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Abstract. Groth, Ostrovsky and Sahai constructed a non-interactive
Zap for NP-languages by observing that the common reference string of
their proof system for circuit satisfiability admits what they call corre-
lated key generation. The latter means that it is possible to create from
scratch two common reference strings in such a way that it can be pub-
licly verified that at least one of them guarantees perfect soundness while
it is computationally infeasible to tell which one. Their technique also
implies that it is possible to have NIWI Groth-Sahai proofs for certain
types of equations over bilinear groups in the plain model. We extend the
result of Groth, Ostrovsky and Sahai in several directions. Given as in-
put some predicate P computable by some monotone span program over
a finite field, we show how to generate a set of common reference strings
in such a way that it can be publicly verified that the subset of them
which guarantees perfect soundness is accepted by the span program. We
give several different flavors of the technique suitable for different appli-
cations scenarios and different equation types. We use this to stretch the
expressivity of Groth-Sahai proofs and construct NIZK proofs of partial
satisfiability of sets of equations in a bilinear group and more efficient
Groth-Sahai NIWI proofs without common reference string for a larger
class of equation types. Finally, we apply our results to significantly re-
duce the size of the signatures of the ring signature scheme of Chandran,
Groth and Sahai or to have a more efficient proof in the standard model
that a commitment opens to an element of a public list.

1 Introduction

Zero-knowledge proofs have played a significant role both in the theory and the
practice of cryptographic protocols. Although non-interactive zero-knowledge
proofs are in principle more useful for practical purposes, for roughly twenty
years after their invention [4] their prohibitive costs made their interactive coun-
terparts the only real alternative. For example, although the connection between
NIZKs and signatures was early recognized [2], in practice a widely used tech-
nique was to build schemes in the random oracle based on a special kind of
interactive proof of knowledge, a Σ-protocol ([24,13]). This approach turned out
to be quite fruitful and it was used to build a number of schemes even with
complex functionalities, like for instance the numerous kinds of distributed sig-
nature schemes based on the work of Cramer et al. [9] on interactive proofs of
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partial knowledge. In such a proof, the prover convinces the verifier that it knows
a subset of the witnesses of a set of statements. Again, although De Santis et al.
[10] had achieved similar results before for the non-interactive case, they were
considered of theoretical interest only and went unnoticed by protocol designers.

The situation changed radically when in 2008, after some promising advances
towards making non-interactive proofs practical, ([5,14]), Groth and Sahai ([16])
gave efficient non-interactive proofs of membership in the language of satisfiable
quadratic equations in bilinear groups. Compared to previous work, their pro-
posal had the advantage of considering a language which is both very natural
and very general. The great number of protocols which use GS proofs ([19,17,6],
just to name a few) shows the strength and flexibility of their framework.

More expressive is more efficient. The fact that practical instantiations
of GS proofs are in bilinear groups imposes some limitations on the type of
equations for which satisfiability can be proven. For instance, each equation
should be at most quadratic, and further, in asymmetric bilinear groups, it should
have degree at most one in each variable. This can be circumvented at the cost of
adding additional variables and equations but this might significantly increase
the proof size. Although GS proofs can be considered practical, they remain
expensive and even proofs of simple statements might require several dozens
of group elements. Therefore, the design goal of obtaining proofs for a more
expressive language goes hand in hand with obtaining efficiency improvements.

For instance, suppose one wants to prove a statement of the type which is
informally expressed as:

“ĉ is a commitment to some value X ∈ {1, . . . , L},” (1)

for some L ∈ N. This statement is naturally encoded as “ĉ opens to some value
X which satisfies one of the equations {X−1 = 0, . . . , X−L = 0}”. However, as
GS proofs do not support this kind of statements, following [6,14], the strategy

is to add auxiliary variables b1, . . . , bL, prove that
∑L

i=1 bi = 1 and that, for all
i ∈ {1, . . . , L}, bi ∈ {0, 1} and (X − i)bi = 0. Further, in the instantiation of
GS proofs in asymmetric bilinear groups, to prove each one of the statements
bi ∈ {0, 1} we must add a new additional variable bi, and prove satisfiability of
the equations {bi−bi = 0, bi(bi−1) = 0}. The question remains if we can encode
these statements in some alternative, more efficient way by stretching GS proofs
so that they support this sort of statements directly.

Partial Proofs. We would like a result close in spirit to [10,9] for GS proofs.
In all these works, the main idea is to use as a building block a proof system PS1

that allows to prove a certain atomic statement x, and modify it to construct
a proof system PS2 for statements of the kind “Given the atomic statements
x1, . . . , xL, there exists a subset of indexes A ⊂ {1, . . . , L} in some family of sets
Ω ⊂ P([L]) such that all the atomic statements xi, i ∈ A are true”.

The prover in PS2 must construct a proof given only the witnesses for the
statements xi, i ∈ A and the proof must leak no information about the actual
set A, other than it is in Ω. The common strategy of these works is to construct
the prover of PS2 using as building block both the prover of PS1 — for the
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statements xi, i ∈ A — and the simulator — for the statements xi, i /∈ A.
Since real proofs are (computationally) indistinguishable from simulated ones,
the final proof output by the prover of PS2, which consists of proofs for all the
statements x1, . . . , xL, will reveal nothing about A. The main challenge is then
to ensure that the soundness condition is met — guaranteeing that the prover
cannot simulate all the proofs—, while making sure that the simulator gets a
properly distributed input.

In all these works — including ours — this is done by means of secret sharing
techniques, however the challenges that arise are specific to each proof system.
For instance, in the work of Cramer et al. [9], both PS1 and PS2 areΣ-protocols,
which are 3 round interactive protocols. In this case, the key difference between
a prover and a simulator which outputs an accepting transcript is that the latter
creates the transcript by altering the order in which the real protocol is executed
and letting the information sent in the first round depend on the challenge,
which is the information sent in the second round. In [9], the prover of PS2

receives a challenge c, from which it creates L challenges c1, . . . , cL and uses ci
as a challenge to prove the atomic statement xi with PS1. The secret sharing
techniques ensure that the prover of PS2 has the right amount of freedom in
choosing these challenges: namely, they guarantee that there exists some A ∈ Ω
such that the prover can choose all ci, i ∈ Ac (i.e. it can simulate the proofs of
xi, i ∈ Ac), while it is unable to guess the value of ci, i ∈ A (i.e. soundness must
hold for xi, i ∈ A).

The GS Proof System. Clearly, the techniques of Cramer et al. are specific
to Σ-Protocols. On the other hand, the techniques of de Santis et al. [10] for the
non-interactive case are specific to statements related to quadratic residuosity.
Neither of them does apply in any obvious way to GS proofs as the conditions
which guarantee soundness or allow to simulate proofs are quite different there.

Indeed, let us recall some basics about GS proofs. They allow to prove satis-
fiability of several equation types over a bilinear group gk = (q, Ĝ, Ȟ,T, e, ĝ, ȟ),

where Ĝ, Ȟ,T are groups of prime order q in additive notation, the elements ĝ, ȟ
are generators of Ĝ, Ȟ respectively, and e : Ĝ × Ȟ → T is an efficiently com-
putable, non-degenerate bilinear map. The witness of satisfiability is a solution
to the equation which consists of several elements in Zq, Ĝ or Ȟ. The proof is
constructed in a two-step process: first, the prover commits to each element of
the witness, then it shows that the committed values satisfy the equation. The
common reference string (essentially) consists of some commitment keys. These
keys can be generated in one of two indistinguishable modes: in the soundness
mode these keys define perfectly binding commitments, and even an unbounded
prover cannot convince a verifier of a false statement, and in the witness in-
distinguishable mode they define perfectly hiding commitments. Further, in the
latter case, there exists some trapdoor which allows to simulate proofs which are
identically distributed to real proofs (computed as in the WI mode). Addition-
ally, a key is binding or hiding depending on whether or not it satisfies certain
linear relations. For instance, the commitment key in the group Ĝ consists of
three vectors û, v̂, ŵ ∈ Ĝ

2. The commitment to a scalar x ∈ Zq is ĉ = xŵ+ rv̂,
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for some random r ∈ Zq, and to a group element x̂ ∈ Ĝ is ĉ = (0̂, x̂)�+ rv̂+ sû,
for some random r, s ∈ Zq. For scalars the commitment is perfectly binding if

v̂, ŵ ∈ Ĝ
2 are linearly independent and perfectly hiding otherwise. For group

elements the opposite is true of v̂, û: the commitment is perfectly hiding if v̂, û
are linearly independent and perfectly binding otherwise. To construct partial
proofs for the GS proof system, the ideas of [10,9] must be adapted to the inner
workings of GS proofs we have just described.

The Non-Interactive Zap of Groth, Ostrovsky and Sahai (GOS). On
the other hand, the authors of [15], observe that the common reference string of
GS proofs admits what we call Or-Verifiable Correlated Key Generation: namely,
that a prover can create from scratch, without common reference string, a pair
of two keys in such a way that it can be publicly verified that at least one of the
two keys is binding for quadratic equations.

More specifically, the observation of GOS is that given any vector v̂ ∈ Ĝ
2

such that {v̂, (0̂, ĝ)�} are linearly independent vectors (this condition can be
obviously publicly verified by checking if the first component of v̂ is 0̂), and two

vectors ẑ1, ẑ2 ∈ Ĝ
2 such that ẑ1 + ẑ2 = (0̂, ĝ)�, it holds that at least one of ẑ1,

ẑ2 is independent of v̂ (otherwise their sum could not be independent of v̂). This
means that given only some bilinear group gk (and no common reference string)
and a tuple (v̂, ẑ1, ẑ2) with the above constraints, it can be publicly verified that
at least one of the pairs of correlated keys {v̂, ẑ1}, {v̂, ẑ2} is a binding GS key
for committing to scalars.

Since GS proofs have perfect soundness, if one of the keys is binding the prover
cannot cheat even if it knows additional information about the common refer-
ence string (e.g. the discrete logarithm). Thus, if the prover chooses (v̂, ẑ1, ẑ2)
and then it proves a statement x with both pairs of correlated keys, the state-
ment must be true. Further, the prover is free to choose one of the keys to be
hiding for commitments to scalars and this can be done in such a way that it is
computationally infeasible to tell which key is the hiding one. This implies that
the proof reveals no information about the witness.

Thus, more technically if we prove the same statement x with both pairs of
keys we have given a non-interactive Zap (NI Zap) for x, i.e. a witness indistin-
guishable proof in the plain model. On the other hand, if we take two different
statements x1, x2 and we give a real proof for one of them with the binding key
and we simulate the other one with the hiding key, we have given a NI Zap that
at least one of x1, x2 is true. This seems to be exactly the right starting point
for adapting the techniques for partial proofs to the GS setting. In this work
we want to fully develop the approach of GOS, and we address several of its
limitations:

1. The technique of GOS needs to be adapted to prove not only witness indis-
tinguishability but also zero-knowledge. Indeed, in the construction above,
one of the keys is always binding and to prove “x1 or x2”, we always need
the witness of at least one of the statements.
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2. One of the pairs {v̂, ẑ1}, {v̂, ẑ2} is a binding key to commit to scalars, but
not to group elements. For which equation types does this approach allow to
gain efficiency? Can we find a similar technique for commitments to group
elements?

3. Can we extend the techniques to other predicates other than the OR of two
equations?

In summary, the question is if we can extend the notion of Verifiable Correlated
Key Generation to incorporate all these aspects and in such a way that it is
useful to construct more efficient NIZK proofs of partial satisfiability for a large
class of predicates.

1.1 Our Results

Labeled Commit-and-Prove schemes. Recently, Escala and Groth [11] gave
a complete formulation of the GS proof system as a labeled Commit-and-Prove
(CaP) scheme. The labels are meant to deal with different variable and equation
types. This formulation is really convenient for our purposes, as it allows to define
in a precise way which equation types admit verifiable correlated key generation
and which do not. One of our contributions (section 3) is to slightly modify the
definition of labeled CaP of [11] so that it can accommodate both the GS proof
system and our new proof system for partial satisfiability.

Extending the definition of verifiable correlated key generation.

In section 5, we extend the ideas of GOS in several directions, to use them as a
building block to construct proofs of partial satisfiability.

– First, we give a new definition of verifiable correlated key generation —
VCKG for short — to adapt it to more general predicates, namely to any
predicate P computable by a monotone span program SP . We also modify
the definition to explicitly take as input a set of labels so that it fits with
the GS CaP formulation of [11]. The motivation for doing so is that the
same common reference string might be binding for some equation types
and hiding for others. For instance, it is unclear how to extend the result
of GOS to prove that an OR of two pairing product equations is satisfied
without trusted setup. By this we do not mean that one could not use other
to results to prove this (at worst we could prove this by reduction to circuit
satisfiability). Our point is rather that introducing labels allows to clearly
identify that the construction of GOS only ensures that one of the two
commitment keys is binding for scalars, but not for group elements.

– Second, we define Simulatable VCKG (SVCKG), which is essentially the
same as VCKG except for the fact that the generation algorithm takes as
input a common reference string instead of creating the keys from scratch.
The keys can be generated in two indistinguishable ways: in such a way that
the indexes of the binding keys are a valid assignment of the predicate P
(as in VCKG) or in such a way that they are hiding for every index. This
definition is introduced with the aim of constructing NIZK proofs of partial
satisfiability, and not only NIWI proofs.
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In section 6 we show how to combine SVCKG (resp. VCKG) for a predicate
P and vector of labels T = (t1, . . . , tL) with the GS proof system to obtain
a NIZK proof (resp. NI Zap) that some sets of quadratic equations S1, . . . ,SL

(compatible with T) are partially satisfiable for the predicate P .

Constructions. In section 7 we give several explicit constructions of (S)VCKG
for different equation types and predicates P . Essentially, all we require from P
is that it should be computable by a monotone span program and the equation
types should all admit what we call left-simulation (or all admit right simulation).
The construction of GOS (and our extension for other P ) guarantees that some
keys are binding for committing to scalars and this limits the equation types for
which one can prove partial satisfiability. Therefore, in appendix C, we also show
how to do correlated key generation for commitment keys to group elements,
at some efficiency cost. These explicit constructions of SVCKG (resp. VCKG)
together with the GS CaP give a quite expressive realization of NIZK proofs
(resp. NI Zap) for partial satisfiability of equations in bilinear groups.

Efficiency. In section 7.4 we discuss what is the size of our proofs of partial
satisfiability. We then compare it with the size of the proof that 1-out-of-L sets
of equations is satisfiable which results from the approach suggested by Groth
([6,14]).

Applications. In section 9 we discuss some applications. For instance, we show
how to save O(

√
N) group elements — where N is the size of the ring — in the

signature size of the ring signature scheme of Chandran et al. [8], which is the
most efficient ring signature in the standard model.

2 Preliminaries

Given some n ∈ N, v ∈ Z
n
q denotes a column vector unless specifically stated.

Given a set of vectors {v1, . . . ,vr} ⊂ Z
n
q , 〈{v1, . . . ,vr}〉 denotes their linear

span. Matrices are denoted in boldface and 0m×n denotes the all-zero m × n
matrix. Given some set S its cardinal is written as |S| and s ← S denotes
the process of sampling an element uniformly at random. For an algorithm D,
we write z ← D(x, y, . . .) to indicate that D is a (probabilistic) algorithm that
outputs z on input (x, y, . . .). Given a positive integer L, we denote by [L] the
set {1, . . . , L}.

We identify a set A ⊂ [L] in the natural way with a vector vA ∈ {0, 1}L and
we denote its complementary as Ac := [L]\A. Given a family of sets Ω ⊂ P([L]),
we denote PΩ : {0, 1}L → {0, 1} the predicate such PΩ(vA) = 1 if and only if
A ∈ Ω.

2.1 Bilinear Groups

Let G be some probabilistic polynomial time algorithm which on input 1λ, where
λ is the security parameter, returns the description of a bilinear group gk =
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(q, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ and T are groups of prime order q, the elements

ĝ, ȟ are generators of Ĝ, Ȟ respectively, and e : Ĝ × Ȟ → T is an efficiently
computable, non-degenerate bilinear map.

Essentially, we take up the notation of Escala and Groth [11] for elements

and operations in the bilinear group. Namely, Ĝ, Ȟ,T are written additively,
elements x̂ ∈ Ĝ are written with a hat and elements in y̌ ∈ Ȟ with an inverted
hat and 0̂, 0̌ and 0T denote the neutral elements in the respective groups. For any
x̂ ∈ Ĝ, y̌ ∈ Ȟ, multiplication refers to the pairing operation, i.e, x̂y̌ := e(x̂, y̌).

Matrix/vector or matrix/matrix multiplication of elements in Ĝ and Ȟ are done

in the natural way via the pairing operation, for example, given X̂ ∈ Ĝ
�×m and

Y̌ ∈ Ȟ
m×n, X̂Y̌ ∈ T

�×n.

2.2 SXDH Assumption

Let (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ) be a bilinear group. The Decision Diffie-Hellman

Assumption in Ĝ states that the two distributions (ĝ, ξĝ, ρĝ, ξρĝ) and (ĝ, ξĝ, ρĝ,
κĝ), where ξ, ρ, κ ← Zq, are computationally indistinguishable. The DDH As-
sumption in Ȟ is defined in a similar way.

Definition 1. (SXDH Assumption) The Symmetric eXternal Diffie-Hellman
Assumption holds relative to the group generator algorithm G if the DDH As-
sumption holds in both Ĝ and Ȟ for (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ).

2.3 Monotone Span Programs

Definition 2. [18] A monotone span program (MSP) over a field Zq consists

of a tuple SP = (M, ρ), where M ∈ Z
(m+1)×d
q is a matrix with row vectors

{r0, r1, . . . , rm}, ρ : [m] → [L] is a labeling function and r0 is called the target
vector. SP is said to compute a predicate P : {0, 1}L → {0, 1} if for any vA ∈
{0, 1}L, P (vA) = 1 if and only if r0 ∈ 〈{rj : j ∈ ρ−1(A)}〉.

Without loss of generality we assume that m > d and that M has full rank.
Specially for MSPs, sometimes it is more intuitive to talk about sets: in this case
we say that SP accepts A ⊂ [L] if and only if P (vA) = 1 and that SP computes
Ω ⊂ P([L]) if it computes PΩ.

It is well known that there is a connection between MSPs, secret sharing
schemes (sss, [25,3]) and linear codes. Borrowing some terminology from sss,
we refer to the family of sets Ω computed by SP as an access structure. Also
if A ∈ Ω, A is said to be an authorized subset. If no proper subset of A is
authorized, then we say that A is a minimal authorized subset. The dual access
structure Ω� is defined as Ω� := {[L]\A : A /∈ Ω}. The latter notion has found
applicability and various scenarios, including the proofs of partial satisfiability
of [10,9].

A classical example of a (monotone) span program is the threshold one.
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Example 1. Ω(k,L) := {A ⊂ [L] : |A| ≥ k} is called a (k, L)-threshold access
structure. A span program SP(k,L) computing Ω(k,L) can be defined by letting

ρ be the identity function, r�i = (1, i, . . . , ik−1) and r�0 = (1, 0, . . . , 0). The dual
access structure is Ω∗

(k,L) := {A ⊂ [L] : |A| ≥ L− k + 1}.

The key ingredient for our results is the following technical lemma, most
specially part 1), which states some well-known or easy facts about (monotone)
span programs:

Lemma 1. Let SP = (M, ρ) be a monotone span program which computes Ω.

1) If ζ = (ζ0, ζ1, . . . , ζm)� ∈ Z
m+1
q is such that ζ�M = 0d, ζ0 
= 0, then

ρ({j : ζj 
= 0}) ∈ Ω.
2) If A ∈ Ω, it is possible to sample ζ ∈ Im(M∗) uniformly conditioned on a)

ζ0 = 1, and b) ζj = 0 for all j ∈ ρ−1(Ac).
3) Let {j1, . . . , j�} = ρ−1(Ac). For any (aj1 , . . . , aj�) ∈ Z

�
q, the probability that

(τj1 , . . . , τj�) = (aj1 , . . . , aj�) is the same if a) τ ← Im(M∗) or b) τ ←
Im(M∗) conditioned on τ0 = 0.

Proof. 1) Observe that, since M is the transposed of the parity check matrix of
M∗, ζ�M = 0d if and only if ζ ∈ Im(M∗), that is ζ = M∗ω for some ω ∈
Z
m+1−d
q and in particular ζj = (r∗j )

�ω. Suppose that B := ρ({j : ζj 
= 0}) /∈ Ω.
But then, by definition of Ω∗, Bc := [L]\B ∈ Ω∗, so r∗0 =

∑
j∈ρ−1(Bc) ajr

∗
j for

some coefficients aj . Multiplying on both sides by ω, ζ0 =
∑

j∈ρ−1(Bc) ajζj = 0,
which contradicts the assumption ζ0 
= 0. The rest of the proof is given in
appendix A.

3 Commit-and-Prove Scheme

GS Proofs consist of a two step process: given some set of equations and a solution
— which is a witness of satisfiability — a prover first commits to the solution
and then proves that the committed values satisfy the set of equations. This
corresponds to the notion of commit-and-prove (CaP) scheme ([20,7]), although
the reformulation in these terms is not straightforward, since GS Proofs allow for
a flexibility (different commitment/ equation types) which is not easily captured
by the standard definition of a CaP scheme. To address this issue, Escala and
Groth [11] write the GS proof system as a CaP scheme with labels. The labels
are meant to specify the different commitment/equation types. For example, one
might commit to the pair (t,m) = (sca

Ĝ
,m), which indicates that m ∈ Zq is a

variable whose commitment is in the group Ĝ.
LetRL be an efficiently verifiable ternary relation, which is described by tuples

(gk, x,W ) ∈ RL consisting of a group key, the statement x and the witness W .
Define Lgk the language of all statements x for which there is a witness W such

that (gk, x,W ) ∈ RL. This witness W is a set of pairs (ti,mi) ∈ Tgk × M̃gk ⊂
Mgk, where Tgk is the label space and Mgk is the labeled message space. For
instance, (sca

Ĝ
,m) ∈ Mgk, scaĜ ∈ Tgk.
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We assume that the statement x unambiguously defines some vector Tx of
elements of Tgk. One should think of Tx as describing the labels which define
the correct format of a witness of x.

Definition 3. (Labeled CaP scheme (modified from [11])) A commit-and-prove
scheme CaP = (G, LabGen,Com,P,V) for Lgk consists of five PPT algorithms.

– G(1λ): This algorithm runs in two steps. On input the security parameter λ,
G0(1

λ) outputs a group key gk which includes the description of a group, a
space Kgk of valid commitment keys, a message space Mgk, a randomness
space Rgk and a commitment space Cgk. Algorithm G1(gk) outputs the pair
(gk, ck) where ck ∈ Kgk is a commitment key.

– LabGen(gk, ck, x,W ): This algorithm, on input gk, ck ∈ Kgk, a pair (x,W )
such that (gk, x,W ) ∈ RL, outputs a public label, kp = (t, t̃), and a secret
label, ks, for each t ∈ Tx.

– Com(gk, ck, (kp, ks,m)): On input gk, ck ∈ Kgk, a public label kp = (t, t̃)
such that (t,m) ∈ Mgk and a secret label ks, this algorithm picks randomness
(t, r) ∈ Rgk and returns a commitment c with label kp such that (kp, c) ∈ Cgk.

– P(gk, ck, x,Op, C): On input gk, ck ∈ Kgk, x ∈ Lgk and sets Op = {(kpi =
(ti, t̃i), k

s
i ,mi, ri) : i ∈ I}, C = {(kpi , ci) : i ∈ I} such that for each i ∈ I,

(kpi , k
s
i ,mi, ri) is a valid opening of (kpi , ci), and such that (gk, x, {(ti,mi) :

i ∈ I}) ∈ RL, this algorithm outputs a proof π.
– V(gk, ck, x, C, π): Given the group key gk, a commitment key ck, a statement

x, a proof π and commitments (̃ti, ci) ∈ Cgk, algorithm V returns 1 if the proof
is accepted and 0 otherwise.

Compared to [11], in our definition commitments admit an extra label pair
(kp, ks) and an algorithm which generates this label LabGen. For the Groth-Sahai
CaP scheme CaPGS, we ignore these additional labels. This extra label will be
necessary when we construct a CaP scheme CaPpar for partial satisfiability of
quadratic equations based on CaPGS , as we implicitly use different GS commit-
ment keys ckj to prove a single statement with CaPpar. The keys used for each
commitment can be seen as public label of the commitment (but not as part
of the witness (ti,mi)) and the secret label ks as the trapdoor (when it exists,
else it is some special symbol). That is why we also say in the definition of P
“(kpi , k

s
i ,mi, ri) is a valid opening of (kpi , ci)”, as the opening might depend on

kpi . Although the simulation trapdoor is not necessary to compute the commit-
ments, we assume that the algorithm Com(gk, ck, (kp, ks,m)) takes also as input
ks, because ks might not only contain the simulation trapdoor but also addi-
tional information which allows to speed up the computation, like the discrete
logarithms of the commitment keys given in kpi .

1

Another difference with [11] is that, we explicitly define a keyspace Kgk. We
assume that membership in Kgk is efficiently decidable for all gk. Further, we

1 Escala and Groth observed that if the prover knows the discrete logarithm of ck,
computation is sped up significantly, as then most exponentiations can be replaced
by operations in Zq.
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distinguish between the group key and the commitment keys. The language for
which we define the proof system depends on gk but not of ck, i.e. it is a group
dependent language2 This is done with the purpose of precisely defining the sets
of hiding and binding keys to define verifiable correlated key generation for the
GS CaP. For the following definition, we restrict ourselves to some CaP scheme
in which algorithm LabGen is trivial (so that we can omit (kp, ks)).

Definition 4. Given some CaP scheme, we define Kt
gk,bind (resp. Kt

gk,hid) as the
set of ck ∈ Kgk such that Com(gk, ck, t,m) is perfectly binding (resp. perfectly
hiding) for all (t,m) ∈ Mgk.

We defer the definitions of perfect completeness and perfect soundness to ap-
pendix B.1. Roughly speaking, completeness guarantees that correctly generated
proofs are accepted, perfect soundness that a proof of a false statement is never
accepted. Both the GS proof system and our scheme satisfy a strong notion of
security, namely composable zero-knowledge.

Definition 5. The commit-and-prove system CaP is (computationally) compo-
sable zero-knowledge if there exist PPT algorithms SimGen, SimCom, SimProve,
SimLabGen such that for all non-uniform polynomial time stateful interactive
adversaries A,

Pr
[
(gk, ck) ← G(1λ) : A(gk, ck) = 1

]

≈ Pr
[
(gk, ck, tk) ← SimGen(1λ) : A(gk, ck) = 1

]
and

Pr
[
(gk, ck, tk) ← SimGen(1λ); (x, I) ← ACom(gk,ck,·),L̃abGen(gk,ck,·,·)(gk, ck, tk);

π ← P(gk, ck, x, {(kpi , ksi ,mi, ri) : i ∈ I}, {(kpi , ci) : i ∈ I}) : A(π) = 1
]
=

Pr
[
(gk, ck, tk) ← SimGen(1λ); (x, I) ← ASimCom(gk,ck,·), ˜SimLabGen(gk,ck,·)(gk, ck, tk);

π ← SimProve(gk, ck, tk, x, {(kpi , ks, si) : i ∈ I}, {(kpi , ci) : i ∈ I}) : A(π) = 1
]
,

where a) SimLabGen(gk, ck, tk, x) returns (kpi = (ti, t̃i), k
s
i ) for each ti ∈ Tx,

b) ˜SimLabGen(gk, ck, tk, x) (resp. L̃abGen(gk, ck, x)) returns kpi = (ti, t̃i) for each
ti ∈ Tx with the distribution induced by running SimLabGen (resp. by LabGen)
with the same input, c) SimCom(gk, ck, ·) on (kpi , k

s
i ) outputs (kpi , ci) ∈ Cgk, d)

A picks (x, I) such that (gk, x, {(ti,mi) : i ∈ I}) ∈ RL.

Finally a non-interactive Zap (NI Zap) is a (computationally) witness indis-
tinguishable proof in the plain model, i.e. without common reference string.
Informally, computational WI just requires that two proofs generated by the
prover on a statement x with different witnesses W0, W1 should be computa-
tionally indistinguishable even for an adversary who chooses (x,W0,W1).

2 As in the original definition of GS Proofs, [16].
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Definition 6. We say that the commit-and-prove system CaP is a NI Zap if the
algorithm G1(gk) is trivial (i.e. (gk, ck =⊥) ← G1(gk)) and the CaP has perfect
completeness, perfect soundness and computational witness indistinguishability.

4 Groth-Sahai NIZK Proofs

In this section we give a high-level description of the GS proof system in terms
of a commit-and-prove scheme as in [11]. We concentrate on the key generation
and commit phase, which are the ones necessary to understand our construction,
for the full description we refer the reader to the original paper.

The GS proof system allows to prove that x is satisfiable, where x encodes
some set of quadratic equations in a bilinear group of the following form:

n∑

j=1

f(αj , yj) +
m∑

i=1

f(xi, βi) +
m∑

i=1

n∑

j=1

f(xi, γijyj) = t, (2)

where A1, A2, AT are Zq-vector spaces equipped with some bilinear map f :
A1 ×A2 → AT , α ∈ An

1 , β ∈ Am
2 , Γ = (γij) ∈ Z

m×n
q , t ∈ AT . The modules and

the map f can be defined in different ways as: (a) in pairing-product equations

(PPEs), A1 = Ĝ, A2 = Ȟ, AT = T, f(x̂, y̌) = x̂y̌ ∈ T, (b1) in multi-scalar

multiplication equations in Ĝ (MMEs), A1 = Ĝ, A2 = Zq, AT = Ĝ, f(x̂, y) =

yx̂ ∈ Ĝ, b2) MMEs in Ȟ (MMEs), A1 = Zq, A2 = Ȟ, AT = Ȟ, f(x, y̌) = xy̌ ∈ Ȟ,
and (c) in quadratic equations in Zq (QEs), A1 = A2 = AT = Zq, f(x, y) = xy ∈
Zq. Each element describing an equation receives a label ti and each equation a
label Leq, for instance Leq = QE is a quadratic equation, or Leq = MLin

Ĝ
is a

linear multi-scalar multiplication equation with variables in Ĝ. The classification
of Escala and Groth of equation types (see [11], figure 6) is very fine grained with

G(1λ)

gk ← (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ)
ω,σ, ξ, ψ ← Z

∗
q

v̂ ← (ξĝ, ĝ)� , v̌ ← (ψȟ, ȟ)�

û ← ωv̂ , ǔ ← σv̌

ŵ ← û− (0̂, ĝ)� , w̌ ← ǔ− (0̌, ȟ)�

ck ← (û, v̂, ŵ, ǔ, v̌, w̌)
Return (gk, ck)

SimGen(1λ)

gk ← (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ)
ω,σ, ξ, ψ,← Z

∗
q

v̂ ← (ξĝ, ĝ)� , v̌ ← (ψȟ, ȟ)�

û ← ωv̂ + (0̂, ĝ)� , ǔ ← σv̌ + (0̌, ȟ)�

ŵ ← û− (0̂, ĝ)� , w̌ ← ǔ− (0̌, ȟ)�

ck ← (gk, û, v̂, ŵ, ǔ, v̌, w̌)
tk ← (ck, ω, σ)
Return (gk, ck, tk)

Label t Message Randomness Commitment Kt
gk,bind Kt

gk,hid

sca
Ĝ

(sca
Ĝ
, x) (sca

Ĝ
, r) ĉ ← ŵx+ v̂r ck : ŵ /∈ 〈v̂〉 ck : ŵ ∈ 〈v̂〉

com
Ĝ

(com
Ĝ
, x̂) (com

Ĝ
, r, s) ĉ ← e2x̂+ v̂r + ûs ck : û ∈ 〈v̂〉 ck : û /∈ 〈v̂〉

Fig. 1. Generator algorithms of the CaP scheme of [11] and table describing most
important commitment types
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the objective of augmenting the class of equations which admit zero-knowledge
proofs (softening the requirement t = 0T for PPEs given in [16]) and also of
describing efficiency improvements which only apply to a specific equation type.

Given some equation of the form (2), the first step of the prover is to commit
to all elements describing the equation according to their label, where “commit”
is used in a wide sense as an equivalent to embed the elements in the right space.
That is, for instance, the equation x̂1b̌1+ x̂2b̌2 = 0T is described by x̂1, x̂2, b̌1, b̌2.
As x̂1, x̂2 are variables in Ĝ, they have the label com

Ĝ
, while the constants b̌1, b̌2

have the labels (pub
Ȟ
, b̌1) and (pub

Ȟ
, b̌2). The commitment to an element with

label com
Ĝ
is described in figure 1, and the one to b̌i is simply (0̌, b̌i)

� ∈ Ȟ
2.

The latter deviates from the usual definition of commitment in the sense that it
is not computationally hiding.

The vector of labels Tx associated to some statement x, to which we referred
in the syntactic definition of Labeled CaP, is the specification (in some fixed
order) of the label type of all the elements describing the equation, for instance,
in the example above Tx = (com

Ĝ
, com

Ĝ
, (pub

Ȟ
, b̌1), (pubȞ, b̌2)). Of course this

vector of labels must be consistent with the equation type Leq.
Recall that GS CaP uses the parameter switching technique of [15]. This means

that the common reference string can be generated in two different, computation-
ally indistinguishable ways: in the soundness setting, not even a computationally
unbounded adversary can convince a verifier of a false statement, while in the
witness indistinguishability (WI) setting, the keys are generated with a trapdoor
which allows to construct simulated proofs.

In the CaP scheme for partial satisfiability we will let the prover choose some
keys ckj and some trapdoors tkj , j = 1, . . . ,m. Each key ckj will be used to
prove/simulate a different atomic statement xi (i.e. satisfiability of some equation
set Si). It is fundamental to define precisely for which type of equations a key
ckj defines perfectly sound proofs or when it allows to simulate them, so that
we can prove meaningful statements about partial satisfiability.

For this, although we do not describe all possible equation types or all pos-
sible labels in Tgk (or their corresponding commitments), we must specify how to
commit to variables. The four possible label types for variables are
sca

Ĝ
, sca

Ȟ
, com

Ĝ
, com

Ȟ
, which correspond, respectively, to elements 1) in A1 =

Zq, 2) in A2 = Zq, 3) in A1 = Ĝ or 4) in A2 = Ȟ. The interesting thing about
these commitments (see figure 1) is that they are binding or hiding depending on
the way we generate the keys. Very roughly, simulation in GS Proofs works by
opening “commitments” to more than one element. Thus, a necessary condition
to simulate proofs for some equation of the form (2) with a certain ck is that
ck defines a hiding commitment for the variables in one of the modules Ai. In
summary, it is essential to discuss which keys ck are binding/hiding for each
variable type.

Key space and commitments. The space of keys Kgk consists of all tuples (gk, û,
v̂, ŵ, ǔ, v̌, w̌) such that gk is a valid description of an asymmetric bilinear group,

û, v̂ ∈ Ĝ
2, ǔ, v̌ ∈ Ȟ

2 and ŵ = û − (0̂, ĝ)�, w̌ = ǔ − (0̌, ȟ)�. We define
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e2 := (0, 1)� and ê2 := (0̂, ĝ)�. Commitments to scalars and group elements
are described in the table below (for the group Ȟ they are defined analogously).
Note that in the soundness setting the algorithm G(1λ) outputs keys ck ∈
Ksca

Ĝ

gk,bind ∩ Kcom
Ĝ

gk,bind (see Definition 4) and in the WI setting, SimGen outputs

ck ∈ Ksca
Ĝ

gk,hid ∩ Kcom
Ĝ

gk,hid, but in general a key might be binding/hiding only for
one label t, this is why the CaP formulation of GS Proofs is really convenient to
define correlated key generation.

Right vs Left-Simulatable. The simulation trapdoor tk = (ck, ω, σ) allows to
double-open some commitments. This trapdoor allows to simulate all the con-
sidered equations, but it will be convenient to be more precise. We say that an
equation is left-simulatable if there exists an efficient algorithm SimProve which
takes as input tk = ω (right-simulatable if the same holds for σ). Roughly speak-
ing, an equation x of the form (2) is left (resp. right) simulatable if it is possible
to equivocate enough commitments to elements of A1 (resp. to A2) to 0̂ (resp.
0̌) so that the equation admits the trivial solution. In any case, for our purposes
it is enough to know that there are equations which can only be simulated on
one side and that this can be made precise.

Admissible simulation labels. Further, we say an equation type Leq admits label

tsim = com
Ĝ
if A1 = Ĝ and it is left-simulatable or label tsim = sca

Ĝ
if A1 = Zq

and it is left-simulatable (the same w.r.t. Ȟ and right-simulatable). For instance,
QEs are both left and right-simulatable and admit both labels {sca

Ĝ
, sca

Ȟ
}, while

linear MMEs in Ĝ admit the label sca
Ĝ
if the variables are in Zq but only admit

the label com
Ĝ
if the variables are in Ĝ and the equation is homogeneous.

5 (Simulatable) Verifiable Correlated Key Generation:
Definitions

Let CaP = (G = (G0,G1),Com,P,V) be a commit-and-prove scheme with per-
fect soundness, perfect completeness and composable zero-knowledge and let
SimGen, SimCom, SimProve be the corresponding simulation algorithms.

The definitions in this section are meant to capture the necessary properties
that a CaP scheme must satisfy so that we can extend it to give proofs for
partial relations. Given a monotone span program SP = (M, ρ), we will require
the existence of an algorithm Kcorr (or Kscorr for the simulatable case) which
outputs a set of correlated keys Σ = {ck1, . . . , ckm} ⊂ Kgk. These keys should
be such that it can be publicly verified that the (unknown) subset of binding
keys corresponds to some satisfying assignment of the predicate computed by
SP . Further, Kcorr (Kscorr) should also output a trapdoor for the non-binding
keys.

When P is the predicate OR of two variables, the first definition (of VCKG)
matches the original one of GOS. In this definition, we require the keys to be
created from scratch, given only the group key gk.
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On the other hand, for the second definition (SVCKG), our algorithms take
as input a common reference string ck. In this case, we require the existence of
an algorithm Kscorr which outputs some set of keys with the same properties as
in VCKG when ck is binding. We also require the existence of another algorithm
which outputs only hiding keys with their simulation trapdoor. When ck is
hiding, both should have identically distributed output.

To construct NIZK proofs of partial satisfiability, we will use as a building
block a SVCKG scheme, while a construction of VCKG combined with the GS
CaP will allow us to derive NIWI proofs of partial satisfiability in the plain
model.

In both definitions, the vector T specifies a vector of labels. With these labels
we can define precisely what we mean by “hiding key” or “binding key”, as
this depends on the label type. Later, when we use (S)VCKG to prove partial
satisfiability, we will use the key ckj to prove statement xρ(j). These labels will
guarantee that the key ckj matches the equation type of xρ(j).

Definition 7. CaP admits P -Verifiable Correlated Key Generation for the pred-
icate PΩ : {0, 1}L → {0, 1} computed by a span program SP = (M, ρ) and some
label vector T = (t1, t2, . . . , tL), if there exist two probabilistic polynomial time
algorithms (Kcorr,Vcorr), with the following properties:

a) Given any vA ∈ {0, 1}L such that P (vA) = 1, and gk ← G0(1
λ), algorithm

Kcorr(gk,SP ,vA,T) outputs (Σ,TKAc), where Σ = {ck1, . . . , ckm} is such

that for all j ∈ ρ−1(Ac), ckj ∈ Ktρ(j)
gk,hid, and TKAc := {tkj : j ∈ ρ−1(Ac)} is

the set of the corresponding (valid) trapdoors.
b) For all PPT adversaries D = (D0,D1) and if vA,vB are such that P (vA) =

P (vB) = 1,

Pr
[
gk ← G0(1

λ); (Σ,TKAc) ← Kcorr(gk,SP ,vA,T);

(vA,vB , st) ← D0(gk,SP ,T) : D1(Σ,TKAc∩Bc , st) = 1
]

≈ Pr
[
gk ← G0(1

λ); (Σ,TKBc) ← Kcorr(gk,SP,vB ,T);

(vA,vB, st) ← D0(gk,SP,T) : D1(Σ,TKAc∩Bc , st) = 1
]

c) Given as input (gk,SP , Σ,T), Vcorr outputs a bit b such that, for all PPT
adversaries D:

Pr
[
(Σ,T) ← D(gk,SP ,T);Vcorr(gk,SP, Σ,T) = 1 :

ρ({j : ckj ∈ Ktρ(j)
gk,bind}) /∈ Ω

]
= 0.

Definition 8. CaP admits P -Simulatable Verifiable Correlated Key Generation
for the predicate PΩ : {0, 1}L → {0, 1} computed by a span program SP = (M, ρ)
and some label vector T = (t1, . . . , tL), if there exist three probabilistic polynomial
time algorithms (Kscorr,Vscorr, SimCorr), with the following properties:
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a) as in point a) of definition 7 except that Kscorr receives (gk, ck) ← G(1λ) as
part of the input.

b) Given some (gk, ck, tk) ← SimGen(1λ), algorithm SimCorr(gk, ck, tk,SP,T)
outputs (ck,Σ,TK) such that Σ = {ck1, . . . , ckm} is a set of commitment

keys with ckj ∈ Ktρ(j)
gk,hid for all j ∈ [m] and a set TK := {tkj : j ∈ [m]}

such that (ckj , tkj), j ∈ [m] is a valid pair of commitment key and trapdoor.
Further,

Pr
[
(gk, ck, tk) ← SimGen(1λ); (Σ,TKAc) ← Kscorr(gk, ck,SP ,vA,T) :

D(gk, ck,SP , Σ,T) = 1
]

= Pr
[
(gk, ck, tk) ← SimGen(1λ); (Σ,TK) ← SimCorr(gk, ck, tk,SP,T) :

D(gk, ck,SP, Σ,T) = 1
]

c) Given (gk, ck,SP, Σ,T), Vscorr outputs a bit b such that, for all PPT adver-
saries D:

Pr
[
(gk, ck) ← G(1λ); (Σ,T) ← D(gk, ck,SP,T);Vscorr(gk, ck,SP, Σ,T) = 1 :

ρ({j : ckj ∈ Ktρ(j)
gk,bind}) /∈ Ω

]
= 0.

6 NIZK Proofs and NI Zap of Partial Satisfiability

In this section we formally put together all the pieces of the puzzle: the GS CaP,
the new definition of labeled CaP and the notion of SVCKG (resp. VCKG) to
construct NIZK proofs (resp. a NI Zap) for partial satisfiability.

More specifically, starting from the GS CaP described in section 4, CaPGS =
(G,Com,P,V) for the language defined by relation RL, and any construction of
(S)VCKG, we build a CaP scheme CaPpar = (Gp, LabGenp, Comp,Pp,Vp) and a
NI Zap for the relation Rpar.

Relations of partial satisfiability. Formally,Rpar consists of the tuples (gk,X,W )
such that:

a) X consists of {{xi : i ∈ [L]},T,SP}, where xi is a quadratic equation in the
group described by gk and SP is a monotone span program which com-
putes some predicate P : {0, 1}L → {0, 1} such that CaP admits simulatable
verifiable correlated key generation for P and the vector of labels T,

b) Each statement xi admits the simulation label ti,
c) W is of the form {W̃i : i ∈ [L]}, where for all i, W̃i = {(ti�, m̃i�) : � ∈

[ni], m̃i� = (bi,mi�)} is such that a) if bi = 0, mi� = 0 for all � ∈ [ni] and b)
if bi = 1, Wi := {(ti�,mi�) : � ∈ [ni]} is such that (gk, xi,Wi) ∈ RL,

d) If A := {i ∈ [L] : bi = 1}, then P (vA) = 1.
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6.1 NIZK Proofs of Partial Satisfiability

The main idea of the construction is the following: the prover of the proof system
for partial satisfiability runs Kscorr on input the span program SP (of size m)
encoded in X and some set A accepted by SP . Algorithm Kscorr returns a set
of commitment keys ck1, . . . , ckm and the trapdoors for all ckj , j ∈ ρ−1(Ac).
The set A should correspond to the statements for which the prover has a real
witness. The proof of the rest of the statements can be simulated using the
trapdoors output by Kscorr. For zero-knowledge, the simulator will run SimCorr
to generate only hiding keys with their respective trapdoors. The trapdoor tkj
will be used to simulate the proof of the statement xρ(j), which is possible because
the statement xρ(j) admits the simulation label tρ(j).

– Gp(1
λ): Runs (gk, ck) ← G(1λ).

– LabGenp(gk, ck,X,W ) : Runs (ck,Σ,TKAc) ← Kscorr(gk, ck,SP,vA,T), it
parses Σ as {ck1, . . . , ckm}, and for each pair (i, �), it outputs (kpi�, k

s
i�),

where kpi� = (ti�, t̃i�) and

(̃ti�, k
s
i�) =

{
t̃i� = {ckj : j ∈ ρ−1(i)}, ksi� = {tkj : j ∈ ρ−1(i)} if i ∈ Ac,

t̃i� = {ckj : j ∈ ρ−1(i)}, ksi� = 0 if i ∈ A.

– Comp(gk, ck, (k
p
i�, k

s
i�,mi�)): Parse k

p
i� as (ti�, {ckj : j ∈ ρ−1(i)}) and for each

i ∈ [L] and each j ∈ ρ−1(i), it defines

ci�j :=

{
ci�j ← SimCom(gk, ckj , tkj , ti�) if i ∈ Ac,

ci�j ← Com(gk, ckj , ti�,mi�) if i ∈ A.

It outputs (kpi�,
⋃

j∈ρ−1(i) ci�j).

– Pp(gk, ck,X,Op,C): Receives as input the statement X , some set C =⋃
i∈[L]

⋃
j∈ρ−1(i) Cij which is the union of sets of commitments Cij = {ci�j :

� ∈ [ni]}, and a set Op =
⋃

i∈[L]

⋃
j∈ρ−1(i) Opij which is the union of the sets

Opij := {(ti�, ckj , tkj ,mi�, ri�) : � ∈ [ni]}, where each Opij is a valid opening
of Cij (we assume that for simulated commitments mi� is just set to 0). For
each i ∈ [L] and for each j ∈ ρ−1(i),

πj :=

{
πj ← SimProve(gk, ckj , tkj , xi, Opij) if i ∈ Ac,

πj ← P(gk, ckj , xi, Opij) if i ∈ A.
.

Let Πi := {πj : j ∈ ρ−1(i)} and output Π =
⋃

i∈[L] Πi.

– Vp(gk, ck,X,C,Π): Given the group key gk, a commitment key ck, a state-
ment X (which includes a description of T), a proof Π and a set of commit-
ments C, algorithm Vp proceeds as follows:
• From the public types of the commitments in C, it derives a list of
commitment keys Σ = {ck1, . . . , ckm} (or outputs failure if this is not
possible). This is done by checking that for each i ∈ [L] and each � ∈ [ni],
the public types kpi� = (ti�, t̃i�) are consistently assigned. That is, for each
i ∈ [L], t̃i� should encode the same set of cardinal |ρ−1(i)| of commitment
keys {ckj : j ∈ ρ−1(i)} ⊂ Kgk, regardless of �.



Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 263

• It runs b ← Vscorr(gk, ck,Σ,T) (the set of labels T is encoded in X). If
b = 0, halts and outputs 0, else it proceeds.

• For each i ∈ [L], and each j ∈ ρ−1(i), it verifies that each of the proofs πj

of statement xi is satisfied individually by running V(gk, ckj , xi, Cij , πj).
• It outputs 0 if any of these checks fails, else it outputs 1.

– SimGenp(1
λ) : Runs (gk, ck, tk) ← SimGen(1λ).

– SimLabGenp(gk, ck, tk,X) : Runs (ck,Σ,TK) ← SimCorr(gk, ck, tk,T) and
for every ti�, it returns kpi� := (ti�, {ckj : j ∈ ρ−1(i)}) and ksi� := {tkj : j ∈
ρ−1(i)}.

– SimComp(gk, ck, (k
p
i�, k

s
i�)) : This algorithm parses kpi� as (ti�, {ckj : j ∈

ρ−1(i)}) and ksi� as k
s
i� = {tkj : j ∈ ρ−1(i)}. It outputs {(kpi�,

⋃
j∈ρ−1(i) ci�j)},

where ci�j ← SimCom(gk, ckj , tkj , ti�).
– SimProvep(gk, ck, tk,X,Op) : For all i ∈ [L], and all j ∈ ρ−1(i), and a set of

commitment openings Op =
⋃

i∈[L]

⋃
j∈ρ−1((i) Opij , this algorithm computes:

πj ← SimProve(gk, ckj, tkj , xi, Opij).

It outputs Π =
⋃

i∈[L] Πi, where Πi := {πj : j ∈ ρ−1(i)}.

Theorem 1. CaPpar is a CaP scheme with perfect completeness, perfect sound-
ness and composable zero-knowledge for Lpar.

Proof. Perfect completeness follows from the completeness of the GS CaP and
the fact, for all i ∈ [L], xi admits the simulation label ti (else the prover could fail
to compute a simulated proof for xi). Perfect soundness follows from the perfect
soundness of the GS CaP and the properties of SVCKG. Indeed, by property c)
of SVCKG, if the verifier accepts the keys Σ = {ck1, . . . , ckm} (after running

Vscorr), then A := ρ({j : ckj ∈ Ktρ(j)
gk,bind}) ∈ Ω. That is, there is some set A ∈ Ω,

such that for every i ∈ A at least one j ∈ ρ−1(i) is a binding key for the label
ti. Therefore, for every i ∈ A, at least one of the proofs in the set Πi (there are
|ρ−1(i)| proofs of xi) is generated with a binding key. By the perfect soundness
of GS Proofs, this means (gk, xi,Wi) ∈ RL. Composable zero-knowledge holds
because, by property b) of SVCKG, the keys output by SimCorr and by Kscorr on
a simulated key ck are identically distributed. The composable zero-knowledge
property of GS Proofs guarantees that if xi is a satisfiable quadratic equation
(that is, if xi is in the language accepted by GS Proofs), then a real proof
computed with a simulated key has the same distribution as a simulated proof.
On the other hand, if xi is not satisfiable, then both in a real proof (computed
with the output of Kscorr) or in a fake proof, the proof is simulated, so in both
cases it follows the same distribution.

6.2 Non-Interactive Zap for Partial Satisfiability

The NI Zap for Satisfiability is constructed in a very similar way as the NIZK
proofs of partial satisfiability, except that one uses as a building block the al-
gorithms for VCKG (instead of SVCKG) and of course, the fact that ck =⊥.
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It is obvious that the resulting construction is complete and soundness follows
from the same arguments as before, namely from property c) of the definition of
VCKG. We next sketch the proof for computational WI.

Suppose an adversary B against the WI of the Zap outputs (X,W0,W1) ∈
Rpar. Each Wb encodes a set Ab ∈ Ω which specifies for which sets of equations
Wb contains a real witness. If A0 = A1, then the adversary will not be able to
distinguish a proof computed with W0 or W1 unless it breaks the composable
zero-knowledge property of GS proofs, which implies that real proofs with diffe-
rent witnesses are computationally indistinguishable and that simulated proofs
are independent of the witness. Therefore, we can assume that A0 
= A1. But
in this case, we can use B to construct an adversary D that breaks property b)
of the VCKG scheme. Indeed, D gives to its challenger (vA0 ,vA1) and receives
(Σ,TKAc

0∩Ac
1
), with Σ generated from Ab, for b ← {0, 1}. Even if b is unknown

to D, it can compute a proof of the statement X . Indeed, for all i ∈ [L], and all
j ∈ ρ−1(i), D can compute a proof πj of the statement xi, as follows:

– if i ∈ A0 ∪ A1, πj is a real proof as it can extract a witness for xi from W0

or W1,
– if i ∈ (A0∪A1)

c = Ac
0∩Ac

1, πj is a simulated proof computed with TKAc
0∩Ac

1

.

Finally, D gives the keys Σ and the proof of X to B, who outputs a bit b′, and
D forwards this bit to its challenger.

Since in the GS CaP, real proofs with a simulated key have the same distri-
bution as simulated proofs, the proof given to B follows the same distribution
as a proof generated with Wb. Thus, |Pr[b′ = b]− 1/2| is non-negligible, so D is
successful with non-negligible probability.

7 (Simulatable) Verifiable Correlated Key Generation:
Constructions

We give some constructions of verifiable correlated key generation in different
flavors. Let SP be a monotone span program computing Ω ⊂ P([L]). From
the construction of proofs of partial satisfiability of last section, we know that
to prove that there is a set of indexes A ∈ Ω such that all Si, for i ∈ A are
satisfiable, the GS CaP must admit (S)VCKG for a vector T = (t1, . . . , tL) such
that each equation Si admits ti as a simulation label. Therefore, we are interested
in constructing P -verifiable correlated key generation for as many possible types
of vectors T and general predicates P , since this means that our CaP for partial
satisfiability will admit a wider class of languages.

7.1 SVCKG for sca
Ĝ
and MSPs

This construction of SVCK works for any P : {0, 1}L → {0, 1} computed
by a a monotone span program SP , but only for the vector of labels T =
(sca

Ĝ
, . . . , sca

Ĝ
) (the case T = (sca

Ȟ
, . . . , sca

Ȟ
) is defined in a similar way in Ȟ).
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– Kscorr(gk, ck,SP, A,T): The algorithm receives as input gk, ck =
(û, v̂, ŵ, ǔ, v̌, w̌), the description of a MSP SP , a set of indexes A ⊂ [L]
such that SP accepts A and a vector of labels T. It proceeds as follows:
1 It samples τ , ζ ∈ Im(M∗) uniformly at random conditioned on a) ζ0 = 1,
ζj = 0 for all j ∈ ρ−1(Ac) and b) τ0 = 0 (as in lemma 1.)

2 It defines ẑj := τj v̂ + ζjŵ, j ∈ [m] and outputs (ck,Σ,TKAc), where
Σ = {ck1, . . . , ckm}, ckj := (ûj , v̂, ẑj , ǔ, v̌, w̌), ûj := ẑj + (0̂, ĝ)� and
TKAc := {τj : j ∈ ρ−1(Ac)}.

– Vscorr(gk, ck,SP, Σ,T): Parse each key as ckj := (ûj , v̂j , ŵj, ǔj , v̌j , w̌j), and
reject if, for some j ∈ [m], ckj /∈ Kgk, v̂j 
= v̂, ǔj 
= ǔ or v̌j 
= v̌. Else, define

ẑ0 := ŵ and Ẑ := (ẑ0||ẑ1|| . . . ||ẑm). Output 1 if ẐM = 0̂2×d holds, else
output 0.

– SimCorr(gk, ck, tk,SP,T): The algorithm receives (gk, ck, tk) ← SimGen(1λ),
with tk = (ω, σ). It samples a uniform vector in μ� = (μ0, . . . , μm) ∈
Im(M∗) subject to the the restriction μ0 = ω. For all j ∈ [m], it defines
ẑj := μj v̂, ûj := ẑj + (0̂, ĝ)� and ckj := (ûj , v̂, ẑj , ǔ, v̌, w̌). It outputs
(ck,Σ,TK), where Σ = {ck1, . . . , ckm} and TK := {μj : j ∈ [m]}.

Lemma 2. The GS CaP scheme described in section 4 admits simulatable ve-
rifiable correlated key generation for labels T = (sca

Ĝ
, . . . , sca

Ĝ
).

Proof. We prove that the algorithms described above satisfy points a), b), c) of
definition 8.

By definition of ζ, ζj = 0 for all j ∈ ρ−1(i), i ∈ Ac. Therefore, for all i ∈ Ac,
ẑj = τj v̂, so according to figure (1), ckj ∈∈ Ksca

Ĝ

gk,hid and the corresponding
trapdoor is tkj = τj .

To see b), note that all the keys output by SimCorr are obviously in Ksca
Ĝ

gk,hid and
the trapdoor is valid. We just have to argue that the output of the algorithm
SimCorr has the same distribution as the output of Kscorr when (gk, ck, tk) ←
SimGen(1λ). In that case, ŵ = ωv̂ and Kscorr outputs ẑj = τj v̂ + ζjŵ = (τj +
ωζj)v̂, for all j ∈ [m] ∪ {0}. Let ν := τ + ωζ. The constraints imposed on τ , ζ
imply that ν is uniform conditioned on a) ν ∈ Im(M∗), b) ν0 = ω and c) νj = τj
for all j ∈ ρ−1(Ac). Because of part 3) of lemma 1, if {j1, . . . , j�} = ρ−1(Ac), the
distribution of (τj1 , . . . , τj�), is the uniform one conditioned on τ ← Im(M∗).
We conclude that ν is a uniformly random vector in Im(M∗) conditioned to
ν0 = ω, so the outputs of SimCorr and Kscorr are identically distributed, which
proves b).

Finally, for c), let Σ = {ck1, . . . , ckm} be some set of keys accepted by the ver-

ifier, i.e. some set such that Σ ⊂ Kgk and ẐM = 0̂2×d. Since if (gk, ck) ← G(1λ),

the vectors v̂, ŵ are a basis of Ĝ2, we can write each column of Z (numbered
from 0 to m) as ẑj = v̂τj + ŵζj , for some arbitrary values τj , ζj . In this no-

tation, Ẑ = v̂τ� + ŵζ�. Replacing in the verification equation, we have that
(v̂τ� + ŵζ�)M = 0̂2×d. But since v̂, ŵ are linearly independent, the equation
can only hold if ζ�M = 01×d. We can now apply lemma 1, part 1), to conclude
that A := ρ({j : ζj 
= 0}) ∈ Ω. But if ζj 
= 0, then ckj is a binding key for the
label sca

Ĝ
, which proves c).
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7.2 VCKG for sca
Ĝ
and MSPs

This construction is almost identical to the previous one except that for the
non-simulatable case. For the OR predicate of two variables, it matches exactly
the GOS construction.

– Kcorr(gk,SP , A,T): The algorithm first runs the key generation algorithm of the
CaP scheme obtaining gk ← G0(1

λ). Then it proceeds as in the Kscorr algorithm,
except that the vectors ẑj are now defined by ẑj = τj v̂ + ζj(0̂, ĝ)

�.
– Vcorr(gk,Σ,T): The algorithm proceeds as algorithm Kscorr but with ẑ0 := (0̂, ĝ)�.

The proof follows the same lines as the previous one, the only relevant difference
is that to prove point b) of definition 7, we use the DDH Assumption in Ĝ. The
argument is very similar to [15] and is omitted.

7.3 Other Labels

We could not construct (S)VCKG for T = (com
Ĝ
, . . . , com

Ĝ
) for the original

GS CaP based on SXDH. The core of our construction is to use secret sharing
techniques to guarantee that at least a certain subset of the vectors ẑ1, . . . , ẑm is
linearly independent of v̂. The problem is that for group elements, the soundness
condition is exactly the opposite, namely it requires linear dependency of v̂, û
(see Fig. 1). In appendix C.1 we extend the GS CaP based on SXDH to admit new
labels, which allow to commit to group elements and to scalars in a different way,
with respective labels compar

Ĝ
and scapar

Ĝ
(scapar

Ȟ
, compar

Ȟ
). This new instantiation

of GS proofs ˜CaPGS admits (S)VCKG for these new label types, i.e. for any vector
T = (t1, . . . , tL), for ti ∈ {compar

Ĝ
, scapar

Ĝ
}. This means that we can apply our

approach to many more sets of equations S1, . . . ,SL, but at some efficiency cost,
because ˜CaPGS is less efficient that the original GS CaP.

7.4 Efficiency Discussion

Proof size. The proof that some sets of equations Si, i ∈ [L] are partially satisfi-
able requires the prover to send the keys Σ and then a proof (real or simulated)
of satisfiability of each Si. The size of the proofs depends thus on the equations
in Si. Therefore, to understand the performance of our proof system for partial
satisfiability, the best thing is to analyze its overhead, which is the difference
between the size of our proof and the sum of the sizes of a simulated proof of Si,
for all i ∈ [L]. The number of elements necessary to commit to all the variables
in Si is also counted as part of the proof of Si. That is, the overhead is the
difference between proving partial satisfiability and proving that all of Si, i ∈ [L]
hold, using independent variables for each of the Si.

Efficient encoding of Σ. It is quite important for the efficiency comparison to
note that the set Σ of keys output by the correlated key generation algorithm
admit a more efficient encoding. In all our constructions, the description of Σ
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requires to give m vectors ẑ1, . . . , ẑm. Instead of letting the prover choose Σ
and then verifying if the keys are valid with the verification algorithm Vcorr

(or Vscorr) by checking whether ẐM = 0 (where the last m columns of Ẑ are
ẑ1, . . . , ẑm and the first is ẑ0 := ŵ), it is enough to let the prover output only
ẑ1, . . . , ẑm−d. Indeed, let M∗

0 be the (m + 1 − d) × (m + 1 − d) minor formed
by the first m+ 1 − d rows of M∗ and M∗

1 the minor formed by the rest of the
rows. Reordering if necessary, we can assume that M∗

0 is invertible. Then, the
following holds:

Lemma 3. Let Ẑ be an arbitrary matrix in Ĝ
2×(m+1), with columns

ẑ0, ẑ1, . . . , ẑm, then:

ẐM = 0 ⇐⇒
(
ẑm+1−d|| . . . ||ẑm

)
=

(
ẑ0||ẑ1|| . . . ||ẑm−d

)
(M∗

1(M
∗
0)

−1)�. (3)

Proof. Denote as f1, f2 the rows of Z. Note that ẐM = 0 if and only if
f1, f2 ∈ Im(M∗), since the columns of M∗ are a basis of all vectors f such
that f�M = 0 (by definition of the parity check matrix). On the other hand,
a vector f ∈ Im(M∗) if and only if there exists some w ∈ Z

2
q such that

f� = (M∗
0w||M∗

1w)�. Since M∗
0 has full rank this is equivalent to f ∈ Im(M∗) if

and only if (fm+1−d, . . . , fm)� = M∗
1(M

∗
0)

−1(f0, f1, . . . , fm−d)
�. The statement

follows from applying this reasoning to f1, f2.

The lemma implies that we can eliminate the test of algorithms Vcorr, Vscorr,
and instead let the verifier compute the last d columns of Ẑ on its own using
ẑ1, . . . , ẑm−d. This means that sending Σ requires only 2(m−d) group elements.

Comparison with previous work. We compare our results with the approach of
Groth [14] (simplified by Camenisch et al. [6]) for the statement “1-out-of-L sets
of equations S1, . . . ,SL are satisfiable”. They construct a “compiler” which takes
some sets of satisfiable equations S1, . . . ,SL and turns them into a single set of
equations which is only satisfiable if one of the Si’s is. The compiler works by
(renaming if necessary) assuming the S1, . . . ,SL have independent variables and
adding variables b1, . . . , bL−1, bi ∈ {0, 1} and defining bL := 1− b1 − . . .− bL−1.
For each i ∈ [L], bi modifies the equations in Si so that they admit the trivial
solution if bi = 0 and that they remain unchanged if bi = 1. The overhead is the
cost of proving bi ∈ {0, 1} for all i ∈ [L− 1], which is (L− 1)(6|Ĝ|+ 6|Ȟ|). Our

solution is notably more efficient (only 2|L−1||Ĝ|) when the vector of admissible
simulation labels of S1, . . . ,SL is (sca

Ĝ
, . . . , sca

Ĝ
), although it is not clear what

happens for other T (see the efficiency discussion in appendix C.1).

8 Examples

In this section we give two examples of P -Simulatable Verifiable Correlated Key
Generation. Throughout this section, given a set S ⊂ Zq and some i ∈ S,

λS
i (X) :=

∏
j∈S\{i}

X−j
i−j .
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Example 2. (Or of two equations).

M =
(

1
1
1

)
M∗ =

(
1 0
1 1−2 −1

)

M∗
0 = ( 1 0

1 1 ) M∗
1 = (−2 −1 ) TM∗ = M∗

1(M
∗
0)

−1 = (−1 −1 ) .

(M, ρ) is a monotone span program, where ρ(1) = 1, ρ(2) = 2 which computes
the predicate Or of two variables, (M∗, ρ) computes the dual predicate. The
algorithm Kscorr (or Kcorr), receives a vector vA ∈ {0, 1}2 such that P (vA) =
1. Since P is monotone, alternatively we can say that it receives a set A ⊂
{1, 2} such that |A| ≥ 1. It then generates ζ, τ according to one of these two
possibilities:

1. If A = {1}, it sets ζ = (1,−1, 0) = M∗ ( 1−2

)
, τ = (0, r,−r) = M∗ ( 0−r

)
, for

r ← Zq, that is, ζ, τ ∈ Im(M∗) are uniform conditioned on ζ0 = 1, ζ2 = 0
and τ0 = 0.

2. If A = {2}, ζ = (1, 0,−1) = M∗ ( 1−1

)
, τ = (0, r,−r) = M∗ ( 0−r

)
, for

r ← Zq, that is, ζ, τ ∈ Im(M∗) are uniform conditioned on ζ0 = 1, ζ1 = 0
and τ0 = 0.

If A = {1, 2}, it can choose one of the previous alternatives arbitrarily, so we
can assume w.l.o.g. that |A| = 1. Then, according to the type of labels which it
receives, it proceeds as follows:

– If T = (sca
Ĝ
, sca

Ĝ
), it sets ẑ1 = ζ1ŵ + τ1v̂, ẑ2 = ζ2ŵ + τ2v̂, the trapdoor

for the key indexed by Ac is ±r. That is, we have:
1. If A = {1}, ẑ1 = −ŵ+ rv̂, ẑ2 = −rv̂, tk2 = −r.
2. If A = {2}, ẑ1 = rv̂, ẑ2 = −ŵ − rv̂, tk1 = r.

As we explained in section 6, instead of letting the prover of CaPpar run Kscorr

and output (ẑ0 := ŵ, ẑ1, ẑ2) and then let the verifier run Vcorr to see if the keys
are properly generated, one can gain some efficiency by letting the prover only
send ẑ1, and recover ẑ2 as:

ẑ2 = Ẑ0T
�
M∗ ,

where Ẑ0 = ( ẑ0||ẑ1 ) .

Example 3. k-out-of-L equations.

M =

⎛

⎝

1 0 ... 0
1 1 ... 1
...
...

...
1 L ... Lk−1

⎞

⎠ M∗ =

⎛

⎜
⎜
⎜
⎝

1 0 ... 0

−λ
[L]
1 (0) −λL

1 (0) ... −λ
[L]
1 (0)

−λ
[L]
2 (0) −2λ

[L]
1 (0) ... −2L−kλ

[L]
2 (0)

...
...

...
−λ

[L]
L (0) −Lλ

[L]
L (0) ... −LL−kλ

[L]
L (0)

⎞

⎟
⎟
⎟
⎠

.

This is the definition of M, M∗ which is consistent with the definition given
in section 2.3 but as in the more efficient version of our protocol, the matrix
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M does not play any role, we can choose a more efficient encoding of M∗ (this
allows to save in computation for the prover), namely:

M∗ =

⎛

⎝

1 0 ... 0
1 1 ... 1
...
...

...
1 L ... LL−k

⎞

⎠ .

It is obvious that with both definitions M∗ computes the same span program as
in one case we just have replaced each row by some scalar multiple of itself, and
this does not change the linear dependencies among the rows. It can be easily
verified that:

TM∗ =

⎛

⎜
⎜
⎝

λS
0 (L−k+1) λS

1 (L−k+1) ... λS
L−k(L−k+1)

λS
1 (L−k+2) λS

0 (L−k+2) ... λS
L−k(L−k+2)

...
...

...
λS
0 (L) λS

1 (L) ... λS
L−k(L)

⎞

⎟
⎟
⎠ ,

where S = {0, 1, . . . , L−k}. That is, if ẑ�i = (ẑi1, ẑi2), then both (ẑ01, ẑ11, . . . , ẑL1)
and (ẑ02, ẑ12, . . . , ẑL2) are evaluations of some univariate polynomial of degree
at most L − k in the points 0, 1, . . . , L and for any j = 1, 2, the transformation
matrix TM∗ which allows to compute (ẑL−k+1j , . . . , ẑLj) from (ẑ0j , . . . , ẑL−kj) is
simply a polynomial interpolation matrix. Further, given some A ∈ Ω(k,L), the
vectors ζ, τ can be defined as the evaluation in 0, 1, . . . , L of two uniformly ran-
dom polynomials ζ(x), τ(x) of degree at most L− k conditioned on 1) ζ(0) = 1
and ζ(i) = 0 for all i ∈ Ac (ζ always exists since |Ac| ≤ L − k and is unique if
|A| = k) and 2) τ(0) = 0.

Another paradigmatic example of access structure realizable by a monotone
span program is the threshold hierarchical one, see Tassa [26]. Although we did
not include any example, recall that our construction is also for non-ideal sss,
that is, the monotone span program might have more than one row with the
same label (this is important since there are not that many known instances of
ideal sss for interesting access structures).

9 Applications

Next we discuss some applications of our results, but we expect that many more
can be found, for instance, in the design of signature schemes with complex
functionalities in the standard model in bilinear groups like attribute-based sig-
natures. Another interesting direction to explore is the application to anonymous
credentials.

Proving that some commitments open to b ∈ {0, 1}L, and wt(b) = 1. Given
some group key gk and some commitment keys ŵ, v̂, our results allow to give
more efficient proofs that each of the commitments in {ĉi : i ∈ [L]} ⊂ Ĝ

2 opens
to a bit bi ∈ {0, 1}, and that

∑
i∈[L] bi = 1.
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Alternatively, if we let ĉL := ŵ−
∑

i∈[L−1] ĉi, it is enough to prove that each of

the commitments in {ĉi : i ∈ [L−1]} opens to a bit bi ∈ {0, 1}. In the asymmetric

instantiation of bilinear groups of GS proofs, this requires (L − 1)(4|Ĝ|+ 6|Ȟ|)
elements for the proofs and 2(L−1)|Ĝ| for the description of ĉ1, . . . , ĉL−1. On the
other hand, we can encode the statement as a partial satisfiability statement as:

“(L− 1)-out-of-L of ({∃r1 ∈ Zq : ĉ1 = r1v̂}, . . . , {∃rL ∈ Zq : ĉL = rLv̂}) hold.′′

(4)
Each statement xi = {∃ri ∈ Zq : ĉi = riv̂} can be encoded as two linear
equations (with equation label MLin

Ȟ
), and they both admit the simulation

label sca
Ȟ
. The size of the proof is thus 2|Ȟ| for the description of the correlated

keys Σ (see section 8), L(2|Ȟ|+2|Ĝ|) for the proof (real or simulated) of xi and

2(L−1)|Ĝ| for the description of ĉ1, . . . , ĉL−1. In conclusion, our approach saves
O(L) elements in the proof size.

We note that if ŵ, v̂ are part of some common reference string generated
by a trusted party, we can prove (4) in zero-knowledge, but we can also take
ŵ = (0̂, ĝ)� and let the prover generate v̂ so that no other party knows its
discrete logarithm. Then using the NI Zap for partial satisfiability, the prover
can create a NIWI proof of (4) without a trusted setup.

Proving membership in a list. Chandran, Groth and Sahai [8] showed how to prove
that a committed value is in some public list {λ1, . . . , λN} ⊂ Ȟ with proof size
O(

√
N). Themain idea is to write the list elements in amatrixR of sizeL×L,L :=√

N and then give two sets of commitments {ĉi : i ∈ [L]}, {d̂i : i ∈ [L]} ⊂ Ĝ
2,

each opening to a different bit string of weight 1. Without going into details, using
some homomorphic properties of the commitments, the prover uses one of the bit
strings to (privately) select a row i of the matrixR and the other to select a column
j. With some additional checks, this convinces the verifier that a commitment ĉ
opens to some (secret) position i, j of the matrix R. In summary, for the proof of
membership in a list of size N we need to prove twice a statement of the type 4,
so our results allow to save O(

√
N) group elements.

Ring signatures. Ring signatures [22] allow a signer to sign on behalf of an ad-
hoc group to which it belongs, anonymously. The proof of membership in a list of
size O(

√
N) was designed by Chandran, Groth and Sahai [8] with the objective

of designing more efficient ring signatures. Their scheme (with a signature size
of O(

√
N) when the ring size is N) has the shortest signature size of all the

schemes known in the standard model. Our savings for the proof of membership
translate directly into savings for this construction.

Simulation-sound NIZKs. Simulation-sound NIZKs [21,23] are non-interactive
zero-knowledge proofs with a stronger soundness requirement. More specifically,
no prover should be able to construct a false proof which is accepted by the
verifier even after seeing several simulated proofs of false statements. This notion
is useful to construct IND-CCA2 encryption schemes following the Naor-Yung
paradigm [21].
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One technique to build simulation-sound proofs of satisfiability of some set
of equations S over a bilinear group suggested by Groth [14] and subsequently
explored by several papers with small variations [6,17], is to give a GS proof of
the statement: “S is satisfiable” or “ĉ is a commitment to some signature”. Real
proofs will use a witness for S, while simulated proofs will prove the other branch
of the statement, using as simulation trapdoor the secret key of the signature.

In general, the technique of Groth for constructing simulation-sound proofs
might not be the most efficient for all equation types S, (for instance if S encodes

membership in a linear space of Ĝn, see [1]) but when it is, one should check if our
improvements apply. For instance, in the simulation sound proof of Camenisch
et al. [6], one has to prove the OR of two equations which admit the label

(sca
Ĝ
, sca

Ĝ
), and this has an overhead of only 2|Ĝ|, as opposed to the 6|Ĝ|+6|Ȟ|

elements originally computed in [6]. On the other hand, our techniques do not
seem to help for the simulation sound proof of [17].
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11. Escala, A., Groth, J.: Fine-tuning groth-sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014)
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A Proof of Lemma 1

We give the proof of parts 2),3) of lemma 1.

Proof. (Lemma 1) Since A ∈ Ω, Ac /∈ Ω∗. Thus, if B is a basis of the vectors
{r∗j : j ∈ ρ−1(Ac)}, the set {r∗j : j ∈ B ∪ {0}} is a set of linearly independent
vectors. Find a set of indexes C ⊂ [m] such that B ∪ {0} ⊂ C and the vectors
{r∗j : j ∈ C} are a basis the space spanned by the rows of M∗. Note that

ζ = M∗ω1 and τ = M∗ω2, if and only if ζj = (r∗j )
�ω1, τj = (r∗j )

�ω2. Because
the rows indexed by C are a basis of the rows of M∗, ζj , τj , j ∈ C, uniquely
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define ζ, τ and further, if we sample a vector ν ← Im(M∗), {νj : j ∈ C} is a
uniform set of values in Zq. This shows that there is always one and only one
vector ν which is compatible with some fixed set of values {νj : j ∈ C}. This
proves part 2), as it implies that if we set ζ0 = 1 and ζj = 0 for all j ∈ B, and
ζj ← Zq for all j ∈ C\(B ∪ {0}), this defines a unique vector ζ which is uniform
conditioned on satisfying the constraints specified in 2). To see 3), just note that,
regardless of whether we sample τ ← Im(M∗), or τ ← Im(M∗) conditioned on
τ0 = 0, the same arguments used so far guarantee that {τj : j ∈ C\{0}} is a
uniform set of values in Zq, and by construction of B and C, {τj : j ∈ ρ−1(Ac)}
are completely determined by a subset of this set, namely by {τj : j ∈ B} and
therefore independent of τ0.

B Security Definitions

B.1 Commit-and-Prove Schemes

Below we give the remaining security definitions for commit-and-prove schemes
as taken from [11] and adapted to our modifications.

Definition 9 (Perfect Completeness). The commit-and-prove system CaP
is (perfectly) correct if for all adversaries A

Pr
[
(gk, ck) ← G(1λ); (x,W = {(ti,mi) : i ∈ I}) ← A(gk, ck);

{(kpi , ksi ) : i ∈ I} ← LabGen(gk, ck, x,W );

C = {(kpi , ci) ← Com(gk, ck, (kpi , k
s
i ,mi)) : i ∈ I};

π ← P(gk, ck, x,Op, C) : V(gk, ck, x, C, π) = 1
]
= 1,

where A outputs (x,W ) such that (gk, x,W ) ∈ RL and Op is a valid set of
openings of C.

A commit-and-prove scheme is sound if it is impossible to prove a false state-
ment.

Definition 10 (Perfect Soundness). The commit-and-prove system CaP is
(perfectly) sound if there exists a deterministic (unbounded) opening algorithm
Open such that for all adversaries A

Pr
[
(gk, ck) ← G(1λ); (x, {(kpi , ci) : i ∈ I}, π) ← A(gk, ck);

{(ti,mi) : (ti,mi) ← Open(gk, ck, (kpi , ci))} :

V(gk, ck, x, {(kpi , ci) : i ∈ I}, π) = 0 ∨ (gk, x, {(ti,mi) : i ∈ I}) ∈ RL
]
= 1.
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C Verifiable Correlated Key Generation For Other
Equation Types

Extending the Groth-Sahai CaP Based on SXDH. We describe an al-
ternative instantiation of the GS CaP scheme based on SXDH. Recall that the
original one does not admit correlated key generation for labels com

Ĝ
(or mixed

labels com
Ĝ
, sca

Ĝ
), while this one does. We just specify how to to generate the

real commitment keys and the simulated keys with the simulation trapdoor, the
rest of the algorithms of the CaP are easy to derive from the original paper
of Groth and Sahai [16] or from the specification of GS proofs for any matrix
assumption [12].

Essentially, the new instantiation introduces new label types so that one
can commit to group elements and to scalars in two different ways. The la-
bels sca

Ĝ
, sca

Ȟ
, com

Ĝ
, com

Ȟ
indicate that one should commit to a group element

as in the original instantiation of [11]. With these labels we can do what we
described before, namely, we can prove that some equation admitted by the GS
proof system is satisfiable, or that a set of equations with admissible simulation
labels (sca

Ĝ
, . . . , sca

Ĝ
) is partially satisfiable.

The new labels are scapar
Ĝ

, compar

Ĝ
(scapar

Ȟ
, compar

Ȟ
in Ȟ). The new instantiation

of GS proofs we give below admits verifiable correlated key generation for T =
(t1, . . . , tL) where, for all i ∈ [L], ti ∈ {compar

Ĝ
, scapar

Ĝ
} (or for all i ∈ [L],

ti ∈ {scapar
Ȟ

, compar

Ȟ
}). The table in figure 2 describes how to commit with these

new label types, where e3 = (0, 0, 1)� and ê3 = (0̂, 0̂, ĝ)�.
For a complete description of the new CaP, we would need to specify new

equation types Leq and define which types of commitments are compatible with
each equation type, since we are dealing with vectors of potentially different
sizes. Given a quadratic equation written in the form given in equation (2)
(section 4), it is enough that the commitments to all the elements involved
in the equation in the same module Ai are in the same space. For instance
we can define Leq = MLin

Ĝ,par as a linear multi-scalar multiplication equation

in which the variables in A1 = Ĝ are committed with label compar

Ĝ
and the

constants in A2 = Zq are in the usual space Ȟ
2. This is cumbersome to specify

but straightforward, and we omit any further details.
A commitment to an element with any of these labels is a vector of dimension

3. Further, with these new labels, we essentially commit to scalars and group
elements in the same way (so that a key can be binding/hiding for scalars and
group elements at the same time). Therefore, there is no longer an efficiency ad-
vantage in the proof size for equations involving scalars over equations involving
group elements3) This has an impact on efficiency, that is why one should only
use these labels to prove statements which are too expensive to prove with the

3 In the original GS proof instantiation, equations involving sca
Ĝ
, sca

Ȟ
are more effi-

cient than (similar) equations with com
Ĝ
, com

Ȟ
. For instance, the equation x̂a = t̂

requires one extra proof element compared to âx = t̂, but this is no longer true for
the new labels.
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G(1λ)

gk ← (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ)
ω,σ, ξ, χ, ψ, φ ← Z

∗
q

v̂ ← (ξĝ, ĝ)� , v̌ ← (ψȟ, ȟ)�

û ← ωv̂ , ǔ ← σv̌

ŵ ← û− (0̂, ĝ)� , w̌ ← ǔ− (0̌, ȟ)�

â ← (χĝ, ξĝ, ĝ)� , ǎ ← (φȟ, ψȟ, ȟ)�

b̂ ← ωâ+ (ĝ, 0̂, 0̂)� , b̌ ← σǎ+ (ȟ, 0̌, 0̌)�

ck ← (û, v̂, ŵ, ǔ, v̌, w̌, â, b̂, ǎ, b̌)
Return (gk, ck)

SimGen(1λ)

gk ← (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ)
ρ, ω, ξ, χ, ψ, φ ← Z

∗
q

v̂ ← (ξĝ, ĝ)� , v̌ ← (ψȟ, ȟ)�

û ← ωv̂ + (0̂, ĝ)� , ǔ ← σv̌ + (0̌, ȟ)�

ŵ ← û− (0̂, ĝ)� , w̌ ← ǔ− (0̌, ȟ)�

â ← (χĝ, ξĝ, ĝ)� , ǎ ← (φȟ, ψȟ, ȟ)�

b̂ ← ωâ+ (0̂, 0̂, ĝ)�, b̌ ← σǎ+ (0̌, 0̌, ȟ)�

ck ← (û, v̂, ŵ, ǔ, v̌, w̌, â, b̂, ǎ, b̌)
tk ← (ck, σ, ω)
Return (gk, ck, tk)

Label t Message Randomness Commitment Kt
gk,bind Kt

gk,hid

sca
Ĝ

(sca
Ĝ
, x) (sca

Ĝ
, r) ĉ ← ŵx+ v̂r ck : ŵ /∈ 〈v̂〉 ck : ŵ ∈ 〈v̂〉

com
Ĝ

(com
Ĝ
, x̂) (com

Ĝ
, r, s) ĉ ← e2x̂+ v̂r + ûs ck : ê2 /∈ 〈û, v̂〉 ck : ê2 ∈ 〈û, v̂〉

scapar
Ĝ

(scapar
Ĝ

, x) (scapar
Ĝ

, r, s) ĉ ← ê3x+ âr + b̂s ck : ê3 /∈ 〈â, b̂〉 ck : ê3 ∈ 〈â, b̂〉
compar

Ĝ
(compar

Ĝ
, x̂) (compar

Ĝ
, r, s) ĉ ← e3x̂+ âr + b̂s ck : ê3 /∈ 〈â, b̂〉 ck : ê3 ∈ 〈â, b̂〉

Fig. 2. Generator algorithms. The two last coordinates of â (resp. of b̂, ǎ, b̌) correspond
to the vector v̂ (resp. to û, v̌, ǔ). Table describing the most important commitment
types.

normal instantiation. For instance, if one just wants to prove satisfiability of one
PPE, one should use a standard commitment to group elements.

C.1 VCKG for Group Elements

To prove soundness in the constructions of section 7, we used in a fundamen-
tal way that ŵ (or (0̂, ĝ)�) and v̂ are linearly independent. By giving this new
instantiation with an additional dimension, the same arguments follow in a rel-
ative straightforward way. Indeed, the main reason why this new scheme admits
verifiable correlated key generation for these new label types is that both for
binding and hiding keys, b̂ /∈ 〈â〉. Intuitively, the point is that the secret sharing
techniques we are using “work well” with linear independence relations and they
“fail” with linear dependence relations. When we tried to construct correlated
key generation for the label types (com

Ĝ
, . . . , com

Ĝ
), we did not know how to

force the prover to choose binding keys for group elements, i.e. keys such that
û ∈ 〈v̂〉.

We sketch the construction of section 7.2 for the vector of labels (compar

Ĝ
, . . . ,

compar

Ĝ
). Algorithm Kscorr samples two vectors τ ∈ Z

m+1
q , κ ∈ Z

m+1
q uniformly

at random conditioned on τ0 = 0, κ0 = 0. It also samples ζ as usual, namely, as
a uniform vector conditioned on ζ0 = 1 and ζj = 0 for all j ∈ ρ−1(i), i ∈ Ac. The

vectors ẑj are defined as ẑj = τj â+ ζjb̂+ κj(0̂, 0̂, ĝ)
� and Σ = {ck1, . . . , ckm},

where ckj = (ûj , v̂, ŵj , ǔ, v̌, w̌, â, ẑj , ǎ, b̌) (and ûj , ŵj are changed according to
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ẑj to guarantee that ckj ∈ Kgk (that is, ûj should match the last two coordinates
of ẑj , ŵj = ûj − (0̂, ĝ)�). The construction also works for T = (t1, . . . , tL),
ti ∈ {compar

Ĝ
, scapar

Ĝ
}, since the set of binding/hiding keys for compar

Ĝ
and scapar

Ĝ

is the same.
The proof is identical to the one of lemma 2. Indeed, the key observation is

that if ζj = 0, then (0̂, 0̂, ĝ)� ∈ 〈â, ẑj〉 (unless κj = 0, which occurs only with
negligible probability). This means that the key ckj is hiding, and further the
simulation trapdoor is (τj , κj). On the other hand, if ζj 
= 0, since (0̂, 0̂, ĝ)� /∈
〈â, ẑj〉 the key is binding. Therefore, we are in the same situation as in lemma
2. The rest of the algorithms/ proof are also straightforward. Now the matrix

Ẑ ∈ Ĝ
3×(m+1) and the verifier checks if ZM = 0̂3×d, where M is the matrix

associated to the span program.

Example. We retake the example of the OR of two equations as defined in
section 8 but for the labels T = (compar

Ĝ
, compar

Ĝ
). The vectors ζ, τ are defined

as explained in section 8. Additionally, one chooses another vector κ ∈ Im(M∗)
uniformly conditioned on κ0 = 0, i.e. κ = (0, s,−s), s ← Zq. Let’s see why
the approach works. For instance, assume that A = {1} was the set used to

compute the keys. In this case, ẑ1 = râ− b̂+ s(0̂, 0̂, ĝ)�, ẑ2 = −râ− s(0̂, 0̂, ĝ)�,
tk2 = (r, s). The reason why the key (0̂, 0̂, ĝ)� /∈ 〈â, ẑ1〉 is because b̂ is linearly
independent of â in the soundness setting.

Efficiency. For the same span program SP , the description of Σ for T =
(t1, . . . , tL) = (sca

Ĝ
, . . . , sca

Ĝ
) is more efficient than when ti ∈ {compar

Ĝ
, scapar

Ĝ
},

because for the latter we need to send 3(m − d)|Ĝ| elements. Additionally, for
this construction there is an overhead that depends on the number of variables
and the equation type. This is because for each variable that we commit to using
one of the labels ti ∈ {compar

Ĝ
, scapar

Ĝ
} we need 3|Ĝ|, as opposed to 2|Ĝ| in the

normal instantiation of GS proofs. For quadratic equations (but not for linear
ones), this also results in a larger proofs. For each equation type, one should
evaluate if the approach is competitive, but for simple statements it looks like
an interesting alternative (for instance, if one wants to prove OR of two linear

equations in Ĝ, each with one variable in Ĝ).
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