the challenge ciphertext components
ct∗ and the output value y∗ (as computed above) hardwired in it.

4. Return SKf .

Hybrid H2: This experiment is the same as H1, except that we now answer the
key queries of A2 and A3 in the same manner as the simulator S2.

Hybrid H3: This experiment is the same as H2, except that the setup algorithm
computes the commitment C in the following manner: let CT∗ = (c∗1, c∗2, π∗, vk∗,
σ∗) denote the challenge ciphertext. Then, C ← Com(c∗1‖c∗2‖vk∗).
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Hybrid H4: This experiment is the same as H3, except that we modify the chal-
lenge ciphertext CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗): the proof string π∗ is now computed
using the trapdoor witness s where s is the randomness used to compute the
commitment C.

Hybrid H5: This experiment is the same as H4, except that in the challenge
ciphertext CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗), the second ciphertext c∗2 is an encryption
of zeros, i.e., c∗2 ← PKE.Enc(0, PK2).

Hybrid H6: This experiment is the same as H5, except that for every key query
f , the secret key SKf is computed as SKf ← iO(Sim.G′

f ) where Sim.G′
f is the

same as function Sim.Gf except that:

1. It has secret key SK2 hardwired instead of SK1.
2. It decrypts the second component of each input ciphertext using SK2.

More concretely, in Step 5 of Sim.G′
f , plaintext x is computed as x ←

PKE.Dec(c2, SK2).

Hybrid H7: This experiment is the same as H6, except that we modify the manner
in which the decryption queries of A2 and A3 are answered: each query (CT, g) is
answered using a decryption key skg ← iO(G′

f ) where G′
g is the same as function

Gg except that:

1. It has secret key SK2 hardwired instead of SK1.
2. It decrypts the second component of each input ciphertext using SK2. More

concretely, in Step 4 of Gg, plaintext x is computed as x ← PKE.Dec(c2, SK2).

Hybrid H8: This experiment is the same as H7, except that in the challenge
ciphertext CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗), the first ciphertext c∗1 is an encryption of
zeros, i.e., c∗1 ← PKE.Enc(0, PK1).

Hybrid H9: This experiment is the same as H8, except that we modify the manner
in which the decryption queries of A2 and A3 are answered: each query (CT, g)
is answered using a decryption key skg ← iO(Gf ).

Hybrid H10: This experiment is the same as H9, except that we change the
manner in which the key queries are answered. For every key query f , the secret
key SKf is computed as SKf ← iO(Sim.Gf ).

Hybrid H11: This experiment is the same as H10, except that we now answer the
decryption queries of A2 and A3 in the same manner as the simulator algorithm
S3. Note that this is the ideal experiment.

This completes the description of the hybrid experiments. Next, we prove
that for every i, the outputs of experiments Hi and Hi+1 are computationally
indistinguishable.

Lemma 2. Assuming that iO is an indistinguishability obfuscator, hybrid ex-
periments H0 and H1 are computationally indistinguishable.
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Proof. Note that the only difference in H0 and H1 is that in the former exper-
iment, we output iO(Gf ) as the key corresponding to any key query f , while
in the latter experiment, we output iO(Sim.Gf ). In order to prove that these
two hybrids are computationally indistinguishable, we show that for every key
query f , Gf and Sim.Gf have identical input-output behavior. Then, by security
of indistinguishability obfuscation, we would have that iO(Gf ) and iO(Sim.Gf )
are computationally indistinguishable, which in turn would imply H0 and H1 are
computationally indistinguishable.

Observation 1. For any input CT = (c1, c2, π, vk, σ), Gf outputs ⊥ if and only
if Sim.Gf outputs ⊥.

Note that both Gf and Sim.Gf output ⊥ if and only if either the signature σ does
not verify or the proof π does not verify; that is, either Verify(σ, c1‖c2‖π, vk) = 0
or NIWI.Verify(crs, y, π) = 0 where y = (c1, c2, vk, PK1, PK2, C). Let us call an
input CT = (c1, c2, π, vk, σ) valid if both the signature σ and proof π verify.
Next, we prove that both Gf in H0 and Sim.Gf in H1 have the same functionality
for all valid inputs.

Claim 1. For any valid input CT = (c1, c2, π, vk, σ), Gf (CT) = Sim.Gf (CT).

Proof. We consider two cases : c1‖c2‖vk �= c∗1‖c∗2‖vk∗ and c1‖c2‖vk = c∗1‖c∗2‖vk∗.
For the first case, note that by the first property of constrained PRF, it follows
that Eval(K, c1‖c2‖vk) = Eval(K ′, c1‖c2‖vk) = r. Both Gf in H0 and Sim.Gf in
H1 decrypt c1 using SK1 to compute x, and then output f(x, r).

In the second case, Gf computes r ← Eval(K, c∗1‖c∗2‖vk∗), and then computes
x by decrypting c1 and outputs y = f(x; r). On the other hand, Sim.Gf simply
outputs the hard-wired value y∗ when c1‖c2‖vk = c∗1‖c∗2‖vk∗. However, note that
y∗ = y, thereby ensuring that Gf (CT

∗) = Sim.Gf (CT
∗).

Using the above claims, we can now describe our reduction. Assume A2 and
A3 together make a total of � key queries. We define hybrids H0,i, 0 ≤ i ≤ �, as
follows: in H0,i, we respond to the first � − i queries using FE.Keygen as in H0,
and respond to the last i queries as in H1.

Claim 2. If ∃ a PPT distinguisher A that can distinguish the outputs of H0,i

and H0,i+1 with non negligible advantage, then there exists a PPT adversary B
that can break the security of iO with non-negligible advantage.

Let C be the challenger for obfuscation. Adversary B works as follows:

1. It first honestly computes (MPK, st′,CT∗).
2. For the first (� − i − 1) key queries f , B computes the key for f using

rFE.Keygen(·,MSK). For the last i key queries f , B computes the key for f
as in H1.

3. For the (�−i)’th key query for function f , B chooses a PRF key K, computes
K ′ ← Puncture(K, c∗1‖c∗2‖vk∗) and y = f(x;Eval(K, c∗1‖c∗2‖vk∗)). It then
defines programs Gf , Sim.Gf and sends them to C, and receives an obfuscation
SKf , which it passes on to the adversary.
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4. B runs the rest of the experiment in the same manner as in H0 and H1.
5. Finally, B sends the output of the experiment to A and returns its output

to C.
Now, if C returns obfuscation of Gf , then B perfectly simulates experiment H0,i,
else it simulates experiment H0,i+1. Thus, if A distinguishes the outputs with non
negligible advantage, then clearly B breaks the security of indistinguishability
obfuscation with non negligible advantage.

Lemma 3. Assuming (Key,Eval,Puncture) is a puncturable family of PRFs, hy-
brid experiments H1 and H2 are computationally indistinguishable.

Proof. Assume A2 and A3 make a total of � key queries. We consider � inter-
mediate hybrids H1,i for 0 ≤ i ≤ � where in H1,i, we respond to the first � − i
key queries as in H1, and the remaining i key queries as in H2. We show that if
there exists a PPT distinguisher A that can distinguish the outputs of H1,i and
H1,i+1 with non-negligible advantage, then there exists a PPT adversary B that
can break the security of puncturable PRFs with non-negligible advantage. The
construction of B is as follows :

1. B first computes MPK,MSK,CT∗ honestly.
2. For the first (�− i− 1) key queries from A3, B responds in the same manner

as in H1. For the last i key queries, B responds as in H2.
3. For the (�− i)’th key query f , B first sends (c∗1‖c∗2‖vk∗) to the challenger C

and receives (K ′, r), where K ′ = Puncture(K, c∗1‖c∗2‖vk∗) for some PRF key
K and r is either Eval(K, c∗1‖c∗2‖vk∗) or a uniformly random string in Rκ. It
then defines the function Sim.Gf as before. B sends iO(Sim.Gf ) as the key
for function f .

4. B runs the rest of the experiment in the same manner as in H1 and H2.
5. Finally, B sends the output of the experiment to A and returns its output

to C.
Note that if r was computed as Eval(K, c∗1‖c∗2‖vk∗), then B perfectly simulates
experiment H1,i, else it simulates H1,i+1. Thus, if A can distinguish the outputs
of H1,i and H1,i+1 with non-negligible advantage, then B can break security of
puncturable PRFs with non-negligible advantage.

Lemma 4. Assuming Com is a computationally hiding commitment scheme,
hybrid experiments H2 and H3 are computationally indistinguishable.

Proof. Note that the only difference between experiments H2 and H3 is that
C is computed as a commitment to 0len in the former case and (c∗1‖c∗2‖vk∗) in
the latter. Then, assume that ∃ PPT distinguisher A that can distinguish the
outputs of H2 and H3 with non-negligible advantage. Using A, we can construct
a PPT algorithm B that breaks the computational hiding property of Com as
follows:

1. B first runs A1 to obtain x. It then computes (PK1, SK1) ← PKE.Setup(1κ),
(PK2, SK2) ← PKE.Setup(1κ), crs ← NIWI.Setup and (sk∗, vk∗) ← Gen(1κ).
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2. Next, it computes c∗1 ← PKE.Enc(x, PK1), c
∗
2 ← PKE.Enc(x, PK2) and con-

structs a valid proof π∗ using the real witness. Then it signs c∗1‖c∗2‖π∗ using
sk∗ to compute σ∗. It sets CT∗ = (c∗1, c∗2, π∗, vk∗, σ∗)

3. B sends 0len and (c∗1‖c∗2‖vk∗) to C, and receives C, which is either a commit-
ment to 0len or (c∗1‖c∗2‖vk∗).

4. B simulates the rest of the experiment as in H2 and H3.
5. Finally, B sends the output of the experiment to A and returns its output

to C.
Now, if C is a commitment to 0len, then B perfectly simulates H2, else it simulates
H3. Thus, if A can distinguish the outputs of H4 and H5 with non-negligible
advantage, then B breaks the hiding of Com.

Lemma 5. Assuming witness indistinguishability of NIWI, hybrid experiments
H3 and H4 are computationally indistinguishable.

Proof. In H3, we use the real witness for proving that c∗1 and c∗2 are encryptions
of the same message, while in H4, we use the trapdoor witness for proving that
C is a commitment to (c∗1‖c∗2‖vk∗). Since NIWI is witness indistinguishable, the
two hybrids are computationally indistinguishable.

Lemma 6. Assuming (PKE.Setup,PKE.Enc,PKE.Dec) is IND-CPA secure, hy-
brid experiments H4 and H5 are computationally indistinguishable.

Proof. We show that if there exists an efficient distinguisher A that can distin-
guish between H4 and H5, then there exists an efficient adversary B that breaks
IND-CPA security. B is defined as follows:

1. B first receives a public key pk from IND-CPA challenger C.
2. B computes (PK1, SK1) ← PKE.Setup(1κ), crs ← NIWI.Setup, (sk∗, vk∗) ←

Gen(1κ) and sets PK2 = pk. Next, it encrypts the challenge message x using
PK1 to compute ciphertext c∗1

3. B sends (0, x) as its challenge messages to C, and receives a ciphertext c. It
sets c∗2 = c. Next, it computes the commitment C = Com(c∗1‖c∗2‖vk∗).

4. B runs the rest of the experiment in the same manner as in H4 and H5.
5. Finally, B sends the output of the experiment to A.
6. If A outputs H4, then B outputs that c is an encryption of x. Else it outputs

c is an encryption of 0.

Now, if c is an encryption of x, then B perfectly simulates experiment H4, else it
simulates H5. Then, clearly, if A’s output is correct, then so is B’s output. Hence,
if A can distinguish the outputs of the two experiments with non negligible
advantage, then B can win the IND-CPA game with the same advantage.

Lemma 7. Assuming NIWI is statistically sound, iO is an indistinguishability
obfuscator and Com is perfectly binding, hybrid experiments H5 and H6 are com-
putationally indistinguishable.

Proof. As in the proof of Lemma 2, we first argue that both Sim.Gf and Sim.G′
f

have identical input-output behavior.
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Observation 2. For all inputs CT = (c1, c2, π, vk, σ), Sim.Gf (CT) = ⊥ if and
only if Sim.G′

f (CT) = ⊥.

Both Sim.Gf and Sim.G′
f output ⊥ if and only if either Verify(σ, c1‖c2‖π, vk) = 0

or NIWI.Verify(crs, y, π) = 0 where y = (c1, c2, vk, PK1, PK2, C). Therefore, we
only need to consider valid inputs. Next, we show that any valid input must
satisfy one of the two properties listed below.

Claim 3. Any valid ciphertext CT = (c1, c2, π, vk, σ) should satisfy one of the
following properties :
– c1 and c2 are encryptions of the same message
– c1‖c2‖vk = c∗1‖c∗2‖vk∗.

Proof. Suppose, on the contrary, there exists a valid input such that it satisfies
neither of the properties. Since NIWI is statistically sound, if the input is valid,
then the statement y = (c1, c2, vk, PK1, PK2, C) must have either a real witness
or a trapdoor witness. Since c1 and c2 are encryptions of different messages, a
real witness does not exist. Therefore, for the input to be valid, there must exist
a trapdoor witness; that is, there exists an s such that C = Com(c1‖c2‖vk; s).
However, since C = Com(c∗1‖c∗2‖vk∗) and Com is perfectly binding, it follows
that (c1‖c2‖vk) = (c∗1‖c∗2‖vk∗). Thus, we have a contradiction.

Using the previous claim, we can now argue that both Sim.Gf and Sim.G′
f

have identical input-output behavior.

Claim 4. For all valid inputs CT = (c1, c2, π, vk, σ), both Sim.Gf and Sim.G′
f

have the same functionality.

Proof. If both c1 and c2 are encryptions of the same message, then we have that
PKE.Dec(c1, SK1) = PKE.Dec(c2, SK2) = x. Therefore both programs Sim.Gf

and Sim.G′
f output f(x; r), where r ← Eval(K, c1‖c2‖vk) = Eval(K ′, c1‖c2‖vk).

If c1‖c2‖vk = c∗1‖c∗2‖vk∗, then both Sim.Gf and Sim.G′
f output y∗, where y∗ is

KeyIdeal’s response to query x. Therefore, for all valid inputs, Sim.Gf and Sim.G′
f

have identical input-output behavior.

We now describe our reduction. Assume A2 and A3 make a total of � key
queries. Consider intermediate hybrids H5,i 0 ≤ i ≤ �. In H5,i, we use SK1 for
the first � − i key queries, and SK2 for the remaining i queries. Now, suppose
that there exists a PPT distinguisher A that can distinguish the outputs of H5,i

and H5,i+1. Then, there ∃ an adversary B that can break the security of iO. B
is constructed as follows:

1. B generates MPK,CT∗ as in H5. It sets st
′ = SK1, SK2,CT

∗.
2. For the first (�− i− 1) key queries by A, B responds as in H5. For the last i

queries, B responds as in H6.
3. For the (� − i)’th key query f , B queries KeyIdeal with f and receives

y. Next, it chooses a PRF Key K, computes punctured key K ′ ←
Puncture(K, c∗1‖c∗2‖vk∗) and defines functions Sim.Gf and Sim.G′

f . B sends
Sim.Gf and Sim.G′

f to the obfuscation challenger C, receives challenge obfus-
cation SKf , which it passes on to A2.
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4. B runs the rest of the experiment in the same manner as in H5 and H6.
5. Finally, B sends the output of the experiment toA and forwardsA’s response

to C.
Now, if C returns obfuscation of Gf , then B perfectly simulates experiment

H5,i, else it simulates experiment H5,i+1. Thus, if A distinguishes the outputs
with non negligible advantage, then clearly B breaks the security of indistin-
guishability obfuscation with non negligible advantage.

Lemma 8. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time sig-
nature scheme, NIWI is statistically sound and Com is perfectly binding, hybrid
experiments H6 and H7 are statistically indistinguishable.

Proof. As shown in claim 3, any valid ciphertextCT = (c1, c2, π, vk, σ) is such that
either c1 and c2 are encryptions of the same message or c1‖c2‖vk = c∗1‖c∗2‖vk∗.
However, recall that for decryption queries, we only require that CT �= CT∗.

If both c1 and c2 encrypt the same value, then clearly the use of SK1 or SK2

is indistinguishable. Then, lets consider the case where c1‖c2‖vk = c∗1‖c∗2‖vk∗,
yet CT �= CT∗. In this case, it must be that π∗‖σ∗ �= π‖σ. Now, if π �= π∗,
then since vk = vk∗ and (c1‖c2‖π) �= (c∗1‖c∗2‖π∗), we have that σ is a forgery
for (c1‖c2‖π). On the other hand, if π = π∗, then it must be that σ �= σ∗. In
this case, we have that σ is a strong forgery for (c1‖c2‖π) = (c∗1‖c∗2‖π∗). We
can therefore break the security of the strongly unforgeable one time signature
scheme.

Lemma 9. Assuming (PKE.Setup,PKE.Enc,PKE.Dec) is IND-CPA secure, hy-
brid experiments H7 and H8 are computationally indistinguishable.

Proof. Same as proof for Lemma 6.

Lemma 10. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time
signature scheme, NIWI is statistically sound and Com is perfectly binding, hybrid
experiments H8 and H9 are statistically indistinguishable.

Proof. Same as in proof of Lemma 8.

Lemma 11. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time sig-
nature scheme, NIWI is statistically sound, iO is indistinguishability obfuscator
and comm is perfectly binding, hybrid experiments H9 and H10 are computation-
ally indistinguishable.

Proof. Same as in proof for Lemma 7.

Lemma 12. Assuming (Key,Eval,Puncture) is a puncturable family of PRFs,
hybrid experiments H10 and H11 are computationally indistinguishable.

Proof. In H10, on receiving a decryption query (CT, g), we sample PRF keyK and
decrypt CT using skg ← iO(Gg), where CT = (c1, c2, π, vk, σ) and Gg uses ran-
domness r ← Eval(K, c1‖c2‖vk) to compute the output g(x,Eval(K, c1‖c2‖vk)).
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On the other hand, in H11, the output is computed as g(x, r) ← DecryptIdeal(x, g)

where r
$← Rκ.

If there exists an efficient adversary that can distinguish between the outputs
of H10 and H11 with non negligible probability, then there exists an efficient
adversary that can distinguish between the output of Eval from a truly ran-
dom string with non negligible probability, thereby breaking the security of a
pseudorandom function.
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and Kf ← rFE.Keygen(f,MSK). Similarly, consider the Ideal1 distribution
{f(xi, ri)}ni=1, where ri ← Rκ.

Claim 5. Assuming Eval(·, ·) is a PRF, Real1 and Ideal1 distributions are com-
putationally indistinguishable.

Proof. Note that rFE.Dec(CTi, SKf ) = f(xi,Eval(K, ci,1‖ci,2‖vki)). Therefore,
the Real1 distribution is {f(xi,Eval(K, ci,1‖ci,2‖vki))}ni=1. Suppose there exists
an adversary A that can distinguish between the distributions Real1 and Ideal1
with non-negligible advantage. Then there exists an adversary B that can break
the PRF security of Eval(·, ·). The reduction is as follows :

1. PRF challenger C chooses a bit b ← {0, 1}.
2. For i = 1 to n

(a) B sends (ci,1‖ci,2‖vki) to C, and receives r. If b = 0, r =
Eval(K, ci,1‖ci,2‖vki), else r ← Rκ.

(b) B computes yi = f(xi, r).
3. B sends y to A, and depending on A’s guess, B outputs 0 or 1.

Clearly, if A distinguishes between the distributions Real1 and Ideal1 with non-
negligible advantage, then B breaks the PRF security with non-negligible ad-
vantage.

This lemma can be extended, via a standard hybrid argument, to prove that the
Real and Ideal distributions are computationally indistinguishable.

B SIM Security Implies INDpre and INDpost Security

We first prove that 1-SIM security implies one-message INDpre security. We actu-

ally prove the stronger statement that 1-S̃IM security implies one-message INDpre

security where in S̃IM security, the adversary is restricted to making all of the
key queries before receiving the public key. Let x0, x1 ∈ Xκ be any two mes-
sages. Let REAL0(1κ) correspond to real world experiment in Definition 3 where

the challenge ciphertext corresponds to the encryption of x0. From 1-S̃IM secu-

rity, we have that REAL0(1κ) is computationally indistinguishable to ˜IDEAL
0

(1κ)

where ˜IDEAL
0

(1κ) is the corresponding ideal world in Definition 2. (In partic-

ular, in ˜IDEAL
1

(1κ), the simulator receives the output of every key query f on
message x0.) Now, since Definition 3 requires the promise that (z, {f (x0)}) and
(z, {f (x1)}) are computationally indistinguishable, we have that ĨDEAL

0

(1κ) is

computationally indistinguishable from ˜IDEAL
1

(1κ), where ˜IDEAL
1

(1κ) is de-

fined analogously to IDEAL0(1κ).7 Now, finally, we can invoke 1-S̃IM-security

7 One may note that since the simulator in our definition performs the key
generation in the ideal world, we actually require (MPK,MSK, z, {f (x0)}) and
(MPK,MSK, z, {f (x1)}) to be computationally indistinguishable. This, however, fol-
lows immediately since the key queries {f} are independent of the public key MPK.
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once again to argue that ˜IDEAL
1

(1κ) and REAL1(1κ) are computationally indis-
tinguishable. Combining the above, we have that REAL0(1κ) and REAL1(1κ) are
computationally indistinguishable, as required.

The proof that 1-SIM security implies one-message INDpost security follows in
a similar manner as above. In particular, note that in this case, we have the
promise from Definition 4 that (z, {f (x0)}) and (z, {f (x1)}) are statistically
indistinguishable. This immediately implies that (MPK,MSK, z, {f (x0)}) and
(MPK,MSK, z, {f (x1)}) are computationally indistinguishable. The rest of the
steps of the proof follow similarly as above.
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