
Yevgeniy Dodis
Jesper Buus Nielsen (Eds.)

 123

LN
CS

 9
01

5

12th Theory of Cryptography Conference, TCC 2015
Warsaw, Poland, March 23–25, 2015
Proceedings, Part II

Theory
of Cryptography

Lecture Notes in Computer Science 9015
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Yevgeniy Dodis Jesper Buus Nielsen (Eds.)

Theory
of Cryptography
12th Theory of Cryptography Conference, TCC 2015
Warsaw, Poland, March 23-25, 2015
Proceedings, Part II

13

Volume Editors

Yevgeniy Dodis
New York University, Department of Computer Science
251 Mercer Street, New York, NY 10012, USA
E-mail: dodis@cs.nyu.edu

Jesper Buus Nielsen
Aarhus University, Department of Computer Science
Åbogade 34, 8200 Aarhus N, Denmark
E-mail: jbn@cs.au.dk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-46496-0 e-ISBN 978-3-662-46497-7
DOI 10.1007/978-3-662-46497-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2015933013

LNCS Sublibrary: SL 4 – Security and Cryptology

© International Association for Cryptologic Research 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 2015 Theory of Cryptography Conference (TCC) was held at the Sheraton
Warsaw Hotel in Warsaw, Poland, during March 23–25. TCC 2015 was sponsored
by the International Association for Cryptologic Research (IACR). The general
chair of the conference was Stefan Dziembowski. We would like to thank him for
his hard work in organizing the conference.

The conference received 137 submissions, a record number for TCC. Each
submission was reviewed by at least three Program Committee (PC) members.
Because of the large number of submissions and the very high quality, the PC
decided to accept 52 papers, a significant extension of capacity over previous
TCCs. Still the PC had to reject many good papers. After the acceptance no-
tification, authors of the accepted papers were given three weeks to revise their
paper in response to the reviews. The revisions were not reviewed. The present
proceedings consists of the revised versions of the 52 accepted papers.

The submissions were reviewed by a PC consisting of 25 leading researchers
from the field. A complete list of the PC members can be found after this pref-
ace. Each PC member was allowed to submit two papers. PC-authored papers
were held to a higher standard. Initially each paper was given at least three in-
dependent reviews (four for PC-authored papers), using external reviewers when
appropriate. Following the individual review period there was a discussion phase.
This year the review software was extended to allow PC members to interact
with authors by sending them questions directly from the discussion page of a
submission, and having the answer automatically appear on the discussion page.
In order to minimize the chance of making decisions based on misunderstandings,
the PC members were strongly encouraged to use this “chat” feature to discuss
with the authors all technical issues that arose during the review and the discus-
sion phases. As a result, the feature was used extensively where appropriate, and
completely replaced (what we felt was) a much more limited and less effective
“rebuttal” phase that was used in recent CRYPTO and Eurocrypt conferences.
In particular, this allowed the PC members to spend their effort on the issues
that were most likely to matter at the end. We believe that our experiment with
the increased interaction with authors was a great success, and that it gives a
better quality-to-effort ratio than a rebuttal phase. Thus, we encourage future
program chairs to continue increasing the interaction with the authors. This year
we also experimented with cross-reviews, letting authors of similar submissions
comment on the relation between these submissions. This was less of a success.
Although the chance to compare the other submissions was welcomed by some
authors, the cross-reviews were found to be controversial by other authors, and it
is not clear that the comparisons contributed much more than having a dedicated
PC member read all the papers and form an independent opinion.

VI Preface

We would like to thank the PC for their dedication, high standards, and hard
work. Indeed, most of the PC members truly went above and beyond. Having
such a great PC made it easy to chair the conference. We would also like to
thank all the external reviewers who decided to dedicate their time and effort
to reviewing for TCC 2015. Your help was indispensable. A list of all external
reviewers follows this preface. We apologise for any omissions. Great thanks to
Shai Halevi for developing and maintaining the websubrev software, which was
an invaluable help in running the PC. Thanks in particular for extending the
system with a “chat” feature. Tuesday evening the conference had a rump session
chaired by Krzysztof Pietrzak from IST Austria. We would like to thank him
for his hard work in making it an enjoyable event. We also thank the Warsaw
Center of Mathematics and Computer Science (WCMCS) and Google Inc. for
contributing to the financing of the conference. Last but not least, thanks to
everybody who submitted a paper to TCC 2015!

This year we had two invited speakers. Leonid Reyzin from Boston Univer-
sity talked about “Wyner’s Wire-Tap Channel, Forty Years Later” and John
Steinberger from Tsinghua University talked about “Block Ciphers: From Prac-
tice Back to Theory.” We are grateful to both speakers for their interesting
contributions to the program.

This was the first year where TCC presented the Test of Time (ToT) award
to a paper that has appeared at TCC in yore and has stood the test of time.
This year the award was given to Silvio Micali and Leonid Reyzin for the paper
“Physically Observable Cryptography,” which was presented at TCC 2004. The
ToT paper was chosen by a committee selected by the TCC Steering Committee.
The ToT committee has the following quotation for the ToT paper:

For pioneering a mathematical foundation of cryptography in the
presence of information leakage in physical systems.

The 52 papers selected for this year’s TCC testify to the fact that the theory of
cryptography community is a thriving and expanding community of the highest
scientific quality. We are convinced that this year’s TCC program contained
many papers that will stand the test of time. Have fun reading these proceedings.

January 2015 Yevgeniy Dodis
Jesper Buus Nielsen

TCC 2015

12th IACR Theory of Cryptography Conference

Sheraton Warsaw Hotel, Warsaw, Poland
March 23–25

Sponsored by International Association for Cryptologic Research (IACR)

General Chair

Stefan Dziembowski University of Warsaw, Poland

Program Chair

Yevgeniy Dodis New York University, USA
Jesper Buus Nielsen Aarhus University, Denmark

Program Committee

Joël Alwen IST Austria, Austria
Benny Applebaum Tel Aviv University, Israel
Nir Bitansky Tel Aviv University, Israel
Elette Boyle Technion, Israel
Kai-Min Chung Academia Sinica, Taiwan
Nico Döttling Aarhus University, Denmark
Sebastian Faust EPFL, Switzerland
Serge Fehr CWI, Holland
Sanjam Garg University of California, Berkeley, USA
Shai Halevi IBM Research, USA
Martin Hirt ETH Zurich, Switzerland
Dennis Hofheinz KIT, Karlsruhe, Germany
Thomas Holenstein ETH Zurich, Switzerland
Yuval Ishai Technion, Israel
Kaoru Kurosawa Ibaraki University, Japan
Allison Lewko Columbia University, USA
Mohammad Mahmoody University of Virginia, USA
Moni Naor Weizmann Institute of Science, Israel
Chris Peikert Georgia Institute of Technology, USA

VIII TCC 2015

Phillip Rogaway UC Davis, USA
Mariana Raykova SRI International, USA
abhi shelat University of Virginia, USA
Stefano Tessaro UC Santa Barbara, USA
Jon Ullman Harvard University, USA
Daniel Wichs Northeastern University, USA

External Reviewers

Divesh Aggarwal
Shashank Agrawal
Martin Albrecht
Jacob Alperin-Sheriff
Prabhanjan Ananth
Frederik Armknecht
Gilad Asharov
Nuttapong Attrapadung
Jean-Philippe Aumasson
Christian Badertscher
Foteini Baldimtsi
Abhishek Banerjee
Carsten Baum
Alexander Belov
Itay Berman
Dan Bernstein
Zvika Brakerski
Christina Brzuska
Ran Canetti
David Cash
Nishanth Chandran
Melissa Chase
Binyi Chen
Jie Chen
Alessandro Chiesa
Chongwon Cho
Seung Geol Choi
Aloni Cohen
Gil Cohen
Ran Cohen
Sandro Coretti
Dana Dachman-Soled
Bernardo David
Gregory Demay
Yi Deng
Itai Dinur

Chandan Dubey
Alexandre Duc
Pooya Farshim
Georg Fuchsbauer
Benjamin Fuller
Ariel Gabizon
Peter Gazi
Sergey Gorbunov
Dov Gordon
Vipul Goyal
Matthew Green
Divya Gupta
Jan Hazla
Pavel Hubáček
Peter Høyer
Vincenzo Iovino
Abhishek Jain
Daniel Jost
Bhavana Kanukurthi
Marcel Keller
Dakshita Khurana
Susumu Kiyoshima
Venkata Koppula
Takeshi Koshiba
Daniel Kraschewski
Hugo Krawczyk
Sara Krehbiel
Robin Kuenzler
Ranjit Kumaresan
Robin Künzler
Tancrède Lepoint
Kevin Lewi
Huijia (Rachel) Lin
Yehuda Lindell
Feng-Hao Liu
Steve Lu

Takahiro Matsuda
Christian Matt
Alexander May
Willi Meier
Bart Mennink
Daniele Micciancio
Eric Miles
Payman Mohassel
Hart Montgomery
Jörn Müller-Quade
Ryo Nojima
Adam O’Neill
Wakaha Ogata
Emmanuela Orsini
Omkant Pandey
Omer Paneth
Dimitrios Papadopoulos
Bryan Parno
Anat Paskin-

Cherniavsky
Rafael Pass
Le Trieu Phong
Krzysztof Pietrzak
Andrew Poelstra
Antigoni Polychroniadou
Raluca Popa
Samuel Ranellucci
Ben Riva
Alon Rosen
Ron Rothblum
Andy Rupp
Yusuke Sakai
Carla Rafols Salvador
Jacob Schuldt
Lior Seeman
Gil Segev

TCC 2015 IX

Rocco Servedio
Karn Seth
Or Sheffet
Shikha Singh
Adam Smith
Fang Song
Damien Stehlé
John Steinberger
Koutarou Suzuki
Björn Tackmann
Katsuyuki Takashima
Sidharth Telang

Isamu Teranishi
Justin Thaler
Nikolaos Triandopoulos
Mehdi Tibouchi
Daniel Tschudi
Dominique Unruh
Serge Vaudenay
Muthuramakrishnan

Venkitasubramaniam
Daniele Venturi
Ivan Visconti
Hoeteck Wee

Mor Weiss
Xiaodi Wu
Shota Yamada
Arkady Yerukhimovich
Yu Yu
Mark Zhandry
Haibin Zhang
Vassilis Zikas
Joe Zimmerman
Asaf Ziv

Sponsoring and Co-Financing Institutions

TCC 2015 was co-financed by the Warsaw Center of Mathematics and Computer
Science (WCMCS). The conference was also generously sponsored by Google Inc.
The conference organizers are grateful for this financial support.

Wyner’s Wire-Tap Channel, Forty Years Later

(Invited Talk)

Leonid Reyzin

Boston University
Department of Computer Science

Boston, MA 02215, USA

Abstract. Wyner’s information theory paper “The Wire-Tap Channel”
turns forty this year. Its importance is underappreciated in cryptography,
where its intellectual progeny includes pseudorandom generators, privacy
amplification, information reconciliation, and many flavors of random-
ness extractors (including plain, strong, fuzzy, robust, and nonmalleable).
Focusing mostly on privacy amplification and fuzzy extractors, this talk
demonstrates the connection from Wyner’s paper to today’s research,
including work on program obfuscation.

Table of Contents – Part II

Pseudorandom Functions and Applications

Constrained Key-Homomorphic PRFs from Standard Lattice
Assumptions (Or: How to Secretly Embed a Circuit in Your PRF) 1

Zvika Brakerski and Vinod Vaikuntanathan

Key-Homomorphic Constrained Pseudorandom Functions 31
Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert,
Krzysztof Pietrzak, and Sophie Stevens

Aggregate Pseudorandom Functions and Connections to Learning 61
Aloni Cohen, Shafi Goldwasser, and Vinod Vaikuntanathan

Oblivious Polynomial Evaluation and Secure Set-Intersection
from Algebraic PRFs . 90

Carmit Hazay

Verifiable Random Functions from Weaker Assumptions 121
Tibor Jager

Proofs and Verifiable Computation

Multi-Client Verifiable Computation with Stronger Security
Guarantees . 144

S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi,
and Hong-Sheng Zhou

Public Verification of Private Effort . 169
Giulia Alberini, Tal Moran, and Alon Rosen

Primary-Secondary-Resolver Membership Proof Systems 199
Moni Naor and Asaf Ziv

Tight Parallel Repetition Theorems for Public-Coin Arguments
Using KL-Divergence . 229

Kai-Min Chung and Rafael Pass

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 247
Carla Ràfols

Differential Privacy

Outlier Privacy . 277
Edward Lui and Rafael Pass

XIV Table of Contents – Part II

Functional Encryption

Function-Private Functional Encryption in the Private-Key Setting 306
Zvika Brakerski and Gil Segev

Functional Encryption for Randomized Functionalities 325
Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai

Functional Encryption for Randomized Functionalities
in the Private-Key Setting from Minimal Assumptions 352

Ilan Komargodski, Gil Segev, and Eylon Yogev

Obfuscation

Separations in Circular Security for Arbitrary Length Key Cycles 378
Venkata Koppula, Kim Ramchen, and Brent Waters

ZAPs and Non-Interactive Witness Indistinguishability
from Indistinguishability Obfuscation . 401

Nir Bitansky and Omer Paneth

Random-Oracle Uninstantiability from Indistinguishability
Obfuscation . 428

Christina Brzuska, Pooya Farshim, and Arno Mittelbach

On Obfuscation with Random Oracles . 456
Ran Canetti, Yael Tauman Kalai, and Omer Paneth

Obfuscation of Probabilistic Circuits and Applications 468
Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan

Graph-Induced Multilinear Maps from Lattices . 498
Craig Gentry, Sergey Gorbunov, and Shai Halevi

Obfuscating Circuits via Composite-Order Graded Encoding 528
Benny Applebaum and Zvika Brakerski

Adaptively Secure Two-Party Computation from Indistinguishability
Obfuscation . 557

Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya

Adaptively Secure, Universally Composable, Multiparty Computation
in Constant Rounds . 586

Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao

Two-Round Adaptively Secure MPC from Indistinguishability
Obfuscation . 614

Sanjam Garg and Antigoni Polychroniadou

Table of Contents – Part II XV

Obfuscation-Based Non-black-box Simulation
and Four Message Concurrent Zero Knowledge for NP 638

Omkant Pandey, Manoj Prabhakaran, and Amit Sahai

Public-Coin Differing-Inputs Obfuscation and Its Applications 668
Yuval Ishai, Omkant Pandey, and Amit Sahai

Author Index . 699

Table of Contents – Part I

Foundations

On Basing Size-Verifiable One-Way Functions on NP-Hardness 1
Andrej Bogdanov and Christina Brzuska

The Randomized Iterate, Revisited - Almost Linear Seed Length PRGs
from a Broader Class of One-Way Functions . 7

Yu Yu, Dawu Gu, Xiangxue Li, and Jian Weng

The Power of Negations in Cryptography . 36
Siyao Guo, Tal Malkin, Igor C. Oliveira, and Alon Rosen

From Weak to Strong Zero-Knowledge and Applications 66
Kai-Min Chung, Edward Lui, and Rafael Pass

An Efficient Transform from Sigma Protocols to NIZK with a CRS
and Non-programmable Random Oracle . 93

Yehuda Lindell

Symmetric Key

On the Indifferentiability of Key-Alternating Feistel Ciphers
with No Key Derivation . 110

Chun Guo and Dongdai Lin

Multiparty Computation

A Little Honesty Goes a Long Way: The Two-Tier Model
for Secure Multiparty Computation . 134

Juan A. Garay, Ran Gelles, David S. Johnson, Aggelos Kiayias,
and Moti Yung

Topology-Hiding Computation . 159
Tal Moran, Ilan Orlov, and Silas Richelson

Secure Physical Computation Using Disposable Circuits 182
Ben A. Fisch, Daniel Freund, and Moni Naor

Complete Characterization of Fairness in Secure Two-Party
Computation of Boolean Functions . 199

Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri

XVIII Table of Contents – Part I

Richer Efficiency/Security Trade-offs in 2PC . 229
Vladimir Kolesnikov, Payman Mohassel, Ben Riva,
and Mike Rosulek

Concurrent and Resettable Security

Round-Efficient Concurrently Composable Secure Computation
via a Robust Extraction Lemma . 260

Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass,
and Amit Sahai

An Alternative Approach to Non-black-box Simulation
in Fully Concurrent Setting . 290

Susumu Kiyoshima

General Statistically Secure Computation with Bounded-Resettable
Hardware Tokens . 319

Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade,
and Tobias Nilges

Resettably Sound Zero-Knowledge Arguments from OWFs -
The (Semi) Black-Box Way . 345

Rafail Ostrovsky, Alessandra Scafuro,
and Muthuramakrishnan Venkitasubramanian

Non-malleable Codes and Tampering

A Rate-Optimizing Compiler for Non-malleable Codes
Against Bit-Wise Tampering and Permutations . 375

Shashank Agrawal, Divya Gupta, Hemanta K. Maji,
Omkant Pandey, and Manoj Prabhakaran

Leakage-Resilient Non-malleable Codes . 398
Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana,
and Maciej Obremski

Locally Decodable and Updatable Non-malleable Codes
and Their Applications . 427

Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi,
and Hong-Sheng Zhou

Tamper Detection and Continuous Non-malleable Codes 451
Zahra Jafargholi and Daniel Wichs

Optimal Algebraic Manipulation Detection Codes in the Constant-Error
Model . 481

Ronald Cramer, Carles Padró, and Chaoping Xing

Table of Contents – Part I XIX

Privacy Amplification

Non-malleable Condensers for Arbitrary Min-entropy,
and Almost Optimal Protocols for Privacy Amplification 502

Xin Li

Encryption and Key Exchange

From Single-Bit to Multi-bit Public-Key Encryption
via Non-malleable Codes . 532

Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi

Constructing and Understanding Chosen Ciphertext Security
via Puncturable Key Encapsulation Mechanisms . 561

Takahiro Matsuda and Goichiro Hanaoka

Non-committing Encryption from Φ-hiding . 591
Brett Hemenway, Rafail Ostrovsky, and Alon Rosen

On the Regularity of Lossy RSA: Improved Bounds and Applications
to Padding-Based Encryption . 609

Adam Smith and Ye Zhang

Tightly-Secure Authenticated Key Exchange . 629
Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz,
and Yong Li

Author Index . 659

Constrained Key-Homomorphic PRFs
from Standard Lattice Assumptions

(Or: How to Secretly Embed a Circuit in Your PRF)�

Zvika Brakerski1,�� and Vinod Vaikuntanthan2,� � �

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

2 Massachusetts Institute of Technology, Cambridge, MA, USA
vinodv@csail.mit.edu

Abstract. Boneh et al. (Crypto 13) and Banerjee and Peikert (Crypto
14) constructed pseudorandom functions (PRFs) from the Learning with
Errors (LWE) assumption by embedding combinatorial objects, a path
and a tree respectively, in instances of the LWE problem. In this work,
we show how to generalize this approach to embed circuits, inspired by
recent progress in the study of Attribute Based Encryption.

Embedding a universal circuit for some class of functions allows us
to produce constrained keys for functions in this class, which gives us
the first standard-lattice-assumption-based constrained PRF (CPRF)
for general bounded-description bounded-depth functions, for arbitrary
polynomial bounds on the description size and the depth. (A constrained
key w.r.t a circuit C enables one to evaluate the PRF on all x for which
C(x) = 1, but reveals nothing on the PRF values at other points.) We
rely on the LWE assumption and on the one-dimensional SIS (Short
Integer Solution) assumption, which are both related to the worst case
hardness of general lattice problems. Previous constructions for similar
function classes relied on such exotic assumptions as the existence of
multilinear maps or secure program obfuscation. The main drawback of
our construction is that it does not allow collusion (i.e. to provide more
than a single constrained key to an adversary). Similarly to the afore-
mentioned previous works, our PRF family is also key homomorphic.

Interestingly, our constrained keys are very short. Their length does
not depend directly either on the size of the constraint circuit or on the
input length. We are not aware of any prior construction achieving this
property, even relying on strong assumptions such as indistinguishability
obfuscation.

� An extended version of this manuscript can be found in [11].
�� Supported by the Israel Science Foundation (Grant No. 468/14) and by the Alon
Young Faculty Fellowship.

� � � Research supported by DARPA Grant number FA8750-11-2-0225, Alfred P. Sloan
Research Fellowship, NSF CAREER Award CNS-1350619, NSF Frontier Grant
CNS-1414119, Microsoft Faculty Fellowship, and a Steven and Renee Finn Career
Development Chair from MIT.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 1–30, 2015.
c© International Association for Cryptologic Research 2015

2 Z. Brakerski and V. Vaikuntanthan

1 Introduction

A pseudorandom function family (PRF) [14] is a finite set of functions {Fs : D →
R}s, indexed by a seed (or key) s, such that for a random s, Fs is efficiently
computable given s, and is computationally indistinguishable from a random
function from D to R, given oracle access. Since the introduction of this concept,
PRFs have been one of the most fundamental building blocks in cryptography.
Many variants of PRFs with additional properties have been introduced and
have found a plethora of applications in cryptography. In this work, we will
focus on Constrained PRFs and Key-Homomorphic PRFs.

Constrained PRFs. Constrained PRFs (CPRFs) have been introduced simulta-
neously by Boneh and Waters [9], Kiayias et al. [18] (as “Delegatable PRFs”)
and by Boyle, Goldwasser and Ivan [10] (as “Functional PRFs”). Here an ad-
versary is allowed to ask for a constrained key which should allow it to evaluate
the PRF on a subset of the inputs, while revealing nothing about the values
at other inputs. It has been shown [9,18,10] how to construct CPRFs for func-
tion classes of the form x ∈ [i, j] (where the input is interpreted as an integer)
based on any one-way function. This in particular allows for the “puncturing”
technique of Sahai and Waters [26] that found many uses in the obfuscation
literature. Further, [9] showed how to achieve more complicated function classes
such as bit fixing functions and even arbitrary circuits, but those require use of
cryptographic multilinear maps. They also introduce a number of applications
for such CPRFs, including broadcast encryption schemes and identity based key
exchange. Hofheinz et al. [17] show how to achieve adaptively secure CPRFs
from indistinguishability obfuscation using a random oracle.

The original definition of CPRFs requires resilience to arbitrary collusion.
Namely, a constrained key for C1, C2 should give no more information than a
constrained key for C1 ∨ C2 and must not reveal anything about values where
C1(x) = C2(x) = false. Many of the applications of CPRFs (e.g. for broadcast
encryption and identity based key exchange) rely on collusion resilience. Unfor-
tunately, our construction in this work will not allow collusions, and therefore
will not be useful for these applications. We hope that future works will be able
to leverage our ideas into collusion resilient CPRFs.

Key-Homomorphic PRFs. In key-homomorphic PRFs, there is a group struc-
ture associated with the set of keys, and it is required that for any input x
and keys s, t, Fs(x) + Ft(x) = Fs+t(x). A construction in the random oracle
model was given by Naor, Pinkas and Reingold [22], and the first construction
in the standard model was given by Boneh et al. [8] based on the Learning
with Errors assumption (LWE), building on a (non key homomorphic) lattice-
based PRF of Banerjee, Peikert and Rosen [4]. This was followed by an improved
construction by Banerjee and Peikert [3] based on quantitatively better lattice
assumptions. The LWE based constructions achieved a slightly weaker notion,
namely “almost” key-homomorphism, in which ‖(Fs(x) + Ft(x)) − Fs+t(x)‖ is
small, for an appropriately defined norm. This notion is sufficient for the known

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 3

applications. Applications of key-homomorphic PRFs include distributed key-
distribution, symmetric proxy re-encryption, updatable encryption and PRFs
secure against related-key attacks [22,8,19].

Our Results. We view the main contribution of this work as showing how to im-
pose hidden semantics into the evaluation process of LWE-based PRFs. Namely,
we allow multiple computation paths for computing Fs(x), such that we can se-
lectively block some of these paths based on logic described by a circuit. This
is done by extending ideas from the ABE literature, and in particular the ABE
scheme of Boneh et al. [7] (see more about this connection below).

It is particularly interesting that previous constructions of PRFs [8,3] can be
viewed as a special case of our framework, but ones that only allow a single
computational path. Our work therefore highlights that the techniques used for
constructing PRFs and for constructing ABE are special cases of the same grand
schema. This could hopefully lead to new insights and constructions.

We employ our methods towards presenting a family of (single key secure)
constrained key-homomorphic PRFs based on worst-case general lattice assump-
tions. This is a first step in solving the open problem posed in [9] of achieving
(collusion resilient) CPRFs from standard assumptions.

Our construction is selectively secure in the constraint query, namely the
adversary needs to decide on the constraint before seeing the public parame-
ters, but is adaptive with regards to PRF oracle queries. We achieve the latter
without “complexity leveraging”, contrary to [9], and thus we do not require
sub-exponential hardness assumptions as they do. This is done by employing
our technique of embedding semantics into the evaluation process again. In par-
ticular, we embed the semantics of an admissible hash function, introduced by
Boneh and Boyen [6] into the PRF, which allows us to handle adaptive queries.

Our proofs rely on two closely related hardness assumptions: The Learning
with Errors (LWE) assumption, and the one-dimensional Short Integer Solution
(1D-SIS) assumption. Both assumptions can be tied to the worst case hardness
of general lattice problems such as GapSVP and SIVP, with similar parameters.
LWE is sufficient for proving pseudorandomness in the absence of a constrained
key. However, once the adversary is given a constrained key, the situation be-
comes more delicate. In particular, even showing correctness in this setting is
not straightforward. (Correctness refers to the property that evaluation using the
constrained key and using the actual seed result in the same output.) One can
show unconditionally that the value computed using the constrained key is close
(in norm) to the real value of the function but not that they are always equal.
A similar issue comes up in the security proof (since the reduction “fabricates”
oracle answers in a similar way to the constrained evaluation). Our solution is
to use computational arguments. Namely to show that it is computationally in-
tractable, under the 1D-SIS assumption, to come up with an input for which
the constrained evaluation errs. Therefore even the correctness of our scheme
relies on computational assumptions. We note that similar techniques can be

4 Z. Brakerski and V. Vaikuntanthan

used to strengthen the almost key-homomorphism property into computational
key-homomorphism where it is computationally hard to find an input for which
key homomorphism does not hold.

The following theorem presents the simplest application of our method, we
explain how it can be extended below.

Theorem 1.1. Let C�,d be the class of size-� depth-d circuits. Then for all poly-
nomials �, d, there exists a C�,d-constrained (almost) key-homomorphic family of
PRFs without collusion, based on the (appropriately parameterized) LWE and
1D-SIS assumptions (and hence on the worst-case hardness of appropriately pa-
rameterized GapSVP and SIVP problems).

Interestingly, we can go beyond bounded size circuits. In fact, we can support
any function family with bounded length description, so long as there is a uni-
versal evaluator of depth d that takes a function description and an input, and
executes the function on the input. Namely, consider a sequence of universal cir-
cuits {Uk}k∈N, where Uk : {0, 1}�×{0, 1}k → {0, 1}. This sequence defines a class
of functions {0, 1}∗ → {0, 1}, where each function F in the class is represented
by a string f ∈ {0, 1}�, and for x ∈ {0, 1}k, it holds that F (x) = Uk(f, x). We
call such a function class �-uniform. We are only able to support Uk whose depth
is bounded by some a-priori polynomial in the security parameter d, however in
some cases this is sufficient to support all k’s that are polynomial in the security
parameter. The following theorem states our result with regards to such families.

Theorem 1.2. Let C�,d be a class of �-uniform functions with depth-d eval-
uator. Then for all polynomials �, d, there exists a C�,d-constrained (almost)
key-homomorphic family of PRFs without collusion, based on the (appropriately
parameterized) LWE and 1D-SIS assumptions (and hence on the worst case hard-
ness of appropriately parameterized GapSVP, SIVP).

Lastly, we show that the bit-length of the constrained keys in our scheme
can be reduced to poly(λ) for some fixed polynomial. Namely, completely inde-
pendent of all of the parameters of the scheme. This is done by using an ABE
scheme with short secret keys as a black box. In particular we resort to the same
scheme, namely the ABE scheme of Boneh et al. [7], which inspired our con-
strained PRF construction. This is done by encrypting all of the “components”
of the constrained key, and providing them in the public parameters of the con-
struction. Then, the actual constrained key is an ABE secret key which only
allows to decrypt the relevant components. We note that this short representa-
tion for constrained keys is not homomorphic (however the scheme is still almost
key homomorphic with respect to the seed). A theorem statement follows.

Theorem 1.3. There exists a constrained PRF scheme with the same proper-
ties as in Theorem 1.2, and under the same hardness assumptions, where the
constrained keys are of asymptotic bit-length poly(λ), for an a-priori fixed poly-
nomial.

See Section 2 for an extended overview of the construction.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 5

Relation to the ABE Construction of Boneh et al. [7]. Our techniques are
greatly influenced by the aforementioned LWE-based ABE construction of Boneh
et al. [7]. Recall that in ABE, messages are encrypted relative to attributes and
decryption keys are drawn relative to functions. Decryption is possible only if
the function f of the decryption key accepts the attribute x of the ciphertext. In
order to decrypt a ciphertext, [7] first applies a public procedure that depends
on f, x on the ciphertext and then applies the decryption key on the resulting
value. Their construction makes sure that for any f , encryptions with regards
to all accepting x’s will derive a decryptable ciphertext (and all non-accepting
x’s cannot be decrypted).

Our constrained key for a circuit C is almost identical to an encryption of 0
with attribute C in [7]. The randomness in the encryption roughly corresponds to
the seed of the PRF. An application of the PRF on the constrained key includes
applying the public procedure of the ABE on the ciphertext, with respect to
the function f = U , the universal circuit for the function class to which C
belongs. However, there is the question of how to represent the input: We need
to be able to evaluate C on any possible input while preserving security. One of
our main technical ideas is in showing that this is possible, and in fact can be
achieved regardless of the input length. Combined with the framework from [7],
we can guarantees that for all x, regardless which C was used to generate the
“ciphertext”, the output of the public procedure will only depend on x and not
on C. The basic idea is therefore to use this value as the PRF value. This does not
work as is (for example, it does not imply pseudorandomness for non-accepting
x’s) and additional ideas are required.

As mentioned above, the PRFs of [8,3] that seem to stem from different ideas
and have quite different proofs than [7] can be shown to be special cases of the
above paradigm, except f is taken to be an arbitrary formula (a multiplication
tree). For details see Section 2.

The novelty in our approach is to show the extra power that is obtained
from generalizing these two approaches. We use the universal circuit as a way
to embed an undisclosed computation into an LWE instance, and show how to
achieve pseudorandomness using tools such as admissible hash functions (which
are also embedded into an LWE instance).

Relation with the Constrained PRF of Hofheinz et al. [17]. The work of [17]
constructs adaptively secure collusion-resistant CPRFs, namely ones where the
challenge x∗ needs not be provided ahead of time. Their building blocks are
“universal parameters” and adaptively secure ABE, which are used as black-
box. Note that we achieve adaptive security w.r.t the challenge (but not with
respect to the constraint) while relying on techniques which are only known to
imply selectively secure ABE. Further, whereas [17] use ABE only to implement
access control and therefore need to rely on strong assumptions to implement
the PRF so as to interface with the ABE, we use ABE techniques to achieve
both pseudorandomness and access control. On the flip side, our construction is
not collusion resistant, contrary to [17].

6 Z. Brakerski and V. Vaikuntanthan

Open Problems. The main drawback of our CPRF is its vulnerability to collusion,
which severely limits its applicability as a building block. It is an open problem
to achieve bounded collusion resilience, even for two constrained keys instead
of one and even at the cost of increasing the parameters. Any improvement on
this front should be very interesting. Another avenue for research is trying to
extend the construction so that there is no restriction on the constraint circuit
size, similarly to the multilinear map based construction of [9]. Finally, it would
also be interesting to apply this methodology of imposing semantics on a cryp-
tographic computation to other primitives in order to allow more fine-grained
access control.

2 Overview of Our Construction

We recall that the LWE assumption asserts that for a uniform vector s and
a matrix A of appropriate dimensions (over Zq for an appropriate q), it holds
that (A, sTA + eT), is indistinguishable from uniform, where e is taken from
an appropriate distribution over low norm vectors and referred to as the noise
vector. In this outline we will ignore the generation of eT and its evolution during
computation process, and just denote it by noise (but of course care will need to
be taken in the formal arguments).

The PRF of Banerjee and Peikert [3]. A high-level methodology for constructing
PRFs, taken by [8,3] and also in this work, is to take s as the seed, and to
generate for each PRF input x, an LWE matrix Ax such that the values sTAx+
noise for the different inputs x are jointly indistinguishable from uniform. Note
that almost key homomorphism follows naturally for any implementation of this
template, up to the accumulation of noise. The noise issue is handled by taking
the PRF value to be a properly scaled down and rounded version of the above,
so that the effect of the noise is minimal (and its norm can be bounded below
1). This property is also inherited by our scheme.

As a starting point for deriving our construction, let us revisit the key-
homomorphic PRF construction of [3]. Their PRF family was associated with
a combinatorial object – a binary tree. Each node v of the tree was associated
with an LWE matrix Av, where the PRF input x determined the matrices for
the leaves, and matrices for internal nodes are derived as follows. Given a node
v whose children are associated with Al,Ar, they define Av = Al · G−1(Ar).
In this notation, G−1(·) is the binary decomposition operator, which breaks
each entry in the matrix into the bit vector of length log(q) of its binary repre-
sentation. Note that G−1(·) will always have small norm, and that the inverse
operator G, representing binary composition, is linear so it can be represented
by a matrix. Thus for all A it holds that G ·G−1(A) = A.

Going back to the PRF of [3], the derivation procedure described above allows
to associate a matrix with the root of the tree, which depends only on the
input x (and on the topology of the tree which is fixed). We will use the root’s
matrix as our Ax. The proof hinges on the invariant that LWE instances will

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 7

be multiplied on the right only by low-norm matrices (of the form G−1(·)),
and therefore sTAlG

−1(Ar) + noise ≈ (sTAl + noise)G−1(Ar), which allows to
replace (sTAl + noise) with a new uniform vector and propagate to the right.

From Embedded Trees to Embedded Circuits. We show that the operation Av =
Al ·G−1(Ar) is in fact a special case of a more general operation, inspired by the
recent Attribute Based Encryption (ABE) construction of Boneh et al. [7]. We
will associate a matrix Av as well as a binary value xv with each node, and pay
special attention to the matrix (Av − xvG). In particular, considering a node v
with children l, r, it holds that

(Al − xlG) ·G−1(Ar) + (Ar − xrG) · xl = AlG
−1(Ar)− xrxlG .

This generalization associates the semantics of the multiplication operation with
the syntactic definition Av = AlG

−1(Ar), and it also maintains the invariant
that the matrices (Al − xlG) and (Ar − xrG) are only multiplied on the right
by low norm elements, so that

sT
(
(Al − xlG) ·G−1(Ar) + (Ar − xrG) · xl

)
+ noise ≈(

sT (Al − xlG) + noise
)
·G−1(Ar) +

(
sT (Ar − xrG) + noise

)
· xl ,

which will play an important role in the security proof. Put explicitly, if the
evaluator holds sT (Al − xlG) + noise and sT (Al − xlG) + noise, then it can
compute sT (Av − xl · xrG) + noise (and we will obviously define xv = xl · xr).

This semantic relation can be extended beyond multiplication gates, and in
particular NAND gates can be supported in a fairly similar manner. Further-
more, there is no need to stick to tree structure and one can support arbitrary
DAGs, which naturally correspond to circuits. Extending the above postulate, if
our DAG corresponds to a circuit C, then having sT (Ai − xiG) + noise, for all
leaves (= inputs), allows to compute sT (Ax−C(x)G)+noise. Recalling that the
value of the PRF on input x is sTAx + noise, the aforementioned information
allows us to evaluate the PRF at points where C(x) = 0. It can also be shown
that it is computationally hard to compute the value at points where C(x) = 1.
We note that this process is practically identical to the public part of the de-
cryption procedure in the [7] ABE (as we explained in Section 1). We also note
that since [3] were trying to minimize the complexity of evaluating their PRF,
it made no sense in their construction to consider DAGs which only increase
the complexity. However, as we show here, there are benefits to embedding a
computational process in the PRF evaluation.

Utilizing the Universal Circuit. The tools we describe so far indeed seem to get
us closer to our goal of producing constrained keys, but we are still not quite
there. What we showed is that for any circuit C, we can devise a PRF with a
constrained key for C. Note that we use the negated definition to the one we
used before, and allow to evaluate when C(x) = 0 and not when C(x) = 1. This
will be our convention throughout this overview.

8 Z. Brakerski and V. Vaikuntanthan

In order to reverse the order of quantifiers, we take C to be the universal circuit
U(F, x), and the constrained keys will be of the form sT (Ai−fiG)+noise, where
the fi is the ith bit of the description of the constraint F , as well as values for
the x wires, which will be of the form sT (Âb − bG) + noise, for both b ∈ {0, 1}.
These values will allow us to execute F on any input x. Note that we can use
the same matrices Â0, Â1 for all input wires, hence we don’t need to commit to
the input size when we provide the constrained key.1 From this description it is
obvious why our construction is not collusion resistant: Given two constrained
keys for two non identical functions, there exists an i such that the adversary
gets both sTA+ noise and sT (Ai −G) + noise. Recovering sT from these values
is straightforward and hence all security is lost. Note that for the input values,
unlike the function description, we use two different matrices for 0 and 1: Â0, Â1,
so a similar problem does not occur.

The Problem with Correctness, and a Computational Solution. We introduced
two ways to compute the value of the PRF at x: One is to compute Ax and use
the seed sT to compute sTAx + noise, and the other is to use the constrained
key to obtain sT (Ax − F (x)G) + noise, which for F (x) = 0 gives sTAx + noise.
The problem is that the noise value in these two methods could differ. It is
possible to make the difference small by scaling down and rounding, but this is
not going to suffice for our purposes (mostly because a similar problem comes
up in the security proof). We solve this issue using the 1D-SIS assumption as
follows. We first note that the evaluation using the constrained key is essentially
evaluation of a linear function with small coefficients on the vectors constituting
the constrained key (essentially they get multiplied by bits and by low norm
matrices G−1(·)). Secondly, the only way for the two computation paths to not
agree is if the value sTAx is very close to an integer multiple of a number p (which
is part of the PRF description). Finally, we notice that by LWE, the vectors in
the constrained key are indistinguishable from uniform and independent. Thus,
if we encounter such x for which correctness does not work, we can also find a
short linear combination of random elements whose scaled down rounded value
is close to an integer. In other words, given a uniform vector v in Zq, we can
find z such that �〈v, z〉/p
 is “close” to an integer. This is similar to solving a
one-dimensional instance of the SIS problem, i.e. 〈v, z〉 = 0 (mod p). Indeed,
one can show that the 1D-SIS problem is as hard as standard worst-case hard
lattice problems via a reduction from [24].

Pseudorandomness and Adaptive Security. Given a constrained key for F , one
can compute sT (Ax − F (x)G) + noise, and indeed if F (x) = 1 it is hard to
compute PRFs(x) = sTAx + noise. However, we want to argue that this value
is pseudorandom and furthermore that it remains pseudorandom after adaptive
queries to the PRF. Namely, after the adversary sees as many values of the form
PRFs(x) = sTAx + noise as it wishes.

1 Recall that in [8,3] there are only two matrices altogether. This is sufficient here
for the input wires for the same reason, but we need additional matrices to encode
the constraint description.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 9

To achieve these goals, we add another feature to the PRF. We consider a
new independent LWE matrix D, and define PRFs(x) = sTAx ·G−1(D)+ noise.
First of all, we note that given the constrained key, we can still compute the
PRF for values where C(x) = 0, by first computing (sTAx + noise) as before,
and then multiplying by G−1(D), which has low norm. However, in general we
have

PRFs(x) ≈
(
sT (Ax − F (x)G) + noise

)
·G−1(D) + F (x)

(
sTD+ noise

)
,

and it can be shown that for F (x) = 1, the second term randomizes the expres-
sion, by the LWE assumption.

This handles pseudorandomness for a single query, but not for the case of
adaptive queries (since we can only use the pseudorandomness of (sTD+ noise)
once). To handle adaptive queries we embed semantics into the matrix D itself.
Namely, D = Dx will be derived by an application of the universal circuit
to the input x and an admissible hash function h. Admissible hash functions,
introduced by Boneh and Boyen [6], allow (at a very high level) to partition the
input space such that with noticeable probability all of the adaptive queries have
value h(x) = 0, but the challenge query will have h(x) = 1. This means that in
the proof of security, we can hold a constrained key for h, which will allow us
to compute (sTDx + noise), for all the queries of the adversary, but leave the
challenge query unpredictable (to make it pseudorandom, we will multiply in
the end by another final D′). This concludes the security argument for adaptive
queries.

Key-Homomorphism. As we mention above, key-homomorphism follows since we
use the template PRFs(x) = sTAx + noise. We note that the existence of noise
means that homomorphism may not be accurate and with some low probability
(PRFs(x)+PRFs′(x)) will only be close to PRFs+s′(x) and not identical. However
this property is sufficient for many applications.

We point out that our constrained keys are a collection elements of the form
(sTAi + noise), and therefore the scheme is also homomorphic with respect to
constrained keys, i.e. constrained keys for the same F w.r.t different keys s, s′

can be added to obtain a constrained key w.r.t s + s′.

Reducing the Constrained Key Size. From the above, it follows that the con-
strained key contains � + 2 vectors, where � is the bit length of a description of
F relative to the universal circuit for the function class. Note that this does not
depend directly on the input size to the function. However, indirectly the depth
of the universal circuit affects the modulus q that needs to be used.

We show that we can remove the dependence on � altogether using an ABE
scheme with short secret keys, such as that of [7]. To do this, we notice that for
each constraint function F , the adversary gets either sTAi + noise or sT (Ai −
G)+ noise, according to the value of the bit fi. We can prepare for both options
by encrypting both vectors using the ABE, each with its own attribute (i, 0) and
(i, 1) respectively. All of these encryptions, for all i, will be placed in the public

10 Z. Brakerski and V. Vaikuntanthan

parameters. Then in order to provide a constrained key, we will provide an ABE
secret key for the function that takes (i, b) and returns 0 if and only if fi = b.
Given this key, the user can decrypt exactly those vectors that constitute its
constrained key. Note that this function can be computed by a depth O(log(�)) =
O(log(λ)) circuit, and thus the size of the secret key can be made asymptotically
independent of all parameters except λ, e.g. by setting the parameters to support
depth log2(λ) circuits.

3 Preliminaries

We first recall some background. For an integer modulus q, let Zq = Z/qZ denote
the ring of integers modulo q. For an integer p ≤ q, we define the modular
“rounding” function

�·�p : Zq → Zp that maps x → �(p/q) · x�

and extend it coordinate-wise to matrices and vectors over Zq. We denote the
elements of the standard basis by u1,u2, . . ., where the dimension will be clear
from the context.

We denote distributions (or random variables) that are computationally in-

distinguishable by X
c≈ Y . This refers to the standard notion of negligible dis-

tinguishing gap for any polynomial time distinguisher. Our reductions preserve
the uniformity of the adversary so by assuming the hardness of our assump-
tion for uniform adversary we get security for our construction against uniform
adversaries, and likewise for non-uniform assumptions and adversaries.

The Gadget Matrix. Let � = log q� and define the “gadget matrix”G = g⊗In ∈
Zn×n�
q where

g = (1, 2, 4, . . . , 2�−1) ∈ Z�
q

We will also refer to this gadget matrix as the “powers-of-two” matrix. We define
the inverse function G−1 : Zn×m

q → {0, 1}n�×m which expands each entry a ∈ Zq

of the input matrix into a column of size � consisting of the bit decomposition
of a. We have the property that for any matrix A ∈ Zn×m

q ,

G ·G−1(A) = A

Norms for Vectors and Matrices. We will always use the infinity norm for vectors
and matrices. Namely for a vector x, the norm ‖s‖ is the maximal absolute value
of an element in x. Similarly, for a matrix A, ‖A‖ is the maximal absolute value
of any of its entries. If x is n-dimensional and A is n × m, then

∥∥xTA
∥∥ ≤

n · ‖x‖ · ‖A‖. We remark that L1 or L2 norms can also be used and even achieve
somewhat tighter parameters, but the proofs become more complicated.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 11

3.1 Constrained Pseudorandom Function: Definition

In a constrained PRF family [9,10,18], one can compute a constrained PRF key
KC corresponding to any Boolean circuit C. Given KC , anyone can compute
the PRF on inputs x such that C(x) = 0. Furthermore, KC does not reveal any
information about the PRF values at the other locations. Below we recall their
definition, as given by [9].

Syntax A constrained pseudo-random function (PRF) family is defined by a
tuple of algorithms (KeyGen,Eval,Constrain,ConstrainEval) where:

– Key Generation KeyGen(1λ, 1kin , 1kout) is a ppt algorithm that takes as
input the security parameter λ, an input length kin and an output length
kout, and outputs a PRF key K;

– Evaluation Eval(K,x) is a deterministic algorithm that takes as input a
key K, a string x ∈ {0, 1}kin and outputs y ∈ {0, 1}kout;

– Constrained Key Generation Constrain(K,C) is a ppt algorithm that
takes as input a PRF key K, a circuit C : {0, 1}kin → {0, 1} and outputs a
constrained key KC ;

– Constrained Evaluation ConstrainEval(KC , x) is a deterministic algorithm
that takes as input a constrained key KC and a string x ∈ {0, 1}kin and
outputs either a string y ∈ {0, 1}kout or ⊥.

We define the notion of (single key) selective-function security for constrained
PRFs.

Definition 3.1. A family of PRFs (KeyGen,Eval,Constrain,ConstrainEval) is a
single-key selective-function constrained PRF (henceforth, referred to simply as
constrained PRF) if it satisfies the following properties:

– Functionality computationally preserved under constraining. For
every ppt adversary (A0, A1), consider an experiment where we choose K ←
KeyGen(1λ, 1kin , 1kout), (C, σ0) ← A0(1

λ), and KC ← Constrain(K,C). Then:

Pr

[
x∗ ← A

Eval(K,·)
1 (1λ,KC , σ0); :

C(x∗) = 0 ∧
Eval(K,x∗) �= ConstrainEval(KC , x∗)

]
is negligible in the security parameter, where C,K,KC are selected as de-
scribed above.
In words, it is computationally hard to find an x∗ such that C(x∗) = 0,
and yet the result of the constrained evaluation differs from the actual PRF
evaluation.

– Pseudorandom at constrained points. For every ppt adversary
(A0, A1, A2), consider an experiment where K ← KeyGen(1λ, 1kin , 1kout),
(C, σ0) ← A0(1

λ), and KC ← Constrain(K,C). Then:

Pr

⎡⎢⎢⎣
b ← {0, 1};

:(x∗, σ1) ← A
Eval(K,·)
1 (1λ,KC , σ0); C(x∗) = 1 ∧

If b = 0, y∗ = Eval(K,x∗), A2(1
λ, y∗, σ1) = b

Else y∗ ← {0, 1}kout

⎤⎥⎥⎦ ≤ 1

2
+ negl(λ)

12 Z. Brakerski and V. Vaikuntanthan

The correctness and security properties could potentially be combined into one
game, but we choose to present them as two distinct properties for the sake of
clarity.

3.2 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [25] as a
generalization of “learning parity with noise” [5,2]. We now define the decisional
version of LWE. (Unless otherwise stated, we will treat all vectors as column
vectors in this paper).

Definition 3.2 (Decisional LWE (DLWE) [25]). Let λ be the security pa-
rameter, n = n(λ), m = m(λ), and q = q(λ) be integers and χ = χ(λ) be
a probability distribution over Z. The DLWEn,q,χ problem states that for all
m = poly(n), letting A ← Zn×m

q , s ← Zn
q , e ← χm, and u ← Zm

q , the following
distributions are computationally indistinguishable:(

A, sTA+ eT
) c≈

(
A,uT

)
There are known quantum (Regev [25]) and classical (Peikert [23]) reductions

between DLWEn,q,χ and approximating short vector problems in lattices. Specif-
ically, these reductions take χ to be a discrete Gaussian distribution DZ,αq for
some α < 1. We write DLWEn,q,α to indicate this instantiation. We now state a
corollary of the results of [25,23,20,21]. These results also extend to additional
forms of q (see [20,21]).

Corollary 3.3 ([25,23,20,21]). Let q = q(n) ∈ N be either a prime power q =
pr, or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n),

and let α ≥
√
n/q. If there is an efficient algorithm that solves the (average-case)

DLWEn,q,α problem, then:

– There is an efficient quantum algorithm that solves GapSVPÕ(n/α) (and

SIVPÕ(n/α)) on any n-dimensional lattice.

– If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for
GapSVPÕ(n/α) on any n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis
for a lattice and a parameter d, between the case where the lattice has a vector
shorter than d, and the case where the lattice doesn’t have any vector shorter
than γ · d. SIVP is the search problem of finding a set of “short” vectors. The

best known algorithms for GapSVPγ ([27]) require at least 2Ω̃(n/ log γ) time. We
refer the reader to [25,23] for more information.

In this work, we will only consider the case where q ≤ 2n. Furthermore, the
underlying security parameter λ is assumed to be polynomially related to the
dimension n.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 13

3.3 One-Dimensional Short Integer Solution (SIS) and Variants

We present a special case of the well known Short Integer Solution (SIS) prob-
lem [1].

Definition 3.4. The One-Dimensional Short Integer Solution problem, denoted

1D-SISq,m,t, is the following problem. Given a uniformly distributed vector v
$←

Zm
q , find z ∈ Zm such that ‖z‖ ≤ t and also 〈v, z〉 ∈ [−t, t] + qZ.

For appropriately chosen moduli q, the 1D-SISq,m,t problem is as hard as
worst-case lattice problems. This follows from the techniques in the classical
worst-case to average-case reduction of Ajtai [1]. We state below the version due
to Regev [24].

Corollary 3.5 (Section 4 in [24] and Proposition 4.7 in [13]). Let n ∈ N
and q =

∏
i∈n pi, where all p1 < p2 < . . . < pn are co-prime. Let m ≥ c · n log q

(for some universal constant c). Assuming that p1 ≥ t · ω(
√
mn logn), the one-

dimensional SIS problem 1D-SISq,m,t is at least as hard as SIVPt·Õ(
√
mn) and

GapSVPt·Õ(
√
mn).

Proof. The hardness of a closely related problem is established by combining the

techniques in [24, Section 4] and [13, Proposition 4.7]: Given a
$← Zm+1

q , find y
with ‖y‖ ≤ t such that 〈a,y〉 = 0 (mod q).

We now show how to convert an instance for this problem into an instance
of 1D-SIS. Given an instance a ∈ Zm+1

q , we consider the first component a1.
If this element is not a unit (i.e. invertible) in Zq, then the reduction aborts.
Otherwise it defines v = a−1

1 · [a2, . . . , am+1]. Given a solution z for 1D-SIS on
input v, we define y by letting y = [−〈v, z〉, x1, . . . , xm]. It is easy to verify that
〈a,y〉 = a1 · (−〈v, z〉 + 〈v, z〉) = 0 (mod q). Further, by definition, ‖y‖ ≤ t.

Next, we define a related problem which will be useful for our reductions.

Definition 3.6. Let q = p ·
∏

i∈n pi, where all p1 < p2 < . . . < pn are all
co-prime and co-prime with p as well. Further let m ∈ N. The 1D-SIS-Rq,p,t,m

problem is the following: Given v
$← Zm

q , find z ∈ Zm with ‖z‖ ≤ t such that
〈v, z〉 ∈ [−t, t] + (q/p)Z.

The following corollary establishes the hardness of 1D-SIS-R based on 1D-SIS.

Corollary 3.7. Let q, p, t,m be as in Definition 3.6. Then 1D-SIS-Rq,p,t,m is at
least as hards as 1D-SISq/p,t,m.

Proof. The reduction works in the obvious way: Given an input v ∈ Zm
q/p for

1D-SISq/p,t,m, we embed v in v′ ∈ Zm
q , using CRT representation. Namely v′ = v

(mod q/p) and v′ = r (mod p), where r
$← Zm

p . Then given a solution z for
1D-SIS-Rq,p,t,m with input v′, we claim that z is also a solution for 1D-SISq/p,t,m
with input v. This follows since by definition ‖z‖ ≤ t, and since 〈v, z〉 ≡ 〈v′, z〉
(mod q/p).

14 Z. Brakerski and V. Vaikuntanthan

3.4 Admissible Hash Functions

The concept of admissible hash functions was defined by Boneh and Boyen [6]
to convert selectively secure identity based encryption (IBE) schemes into fully
secure ones. In this paper, we use admissible hash functions for our PRF con-
struction. Our definition of admissible hash functions below will follow that of
Cash, Hofheinz, Kiltz and Peikert [12] with minor changes (in particular, note
that we do not require that the bad set is efficiently recognizable).

Definition 3.8 ([6,12]). Let H = {Hλ}λ be a family of hash functions such
that Hλ ⊆

(
{0, 1}∗ → {0, 1}�

)
for some � = �(λ). We say that H is a family

of admissible hash functions if for every H ∈ H there exists a set badH of “bad
string-tuples” such that the following two properties hold:

1. For every PPT algorithm A, there is a negligible function ν such that

Pr[(x(0), . . . , x(t)) ∈ badH | H ← Hλ, (x
(0), . . . , x(t)) ← A(1λ, H)] ≤ ν(λ)

where the probability is over the choice of H ← Hλ and the coins of A.
2. Let L = {0, 1}2�, and for all L ∈ L define ΠL : {0, 1}� → {0, 1} to be

the string comparison with wildcards function. Namely, write L as a pair of
strings (α, β) ∈ {0, 1}�, and define

ΠL=(α,β)(w) = 1 ⇔ ∀i ∈ [�]
(
(αi = 0) ∨ (βi = wi)

)
.

Intuitively, Π is a string comparison function with wildcards. It compares
w and β only at those points where αi = 1. Note that this representation is
somewhat redundant but it will be useful for our application.
Then, we require that for every polynomial t = t(λ) there exists a noticeable
function Δt(λ) and an efficiently sampleable distribution Lt over L such
that for every H ∈ Hλ and sequences (x(0), . . . , x(t)) /∈ badH with x(0) /∈
{x(1), . . . , x(t)}, we have:

Pr
L←Lt

[ΠL(H(x(0))) ∧ΠL(H(x(1))) ∧ · · · ∧ΠL(H(x(t)))] ≥ Δt(λ)

It has been shown by [6] that a family of admissible hash functions can be
constructed based on any collision resistant hash function. In particular one can
instantiate it based on the SIS problem (for virtually any parameter setting
for which the problem is hard), which is at least as hard as LWE. Therefore
throughout this manuscript we assume the existence of an LWE-based family of
admissible hash functions, which will not add an additional assumption to our
construction.

3.5 Attribute-Based Encryption

We define (leveled) attribute-based encryption, following [16,15]. An attribute-
based encryption scheme for a class of predicate circuits C (namely, circuits with a
single bit output) consists of four algorithms (ABE .Setup,ABE .KeyGen,ABE.Enc,
ABE.Dec).

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 15

ABE.Setup(1λ, 1�, 1d) → (pp,msk) : The setup algorithm gets as input the se-
curity parameter λ, the length � of the attributes and the maximum depth
of the predicate circuits d, and outputs the public parameter (pp,mpk), and
the master key msk. All the other algorithms get pp as part of their input.

ABE.KeyGen(msk, C) → skC : The key generation algorithm gets as input msk
and a predicate specified by C ∈ C (of depth at most d). It outputs a secret
key (C, skC).

ABE.Enc(pp,x,m) → ct : The encryption algorithm gets as inputmpk, attributes
x ∈ {0, 1}� and a message m ∈ M. It outputs a ciphertext (x, ct).

ABE.Dec((C, skC), (x, ct)) → m : The decryption algorithm gets as input a cir-
cuit C and the associated secret key skC , attributes x and an associated
ciphertext ct, and outputs either ⊥ or a message m ∈ M.

Correctness. We require that for all �, d, all (x, C) such that x ∈ {0, 1}�, C has
depth at most d and C(x) = 1, for all (pp,msk) ← ABE .Setup(1λ, 1�, 1d), all
skC ← ABE .KeyGen(msk, C), all ct ← ABE .Enc(pp,x,m), and all m ∈ M,

Dec((C, skC), (x, ct)) = m) .

Security Definition. We define selective security of ABE, which is sufficient
for our purposes. We allow the adversary to make multiple challenge message
queries, which is equivalent to the single query case but will be easier for us to
work with.

Definition 3.9. For a stateful adversary A, we define the advantage function
AdvABE

A to be

Pr

⎡⎢⎢⎢⎢⎢⎢⎣b = b′ :

b
$← {0, 1};

x1, . . . ,xQ ← A(1λ, 1�, 1d);
(pp,msk) ← ABE.Setup(1λ, 1�, 1d);
{(m0,i,m1,i)}i∈[Q] ← AABE.KeyGen(msk,·)(pp), ∀i.|m0,i| = |m1,i|;
cti ← ABE.Enc(pp,xi,mb,i);
b′ ← AABE .KeyGen(msk,·)(ct1, . . . , ctQ)

⎤⎥⎥⎥⎥⎥⎥⎦− 1

2

with the restriction that all queries C that A makes to ABE .KeyGen(msk, ·) satis-
fies C(xi) = 0 for all i (that is, skC does not decrypt the ciphertext corresponding
to any of the xi). An attribute-based encryption scheme is selectively secure if
for all PPT adversaries A, the advantage AdvABE

A is a negligible function in λ.

We will use a special type of attribute-based encryption scheme with succinct
keys, namely one where |skC | does not grow with the size of the circuit C, but
rather only its depth.

Theorem 3.10 ([7]). Let λ be the security parameter, and d ∈ N. Let n =
n(λ, d), q = q(λ, d) = nO(d), and let χ be a poly(n)-bounded error distribution.
Then, there is a selectively secure ABE scheme for the class of depth-d-bounded
circuits, based on the hardness of DLWEn,q,χ. Furthermore, the secret key skC
for a circuit C has size poly(λ, n, d).

16 Z. Brakerski and V. Vaikuntanthan

4 Embedding Circuits into Matrices

In this section, we present the core techniques that we use in our construction.
In essence, we use a method, developed in a recent work by Boneh et al. [7] to
“embed” bits x1, . . . , xk into matrices A1, . . . ,Ak and compute a circuit F on
these matrices. This is done through a pair of algorithms (ComputeA,ComputeC)
satisfying the following properties:

1. The deterministic algorithm ComputeA takes as input a circuit F : {0, 1}k →
{0, 1} and k matrices A1, . . . ,Ak, and outputs a matrix AF ; and

2. The deterministic algorithm ComputeC takes as input a bit string x =
(x1, . . . , xk) ∈ {0, 1}k, and k LWE samples sT (Ai + xiG) + ei, and out-
puts an LWE sample sT (AF + F (x) · G) + eF associated to the output
matrix AF and the output bit F (x).

These algorithms are closely modeled on the work of Boneh et al. [7]. We now
describe how these algorithms work, and what their properties are.

The Algorithm ComputeA. Given a circuit F , input matrices A1, . . . ,Ak (cor-
responding to the k input wires) and an auxiliary matrix A0, the ComputeA
procedure works inductively, going through the gates of the circuit F from the
input to the output. Assume without loss of generality that the circuit F is
composed of NOT and AND gates. For every AND gate g = (u, v;w), assume
inductively that we have computed matrices Au and Av for the input wires u
and v. Define

Aw = −Au ·G−1(Av)

For every NOT gate g = (u;w), define

Aw = A0 −Au

The Algorithm ComputeC. Given a circuit F , an input x ∈ {0, 1}k and LWE
samples (Ai,yi), the ComputeC algorithm works as follows. For each AND
gate g = (u, v;w), assume that we have computed LWE samples (Au,yu) and
(Av,yv) for the input wires u and v. Define

yw = xu · yv − yu ·G−1(Av)

where xu and xv are the bits on wires u and v when evaluating the circuit F on
input x. For every NOT gate g = (u;w), define

yw = y0 − yu

We will need the following lemma about the behavior of ComputeA and ComputeC.
(We remind the reader that we use || · || to denote the �∞ norm).

Lemma 4.1. Let F be a depth-d Boolean circuit on k input bits, and let x ∈
{0, 1}k be an input. Let A0,A1, . . . ,Ak ∈ Zn×m

q and y0, . . . ,yk ∈ Zm
q be such

that
||yi − sT (Ai + xiG)|| ≤ B for i = 0, 1, . . . , k.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 17

for some s ∈ Zn
q and B = B(λ). Let AF ← ComputeA(F,A0, . . . ,Ak) and

yF ← ComputeC(F, x,A0, . . . ,Ak,y0, . . . ,yk). Then, ||yF − sT (AF + F (x) ·
G)|| ≤ mO(d) · B.

Furthermore, yF is a “low-norm” linear function of y0, . . . ,yk. That is, there
are matrices Z0, . . . ,Zk (which depend on the function F , the input x, and the

input matrices A0, . . . ,Ak) such that yF =
∑k

i=0 yiZi and ||Zi|| ≤ mO(d) · B.

Proof. We show this by induction on the levels of the circuit F , starting from
the input. Consider two cases.

AND gate. Consider an AND gate g = (u, v;w) where the input wires are at
level L, and assume that yu = sT (Au+xuG)+eu and yv = sT (Av+xvG)+ev,
with ||eu||, ||ev|| ≤ (m+ 1)L · B. Now,

yw = xu · yv − yu ·G−1(Av)

= xu ·
(
sT (Av + xvG) + ev

)
−
(
sT (Au + xuG) + eu

)
·G−1(Av)

= sT
(
xuAv + xuxvG−AuG

−1(Av)− xuAv

)
+

(
− euG

−1(Av) + xuev

)
= sT (Aw + xwG) + ew

where Aw = −Au ·G−1(Av), xw = xuxv, and

||ew|| ≤ m · ||eu||+ ||ev|| ≤ (m+ 1) · (m+ 1)L · B ≤ (m+ 1)L+1 · B

NOT gate. In a similar vein, for a NOT gate g = (u;w), assume that yu =
sT (Au + xuG) + eu, with ||eu|| ≤ (m+ 1)L ·B. Then,

yw = y0 − yu = sT (A0 +G−Au − xuG) + (e0 − eu)

= sT (Aw + (1 − xu)G) + ew

where Aw = A0 −Au, xw = 1− xu, and

||ew|| ≤ ||e0||+ ||eu|| ≤ B + (m+ 1)L ·B ≤ (m+ 1)L+1 ·B

Thus, yF = sTAF + eF where ||eF || ≤ mO(d) · B. Furthermore, both transfor-
mations are linear functions on yu and yv, as required.

5 Constrained PRF

5.1 Construction

A family of functions F ⊆ ({0, 1}∗ → {0, 1}) is z-uniform if each function F ∈ F
can be described by a string in {0, 1}z (we associate F with its description), and
there exists a uniform circuit family {Uk}k∈N such that Uk : {0, 1}z × {0, 1}k →

18 Z. Brakerski and V. Vaikuntanthan

{0, 1} such that for all x ∈ {0, 1}k it holds that Uk(F, x) = F (x). We assume for
the sake of simplicity that the depth of Uk grows monotonically with k and for
all d we let kd to be the maximal input size for which Uk has depth at most d.
We define Fd to be such that F ∈ F is undefined for inputs of length k > kd.
We call such a family d-depth-bounded.

Our constrained PRF for a z-uniform d-depth-bounded family F works as
follows.

– KeyGen(1λ, 1z, 1d): The key generation algorithm takes as input the maxi-
mum size z and depth d of the constraining circuits. Let H be a family of
admissible hash functions (see Section 3.4) and let � = �(λ) be the output
length of hash functions in the family.
Let n = n(λ, d), q = q(λ, d), p = p(λ, d) be parameters chosen as described
in Section 5.2 below, let m = n log q�.
Generate z+2�+3 matrices as follows: let A0 and A1 be the “input matri-
ces”, let B1,B2, . . . ,Bz be the “function matrices”, let C1, . . . ,C2� be the
“partitioning matrices”, and let D be an “auxiliary matrix”. All of these
matrices are uniform in Zn×m

q (note that the “gadget matrix” G has the

same dimensions). In addition sample an admissible hash function H
$← Hλ.

The public parameters consist of

PP = (H,A0,A1,B1, . . . ,Bz,C1, . . . ,C2�,D)

The seed of the PRF is a uniformly random vector s ∈ Zn
q .

– Eval(s,PP,x) takes as input the PRF seed s, the public parameters PP,
and an input x ∈ {0, 1}k such that k ≤ kd (i.e. Uk is of depth ≤ d), and
works as follows.
Recall that Uk : {0, 1}z×{0, 1}k → {0, 1} is the universal circuit that takes a
description of a function F and an input x and outputs Uk(F, x) = F (x). Let
Π : {0, 1}2� × {0, 1}� → {0, 1} denote the circuit that computes Π(L,w) =
ΠL(w) from Definition 3.8. Note that Π can be implemented by a binary
circuit of depth log(�) +O(1).
Let (x1, . . . , xk) denote the bits of x. Let w = H(x), and let w1, . . . , w� be
its bits. Compute

BU ← ComputeA
(
Uk,B1, . . . ,Bz,Ax1 ,Ax2 , . . . ,Axk

)
(1)

CΠ ← ComputeA
(
Π,C1, . . . ,C2�,Aw1 ,Aw2 , . . . ,Aw�

)
(2)

and output
PRFs(x) =

⌊
sTBU ·G−1(CΠ) ·G−1(D)

⌉
p

– Constrain(s,PP, F) takes as input the PRF key s and a circuit F (of size at
most z) and does the following. Compute

ab = sT (Ab + b ·G) + eT1,b ∈ Zm
q for b ∈ {0, 1}

bi = sT (Bi + fi ·G) + eT2,i ∈ Zm
q for all i ∈ [z]

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 19

where the vectors e are drawn from an error distribution χ to be specified
later (in Section 5.2).
The constrained seed KF is the tuple

(
a0, a1,b1, . . . ,bz

)
∈ (Zm

q)z+2.
– ConstrainEval(KF ,PP,x) takes as input the constrained key KF and an

input x. It computes

bU ,x ← ComputeC

(
U , (b1, . . . ,bz, ax1 , . . . , axk

), (f1, . . . , fz, x1, . . . , xk)

)
and outputs

⌊
bU ,x ·G−1(CΠ) ·G−1(D)

⌉
p
, where CΠ is defined as above.

5.2 Setting the Parameters

Let us start by providing a typical parameter setting, and then explain how
parameters can be modified and the effect on security.

Consider setting n(λ, d) = (λ · d)c, for a constant c that will be discussed
shortly. We will set χ to be a discrete Gaussian distribution DZ,αq s.t. αq =
Θ(

√
n). We define n′ = λ and let p1, . . . , pn′ = mO(d+log �) be all primes, and

p = poly(λ) (in fact, there is a lot of freedom in the choice of p, and it can be
as large as mO(d+log �) under the same asymptotic hardness). Finally, let q =

p · (αq) ·
∏

i∈[n′] pi = mn′·O(d+log �) = 2Õ(λ·d) = 2Õ(n1/c) (recall that � = poly(λ)).

This parameter setting translates into a PRF with m = n log q� · Θ(log λ)
output bits per input, whose security is based (as we show in the next section)

on the hardness of approximating lattice problems to within a factor of 2Õ(n1/c).
Taking larger values of c will increase the hardness of the underlying lattice

problem, but at the cost of considerably increasing the element sizes.

5.3 Security

Throughout this section, we let F be a family of z-uniform functions and let d
be a depth bound (both can depend on λ). We let n = n(λ, d), m = m(λ, d),
q = q(λ, d), p = p(λ, d) and the noise distributions χ = χ(λ, d) be as defined in
Section 5.2. We let H be the family of admissible hash functions as described in
Section 3.4, with range {0, 1}�.

Theorem 5.1. Let F be a family of z-uniform functions and let d be a depth
bound (both can depend on λ). Let n = n(λ, d), m = m(λ, d), q = q(λ, d),
p = p(λ, d) and the noise distributions χ = χ(λ, d) be as defined in Section 5.2.
Further let m′ = m · (z + 2� + 3), and γ = ω(

√
n logλ) · p · mO(d+log �). As-

suming the hardness of DLWEn,q,χ, 1D-SIS-Rq,p,γ,m′ and the admissible hash
function family H, the scheme CPRF = (KeyGen,Eval,Constrain,ConstrainEval)
is a single-key secure selective-function secure constrained PRF for F .

We note that the hardness of all three assumptions translates to the worst
case hardness of approximating lattice problems such as GapSVP and SIVP to
within sub-exponential factors.

20 Z. Brakerski and V. Vaikuntanthan

Proof. Let A be a PPT selective-constraint adaptive-input adversary against
CPRFz,d. Let t = poly(λ) be the (polynomial) number of input queries made
by A (w.l.o.g). Let ε be the advantage of A in the constrained PRF game. We let
B = αq ·ω(

√
logλ). It holds that with all but negligible probabilities, all samples

that we take from χ will have absolute value at most B. For the duration of the
proof we assume that this is indeed the case.

The proof will proceed by a sequence of hybrids (or experiments) where the
challenger samples a bit b ∈ {0, 1} and interacts with A. We let AdvH(A) denote
the probability that A outputs b in hybrid H.

Hybrid H0. This hybrid is the legitimate constrained PRF security game. The
challenger generates (s,PP)←KeyGen(1λ, 1z, 1d). It gets F ∈ {0, 1}z from A and
produces a constrained key KF←Constrain(s,PP, F). It then sends PP,KF to
A. At this point A adaptively makes queries x(i) ∈ {0, 1}∗, and the challenger
computes y(i)←Eval(s,PP, x(i)) and returns it to A. Finally, A outputs x∗ ∈
{0, 1}∗. If b = 0 then the challenger returns y∗←Eval(s,PP, x∗), and if b = 1 it
returns a random y∗. Therefore, we have

AdvH0(A) ≥ 1/2 + ε .

Hybrid H1. This is the notorious “artificial abort” phase. Let Δt = Δt(λ) be the
noticeable function from Definition 3.8. This hybrid is identical to the previous
one, except in the last step the challenger flips a coin and with probability
1 − Δt/2 aborts the experiment (hence giving the adversary no information on
b).

The adversary’s advantage thus degrades appropriately:

AdvH1(A) ≥ (Δt/2) · (1/2 + ε) + (1−Δt/2) · (1/2) = 1/2 + ε ·Δt/2 .

Hybrid H2. In this hybrid, we associate some meaning with the artificial abort.
Intuitively, the abort will be associated with a failure of the admissible hash
function to partition the queries correctly. We are guaranteed that correct par-
titioning happens with probability ≥ Δt (except for sequences that are hard
to generate), but we would like to make it (almost) exactly Δt/2 so as to not
correlate the adversary’s success probability with the string L (the loss of the 2
factor is due to probability estimation).

Specifically, in this hybrid, rather than flipping a coin at the end of the ex-
periment, the challenger does the following. For all �x = (x(1), . . . , x(t), x∗), we
define the event GoodPartitionL,�x to be the event in which ΠL(H(x(1))) = · · · =
ΠL(H(x(t))) = 0 andΠL(H(x∗)) = 1, and define δ�x = Pr

L
$←Lt

[GoodPartition�x,L].

The challenger will first compute an estimate δ̃�x of δ�x by sampling multiple val-
ues of L from Lt and using Chernoff (both additive and multiplicative). Using
poly(λ)-many samples we can compute δ̃�x such that

Pr
[∣∣∣δ�x − δ̃�x

∣∣∣ > Δt/4
]
≤ 2−λ .

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 21

and in addition if δ�x ≥ Δt/2 then

Pr

[∣∣∣∣δ�xδ̃�x − 1

∣∣∣∣ > ε/2

]
≤ 2−λ .

The challenger will then perform as follows: (i) It first verifies that δ̃�x ≥ 3
4Δt,

and aborts if this is not the case. (ii) It then samples L
$← Lt and aborts if

GoodPartition�x,L did not occur (note that by our definitions above, this happens
with probability 1 − δ�x over the choice of L). (iii) Then it flips a coin with

probability δ̃�x−Δt/2

δ̃�x
and aborts if the outcome is 1. Otherwise it carries out the

experiment towards completion.
To analyze the effect on the success probability, we first notice that the proba-

bility that δ̃�x < 3
4Δt (abortion is step (i)) is negligible. This is since, except with

2−λ probability, this indicates that δ�x < Δt, which implies that �x ∈ badH . Defi-
nition 3.8 guarantees that this happens with probability at most ν(λ) = negl(λ).

If the above abort did not occur, we know that δ�x ≥ Δt/2 (except with
probability 2−λ), we first notice that the total probability of abort in steps
(ii) + (iii)

1−δ�x+δ�x ·
δ̃�x −Δt/2

δ̃�x
= 1− δ�x

δ̃�x
Δt/2 ∈

[
(1−Δt/2)− εΔt/4, (1−Δt/2)+ εΔt/4

]
It therefore follows that if there was no abort in step (i), then the adversary’s

view in H2 is within statistical distance 2−λ + εΔt/4 from its view in H1.
Putting all steps together, we get that

AdvH2(A) ≥ 1/2+ ε ·Δt/2− ν(λ)−O(2−λ)− εΔt/4 = 1/2+ ε ·Δt/4− negl(λ) .

Hybrid H3. In this hybrid, the challenger first samples L
$← Lt, and then, for each

x(i) in turn, it checks whether ΠL(H(x(i))) = 0, and immediately aborts if not.
Similarly, upon receiving x∗, it checks whether ΠL(H(x∗)) = 1 and immediately
aborts if not. Otherwise it continues the same as H2.

It is rather straightforward to see that the A’s advantage does not change.
The cases in which we abort are exactly the same as the ones in the previous
hybrid (since it is sufficient that a single x(i) does not give the required value
in order to abort). Further, the sampling of L has been completely independent
of all the other randomness in the experiment so it might as well happen in the
beginning. We conclude that

AdvH3(A) = AdvH2(A) ≥ 1/2 + ε ·Δt/4− negl(λ) .

Hybrid H4. In this hybrid, the challenger changes the way the matrices A,B,C
are generated. Recall that our security game is constraint-selective, namely A
produces the constraint F before seeing the public parameters.

Therefore, here, the challenger waits until receiving F from A and only gener-
ates the public parameters at that point (note that by then L has also been spec-
ified). To generate the public parameters, the matrix D is produced identically

22 Z. Brakerski and V. Vaikuntanthan

to before. In addition, the challenger samples matrices {Âβ}β∈{0,1}, {B̂i}i∈[z],

{Ĉi}i∈[2�] It then sets

Aβ = Âβ − βG

Bi = B̂i − fiG

Ci = Ĉi − LiG

The remainder of the experiment remains unchanged.
Since the distributions of the A,B,C matrices is identical to their original

uniform distributions, it follows that

AdvH4(A) = AdvH3(A) .

Hybrid H5. In this hybrid, the adversary changes the way it computes the outputs
y(i). Recall that KF = (a0, a1,b1, . . . ,bz) is the constrained key given to A. Let
us denote

ci = sT (Ci + LiG) + eT3,i for all i ∈ [z]

d = sTD+ eT4

where e3,i are sampled coordinate-wise from χ, and e4 is sampled coordinate-
wise from χ′.

In this hybrid, in order to answer input queries, the challenger first computes

bU ,x(i) ← ComputeC

(
U , (b1, . . . ,bz, ax1 , . . . , axk

), (f1, . . . , fz, x
(i)
1 , . . . , x

(i)
k)

)

and then, letting w(i) = H(x(i))

cΠ,w(i) ← ComputeC

(
Π, (c1, . . . , c2�, aw1 , . . . , aw�

), (L1, . . . , L2�, w
(i)
1 , . . . , w

(i)
�)

)

We recall that by Lemma 4.1 it holds that

bT
U ,x(i) = sT (BU ,x(i) + F (x(i)) ·G) + eTU

cTΠ,w(i) = sT (CΠ,w(i) +ΠL(w
(i)) ·G) + eTΠ ,

for some eU , eΠ for which ‖eU‖ ≤ B ·mO(d), ‖eΠ‖ ≤ B ·mO(log �).

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 23

We recall that by definition

PRFs(x
(i)) =

⌊
sTBU ,x(i) ·G−1(CΠ,w(i))G−1(D)

⌉
p

=

⌊
sT (BU ,x(i) + F (x(i))G) ·G−1(CΠ,w(i))G−1(D)

− F (x(i))sTCΠ,w(i)G−1(D)

⌉
p

=
⌊
sT (BU ,x(i) + F (x(i))G) ·G−1(CΠ,w(i))G−1(D)

−F (x(i))sT (CΠ,w(i) +ΠL(w
(i))G)G−1(D)

+F (x(i))ΠL(w
(i))sTD

⌉
p

=
⌊
bT
U ,x(i) ·G−1(CΠ,w(i))G−1(D) − F (x(i))cTΠ,w(i)G

−1(D)

+F (x(i))ΠL(w
(i))dT + e′T

⌉
p

, (3)

where

e′T = −eTUG
−1(CΠ,w(i))G−1(D) + F (x(i))eTΠG−1(D)− F (x(i))ΠL(w

(i))eT4
(4)

which implies that ‖e′‖ ≤ E for some E = (mO(d) +mO(log �)) ·B.
To analyze the distinguishing probability between these hybrids, for any input

x (and w = H(x)) we define the event Borderlinex as the event where there exists
j ∈ [m] such that:

(bT
U ,x ·G−1(CΠ,w) ·G−1(D)−F (x) · cTΠ,w ·G−1(D)

+ F (x) ·ΠL(w) · dT) · uj ∈ [−E,E] + (q/p)Z ,

where we recall that uj is the jth indicator vector. Namely, this is the prob-
ability that one of the coordinates of the vector bT

U ,x · G−1(CΠ,w)G
−1(D) −

F (x)cTΠ,wG
−1(D) + F (x)ΠL(w)dT is “dangerously close” to being rounded in

the wrong direction.
By definition of rounding, if ¬Borderlinex(i) , then

PRFs(x
(i)) = �bT

U ,x(i) ·G−1(CΠ,w(i))G−1(D)− F (x(i))cTΠ,w(i)G
−1(D)

+ F (x(i))ΠL(w
(i))dT �p .

The challenger in this hybrid, given a query x(i), will first check whether
Borderlinex(i) . If the event happens, the challenger aborts. Otherwise it returns
PRFs(x

(i)) as defined above. Note that the challenger only needs to respond to
queries x(i) for which ΠL(w

(i)) = ΠL(H(x(i))) = 0, which do not depend on d,
a fact that will be important later on.

24 Z. Brakerski and V. Vaikuntanthan

Finally, on the challenge query x∗, unless abort is needed, it holds that
F (x∗) = 1 and ΠL(w

∗) = 1 (where w∗ = H(x∗)) and therefore, unless the
event Borderlinex∗ happens, it holds that

PRFs(x
∗) =

⌊
bT
U ,x∗ ·G−1(CΠ,w(i))G−1(D)− cTΠ,w∗G−1(D) + dT

⌉
p

.

The challenger will therefore abort if Borderlinex∗ and return the aforementioned
value otherwise (that is if the bit b is 0; if b = 1 then of course a uniform value
is returned).

It follows that if we define Borderline = (∨iBorderlinex(i)) ∨ Borderlinex∗ , then

|AdvH5(A)−AdvH4(A)| ≤ Pr
H5

[Borderline] .

We will bound PrH5
[Borderline] as a part of our analysis in the next hybrid.

As a final remark on this hybrid, we note that in order to execute this hybrid,
the challenger does not need to access s itself, but rather only the aβ ,bi, ci,d
vectors. This will be useful in the next hybrid.

Hybrid H6. In this hybrid, all aβ ,bi, ci,d are sampled from the uniform distri-
bution. Everything else remains the same. We note that by definition, in hybrid
H5:

aTβ = sT Âβ + eT1,β

bT
i = sT B̂i + eT2,i

cTi = sT Ĉi + eT3,i

dT = sTD+ eT4 ,

where all Âβ , B̂i, Ĉi,D are uniformly distributed, and all eT1,β , e
T
2,i, e

T
3,i, e

T
4 are

sampled coordinate-wise from χ. The DLWEn,q,χ assumption therefore asserts
that:

|AdvH6(A) −AdvH5(A)| ≤ negl(λ) .

Furthermore, since Borderline is an efficiently recognizable event, it also holds
that ∣∣∣∣∣PrH6

[Borderline]− Pr
H5

[Borderline]

∣∣∣∣∣ = negl(λ) . (5)

In H6, the probability of Borderline can be bounded under the 1D-SIS-R as-
sumption.

Claim. Under the 1D-SIS-Rq,p,γ,m′ assumption, it holds that PrH6
[Borderline] =

negl(λ), where m′ = m · (2 + z + 2�+ 1), and γ = p · B ·mO(d+log �).

Proof. Let v ∈ Z(2+z+2�+1)m
q be an input to 1D-SIS-Rq,p,γ,m′ . Then define

aβ ,bi, ci,d be so that their concatenation is v.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 25

The reduction executes H6 as the challenger, using the vectors defined above.
We claim that if Borderline occurs, then we solve 1D-SIS-R. This follows since if
Borderline occurs then we found x, j such that

(bT
U ,x ·G−1(CΠ,w)G

−1(D) − F (x(i))cTΠ,wG
−1(D) + F (x)ΠL(w)dT)uj

∈ [−E,E] + (q/p)Z .

However, by Lemma 4.1, it follows that

bT
U ,x =

∑
β∈{0,1}

aTβR
′
1,β +

∑
i∈[z]

bT
i R

′
2,i

cTΠ,x =
∑

β∈{0,1}
aTβR

′′
1,β +

∑
i∈[2�]

cTi R
′′
3,i

where
∥∥∥R′

1,β

∥∥∥ ,
∥∥R′

2,i

∥∥ ≤ mO(d) and
∥∥∥R′′

1,β

∥∥∥ ,
∥∥R′′

3,i

∥∥ ≤ mO(log �). It follows that

there exists an (efficiently derivable) matrix R0 such that

bT
U ,x ·G−1(CΠ,w)G

−1(D)− F (x(i))cTΠ,wG
−1(D) + F (x)ΠL(w)dT = vTR0 ,

and ‖R0‖ ≤ mO(d+log �).
Finally,

〈v,R0 · uj〉 ∈ [−E,E] + (q/p)Z ,

with ‖R0 · uj‖ ≤ ‖R0‖ ≤ mO(d+log �) and E = B · mO(d+log �) = mO(d+log �).
Thus R0 · uj is a valid solution for 1D-SIS-Rq,p,γ,m′ . The claim thus follows.

Putting together Claim 6 and Eq. (5), we get that

Pr
H5

[Borderline] ≤ Pr
H6

[Borderline] + negl(λ) ≤ negl(λ) .

and thus, finally ∣∣∣AdvH5(A) −AdvH6
(A)

∣∣∣ ≤ negl(λ) .

Finally, we notice that the vector d is only used when answering the challenge
query in the case of b = 0. This means that in the adversary’s view, the answer
it gets when b = 0 is uniform and independent of its view so far, exactly the
same as the case b = 1 where an actual random vector is returned. It follows
that

AdvH6(A) = 1/2 .

On the other hand

AdvH6(A) ≥ 1/2 + εΔt/4− negl(λ) ,

and thus

ε ≤ negl(λ)

Δt/4
= negl(λ) .

It follows that A cannot achieve a noticeable advantage in the constrained PRF
experiment under the DLWEq,n,χ assumption.

26 Z. Brakerski and V. Vaikuntanthan

5.4 Computational Functionality Preserving

We now prove the computational functionality preservation of our scheme, as
per Definition 3.1. Throughout this section, we let F be a family of z-uniform
functions and let d be a depth bound (both can depend on λ). We let n = n(λ, d),
m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise distributions χ = χ(λ, d) be
as defined in Section 5.2. We let H be the family of admissible hash functions as
described in Section 3.4, with range {0, 1}�.

Theorem 5.2. Let F be a family of z-uniform functions and let d be a depth
bound (both can depend on λ). Let n = n(λ, d), m = m(λ, d), q = q(λ, d),
p = p(λ, d) and the noise distributions χ = χ(λ, d) be as defined in Section 5.2.
Further let m′ = m · (z + 2�+ 3), and γ = ω(

√
n logλ) · p ·mO(d+log �).

Assuming the hardness of DLWEn,q,χ and 1D-SIS-Rq,p,γ,m′ , the scheme CPRF
is computationally functionality preserving.

We note that the hardness of both assumptions translates to the worst case
hardness of approximating lattice problems such as GapSVP and SIVP to within
sub-exponential factors.

Proof (outline). The theorem follows from an argument practically identical
to that made in Hybrids H5,H6 of the proof of Theorem 5.1.

Recall that we showed that Borderline events only happen with negligible
probability, and therefore with all but negligible probability, it holds that the
PRF value at point x(i) is exactly equal to⌊

bT
U,x(i) ·G−1(CΠ,w(i))G

−1(D)− F (x(i))cTΠ,w(i)G
−1(D) + F (x(i))ΠL(w

(i))dT
⌉
p

.

However, when F (x(i)) = 0, this term simplifies to⌊
bT
U ,x(i) ·G−1(CΠ,w(i))G−1(D)

⌉
p

which is exactly ConstrainEval(KF ,PP, x(i)) by definition. Functionality is thus
preserved with all but negligible probability.

5.5 Other Properties

We describe several other properties that our construction satisfies.

Unconditional Almost-Correctness. We have shown that our constrained PRF
satisfies a computational correctness property, namely that it is hard to find
an input x such that PRFK(x) �= ConstrainEval(KF ,PP,x). We are also able
to show unconditionally that the constrained evaluation and the actual PRF
evaluation do not differ by much, for any input x. Indeed, by Equation 3 and 4,
we have

||PRFK(x)− ConstrainEval(KF ,PP,x)||∞ ≤ mO(d) · B

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 27

Key Homomorphism. Our PRF is also “almost key homomorphic” in the sense
that PRFs(x) + PRFs′(x) is close to PRFs+s′(x) for any keys s and s′ and any
input x. Recall that our PRF is

PRFs(x) =
⌊
sTBU ·G−1(CΠ) ·G−1(D)

⌉
p

For any keys si and input x, denoting sTi BU ·G−1(CΠ) ·G−1(D) as hi, we have

||PRF∑
si(x) −

∑
PRFsi(x)||∞ =

∣∣∣∣∣∣∣∣⌊∑
i

hi

⌉
p
−
∑
i

�hi�p
∣∣∣∣∣∣∣∣
∞

≤ k + 1

Constrained-Key Homomorphism. Our constrained keys are “almost homomor-
phic” as well, in the same sense as above. That is, if KF and K ′

F are constrained
versions of PRF keysK andK ′ for the same function F , the summationKF+K ′

F

is a constrained version of K +K ′ for the function F . For any input x, we then
have that ConstrainEval(KF +K ′

F ,PP,x) is close to PRFK+K′(x).
We remark that techniques similar to what we used in showing computational

correctness can be used to strengthen the almost key-homomorphism property
into computational key-homomorphism where it is computationally hard to find
an input for which key homomorphism does not hold.

6 Succinct Constrained Keys

In this section we show how to reduce the size of the constrained key so that
asymptotically it depends only on the security parameter and independent of
the function class. The construction builds upon the scheme CPRF from Sec-
tion 5 but reduces the key size by utilizing an attribute based encryption scheme
(ABE). In particular, the constrained keys in our new system have size poly(λ),
independent of the parameters of the constraining circuit (namely, its size or
depth).

Our succinct constrained PRF SCPRF for a z-uniform d-depth-bounded fam-
ily F works as follows.

– KeyGen(1λ, 1z, 1d): The key generation algorithm takes as input the maxi-
mum size z and depth d of the constraining circuits. Let t = O(log z) to be
specified later.
It starts by calling CPRF .KeyGen(1λ, 1z, 1d) to obtain the seed s, and public
parameters PP = (H,A0,A1, {Bi}i∈[z]).

It then generates: aβ = sT (Aβ+βG)+eT1,β and bi,β = sT (Bi+βG)+eT2,i,β .
Note that any possible constrained key of CPRF consists of a0 and a1,
together with a subset of {bi,β}i∈[z],β∈{0,1}.
Next it generates parameters for the ABE scheme (ABE .msk,ABE .pp) ←
ABE .Setup(1λ, 1t), and generates cti,β ← ABE.Enc(ABE .pp, (i, β),bi,β), en-
cryptions with (i, β) as the “attributes” and bi,β as the “message”.
The public parameters consist of

SCPRF .PP = (CPRF .PP,ABE.PP, a0, a1, {cti,β}i,β)

28 Z. Brakerski and V. Vaikuntanthan

The seed for SCPRF contains a seed for CPRF , namely a uniformly random
vector s ∈ Zn

q , and in addition the ABE master secret key ABE .msk. We note
that in fact s can be retrieved from the public parameters using ABE.msk
and therefore it is not necessary to give it explicitly. However, it is more
natural to think of s as a part of the seed. In particular s will be used to
evaluate SCPRF (see Eval below) and ABE .msk will be used to produce
constrained keys (see Constrain below).

– Eval(s,PP,x) takes as input the PRF seed s, the public parameters PP
which contains CPRF .pp, and an input x ∈ {0, 1}k such that k ≤ kd (i.e.
Uk is of depth ≤ d), and outputs the result of the CPRF evaluation, namely
CPRF .Eval(s, CPRF .pp,x).

– Constrain(ABE .msk, F) takes as input the ABE master secret key ABE.msk
and a circuit F (represented as a string in {0, 1}z) and does the following.
Consider the function:

φF (i, β) =

{
1, if Fi = β
0, otherwise

Note that φF can be computed by a depth O(log z) circuit (whose depth is
independent of the depth of F itself), the parameter t from above is set to
be equal to this depth. We recall Section 3.5
The constrained key for F is the ABE token for φF , namely

KF = ABE.KeyGen(ABE .msk, φF)

– ConstrainEval(KF ,PP,x) takes as input the constrained key KF , the public
parameters PP and an input x.
Recalling that PP = (CPRF .pp,ABE .pp, a0, a1, {cti,β}), and that KF is
the ABE decryption key for the function φF , it first decrypts to obtain bi =
ABE .Dec(KF , cti,Fi), and then applies the constrained evaluation algorithm
CPRF .ConstrainEval

(
(a0, a1, {bi}), CPRF .PP,x

)
.

The correctness follows in a straightforward manner from the correctness of
ABE and CPRF . The constrained key size of SCPRF is derived from that of
ABE and is poly(λ, t) = poly(λ, log z). It follows that there exists a poly(λ)
asymptotic upper bound on the key sizes that applies for all polynomial values
of z. Security is stated in the following theorem, the proof can be found in the
extended version [11].

Theorem 6.1. If CPRF is a single-key secure constrained pseudorandom func-
tion for function class F (Definition 3.1), which is built according to the template
in Section 5, and if ABE is a selectively secure ABE scheme (Definition 3.9),
then the scheme SCPRF described above is a secure single-key CPRF for F .

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, pp.
99–108. ACM (1996)

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions 29

2. Alekhnovich, M.: More on average case vs approximation complexity. In: Proceed-
ings of 44th Symposium on Foundations of Computer Science (FOCS 2003), Cam-
bridge, MA, USA,, October 11-14, pp. 298–307. IEEE Computer Society (2003)

3. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 353–370. Springer, Heidelberg (2014)

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012)

5. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

6. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

7. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

8. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic prfs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013)

9. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013)

10. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

11. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic prfs from stan-
dard lattice assumptions or: How to secretly embed a circuit in your prf. Cryptology
ePrint Archive, Report 2015/032 (2015), http://eprint.iacr.org/

12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptology 25(4), 601–639 (2012)

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. Electronic Colloquium on Computational Complexity
(ECCC) 14(133) (2007)

14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986); Extended abstract in FOCS 84

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on The-
ory of Computing Conference, STOC 2013, Palo Alto, CA, USA, June 1-4, pp.
545–554. ACM (2013)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) Proceedings of the 13th ACM Conference on Computer and Commu-
nications Security CCS 2006, October 30 - November 3, pp. 89–98. ACM (2006)

17. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. In: Cryptology ePrint Archive, Report 2014/720 (2014),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

30 Z. Brakerski and V. Vaikuntanthan

18. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.)
2013 ACM SIGSAC Conference on Computer and Communications Security, CCS
2013, Berlin, Germany, November 4-8, pp. 669–684. ACM (2013)

19. Lewi, K., Montgomery, H.W., Raghunathan, A.: Improved constructions of prfs
secure against related-key attacks. In: Boureanu, I., Owesarski, P., Vaudenay, S.
(eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Heidelberg (2014)

20. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

21. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

22. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and kdcs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer,
Heidelberg (1999)

23. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, 2009, May 31 - June 2, pp. 333–
342 (2009)

24. Regev, O.: Lattices in computer science - average case hardness. Lecture Notes
for Class (scribe: Elad Verbin) (2004),
http://www.cims.nyu.edu/ regev/teaching/lattices fall 2004/ln/

averagecase.pdf

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, pp. 84–93 (2005)

26. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, 2014, May 31 - June 03, pp. 475–484. ACM
(2014)

27. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf

Key-Homomorphic
Constrained Pseudorandom Functions

Abhishek Banerjee1,�, Georg Fuchsbauer2,��, Chris Peikert1,���,
Krzysztof Pietrzak2,†, and Sophie Stevens3,‡

1 School of Computer Science, College of Computing, Georgia Institute of Technology, USA
2 Institute of Science and Technology Austria

3 University of Bristol, UK

Abstract. A pseudorandom function (PRF) is a keyed function F : K × X →
Y where, for a random key k ∈ K, the function F (k, ·) is indistinguishable
from a uniformly random function, given black-box access. A key-homomorphic
PRF has the additional feature that for any keys k, k′ and any input x, we have
F (k+k′, x) = F (k, x)⊕F (k′, x) for some group operations +,⊕ on K and Y ,
respectively. A constrained PRF for a family of sets S ⊆ P(X) has the property
that, given any key k and set S ∈ S , one can efficiently compute a “constrained”
key kS that enables evaluation of F (k, x) on all inputs x ∈ S, while the values
F (k, x) for x /∈ S remain pseudorandom even given kS .

In this paper we construct PRFs that are simultaneously constrained and key
homomorphic, where the homomorphic property holds even for constrained keys.
We first show that the multilinear map-based bit-fixing and circuit-constrained
PRFs of Boneh and Waters (Asiacrypt 2013) can be modified to also be key-
homomorphic. We then show that the LWE-based key-homomorphic PRFs of
Banerjee and Peikert (Crypto 2014) are essentially already prefix-constrained
PRFs, using a (non-obvious) definition of constrained keys and associated group
operation. Moreover, the constrained keys themselves are pseudorandom, and the
constraining and evaluation functions can all be computed in low depth.

As an application of key-homomorphic constrained PRFs, we construct a proxy
re-encryption scheme with fine-grained access control. This scheme allows storing
encrypted data on an untrusted server, where each file can be encrypted relative to
some attributes, so that only parties whose constrained keys match the attributes
can decrypt. Moreover, the server can re-key (arbitrary subsets of) the ciphertexts
without learning anything about the plaintexts, thus permitting efficient and fine-
grained revocation.

� Supported by the third author’s grants.
�� Research supported by ERC starting grant (259668-PSPC).

��� This material is based upon work supported by the National Science Foundation under CA-
REER Award CCF-1054495, by DARPA under agreement number FA8750-11-C-0096, and
by the Alfred P. Sloan Foundation. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation, DARPA or the U.S. Government, or the Sloan
Foundation. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

† Research supported by ERC starting grant (259668-PSPC).
‡ Work done while visiting the Institute of Science and Technology Austria.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 31–60, 2015.
c© International Association for Cryptologic Research 2015

32 A. Banerjee et al.

1 Introduction

Pseudorandom functions (PRFs), like the AES block cipher, are the workhorses of cryp-
tography. They allow for efficient and elegant solutions to all the basic symmetric-key
cryptographic tasks, including authentication and encryption. Not surprisingly, PRFs
with additional properties have been intensively investigated, as those properties often
allow for useful additional functionalities. We discuss two such properties below.

Key-homomorphic PRFs. A PRF [GGM86] is an efficiently computable keyed function
F : K × X → Y . The security property requires that no efficient adversary can distin-
guish F (k, ·) instantiated with a random key k ← K from a uniformly random function,
given oracle access.

A key-homomorphic PRF has the additional feature that for any keys k, k′ and any
input x, we have F (k + k′, x) = F (k, x) ⊕ F (k′, x) for some group operations +
and ⊕ on K and Y , respectively. Naor, Pinkas and Reingold [NPR99] observed that
the simple PRF F (k, x) = H(x)k, where H(·) is a random oracle that maps into a
group where the DDH problem is assumed to be hard, is a key-homomorphic PRF.
The first (almost) key-homomorphic PRFs in the standard model was constructed by
Boneh et al. [BLMR13] from lattice assumptions, and later generalized and improved
by Banerjee and Peikert [BP14].

Applications of key-homomorphic PRFs include an elegant solution to one-round
distributed PRFs for any threshold [BLMR13]. Here, for some parameters � ≤ n, a
user sends an input x to � servers, who each return a short answer from which the user
can compute F (k, x). Security requires that to any subset of � − 1 servers, F (k, ·) is
pseudorandom. For � = n, one can simply share the key as k = k1 + k2 + . . . + kn,
each server computes F (ki, x), and these can then be combined to

∑n
i=1 F (ki, x) =

F (
∑n

i=1 ki, x) = F (k, x). Boneh et al. [BLMR13] provide a solution for general � ≤ n.
Symmetric-key proxy re-encryption is another interesting application, which we will
discuss in detail in Section 1.2.

Constrained PRFs. A constrained PRF for a family of sets S ⊆ P(X) has the property
that, given any key k and set S ∈ S, one can efficiently compute a “constrained” key
kS that enables evaluation of F (k, x) on all inputs x ∈ S, while the values F (k, x) for
x /∈ S remain pseudorandom even given kS .

Constrained PRFs were introduced independently in [BW13, KPTZ13, BGI14]. All
three papers note that the classical GGM construction [GGM86] already gives a prefix-
constrained PRF, where from a key k ∈ {0, 1}n, for any v ∈ {0, 1}≤n one can compute
a key kv that enables the computation of F (k, x) for all inputs x that start with v. Boneh
and Waters [BW13] construct bit-fixing and circuit-fixing constrained PRFs from mul-
tilinear maps. In the bit-fixing construction, for every v ∈ {0, 1, ?} one can compute a
key kv that enables the computation of F (k, x) for any x for which xi = vi when vi �=?.
The more general circuit-constrained construction allows generating constrained keys
for any circuit C, where with kC one can evaluate the PRF on input x if and only if
C(x) = 1.

Key-Homomorphic Constrained Pseudorandom Functions 33

Prefix-constrained PRFs (or rather, “punctured” PRFs, which can be constructed
from them) are a main tool in almost all the applications of indistinguishability ob-
fuscation [GGH+13b, SW14, PST14]. The papers [BW13, BGI14, KPTZ13] discuss
many more applications of constrained PRFs.

1.1 Results and Techniques

Key-Homomorphic Constrained PRFs. In this paper we construct PRFs that are
simultaneously key-homomorphic and constrained. The key-homomorphic property
holds not only for PRF keys, but also for constrained keys. We first show that the
multilinear-map-based bit-fixing and circuit-constrained PRFs due to Boneh and Wa-
ters [BW13] can be modified to also be key-homomorphic. We then show that the LWE-
based key-homomorphic PRFs of Banerjee and Peikert [BP14] are essentially already
prefix-constrained PRFs, using a (non-obvious) definition of constrained keys and asso-
ciated group operation. Moreover, the constrained keys themselves are pseudorandom,
and the constraining and evaluation functions can all be computed in low depth. The lat-
ter feature can be important for applications of obfuscation, e.g., [GGH+13b, SW14],
where the use of low-depth constrained/punctured PRFs may avoid the need for costly
“bootstrapping” operations and fully homomorphic encryption.

Given the usefulness of the individual key-homomorphic and constraining properties
for PRFs, we expect their combination to find even more exciting applications. We
discuss one such application, symmetric-key proxy re-encryption, in Section 1.2. We
next give a brief overview of our constructions, their salient features, and our proof
techniques.

Bit-Fixing PRFs from MDDH. Leveled multilinear maps [GGH13a] are defined over
a sequence of groups (G1, . . . ,Gκ), where Gi is generated by an element gi, as bilinear
maps ei,j : Gi×Gj → Gi+j ; i.e., they satisfy ei,j

(
g a
i , g b

j

)
= (gi+j)

a·b for all a, b. The
multilinear decisional Diffie-Hellman assumption states that given random elements

gc11 , . . . , g
cκ+1

1 , it is hard to distinguish gκ
∏κ+1

j=1 cj from a random group element in Gκ.
Using such groups, Boneh and Waters [BW13] define a bit-fixing constrained PRF

for bit strings of length n as follows. A key K consists of a sequence of multilinear
groups of prime order p and values (k, {di,β}i∈[n], β∈{0,1}) fromZp. The PRF is defined

as F (K,x) := gn
k·
∏

i∈[n] di,xi . While this construction does not appear to be key-
homomorphic, in Section 3 we make it so, by observing that we can “outsource” the
values di,β as Di,β := g

di,β

1 to public parameters pp, and redefine

F (pp, k, x) := e
(
D1,x1, e(D2,x2 , e(. . . , e(Dn−1,xn−1 , Dn,xn)))

)k
= gn

k·
∏

i∈[n] di,xi .

We show that the values Di,β can be published without compromising security, that is,
the function values are pseudorandom under the MDDH assumption. Because the secret
key is now just k, the PRF is easily seen to be key-homomorphic.

34 A. Banerjee et al.

Low-Depth Prefix-Fixing PRFs from LWE. In Section 4 we construct key-homo-
morphic prefix-fixing constrained PRFs from the LWE assumption, and hence from
the conjectured hardness of worst-case lattice problems [Reg09, Pei09, BLP+13]. In
addition, natural instantiations of this construction have polylogarithmic circuit depth.
To our knowledge, these are the first sublinear-depth constrained PRFs (whether key-
homomorphic or not), and as such they can admit much more efficient obfuscation
under existing paradigms. (Recall that the basic GGM construction, which yields a
prefix-constrained PRF, is highly sequential.)

Our LWE-based construction is an extension of the recent class of key-homomorphic
PRFs of Banerjee and Peikert [BP14], which generalizes and improves a previous con-
struction of Boneh et al. [BLMR13]. We show that the BP construction can be made
prefix-constrained, and that the constraining algorithm is also key-homomorphic. No-
tably, the approximation factors for the underlying LWE assumption are essentially the
same as in [BP14], e.g., they can be as small as quasi-polynomial λω(λ) in the security
parameter.

To show all this, we start with the observation that the security proof for the BP (and
BLMR) construction is very “GGM-like,” i.e., it proceeds in a sequence of hybrids,
one for each successive bit of the PRF input. However, the functions computed in the
hybrids do not quite fit the usual GGM paradigm, because each successive output of
the PRG is broken into two pieces: one piece is fed as input into the next PRG step,
while the “leftover” piece is retained and then later “folded” back into the final output
of all the PRG steps. A natural way to define a constrained key for a partial function
evaluation, then, is to include all the leftover pieces in the constrained key—and this is
indeed the approach we take.

The main technical challenge we face is in defining a suitable group structure on the
leftover pieces, for key homomorphism. At first sight, this appears easy: since the left-
over pieces are eventually combined with the final PRG output via a linear function, it
would appear that one could simply add constrained keys by adding their corresponding
leftover pieces. While this does indeed work—at least syntactically—it yields a useless
construction! The problem is that essentially any application of key-homomorphic (con-
strained) PRFs (e.g., proxy re-encryption as described below in Section 1.2) will require
a statistical “secret sharing”-like property on the (constrained) secret keys. For example,
the sum of any fixed key with a uniformly random key must be uniformly random, so
that the original key is completely hidden. Formally speaking, for any particular con-
straint we need the space of constrained keys to be a finite additive group (so that it
supports a uniform distribution), and for the function to be key-homomorphic under
this group structure.

Resolving the difficulty. Going back to the BP construction, the leftover pieces in con-
strained keys come from a certain finite subset P ⊂ Zm, namely, a fundamental region
of a special lattice L. Obviously, the sum of two uniformly random P-elements is not
uniform in P—indeed, it is typically not in P at all! So we cannot naı̈vely use the ambi-
ent group Zm (which is infinite). Another idea would be to use the finite quotient group
Zm/L, i.e., addition modulo the lattice. This also does not work, because the function
is not key-homomorphic under this form of addition.

Key-Homomorphic Constrained Pseudorandom Functions 35

Our solution to the above problem involves a novel method of adding modulo L
“with carries.” That is, the sum of two leftover P-elements is mapped back to P by
reducing modulo the lattice L, i.e., shifting by an appropriate lattice vector x ∈ L. The
vector x is then treated as a “carry” term that is “folded into” the sum of the next two
P-elements in the key, and so on. (The ultimate effect is analogous to grade-school
addition, except that here the “base” in which the “numbers” are written is a high-
dimensional lattice.) We show that by appropriately defining the effect of the carry
terms, the PRF is indeed key-homomorphic under this form of addition.

All of the above applies to the so-called “noisy” version of the BP construction, an in-
termediate object that has perfect constraining, homomorphic, and pseudorandomness
properties, but high circuit depth and (even worse) exponentially large keys. Similar
to [BPR12, BP14], we show that by appropriately “rounding” this noisy construction,
the keys and depth can be made small while preserving the other desirable properties (at
least against computationally bounded attackers). Interestingly, this rounding transfor-
mation requires us to work with a “geometrically nice” set P of representatives modulo
the special lattice L (which fortunately exists), whereas [BP14] works with any set of
representatives.

1.2 Applications

Using symmetric encryption, one can store data on an untrusted server simply by first
encrypting the files to be stored. Key-homomorphic and/or constrained PRFs enable
symmetric encryption schemes with additional properties which are useful in this set-
ting.

Assume there are many parties who should get access to the stored data, but that we
occasionally need to revoke the access of some party. A simple solution is to re-encrypt
all the data with a fresh key, and then give this key to only the parties who should con-
tinue to have access. Unfortunately, this requires either that the server knows the secret
key k, or that we must download, re-encrypt, and upload the entire database. Boneh
et al. [BLMR13] show how by using a key-homomorphic PRF, one can construct a so-
called proxy re-encryption scheme, where the server can locally transform ciphertexts
under a key k to ciphertexts under a new key k′ without learning the plaintexts. We
discuss their construction in Section 5.1.

The second functionality we consider is fine-grained access control, where different
parties should get access to different subsets of the stored data. The trivial but ineffi-
cient solution is to encrypt each file under a separate key, and then send the appropriate
keys to each party. Constrained PRFs (CPRF) provide a more elegant solution: every
encrypted file is associated with some attribute vector x, and every party gets a con-
strained key kp that allows her to evaluate the PRF on only those inputs satisfying an
appropriate predicate p. The PRF then allows her to decrypt only those files whose at-
tributes x satisfy her predicate. Of course, the expressive power of the system depends
upon the predicates supported by the CPRF. A circuit CPRF allows for any efficiently
computable predicate p, whereas prefix CPRFs allow for predicates that are satisfied
by inputs starting with a particular prefix. Using key-homomorphic constrained PRFs
as constructed in this paper, in Section 5 we construct a scheme for outsourced stor-
age that supports proxy re-encryption and fine-grained access control simultaneously.

36 A. Banerjee et al.

The “obvious” way to outsource storage to an untrusted server using CPRFs is to en-
crypt a message m for some attributes x as c = m⊕F (k, x). Now, only a party who has
a constrained key kp where p(x) = 1 can decrypt the ciphertext (c, x), by computing
m = c⊕ F (k, x). This simple solution has two problems.

First, given two ciphertexts (c, x), (c′, x) for the same attributes x, one can compute
the XOR of the messages as c⊕ c′ = m⊕F (k, x)⊕m′⊕F (k, x) = m⊕m′, breaking
the security of the encryption scheme.

Second, a single ciphertext c = m⊕F (k, x) for a known m reveals F (k, x) = c⊕m.
This is a problem because the security game for CPFRs only guarantees that F (k, x) is
pseudorandom if the adversary was given constrained keys (for predicates p(.) where
p(x) = 0), but does not guarantee anything if she is also given outputs F (k, x′) for
some x′ �= x. For the GGM based prefix CPRF there is in fact a simple attack (cf.
Footnote 4).

To handle these problems, we show how to “randomize” predicates, in the sense
that p+ is a randomization of p if there exists some encoding [·, ·] such that for all
(x, r) we have p+([x, r]) = 1 if and only if p(x) = 1. Let P denote the predicates
supported by the CPRF considered. We require p+ ∈ P as this will assure that the set
of predicates for the encryption scheme is the same as for the CPRF. We will need some
other properties from the encoding which we outline below. Although we don’t give a
generic result showing how to randomize any set of predicates, we show very simple
constructions that work for prefix, bit-fixing and circuit CPRFs (that is, all the predicates
for which CPRFs have been constructed to date). For bit-fixing and and circuit CPRFs
the encoding is simply concatenation [x, r] = x‖r. For prefix CPRFs the encoding is a
simple prefix-free encoding (cf. the paragraph above Thm. 4).

To solve the problems outlined above, we make encryption probabilistic: we encrypt
m as (r,m⊕F (k, [x, r])) using randomness r. A constrained key for the predicate p(·)
for the encryption scheme is now defined as a constrained key for the predicate p+(.)
for the CPRF. Note that with this key we can compute F (k, [x, r]) and thus decrypt if
p(x) = 1 for any r.

Arguing security is more delicate, and will require two extra properties. First, we
want [·, ·] to be injective, which will ensure that the value F (k, [x, r]) used in the chal-
lenge ciphertext has never been output before with high probability (i.e., unless we
happened to choose the same randomness r for a previous query). Second, we want
that for every [x, r], there exists a predicate p[x,r] ∈ P such that p[x,r]([x, r]) = 1 but
p[x,r]([x

′, r′]) = 0 for all (x′, r′) �= (x, r) (but p[x,r](z) can be 1 for values z outside
the range of [·, ·]). In the reduction, this latter property allows us to learn the values
F (k, [x, r]) required to answer encryption queries in the CPA game by querying our
oracle (playing the CPRF security game) for the constrained key with predicate p[x,r].
The above property ensures that every such query will exclude at most one possible
candidate for our challenge ciphertext. Thus, if at some point the adversary asks for
a challenge ciphertext using attributes x, we can chose our CPRF challenge as [x, r]
(which will be answered either by F (k, [x, r]) or uniform), and as we chose r uni-
formly at random, this query will most likely not be invalid (in the sense that it could
be computed using some previously issued constrained key).

Key-Homomorphic Constrained Pseudorandom Functions 37

Efficient re-encryption. Using proxy re-encryption as outlined above requires the server
to re-encrypt the entire database to ensure that a revoked party loses access. When
using fine-grained access control, a party to be revoked might have access to only a
small fraction of the database, so we could re-encrypt only that portion. This would
make re-encryption (potentially much) more efficient, but would require some extra
key-management, as now different parts of the database are encrypted under different
keys.

2 Preliminaries

2.1 Key-Homomorphic Constrained Pseudorandom Functions

We now formally define key-homomorphic constrained pseudorandom functions. We
model constrainability as a directed acyclic graph (DAG) on some (typically huge) set
of nodes. We restrict our attention to DAGs having a unique node that has no incoming
edges, called the root node.

Definition 1. A constrained function family C is given by:

– a directed acyclic graph D = (V,E) with unique root node r ∈ V ,
– for each node u ∈ V , a key space Ku with an efficiently samplable probability

distribution Du over it,
– for every edge (u, v) ∈ E, a constraining function Cu,v : Ku → Kv that is effi-

ciently computable.

The functions Cu,v must satisfy the following consistency property: for any u, v ∈ V
and any two paths P = (u = u0, u1, . . . , uk = v) and P ′ = (u = u′

0, u
′
1, . . . , u

′
� = v)

from u to v, we have that

Cuk−1,uk
◦ · · · ◦ Cu1,u2 ◦ Cu0,u1 = Cu′

�−1
,u′

�
◦ · · · ◦ Cu′

1,u
′
2
◦ Cu′

0,u
′
1

.

For notational convenience, we let Cu,v : Ku → Kv denote the above (composed) func-
tions, and also define Cu := Cr,u for any node u ∈ V that is reachable from the root
node r. For consistency with the typical PRF notation, we define Fk(u) = Cu(k) (and
to also cover constrained PRFs, if u represents a subset of inputs then Constraink(u) =
Cu(k)).

Lastly, a constrained function family may also have a Setup algorithm, which sam-
ples some (public) parameters that are provided as input to all of the other algorithms.

For the reader who may be familiar with constrained PRFs, we stress that in the above
definition, the DAG nodes roughly correspond with (subsets of) PRF inputs, while the
input ku and output kv of constraining function Cu,v correspond to (constrained) secret
keys. Despite these rough correspondences, we stress that in our model there are no
distinct notions of PRF “inputs” or “outputs,” only DAG nodes. This is without loss
of generality: a PRF input can simply be represented as a node w with no outgoing
edges, and the corresponding output is the key kw. In fact, our model is somewhat more
general because it allows for defining and proving the pseudorandomness of constrained
keys themselves (even for nodes having outgoing edges), which can be useful in certain
settings.

38 A. Banerjee et al.

Definition 2. Pseudorandomness for a constrained function family C =
(
D = (V,E),

{Ku}, {Cu,v}
)

is defined as follows. It is parameterized by a subset R ⊆ V of what we
call “challenge” nodes. We consider two closely related experiments (“games”), called

“real” and “ideal,” which proceed as follows:

1. Initialize: For the root node r ∈ V we choose a value k = kr ← Kr according to
the associated distribution Dr. If the family has a Setup algorithm, it is run and its
output is provided to the adversary.

2. Query: The adversary adaptively issues queries v ∈ V , subject to the condition
that no query in R and any other query have a common descendant in D. That is,
there are no distinct queries u ∈ R, u′ ∈ V and node w ∈ V such that there exists
a (possibly trivial) path from u to w and one from u′ to w.

– In the “real game,” every query v is answered with kv = Fk(v) = Cv(k).
– In the “ideal game,” if v ∈ V \ R then it is answered as in the real game, oth-

erwise it is answered with an independent value k∗
v ← Dv. (Repeated queries

are answered consistently.)

The family C is said to be pseudorandom if for any polynomial-time adversary, its advan-
tage in distinguishing the real and ideal games is negligible in the security parameter.

In short, the definition above means that constrained keys for the set R of challenge
nodes are pseudorandom. The condition on legal queries is necessary to prevent trivial
distinguishers that work by observing the inconsistency of the ideal-game answers. In a
bit more detail, given answers ku, ku′ for some nodes u ∈ R, u′ ∈ V (respectively) that
have a common descendant w ∈ V , the distinguisher could check whether Cu,w(ku) =
Cu′,w(ku′). This always holds in the real game, but in the ideal game, where ku is
chosen independently of everything else, it would typically fail to hold.

Definition 3. A constrained function family is (key) homomorphic if all the key spaces
Ku are additive groups and if the constraining functions Cu,v are additive homomor-
phisms, i.e., for every (u, v) ∈ E and every k1, k2 ∈ Ku, we have

Cu,v(k1) + Cu,v(k2) = Cu,v(k1 + k2) .

For key-homomorphic PRFs, all applications we know of implicitly require the key
spaces Ku to be finite groups, and the associated distributions Du to be uniform distribu-
tions. In short, this is because the security proofs all rely on statistical “secret sharing”-
type properties, e.g., the sum of any group element and a uniformly random one is
uniformly random. All our final constructions have finite key spaces with uniform dis-
tributions.

3 Bit-Fixing and Circuit-Constrained Constructions from MDDH

Boneh and Waters [BW13] constructed a “bit-fixing” constrained PRF for input space
X = {0, 1}n, where one can derive constrained keys for any subset of inputs that can
be described by arbitrarily fixing the values of any desired input bits. Any such subset

Key-Homomorphic Constrained Pseudorandom Functions 39

can be described by a string v ∈ {0, 1, ?}n, as the set of all x ∈ {0, 1}n that match v
at all positions where v is different from ‘?’:

Sv :=
{
x ∈ {0, 1}n

∣∣ ∀i ∈ [n] : xi = vi ∨ vi =?
}

. (1)

Although not considered in [BW13], their construction can easily be generalized to
allow computation of a constrained key for a set Sw not only from the root key, but
also from any key for a set Sv for which Sw ⊆ Sv. In our DAG-based model, then, the
nodes of the DAG consist of the strings v ∈ {0, 1, ?}n, and there is an edge (v,w) if
and only if Sv ⊇ Sw (equivalently, wi = vi whenever vi �=?).

The original BW construction does not appear to be key homomorphic. However, we
show how to make it so by defining public parameters for the function (which consist
of elements previously contained in the secret key), and only keeping one Zp element
as the original secret key.

After these two modifications, we show that the PRF remains a bit-fixing constrained
pseudorandom function family as defined in Definition 2. The set of challenge nodes is
R = {0, 1}n, corresponding to all “fully constrained” keys. That is, constrained keys
for terminal nodes in the DAG are pseudorandom, but for nodes with outgoing edges
they are not.

3.1 Preliminaries

Multilinear groups. Candidates for sequences of groups with leveled multilinear maps
were first proposed by Garg, Gentry and Halevi [GGH13a]. These constructions imple-
ment graded encodings, which could be viewed as approximate multilinear groups. We
present our results in the language of multilinear groups.

Leveled multilinear groups are generated by a group generator G, which takes as
input the security parameter 1λ and κ ∈ N, which determines the number of levels.
G(1λ, κ) outputs a sequence of groups G = (G1, . . . ,Gκ) of prime order p > 2λ. We
assume that the description of each group contains a canonical generator gi. For all
i, j ≥ 1 with i + j ≤ κ, there exists a bilinear map ei,j : Gi × Gj → Gi+j , which
satisfies:

∀a, b ∈ Zp : ei,j
(
g a
i , g b

j

)
= (gi+j)

a·b .

We will omit the indices of e and write e(h1, h2, . . . , hn) or e({hi}ni=1) as a shorthand
for e(h1, e(h2, e(. . . , e(hn−1, hn)))). We make the following hardness assumption:

Assumption 1 The κ-Multilinear Decisional Diffie-Hellman (κ-MDDH) assumption
states that given (G1, . . . ,Gκ) ← G(1λ, κ) and g = g1, g

c1, . . . , gcκ+1 for (uniformly)
random c1, . . . , cκ+1 ← Zp, it is hard to distinguish gκ

∏
j∈[κ+1] cj ∈ Gκ from a random

group element in Gκ.

3.2 Key-Homomorphic Bit-Fixing PRF

Setup(1λ, 1n): On input the security parameter λ and the input length n, run G(1λ, n)
to compute a sequence of groups G = (G1, . . . ,Gn) of prime order p, with gen-
erators g := g1, . . . , gn. Choose (d1,0, d1,1), . . . , (dn,0, dn,1) ← Z 2

p uniformly at

40 A. Banerjee et al.

random and set Di,β := gdi,β for i ∈ [n] and β ∈ {0, 1}. Output the parameters of
the scheme as

pp :=
(
G = (G1, . . . ,Gn), {Di,β}i∈[n], β∈{0,1}

)
.

They define the domain as X = {0, 1}n and the range of the PRF as Y = Gn. For
a key k ∈ Zp, the PRF value on input x = (x1, . . . , xn) ∈ {0, 1}n is defined as

F (pp, k, x) := e
(
{Di,xi}i∈[n]

)k
= gn

k·
∏

i∈[n] di,xi .

Constrain(pp, k,w): On input pp, a key k ∈ Zp ∪
⋃n−1

i=1 Gi and a vector w ∈
{0, 1, ?}n, which describes the constrained set as Sw := {x ∈ {0, 1}n | ∀i ∈
[n] : xi = wi ∨wi =?}, let W := {i ∈ [n] : wi �=?} be the set of indices that w
fixes.

– If k ∈ Zp (that is, k is a master key) then return

kw := e
(
{Di,vi}i∈W

)k
= (g|W |)

k·
∏

i∈W di,wi .

– Otherwise, we have k = kv for some set v ∈ {0, 1, ?}n, for which we let V be the
set of fixed indices. If V �⊆ W or vi �= wi for some i ∈ V then return ⊥ (since
Sv �⊇ Sw); else return

kw := e
(
kv, e({Di,vi}i∈W\V)

)
= e

(
(g|V |)

k·
∏

i∈V di,vi , (g|W\V |)
∏

i∈W\V di,wi
)
= (g|W |)

k·
∏

i∈W di,wi .

Eval(pp, k, x): – If k ∈ Zp, return F (pp, k, x) = e({Di,xi}i∈[n])
k = gn

k·
∏

i∈[n] di,xi .
– Otherwise, k = kv for some v ∈ {0, 1, ?}n. Let V := {i ∈ [n] : vi �=?} and

V := {i ∈ [n] : vi =?} be its complement. If xi �= vi for some i ∈ V then return
⊥ (since x /∈ Sv); else return

e
(
kv, e

(
{Di,xi}i∈V

))
= e

(
(g|V |)

k·
∏

i∈V di,vi , (g|V |)
∏

i∈V di,xi

)
= (gn)

k·
∏

i∈[n] di,xi = F (pp, k, x) .

3.3 Properties

Key homomorphism. The construction is key-homomorphic in the sense of [BLMR13],
but it also satisfies Definition 2, which requires that Constrain is homomorphic as well.
The PRF can be described in the language of Definition 1 as follows. (Note that we
identify the set Sv, defined in (1), with the vector v defining it.)

– The set of vertices of the graph D is defined as V := {v : v ∈ {0, 1, ?}n} and the
root node is r := (?, . . . , ?), representing the set X = {0, 1}n. There is an edge
from v to w if all bits fixed by v are fixed by w to the same value, i.e., for all
i ∈ [n]: if vi ∈ {0, 1} then wi = vi.

– The additive group associated to r is Kr := (Zp,+); for all other vertices v it is
Kv := (G|V |, ·) with V := {i ∈ [n] : vi �=?}, i.e., the positions of 0’s and 1’s in v.
For all v, the distribution Dv is the uniform distribution over Kv.

Key-Homomorphic Constrained Pseudorandom Functions 41

– Cv,w : Kv → Kw, for all v,w for which (v,w) is an edge in D, is defined as

Cv,w(k) := Constrain(pp, k,w) .

(Note that for w ∈ {0, 1} we have Constrain(pp, k,w) = Eval(pp, k,w).)

By construction, running Constrain(pp, kv,w) on any key kv ∈ Kv derived for some
v ∈ {0, 1, ?}n from some master key k ∈ Zp always yields (g|W |)

k·
∏

i∈W di,wi if (v,w)
is an edge in D. This shows consistency, which requires that for any nodes v,w ∈
{0, 1, ?}n and any two paths P = (v = v0,v1, . . . ,vk = w) and P ′ = (v = v′

0,
v′
1, . . . ,v

′
� = w) from v to w in D, we have

Cvk−1,vk
◦ · · · ◦ Cv1,v2 ◦ Cv0,v1 = Cv′

�−1,v
′
�
◦ · · · ◦ Cv′

1,v
′
2
◦ Cv′

0,v
′
1

.

Finally, our construction is homomorphic, that is, for every edge (v,w) in D:

Cv,w(k1) · Cv,w(k2) = Cv,w(k1 + k2) . (2)

To show this, let pp = (G, {Di,β}i∈[n], β∈{0,1}) ← Setup(1λ, 1n). For all k1, k2 ∈ Zp

we then have the following:

1. F (pp, k1 + k2, x) = gn
(k1+k2)·

∏
i∈[n] di,xi = F (pp, k1, x) · F (pp, k2, x).

2. For any v ∈ {0, 1, ?}n we have:

Constrain(pp, k1 + k2,v) = (g|V |)
(k1+k2)·

∏
i∈V di,vi

= Constrain(pp, k1,v) · Constrain(pp, k2,v) .

3. For any v,w ∈ {0, 1, ?}n for which vi =? or vi = wi for all i ∈ [n]: if kv =
Constrain(pp, k,v) and k′

v = Constrain(pp, k′,v) then

Constrain(pp, kv · k′
v,w) = e(kv · k′

v, DW\V (w)) = (g|W |)
(k+k′)·

∏
i∈W di,wi

= Constrain(pp, kv,w) · Constrain(pp, k′
v,w) .

By 1. we have Cr,x(k1 + k2) = Cr,x(k1) · Cr,x(k2) for all x ∈ X ; by 2. we have
Cr,v(k1 + k2) = Cr,v(k1) · Cr,v(k2) for all v; and by 3. we have Cv,w(k1 + k2) =
Cv,w(k1) · Cv,w(k2) for v �= r; together this shows Equation (2).

Security. We show that publishing part of the secret key as parameters does not make
the construction insecure. In particular, we show that our construction satisfies Defini-
tion 2, when the challenge set R is {0, 1}n ⊆ V = {0, 1, ?}n, that is, the set of leaves
of the DAG, which corresponds to the PRF domain X = {0, 1}n.

We need to show that when pp ← Setup and k ← Zp then an adversary that is given
an oracle, which when queried on v ∈ {0, 1, ?}n \ {0, 1}n returns Constrain(pp, k,v)
and when queried on x ∈ {0, 1}n returns either F (pp, k, x) or a random element, can-
not distinguish these two cases—provided it does not query a descendant x ∈ R of
some other query u ∈ V .

42 A. Banerjee et al.

Theorem 1. If there exists a PPT adversary breaking security of the above key-homo-
morphic bit-fixing PRF for n-bit-inputs, with challenge set R = {0, 1}n, with advan-
tage ε(λ) and making q(λ) queries for challenge elements, then there exists a PPT
algorithm that breaks the n-Multilinear Decisional Diffie-Hellman assumption with ad-
vantage 2−n · q(λ)−1 · ε(λ).

The proof first reduces the original game to a game where the adversary can only ask
for one challenge query, which loses a factor q(λ), by a standard hybrid argument. That
game is then reduced to MDDH, following the proof from [BLMR13]; in particular,
since in the simulation the reduction knows the values {Di,β}, it can output them as
public parameters (which do not exist in the original proof). See the full version for a
detailed proof.

3.4 Circuit-Constrained PRF with Key-Homomorphic Evaluation

Boneh and Waters [BW13] give a second construction based on multilinear maps, which
allows for constraining keys to more expressive sets, namely, all sets that can be decided
by a circuit of some fixed depth. By defining public parameters, we construct a variant
that is key-homomorphic as defined by Boneh et al. [BLMR13]. That is, we have that
for all pp, k1, k2, x,

F (pp, k1 + k2, x) = F (pp, k1, x) · F (pp, k2, x) . (3)

However, our construction is not key-homomorphic in the sense of Definition 3, as the
key-constraining function is not homomorphic.

The PRF is set up for input length n and circuit depth �. The parameters are a se-
quence (G1, . . . ,Gκ) of groups Gi of prime order p, generated by gi, where κ = n+ �;
as well as elements Di,β , uniformly chosen from G1, for i ∈ [n] and β ∈ {0, 1}. The
secret-key space is Zp and the PRF on input x = (x1, . . . , xn) ∈ {0, 1}n is defined as

F (pp, k, x) := e
(
e({Di,xi}i∈[n])

k, g�
)
= gκ

k·
∏

i∈[n] di,xi (4)

(with di,β such that Di,β = gdi,β). It is thus defined exactly as for the bit-fixing con-
struction, except that there are more groups in the sequence, and satisfies (3).

Removing the values di,β from the secret key of the construction in [BW13] entails
another syntactical change. Above, we defined the PRF value F in terms of k and the
parameter values Di,β , whereas in [BW13] they are defined directly as the last term
of Equation (4). In [BW13], components of constrained keys (those corresponding to
input wires) are defined as Kw := grw·dw,1 , which we replace by Kw := (Dw,1)

rw .
The values di,β are not used anywhere else. Our construction still satisfies pseudo-

randomness, since, as for the bit-fixing PRF, in the security proof the simulator knows
the values Di,β .

4 Prefix-Fixing Construction from LWE

In this section we prove that variants of the LWE-based key-homomorphicPRF of Baner-
jee and Peikert [BP14] also support prefix constraints, and that the constraining functions

Key-Homomorphic Constrained Pseudorandom Functions 43

are key-homomorphic as well. After recalling some standard background and notation
in Section 4.1, the contents of this section have the following high-level structure:

– In Section 4.2 we define a key-homomorphic, prefix-constrained pseudorandom
function family called Constrain, which we refer to as the “noisy” family. However,
the functions in this family are highly sequential, with circuit depth proportional to
the input length. More significantly, they have huge keys, of size exponential in the
input length, so they cannot actually be used in reality. The purpose of defining this
family is to give us a baseline object that has “perfect” consistency, homomorphic,
and pseudorandomness properties (but terrible space and depth complexity), which
we rely upon in the later subsections.

– In Section 4.3 we specialize the noisy Constrain family to be “errorless,” i.e., all
error terms are set to zero. We call the resulting family PConstrain. As a special-
ization of Constrain, it inherits that latter’s perfect consistency and homomorphic
properties. We show that the PConstrain functions (1) have small keys, (2) can be
computed in low depth (e.g., logarithmic in the input length) by a slight modifi-
cation to the Constrain algorithms, and (3) have outputs that are “close” to those
of the noisy Constrain functions (under a mild condition on the input). However,
we are still not quite done yet, because the errorless PConstrain functions are not
pseudorandom.

– In Section 4.4 we combine the previous two families to obtain a family PConstrain
that has essentially all the desired properties: small keys, low depth, pseudoran-
domness, consistency, and homomorphism. (The latter two of these properties do
not hold perfectly, but only computationally: no efficient adversary can make any
queries that reveal a violation of either property.) The PConstrain functions are de-
fined simply as appropriately rounded functions from errorless family PConstrain.
As such, they inherit the latter’s small keys and low depth. In addition, they are pseu-
dorandom because they coincide with the rounded noisy pseudorandom Constrain
functions; this follows from the fact that the (unrounded) errorless PConstrain and
noisy Constrain functions have “close” outputs, and the rounding precision is taken
to be sufficiently coarse to conceal this difference. Finally, consistency and homo-
morphism hold for PConstrain essentially because rounding can be seen as adding
a particular kind of (deterministic) error, so PConstrain may be seen as an instanti-
ation of Constrain.

4.1 Preliminaries

We first recall some standard background from [MP12, BP14]. For an integer modulus
q ≥ 1, let Zq = Z/qZ denote the quotient ring of integers modulo q, where for conve-
nience we always let q = 2� be a power of two. For � = log q ≥ 2, define the “gadget”
(row) vector

g = (1, 2, 4, . . . , 2�−1) ∈ Z�
q ,

and the (deterministic) “binary decomposition” function g−1 : Zq → {0, 1}� as follows:
identifying each a ∈ Zq with its integer representative in {0, . . . , q − 1}, let g−1(a) =

(x0, x1, . . . , x�−1) ∈ {0, 1}� where a =
∑�−1

i=0 xi2
i is the binary representation of a.

44 A. Banerjee et al.

Note that by definition, 〈g,g−1(a)〉 = a for all a ∈ Zq , which explains our choice of
notation.

Similarly, for vectors and matrices over Zq we define the function G−1 : Zn×m
q →

{0, 1}n�×m by applying g−1 entry-wise. Notice that for all A ∈ Zn×m
q we have

G ·G−1(A) = A, where G = In ⊗ g = diag(g, . . . ,g) ∈ Zn×n�
q

is the block-diagonal matrix having n copies of g as diagonal blocks, and zeros else-
where. We let P ⊆ Zn� denote a certain set of canonical representatives of the additive
quotient group Zn�

q /(Zn
q ·G). Specifically, as shown in [MP12], we can use1

P := {− q
4 , . . . ,

q
4 − 1}n� .

We define a bijection Decode : Zn�
q → P × Zn

q as Decode(u) = (v, s), where

u = v + s ·G .

As shown in [MP12], there is an efficient algorithm for computing Decode in depth
proportional to � = log q, and clearly Decode−1(v, s) = v + s ·G.

We recall the following easy lemma about the spectral norm, denoted s1(·), of
binary matrices. (See, e.g, [BP14, Lemma 3.1] for a proof.) Recall that s1(M) =
max‖u‖=1‖uM‖, where the maximum is taken over real unit vectors u.

Lemma 1. If S is a binary (i.e., 0-1) m-by-m matrix, then s1(S) ≤ m.

Binary trees. A full binary tree T is one in which each node is either a leaf, or has
two (nonempty) children. We let |T | denote the number of leaves in T , and index the
leaves from 0 to |T | − 1 by the inorder traversal of T . If |T | ≥ 1, we let T.l and T.r
respectively denote its left and right subtrees, both of which are nonempty.

Given matrices A0,A1 ∈ Zn×n�
q , we define the function AT (x) : {0, 1}|T | →

Zn×n�
q as follows:

AT (x) :=

{
Ax if |T | = 1,

AT.l(xl) ·G−1(AT.r(xr)) otherwise,

where in the second case we parse the input x = xlxr where |xl| = |T.l| and |xr| =
|T.r|.

Rounding. For a positive integer e, we define the integer rounding function �·�e : Z →
eZ as �x�e := �x/e� · e, and extend it component-wise to vectors and matrices. In
words, �x� simply rounds x to the nearest integer multiple of e.2

1 This choice of P is possible because we have taken q to be a power of two. It may be possible
to generalize our results to other values of q using the alternative lattice bases given in [MP12],
but it seems to substantially complicate the proofs.

2 We point out that this function differs slightly from the “modular” rounding function considered
in prior works, which mapped Zq to Zp as �x�p = �x · p/q� mod p. Here e corresponds with
q/p, but the rounding input and output have the same “scale.”

Key-Homomorphic Constrained Pseudorandom Functions 45

4.2 “Noisy” Function Family C
As in previous work [BPR12, BP14], we first define and analyze a certain family C of
“noisy” constraining functions, which have huge (exponential-size) keys, because each
key contains many error terms. To avoid technical complications related to efficient
computation on exponential-size inputs, throughout this section the error terms are al-
ways sampled “lazily,” i.e., not until they are needed. In Section 4.2 we show that the
constraining functions are consistent, in Section 4.2 we show that they are homomor-
phisms under an appropriate group operation on the key spaces, and in Section 4.2 we
show that the family is pseudorandom.

The public parameters of the noisy family are two matrices A0,A1 ∈ Zn×n�
q , chosen

uniformly at random. Following Definitions 1 and 3, to describe our family we need to
give a DAG with a unique root node, a key space with an additive group structure for
each node in the DAG, and a constraining function for each edge in the DAG.

DAG. For a full binary tree T , our DAG corresponds to prefix-fixing constraints on
{0, 1}|T |, i.e., the nodes are identified with the strings in {0, 1}≤|T |, and there is an
edge (w,wx) for every w and x �= ε such that |wx| ≤ |T |. This DAG clearly has a
unique root node, namely, the empty string ε.

Key spaces. For any full binary tree T and 0 ≤ j < |T |, we define

RT,j :=

⎧⎪⎨⎪⎩
Zn
q if |T | = 1,

RT.l,j if j ≤ |T.l|,
P ×RT.r,j−|T.l| otherwise.

For convenience in our recursive algorithms, we also define RT,|T | = P×Zn
q . In words,

RT,j has one P-component for each left subtree “hanging off” the path from the root
to the jth leaf. (Recall that we number the leaves starting from zero.) We also define,
for 0 ≤ j ≤ |T |,

ET,j :=
∏

y∈{0,1}≤|T |−j

Zn� = (Zn�)
2|T |−j+1−1

.

In ET,j , the several Zn� components (which represent the error vectors) are indexed
by the binary strings of length at most |T | − j, which is why there are 2|T |−j+1 − 1
components.

For each w ∈ {0, 1}≤|T |, the key space KT,w and associated distribution for w are
defined as:

KT,w := RT,|w| × ET,|w| ,

DT,w := U(RT,|w|)× (χnl)2
|T |−|w|+1−1 ,

where χ is some error distribution over Z that will be used in the security proof. Note
that KT,w does not depend on the actual bits in w, only on its length |w|.

46 A. Banerjee et al.

To make KT,w an additive group (for |w| > 0), we stress that we do not simply treat
it as a product group of its components—indeed, P ⊂ Zn� is not even closed under
addition, so it is not a group. Instead, in Section 4.2 below we define a special addition
operation on RT,|w| to make it a group. Then KT,w is simply the product group of this
group with ET,|w|, with the usual addition operation on the latter.

Constraining functions. It now remains to define (consistent) constraining functions
ConstrainT,w,x : KT,w → KT,wx for all strings w, x such that x �= ε and |wx| ≤ |T |;
for convenience, we also define ConstrainT,w,x to be the identity function for x = ε.
Functional pseudocode for the constraining functions is given in Algorithm 4.1. We re-
mark that it would have been sufficient to define functions ConstrainT,x,w for |x| = 1
alone. Indeed, by Lemma 2 below it follows that our pseudocode is actually equivalent
to the sequential composition of such functions, and hence has circuit depth propor-
tional to |x|. We choose to present the constraining functions for general x here because
in Section 4.4 we show that a slight modification yields highly parallel functions.

In summary, the constraining functions are defined recursively on the tree structure.
In the base case |T | = 1, for key (v, (ex)x∈{0,1}≤1) ∈ KT,w = Zn

q ×(Zn�)3, we simply

compute and decode the “noisy” valuevAx+ex ∈ Zn�
q . There are three recursive cases,

depending on whether we are constraining entirely within the left subtree, within the
right subtree, or across the two subtrees. In the first two cases, we simply recurse on the
appropriate subtree. In the third case, we recursively constrain over the remainder of
the left subtree, then over the desired portion of the right subtree. Lastly, whenever we
finish constraining over an entire (sub)tree we need to appropriately “fold” the results,
which consist of some leftover value in P ⊂ Zn� from the left subtree and some value
in P × Zn

q from the completed right subtree, into a value in P × Zn
q for the entire tree.

We remark that although our presentation is (necessarily) quite different, our con-
straining functions correspond to the partial evaluations of the noisy function family
from [BP14], which the simulator computes internally when answering queries in the
security proof.

Consistency. We first show consistency.

Lemma 2 (Consistency). For any full binary tree T , parameters A0,A1, and strings
w, x, z where |wxz| ≤ |T |, we have that

ConstrainT,wx,z ◦ ConstrainT,w,x = ConstrainT,w,xz .

Proof. We proceed by induction on |T |. The base case of |T | = 1 is trivial, because
ConstrainT,w,ε is the identity function.

We have three inductive cases. In the first two cases, where |wxz| ≤ |T.l| or |w| ≥
|T.l|, the claim follows immediately by the inductive hypothesis on T.l or T.r, respec-
tively. The last inductive case is |w| < |T.l| and |wxz| > |T.l|. We analyze this in two
subcases.

Key-Homomorphic Constrained Pseudorandom Functions 47

Algorithm 4.1. ConstrainT,w,x : KT,w → KT,wx for |wx| ≤ |T |, x �= ε

Input: (v, (ey)|y|≤|T |−|w|) ∈ KT,w = RT,|w| × ET,|w|

1. if |T | = 1 then � base case, so v ∈ Zn
q

2. return Decode(v ·Ax + ex)

3. else if |wx| ≤ |T.l| then � constrains entirely in left subtree. . .

4. return
(
ConstrainT.l,w,x

(
v, (ey)|y|≤|T.l|−|w|

)
, (exy)|y|≤|T |−|wx|

)
� . . . so just

recurse.

5. else if |w| < |T.l| then � incomplete left subtree. . .

6. parse x = xlxr where |wxl| = |T.l|
7. let (vl, �) = ConstrainT,w,xl

(
v, (ey)|y|≤|T.l|−|w|

)
� . . . complete left subtree

(self-recurse). . .

8. return ConstrainT,wxl,xr

(
vl, (exly)|y|≤|T.r|

)
� . . . and self-recurse to finish.

9. else � constrains entirely in right subtree. . .

10. parse w = wlwr where |wl| = |T.l| and v = (vl,vr) ∈ P ×RT.r,|wr |
11. let (kr, �) = ConstrainT.r,wr,x

(
vr, (ey)|y|≤|T |−|w|

)
� . . . so recurse.

12. if |wx| = |T | then � constrains over entire tree (so kr ∈ P × Zn
q). . .

13. return Decode(vl ·G−1(AT.r(wrx)) +Decode−1(kr)) � . . . so fold results.

14. else � doesn’t complete the tree. . .

15. return (vl,kr) � . . . so append results.

The first subcase is |wx| > |T.l|. Here we parse x = xlxr with |wxl| = |T.l|. By
definition, we have

ConstrainT,w,x = ConstrainT,wxl,xr ◦ ConstrainT,w,xl

ConstrainT,w,xz = ConstrainT,wxl,xrz ◦ ConstrainT,w,xl
.

The claim then follows by the inductive hypothesis on T.r, by composing
ConstrainT,wx,z on the left of the first equation above.

The second subcase is |wx| ≤ |T.l|. This proceeds essentially identically to the first
subcase, where we instead parse z = zlzr with |wxzl| = |T.l|.

Homomorphism. Before we can prove that the constraining functions are homomor-
phisms, we must make KT,w = RT,|w| × ET,|w| an additive group for |w| > 0. (Recall
that RT,0 = Zn

q , which is already a group.) We do so by defining a special group op-
eration AddT,w on the set RT,|w|—note that the operation depends on w itself, not just
its length. We then let KT,w be the product group with ET,|w|, under its usual addition
operation. For convenience, we overloadAddT,w to also refer to the group operation for
this product group, where the intended domain should be clear by context.

48 A. Banerjee et al.

For convenience in the recursive definitions, we let AddT,w take an auxiliary input
t ∈ Zn

q , which should be thought of as a kind of “carry” term that comes from reducing
the sum of two P-elements (in Zn�) back to P . Initializing this carry input to zero yields
the group operation. Formally, we define

AddT,w

(
t ∈ Zn

q ,v,v
′) :=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t+ v + v′ if |T | = 1, |w| = 0,

AddT.l,w(t,v,v
′) if |w| ≤ |T.l|,(

v̄l,AddT.r,wr

(
t̄,vr,v

′
r

))
if |T.l| < |w| < |T |,

Decode
(
t ·AT (w) + Decode−1(v) + Decode−1(v′)

)
if |w| = |T |,

where in the third case we parse w = wlwr for |wl| = |T.l| and v = (vl,vr),v
′ =

(v′
l,v

′
r) ∈ P ×RT.r,|wr |, and let (v̄l, t̄) = Decode(t ·AT.l(wl) + vl + v′

l).

We now prove that the Constrain functions are homomorphisms.

Lemma 3 (Homomorphism). For any parameters A0,A1 and any full binary tree T ,
any bit strings w, x such that |wx| ≤ |T |, and any t ∈ Zn

q and k,k′ ∈ KT,w , we have

ConstrainT,w,x(AddT,w(t,k,k
′))

= AddT,wx(t,ConstrainT,w,x(k),ConstrainT,w,x(k
′)) . (5)

In particular, by setting t = 0 we have that ConstrainT,w,x is an additive homomor-
phism.

Proof. The claim is trivial for x = ε, so from now on we assume that x �= ε. Let
i = |w| and j = |wx|, so 0 ≤ i < j ≤ |T |. Parse k = (v, (ey)), k′ = (v′, (e′y)), and
let k̄ = (v̄, (ēy)) = AddT,w(t,k,k

′).
As usual, we proceed by induction over |T |. In the base case, where w = ε and

|x| = |T | = 1, we have

ConstrainT,ε,x(v̄, (ēy)) = Decode(v̄ ·Ax + ēx)

= Decode((t+ v + v′) ·Ax + (ex + e′x))

= Decode(t ·Ax + (v ·Ax + ex) + (v′ ·Ax + e′x))

= AddT,x(t,Constrain(v, (ey)),Constrain(v
′, (e′y))) .

We now consider the inductive cases. Because Constrain simply passes an appro-
priate subset of the input error terms (the Zn� vectors in the key) to the output, for
simplicity of exposition we suppress the error terms in the remainder of the proof. The
final claim then follows by the product group structure of KT,w.

The first inductive case, where i < j ≤ |T.l|, follows immediately from the inductive
hypothesis on ConstrainT.l,w,x. For the second inductive case, where i < |T.l| < j, we
defer to the final paragrap of the proof. For the third inductive case, where |T.l| ≤ i,

Key-Homomorphic Constrained Pseudorandom Functions 49

parse w = wlwr and v = (vl,vr),v
′ = (v′

l,v
′
r), v̄ = (v̄l, v̄r), and note that by

definition,

v̄r = AddT.r,wrx(t̄,vr,v
′
r) , (6)

v̄l + t̄ ·G = t ·AT.l(wl) + vl + v′
l (7)

for some t̄ ∈ Zn
q . As in the code for Constrain, let kr = ConstrainT.r,wr,x(vr) and

similarly for k′
r, k̄r. Then by the inductive hypothesis on ConstrainT.r,wr ,x and Equa-

tion (6), we have

k̄r = ConstrainT.r,wr,x(v̄r) = AddT.r,wrx(t̄,kr,k
′
r) . (8)

Now if j = |wx| < |T |, then by definition of ConstrainT,w,x and AddT,wx (respec-
tively), the left- and right-hand sides of Equation (5) are respectively just v̄l prepended
to the left- and right-hand sides of Equation (8), so they are equal. But if j = |wx| = |T |,
then the output of ConstrainT,w,x(v̄) is “folded,” (i.e., in P × Zn

q), as are kr,k
′
r , k̄r as

defined above. We proceed by applying the folding operation to both sides of Equa-
tion (8), namely, apply Decode−1, add v̄l · G−1(AT.r(wrx)), and apply Decode. For
the left-hand side we get exactlyConstrainT,w,x(v̄), which is the left-hand side of Equa-
tion (5). On the right-hand side, by definition of AddT.r,wrx, by Equation (7), and by
definition of AT (·), we get Decode applied to

v̄l ·G−1(AT.r(wrx)) + Decode−1(AddT.r,wrx(t̄,kr,k
′
r))

= (v̄l + t̄ ·G) ·G−1(AT.r(wrx)) + Decode−1(kr) + Decode−1(k′
r)

= (t ·AT.l(wl) + vl + v′
l) ·G−1(· · ·) + Decode−1(kr) + Decode−1(k′

r)

= t ·AT (wx) + (vl ·G−1(· · ·) + Decode−1(kr))

+ (v′
l ·G−1(· · ·) + Decode−1(k′

r)) .

As desired, this is the right-hand side of Equation (5), by definition of ConstrainT,w,x

and AddT,wx.
Going back to the second inductive case, where i < |T.l| < j, it follows by writing

ConstrainT,w,x = ConstrainT,wxl,xr ◦ ConstrainT,w,xl
where x = xlxr for |wxl| =

|T.l|, then applying the inductive hypothesis on T.l and T.r. This completes the proof
of Lemma 3.

Pseudorandomness. We now show that the function family C defined above is pseu-
dorandom according to Definition 2, with all nodes R = {0, 1}≤|T | as challenge nodes.
This follows immediately from the PRG-like property demonstrated in Lemma 4 be-
low, together with the fact (shown in prior works [BGI14, KPTZ13, BW13]) that the
GGM construction [GGM86] instantiated with such a PRG family yields a prefix-
constrained PRF.3 In a bit more detail: in the following lemma we show that for
any string w ∈ {0, 1}<|T |, the function GT,w : KT,w → KT,w0 × KT,w1 defined as

3 It is easy to verify that this remains true even for our slightly stronger definition, where the
adversary can query the function at inputs corresponding to internal nodes of the GGM tree.

50 A. Banerjee et al.

G(k) = (ConstrainT,w,0(k),ConstrainT,w,1(k)) is a pseudorandom generator, under
the LWE assumption. Instantiating the GGM construction with these PRGs yields our
constraining functions ConstrainT,w,x, therefore they are pseudorandom.

Lemma 4. Let T be any full binary tree and w ∈ {0, 1}<|T | be any string. Then as-
suming the hardness of decision-LWEn,q,χ, for k ← DT,w we have

(ConstrainT,w,0(k),ConstrainT,w,1(k))
c≈ DT,w0 ×DT,w1 .

The proof of this lemma involves a simulator embedding the appropriate LWE chal-
lenge in the base case in the computation of ConstrainT,w,b. The rest of the proof con-
sists of showing the outputs corresponding to each distribution (LWE vs uniform) are
distributed accordingly. We defer the details to the full version.

4.3 Parallel Errorless Constrain

In this subsection we consider the “errorless” variants of our Constrain functions, which
we call PConstrain, and show that they can be computed in low depth. We also show
that the output of PConstrain is typically close to that of Constrain, when the errors
used in the latter are small.

Parallel Evaluation. The PConstrain functions simply correspond to the Constrain
functions when all the error vectors are set to zero, that is, PConstrainT,w,x(v, s) =
ConstrainT,w,x(v, s,0). In particular, this implies that the PConstrain functions are
both consistent and homomorphisms, because the Constrain functions are. In addition,
the errorless setting allows PConstrain to be computed with good parallelism (i.e., in
low depth) by an alternative algorithm that “short circuits” the computation via a base
case that constrains over an entire (sub)tree in just one step. More specifically, we mod-
ify the base case (Lines 1 and 2) of Algorithm 4.1 as shown in Algorithm 4.2 below.
The rest of the algorithm remains unchanged, apart from the fact that PConstrain does
not take or output any error terms.

In Lemma 5 we prove that the alternative algorithm is correct. Then in Section 4.3
we describe how PConstrain can be evaluated in low depth.

Algorithm 4.2. PConstrainT,w,x : RT,|w| → RT,|wx| for |wx| ≤ |T |, x �= ε

Input: v ∈ RT,|w|

1. if w = ε and |x| = |T | then � base case

2. return Decode(v ·AT (x))

3. The remaining code is the same as in Algorithm 4.1, but without any error terms

(ey).

For convenience, we define the function ProjectT,w : KT,w → RT,|w|, which just
outputs the RT,|w|-component of its input (dropping the ET,|w|-component, i.e., the
errors), and PrjConstrainT,w,x = ProjectT,wx ◦ ConstrainT,w,x.

Key-Homomorphic Constrained Pseudorandom Functions 51

The following lemma states that what the algorithm above does is indeed correct. It
is proved by a simple induction for complete inputs only, that is, for inputs x = ε and
w ∈ {0, 1}|T |. The complete proof appears in the full version.

Lemma 5. For any fully binary tree T , any bit strings w, x with |wx| ≤ |T |, and any
v ∈ RT,|w|,

PConstrainT,w,x(v) = PrjConstrainT,w,x(v,0) .

Parallel Evaluation of PConstrain. We now analyze the parallel complexity of the
PConstrain functions according to Algorithm 4.2 (and Algorithm 4.1) above. Our main
goal is to bound what we call the “nonlinear depth” of PConstrainT,w,x in terms of
the topology of T and the strings w, x. Nonlinear depth only takes into account the
nonlinear Decode and G−1 operations; the remaining operations are all linear over Zq .
For an implementation of PConstrain by an arithmetic or boolean circuit, the depth
will depend on the precise circuit model used and the implementation of the linear and
nonlinear operations, but in any case the final depth will be proportional to the nonlinear
depth.

To state our claim we recall from [BP14] the notions of “left depth” and “right depth”
of the jth leaf in a binary tree T , and of T itself. The left depth lT (j) (respectively, right
depth rT (j)) of the jth leaf is the number of edges from a parent to its left (resp., right)
child on the path from the root to that leaf. The left and right depths l(T), r(T) are
respectively the maximum left and right depths over all leaves in T .

Lemma 6. The function PConstrainT,w,x(v) can be computed via (1) a preprocessing
phase (independent of v) of nonlinear depth at most r(T), and (2) an online phase
(dependent on v) of nonlinear depth at most lT (|w|) + rT (|x|) ≤ l(T) + r(T).

We remark that in [BP14], the nonlinear depth of computing the (non-constrained)
PRF is just r(T), so one can obtain an extremely parallel PRF using a “left spine” tree
with r(T) = 1 and l(T) = |T | − 1 (this corresponds to the function from [BLMR13]).
But here, evaluating the PRF from a constrained key can require nonlinear depth pro-
portional to the sum of T ’s left and right depths. Therefore, to get good parallelism for
all w, x we must use a shallow tree T , e.g., one with depth O(log|T |). We defer the
proof of this Lemma to the full version.

Closeness. We next analyze the size of the P-components of d discussed above, as they
relate to the errors in the original key kε = (s, (ey)). Recalling that each P-component
of d corresponds to some left-child subtree in T , it is therefore sufficient to analyze
the accumulated error in fully constrained keys over arbitrary trees. For this purpose
we define a “growth factor” ΦT associated with an arbitrary full binary tree, defined
recursively as follows:

ΦT :=

{
1 if |T | = 1,√
(ΦT.l · n�)2 + (ΦT.r)2 otherwise.

(9)

We next state a lemma that is essentially a restatement of [BP14, Lemma 3.7].

52 A. Banerjee et al.

Lemma 7 (Error Bound). For any w such that |w| = |T |, let

(k, �) = ConstrainT,ε,w(0, (ey))

for (ey) ← ET,0, where the error distribution χ is subgaussian with parameter r. Then
Decode−1(k) = e (mod q) for some e ∈ Zn� that is subgaussian with parameter
r · ΦT .

More generally, let d = PrjConstrainT,ε,w(0, (ey)) ∈ RT,|w| for nonempty w ∈
{0, 1}≤|T |. Then if q ≥ 4r ·ΦT ·ω(

√
logλ), the following are true with 1−negl(λ) prob-

ability over the choice of (ey) ← ET,0: (1) the Zn
q -component of d is 0, and (2) each

P-component of d for subtree T ′ is subgaussian with parameter r · ΦT ′ .

4.4 “Rounded” Function Family C
We now define our final “rounded” family of constraining functions, denoted C, which
we prove to be pseudorandom, as well as (computationally) key-homomorphic and con-
sistent. In C we use the same DAG on {0, 1}≤|T | as in the noisy function family, but we
define somewhat different “rounded” (and errorless) key spaces, and thereby different
constraining functions and group operations.

We note that in this scenario, we would only be able to achieve a computational ver-
sion of consistency and homomorphism. That is to say that it is computationally infea-
sible to find inputs on which our family is not consistent (respectively, homomorphic).
We discuss about these properties in more detail in the full version.

Rounding and key spaces. The family C is parameterized by a “rounding factor” eT ′

for each subtree T ′ of T . For convenience of analysis, we choose these factors to all
divide q, hence they are also powers of two. The factors are defined recursively to
satisfy the inequalities

eT ′ ≥
{
r · λω(1) if |T ′| = 1,

(eT ′.l · (n�) + eT ′.r) · λω(1) otherwise.
(10)

Note that by inspection of Equations (9) and (10), for all subtrees T ′ we have

eT ′ ≥ r · ΦT ′ · λω(1) .

Next, mirroring the definitions from Section 4.2, we define the “rounded” domain
KT,j for 0 ≤ j < |T | as follows

RT,j :=

⎧⎪⎨⎪⎩
Zn
q if |T | = 1,

RT.l,j if j ≤ |T.l|,
�P�eT.l

×RT.r,j−|T.l| otherwise.

Key-Homomorphic Constrained Pseudorandom Functions 53

As with R, we also define RT,|T | = �P�eT × Zn
q . Note that for every subtree T ′ of

T , we have that �P�eT ′ ⊆ P (because every eT ′ divides q), we have RT,j ⊆ RT,j . The

key space for w ∈ {0, 1}≤|T | and its associated distribution are then defined to be

KT,w := RT,|w| ,

DT,w := U(KT,w) .

Constraining functions. We first define RoundT,j : RT,j → RT,j for 0 ≤ j < |T | as
follows:

RoundT,j(v) :=

⎧⎪⎨⎪⎩
v if |T | = 1

RoundT.l,j(v) if 0 < j ≤ |T.l|
(�vl�eT.l

,RoundT.r,j−|T.l|(vr)) otherwise,

where we parse (v, s) = (vl,vr) ∈ P×RT.r,j−|T.l| in the last case above. For (v, s) ∈
RT,|T |, we simply define RoundT,|T |(v, s) := (�v�eT , s).

With this definition in mind, the “rounded” constraining functionsPConstrainT,w,x :
RT,|w| → KT,w are simply defined as

PConstrainT,w,x := RoundT,|wx| ◦ PConstrainT,w,x .

Pseudorandomness. We now show that the construction of the family C from Sec-
tion 4.4 is a constrained PRF, according to Definition 2. Here, we prove selctive security
of the function as defined in Definition 2, and use the Security of the Constrain family
of functions, as defined in Section 4.2 above. We note that this theorem is very similar
to analogous ones proved in prior work [BPR12, BP14], and thus we defer the proof to
the full version.

Theorem 2. The family C described above is pseudorandom for the set of challenge
nodes {0, 1}≤|T |, assuming that the family C is also pseudorandom over the same set of
challenge nodes, where the χ distribution of C is a subgaussian distribution over Z with
parameter r, where r is the number used to define the rounding factors in Equation (10).

5 Proxy Re-encryption with Fine-Grained Access Control

Below we explain the symmetric proxy re-encryption scheme as defined by Boneh et al.
[BLMR13]. Using this scheme as a starting point, we then construct our scheme which
additionally allows for fine-grained access control.

5.1 Symmetric-key Proxy Re-encryption from Key Homomorphic PRFs

As an application of key homomorphic PRFs Boneh et al. [BLMR13] construct a
symmetric-key proxy re-encryption scheme, a symmetric-key analogue of public-key
proxy re-encryption [BBS98, CH07, ABH09, LV08]. A symmetric proxy re-encryption

54 A. Banerjee et al.

scheme is a symmetric encryption scheme, where given a ciphertext c = Enc(k,m) of
some message m under key k, a proxy can translate this ciphertext to a new ciphertext
c′ = Enc(k′,m) under a new key given only some re-encryption token Δ. The security
definition requires roughly that the token only allows to translate ciphertexts in this way,
but does not reveal anything about the encrypted message or the involved keys. Given a
key-homomorphic PRF F : K × X → Y , where (K, ◦), (Y,⊗) are groups such that

F (k ◦ k′, x) = F (k, x)⊗ F (k′, x)

and any symmetric encryption scheme (enc : Y ×M → C, dec : Y ×C → M) we con-
struct Πproxy = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) as follows. Setup(1λ)
outputs public parameters pp to be used by F . All algorithms will have pp as input,
which we will not denote explicitly. The key generation algorithm KeyGen simply out-
puts a random key k ← K for F . Encryption of the proxy re-encryption scheme is
defined as Enc(k,m) = (r, c1, c2) where

c1 = κ⊗ F (k, r) , c2 = enc(κ,m) for random (r, κ) ← X ×Y (11)

Decryption is Dec(r, c1, c2) = dec(c1 ⊗ F (k, r)−1, c2) = m . The re-encryption-key
generation ReKeyGen takes two keys k, k′ and outputs a re-encryption token

ReKeyGen(k, k′) = k−1 ◦ k′ .

The re-encryption procedure ReEnc takes a re-encryption token Δ = ReKeyGen(k, k′)
and a ciphertext under key k and outputs a ciphertext of the same plaintext under the
key k′ as

ReEnc(Δ, (r, c1, c2)) = (r, c1 ⊗ F (Δ, r), c2) .

Note (r, c1⊗F (Δ, r), c2) = (r, κ⊗F (k, r)⊗F (Δ, r)), c2) = (r, κ⊗F (k′, r), c2) is in-
deed an encryption of m under key k′ as required. We refer the reader to [BLMR13] for
a formal definition of symmetric-key proxy re-encryption and the proof of the following

Theorem 3 ([BLMR13]). If F is a secure key-homomorphic PRF where the input
space X is of superpolynomial size, then Πproxy is a secure proxy re-encryption scheme.

The superpolynomial domain is required in order for the probability that any two of the
randomly chosen r ∈ X collide to be negligible.

5.2 Fine-Grained Access Control from Constrained PRFs

Assume the PRF F from the previous section is not only key-homomorphic, but also a
constrained PRF. That is, there is a function Constrain : K × P → KP which given a
key k and some predicate p outputs a constrained key kp that allows to evaluate F (k, ·)
on all inputs x where p(x) = 1.

Key-Homomorphic Constrained Pseudorandom Functions 55

Consider the proxy re-encryption scheme outlined above, but where we slightly
change the encryption procedure from Eq. (11), and now instead of choosing r at ran-
dom during encryption, it is given as part of the input. We call this input x the attributes
of the ciphertext. I.e., we let Enc(k,m, x) = (x, c1, c2) with

c1 = κ⊗ F (k, x) , c2 = enc(κ,m) for random κ ← Y .

This little change now gives us an extra property: given a constrained key kp for a
predicate p, one can decrypt ciphertexts with attribute x iff p(x) = 1. The correctness
property of Enc as a proxy re-encryption scheme is not affected by this change.

Informally, the security notion (which we will define formally later) requires that
ciphertexts encrypted for some attributes x under key k hide the plaintext as long as it
cannot be trivially computed from the outputs of the queries of the adversary (where we
allow adversaries to make re-encryption queries and ask for constrained keys).

The security notion of constrained PRFs implies that given keys kp1 , . . . , kp�
for

predicates where pi(x) = 0 for all i = 1, . . . , �, the output F (k, x) is pseudorandom. It
might therefore seem that the key κ is pseudorandom given the encapsulated key c1 =
κ⊗F (k, x). Unfortunately, as discussed in the introduction, this is not true, because in a
CPA attack the adversary can not only ask for constrained keys, but also for ciphertexts
which reveal function values. We therefore will use a carefully defined probabilistic
encoding of attributes such that the functionality of the scheme is preserved, while
solving the problems discussed in the introduction.

Randomizable Predicates. How to appropriately define the required encoding is best
explained by an example: Consider a bit-fixing CPRF F with inputs from {0, 1}n. Re-
call that given a constrained key kp ← Constrain(k, p) for a predicate p ∈ {0, 1, ?}n,
we can compute F (k, x) for any attribute x where for every i ∈ [n] we have (x[i] =
p[i]∨p[i] = ?). For any such predicate p, we denote with p+ the predicate on n+λ bits
(where λ is a statistical security parameter) as p+(x‖α) = p(x), so p+ simply evaluates
p on the first n bits.

In the encryption scheme, the predicate space is still {0, 1}n, but F is evaluated
on inputs of length n + λ and a constrained key for p ∈ {0, 1, ?}n is computed as
kp+ ← Constrain(k, p‖?λ). During encryption we now compute the encapsulated key
as c1 = κ ⊗ F (k, x‖α) for some random α (α is also output as part of the ciphertext).
Note that this preserves the proxy re-encryption property: given kp+ one can compute
F (k, x‖α) on any (x, α) where p(x) = 1. On the other hand, we’ll show that the
c1 = κ ⊗ F (k, x‖α) part of the challenge ciphertext hides the encapsulated key κ
because F (k, x‖α) is pseudorandom.

Definition 4. A randomization of a set of predicates P is given by an efficient injective
encoding [·, ·] : Pin×{0, 1}λ → Pout (Pin,Pout ⊆ P and λ being a statistical security
parameter) and a mapping φ : Pin → Pout (we’ll use p+ as shortcut for φ(p)) such
that p+([x1, x2]) = 1 ⇐⇒ p(x1) = 1. For every [x, r] we require that there exists
a p[x,r] ∈ P s.t. p[x,r]([x, r]) = 1 but p[x,r]([x′, r′]) = 0 for all (x′, r′) �= (x, r) ∈
Pin × {0, 1}λ.

For a CPRF for predicates P that can be randomized, we define Constrain+(k, p) ≡
Constrain(k, p+). Note that a key k[x′,r′] ← Constrain(k, p[x,r]) allows to evaluate

56 A. Banerjee et al.

F (k, ·) only on the value [x, r] in the range of [·, ·] (but might allow to evaluate it on
other points not in the range of the encoding).4

With this definition, the encoding for bit-fixing CPRFs we discussed above can be cast
as a randomized predicate with [x1, x2] = x1‖x2 simply being concatenation and p+ =
p‖?λ for any p ∈ {0, 1, ?}n.

For prefix CPRF, we let τ : {0, 1, 2} → {0, 1}2 be an encoding of a ternary to a bi-
nary alphabet (say, 0, 1, 2 maps to 00, 01, 10). Then we can use the encoding [x1, x2] =
τ(x1‖2‖x2) and set φ(x) = τ(x) (so Constrain+(k, x) = Constrain(k, τ(x))).5

We will prove the following theorem.

Theorem 4. If F is a secure key-homomorphic constrained PRF, the scheme Πfg-proxy

defined in Section 5.4 is a secure proxy re-encryption scheme with fine-grained access
control (as defined in Section 5.3).

5.3 Definition of Proxy Re-encryption with Fine-Grained Access Control

A proxy re-encryption scheme with fine-grained access control for predicates P over
X , where for p ∈ P , x ∈ X we denote by p(x) = 1 that p holds on x, is given by
algorithms

Πfg-proxy = (Setup,KeyGen,Enc,Dec,Constrain,ReKeyGen,ReEnc) .

Setup(1λ). Setup outputs a set of public parameters pp, which are an implicit input to
all other algorithms.

KeyGen(1λ). Key generation outputs a key k ∈ K.
Enc : K × X ×M → X × C. Encryption takes a key k, attributes x and a message m

and outputs a ciphertext (x, c) ← Enc(k, x,m).
ConstrainENC : K × P → KP . Constraining takes a key k and a predicate p and outputs

a constrained key kp ← ConstrainENC(k, p) (we use the subscript ENC to avoid
confusion with the Constrain algorithm of the CPRF).

Dec : (KP ∪K) ×X × C → M. Decryption takes k and a ciphertext (x, c) and out-
puts m ← Dec(k, x, c); except when k = kp ∈ KP and p(x) = 0, then it outputs
⊥.

4 Looking forward, this condition will allow us to replace (in the reduction) an output value
F (k, [x, r]) with a constrained key, while only excluding one possible challenge ciphertext.
We observe that without this condition simple concatenation [x1, x2] = x1‖x2 would already
give a randomized predicate for prefix predicates, but this would lead to a trivially insecure
encryption scheme Enc(k, x,m) = (r,m ⊗ F (k, [x, r])) if using a GGM based prefix CPRF.
In such CPRFs, given some F (k, x‖r) (that an adversary can learn via an encryption query) one
can compute F (k, x‖r‖r′) for any r′. Using this fact we can break security of the encryption
scheme by asking for a challenge for attribute x′ = x‖r which we’ll be able to decrypt.

5 The extra symbol 2 in-between the prefix x1 and the randomness part x2 is there so the condi-
tion from Def. 4 is satisfied. In particular, note that for any z = [x1, x2] = τ (x1‖2‖x2), the
constrained key kz = Constrain(k, z) allows to evaluate F (k, ·) only on inputs of the form
z‖w, but this is in the range of the encoding [·, ·] only if w is empty (i.e., only on the unique
input z in the range of [·, ·]). Note that with this encoding the attack from Footnote 4 does no
longer work.

Key-Homomorphic Constrained Pseudorandom Functions 57

ReKeyGen : K ×K → K. Re-encryption key-generation takes two keys and outpus a
re-encryption key kΔ ← ReKeyGen(k, k′).

ReEnc : K × C → C. Re-encryption takes a re-encryption key (from k to k′) and a ci-
phertext under k, and outputs a ciphertext of the same plaintext under k′.

Correctness. For any pp output by Setup (which is an implicit input to all algorithms)
and all k, x,m and p with p(x) = 1, let c ← Enc(k, x,m). Then we require the follow-
ing: Dec(k, x, c) = m. For all kp ← ConstrainENC(k, p): Dec(kp, x, c) = m. For any
k′, kΔ ← ReKeyGen(k, k′), c′ ← ReEnc(kΔ, c) we have Dec(k′, c′, x) = m.

Security. The notion of security for proxy re-encryption with fine-grained access control
below is a generalization of the security notion for proxy re-encryption of [BLMR13].

We consider a game between an adversary A and a challenger. The challenger runs
pp ← Setup(1λ) (and pp is given to A and to all other algorithms as input), initializes a
counter ctr := 1 and samples a random bit b ∈ {0, 1}. Then A can make the following
queries.

Uncorrupted Key-Generation: Challenger samples kctr ← KeyGen(1λ) and increases
ctr (the key is not given at A).

Corrupted Key-Generation: Challenger samples kctr ← KeyGen(1λ) and increases ctr.
The key is given to A.

Re-encryption Key-Generation: On input (i, j), i, j ≤ ctr return ReKeyGen(ki, kj) to
A. We require that both keys ki, kj are uncorrupted.

Constrained Key Request: On input (i, p) return ConstrainENC(k
i, p) to A.

Encryption: On input (i, x,m) return Enc(ki, x,m) to A.
Re-Encryption: On input (i, j, c) return ReEnc(ReKeyGen(ki, kj), c) to A. We require

that kj was generated using uncorrupted key generation.
Challenge: This oracle is queried only once in an input (i∗, x∗,m∗

0,m
∗
1), we require

that ki was generated using uncorrupted key generation, and for every “Constrained
Key Request” query (i, p) where ki was generated using uncorrupted key genera-
tion, we have p(m∗

0) = p(m∗
1) = 0 (this also holds for queries to be made after this

challenge query).
The challenger returns Enc(ki, x∗,m∗

b) to A.
Guess: A outputs a guess bit b′ (the experiment stops at this point).

Definition 5. Πfg-proxy is a secure proxy re-encryption scheme with fine-grained access
control if for all polynomial-time adversaries A, the advantage |Pr[b = b′] − 1/2| in
the above game is negligible in the security parameter λ.

A Remark on Selective Security. Note that the above notion considers selective security
in the sense that the adversary must commit whether a key is corrupted or not during
its generation (the challenge is chosen adaptively, and for this we’ll have to assume
adaptive security of the underlying constrained PRF). This will be useful in the security
proof, where the reduction will sample corrupted keys itself, and implicitly uses the
key of the challenger in the constrained PRF security game to generate uncorrupted
keys. We can get selective security via “complexity leveraging”, but this loses a huge

58 A. Banerjee et al.

exponential (in the number m of generated keys) factor in the security reduction6 as
we have to guess initially which keys will be corrupted. When the encryption scheme is
actually used to outsource data to an untrusted server, we can assume that re-encryption-
key generation queries are not arbitrary, but only applied to consecutive keys, i.e., we
only can ask for re-encryption keys ReKeyGen(ki, ki+1). In this case, adaptive security
can be proven losing only a quadratic factor (as for the reduction it will be sufficient to
only guess which key will be the first corrupted key before and after the key chosen for
the challenge.)

5.4 Construction of Proxy Re-encryption with Fine-Grained Access Control
from Key-Homomorphic Constrained PRFs

We now describe how to construct a scheme Πfg-proxy from a key-homomorphic con-
strained PRF F for predicates P that can be randomized (cf. Def. 4) and any symmetric
encryption scheme (enc, dec).

Setup(1λ) samples and outputs public parameters pp as used by F .
KeyGen(1λ) outputs a random key k ∈ K for F .
Enc(k, x,m) picks a random α ∈ {0, 1}λ, a random key κ for enc and sets (with [·, ·]

as in Def 4)

Enc(k,m, x) = ([x, α], c1, c2) , where c1 = κ⊗F (k, [x, α]) and c2 = enc(κ,m)

Dec(kp, x, c = ([x, α], c1, c2)) checks if p(x) = 1. If so, it computes κ = c1 ⊗
F (kp, [x, α])

−1 and returns dec(κ, c2).
ConstrainENC(k, p) returns kp ← Constrain+(k, p) (cf. Def. 4)
ReKeyGen(k, k′) returns kΔ = k′ ◦ k−1.
ReEnc(kΔ, c = ([x, α], c1, c2) returns c′ = ([x, α], F (kΔ, [x, α])⊗ c1, c2).

Proof of Theorem 4. We now show that the scheme constructed in Section 5.4 satis-
fies the security notion from Definition 5. We construct an adversary B, who given an
adversary A that breaks the security of the scheme, breaks the security of the underly-
ing constrained PRF with almost the same advantage (we lose an exponentially small
additive term due to the possibility of collisions in the randomness used for encryption).

At setup, adversary B gets the public parameters pp for F , and forwards them to A.
Now, B has access to an oracle Constrain(k, ·) (below Constrain+(k, ·) is as in Def. 4).
B will answer A’s queries as follows.

Corrupted Key-Generation: B samples a key kctr ← KeyGen(1λ), increases ctr and
gives the key to A.

Uncorrupted Key-Generation: B samples a key kctr
Δ and implicitly sets kctr = k ◦ kctr

Δ

where k is the key used in the Constrain(k, ·) oracle of the security game against
the CPRF. Note that kctr is uniform.

6 That is, an attacker with advantage ε against the scheme is turned into an adversary with advan-
tage ε/2m against the constrained PRF.

Key-Homomorphic Constrained Pseudorandom Functions 59

Re-encryption Key-Generation: On input (i, j) where i, j ≤ ctr are uncorrupted keys,
B must return ReKeyGen(ki, kj) to A. It can compute these without knowing k as

ReKeyGen(ki, kj) = k ◦ kj
Δ ◦ (k ◦ ki)−1 = kj

Δ ◦ (ki
Δ)−1

Constrained Key Request: On input (i, p) B queries its oracle for the key kp+ ←
Constrain+(k, p), then computes ki

p+ = kp+ ◦ Constrain+(ki
Δ, p) and returns this

key to A.
Encryption: On input (i,m, x) compute ([x, α], c1, c2) ← Enc(k,m, x) as in Sect. 5.4,

note that for this we have to learn F (k, [x, α]). For this B queries for the constrained
key k[x,α] ← Constrain(k, p[x,α]) (cf. Def. 4), and then computes F (k, [x, α]) us-
ing this key.
Return c = ([x, α], c′1, c2) to A where c′1 = c1⊗F (ki

Δ, [x, α]) (this step re-encrypts
from k to ki).

Re-Encryption: On input (i, j, c) return ReEnc(ReKeyGen(ki, kj), c) to A (note that
we already explained how to compute ReEnc(ReKeyGen(ki, kj), c)).

Challenge and Guess: If A outputs the challenge (i∗, x∗,m∗
0,m

∗
1) (where for any pred-

icate p where there was a constrain key-request (i, p) we have p(x∗) = 0).
B samples a random α and forwards the challenge [x∗, α] to its CPRF challenger
(note that as α is random, with overwhelming probability B hasn’t made the query
Constrain(k, p[x,α]) in a previous encryption query, and thus this is a legal chal-
lenge.
B gets from his challenger a value γ which is either F (k, [x∗, α]) or a uniformly
random, depending on whether the challenger’s bit b was 0 or 1.
B samples a random bit β, a random key κ and computes c = ([x, α], κ ⊗ γ,
enc(κ,m∗

b̂
)). B sends c to A, who answers with β′.

If β = β′ B outputs the guess bit b′ = 0 (guessing γ is pseudorandom), otherwise
b′ = 1 (guessing γ is uniform).

We analyze the probability that b = b′. Conditioned on b = 0, c is correctly generated
and thus A has some non-negligible advantage δ in guessing correctly. If b = 1, the
c1 = κ⊗ γ part of the ciphertext is independent of κ, and thus A’s advantage is some
negligible εenc (by the security of enc).

Pr[b = b′]− 1/2

1 ≥ Pr[b = b′|β = 0]− 1/2

2
+

Pr[b = b′|β = 1]− 1/2

2
≥ δ

2
− εenc

2
,

which is non-negligible assuming εenc is negligible but δ is not.

References

[ABH09] Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In: Fis-
chlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidelberg
(2009)

[BBS98] Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

60 A. Banerjee et al.

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional Signatures and Pseudorandom Func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

[BLMR13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013)

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: STOC, pp. 575–584 (2013)

[BP14] Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom func-
tions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616,
pp. 353–370. Springer, Heidelberg (2014)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–
737. Springer, Heidelberg (2012)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–
300. Springer, Heidelberg (2013)

[CH07] Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp.
185–194. ACM Press (October 2007)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17.
Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press (October 2013)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33, 792–807 (1986)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudo-
random functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 669–684. ACM Press (November 2013)

[LV08] Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012)

[NPR99] Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer,
Heidelberg (1999)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333–342 (2009)

[PST14] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
J. ACM 56(6), 1–40 (2005)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press
(May/June 2014)

Aggregate Pseudorandom Functions

and Connections to Learning

Aloni Cohen1, Shafi Goldwasser1,2, and Vinod Vaikuntanathan1

1 MIT, USA
2 Weizmann Institute of Science, Israel

Abstract. In the first part of this work, we introduce a new type of
pseudo-random function for which “aggregate queries” over exponential-
sized sets can be efficiently answered. We show how to use algebraic
properties of underlying classical pseudo random functions, to construct
such “aggregate pseudo-random functions” for a number of classes of
aggregation queries under cryptographic hardness assumptions. For ex-
ample, one aggregate query we achieve is the product of all function
values accepted by a polynomial-sized read-once boolean formula. On
the flip side, we show that certain aggregate queries are impossible to
support. Aggregate pseudo-random functions fall within the framework
of the work of Goldreich, Goldwasser, and Nussboim [GGN10] on the
“Implementation of Huge Random Objects,” providing truthful imple-
mentations of pseudo-random functions for which aggregate queries can
be answered.
In the second part of this work, we show how various extensions of

pseudo-random functions considered recently in the cryptographic liter-
ature, yield impossibility results for various extensions of machine learn-
ing models, continuing a line of investigation originated by Valiant and
Kearns in the 1980s. The extended pseudo-random functions we address
include constrained pseudo random functions, aggregatable pseudo ran-
dom functions, and pseudo random functions secure under related-key
attacks.

1 Introduction

Pseudo-random functions (PRF), introduced by Goldreich, Goldwasser and Mi-
cali [GGM86], are a family of indexed functions for which there exists a
polynomial-time algorithm that, given an index (which can be viewed as a secret
key) for a function, can evaluate it, but no probabilistic polynomial-time algo-
rithm without the secret key can distinguish the function from a truly random
function – even if allowed oracle query access to the function. Pseudo-random
functions have been shown over the years to be useful for numerous crypto-
graphic applications. Interestingly, aside from their cryptographic applications,
PRFs have also been used to show impossibility of computational learning in
the membership queries model [Val84], and served as the underpinning of the
proof of Razborov and Rudich [RR97] that natural proofs would not suffice for
unrestricted circuit lower bounds.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 61–89, 2015.
c© International Association for Cryptologic Research 2015

62 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

Since their inception in the mid eighties, various augmented pseudo random
functions with extra properties have been proposed, enabling more sophisti-
cated forms of access to PRFs and more structured forms of PRFs. This was
first done in the work of Goldreich, Goldwasser, and Nussboim [GGN10] on
how to efficiently construct “huge objects” (e.g. a large graph implicitly de-
scribed by access to its adjacency matrix) which maintain combinatorial prop-
erties expected of a random “huge object.” Furthermore, they show several
implementations of varying quality of such objects for which complex global
properties can be computed, such as computing cliques in a random graph,
computing random function inverses from a point in the range, and computing
the parity of a random function’s values over huge sets. More recently, fur-
ther augmentations of PRFs have been proposed, including: the works on con-
strained PRFs1 [KPTZ13a, BGI14a, BW13a] which can release auxiliary secret
keys whose knowledge enables computing the PRF in a restricted number of lo-
cations without compromising pseudo-randomness elsewhere; key-homomorphic
PRFs [BLMR13] which are homomorphic with respect to the keys; and related-
key secure PRFs [BC10, ABPP14]. These constructions yield fundamental ob-
jects with often surprising applications to cryptography and elsewhere. A case
in point is the truly surprising use of constrained PRFs [SW14], to show that
indistinguishability obfuscation can be used to resolve a long-standing problem
of deniable encryption, among many others.

In the first part of this paper, we introduce a new type of augmented PRF
which we call aggregate pseudo random functions (AGG-PRF). An AGG-PRF
is a family of indexed functions each associated with a secret key, such that
given the secret key, one can compute aggregates of the values of the function
over super-polynomially large sets in polynomial time; and yet without the secret
key, access to such aggregated values cannot enable a polynomial time adver-
sary (distinguisher) to distinguish the function from random, even when the
adversary can make aggregate queries. Note that the distinguisher can request
and receive an aggregate of the function values over sets (of possibly super-
polynomial size) that she can specify. Examples of aggregate queries can be the
sum/product of all function values belonging to an exponential-sized interval, or
more generally, the sum/product of all function values on points for which some
polynomial time predicate holds. Since the sets over which our function values
are aggregated are super-polynomial in size, they cannot be directly computed
by simply querying the function on individual points. AGG-PRFs cast in the
framework of [GGN10] are (truthful, pseudo) implementations of random func-
tions supporting aggregates as their “complex queries.” Indeed, our first example
of an AGG-PRF for computing parities over exponential-sized intervals follows
directly from [GGN10] under the assumption that one-way functions exist.

We show AGG-PRFs under various cryptographic hardness assumptions (one-
way functions and DDH) for a number of types of aggregation operators such as
sums and products and for a number of set systems including intervals, hyper-
cubes, and (the supports of) restricted computational models such as decision

1 Constrained PRFs are also known as Functional PRFs and as Delegatable PRFs.

Aggregate Pseudorandom Functions and Connections to Learning 63

trees and read-once Boolean formulas. We also show negative results: there are
no AGG-PRFs for more expressive set systems such as (the supports of) CNF
formulas. For a detailed description of our results, see Section 1.1.

In the second part of this paper, we embark on a study of the connection
between the new augmented PRF constructions of recent years (constrained,
related-key, aggregate) and the theory of computational learning. We recall at
the outset that the fields of cryptography and machine learning share a curious
historical relationship. The goals are in complete opposition and at the same
time the aesthetics of the models, definitions and techniques bear a striking sim-
ilarity. For example, a cryptanalyst can attack a cryptosystem using a range of
powers from only seeing ciphertext examples to requesting to see decryptions of
ciphertexts of her choice. Analogously, machine learning allows different powers
to the learner such as random examples versus membership queries and shows
that certain powers allow learners to learn concepts in polynomial time whereas
others will fail. Even more directly, problems which pose challenges for machine
learning such as Learning Parity with Noise (LPN) have been used as the un-
derpinning for building secure cryptosystems, and as mentioned above [Val84]
observes that the existence of PRFs in a complexity class C implies the existence
of concept classes in C which can not be learned under membership queries, and
[KV94] extends this direction to some public key constructions.

In the decades since the introduction of PAC learning, new computational
learning models have been proposed, such as the recent “restriction access”
model [DRWY12] which allows the learner to interact with the target concept by
asking membership queries, but also to obtain an entire circuit that computes
the concept on a random subset of the inputs. For example, in one shot, the
learner can obtain a circuit that computes the concept class on all n-bit inputs
that start with n/2 zeros. At the same time, the cryptographic research land-
scape has been swiftly moving in the direction of augmenting traditional PRFs
and other cryptographic primitives to include higher functionalities. This brings
to mind natural questions:

– Can one leverage augmented pseudo-random function constructions to estab-
lish limits on what can and cannot be learned in augmented machine learning
models?

– Going even further afield, can augmented cryptographic constructs suggest
interesting learning models?

We address these questions in the second part of this paper. For a detailed
description of our findings, see Section 1.2.

1.1 Our Results: Aggregate Pseudo Random Functions

Aggregate Pseudo Random Functions (AGG-PRF) are indexed families of
pseudo-random functions for which a distinguisher (who runs in time polynomial
in the security parameter) can request and receive the value of an aggregate (for
example, the sum or the product) of the function values over certain large sets

64 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

and yet cannot distinguish oracle access to the function from oracle access to
a truly random function. At the same time, given the function index (in other
words, the secret key), one can compute such aggregates over potentially super-
polynomial size sets in polynomial time. Such an efficent aggregation algorithm
cannot possibly exist for random functions. Thus, this is a PRF family that is
very unlike random functions (in the sense of being able to efficiently aggregate
over superpolynomial size sets), and yet is computationally indistinguishable
from random functions.

To make this notion precise, we need two ingredients. Let F = {Fλ}λ>0 where
each Fλ = {fK : Dλ → Rλ}K∈Kλ

is a collection of functions on a domain Dλ to
a range Rλ, computable in time poly(λ).2 The first ingredient is a collection of
sets (also called a set system) S = {S ⊆ D} over which the aggregates can be
efficiently computed given the index K of the function. The second ingredient
is an aggregation function Γ : R∗ → {0, 1}∗ which takes as input a tuple of
function values {f(x) : x ∈ S} for some set S ∈ S and outputs the aggregate
Γ (f(x1), . . . , f(x|S|)).

The sets are typically super-polynomially large, but are efficiently recogniz-
able. That is, for each set S, there is a corresponding poly(λ)-size circuit CS that
takes as input an x ∈ D and outputs 1 if and only if x ∈ S.3 Throughout this pa-
per, we will consider relatively simple aggregate functions, namely we will treat
the range of the functions as an Abelian group, and will let Γ denote the group
operation on its inputs. Note that the input to Γ is super-polynomially large (in
the security parameter λ), making the aggregate computation non-trivial.

This family of functions, equipped with a set system S and an aggregation
function Γ is called an aggregate PRF family (AGG-PRF) if the following two
requirements hold:

1. Aggregatability: There exists a polynomial (in the security parameter λ) time
algorithm that given an index K to the PRF fK ∈ F and a circuit CS that
recognizes a set S ∈ S, can compute Γ over the PRF values fK(x) for all
x ∈ S. That is, it can compute

AGGK,Γ (S) := Γx∈S fK(x)

2. Pseudorandomness: No polynomial-time distinguisher which can specify a
set S ∈ S as a query and can receive as an answer either AGGK,Γ (S) for a
random function fK ∈ F or AGGh,Γ (S) for a truly random functions h, can
distinguish between the two cases.

We show a number of constructions of AGG-PRF for various set systems
under different cryptographic assumptions. We describe our constructions below,
starting from the least expressive set system.

2 In this informal exposition, for the sake of brevity, we will sometimes omit the
security parameter and refrain from referring to ensembles.

3 All the sets we consider are efficiently recognizable, and we use the corresponding
circuit as the representation of the set. We occasionally abuse notation and use S
and CS interchangeably.

Aggregate Pseudorandom Functions and Connections to Learning 65

Interval Sets. We first present AGG-PRFs over interval set systems with respect
to aggregation functions that compute any group operation. The construction
can be based on any (standard) PRF family.

Theorem 1 (Group Summation Over Intervals, from One-Way Func-
tions [GGN10]). 4 Assume one-way functions exist. Then, there exists an
AGG-PRF family that maps Zp to a group G, with respect to a collection of sets
defined by intervals [a, b] ⊆ Zp and the aggregation function computing the group
operation on G.

The construction works as follows. Let F : {0, 1}n×{0, 1}n → {0, 1} be a (stan-
dard) pseudo-random function family based on the existence of one-way func-
tions [GGM86, HILL99]. Construct an AGG-PRF family G supporting efficient
computation of group aggregation functions. Define

G(k, x) = F (k, x)− F (k, x− 1)

To aggregate G, set ∑
x∈[a,b]

G(k, x) = F (k, b)− F (k, a− 1)

Given k, this can be efficiently evaluated.
Another construction from [GGN10] achieves summation over the integers for

PRFs whose range is {0, 1}. We omit the details of the construction, but state
the theorem for completeness.

Theorem 2 (Integer Summation Over Intervals, from One-Way Func-
tions [GGN10]). Assume one-way functions exist. Then, there exists an AGG-
PRF family that maps Z2λ to {0, 1}, with respect to a collection of sets defined
by intervals [a, b] ⊆ Z2λ and the aggregation function computing the summation
over Z.

Hypercubes. We next construct AGG-PRFs over hypercube set systems. This
partially addresses Open Problem 5.4 posed in [GGN10], whether one can ef-
ficiently implement a random function with range {0, 1} with complex queries
that compute parities over the function values on hypercubes. Under subexpo-
nential DDH hardness, Theorem 3 answers the question for products rather than
parities for a function whose range is a DDH group.

Throughout this section, we take Dλ = {0, 1}� for some polynomial � = �(λ).
A hypercube Sy is defined by a vector y ∈ {0, 1, �}� as

Sy = {x ∈ {0, 1}� : ∀i, yi = � or xi = yi}

We present a construction under the sub-exponential DDH assumption.

4 Observed even earlier by Reingold and Naor and appeared in [GGI+02] in the context
of small space streaming algorithms.

66 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

Theorem 3 (Hypercubes from DDH). Let HC = {HC�(λ)}λ>0 where HC� =
{0, 1, �}� be the set of hypercubes on {0, 1}�. Then, there is a construction of
AGG-PRF supporting the set system HC with the product aggregation function,
assuming the subexponential DDH assumption.

We sketch the construction from DDH below. Our DDH construction is the
Naor-Reingold PRF [NR04]. Namely, the function is parametrized by an �-tuple
k = (k1, . . . , k�) and is defined as

F (k, x) = g
∏

i:xi=1 ki

Let us illustrate aggregation over the hypercube y = (1, 0, �, �, . . . , �). To aggre-
gate the function F , observe that∏

{x: x1=1,x2=0}
F (k, x) =

∏
{x: x1=1,x2=0}

g
∏

i:xi=1 ki

= g
∑

{x:x1=1,x2=0}
∏

i:xi=1 ki

= g(k1)(1)(k2+1)(k3+1)···(k�+1)

which can be efficiently computed given k.

Decision Trees. A decision tree T on � variables is a binary tree where each
internal node is labeled by a variable xi, the leaves are labeled by either 0 or 1,
one of the two outgoing edges of an internal node is labeled 0, and the other is
labeled 1. Computation of a decision tree on an input (x1, . . . , x�) starts from
the root, and at each internal node n, proceeds by taking either the 0-outgoing
edge or 1-outgoing edge depending on whether xn = 0 or xn = 1, respectively.
Finally, the output of the computation is the label of the leaf reached through
this process. The size of a decision tree is the number of nodes in the tree.

A decision tree T defines a set S = ST = {x ∈ {0, 1}� : T (x) = 1}. We show
how to compute product aggregates over sets defined by polynomial size decision
trees, under the subexponential DDH assumption.

The construction is simply a result of the observation that the set S = ST

can be written as a disjoint union of polynomially many hypercubes. Computing
aggregates over each hypercube and multiplying the results together gives us the
decision tree aggregate.

Theorem 4 (Decision Trees from DDH). Assuming the sub-exponential
hardness of the decisional Diffie-Hellman assumption, there is an AGG-PRF
that supports aggregation over sets recognized by polynomial-size decision trees.

Read-Once Boolean Formulas. Finally, we show a construction of AGG-PRF
over read-once Boolean formulas, the most expressive of our set systems, under
the subexponential DDH assumption. A read-once Boolean formula a Boolean
circuit composed of AND, OR and NOT gates with fan-out 1, namely each input
literal feeds into at most one gate, and each gate output feeds into at most one

Aggregate Pseudorandom Functions and Connections to Learning 67

other gate. Thus, a read-once formula can be written as a binary tree where each
internal node is labeled with an AND or OR gate, and each literal (variable or
its negation) appears in at most one leaf.

Theorem 5 (Read-Once Boolean Formulas from DDH). Under the subex-
ponential decisional Diffie-Hellman assumption, there is an AGG-PRF that sup-
ports aggregation over sets recognized by read-once Boolean formulas.

Our aggregate PRF is, once again, the Naor-Reingold PRF. The index of the
PRF consists of a (� + 1)-tuple of integers in Zp, namely K = (K0, . . . ,K�) ∈
Z�+1
p . The function is defined as

fK(x) = gK0

∏
i∈[�] K

xi
i

We compute aggregates by recursion on the levels of the formula. We start by
noting that it is enough to compute

A(C, 1) :=
∑

x:C(x)=1

∏
i∈[1...�]

Kxi

i

because once this is done, it is easy to compute∏
x:C(x)=1

fk(x) = gK0·A(C,1)

For the purposes of this informal exposition, assume that � is a power of two.
Let C be the formula, with either C = CL ∧CR or C = CL ∨CR for subformula
CL and CR. We show how to recursively compute A(C, 1) for these sub-circuits
and thus for C.

Limits of Aggregation. A natural question to ask is whether one can support
aggregation over sets defined by general circuits. It is however easy to see that you
cannot support any class of circuits for which deciding satisfiability is hard (for
example, AC0), or even ones for which counting the number of SAT assignments
is hard (DNFs, for example) as follows. Suppose C is a circuit which is either
unsatisfiable or has a unique SAT assignment. Solving satisfiability for such
circuits is known to be sufficient to solve SAT in general [VV86]. The algorithm
for SAT simply runs the aggregator with a random PRF key K, and outputs
YES if and only if the aggregator returns a non-zero value. Note that if the
formula is unsatisfiable, we will always get 0 from the aggregator. Otherwise, we
get fk(x), where x is the (unique) satisfying assignment. Now, this might end up
being 0 accidentally, but cannot be 0 always since otherwise, we will turn it into
a PRF distinguisher. The distinguisher has the satisfying assignment hardcoded
into it non-uniformly, and it simply checks if PRFK(x) is 0.

Theorem 6 (Impossibility for General Set Systems). Suppose there is
an efficient algorithm which on an index for f ∈ F , a set system defined by
{x : C(x) = 1} for a polynomial size Boolean circuit C, and an aggregation
function Γ , outputs the Γx:C(x)=1f(x). Then, there is efficient algorithm that
takes circuits C as input and w.h.p. over its coins, decides satisfiability for C.

68 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

RelatedWork toAggregate PRFs. As described above, the work of [GGN10]
studies the general question of howone can efficiently construct random, “close-to”
random, and “pseudo-random” large objects, such as functions or graphs, which
“truthfully” obey global combinatorial properties rather simply appearing to do
so to a polynomial time observer.

Formally, using the [GGN10] terminology, a PRF is a pseudo-implementation
of a random function, and an AGG-PRF is a pseudo-implementation of a
”random function that also answers aggregate queries” (as we defined them).
Furthermore, the aggregatability property of AGG-PRF implies it is a truthful
pseudo-implementation of such a function. Whereas in this work, we restrict our
attention to aggregate queries, [GGN10] considers additional “complex-queries,”
such as in the case of a uniformly selected N node graph, providing a clique of
size log2 N that contains the queried vertex in addition to answering adjacency
queries.

Our notion of aggregate PRFs bears resemblance to the notion of “algebraic
PRFs” defined in the work of Benabbas, Gennaro and Vahlis [BGV11]. There
are two main differences. First, algebraic PRFs support efficient aggregation
over very specific subsets, whereas our constructions of aggregate PRFs support
expressive subset classes, such as subsets recognized by hypercubes, decision trees
and read-once Boolean formulas. Secondly, in the security notion for aggregate
PRFs, the adversary obtains access to an oracle that computes the function as
well as one that computes the aggregate values over super-polynomial size sets,
whereas in algebraic PRFs, the adversary is restricted to accessing the function
oracle alone. Our constructions from DDH use an algebraic property of the Naor-
Reingold PRF in a similar manner as in [BGV11].

1.2 Our Results: Augmented PRFs and Computational Learning

As discussed above, connections between PRFs and learning theory date back
to the 80’s in the pioneering work of [Val84] showing that PRF in a complex-
ity class C implies the existence of concept classes in C which can not be
learned with membership queries. In the second part of this work, we study
the implications of the slew of augmented PRF constructions of recent years
[BW13a, BGI14a, KPTZ13b, BC10, ABPP14] and our new aggregate PRF to
computational learning.

Constrained PRFs and Limits on Restriction Access Learnability. Re-
cently, Dvir, Rao, Wigderson, and Yehudayoff [DRWY12] introduced a new
learning model where the learner is allowed non-black-box information on the
computational device (such as circuits, DNF,formulas) that decides the concept;
their learner receives a simplified device resulting from partial assignments to
input variables (i.e. restrictions). These partial restrictions lie somewhere in be-
tween function evaluation (full restrictions) which correspond to learning with
membership queries and the full description of the original device (the empty
restriction). The work of [DRWY12] studies a PAC version of restriction access,
called PACRA, where the learner receives the circuit restricted with respect to

Aggregate Pseudorandom Functions and Connections to Learning 69

random partial assignments. They show that both decision trees and DNF for-
mulas can be learned efficiently in this model. Indeed, the PACRA model seems
like quite a powerful generalization, if not too unrealistic, of the traditional PAC
learning model, as it returns to the learner a computational description of the
simplified concept.

Yet, in this section we will show limitations of this computational model un-
der cryptographic assumptions. We show that the constrained pseudo-random
function families introduced recently in [BW13b, BGI14b, KPTZ13a] naturally
define a concept class which is not learnable by an even stronger variant of the
restriction access learning model which we define. In the stronger variant, which
we name membership queries with restriction access (MQRA) the learner can
adaptively specify any restriction of the circuit from a specified class of restric-
tions S and receive the simplified device computing the concept on this restricted
domain in return. As this setting requires substantial notation, we define this
new model very informally, and defer the formal definitions and theorems to the
full version.

Definition 1 (Membership Queries with Restriction Access (MQRA)).
Let C : X → {0, 1} be a concept class, and S = {S ⊆ X} be a collection of
subsets of the domain. S is the set of allowable restrictions for concepts f ∈ C.
Let Simp be “simplification rule” which, for a concept f and restriction S outputs
a “simplification” of f restricted to S.

An algorithm A is an (ε, δ, α)-MQRAlearning algorithm for representation
class C with respect to a restrictions in S and simplification rule Simp if, for
every f ∈ C, Pr[ASimp(f,·) = h] ≥ 1 − δ where h is an ε-approximation to f
– and furthermore, A only requests restrictions for an α-fraction of the whole
domain X.

Informally, constrained PRFs are PRFs with two additional properties: 1)
for any subset S of the domain in a specified collection S, a constrained key
KS can be computed, knowledge of which enables efficient evaluation of the
PRF on S; and 2) even with knowledge of constrained keys KS1 , . . . ,KSm for
the corresponding subsets, the function retains pseudo-randomness on all points
not covered by any of these sets. Connecting this to restriction access, the con-
strained keys will allow for generation of restriction access examples (restricted
implementations with fixed partial assignments) and the second property implies
that those examples do not aid in the learning of the function.

Theorem 7 (Informal). Suppose F is a family of constrained PRFs which can
be constrained to sets in S. If F is computable in circuit complexity class C, then
C is hard to MQRA-learn with restrictions in S.
Corollary 1 (Informal). Existing constructions of constrained PRFs [BW13a]
yield the following corollaries:

– If one-way functions exist, then poly-sized circuits can not be learned with
restrictions on sub-intervals of the input-domain; and

– Assuming the sub-exponential hardness of the multi-linear Diffie-Hellman
problem, NC1 cannot be learned with restriction on hypercubes.

70 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

New Learning Models Inspired by the Study of PRFs We proceed to de-
fine two new learning models inspired by recent directions in cryptography. The
first model is the related concept model inspired by work into related-key attacks
in cryptography. While we have cryptography and lower bounds in mind, we ar-
gue that this model is in some ways natural. The second model, learning with
aggregate queries, is directly inspired by our development of aggregate pseudo-
random functions in this work; rather than being a natural model in its own
right, this model further illustrates how cryptography and learning are duals in
many senses.

The Related Concept Learning Model. The idea that some functions or concepts
are related to one another is quite natural. For a DNF formula, for instance,
related concepts may include formulas where a clause has been added or formulas
where the roles of two variables are swapped. For a decision tree, we could
consider removing some accepting leaves and examining the resulting behavior.
For a circuit, a related circuit might alter internal gates or fix the values on
some wires. A similar phenomena occurs in cryptography, where secret keys
corresponding to different instances of the same cryptographic primitive or even
secret keys of different cryptographic primitives are related (if, for example, they
were generated by a pseudo random process on the same seed).

We propose a new computational learning model where the learner is explicitly
allowed to specify membership queries not only for the concept to be learned, but
also for “related” concepts, given by a class of allowed transformations on the con-
cept. We will show both a separation frommembership queries, and a general neg-
ative result in the new model. Based on recent constructions of related-key secure
PRFs by Bellare and Cash [BC10] and Abdalla et al [ABPP14], we demonstrate
concept classes for which access to these related concepts is of no help.

To formalize the related concept learning model, we will consider keyed con-
cept classes – classes indexed by a set of keys. This will enable the study of
related concepts by instead considering concepts whose keys are related in some
way. Most generally, we think of a key as a succinct representation of the com-
putational device which decides the concept. This is a general framework; for
example, we may consider the bit representation of a particular log-depth circuit
as a key for a concept in the concept class NC1. For a concept fk in concept
class C, we allow the learner to query a membership oracle for fk and also for ‘re-
lated’ concepts fφ(k) ∈ CK for φ in a specified class of allowable functions Φ. For

example: let K = {0, 1}λ and let Φ⊕ = {φΔ : k → k ⊕Δ}Δ∈{0,1}λ . Informally:

Definition 2 (Φ-Related-Concept Learning Model (Φ-RC)). For CK a
keyed concept class, let Φ = {φ : K → K} be a set of functions on K that
contains the identity function id. A related-concept oracle RCk, on query (φ, x),
responds with fφ(k)(x), for all φ ∈ Φ and x ∈ X.

An algorithm A is an (ε, δ)-Φ-RK learning algorithm for a Ck if, for every
k ∈ K, when given access to the oracle RKk(·), the algorithm A outputs with
probability at least 1− δ a function h : {0, 1}n → {0, 1} that ε-approximates fk.

Aggregate Pseudorandom Functions and Connections to Learning 71

Yet again, we are able to demonstrate the limitations of this model using
the power of a strong type of pseudo-random function. We show that related-
key secure PRF families (RKA-PRF) defined and instantiated in [BC10] and
[ABPP14] give a natural concept class which is not learnable with related key
queries. RKA-PRFs are defined with respect to a set Φ of functions on the set
of PRF keys. Informally, the security notion guarantees that for a randomly
selected key k, no efficient adversary can distinguish oracle access to fk and
fφ(k) (for many adaptively chosen functions φ ∈ Φ) from an oracle that returns
completely random values. We leverage this strong pseudo-randomness property
to show hard-to-learn concepts in the related concept model.

Theorem 8 (Informal). Suppose F is a family of RKA-PRFs with respect to
related-key functions Φ. If F is computable in circuit complexity class C, then C
is hard to learn in the Φ′-RC model for some Φ′.

Existing constructions of RKA-PRFs [ABPP14] yield the following corollary:

Corollary 2 (Informal). Assuming the hardness of the DDH problem, and
collision-resistant hash functions, NC1 is hard to Φ-RC-learn for an class of
affine functions Φ.

The Aggregate Learning Model. The other learning model we propose is inspired
by our aggregate PRFs. Here, we consider a new extension to the power of the
learning algorithm. Whereas membership queries are of the form “What is the
label of an example x?”, we grant the learner the power to request the evaluation
of simple functions on tuples of examples (x1, ..., xn) such as “How many of
x1, . . . , xn are in C?” or “Compute the product of the labels of x1, ..., xn?”.
Clearly, if n is polynomial then this will result only a polynomial gain in the
query complexity of a learning algorithm in the best case. Instead, we propose
to study cases when n may be super-polynomial, but the description of the tuples
is succinct. For example, the learning algorithm might query the number of x’s
in a large interval that are positive examples in the concept.

As with the restriction access and related concept models – and the aggregate
PRFs we define in this work – the Aggregate Queries (AQ) learning model
will be considered with restrictions to both the types of aggregate functions Γ
the learner can query, and the sets S over which the learner may request these
functions to be evaluated on. We now present the AQ learning model informally:

Definition 3 ((Γ,S)-Aggregate Queries (AQ) Learning). Let C : X →
{0, 1} be a concept class, and let S be a collection of subsets of X. Let Γ :
{0, 1}∗ → V be an aggregation function. For f ∈ C, let AGGf be an “aggregation”
oracle, which for S ∈ S, returns Γx∈Sf(x). Let MEMf be the membership oracle,
which for input x returns f(x).

An algorithm A is an (ε, δ)-(Γ,S)-AQ learning algorithm for C if for every
f ∈ C,

Pr[AMEMf (·),AGGf (·) = h] ≥ 1− δ

where h is an ε-approximation to f .

72 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

Initially, AQ learning is reminiscent of learning with statistical queries (SQ).
In fact, this apparent connection inspired this portion of our work. But the AQ
setting is in fact incomparable to SQ learning, or even the weaker “statistical
queries that are independent of the target” as defined in [BF02]. On the one hand,
AQ queries provide a sort of noiseless variant of SQ, giving more power to the
AQ learner; on the other hand, the AQ learner is restricted to aggregating over
sets in S, whereas the SQ learner is not restricted in this way, thereby limiting
the power of the AQ learner. The AQ setting where S contains every subset
of the domain is indeed a noiseless version of “statistical queries independent
of the target,” but even this model is a restricted version of SQ. This does
raise the natural question of a noiseless version of SQ and its variants; hardness
results in such models would be interesting in that they would suggest that the
hardness comes not from the noise but from an inherent loss of information in
statistics/aggregates.

We will show both a simple separation from learning with membership queries
(in the full version), and under cryptographic assumptions, a general lower bound
on the power of learning with aggregate queries. The negative examples will use
the results in Section 1.1.

Theorem 9. Let F be a boolean-valued aggregate PRF with respect to set system
S and aggregation function Γ . If F is computable in complexity class C, then C
is hard to (Γ,S)-AQ learn.

Corollary 3. Using the results from Section 3, we get the following corollaries:

– The existence of one way functions implies that P/poly is hard to (
∑

,S[a,b])-
AQ learn, with S[a,b] the set of sub-intervals of the domain as defined in
Section 3.

– The DDH assumption implies that NC1 is hard to (
∑

,S[a,b])-AQ learn, with
S[a,b] being the set of sub-intervals of the domain as defined in Section 3.

– The subexponential DDH Assumption implies that NC1 is hard to (
∏

,R)-
AQ learn, with R the set of read-once boolean formulas defined in Section 3.

Open Questions. As discussed in the introduction, augmented pseudo-random
functions often have powerful and surprising applications, perhaps the most re-
cent example being constrained PRFs [BW13a, KPTZ13a, BGI14a]. Perhaps the
most obvious open question that emerges from this work is to find applications
for aggregate PRFs. We remark that a primitive similar to aggregate PRFs was
used in [BGV11] to construct delegation protocols.

Perhaps a more immediate concern is that all our aggregate PRF constructions
(except for intervals) requires sub-exponential hardness assumptions. We view
it as an important open question to base these constructions on polynomial
assumptions.

In this work we restricted our attention to particular types of aggregation
functions and subsets over which the aggregation takes place, although our defi-
nition captures more general scenarios. We looked at aggregation functions that
compute group operations over Abelian groups. Can we support more general

Aggregate Pseudorandom Functions and Connections to Learning 73

aggregation functions that are not restricted to group operations, for example
the majority aggregation function, or even non-symmetric aggregation functions?
We show positive results for intervals, hypercubes, and sets recognized by read-
once formulas and decision trees. On the other hand, we show that it is unlikely
that we can support general sets, for example sets recognized by CNF formulas.
This almost closes the gap between what is possible and what is hard. A concrete
open question in this direction is to construct an aggregate PRF computing sum-
mation over an Abelian group for sets recognized by DNFs, or provide evidence
that this cannot be done.

Organization. This paper is organized into two parts that can be read essentially
independently of each other. In the first part (Sections 2 and 3), we present the
definition and constructions of aggregate pseudo-random functions. In the second
part (Section 4), we show connections between various notions of augmented
PRFs and their applications to augmented learning models.

2 Aggregate PRF

We will let λ denote the security parameter throughout this paper.
Let F = {Fλ}λ>0 be a function family where each function f ∈ Fλ maps a

domain Dλ to a range Rλ. An aggregate function family is associated with two
objects:

1. an ensemble of sets S = {Sλ}λ>0 where each Sλ is a collection of subsets of
the domain S ⊆ Dλ; and

2. an “aggregation function” Γλ : (Rλ)
∗ → Vλ that takes a tuple of values from

the range Rλ of the function family and “aggregates” them to produce a
value in an output set Vλ.

Let us now make this notion formal. To do so, we will impose restrictions on
the set ensembles and the aggregation function. First, we require set ensemble Sλ

to be efficiently recognizable. That is, there is a polynomial-size Boolean circuit
family C = {Cλ}λ>0 such that for any set S ∈ Sλ there is a circuit C = CS ∈ Cλ
such that x ∈ S if and only if C(x) = 1. Second, we require our aggregation
functions Γ to be efficient in the length of its inputs, and symmetric; namely
the output of the function does not depend on the order in which the inputs
are fed into it. Summation over an Abelian group is an example of a possible
aggregation function. Third and finally, elements in our sets Dλ, Rλ, and Vλ are
all representable in poly(λ) bits, and the functions f ∈ Fλ are computable in
poly(λ) time.

Define the aggregate function AGG = AGGλ
f,Sλ,Γλ

that is indexed by a function
f ∈ Fλ, takes as input a set S ∈ Sλ and “aggregates” the values of f(x) for all
x ∈ Sλ. That is, AGG(S) outputs

Γ
(
f(x1), f(x2), . . . , f(x|S|)

)

74 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

where S = {x1, . . . , x|S|}. More precisely, we have

AGGλ
f,Sλ,Γλ

:Sλ → Vλ

S → Γxi∈S

(
f(x1), . . . , f(x|S|)

)
We will furthermore require that the AGG can be computed in poly(λ) time.

We require this in spite of the fact that the sets over which the aggregation is
done can be exponentially large! Clearly, such a thing is impossible for a ran-
dom function f but yet, we will show how to construct pseudo-random function
families that support efficient aggregate evaluation. We will call such a pseudo-
random function (PRF) family an aggregate PRF family. In other words, our
objective is two fold:

1. Allow anyone who knows the (polynomial size) function description to effi-
ciently compute the aggregate function values over exponentially large sets;
but at the same time,

2. Ensure that the function family is indistinguishable from a truly random
function, even given an oracle that computes aggregate values.

A simple example of aggregates is that of computing the summation of func-
tion values over sub-intervals of the domain. That is, let domain and range be
Zp for some p = p(λ), let the family of subsets be Sλ = {[a, b] ⊆ Zp : a, b ∈
Zp; a ≤ b}, and the aggregation function be Γλ(y1, . . . , yk) =

∑k
i=1 yi (mod p).

In this case, we are interested in computing

AGGλ
f,Sλ,sum

([a, b]) =
∑

a≤x≤b

f(x)

We will, in due course, show both constructions and impossibility results for
aggregate PRFs, but first let us start with the formal definition.

Definition 4 (Aggregate PRF). Let F = {Fλ}λ>0 be a function family
where each function f ∈ Fλ maps a domain Dλ to a range Rλ, S be an ef-
ficiently recognizable ensemble of sets {Sλ}λ>0, and Γλ : (Rλ)

∗ → Vλ be an
aggregation function. We say that F is an (S, Γ)-aggregate pseudorandom func-
tion family (also denoted (S, Γ)-AGG-PRF) if there exists an efficient algorithm
Aggregatek,S,Γ (S): On input a subset S ∈ S of the domain, outputs v ∈ V, such
that

– Efficient aggregation: For every S ∈ S, Aggregatek,S,Γ (S) = AGGk,S,Γ (S)
where AGGk,S,Γ (S) := Γx∈S Fk(x).

56

5 We omit subscripts on AGG and Aggregate when clear from context.
6 AGG is defined to be the correct aggregate value, while Aggregate is the algorithm by
which we compute the value AGG. We make this distinction because while a random
function cannot be efficiently aggregated, the aggregate value is still well-defined.

Aggregate Pseudorandom Functions and Connections to Learning 75

– Pseudorandomness: For all probabilistic polynomial-time (in security pa-
rameter λ) algorithms A, and for randomly selected key k ∈ K:

| Pr
f←Fλ

[Afk,AGGfk,S,Γ (1λ)]− Pr
h←Hλ

[Ah,AGGh,S,Γ (1λ)]| ≤ negl(λ)

where Hλ is the set of all functions Dλ → Rλ.

Remark 1. In this work, we restrict our attention to aggregation functions that
treat the range Vλ = Rλ as an Abelian group and compute the group sum (or
product) of its inputs. We denote this setting by Γ =

∑
(or

∏
, respectively).

Supporting other types of aggregation functions (ex: max, a hash) is a direction
for future work.

2.1 A General Security Theorem for Aggregate PRFs

How does the security of a function family in the AGG-PRF game relate to
security in the normal PRF game (in which A uses only the oracle f and not
AGGf)?

In this section, we show a general security theorem for aggregate pseudo-
random functions. Namely, we show that any “sufficiently secure” PRF is also
aggregation-secure (for any collection of efficiently recognizable sets and any
group-aggregation operation), in the sense of Definition 4, by way of an inefficient
reduction (with overhead polynomial in the size of the domain). In Section 3, we
will use this to construct AGG-PRFs from a subexponential-time hardness as-
sumption on the DDH problem. We also show that no such general reduction can
be efficient, by demonstrating a PRF family that is not aggregation-secure. As a
general security theorem cannot be shown without the use of complexity lever-
aging, this suggests a natural direction for future study: to devise constructions
for similarly expressive aggregate PRFs from polynomial assumptions.

Lemma 1. Let F = {Fλ}λ>0 be a pseudo-random function family where each
function f ∈ Fλ maps a domain Dλ to a range Rλ. Suppose there is an adversary
A that runs in time tA = tA(λ) and achieves an advantage of εA = εA(λ) in the
aggregate PRF security game for the family F with an efficiently recognizable set
system Sλ and an aggregation function Γλ that is computable in time polynomial
in its input length. Then, there is an adversary B that runs in time tB = tA +
poly(λ, |Dλ|) and achieves an advantage of εB = εA in the standard PRF game
for the family F .

Proof. Let fK ← Fλ be a random function from the family Fλ. We construct
the adversary B which is given access to an oracle O which is either fK or a
uniformly random function h : Dλ → Rλ.

76 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

B works as follows: It queries the PRF on all inputs x ∈ Dλ, builds the
function table TK of fK and runs the adversary A, responding to its queries as
follows:

1. Respond to its PRF query x ∈ Dλ by returning TK [x]; and
2. Respond to its aggregate query (Γ, S) by (a) going through the table to look

up all x such that x ∈ S; and (b) applying the aggregation function honestly
to these values.

Finally, when A halts and returns a bit b, B outputs the bit b and halts.
B takes O(|Dλ|) time to build the truth table of the oracle. For each aggre-

gate query (Γ, S), B first checks for each x ∈ Dλ whether x ∈ S. This takes
|Dλ| · poly(λ) time, since S is efficiently recognizable. It then computes the ag-
gregation function Γ over f(x) such that x ∈ S, taking poly(|Dλ|) time, since Γ
is computable in time polynomial in its input length. The total time, therefore, is

tB = tA + poly(λ, |Dλ|)

Clearly, when O is the pseudo-random function fK , B simulates an aggre-
gatable PRF oracle to A, and when O is a random function, B simulates an
aggregate random oracle to A. Thus, B has the same advantage in the PRF
game as A does in the aggregate PRF game.

The above gives an inefficient reduction from the PRF security of a function
family F to the AGG-PRF security of the same family running in time polyno-
mial in the size of the domain. Can this reduction be made efficient; that is, can
we replace tB = tA + poly(λ) into the Lemma 1?

This is not possible. Such a reduction would imply that every PRF family that
supports efficient aggregate functionality AGG is AGG-PRF secure; this is clearly
false. Take for example a pseudorandom function family F0 = {f : Z2p → Zp}
such that for all f , there is no x with f(x) = 0. It is possible to construct such a
pseudorandom function family F0 (under the standard definition). While 0 is not
in the image of any f ∈ F0, a random function with the same domain and range
will, with high probability, have 0 in the image. For an aggregation oracle AGGf

computing products over Zp: AGGf (Z2p) �= 0 if f ∈ F0, while AGGf (Z2p) = 0
with high probability for random f .

Thus, access to aggregates for products over Zp
7 would allow an adversary to

trivially distinguish f ∈ F0 from a truly random map.

2.2 Impossibility of Aggregate PRF for General Sets

It is natural to ask whether whether an aggregate PRF might be constructed for
more general sets than we present in Section 3. There we constructed aggregate
PRF for the sets of all satisfying assignments for read-once boolean formula and

7 Taken with respect to a set ensemble S containing, as an element, the whole domain
Z2p. While this is not necessary (a sufficiently large subset would suffice), it is the
case for the ensembles S we consider in this work.

Aggregate Pseudorandom Functions and Connections to Learning 77

decision trees. As we show in the following, it is impossible to extend this to
support the set of satisfying assignmnets for more general circuits.

Theorem 10. Suppose there is an algorithm that has a PRF description K, a
circuit C, and a fixed aggregation rule (sum over a finite field, say), and outputs
the aggregate value ∑

x:C(x)=1

fK(x)

Then, there is an algorithm that takes circuits C as input and w.h.p. over it
coins, decides the satisfiability of C.

Proof. The algorithm for SAT simply runs the aggregator with a randomly cho-
sen K, and outputs YES if and only if the aggregator returns 1. The rationale is
that if the formula is unsatisfiable, you will always get 0 from the aggregator.8

Otherwise, you will get fK(x), where x is the satisfying assignment. (More gener-
ally,

∑
x:C(x)=1 fK(x)). Now, this might end up being 0 accidentally, but cannot

be 0 always since otherwise, you will get a PRF distinguisher. The distinguisher
has the satisfying assignment hardcoded into it non-uniformly,9 and it simply
checks if fK(x) = 0.

This impossibility result can be generalized for efficient aggregation of func-
tions that are not pseudo-random. For instance, if f(x) ≡ 1 was the constant
function 1, the same computing the aggregate over f satisfying inputs to C
would not only reveal the satisfiability of C, but even the number of satisfying
assignments! In the PRF setting though, it seems that aggregates only reveal the
(un)satisfiability of a circuit C, but not the number of satisfying assignments.
Further studying the relationship between the (not necessarily pseudo-random)
function f , the circuit representation of C, and the tractability of computing
aggregates is an interesting direction. A negative result for a class for which sat-
isfiability (or even counting assignments) is tractable would be very interesting.

3 Constructions of Aggregate PRF

In this section, we show several constructions of aggregate PRFs. In Section 3.1,
we show as a warm-up a generic construction of aggregate PRFs for intervals
(where the aggregation is any group operation). This construction is black-box:
given any PRF with the appropriate domain and range, we construct a related

8 This proof may be extended to the case when the algorithm’s output is not restricted
to be 0 when the input circuit C is unsatisfiable, and even arbitrary outputs for
sufficiently expressive classes of circuits.

9 As pointed out by one reviewer, for sufficiently expressive classes of circuits C, this
argument can be made uniform. Specifically, we use distinguish the challenge y from
a pseudo-random generator from random by choosing C := Cy that is satisfiable
if and only if y is in the PRG image, and modify the remainder of the argument
accordingly.

78 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

family of aggregate PRFs and with no loss in security. In Section 3.2, we show
a construction of aggregate PRFs for products over bit-fixing sets (hypercubes),
from a strong decisional Diffie-Hellman assumption. We then generalize the DDH
construction: in Section 3.3, to the class of sets recognized by polynomial-size de-
cision trees; and in Section 3.4, to sets recognized by read-once Boolean formulas.
In these last three constructions, we make use of Lemma 1 to argue security.

3.1 Generic Construction for Interval Sets

Our first construction is from [GGN10]10. The construction is entirely black-box:
from any appropriate PRF family G, we construct a related AGG-PRF family
F . Unlike the proofs in the sequel, this reduction exactly preserves the security
of the starting PRF.

Let Gλ = {gK : Zn(λ) → Rλ}K∈Kλ
be a PRF family, with R = Rλ being

a group where the group operation is denoted by ⊕11. We construct an aggre-
gatable PRF Fλ = {fK}K∈Kλ

for which we can efficiently compute summa-
tion of fK(x) for all x in an interval [a, b], for any a ≤ b ∈ Zn. Let S[a,b] =
{[a, b] ⊆ Zn : a, b ∈ Zn; a ≤ b} be the set of all interval subsets of Zn,
[a, b] = {x ∈ Zn : a ≤ x ≤ b}. Define F = {fK : Zn → R}K∈K as follows:

fK(x) =

{
gK(0) : x = 0
gK(x)! gK(x− 1) : x �= 0

Lemma 2. Assuming that G is a pseudo-random function family, F is a
(S[a,b],⊕)-aggregate pseudo-random function family.

Proof. It follows immediately from the definition of fK that one can compute the
summation of fK(x) over any interval [a, b]. Indeed, rearranging the definition
yields ∑

x∈[0,b]

fK(x) = gK(b) and
∑

x∈[a,b]

fK(x) = gK(b)⊕−gK(a− 1)

We reduce the pseudo-randomness of F to that of G. The key observation is
that each query to the fK oracle as well as the aggregation oracle for fK can be
answered using at most two black-box calls to the underlying function gK . By
assumption on G, replacing the oracle for gK with a uniformly random function
h : Zn → R is computationally indistinguishable. Furthermore, the function f
defined by replacing g by h, namely

f ′(x) =

{
h(0) : x = 0
h(x)! h(x − 1) : x �= 0

is a truly random function. Thus, the simulated oracle with gK replaced by
h implements a uniformly random function that supports aggregate queries.
Security according to Definition 4 follows immediately.

10 See Example 3.1 and Footnote 18.
11 The only structure of Zn we us is the total order. Our construction directly applies
to any finite, totally-ordered domain D by first mapping D to Zn, preserving order.

Aggregate Pseudorandom Functions and Connections to Learning 79

Another construction from the same work achieves summation over the integers
for PRFs whose range is {0, 1}. We omit the details of the construction, but
state the theorem for completeness.

Theorem 11 (Integer Summation Over Intervals, from One-Way Func-
tions [GGN10]). Assume one-way functions exist. Then, there exists an
(S[a,b],

∑
)-AGG-PRF family that maps Z2λ to {0, 1}, where

∑
denotes summation

over Z.

3.2 Bit-Fixing Aggregate PRF from DDH

We now construct an aggregate PRF computing products for bit-fixing sets.
Informally, our PRF will have domain {0, 1}poly(λ), and support aggregation
over sets like {x : x1 = 0 ∧ x2 = 1 ∧ x7 = 0}. We will naturally represent such
sets by a string in {0, 1, �}poly(λ) with 0 and 1 indicating a fixed bit location, and
� indicating a free bit location. We call each such set a ‘hypercube.’ The PRF
will have a multiplicative group G as its range, and the aggregate functionality
will compute group products.

Our PRF is exactly the Naor-Reingold PRF [NR04], for which we demon-
strate efficient aggregation and security. We begin by stating the decisional
Diffie-Hellman assumption.

Let G = {Gλ}λ>0 be a family of groups of order p = p(λ). The decisional
Diffie-Hellman assumption for G says that the following two ensembles are com-
putationally indistinguishable:{

(Gλ, g, g
a, gb, gab) : G ← Gλ; g ← G; a, b ← Zp

}
λ>0

≈c

{
(G, g, ga, gb, gc) : G ← Gλ; g ← G; a, b, c ← Zp

}
λ>0

We say that the (t(λ), ε(λ))-DDH assumption holds if for every adversary running
in time t(λ), the advantage in distinguishing between the two distributions above
is at most ε(λ).

Construction. Let G = {Gλ}λ>0 be a family of groups of order p = p(λ), each
with a canonical generator g, for which the decisional Diffie Hellman (DDH)
problem is hard. Let � = �(λ) be a polynomial function. We will construct a
PRF family F� = {F�,λ}λ>0 where each function f ∈ F�,λ maps {0, 1}�(λ) to
Gλ. Our PRF family is exactly the Naor-Reingold PRF [NR04]. Namely, each
function f is parametrized by �+1 numbers K := (K0,K1, . . . ,K�), where each
Ki ∈ Zp.

fK(x1, . . . , x�) = gK0

∏�
i=1 K

xi
i = gK0

∏
i:xi=1 Ki ∈ Gλ

80 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

The aggregation algorithm Aggregate for bit-fixing functions gets as input the
PRF key K and a bit-fixing string y ∈ {0, 1, �}� and does the following:

– Define the strings K ′
i as follows:

K ′
i =

⎧⎨⎩
1 if yi = 0
Ki if yi = 1
1 +Ki otherwise

– Output gK0

∏�
i=1 K′

i as the answer to the aggregate query.

Letting HC = {HC�(λ)}λ>0 where HC� = {0, 1, �}� is the set of hypercubes on

{0, 1}�, we now prove the following:

Theorem 12. Let ε > 0 be a constant, choose the security parameter λ =
Ω(�1/ε), and assume the (2λ

ε

, 2−λε

)-hardness of DDH over the group G. Then,
the collection of functions F defined above is a secure aggregate PRF with respect
to the subsets HC and the product aggregation function over G.

Correctness. We show that the answer we computed for an aggregate query
y ∈ {0, 1, �}λ is correct. Define the sets

Match(y) := {x ∈ {0, 1}λ : ∀i, yi = � or xi = yi} and Fixed(y) := {i ∈ [λ] : yi ∈ {0, 1}}

Thus, Match(y) is the set of all 0-1 strings x that match all the fixed locations
of y, but can take any value on the wildcard locations of y. Fixed(y) is the set
of all locations i where the bit yi is fixed. Note that:

AGG(K, y) =
∏

x∈Match(y) fK(x) (by definition of AGG)

=
∏

x∈Match(y) g
K0

∏�
i=1 K

xi
i (by definition of fK)

= gK0
∑

x∈Match(y)

∏�
i=1 K

xi
i

= gK0

(∏
i∈Fixed(y) K

yi
i

)
·
(∏

i∈[�]\Fixed(y)(1+Ki)
)
(inverting sums and products)

= gK0
∏�

i=1 K′
i (by definition of K′

i)
= Aggregate(K, y) (by definition of Aggregate)

Security. We will rely on the following theorem from [NR04].

Theorem 13 (Theorem 4.1, [NR04]). Suppose there is an adversary A that
runs in time t(λ) and has an advantage of γ(λ) in the (regular) PRF game.
Then, there is an adversary B that runs in time poly(λ) · t(λ) and breaks the
DDH assumption with advantage γ(λ)/λ.

The aggregate PRF security proof proceeds as follows. First, we choose the
security parameter λ = Ω(�1/ε) as in the theorem statement. We use Lemma 1
to conclude that if there is an adversary distinguisher D breaking the aggregate
PRF security of F in poly(λ) time with 1/poly(λ) advantage, then there is an
adversary A that breaks the regular PRF security of F in poly(λ) · 2O(�) =
poly(λ)·2λε

= 2O(λε) time with 1/poly(λ) advantage. Using Theorem 13 now tells

Aggregate Pseudorandom Functions and Connections to Learning 81

us that there is an adversary B that wins the DDH distinguishing game in 2O(λε)

time with 1/poly(λ) advantage, breaking the subexponential DDH assumption.
This establishes the aggregate security of the PRF and thus Theorem 12.

Obtaining a security proof based on polynomial assumptions is an interesting
open question.

3.3 Decision Trees

We generalize the previous construction from DDH to support sets specified
by polynomial-sized decision trees by observing that such decision trees can be
written as disjoint unions of hypercubes.

A decision tree family Tλ of size p(λ) over �(λ) variables consists of binary
trees with at most p(λ) nodes, where each internal node is labeled with a variable
xi for i ∈ [�], the two outgoing edges of an internal node are labeled 0 and 1,
and the leaves are labeled with 0 or 1. On input an x ∈ {0, 1}�, the computation
of the decision tree starts from the root, and upon reaching an internal node n
labeled by a variable xi, takes either the 0-outgoing edge or the 1-outgoing edge
out of the node n, depending on whether xi is 0 or 1, respectively.

We now show how to construct a PRF family F� = {F�,λ}λ>0 where each
F�,λ consists of functions that map Dλ := {0, 1}� to a group Gλ, that supports
aggregation over sets recognized by decision trees. That is, let Sλ = {S ⊆ {0, 1}� :
∃ a decision tree TS ∈ Tλ that recognizes S}.

Our construction uses a hypercube-aggregate PRF family F ′
� as a sub-routine.

First, we need the following simple lemma.

Lemma 3 (Decision Trees as Disjoint Unions of Hypercubes). Let S ⊆
{0, 1}� be recognized by a decision tree TS of size p = p(λ). Then, S is a disjoint
union of at most p hybercubes Hy1 , . . . , Hyp , where each yi ∈ {0, 1, �}� and Hyi =
Match(yi). Furthermore, given TS, one can in polynomial time compute these
hypercubes.

Given the lemma, Aggregate is simple: on input a set S represented by a deci-
sion tree TS , compute the disjoint hypercubes Hy1 , . . . , Hyp . Run the hypercube
aggregation algorithm to compute

gi ← AggregateF (K, yi)

and outputs g :=
∏p

i=1 gi.
Basing the construction on the hypercube-aggregate PRF scheme from Sec-

tion 3.2, we get a decision tree-aggregate PRF based on the sub-exponential DDH
assumption. The security of this PRF follows from Lemma 1 by an argument
identical to the one in Section 3.2.

3.4 Read-Once Formulas

Read-once boolean formula provide a different generalization of hypercubes and
they too admit an efficient aggregation algorithm for the Naor-Reingold PRF,
with a similar security guarantee.

82 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

A boolean formula on � variables is a circuit on x = (x1, . . . , x�) ∈ {0, 1}�
composed of only AND, OR, and NOT gates. A read-once boolean formula is
a boolean formula with fan-out 1, namely each input literal feeds into at most
one gate, and each gate output feeds into at most one other gate.12 Let Rλ be
the family of all read-once boolean formulas over �(λ) variables. Without loss of
generality, we restrict these circuits to be in a standard form: namely, composed
of fan-in 2 and fan-out 1 AND and OR gates, and any NOT gates occurring at
the inputs.

In this form, the circuit for any read-once boolean formula can be identified
with a labelled binary tree; we identify a formula by the label of its root Cφ.
Nodes with zero children are variables or their negation, labelled by xi or x̄i,
while all other nodes have 2 children and represent gates with fan-in 2. For such
a node with label C, its children have labels CL and CR. Note that each child is
itself a read-once boolean formula on fewer inputs, and their inputs are disjoint
Let the gate type of a node C be type(C) ∈ {AND,OR}.

We describe a recursive aggregation algorithm for computing products of PRF
values over all accepting inputs for a given read-once boolean formula Cφ. Look-
ing forward, we require the formula to be read-once in order for the recursion to
be correct. The algorithm described reduces to that of Section 3.2 in the case
where φ describes a hypercube.

Construction. The aggregation algorithm for read-once Boolean formulas takes
as input the PRF key K = (K0, . . . ,K�) and a formula Cφ ∈ Rλ where Cφ only
reads the variables x1, . . . , xm for some m ≤ �. We abuse notation and interpret
Cφ to be a formula on both {0, 1}� and {0, 1}m in the natural way.

AGGk,
∏(Cφ) =

∏
x:Cφ(x)=1

gK0

∏
i∈[�] K

xi
i (1)

= g
K0

∑
x:Cφ(x)=1

∏
i∈[�] K

xi
i (2)

= gK0·A(Cφ,1)·
∏

m<j≤�(1+Ki) (3)

where we define A(C, 1) :=
∑

{x∈{0,1}m:C(x)=1}
∏

i∈[m] K
xi

i . If A(C, 1) is effi-

ciently computable, then Aggregate will simply compute it and return (3). To
this end, we provide a recursive procedure for computing A(C, 1).

Generalizing the definition for any sub-formula C with variables named x1 to
xm, define the values A(C, 0) and A(C, 1):

A(C, b) :=
∑

{x∈{0,1}m: C(x)=b}

∏
i∈[m]

Kxi

i .

12 We allow a formula to ignore some inputs variables; this enables the model to express
hypercubes directly.

Aggregate Pseudorandom Functions and Connections to Learning 83

Recursively compute A(C, b) as follows:

– If C is a literal for variable xi, then by definition:

A(C, b) =

{
Ki if C = xi

1 if C = x̄i

– Else, if type(C) = AND: Let CL and CR be the children of C. By hypothesis,
we can recursively compute A(CL, b) and A(CR, b) for b ∈ {0, 1}. Compute
A(C, b) as:

A(C, 1) = A(CL, 1) · A(CR, 1)

A(C, 0) = A(CL, 0) · A(CR, 0) +A(CL, 1) ·A(CR, 0) +A(CL, 0) ·A(CR, 1)

– Else, type(C) = OR: Let CL and CR be the children of C. By hypothesis,
we can recursively compute A(CL, b) and A(CR, b) for b ∈ {0, 1}. Compute
A(C, b) as:

A(C, 1) = A(CL, 1) · A(CR, 1) +A(CL, 1) ·A(CR, 0) +A(CL, 0) ·A(CR, 1)

A(C, 0) = A(CL, 0) · A(CR, 0))

Lemma 4. A(C, b) as computed above is equal to
∑

{x∈{0,1}m: C(x)=b}
∏

i∈[m] K
xi

i

Proof. For C a literal, the correctness is immediate. We must check the recursion
for each type(C) ∈ {AND,OR} and b ∈ {0, 1}. We only show the case for b = 1
when C is an OR gate; the other three cases can be shown similarly.

Let SbL,bR = {x = (xL, xR) : (CL(xL), CR(xR) = (bL, bR)} be the set of inputs
(xL, xR) to C such that CL(xL) = bL and CR(xR) = bR. The set {x : C(x) = 1}
can be decomposed into the disjoint union S0,1 # S1,0 # S1,1. Furthermore,

A(C, 1) =
∑

x∈S0,1

∏
i∈[m]

Kxi

i +
∑

x∈S1,0

∏
i∈[m]

Kxi

i +
∑

x∈S1,1

∏
i∈[m]

Kxi

i

Because C is read-once, the sets of inputs on which CL and CR depend are dis-
joint; this implies that A(CL, bL) · A(CR, bR) =

∑
x∈SbL,bR

∏
i∈[m] K

xi

i , yielding

the desired recursion.

Theorem 14. Let ε > 0 be a constant, choose the security parameter λ =
Ω(�1/ε), and assume (2λ

ε

, 2−λε

)-hardness of the DDH assumption. Then, the
collection of functions Fλ defined above is a secure aggregate PRF with respect
to the subsets Rλ and the product aggregation function over the group G.

Proof. Correctness is immediate from Lemma 4, and Equation (3). Security fol-
lows from the decisional Diffie-Hellman assumption in much the same way it did
in the case of bit-fixing functions.

84 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

4 Connection to Learning

We now turn a discussion of the connection between augmented PRFs and com-
putational learning. After the preliminaries, we present the learning with ag-
gregate queries model and the corresponding hardness results implied by our
constructions of AGG-PRFs. We defer the discussion of learning with restric-
tion queries and access to related concepts to the full version of this paper.

4.1 Preliminaries

Notation: For a probability distribution D over a set X, we denote by x ← D to
mean that x is sampled according to D, and x ← X to denote uniform sampling
form X . For an algorithm A and a function O, we denote that A has oracle
access to O by AO(·).

We recall the definition of a “concept class”. In this section, we will often need
to explicitly reason about the representations of the concept classes discussed.
Therefore we make use of the notion of a “representation class” as defined by
[KV94] alongside that of concept classes. This unified formalization enables us to
discuss both these traditional learning models (namely, PAC and learning with
membership queries) as well as the new models we present below. Our definitions
are parametrized by λ ∈ N.13

Definition 5 (Representation class [KV94]). Let K = {Kλ}λ∈N be a family
of sets, where each k ∈ Kλ has description in {0, 1}sk(λ) for some polynomial
sk(·). Let X = {Xλ}λ∈N be a set, where each Xλ is called a domain and each
x ∈ Xλ has description in {0, 1}sx(λ) for some polynomial sx(·). With each λ
and each k ∈ Kλ, we associate a Boolean function fk : Xλ → {0, 1}.14 We call
each such function fk a concept, and k its index or its description. For each λ,
we define the concept class Cλ = {fk : k ∈ Kλ} to be the set of all concepts with
index in Kλ. We define the representation class C = {Cλ} to be the union of all
concept classes Cλ.

This formalization allows us to easily associate complexity classes with con-
cepts in learning theory. For example, to capture the set of all DNF formulas
on λ inputs with size at most p(λ) for a polynomial p, we will let Xλ = {0, 1}λ,
and K

p(λ)
λ be the set of descriptions of all DNF formulas on λ variables with

size at most p(λ) under some reasonable representation. Then a concept fk(x)

evaluates the formula k on input x. Finally, DNF
p(λ)
λ = {fk : k ∈ K

p(λ)
λ } is the

concept class, and DNFp(λ) = {DNF
p(λ)
λ }λ∈N. DNF p(λ) is the representation

class that computes all DNF formulas on λ variables with description of size at
most p(λ) in the given representation.

As a final observation, note that a Boolean-valued PRF family F = {Fλ}
where Fλ = {fk : Xλ → {0, 1}}with keyspaceK = {Kλ} and domainX = {Xλ}
13 When clear from the context, we will omit the subscript λ.
14 This association is an efficient procedure for evaluating fk. Concretely, we might
consider that there is a universal circuit Fλ such that for each λ, fk(·) = Fλ(k, ·).

Aggregate Pseudorandom Functions and Connections to Learning 85

satisfies the syntax of a representation class as defined above. This formalization
is useful precisely because it captures both PRF families and complexity classes,
enabling lower bounds in various learning models.

In proving lower bounds for learning representation classes, it will be conve-
nient to have a notion of containment for two representation classes.

Definition 6 (⊆). For two representation classes F = {Fλ} and G = {Gλ} on
the same domain X = {Xλ}, and with indexing sets I = {Iλ} and K = {Kλ}
respectively, we say F ⊆ G if for all sufficiently large λ, for all i ∈ Iλ, there
exists k ∈ Kλ such that gk ≡ fi.

Informally, if a representation class contains a PRF family, then this class is
hard to MQ-learn (as in [Val84]). We apply similar reasoning to more powerful
learning models. For example, if G is the representation classDNF p(λ) as defined
above, then F ⊆ DNF p(λ) is equivalent to saying that for all sufficiently large
λ, the concept class Fλ can be decided by a DNF on λ inputs of p(λ) size.

We now recall some standard definitions.

Definition 7 (ε-approximation). Let f, h : X → {0, 1} be arbitrary functions.
We say h ε-approximates f if Prx←X [h(x) �= f(x)] ≤ ε.

In general, ε-approximation is considered under a general distribution on X ,
but we will consider only the uniform distribution in this work.

Definition 8 (PAC Learning). For a concept f : Xλ → {0, 1}, and a prob-
ability distribution Dλ over Xλ, the example oracle EX(f,Dλ) takes no input
and returns (x, f(x)) for x ← Dλ. An algorithm A is an (ε, δ)-PAC learning
algorithm for representation class C if for all sufficiently large λ, ε = ε(λ) > 0,
δ = δ(λ) > 0 and f ∈ Cλ,

Pr[AEX(f,Dλ) = h : h is an ε-approximation to f] ≥ 1− δ

Definition 9 (MQ Learning). For a concept f : Xλ → {0, 1}, the membership
oracle MEM(f) takes as input a point x ∈ Xλ and returns f(x). An algorithm A
is an (ε, δ)-MQ learning algorithm for representation class C if for all sufficiently
large λ, ε = ε(λ) > 0, δ = δ(λ) > 0, and f ∈ Cλ,

Pr[AMEM(f) = h : h is an ε-approximation to f] ≥ 1− δ

We consider only PAC learning with uniform examples, where Dλ is the uni-
form distribution over Xλ. In this case, MQ is strictly stronger than PAC: ev-
erything that is PAC learnable is MQ learnable.

Observe that for any f : Xλ → {0, 1}, either h(x) = 0 or h(x) = 1 will 1
2 -

approximate f . Furthermore, if A is inefficient, f may be learned exactly. For a
learning algorithm to be non-trivial, we require that it is efficient in λ, and that
it at least weakly learns C.

86 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

Definition 10 (Efficient- and Weak- Learning). .

– A is said to be efficient if the time complexity of A and h are polynomial in
1/ε, 1/δ, and λ.

– A is said to weakly learn C if there exist some polynomials pε(λ), pδ(λ) for
which ε ≤ 1

2 − 1
pε(λ)

and δ ≤ 1− 1
pδ(λ)

.

– We say a representation class is learnable if it is both efficiently and weakly
learnable. Otherwise, it is hard to learn.

Lastly, we recall the efficiently recognizable ensembles of sets as defined in
Section 2. We occasionally call such ensembles indexed, or succinct. Throughout
this section, we require this property of our set ensembles S. Both the MQRA

and AQ learning models that we present are defined with respect to S = {Sλ},
an efficiently recognizable ensemble of subsets of the domain Xλ.

4.2 Learning with Aggregate Queries

This computational learning model is inspired by our aggregate PRFs. Rather
than being a natural model in its own right, this model further illustrates how
cryptography and learning are in some senses duals. Here, we consider a new
extension to the power of the learning algorithm. Whereas membership queries
are of the form “What is the label of an example x?”, we grant the learner
the power to request the evaluation of simple functions on tuples of examples
(x1, ..., xk) such as “How many of (x1...xk) are in C?” or “Compute the product
of the labels of (x1, ..., xk)?”. Clearly, if k is polynomial then this will result only
a polynomial gain in the query complexity of a learning algorithm in the best
case. Instead, we propose to study cases when k may be super polynomial, but
the description of the tuples is succinct. For example, the learning algorithm
might query the number of x’s in a large interval that are positive examples in
the concept.

As with the restriction access and related concept models – and the aggregate
PRFs we define in this work – the Aggregate Queries (AQ) learning model
will be considered with restrictions to both the types of aggregate functions Γ
the learner can query, and the sets S over which the learner may request these
functions to be evaluated on. We now present the AQ learning model informally:

Definition 11 ((Γ,S)-Aggregate Queries (AQ) Learning). Let C be a rep-
resentation class with domains X = {Xλ}, and S = {Sλ} where each Sλ is a
collection of efficiently recognizeable subsets of the Xλ. Γ : {0, 1}∗ → Vλ be an
aggregation function [as in def:]. Let AGGλ

k � AGGλ
fk,Sλ,Γλ

be the aggregation
oracle for fk ∈ Cλ, for S ∈ Sλ and Γλ.

An algorithm A is an (ε, δ)-(Γ,S)-AQ learning algorithm for C if, for all

sufficiently large λ, for every fk ∈ Cλ, Pr[AMEMfk
(·),AGGλ

fk
(·) = h] ≥ 1− δ where

h is an ε-approximation to fk.

Aggregate Pseudorandom Functions and Connections to Learning 87

Hardness of Aggregate Query Learning

Theorem 15. Let F be a boolean-valued aggregate PRF with respect to set sys-
tem S = {Sλ} and accumulation function Γ = {Γλ}. For a representation class
C, if F ⊆ C, then C is hard to (Γ,S)-AQ learn.

Looking back to our constructions of aggregate pseudorandom function fam-
ilies from the prequel, we have the following corollaries.

Corollary 4. The existence of one-way functions implies that P/poly is hard to
(
∑

,S[a,b])-AQ learn, with S[a,b] the set of sub-intervals of the domain as defined
in Section 3.

Corollary 5. The DDH Assumption implies that NC1 is hard to (
∑

,S[a,b])-AQ
learn, with S[a,b] the set of sub-intervals of the domain as defined in Section 3.

Corollary 6. The subexponential DDH Assumption implies that NC1 is hard
to (

∏
,R)-AQ learn, with R the set of read-once boolean formulas defined in

Section 3.

Proof (Proof of Theorem 15). Interpreting F itself as a concept class, we will
show an efficient reduction from violating the pseudorandomness property of F
to weakly (Γ,S)-AQ learning F . By assumption, F ⊆ C, implying that C is hard
to learn as well.

Reduction: Suppose for contradiction that there exists an efficient weak learn-
ing algorithm A for F . We define algorithm B violating the aggregate PRF se-
curity of F . In the PRF security game, B is presented with two oracles: F (·) and
AGGλ

F for a function F chosen according to the secret bit b ∈ {0, 1}. In EXP(0),
F = fk for random k ∈ Kλ; by assumption fk ∈ Cλ. In EXP(1), F is a uniformly
random function from X to {0, 1}. The learning algorithm A is presented with
precisely the same oracles. B runs A, simulating its oracles by passing queries
and responses to its own oracles. XA = {x ∈ Xλ : A queried (ψ, x) for some ψ}.
Once A terminates, it outputs hypothesis h.

After receiving hypothesis h, B estimates the probability

p = Pr
x←X\XA

[h(x) = F (x)]

(using polynomial in λ, pε(λ) samples). In EXP(0), this probability is at least
1 − ε with probability at least 1 − δ; in EXP(1), it is exactly 1/2. To sample
uniform x ∈ X \ XA, we simply take a uniform x ∈ X : with high probability
x ∈ X \ XA. If the estimate is close to ε, guess EXP(0); otherwise, flip an fair
coin b′ ∈ {0, 1} and guess EXP(b′). The advantage ADV APRF

λ of B in the PRF
security game is at least 1

3pδ(n)
for all sufficiently large λ (as shown below),

directly violating the security of F .
Let

pb � Pr
x∈X\XA

[h(x) �= F (x)|EXP (b)]

88 A. Cohen, S. Goldwasser, and V. Vaikuntanathan

be the probability taken with respect to experiment EXP(b). In EXP(1), F is a
uniformly random function. Thus, p1 = 1

2 . With high probability, B will output
a random bit b′ ∈ {0, 1}, guessing correctly with probability 1/2.

In EXP(0), h is an ε-approximation to F with probability at least 1 − δ. In
this case, p0 ≥ 1− ε ≥ 1

2 +
1

pε(λ)
. By a Hoeffding bound, B will guess b′ = 0 with

high probability by estimating p using only polynomial in λ, pε(λ) samples. On
the other hand, if h is not an ε-approximation, B will b′ = 0 with probability at
least 1/2.

Let negl(λ) be the error probability from the Hoeffding bound, which can be
made exponentially small in λ. The success probability is:

Pr[b = b′|b = 0] ≥ (1 − δ)(1− negl(λ)) +
δ

2

which, for 1 − δ ≥ 1
pδ(λ)

is at least 1
3pδ(λ)

+ 1
2 for sufficiently large λ. Thus B a

non-negligible advantage of 1/3pδ(λ) in the (Γ,S)-aggregate-PRF security game.

Acknowledgements. Aloni Cohen’s research was supported in part by NSF
Graduate Student Fellowship and NSF grants CNS1347364, CNS1413920 and
FA875011-20225.

Shafi Goldwasser’s research was supported in part by NSF Grants CNS1347364,
CNS1413920 and FA875011-20225.

Vinod Vaikuntanathan’s research was supported by DARPA Grant number
FA8750-11-2-0225, an Alfred P. Sloan Research Fellowship, an NSF CAREER
Award CNS-1350619, NSF Frontier Grant CNS-1414119, a Microsoft Faculty
Fellowship, and a Steven and Renee Finn Career Development Chair from MIT.

References

[ABPP14] Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-
key security for pseudorandom functions beyond the linear barrier. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616,
pp. 77–94. Springer, Heidelberg (2014)

[BC10] Bellare, M., Cash, D.: Pseudorandom functions and permutations provably
secure against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 666–684. Springer, Heidelberg (2010)

[BF02] Bshouty, N.H., Feldman, V.: On using extended statistical queries to avoid
membership queries. The Journal of Machine Learning Research 2, 359–
395 (2002)

[BGI14a] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk [Kra14], pp. 501–519

[BGI14b] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk [Kra14], pp. 501–519

[BGV11] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation
over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 111–131. Springer, Heidelberg (2011)

Aggregate Pseudorandom Functions and Connections to Learning 89

[BLMR13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg
(2013)

[BW13a] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako and Sarkar [SS13], pp. 280–300

[BW13b] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako and Sarkar [SS13], pp. 280–300

[DRWY12] Dvir, Z., Rao, A., Wigderson, A., Yehudayoff, A.: Restriction access. In:
Goldwasser, S. (ed.) Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, pp. 19–33. ACM (2012)

[GGI+02] Gilbert, A.C., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss,
M.: Fast, small-space algorithms for approximate histogram maintenance.
In: Proceedings on 34th Annual ACM Symposium on Theory of Comput-
ing, Montréal, Québec, Canada, May 19-21, pp. 389–398 (2002)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM, 33(4):792–807 (1986); Extended abstract in FOCS 84

[GGN10] Goldreich, O., Goldwasser, S., Nussboim, A.: On the implementation of
huge random objects. SIAM J. Comput. 39(7), 2761–2822 (2010)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[KPTZ13a] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi et al. [SGY13],
pp. 669–684

[KPTZ13b] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi et al. [SGY13],
pp. 669–684

[Kra14] Krawczyk, H. (ed.): PKC 2014. LNCS, vol. 8383. Springer, Heidelberg
(2014)

[KV94] Kearns, M.J., Valiant, L.G.: Cryptographic limitations on learning boolean
formulae and finite automata. J. ACM 41(1), 67–95 (1994)

[NR04] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. J. ACM 51(2), 231–262 (2004)

[RR97] Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1),
24–35 (1997)

[SGY13] Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.): 2013 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2013, Berlin,
Germany, November 4-8. ACM (2013)

[SS13] Sako, K., Sarkar, P. (eds.): ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 2013–2019. Springer, Heidelberg (2013)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of
Computing, STOC 2014, May 31-June 03, pp. 475–484. ACM, New York
(2014)

[Val84] Leslie, G.: Valiant. A theory of the learnable. Communications of the
ACM 27(11), 1134–1142 (1984)

[VV86] Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions.
Theor. Comput. Sci. 47(3), 85–93 (1986)

Oblivious Polynomial Evaluation and Secure
Set-Intersection from Algebraic PRFs

Carmit Hazay�

Faculty of Engineering, Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. In this paper we study the two fundamental functionalities oblivious
polynomial evaluation in the exponent and set-intersection, and introduce a new
technique for designing efficient secure protocols for these problems (and others).
Our starting point is the [6] technique (CRYPTO 2011) for verifiable delegation
of polynomial evaluations, using algebraic PRFs. We use this tool, that is useful
to achieve verifiability in the outsourced setting, in order to achieve privacy in the
standard two-party setting. Our results imply new simple and efficient oblivious
polynomial evaluation (OPE) protocols. We further show that our OPE protocols
are readily used for secure set-intersection, implying much simpler protocols in
the plain model. As a side result, we demonstrate the usefulness of algebraic
PRFs for various search functionalities, such as keyword search and oblivious
transfer with adaptive queries. Our protocols are secure under full simulation-
based definitions in the presence of malicious adversaries.

Keywords: Efficient Secure Computation, Oblivious Polynomial Evaluation,
Secure Set-Intersection, Committed Oblivious PRF.

1 Introduction

Efficient secure two-party computation. Secure two-party computation enables two par-
ties to mutually run a protocol that computes some function f on their private inputs,
while preserving a number of security properties. Two of the most important proper-
ties are privacy and correctness. The former implies data confidentiality, namely, noth-
ing leaks by the protocol execution but the computed output. The latter requirement
implies that the protocol enforces the integrity of the computations made by the par-
ties, namely, honest parties learn the correct output. Feasibility results are well estab-
lished [49,23,39,5], proving that any efficient functionality can be securely computed
under full simulation-based definitions (following the ideal/real paradigm). Security is
typically proven with respect to two adversarial models: the semi-honest model (where
the adversary follows the instructions of the protocol but tries to learn more than it
should from the protocol transcript), and the malicious model (where the adversary fol-
lows an arbitrary polynomial-time strategy), and feasibility holds in the presence of
both types of attacks.

� Research partially supported by a grant from the Israel Ministry of Science and Technology
(grant No. 3-10883).

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 90–120, 2015.
c© International Association for Cryptologic Research 2015

Oblivious Polynomial Evaluation and Secure Set-Intersection 91

Following these works, many constructions focused on improving the efficiency of
the computational and communication costs. Conceptually, this line of works can be
split into two sub-lines: (1) Improved generic protocols that compute any boolean or
arithmetic circuit; see [47,30,44,36,38,7,16,43] for just a few examples. (2) Protocols
for concrete functionalities. In the latter approach attention is given to constructing ef-
ficient protocols for specific functions while exploiting their internal structure. This ap-
proach has been proven useful for many different functions in both the semi-honest and
malicious settings. Notable examples are calculating the kth ranked element [1], pattern
matching and related search problems [29,48], set-intersection [31,28] and oblivious
pseudorandom function (PRF) evaluation [20].

In this paper we study the two fundamental functionalities oblivious polynomial eval-
uation in the exponent and set-intersection and introduce a new technique for designing
efficient secure protocols for these problems in the presence of semi-honest and ma-
licious attacks with simulation-based security proofs. We further demonstrate that our
technique is useful for various search functionalities.

Algebraic PRFs. Informally, an algebraic pseudorandom function (PRF) is a PRF with
a range that forms an Abelian group such that group operations are efficiently com-
putable. In addition, certain algebraic operations on these outputs can be computed
significantly more efficiently if one possesses the key of the pseudorandom function
that was used to generate them. This property is denoted by closed form efficiency and
allows to compute a batch of l PRF values much more efficiently than by computing
the l values separately and then combing them. Algebraic PRFs were exploited in [6] to
achieve faster verifiable polynomial evaluations (in the exponent). Specifically, in their
setting, a client outsources a d-degree polynomial to an untrusted server together with
some authenticating information, while the client stores a short secret key. Next, when
the client provides an input for this polynomial the server computes the result and an
authentication message that allows the client to verify this computation in sub-linear
time in d.

More concretely, let Q(·) = (q0, . . . , qd) be the polynomial stored on the server in
the clear. Then the client additionally stores a vector of group elements {gaqi+ri}di=0

where a ← Zp and p is a prime, and ri is the ith coefficient of a polynomial R(·) of
the same degree as Q(·). Then for every client’s input t the server returns y = Q(t)
and u = gaQ(t)+R(t) and the client accepts u if and only if u = gay+R(t). Interestingly,
in case gri = PRFK(i), where PRF is an algebraic PRF, the closed form efficiency
property enables the client to compute the value gR(t) in sub-linear time in d. Stated
differently, verifiability is achieved by viewing gaqi+ri as a (one-time) message au-
thentication code (MAC) for gqi where batch verification of multiple MACs can be
computed more efficiently than verifying each MAC separately.

In this work we demonstrate the usefulness of algebraic PRFs for various two-party
problems by designing secure protocols based on this primitive. In particular, we mod-
ify the way [6] use algebraic PRFs so that instead of achieving verifiability in the out-
sourced setting, we achieve privacy in the standard two-party setting. It is worth noting
that although the main focus of [6] is correctness, they do discuss how to achieve one-
sided privacy by encrypting the coefficients of the polynomial (since the polynomial
must be specified explicitly). Nevertheless, it is not clear how to maintain the privacy

92 C. Hazay

of the input to the polynomial in their protocol. In this work, we use algebraic PRFs
to mask the polynomial in a different way that does not allow the verifiability of the
polynomial evaluation but allows the extractability of the polynomial more easily, and
demonstrate an alternative way to achieve correctness. We focus our attention on the
plain model where no trusted setup is required.

Oblivious polynomial evaluation. The oblivious polynomial evaluation (OPE) func-
tionality is an important functionality in the field of secure two-party computation. It
considers a setting where party P0 holds a polynomial Q(·) and party P1 holds an ele-
ment t, and the goal is that P1 obtains Q(t) and nothing else while P0 learns nothing.
OPE has proven to be a useful building block and can be used to solve numerous cryp-
tographic problems; e.g., secure equality of strings, set-intersection, approximation of
a Taylor series, RSA key generation, oblivious keyword search, set membership, data
entanglement and more [22,37,21,20,41,3].

Despite its broad applicability the study of OPE was demonstrated using only few
concrete secure protocols, initiated in [40] and further continued in [9,50,24]. In par-
ticular, the only protocol with a complete simulation-based proof in the presence of
malicious attacks is the protocol in [24]. This protocol evaluates a d-degree polynomial
over a composite order group ZN with O(sd) modular exponentiations, where N is an
RSA composite and s is a statistical security parameter.

The general (and currently the most practical) approach of [16,15] for arithmetic cir-
cuits follows the preprocessing model: in an offline phase some shared randomness is
generated independently of the function and the inputs; in an online phase the actual
secure computation is performed. One of the main advantages of these protocols is that
the basic operations are almost as cheap as those used in the passively secure proto-
cols. To get good performance, these protocols use the somewhat-homomorphic SIMD
approach that handles many values in parallel in a single ciphertext, and thus more ap-
plicable for large degree polynomials. Similarly, protocols for Boolean circuits apply
the cut-and-choose technique which requires to repeat the computation s times in order
to prevent cheating except with probability 2−s [35].

In some applications such as password-based authenticate key exchange protocols or
when sampling an element from a d-wise independence space, the polynomial degree
is typically small and even a constant. In these cases, our protocols have clear benefits
since they are much simpler, efficient and easily implementable.

Secure set-intersection. In the set-intersection problem parties P0, P1, holding input
sets X,Y of sizes mX and mY , respectively, wish to compute X ∩ Y . This problem
has been intensively studied by researchers in the last few years mainly due to its poten-
tial applications for dating services, datamining, recommendation systems, law enforce-
ment and more; see [21,34,13,31,32,25,28] for a few examples. For instance, consider
two security agencies that wish to compare their lists of suspects without revealing their
contents, or an airline company that would like to check its list of passengers against
the list of people that are not allowed to go abroad.

Two common approaches are known to solve this problem securely in the plain
model: (1) oblivious polynomial evaluation and (2) committed oblivious PRF evalu-
ation. In the former approach party P0 computes a polynomial Q(·) such that Q(x) = 0

Oblivious Polynomial Evaluation and Secure Set-Intersection 93

for all x ∈ X . This polynomial is then encrypted using homomorphic encryption and
sent to P1, that computes the encryption of ry ·Q(y) + y for all y ∈ Y , and using fresh
randomness ry . This approach (or a variant of it) was taken in [21,34,13,28].

The second approach uses a secure implementation of oblivious pseudorandom func-
tion evaluation. Namely, P0 chooses a PRF key K and computes the set PRFX =
{PRFK(x)}x∈X . The parties then execute an oblivious PRF protocol where P0 inputs
K , whereas P1 inputs the set Y and learns the set PRFY = {PRFK(y)}y∈Y . Finally,
P0 sends the set PRFX to P1 that computes PRFX∩PRFY and extracts the actual inter-
section. This idea was introduced in [20] and further used in [25,31,32]. Other solutions
in the random oracle model such as [12,11,2] take a different approach by applying the
random oracle on (one of) the sets members, or apply oblivious transfer extension [18].

In a recent result [45], the authors overview exiting solutions for set-intersection in
the semi-honest setting and compare their efficiency. One of their conclusions is that
OPE-based approaches are inferior to oblivious-transfer extension based approaches.
It is an interesting question to test whether this conclusion also for the case for the
malicious setting as well.

To the best of our knowledge, the most efficient protocol in the malicious plain model
that does not require a trusted setup or rely on non-standard assumptions is the protocol
of [28] that incurs computation of O(mX +mY log(mX +mY)) modular exponentia-
tions. A more efficient protocol with O(mX +mY) communication and computational
costs was introduced by [31] in the common reference string (CRS) model (where the
CRS includes a safe RSA composite that determines the group order and implies high
overhead when mutually produced). Another drawback of this protocol is that its secu-
rity proof runs an exhaustive search on the input domain of the PRF in order to extract
P0’s input. This implies that the proof works for small domain PRFs and that the com-
plexity of the simulator grows linearly with the size of the PRF’s input domain.

Committed oblivious PRF evaluation. The oblivious PRF evaluation functionalityFPRF

that obliviously evaluates a PRF is defined by (K,x) → (−,PRFK(x)). This function-
ality is very important in the context of secure computation since it essentially imple-
ments a random oracle. That is, the party with the PRF key, say P0, mimics the random
oracle role via interaction. Therefore, if the protocol that realizes FPRF is simulation-
based secure then both desirable properties of a random oracle, programmability and
observability, can be achieved by this protocol. First, since the simulator can force any
output for a corrupted P1, it essentially programs the function’s output. In addition, it
can also observe (via extraction) the input to the functionality. Nevertheless, the useful-
ness of oblivious PRF evaluation is reflected via an additional property of committed
key that implies that the same key is used for multiple PRF evaluations.

Committed oblivious PRF (CPRF) evaluation has been used to compute secure set-
intersection [31,25], oblivious transfer with adaptive queries [20], keyword search [20],
pattern matching [25,19] and more. It is therefore highly important to design efficient
protocols for this functionality. Current implementations of the [42] algebraic PRF, dis-
cussed in this paper, employ an oblivious transfer protocol for each input bit [20,25]
and are only secure for a single PRF evaluation. Consequently, the protocol of [25]

94 C. Hazay

does not achieve full security against malicious adversaries. In addition, the protocol
from [31] (that implements a variant of the [17] PRF) requires a trusted setup of a safe
RSA composite and suffers from the drawbacks specified above.

1.1 Our Results

In this paper we use algebraic PRFs to design alternative simple and efficient protocols
for polynomial evaluation, set-intersection, committed oblivious PRF evaluation and
search problems. Below, we demonstrate the broad usefulness of our technique.

Oblivious polynomial evaluation (Section 3). We present secure protocols in the plain
model for OPE in the exponent with simulation-based security against semi-honest and
malicious attacks. We stress that evaluating a polynomial in the exponent has strong ap-
plicability in the context of set membership where the goal is to privately verify mem-
bership in some secret set, as well as achieving d-wise independence. We use algebraic
PRFs to build simple two-phases OPE protocols as follows. In the first phase party P0,
holding the polynomial gQ(·), publishes its masked polynomial gQ(·)+R(·) where the set
gR(·) is determined by an algebraic PRF. Next, P1 locally computes gQ(t)+R(t) and the
parties run an unmasking secure computation for obliviously evaluating gR(t) for P1.

The efficiency of the latter phase is dominated by the overhead of the closed form
efficiency property of the specific PRF. In this work, we consider two PRF implemen-
tations used by [6]: (1) a PRF with security under the strong-DDH assumption. (2) The
Naor-Reingold PRF [42] with security under the DDH assumption. More concretely,
the efficiency of our protocols is only d+ 1 modular exponentiations for the first phase
of sending the masked polynomial, and d+1+O(1) (resp. O(log d)) modular exponen-
tiations for the second phase of obliviously evaluating the pseudorandom polynomial
under the strong-DDH (resp. DDH) assumption. For simplicity, we only consider uni-
variate polynomials. Our technique can be applied for multivariate polynomials as well
(with total degree d or of degree d in each variable); see [6] for further details. To the
best of our knowledge, our protocols are the first to obliviously evaluate both univariate
and multivariate polynomials that efficiently.

Secure set-intersection (Section 4). In this work we demonstrate that algebraic PRFs
are useful for both approaches of OPE and committed oblivious PRF that enable to de-
sign set-intersection protocols. We first show that our protocols for OPE readily induce
secure protocols for set-intersection. That is, first P0 encodes the set X by a polyno-
mial gQ(·) as specified above, and masks it. Next, for each y ∈ Y party P1 verifies
whether the masked polynomial evaluation of y equals the evaluation gR(y), and con-
cludes whether the element is in the intersection. We stress that this naive approach
requires a multiplicative overhead (in the sets sizes) since for each element in its in-
put Y , P1 needs to evaluate a polynomial of degree mX . To reduce the computational
overhead, Freedman et al. [21] introduced a balanced allocation scheme [4] into their
protocol that splits the elements into B = mX

log logmX
bins, with maximum number of

M = O(mX/B + log logB) = O(log logmX) elements in each bin. In that case, the
elements mapped by P0 to a certain bin must only be compared to those mapped by
P1 to the same bin. Therefore, P1 should only evaluate an M -degree polynomial for

Oblivious Polynomial Evaluation and Secure Set-Intersection 95

each y ∈ Y , rather than a polynomial of degree mX . Nevertheless, their solution with
hash functions is only applicable in the semi-honest setting. Following that, Hazay and
Nissim [28] introduced a maliciously secure protocol which implies the computation
of O(mX +mY log(mX +mY)) modular exponentiations. Their construction is fairly
complicated and combines both approaches of OPE and oblivious PRF evaluation.

We introduce the hashing technique into our constructions and provide a generic
description that can be instantiated with different hash functions. Our protocols are
far less complicated and maintain a modular description. Specifically, we devise an
alternative zero-knowledge proof for verifying the correctness of the hashed polyno-
mials while exploiting the algebraic properties of the PRF. Under the strong-DDH as-
sumption our protocol matches the communication overhead of the protocol from [31]
(that also relies on a dynamic hardness assumption) and implies the computation of
O(mX +mY log logmX) exponentiations, with the benefits that it operates over prime
order groups, it does not require a trusted setup and the proof complexity does not
depend on the PRF’s input domain size. Under the DDH assumption our protocol, us-
ing hash functions, implies the computation of O(mX +mY logmX) exponentiations
which improves the overhead of the [28] protocol. Next we show that algebraic PRFs
are useful for applications that rely on committed oblivious PRF evaluation. Our results
for set-intersection are summarized in Table 1.

Committed oblivious PRF evaluation (Section 5). Observing that the batch computation
for l PRF values PRF′

K(x) =
∏l

i=0[PRFK(i)]x
i

is a PRF as well (by fixing l properly),
we derive new PRF constructions in prime order groups and more interestingly, simple
committed oblivious PRF evaluation protocols. Our strong-DDH based PRF requires
constant overhead, and our DDH-based protocol is the first committed oblivious PRF
implementation for the [42] function. Our protocols using committed oblivious PRF
imply set-intersection protocols with O(mX + mY) costs under the strong-DDH as-
sumption and ((mX + mY) log(mX + mY)) communication and computation costs
under the DDH assumption, where the former analysis matches the overhead from [31].
In particular, plugging-in our protocols for committed oblivious PRF evaluation in the
protocols cited above implies malicious security fairly immediately. Finally, we note
that committed oblivious PRF evaluation is also useful for search functionalities that
support database search and data retrievals, such as in keyword search and oblivious
transfer with adaptive queries.

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by n. We say that a function μ : N → N is negligible if
for every positive polynomial p(·) and all sufficiently large n it holds that μ(n) < 1

p(n) .
We use the abbreviation PPT to denote probabilistic polynomial-time. We further denote
by a ← A the random sampling of a from a distribution A, by [d] the set of elements
(1, . . . , d) and by [0, d] the set of elements (0, . . . , d).

We define a d-degree polynomial Q(·) by its set of coefficients (q0, . . . , qd), or sim-
ply write Q(x) = q0 + q1x + . . . qdx

d. Typically, these coefficients will be picked

96 C. Hazay

Table 1. Comparisons with secure set-intersection constructions. We highlight the constructions
with the best performance under each assumption.

Hardness Overhead
Reference Modeling Assumption (Number of Exp.)

[31] CRS of a safe prime Decisional d-DHI O(mX +mY)

[28] plain model DDH O(mX +mY log(mX +mY))

[18] random oracle random oracle O(n), where n is sec. parameter

This Work – OPE plain model d-strong DDH O(mX +mY log logmX)

This Work – OPE plain model DDH O(mX +mYlog mX)

This Work – CPRF plain model d-strong DDH O(mX +mY)

This Work – CPRF plain model DDH O((mX +mY) log(mX +mY))

from Zp for a prime p. We further write gQ(·) to denote the coefficients of Q(·) in the
exponent of a generator g of a multiplicative group G of prime order p.

2.2 Zero-Knowledge Proofs

To prevent malicious behavior, the parties must demonstrate that they are well-behaved.
To achieve this, our protocols utilize zero-knowledge (ZK) proofs of knowledge. Our
proofs are Σ-protocols with a constant overhead. A generic efficient technique that
enables to transform any Σ-protocol into a zero-knowledge proof of knowledge can be
found in [26]. This transformation requires additional 6 exponentiations.

1. πDL, for demonstrating the knowledge of a solution x to a discrete logarithm prob-
lem [46].

RDL = {((G, g, h), x) | h = gx} .

2. πDDH, for demonstrating that an El Gamal ciphertext is an encryption of zero [10].

RDDH = {((G, g, h, g1, h1), x) | g1 = gx ∧ h1 = hx} .

3. πMULT, for proving that a ciphertext c2 encrypts a product of two plaintexts values.
Namely,

RMULT =

⎧⎨
⎩((G, PK, c0, c1, c2), (a0, a1, r0, r1, r2,)) |

ci = EncPK(ai; ri)
for i ∈ {0, 1}
∧ c2 = EncPK(a0 · a1; r2)

⎫⎬
⎭

where multiplication is performed in the corresponding plaintext group. A zero-
knowledge proof for the El Gamal PKE, that is based on the Damgård and Jurik
technique [14], can be found in [28].

4. πEq, for demonstrating equality of two exponentiations. Namely,

REq =

{
((PK, c1, c

′
1, c2, c

′
2), (m, r1, r2)) |

c′1 = cm1 · EncPK(0; r1)
∧c′2 = cm2 · EncPK(0; r2)

}

Oblivious Polynomial Evaluation and Secure Set-Intersection 97

where exponentiation, as well as multiplication with an encryption of zero, are
computed componentwise. A variant of this zero-knowledge proof was presented
and discussed in [27] for Paillier encryption scheme and can be easily extended for
this relation as well. We leave the details of this proof to the full version.

3 Protocols for Oblivious Polynomial Evaluation

In this section we introduce our new constructions for oblivious polynomial evaluation
(OPE) in the exponent, implementing functionality FOPE : (gQ(·), t) → (−, gQ(t)) for
Q(·) = (q0, . . . , qd). In particular, we assume common knowledge of the public pa-
rameters: a multiplicative group G of order p and a generator g for G, and that the
polynomial coefficients are in Zp. In our solution, party P0 generates these parame-
ters and publishes its masked polynomial gQ(·)+R(·), where the set of values gR(·) is
determined by an algebraic PRF that has a closed form efficient computation for uni-
variate polynomials (see Section 3.1). Next, P1 computes gQ(t)+R(t) and the parties run
an unmasking secure computation for obliviously evaluating gR(t) for P1. Importantly,
the closed form efficiency property of the PRF allows the parties to mutually compute
gR(t) in sub-linear time in d. Before presenting our OPE constructions we formally
define algebraic pseudorandom functions.

3.1 Algebraic Pseudorandom Functions [6]

Algebraic PRFs are PRFs with two additional algebraic properties. First, they map their
inputs into some Abelian group, where certain algebraic operations on these outputs
can be computed signicantly faster if one possesses the PRF key. These properties were
exploited in [6] to achieve faster polynomial evaluations (in the exponent), where the
coefficients of these polynomials lie in the PRF range. Several constructions, implying
different overheads, were introduced in [6]; we focus our attention on their construc-
tions for univariate polynomials. Our protocols can be applied for multivariate polyno-
mials as well (with total degree d or of degree d in each variable). We begin with the
formal definition of algebraic PRFs.

Definition 3.1 (Algebraic PRFs). We say that PRF = (KeyGen,PRF,CFEval), is an
algebraic PRF if KeyGen,PRF are polynomial-time algorithms specified as follows:

– KeyGen, given a security parameter 1n, and a parameter m ∈ N that determines
the domain size of the PRF, outputs a pair (K, param) ← Kn, where Kn is the
key space for a security parameter n. K is the secret key of the PRF, and param
encodes the public parameters.

– PRF, given a key K , public parameters param, and an input x ∈ {0, 1}m, outputs
a value y ∈ Y , where Y is some set determined by param.

– In addition, the following properties hold:
Pseudorandomness. We say that PRF is pseudorandom if for every PPT adver-

sary A, and every polynomial m = m(n), there exists a negligible function
negl such that

|Pr[APRFK(·)(1n, param) = 1]− Pr[Afn(·)(1n, param) = 1]| ≤ negl(n),

98 C. Hazay

where (K, param) ← KeyGen(1n,m) and fn : {0, 1}m → Y is a random
function.

Algebraic. We say that PRF is algebraic if the range Y of PRFK(·) for every
n ∈ N and (K, param) ← Kn forms an Abelian multiplicative group. We
require that the group operation on Y be efficiently computable given param.

Closed form efficiency. Let N be the order of the range sets of PRF for security
parameter n. Let z = (z1, . . . , zl) ∈ ({0, 1}m)l, k ∈ N, and efficiently com-
putable h : Zk

N → Zl
N with h(x) = 〈h1(x), . . . , hl(x)〉. We say that (h, z) is

closed form efficient for PRF if there exists an algorithm CFEvalh,z such that
for every x ∈ Zk

N ,

CFEvalh,z(x,K) =
l∏

i=1

[PRFK(zi)]
hi(x)

and the running time of CFEval is polynomial in n,m, k but sublinear in l.

The last property is very important for our purposes since it allows to run certain com-
putations very fast when the secret key is known. We next describe two implementations
for algebraic PRFs introduced in [6].

Algebraic PRFs from Strong DDH. Let G be a computational group scheme. The
following construction PRF1 is an algebraic PRF with polynomial sized domains.

KeyGen(1n,m): Generate a group description (G, p, g) ← G(1n). Choose k0, k1 ←
Zp. Output param = (m, p, g,G),K = (k0, k1).

PRFK(x): Interpret x as an integer in {0, . . . , D = 2m} where D is polynomial in n.
Compute and output gk0k

x
1 .

Closed form efficiency for polynomials of degree d. We now show an efficient closed
form for PRF1 for polynomials of the form (where evaluation is computed in the
exponent)

Q(x) = PRFK(0) · PRFK(1)x · . . . · PRFK(d)x
d

=
d∏

i=0

PRFK(i)x
i

where d ≤ D. Let h : Zp → Zd+1
p , be defined as h(x)

def
= (1, x, . . . , xd) and

(z0, . . . , zd) = (0, . . . , d). Then, we can define

CFEvalh(x,K)
def
= g

k0(k
d+1
1 xd+1−1)

k1x−1 .

Specifically, we write

d∏
1=0

[PRFK(zi)]
hi(x) =

d∏
i=0

[gk0k
i
1]x

i

= gk0

∑d
i=0 ki

1x
i

.

Correctness of CFEval follows by the identity
∑d

i=0 k0k
i
1x

i = k0((k1x)
d+1−1)

k1x−1 .

Theorem 3.2 ([6]). Suppose that the D-Strong DDH assumption holds. Then, PRF1

is a pseudorandom function.

Oblivious Polynomial Evaluation and Secure Set-Intersection 99

Algebraic PRFs From DDH. Let G be a computational group scheme. Define PRF2

as follows.

KeyGen(1n,m): Generate a group description (p, g,G) ← G(1n). Choose
k0, k1, . . . , km ← Zp. Output param = (m, p, g,G),K = (k0, k1, . . . km).

PRFK(x): Interpret x = (x1, . . . , xm) as an m-bit string. Compute and output
gk0

∏m
i=1 k

xi
i .

This function is known by the Naor-Reingold function [42].

Closed form for polynomials of degree d. We describe an efficient closed form for
PRF2 for computing polynomials of the same form as above. That is,

Q(x) = PRFK(0) · PRFK(1)x · . . . · PRFK(d)x
d

=

d∏
i=0

PRFK(i)x
i

.

Let h : Zp → Zd+1
p , defined as h(x) = (1, x, . . . , xd) and let z = (z1, . . . , zl) =

(0, . . . , d) then

CFEvalh,z(x,K)
def
= gk0(1+k1x)(1+k2x

2)...(1+kmx2m)

with m = log d� (clearly, d must be a power of 2).

Theorem 3.3 ([42]). Suppose that the DDH assumption holds. Then, PRF2 is a pseu-
dorandom function.

To this end, we only consider z = (0, . . . , d) and omit z from the subscript, writing
CFEvalh(x,K) instead.

3.2 Our OPE Constructions

We describe our protocol for oblivious polynomial evaluation in the FMaskPoly-hybrid
setting, where the parties have access to a trusted party that computes functionality
FMaskPoly : (K, t) → (−, gR(t)) relative to some prime order group G and gener-
ator g that are picked by P0, for gR(·) =

(
gr0 , . . . , grd

)
and gri = PRFK(i) for

all i. For simplicity, we first describe a semi-honest variant of our protocol and then
show how to enhance its security into the malicious setting. Formally, let PRF =
〈KeyGen,PRF,CFEval〉 denote an algebraic PRF with a range group G (cf. Defini-
tion 3.1), then our semi-honest protocol follows.

Protocol 1 (Protocol πOPE with Semi-Honest Security.)

– Input: Party P0 is given a d-degree polynomial gQ(·) = (gq0 , . . . , gqd) with coefficients
qi’s from Zp with respect to prime order group G and generator g. Party P1 is given an
element t from Zp. Both parties are given a security parameter 1n, group description G, p
and g.

100 C. Hazay

– The protocol:

1. Masking the Polynomial. P0 invokes (K, param) ← KeyGen(1n, log d�) where
param includes a group description G of prime order p and a generator g. It next
defines a sequence of d elements R̃(·) = (r̃0, . . . , r̃d) over G where r̃i = PRFK(i) for
all i.
P0 sends P1 param and the masked polynomial C(·) =

(
gq0 r̃0, . . . , g

qd r̃d
)
, where

multiplication is implemented (componentwise) in G.
2. Unmasking the Result. Upon receiving the masked polynomial C(·) = (c0, . . . , cd),

party P1 computes the polynomial evaluation C(t) =
∏d

i=0(ci)
ti . I.e., C(·) is evalu-

ated in the exponent. Next, the parties invoke an ideal execution of FMaskPoly where the
input of P0 is K and the input of P1 is t. Let Z denote the output of P1 from this ideal
call, then P1’s output is C(t)/Z where division in implemented in G.

Note that correctness holds since party P1 computes in Step 2 the polynomial evaluation

C(t) =

d∏
i=0

(ci)
ti =

d∏
i=0

(gqi r̃i)
ti =

d∏
i=0

(gqigr
′
i)t

i

= gQ(t)+R(t)

and then “fixes” its computation by dividing out Z = gR(t). In addition, privacy holds
due to the pseudorandomness of PRF that hides the coefficients of Q(·). Next, we
prove the following theorem. The proof is straightforward and is left for the full version.

Theorem 3.4. Assume PRF = 〈KeyGen,PRF,CFEval〉 is an algebraic PRF, then
Protocol 1 securely realizes functionality FOPE in the presence of semi-honest adver-
saries in the FMaskPoly-hybrid model.

Efficiency. In the first phase P0 computes d+ 1 modular exponentiations as it can first
compute the PRF evaluations in Zp (using the PRF key K) and then raise the outcomes
to the power of g. Next, P0 multiplies each PRF evaluation PRFK(i) with gqi (where
these computations can be combined into a single exponentiation per index i). Effi-
ciency of the second phase is dominated by the degree of Q(·) and the implementation
of functionality FMaskPoly. In Section 3.3 we discuss several ways to realize FMaskPoly.
(1) Assuming the strong-DDH assumption, our protocol requires a constant number
of modular exponentiations. (2) Assuming the DDH assumption our protocol requires
O(log d) modular exponentiations. Therefore, the overall cost is 2(d+1)+O(1) (resp.
O(log d) exponentiations.

Security in the Presence of Malicious Adversaries. We next prove the security of
Protocol 1 in the presence of malicious attacks. We observe that if the protocol that
implements FMaskPoly is secure in the presence of malicious corruptions then the en-
tire protocol is secure against malicious attacks as well. Intuitively, security against a
corrupted P1 is immediately implied since a corrupted P1 does not learn anything be-
yond gR(t′), where t′ is P1’s input to FMaskPoly. More concretely, in the security proof
the simulator publishes a random polynomial S̃(·) = gS(·) first, and then extracts P1’s
input t′ to πMaskPoly. Finally, the simulator forces P1’s output within πMaskPoly to be

Oblivious Polynomial Evaluation and Secure Set-Intersection 101

gS(t′)/gQ(t′). In case P0 is corrupted we need to demonstrate how to extract the coef-
ficients of gQ(·). This is achieved by the fact that P0 is committed to the PRF key K
within FMaskPoly.

To conclude, in order to obtain malicious security the only modification we need
to consider with respect to πOPE is to employ a maliciously secure implementation of
functionality FMaskPoly. In the hybrid setting this does not make a difference for the
protocol description. In Section 3.3 we discuss secure implementations of functionality
FMaskPoly. The proof for the following theorem is simple and left for the full version.

Theorem 3.5. Assume PRF = 〈KeyGen,PRF,CFEval〉 is an algebraic PRF, then
Protocol 1 securely realizes functionalityFOPE in the presence of malicious adversaries
in the FMaskPoly-hybrid model.

3.3 Secure Protocols for πMaskPoly

In this section we describe a concrete protocol that implements functionalityFMaskPoly :
(K, t) → (−, gR(t)), used as a subprotocol within our main protocol πOPE for oblivious
polynomial evaluation from Section 3.2. This computation corresponds to the polyno-
mial evaluation R̃(x) = PRFK(0)·PRFK(1)x ·. . .·PRFK(d)x

d

with respect to function
PRF. In what follows, we discuss a detailed secure implementation for PRF1 that is
described in Section 3.1 and then briefly discuss how to implement function PRF2,
formally described in Section 3.1, using similar ideas.

We recall that when implementing functionality FMaskPoly relative to PRF1 the par-

ties compute the value g
∑d

i=0 k0k
i
1x

i

= g
k0((k1x)d+1−1)

k1x−1 , so that P0 enters a PRF key
K = (k0, k1) and learns nothing and P1 enters x = t and learns this outcome. This is a
simple computation that requires a constant number of exponentiations and can be eas-
ily implemented securely. Achieving malicious security requires to ensure correctness
of computations which we obtain using simple zero-knowledge proofs of knowledge.
Loosely speaking, the parties first generate a joint public key for the additive El Gamal
PKE such that no party knows the secret key (we omit the details here). Next, each
party commits to its input and the parties jointly compute k1t. A slight complication
arises since the parties need to compute the inverse of k1t− 1. Relying on the fact that
(k1t− 1)−1 = (k1t− 1)p−2 mod p and that

k0((k1t)
d+1 − 1)

k1t− 1
=

k0(k1t)
d+1 − k0

k1t− 1
=

k0k
d+1
1 td+1

k1t− 1
− k0

k1t− 1
,

we let the parties compute the inverse of k1t − 1 first and then complete the computa-
tion by multiplying the result with k0(k1t)

d+1 and k0. Formally, our protocol uses the
following tools:

1. Distributed additive El Gamal. We denote this scheme byΠ = (πKeyGen,Enc, πDEC).
2. Zero-knowledge proofs of knowledge:πDL for proving a discrete logarithm and πEq

for proving consistency of exponents, which are formally stated in Section 2.2.

Finally, we implicity assume that a party rerandomizes its homomorphic computa-
tions on the ciphertexts. Such that rerandomization is carried out by multiplying the
outcome with a random encryption of zero. We now describe our protocol is details.

102 C. Hazay

Protocol 2 (Protocol πMaskPoly with Malicious Security.)

– Input: Party P0 is given a PRF key K = (k0, k1). Party P1 is given an element t. Both
parties are given a security parameter 1n, a polynomial degree d and (G, p, g) for a group
description G of prime order p and a generator g.

– Convention: Homomorphic operations on ciphertexts are computed componentwise.
– The protocol:

1. Distributed key generation. P0 and P1 run protocols πKeyGen(1
n, 1n) in order to

generate additive El Gamal public key PK = 〈G, p, g, h〉 for which the corresponding
shares of the secret key SK are (SK0, SK1). P0 then sends P1 encryptions of k0 and
k1, denoted by ck0 and ck1 , and proves their knowledge using πDL.

2. Computing encryption of k1t. Upon receiving ciphertexts ck0 and ck1 , P1 sends P0

an encryption of its input t, denoted by ct. It further computes the encryption of k1t,
denoted by ck1t, and proves consistency relative to ct and ck1t using the zero-knowledge
proof πEq.

3. Computing encryptions of kd+1
1 and td+1. P0 computes the encryption of kd+1

1 ,
denoted by c

kd+1
1

, and proves consistency between gd+1 and c
kd+1
1

using πEq. Similarly,

P0 computes the encryption of td+1, denoted by ctd+1 , and proves correctness.
4. Computing encryption of (k1t− 1)−1. The parties compute the inverse of (k1t− 1),

by first computing the encryption of k1t− 1 given ciphertext ck1t from above, and then
raising the result to the power of p− 2. Let cinv denote the outcome.

5. Computing encryptions of k0(k1t− 1)−1 and k0k
d+1
1 (k1t− 1)−1. Given ci-

phertexts cinv , c
kd+1
1

and ck0 , P0 computes the encryptions of k0(k1t − 1)−1 and

k0k
d+1
1 (k1t − 1)−1 and proves consistency relative to cinv , c

kd+1
1

and ck0 using πEq

(where the proof of the later computation involves running πEq twice). Let c0 and c′0
denote the respective outcomes.

6. Computing encryption of k0k
d+1
1 td+1(k1t− 1)−1. Given ciphertexts ctd+1 and c′0,

P1 computes the encryption of k0kd+1
1 td+1(k1t − 1)−1 and proves consistency using

πEq. Let c1 denote the respective outcome.
7. Outcome. Finally, the parties decrypt c1/c0 for P1 that outputs the result.

Theorem 3.6. Assume Π = (πKeyGen,Enc, πDEC), πDL and πEq are as above, then Pro-
tocol 2 securely realizes functionality FMaskPoly with respect to PRF1 in the presence
of malicious adversaries.

We leave the proof to the full version. Next, we note that the implementation of
the other PRF PRF2 follows similarly. Namely, recall that the parties compute the

value gk0(1+k1,x)(1+k2x
2)...(1+kmx2m) which can be carried out in O(m) time as fol-

lows. First, P0 commits to its key (k0, k1, . . . , km), whereas P1 commits to the ele-
ments (x, x2, . . . , x2m) together with a ZK proof of consistency. Next, given the product

g̃ = gk0(1+k1,x)(1+k2x
2)...(1+k′

mx2m
′
) for some integer m′ < m, the parties compute

g̃ · g̃km′+1x
2(m

′+1)

= g̃(1+km′+1x
2(m

′+1)
) = gk0(1+k1,x)(1+k2x

2)...(1+km′+1x
2(m

′+1)
)

where ĝ = g̃km′+1 is carried out by P0 and proven correct with respect the commitment

of gkm′+1 . This computation is followed by P1 computing ĝx
2(m

′+1)

which is also ver-

ified against the commitment of gx
2(m

′+1)

where the commitment is realized using El
Gamal. See the ZK proof πEq for more details.

Oblivious Polynomial Evaluation and Secure Set-Intersection 103

4 Secure Set-Intersection

One important application that benefits from our OPE construction is the set-intersection
functionality which is defined by having each party’s input consists of a set of elements
from domain {0, 1}t. Formally:

Definition 4.1. Let X and Y be subsets of a predetermined arbitrary domain {0, 1}t
and mX and mY the respective upper bounds on the sizes of X and Y .1 Then function-
ality F∩ is defined by:

(X,Y) → (mY , (X ∩ Y,mX)).

To achieve a secure set-intersection protocol, we modify protocolπOPE from Section 3.2
as follows. First, P0 prepares a polynomial Q(·) with coefficients in Zp and the set of
roots X . It then masks Q(·) as in Protocol 1 using the sequence of pseudorandom el-
ements R̃(·). The parties then interact with a trusted party that computes functionality
FEqMask, which is a slight variation of functionalityFMaskPoly. Namely, instead of imple-
menting FMaskPoly the functionality checks for equality with respect to P1’s polynomial
evaluations of gQ(·)R̃(·) and R̃(·) on the set Y . This modification in the functionality’s
description is required due to the fact that we cannot let P1 learn Q(y) for arbitrary
y ∈ Y (even if P1 is honest), since that would leak information about X . More specif-
ically, FEqMask is defined by (K, {(yi, Ti)}yi∈Y) → (−, {bi}i), where bi = 1 only if
Ti = gR(yi) and 0 otherwise, gR(·) =

(
gr0 , . . . , grmX

)
and gri = PRFK(i) for all i.

Stated differently, bi = 1 if and only if Q(yi) = 0 (or yi ∈ X ∩ Y) with overwhelming
probability. Finally, P1 outputs the set of elements Z ⊆ Y for which bi = 1.

Our implementation for FMaskPoly from Section 3.3 easily supports this functionality,
since P0 can run its zero-knowledge proofs with respect to a single set of ciphertexts
encrypting its PRF key. In addition, in order to enable the extraction of the set X by the
simulator we add zero-knowledge proofs of knowledge for the relation RDL, formally
defined in Section 2.2. This technicality arises because P0 sends elements in G yet the
polynomial Q(·) + R(·) is evaluated in the exponent, implying that X and Y must
be sampled from Zp as well. Note that P0 may fix X and its masked polynomial in
G. Nevertheless, P1 needs to know the discrete logarithms of Y with respect to some
group generator g in order to evaluate the masked polynomial.

Formally, let d = mX − 1, then define our set-intersection protocol as follows,

Protocol 3 (Protocol π∩ with malicious security.)

– Input: Party P0 is given a set X of size mX . Party P1 is given a set Y of size mY . Both
parties are given a security parameter 1n.

– The protocol:
1. Masking the input polynomial. P0 defines an d-degree polynomial Q(·) =
(q0, . . . , qd) with coefficients in Zp and the set of roots X , for d = mX − 1. It then

1 In order to deal with a proof technicality, where a corrupted party inputs less elements than
its set size, prior constructions assume a super polynomial lower bound on the input domain
sizes. Since we do not wish to restrict the input domains, we assume that the set sizes are not
strict and may denote some upper bound on the actual numbers of elements.

104 C. Hazay

invokes (K, param) ← KeyGen(1n, d) where param includes a group descrip-
tion G of prime order p and a generator g, and defines a new d-degree polynomial
R̃(·) = (r̃0, . . . , r̃d) over G, where ri is defined by PRFK(i) for all i.
P0 sends P1 param and the masked polynomial C(·) =

(
gq0 r̃0, . . . , . . . , g

qd r̃d
)
,

where multiplication is implemented in G. P0 further proves the knowledge of the dis-
crete logarithm of ci = gqi r̃i for all i with respect to a generator g, by invoking an
ideal execution of FDL on input {((g, ci), logg ci)}i∈[0,d].

2 The input of P1 for FDL is
{(g, ci)}i∈[0,d].

2. Unmasking the result. Upon receiving the masked polynomial C(·) = (c0, . . . , cd)
and upon receiving from FDL the value 1, denoting “accept” for all i, party P1 com-

putes the polynomial evaluation C(y) =
∏d

i=0(ci)
yi

for all y ∈ Y (picked in a random
order). I.e., C(·) is evaluated in the exponent.
Next, the parties invoke an ideal execution of FEqMask, where the input of P0 is K and
the input of P1 is the set {(y, C(y))}y∈Y . P1 outputs y if and only if the output from
FEqMask on (y,C(y)) is 1.

Correctness follows easily since P1 outputs only elements in Y that zeros polynomial
Q(·), whom its roots are the set X . Next, we prove the following theorem.

Theorem 4.2. Assume PRF = 〈KeyGen, F,CFEval〉 is an algebraic PRF, then Pro-
tocol 3 securely realizes functionality F∩ in the presence of malicious adversaries in
the {FDL,FEqMask}-hybrid model.

Proof: We prove security for each corruption case separately.

P0 is corrupted. Let A be a PPT adversary corrupting party P0, we design a PPT
simulator SIM that simulates the view A, playing the role of the honest P1 while
extracting A’s input set X , details follow.

1. Given input (1n, X, z), SIM invokes A on this input and receives A’s first mes-
sage, (G, p, g) and a d-degree polynomial C(·) = (c0, . . . , cd).

2. SIM emulates the ideal calls of FDL by playing the role of the trusted party that
receives from A tuples {((g, ci), c′i)}i∈[0,d] and records these values. SIM verifies

whether ci = gc
′
i for all i and records 1 only if these conditions are met, and 0

otherwise. In case SIM records 0 it aborts and outputs whatever A does.
3. SIM defines the input set X ′ as follows. For every i let r̃i = PRFK(i) and ri =

logg r̃i and let q′i = c′i − ri.3 SIM fixes polynomial Q′(·) = (q′0, . . . , q
′
d) and

defines X ′ to be the set of roots of Q′(·). SIM computes X ′ by factoring Q′(·)
over Zp and sends the set X ′ to the trusted party, receiving back mY .

4. SIM emulates the ideal call of FMaskPoly by playing the role of the trusted party
that receives from A a PRF key K .

5. SIM outputs whatever A does.

Note that the adversary’s view is identical to its view in the hybrid execution since it
does not get any output from the internal ideal calls as well as from F∩. We now claim

2 We implicitly assume that P0 knows the discrete logarithms of the ri’s by its knowledge of K.
This is the case for all PRF implementations presented in [6].

3 See Footnote 2.

Oblivious Polynomial Evaluation and Secure Set-Intersection 105

that P1’s output is identical with overwhelming probability in both executions due to the
following. In the hybrid execution the correctness of the ideal call for FEqMask ensures
that P1 obtains the correct equality bit for every y ∈ Y . Namely, if C(y) �= R̃(y)
then the honest P1 obtains 0 from FEqMask and does not output y. On the other hand, if
C(y) = R̃(y) then P0 receives 1 and returns y. Stating differently, P1 returns y ∈ Y

only if C(y)/R̃(y) = 1 where division is computed component-wise. Next, in the
simulation SIM defines the input set X ′ of the adversary as the set of roots with
respect to the unmasked polynomial C(·)/R̃(·) (computed component-wise), where the
masking is defined by the PRF key K input by the adversary to FEqMask. Therefore the
intersection is computed with respect to the same set X ′.

P1 is corrupted. Let A be a PPT adversary corrupting party P1, we design a PPT
simulator SIM that generates the view of A as follows. SIM first sends a random
polynomial S̃(·). Next, upon receiving the adversary’s set of elements Y ′ to FMaskPoly,
SIM forwards it to the trusted party for F∩. Let Z ′ denotes the output returned by the
trusted party, then SIM completes the simulation by forcing the output of A within
FEqMask to be consistent with the set Z . More formally,

1. Given input (1n, Y, z), SIM invokes A on this input and sends it (G, p, g).
2. SIM picks a random d-degree polynomial S̃(·) =

(
s̃0, . . . , s̃d

)
=
(
gs0 , . . . , gsd

)
with coefficients in G and sends it to A. (We assume that the simulator knows
mX as part of its auxiliary information. This can also be assured by modifying the
definition of the functionality, given mX to P1 as part of its input).

3. SIM emulates the ideal calls of FDL by playing the role of the trusted party that
receives from A tuples {(g, s̃i)}i∈[0,d] and sends A the value 1 for all i (denoting
accept calls).

4. SIM then emulates the ideal call of FEqMask by playing the role of the trusted
party that receives from A the set {(y′j, Ty′

j
)}j∈[mY]. SIM sends the set Y ′ =

{y′j}j∈[mY] to the trusted party, receiving back the intersection Z = X ∩ Y ′.
For all y′j ∈ Z , SIM emulates the ideal response of FEqMask as follows. If Ty′

j
=

gS(y′
j) then SIM sends A the value 1. Otherwise it sends 0. For all y′j /∈ Z , SIM

always replies with 0.
5. SIM outputs whatever A does.

Note that the protocol never verifies that A’s inputs to FEqMask are consistent pairs
{(y′j, Ty′

j
)}j of which Ty′

j
= gS(y′

j) for all j ∈ [mY]. We prove that this is not re-
quired. Specifically, the differences between the hybrid and simulated executions are
as follows. First, SIM sends in the simulation a random polynomial instead of a real
masked polynomial. In addition, SIM fixes the output of FEqMask based on the cor-
rectness of A’s computations which deviates from the way this functionality is defined.
Consider a hybrid game Hyb where the simulator SIMHyb uses the real input X of P0

to define polynomial Q(·), but decides on the output of FEqMask according to the strat-
egy specified in the simulation. Namely for every pair (y′j , Ty′

j
), SIMHyb verifies first

whether Ty′
j
= C(y′j) and returns 1 if equality holds. Clearly, the views induced in Hyb

and in the simulation are computationally indistinguishable due to the pseudorandom-
ness of F . This argument is similar to the argument presented in the proof of Protocol 1.

106 C. Hazay

Next, we claim that the distributions induced by the views of the hybrid execution and
game Hyb are statistically close.

Formally, for every y′j consider two cases. (i) y′j /∈ X which implies that y′j is not
in the intersection and that bj = 0 in the simulation of Hyb. Next, define a Bad event
in which A receives bj = 1 from the trusted party for FEqMask in the hybrid execution.
Clearly, this event holds only if Ty′

j
= CFEval(y′j ,K) = gR(y′

j) for K the PRF key
entered by the honest P0, which implies that A must correctly guess CFEval(y′j ,K). We
claim that the probability this event occurs is negligible due to the pseudorandomness of
F and CFEval (in Section 5 we discuss the pseusorandomness of CFEval). Specifically,
any successful guess with a non-negligible probability implies an attack on the PRF.
Thus, the probability that Bad occurs is negligible. It therefore holds that the adversary’s
views are statistically close condition on the event that y′j is not in the intersection. (ii)
y′j ∈ X which implies that y′j is in the intersection. Nevertheless, here there is no
analogue bad event. This is because bj = 1 only when Ty′

j
= C(y′j) = CFEval(y′j ,K),

which implies that bj = 1 in both executions due to correctness of FEqMask.

Efficiency. As in Protocol 1, the efficiency of Protocol 3 is dominated by the im-
plementation of functionality FEqMask. Our protocols from Section 3.3 can be easily
modified to support this functionality without significantly effecting their overhead,
since the parties can first compute the encryption of the closed form efficiency of the
PRF and then compare it with the input of P1. Therefore, the overall communication
complexity is O(mX) group elements for sending the first message and O(mY) (resp.
O(mY logmY)) group elements for the second phase of implementingFEqMask for each
y ∈ Y , depending on the underlying PRF. In particular, the number of modular expo-
nentiations implies multiplicative costs in the sets sizes since P1 evaluates its masked
polynomial for each element in Y . Next, we demonstrate how to reduce this cost.

4.1 Improved Constructions Using Hash Functions

We now show how to reduce the computational overhead using hash functions by split-
ting the set elements into smaller bins. Our protocol is applicable for different hash
functions such as: simple hashing, balanced allocations [4] and Cuckoo hashing [33].
For simplicity, we first describe our protocol for the simple hashing case; see Section 4.1
for a discussion about extensions to the other two hashing. Informally, the parties first
agree on a hash function that is picked from a family of hash functions and induces a set
of bins with some upper bound on the number of elements in each bin. Next, P0 maps
its elements into these bins and generates a polynomial for each such bin, which is com-
puted as in Protocol 3 but with a smaller degree. Finally, P0 masks all the polynomials
and sends them to P1. Upon receiving the masked polynomials, P1 maps its elements
into the same set of bins and evaluates the masked polynomials for these mapped bins.
In the last step, the parties unmask these evaluations. To be precise, we need to specify
how the masking procedure works and ensure that the parties do not deviate from the
instructions of the protocol.

Oblivious Polynomial Evaluation and Secure Set-Intersection 107

We fix some notations first. We denote by h the hash function picked by the parties,
by B the number of bins and by M the maximum number of elements allocated to any
single bin (where B and M are parameters specified by the concrete hash function in
use and further depend on mX). Note that the potential number of allocated elements
is bounded by BM which may be higher than the exact number mX . This implies that
the protocol must ensure that P0 does not take advantage of that and introduce more set
elements into the protocol execution. In addition, it must be ensured that a corrupted
P0 does not mask the zero polynomial, which would imply that P1 accepts any value it
substitutes in the masked polynomial. On the other hand, the protocol must ensure that a
corrupted P1 does not gain any information by entering incorrect values. Verifying that
a polynomial is not all zeros can be easily done by substitution a random element in it
and checking that the result is different than zero. In Section 4.1 we demonstrate how
to enforce P0’s correct behaviour by designing a new proof that exploits the algebraic
properties of the underlying PRF. The verification procedure for P1 is even simpler as
demonstrated below.

Next, we explain how the masking procedure is computed. Denote by Qj(·) the
polynomial associated with the jth bin. If the degree of Qj(·) is smaller than M − 1
then P0 fixes the values of the M1−deg(Qj(·)) leading coefficients to be zeros. It then
masks the ith coefficient of Qj(·) by multiplying it with PRFK((j − 1) · M + i) for
i ∈ [0,M− 1]. Furthermore, unmasking is computed by comparing the evaluation of
the jth polynomial to the following computation

jM−1∏
i=0

PRFK(i)x
i
/ (j−1)M−1∏

i=0

PRFK(i)x
i

= PRFK((j − 1)M)x
(j−1)M · . . . · PRFK(jM− 1)x

jM−1

,

which is exactly the set of PRF values that mask polynomial Qj(·).
More formally, our protocol uses two functionalities in order to ensure correctness.

First, the parties call functionality FBins for proving that the masked polynomials sent
by P0 are correctly defined. Namely, FBins : (K, {Cj(·) = (cj0, . . . , c

j
M−1)}j∈[B]) →

(−, b) and b = 1 only if none of the unmasked polynomials {Qj(·)}j is the zero poly-
nomial and the overall degrees of these polynomials {Qj(·)}j is bounded by mX . In
addition, the parties call functionality FEqMaskHash in order to correctly unmask polyno-
mial evaluations {Ch(y)(y)}y∈Y for P1. We continue with the detailed description of
our set-intersection protocol in the hybrid model. In Sections 4.1 and 4.1 we discuss
how to securely implement these functionalities.

Protocol 4 (Protocol π∩ with Malicious Security and Hash Functions.)

– Input: Party P0 is given a set X of size mX . Party P1 is given a set Y of size mY . Both
parties are given a security parameter 1n.

– The protocol:
1. Fixing the parameters of the hash function. The parties fix the parameters B and

M of the hash function and picks a hash function h : {0, 1}t �→ [B]. P0 invokes
(K, param)← KeyGen(1n,M− 1) where param includes a group description G of
prime order p and a generator g.

108 C. Hazay

2. Masking the input polynomial. For every x ∈ X , P0 maps x into bin h(x). Let
Bj denote the set of elements mapped into bin j. Next, P0 constructs a polynomial
Qj(·) = (qj0, . . . , q

j
d) with coefficients in Zp and the set of roots Bj . If |Bj | < M, P0

fixes the leading M− |Bj | − 1 coefficients to zero.
For each j ∈ [B],P0 defines a new (M−1)-degree polynomial R̃j (·) = (r̃j0, . . . , r̃

j
M−1)

over G, where r̃ji is defined by PRFK((j − 1)M+ i) for all i ∈ [0,M− 1]. P0 sends

P1 param and the masked polynomials {Cj(·)}j = {gq
j
0 r̃j0, . . . , . . . , g

q
j
M−1 r̃jM−1}j ,

where multiplication is implemented in G. P0 further proves the knowledge of the dis-

crete logarithm of cji = gq
j
i r̃ji for all i and j with respect to a generator g, by invoking

an ideal execution of FDL on input {((g, cji), logg c
j
i)}i∈[0,M−1],j∈[B].

4 The input of

P1 for FDL is {(g, cji)}i∈[0,M−1],j∈[B].
Finally, P0 proves correctness using FBins where P0 enters K and P1 enters the masked
polynomials.

3. Unmasking the result. Upon receiving the polynomials {Cj(·) =
(cj0, . . . , c

j
M−1)}j∈[B] and upon receiving accepting messages from FDL,FBins,

party P1 computes the following for every y ∈ Y (picked in a random or-
der). It first maps y into bin h(y) and then computes the polynomial evaluation

Ch(y)(y) =
∏h(y)M−1

i=(h(y)−1)M(c
h(y)
i)y

i

. I.e., Ch(y)(·) is evaluated in the exponent.
Next, the parties invoke an ideal execution of FEqMaskHash, where the input of P0 is K
and the input of P1 is the set {(y, h(y), Ch(y)(y))}y∈Y .
P1 outputs y only if the output from FEqMaskHash on (y, h(y), Ch(y)(y)) is 1.

Theorem 4.3. Protocol 4 securely realizes functionality F∩ in the presence of mali-
cious adversaries in the {FDL,FBins,FEqMaskHash}-hybrid model.

Security follows easily from the secure implementations of FBins and FEqMaskHash and
the proof of Protocol 3. We discuss these protocols next. We stress that P1 needs to
ensure in Protocol 4 that P0 indeed uses the same PRF key for both sub-protocols (for
instance by ensuring that P0 enters the same commitment of K).

A Secure Protocol for FBins. In this section we design a protocol πBins for securely
implementing functionality FBins : (K, {Cj(·)}j∈[B]) → (−, b) for which b = 1 only
if none of the unmasked polynomials {Qj(·)}j is the zero polynomial and the overall
degrees of all polynomials {Qj(·)}j is bounded by mX . To prove that none of the poly-
nomials is the all zeros polynomial we evaluate each masked polynomial on a random
element and then verify that the result is different than zero. In particular, for each j
the parties first agree on a random element zj and then compute the polynomial eval-
uation Cj(zj). Next, the parties verify whether Cj(zj) = R̃j(zj) where R̃j(·) is the
masking polynomial of Cj(·). Note that if Qj(·) is not the all zeros polynomial then
Cj(zj) �= R̃j(zj) with overwhelming probability over the choice of zj . This is because
there exists a coefficient qi,j �= 0 which implies that for Cj(zj) = Qj(zj) · R̃j(zj).
Now since Qj(zj) �= 0 it holds that Cj(zj) �= R̃j(zj). On the other hand, in case Qj(·)
is the zero polynomial then it holds that Cj(zj) = R̃j(zj) for all zj . This is because
Qj(zj) = 0 as all its coefficients equal zero.

4 See Footnote 2.

Oblivious Polynomial Evaluation and Secure Set-Intersection 109

The more challenging part is to prove that the overall degrees of all polynomi-
als {Qj(·)}j is bounded by mX + B.5 Our proof ensures that as follows. First, P0

picks a PRF key K and forwards P1 a commitment of K together with encryptions of
f =

(
f0 = PRFK(0), . . . , fBM−1 = PRFK(BM− 1)

)
(that are encrypted using the

El Gamal encryption scheme). Next, P0 proves that it computed the sequence f cor-
rectly. This can be achieved by exploiting the closed form efficiency property of the
PRF. Namely, the parties mutually compute the encryption of

∏BM−1
i=0 PRFK(i)z

i

for

some random z, and then compare it with the encryption of
∏BM−1

i=0 fzi

i . In particular,
the latter computation is carried out on the ciphertexts that encrypt the corresponding
values from f by utilizing the homomorphic property of El Gamal. Then, equality is
verified such that P0 proves that the two ciphertexts encrypt the same value. Finally, the
parties divide the vector of ciphertexts f with the polynomials coefficients {Cj(·)}j∈[B]

component-wise (note that both vectors have the same length). P0 then proves that the
overall degrees of the polynomials is as required using a sequence of zero-knowledge
proofs. The last part of our proof borrows ideas from [28]. We continue with the formal
description of our protocol.

Protocol 5 (Protocol πBins with Malicious Security.)

– Input: Party P0 is given a PRF key K for function PRF. Both parties are given a security
parameter 1n, masked polynomials {Cj(·) = (cj0, . . . , c

j
M−1)}j∈[B], (G, p, g) for a group

description G of prime order p and a generator g, and an integer mX .
– The protocol:

1. Setup. P0 generates (PK, SK) ← Gen(1n) for the El Gamal encryption scheme for
group G. It then computes the set f =

(
f0 = PRFK(0), . . . , fBM−1 = PRFK(BM−

1)
)

and sends to P1 their encryptions under PK, denoted by (e0, . . . , eBM−1) , as well
as PK.

2. Proving the correctness of f . The parties pick z ← Zp at random and com-

pute ef =
∏MB−1

i=0 ez
i

i . Next, the parties compute the encryption of the product∏BM−1
i=0 PRFK(i)

zi , denoted by ePRF, which corresponds to the closed form efficiency
function of PRF. Finally, P0 proves that the two ciphertexts encrypt the same plaintext
by proving that ef/ePRF is a Diffie-Hellman tuple using πDL (see Section 2.2).

3. Proving a bound mX on the overall degrees. If πDL is verified correctly, the parties
compute the differences with respect to the masked polynomials {Cj(·)}j and plaintexts
f , component-wise. Namely, for all j ∈ [B] and i ∈ [0,M− 1] the parties compute the
encryption of cji/f(j−1)M+i. We denote the result vector of ciphertexts by cDiff .
P0 then sets Zi,j = 1 for 0 ≤ i ≤ deg(Qj(·)), and otherwise Zi,j = 0. P0 computes
zi,j = EncPK(Zi,j) and sends {zi,j}i,j to P1. P0 proves that Z0,j , Z1,j , . . . , ZM−1,j

is monotonically non-increasing. For that, P0 and P1 compute encryptions of Zi,j −
Zi+1,j and Zi,j − Zi+1,j − 1, and P0 proves that Zi,j − Zi+1,j ∈ {0, 1} by showing
that one of these encryptions denotes a Diffie-Hellman tuple using πDDH.
P0 completes the proof that the values Zi,j were constructed correctly by proving for
all i, j that one of the encryptions {e(j−1)M+i, z

′
i,j} is an encryption of zero, where

z′i,j is an encryption of 1− Zi,j .6

5 For technical reasons, we require that in case of an empty bin, P0 fixes the polynomial that is
associated with this bin to be 1.

6 We wish to avoid the case where e(j−1)M+i is an encryption of a non-zero value while z′i,j
encrypts zero.

110 C. Hazay

Finally, to prove that the sum of degrees of the polynomials {Qj(·)} equals mX , both
parties compute an encryption τ of T =

∑
i,j Zi,j − B − mX . Then P proves that

(PK,EncPK(T)) is a Diffie-Hellman tuple using πDDH.
4. Checking zero polynomials. If all the proofs are verified correctly, then for any j ∈ [B]

the parties compute Cj(zj) where zj ← Zp. The parties call FEqMaskHash with inputs
(K, {zj , j, Cj(zj)}j∈[B]). Let {bj}j∈[B] be P1’s output from this ideal call.7

5. P1 outputs b = 1 only if bj = 0 for all j.

Theorem 4.4. Assume that El Gamal is IND-CPA, then Protocol 5 securely
realizes functionality FBins in the presence of malicious adversaries in the
{FDL,FDDH,FEqMaskHash}-hybrid model.

The details of the proof are omitted here. Next, we note that the efficiency of our
protocol is dominated by Steps 2 and 4, where in the former step the parties compute
the closed form efficiency relative to the set f in time O(BM) = O(mX) and in the
latter step the parties substitute a random element in every polynomial Cj . Overall,
the overhead of this step relative to PRF PRF1 implies O(B) = O(mX) group ele-
ments and modular exponentiations. For PRF PRF2 this step implies O(B logmX) =
O((mX\ log logmX) · logmX) cost; see a discussion below.

A Secure Protocol for FEqMaskHash. The next protocol is designed in order to compare
the result of P1’s polynomial evaluations on the set Y with the masking polynomials.
Basically, for every y ∈ Y , P1 computes first Ch(y)(y). The parties then run a protocol

for comparing {Ch(y)(y)}y∈Y with {R̃h(y)(y)}y∈Y . To do so, P1 must also input the
value h(y) which determines the bin’s name. Nevertheless, we do not require from the
parties to mutually compute h(y) since that would imply a far less efficient protocol.
Instead, we demonstrate that P1 cannot learn additional information by entering an
inconsistent bin number. Finally, for every j, P1 outputs 1 only if equality holds.

Formally, we define FEqMaskHash by (K, {y, h(y), Ch(y)(y)}y∈Y) → (−, {bj}j),
where bj = 1 if Ch(y)(y) =

∏h(y)M−1
i=0 PRFK(i)y

i
/∏(h(y)−1)M−1

i=0 PRFK(i)y
i

. The

actual implementation of this functionality depends on the underlying PRF. We consider
two different implementations here. First, considering our protocol from Section 3.3
designed for PRF1, an analogue protocol for our purposes can be similarly designed
with the modification that the parties now compare Ch(y)(y) against the result of the
following formula evaluation,

g
k0

(
(k1x)(h(y)+1)M−1−(k1x)h(y)M−1

)
k1x−1

where h(y) is only known to P1. Note that our protocol from Section 3.3 does not need
to rely on the fact that both parties know the polynomial degree d for computing this
formula. It is sufficient to prove that the computation of some ciphertext c to the power
of h(y) is consistent with a ciphertext encrypting gh(y), where such a ciphertext can
be provided by P1. See this protocol from Section 3.3 and the ZK proof πEq for more
details. The overall overhead of the modified protocol is also constant.

7 Note that zj may be an element that is not mapped to the jth bin.

Oblivious Polynomial Evaluation and Secure Set-Intersection 111

Next, considering the unmasking protocol for PRF2, the parties compute the fol-
lowing formula that corresponds to the masking of the polynomial that is associated
with bin h(y),

gk0

(
1+k1,x

)(
1+k2x

2
)
...
(
1+kmx2log(h(y)M−1)

)
/

gk0

(
1+k1,x

)(
1+k2x

2
)
...
(
1+kmx22

log((h(y)−1)M−1))
.

Note that computing this formula requires O(logmX) exponentiations on the worst
case if the bin number implies a high value so that h(y)M, which determines the poly-
nomial degree, is O(mX).

Security is stated as follows. If P0 is corrupted then security follows similarly to the
security proof of the protocols implementingFMaskPoly (Section 3.3) since P0 enters the
same input for both functionalities and runs the same computations with respect to its
PRF key. The interesting and less trivial corruption case is of P1. We consider two bad
events here: (1) A corrupted P1 enters y, h′ for which h′ �= h(y). This implies that the
parties will not compute the correct unmasking. (2) A corrupted P1 enters consistent
y, h(y), but an incorrect value Ch(y)(y). Note that upon extracting P1’s input to the
protocol execution, the simulator can always tell whether this input corresponds to the
first or the second case, or neither.

Specifically, in the first case the parties compute the unmasking on y for which el-
ement y in not allocated to the specified bin h′. This implies that P1 would always
obtain 0 from the protocol execution unless it correctly guesses R̃h′(y), which only
occurs with a negligible probability due to the security of the PRF. Therefore we can
successfully simulate this case by always returning zero. We further note that the secu-
rity argument of the later case boils down to the security presented in the proof for a
single polynomial shown in the proof of Theorem 4.2, since in this case P1 enters h(y)
that is consistent with y so the parties compute the correct masking for y.

Using More Than One Hash Function. In some cases, such as for balanced alloca-
tion hash function [4], better performance are obtained by using a pair of hash functions
h1, h2, which allocate elements into two distinct bins. That is, the input to the function-
ality are defined by (K, {y, h1(y), h2(y), Ch(y)(y)}y∈Y) → (−, {bj}j). This poses a
problem in our setting since a corrupted P1 may deviate from the protocol by substitut-
ing a different element with respect to each hash function, and learn some information
about P0’s input. Specifically, if P1 learns that some element y ∈ X was not allocated
to h1(y) it can conclude that P0 has M additional elements that are already mapped
into bin h1(y). Note that this leaked information cannot be simulated since it depends
on the real input X . In this case we need to verify that P1 indeed maps the same element
into both bins correctly. A simple observation shows that if this is not the case then the
simulation fails only for elements that are in the intersection. Meaning, there exists a
bin for which the membership result is positive (since otherwise the adversary anyway
learns 0, and it cannot distinct the cases of non-membership and incorrect behaviour).
We thus define the polynomials slightly different, forcing correct behaviour.

Specifically, the polynomial Qj(·) that is associated with the set of elements Bj

(namely, the elements that are mapped to the jth bin) is defined as follows. For each x ∈

112 C. Hazay

Bj , set Qj(x) = gh1(x)+h2(x) where h1(x) and h2(x) are viewed as elements in Zp.
Next, in the unmasking phase, for any tuple (y, h1, h2, Cy) entered by P1, the parties

compare Cy with both
(∏h1M−1

i=0 PRFK(i)y
i
/∏(h1−1)M−1

i=0 PRFK(i)y
i) · gh1·h2 and(∏h2M−1

i=0 PRFK(i)y
i
/∏(h2−1)M−1

i=0 PRFK(i)y
i) · gh1·h2 such that the functionality

returns 1 to P1 if equality holds with respect to one of the comparisons. Therefore, P1

will learn that an element y ∈ X only if it entered h1 and h2 such that h1 + h2 =
h1(y) + h2(y). Note that this implies that if one of the h1, h2 values is inconsistent
with h1(y), h2(y) yet equality holds, then the other value is also inconsistent with high
probability. In this case, P1’s output will always be 0 since the incorrect polynomials
will be unmasked.

We further need to prove that for any y /∈ X the protocol returns 0 with over-
whelming probability. Specifically, we need to prove that the probability that either
Qh1(y)(y) = gh1(y)+h2(y) or Qh2(y)(y) = gh1(y)+h2(y), is negligible. In order to sim-
plify our proof, we modify our construction and fix Qj(x) = PRFK(gh1(x)+h2(x)) for
any x ∈ Bj using a PRF K key that is mutually picked by both parties. In this case,
we can easily claim that the probability that the protocol returns 1 for y /∈ X is neg-
ligible since that implies that either Qh1(y)(y) or Qh2(y)(y) equal the pseudorandom
value PRFK(gh1(y)+h2(y)) for y /∈ X . We stress that the PRF key for this purpose can
be publicly known since pseudorandomness is still maintained as long as the algorithm
for generating the bin polynomials does not use this key. We further note that both al-
gebraic PRFs that we consider in this paper can be easily evaluated over an encrypted
plaintext given the PRF key since it only require linear operations.

Finally, a similar solution can be easily adapted for Cuckoo hashing with a stash [33]
(by treating the stash as a third polynomial). Nevertheless, Cuckoo hashing using a stash
suffers from the following drawback. It has been proven in [33] that for any constant s,
using a stash of size s implies an overflow with probability O(ns) (taken over the choice
of the hash functions). Specifically, if the algorithm aborts whenever the original choice
of hash functions results in more than s items being moved to the stash, then this means
that the algorithm aborts with probability of at most O(ns). Consequently, P1 can iden-
tify with that probability whether a specific potential input of P0 does not agree with
the hash functions h1 and h2. This probability is low but not negligible. On the other
hand, Broder and Mitzenmacher [8] have shown for balanced allocations hash function
that asymptotically, when mapping n items into n bins, the number of bins with i or
more items falls approximately like 22.6i. This means that if M = ω(log logn) then
except with negligible probability no bin will be of size greater than M. Nevertheless,
(ignoring the abort probability), Cuckoo hashing performs better than balanced alloca-
tion hash functions, and by tuning the parameters accordingly this abort probability can
be ignored for most practical applications.

Efficiency. The efficiency here depends on the parameters B = O(mX/ log logmX)
and M = O(log logmX) that are specified by the underlying hash function, as well as
the PRF implementation that induce the overhead of the implementations of FBins and
FEqMaskHash. Concretely, when implementing the algebraic PRF with PRF1

the number of exponentiations computed by the parties is O(BM + mY M) =

Oblivious Polynomial Evaluation and Secure Set-Intersection 113

Functionality FCPRF

Functionality FCPRF communicates with with parties P0 and P1, and adversary SIM.

1. Upon receiving a message (key,K) from P0, send message key to SIM and
record K.

2. Upon receiving (input, x) from P1, send message input to adversary SIM. Upon
receiving an approve message, send PRFK(x) to P1. Otherwise, send ⊥ to P1 and
abort.

Fig. 1. The committed oblivious PRF evaluation functionality.

O(mX+mY log logmX), whereas the number of transmitted group elements is O(BM+
mY) = O(mX + mY). Moreover, implementing the algebraic PRF using PRF2 im-
plies the overhead of O(mX +mY logmX) exponentiations and the communication is
as above.

5 Committed Oblivious PRF Evaluation

The oblivious PRF evaluation functionality FPRF is an important functionality that is
defined by (K,x) → (−,PRFK(x)). One known example for a protocol that im-
plements FPRF is the instantiation based on the Naor-Reingold pseudorandom func-
tion [42] (specified in Section 3.1), that is implemented by the protocol presented in [20]
(and proven secure in the malicious setting in [25]). This protocol involves executing
an oblivious transfer for every bit of the input x. Nevertheless, it has major drawback
since it does not enforce the usage of the same key for multiple evaluations, which is
often required. In this section, we observe first that the algebraic closed form efficiency
of PRFs PRF1 and PRF2, specified in Section 3.1, are PRFs as well. Moreover, the
protocols for securely evaluating these functions induce efficient implementations for
the committed oblivious PRF evaluation functionality with respect to these new PRFs
in the presence of adaptive inputs. This is because the PRF evaluations protocols are
implemented with respect to the same set of key commitments. We formally define this
functionality in Figure 1.

More formally, let PRF be an algebraic PRF from a domain {0, 1}m into a group
G. Then, define the new function PRF′ : Zp → G by PRF′

K(x) =
∏l

i=0[PRFK(i)]x
i

.
Note that the domain size of PRF′ is bounded by l + 1, since upon observing l +
1 evaluations of PRF′ it is possible to interpolate the coefficients of the polynomial
{PRFK(i)}i (in the exponent). On the other hand, it is easy to verify that if l+1 ≤ 2m

then PRF′ is a PRF. The proof is straight forward and thus omitted.

Theorem 5.1. Assume F : {0, 1}m → G is a PRF, then PRF′ is a PRF for (l + 1) ≤
2m.

We implement PRF′ using the two PRFs from Section 3.1 and obtain two new PRF
constructions under the strong-DDH and DDH assumptions. Let K = (k0, k1) be the

114 C. Hazay

key for the PRF PRF1 with the strong-DDH based security, and recall that the closed
form efficiency for this function is defined by

PRF′
K(x) = CFEvalh(x,K) = g

k0(k
d+1
1 xd+1−1)

k1x−1 .

This implies that PRF′ only requires a constant number of modular exponentiations.
See Section 3.3 for secure implementations of obliviously evaluating PRF′. Next, let
K = (k0, . . . , km) be the key for the Naor-Reingold PRF, and recall that the closed
form efficiency of this function is defined by

PRF′
K(x) = CFEvalh,z(x,K) = gk0(1+k1,x)(1+k2x

2)...(1+kmx2m)

which requires O(log l) = O(m) operations, namely, a logarithmic number of opera-
tions in the domain size where x is an m-bits string. This is the same order of overhead
induced by the [20] implementation that requires an OT for each input bit. Nevertheless,
our construction has the advantage that it also achieves easily the property of a com-
mitted key since multiple evaluations can be computed with respect to the same PRF
key. Plugging-in our protocol inside the protocols for keyword search, OT with adap-
tive queries [20] and set-intersection [25] implies security against malicious adversaries
fairly immediately. It is further useful for search functionalities as demonstrated below.

5.1 The Set-Intersection Protocol

We continue with describing our set-intersection protocol. Informally, P0 generates a
PRF key for PRF and evaluates this function on its set X . It then sends the evalua-
tion results to P1 and the parties engage in a committed oblivious PRF protocol that
evaluates PRF on the set Y . P1 then concludes the intersection. In order to handle
a technicality in the security proof, we require that P0 must generate its PRF key
independently of its input X , since otherwise it may maliciously pick a secret key
that implies collisions on elements from X and Y , causing the simulation to fail. We
ensure key independence by asking the parties to mutually generate the PRF key af-
ter P0 has committed to its input. Then upon choosing the PRF key, the parties in-
voke two variations of functionality FCPRF, denoted by F0

CPRF and F1
CPRF. Formally,

we define F0
CPRF

as follows: ((K, (x1, . . . , xmX), R), (cKEY, (c1, . . . , cmX), PK)) →
(−, (PRFK(x1), . . . ,PRFK(xmX))) only if ci encrypts xi for all i and cKEY is a com-
mitment of K where verification is carried out using randomness R. In the final step,
the parties call functionality F1

CPRF
in order to evaluate the PRF on the set Y and is de-

fined by ((K,R), (cKEY, (y1, . . . , ymY))) → (−, (PRFK(y1), . . . ,PRFK(ymY))) only
if cKEY is a commitment of K where verification is carried out using randomness R. In
both executions the output is given to P1 that computes the intersection of the results.

Implementing F0
CPRF

and F1
CPRF

. Implantation-wise, there is not much of a difference
between the protocols for the two functionalities, which mainly differ due to the iden-
tity of the party that enters the input values to the PRF (where the same committed key
is used for both protocol executions). We note that the realization of F0

CPRF and F1
CPRF

can be carried out securely based on the implementations of the closed form efficiency

Oblivious Polynomial Evaluation and Secure Set-Intersection 115

functions shown in Section 3.3, since our committed PRFs are based on these functions.
More concretely, the difference with respect to functionality F0

CPRF
is that now when

P0 is corrupted the simulator needs to extract the randomness used for committing to
the PRF key and the xi’s elements which can be achieved using the proof of knowledge
πDL since the parties use the El Gamal PKE. Specifically, P0 proves the knowledge of
the discrete logarithm of (c1, . . . cmX) with respect to a generator g, by invoking an
ideal execution of FDL on input {((g, ci), logg ci)}i∈[mX].8 The input of P1 for FDL is
{(g, ci)}i∈[mX]. In case P1 does not receive an “accept” message from FDL it aborts.
Next, the parties continue with the PRF evaluations where the ZK proofs are carried out
with respect to the same key commitment. We note that extracting the PRF key and the
set (x1, . . . , xmX) is already implied by the protocols from Section 3.3 due to the ZK
proofs of knowledge. Finally, the implementation of F1

CPRF
follows similarly but with-

out the additional proof we added above for F0
CPRF

in order to extract the randomness
of the committed input.

Next, we describe our set-intersection protocol using committed oblivious PRF.

Protocol 6 (Protocol π∩ with malicious security from committed oblivious PRF.)

– Input: Party P0 is given a set X of size mX . Party P1 is given a set Y of size mY . Both
parties are given a security parameter 1n.

– The protocol:
1. Distributed key generation. P0 and P1 run protocol πKeyGen(1

n, 1n) in order to gen-
erate additive El Gamal public key PK = 〈G, p, g, h〉 where the corresponding shares
of the secret key SK are (SK0, SK1).

2. Input commitment and PRF key generation. P0 sends encryptions of its input X
under PK; denote this set of ciphertexts by C = (c1, . . . cmX).
P0 invokes (K, param)← KeyGen(1n, d = log(mX +mY)) where param includes
a group description G of prime order p and a generator g, and sends P1 param and a
ciphertext EncPK(K;R).
P1 picks a new key (K′, param) ← KeyGen(1n, d = log(mX + mY)) and sends
it to P0. The parties then compute the encryption cKEY of K̃ = KK′, relying on the
homomorphic property of El Gamal.

3. PRF evaluations on X. The parties call functionality F0
CPRF where P0 enters the set

X , key K̃ and randomness R and P1 enters C, cKEY and PK. Denote by PRFX =
{PRF′

K̃
(x)}x∈X the output of P1 from this ideal call only if C is a vector of ciphertexts

that encrypts X and cKEY is a commitment of K̃, where verification is computed using
randomness R.

4. Oblivious PRF evaluations on Y. The parties call functionality F1
CPRF where P0 en-

ters the key K̃ and randomness R and P1 enters the commitment cKEY and the set Y .
Denote by PRFY = {fy}y∈Y the output of P1 from this ideal call only if cKEY is a
commitment of K̃ where verification is computed using randomness R.
P1 outputs all y ∈ Y for which fy ∈ PRFX .

Theorem 5.2. Assume PRF′
K(·) is a PRF defined as above and that El Gamal is IND-

CPA, then Protocol 6 securely realizes functionality F∩ in the presence of malicious
adversaries in the {FDL,F0

CPRF,F1
CPRF}-hybrid model.

8 We abuse notation and write log c to denote the discrete logarithm of the two group elements
in ciphertext c.

116 C. Hazay

Proof: We prove security for each corruption case separately. We assume that the
simulator is given mX and mY as part of its auxiliary input.

P0 is corrupted. Let A be a PPT adversary corrupting party P0, we design a PPT
simulator SIM that generates the view of A as follows.

1. Given (1n, X, z), SIM engages in an execution of πKeyGen(1
n, 1n) with A. Denote

the outcome by PK.
2. Upon receiving from A its commitment for the PRF key K ← KeyGen(1n, d =

log(mX + mY)), SIM picks a new key share K ′ and sends it to A using PK.
Denote the combined key by K̃ = KK ′.

3. SIM extracts the adversary’s input X ′ from the input to the ideal call F0
CPRF. It

then sends X ′ to the trusted party and completes the execution as would the honest
P1 do on an arbitrary set.

In the hybrid setting, computational indistinguishability between the hybrid and simu-
lated executions is trivially claimed since the adversary does not receive any message
from P1 that depends on Y . An important observation here is that the probability of the
event for which there exists y ∈ Y such that y /∈ X ′ and yet PRFK̃(y) ∈ PRFX′ is

negligible, since the key K̃ is picked independently of the set X ′. This argument fol-
lows from similarly to the proof in [25] and implies that P1’s output in both executions
is identical condition that the above event does not occur.

P1 is corrupted. Let A be a PPT adversary corrupting party P1, we design a PPT
simulator SIM that generates the view of A as follows.

1. Given (1n, Y, z), SIM engages in an execution of πKeyGen(1
n, 1n) with A. Denote

the outcome by PK.
2. SIM picks a PRF key share K ← KeyGen(1n, d = log(mX + mY)) and sends

its encryption to A using PK. Upon receiving A’s key share K ′ the simulator sets
the combined key by K̃ = KK ′.

3. SIM picks a set of mX arbitrary elements XSIM from Zp. It then emulates the
ideal call F0

CPRF and hands the adversary a random set U of size mX and proper
length.

4. Finally, the simulator extracts the adversary’s input Y ′ to the ideal call F1
CPRF and

sends this set to the trusted party, receiving back Z = X ∩ Y ′. The simulator
completes the execution as follows. For each element y′ ∈ Y ′ ∩ Z it programs the
ideal answer of F1

CPRF to be r ∈ U where r is picked from the remaining elements
from the set U that were not picked thus far. Otherwise, the simulator returns a
fresh random element from Zp.

Security here follows from the IND-CPA security of the El Gamal PKE and the security
of the PRF. That is, the simulated view is different from the hybrid view relative to
the encrypted input of P0 and the fact that the simulator uses a random function to
evaluate the sets in X ′

SIM and Y ′. Therefore, the proof can be shown by defining
a hybrid game where in the first game the simulator encrypts P0’s real input X but
completes the simulation as in the original simulation. Indistinguishability between the

Oblivious Polynomial Evaluation and Secure Set-Intersection 117

simulation and the hybrid game follows easily by a reduction to the IND-CPA security
of El Gamal since the simulator never uses the secret key of the encryption scheme.
Indistinguishability between the hybrid game and the hybrid execution follows by a
reduction to the pseudorandomness of the PRF.

Efficiency. The overhead of protocol 6 depends on the implementations of F0
CPRF and

F1
CPRF

discussed above. Our protocol obtains O(mX +mY) communication and com-
putation overheads under the strong-DDH assumption and O((mX + mY) log(mX +
mY)) overheads under the DDH assumption, where the former analysis matches the [31]
analysis (such that both constructions rely on dynamic assumptions).

5.2 Search Functionalities

In search functionalities a receiver searches in a sender’s database, retrieving the ap-
propriate record(s) according to some search query. The database for search function-
alities can be described by pairs of queries/records {(qi, Ti)}i such that the answer to
a query qi is a record Ti.9 In a private setting we need to ensure that nothing beyond
these records leaks to the receiver, while the sender does not learn anything about the
receiver’s search queries. Committed oblivious PRF evaluation is a useful tool for se-
curely implementing various search functionalities [20]. First, in the setup phase the
database is encoded and handed to the receiver. That is, for each query qi the sender
defines the pair (PRFK(qi‖1),PRFK(qi‖2)⊕ Ti). Next, in the query phase the parties
run a committed oblivious PRF evaluation protocol twice such that the sender inputs K
and the receiver inputs a query q. The receiver’s output are the values PRFK(q‖1) and
PRFK(q‖2), where the first outcome is used to find the encrypted record while the sec-
ond outcome is used to extract the record. (Alternative implementations involve a single
invocation of PRF by splitting PRFK(q) into two parts). Examples for such functional-
ities are keyword search, oblivious transfer with adaptive queries and pattern matching
(and all its variants). The functionality of committed oblivious PRF is important in this
context since the sender must be enforced to use the same PRF key.

References

1. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th-ranked element.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 40–55.
Springer, Heidelberg (2004)

2. Ateniese, G., De Cristofaro, E., Tsudik, G.: (if) size matters: Size-hiding private set intersec-
tion. IACR Cryptology ePrint Archive, 2010:220 (2010)

3. Ateniese, G.: Dagdelen, I. Damgård, D. Venturi. Entangled cloud storage. IACR Cryptology
ePrint Archive, 2012:511 (2012)

4. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM J. Comput. 29(1),
180–200 (1999)

9 This may not be the most concise description of the database but it is the simplest. In particular,
it will do for our purposes.

118 C. Hazay

5. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)

6. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large
datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer,
Heidelberg (2011)

7. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and mul-
tiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–
188. Springer, Heidelberg (2011)

8. Broder, A.Z., Mitzenmacher, M.: Using multiple hash functions to improve IP lookups. In:
INFOCOM, pp. 1454–1463 (2001)

9. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural learning.
Theor. Comput. Sci. 341(1-3), 39–54 (2005)

10. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

11. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols
secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–
231. Springer, Heidelberg (2010)

12. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear com-
plexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg
(2010)

13. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set inter-
section. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)

14. Damgård, I., Jurik, M., Nielsen, J.B.: A generalization of paillier’s public-key system with
applications to electronic voting. Int. J. Inf. Sec. 9(6), 371–385 (2010)

15. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly
secure MPC for dishonest majority – or: Breaking the SPDZ limits. In: Crampton, J., Jajo-
dia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg
(2013)

16. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat
homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

17. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In:
Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)

18. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: An efficient and
scalable protocol. IACR Cryptology ePrint Archive, 2013:515 (2013)

19. Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. In: Fomin, F.V., Freivalds,
R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 545–556.
Springer, Heidelberg (2013)

20. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudo-
random functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer,
Heidelberg (2005)

21. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer,
Heidelberg (2004)

22. Gilboa, N.: Two party RSA key generation (Extended abstract). In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness
theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

24. Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation with simulation-based se-
curity. IACR Cryptology ePrint Archive, 2009:459 (2009)

Oblivious Polynomial Evaluation and Secure Set-Intersection 119

25. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with se-
curity against malicious and covert adversaries. J. Cryptology 23(3), 422–456 (2010)

26. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols – Techniques and Constructions.
Springer (2010)

27. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and threshold
paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178,
pp. 313–331. Springer, Heidelberg (2012)

28. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. J.
Cryptology 25(3), 383–433 (2012)

29. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious
adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 195–212. Springer,
Heidelberg (2010)

30. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – effi-
ciently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Hei-
delberg (2008)

31. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive
OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

32. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A., De Prisco,
R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010)

33. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing with a
stash. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 611–622.
Springer, Heidelberg (2008)

34. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

35. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer,
Heidelberg (2013)

36. Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: Optimizations, variants and concrete
efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259–276. Springer,
Heidelberg (2011)

37. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptology 15(3), 177–206 (2002)
38. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer.

In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)
39. Micali, S., Rogaway, P.: Secure computation (abstract). In: Feigenbaum, J. (ed.) CRYPTO

1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)
40. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC, pp. 245–254

(1999)
41. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281

(2006)
42. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random func-

tions. In: FOCS, pp. 458–467 (1997)
43. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-

secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

44. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)

45. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension.
In: Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, pp. 797–812 (2014)

120 C. Hazay

46. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

47. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional gate.
In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg
(2004)

48. Vergnaud, D.: Efficient and secure generalized pattern matching via fast fourier transform.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 41–58.
Springer, Heidelberg (2011)

49. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–
167 (1986)

50. Zhu, H., Bao, F.: Augmented oblivious polynomial evaluation protocol and its applications.
In: de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 222–230. Springer, Heidelberg (2005)

Verifiable Random Functions
from Weaker Assumptions

Tibor Jager

Horst Görtz Institute for IT Security,
Ruhr-University Bochum, Germany

tibor.jager@rub.de

Abstract. The construction of a verifiable random function (VRF) with large in-
put space and full adaptive security from a static, non-interactive complexity as-
sumption, like decisional Diffie-Hellman, has proven to be a challenging task. To
date it is not even clear that such a VRF exists. Most known constructions either
allow only a small input space of polynomially-bounded size, or do not achieve
full adaptive security under a static, non-interactive complexity assumption.

The only known constructions without these restrictions are based on non-
static, so-called “q-type” assumptions, which are parametrized by an integer q.
Since q-type assumptions get stronger with larger q, it is desirable to have q as
small as possible. In current constructions, q is either a polynomial (e.g., Hohen-
berger and Waters, Eurocrypt 2010) or at least linear (e.g., Boneh et al., CCS
2010) in the security parameter.

We show that it is possible to construct relatively simple and efficient veri-
fiable random functions with full adaptive security and large input space from
non-interactive q-type assumptions, where q is only logarithmic in the security
parameter. Interestingly, our VRF is essentially identical to the verifiable unpre-
dictable function (VUF) by Lysyanskaya (Crypto 2002), but very different from
Lysyanskaya’s VRF from the same paper. Thus, our result can also be viewed as
a new, direct VRF-security proof for Lysyanskaya’s VUF. As a technical tool, we
introduce and construct balanced admissible hash functions.

1 Introduction

Verifiable random functions. Verifiable random functions (VRFs) can be seen as the
public-key equivalent of pseudorandom functions. Each function Vsk is associated with
a secret key sk and a corresponding public verification key vk . Given sk , an element
X from the domain of Vsk , and Y = Vsk (X), it is possible to create a non-interactive,
publicly verifiable proof π that Y was computed correctly. For security, unique prov-
ability is required. This means that for each X only one unique value Y such that the
statement “Y = Vsk (X)” can be proven may exist. Note that unique provability is a
very strong requirement: not even the party that creates sk (possibly maliciously) may
be able to create fake proofs. These additional features should not affect the pseudo-
randomness of the function on other inputs. Verifiable random functions are strongly
related to verifiable unpredictable functions (VUFs), where the weaker notion of un-
predictability instead of pseudorandomness is required.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 121–143, 2015.
c© International Association for Cryptologic Research 2015

122 T. Jager

Their strong properties make VRFs useful for applications like resettable zero-
knowledge proofs [30], lottery systems [31], transaction escrow schemes [26], updat-
able zero-knowledge databases [27], or e-cash [3,4]. VRFs can also be seen as verifiably
unique digital signatures (called invariant signatures in [23]), their uniqueness makes
them strongly unforgeable [10,35].

The difficulty of constructing VRFs. In particular the unique provability requirement
makes it very difficult to construct verifiable random functions. For instance, the natural
attempt of combining a pseudorandom function with a non-interactive zero-knowledge
proof system fails, since zero-knowledge proofs are inherently simulatable, which con-
tradicts uniqueness. More generally, any reduction which attempts to prove pseudoran-
domness of a candidate construction faces the following problem.

– On the one hand, the reduction must be able to compute the unique function value
Y := Vsk (X) for preimages X selected by the attacker, along with a proof of
correctness π. Due to the unique provability, there exists only one unique value Y
such that the statement “Y = Vsk (X)” can be proven, thus the reduction is not able
to “lie” by outputting false values Ỹ .
Note that this stands in contrast to typical reductions for pseudorandom functions,
like the Naor-Reingold construction [33] for instance, where due to the absence of
proofs the reduction is be able to output incorrect values.

– On the other hand, the reduction must not be able to compute Y ∗ = Vsk (X
∗) for

a particular X∗, as it must be able to use an attacker that distinguishes Y ∗ from
random to break a complexity assumption.

Most previous works [29,28,16,17,1] constructed VRFs with only small input spaces
of polynomially-bounded size.1 The only two exceptions are due to Hohenberger and
Waters [25] and Boneh et al. [9], who constructed verifiable random functions with full
adaptive security that allow an input space of exponential size.

VRFs with large input spaces from non-interactive assumptions. Hohenberger and Wa-
ters [25] provided the first fully-secure VRF with exponential-size input space whose
security is based on a non-interactive complexity assumption. The security proof relies
on a q-type assumption, where an algorithm receives as input a list of group elements

(g, h, gx, . . . , gx
q−1

, gx
q+1

, . . . , gx
2q

, T) ∈ G2q+1 ×GT

where e : G×G → GT is a bilinear map. The assumption is that no efficient algorithm
is able to distinguish T = e(g, h)x

q

from a random group element with probability
significantly better than 1/2. The proof given in [25] requires that q = Θ(Q · k), where
k is the security parameter and Q is the number of function evaluations Vsk (X) queried
by the attacker in the security experiment. Note that in particular Q can be very large,
as it is only bounded by a polynomial in the security parameter.

1 Or, alternatively but usually equivalently, based on interactive complexity assumptions or with
only weaker selective security.

Verifiable Random Functions from Weaker Assumptions 123

The construction of Boneh et al. [9] is based on the assumption where the algorithm
receives as input a list of group elements

(g, h, gx, . . . , gx
q

, T) ∈ Gq+2 ×GT

and the algorithm has to distinguish T = e(g, h)1/x from random. The proof in [9]
requires q = Θ(k). Is it possible to construct VRFs with large input and full adaptive
security from weaker q-type assumptions?

Our contribution. We construct verifiable random functions with exponential-size input
space, full adaptive security, and based on a q-type assumption with very small q . More
precisely, q = O(log k) depends only logarithmically on the security parameter. The
VRF construction essentially corresponds to the verifiable unpredictable function of
Lysyanskaya [28], which inspired many very similar VRF constructions with either
weaker security or based on stronger assumptions [25,1,16].

As a technical tool, we introduce the notion of balanced admissible hash functions
(balanced AHFs), which are standard admissible hash functions [8] with an extra prop-
erty (cf. the explanations below and in Section 4), and may be useful for applications
beyond VRFs. We show how to construct balanced AHFs from codes with suitable
minimal distance.

VRF construction. Let G,GT be groups with bilinear map e : G × G → GT , and let
C : {0, 1}k → {0, 1}n be a hash function. We construct a VRF with domain {0, 1}k
and range GT . The verification key of our VRF consists of C along with 2n+2 random
elements of G

vk =
(
g, h, (gi,j)(i,j)∈[n]×{0,1}

)
The secret key consists of the discrete logarithms αi,j such that gαi,j = gi,j for (i, j) ∈
[n]× {0, 1}.

The function is evaluated on input X ∈ {0, 1}k by first computing

(C1, . . . , Cn) := C(X) and αX :=

n∏
i=1

αi,Ci

and finally
Vsk (X) := e(g, h)αX

A proof that Vsk (X) = e(g, h)αX consists of group elements (π1, . . . , πn) where

πi := π
αi,Ci

i−1

for i ∈ [n] and with π0 := g. Correctness of proofs is verified with the bilinear map.

Similarity to Lysyanskaya’s VUF. We note that our VRF construction is nearly identical
to a VUF (resp. unique signature) construction of Lysyanskaya [28], but very different
from the VRF construction of [28]. To explain this in more detail, recall that Lysyan-
skaya [28] followed a much more complex approach:

124 T. Jager

1. Construct a VUF based on a “computational” complexity assumption (in contrast
to a “decisional” complexity assumption)

2. Turn this VUF into a VRF with single-bit output, by using a Goldreich-Levin
hard-core predicate [22]. This step is not as simple as it may appear, because
Micali et al. [29] show in their initial VRF paper that this only yields a VRF
with polynomially-bounded input space (due to the fact that the randomness of the
Goldreich-Levin hard-core predicate must be public to allow verifiability, which in
turn leads to the problems discussed in [34]).

3. Turn this single-bit-VRF into a VRF with many-bit output (still with poly-bounded
input space), by applying a generic construction from [29]. Note that this generic
construction requires many evaluations of the underlying single-bit VRF.

4. In order to extend the VRF to a larger input space, apply another generic tree-
based construction of [29]. Note that again this requires many evaluations of the
underlying VRF.

In contrast, our direct VRF security proof of (essentially) the VUF-construction of
Lysyanskaya yields directly a – in comparison much more simple and efficient – VRF
with exponential-sized input space, adaptive security, and many-bit output. We rely on
the new notion of balanced admissible hash functions in our security analysis.

Our security analysis and the need for balanced AHFs. We prove security under the
qDDH-assumption, which states that given

(g, h, gx, . . . , gx
q

, T)

it is hard to distinguish T = e(g, h)x
q+1

from random.
A qDDH-challenge is embedded into the view of the attacker by setting

gi,j := gx+αi,j

where αi,j
$← Z|G| is a random blinding term, but only for O(log k) carefully selected

indices (i, j). This careful embedding essentially partitions the domain {0, 1}k of the
VRF into two sets X0,X1, such that

– For all values X ∈ X1 we have

Vsk (X) = e(g
∏q

i=0 γix
i

, h) and πj = g
∏q

i=0 γj,ix
i ∀1 ≤ j ≤ n (1)

where the γi and γj,i are integers in Z|G| which are known to the reduction. Note
that the polynomials in the exponent of Equations (1) have degree at most q, thus
Vsk (X) and π1, . . . , πn can be computed, given the values (g, gx, . . . , gx

q

) from
the qDDH challenge and the integers γi, γj,i.

– For all values X∗ ∈ X0 the reduction is able to compute integers γi such that

Y ∗ = e(g
∏q

i=0 γix
i

, h) · T γq+1

such that if T = e(g, h)x
q+1

then it holds that Y ∗ = Vsk (X
∗). Note that if T is

random, then so is Y ∗.

Verifiable Random Functions from Weaker Assumptions 125

Let {X(1), . . . , X(Q)} denote the set of inputs on which the VRF-attacker queries the
evaluation of the VRF with corresponding proof, and let X∗ denote the element such
that the attacker attempts to distinguish Vsk (X

∗) from random. The reduction will suc-
ceed, if it holds that {X(1), . . . , X(Q)} ⊆ X1 and X∗ ∈ X0.

Instantiating C with an admissible hash function ensures that with non-negligible
probability it simultaneously holds that {X(1), . . . , X(Q)} ⊆ X1 and X∗ ∈ X0. How-
ever, unfortunately this is not yet sufficient to make the analysis of the success proba-
bility of our reduction go through, due to the incompatibility of partitioning proofs with
“decisional” complexity assumptions, like qDDH. Intuitively, the problem stems from
the fact that two different sequences of queries made by the attacker may cause the
simulator to abort with different probabilities. This issue was explained in great detail
in [37,5,14].

Therefore we introduce the stronger notion of balanced AHFs. Essentially, a bal-
anced AHF ensures that the upper bound γmax and the lower bound γmin on the proba-
bility in

γmax ≥ Pr[{X(1), . . . , X(Q)} ⊆ X1 ∧ X∗ ∈ X0] ≥ γmin

are reasonably close. This is a typical requirement for partitioning proofs based on deci-
sional complexity assumptions, it occurs both in reductions with and without the “artifi-
cial abort” [37,5]. This suggests that the notion of balanced AHFs may find applications
beyond the construction of VRFs.

We stress that we achieve a reduction from a q-type assumption with q = O(log k)
only if we instantiate the VRF construction with a specific AHF, essentially the code-
based AHF of [19,28]. The reason is that this is the only construction we are aware of
which allows us to embed the given qDDH-challenge into at most O(log k) carefully
selected public-key elements gi,j in the way described above. We still have to prove that
their AHF is also a balanced AHF.

More related work. VRFs were introduced by Micali, Rabin, and Vadhan [29], along
with verifiable unpredictable functions (VUFs), a generic conversion from VUFs to
VRFs based on Goldreich-Levin hard-core predicates [22], and a VUF-construction
(with small input space) based on the RSA assumption. Specific, number-theoretic
constructions of VRFs can be found in [29,28,16,17,1,25,9]. Note that most of these
constructions either do not achieve full adaptive security for large input spaces, or are
based on much stronger, interactive complexity assumptions. In particular, the VRF
construction of Dodis [16] with outer error-correcting code is based on a q-type as-
sumption (there called the sf-DDH assumption of order q) with q = O(log k), but this
assumption is interactive. We wish to avoid interactive assumptions to prevent circular
arguments, as explained by Naor [32].

Abdalla et al. gave generic constructions of VRFs from so-called VRF-suitable
identity-based KEMs [1,2]. While the conference version of this paper [1] considered
only selective security, the full version [2] contains proofs that the construction from [1]
achieves full security, under either under the complexity assumption from [25] with
polynomially-bounded q, or, alternatively, under a q-type assumption with q = O(k)
when combined with an admissible hash function.

Brakerski et al. [11] introduced the relaxed notion of weak VRFs, along with sim-
ple and efficient constructions, and proofs that neither VRFs, nor weak VRFs can be

126 T. Jager

constructed (in a black-box way) from one-way permutations. Fiore and Schröder [18]
proved that verifiable random functions are not even implied (in a black-box sense)
by trapdoor permutations. Several works introduced related primitives, like simulatable
VRFs [12] and constrained VRFs [21].

At Eurocrypt 2006, Cheon [15] described an algorithm, which computes the discrete
logarithm x on input (g, gx, . . . , gx

q

). This algorithm is faster by a factor of
√
q than

generic algorithms for the standard discrete logarithm problem where only (g, gx) is
given. This shows that q-type assumptions are particularly problematic when q is large.
The security loss must be compensated with larger group parameters, at the cost of
efficiency. We stress that Cheon’s algorithm is only much faster than generic algorithms
for the standard discrete logarithm problem if q is very large (say, q = 240). However,
Cheon’s algorithm gives no apparent reason to criticise q-type assumptions for small q,
like q ≤ 40.

On avoiding q-Type assumptions altogether. Chase and Meiklejohn [13] present a con-
version that allows to replace q-type assumption in certain applications with a static
(that is, not q-type) subgroup hiding assumption, by leveraging the dual-systems tech-
niques of Waters [36]. It is natural to ask whether these techniques can be used to
construct verifiable random functions from static assumptions. Unfortunately, the con-
version of [13] requires to add randomization. Thus, when applying it to known VRF
constructions like [17], then this contradicts the unique provability requirement. Ac-
cordingly, Chase and Meiklejohn were able to prove that the VRF of Dodis and Yam-
polski [17] forms a secure pseudorandom function under a static assumption, but not
that it is a secure verifiable random function.

We leave the construction of a verifiable random function with large input space and
full adaptive security from a static assumption, like Decisional Diffie-Hellman, as an
open problem.

2 Preliminaries

For a vector K ∈ {0, 1}n we write Ki to denote the i-th component of K . If A is a
finite set, then a

$← A denotes the action of sampling a uniformly random from A. If
A is a probabilistic algorithm, then we write a

$← A to denote the action of computing
a by running A with uniformly random coins. We define [n] := {1, . . . , n} ⊂ N as the
set of all positive integers up to n.

2.1 Verifiable Unpredictable/Random Functions

Let (Gen,Eval,Vfy) be the following algorithms.

– Algorithm (vk , sk)
$← Gen(1k) takes as input a security parameter k and outputs a

key pair (vk , sk). We say that sk is the secret key and vk is the verification key.
– Algorithm (Y, π)

$← Eval(sk , X) takes as input secret key sk and X ∈ {0, 1}k,
and outputs a function value Y ∈ Y , where Y is a finite set, and a proof π. We
write Vsk (X) to denote the function value Y computed by Eval on input (sk , X).

Verifiable Random Functions from Weaker Assumptions 127

– Algorithm Vfy(vk , X, Y, π) ∈ {0, 1} takes as input verification key vk , X ∈
{0, 1}k, Y ∈ Y , and proof π, and outputs a bit.

Initialize :

b
$← {0, 1}

(vk , sk)
$← Gen(1k)

Return vk

Evaluate(X) :

(Y, π)
$← Eval(sk , X)

Return (Y, π)

Challenge(X∗) :

(Y0, π)
$← Eval(sk , X∗)

Y1
$← Y

Return Yb

FinalizeVUF(X∗, Y ∗) :

(Y, π)
$← Eval(sk , X∗)

If Y ∗ = Y then
Return 1

Else Return 0

FinalizeVRF(b′) :

If b′ = b then
Return 1

Else Return 0

Fig. 1. Procedures defining the security experiments for VUFs and VRFs

Definition 1. We say that (Gen,Eval,Vfy) is a verifiable random function (VRF) if all
the following properties hold.

Correctness. Algorithms Gen, Eval, Vfy are polynomial-time algorithms, and for all
(vk , sk)

$← Gen(1k) and all X ∈ {0, 1}k holds: if (Y, π)
$← Eval(sk , X), then

Vfy(vk , X, Y, π) = 1 .

Unique Provability. For all (vk , sk)
$← Gen(1k) and all X ∈ {0, 1}k, there does

not exist any tuple (Y0, π0, Y1, π1) such that Y0 �= Y1 and Vfy(vk , X, Y0, π0) =
Vfy(vk , X, Y1, π1) = 1.

Pseudorandomness. Consider an attacker A with access (via oracle queries) to the
procedures defined in Figure 1. Let GA

VRF denote the game where A first queries
Initialize, then Challenge, thenFinalizeVRF, where the output of FinalizeVRF

is the output of the game. Moreover,A may arbitrarily issue Evaluate-queries, but
only after querying Initialize and before querying FinalizeVRF. We say that A is
legitimate, if A never queries Evaluate(X) and Challenge(X∗) with X = X∗

throughout the game.
We define the advantage of A in breaking the pseudorandomness as

AdvVRFA (k) := 2 · Pr[GA
VUF = 1]− 1

Definition 2. We say that (Gen,Eval,Vfy) is a verifiable unpredictable function (VUF)
if the correctness and unique provability properties from Definition 1 hold, and we have:

Unpredictability. Consider an attacker A with access (via oracle queries) to the pro-
cedures defined in Figure 1. Let GA

VUF denote the game where A first queries
Initialize, then an arbitrary number of Evaluate-queries, then FinalizeVUF,

128 T. Jager

and the output of FinalizeVUF is the output of the game. We say that A is le-
gitimate, if A never queries Evaluate(X) and Challenge(X∗) with X = X∗

throughout the game.
We define the advantage of A in breaking the unpredictability as

AdvVUFA (k) := Pr[GA
VUF = 1]

2.2 q-Diffie-Hellman Assumptions

In the sequel let G,GT begroups of prime order, with bilinear map e : G×G → GT .

InitializeqCDH :

g, h
$← G;x

$← Z|G|
Return (g, gx, . . . , gx

q

, h)

FinalizeqCDH(T) :

If T = e(gx
q+1

, h) then Return 1
Else Return 0

InitializeqDDH :

g, h
$← G;x

$← Z|G|; b
$← {0, 1}

T0 := e(g, h)x
q+1

, T1
$← GT

Return (g, gx, . . . , gx
q

, h, Tb)

FinalizeqDDH(b′) :

If b′ = b then Return 1
Else Return 0

Fig. 2. Procedures defining the q-Diffie Hellman assumptions

Definition 3. Let GqDDH
B be the game with B and the procedures defined in Figure 2,

where B calls InitializeqDDH, then FinalizeqDDH, and the output of FinalizeqDDH

is the output of the game. We denote with

AdvqDDH
B (k) := 2 · Pr

[
GqDDH

B = 1
]
− 1

the advantage of A in breaking the qDDH-assumption in (G,GT).

Definition 4. Let GqCDH
B be the game with B and the procedures defined in Figure 2,

where B calls InitializeqCDH, then FinalizeqCDH, and the output of FinalizeqCDH is
the output of the game. We denote with

AdvqCDH
B (k) := Pr

[
GqCDH

B = 1
]

the advantage of A in breaking the qCDH-assumption in (G,GT).

3 Main Construction

Let G,GT be groups of prime order with bilinear map e : G×G → GT , such that each
group element has a unique representation, and that group membership can be tested
efficiently.

Verifiable Random Functions from Weaker Assumptions 129

Let VF = (Gen,Eval,Vfy) be the following construction.

Generation. Algorithm Gen(1k) chooses an admissible hash function C : {0, 1}k →
{0, 1}n and two random generators g, h

$← G. Then it computes gi,j := gαi,j ,

where αi,j
$← Z|G| and for (i, j) ∈ [n]× {0, 1}. The keys are defined as

vk :=
(
C, g, h, (gi,j)(i,j)∈[n]×{0,1}

)
and sk := (αi,j)(i,j)∈[n]×{0,1}

Evaluation. On input X ∈ {0, 1}k, algorithm Eval(sk , X) first computes C(X). For
i ∈ [n] let C(X)i denote the i-th bit of C(X) ∈ {0, 1}n. Then the algorithm
determines the function value by computing aX :=

∏n
i=1 αi,C(X)i and setting

Y := e(g, h)aX .

The corresponding proof π = (π1, . . . , πn) is computed recursively by first defin-
ing π0 := g and then setting

πi := π
αi,C(X)i

i−1 for all i ∈ [n]

The algorithm outputs (Y, π).
Verification. Algorithm Vfy(vk , X, Y, π) checks the consistency of π using the bilin-

ear map. It first tests if X and π contain only valid group elements. Then it com-
putes C(X) = (C(X)1, . . . , C(X)n) ∈ {0, 1}n, defines π0 := g, and outputs 1 if
and only if all the following equations are satisfied.

e(πi, g) = e(πi−1, gi,C(X)i) for all i ∈ [n]

Y = e(πn, h)

It is straightforward to verify that the above construction is correct in the sense of
Definitions 1 and 2. Furthermore, the unique provability follows from the group struc-
ture and the fact that even an unbounded attacker is not able to devise a proof π for a
different group element. It remains to prove pseudorandomness.

4 Balanced Admissible Hash Functions

Standard admissible hash functions (AHFs) were introduced by Boneh and Boyen [8],
a simplified definition was given by Freire et al. [19]. For our application, we will
need AHFs with stronger properties, therefore we have to extend the notion of AHFs
to balanced AHFs. The essential difference between balanced AHFs and the standard
definition (e.g. [20, Definition 3]) is that previous works required only a reasonable
lower bound on the probability in Equation (3) below. In contrast, the security analysis
of our VRF construction will essentially require reasonable upper and lower bounds,
and that these bounds are sufficiently close.

Definition 5. Let k ∈ N and n = n(k) be a polynomial, and let C : {0, 1}k →
{0, 1}n(k) be an efficiently computable function. Let FK : {0, 1}k → {0, 1} be defined
as

FK(X) :=

{
0, if ∀i : C(X)i = Ki ∨ Ki = ⊥
1, else.

(2)

130 T. Jager

We say that C is a balanced admissible hash function (balanced AHF), if there
exists an efficient algorithm AdmSmp(1k, Q, δ), which takes as input (Q, δ) where
Q = Q(k) ∈ N is polynomially bounded and δ = δ(k) ∈ (0, 1] is non-negligible,
and outputs K ∈ {0, 1,⊥}n such that for all X(1), . . . , X(Q), X∗ ∈ {0, 1}k with
X∗ �∈ {X(1), . . . , X(Q)} holds that

γmax(k) ≥ Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0] ≥ γmin(k) (3)

where γmax(k) and γmin(k) satisfy that the function τ(k) defined as

τ(k) := 2 · γmin(k) · δ(k)− γmax(k) + γmin(k) (4)

is non-negligible. The probability is taken over the choice of K .

Remark 1. The definition of τ essentially condenses two requirements, namely (1) that
γmin is non-negligible, and (2) that the difference γmax − γmin is “reasonably” small,
where “reasonably” depends on γmin and δ. The definition of function τ may appear
very specific, however, such a term appears typically in security analyses that follow
the approach of Bellare and Ristenpart [5]. Therefore we think this is exactly what is
needed for typical applications of balanced AHFs. See Lemma 1, for instance.

Instantiating balanced admissible hash functions. Efficient standard admissible hash
functions are known to exist [28,8,19]. For instance, there is a simple construction from
codes with suitable minimal distance [28,19]. In this section we will show that such
codes also yield a balanced AHF. In contrast to [28,19], we have to show both upper
and lower bounds, and choose certain parameters more carefully to ensure that (4) is a
non-negligible function.

Theorem 1. Let (Ck)k∈N with Ck : {0, 1}k → {0, 1}n be a family of codes with
minimal distance nc for a constant c. Then (Ck)k∈N is a family of balanced admissible
hash functions. Moreover, AdmSmp(1k, Q, δ) outputs K ∈ {0, 1,⊥}n with exactly

d =
⌊
ln(2Q+Q/δ)
− ln((1−c))

⌋
components not equal to ⊥.

Proof. Consider the algorithm AdmSmp which sets

d :=

⌊
ln(2Q+Q/δ)

− ln((1 − c))

⌋
and chooses K uniformly random from ({0, 1}∪{⊥})n with exactly d components not
equal to ⊥.2

Fix X(1), . . . , X(Q), X∗ ∈ {0, 1}k with X∗ �∈ {X(1), . . . , X(Q)} for the analysis of
this algorithm.

Upper bound. Note that we have Pr[FK(X∗) = 0] = 2−d, and thus

γmax := 2−d = Pr[FK(X∗) = 0]

≥ Pr[FK(X∗) = 0] · Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 | FK(X∗)]

= Pr[FK(X∗) = 0 ∧ FK(X(1)) = · · · = FK(X(Q)) = 1].

2 Note that this algorithm is identical to the algorithm from [20, Theorem 2], except that we
have chosen d slightly differently.

Verifiable Random Functions from Weaker Assumptions 131

Lower bound. We first observe that for any two strings X,X∗ ∈ {0, 1}k with X �= X∗

holds that
Pr[FK(X) = 0 | FK(X∗) = 0] ≤ (1− c)d.

To see this, consider an experiment where two code words C(X) and C(X∗) are given,
with X,X∗ ∈ {0, 1}k and X �= X∗, and we sample d pairwise distinct positions

i1, . . . , id
$← [n]. Since C(X) and C(X∗) differ in at least nc positions, the probability

that C(X)i1 = C(X∗)i1 is at most (n−nc)/n = 1−c. The probability that C(X)ij =
C(X∗)ij for all j ∈ [d] is thus at most (1− c)d.

A union bound yields that

Pr[FK(X(1)) = 0 ∨ · · · ∨ FK(X(Q)) = 0 | FK(X∗) = 0] ≤ Q(1− c)d

which implies

Pr[FK(X(1)) = 1 ∧ · · · ∧ FK(X(Q)) = 1 | FK(X∗) = 0] ≥ 1−Q(1− c)d

This yields the lower bound

γmin :=(1 −Q(1− c)d) · 2−d

≤Pr[FK(X(1)) = 1 ∧ · · · ∧ FK(X(Q)) = 1 | FK(X∗) = 0] · Pr[FK(X∗) = 0]

=Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0]

Balancedness of bounds. Finally, it remains to show that for polynomial Q and non-
negligible δ the function τ from (4) is non-negligible. We first compute (omitting the
parameter k from functions to simplify notation):

τ :=2 · δ · γmin − γmax + γmin

=2 · δ · (1−Q(1− c)d) · 2−d − 2−d + (1 −Q(1− c)d) · 2−d

=2−d ·
(
2δ − (2δ + 1) ·Q(1− c)d

)
Now we will show that if d is chosen as above, then both 2−d and 2δ−(2δ+1)·Q(1−c)d

are non-negligible. Thus, their product is non-negligible as well.
We have

2−d = 2−�
ln(2Q+Q/δ)
− ln((1−c))
 ≥ 2

ln(2Q+Q/δ)
ln((1−c))

and

2δ − (2δ + 1) ·Q(1− c)d = 2δ − (2δ + 1) ·Q(1− c)�
ln(2Q+Q/δ)
− ln((1−c))

≥ 2δ − (2δ + 1) ·Q(2Q+Q/δ)−1

= 2δ − (2δQ+Q)(2Q+Q/δ)−1

= 2δ − δ(2δQ+Q)(2δQ+Q)−1 = δ

which both are non-negligible since c is a constant, Q ∈ N, and δ ∈ (0, 1] is non-
negligible.

132 T. Jager

5 VF is a Verifiable Random Function

Theorem 2. If VF is instantiated with the balanced admissible hash function from
Theorem 1, then for any legitimate attacker A that breaks the pseudorandomness of
VF in time tA with advantage AdvVRFA by making at most Q Eval-queries, there exists

an algorithm B that breaks the q-DDH assumption with q =
⌊
ln(2Q+Q/δ)
− ln((1−c))

⌋
− 1 in time

tB ≈ tA and with advantage

AdvqDDH
B (k) ≥ τ(k)

where 2 · δ is a non-negligible lower bound on AdvVRFA (k), and τ(k) is a non-negligible
function.

Initialize :

bad := 0

K
$← AdmSmp(1k, Q, δ)

For (i, j) ∈ [n]× {0, 1} do

αi,j
$← Z|G|

If Ki = j then gi,j := gx+αi,j

Else gi,j := gαi,j

vk :=
(
C, g, h, (gi,j)(i,j)

)
Return vk

Evaluate(X) :

(Y, π) := ⊥
If FK(X) �= 1 then

bad := 1;
Else

Y := e(gPK,n,X(x), h)
For j ∈ [n] do
πj := gPK,j,X(x)

π := (π1, . . . , πn)
Return (Y, π)

Challenge(X∗) :

Y ∗ := ⊥
If FK(X) = 1 then

bad := 1
Else

Compute γ0, . . . , γq+1 s.t.
PK,n,X∗(x) =

∑q+1
i=0 γix

i

Y ∗ := T γq+1 ·
∏q

i=1 e((g
xi

)γi , h)
Return Y ∗

FinalizeVRF(b′) :

If bad = 1 then c′
$← {0, 1}

Else c′ := b′

Return c′

Fig. 3. Procedures for the simulation of the VRF pseudorandomness experiment by B

Proof. Algorithm B receives as input (g, gx, . . . , gx
q

, h, T) and runs algorithm A as a
subroutine. Whenever A queries Initialize, Evaluate, Challenge, or Finalize, B
executes the corresponding procedure from Figure 3. Let us give some remarks on these
procedures.

Verifiable Random Functions from Weaker Assumptions 133

Initialization. The values (g, h, gx) in Initialize are from the qDDH-challenge. Recall
that 2 · δ is a non-negligible lower bound on AdvVRFA (k), and Q is the upper bound on
the number of Evaluate-queries.

Note that B computes the gi,j-values exactly as in the original Gen-algorithm, by

choosing αi,j
$← Z|G| and setting gi,j := gαi,j , but with the exception that

gi,Ki := gx+αi,Ki .

for all (i, j) ∈ [n] × {0, 1} with Ki = j. Due to our choice of an admissible hash
function according to Theorem 1, there are exactly q + 1 components Ki of K which
are not equal to ⊥.

Finally, note that all gi,Ki-values are distributed correctly, and that this set-up defines
the secret key implicitly as sk := (logg gi,j)(i,j)∈[n]×{0,1}. Thus, the function Vsk (X)
is well-defined for all X (but B will not be able to evaluate Vsk on all inputs X , as
explained below).

Helping definitions. In order to explain how B responds to Evaluate and Challenge
queries made by A, let us define two sets IK,w,X and JK,w,X , which depend on an
AHF key K , a VRF input X ∈ {0, 1}k, and integer w ∈ N with 1 ≤ w ≤ n, as

IK,w,X := {i ∈ [w] : Ki = C(X)i} and JK,w,X := [w] \ IK,w,X

Note that IK,w,X denotes the set of all indices i ∈ [w] ⊆ [n] such that Ki = C(X)i,
and JK,w,X denotes the set of all indices in [w] which are not contained in IK,w,X .
Based on these sets, we define polynomials PK,w,X(x)

PK,w,X(x) =
∏

i∈IK,w,X

(x+ αi,Ki) ·
∏

i∈JK,w,X

αi,Ki ∈ Z|G|[x]

Now we can make the following observations:

1. For all X with FK(X) = 1, the set IK,w,X contains at most q elements, and thus
the polynomial PK,w,X(x) has degree at most q.
This implies that if FK(X) = 1, then B can efficiently compute gPK,w,X(x) for all
w ∈ [n]. To this end, B first computes the coefficients γ0, . . . , γq of the polynomial
PK,w,X(x) =

∑q
i=0 γix

i with degree at most q, and then

gPK,w,X(x) := g
∑q

i=0 γix
i

=

q∏
i=0

(gx
i

)γi

using the terms (g, gx, . . . , gx
q

) from the q-DDH challenge.
2. If FK(X) = 0, then PK,n,X(x) has degree q + 1. We do not know how B can

efficiently compute gPK,n,X(x) in this case.

Responding to Evaluate-queries. If FK(X) = 1, then procedure Evaluate com-
putes the group elements gPK,w,X (x) as explained above. Note that in this case the re-
sponse to the Evaluate(X)-query of A is correct. However, if FK(X) = 0, then the
response of B is incorrect.

134 T. Jager

Responding to the Challenge-query. If FK(X∗) = 0, then procedure Challenge
computes

Y ∗ := T γq+1 ·
q∏

i=1

e((gx
i

)γi , h) = T γq+1 · e(g
∑q

i=1 γix
i

, h)

where γ0, . . . , γq+1 are the coefficients of the degree-(q+1)-polynomialPK,n,X∗(x) =∑q+1
i=0 γix

i. Note that if T = e(g, h)x
q+1

, then it holds that Y ∗ = Vsk (X
∗). Moreover,

if T is uniformly random, then so is Y ∗.

Analysis of B’s running time. The running time tB of B consists essentially of the
running time tA of A plus a minor number of additional operations, thus we have tB ≈
tA.

Analysis of B’s success probability. The simulation of the challenger by B is per-
fect, unless bad := 1 is set. This happens only if A queries Evaluate(X) with
FK(X) �= 1, or Challenge(X∗) with FK(X∗) = 1. Since the AHF key K is
information-theoretically hidden in vk , the terms γmax and γmin from Equation (3) are
upper and lower bounds on the probability that bad := 1 is never set throughout the
experiment.

Lemma 1.
AdvqCDH

B (k) ≥ 2 · γmin · δ − γmax + γmin

The proof of Lemma 1 follows the approach of Bellare and Ristenpart [5] very
closely, therefore it is deferred to Appendix A. This approach allows us to provide
an analysis without the “artificial abort” of Waters [37]. The latter has also been used to
analyze the VRF of Hohenberger and Waters [24], but leads to a less tight reduction.

Remark 2. Note that the lower bound on AdvqCDH
B (k) in Lemma 1 is only useful, if δ

and γmin are non-negligible and γmax and γmin are sufficiently close. This is where we
need the balancedness of admissible hash function C.

Observe that since we instantiate C with a balanced AHF and δ is a non-negligible
lower bound on AdvVRFA (k)/2, the function

τ(k) := 2 · γmin · δ − γmax + γmin

is non-negligible. This concludes the proof of Theorem 2.

6 VF is a Verifiable Unpredictable Function

In this section we prove that construction VF also is a secure VUF. Note that this
construction is essentially identical to the VUF of Lysyanskaya [28], only the proof is
based on a different complexity assumption.

The main purpose of this section is to show that for the VUF-security proof of VF an
even weaker (but still O(log k)) q-type assumption is sufficient. We can base security
on a qCDH assumption that is weaker in two ways. First, it is the computational version
of the qDDH assumption. Second, we need only q = �(ln 2Q)/c
−1. Thus, in contrast
to the VRF-security proof, q is independent of the advantage of the attacker.

Verifiable Random Functions from Weaker Assumptions 135

6.1 Admissible Hash Functions

In order to prove that VF is a VUF, it will suffice to instantiate VF with a standard
(that is, not necessarily balanced) admissible hash function C. We recall the standard
definition of admissible hash functions (AHFs) from Freire et al. [19].

Definition 6 ([19]). Let k ∈ N and n = n(k) be a polynomial, and let C : {0, 1}k →
{0, 1}n(k) be an efficiently computable function. Let FK : {0, 1}k → {0, 1} be defined
as in Equation (2). We say that C is an admissible hash function (AHF), if there exists an
efficient algorithm AdmSmp(1k, Q), which takes as input polynomial Q = Q(k) ∈ N,
and computes K ∈ ({0, 1} ∪ {⊥})n such that for all X(1), . . . , X(Q), X∗ ∈ {0, 1}k
with X∗ �∈ {X(1), . . . , X(Q)} holds that

Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0] ≥ γmin(k) (5)

such that γmin(k) non-negligible. The probability is taken over the choice of K .

Instantiating Admissible Hash Functions. A simple and efficient construction of AHFs
can be found in [19] (based on [28]), we capture their existence in the following lemma.

Lemma 2 ([28,19]). Let S be a set and (Ck)k∈N with Ck : {0, 1}k → Sn be a family
of codes, with minimal distance nc for a constant c and such that |S| is bounded by
a polynomial in k. Then (Ck)k∈N is an admissible hash function, where AdmSmp(Q)
outputs K ∈ S ∪ {⊥}n with exactly d := �(ln 2Q)/c
 components not equal to ⊥ and
γmin ≥ (1 −Q(1− c)d) · 2−d.

Remark 3. Note that even though the last two statements of the above theorem were
not made explicit in previous works, they are implicitly contained in the proof of [20,
Theorem 2].

6.2 Security Analysis

Theorem 3. If VF is instantiated with the admissible hash function from Lemma 2,
then for any legitimate attacker A that breaks the unpredictability of VF in time tA
with advantage AdvVUFA by making at most Q Eval-queries, there exists an algorithm B
that breaks the qCDH assumption with q = �(ln 2Q)/c
 − 1 in time tB ≈ tA and with
advantage

AdvqCDH
B (k) ≥ AdvVUFA (k) · (1−Q(1− c)d) · 2−d

where d := �(ln 2Q)/c
 = q + 1.

The proof of this theorem is nearly identical to the proof of Theorem 2, but the analy-
sis of the success probability of B is much simpler, because we consider unpredictability
instead of pseudorandomness. Therefore we only sketch the proof.

Proof. Algorithm B receives as input (g, gx, . . . , gx
q

, h, T) and runs algorithm A as
a subroutine. Whenever A issues a query (Initialize, Evaluate, Finalize), then B
executes the corresponding procedure from Figure 4.

136 T. Jager

Initialize(X) :

bad := 0

K
$← AdmSmp(1k, Q, δ)

For (i, j) ∈ [n]× {0, 1} do

αi,j
$← Z|G|

If Ki = j then hi,j := gx+αi,j

Else hi,j := gαi,j

vk :=
(
C, g, h, (hi,j)(i,j)

)
Return vk

Evaluate(X) :

(Y, π) := ⊥
If FK(X) �= 1 then
bad := 1;

Else
Y := e(gPK,n,X(x), h)
For j ∈ [n] do

πj := gPK,j,X(x)

π := (π1, . . . , πn)
Return (Y, π)

FinalizeVUF(X∗, Y ∗) :

If FK(X
∗) = 0 then

bad := 1
If bad = 1 then Return ⊥
Compute γ0, . . . , γq+1

s.t. PK,n,X∗(x) =
∑q+1

i=0 γix
i

T :=
(
Y ∗/e(g

∑q
i=1

γix
i

, h)
)1/γq+1

Return T

Fig. 4. Procedures for the simulation of the VUF unpredictability experiment by B

The running time tB of B consists essentially of the running time tA of A plus a
minor number of additional operations, thus we have tB ≈ tA. Note that B simulates
the original VUF security experiment perfectly, if bad = 0 throughout the game. Note
also that

Y ∗ = e(g, h)
∑q+1

i=0 γix
i

=⇒ T = e(g, h)x
q+1

The choice of K is information-theoretically hidden in vk . Thus,

AdvqCDH
B (k) ≥ AdvVUFA (k) · Pr[bad = 0]

≥ AdvVUFA (k) · γmin(k) = AdvVUFA (k) · (1−Q(1− c)d) · 2−d

Acknowledgements. We thank the anonymous reviewers of TCC 2015 for their helpful
comments.

References

1. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from identity-based key en-
capsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 554–571. Springer,
Heidelberg (2009)

2. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: Relations to identity-based
key encapsulation and new constructions. Journal of Cryptology 27(3), 544–593 (2014)

Verifiable Random Functions from Weaker Assumptions 137

3. Au, M.H., Susilo, W., Mu, Y.: Practical compact e-cash. In: Pieprzyk, J., Ghodosi, H., Daw-
son, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 431–445. Springer, Heidelberg (2007)

4. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact e-cash and simulatable
VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 114–
131. Springer, Heidelberg (2009)

5. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof and im-
proved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)

6. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof and
improved concrete security for Waters’ IBE scheme. Cryptology ePrint Archive, Report
2009/084 (2009), http://eprint.iacr.org/

7. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based
game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–
426. Springer, Heidelberg (2006)

8. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)

9. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom functions with
improved efficiency from the augmented cascade. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM CCS 2010, Chicago, Illinois, USA, October 4–8, pp. 131–140.
ACM Press (2010)

10. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational
Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

11. Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak verifiable random
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 558–576. Springer, Hei-
delberg (2009)

12. Chase, M., Lysyanskaya, A.: Simulatable VRFs with applications to multi-theorem NIZK.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322. Springer, Heidelberg
(2007)

13. Chase, M., Meiklejohn, S.: Déjà Q: Using dual systems to revisit q-type assumptions.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639.
Springer, Heidelberg (2014)

14. Chatterjee, S., Sarkar, P.: HIBE with short public parameters without random oracle. In: Lai,
X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 145–160. Springer, Heidelberg
(2006)

15. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)

16. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg (2002)

17. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In:
Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)

18. Fiore, D., Schröder, D.: Uniqueness Is a Different Story: Impossibility of Verifiable Random
Functions from Trapdoor Permutations. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 636–653. Springer, Heidelberg (2012)

19. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash functions in
the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

20. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash functions in
the multilinear setting. Cryptology ePrint Archive, Report 2013/354 (2013),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

138 T. Jager

21. Fuchsbauer, G.: Constrained Verifiable Random Functions. In: Abdalla, M., De Prisco, R.
(eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Heidelberg (2014)

22. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st ACM
STOC, Seattle, Washington, USA, May 15–17, pp. 25–32. ACM Press (1989)

23. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-knowledge
proofs are equivalent (extended abstract). In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993)

24. Hohenberger, S., Waters, B.: Realizing Hash-and-Sign Signatures under Standard Assump-
tions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 333–350. Springer, Hei-
delberg (2009)

25. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large input
spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–672. Springer,
Heidelberg (2010)

26. Jarecki, S., Shmatikov, V.: Handcuffing big brother: an abuse-resilient transaction escrow
scheme. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
590–608. Springer, Heidelberg (2004)

27. Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005)

28. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-DDH sep-
aration. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612. Springer, Heidel-
berg (2002)

29. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS, Octo-
ber 17–19, pp. 120–130. IEEE Computer Society Press, New York (1999)

30. Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)

31. Micali, S., Rivest, R.L.: Micropayments revisited. In: Preneel, B. (ed.) CT-RSA 2002. LNCS,
vol. 2271, pp. 149–163. Springer, Heidelberg (2002)

32. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

33. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random func-
tions. In: 38th FOCS, Miami Beach, Florida, October 19–22, pp. 458–467. IEEE Computer
Society Press (1997)

34. Naor, M., Reingold, O.: From unpredictability to indistinguishability: A simple construc-
tion of pseudo-random functions from MACs (extended abstract). In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 267–282. Springer, Heidelberg (1998)

35. Steinfeld, R., Pieprzyk, J., Wang, H.: How to Strengthen Any Weakly Unforgeable Signature
into a Strongly Unforgeable Signature. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377,
pp. 357–371. Springer, Heidelberg (2006)

36. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer,
Heidelberg (2009)

37. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

Verifiable Random Functions from Weaker Assumptions 139

A Proof of Lemma 1

Let GqDDH
B(A) denote the qDDH security experiment with B running A as a subroutine as

described above. Let good denote the event that variable bad is never set to 1. Then,
since B outputs a random bit if bad := 1 is set, it holds that

Pr[GqDDH
B(A) = 1] = Pr[GqDDH

B(A) = 1 ∧ good] + Pr[¬good] · Pr[GqDDH
B(A) = 1 | ¬good]

= Pr[GqDDH
B(A) = 1 ∧ good] + Pr[¬good] · 1/2

and therefore

AdvqDDH
B (k) = 2 · Pr[GqDDH

B(A) = 1]− 1

= 2 · Pr[GqDDH
B(A) = 1 ∧ good]− Pr[good] (6)

Thus, it remains to derive suitable bounds on Pr[GqDDH
B(A) = 1∧good] and Pr[good]. We

will need the following lemma from [5,7].

Lemma 3 ([5,7]). Let Gi and Gj be two games which proceed identical until bad = 1.
Then

– Pr[Gi sets bad = 1] = Pr[Gj sets bad = 1]
– Pr[Gi = b ∧ Gi does not set bad = 1] = Pr[Gj = b ∧ Gj does not set bad = 1]

for any b.

A simpler-to-analyze game. Following Bellare and Ristenpart [5], we now gradually
make changes to game GqDDH

B(A) , until we reach game G3, which will be easier to analyze.
In the sequel let goodi denote the event that bad is never set to bad = 1 in Game i.

Game 0. We define G0 := GqDDH
B(A) , which implies

Pr[GqDDH
B(A) = 1 ∧ good] = Pr[G0 = 1 ∧ good0] and Pr[good] = Pr[good0]

Game 1. In this game the procedures Initialize1, Evaluate1, Challenge1, and
Finalize1 described in Figure 5 are used. Note that Initialize1 generates a normal
VRF key pair (vk , sk), and Evaluate1 and Challenge1 use the secret key sk to
evaluate the VRF and to create the challenge.

However, note that sk is only used in Evaluate1(X)-queries with FK(X) = 1,
and Challenge1(X

∗)-queries with FK(X∗) = 0. This mimics the simulation of B
perfecty, in particular all outputs computed by these procedures are distributed exactly
like in Game 0. This implies that

Pr[G1 = 1 ∧ good1] = Pr[G0 = 1 ∧ good0] and Pr[good1] = Pr[good0]

140 T. Jager

Procedures for Game G1:

Evaluate1(X) :

(Y, π) := ⊥
If FK(X) �= 1 then

bad := 1
Else
(Y, π)

$← Eval(sk , X)
Return (Y, π)

Challenge1(X
∗) :

Y ∗ := ⊥
If FK(X) = 1 then

bad := 1
Else

If b = 1 then
(Y ∗, π)

$← Eval(sk , X)

Else Y ∗ $← GT

Return Y ∗

Finalize1(b
′) :

If bad = 1 then c′
$← {0, 1}

Else c′ := b′

If c′ = b then Return 1
Else Return 0

Initialize1(X) :

bad := 0
(vk , sk)

$← GenC(1
k)

b
$← {0, 1}

K
$← AdmSmp(1k, Q, δ)

Return vk

Procedures for Game G2 (new instructions are highlighted in boxes):

Evaluate2(X) :

(Y, π) := ⊥
If FK(X) �= 1 then

bad := 1

(Y, π)
$← Eval(sk , X)

Else
(Y, π)

$← Eval(sk , X)
Return (Y, π)

Challenge2(X
∗) :

Y ∗ := ⊥
If FK(X) = 1 then

bad := 1
If b = 1 then

(Y ∗, π)
$← Eval(sk , X)

Else Y ∗ $← GT

Else
If b = 1 then
(Y ∗, π)

$← Eval(sk , X)

Else Y ∗ $← GT

Return Y ∗

Finalize2(b
′) :

If bad = 1 then c′ := b′

Else c′ := b′

If c′ = b then Return 1
Else Return 0

Procedures for Game G3 (new instructions are highlighted in boxes):

Evaluate3(X) :

X := X ∪ {X}

(Y, π)
$← Eval(sk , X)

Return (Y, π)

Challenge3(X
∗) :

If b = 1 then
(Y ∗, π)

$← Eval(sk , X)

Else Y ∗ $← GT

Return Y ∗

Initialize3(X) :
bad := 0
(vk , sk)

$← GenC(1
k)

b
$← {0, 1}

X := ∅
Return vk

Finalize3(b
′) :

K
$← AdmSmp(1k, Q, δ)

For X ∈ X do

If FK(X) �= 1 then bad := 1

If FK(X
∗) = 1 then bad := 1

c′ := b′

If c′ = b then Return 1
Else Return 0

Fig. 5. Procedures defining the sequence of games in the proof of Lemma 1

Verifiable Random Functions from Weaker Assumptions 141

Game 2. In this game we set Initialize2 := Initialize1, and define Finalize2,
Evaluate2, and Challenge2 as depicted in Figure 5. Note that Games G2 and G1
proceed identical until bad is set, thus by Lemma 3 we have

Pr[G2 = 1 ∧ good2] = Pr[G1 = 1 ∧ good1] and Pr[good2] = Pr[good1]

Game 3. Note that the outputs of procedures Evaluate2 and Challenge2 are inde-
pendent of K , only Finalize2 depends on K . Therefore we can simplify our descrip-
tion of the game, by choosing K only at the end of the game, and checking only then if
bad needs to be set to bad := 1.

Formally, in Game G3 the procedures Initialize3, Evaluate3, Challenge3, and
Finalize3 described in Figure 5 are used. All changes are purely conceptual, thus we
have

Pr[G3 = 1 ∧ good3] = Pr[G2 = 1 ∧ good2] and Pr[good3] = Pr[good2]

Note also that now K is chosen only after A asks Finalize3.

Analysis of Game G3. It remains to derive bounds on Pr[G3 = 1 ∧ good3] and
Pr[good3]. Let X denote the set

X := {(X(1), . . . , X(Q), X∗) : X∗ �= X(i), 1 ≤ i ≤ Q}

of all sequences of queries a legitimate attacker A may ask, and let X∗ ∈ X . Let γ(X∗)
denote the probability of good3 (over the choice of K), if the particular sequence X∗

of queries is asked. Note that γ(X∗) equals the probability in Equation (3), so that γmin

is a lower bound on the smallest value of γ(X∗) over all X∗ ∈ X , and γmax is an upper
bound on the largest value of γ(X∗) over all X∗ ∈ X . Let Q(X∗) denote the event that
the execution of Game G3 results in the particular sequence X∗. Then we can state the
following lemma (which corresponds to [6, Lemma 3.4]).

Lemma 4. For any X∗ as defined above holds that

Pr[G3 = 1 ∧ good3 ∧ Q(X∗)] = γ(X∗) · Pr[G3 = 1 ∧Q(X∗)]

Pr[good3 ∧ Q(X∗)] = γ(X∗) · Pr[Q(X∗)]

The proof of Lemma 4 is nearly identical to the proof of [6, Lemma 3.4], and therefore
deferred to Appendix B.

142 T. Jager

Now we can compute

AdvqDDH
B (k) = 2 · Pr[GqDDH

B(A) = 1 ∧ good]− Pr[good] (7)

= 2 · Pr[G3 = 1 ∧ good3]− Pr[good3] (8)

= 2 ·
∑

X∗∈X
Pr[G3 = 1 ∧ good3 ∧Q(X∗)]−

∑
X∗∈X

Pr[good3 ∧Q(X∗)]

(9)

= 2 ·
∑

X∗∈X
γ(X∗) · Pr[G3 = 1 ∧ Q(X∗)]−

∑
X∗∈X

γ(X∗) · Pr[Q(X∗)]

(10)

≥ 2 · γmin ·
∑

X∗∈X
Pr[G3 = 1 ∧ Q(X∗)]− γmax ·

∑
X∗∈X

Pr[Q(X∗)]

= 2 · γmin · Pr[G3 = 1]− γmax (11)

= 2 · γmin · (AdvVF
A (k) + 1)/2− γmax

= γmin · AdvVF
A (k)− γmax + γmin

≥ 2 · γmin · δ − γmax + γmin (12)

Here, (7) is due to Equation (6), (8) follows from the sequence of games described
above, (9) and (11) follow from the fact that we sum over mutually exclusive events
Q(X∗) with

∑
X∗∈X Pr[Q(X∗)] = 1, (10) is by Lemma 4, and (12) by the definition

of δ ≤ AdvVF
A (k)/2.

B Proof of Lemma 4

The execution of AdmSmp in Game 3 uses random coins which are independent of the
rest of the game. Therefore, the set of random coins underlying Game 3 can be seen as
a cross product Ω = Ω′×RK , where each member is a pair (ω′, rK) ∈ Ω such that rK
denotes the random coins used by algorithm AdmSmp, and ω′ denotes all other coins
of the experiment and the attacker.

Note that that any particular choice X∗ of a sequence of queries made by A depends
only on ω′, because in Game 3 algorithm AdmSmp is executed in the Finalize3-
procedure, when the sequence of queries X∗ issued by the attacker is already fixed.
Thus, for all X∗ ∈ X let Ω′(X∗) denote the set of all ω′ ∈ Ω′ that produce the partic-
ular sequence of queries X∗. Similarly, note that the probability that Game 3 outputs 1
depends only on Ω′.

Let Ω′
1 ⊆ Ω′ denote the set of all ω′ ∈ Ω′ such that the experiment outputs 1. Let

Rgood(X
∗) ⊆ RK denote the set of all coins leading to an AHF key K such that for

X∗ = (X(1), . . . , X(Q), X∗) holds that

FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0

Then the set of coins such that G3 = 1 is Ω′
1 × RK , and the set of coins leading to

good3 ∧ Q(X∗) is Ω′(X∗)×Rgood(X
∗). Now we can compute

Verifiable Random Functions from Weaker Assumptions 143

Pr[G3 = 1 ∧ good3 ∧ Q(X∗)] =
|(Ω′

1 ×RK) ∩ (Ω′(X∗)×Rgood(X
∗))|

|Ω′ ×RK |

=
|(Ω′

1 ∩Ω′(X∗))×Rgood(X
∗)|

|Ω′ ×RK |

=
|Ω′

1 ∩Ω′(X∗)| · |Rgood(X
∗)|

|Ω′| · |RK |

=
|Ω′

1 ∩Ω′(X∗)| · |RK |
|Ω′| · |RK | · |Rgood(X

∗)|
|RK |

=
|(Ω′

1 ∩Ω′(X∗))×RK |
|Ω′ ×RK | · |Rgood(X

∗)|
|RK |

= Pr[G3 = 1 ∧ Q(X∗)] · γ(X∗)

and

Pr[good3 ∧ Q(X∗)] =
|Ω′(X∗)×Rgood(X

∗)|
|Ω′ ×RK |

=
|Ω′(X∗)| · |Rgood(X

∗)|
|Ω′| · |RK |

=
|Ω′(X∗)| · |RK |

|Ω′| · |RK | · |Rgood(X
∗)|

|RK |

=
|Ω′(X∗)×RK |

|Ω′ ×RK | · |Rgood(X
∗)|

|RK |
= Pr[Q(X∗)] · γ(X∗)

Multi-Client Verifiable Computation

with Stronger Security Guarantees

S. Dov Gordon1, Jonathan Katz2, Feng-Hao Liu2,
Elaine Shi2, and Hong-Sheng Zhou3

1 Applied Communication Sciences, USA
sgordon@appcomsci.com

2 University of Maryland, USA
{jkatz,fenghao,elaine}@cs.umd.edu

3 Virginia Commonwealth University, USA
hszhou@vcu.edu

Abstract. At TCC 2013, Choi et al. introduced the notion of multi-
client verifiable computation (MVC) in which a set of clients outsource
to an untrusted server the computation of a function f over their col-
lective inputs in a sequence of time periods. In that work, the authors
defined and realized multi-client verifiable computation satisfying sound-
ness against a malicious server and privacy against the semi-honest cor-
ruption of a single client. Very recently, Goldwasser et al. (Eurocrypt
2014) provided an alternative solution relying on multi-input functional
encryption.

Here we conduct a systematic study ofMVC, with the goal of satisfying
stronger security requirements. We begin by introducing a simulation-
based notion of security that provides a unified way of defining soundness
and privacy, and automatically captures several attacks not addressed in
previous work. We then explore the feasibility of achieving this notion
of security. Assuming no collusion between the server and the clients,
we demonstrate a protocol for multi-client verifiable computation that
achieves stronger security than the protocol of Choi et al. in several
respects. When server-client collusion is possible, we show (somewhat
surprisingly) that simulation-based security cannot be achieved, even
assuming only semi-honest behavior.

1 Introduction

Protocols for verifiable computation (or secure outsourcing) allow computation-
ally weak clients to delegate to a more powerful server the computation of a
function f on a series of dynamically chosen inputs x(1), x(2), The main
desideratum is that, following a pre-processing stage whose complexity depends
on f , the work of the client per function evaluation should be significantly lower
than the cost of computing the function itself [20]. The initial proposal and
construction of non-interactive verifiable computation [20] led to a long line of
follow-up work [1, 3, 7–10, 16–18, 21, 26, 27, 33–36].

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 144–168, 2015.
c© International Association for Cryptologic Research 2015

MVC with Stronger Security Guarantees 145

We are interested here in themulti-client setting introduced by Choi et al. [15].
Imagine that n clients wish to compute some function f over their joint inputs

{(x(ssid)
1 , . . . , x

(ssid)
n)}ssid for a series of subsessions identified by ssid. (One can view

the ssid as encoding a current time period, though there are other possibilities as
well.) As in earlier work, we assume no client-client communication, and focus
on non-interactive solutions in which each evaluation of the function requires
only a single round of communication between each client and the server.

In earlier works onmulti-client verifiable computation [15, 24], the primary goal
is to achieve security (soundness and privacy) against amalicious server, assuming
that clients behave honestly. Soundness means that a malicious server should not
be able to fool a client into accepting a wrong result; privacy means that clients’
inputs should remain hidden from the server. (Choi et al. also considered privacy
against clients, but while still assuming semi-honest client behavior.)

1.1 Our Contributions

In this paper, we conduct a systematic study of multi-client verifiable computa-
tion with stronger security guarantees. The primary question we address is secu-
rity when clients may be malicious. These malicious clients may potentially be
colluding with each other, or with the server.

Formal SecurityModeling.Webegin by introducing a simulation-basednotion
of security in the universal composability framework, which provides a unified way
of defining soundness and privacy. As a technical advantage, it means that proto-
cols satisfying the definition achieve a strong, simulation-based notion of security
not considered in previous work. Our definition also automatically captures adap-
tive soundness as well as selective-failure attacks, which were not handled in prior
work on the multi-client setting1.

Impossibility When the Server and Clients Collude. Ideally, one would
like to achieve a strong notion of security where a subset of the clients may be

1 Intuitively, a scheme suffers from selective-failure attacks if the server can learn some
secret information from the “decision” of the clients, upon receiving output from the
server. In the single-client setting, previous schemes in the work [16, 20] can be com-
pletely broken by the attacks, unless the clients are willing to redo the expensive pre-
processing upon any server failure. In the multi-client setting, the same attacks also
apply to the scheme by Choi et al. [15], which is basically an extension of [20]. We
note that there is no simple fix to the approaches taken in [15, 16, 20] using known
techniques. Previous schemes that are not vulnerable to such attacks (such as the
scheme in [36]) used completely different approaches.
Adaptive soundness is a technical issue pointed out by Bellare et al. [5] – if a Yao’s

garbled circuit is published first and later the adversary can choose inputs based on
the garbled circuit, then it is not known how to prove security other than just assum-
ing the garbling scheme itself is secure. Previously, the schemes of [15, 20] used Yao’s
garbled circuits in this way, so the schemes suffer from such drawback. See the work of
Choi et al. [15] for further discussions about adaptive soundness and selective failure
attacks.

146 S.D. Gordon et al.

corrupted, and may be colluding with the server. Unfortunately, we show that
simulation-secure MVC is impossible to realize (for general functions) when the
server colludes with clients. This impossibility result holds even in the standalone
setting, even when the server colludes with only a single, semi-honest client, and
even in the presence of trusted setup assumptions such as PKI, common reference
strings (CRS), shared secret randomness, etc. Intuitively, our lower bound result
is due to a connection we establish between MVC and virtual black-box (VBB)
obfuscation, whose impossibility is known [4]. More details can be found in Sec-
tion 5.

Feasibility Result: When Server and Clients do not Collude. In contrast
to the above, we show positive results for the case when client-server collusion is
assumed not to occur. We show a construction that achieves security (i.e., sound-
ness and privacy) against either a malicious server, or an arbitrary set of malicious,
colluding clients. Our construction achieves both adaptive soundness and security
against selective abort.

Our construction relies only on falsifiable assumptions. While it is alternatively
possible to constructMVC schemes using a new notion,multi-input functional en-
cryption, by Goldwasser et al. [24], this notion inherently requires (indistinguish-
able) obfuscation, which requires non-falsifiable assumptions or exponential as-
sumptions [22]. Moreover, current constructions of obfuscation have prohibitively
large overhead.

1.2 Techniques and New Primitives

Techniques used for achieving our upper bound results can be of independent in-
terest. When server-client collusion is not allowed, we take a two-step approach to
achieve simulation-security ofMVC. As a stepping stone, we identify a new build-
ing block named multi-sender attribute-based encryption (mABE).

OurTwo-StepApproach forMVC.We start with a protocol which achieves the
simulation-based security against either (i) a malicious server or (ii) any coalition
of semi-honest clients. Although this is also achieved by the protocol of Choi et
al. [15]—even if not claimed explicitly there—our construction has the advantages
of offering adaptive soundness based on standard assumptions as well as resilience
to selective-failure attacks.

We then present a generic compiler that upgrades our intermediate solution
(as well as the one by Choi et al. [15]) to handle an arbitrary subset of malicious
clients. While we could rely on standard techniques, distributing commitments
to random tapes during setup, and asking each party to prove in zero knowledge
that they have acted honestly, we instead offer a compiler that does not require
committed randomness, allowing us to reduce our setup assumptions to a simple
common reference string.We demonstrate that as long as our semi-honest protocol
offers a sufficiently strong notion of privacy, our compiler provides security against
malicious corruption. This gives us a non-interactive multi-client verifiable com-
putation protocol secure against a malicious adversary under all possible cases of
non-client-server collusions, in the standard model under falsifiable assumptions.

MVC with Stronger Security Guarantees 147

ANewBuilding Block:mABE.We identify a new building block,multi-sender
attribute-based encryption, which can be of independent interest.

Recall that in the single sender setting, Parno et al. [36] showed that an
attribute-based encryption (ABE) (that supports functions and their comple-
ments) implies publicly verifiable computation (without input privacy). Later,
Goldwasser et al. [26] showed (i) how to compile an ABE scheme to a private-
index functional encryption scheme using fully homomorphic encryption (FHE),
and (ii) that private-index functional encryption implies input-private publicly
verifiable computation.

We conduct a parallel study in the multi-sender setting. The multi-sender
counterpart, multi-sender ABE (mABE) is defined as follows. Each sender Pi ∈
{P1, . . . ,Pn} has an attribute value xi, as well as two input messages (m

(i)
0 ,m

(i)
1).

A single receiver (or server) can use a decryption key for function fi to learn m
(i)
b

if and only if b = fi(x1, . . . , xn). We show how to construct an mABE scheme se-
cure against a malicious server or semi-honest senders. To construct this mABE
scheme, we first observe a special “local encoding” property of the LWE-based
ABE scheme by Gorbunov, Vaikuntanathan, and Wee [30]. We then combine this
observation with a proxy-OT protocol proposed by Choi et al. [15].

After obtaining themABE construction, we then apply Goldwasser et al’s com-
piler techniques [26] to transform it into an attribute-hiding mABE scheme (which
can also be thought of as a multi-sender, private-index functional encryption
scheme). Finally, just as single-sender private-index functional encryption
implies input-private verifiable computation, we show that attribute-hidingmABE
impliesmulti-client verifiable computationwith input privacy, secure against ama-
licious server or an arbitrary subset of semi-honest clients. We can then use the
compiler described previously to obtain security in the face of malicious corrup-
tions, so long as there is no client-server collusion.

Sacrificing InputPrivacy toAllowServer-ClientCollusion.Since attribute
hiding mABE implies multi-client verifiable computation, it follows that attribute
hidingmABE is also impossible for general functions under server-client collusion.
However, it is still interesting to consider settings without input privacy/attribute
hiding. In this work, we show that anymABE (without attribute hiding) construc-
tion that is secure under some arbitrary corruption pattern implies public input
MVC under the same corruption pattern; in particular, this gives a method of han-
dling server-client collusion. We also show that an mABE scheme secure under
server-client collusion, even in the standalone setting, implies extractable witness
encryption (equivalently, point-filter obfuscation) [25]. So buildingMVC protocols
without input privacy via this method would inherently require non-falsifiable as-
sumptions. We note that it is also possible to construct MVC protocols without
input privacy against an arbitrary corruption based on other non-falsifiable as-
sumptions, such as SNARKs. It is an interesting question – whether we can con-
struct a secureMVC without input privacy against an arbitrary corruption based
on falsifiable assumptions, yet one should keep in mind that any possible solution
should avoid the route using mABE, as implied by the result above.

148 S.D. Gordon et al.

1.3 Related Work

Non-interactive verifiable computation was first proposed by Gennaro, Gentry,
and Parno [20]. Since then, various improvements have been proposed [1, 16, 17,
21, 27, 36], and constructions for specific functionalities [9, 18, 34, 35].

Various works have considered server-aided secure computation with the goal of
eliminating client-to-client interaction.Most of these existing works do not achieve
complete non-interactivity, in the sense that they still require multiple rounds of
server-client interaction. Kamara et al. [31, 32] consider server-aided multi-party
computation, but their approach is not non-interactive.

Multi-input functional encryption [24] is also related to non-interactive multi-
party outsourcing. The earlier work by Shi et al. [37] shares similar goals, but for
specific functionalities such as summation and variance. Shi et al. [37] also describe
various application domains such as secure sensor network aggregation. In the
multi-input functional encryption model or that of Shi et al. [37], the server learns
the final outcome of the computation, and verifiability (i.e., soundness) is not an
inherent part of the problem formulation. Interestingly, Goldwasser et al. [24], ob-
serve thatmulti-input functional encryption can, in fact, be leveraged to construct
multi-client verifiable computation. This solution uses the technique developed in
[36] which solves the selective-failure issue. However, Goldwasser et al. [24] do not
consider malicious clients or client-server collusion. In addition, another major
drawback is that known multi-input functional encryption schemes rely on non-
falsifiable assumptions related to obfuscation, and this is somewhat necessary as
pointed out by [24].

2 Multi-Client Verifiable Computation

2.1 Definitions

We start by introducing the notion of non-interactive multi-client verifiable com-
putation (MVC) that has the following structure: let κ be the security parameter,
n be the number of clients P1, . . . ,Pn who are delegating some computation on
some n-ary function f : Xn → Yn to a distinguished server Serv and would like
to verify the correctness of their answers. Here we assume each client’s input mes-
sage space is X , and output message space Y, for some polynomial-length (in the
security parameter) |X | and |Y|.

Intuitively, MVC protocols have the following properties: (1) All participants
are allowed to access to a certain initial setup G (e.g., PKI, CRS). (2) Then an
offline stage follows; in the offline stage, each client sends a single message to the
server Serv. (3) In the online stage, in a single time period (subsession), each client
is only allowed to send an outgoing message to the server and then receive an in-
coming message from the server. In the whole paper, we assume that the clients
cannot communicate with each other directly, and can only send a single round of
message to the server per time period (subsession). Next, we give more details.

MVC with Stronger Security Guarantees 149

Definition 1 (Non-interactive Multi-client Verifiable Computation).
Let κ be the security parameter, n be the number of clients and f be an n-ary func-
tion being computed. A non-interactive multi-client verifiable computation consists
of n clients P1 . . .Pn and a server Serv with the following structure:

Setup stage: All parties Pi’s, i ∈ [n] and Serv have access to a setup G, where
party Pi obtains (pub, ski) upon queries for some secret and public information.

Offline stage: Each client Pi sends a single message to the server. The server
stores these as f̂ , an encoded version of f .

Online stage: This step is a query-response move: at each sub-session (or
time period) ssid, upon receiving an input (ssid, xi) for i ∈ [n], the client
Pi(pub, ski, xi) computes some message (x̂i, τi). Then he sends x̂i to the server
and stores τi as a secret.
The server Serv carries out the computation on the messages received, and
sends each client Pi for i ∈ [n] an encoded output (ssid, ŷi).
Each client computes and some output yi∪{⊥} based on (pub, ski, ŷi, τi), where
⊥ means that he is not convinced with the outcome.

Remark 1. For the setup G, we do not specify whether it is trusted in our defi-
nition. For our positive results, we want to minimize the requirements, and we
showed that a self-registered PKI is enough for semi-honest client or malicious
server corruptions. For the case of malicious clients corruptions, we further need
an additional CRS. On the other hand, for our lower bound results, we rule out
a large class of instantiations of G, including the trusted PKI, CRS, shared secret
randomness, and their combinations.

Note that the trusted PKI is a setup where a trusted party generates public- and
secret-key pairs for each user, and publishes the public keys to all users. The self-
registeredPKI is aweaker setupwhere each user generates their own key pairs, and
registers the public keys with the setup so that the setup can publish the public
keys to all users.

2.2 Security Definition

The security definition for non-interactive multi-client verifiable computation,
MVC, turns out to be subtle. An MVC protocol cannot achieve the standard
multi-party computation security, which requires that malicious clients have
only one chance to provide their inputs, and cannot switch inputs later. In the
non-interactive setting, if the server and some clients are simultaneously cor-
rupted, then after gathering the transcripts of the honest clients, by definition the
malicious clients can now select different inputs for themselves and learn the cor-
responding outputs. For example, consider n = 2. If client P1 and the server are
corrupted, then they effectively have access to oracle f1(∗, x2) where f1 is the out-
put of the first party, and x2 is the honest input of P2. The notation ∗means that
client P1 can choose arbitrary inputs for itself and query this oracle a polynomial
number of times. So our security definition would allow the adversary to learn
f1(∗, x2) in the ideal world, and guarantees that this is the most that he can learn.

150 S.D. Gordon et al.

Multi-Client Private Verifiable Computation

The functionality is parameterized with an n-ary function f : Xn →
Yn. The functionality interacts with n clients Pi for i ∈ [n], a distin-
guished server Serv, and the simulator Sim.

Initialization:
Upon receiving (Init) from client Pi, send (Init,Pi) to notify the sim-
ulator Sim. Later, when Sim returns (Init,Pi), send a notification
(Init,Pi) to the server Serv.
Upon receiving (Init) from the server Serv, send (Init,Serv) to notify
the simulator Sim.

Computation:
Upon receiving (Input, ssid, xi) from client Pi, send (ssid,Pi) to notify
Sim. Later, when Sim returns (ssid,Pi), store (ssid, xi), and send a
notification (Input, ssid,Pi) to server Serv.
Upon receiving (Input, ssid, 1) from server Serv, retrieve (ssid, xi) for all
i ∈ [n]. If some (ssid, xi) has not been stored yet, send (Output, ssid, fail)
to the server and all clients.

– Server is not corrupted: Compute (y1, . . . , yn) ←
f(x1, . . . , xn). Later when Sim returns (ssid,Pi, φ), if φ = ok, send
(Output, ssid, yi) to client Pi; if φ = fail, send (Output, ssid, fail) to
client Pi.

– Server is corrupted: Let I ⊆ [n] denote the set of indices corre-
sponding to corrupted clients. Let I := [n] \ I. Let x∗

I denote the
corrupted clients’ inputs, xI denote the remaining clients’ inputs.
Without loss of generality, we can renumber the clients such that
I := {1, 2, . . . , |I|}.
The functionality provides to Sim blackbox oracle access to the
following oracle Of,I where Sim can choose inputs x∗

I for cor-
rupted clients to query:

Oracle Of,I(x
∗
I):

Compute (y1, . . . , yn)← f(x∗
I ,xI).

Output {yi}i∈I to Sim, and internally remember the
last seen {yi} for i ∈ I.

At any time (not necessarily simultaneously for all i), on receiving
(ssid,Pi, φ) from Sim for some i ∈ I, the functionalitya sends to
Pi (Output, ssid, yi) corresponding to the last seen yi if φ = ok,
otherwise it sends (Output, ssid, fail) to Pi.

a Restricting to sending the last seen outputs does not lose generality,
since the simulator can always repeat a previous query to the oracle
Of,I .

Fig. 1. Functionality FpVC

MVC with Stronger Security Guarantees 151

On the other hand if interaction is allowed, it is well-understood that this issue can
be avoided by standard techniques.

Based on this observation, we formally define the ideal functionality for private
MVC in Figure 1 that captures the above issues, and soundness and privacy. The
security of the protocol above follows the standard real/ideal paradigm [28, 29].
Here we only include the universal composability (UC) definition by Canetti [13,
14]. The standalone security definition can be found in [12, 23].

Definition 2 (UC Security [14]).We say a protocolΠ securely realizes F if for
any PPT adversary A in the real world, there exists a PPT simulator Sim in the
ideal world, so that no PPT environment Z is able to tell the real world execution
from the ideal world execution, i.e., EXECA,Π,Z ≈ EXECSim,F ,Z.

We can also define a notion of verifiable computation without input privacy.
This is essentially the same definition, except that the server learns all the inputs
of the clients. We present a formal description and provide a construction of this
relaxed notion in the full version of this paper. In the following remarks we high-
light and clarify a few properties of the stronger definition above:

Soundness Against Selective Failure Attacks: Our ideal-functionality mod-
els a reactive functionality that has multiple sub-sessions after a common pre-
processing (i.e., Initialization) phase. Our definition implies this soundness, where
learning the decision bit of the clients does not help the server to fool the clients.
In particular, following the convention of simulation-based definition, our security
definition requires the clients to report the outputs (and acceptance decisions) to
the environment.

CommunicationModel.We assume that the adversary controls the communi-
cation medium between all parties. Our protocol later relies on PKI setup, and we
can implement a secure channel with PKI. Therefore, while not explicitly stated,
all our protocols are described assuming the secure channel ideal world.

Semi-Honest v.s. Malicious Corruption. Semi-honestly corrupted partici-
pants follow the protocol faithfully, but the adversary sees the internal states of
all semi-honestly corrupted parties.

As mentioned above, due to the non-interactive nature, if the server and at least
one client are simultaneously corrupted either in the malicious or semi-honest
model, then our ideal functionality FpVC implements a blackbox-access oracle
which the simulator can query multiple times by specifying inputs for the mali-
cious clients. For malicious corruption, the simulator can ask the ideal functional-
ity to send outputs to different clients corresponding to different corrupted clients’
inputs. For example, supposeP1 and the server are maliciously corrupted, the sim-
ulator can ask the functionality to send f2(x1, x2, x3) toP2, and send f3(x

′
1, x2, x3)

to P3. For semi-honest corruption, the outputs sent back to the clients always cor-
respond to inputs chosen by the environment.

152 S.D. Gordon et al.

Static Corruption. We assume a static corruption model in this paper, where
some protocol participants are corrupted at the beginning of protocol execution.

UC and Stand-Alone Security. In the paper we use both the UC definition
and standalone security definition. In the standalone security, the environment
machineZ (i.e., the distinguisher) provides inputs to all protocol participants and
the adversary at the beginning of protocol execution, and it receives outputs from
these entities when the execution is complete. The environment and the adversary
are not allowed to communicate during the protocol execution. Protocols secure in
the standalone security model can be composed sequentially. On the other hand,
in the UC framework, the environment and the adversary are always allowed to
communicate. Protocols secure in the UC framework can be composted with ar-
bitrary protocols. It is obvious that UC security implies stand-alone security.

Efficiency. An important feature of MVC is the online efficiency of the clients.
Usually, we require the clients’ computation time be much less than the complex-
ity of the function f , so that over many online computations, the total cost of the
clients will have low amortized cost. However, for private MVC, in some cases it
is also interesting if the clients’ computation time is similar to f , e.g. when the
function f is simple. For example, it client P1 and P2 want to do a secure com-
parison over their inputs. The privacy requirement makes it interesting regardless
of whether the clients’ online computation time is smaller than the function be-
ing delegated. We do not specify a definition of efficiency but discuss it for each
scheme individually.

3 Malicious Server or Semi-honest Client Corruptions

In this section and the following section, we will demonstrate constructions that
achieve security against malicious adversaries, as long as there is no simultaneous
server-client corruption.

Roadmap. As described in Section 1.2, our plan of action is: 1) define and obtain
an mABE scheme; 2) use Goldwasser et al’s compiler techniques [26] to achieve
attribute-hiding mABE; and 3) show that attribute-hiding mABE implies private
MVC.

All of the above primitives are proven secure under a malicious server or semi-
honestly corrupted clients in this section. Then, in the following Section 4, we show
a generic compiler based on non-interactive zero-knowledge proofs, such that any
protocol secure against semi-honest corruption of an arbitrary subset of clients,
and additionally offering clients perfect privacy from one another, can be trans-
formed into a protocol that is secure against either a malicious server or an arbi-
trary subset of malicious clients.

For convenience, in the remainder of the section, we focus on the case when only
the first client P1 learns output, and the remaining clients learn nothing. Based
on this, we can obtain a protocol where every party learns outputs through simple
parallel repetition.

MVC with Stronger Security Guarantees 153

3.1 Multi-sender ABE

We define a multi-sender, two-outcome ABE scheme. Intuitively, the mABE func-
tionality implements the following: considern senders and a server.The first sender
P1 chooses two messages m0 and m1, and each Pi for i ∈ [n] has an attribute xi.
The goal is for the server to mb where b = f(x1, x2, . . . , xn) while keeping m1−b

secret. We require the mABE scheme to be non-interactive, i.e., after an initial
preprocessing phase in which the server learns an encoding of the function f , in
each online phase, each sender sends a single message to the server, and the server
can learn mb.

We note that our mABE formulation can also be regarded as a generalization
of the proxy oblivious transfer (POT) primitive proposed by Choi et al. [15]. We
present the definition ofPOT in Appendix A. In other words, senderP1 obliviously
transfers one of m0 and m1 to the server, where which message is transferred is
determined by a policy function f over all senders’ attributes.

Figure 2 formally describes the mABE ideal functionality. We define mABE for
the single-key setting, since our verifiable computation application is inherently
single-key.

mABE Functionality

Functionality Ff
mABE interacts with multiple senders P1, . . . ,Pn, a

server Serv, as well as a simulator Sim. The functionality is param-
eterized by a function f : ({0, 1}�)n → {0, 1}.

– Upon receiving (ssid,m0,m1, x1) from the sender P1, notify
Sim with (ssid,P1). Later, if Sim replies with (ssid,P1), store
(ssid,m0,m1, x1), and notify Serv with (ssid,P1, x1).

– Similarly, upon receiving (ssid, xi) from other senders Pi for i ∈
{2, .., n}, notify Sim with (ssid,Pi). Later when Sim replies with
(ssid,Pi), if no (ssid, xi) recorded yet, store it, and notify Serv with
(ssid,Pi, xi).

– Upon receiving (ssid, 1) from Serv, if all (ssid,m0,m1, x1), and
(ssid, xi) for i ∈ {2, .., n} are recorded, return (ssid,mf(x1,...,xn))
to Serv. Otherwise, if some tuple for ssid has not been recorded,
return fail to Serv.

Fig. 2. Functionality Ff
mABE

We now present our (non-interactive) protocol that realizes Ff
mABE for any effi-

ciently computable f . We use as building blocks a non-interactive POT protocol,
and any two-outcome attribute-based encryption (ABE) scheme with a special
structure where the attributes of ciphertexts can be encoded bit-by-bit. We for-
malize this local encoding property in the following. and observe that the ABE
construction by Gorbunov, Vaikuntanathan, and Wee [30] satisfies this special
property. Also, we remark that one can build a two-outcome ABE from a
standard one, as shown by Goldwasser et al. [26]. Here we use ABE to denote the
two-outcome ABE for simplicity.

154 S.D. Gordon et al.

Definition 3 (Two-outcome ABE with Local Encoding). A two-outcome
attribute-based encryption scheme ABE for a class of boolean functions
F = {F�}�∈N from {0, 1}k → {0, 1}, is a tuple of polynomial time algorithms:
ABE.{Setup,KeyGen,Enc,Dec} as follows:

– ABE.Setup(1k) outputs a master public key mpkABE and a master secret key
mskABE.

– ABE.KeyGen(mskABE, f)On inputsmskABE and a function f ∈ F , output a func-
tion key skf .

– ABE.Enc(mpkABE, x,m0,m1) takes as input the master public key mpkABE, an
attribute x ∈ {0, 1}� for some �, and two messages m0,m1, outputs a ciphertext
c.

– ABE.Dec(skf , c) takes as input a key skf and a ciphertext and outputs a message
m∗.

Local encoding. We say that a two-outcome ABE scheme satisfies local encoding if
the encryption algorithm ABE.Enc can be equivalently expressed as the following,
where enc is a sub-algorithm:

1. select common randomness R;
2. for all i ∈ [k], compute x̂[i] = enc(mpkABE, x[i];R);
3. m̂ = enc(mpkABE,m0,m1;R).

Finally, the ciphertext c can be written as c := (x̂[1], x̂[2], . . . , x̂[k], m̂).
The correctness property guarantees that the decryptor can learn one of the

messages mb for b = f(x), and the security guarantees that this is the only thing
he can learn. We present the formal definitions in the appendix and also refer the
readers to the work by Goldwasser et al. [26].

We present our construction of mABE in the GABE setup model, where GABE

serves as a self-registered PKI which allows the sender to generate (mpkABE,
mskABE) ← ABE.KeyGen(1k), and registermpkABE. When queried by players other
than the sender, it returns mpkABE.

Construction of mABE. Let f : ({0, 1}�)n → {0, 1} be a policy function, and
without loss of generality, we let Serv denote the server, and let P1, . . . ,Pn denote
the senders. We make use of (n−1) ·� instances of the functionality FPOT indexed
by (i, j) such that for i ∈ {2, . . . , n}, all j ∈ [�], in the (i, j)-th instance, P1 plays
the sender, Pi plays the chooser, and Serv plays the server. In the protocol below,
we assume the existence of private channels; i.e. we assume that all parties encrypt
their messages before sending them. This step is left implicit.2 The parties act as
follows:
2 Recall that our protocol for realizing FPOT relies on a setup phase for establishing a
PKI, so we could rely on this PKI for encrypting messages. If we instead were to use a
protocol for FPOT that did not rely on a PKI, we could simply add the establishment
of a PKI to the setup phase of this protocol. Finally, we note that the assumption of
private channels is not necessary: we could instead choose to leak Pn+1’s output to
an eavesdropper. This would suffice for our purposes, but makes the resulting ideal
functionality and the security proof a bit more involved.

MVC with Stronger Security Guarantees 155

– Offline Stage: Every party receives a function f as input. P1 calls
the setup GABE to receive (mpkABE,mskABE), and computes some skf =
ABE.KeyGen(mskABE, f). He sends skf to the server. All the other clients runs
an empty step.

– Online Stage:
• On input (sid,m0,m1, x1), the sender P1 does the following in parallel :
1. Sample a random string R. Compute C = enc(mpkABE,m0,m1;R), x̂1 =

enc(mpkABE, x1, R) (bit-by-bit) and sends them to the receiver Serv.
2. For i ∈ {2, . . . , n}, j ∈ [�], P1 computes ĉi,j,0 = enc(mpkABE, 0;R), and

ĉi,j,1 = enc(mpkABE, 1;R), and then sends (ĉi,j,0, ĉi,j,1) to the (i, j)-th in-
stance of FPOT.

• For i ∈ {2, . . . , n}, upon receiving (sid, xi), the partyPi sends, in parallel, xi[j]
to the (i, j)-th instance of FPOT for all j ∈ [�]. Here xi[j] denotes the j-th bit
of xi.

• Party Serv receives enc(mpkABE,m0,m1), enc(mpkABE, x1) (bit-by-bit) from
the sender P1, and enc(mpkABE, x2), . . . , enc(mpkABE, xn) (bit-by-bit) via the
instances of the functionality FPOT. He outputs m′ by running the ABE de-
cryption algorithm on the received ciphertexts using decryption key skf .

Then we are able to achieve the following theorem. We present the proof in the
full version of this paper.

Theorem 1. Assuming the existence of two-outcome ABE for a function
f : ({0, 1}�)n → {0, 1}with the additional encoding property as above, then the pro-
tocol above securely realizes the ideal functionality Ff

mABE in the (FPOT,GABE)- hy-
brid model, against either (1) malicious server corruption, or (2) any semi-honest
(static) corruption among any fixed set of clients.

Using mABE as a building block, we can easily achieve verifiable computation
without privacy. In the full version of this paper, we present the formal definition
of MVC without privacy, and the protocol that achieves this notion using mABE.
We note that the construction is very similar to the one in the next section (see
Theorem 3).

3.2 Achieving Attribute Hiding

In Figure 3, we define an attribute-hiding version of mABE, where the sender at-
tributes are not leaked to the receiver. The attribute-hiding mABE functionality,
denoted Fah-mABE, is defined in almost the same way as FmABE, except that when
the functionality notifies the server, it only notifies (ssid,Pi), without leaking the
attributes xi’s.

We present our protocol that realizesFah-mABE in the GFHE setup plusFmABE hy-
brid model, where GFHE serves as a self-registered PKI which allows the sender to
generate (pkFHE, skFHE) ← FHE.KeyGen(1k), and register pkFHE. When queried by
parties other than the sender, it returns pkFHE. Our construction can be viewed as
a distributed version of that of Goldwasser et al. [26], who constructed attribute-
hiding ABE (or functional encryption) from a non-hiding one. Briefly speaking,

156 S.D. Gordon et al.

ah-mABE Functionality

Functionality Ff
ah-mABE interacts with multiple senders P1, . . . ,Pn, a

server Serv, as well as a simulator Sim. The functionality is param-
eterized by a function f : ({0, 1}�)n → {0, 1}.

– Upon receiving (ssid,m0,m1, x1) from the sender P1, notify
Sim with (ssid,P1). Later, if Sim replies with (ssid,P1), store
(ssid,m0,m1, x1), and notify Serv with (ssid,P1).

– Similarly, upon receiving (ssid, xi) from other senders Pi for i ∈
{2, .., n}, notify Sim with (ssid,Pi). Later when Sim replies with
(ssid,Pi), if no (ssid, xi) recorded yet, store it, and notify Serv with
(ssid,Pi).

– Upon receiving (ssid, 1) from Serv, if all (ssid,m0,m1, x1), and
(ssid, xi) for i ∈ {2, .., n} are recorded, return (ssid,mf(x1,...,xn))
to Serv. Otherwise, if some tuple for ssid has not been recorded,
return fail to Serv.

Fig. 3. Functionality Ff
ah-mABE

the first party P1 generates a garbled circuit of the FHE decryption circuit, and
then all parties input ciphertexts of their attributes to FmABE, to allow the server
to learn only a set of labels to the garbled circuit. Then the server can learn only
the outcome by evaluating the garbled circuit. Intuitively, since the attributes are
encrypted, and the server can learn only a set of labels of the garbled circuit, the
server can only learn the outcome but not the attributes of the parties.

Construction of ah-mABE. Let f : ({0, 1}�)n → {0, 1} be a policy
function, let P1, . . . ,Pn be the senders, and let Serv be the receiver. De-
note g := EvalFHE(pkFHE, f

′, (c, c′, c1), . . . , cn) where pkFHE is an FHE public
key, c, c′, c1 . . . , cn are ciphertexts and f ′ is an n-nary function that on input
((m0,m1, x1), . . . , xn) outputs mf(x1,...,xn). Assume the function g has an λ-bit
output, and denote gi as the function that outputs the i-bit of g. Then the parties
do as follows:

– Upon receiving input (ssid,m0,m1, x1), P1 does the following:

• Obtain (pkFHE, skFHE), and compute
(Γ, {L0

i , L
1
i }i∈[λ]) ← Gb.Garble(1k,DecFHE(skFHE, ·)) where DecFHE(skFHE, ·)

is a circuit that takes a λ-bit ciphertext as input and outputs a single bit
message.

• Send (ssid, Γ) to the receiver Serv, and in parallel,
• Compute m̂0 ← EncFHE(pkFHE,m0), m̂1 ← EncFHE(pkFHE,m1), x̂1 ←
EncFHE(pkFHE, x1), and send (ssid, L0

j , L
1
j , (m̂0, m̂1, x̂1)) to the functionality

Fgj
mABE for all j ∈ [λ].

– For i ∈ [n] \ {1}, upon receiving input (ssid, xi), Pi first calls GFHE to obtain
pkFHE. Then he computes x̂i ← EncFHE(pkFHE, xi) and sends (ssid, x̂i) to the
functionality Fgj

mABE for all j ∈ [λ].

MVC with Stronger Security Guarantees 157

– Upon receiving input (ssid, x̂1, . . . , x̂n, {Ldi}i∈[λ], Γ) from the ideal functionali-

ties and P1, the receiver Serv computes Gb.Eval(Γ, {Ldi}i∈[λ]), and outputs the
result of the evaluation.

Then we are able to achieve the following theorem. We present the proof in the
full version of this paper.

Theorem 2. Assuming the existence of a fully homomorphic encryption scheme
and a garbling scheme, the protocol above securely realizes the ideal functional-
ity Ff

ah-mABE for any efficiently computable f in the (FmABE,GFHE)-hybrid model,
against either (1) malicious server corruption, or (2) semi-honest (static) corrup-
tion among any fixed set of senders.

Using the functionality Fah-mABE, we are able to build anMVC scheme that also
achieves input and output privacy, in a similar fashion that (single-sender) private-
index functional encryption implies private verifiable computation [26]. As before,
we assume f outputs only one bit and only the first party receives the output. The
construction is in the Ff

ah-mABE hybrid model. More formally, let f : ({0, 1}�)n →
{0, 1} be a function to be delegated, let P1, . . . ,Pn be the clients and Serv be the
server. The the parties do as the following:

– Upon receiving input (ssid, x1), P1 samples two random inputs m0,m1 ←
{0, 1}� and sends (ssid,m0,m1, x1) to the functionality Ff

ah-mABE. Locally, he
stores m0,m1.

– For i ∈ [n] \ {1}, upon receiving message (ssid, xi), Pi sends (ssid, xi) to the

functionality Ff
ah-mABE.

– Upon receiving (ssid,m) from Ff
ah-mABE, the server sends P1 the message

(ssid,m).
– Upon receiving (ssid,m) from the server, P1 checks whether m = mb for some

b ∈ {0, 1}. If so, he outputs b, and otherwise he outputs ⊥.

In particular we show the following theorem. We present the proof in the full
version of this paper.

Theorem 3. The protocol above securely realizes FpVC in the Ff
ah-mABE hybrid

world, against either (1) malicious server corruption, or (2) semi-honest (static)
corruption of any fixed set of clients.

Remark 2. Actually the above theorem can be more general – we can show that
the protocol is secure against any (static) pattern of corruption in the Ff

ah-mABE

hybrid world (we will include this in the proof). However, in the previous Theo-

rems 1 and 2, we only know how to realize Ff
ah-mABE against either (1) malicious

server corruption, or (2) semi-honest (static) corruption of any fixed set of clients.
Therefore, by putting things together we can obtain an input-private verifiable
computation (pVC) protocol against such patterns of corruption. In Section 5, we
will show that the corruption pattern cannot be extended – it is impossible to
construct general pVC protocols against arbitrary server-client collusions. This in
particular implies that it is impossible to construct a protocol forFf

ah-mABE against
arbitrary server-client collusions.

158 S.D. Gordon et al.

Efficiency of our construction. We outline the efficiency of a scheme where every
client receives 1 bit of output— this can be achieved by a parallel repetition of our
basic construction where only P1 receives output. For such a privateMVC scheme,
the server runs in poly(κ) ·O(|f | ·n). If we instantiate using the ABE construction
of Gorbunov et al. [30], the run-time and the communication cost for each client
is O(d ·n�κ), where d is the depth of the function f being delegated, � is the input
length, and κ is the security parameter. In Appendix B we also offer more detailed
discussion. We note that if some non-falsifiable assumption is used, it is possible
to remove the dependence on the circuit depth. As mentioned, the focus of this
paper is on using falsifiable assumptions.

Also we note that efficiency of Choi et al.’s construction [15] does not depend
on circuit depth — however they security is weaker in many respects. An interest-
ing direction for future research is to construct a scheme (or prove impossibility)
where the client online computation and communication does not depend on the
number of parties n and the circuit depth d, by only using standard assumptions.

4 From Semi-honest toMalicious Clients Corruptions

In the previous section, we considered the case where the clients can be corrupted
in the semi-honest way. In this section, we present a simple compiler that up-
grades the previous protocol to one that is secure against any maliciously cor-
rupted clients, and remains non-interactive. That is, the resulting protocol is se-
cure against either malicious server, or against a set of malicious clients. Our con-
struction only needs an additional setup FCRS.

We note that if we allowmore rounds of communication, it is already knownhow
to achieve security against arbitrary malicious corruptions (i.e. of clients and/or
the server) [2]. However in the non-interactive multi-client verifiable computation
MVC, there are no known constructions. We have already demonstrated security
against a malicious server, and we will consider arbitrary corruptions of both the
server and the clients in Section 5. Here we address the case where multiple clients
are corrupted, and demonstrate that if an MVC protocol offers security against
the semi-honest corruption of an arbitrary subset of the clients, and, additionally
it offers the clients perfect privacy from one another (as defined in Definition 4),
then there exists a simple compiler for guaranteeing security against the malicious
corruption of clients. Of course, if we are allowed for a trusted PKI during the setup
phase, we could include honestly generated, committed randomness for each party,
and then use a NIZK to prove that all messages were honestly generated. However,
we are interested in avoiding the use of trusted PKI, instead allowing each party
to register the key of their choice; see Remark 1 for a discussion about trusted PKI
and self-registered PKI.

Definition 4. An MVC protocol Π has perfect client privacy if for all inputs
x1, . . . , xn, for an adversary A that semi-honestly corrupts some subset of the par-
ties {Pi}i∈I where I ⊂ [n], and for every random tape rA belonging to A, there
exists a simulator Sim such that the following distributions are identical{

ViewΠ(x1,...,xn),A
}
≡ {Sim({xi, yi}i∈I , rA)}

MVC with Stronger Security Guarantees 159

where (y1, . . . , yn) ← f(x1, . . . , xn), and ViewΠ(x1,...,xn),A is the view of the adver-
sary when the inputs to the clients are (x1, . . . , xn). In particular, the view contains
random string rA, inputs {xi}i∈I , and the message received from the server, and
the messages generated by honest clients.

Note that what distinguishes this from a standard requirement for semi-honest
corruption is that we require indistinguishability to hold for every random tape
of the adversary, rather than only on average. Intuitively, if a protocol meets this
requirement, we can simplify the standard compilation techniques, since the ad-
versary is free to use the random tape of his choice. To achieve security in the pres-
ence of malicious adversaries, it suffices to have the clients prove (using a NIZK)
that their messages are consistent with some random string. Formally, we are able
to achieve the following theorem. We present the proof in the full version of this
paper.

Theorem 4. Suppose there exists anMVC protocol Π in self-registered PKI setup
hybrid model that is secure against semi-honest client corruptions, and that Π has
perfect client privacy. Then there exists anMVC protocolΠ ′ in the ZK and the self-
registered PKI setup hybrid model, which is secure against malicious client corrup-
tions.

In order to apply the compiler results to our protocol, we need to show that our
constructions have the desired property. We show this by the following claim:

Claim. If the underlying ABE and FHE and the garbling schemes is perfectly cor-
rect, then the private MVC protocol from Section 3 has perfect client privacy.

Proof. Since P2, . . . ,Pn do not receive messages or output, their views can be sim-
ulated easily. Now, we give a simulation of P1’s view. In the honest protocol, P1

samples random stringsm0,m1 and some r for generating ciphertexts of the ABE,
FHE and garbling schemes. Suppose these schemes have perfect correctness. Then
for every r the honest P1 will receive either m0 or m1 from the server, depending
on b := f(x1, . . . , xn). Therefore, given the result of the computation, b, and the
random tape of P1, R = (m0,m1, r), the simulator can simply output mb as the
message from the server, producing an identical view. This completes the simula-
tion of his view.

As a consequence of this theorem and Theorems 1, 2, 3, and the fact that non-
interactive ZK can be implemented in the CRS model, we are able to construct a
private MVC protocol using CRS and self-registered PKI. We summarize this by
the following theorem:

Theorem 5. Assume the existence of a fully homomorphic encryption scheme, a
garbling scheme, and an ABE that has local encoding property. Assume the prim-
itives have perfect correctness. Then for any efficiently computable f , there exists
an MVC protocol that securely realizes the ideal functionality Ff

pVC in the CRS and
self-registered PKI hybrid model, against (1) any malicious server corruption, or
(2) any malicious (static) corruption among any fixed set of clients.

160 S.D. Gordon et al.

5 When the Server and Some Clients Are Corrupted

In this section, we consider the remaining, more complicated case where the server
and clients can be corrupted at the same time. We show that even for a seemingly
simple case where only one client and the server are corrupted together, it is impos-
sible to construct privateMVC for general functions, under a large class of instan-
tiations of G setup including trusted PKI (which is stronger than self-registered
PKI, see Remark 1), CRS, shared secret randomness, etc. The lower bound holds
even in the standalone setting, and for semi-honest corruptions.

In particular, we consider the case with two clients and one server, where the
function being delegated is a universal circuit U(·, ·), the first client’s input is a
circuit C, the second client’s is a string x. The server returns U(C, x) = C(x) to
both parties. If there exists a private MVC protocol with respect to such U , i.e. if
there exists a protocol that realizes FpVC, then, even if it is only secure against
semi-honest corruption and only in the standalone setting, we can construct an
obfuscator for any circuit. (We refer the reader to the remark following Definition
2 for a definition of the standalone setting.) By previous lower bounds for obfus-
cation [4], this leads to an impossibility result. We present the formal statement
below.

We note that there is a similar lower bound argument in the server-aided MPC
setting in the work [2]. Our lower bound further shows that even a natural relax-
ation of security (where the ideal functionality can be calledmultiple times if there
is server-client corruption) is not achievable for all functionalities.

Theorem 6. Suppose there exist an instantiation of G setup and a private MVC
protocol Π (i.e., one that realizes FpVC) for all efficiently computable functions in
the G setup hybrid world, against semi-honest corruptions for arbitrary parties in
the standalone model, then there exists an obfuscator for any circuitC secure under
the virtual black-box simulation.

Proof. Consider the case where two clients want to delegate the computation of
the universal circuit U(·, ·) to the server; the first client provides a circuit C, and
the second provides an input x. Then the honest server returns C(x) to both par-
ties. Suppose there exists an instantiation of setup G and a secure protocolΠ that
achieve this goal, then we construct an obfuscator O that on input C does the fol-
lowing:
– O simulates the setup G and the role of each client in the offline stage to obtain

pub, sk1, sk2, f̂ .
– O simulates the first client’s procedure on input C in the online stage. Let Ĉ

be the message that P1 sends to the server.
– O outputs (Ĉ, pub, sk2, f̂) as an obfuscation of C, i.e. O(C).

To evaluate O(C) on input x, the evaluator simulates P2’s online phase to cre-
ate an encoding of x using pub, sk2, and then simulates the (corrupted) server to

evaluate Ĉ, x̂ with the encoded version of the function f̂ .
The correctness follows immediately from the correctness of the protocol Π ,

and the efficiency of the obfuscator follows directly from the efficiency of the par-
ties in the protocol Π . In the rest of the proof, we are going to show the virtual

MVC with Stronger Security Guarantees 161

black-box (VBB) simulation property. In particular we will turn the protocol sim-
ulator into a VBB obfuscation simulator.

Nowwe analyze the construction. In particular, wewant to show given an adver-
saryA attacking the security of the obfuscation, we are going to construct a simu-
lator Sim such that the probabilityA(O(C)) = 1 is close to that of SimC(1k) = 1
up to a negligible factor for all polynomial-sized circuits C. We do this by defining
a particular adversaryA∗ that attacksΠG , and using the protocol simulator that
is guaranteed to exist for this adversary by the security of the MVC protocol.

Given A and any poly-sized circuit C, we define the following experiment in
the G-hybrid world. Let Z∗ be an environment and A∗ be an adversary attacking
protocol ΠG . A∗ corrupts the server and the second party at the beginning. He
queries the ideal functionality G and stores the reply (pub, sk2). Upon receiving
a message from P1 during the offline stage (on behalf of the server), he uses this
message, along with the offlinemessage that an honestP2 would send, to construct
f̂ as the server would do. When P1 sends a message Ĉ to the server during the
online phase, A∗ interprets (Ĉ, pub, sk2, f̂) as an obfuscation of O(C). Then A∗

runs A on the interpreted O(C) and passes A’s output to Z∗. Z∗ outputs this as
the output of the experiment EXECA∗,Π,Z∗ .

Now we are ready to construct the simulator Sim. By the premise that ΠG

realizes FpVC, for this A∗, there exists Sim∗ such that for this particular Z∗, we

have EXECG
A∗,Π,Z∗ ≈ EXECSim∗,FpVC,Z∗ . Given such Sim∗, we define a simulator

Sim for the VBB obfuscation as follows:

– Sim basically simulates the execution of EXECSim∗,FpVC,Z∗ .
– Whenever the protocol simulatorSim∗ queries the oracleOU,{2}(·) in the ideal

functionality with somemodifiedP2’s input x
′
2,Sim simulates it using a black-

box query to C with input x′
2 and returns C(x′

2) to Sim∗.
– Then Sim outputs whatever the output of the experiment EXECSim∗,FpVC,Z∗ .

Then we are going to prove that Sim is a good VBB simulator by the following
lemma:

Lemma 1. For the simulator Sim described above, there exists a negligible func-
tion ν(·) such that |Pr[A(O(C)) = 1]− Pr[SimC(1k) = 1]| < ν(k).

Proof. Assume there is a non-negligible function ε with Pr[A(O(C)) = 1] −
Pr[SimC(1k) = 1] > ε. We show that the real and simulation worlds in the pro-
tocol are distinguishable.

According to the description of EXECG
A∗,Π,Z∗ , the output of such experiment is

identical to that of A(O(C)). On the other hand, the output of EXECSim∗,FpVC,Z∗

is exactly the same as that of SimC(1k). So this means the executions of the pro-
tocol are distinguishable by ε, which reaches a contradiction. Thus we complete
the proof.

162 S.D. Gordon et al.

Acknowledgments. This research was sponsored in part by the U.S. Army Re-
search Laboratory and the U.K. Ministry of Defence and was accomplished under
Agreement Number W911NF-06-3-0001. The views and conclusions contained in
this document are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the U.S. ArmyResearch
Laboratory, the U.S. Government, the U.K. Ministry of Defence, or the U.K. Gov-
ernment. The U.S. and U.K. Governments are authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding any copyright notation
hereon.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient veri-
fication via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163.
Springer, Heidelberg (2010)

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

3. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on out-
sourced data. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp.
863–874. ACM Press (November 2013)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

5. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012)

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (October
2012)

7. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Ver-
ifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013)

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: Usenix Security Symposium (2014)

9. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

10. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press (June 2013)

11. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

MVC with Stronger Security Guarantees 163

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
http://eprint.iacr.org/2000/067

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (October
2001)

15. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer,
Heidelberg (2013)

16. Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 483–501. Springer, Heidelberg (2010)

17. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

18. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and ma-
trix computations, with applications. In: Yu, T., Danezis, G., Gligor, V.D. (eds.)
ACM CCS 2012, pp. 501–512. ACM Press (October 2012)

19. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press (June 2013)

20. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

21. Gennaro, R., Gentry, C., Parno, B., Raykova,M.: Quadratic span programs and suc-
cinct nIZKs without pCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

22. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. IACR Cryptology ePrint
Archive, 2014:309 (2014)

23. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

24. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

25. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to
run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

26. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press (June
2013)

27. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejec-
tion problem from designated verifier CS-proofs. IACR Cryptology ePrint Archive,
2011:456 (2011)

28. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

29. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

http://eprint.iacr.org/2000/067

164 S.D. Gordon et al.

30. Gorbunov, S., Vaikuntanathan, V.,Wee, H.: Attribute-based encryption for circuits.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 545–
554. ACM Press (June 2013)

31. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive, Report 2011/272 (2011), http://eprint.iacr.org/

32. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function
evaluation. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACMCCS 2012, pp. 797–808.
ACM Press (October 2012)

33. Kosba, A.E., Papadopoulos, D., Papamanthou, C., Sayed, M.F., Shi, E., Trian-
dopoulos, N.: Trueset: Nearly practical verifiable set computations. In: Usenix Se-
curity Symposium (2014)

34. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sa-
hai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013)

35. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011)

36. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

37. Shi, E., Chan, T.-H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS 2011. The Internet Society (February 2011)

A Preliminaries

Here we present the definitions we use in this paper.

A.1 Two-outcome ABE

Definition 5 (Correctness of Two-outcomeABE [26]). For any polynomial
n(·), for every sufficiently large security parameter κ, if n = n(κ), for all boolean
functions f ∈ Fn, attributes x ∈ {0, 1}n, messages M0,M1 ∈ M, there exists
some negligible ν(·) such that

Pr

⎡⎢⎢⎢⎢⎣
(mpkABE,mskABE) ← ABE.Setup(1κ);
skf ← ABE.KeyGen(mskABE, f);
c ← ABE.Enc(mpkABE, x,m0,m1);
m = ABE.Dec(skf , c) :
m = mf(x)

⎤⎥⎥⎥⎥⎦ = 1− ν(κ).

If ν = 0, then the scheme has perfect correctness.

Then we define the security for single-key two-outcome ABE.

Definition 6 (Security of Two-outcome ABE [26]). Let ABE be a two-
outcome ABE scheme for the class of boolean functions F = {Fn}n∈N and asso-
ciated message space M and let A = (A1,A2,A3) be a triple of PPT adversaries.
Consider the following experiment.

http://eprint.iacr.org/

MVC with Stronger Security Guarantees 165

– (mpkABE,mskABE) ← ABE.Setup(1κ)

– (f, st1) ← A1(mpkABE)

– skf ← ABE.KeyGen(mskABE, f)

– (m,m0,m1, x, st2) ← A2(st1, skf)

– choose a bit b at random. Then let

c =

{
ABE.Enc(mpkABE, x,m,mb), if f(x) = 0,
ABE.Enc(mpkABE, x,mb,m), otherwise.

– b′ ← A3(st2, c). If b = b′, and there exists n such that, for all f ∈ Fn, messages
m.m0,m1 ∈ M, |m0| = |m1|, x ∈ {0, 1}n, output 1. Else output 0.

We say the scheme is a full-secure single-key two-outcome ABE if for all PPT
adversaries A, and for all sufficiently large κ, the probability that the experiment
outputs 1 is bounded by 1/2 + ν(k) for some negligible function ν.

A.2 Garbling Schemes

Definition 7 (Garbling Schemes [6]). A garbling scheme for a family of cir-
cuits C = {Cn}n∈N with Cn a set of boolean circuits taking as input n bits, is a
tuple of PPT algorithms Gb = Gb.{Garble,Enc,Eval} such that

– Gb.Garble(1κ, C) takes as input the security parameter κ and a circuit C ∈ Cn

for some n and outputs the garbled circuit Γ and a secret key sk.

– Gb.Enc(sk, x) takes as input x and outputs an encoding c,

– Gb.Eval(Γ, c) takes as input a garbled circuit Γ and an encoding c, and outputs
a value y which should be C(x).

The correctness and efficiency properties are straight-forward.Next we consider
a special property of the encoding of the Yao’s garbled scheme, which we will use
in this paper. The secret key has the form sk = {L0

i , L
1
i }i∈[n], and the encoding of

an input x of n bits is of the form c = (Lx1 , Lx2 , . . . , Lxn), where xi is the i-th bit
of x.

Then we are going to define the security of garbling schemes.

Definition 8 (Input and Circuit Privacy). A garbling scheme Gb for a family
of circuits {Cn}n∈N is input and circuit private if there exists a PPT simulator Sim
such that for every adversaries A and D, for all sufficiently large κ,

∣∣∣∣∣∣∣∣Pr
⎡
⎢⎢⎣

(x,C, α)← A(1k);
(Γ, sk)← Gb.Garble(1κ, C);

c ← Gb.Enc(sk, x) :
D(α, x,C, Γ, c) = 1

⎤
⎥⎥⎦− Pr

⎡
⎣ (x,C, α)← A(1k);

(Γ̃ , c̃)← Sim(1κ, C(x), 1|C|, 1|x|) :

D(α, x,C, Γ̃ , c̃) = 1

⎤
⎦
∣∣∣∣∣∣∣∣ = ν(k)

for some negligible ν(·), where we consider onlyA such that for some n, x ∈ {0, 1}n
and C ∈ Cn.

166 S.D. Gordon et al.

A.3 Extractable Witness Encryption

Definition 9 (Witness Encryption [19]).A witness encryption for a language
L ∈ NP with corresponding witness relation RL consists of two polynomial-time
algorithms WE.{Enc,Dec} such that

– Encryption WE.Enc(1κ, x, b): takes as input a security parameter κ, a state-
ment x ∈ {0, 1}∗, a bit b and outputs a ciphertext c.

– DecryptionWE.Dec(w, c): takes as input a witnessw ∈ {0, 1}∗ and a ciphertext
c and outputs a bit b or ⊥.

Correctness: For all (x,w) ∈ RL, for all bits b for every sufficiently large security
parameter κ, we have

Pr[c ← WE.Enc(1κ, x, b) : WE.Dec(w, c) = b] = 1− ν(κ),

for some negligible ν.

Definition 10 (Extractable Security [25]). A witness encryption scheme for
a language L ∈ NP is secure if for all PPT adversaries A, and all poly q, there
exists a PPT extractor E and a poly p such that for all auxiliary input z and all
x ∈ {0, 1}∗, the following holds:

Pr[b ← {0, 1}; c ← WE.Enc(1κ, x, b) : A(x, c, b) = b] ≥ 1/2 + 1/q(|x|)
⇒ Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1/p(|x|).

A.4 Obfuscations

Definition 11 (Circuit Obfuscator [4]). A probabilistic algorithm O is a (cir-
cuit) obfuscator for the collection F of circuits if the following holds:

– (functionality) For every circuit C ∈ F , the string O(C) describes a circuit
that computes the same function as C.

– (polynomial slowdown) There is a polynomial p such that for every circuit C ∈
F , we have |O(C)| ≤ p(|C|).

– (“virtual black box” (VBB) property) For any PPTA, there is a PPT Sim and
a negligible function ν such that for all circuits C ∈ F , it holds that∣∣∣Pr [A(O(C)) = 1]− Pr

[
SimC(1|C|) = 1

]∣∣∣ ≤ ν(|C|).

We say that O is efficient if it runs in polynomial time. If we omit specifying the
collection F , then it is assumed to be the collection of all circuits.

MVC with Stronger Security Guarantees 167

A.5 Proxy Oblivious Transfer

Choi et al. [15] recently defined and constructed proxy oblivious transfer. Instead
of taking the game based security definitions from the paper by Choi et al., here we
define the security of POT in the real/ideal paradigm, which provides a stronger
security guarantee. In the ideal functionality below, we omit the session id for no-
tational simplicity. We remark that in each session, the functionality could accept
multiple new inputs; we assign a sub-session id, i.e., ssid, for each new input.

Theorem 7 ([15]). There is a non-interactive protocol which realizes FPOT in
the self-registered PKI setup GDiffie−Hellman-hybrid model, against (1) any malicious
server corruption, or (2) any semi-honest (static) corruption among any fixed set
of clients.

Proxy Oblivious Transfer

Functionality FPOT interacts with a sender PS , a chooser PC , a receiver
PR, and the simulator Sim.

– Upon receiving (ssid,m0,m1) from the sender PS , notify Sim with
(ssid,PS). Later, when Sim replies with (ssid,PS), if no value
(ssid,m′

0,m
′
1) has been recorded yet, store it and notify PR with

(ssid,PS).
– Similarly, upon receiving (ssid, b) from the chooser PC , notify Sim
with (ssid,PC). Later, when Sim replies with (ssid,PC), if no
value (ssid, b′) has been recorded yet, store it and notify PR with
(ssid,PC).

– Upon receiving (ssid, 1) from PR, if both (ssid,m0,m1) and (ssid, b)
are recorded, send (ssid,mb) to the receiver PR; else send fail.

Fig. 4. Functionality FPOT

Choi et al. [15] constructed a non-interactive protocol in the offline/online
model that realizes the ideal functionality FPOT. In this model, the two clients
run some protocol in the offline stage, prior to learning their inputs, and then
complete the protocol in the online stage, after receiving their inputs. In their con-
struction, the clients do not need to interact in the offline stage, and in the online
stage both the sender and chooser send a single message to the server. The con-
struction relies on the existence of non-interactive key agreement schemes (e.g.,
the Diffie-Hellman key exchange scheme).

B Instantiations and Efficiency

In this section, we discuss the instantiations of our building blocks. We need a
two-outcome attribute encryption scheme with the local encoding property, a fully

168 S.D. Gordon et al.

homomorphic encryption scheme, and a garbling scheme. In particular we can use
any instantiation of FHE schemes, e.g. one by Brakerski [11], and any instantiation
of Yao’s garbling scheme.

The attribute based encryption (ABE) constructed by Gorbunov, Vaikun-
tanathan, Wee [30] actually achieves the requirements of regular ABE with the
local encoding property. Goldwasser et al. [26] showed a generic way to achieve
two-outcome ABE from a regular one. So by plugging the GSW ABE scheme and
using the generic technique, we achieve the two-outcome ABE as required by Def-
inition 3.

For our private MVC scheme, the server clearly runs in poly(κ, f). For the
clients, P2, . . . ,Pn runs in time O(�κ), where � is the input length; P1 generates
O(n�κ) ABE ciphertexts plus a garble circuit of size O(κ), where n is the num-
ber of parties, � is the input length, and κ is the security parameter. However, the
ciphertexts’ length for the currently best known ABE construction of Gorbunov,
Vaikuntanathan, Wee [30] depends on the circuit depth (independent of the size).
Therefore, P1’s running time (the communication complexity as well) depends on
O(d · n�κ), where d is the depth of the function being delegated. The construc-
tion of Choi et al. [15] has better online efficiency for clients that is independent
of the function complexity, but has the issues of adaptive soundness and is vul-
nerable to selective failure attacks. The construction using multi-input functional
encryption [24] can achieve better efficiency but their solution inherently requires
the existence of indistinguishable obfuscation, which is a stronger assumption and
has large overhead.

Public Verification of Private Effort�

Giulia Alberini1, Tal Moran2,��, and Alon Rosen2,� � �

1 School of Computer Science, McGill University, Canada
giulia.alberini@mail.mcgill.ca

2 Efi Arazi School of Computer Science, IDC Herzliya, Israel
{talm,alon.rosen}@idc.ac.il

Abstract. We introduce a new framework for polling responses from a
large population. Our framework allows gathering information without
violating the responders’ anonymity and at the same time enables public
verification of the poll’s result. In contrast to prior approaches to the
problem, we do not require trusting the pollster for faithfully announcing
the poll’s results, nor do we rely on strong identity verification.
We propose an “effort based” polling protocol whose results can be

publicly verified by constructing a “responder certification graph” whose
nodes are labeled by responders’ replies to the poll, and whose edges
cross-certify that adjacent nodes correspond to honest participants.
Cross-certification is achieved using a newly introduced (privately ver-
ifiable) “Private Proof of Effort” (PPE). In effect, our protocol gives a
general method for converting privately-verifiable proofs into a publicly-
verifiable protocol. The soundness of the transformation relies on expan-
sion properties of the certification graph.
Our results are applicable to a variety of settings inwhich crowd-sourced

information gathering is required. This includes crypto-currencies, politi-
cal polling, elections, recommendation systems, viewer voting inTV shows,
and prediction markets.

Keywords: Polling, anonymity, protocols, random graphs, public veri-
fiability, proof of work, CAPTCHA.

1 Introduction

The Internet enables reciprocal communication on a massive scale. Thus, it has
the potential to allow new forms of information gathering and “crowd-sourced”
decision making. Some examples (already in widespread use) are political polling,
elections (which are a mechanism for achieving consensus among voters about
which candidate to put in office), recommendation systems (e.g., based on users’

� This version is an extended abstract. A complete version of the paper appears on
the Cryptology ePrint Archive [1].

�� Supported by ISF grant no. 1790/13 and by the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement no. 293843.

� � � Supported by ISF grant no. 1255/12 and by the ERC under the EUs Seventh
Framework Programme (FP/2007-2013) ERC Grant Agreement no. 307952.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 169–198, 2015.
c© International Association for Cryptologic Research 2015

170 G. Alberini, T. Moran, and A. Rosen

opinions about products and services), prediction markets (leveraging the “wis-
dom of the crowds” to predict future events) and “crypto-currencies” (such as
Bitcoin [16]).

We can think of all these cases as a generalized “opinion poll”:the outcome is
the result of aggregating the opinions of a large population of Internet users. The
“protocols” that implement the poll (and the methods of computing the results)
are different in each case, but in all of them we can categorize the participants
into three types (some parties may belong to multiple categories):

1. pollsters are responsible for collecting the information and publishing the
result.

2. responders are the parties who provide inputs to the poll.
3. verifiers are interested in (should agree on) the result, but may not be active

participants.

Although at first glance the examples mentioned above may not necessarily
appear to be a distributed protocol problem (e.g., in elections there is a central
election authority that can broadcast results to everyone), it is natural to con-
sider the case when the central authorities are untrusted, and can potentially
act maliciously. Viewed this way, verifiable polling is a generalization of the fun-
damental problem of achieving consensus between mutually-distrustful parties.
While in the general polling setting, inputs of various parties could differ and are
aggregated into the poll’s “tally”, the basic consensus problem focuses on the
special case in which parties only have to agree on a specific output if all of their
inputs match. Correctness of the consensus is guaranteed by the verifiability
property of the polling protocol.

In their general form, verifiable opinion polls are also useful as building blocks
in more complex protocols. For example, the main technical innovation of Bit-
coin, a recently popular “crypto-currency”, is in achieving a distributed, decen-
tralized consensus about the currency’s public transaction ledger (the record of
all Bitcoin transactions) [16].

In the “traditional” setting for the verifiable polling problem (and its variants),
the number and identities of the parties are known in advance. Using standard
cryptographic techniques, solutions are known to many of them. Techniques
for verifiable voting, for example, provide solutions that hide the individual re-
sponses of the participants, even after revealing the tally (see subsection 1.5 for
references).

Unfortunately, adapting the traditional solutions to work in a decentralized
internet environment is non-trivial. One of the major problems encountered in
this setting is the lack of identity verification. Strong identity verification on a
large scale is expensive, and in many cases completely impractical (e.g., when
participants are spread across national boundaries, there might not be a single
entity trusted by all of them to certify identities). The mechanisms for identity
verification become even more complex when anonymity (or pseudonymity) of
the participants is required. In the absence of identity verification, it is impossible
to distinguish a fake identity from a real one; this opens the door to “Sybil
attacks” (attacks based on creating multiple fake identities).

Public Verification of Private Effort 171

There are various methods used to mitigate Sybil attacks without requiring
identity verification. A recurring idea is to force participants to prove they ex-
pended some valuable resource: for example, spending money or performing a
computational task. This serves to limit the number of fake identities an adver-
sary can create. In this paradigm, we have no choice but to relax our requirements
from the poll: rather than requiring “one vote per participant”, we now allow
“one vote per effort” (where an “effort unit” corresponds to expending some
resource). We call this effort-based polling.

The Bitcoin protocol is an excellent example of this type: in effect, consensus
is achieved by having parties constantly “vote” on which version of the trans-
action ledger they accept, where for each “vote” the party must also generate a
“proof-of-work” to prove that the required amount of computational effort was
expended.1

Proofs of work are one of the very few examples of proofs of effort that are
publicly verifiable. However, they suffer from significant drawbacks. First of all,
they are inherently wasteful in that the computation “does nothing” except
prove work (indeed, this is one of the strongest arguments against the Bitcoin
currency [12]). Secondly, and perhaps more importantly, a party with access to
more computing power than most honest responders may gain a hugely dispro-
portionate influence on the results (not to mention the wide disparities between
the responders themselves).

1.1 Privately Verifiable Proofs of Effort

An alternative to publicly-verifiable proofs of work, and one that may be po-
tentially easier to achieve, is that of privately-verifiable proofs of resource ex-
penditure. One well known example is that of enforcing human involvement in
each response. In voting for the “American Idol” TV show, for example, online
viewers must solve a CAPTCHA [19] for each vote, but the total number of
votes is effectively unlimited. (What makes the CAPTCHA solution privately
verifiable is the fact that all currently known CAPTCHAs are private coin: in
effect, every CAPTCHA is generated together with its solution.)

Beyond being easier to achieve (and not being “wasteful”) The “human effort”
requirement may be useful when there is a “resource gap” between honest and
malicious parties. For example, show producers have significantly more money
and access to more computing power than most honest viewers (and there are
wide disparities between the viewers themselves)—using proof-of-work in this
context could give them a hugely disproportionate influence on the results.

In effect, what CAPTCHAs enable us to achieve is what we call a privately-
verifiable proof of effort (PPE). Informally, this is an interactive protocol between
two parties: if both parties are honest the test returns “true” to both, otherwise
the test returns “false” to the honest participant.

1 The outcome of a Bitcoin “poll” is not a majority-vote, but a randomized selection
in which the probability for selecting a “candidate” is proportional to the total ef-
fort expended for that candidate. However, this still fits in our generalized polling
framework.

172 G. Alberini, T. Moran, and A. Rosen

Definition 1 (PPE, Informal). A two-party protocol is a PPE if it satisfies:

1. Effort If both parties honestly follow the protocol, they expend one “effort
unit”.

2. σ-Completeness. If both parties honestly followed the protocol, they will both
output “true” at the end of the protocol with probability at least 1− σ.

3. ε-Soundness. If one party is malicious (invests less than the required ef-
fort) and the other honestly follows the protocol, the honest party will output
“false” with probability at least 1− ε.

We note that this definition is necessarily informal, since the term “effort unit”
is itself not well defined. In our analysis, we sidestep the problem by reversing
the definition: instead of defining a PPE as a proof of effort, we define a “proof
of effort” as successful completion of PPE with at least one honest participant
(formally, we follow Canetti et al.’s framework for defining CAPTCHAs [4] and
define effort in terms of oracle calls; see section 2 for details).

The peer-to-peer nature of PPEs makes them potentially easier to realize
than their publicly-verifiable counterparts (which require costly distributed co-
ordination). In section A, we list several potential mechanisms for PPEs, most of
which do not require human involvement (making them fully automatizable, and
hence scalable). These include proofs of storage, human interaction (including
symmetric CAPTCHAs) and leveraging social networks.

1.2 Our Results

While PPEs seem easier to realize, it is not at all clear how to utilize them in
order to deal with the problem of a cheating pollster. For instance, in the Ameri-
can Idol example, a malicious CAPTCHA generator can use the solutions to the
CAPTCHAs without expending any human effort. Thus, existing CAPTCHAs
cannot be publicly verified (hence cannot be used to achieve a consensus about
the result of the poll when the generator is untrusted).

Our main result is a new protocol for publicly-verifiable effort-based polling,
based on any privately-verifiable proof-of-effort (PPE). The protocol uses PPEs
to generate a “responder certification graph”: each responder is a node in the
graph while an edge between two responders corresponds to a PPE execution.
Loosely speaking, we guarantee that, as long as enough honest users participate
in the protocol, a large number of cheating nodes will be publicly detected (note
that, unlike most standard definitions of an “honest party”, in our case every
party controlled by the adversary is considered “cheating”, even if it follows the
honest protocol exactly).

If each node in the graph is published together with their response to the
poll, the poll results cannot be skewed significantly by the pollster without being
detected.

In its simplest variant, our protocol assumes that the responder certification
graph is sampled at random. This sampling can be performed in a publicly-
verifiable way, say by applying a “random-looking” function (e.g., SHA-1) to

Public Verification of Private Effort 173

two nodes’ indices to determine if there is an edge between them in the graph.
Since our protocol’s analysis relies only on expansion properties of such ran-
domly chosen graphs, the construction can potentially be derandomized—using
an explicit graph with the appropriate expansion properties, we could remove
our assumption about SHA-1 and improve the protocol parameters, at the cost
of making the protocol more complex.

We note that while the structure of certification graph is fixed (it depends
only on the number of nodes), we allow the adversary to specify the number of
nodes (within bounds) and to arbitrarily control the assignment of honest nodes
to vertices in the graph. We prove that security holds for every assignment.

1.3 Main Theorems

The total number of nodes in the certification graph is denoted m and corre-
sponds to the total number of responders (some of whom may be controlled by
the adversary). The number of honest responders is denoted by n. We denote
by d the average degree of the responder certification graph: this is the number
of PPE executions each responder is expected to participate in.

We model our assumption that the pollsters have bounded resources by spec-
ifying that a cheating pollster cannot participate in too many successful PPEs
with honest responders. In terms of the certification graph, this assumption im-
plies a bound a on the number of “attack edges”—PPE executions in which the
cheating pollster participates as one party and convinces an honest responder to
accept. The ratio a/d gives a lower bound on the number of “cheating” nodes;
an attacker can always create this many cheating nodes without detection by
following the protocol honestly. Thus, our security guarantees make sense only
when a/d & n (we can think of a/dn as a small constant).

We denote by κ the security parameter. Our main theorems guarantee the
soundness (a malicious pollster can’t cheat undetectably) and completeness (an
honest execution will be accepted) of our protocol. For simplicity, we will con-
sider PPEs for which ε (the soundness error of a PPE) is negligible in the security
parameter and omit it. For our completeness proof, we require an additional inde-
pendence property: that for a given node, the probability of failure in each PPE
execution is independent (the probability can depend on the node, however).

Theorem 1 (Soundness—Informal). Let A be an adversarial pollster that
cannot succeed in more than a PPEs with honest responders. If there are at least
n ≥ αm, α ∈ (0, 1), honest responders to the poll and A controls more than Ω(ad)
of the responses in the poll outcome, then verification will fail with overwhelming
probability (in κ).

See section 4 for the full theorem and proof. Note that our proof holds in the
random oracle model, but under a very reasonable assumption about the crypto-
graphic hash function (that the generated graph has good expansion parameters)
it holds in the standard model as well.

174 G. Alberini, T. Moran, and A. Rosen

Theorem 2 (Completeness—Informal). If the pollster is honest, and ma-
licious responders are bounded by O(m) successful PPEs, the probability that
verification fails is negligible in κ.

See section 5 for the full theorem and proof. The bound on successful PPEs
by malicious responders is required to guarantee robustness of the protocol—
when the pollster is honest the verification should succeed even if some of the
responders are malicious.

1.4 Comparison to Verifiable Voting

At a high level, our polling protocol has the same form as most universally ver-
ifiable voting protocols (involving an “election authority”, “voters”, “receipts”
and “verification procedure”):

1. The pollster sets up the poll and publishes public parameters on a bulletin-
board (modeled as a broadcast channel). This corresponds to the role of the
“election authority”.

2. Honest responders (corresponding to the “voters”) send their responses to
the pollster and engage in an interactive proof protocol to ensure that they
are expending the correct amount of “effort” for each response. This protocol
includes interaction with the pollster and also, unlike most voting protocols,
interaction with a subset of other responders.
The pollster signs the transcript of each communication with a responder
and sends this signature to the responder (think of this as the “receipt” in
the voting protocol).

3. The pollster publishes the empirical distribution of responses, together with
a proof of correctness.

4. The verification procedure consists of both a local verification step performed
by the responders (which in a voting protocol corresponds to verifying that
the voter’s receipt appears on the bulletin board) and a global verification
step performed by the verifiers (which corresponds to the “universal verifica-
tion” step in voting protocols). Note that responders can also act as verifiers
if they wish.

A significant difference between effort-based polling and verifiable voting is
the issue of voter identity. In our polling protocol, parties are identified only
by self-chosen pseudonyms (for our purposes, a pseudonym is a verification key
of a public-key signature scheme). We do not limit the number of pseudonyms
a party may generate, or require parties to link their pseudonyms to their real
identities.

In contrast, most voting protocols assume each party in the protocol has been
identified by a trusted authority, in order to ensure that each voter gets only a
single vote. By relaxing this requirement to “one vote per effort expended”, we
can dispense with the complexity, expense and privacy implications of securely
identifying responders.

Public Verification of Private Effort 175

In particular, our protocol is compatible with completely anonymous polling
(if responders communicate with the pollster over anonymous channels)—in ad-
dition to hiding the link between their real identities and their responses, use
of anonymous channels can hide the fact of participation in the poll, with the
degree of anonymization depending only on the anonymous channel (in contrast,
cryptographic voting protocols that support hiding the voters’ participation re-
quire a separate non-anonymous registration step, and anonymity depends on
the election trustees in addition to the anonymous channel).

1.5 Related Work

Sybil Defense. In a “Sybil attack”, an adversary creates multiple “fake” identi-
ties in order to manipulate a protocol. The problem of establishing trustworthy
virtual identities has plagued the Internet from its inception [10]. It is particu-
larly acute in distributed systems with no central authority—without additional
assumptions, vulnerability to some forms of Sybil attacks is unavoidable in this
case [9]. The paper by [10] deals with the problem of establishing identities. One
of the first discussions of trust metrics based on social graphs appears in [13].
The term “Sybil Attack” (attributed to Brian Zill from MSR) was introduced
in [9], where it is shown that in the absence of a central certifying authority,
some attacks are always possible.

A reputation system for p2p with similar ideas to pagerank (doesn’t handle
sybils) is developed in [11], and the possibility of using “Turing tests” to limit
Sybil nodes is mentioned in [3]. In [7] it is shown that there exists no symmet-
ric sybil-proof reputation mechanism. Since the existing sybil-defense protocols
all care about reputations (e.g., determining which nodes are “real” and which
are sybils), they all strongly rely on breaking symmetry: having at least one
trusted node. Our protocol is symmetric, however we can sidestep the impos-
sibility proof because we don’t care about individual nodes’ reputations—only
about the aggregate opinion of all the nodes.

The technique of random walks on a social networks to bound the effect
of Sybil attack is introduced in [23] (see [22] for an expanded version with full
proofs). A 2006 survey of sybil attack literature can be found in [14]. An improved
version of [23] (slightly different protocol, same goal but better parameters)
appears in [21], and a newer protocol to identify sybil nodes in a social graph is
presented in [8]. The protocol makes very similar assumptions about the social
graph, and Bayesian methods to compute the probabilities that nodes are sybils.
Finally, [18] uses the social network graph to aggregate votes for online content.
The “vote collector” is assumed to be honest, and votes are collected using max-
flow in the social graph.

Most of these techniques implicitly or explicitly use assumptions about ex-
pansion properties of social-network graphs. We also make use of the idea that
if “adding edges is hard” in an expander graph the adversary is limited in the
effect bad nodes can have, but in our case the graph is artificially generated,
so we can prove (in the random-oracle model, at least) that our graph has the
required properties. On the other hand, the labeling of the graph is adversarial;

176 G. Alberini, T. Moran, and A. Rosen

despite this, we get results that are—in some sense—stronger than the results
on social networks: we can bound the total number of “bad” nodes (rather than
just their influence).

Verifiable and Private Polling. A widely used technique for privacy-preserving
polling is called “randomized response” and was introduced in [20]. The first
suggestion for cryptographic verifiability in voting, which also gives a mechanism
for establishing anonymous channels (mix-nets) was made in [5]. More recently,
the works of [6,17] propose taking into account human voters in End-to-End
verifiability, and introduce the notion of separate verification steps for the voter
and external observers. Another incarnation of this idea is verifiable (for the
pollster) privacy-preserving polling using scratch-off cards [15].

2 Model and Definitions

We now introduce a formal model for capturing the notion of verifiable effort-
based polling. The definition will have to address both the syntax of a polling
protocol and the issue of the “effort” involved in the protocol execution. To
model the effort expended by each one of the protocol participants, we give par-
ties access to an effort oracle. The effort spent by each party is measured as the
number of calls that party makes to the oracle. To justify this measure, we pro-
pose to use “peer-to-peer” protocols that presumably require the expenditure of
one call to an effort oracle per successful execution. One well known example for
such a protocol is a CAPTCHA, automatically generated challenges that should
be solvable only if given a call to an effort oracle (and moreover accommodate
automatic verification of the solution). Other options, (some of which may be
more practical) are described in section A.

Before delving into the details, we note that for the convenience of the reader,
the ePrint version of this paper contains a table of the parameters and notation
used in the paper [1].

2.1 Verifiable Effort-Based Polling

An m-responder polling scheme is a multi-party protocol between a pollster,
denoted P and m responders, denoted R1, . . . , Rm. The ith responder holds an
input xi ∈ D ∪ {⊥}, where D is the domain from which the responses are taken
and ⊥ denotes lack of participation in the poll. In practice m will be an upper
bound on the number of responders; We denote by n < m the actual number
of (honest) participants. The number of honest responders is known only to the
adversary. Thus, the adversary can create “fake” responders by replacing some
of the ⊥ inputs with adversarially chosen values. As the adversary knows all the
inputs and controls all the outputs in our protocols, we do not need to consider
corrupted responders—the adversary can just replace an honest responder’s in-
put with a different one to simulate a corrupted responder.

We give parties access to an oracle denoted E, and let RE
i (resp. PE) denote

the execution of Ri (resp. P) with access to the oracle E. Let ei denote the

Public Verification of Private Effort 177

total number of oracle calls made by Ri to E. Let 〈PE , RE
1 (x1), . . . , R

E
m(xm)〉

be a random variable describing the output of a protocol execution, where the
probabilities are taken over the parties’ coin tosses. The output of the protocol
takes the form (Y , z), where Y = (y, w) denotes the output of the pollster
(y = (y1, . . . , ym) indicates the outputs of the responders as announced by the
pollster, and w contains a proof of correctness of the result) and z = (z1, . . . , zm)
denotes the local outputs of the responders, where zi corresponds to the local
output of Ri following the protocol execution. The role of the local outputs zi is
to enable local verification by the parties.

To make the polling scheme publicly-verifiable we will additionally require the
existence of a verifier V that takes Y and z as inputs (the verification procedure
can use the output of the local verification; e.g., global verification could fail if
too many responders complain).

Definition 2 (Verifiable Effort-Based Polling). Let κ,m, a ∈ N and let
α, θ ∈ [0, 1] and B : N × N → N. An m-responder effort-based polling scheme is
said to be (α,B)-sound and θ-robust if there exists a probabilistic polynomial-
time algorithm V such that for any x1, . . . , xm ∈ D ∪ {⊥} with n = #{i ∈
[m]|xi �= ⊥}, the following properties are satisfied:

Soundness: For every PPT (Probabilistic Polynomial Time) P ∗, if n ≥ αm
and Δ(x, y) ≥ B(a,m) then

Pr
[
V (Y , z) = accept

]
< 2−κ ,

where the probability is taken over (Y , z) ← (P ∗E , RE
1 (x1), . . . , R

E
m(xm)),

a is the total number of oracle calls made by P ∗ to E,and Δ(x, y) is the
minimum Hamming distance between x and some permutation of y (i.e., this
corresponds to the number of responses changed/added by the adversary).

Completeness: For every subset {i1, . . . , it} ⊆ [m] of responders (correspond-
ing to malicious responders), if ei1 + . . .+ eit < θm then

Pr
[
V (Y , z) = accept

]
> 1− 2−κ,

where the probability is taken over (Y , z) ← (PE , RE
1 (x1), . . . , R

E
m(xm)).

Informally, we can interpret (α,B)-soundness as a guarantee that if at least an
α-fraction of responders are honest, then the adversary cannot change too many
responses without getting caught. The influence of the adversary is captured
by the function B. Generally, we would expect B(a,m) to be proportional to
the number of responses an honest user could add using a calls to the effort
oracle. Thus, an intuitive measure of the protocol’s soundness is a bound on the
multiplicative advantage of the adversary:

C(a) = B(a,m)
d

a

If the multiplicative advantage is bounded by C, then any adversary who can
change C · � responses using an optimal cheating strategy could have altered �

178 G. Alberini, T. Moran, and A. Rosen

responses (in expectation) by honestly following the protocol and expending the
same amount of effort.

The θ-robustness of the protocol guarantees that if the total effort available
to malicious responders is less than θm, then they cannot cause the verification
procedure to fail except with negligible probability.

2.2 Formally Defining Proofs of Effort

In the “effort-oracle” model we can fully formalize definition 1. Note that while
we define PPE to be a two-party protocol, we require soundness to hold even
in a concurrent setting, in which a malicious party A∗ participates concurrently
in multiple executions of the protocol with other parties. To achieve this, we
assume each protocol execution has a unique identifier id (e.g., in practice this
could be a concatenation of the identities of the participating parties and the
current time).

Definition 3 (One-Sided PPE). A protocol ΠE(P, V) between a prover P
and a verifier V is a one-sided PPE if it satisfies the following properties:

1. Efficiency An honest execution of ΠE(P, V) requires P and V to make at
most one oracle call to E (each).

2. σ-Completeness If P and V execute an instance of ΠE(P, V) and both
honestly follow the protocol, then with probability at least 1−σ V will output
“true” at the end of the protocol.

3. ε-Soundness For every PPT (Probabilistic Polynomial time) P ∗ that exe-
cutes an instance of ΠE(P ∗, V) using identifier id, if V honestly follows the
protocol but P ∗ does not make at least one oracle call to E with input id,
then the probability that V outputs “true” is at most ε.

Definition 4 (Two-Sided PPE). A protocol ΠE(A,B) between two parties A
and B is a two-sided (symmetric) PPE if it simultaneously satisfies the one-sided
PPE definition for A as a prover and B as verifier, and vice versa.

3 The Protocol

The main technical innovation in this paper is the construction of the Pollster’s
proof for the correctness of the published results. To do this, we borrow ideas from
the literature on defense against Sybil attacks using pre-existing trust relations.

To account for the possibility that an honest responder can fail a PPE execu-
tion independently of his honesty, we denote by ηE the fraction of failing PPEs
that the protocol tolerates before discarding someone’s vote. On the other hand,
we indicate by ηV the upper bound on the fraction of responders whose vote can
be discarded by the pollster (if the number of discarded votes is greater than
ηV , the overall verification will fail). Moreover, in order to avoid denial-of-service
attacks caused by malicious responders that intentionally fail all their PPEs,
our protocol will require to register for the poll by solving a single-sided PPE

Public Verification of Private Effort 179

(i.e., a PPE that requires effort only from the voters side in order to be suc-
cessful). With high probability this kind of attack will then be unsuccessful
whenever the cheating responders are limited in the amount of effort they can
expend. Following, is a high-level description of our protocol. The full formal
protocol description can be found in the ePrint version of the paper [1].

1. Parameter Announcement. This phase consists of a single broadcast by
the pollster, consisting of the public parameters for the poll. The pollster
generates a unique, random identifier id for the poll and public key param-
eters for a digital signature scheme. We denote by SK, V K the secret and
public key respectively (note that these are required only for completeness—
responders will have their own signature and verification keys).
The public parameters are the tuple (id, questions, p, V K), where questions
is the set of poll questions. p is a probability that determines the expected
degree of the certification graph.

2. Registration. Each responder Ri samples a private key SKi and a public
key V Ki for their signature scheme, and sends (addri, V Ki) to the pollster
(where addri is the responder’s network address). Each responder then solves
a single-sided PPE (verified by the pollster). If verification was successful,
the pollster adds (addri, V Ki) to its list of registered responders.
When the registration phase is over, the pollster broadcasts the list of reg-
istered public keys. Note that the network addresses are not required to
appear in the broadcast list. The order of public keys in the list maps each
registered responder to a unique index (i.e., the ith key in the list is mapped
to index i).
For each index i, we define Ni to be “the neighborhood of i” in the certi-
fication graph. Ni is computed from i and m (the total number of parties)
using a cryptographic hash H : j ∈ Ni iff H(i, j) ≤ p, where the output of H
is treated as a binary fraction in [0, 1] (e.g., H could be SHA-1). Since all of
the parameters are public, every party can compute the list of its neighbors
in the graph.
However, while Ri may know the verification key of every neighbor, it does
not necessarily know their network addresses. The parties can communi-
cate via the pollster, or alternatively, the pollster can send each party i the
network addresses of all its neighbors in the graph.

3. Responder Certification (PPE execution). As just described, every
pair of responders is paired in a PPE instance with probability p. Now,
for each Rj ∈ Ni, responder Ri engages in a PPE with Rj . The actual
execution is peer-to-peer, however the communication may be facilitated
by the pollster (e.g., the pollster’s website can be used as a conduit for a
VOIP chat). If the PPE execution succeeded (both parties received “true”),
the parties sign each other’s public keys (concatenated with a unique “poll
identifier”, to prevent the signatures being reused in other polls) and send
the signed values to each other.

180 G. Alberini, T. Moran, and A. Rosen

4. Poll Response. Every responder Ri sends to the pollster the results of
the certification phase (a signature on V Ki from each neighbor with which
it successfully completed a PPE) and xi, the actual response to the poll
questions.

5. Results and Proof. We can think of the responders as nodes of a graph
Gc in which they are connected by edges if and only if they were supposed
to interact through a PPE. Let V = {1, . . . ,m} denote the set of responders
and E := {(i, j)|i, j ∈ V,H(i, j) < p} the set of edges. We call Gc = (V,E)
the “certification graph”. Note that anyone can compute Gc given the serial
numbers associated to the responders and p. Then, as a “proof of correctness”
the pollster publishes the graph consisting of the following2:
Node labels: For each responder Ri the pollster publishes

(xi, sigSKi(xi), V Ki, idi).
Edge signature: For each successful PPE the pollster publishes

(sigj(V Ki), sigi(V Kj)), where V Ki, V Kj are the public keys of the re-
sponders involved in it.

List of deleted nodes: The list of all nodes whose response will not count
in the result because they failed more than a ηE fraction of the PPEs.

The empirical distribution of the responses can be computed by counting the
votes associated to the non-deleted nodes. Note that the graph published
by the pollster, call it Gp, is composed of the same nodes as Gc, but it’s
missing all the edges associated to unsuccessful PPEs. So, Gp = (V,E′) is
a subgraph of Gc = (V,E) where (i, j) is in E′ if and only if Ri and Rj

successfully interacted through a PPE.
6. Verification. The procedure is divided in two steps:

Local verification (performed by each responder) consists of verifying
that the corresponding node was published correctly, as were the edge
signatures in which he was involved (no adjacent edge is missing, and all
the adjacent edges in the graph were verified with a successful PPE). If
any of these verifications fail, the responders sends a “complaint”.

Global verification (can be performed by anyone) consists of checking
that all the nodes, and no others, that failed more then ηEd edges are
indeed marked as deleted. To verify if a node i is marked correctly, the
verifier needs to find its neighbors in the graph (by computing the hash
function H(i, j) for every j �= i) and checking how many of the signed
edges appear in the published graph. Then, the verifiers need to check
that no more than a ηV fraction of the nodes were deleted and that not
“too many” valid complaints were sent.

An adversarial pollster can attempt to manipulate results either by changing
the responses associated with honest nodes or by “controlling” many nodes (they
will be nodes that do not correspond to any honest participant, but appear in
Gp and their “behaviour” is dictated by the pollster), such that the overall

2 the information as described is redundant (e.g., the list of deleted nodes can be
computed from the list of edge signatures and node labels), but we describe it in this
way to make the description of the verification process simpler.

Public Verification of Private Effort 181

empirical distribution differs from the empirical distribution over the honest
nodes. In the former case, the local verification will detect the adversary and
many valid complaints will be sent. In the latter case, we use an expansion
property of the graph to prove that any large enough set of “bad” nodes (nodes
that are controlled by the adversary) must have many edges to its complement
in the graph. Thus, an adversary who wants to control a big enough set of nodes
must succeed in many PPE executions with honest nodes; since the adversary
is bounded in the number of successful PPE executions, it will be caught with
high probability.

The protocol also provides a measure of robustness against malicious respon-
ders. Cheating responders cannot undetectably modify the results for the same
reason that a cheating pollster cannot. However, they can attempt to launch a
denial-of-service attack by causing verification to fail. As explained above, the
single-sided PPE in step 4 will prevent this form of attack, as long as the cheating
responders are limited enough in the amount of effort they can expend.

4 Soundness

To prove the soundness of our protocol we need to show that the number of votes
that the adversary can control is at most proportional to the amount of effort
that he is willing to invest. That is, whenever the adversary is able to control
a “meaningful” amount of votes that is significantly greater that the number of
votes that she could have controlled by honestly following the protocol (with the
same effort investment), our verification procedure will fail with overwhelming
probability. The proof of such a result will rely both on the security of the
signature schemes and on an expansion property of the graph Gp published by
the pollster as proof of correctness.

The use of the signatures is entirely straightforward: they prevent the adver-
sary from changing honest users’ votes and from claiming a failed PPE with an
honest user was successful (to do this, the adversary would have to forge the
honest node’s signature). Similarly, the pollster’s signature on the honest user’s
registration information and the signatures of its neighboring nodes allows the
honest user to verifiably complain about being omitted from the count despite
successfully completing the requisite number of PPEs. The “meat” of the secu-
rity proof is in the analysis of the certification graph, and that will be the focus
of this section.

As described in the previous sections, in a m-responders polling scheme, each
responder holds an input xi ∈ D ∪ {⊥}, where D is the domain from which the
responses are taken and ⊥ denotes lack of participation in the poll. We call a
node honest if its corresponding party participated in the poll (its input was not
⊥). We call a node bad if it is not honest but its response in the output is not
⊥. Finally, we say a node is deleted if it failed more than ηEd of the PPEs it
was assigned (note that both honest and bad nodes may be deleted), where d
is the number of PPE executions each responder is expected to participate in.
Note that for soundness to hold, we need that at least a certain portion, say α,

182 G. Alberini, T. Moran, and A. Rosen

of the responders are actually honest. That is, we need at least αm responders
to participate to the poll by sending an input. The adversary could in theory be
the one controlling the remaining (1 − α)m votes by replacing ⊥ as an actual
vote in the output and by spending the effort he has available. We prove that if
the number of controlled nodes is significantly greater than the number of votes
he would have controlled by acting honestly, then he will be detected with high
probability.

In order to prove soundness, we bound separately the number of bad nodes
(corresponding to “fake” parties generated by the adversary) and the number of
changes the adversary can make to the input of honest nodes (that is, responder
Ri voted xi and the pollster output yi ∈ D \ {xi} or yi = ⊥ instead). To prove
the first bound, we rely on an expansion property of the graph Gp output by
the pollster. In the following subsection we give a general definition of such a
property and we prove some lemmas that will be useful for our proof.

4.1 Large-Set Expanding Property

The LSE property is similar to the “jumbled” graphs of Thomason, but is weaker
since we don’t care if small sets do not expand. This lets us get better LSE pa-
rameters for random graphs than are possible for the standard jumbled graphs
(formally, we use the G(n, p) model for random graphs; a graph is distributed
according to G(n, p) if it has n vertices and for each pair of vertices the corre-
sponding edge exists with probability p).

Definition 5 (Large-Set Expanding (LSE)). A graph G = (V,E), with
m = |V |, is said to be (K, ρ, q)-LSE if for every pair of disjoint sets A,B ⊂ V
such that K ≤ |A| ≤ m/2, |B| ≥ m − |A| − ρ it holds that the set of edges
between A and B, denoted by e(A,B), has cardinality greater than |A||B|q.

In our analysis K will denote a bound on both the maximum number of bad
nodes that we will allow and on the minimum number of good nodes that we
require, ρ will be the maximum number of deleted nodes and q a function of the
probability that two voters have to run a PPE.

Lemma 1. Let G(m, p) = (V,E) be a random graph with p = d/m, For every
ρ ≥ 1, ρ ∈ N and every b > 1, if

d >
4b2m

m− 2ρ
(lnm+ 1)

then G is (K, ρ, b−1
b p)-LSE with probability at least 1 − 2−κ for K = κ + (ρ +

2) lnm+ ρ (where the probability is over the choice of graph).

Proof. Consider an arbitrary pair of sets A,B ⊂ V such that K ≤ |A| ≤ m/2,
|B| = m − |A| − r with 1 ≤ r ≤ ρ. Define the random variable Xi,j to be the
indicator variable for the event (i, j) ∈ E.

Public Verification of Private Effort 183

Since G is a random (m, p)-graph, the Xi,j ’s are independent and Pr[Xi,j =
1] = p. Then

|e(A,B)| =
∑
i∈A

∑
j∈B

Xi,j

E[|e(A,B)|] = |A||B|p = μ

For A,B ⊂ V such that K ≤ |A| ≤ m
2 and m − |A| − ρ ≤ |B| ≤ m − |A|, let

Bad(A,B) be the event that

|e(A,B)| < b− 1

b
μ

(For A,B not satisfying the size restrictions, we define Bad(A,B) to be the null
event.)

To prove the lemma, we must bound the probability that
Pr [∃A,B ⊂ V : Bad(A,B)]. First, since the Xi,j ’s are independent, by the Cher-
noff bound we have for any disjoint sets A and B:

Pr[|e(A,B)| < b− 1

b
μ]

≤ exp{− μ

2b2
} = exp{−|A||B|p

2b2
}

= exp{−|A|(m− |A| − r)p

2b2
} ≤ exp{−|A|(m/2− r)p

2b2
}

Next, we bound the probability that there exist two sets A and B of fixed
sizes |A| = x, |B| = m− x− r such that Bad(A,B) occurs. Denote

ε = Pr

⎡⎢⎢⎣ ⋃
A,B⊂V,A∩B=∅

|A|=x,|B|=m−x−r

Bad(A,B)

⎤⎥⎥⎦
By the union bound, this probability is bounded by

ε ≤
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

Pr

[
|e(A,B)| < b− 1

b
μ

]

≤
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

exp{−|A||B|p
2b2

}

=
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

exp{−x(m− x− r)p

2b2
}

184 G. Alberini, T. Moran, and A. Rosen

=

(
m

x

)(
m− x

r

)
exp{−x(m− x− r)p

2b2
}

≤
(
m

x

)(
m

r

)
exp{−x(m− x− r)p

2b2
}

≤
(me

x

)x (me

r

)r

exp{−x(m− x− r)p

2b2
}

Since |A| = x ≤ m
2 ,

exp{−x(m− x− r)p

2b2
} ≤ exp{−x(m/2− r)p

2b2
}

Hence

ε ≤ exp
{
x(lnm+ 1− lnx) + r(lnm+ 1− ln r)− x

(m

2
− r

) p

2b2

}
≤ exp

{
−x

(
d

4b2
− dr

2b2m
− lnm− 1 + ln x

)
+ r(lnm+ 1− ln r)

}
≤ exp

{
−x

(
d

4b2
− dr

2b2m
− lnm

)
+ r(lnm+ 1)

}
≤ exp {−x+ r(lnm+ 1)}

Where the last two inequalities hold as long as lnx > 1 (which is always
true assuming K > 3), ln r ≥ 0 (which is always true for r ≥ 1) and d >
4b2m
m−2r (lnm+ 1).

Applying the union bound again, we get

Pr [∃A,B ⊂ V : Bad(A,B)]

≤
m/2∑
x=K

ρ∑
r=1

Pr

⎡⎢⎢⎣ ⋃
A⊂V
|A|=x

⋃
B⊂V

|B|=m−x−r

{|e(A,B)| < b− 1

b
μ}

⎤⎥⎥⎦
≤ m

2
ρe−K+ρ(lnm+1)

≤ 2−κ

since K > κ ln 2 + (ρ+ 1) lnm+ ln ρ+ ρ.

In our analysis, we will use this lemma to prove that the certification graph
Gc is indeed expanding with specific parameters K, ρ, and q. We will then need
to use the following lemma, in order to prove that our protocol is sound:

Lemma 2. Consider a graph G = (V,E) with m = |V | nodes. Let G′ = (V,E′)
be the graph obtained from G by deleting at most s edges per node. If G is
(K, ρ, q)-LSE, then G′ is (K, ρ, q − 2s

m−2ρ)-LSE.

Public Verification of Private Effort 185

Proof. For simplicity let q′ = q− 2s
m−2ρ . Consider A,B ⊂ V such that K ≤ |A| ≤

m/2 and m − |A| − ρ ≤ |B| ≤ m − |A|. We want to prove that |eG′(A,B)| >
|A||B|q′, where eG(·, ·) indicates the set of edges between A and B in the graph
G.

First, by assumption the maximum number of edges that can be missing in
G′ from v are exactly s. Therefore, the maximum number of edges that can be
missing in G′ from the set of all edges with at least one node in A is |A|s. In the
worst case, for us, all the missing edges were part of e(A,B) in G. Thus,

|eG′(A,B)| ≥ |eG(A,B)| − |A|s

Now we can use the fact that G is (K, ρ, q)-LSE to obtain the following:

|eG′(A,B)| ≥ |eG(A,B)| − s|A| > |A||B|q − s|A| .

It remains to show that |A||B|q′ ≤ |A||B|q − s|A|. From q′ = q − 2s
m−2ρ and

|A| ≤ m/2 we get

|A||B|q′ = |A||B|
(
q − 2s

m− 2ρ

)
≤ |A||B|

(
q − s

m− |A| − ρ

)
= |A||B|q − |A|s

(
|B|

m− |A| − ρ

)
≤ |A||B|q − |A|s ,

from which we can conclude |eG′(A,B)| > |A||B|q′ as required.

4.2 Main Theorem and Proofs

We can now apply the results obtained in the previous subsection specifically to
our protocol. Let a denote the maximum number of effort oracle calls that the
adversary is willing to make and let K = κ+ (ηV m+2) lnm+ ηV m.3 Formally,
we prove

Theorem 3 (Soundness). Let

b =

√
d(12 − ηV)

2(lnm− 1)
.

If b > (12 − ηV)/(
1
2 − ηV − ηE) > 1, then the protocol of section 3 is an (α,B)-

sound verifiable polling protocol for

α = K/m+ ηV

3 Recall that ηV is a parameter denoting the max fraction of nodes that can be deleted
before verification fails.

186 G. Alberini, T. Moran, and A. Rosen

and

B(a,m) = max

{
K,

(
b

(b− 1)(12 − ηV)− bηE

)
a

d

}
+ θm .

When a is sufficiently large (so we can ignore the K “free” responses), this
implies the multiplicative advantage of the adversary is bounded by

C(a) =

(
b

(b − 1)(12 − ηV)− bηE

)
+

θmd

a
.

One way to interpret this is that an adversary gets resources equivalent to θm
honest users “for free”, but any more powerful adversary has multiplicative ad-
vantage bounded by

C∗ =

(
b

(b− 1)(12 − ηV)− bηE

)
+ 1

(recall that an honest user must solve, in expectation, d PPEs during the protocol
execution, so an adversary more powerful than that must have a > θmd).

Proof. As we discussed at the beginning of the section, there are two ways for
the pollster to affect the vote count:

1. By possibly controlling some of the nodes.
2. By replacing or deleting the votes of honest participants.

For the latter, the bound relies on the security of the signature scheme and
on the local verification of honest parties. In fact, the signature scheme ensures
that the adversary cannot modify responses (with a yi �= ⊥) (since that would
require forging a signature compatible with the node’s verification key). Thus,
the local verification of honest nodes will catch the adversary deleting or com-
pletely replacing nodes; Global verification fails whenever more then θm nodes
complain—thus, the number of deleted/replaced nodes in a successful protocol
execution can be at most θm.

It is left to show that if the number of controlled nodes is higher than B, then
global verification will fail. The proof proceeds as follow:

– Using Lemma 1 and Lemma 2 we prove that Gp is LSE with high probability.
– We will then have a lower bound on the number crossing edges between a

possible set of bad nodes and the set of honest nodes.
– We conclude by noticing that the pollster, in order to control a set of nodes

larger than B, would have had to succeeded in more than a PPEs involving
honest participants.

Let F denote the nodes in Gp corresponding to voters that have failed more
than ηEd PPEs. It must be that |F | ≤ ηV m, otherwise the verification procedure
would fail. Let B and H denote the set of bad and honest nodes, respectively,
that have not been labeled as “deleted”. Thus B, H and F are disjoint sets

Public Verification of Private Effort 187

whose union is V . That is, since we have a total of m nodes, if |B| = x then
|H | = m− x− |F |. Recall that a successful PPE corresponds to an edge in Gp.
Thus, a lower bound on the number of edges in Gp between the sets B and H
translates to a lower bound on the number of PPEs in which the adversary must
have succeeded, and hence on the number of oracle calls made by the adversary.

Note that from Lemma 1, we know thatGc is (K, ηV m, b−1
b p)-LSE with proba-

bility at least 1−2κ. Thus, from Lemma 2, we can conclude that, with probability
at least 1− 2κ, Gp is (K, ηV m, b−1

b p− 2ηEd
m−2ηV m)-LSE. Wlog assume

|B| < m/2 and |B| ≥ max

{
K,

(
b

(b− 1)(12 − ηV)− bηE

)
a

d

}
(the case |H | < m/2 is analogous, using |H | ≥ (α− ηV)m ≥ K). Then, we get:

|e(B,H)| > |B||H|
(
b− 1

b
p − 2ηEd

m− 2ηV m

)

≥ |B| (m− |B| − ηV m)

(
(b− 1)d(1 − 2ηV)− 2bdηE

mb(1 − 2ηV)

)

≥
(

2b

(b− 1)(1 − 2ηV)− 2bηE

)
a

d

(m
2

− ηV m
)((b− 1)d(1 − 2ηV)− 2bdηE

mb(1 − 2ηV)

)

=

(
2b

(b− 1)(1 − 2ηV)− 2bηE

)
a

d

(
m(1− 2ηV)

2

)(
d[(b− 1)(1 − 2ηV)− 2bηE]

mb(1 − 2ηV)

)
= a

Thus, with probability at least 1 − 2κ, |e(B,H)| > a which contradicts the
assumption of the adversary being limited to a successful PPEs.

Therefore, the number of votes controlled by a pollster that invests a effort

oracle calls must be lower than max{K,
(

b
(b−1)(1

2−ηV)−bηE

)
a
d}+ θm, as wanted.

5 Completeness

It is now left to show that in the case of an honest pollster, the verification
procedure will succeed with overwhelming probability. Even when dealing with
an honest pollster, we still need to take into account the possibility that malicious
voters might try to force the verification to fail. This can be done by registering
for the poll but aborting in all the PPE executions. Such a strategy will force
the verification procedure to label the node as deleted and all its edges as failing.
It will thus increase the number of deleted nodes which, for the verification to
output accept, needs to be smaller than ηV m.

To make sure that such an attack would require the adversary to expend actual
effort, we require each responder to solve a single-sided PPE (where the effort is
required only from the responders) in order to be allowed to participate to the
poll. We think of the number of maliciously controlled nodes as bounded by θm,
where θ will depend on the “effort” invested by the malicious voters. Theorem

188 G. Alberini, T. Moran, and A. Rosen

4 gives a bound on ηV as a function of θ and κ that will enable the verification
procedure, in case of an honest pollster, to output accept with probability at
least (1− 2κ).

To prove the main theorem of this section, we will require the following lemma
(whose proof is below):

Lemma 3. Assuming static corruption, the probability that malicious respon-
ders with a θm bound on effort (in total) can control max {3θmd, 3κ} edges in
the certification graph is bounded by e−κ.

Theorem 4 (Completeness). Let θm denote the maximum number of effort
oracle calls that can be made by malicious responders and

ηmin
V = θ +

3 ·max
{

κ
md , θ

}
ηE

+
2σ

ηE

(
1 + max

{
2,

2κ

mdσ

})
If the pollster follows the protocol honestly, ηE > 0 and ηV ≥ ηmin

V then the
probability that the verification procedure outputs accept is at least 1− 2−κ.

We note that for non-trivial soundness, the values of ηE and ηV are further
constrained. See the ePrint version of this paper for a discussion on choosing the
parameters [1].

Proof. Let G(m, p) = (V,E), with p = d/m, be the random graph generated by
the pollster. Recall that an edge (i, j) is labeled as failing whenever the PPE
between i and j fails. We denote by σ the probability that such an event occurs
between honest voters. Moreover, ηE is the highest fraction of PPEs that can
fail before a node/voter gets labeled as deleted, and ηV is the maximal fraction
of deleted nodes accepted by the verification procedure.

Let Xi,j denote the indicator random variable for the event “(i, j) ∈ E is a
failing edge”. Note that, if i and j are both honest, the Xi,j ’s are independent
and Pr[Xi,j = 1] = σp. Let X =

∑
i∈V

∑
j∈V Xi,j. Then, E[X] = m2σp = mdσ

and X denotes the number of failing edges in the graph. Since each edge affect
2 nodes, 2X is actually the cardinality of the set containing (with repetitions)
all the nodes affected by failing X edges. Note that for a node to be labeled as
deleted, such a node needs to be connected to at least dηE failing edges, which
means that such a node has been counted at least dηE times in 2X . Thus, the
expected number of deleted nodes in case of honest responders is bounded by
2X/dηE. Now, in our analysis, we need to take into account that, in the worst
case scenario, there will be θm nodes maliciously controlled who will intentionally
fail all their PPE’s. Therefore, we will have to account for the following:

1. The malicious nodes (which are θm) will be failing nodes;
2. Enough bad edges will cause an honest node to be marked deleted. However,

by Lemma 3, with high probability the malicious responders cannot affect
more than 3 ·max {κ, θmd} honest edges. Which means that at most another
3 ·max {κ/d, θm} /ηE nodes can be “forced” to be labeled as deleted.

Public Verification of Private Effort 189

To conclude, we want to prove that the probability that 2X
dηE

+ θm + 3θm
ηE

is

greater than ηV m is negligible. Let ηV = θ + 3θ
ηE

+ 2σ
ηE

(1 + δ). (we will set δ

below.) Then,

Pr

[
2X

dηE
+ θm+

3θm

ηE
> ηV m

]
= Pr

[
2X

dηE
>

2σ

ηE
(1 + δ)m

]
= Pr [X > (1 + δ)mdσ]

By the Chernoff Bound,

Pr [X > (1 + δ)mdσ] ≤ exp

{
− δ2

2 + δ
mdσ

}
Setting δ = max

{
2, 2κ

mdσ

}
, we ensure that Pr [X > (1 + δ)mdσ] ≤ e−κ.

We conclude by proving Lemma 3, as a corollary of the following claim:

Claim. Let S ⊂ V be an arbitrary set of vertices and denote
δ = max {2, 2κ/(|S|d)}. Then

Pr [|{(i, j) ∈ E|i ∈ S}| > (1 + δ)d|S|] < e−κ

(i.e., the probability S has more than (1 + δ)d|S| edges is bounded by e−κ).

Proof. For every pair of vertices i, j ∈ V , let Xi,j be the indicator variable for
the event (i, j) ∈ E. By definition, E[Xi,j] = p. Denote X =

∑
i∈S
j∈V

Xi,j the

number of edges adjacent to S. Then E[X] = mp|S| = d|S|. By Chernoff,

Pr [Xi > (1 + δ)d|S|] ≤ exp

{
− δ

2/δ + 1
d|S|

}
≤ exp

{
− δ

2
d|S|

}
= exp {−κ}

Proof (Proof of Lemma 3). Since the pollster randomly shuffles the nodes in the
certification path during the registration phase, any set of responders is assigned
a random set of nodes in the certification graph. By symmetry, we can consider
the probability for any specific set of size θm. The result follows by setting
|S| = θm in Claim 5.

6 Discussion and Open Questions

General Verifiable Computation Among Anonymous Participants. While we
state our main results in terms of polling, the security guarantee we give is that
the final published graph does not contain too many “bad” nodes. It may be
possible to leverage this technique for doing more general computations, where
the edges in the graph correspond to a private computation between two par-
ties, and the final goal is a joint, publicly-verifiable computation (in this case,
the “responses” might be some intermediate public values of the computation).

190 G. Alberini, T. Moran, and A. Rosen

Parallel and Distributed Verification. The verification procedure in our protocol
is highly parallelizable: each responder must verify three properties, each of
which can be done by reading only a small part of the graph:

– that her own node was correctly published on the bulletin-board (requires
O(m) evaluations of the hash function, but only O(d) communication),

– that the total number of deleted nodes was small (requires reading a small
list of nodes),

– and that no edges were missed (this is a local property of each potential edge
that can be computed from the node labels and the size of the graph).

The only non-local part in the verification is the aggregation of the results from
all the nodes. However, by publishing a small amount of additional information,
this computation can be distributed as well. Given an aggregation tree, where
each node aggregates the results from its children, a verifier can check a sin-
gle local neighborhood and a path from that neighborhood to the root in the
tree. Thus, if we can assume that enough honest responders will participate in
verification, the total amount communication for each responder can be made
logarithmic in the size of the graph.

Practicality of the Protocol. The parameters achieved by our protocol are not
quite good enough to be practical for interaction-based PPEs (the degree of the
graph would be about 180 for reasonable parameters). However, this may already
be good enough for PPEs that can be automated (for example, the social-network
based PPE). Moreover, we believe further research can significantly improve the
efficiency.

Improving Efficiency by Using Hypergraphs. Our bound on the degree of the
graph may be slightly high for some uses of the protocol. However, we can extend
the PPE definition to a multi-party setting, in which several parties certify each
other simultaneously (e.g., using a multi-person chat, such as “Google Hang-
out” or “Skype”). This has the potential of significantly lowering the degree.
Extending our protocol in this way may be an interesting direction for future
work.

Improving Efficiency by Using Explicit Graphs. Our bound on the degree of
the graph is for a randomly chosen graph. In particular, our soundness analysis
includes the event that the chosen graph is not a good expander as a failure mode.
Thus, we require the properties to hold for random graphs with overwhelming
probability. However, it is fairly easy to prove that graphs with better parameters
(e.g., lower degree for the same expansion rate) exist : if we have an explicit
representation of such a graph, soundness will hold unconditionally.

Public Verification of Private Effort 191

References

1. Alberini, G., Moran, T., Rosen, A.: Public verification of private effort. Cryptology
ePrint Archive, Report 2014/983 (2014), http://eprint.iacr.org/2014/983

2. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identi-
fication protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
319–333. Springer, Heidelberg (2009)

3. Awerbuch, B., Scheideler, C.: Group spreading: A protocol for provably secure
distributed name service. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 183–195. Springer, Heidelberg (2004)

4. Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on password-
protected local storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
160–179. Springer, Heidelberg (2006)

5. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84–88 (1981)

6. Chaum, D.: E-voting: Secret-ballot receipts: True voter-verifiable elections. IEEE
Security & Privacy 2(1), 38–47 (2004)

7. Cheng, A., Friedman, E.: Sybilproof reputation mechanisms. In: ACM SIGCOMM
Workshop on Economics of Peer-to-Peer Systems, P2PECON 2005, pp. 128–132.
ACM, New York (2005)

8. Danezis, G., Mittal, P.: Sybilinfer: Detecting sybil nodes using social networks. In:
NDSS. The Internet Society (2009)

9. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

10. Ellison, C.M.: Establishing identity without certification authorities. In: USENIX
SSYM 1996, p. 7. USENIX Association, Berkeley (1996)

11. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: WWW, pp. 640–651 (2003)

12. Krugman, P.: Bits and barbarism. New York Times (December 2013), http://
www.nytimes.com/2013/12/23/opinion/krugman-bits-and-barbarism.html

13. Levien, R., Aiken, A.: Attack-resistant trust metrics for public key certification.
In: USENIX SSYM 1998, p. 18. USENIX Association, Berkeley (1998)

14. Levine, B.N., Shields, C., Margolin, N.B.: A survey of solutions to the sybil at-
tack. Tech. Report 2006-052, University of Massachusetts Amherst, Amherst, MA
(October 2006)

15. Moran, T., Naor, M.: Polling with physical envelopes: A rigorous analysis of
a human-centric protocol. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 88–108. Springer, Heidelberg (2006)

16. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (May 2009)
17. Neff, C.A.: Practical high certainty intent verification for encrypted votes (October

2004), http://www.votehere.net/vhti/documentation/vsv-2.0.3638.pdf
18. Tran, D.N., Min, B., Li, J., Subramanian, L.: Sybil-resilient online content voting.

In: Rexford, J., Sirer, E.G. (eds.) NSDI, pp. 15–28. USENIX Association (2009)
19. Von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard ai prob-

lems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
294–311. Springer, Heidelberg (2003)

20. Warner, S.: Randomized response: a survey technique for eliminating evasive an-
swer bias. Journal of the American Statistical Association, 63–69 (1965)

21. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social
network defense against sybil attacks. IEEE/ACM Trans. Netw. 18(3), 885–898
(2010)

http://eprint.iacr.org/2014/983
http://www.nytimes.com/2013/12/23/opinion/krugman-bits-and-barbarism.html
http://www.nytimes.com/2013/12/23/opinion/krugman-bits-and-barbarism.html
http://www.votehere.net/vhti/documentation/vsv-2.0.3638.pdf

192 G. Alberini, T. Moran, and A. Rosen

22. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.D.: Sybilguard: defending
against sybil attacks via social networks. Expanded Technical Report IRP-TR-
06-01, Intel Research, Pittsburgh, Pittsburgh, PA (June 2006), http://www.

pittsburgh.intel-research.net/people/gibbons/papers/sybilguard-tr.pdf

23. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.D.: Sybilguard: defending
against sybil attacks via social networks. IEEE/ACM Trans. Netw. 16(3), 576–
589 (2008)

A Implementing PPEs, Extensions and Selective Polling

The peer-to-peer nature of PPEs seems to facilitate implementation with rela-
tively simple mechanisms. Below we give several examples.

Bitcoin and Proofs of Storage. The original motivation for proofs of storage
(PoS) is to allow clients to outsource data storage “to the cloud”. In this setting a
storage provider stores a large file on behalf of a client. Roughly, a PoS protocol
allows the provider to prove to the client that it is still storing the file (can
reconstruct the entire file), using a small amount of communication.

Since storage is a valuable resource, it is tempting to use proofs-of-storage as
the “effort unit” in an effort-based polling scheme (e.g., one unit of effort could
be storing 1GB of data for 1 day).

Moreover, publicly-verifiable proofs of storage have been constructed [2]—
given a “public-key” generated for a specific file, anyone can verify that the PoS
that the storage provider publishes for that file.

The problem here is that “backup” is a peer-to-peer concept. In particular, any
solution must prevent malicious parties from sending each other “fake” data to
store: e.g., they store a short seed instead of a large pseudorandom file generated
by that seed.

However, the existing PoS protocols can be trivially used to construct a PPE:
an honest user will send good (incompressible) files to its peers (e.g., by encrypt-
ing the file), and it can verify using the PoS that the files were stored as required.
The soundness and completeness properties of this PPE are inherited directly
from the PoS protocol, hence we can hope for almost perfect completeness and
negligible soundness-error.

This implementation of PPEs may be most interesting in the context of Bit-
coin. One of the strong arguments against the currency is the inherent waste
of the Bitcoin protocol [12]; this is a direct consequence of using proof-of-work
as the basis of its effort-based polling scheme. If we could replace proof-of-work
with, for example, “proof-of-backup”, instead of generating heat as a side-effect,
the Bitcoin network would function as a distributed backup system in addition
to a currency.

http://www.pittsburgh.intel-research.net/people/gibbons/papers/sybilguard-tr.pdf
http://www.pittsburgh.intel-research.net/people/gibbons/papers/sybilguard-tr.pdf

Public Verification of Private Effort 193

Human Interaction. The simplest type of PPE consists of human interaction:
participants certify each other’s effort by simply talking with each other (e.g.,
using VOIP, video, or even textual chat). This is at least as hard to pass than a
“real” Turing test (which consists solely of textual interaction), so its soundness
properties seem to be very robust.

To prevent a proxying attack (in which Eve convinces Alice that she has
expended effort by relaying Alice’s challenges to Bob and vice versa), the protocol
can include Bob reading aloud his partner’s identity. Thus, to act as a person-
in-the-middle, Eve would have to translate Bob saying Eve’s public key to Bob
saying Alice’s public key, which seems like it would require some actual effort.

Symmetric CAPTCHAs. In this version of the PPE, each party generates a
“real” CAPTCHA to be solved by the other party while simultaneously solving
the CAPTCHA she received.

To prevent a proxying attack, we bind the CAPTCHA to the parties’ identities
using a combination of cryptographic commitments and a Message Authentica-
tion Code (MAC).

Define the CAPTCHA as a problem-generatorG(r) that given a random input
r generates a CAPTCHA C along with its solution V .

1. When Bob generates a CAPTCHA for Alice, he chooses a secret MAC key
and sets as the random input to G the MAC of the pair of public keys
(Alice,Bob). He sends G(r) to Alice.

2. Alice solves C, and sends a commitment to her solution to Bob.
3. Bob then sends his secret MAC key to Alice.
4. Alice verifies that the challenge she received is correctly generated (i.e.,

bound to Alice and Bob’s public keys). If not, she aborts
5. Otherwise, Alice opens her commitment
6. Bob verifies that Alice correctly solved the challenge.

This protocol ensures that Eve can’t use Alice to solve Bob’s challenge to her,
since Alice would refuse to open her commitment if she sees the CAPTCHA
wasn’t meant for her. Note that in terms of the effort required, this is not harder
than just solving a CAPTCHA—the rest of the protocol can be completely
automated.

Leveraging Existing Social Networks. Instead of an online effort, a possible
PPE implementation can use an existing social network (basing the “effort” on
the assumption that becoming “well connected” in a social network is difficult).
For example, two parties can verify that they have several short, vertex-disjoint
paths between them in the social network (or use some other measure of distance
for which the effort assumption seems reasonable).

In this version of the protocol, parties are not guaranteed anonymity (since
they must reveal their identities in order to verify their distance in the social
network), but the public transcript of the protocol does not reveal anything
about their identities or their social-network neighborhood.

194 G. Alberini, T. Moran, and A. Rosen

The main problem here is preventing an adversary from using the same social-
network identity in multiple different PPE invocations. The fact that the PPE
is a private-coin primitive makes this problem easy to solve, assuming the social
network allows users to publish information linked to their real identity (e.g., a
“home page”). Party i chooses a random nonce ri and publish a commitment to
ri on their homepage. When executing the PPE with party j, i will publish ri
and privately open the commitment to ri towards party j; Party j can verify by
looking at i’s homepage that the nonce is the correct one. Assuming the home-
page provides a consistent view to all honest users, i cannot use a different nonce
in different PPE invocations. However, the public transcript cannot be linked to
i’s social-network identity due to the hiding property of the commitment.

Other PPE Extensions. Our basic definition of PPE only guarantees that “ef-
fort” is expended by the parties. This can be easily extended to capture more com-
plex conditions that are hard to verify publicly but may be easy to verify in a peer-
to-peer manner. For example, limiting a poll to a small geographic area. While
certifying location in a publicly-verifiable way is difficult, verifying that someone
else is physically nearby can be much easier (e.g., using speed of response or shared
environmental cues, such as noise or micro-local weather conditions). By extend-
ing the PPE to verify physical proximity, we can guarantee the vast majority of
participants must be local (assuming a large enough fraction is).

Another example is polling groups whose membership is secret (e.g., a poll
of the “Anonymous” organization). If members of the group can recognize each
other (e.g., they have a “secret handshake”), we can use the same technique to
guarantee that our poll is targeting the group.

Limiting a poll to specific communities in an existing social network can be
done similarly. Thus we can conduct verifiable polls on a social-network graph
while keeping the graph itself secret—this can be important, since the structure
of the social network often reveals a large amount of information about the
identity of its nodes.

B Choosing Parameters

Below is a table containing a list of the most common parameters used through-
out the paper. We partition the parameters into fixed parameters (in Table 1)—
those that depend on assumptions about adversarial behavior and the effective-
ness of the PPEs, and tunable parameters (in Table 2)—those that can be set
by the poll designer (subject to certain constraints) and computed parameters
(in Table 3)—these are functions of the previous parameters.

Public Verification of Private Effort 195

Table 1. Fixed Parameters

Symbol Description

m Total number of responders to the poll / Number of nodes in the graph.

n Number of honest responders.

a Upper bound on the number of oracle calls that the adversary can
successfully perform / Upper bound on the number of attack edges.

θ Upper bound on the fraction of malicious responders: the total number
of oracle calls made by malicious responders is at most θm.

σ Probability of a PPE failing when both parties honestly follow the
protocol.

ε Probability of a PPE succeeding when one party does not make at least
one oracle call.

Table 2. Tunable Parameters

Symbol Description

κ Security parameter.

d Expected degree of the graph (expected number of PPE executions per
responder). This can be tuned by changing p (p = d/m).

α Minimum fraction of honest responders required to guarantee sound-
ness.

Table 3. Computed Parameters

Symbol Description

p Edge probability. Every pair of responders will be required to engage
in a PPE with probability p.

ηE
Upper bound on the fraction of PPE’s that a responder can fail without
getting deleted.

ηV
Upper bound on the fraction of nodes that can be deleted without
causing the verification procedure to fail.

K Number of nodes in the graph that the adversary can control “for free”.

C∗
Upper bound on the multiplicative advantage of the adversary (an ad-
versary has no more influence than an honest user that can invest C∗

times the effort).

196 G. Alberini, T. Moran, and A. Rosen

B.1 Constraints on Parameters

First, from Theorem 3 we have:√
d(12 − ηV)

2(lnm− 1)
> (

1

2
− ηV)/(

1

2
− ηV − ηE)

which implies that

d >
1
2 − ηV

(12 − ηV − ηE)2
(2 lnm− 2) . (1)

By the definitions of α and K in Theorem 3, we get

α ≥ K/m+ ηV =
κ+ 2 lnm

m
+ ηV (lnm+ 2) ≥ κ+ 2 lnm

m
(2)

Isolating ηV instead of α, we have:

ηV ≤ ηmax
V =

α− κ+2 lnm
m

2 + lnm
(3)

Combining this with the bound on ηV from Theorem 4, we get

ηmin
V = θ +

3 ·max
{

κ
md , θ

}
ηE

+
2σ

ηE

(
1 + max

{
2,

2κ

mdσ

})
≤ ηV ≤ ηmax

V

Which implies the following bound on ηE :

ηE ≥ ηmin
E = ηE · ηmin

V − θ

ηmax
V − θ

=
3 ·max

{
κ
md , θ

}
+ 2σ

(
1 + max

{
2, 2κ

mdσ

})
ηmax
V − θ

(4)

Finally, note that we must have θ < ηV ≤ ηmax
V , but this is not sufficient.

Since we need 1
2 − ηV − ηE > 0:

1

2
< ηV + ηE ≥ ηmin

V + ηmin
E

≥ θ +
3θ + 2σ

(
1 + max

{
2, 2κ

mdσ

})
ηmax
V − θ

Assuming θ < 1
2η

max
V , this implies

1

2
> θ +

6θ + 4σ
(
1 + max

{
2, 2κ

mdσ

})
ηmax
V

= θ

(
1 +

6

ηmax
V

)
+

4σ

ηmax
V

(
1 + max

{
2,

2κ

mdσ

})

Public Verification of Private Effort 197

This gives us the following bound on θ:

θ <

1
2 − 4σ

ηmax
V

(
1 + max

{
2, 2κ

mdσ

})
1 + 6

ηmax
V

(5)

Since the θ must be non-negative, we also have a bound on σ:

12σ

ηmax
V

≤ 4σ

ηmax
V

(
1 + max

{
2,

2κ

mdσ

})
≤ 1

2

hence

σ ≤ ηmax
V

24
(6)

B.2 Examples of Parameter Settings

For simplicity we will consider PPEs for which the soundness error ε is negligible
and we will omit it. Moreover, depending on the context in which we would like to
use our protocol and the level of security we would like to achieve, different type
of PPEs might be more suitable. As presented in section A, there are multiple
ways we could think of implementing PPEs and, naturally, each implementation
comes with its own advantages/disadvantages. For instance, opting for a proof-
of-storage based implementation can provide us with PPEs with almost perfect
completeness (σ = 0), but requires a lot of communication. On the other hand,
other implementations which would give us a worse completeness error (e.g.,
based on CAPTCHAs), might have higher error but require fewer (or different)
resources.

In Table 4 the reader can find example parameter settings for two parameter
regimes: in Scenarios 1 and 2, there are 5000 responders and PPEs are error-
free, while Scenarios 3 and 4 have 100000 responders with PPEs that have a non-
negligible (albeit small) error rate. The first scenario in each pair has degree close
to the minimum possible for those parameters, while the second demonstrates
the soundness advantage of increasing the degree (we note that the values are
based on our worst-case bounds—in practice it may be possible to achieve better
parameters).

198 G. Alberini, T. Moran, and A. Rosen

Table 4. Possible Parameters

Symbol Scenario 1 Scenario 2 Scenario 3 Scenario 4

κ 40 40 40 40

m 5, 000 5, 000 100, 000 100, 000

θ 1/1000 1/1000 1/10000 1/10000

σ 0 0 1/1000 1/1000

ηE 1/8 1/8 0.23 0.23

ηV 0.025 0.025 0.028 0.028

α 0.28 0.28 0.38 0.38

K 1246 1246 35, 192 35, 192

d 60 120 165 240

C∗
200 10 670 23

As to be expected, higher the degree of the graph (that is the number of PPEs
each responder is required to carry out) lower is the advantage the adversary
gets.

Primary-Secondary-Resolver Membership

Proof Systems

Moni Naor� and Asaf Ziv��

Weizmann Institute of Science,
Department of Computer Science and Applied Mathematics, Israel

{moni.naor,asaf.ziv}@weizmann.ac.il

Abstract. We consider Primary-Secondary-Resolver Membership Proof
Systems (PSR for short) and show different constructions of that primi-
tive. A PSR system is a 3-party protocol, where we have a primary, which
is a trusted party which commits to a set of members and their values,
then generates public and secret keys in order for secondaries (provers
with knowledge of both keys) and resolvers (verifiers who only know the
public key) to engage in interactive proof sessions regarding elements
in the universe and their values. The motivation for such systems is for
constructing a secure Domain Name System (DNSSEC) that does not
reveal any unnecessary information to its clients.
We require our systems to be complete, so honest executions will

result in correct conclusions by the resolvers, sound, so malicious secon-
daries cannot cheat resolvers, and zero-knowledge, so resolvers will not
learn additional information about elements they did not query explic-
itly. Providing proofs of membership is easy, as the primary can simply
precompute signatures over all the members of the set. Providing proofs
of non-membership, i.e. a denial-of-existence mechanism, is trickier and
is the main issue in constructing PSR systems.
The construction we present in this paper uses a set of cryptographic

keys for all elements of the universe which are not members, which we im-
plement using hierarchical identity based encryption. In the full version
of this paper we present a full analysis for two additional strategies to
construct a denial of existence mechanism. One which uses cuckoo hash-
ing with a stash, where in order to prove non-membership, a secondary
must prove that a search for an element will fail. Another strategy uses
a verifiable “random looking” function and proves non-membership by
proving an element’s value is between two consecutive values of members.
For all three constructions we suggest fairly efficient implementations,

of order comparable to other public-key operations such as signatures
and encryption. The first approach offers perfect ZK and does not reveal
the size of the set in question, the second can be implemented based on
very solid cryptographic assumptions and uses the unique structure of
cuckoo hashing, while the last technique has the potential to be highly
efficient, if one could construct an efficient and secure VRF/VUF or if
one is willing to live in the random oracle model.

� Incumbent of the Judith Kleeman Professorial Chair.
�� Research supported in part by grants from the Israel Science Foundation, BSF and
Israeli Ministry of Science and Technology and from the I-CORE Program of the
Planning and Budgeting Committee and the Israel Science Foundation.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 199–228, 2015.
c© International Association for Cryptologic Research 2015

200 M. Naor and A. Ziv

1 Introduction

We consider the cryptographic primitive called Primary-Secondary-Resolver
Membership Proof Systems (PSR for short) and show efficient constructions of
that primitive. The motivation for this type of systems comes from trying to
improve DNSSEC which is a security extension of DNS (Domain Name Sys-
tem) (plain DNS communication doesn’t guarantee security (confidentiality and
authenticity) for the users). The basic problem is as follows, we have a trustwor-
thy source, called the primary, which maps all valid names (e.g. URLs) in its
domain to their corresponding values (e.g. IP addresses). This primary doesn’t
communicate directly with users (resolvers) who wish to make DNS queries for
names; it has the secondaries for that, which are DNS servers that receive some
initial information from the primary and are in charge of responding to resolvers’
queries. As there may be many such secondary servers, we cannot be sure they
are all honest and we do not wish to give them the ability to fool resolvers with
a false response to a DNS query. We would like to give them enough information
so as to give correct responses to DNS queries and a short proof of some sort
to help convince the resolver of the authenticity of the data they received. On
the other hand, we do not wish the resolvers get more information about the
domain than a simple answer to their query, i.e. whether the answer is positive
or negative is all a resolver should be able to deduce (the issue of releasing too
much information about the domain has been an obstacle in getting the current
DNSSEC adapted [4]).

A PSR system consists of a setup algorithm, used by the primary which
receives a privileged subset R from a universe U of names (e.g. the list of hosts in
its domain) and a set of corresponding values V , mapping each element xi ∈ R
to its value vi ∈ V (e.g. mapping all URLs in a domain to their IPs). The
primary generates a public key PK (one may think of it as a signature key),
which should be available to all parties of the protocol. It also generates a secret
key SK which provides secondaries the ability to answer queries honestly. We
will be interested only in efficient constructions where the public key size and
the amount of communication between the secondaries and the resolvers are
independent of the cardinality of the set R.

1.1 Our Contributions

In a companion paper to this work [19] the notion of PSR systems was intro-
duced (albeit it was defined as a one-round proof protocol), as well as an efficient
construction named NSEC5 was suggested. NSEC5 is based on RSA and ana-
lyzed in the random oracle model. The main application of PSR systems is for
a secure Domain Name Server that does not reveal information about the un-
derlying set. That paper also gave a lower bound that shows that in order to
preserve soundness and prevent an adversarial resolver from learning additional
information about elements they didn’t query, the secondary must perform some
non-trivial computation: it must do the computational work needed in a a public

Primary-Secondary-Resolver Membership Proof Systems 201

key identification scheme, for which the best known implementations are signa-
tures (in the random oracle model these two are equivalent). (This showed that
none of the prior approaches to DNSSEC such as NSEC3 yield a solution that
is secure against zone enumeration, i.e. listing of the set R).

We consider PSR Systems that are more general than those of [19] and
define PSR systems with interactive proofs as well as systems that are perfect
zero-knowledge.

In this paper we investigate in depth PSR systems. Our main interest is
efficiency, where we are interested in the computational and communication
load on all three parties, but in particular in the secondary-resolver part that is
performed online. Our main goal in this work is to provide PSR systems that
are efficient and based on reasonable and well studied assumptions. We aim for
efficiency that is of the order of other public-key primitives such as encryption
and signatures.

We provide three general techniques to constructing PSR systems and present
efficient implementations to each of them. We use signatures and various different
cryptographic primitives in our constructions such as: hierarchical identity based
encryption schemes, one-time signatures, cuckoo hashing (with a stash) with com-
mitments and fixed-set non-membership proofs, verifiable random/unpredictable
functions and pseudorandom functions with interactive zero-knowledge proofs.
Our constructions are based on solid cryptographic assumptions: the discrete loga-
rithm assumption and factoring, the existence of universal one way hash functions
and various Diffie-Hellman assumptions. Some of our constructions even achieve
perfect zero-knowledge.

It is quite clear that the more challenging case in constructing PSR systems is
dealing with the non-members of the set. For the members of the set a precom-
puted signature by the primary solves the problem. We suggest three approaches
for constructing PSR systems. All constructions use (regular) signatures to han-
dle proofs of membership, as we precompute a signature over every xi ∈ R and
its value vi. Thus, the difference between the constructions is how they handle
proofs of non-membership, i.e. we offer different denial of existence mechanisms.

In our first approach the primary matches encryption keys to elements of the
universe U . A secondary with knowledge of such a key can use it to generate a
proof of non-membership for the corresponding element. The primary precom-
putes a set of secret keys K, from which it can derive the keys corresponding
only to the set of elements U\R and sends it to the secondaries as part of their
secret key. As long as we make sure the secondaries cannot produce any key for
an element in R, we can construct a denial of existence mechanism in a num-
ber of ways. Resolvers can encrypt a random challenge, which can be decrypted
only with the secret key corresponding to the queried element x ∈ U , thus non-
membership can be proven only for elements outside of R. One can also just send
that secret key to resolvers when queried, making them verify the correctness
of the key by encrypting and decrypting random challenges by themselves. The
secondaries can also generate signatures for the queried element under a secret
key corresponding to that element and verified with a corresponding public key.

202 M. Naor and A. Ziv

In order to implement those constructions efficiently we use Hierarchical Identity
Based Encryption (or HIBE for short). One can think of a set of identities as
nodes in a full binary tree, where with the secret key for an identity, one can
produce the key to any of its descendants. We think of the leaves as elements in
the universe, so by making sure the set of keys K doesn’t contain any secret key
to an element in R or any of its ancestors, but contains at least an ancestor key
to the rest of the elements in U , we get an efficient denial of existence mecha-
nism. Lastly we consider a construction that uses a chain of signatures from the
root of the tree to the leaf, where each signature signs the public key needed to
verify the next signature in the chain. All those constructions manage to achieve
perfect zero-knowledge.

The idea of the second approach is to imitate an oblivious search for the ele-
ment, where by oblivious we mean that the locations examined are determined
by the element searched and some hash functions. The point is to show that the
searched element is in none of the probed locations. For the data structure we use
cuckoo hashing [36] where (unless we are unlucky) each element resides in one of
two locations. That is, as a denial of existence mechanism, we need to prove non
equality just twice. To handle the unlucky case we use a cuckoo hashing scheme
with a stash [26] to store some extra elements. We need to prove non equality to
these elements as well, however we have the advantage that these elements are
fixed for all possible searches. To handle the “normal” case the primary places
Pedersen commitments [37] for the relevant elements in the cells of the cuckoo
hash tables (including “dummies” in the empty cells) and signs these commit-
ments. The secondary is provided with the signed commitments and proves the
committed values are not equal to the queried element. For the stash non equality
we use a generalization of the Feige-Fiat-Shamir identification protocol [15]. Both
proofs are zero knowledge and are rather efficient as the computation needed in
order to execute these two interactive zero-knowledge protocols is dominated
by only a constant number of exponentiations. As Pedersen commitments rely
on the discrete logarithm assumption and the Feige-Fiat-Shamir protocol relies
on the factoring assumption, the result is a PSR system which reveals the size
of the set R but is very efficient and is based on conservative and well studied
cryptographic assumptions.

Our third approach to constructing PSR systems applies a “random look-
ing” function F , for which we can prove the value F (x) in a zero knowledge
fashion, without revealing information about the value of the function at other
locations. The primary precomputes the values of F over the set R, sorts them
lexicographically and signs them in pairs, {Sign(yi, yi+1)}ri=0. In order to prove
non-membership for an element x /∈ R one simply provides a proof that F (x) = y
and the signature Sign(yi, yi+1) for which yi < y < yi+1 (we choose F to have
negligible probability for collisions). This construction reveals the size of the set
R during multiple executions of the protocol as a resolver which issues enough
random queries will eventually witness all signatures Sign(yi, yi+1) and learn the
size of R, but in some applications such as DNSSEC, revealing the size of the set
is acceptable. In order to construct the function F we use variants of Verifiable

Primary-Secondary-Resolver Membership Proof Systems 203

Random Functions (VRF) and Verifiable Unpredictable Functions (VUF) [30],
the Naor-Reingold PRF [32] with zero knowledge interactive proofs, the GHR
signature scheme [16] and a random oracle construction which uses the famous
BLS signature scheme [7]. The scheme NSEC5 presented in [19] (which resides
in the random oracle model) falls into this category as well.

For all three constructions we suggest fairly efficient implementations. The
first approach offers perfect ZK and does not reveal the size of the set in question,
the second can be implemented based on very solid cryptographic assumptions
and uses the unique structure of cuckoo hashing, while the last technique has
the potential to be highly efficient, if one could construct an efficient and secure
VRF/VUF or one is willing to live in the random oracle model.

Structural Issues: We analyze and prove that PSR systems with one-round
proofs are secure even in a concurrent setting. This means that in the case of
one-round proofs, even a coordinated attack of resolvers trying to learn infor-
mation about elements in the universe which they did not query explicitly will
fail with overwhelming probability. In the case of many-rounds proofs we show
that providing each secondary with an independent set of keys also results in a
concurrently secure PSR system. We prove that PSR systems exist if and only
if one way functions exist, which in turn helps us get a black box separation
from zero knowledge sets [29], which is a more restrictive membership proving
system (see details in Section 1.3), thus showing that the two primitives are
indeed inherently different.

1.2 A Guide for Reading the Paper

In Section 2 we present our model, the definition of PSR systems, our require-
ments of completeness, soundness and zero-knowledge and in Section 3 we show
cases where the system is secure in a concurrent setting. In Section 4 we show a
HIBE based construction which achieves perfect ZK. In Section 5 we give a short
description and intuition regrading our cuckoo hashing with a stash based PSR
and the one based on “random looking” functions (the full version [34] gives a
more detailed description). We also present a signature based PSR system and
use it to prove that the existence of one way functions is equivalent to the ex-
istence of PSR systems, which leads us to a black box separation between PSR
systems and ZKS [29]. In Section 6 we present concluding remarks.

1.3 Related Work

There are several types of cryptographic primitives that are related to PSR sys-
tems. Consider zero-knowledge sets, introduced by Micali, Rabin and Kilian [29]
(ZKS for short) and its generalization zero-knowledge elementary databases. The
latter is a primitive, defined in the common reference string model or the trusted
parameters model, where a user (prover) can commit to a database and later
open and prove its values to a verifier in a zero knowledge fashion. The existence
of ZKS implies the existence of a PSR system, as a zero-knowledge elementary

204 M. Naor and A. Ziv

database construction implements a PSR System (the other direction is not true
as implied by Corollary 2). However, the problem is that even the best known
constructions of ZKS are inefficient. The point is that in a ZKS the requirements
are too stringent: even the primary cannot cheat. This is not something of in-
terest in our setting, since the primary is a trustworthy party that commits to
a set of its choosing and it does not make sense for it to cheat. We are only
interested in preventing the secondaries from cheating. Hence we introduced a
more complex setting with three parties, at the benefit of gaining efficiency.

Chase et al. [12] introduce the notion of trapdoor mercurial commitments
(TMC for short) and construct ZKS based on TMCs. They show a few imple-
mentations of their new primitive where their most efficient implementation is a
constant factor improvement on the original MRK construction, while both rely
on the discrete logarithm assumption. Catalano et al. [11] extend their notion
of TMC to trapdoor q-mercurial commitments (q-TMC for short) and by that
further improve the efficiency of ZKS implementation by shortening the non-
memberships proofs by a constant factor, at the expense of slowing down the
verification process. Their construction of q-TMC relies on the q-strong Diffie-
Hellman assumption. Later, Libert and Yung [28] introduced a new construction
for q-TMCs, based on the q-Diffie Hellman exponent assumption, and managed
to shorten the memberships proofs by a constant factor as well. All those ZKS
constructions have the same basic structure: a tree (either binary as in [29,12] or
with arity q as in [11,28]), where the leaves represent the elements in the universe
and a proof of membership or non-membership is a path of commitments from
the root to the leaf. All four ZKS constructions use proofs made up of O(log |U |)
group elements and require O(log |U |) modular exponentiations for verification.

Prabhakaran and Xue introduced statistically hiding sets [38] (SHS for short),
which are a slight variation on ZKS. Their definition of statistical hiding is
formulated with computationally unbounded simulation, which means it is a
relaxation of the security requirement of ZKS as they do not require efficient
simulation. Their construction uses accumulators, first presented in [5], in order
to accumulate a set of values into one value, where there is a short proof for every
value in the set. Although it is more efficient than ZKS and can be extended
to statistical hiding databases, their underlying assumptions are rather new and
strong. They use the strong RSA assumption and an assumption they call the
knowledge of exponent assumption. They require the use of a hash function
which maps elements to large prime numbers and a trapdoor DDH group.

Ostrovsky, Rackoff and Smith [35] generalized ZKS by defining Consistent
Query Protocols, which allow more general queries than membership queries.
They also suggested a relaxation for ZK proofs, allowing the server to leak an
upper bound T on the size of the database (called size-T-Privacy). Our privacy
requirement, f -ZK, is a generalization of this size-T-Privacy requirement.

Another related line of investigation is that of data structures that come with
a guarantee of correctness. That is when the data structure, like a dictionary,
returns an answer it also provides a proof that the answer is correct in the
sense that it is consistent with some external information. One motivation for

Primary-Secondary-Resolver Membership Proof Systems 205

these investigations comes from data structure for managing CRLs (certificate
revocation lists). The difference with the current work is that no additional
information than the result of the query should leak.

A recent paper by Ghosh, Ohrimenko and Tamassia [18] introduces two new
primitives which are related notions to PSR systems: a 2-party and a 3-party
protocols for proving values of elements in a database and their order (lists). The
2-party protocol they define is Zero Knowledge Lists (ZKL for short), where their
construction of the primitive is too inefficient for our needs, as it builds upon
ZKS (which, as we mentioned, does not have an efficient implementation yet).
The 3-party protocol is Privacy Preserving Authenticated Lists (PPAL) which
unlike ZKL is closer in spirit to our PSR systems but it cannot answer non-
membership queries (their construction only handles queries for elements in the
list and returns their order in the list combined with a proof). Besides that, their
constructions are also analyzed in the random oracle model, where we strive to
find constructions in the standard model.

2 Model and Security Definitions

We model Primary-Secondary-Resolver Membership Proof systems as a 3-party
protocol where the primary, a trusted party, commits to a set R, a subset of
the universe U , where each element xi ∈ R is coupled with a value vi ∈ V . The
primary generates two keys for the committed set, the secret key SK given only
to secondaries in the system and the public key PK given to all parties of the
protocol, i.e. secondaries and resolvers. The resolvers in the system engage in an
interactive protocol with the secondaries in order to learn whether a given x ∈ U
is in R or not and if yes then they obtain its value vx. The secondaries use their
secret key to generate proofs (possibly interactive) for the correct statement re-
garding the queried element, while resolvers verify the correctness of the proofs
they get. We require that the secondaries won’t be able to cheat the resolvers
and if the secondaries are following the protocols then the resolvers should be
able to verify the correctness of the responses with overwhelming success prob-
ability. Another important requirement we would like from such a system is
zero-knowledge, i.e. for resolvers to learn as little as possible about elements
they didn’t query explicitly. See Figure 1 for an illustration of the 3-parties’
engagement in the protocol.

Remark 1. Note that we chose to focus on the static version of this problem, i.e.
when the sets R and V are determined at the beginning of the process and do not
change throughout the process. The dynamic case for this problem is out of the
scope of this paper, though we discuss the issues of defining requirements for the
dynamic case, as well as give guidelines on how to transform our constructions
into ones which can handle dynamic changes in the full version of the paper [34].

2.1 PSR Systems

The system consists of three algorithms: the Setup algorithm is used by the
primary to generate the public key PK which it publishes to all parties in the

206 M. Naor and A. Ziv

Fig. 1. Illustration of a PSR system

protocol and the secret key SK, delivered to the secondaries. The resolvers
use the Verify algorithm in order to initiate an interactive proof session with
the secondaries who use the Prove algorithm to prove interactively the correct
membership statement about the element, queried by the resolver.

Definition 1. Let U be a universe of elements. A Primary-Secondary-Resolver
system (PSR for short) is specified by three probabilistic polynomial-time algo-
rithms (Setup, Prove, V erify):

Setup(R, V, 1k): On input k the security parameter, a privileged set R ⊆ U and
its values V , where |R| = |V | = r (for every xi ∈ R the corresponding value
is vi ∈ V), this algorithm outputs two strings: (PK, SK) which are the public
and secret keys for the system.

V erify(x, PK): The algorithm gets as input x ∈ U and the public key PK. It
initiates an interactive proof protocol over the element x ∈ U with a sec-
ondary of its choice and verifies the correctness of the proof given by the
secondary. It outputs 1 when it accepts the interactive proof and 0 other-
wise.

Prove(x, PK, SK): On input x ∈ U and both the public and secret keys (PK, SK)
this algorithm proves interactively to a resolver either the statement x ∈ R and
its value is vx or x /∈ R.

We require the above three algorithms to satisfy three properties: complete-
ness, soundness and zero knowledge.

2.2 Completeness and Soundness

The completeness requirement means that when the parties at hand are honest
and follow the protocol, then the system works properly. The resolvers will learn
successfully whether the element x ∈ U , which they queried, is in R (and its
value) or not. We do allow a negligible probability of failure.

Primary-Secondary-Resolver Membership Proof Systems 207

Definition 2. Completeness: For all R ⊆ U , for all V and ∀x ∈ U ,

Pr

⎡⎢⎣ (PK, SK)
R← Setup(R, V, 1k);

V erify(x, PK)
R↔ Prove(x, PK, SK);

V erify(x, PK) = 1

⎤⎥⎦ ≥ 1− μ(k)

For a negligible function μ(k).

As for soundness, we want that even a malicious secondary A, would not
be able to convince an honest resolver of a false statement with more than a
negligible probability. We require this to hold even when the adversary gets to
choose R and V , then gets the keys (PK, SK) and then chooses x ∈ U on which
it wishes to cheat. At the end of the protocol A outputs either 0 if it tries to
convince the resolver that x /∈ R or (1, v) if it tries to convince him that x ∈ R
and its value is v.

Definition 3. Soundness: for all probabilistic polynomial time stateful adver-
saries A we have

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(R, V)
R← A(1k);

(PK, SK)
R← Setup(R, V, 1k);

x
R← A(PK, SK);

V erify(x, PK)
R↔ A(x, PK, SK);

V erify(x, PK) = 1∧
((A(x, PK, SK) = 0 ∧ x ∈ R)∨
(A(x, PK, SK) = (1, v) ∧ (x /∈ R ∨ (x = xi ∧ v �= vi))))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ μ(k)

For a negligible function μ(k).

Note that our definitions are strong because they ensure (up to negligible
probability) that an adversary cannot find any x ∈ U violating either com-
pleteness or soundness, even after getting its relevant keys, i.e. (PK, SK) for a
secondary in the soundness condition and PK for a resolver in the completeness
condition.

2.3 Zero-Knowledge

We want to restrict the amount of information learned about the set R by
resolvers during the interactive proofs. Besides the answer to the question being
asked by the resolver we would like him to learn as little as possible about the
set R. In some cases we let some information about the set R leak during the
protocol (or many executions of the protocol on different elements), which is why
we choose to define zero-knowledge with respect to a function f acting on R. We
show two constructions of PSR systems which don’t leak any information about
the set R (see Sections 4 and 5.1), while the rest of the constructions leak the
size of the set R (see Section 5) We define this property as f-Zero-Knowledge

208 M. Naor and A. Ziv

(f -ZK for short), where f(R) is some information about the set which we can
tolerate leaking to resolvers.

We require that the resolver cannot distinguish between: (1) a real system
which provides the original proofs, and (2) a simulator that can only obtain
the answer to each query asked by the resolver online, but must still be able to
“forge” a satisfactory proof for that response. This allows us to deduce that the
resolver has not learned much about R from the proofs, for if it had, it would
be able to distinguish between an interaction with the simulator and one with
the real secondary (at least after it gets R explicitly).

The PSR Simulator: Let SIM be an interactive polynomial time algorithm
with restricted oracle access to the set R, which means it can query the oracle
only on elements which the adversary communicating with him queried explicitly.
On its first step SIM receives f(R) and outputs a fake public key PK∗, a fake
secret key SKSIM and f(R). On its following steps an adversary interacts with
the simulator and queries different elements in the universe. Following every
such query xi the simulator queries its oracle for xi and either learns xi /∈ R or
xi ∈ R and its value is vi. SIM proves interactively the statement on xi to the
adversary. The simulator is successful if its output, i.e. its random tape, public
key and transcripts of the interactive protocols, is indistinguishable from that of
a real PSR system.

The first step of the interactive protocol for the PSR system1 is:

(PK, SK, f(R))
R← Setup(R, V, 1k)

and for the simulator the first step is:

(PK∗, SKSIM , f(R))
R← SIMR(f(R), 1k)

The rest is a series of interactive proofs of membership between the adversary
and either a PSR system or a simulator, where the simulator uses the fake public
key PK∗ and the fake secret key SKSIM to respond to queries and the system
uses the real keys (PK, SK).

Definition 4. Let f() be some function from 2U to some domain and let al-
gorithms (Setup, Prove, V erify) be a PSR system. We say that it is f -zero
knowledge (f -ZK for short) if it satisfies the following property for a negligible
function μ(k):

There exists a simulator SIM such that for every probabilistic polynomial time
algorithms A (adversary) and D (distinguisher), a set R ⊆ U and V , the dis-
tinguisher D cannot distinguish (See Remark 2 below) between the following two
views (interactions of A with a PSR system or a PSR simulator) with an ad-
vantage greater than μ(k), even for D that knows R:

viewreal = {rreal, PK, f(R), (x1, π1), (x2, π2), . . .}
1 Note that the Setup algorithm is not defined to output f(R), but it is obviously a
simple modification, as it gets R and can compute f(R) easily. We add this output
in order to generate comparable views.

Primary-Secondary-Resolver Membership Proof Systems 209

and

viewSIM = {rSIM , PK∗, f(R), (x1, π
∗
1), (x2, π

∗
2), . . .}

where the two views are generated by the protocols described above, πi and π∗
i

are the transcripts for the interactive protocols over the element xi and rSIM

and rreal are the random tapes of the simulator and secondaries respectively.

Remark 2. We have three notions of Zero-knowledge for PSR systems: computa-
tional ZK, whichmeans that the distinguisher cannot computationally distinguish
between the two views, statistical ZK, where the distributions of the two views are
statistically close and perfect ZK where the two distributions are identical. Note
that the perfect and statistical ZK have the added advantage of being secure in an
information theoretic sense, which guarantees everlasting privacy. As both these
ZK properties are information theoretic, they require their underlying assump-
tions to hold only during the execution of the protocol, while for computational
ZK, we require the assumptions to hold ‘forever’ in order to prevent an adver-
sary from breaking the privacy of the scheme at a later point in time. Our HIBE
and signature based constructions (Section 4 and 5.1 respectively) achieve perfect
ZK, the cuckoo hashing construction (Section 5.2) achieves statistical ZK, while
the last construction (Section 5.3) achieves computational ZK.

In our companion paper [19], we prove two very important facts about non-
interactive PSR systems. The first is that f -ZK, where f(R) is the cardinality of
the set R, implies prevention of zone enumeration, i.e. if a PSR is f -ZK, then a
resolver cannot learn any information about an element it didn’t query explicitly.
All of the constructions in this paper are at least f -ZK for this f (the HIBE and
signature based constrictions are even perfect ZK), which means they all prevent
zone enumeration. The second important result is that PSR systems require a
heavy computational task from the secondaries, such as public key cryptography
or public key authentication, in order to maintain both soundness and f -ZK.
This fact is crucial to understanding why the secondaries work hard in our
constructions. Note that both these proofs were for the single-round PSR and in
the random oracle model, but the proofs generalize to our (possibly interactive)
setting as well. The prevention of zone enumeration holds as is in the standard
model for interactive proofs, while the reduction to public key authentication for
interactive PSRs in the standard model is only selectively secure, as opposed to
existentially secure in the random oracle model. We state the resulting theorem:

Theorem 1. Given an f -ZK PSR system (where f(R) = |R| or f(R) = null),
one can construct a public-key identification or a selectively secure public key
authentication protocol from the PSR system where the prover’s complexity is
similar to the secondary’s. The construction is black box.2.

2 See the original paper for the proof and definitions for public key authentication.

210 M. Naor and A. Ziv

3 Concurrent Zero Knowledge

In this section we prove that in some cases PSR systems are not only f -ZK as
defined earlier, but also concurrent zero knowledge with respect to that same
function f . Concurrent ZK was introduced by Dwork, Naor and Sahai [14] as
an extension to zero knowledge. In order for an interactive proof system to be
concurrent ZK we require that if we have up to a polynomial number of provers
and verifiers, where the verifiers are controlled by a malicious adversary and
work concurrently (one could start an interactive proof with a prover, put it on
hold and finish an earlier interaction), then still no information is leaked to the
adversary controlling the verifiers.

We use similar definitions to the ones defined by Rosen [40] and adapt them
to our setting. For an interactive proof system 〈P, V 〉, we define a nonuniform
probabilistic polynomial time concurrent adversary A. A gets some input I (for
PSR systems I = PK), controls a polynomial number of verifiers and has access
to an unbounded number of copies of the prover P . A can use verifiers to interact
with the provers and controls the scheduling of all the messages in the system,
meaning that A controls when any verifiers output a message and when every
prover outputs a message. We denote by viewP

A(I) the view of the adversary,
which is a random variable which contains the random tape of A and all the
concurrent interaction of A with the provers (copies of P).

Roughly speaking, a protocol is concurrent ZK if for every such adversary A
there is a probabilistic polynomial time simulator SA such that the two ensembles
{viewP

A(I)} and {SA(I)} are computationally indistinguishable, where I is some
x ∈ L and SA(I) is the output of a simulator which uses the adversary A as an
oracle. But PSR systems, as we defined them, consist of multiple executions of
membership/non-membership interactive proofs using the keys (PK, SK). Thus
it is more natural for us to define I = PK and compare between the view of an
adversary communicating with secondaries (provers) on the public key PK and
the view of an adversary communicating with the simulator on the fake public
key PK∗.

Thus we define a concurrent PSR simulator as a probabilistic polynomial
time algorithm SIM, with restricted oracle access to the set R, such that on its
first step of the computation, SIM gets f(R) and outputs a fake public key PK∗,
a fake secret key SKSIM and f(R). SIM is not allowed to query its oracle on
x ∈ U if it was not explicitly queried by a resolver (verifier) on it. When an
adversary interacts with a simulator, the copies of the prover are replaced with
the simulator itself which acts as a prover (i.e. it emulates all the provers), uses
the fake cryptographic keys it generated and can query its oracle for the element
queried by the resolvers.

We consider two different concurrent settings: where all the secondaries get
the exact same pair of keys and when each secondary and resolver get a pair
of keys generated independently for them. We prove, that in the case we use
independent keys, every PSR system which is f -ZK in the sequential (regular)
setting is also f -CZK, thus by making the primary work k ·m times harder, one
can get a concurrently secure PSR system with k secondaries and m resolvers,

Primary-Secondary-Resolver Membership Proof Systems 211

from a sequentially secure PSR system. When all secondaries get the exact same
pair of keys we prove that non-interactive PSRs remain concurrently secure as
well.

We denote by {viewSIM
A (f(R))} the view which contains f(R), PK∗, the ran-

dom tape of A and the concurrent interaction between SIM and A. We denote
by {viewreal

A (R)} the view which contains f(R), PK the random tape of A and
the concurrent interaction between the real PSR system and A, where the keys
are generated by the setup algorithm of the PSR and the provers are honest
secondaries in a real PSR system.

Definition 5. A PSR system is f -Concurrent Zero Knowledge (f -CZK) if for
every nonuniform probabilistic polynomial time concurrent adversary A and ev-
ery R ⊆ U there exists a concurrent PSR simulator SIM, such that the two
views: {viewSIM

A (f(R))} and {viewreal
A (R)} are indistinguishable, even for a

distinguisher which knows R.

Note that the way we defined the f -ZK simulator in Section 2.3 the simula-
tion occurs online, meaning there is no rewinding. Rewinding usually raises an
obstacle in going from regular ZK to concurrent ZK, so this is a good property
to have for the simulator. We prove that a non interactive PSR system (one-
round proofs) is always an f -CZK PSR system. On the other hand, we show
that for many-round PSR systems this is not necessarily the case: we provide a
counter example with more than one round proofs which is not concurrent zero
knowledge.

Theorem 2. If (Setup, Prove, V erify) constitute an f -ZK PSR system with
one round proofs then it is also f -Concurrent Zero Knowledge.

Proof. Assume towards contradiction that there exists a concurrent adversary A
such that there exists a distinguisher D, that can distinguish between an interac-
tion of A with a real PSR system and an interaction of A with a concurrent PSR
simulator. We describe an adversary B which uses A as a subroutine in order to
generate two views (one ofB interacting with the system and one interacting with
the f -ZK simulator) which can be distinguished with a non-negligible advantage.
B simply acts as a mediator between the concurrent adversary A and the prover
(system/simulator). Every time A issues a new query to some prover, B simply
sends the first message of the interaction to the prover and records the response.
Notice that although A might be asking for different provers,B only uses the one
prover it has access to and as this is only a two message protocol,B simply records
the response to the query. When A asks for the response of that interaction, B
sends back the recorded response. When A wishes to terminate the interaction, B
terminates the interaction with the prover. At the end of the interaction the view
generated by the adversary B isn’t in the concurrent setting as in practice B ex-
ecuted the interactions with the provers sequentially. This is not a problem as we
can describe a distinguisher D′ which uses D to distinguish between interactions
with an f -ZK PSR simulator and ones with a real PSR system.

When D′ gets a view of the interaction between B and the prover it also
gets B’s random tape, so D′ can run it again with the same random bits (the

212 M. Naor and A. Ziv

random tape is included in the view) and rearrange the view it got to look like
a concurrent view (i.e. rearrange the order of the messages). Now D′ runs D on
the newly generated view and outputs its output. If D succeeds in distinguishing
between the provers with non-negligible advantage ε, then so does D′ as the
view of the adversary A interacting with the provers is identical to the view of
B interacting with the same provers after D′ completed its transformation of
the view to look concurrent. Thus we reach a contradiction, which means that
non-interactive f -ZK PSR systems are also f -concurrent zero knowledge in the
same sense: computational, statistical or perfect ZK. (#

Counter Example for a Many-Round PSR: We show that Theorem 2 does
not hold when we try to generalize it to many-rounds PSRs. Suppose that we
have a one-round proof f -ZK PSR. We modify it by adding two more rounds to
its proof. During the setup algorithm the primary selects some pseudorandom
function F , such that for an adversary (who doesn’t know the secret key), the
probability of guessing F (x) for a randomly chosen x will be negligible in the
security parameter for the PSR. The first round of the interaction will be the
resolver asking to learn the value F (x1) for x1 of its choice (under honest behavior
it should be uniformly random). The second round will be the secondary sending
an element x2, chosen uniformly at random, to the resolver and if the resolver
returns the correct value F (x2) then the secondary returns a description of R.
Otherwise it continues to the original one round proof of the PSR. One can
see this is still an f -ZK PSR, as guessing F (x2) for a randomly chosen x2 is
successful with only negligible probability, even after seeing several values of F .
Thus the resolver will learn more than it should about R only with negligible
probability, making the new PSR secure if the original one was secure.

On the other hand, in a concurrent setting, a malicious resolver can simply
interact with a secondary and when it gets its challenge x2, stop the interaction
and start a new one with a new secondary. In the first round, the resolver will
set x′

1 = x2, i.e. it asks the new secondary what is the value of F (x2); it will
then return the answer to the first secondary, which should accept it as the
correct answer and then it will “spill the beans” and reveal the entire set R,
thus violating the f -CZK property (no concurrent simulator can do it for a
random set R).
Concurrent Zero-Knowledge with Independent Keys: The reason the
above counter example was successful is that the provers were confined by the
common key of the PRF they all shared. We claim that in case we have a
concurrent execution of the PSR system but where each prover (secondary) -
verifier (resolver) couple receives different and independently chosen keys (that
is for each secondary-resolver the primary executes the setup algorithm indepen-
dently), then the resulting PSR systems are f -CZK3.

3 Note that it is critical to use different keys for every couple (secondary-resolver) run-
ning concurrently, otherwise in the scenario described in the counter example, either
a malicious resolver can communicate with two secondaries using the same keys and
break the f -CZK property, or two malicious resolvers can collide and interact with
one secondary using the same keys to break the f -CZK property.

Primary-Secondary-Resolver Membership Proof Systems 213

Proof Sketch: the way the concurrent simulator will work is by running the
(regular) simulator for each secondary independently. We now use a hybrid ar-
gument to show that if we are in the described setting and we have an adversary
A that can generate two distinguishable views for the concurrent setting, then
we can construct an adversary B that can generate distinguishable views for the
sequential setting. If there is a distinguisher D that can distinguish with non-
negligible advantage between the two views (generated by A) then it can also
distinguish between at least two adjacent hybrids with non-negligible advantage,
due to the hybrid argument. This means that there is some index i for which we
can construct the adversary B as follows: the first i−1 provers will be simulated
by B to be a real PSR system secondaries (this is done by running the setup
algorithm i−1 times), the ith prover will be the prover interacting with B (either
a simulator or a real secondary) and the rest of the provers will be simulated
by B using the strategy employed by the (regular) simulator. The two possible
views resulting from interacting with this adversary B will be distinguishable
with a non-negligible advantage due to the hybrid argument, thus contradicting
the assumption that the PSR system is f -ZK. (#

Remark 3. In the full version of the paper [34] we claim and give a proof sketch
to show that in the Universally Composable security (UC security) framework,
introduced by Canetti [10], PSR systems which have non-interactive proofs or
use independent keys are also secure in the UC framework.

4 HIBE Based Construction of PSR Systems

In this section we introduce a PSR system based on Hierarchical Identity Based
Encryption (or HIBE for short). We think of the universe of elements U , as
the leaves of a full binary tree. The primary can generate an encryption key
for any node in the tree, where this encryption key holds the power to prove
non-membership for every element in the universe which is a descendant of that
node. A proof of non-membership for an element x ∈ U uses the encryption
key of the leaf that corresponds to x, while an encryption key for an internal
node can generate the keys of its descendants. Thus if the primary generates the
encryption key for the root node, it can then generate a set of keys K which
contains keys only to the elements in U\R. In order to do that the primary
removes the entire path of keys from the root to a leaf x ∈ R and generates keys
to the siblings of each node along that path. One might notice the similarity to
revocation schemes, as we “revoke” all keys for the elements in R and as shown

by Naor et al. [31], this process results in a forest of O(|R| · log |U|
|R|) full binary

trees (See Figure 2 for an example).
In order to generate this set of keys K we will use a HIBE scheme, which is an

identity based encryption scheme (i.e. an element’s encoding is its identity) with
the special property we need: that every key can generate keys to its descendants
in the hierarchy tree. For high efficiency we use the HIBE construction of Boneh
et al. [6], which we describe in more details in Section 4.4. Agrawal, Boneh and

214 M. Naor and A. Ziv

Boyen also offer two HIBE constructions [3,2] based on lattices, which give us
also two lattice based assumptions from which we can construct a PSR system.
The HIBE construction is perfect ZK, in the sense that it doesn’t reveal any
information about the set R to any adversarial resolver, not even its cardinality,
while providing perfect simulation.

Fig. 2. A full binary tree that represents a set R and its set of keys K

4.1 HIBE Definition

An IBE (Identity Based Encryption) is a scheme where one can encrypt messages
to users using their names/IDs or any other unique identifiers one chooses to use.
A trusted party generates a master public key (also called system parameters
sometimes) and a master secret key, where the first is used by users to encrypt
messages under any identity they wish, while the latter is used to generate secret
keys for all identities in the scheme, which are then distributed to the users
(each user gets its own secret key). A user can then use its secret key to decrypt
messages intended for him. A HIBE is an hierarchical IBE, which means that
identities in the scheme are defined by up to � coordinates and anyone who has
a secret key for its identity x, can generate secret keys to any of its descendants,
i.e. to any identity with x as its prefix.

We use the following definition for HIBE which is similar to that of Gentry and
Silverberg [17]. An ID-tuple is a description of a user in the system defined by
(I1, . . . , It) where t ≤ � and � is the maximum depth of the hierarchy of identities,
i.e. the maximal number of coordinates in an identity. In our construction we
use binary vectors as the identities.

Primary-Secondary-Resolver Membership Proof Systems 215

Definition 6. A HIBE is defined by five algorithms: Setup, MKeyGen, KeyGen,
Encrypt and Decrypt.

Setup. Gets a security parameter k and the depth of the hierarchy � and gener-
ates the master public key MKP , which should be distributed to all the users
in the system and a master secret key MKS given only to the root user, both
corresponding to the HIBE of depth �.

MKeyGen. Gets the master key MKS and a target identity ID = (I1, . . . , It)
and generates a private key (from a distribution of valid keys) denoted as
SKID, which user ID can use to decrypt messages intended for him and also
to generate properly distributed private keys (i.e. with same distribution, as
if it was generated using MKS) to any of its descendants (any user who has
the identity ID as a prefix to its own identity).

KeyGen. Gets a private key SKID for identity ID = (I1, . . . , It) and some
descendant of that identity of any level, ID∗ = (I1, . . . , It, It+1, . . . , Im) and
generates a private key SKID∗ from its proper distribution. It is critical that
for every identity, two different ancestors produce the same distribution on
the generation of its private key. Sometimes this algorithm is described only
for one level deeper than that of ID, but this can be extended by invoking the
algorithm recursively.

Encrypt. Gets the master public key, a message m and a target identity ID
and outputs a ciphertext CT which is an encryption of m intended for ID.

Decrypt. Gets a private key for identity ID and a ciphertext CT intended for
that identity and decrypts it to retrieve the original message m.

We include the description of the HIBE by Boneh et al. [6] in Section 4.4,
which is the most efficient HIBE implementation we could find for our purposes.
It uses only a constant number of pairing computations and exponentiations and
a logarithmic number (in the size of the universe U) of multiplications in a group,
for the algorithms used by the secondaries and resolvers: Encrypt, Decrypt and
KeyGen for leaves in the tree. Not all algorithms are as efficient as those three,
but we may allow the primary setup to take longer time as it commits to the set
R only once.

4.2 HIBE Security

There are four types of security notions for HIBE. We have indistinguishability
under chosen plaintext attack and under chosen ciphertext attack, where in the
first an adversary can issue queries to different secret keys in the HIBE and
in the second it can also issue decryption queries where it can ask to decrypt
ciphertexts. For the needs of our construction the weaker notion of security will
suffice, i.e. indistinguishability under chosen plaintext attack. We can also talk
about the difference between selective and existential security, where in the first
an adversary selects a priori the target identity it wishes to be tested on and in
the second it can choose the target identity after it issues some queries. Again
we only need the weaker notion of security for our construction, i.e. selective
security. We use the definitions of security as defined by Boneh et al. [6].

216 M. Naor and A. Ziv

Definition 7. Indistinguishability under selective identity chosen plaintext at-
tack (IND-sID-CPA). We say that a HIBE system is (t, q, ε) IND-sID-CPA if
any t-time adversary A that uses q queries wins the following game with an ad-
vantage of at most ε. This is a communication game between an adversary A
and a challenger which controls the HIBE system at hand.

step 1: A sends a target identity ID∗ to the challenger and two equal length
messages m0,m1 on which it wishes to be tested.

step 2: The challenger runs the HIBE’s setup algorithm, sends the master pub-
lic key to the adversary and keeps the master secret key to himself.

step 3: A adaptively issues up to q key queries to the challenger, where it asks
to know the private key of an identity ID. The challenger responds with the
correct keys to all queries. The only restriction is that A didn’t issue a key
query on identity ID∗ or a prefix of it.

step 4: The challenger draws a bit at random b ∈ {0, 1}, computes CT =
Encrypt(MKP , ID∗,mb) and sends CT to A.

step 5: A issues more queries (where the total number of queries is at most q)
where again A cannot issue key queries to prefixes of the identity ID∗ or to
ID∗ itself. When A finishes with the queries it issues a guess b′ ∈ {0, 1} and
wins the game if b′ = b.

Notation. If we have a HIBE which is (t, q, ε) IND-sID-CPA secure, t, q are
polynomials and ε is negligible in the scheme’s security parameter, then we
simply say it is IND-sID-CPA secure.

Remark 4. In a recent paper, Lewko and Waters [27] examine the difficulty in
proving full (existential) security for HIBEs. They show that proving full security
for a large class of HIBEs results in an exponential degradation (in the depth of
the hierarchy) in security. Luckily for us we only need selective chosen plaintext
security (the weakest security notion for HIBEs), which most if not all HIBEs
achieve, without the exponential degradation.

4.3 PSR from HIBE

Suppose that all possible queries that resolvers issue are in the domain {0, 1}�.
We can assume that, as we may use a collision resistant hash function h in order
to map our domain of queries into a domain with the appropriate �. We will use
a HIBE of depth �. As we do in all constructions, for x ∈ R we will use consistent
signatures on the element and its value, i.e. a signing algorithm that produces the
same signature on the same message. We will use the HIBE scheme to deal with
non-membership proofs. In order to prove non-membership in R, the secondaries
will get as part of the secret key SK, a set of secret HIBE keys K, from which
they can generate a secret key corresponding to any x /∈ R (the secret key is
SKh(x)) and prove its possession by decrypting random challenges encrypted by
the resolvers under the queried element’s identity h(x) (alternatively the key
may be given to the resolvers who should verify its correctness).

Primary-Secondary-Resolver Membership Proof Systems 217

We do not want the secondary to be able to prove the non membership of an
actual member x ∈ R, so we make sure it cannot obtain the secret keys to any
element in R. Thus secondaries will not be able to prove false statements with
overwhelming probability, as in order to prove false statements the secondary
will have to either forge signatures or decrypt a message it doesn’t have the
private key for.

In order to give secondaries the correct set of private keys, consider the full
binary tree of depth �. The primary removes all nodes which are in R or are
ancestors/prefixes of elements in R. All the remaining nodes in the tree (both
internal and leaves) comprise a forest of full binary trees of different depths.
The primary then generates the secret key to all the roots of the binary trees
in the forest and distributes it to the secondaries. Now, the union of all those
keys, denoted as K, can generate all keys corresponding to leaves that are not
members of R. As mentioned before, the number of trees in the forest can be

shown to be O(r log |U|
r) [31].

We now describe the PSR construction that uses a HIBE which is required to
be only IND-sID-CPA secure (see Definition 7 for details) and an existentially
unforgeable signature scheme.

Setup(R, V, 1k): Use the setup algorithm for the signature scheme in order to
obtain the keys (PKsig, SKsig, h) where h is a collision resistant hash func-
tion that maps elements from U to {0, 1}�. Use the setup algorithm for
the HIBE scheme and obtain the master public key MKP and the master
secret key MKS for a HIBE of depth �. Set the public key to be PK =
(PKsig,MKP , h).

Now generate the forest of full binary trees, as specified above, by removing
all the nodes in the full binary tree of depth �, which are prefixes of h(xi)
for every xi ∈ R. For every root tj in that forest, generate its corresponding
secret key kj (using the MKeyGen algorithm) and set K = {(tj, kj)}. Now
sign every element xi ∈ R with its value: si = (SignSKsig(xi, vi), (xi, vi))
and set the secret key to be SK = (K, {si}ri=1).

V erify(x, PK): Gets an element x ∈ U and the public key and initiates an
interactive protocol with a secondary. It draws uniformly at random a mes-
sage m from the message domain of the HIBE scheme and encrypts it under
the public key of h(x): CT = Encrypt(m,h(x),MKP). It send (CT, x) to a
secondary. If it gets in return back m, it returns 1 and “x /∈ R”; if it gets
in return a signature s and a pair (x, v) where it verifies correctly that s is
a valid signature on (x, v) then it accepts that x ∈ R and its value is v and
returns 1. Otherwise it returns 0.

Prove(x, PK, SK): Gets the public and private keys and also (CT, x) from a
resolver. If there exists a signature si for which xi = x, then it returns si.
Otherwise the secret key SK contains, in its HIBE set of keys K, a key for
a prefix of h(x). The secondary generates the secret key for h(x) (using the
HIBE KeyGen algorithm), decrypts CT under that secret key and returns
m to the verifier.

218 M. Naor and A. Ziv

Theorem 3. The three algorithms described above constitute a (perfect) ZK
PSR (i.e. f is the null function and the simulation is perfect).

Proof. In order to prove the above scheme constitutes a PSR system we need to
prove it fulfills the three properties required from a PSR system: completeness,
soundness and zero-knowledge.

Perfect Completeness. For all R ⊆ U , for all V and for all x ∈ U we need
to show that after obtaining the keys (PK, SK) from the setup algorithm, it
always holds that an honest secondary manages to convince an honest resolver
of the true statement regarding the queried element x. For every element xi ∈ R
the primary precomputed si = (SignSKsig(xi, vi), (xi, vi)) which is part of the
secret key and thus the secondary will always succeed in proving membership
statements. As for statements of the type x /∈ R, using the set of HIBE keys
K given to the secondaries, they can derive a secret key for every x ∈ U\R
(actually a key for every such h(x)). Using that key SKh(x), secondaries can
always decrypt a random challenge issued by resolvers and thus will always
manage to prove statements of non-membership.

Soundness. Assume for contradiction that there exits some polynomial time
adversary that using (PK, SK) can provide for some x /∈ R a proof that x ∈ R
with non-negligible probability. This means it can forge a signature with non-
negligible probability for that x and some value v, violating the unforgeability
assumption on the underlying signature scheme. The same holds if an adversary
is trying to prove for some x ∈ R with value v a different value v′ �= v, i.e. due
to the existential unforgeability of the signature scheme proving a false value for
x ∈ R is infeasible as well.

If we assume to have such an adversary A that can provide for some x ∈ R
a proof that x /∈ R with non-negligible probability ε, then we can use A to con-
struct an adversary B that wins the IND-sID-CPA security game (Definition 7)
with a non-negligible advantage ε

2 . If A can cheat with probability ε for the set
R ⊆ U and some x ∈ R then the adversary B (trying to win the IND-sID-CPA
security game) will first select h(x) as its target identity (h will be chosen by him
as well), choose two random messages as the challenge messages {m0,m1} and
get the HIBE master public key, MKP . Then B runs the setup algorithm for
the PSR over U and R while using MKP as its master public key for the HIBE
in the PSR and will use the key queries in the security game to generate the set
of HIBE keys K. Note that as x ∈ R all the key queries will be for non-prefixes
of h(x) as K doesn’t contain any ancestors of h(R) = {h(xi)|xi ∈ R}.

Thus B will generate a valid pair of keys (PK, SK) for a PSR and hand
them to the adversarial secondary A. B will now send the random challenge it
got form the IND-sID-CPA security game (an encryption under h(x) of m0 or
m1) to A which will try to decrypt the ciphertext. A succeeds in decrypting the
challenge with probability ε and if the decryption A offers matches one of the
two original challenge messages (m0,m1) then B chooses this message and else
it guesses uniformly at random. Thus B wins the IND-sID-CPA security game

Primary-Secondary-Resolver Membership Proof Systems 219

with an advantage of about ε
2

4. Thus violating the security assumption made
on the HIBE scheme being used.

We also note that it is infeasible for an adversary to find an element on which
it can provide a false proof. As the adversary gets both keys we can assume
it knows R. The adversary cannot find an element x /∈ R and provide a false
proof with non-negligible probability as this again violates the unforgeability of
the signature scheme. Regarding x ∈ R as we know that the HIBE is selectively
secure then we know that if the target identity is chosen in advance, then any
polynomial time adversary has at most a negligible advantage ε in distinguishing
between the two target messages, which makes its probability of decrypting the
target ciphertext at most 2ε (by the reduction shown above). So as this time
there are |R| = r target identities, any adversary has at most a probability of
2ε · r (still negligible as r is polynomial) to decrypt a random challenge under
one of the identities of h(R), thus it is also infeasible to find x ∈ R for which a
secondary can cheat on.

Perfect ZK. In order to show that this PSR is indeed zero knowledge we need
to show a suitable simulator SIM which can fool any adversary into believing it
is a real PSR system. SIM simply chooses the function h as the primary does,
runs the setup algorithm for the HIBE to obtain (MKP ,MKS) and the setup
algorithm for the signature scheme to obtain (Pksig , SKsig). SIM then sets the
fake public key to be PK∗ = (MKP , PKsig, h) and the fake secret key to be
SKSIM = (SKsig,MKS). Note that the fake public key is generated the exact
same way the original public key is generated and the fake secret key has the
master secret key for the HIBE instead of the subset of the keys (K) and the
secret key for the signature scheme instead of the signatures on the elements
of R and their values ({si}ri=1). When SIM is queried on an element x ∈ U ,
it queries its oracle to R on x. If x ∈ R and its value is vx it returns s =
(SignSKsig(x, vx), (x, vx)). If x /∈ R then SIM gets (CT, x) and it can generate
the secret key for h(x) using the master secret key MKS, decrypt the challenge
and return it to the adversary.

We claim that the two views generated by the simulator and a real PSR
system are not only indistinguishable but identically distributed, thus making
this construction perfect zero-knowledge. The public keys are generated by the
same algorithm. The signatures (proofs regarding x ∈ R) are generated online
instead of during the setup algorithm as the primary does, but yield the same
distribution over the signatures, due their consistency. Proofs for elements x /∈ R
are also identical as both the simulator and a PSR system decrypt successfully
the random challenges on elements outside of R with probability 1 and simply
return it. This concludes the proof that this PSR system is perfect ZK. (#

Remark 5. Note that we can also use two variants of HIBEs, one where secon-
daries deliver the queried element’s decryption key to the resolver (and by that

4 There is a probability that A decrypts CT to a wrong message that happens to be
m1−b while mb was chosen as the challenge. But, as {m0,m1} are chosen uniformly
at random and are not known at all to A this probability is negligible.

220 M. Naor and A. Ziv

make it verify the key’s correctness by itself) and one where we use signatures in-
stead of encryption, i.e. secondaries produce signatures over the queried element
with its corresponding secret key.

4.4 HIBE Construction by Boneh, Boyen and Goh

We describe the construction by Boneh et al. [6] as it is the most efficient HIBE
implementation for our needs. Its greatest virtue, with respect to our construc-
tion, is the fact that generating secret keys for nodes get more efficient the
deeper the node is in the hierarchy. Thus generating keys for leaves is very
efficient, which is critical for us, since this is done online by the secondaries
generating non-membership proofs. Let G be a bilinear group of prime order
p and let e : G × G → G1 be an admissible bilinear map (i.e. its bilinear-
∀g1, g2 ∈ G it holds that e(gx1 , g

y
2) = e(g1, g2)

xy, non-degenerate - e(g, g) �= 1
and efficiently computable). We choose arbitrarily how to map J0, J1 to Z∗

p,

since the original HIBE can handle identities of the type ID ∈ (Z∗
p)

� (or shorter),
while we only require binary identities of length at most �. This means that for
some node in level k of the tree, u = x1 . . . xk where xi ∈ {0, 1} has identity
Iu = (Jx1 , . . . , Jxk

) = (I1, . . . , Ik), which will be also its public key. We also
assume that the messages to be encrypted are elements in G1. We choose �, the
depth of the hierarchy, to be log |U |�, in order for the leaves of the full binary
tree of depth � to represent the elements in the universe.

The HIBE system works as follows:

– Setup(1k, 1�): Gets k the security parameter and � the depth of the hierarchy.
To generate the public master key for the HIBE of maximum depth �, draw
uniformly at random: g ∈ G, α ∈ Z∗

p, set g1 = gα and pick some more random

elements g2, g3, h1, . . . , h� ∈ G. Next compute Aux = (hJ0

1 , hJ1

1 , . . . , hJ0

� , hJ1

�)
and define the master secret key to be MKS = gα2 and the public master
key to be: MKP = (g, g1, g2, g3, h1, . . . , h�, Aux).

– MKeyGen(MKS, ID): To generate a private key for ID = (I1, . . . , Ik) ∈
(Z∗

p)
k pick uniformly at random r ∈ Zp and output:

SKID = (gα2 · (hI1
1 · · ·hIk

k · g3)r, gr, hr
k+1, . . . , h

r
�) ∈ G�−k+2

Note that the deeper the node the smaller the private key.
– KeyGen(SKID, ID∗): For ID∗ = (I1, . . . , Im) ∈ (Z∗

p)
m and a private key of

its ancestor ID = (I1, . . . , Ik) (m > k) do the following in order to generate
a properly distributed key:
If SKID = (gα2 · (hI1

1 · · ·hIk
k · g3)r

′
, gr

′
, hr′

k+1, . . . , h
r′
�) = (a0, a1, bk+1, . . . , b�)

then choose uniformly at random t ∈ Zp and output: SKID∗ =

(a0 · bIk+1

k+1 · · · bImm (hI1
1 · · ·hIm

m · g3)t, a1 · gt, bm+1 · ht
m+1, . . . , b� · ht

�) ∈ G�−m+2.

This can be computed using 4+ (�−m) exponentiations and O(�) multipli-
cations by utilizing Aux. This private key is a properly distributed key for

Primary-Secondary-Resolver Membership Proof Systems 221

ID∗ = (I1, . . . , Im) with r = r′ + t ∈ Zp. Note that the deeper the node –
the shorter the key, thus computing a secret key for a leaf is very efficient.
If ID∗ is a leaf (m = �) we get:

SKID∗ = (a0 · bIk+1

k+1 · · · bI�� (hI1
1 · · ·hI�

� · g3)t, a1 · gt) ∈ G2.

Computing secret keys for the leaves takes only 4 exponentiations and O(�)
multiplications, since by utilizing Aux, the secondary multiplies all the bi’s
where Ii = J1 and then raises them to the power of J1 and similarly for J0;

exponentiations of h
Jj

i are already calculated and included in Aux.
– Encrypt(MKP , ID,m): To encrypt a message m ∈ G1 under the public key

ID = (I1, . . . , Ik) draw uniformly at random s ∈ Zp and output:

CT = (e(g1, g2)
s ·m, gs, (hI1

1 · · ·hIk
k · g3)s) ∈ G1 ×G2

Which takes 1 pairing computation, 3 exponentiations and O(�) multiplica-
tions (we can also add e(g1, g2) to MKP in order to avoid computing pairings
in the encryption).

– Decrypt(SKID, CT): Consider a ciphertext CT = (A,B,C) encrypted for
ID = (I1, . . . , Ik) where the private key is SKID = (a0, a1, bk+1, . . . , b�).
Output:

A · e(a1, C)

e(B, a0)
= e(g1, g2)

s ·m · e(gr, (hI1
1 · · ·hIk

k · g3)s)
e(gs, gα2 · (hI1

1 · · ·hIk
k · g3)r)

=

= e(g1, g2)
s ·m · 1

e(g, g2)sα
= m

Which takes only two pairing computations and one multiplication.

This HIBE achieves selective-ID security for both chosen plaintext and chosen
ciphertext attacks (IND-sID-CPA and IND-sID-CCA respectively) under the
�-weak decisional Bilinear Diffie-Hellman Inversion assumption (�-wBDHI, see
definition in [6]) in the standard model and is fully secure in the random oracle
model, where � is the number of levels of the hierarchy.

Performance. As for the performance of the resulting PSR, the setup algo-
rithm’s running time is dominated by the generation of the set of private keys K

which is of size O(r log |U|
r). In order to provide proofs of non-membership, the

secondaries have to decrypt a message intended for an identity of depth �, for
which they have to first generate a proper key. This takes 4 exponentiations and
O(�) multiplications. The secondaries then decrypt the message, which takes 2
pairing computations and one multiplication. For a resolver to issue a query for
an element it has to encrypt one message which takes 3 exponentiations and O(�)
multiplications (we avoid the pairing computation in the encryption by adding
e(g1, g2) to MKP).

So in total a secondary has to do at most 2 pairing computations, 4 exponenti-
ations and O(�) multiplications, while a resolver has to do only 3 exponentiations

222 M. Naor and A. Ziv

and O(�) multiplications. As mentioned before, we can also have a variant of the
protocol where the resolvers receive the secret key itself (and have them encrypt
and decrypt random challenges by themselves). This moves the computational
load of 2 pairing computations to the resolvers. The primary has to work harder
as the setup algorithm is more costly, but that is understandable as the primary
has to set up the system only once.

5 PSR System Constructions

In the full version of this paper [34] we present two additional strategies for
constructing PSR systems and another construction which follows the lines of
the HIBE construction but uses one-time signatures. We describe them here
informally, where the full version contains a more comprehensive and formal
treatment of these constructions.

5.1 Using One-Time Signatures

One-time signatures are signatures with a very weak security/unforgeability re-
quirement, where an adversary who witnesses at most one signature of its choice
cannot forge a signature, which will be verified successfully. We utilize the same
strategy we used for the HIBE construction (Section 4), with the difference of
using one-time signatures to produce a chain of signatures from the root of a
binary tree to the leaf corresponding to the queried element (again where a
secondary cannot generate this proof for elements in the set R). The chain of
signatures consists of public keys corresponding to the nodes along the path,
signed using the secret key of their parents. In the full version of this paper [34]
we prove this construction is a non-interactive PSR system and has perfect ZK.

Now as we can construct both types of signatures (one-time and regular)
from universally one way hash functions (UOWHF) [33], we can conclude that
the existence of UOWHFs implies the existence of PSR systems with perfect ZK.
UOWHFs in turn can be constructed from one-way functions [39]. PSR systems
imply identification schemes, as shown in our companion paper [19], which in
turn imply the existence of one-way functions, as shown by Impagliazzo and
Luby [24] (see also [23]).

Thus the point of this construction is not efficiency, but to use this black box
constructions to prove the following corollary:

Corollary 1. Single round PSR systems exist if and only if one-way functions
exist. If many rounds PSR systems exist then a single round PSR system exists.

This also gives us a separation result from ZKS [29], since Chase et al. [12]
proved that interactive ZKS and collision resistant hash functions (CRH) are
existentially equivalent and Simon [43] showed a separation result, which states
that no CRH can be constructed from one-way functions (or even permutations)
in a black box manner. Thus we get the following corollary:

Corollary 2. One cannot construct ZKS (and even interactive ZKS) in a black
box manner from PSR systems (interactive or not).

Primary-Secondary-Resolver Membership Proof Systems 223

5.2 Using Cuckoo Hashing with a Stash

We now discuss an instantiation of the second approach for constructing PSRs
mentioned in the introduction, imitating an oblivious search for the element,
where the locations examined are determined by the element searched and some
hash functions. The point is that the secondary needs to show that the searched
element is in none of the probed locations.

Cuckoo Hashing is a scheme first introduced by Pagh and Rodler [36]. If we
have a set |R| = r for which we want to prove (non) membership, we use two
tables T1 and T2 of size (1 + ε)r (where ε is constant) and two hash functions
(F1, F2), which map elements in the universe into those two tables. Every element
x ∈ R is placed in either location F1(x) in table T1 or location F2(x) in table T2.
This off course may fail for the choice of some functions (F1, F2) (with probability
O(1r)), thus we also use a stash, to store elements we could not place in the cuckoo
hash tables due to collisions. Kirsch, Mitzenmacher and Wieder [26] show that
the probability that the stash is larger than s is bounded by O(r−s). This helps
us bound the amount of information that leaks on the set R, by the choice of
the functions (F1, F2). In order to prove x /∈ R we need to show that x was not
placed in the stash and not in either of the two possible locations in the cuckoo
hash tables.

In order to prove non-membership in the tables we use commitment schemes
(see [20] for definitions) with inequality proofs, where we require the commit-
ments to be: hiding, so that commitments to two different values are identically
distributed, and binding, so that even the commiter cannot open a commitment
to a value, different than the committed value. We also want the proofs of inequal-
ity to be complete (honest execution results in correct conclusions), sound (com-
miter can’t cheat) and have indistinguishability between two proofs of inequality,
i.e. proving the inequality of x to two commitments to elements different than x is
indistinguishable. In order to prove an element was not placed in the stash we use
a scheme for proving non-membership in a fixed set, from which we require the
exact same conditions as we require from commitments, with the difference that
we need to commit to a set of elements instead of a single element.

We chose to use Pedersen commitments [37] with ZK proofs of inequality. The
inequality proofs use ZK proofs of equality for Pedersen commitments (based on
the adaptation of Schnorr’s identification protocol [41]) and the ZK proofs of
inequality for discrete logarithms, suggested by Camenisch and Shoup [9]. In
order to construct a scheme to prove non-membership in a fixed set (our stash
S), we use a generalization of the Feige-Fiat-Shamir identification protocol [15]
combined with the set lower bound technique of Goldwasser and Sipser [21],
to allow secondaries to prove they know a large fraction of the secrets (corre-
sponding to the queried element) as opposed to knowing none of them (when the
queried element is placed in the stash). Every element in the universe is mapped
to n challenges and the primary distributes the corresponding secret to every
challenge that doesn’t correspond to an element in the stash S. This way we get
that for every x ∈ S the secondaries know none of the secrets, but they know a
large fraction of the secrets for every element x /∈ S.

224 M. Naor and A. Ziv

All and all we get an interactive PSR system which leaks the cardinality of the
set R and is quite efficient. The denial-of-existence mechanism we described re-
quires a constant number of exponentiations for both parties (9 for the secondary
and 8 for the resolver) in order to prove inequalities for Pedersen’s commitments
and at most n = log |U | modular multiplications and a Gaussian elimination
process (for a matrix of size n

4 × n
3), for the fixed set non-membership proof sys-

tem, suggested to implement the stash. Its great advantage is that it uses very
conservative and well studied assumptions: factoring (for the Feige-Fiat-Shamir
protocol) and discrete logarithm (for the Pedersen commitments).

5.3 Using Verifiable Random Looking Functions

In the full version of this paper [34] we show a few constructions for PSR systems
based on variants of Verifiable Random/Unpredictable Functions [30] (VRF and
VUF for short), a construction that uses Pseudorandom Functions with interac-
tive ZK proofs and discuss constructions in the random oracle model. All these
constructions employ the same strategy which uses functions that map elements
in the universe to some large domain {0, 1}m, where a secondary, holding a secret
key, can prove to a resolver, holding a public key, the value of F (x). Another
important property we require from our functions is to appear random, in the
sense that an adversary (without knowledge of the secret key) who knows the
set R, cannot distinguish between the set of values F (R) = {F (x)|x ∈ R} and a

set of random values {ri|i ∈ [r] : ri
R
∈ {0, 1}m}, even after a series of queries to

the function (which do not include queries to elements in R)5.
The PSR system itself does the following: the primary computes the values of

the function over the set R and arranges them in lexicographical order y1, . . . , yr.
Next it signs all the couples of adjacent values and gives the signatures to the sec-
ondaries: Sign(yi, yi+1) (adding an opening and a closing value 0m and 1m). Now
in order to prove non-membership for an element x /∈ R the secondary simply
computes F (x) and finds and index i for which yi < F (x) < yi+1, proves to the
resolver that it computed F (x) honestly and sends the signature Sign(yi, yi+1).
The resolver is convinced after verifying that F (x) was computed correctly and
that its value is truly in between two values of the set R, precomputed by the
primary (i.e. it verifies that yi < F (x) < yi+1).

This construction leaks the size of the set R and can be instantiated using
different implementations for the function F , thus resulting in different efficiency
and PSR systems which are based on different cryptographic assumptions. The
VRF and VUF constructions are non-interactive and can be implemented using
the constructions of [22,8,1,25] (VRF) and [16,25] (VUF) in the standard model.
As a PRF with interactive ZK proofs we suggest the Naor-Reongold PRF [32].
In the random oracle model we can get very efficient implementations by using
functions comprised of the BLS signature scheme [7] and random oracles or the
NSEC5 construction suggested in our companion paper [19].

5 Both VRFs and PRFs achieve this property naturally by their definitions, while we
need to modify VUFs a bit in order to get this property.

Primary-Secondary-Resolver Membership Proof Systems 225

6 Conclusions and Future Directions

We introduced PSR systems and presented three general strategies for construct-
ing them, with different implementations for the underlying primitives. Our focus
in this paper was on trying to find efficient constructions, based on solid cryp-
tographic assumptions. A construction can be measured by a few standards: ef-
ficiency, the underlying cryptographic assumptions and the ZK requirement (for
which f does the f -ZK requirement hold and whether it is computational, statis-
tical or perfect ZK). There is no clear overall winner that dominates in all criteria.

If the (null f) ZK property is critical (e.g. in case the primary does not want
to reveal the size of the set), then the HIBE construction (Section 4) and the
signature based PSR (Section 5.1) both achieve perfect f -ZK, where f is the
null function. Both schemes are one-round PSRs and hence they are also secure
in a concurrent setting (as proved in Theorem 2). The rest of the constructions
reveal the size of the set R and do not achieve perfect ZK. The HIBE construc-
tion by Boneh et al. is efficient (Section 4.4), as secondaries and resolvers use
only O(log |U |) group multiplications and a constant number of pairing com-
putations and modular exponentiations for their computations. It is based on
the O(log |U |)-weak decisional Bilinear Diffie-Hellman Inversion assumption6 (�-
wBDHI, see definition in [6]). The downside for this scheme is the computational

load on the primary, which has to compute keys for O(|R| log |U|
|R|) nodes, which

may result in superlinear time for generating the scheme’s keys, but at least it
is only executed once.

Our cuckoo hash based PSR construction (Section 5.2) offers both an ap-
pealing technique and an efficient implementation, based on very solid and well
studied cryptographic assumptions: factoring and the discrete logarithm (defined
in the original papers [15] and [37] respectively). If the security of the PSR is the
most important thing for its users (e.g. a database containing top secret informa-
tion), it makes sense to use the cuckoo hashing construction as it is based on two
very well studied assumptions and has the statistical ZK property, which gives
us everlasting privacy (see Remark 2). This technique’s efficiency depends on the
implementations of the commitment scheme and the fixed set non-membership,
which using the implementations we suggest (see full version of the paper for
exact details [34]) results in the resolvers and secondaries doing a constant num-
ber of modular exponentiations and O(log |U |) modular multiplications, which
is about as efficient as the HIBE construction asymptotically.

Our PSR based on random looking functions (Section 5.3) reveals the size of the
setR, but has the potential of being very efficient if we can construct a VRF/VUF
which is both efficient and secure. We would like to use such a function which
is secure for large domains but can be evaluated and verified with, say, a con-
stant number of operations ([13] is that efficient but lacks security), as secondaries

6 Boneh et al. prove this assumption holds in the generic group model [42]. This means
that using generic algorithms (ones that don’t exploit any special properties of the
group elements’ encodings), one cannot construct a polynomial time algorithm to
break the assumption, which is an encouraging result towards using this assumption.

226 M. Naor and A. Ziv

only have to evaluate the function on the queried element and generate its proof,
while the resolvers verify the value and one signature. We note that the four se-
cure VRFs [22,8,1,25] are not a lot less efficient than the HIBE construction. If we
can implement an efficient division intractable hashing family then we can use the
GHR signature scheme [16] to implement the random looking function, which is
highly efficient, as computing and verifying each value requires one hash compu-
tation and one modular exponentiation. These constructions also have the added
advantage of being non-interactive, which also makes them concurrently secure.

If one is willing to live with random oracles, then this technique yields very
efficient PSR systems. Both the BLS signature scheme [7] based PSR and the
NSEC5 construction described in our companion paper [19] are very efficient,
while the first relies on a gap Diffie-Hellman group (see definition in the original
paper [7]) and the latter on the RSA hardness assumption (see definition in [19]).

The implementations proposed are fairly efficient, but undoubtedly it is pos-
sible to optimize them or come up with other ones. In terms of readiness to
deployment, i.e. whether the implementations are mature, then probably HIBE
is the best bet unless one is willing to trust random oracles in which case both
the BLS and NSEC5 schemes are good.

Acknowledgments. We thank our co-authors from [19], Sharon Goldberg,
Dimitrios Papadopoulos, Leonid Reyzin and Sachin Vasant for many helpful
discussions and Yevgeniy Dodis for suggesting the question of whether single-
round PSRs can be based on one-way functions. We thank Pavel Hubác̆ek for
carefully reading the paper.

References

1. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: Relations to
identity-based key encapsulation and new constructions. J. Cryptology 27(3), 544–
593 (2014)

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

3. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 98–115. Springer, Heidelberg (2010)

4. Bau, J., Mitchell, J.C.: A security evaluation of DNSSEC with NSEC3. In: NDSS
2010, The Internet Society (2010)

5. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tology 17(4), 297–319 (2004)

8. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: ACM CCS 2010,
pp. 131–140. ACM (2010)

Primary-Secondary-Resolver Membership Proof Systems 227

9. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. IACR Cryptology ePrint Archive 2000, 67 (2000)

11. Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 433–450. Springer,
Heidelberg (2008)

12. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commit-
ments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)

13. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

14. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: ACM 1998, pp.
409–418. ACM (1998)

15. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol-
ogy 1(2), 77–94 (1988)

16. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999)

17. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

18. Ghosh, E., Ohrimenko, O., Tamassia, R.: Verifiable member and order queries on
a list in zero-knowledge. IACR Cryptology ePrint Archive 2014, 632 (2014)

19. Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L., Vasant, S., Ziv, A.: NSEC5:
provably preventing DNSSEC zone enumeration. IACR Cryptology ePrint Archive
2014, 582 (2014)

20. Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press (2001)

21. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. In: ACM 1986, pp. 59–68. ACM (1986)

22. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010)

23. Impagliazzo, R.: Pseudo-random generators for cryptography and for randomized
algorithms. Ph.D. thesis, University of California, Berkeley (1990)

24. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: FOCS 1989, pp. 230–235. IEEE Computer
Society (1989)

25. Jager, T.: Verifiable random functions from weaker assumptions. IACR Cryptology
ePrint Archive 2014, 799 (2014)

26. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash. SIAM J. Comput. 39(4), 1543–1561 (2009)

27. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014)

28. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (2010)

29. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS 2003, pp. 80–91.
IEEE Computer Society (2003)

228 M. Naor and A. Ziv

30. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: FOCS 1999,
pp. 120–130. IEEE Computer Society (1999)

31. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

32. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS 1997, pp. 458–467. IEEE Computer Society (1997)

33. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: ACM 1989, pp. 33–43. ACM (1989)

34. Naor, M., Ziv, A.: Primary-secondary-resolver membership proof systems. IACR
Cryptology ePrint Archive 2014, 905 (2014)

35. Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for general-
ized queries on a committed database. IACR Cryptology ePrint Archive 2004,
170 (2004)

36. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: Meyer auf der Heide, F. (ed.) ESA
2001. LNCS, vol. 2161, pp. 121–133. Springer, Heidelberg (2001)

37. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

38. Prabhakaran, M., Xue, R.: Statistically hiding sets. In: Fischlin, M. (ed.) CT-RSA
2009. LNCS, vol. 5473, pp. 100–116. Springer, Heidelberg (2009)

39. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: ACM 1990, pp. 387–394. ACM (1990)

40. Rosen, A.: Concurrent Zero-Knowledge - With Additional Background by Oded
Goldreich. In: Information Security and Cryptography. Springer (2006)

41. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

42. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

43. Simon, D.R.: Findings collisions on a one-way street: Can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

Tight Parallel Repetition Theorems

for Public-Coin Arguments Using KL-Divergence

Kai-Min Chung1,� and Rafael Pass2,��

1 Academia Sinica, Taiwan
kmchung@iis.sinica.edu.tw
2 Cornell University, USA
rafael@cs.cornell.edu

Abstract. We present a new and conceptually simpler proof of a tight
parallel-repetition theorem for public-coin arguments [Pass-Venkitasubra-
maniam, STOC’07], [H̊astad et al, TCC’10], [Chung-Liu, TCC’10]. We fol-
low the same proof framework as the previous non-tight parallel-repetition
theorem of H̊astad et al—which relied on statistical distance to measure
the distance between experiments—and show that it can be made tight
(and further simplified) if instead relying onKL-divergence as the distance
between the experiments.

We then use this new proof to present the first tight “Chernoff-type”
parallel repetition theorem for arbitrary public-coin arguments, demon-
strating that parallel-repetition can be used to simultaneously decrease
both the soundness and completeness error of any public-coin argument
at a rate matching the standard Chernoff bound.

1 Introduction

Ideally, we would like the soundness error of an interactive proof [GMR89, BM88]
or argument systems [BCC88] to be negligible. But, in many settings, our start-
ing point is a protocol with somewhat large soundness error. For example, to
design an interactive argument for a language L, it may be easier to first design a
protocol with soundness error 1/2. This leads to the question of soundness ampli-
fication: How can we to decrease the soundness error of a given protocol? (Ideally,
we would like to simultaneously decrease both the soundness and completeness
error; we return to this question shortly.) A natural approach to performing such
soundness amplification is through a direct product theorem: Roughly speaking,
a direct product theorem for a class of problems states that if an adversary can

� Chung is supported in part by NSF Award CNS-1217821, NSF Award CCF-1214844,
Pass’ Sloan Fellowship, and Ministry of Science and Technology MOST 103-2221-E-
001-022-MY3; part of this work was done while being at Cornell University.

�� Pass is supported in part by an Alfred P. Sloan Fellowship, Microsoft New Fac-
ulty Fellowship, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844,
NSF Award CNS-1217821, AFOSR YIP Award FA9550-10-1-0093, and DARPA and
AFRL under contract FA8750-11-2-0211.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 229–246, 2015.
c© International Association for Cryptologic Research 2015

230 K.-M. Chung and R. Pass

solve an instance of a problem with probability at most δ, then his chance of solv-
ing multiple independent instances should decrease exponentially, ideally to δk,
if we have k independent instances. For the case of interactive proofs/arguments,
the two most natural ways of running several instances are sequential repetition
and parallel repetition. In the case of sequential repetitions, we run k instances of
some underlying protocol sequentially, one after the other, and the verifier finally
accepts if all instances were accepted. It is well-known that sequential repetition
decreases the soundness error of both interactive proofs and arguments at an es-
sentially optimal rate; see [BM88, Gol01, DP98]. However, sequential repetition
increases the number of communication rounds of the original protocol. In the
case of parallel repetition, we instead run the k protocols in parallel. It is known
that parallel repetition decrease soundness error at an optimal rate for the case
of interactive proofs (i.e., for the case of statistical soundness). For arguments
(i.e., computational soundness), however, surprising things start happening: The
seminal work of Bellare, Impagliazzo, and Naor [BIN97] demonstrate protocols
for which parallel repetition fails to amplify soundness at all ! These counter
examples, however, are for private-coin protocols.

On the other hand, for the case of public-coin protocols, parallel repetition the-
orems have been established: Pass and Venkitasubramaniam [PV07] first showed
a tight parallel repetition theorem for constant-round protocols. H̊astad, Pass,
Wikström and Pietrzak [HPWP10] next extended it to arbitrary (i.e., not nec-
essarily constant-round) protocols; the rate at which the soundness decreases,
however, was no longer optimal—roughly speaking, when δ = (1− μ), k repeti-

tions decreases the error to e−Ω(μ2k) as opposed to δk = e−Ω(μk). Finally, Chung
and Liu presented an optimal parallel repetition theorem—where k repetitions
sufficed to decrease the error to δk. A more comprehensive survey of known
parallel repetition theorems can be found in Section 1.3.

1.1 Our Results

A New Proof of Tight Parallel Repetition for Public-coin Protocols In this work,
we revisit the result of Chung and Liu. Our central contribution is a new proof
of their tight parallel repetition theorem. Our proof follows the same framework
as the “simple” proof of the non-tight parallel-repetition theorem of H̊astad
et al—which relied on statistical distance to measure the distance between
experiments—and shows that it can be made tight (and further simplified) if
instead relying onKL-divergence1 as the distance between the experiments. (KL-
divergence was previously instrumental for proving tight parallel theorems for
two-prover games [BRR+09] in an information-theoretic setting. Our new proof
demonstrates that also in the computational setting, KL-divergence appears to
be the right measure of distance when analyzing reductions through hybrid ex-
periments.) As such, our proof significantly simplifies and “demystifies” the proof
of [CL10], which directly analyzed the success probability through an intricate

1 Recall that KL(X||Y) =
∑

x∈supp(X) Pr[X = x] · log Pr[X=x]
Pr[Y=x]

. For convenience, here
we define KL-divergence with log base e. The choice is inconsequential.

Tight Parallel Repetition Theorems for Public-Coin Arguments 231

inductive argument relying on Holder’s inequality, providing little intuition for
“why” the reduction works.

Additionally, as we now turn to discussing, our new proof enables considering
more general scenarios (whereas the analysis in [CL10] is explicitly set up to
analyze the particular direct-product case), and we believe this technique may
be useful more broadly.

Tight Chernoff-type Parallel-repetition Theorem for Any Public-coin Protocols.
So far we have only discussed direct-product parallel repetition theorems, where
the parallel verifier accepts iff all parallel sessions are accepting. If the starting
protocol also has a large completeness error, then parallel repetition with a “di-
rect product” verifier also increases the completeness error. Ideally, we would
like to have a way to simultaneously decrease both the completeness and the
soundness error: just as for error reduction of the class BPP, the idea is to con-
sider a threshold verifier, who accept whenever the fraction of accepting sessions
is greater than a certain threshold γ (that is greater than the soundness error
δ, or else there is no hope to reduce the soundness error). For error reduction of
BPP, it follows by a standard Chernoff bound that such an approach works. For
interactive arguments, such “Chernoff-type” parallel repetition theorems where
first studied by Impagliazzo, Jaiswal, and Kabanets [IJK09] for the case of three-
message protocols. H̊astad et al. [HPWP10] extend the results of [IJK09] also
to public-coin protocols and Chung and Liu [CL10] improved the error decrease
rate obtaining “tight” Chernoff-type parallel repetition theorems (matching the
parameters of the standard Chernoff bound)2 in two setting:

– For the case of constant-round protocols (by relying on the direct product
parallel repetition theorem of [PV07]).

– When the gap between the threshold γ and the soundness error δ is a con-
stant (i.e., γ − δ = Ω(1)); this is done by relying on a generic reduction to
the direct product case, which is only efficient when the gap is a constant.

In particular, for non-constant round protocols, previous result only enabled si-
multaneously decreasing the completeness and soundness error at a rate match-
ing the standard Chernoff bound whenever the gap between the soundness error
and “1-the completeness error” is a constant (as opposed to it being an inverse
polynomial). We show that using our new proof technique, the analysis for the
direct product case directly extends also to the case of threshold verifiers, yield-
ing a Chernoff-type parallel repetition theorem for any public-coin protocol, and
any threshold γ > δ.

Specifically, we demonstrate the following theorem, which matches a “KL-
version” Chernoff bound, and directly implies both tight direct product theorems
and tight Chernoff-type theorems.

Theorem 1 (informal). For a public-coin interactive argument with soundness
error δ ∈ (0, 1), k-fold parallel repetition with threshold γ > δ ∈ (0, 1) decreases

2 Also the standard Chernoff bound is not “optimal” so we content ourselves with
matching the parameters of the standard Chernoff bound.

232 K.-M. Chung and R. Pass

soundness error to e−k·KL(γ||δ) + ngl, where ngl is a negligible function in the
security parameter.3 In particular,4

– For threshold γ = 1 (the direct product setting), the soundness error is de-
creased to δk + ngl.

– For threshold γ = (1+μ)δ (the “multiplicative” Chernoff-bound setting), the

soundness error is decreased to e−Ω(μ2δk) +ngl for μ ∈ (0, 1) and e−Ω(μδk)+
ngl for μ > 1.

1.2 Proof Overview

We now explain our new proofs of a tight parallel repetition theorem for public-
coin protocols. For simplicity of exposition, we start by focusing on the direct
product case, and next extend the analysis to deal with threshold verifiers.

We first set-up some notation. Let us consider a public-coin protocol (P, V)
with m rounds, where at each round j ∈ [m], the verifier V sends a uni-
formly random message xj to P , receives back a second-message yj , and at
the end deterministically decides to accept or reject based on the transcript
(x1, y1, . . . , xm, ym). We denote by (P k, V k) the k-fold parallel repetition of
(P,K); here V k sends a message x = (xj,1, . . . , xj,k), receives back a message y =
(yj,1, . . . , yj,k) at each round j ∈ [m], and accepts iff (x1,i, y1,i, . . . , xm,i, ym,i) is
accepting for every instance i ∈ [k]. We refer to the different parallel executions
of the protocol (P, V) inside (P k, V k) as the parallel sessions.

To prove that parallel repetition reduces the soundness error, we show how to
transform any parallel prover P k∗ that convinces V k with probability ε ≥ 1.1δk

to a single-instance prover P ∗ that convinces V with probability at least δ. This
implies that parallel repetition reduces the soundness error at an essentially op-
timal rate (from δ to 1.1δk). We may without loss of generality assume that P k∗

is deterministic—its optimal random coins can always be fixed non-uniformly.5

More precisely, P ∗ will internally emulate an execution of P k∗ and use this
execution in order to convince an external verifier V . On a high-level, the general
strategy is quite straight forward. P ∗ picks one of the k sessions, i; this session
will be externally forwarded (between P k∗ and V), and all the other sessions, −i,
will be appropriately emulated internally. In other words, the external verifier
V is “embedded” in some session i of V k, and P ∗ internally emulates P k∗ and
the remaining k − 1 sessions −i of V k while forwarding P k∗’s messages yj,i’s
for session i to V ; see Figure 1 for an illustration for the case of a one-round
protocol.

Recall that since we have assumed that P k∗ is deterministic, the interaction
between P k∗ and V k is determined solely by V k’s message x1, . . . ,xm, where

3 As shown by [DJMW12], under some cryptographic assumptions, the additive neg-
ligible term is necessary.

4 For the direct product setting, it follows by the fact that KL(1||δ) = log(1/δ). For
the Chernoff-bound setting, it follows by the fact that KL((1+μ)δ||δ) = Θ(μ2δ) for
μ ∈ (0, 1), and KL((1 + μ)δ||δ) = Θ(μδ) for μ > 1.

5 Alternatively, “close to optimal” coins can be uniformly fixed by sampling.

Tight Parallel Repetition Theorems for Public-Coin Arguments 233

P ∗ V
xi

P k∗ V k

yi

x = xi

y = yi

internal internal

Fig. 1. Interaction between P ∗ and V for a one-round protocol: P ∗ embeds the external
verifier V in session i of V k and internally emulates P k∗ and the remaining k−1 sessions
−i of V k while forwarding P k∗’s message y for session i to V

each xj = (xj,1, . . . , xj,k). Thus, P
∗ needs to decide the session i to embed V at

beginning, and then at each round j, given an external message xj,i, to choose the
remaining k − 1 messages xj,−i. We now recall the rejection sampling strategy
of [HPWP10].

The Rejection Sampling Strategy. We consider a rejection sampling prover, P ∗
rej,

that selects the session i ∈ [k] uniformly at random, and then at each round
j, upon receiving the external verifier V ’s message xj,i, P

∗
rej selects xj,−i using

rejection sampling as follows: P ∗
rej repeatedly samples a random continuation of

(P k∗, V k) (i.e., samples uniformly random xj,−i,xj+1 . . . ,xm)6 until it finds an
accepting continuation, i.e., V k accepts at the end of interaction (or a certain a-
prior bound M on the number of samples is reached, in which case P ∗ aborts and
fails). Then, P ∗ selects the corresponding messages in the accepting continuation
as the messages of V−i at round j.

To analyze the success probability of P ∗
rej, let us first allow P ∗

rej to make an
unbounded number of samples (i.e., set M = ∞). Note that in this case, at each
round j, P ∗

rej simply selects xj,−i conditioned on P k∗ convincing V k. See Figure 2

for an illustration. As we shall see, if P k∗ convinces V k with probability ε, then
P ∗ convinces V with probability ≥ ε1/k > δ. We then deal with the bounded-
sample case at the end (looking forward, as long as we make poly(1/ε) queries,
having such a cut-off only slightly affects the success probability of P ∗).

The main idea for analyzing (the unbounded sample version of) P ∗ is to
consider an Ideal experiment, where P ∗ succeeds with probability 1 and next
show that the actual execution of (P ∗, V), referred to as the Real experiment,
and the Ideal experiment are close (using an appropriate choice of a distance
measure), from which we can conclude that P ∗ succeeds with high probability
in the Real experiment. Let us start by formalizing the Real experiment.

6 Note that here we use the fact that the protocol is public coin so that sampling a
random continuation is simply sampling uniformly random xj,−i,xj+1 . . . ,xm.

234 K.-M. Chung and R. Pass

P ∗
rej Vx1,i

P k∗ V k

y1,i

x1 = x1,i

y1 = y1,i

xj−1,i

yj−1,i

xj−1 = xj−1,i

yj−1 = yj−1,i

xj,i xj = xj,i

internal internal

Fig. 2. Interaction between P ∗
rej and V

The Real Experiment. Consider an execution of (P ∗
rej, V) as follows. At beginning,

P ∗
rej selects a random coordinate i ∈ [k]. Then at each round j ∈ [m], V selects

a uniformly random xj,i, and P ∗
rej selects a random xj,−i conditioned on W

using rejection sampling (namely, repeatedly samples a random continuation of
(P k∗, V k) until it finds an accepting continuation, i.e., V k accepts at the end of
interaction, and selects the corresponding xj,−i). If no such xj,−i exists, then
P ∗
rej fails. P

∗
rej succeeds if it does not fail. The output of the experiment is defined

to be (i,x1, . . . ,xm).
First, note that to prove that parallel repetition works (at an optimal rate)

we need to show that P ∗ convinces V in the Real experiment with probability
at least ε1/k. Secondly, observe that an equivalent way of defining the output
(i,x1, . . . ,xm) of the experiment is as follows: uniformly sample i ∈ [k], then
for each j ∈ [m], uniformly sample xj,i ∈ {0, 1}n, and uniformly sample x−i ∈
{0, 1}(k−1)n conditioned on P k∗ convincing V k.

The Ideal Experiment. Let us turn to defining the Ideal experiment. The exper-
iment is defined identically to the Real experiment, except that now we addi-
tionally select xj,i conditioned on P k∗ convincing V k; that is, uniformly sample
i ∈ [k], then for each j ∈ [m], uniformly sample xj,i ∈ {0, 1}n conditioned on P k∗

convincing V k, and uniformly sample xj,−i conditioned on P k∗(x) convincing
V k; again, the output of the experiment is defined to be (i,x).

Note that an equivalent way of defining the Ideal experiment is to uniformly
sampling i ∈ [k], and then directly uniformly sample (x1, . . . ,xm) conditioned
on P k∗ convincing V k. Since P k∗ convinces V k with positive probability, it thus
follows that in the Ideal experiment P ∗

rej convinces V with probability 1.

Going from Ideal to Real. Observe that the only difference between the Real and
the Ideal experiments is that at each round j ∈ [m], in Real xj,i’s are sampled

Tight Parallel Repetition Theorems for Public-Coin Arguments 235

uniformly at random, and in Ideal they are sampled at random conditioned on
P k∗ convincing V k. The following natural approach is taken in [HPWP10].

Consider a set of m “hybrid” experiments, where in Hj , the messages in the
first j rounds are selected just as in Ideal (i.e., both xj′,i and xj′,−i for j′ ≤ j are
sampled conditioned on P k∗ convincing V k), and the remaining m − j rounds
are selected just as in Real (i.e., for j′ > j, only xj′,−i is sampled conditioned on
P k∗ convincing V k, but xj′,i is uniformly sampled without any conditioning).
Clearly H0 = Real and Hm = Ideal. Furthermore, the only difference between
two consecutive hybrids j−1 and j is whether xj,i is sampled conditioned on P k∗

convincing V k or not, where i is uniformly chosen. To bound the distance be-
tween the hybrids, [HPWP10] uses the following version of Raz’ Lemma [Raz98].

Lemma 1 (Raz’ Lemma [Raz98]). Let (H,X) = (H,X1, . . . , Xk) be inde-
pendent random variables and W be an event. Then,

1

k

k∑
i=1

SD((H,Xi)|W , (H |W , Xi)) ≤
√

log(1/Pr[W])

k
.

Let W be the event that P k∗ convinces V k. The lemma directly implies that the
statistical distance between any two consecutive hybrids Hj−1 and Hj is at most√
(log(1/Pr[W]))/k. Thus, by the triangle-inequality, the statistical distance be-

tween the Real and the Ideal experiments is at most m ·
√
(log(1/Pr[W]))/k,

which yields a lower bound on the success probability of P ∗
rej in the Real experi-

ment that suffices to demonstrate that parallel repetition reduces the soundness
error at an exponential rate.

However, the bound is not tight for two reasons. First, due to the “hybrid argu-
ment” we incur a linear loss in the number of rounds m (thus, to make the sound-
ness error small we need the number of parallel repetitions to grow polynomially
with the number of rounds in the protocol). [HPWP10] shows how to avoid the loss
of m by proving a “multi-round” version of Raz’ Lemma, which avoids the round-
by-round hybrid argument. But the bound still does is not tight due to the use of
statistical distance to measure the distance between Real and Ideal

KL Divergence as a Distance Measure. The crux of our new proof is to instead
use Kullback-Leibler divergence (KL divergence, for short) as a distance measure
between the Real and Ideal experiments. In fact, the proof of Raz’ Lemma (and
also the multi-round version in [HPWP10]) first provides a bound on the KL
divergence between the random variables, and then arrives a bound on their
statistical distance by relying on Pinsker inequality. The “translation” between
KL divergence and statistical distance, however, incurs a quadratic loss. By
directly working with KL divergence, we can avoid it.7 By a calculation very
similar to the proof of Raz’ lemma (and essentially implicit in [HPWP10]), we
directly show the following lemma:

7 A similar phenomena occurred already in the context of parallel repetition for “free”
two-prover games; see [BRR+09].

236 K.-M. Chung and R. Pass

Lemma 2. KL(Ideal||Real) ≤ log(1/Pr[W])
k .

Let us now show how to get a tight lower bound on the success probability
of P ∗ in the Real experiment. Let SucReal and SucIdeal be indicator variables
that indicate, respectively, whether P ∗ convinces V in the Real and the Ideal
experiments.

log(1/Pr[W])

k
≥ KL(Ideal||Real) ≥ KL(SucIdeal||SucReal)= 1·log 1

Pr[SucReal = 1]
,

(1)
which implies that Pr[SucReal = 1] ≥ ε1/k since Pr[W] = ε. The second inequality
follows since applying the same function to two distributions can only decrease
their KL divergence, whereas the last equality follows by the definition of KL di-
vergence and the fact that Pr[SucIdeal = 1] = 1. This concludes that P ∗ convinces
V with probability at least ε1/k in the Real experiment.

Dealing with Threshold Verifiers. Our analysis directly extends also to yield
tight “Chernoff-type” parallel-repetition theorems where we consider a thresh-
old verifier V k,γ that accepts iff more that γ · k sessions are accepting. Let us
consider the same rejection sampling strategy P ∗

rej that selects a uniform i ∈ [k],

and then at each round j ∈ [m], samples xj,−i conditioned on P k∗ convinces
V k,γ (note that we do not require V k,γ accepts the i-th session). Let us also
consider the same Real and Ideal experiments as above. For the same reason,

we have KL(Ideal||Real) ≤ log(1/Pr[W])
k . The only difference is that in the Ideal

experiment, we no longer have that the success probability is 1. However, since
V k,γ accepts only when ≥ γ · k sessions accepts, and i ← [k] is uniform and
independent of the transcript (x1, . . . ,xm), P ∗

rej convinces V with probability at

least γ in Ideal. An analogous calculation shows that if P k∗ convinces V k,γ with
probability ≥ e−k·KL(γ||δ), then P ∗

rej convinces V with probability at least δ in
the Real experiment.

Handling The Bounded-Sample Case. In our analysis so far we have assumed
that P ∗ can make an unbounded number of samples. Let us now show that its
success probability is still high even if we impose a polynomial bound M on the
number of samples it can make (and thus P ∗ becomes efficient). Let us first con-
sider the Ideal experiment. The main observation is that, in the Ideal experiment,
in expectation, P ∗ only needs to make 1/ε samples to pick xj,−i conditioned on
P k∗(x) convincing V k for every j ∈ [m] (since the prefix (x1, . . . ,xj−1, xj,i) is
also picked conditioned on P k∗ convincing V k, and P k∗ convinces V k with prob-
ability ε). Thus, if the allowed number of samples M is sufficiently larger than
1/ε, then by the Markov inequality, P ∗ can successfully convince V k with prob-
ability “almost” 1, even if we restrict P ∗ to use at most M samples.8 Since the

8 SinceM > 1/ε, we only get an efficient reduction as long as ε is an inverse polynomial.
As a consequence, parallel repetition of arguments cannot decrease the soundness
error beyond being “negligible”. As shown by [DJMW12], under some cryptographic
assumptions, this is inherent.

Tight Parallel Repetition Theorems for Public-Coin Arguments 237

Ideal and the Real experiments are statistically close, this directly yields a lower
bound on the success probability of P ∗ in the Real experiment. But as we saw,
working with statistical distance does not give the tight bound. To obtain a
tight bound, we again work with KL divergence. Here, the only difference is that
Pr[SucIdeal = 1] is no longer 1, but can be made arbitrarily (inverse polynomially)
close to 1 by increasing M . This is sufficient to conclude that Pr[SucReal = 1]
can be made arbitrarily (inverse polynomially) close to ε1/k as well (since the
KL divergence of two binary random variables is a “smooth” function of the
probabilities of both random variables).

1.3 Related Works: When Parallel Repetition Works

Let us briefly summarize the class of argument systems for which parallel repe-
titions is known to decrease the soundness error.

– The seminal work of Yao [Yao82] on hardness amplification of one-way func-
tions can be viewed as showing that parallel repetition reduces the soundness
error at an optimal rate for all two-message argument systems for which the
verifier’s decision to accept or reject is a public function of the transcript;
that is, the verifier is not employing any secret randomness to decide whether
to accept or reject—we refer to such protocols as being publicly verifiable. An
important special case of publicly-verifiable protocol are public-coin proto-
cols (a.k.a. Arthur-Merlin protocols [BM88]) where in each round the verifier
simply tosses some random coins and directly sends them to the prover (that
is, the verifier doesn’t employ any secret randomness).

– The seminal work of Bellare, Impagliazzo and Naor [BIN97] was the first one
to explicitly study parallel repetition of argument systems and demonstrated
that parallel repetition reduces the soundness error for all three-message
protocols (not just publicly-verifiable ones). The results of [BIN97] demon-
strated that parallel repetition reduces the soundness error of such protocols
at an exponential rate, but did not establish an optimal rate (i.e., reducing
the soundness error from ε to εk). Nevertheless, the more recent work by
Canetti, Halevi and Steiner [CHS05] shows that parallel repetition indeed
reduces the soundness error at an optimal rate for this class of protocols.

– [BIN97, PW07] demonstrate 4-message protocols for which parallel repe-
tition fails; in these protocols, the verifier uses “secret randomness”. Pass
and Venkitasubramaniam [PV12] turn to considering public-coin protocols,
and demonstrate that parallel repetition decreases the soundness error for
constant-round public-coin protocols at an optimal rate.

– H̊astad, Pass, Wikström and Pierzak [HPWP08] show that parallel repeti-
tion, in fact, works for all (not necessarily constant-round) public-coin pro-
tocols, and decreases the soundness error at an exponential rate. Chung and
Liu [CL10] demonstrate that it in fact decreases at an optimal rate.

– [HPWP08] consider a generalization of both public-coin and three-message
protocol, called simulatable protocols—where roughly speaking the verifier’s

238 K.-M. Chung and R. Pass

messages can be predicted without knowing its randomness—and demon-
strate that parallel repetition reduces the error at an exponential rate; an im-
proved “nearly” optimal rate (reducing the soundness error from ε to εk/2)
is obtained by [CL10].

– [HPWP08], and more explicitly [CL10], also consider protocols satisfying
a “computational” simulatability property and demonstrate that parallel
repetition reduces the soundness error at a nearly optimal rate also for such
protocols.

– The elegant work of Haitner [Hai09] considers a certain class of protocols with
“random-terminating” verifiers and demonstrates that parallel repetition re-
duces the soundness error at an exponential rate for such protocols; random-
terminating protocols are important since any argument can be turned into a
random-terminating one, while only slightly increasing the soundness error.
[HPWP10] provide a generalization, called δ-simulatable protocols—where,
very roughly speaking, we only need to predict a δ-fraction of the verifier’s
messages—that encompasses both simulatable and random-terminating pro-
tocols, and demonstrate that parallel repetition decreases the soundness error
at an exponential rate. Optimal, or even “nearly” optimal, parallel repetition
theorems for δ-simulatable (or even random-terminating) protocols are not
known.

2 Preliminaries

Throughout the paper, all log are base e.

2.1 Interactive Arguments

Definition 1 (Interactive Proofs/Arguments). A pair of interactive algo-
rithms (P, V) is an interactive proof for a NP language L with completeness
error c and soundness error s if it satisfies the following properties:

– Completeness: For all x ∈ L with NP witness w,

Pr[〈P (w), V 〉(x) = 1] = 1− c(|x|).

– Soundness: For all adversarial provers P ∗, and for every all x /∈ L,

Pr[〈P ∗, V 〉(x) = 1] ≤ s(|x|).

where 〈P, V 〉(x) denotes the output of V after communicating with P if both players
get x as a common input. (P, V) is an interactive argument for L if P runs in
polynomial time and the soundness property holds only against all non-uniform
polynomial-time adversarial provers P ∗. (P, V) is public-coin if verifier’s messages
are uniformly random strings; otherwise, (P, V) is private-coin.

Tight Parallel Repetition Theorems for Public-Coin Arguments 239

Definition 2 (Parallel Repetition with Threshold Verifiers). Let (P, V)
be an interactive protocol. Let k ∈ N and γ ∈ (0, 1). We use (P k, V k,γ) to denote
k-fold parallel repetition of (P, V) with threshold γ, where P k and V k,γ interact
by executing k copies of (P, V) in parallel and at the end of execution, V k,γ

accepts iff at least γ · k copies accept. For the direct product case with γ = 1, we
use V k to denote V k,1.

2.2 Kullback-Leibler Divergence

Here we review the definition and basic properties of Kullback-Leibler diver-
gence.

Definition 3. Let X and Y be discrete random variables over a finite support
[N]. The Kullback-Leibler divergence (KL divergence for short) of X from Y is
defined to be

KL(X ||Y) =
∑
x∈[N]

Pr[X = x] log
Pr[X = x]

Pr[Y = x]
.

For p, q ∈ (0, 1), we use KL(p||q) to denote the KL divergence KL(X ||Y) of two
binary random variables X and Y with Pr[X = 1] = p and Pr[Y = 1] = q.

The following properties of KL divergence can be found in any Information
Theory textbook (e.g., [CT06]). We first recall the chain rule for KL divergence.

Lemma 3 (chain rule). Let (X1, X2) and (Y1, Y2) be random variables. We
have

KL((X1, X2)||(Y1, Y2)) = KL(X1||Y1) + E
x←X1

[KL(X2|X1=x||Y2|Y1=x)].

The following lemma says that applying a deterministic function can only
decrease the KL divergence.

Lemma 4. Let X and Y be random variables and f a deterministic function.
We have

KL(f(X)||f(Y)) ≤ KL(X ||Y).

The following lemma allows us to decompose the KL divergence of two joint
distributions by the sum of the KL divergence of their marginals.

Lemma 5 ([Hol09], Lemma 4.2). Let X = (X1, . . . , Xk) be independent
random variables, and Y = (Y1, . . . , Yk) be random variables.

k∑
i=1

KL(Yi||Xi) ≤ KL(Y ||X)

The following lemma bounds how much conditioning can creates the KL di-
vergence.

240 K.-M. Chung and R. Pass

Lemma 6. Let X be a random variable and W a (probabilistic) event.

KL(X |W ||X) ≤ log
1

Pr[W]
.

The following simple lemma bounds the sensitivity of KL divergence of two
binary random variables with respect to the first coordinate, which will be useful
for us. The lemma follows by the fact that KL divergence is a smooth function,
and is proved by a straightforward calculation. For the sake of completeness, we
provide a proof in the appendix.

Lemma 7. For every p, q, η ∈ (0, 1) such that η ≤ min{p/2, q}, we have

KL(p||q)−KL(p− η||q) ≤ Θ (η · log(1/η))

2.3 A Lemma on Sampling

The following simple lemma is taken from H̊astad et al. [HPWP10]; for self-
containment, we recall the proof.

Lemma 8 ([HPWP10]). Let (X,Y) be a joint distribution over some finite
domain. Let W be a deterministic event on (X,Y). Consider the following ex-
periment:

– Sample x ← X |W .
– Sample y ← Y |W∧X=x using rejection sampling; i.e., sample i.i.d.

y1, y2, . . . ← Y |X=x and outputs the first yt such that (x, yt) ∈ W .

Let T be the number of sample used in the rejection sampling. We have E[T] =
1

Pr[W] .

Proof. The lemma follows by the following calculation.

E[T] =
∑
x

Pr[X = x|W] · E[T |X = x]

=
∑
x

Pr[X = x|W] · 1

Pr[W |X = x]

=
∑
x

Pr[X = x ∧W]

Pr[W]
· Pr[X = x]

Pr[W ∧X = x]

=
∑
x

Pr[X = x]

Pr[W]
=

1

Pr[W]
.

3 Proof of the Parallel Repetition Theorem

In this section, we present the formal of our tight Chernoff-type parallel repeti-
tion theorem for public-coin protocols.

Tight Parallel Repetition Theorems for Public-Coin Arguments 241

Theorem 2. Let (P, V) be a public-coin interactive argument for a language L.
There exists an oracle adversarial prover P (·)∗ such that for every k ∈ N, input
z ∈ {0, 1}∗, every γ, δ, ξ ∈ (0, 1) with γ > δ, and every deterministic parallel
adversarial prover P k∗, if

Pr[〈P k∗, V k,γ〉(z) = 1] ≥ ε
def
= (1 + ξ) · e−k·KL(γ||δ),

then
Pr[〈P (Pk∗)∗(k, γ, δ, ξ), V 〉(z) = 1] ≥ δ.

Furthermore, P (·)∗ runs in time poly(|z|, k, ε−1, ξ−1, (γ − δ)−1) given oracle ac-
cess to P k∗.

Note that in the direct product setting with γ = 1, KL(1||δ) = log(1/δ)
so e−k·KL(γ||δ) = δk. Thus, the above theorem implies a tight direct product
theorem as a corollary. For the “multiplicative” Chernoff-bound setting with γ =
(1+μ)δ, we have KL((1+μ)δ||δ) = Θ(μ2δ) for μ ∈ (0, 1), and KL((1+μ)δ||δ) =
Θ(μδ) for μ > 1, which implies bounds e−Ω(μ2δk) and e−Ω(μδk), respectively. This
matches the usual multiplicative Chernoff bounds.

Proof. Let m denote the round complexity of (P, V). Let us consider a P
(·)∗
rej that

interacts with V by the aforementioned rejection sampling with M = Θ(k·m
ε·ξ·(γ−δ) ·

log k
δ·ξ). Specifically, P ∗

rej, selects the session i ∈ [k] uniformly at random, and
then at each round j, upon receiving the external verifier V ’s message xj,i,
P ∗
rej selects xj,−i using rejection sampling as follows: P ∗

rej repeatedly samples a

random continuation of (P k∗, V k,γ) until it finds an accepting continuation, i.e.,
V k,γ accepts at the end of interaction (note that we do not require V k,γ accepts
the i-th coordinate), or M = Θ(k·m

ε·ξ·(γ−δ) · log
k
δ·ξ) samples is reached, in which

case P ∗
rej aborts and fails. Then, P ∗

rej selects the corresponding messages in the
accepting continuation as the messages of V−i at round j.

By inspection, P
(·)∗
rej runs in time poly(|z|, k, ε−1, ξ−1, (γ − δ)−1) on input

z, k, γ, δ, ξ. It remains to show that if P k∗ convinces V k,γ with probability at least

ε, then P
(·)∗
rej convinces V with probability at least δ. Let W denote the event that

P k∗ convinces V k,γ in the execution of 〈P k∗, V k,γ〉(z). We consider the following

Real experiment, which is the same as the execution of 〈P (Pk∗)∗
rej (k, γ, δ, ξ), V 〉(z)

except that P ∗
rej takes an unbounded number of samples (i.e., set M = ∞).

The Real Experiment. Consider an execution of (P ∗
rej, V) as follows. At beginning,

P ∗
rej selects a random coordinate i ∈ [k]. Then at each round j ∈ [m], V selects

a uniformly random xj,i, and P ∗
rej selects a random xj,−i conditioned on W

using rejection sampling (namely, repeatedly samples a random continuation of
(P k∗, V k,γ) until it finds an accepting continuation, i.e., V k,γ accepts at the end
of interaction, and selects the corresponding xj,−i). Let Tj denotes the number
of samples P ∗

rej takes. If no such xj,−i exists, then P ∗
rej fails, and we set Tj = ∞

and all remaining xj,−i,xj+1, . . . ,xm = ⊥. P ∗
rej succeeds if it does not fail. The

output of the experiment is defined to be (i,x1, . . . ,xm).

242 K.-M. Chung and R. Pass

Note that the event that P (·)∗ convinces V in 〈P (Pk∗)∗(k, γ, δ, ξ), V 〉(z) corre-
sponds to the event that in the Real experiment, P ∗ succeeds and Tj ≤ M for
every j ∈ [m]. Let SucReal be the indicator random variable of this event. Our
goal is to lower bound

Pr[〈P (Pk∗)∗(k, γ, δ, ξ), V 〉(z) = 1] = Pr[SucReal = 1].

We next compare it with an Ideal experiment, which is identical to the Real
experiment, except that the messages x1,i, . . . , xm,i are also selected conditioned
on W .

The Ideal Experiment. At beginning, P ∗
rej selects a random coordinate i ∈ [k].

Then at each round j ∈ [m], V selects a random xj,i conditioned on W , and
P ∗
rej selects a random xj,−i conditioned on W using rejection sampling. Let Tj

denotes the number of samples P ∗
rej takes. The output of the experiment is defined

to be (i,x1, . . . ,xm).
Note that sampling random x1,i,x1,−i, . . . , xm,i,xm,−i conditioned on W step

by step is equivalent to sampling the whole x1, . . . ,xm conditioned on W . Thus,
the output distribution of the Ideal experiment is simply a uniformly random
coordinate i ∈ [k] and a uniformly random accepting transcript (x1, . . . ,xm).
Let SucIdeal be the corresponding indicator random variable of SucReal in the
Ideal experiment; that is, SucIdeal is the indicator random variable of the event
that P ∗

rej convinces V and Tj ≤ M for every j ∈ [m].
In what follows, we will show that (i) Pr[SucIdeal = 1] ≥ γ − (m/Mε) and

(ii) KL(Ideal||Real) ≤ (log(1/Pr[W]))/k, and derive the desired lower bound on
Pr[SucReal = 1] from them.

Lemma 9. Pr[SucIdeal = 1] ≥ γ − (m/Mε).

Proof. Note that in the Ideal experiment, for every i ∈ [k] and j ∈ [m], the
prefix (x1, . . . ,xj−1, xj,i) is chosen randomly conditioned on W and then P ∗

rej

selects a random xj,−i conditioned on W using rejection sampling. Applying
Lemma 8 with X = (X1, . . . ,Xj−1, Xj,i), Y = Xj,−i and event W implies that

E[Tj] = 1/Pr[W] ≤ 1/ε for every j ∈ [m]. By the Markov inequality, we have
Pr[Tj ≤ M] ≥ 1−1/(Mε) for every j ∈ [m]. Also note that i is uniformly random
and independent of x and Tj’s so the probability that a random coordinate i
is accepting is at least γ. Thus, it follows by an union bound that Pr[SucIdeal =
1] ≥ γ − (m/Mε).

Lemma 10. KL(Ideal||Real) ≤ (log(1/Pr[W]))/k.

Proof. It is instructive to first prove the one-round case (i.e., m = 1), which
is equivalent to the KL-version of Raz’ Lemma. In this case by definition,
Ideal = (I,X1|W) and Real = (I,X1,I ,X1,−I |W,X1,I). By applying the chain
rule (Lemma 3), we have

KL(Ideal||Real) = KL(I||I) + E
I

[
KL

(
X1|W ||(X1,I ,X1,−I |W,X1,I

)]
=

1

k

k∑
i=1

KL
(
X1|W ||(X1,i,X1,−i|W,X1,i)

)
.

Tight Parallel Repetition Theorems for Public-Coin Arguments 243

For each termKL(X1|W ||(X1,i,X1,−i|W,X1,i)), by applying the chain rule again,
we have

KL
(
X1|W ||(X1,i,X1,−i|W,X1,i)

)
= KL(X1,i|W ||X1,i) + E

X1,i|W
[KL(X1,−i|W,X1,i ||X1,−i|W,X1,i)]

= KL(X1,i|W ||X1,i).

Applying Lemma 5,

1

k

k∑
i=1

KL
(
X1|W ||(X1,i,X1,−i|W,X1,i)

)
=

1

k

k∑
i=1

KL(X1,i|W ||X1,i)

≤ 1

k
KL(X1|W ||X1).

Therefore, by Lemma 6,

KL(Ideal||Real) ≤ 1

k
KL(X1|W ||X1) ≤

log(1/Pr[W])

k
.

We proceed to consider the general case, which is proved by the same cal-
culation, except that we first apply an additional chain rule to break up terms
corresponding to each round.

KL(Ideal||Real) =
m∑

j=1

E
I,X<j |W

[
KL(Xj |W,X<j ||(Xj,I |W,X<j ,Xj,−I |W,X<j ,Xj,I))

]
.

Now, for each term, the same calculation as before using the chain rule and
Lemma 5 shows that

E
I,X<j |W

[
KL(Xj |W,X<j ||(Xj,I |W,X<j ,Xj,−I |W,X<j ,Xj,I))

]
≤ 1

k
E

X<j |W

[
KL(Xj |W,X<j ||Xj |X<j

)
]
.

Applying another chain rule and Lemma 6 gives,

KL(Ideal||Real) ≤ 1

k
E

X<j |W

[
KL(Xj |W,X<j ||Xj |W,X<j)

]
=

1

k
KL(X≤m|W ||X≤m)

≤ log(1/Pr[W])

k

We now derive the desired lower bound on the probability Pr[SucReal = 1]
using Lemma 9 and 10. Let q = Pr[SucReal = 1] and η = m/Mε. Since our goal
is to lower bound q by δ and γ − η ≥ δ, we can assume w.l.o.g., that q ≤ γ − η.
Lemma 10 implies that

KL(γ − η||q) ≤ KL(SucIdeal||SucReal) ≤ KL(Ideal||Real) ≤ (log(1/Pr[W]))/k,

244 K.-M. Chung and R. Pass

where the second inequality follows since applying the same function to two
distributions can only decrease their KL divergence. Now, note that the fact
that Pr[W] ≥ (1 + ξ)e−k·KL(γ||δ) and Lemma 7 implies that

Pr[W] ≥ (1 + ξ) · e−k·KL(γ||δ) ≥ e−k·KL(γ||δ)+ξ/2

≥ e−k·(KL(γ−η||δ)+Θ(η·log(1/η)))+ξ/2 ≥ e−k·KL(γ−η||δ),

where the last inequality follows by the fact that k ·Θ(η · log(1/η)) ≤ ξ/2 (which
follows by the choice of M). Combining the above inequalities, we have KL(γ−
η||q) ≤ KL(γ − η||δ), which implies q ≥ δ.

References

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences 37(2), 156–189
(1988)

[BIN97] Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the
error in computationally sound protocols? In: FOCS, pp. 374–383 (1997)

[BM88] Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276
(1988)

[BRR+09] Barak, B., Rao, A., Raz, R., Rosen, R., Shaltiel, R.: Strong parallel
repetition theorem for free projection games. In: Dinur, I., Jansen, K.,
Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687,
pp. 352–365. Springer, Heidelberg (2009)

[CHS05] Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly ver-
ifiable puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33.
Springer, Heidelberg (2005)

[CL10] Chung, K.-M., Liu, F.-H.: Parallel repetition theorems for interactive ar-
guments. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 19–36.
Springer, Heidelberg (2010)

[CT06] Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience (2006)

[DJMW12] Dodis, Y., Jain, A., Moran, T., Wichs, D.: Counterexamples to hardness
amplification beyond negligible. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 476–493. Springer, Heidelberg (2012)

[DP98] Damg̊ard, I., Pfitzmann, B.: Sequential iteration of interactive argu-
ments and an efficient Zero-Knowledge argument for NP. In: Larsen,
K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443,
pp. 772–783. Springer, Heidelberg (1998)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems. SIAM Journal on Computing 18(1), 186–208 (1989)

[Gol01] Goldreich, O.: Foundations of Cryptography. Basic tools. Cambridge Uni-
versity Press (2001)

[Hai09] Haitner, I.: A parallel repetition theorem for any interactive argument. In:
FOCS (2009)

[Hol09] Holenstein, T.: Parallel repetition: Simplification and the no-signaling case.
Theory of Computing 5(1), 141–172 (2009)

Tight Parallel Repetition Theorems for Public-Coin Arguments 245

[HPWP08] H̊astad, J., Pass, R., Wikström, D., Pietrzak, K.: An efficient parallel rep-
etition theorem (2008) (unpublished manuscript)

[HPWP10] H̊astad, J., Pass, R., Wikström, D., Pietrzak, K.: An efficient parallel
repetition theorem. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 1–18. Springer, Heidelberg (2010)

[IJK09] Impagliazzo, R., Jaiswal, R., Kabanets, V.: Chernoff-type direct product
theorems. J. Cryptology 22(1), 75–92 (2009)

[PV07] Pass, R., Venkitasubramaniam, M.: An efficient parallel repetition theorem
for arthur-merlin games. In: STOC, pp. 420–429 (2007)

[PV12] Pass, R., Venkitasubramaniam, M.: A parallel repetition theorem for
constant-round arthur-merlin proofs. Transactions on Computation The-
ory 4(4), 10 (2012)

[PW07] Pietrzak, K., Wikström, D.: Parallel repetition of computationally sound
protocols revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
86–102. Springer, Heidelberg (2007)

[Raz98] Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803
(1998)

[Yao82] Yao, A.C.-C.: Theory and applications of trapdoor functions (extended
abstract). In: FOCS, pp. 80–91 (1982)

Proof of Lemma 7

Lemma 11 (Lemma 7 Restated). For every p, q, η ∈ (0, 1) such that η ≤
min{p/2, q}, we have

KL(p||q)−KL(p− η||q) ≤ Θ (η · log(1/η))

Proof. By definition,

KL(p||q) = p log
p

q
+ (1− p) log

1− p

1− q

= p log p+ p log
1

q
+ (1 − p) log(1− p) + (1− p) log

1

1− q

KL(p− η||q) = (p− η) log
p− η

q
+ (1− p+ η) log

1− p+ η

1− q

= (p− η) log(p− η) + (p− η) log
1

q
+ (1− p+ η) log(1 − p+ η)

+ (1− p+ η) log
1

1− q

By further expanding, we have

(p− η) log(p− η) = p log(p− η)− η log(p− η)

= p log p+ p log(1− η

p
)− η log(p− η)

(p− η) log
1

q
= p log

1

q
− η log

1

q

246 K.-M. Chung and R. Pass

(1− p+ η) log(1− p+ η) = (1− p) log(1 − p+ η) + η log(1− p+ η)

= (1− p) log(1 − p) + (1− p) log(1 +
η

1− p
)

+ η log(1− p+ η)

(1− p+ η) log
1

1− q
= (1− p) log

1

1− q
+ η log

1

1− q

Therefore,

KL(p||q)−KL(p− η||q)

= −p log(1− η

p
) + η log(p− η) + η log

1

q
− (1− p) log(1 +

η

1− p
)

− η log(1− p+ η)− η log
1

1− q

≤ −p log(1− η

p
) + η log

1

q
− η log(1− p+ η)

≤ 2η + η log
1

q
− η log η ≤ Θ(η log(1/η)),

where the first inequality follows by dropping negative terms, the second in-
equality follows by the monotonicity of logarithm and using Taylor expansion,
and the last inequality uses η < q.

Stretching Groth-Sahai:

NIZK Proofs of Partial Satisfiability

Carla Ràfols

Horst-Görtz Institut für IT Sicherheit, Ruhr-Universität Bochum, Germany
carla.rafols@rub.de

Abstract. Groth, Ostrovsky and Sahai constructed a non-interactive
Zap for NP-languages by observing that the common reference string of
their proof system for circuit satisfiability admits what they call corre-
lated key generation. The latter means that it is possible to create from
scratch two common reference strings in such a way that it can be pub-
licly verified that at least one of them guarantees perfect soundness while
it is computationally infeasible to tell which one. Their technique also
implies that it is possible to have NIWI Groth-Sahai proofs for certain
types of equations over bilinear groups in the plain model. We extend the
result of Groth, Ostrovsky and Sahai in several directions. Given as in-
put some predicate P computable by some monotone span program over
a finite field, we show how to generate a set of common reference strings
in such a way that it can be publicly verified that the subset of them
which guarantees perfect soundness is accepted by the span program. We
give several different flavors of the technique suitable for different appli-
cations scenarios and different equation types. We use this to stretch the
expressivity of Groth-Sahai proofs and construct NIZK proofs of partial
satisfiability of sets of equations in a bilinear group and more efficient
Groth-Sahai NIWI proofs without common reference string for a larger
class of equation types. Finally, we apply our results to significantly re-
duce the size of the signatures of the ring signature scheme of Chandran,
Groth and Sahai or to have a more efficient proof in the standard model
that a commitment opens to an element of a public list.

1 Introduction

Zero-knowledge proofs have played a significant role both in the theory and the
practice of cryptographic protocols. Although non-interactive zero-knowledge
proofs are in principle more useful for practical purposes, for roughly twenty
years after their invention [4] their prohibitive costs made their interactive coun-
terparts the only real alternative. For example, although the connection between
NIZKs and signatures was early recognized [2], in practice a widely used tech-
nique was to build schemes in the random oracle based on a special kind of
interactive proof of knowledge, a Σ-protocol ([24,13]). This approach turned out
to be quite fruitful and it was used to build a number of schemes even with
complex functionalities, like for instance the numerous kinds of distributed sig-
nature schemes based on the work of Cramer et al. [9] on interactive proofs of

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 247–276, 2015.
c© International Association for Cryptologic Research 2015

248 C. Ràfols

partial knowledge. In such a proof, the prover convinces the verifier that it knows
a subset of the witnesses of a set of statements. Again, although De Santis et al.
[10] had achieved similar results before for the non-interactive case, they were
considered of theoretical interest only and went unnoticed by protocol designers.

The situation changed radically when in 2008, after some promising advances
towards making non-interactive proofs practical, ([5,14]), Groth and Sahai ([16])
gave efficient non-interactive proofs of membership in the language of satisfiable
quadratic equations in bilinear groups. Compared to previous work, their pro-
posal had the advantage of considering a language which is both very natural
and very general. The great number of protocols which use GS proofs ([19,17,6],
just to name a few) shows the strength and flexibility of their framework.

More expressive is more efficient. The fact that practical instantiations
of GS proofs are in bilinear groups imposes some limitations on the type of
equations for which satisfiability can be proven. For instance, each equation
should be at most quadratic, and further, in asymmetric bilinear groups, it should
have degree at most one in each variable. This can be circumvented at the cost of
adding additional variables and equations but this might significantly increase
the proof size. Although GS proofs can be considered practical, they remain
expensive and even proofs of simple statements might require several dozens
of group elements. Therefore, the design goal of obtaining proofs for a more
expressive language goes hand in hand with obtaining efficiency improvements.

For instance, suppose one wants to prove a statement of the type which is
informally expressed as:

“ĉ is a commitment to some value X ∈ {1, . . . , L},” (1)

for some L ∈ N. This statement is naturally encoded as “ĉ opens to some value
X which satisfies one of the equations {X−1 = 0, . . . , X−L = 0}”. However, as
GS proofs do not support this kind of statements, following [6,14], the strategy

is to add auxiliary variables b1, . . . , bL, prove that
∑L

i=1 bi = 1 and that, for all
i ∈ {1, . . . , L}, bi ∈ {0, 1} and (X − i)bi = 0. Further, in the instantiation of
GS proofs in asymmetric bilinear groups, to prove each one of the statements
bi ∈ {0, 1} we must add a new additional variable bi, and prove satisfiability of
the equations {bi−bi = 0, bi(bi−1) = 0}. The question remains if we can encode
these statements in some alternative, more efficient way by stretching GS proofs
so that they support this sort of statements directly.

Partial Proofs. We would like a result close in spirit to [10,9] for GS proofs.
In all these works, the main idea is to use as a building block a proof system PS1

that allows to prove a certain atomic statement x, and modify it to construct
a proof system PS2 for statements of the kind “Given the atomic statements
x1, . . . , xL, there exists a subset of indexes A ⊂ {1, . . . , L} in some family of sets
Ω ⊂ P([L]) such that all the atomic statements xi, i ∈ A are true”.

The prover in PS2 must construct a proof given only the witnesses for the
statements xi, i ∈ A and the proof must leak no information about the actual
set A, other than it is in Ω. The common strategy of these works is to construct
the prover of PS2 using as building block both the prover of PS1 — for the

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 249

statements xi, i ∈ A — and the simulator — for the statements xi, i /∈ A.
Since real proofs are (computationally) indistinguishable from simulated ones,
the final proof output by the prover of PS2, which consists of proofs for all the
statements x1, . . . , xL, will reveal nothing about A. The main challenge is then
to ensure that the soundness condition is met — guaranteeing that the prover
cannot simulate all the proofs—, while making sure that the simulator gets a
properly distributed input.

In all these works — including ours — this is done by means of secret sharing
techniques, however the challenges that arise are specific to each proof system.
For instance, in the work of Cramer et al. [9], both PS1 and PS2 areΣ-protocols,
which are 3 round interactive protocols. In this case, the key difference between
a prover and a simulator which outputs an accepting transcript is that the latter
creates the transcript by altering the order in which the real protocol is executed
and letting the information sent in the first round depend on the challenge,
which is the information sent in the second round. In [9], the prover of PS2

receives a challenge c, from which it creates L challenges c1, . . . , cL and uses ci
as a challenge to prove the atomic statement xi with PS1. The secret sharing
techniques ensure that the prover of PS2 has the right amount of freedom in
choosing these challenges: namely, they guarantee that there exists some A ∈ Ω
such that the prover can choose all ci, i ∈ Ac (i.e. it can simulate the proofs of
xi, i ∈ Ac), while it is unable to guess the value of ci, i ∈ A (i.e. soundness must
hold for xi, i ∈ A).

The GS Proof System. Clearly, the techniques of Cramer et al. are specific
to Σ-Protocols. On the other hand, the techniques of de Santis et al. [10] for the
non-interactive case are specific to statements related to quadratic residuosity.
Neither of them does apply in any obvious way to GS proofs as the conditions
which guarantee soundness or allow to simulate proofs are quite different there.

Indeed, let us recall some basics about GS proofs. They allow to prove satis-
fiability of several equation types over a bilinear group gk = (q, Ĝ, Ȟ,T, e, ĝ, ȟ),
where Ĝ, Ȟ,T are groups of prime order q in additive notation, the elements ĝ, ȟ
are generators of Ĝ, Ȟ respectively, and e : Ĝ × Ȟ → T is an efficiently com-
putable, non-degenerate bilinear map. The witness of satisfiability is a solution
to the equation which consists of several elements in Zq, Ĝ or Ȟ. The proof is
constructed in a two-step process: first, the prover commits to each element of
the witness, then it shows that the committed values satisfy the equation. The
common reference string (essentially) consists of some commitment keys. These
keys can be generated in one of two indistinguishable modes: in the soundness
mode these keys define perfectly binding commitments, and even an unbounded
prover cannot convince a verifier of a false statement, and in the witness in-
distinguishable mode they define perfectly hiding commitments. Further, in the
latter case, there exists some trapdoor which allows to simulate proofs which are
identically distributed to real proofs (computed as in the WI mode). Addition-
ally, a key is binding or hiding depending on whether or not it satisfies certain
linear relations. For instance, the commitment key in the group Ĝ consists of
three vectors û, v̂, ŵ ∈ Ĝ2. The commitment to a scalar x ∈ Zq is ĉ = xŵ+ rv̂,

250 C. Ràfols

for some random r ∈ Zq, and to a group element x̂ ∈ Ĝ is ĉ = (0̂, x̂)�+ rv̂+ sû,
for some random r, s ∈ Zq. For scalars the commitment is perfectly binding if

v̂, ŵ ∈ Ĝ2 are linearly independent and perfectly hiding otherwise. For group
elements the opposite is true of v̂, û: the commitment is perfectly hiding if v̂, û
are linearly independent and perfectly binding otherwise. To construct partial
proofs for the GS proof system, the ideas of [10,9] must be adapted to the inner
workings of GS proofs we have just described.

The Non-Interactive Zap of Groth, Ostrovsky and Sahai (GOS). On
the other hand, the authors of [15], observe that the common reference string of
GS proofs admits what we call Or-Verifiable Correlated Key Generation: namely,
that a prover can create from scratch, without common reference string, a pair
of two keys in such a way that it can be publicly verified that at least one of the
two keys is binding for quadratic equations.

More specifically, the observation of GOS is that given any vector v̂ ∈ Ĝ2

such that {v̂, (0̂, ĝ)�} are linearly independent vectors (this condition can be
obviously publicly verified by checking if the first component of v̂ is 0̂), and two

vectors ẑ1, ẑ2 ∈ Ĝ2 such that ẑ1 + ẑ2 = (0̂, ĝ)�, it holds that at least one of ẑ1,
ẑ2 is independent of v̂ (otherwise their sum could not be independent of v̂). This
means that given only some bilinear group gk (and no common reference string)
and a tuple (v̂, ẑ1, ẑ2) with the above constraints, it can be publicly verified that
at least one of the pairs of correlated keys {v̂, ẑ1}, {v̂, ẑ2} is a binding GS key
for committing to scalars.

Since GS proofs have perfect soundness, if one of the keys is binding the prover
cannot cheat even if it knows additional information about the common refer-
ence string (e.g. the discrete logarithm). Thus, if the prover chooses (v̂, ẑ1, ẑ2)
and then it proves a statement x with both pairs of correlated keys, the state-
ment must be true. Further, the prover is free to choose one of the keys to be
hiding for commitments to scalars and this can be done in such a way that it is
computationally infeasible to tell which key is the hiding one. This implies that
the proof reveals no information about the witness.

Thus, more technically if we prove the same statement x with both pairs of
keys we have given a non-interactive Zap (NI Zap) for x, i.e. a witness indistin-
guishable proof in the plain model. On the other hand, if we take two different
statements x1, x2 and we give a real proof for one of them with the binding key
and we simulate the other one with the hiding key, we have given a NI Zap that
at least one of x1, x2 is true. This seems to be exactly the right starting point
for adapting the techniques for partial proofs to the GS setting. In this work
we want to fully develop the approach of GOS, and we address several of its
limitations:

1. The technique of GOS needs to be adapted to prove not only witness indis-
tinguishability but also zero-knowledge. Indeed, in the construction above,
one of the keys is always binding and to prove “x1 or x2”, we always need
the witness of at least one of the statements.

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 251

2. One of the pairs {v̂, ẑ1}, {v̂, ẑ2} is a binding key to commit to scalars, but
not to group elements. For which equation types does this approach allow to
gain efficiency? Can we find a similar technique for commitments to group
elements?

3. Can we extend the techniques to other predicates other than the OR of two
equations?

In summary, the question is if we can extend the notion of Verifiable Correlated
Key Generation to incorporate all these aspects and in such a way that it is
useful to construct more efficient NIZK proofs of partial satisfiability for a large
class of predicates.

1.1 Our Results

Labeled Commit-and-Prove schemes. Recently, Escala and Groth [11] gave
a complete formulation of the GS proof system as a labeled Commit-and-Prove
(CaP) scheme. The labels are meant to deal with different variable and equation
types. This formulation is really convenient for our purposes, as it allows to define
in a precise way which equation types admit verifiable correlated key generation
and which do not. One of our contributions (section 3) is to slightly modify the
definition of labeled CaP of [11] so that it can accommodate both the GS proof
system and our new proof system for partial satisfiability.

Extending the definition of verifiable correlated key generation.

In section 5, we extend the ideas of GOS in several directions, to use them as a
building block to construct proofs of partial satisfiability.

– First, we give a new definition of verifiable correlated key generation —
VCKG for short — to adapt it to more general predicates, namely to any
predicate P computable by a monotone span program SP . We also modify
the definition to explicitly take as input a set of labels so that it fits with
the GS CaP formulation of [11]. The motivation for doing so is that the
same common reference string might be binding for some equation types
and hiding for others. For instance, it is unclear how to extend the result
of GOS to prove that an OR of two pairing product equations is satisfied
without trusted setup. By this we do not mean that one could not use other
to results to prove this (at worst we could prove this by reduction to circuit
satisfiability). Our point is rather that introducing labels allows to clearly
identify that the construction of GOS only ensures that one of the two
commitment keys is binding for scalars, but not for group elements.

– Second, we define Simulatable VCKG (SVCKG), which is essentially the
same as VCKG except for the fact that the generation algorithm takes as
input a common reference string instead of creating the keys from scratch.
The keys can be generated in two indistinguishable ways: in such a way that
the indexes of the binding keys are a valid assignment of the predicate P
(as in VCKG) or in such a way that they are hiding for every index. This
definition is introduced with the aim of constructing NIZK proofs of partial
satisfiability, and not only NIWI proofs.

252 C. Ràfols

In section 6 we show how to combine SVCKG (resp. VCKG) for a predicate
P and vector of labels T = (t1, . . . , tL) with the GS proof system to obtain
a NIZK proof (resp. NI Zap) that some sets of quadratic equations S1, . . . ,SL

(compatible with T) are partially satisfiable for the predicate P .

Constructions. In section 7 we give several explicit constructions of (S)VCKG
for different equation types and predicates P . Essentially, all we require from P
is that it should be computable by a monotone span program and the equation
types should all admit what we call left-simulation (or all admit right simulation).
The construction of GOS (and our extension for other P) guarantees that some
keys are binding for committing to scalars and this limits the equation types for
which one can prove partial satisfiability. Therefore, in appendix C, we also show
how to do correlated key generation for commitment keys to group elements,
at some efficiency cost. These explicit constructions of SVCKG (resp. VCKG)
together with the GS CaP give a quite expressive realization of NIZK proofs
(resp. NI Zap) for partial satisfiability of equations in bilinear groups.

Efficiency. In section 7.4 we discuss what is the size of our proofs of partial
satisfiability. We then compare it with the size of the proof that 1-out-of-L sets
of equations is satisfiable which results from the approach suggested by Groth
([6,14]).

Applications. In section 9 we discuss some applications. For instance, we show
how to save O(

√
N) group elements — where N is the size of the ring — in the

signature size of the ring signature scheme of Chandran et al. [8], which is the
most efficient ring signature in the standard model.

2 Preliminaries

Given some n ∈ N, v ∈ Zn
q denotes a column vector unless specifically stated.

Given a set of vectors {v1, . . . ,vr} ⊂ Zn
q , 〈{v1, . . . ,vr}〉 denotes their linear

span. Matrices are denoted in boldface and 0m×n denotes the all-zero m × n
matrix. Given some set S its cardinal is written as |S| and s ← S denotes
the process of sampling an element uniformly at random. For an algorithm D,
we write z ← D(x, y, . . .) to indicate that D is a (probabilistic) algorithm that
outputs z on input (x, y, . . .). Given a positive integer L, we denote by [L] the
set {1, . . . , L}.

We identify a set A ⊂ [L] in the natural way with a vector vA ∈ {0, 1}L and
we denote its complementary as Ac := [L]\A. Given a family of sets Ω ⊂ P([L]),
we denote PΩ : {0, 1}L → {0, 1} the predicate such PΩ(vA) = 1 if and only if
A ∈ Ω.

2.1 Bilinear Groups

Let G be some probabilistic polynomial time algorithm which on input 1λ, where
λ is the security parameter, returns the description of a bilinear group gk =

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 253

(q, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ and T are groups of prime order q, the elements

ĝ, ȟ are generators of Ĝ, Ȟ respectively, and e : Ĝ × Ȟ → T is an efficiently
computable, non-degenerate bilinear map.

Essentially, we take up the notation of Escala and Groth [11] for elements

and operations in the bilinear group. Namely, Ĝ, Ȟ,T are written additively,
elements x̂ ∈ Ĝ are written with a hat and elements in y̌ ∈ Ȟ with an inverted
hat and 0̂, 0̌ and 0T denote the neutral elements in the respective groups. For any
x̂ ∈ Ĝ, y̌ ∈ Ȟ, multiplication refers to the pairing operation, i.e, x̂y̌ := e(x̂, y̌).

Matrix/vector or matrix/matrix multiplication of elements in Ĝ and Ȟ are done

in the natural way via the pairing operation, for example, given X̂ ∈ Ĝ�×m and
Y̌ ∈ Ȟm×n, X̂Y̌ ∈ T�×n.

2.2 SXDH Assumption

Let (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ) be a bilinear group. The Decision Diffie-Hellman

Assumption in Ĝ states that the two distributions (ĝ, ξĝ, ρĝ, ξρĝ) and (ĝ, ξĝ, ρĝ,
κĝ), where ξ, ρ, κ ← Zq, are computationally indistinguishable. The DDH As-
sumption in Ȟ is defined in a similar way.

Definition 1. (SXDH Assumption) The Symmetric eXternal Diffie-Hellman
Assumption holds relative to the group generator algorithm G if the DDH As-
sumption holds in both Ĝ and Ȟ for (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ).

2.3 Monotone Span Programs

Definition 2. [18] A monotone span program (MSP) over a field Zq consists

of a tuple SP = (M, ρ), where M ∈ Z(m+1)×d
q is a matrix with row vectors

{r0, r1, . . . , rm}, ρ : [m] → [L] is a labeling function and r0 is called the target
vector. SP is said to compute a predicate P : {0, 1}L → {0, 1} if for any vA ∈
{0, 1}L, P (vA) = 1 if and only if r0 ∈ 〈{rj : j ∈ ρ−1(A)}〉.

Without loss of generality we assume that m > d and that M has full rank.
Specially for MSPs, sometimes it is more intuitive to talk about sets: in this case
we say that SP accepts A ⊂ [L] if and only if P (vA) = 1 and that SP computes
Ω ⊂ P([L]) if it computes PΩ.

It is well known that there is a connection between MSPs, secret sharing
schemes (sss, [25,3]) and linear codes. Borrowing some terminology from sss,
we refer to the family of sets Ω computed by SP as an access structure. Also
if A ∈ Ω, A is said to be an authorized subset. If no proper subset of A is
authorized, then we say that A is a minimal authorized subset. The dual access
structure Ω� is defined as Ω� := {[L]\A : A /∈ Ω}. The latter notion has found
applicability and various scenarios, including the proofs of partial satisfiability
of [10,9].

A classical example of a (monotone) span program is the threshold one.

254 C. Ràfols

Example 1. Ω(k,L) := {A ⊂ [L] : |A| ≥ k} is called a (k, L)-threshold access
structure. A span program SP(k,L) computing Ω(k,L) can be defined by letting

ρ be the identity function, r�i = (1, i, . . . , ik−1) and r�0 = (1, 0, . . . , 0). The dual
access structure is Ω∗

(k,L) := {A ⊂ [L] : |A| ≥ L− k + 1}.

The key ingredient for our results is the following technical lemma, most
specially part 1), which states some well-known or easy facts about (monotone)
span programs:

Lemma 1. Let SP = (M, ρ) be a monotone span program which computes Ω.

1) If ζ = (ζ0, ζ1, . . . , ζm)� ∈ Zm+1
q is such that ζ�M = 0d, ζ0 �= 0, then

ρ({j : ζj �= 0}) ∈ Ω.
2) If A ∈ Ω, it is possible to sample ζ ∈ Im(M∗) uniformly conditioned on a)

ζ0 = 1, and b) ζj = 0 for all j ∈ ρ−1(Ac).
3) Let {j1, . . . , j�} = ρ−1(Ac). For any (aj1 , . . . , aj�) ∈ Z�

q, the probability that
(τj1 , . . . , τj�) = (aj1 , . . . , aj�) is the same if a) τ ← Im(M∗) or b) τ ←
Im(M∗) conditioned on τ0 = 0.

Proof. 1) Observe that, since M is the transposed of the parity check matrix of
M∗, ζ�M = 0d if and only if ζ ∈ Im(M∗), that is ζ = M∗ω for some ω ∈
Zm+1−d
q and in particular ζj = (r∗j)

�ω. Suppose that B := ρ({j : ζj �= 0}) /∈ Ω.
But then, by definition of Ω∗, Bc := [L]\B ∈ Ω∗, so r∗0 =

∑
j∈ρ−1(Bc) ajr

∗
j for

some coefficients aj . Multiplying on both sides by ω, ζ0 =
∑

j∈ρ−1(Bc) ajζj = 0,
which contradicts the assumption ζ0 �= 0. The rest of the proof is given in
appendix A.

3 Commit-and-Prove Scheme

GS Proofs consist of a two step process: given some set of equations and a solution
— which is a witness of satisfiability — a prover first commits to the solution
and then proves that the committed values satisfy the set of equations. This
corresponds to the notion of commit-and-prove (CaP) scheme ([20,7]), although
the reformulation in these terms is not straightforward, since GS Proofs allow for
a flexibility (different commitment/ equation types) which is not easily captured
by the standard definition of a CaP scheme. To address this issue, Escala and
Groth [11] write the GS proof system as a CaP scheme with labels. The labels
are meant to specify the different commitment/equation types. For example, one
might commit to the pair (t,m) = (scaĜ,m), which indicates that m ∈ Zq is a

variable whose commitment is in the group Ĝ.
LetRL be an efficiently verifiable ternary relation, which is described by tuples

(gk, x,W) ∈ RL consisting of a group key, the statement x and the witness W .
Define Lgk the language of all statements x for which there is a witness W such

that (gk, x,W) ∈ RL. This witness W is a set of pairs (ti,mi) ∈ Tgk × M̃gk ⊂
Mgk, where Tgk is the label space and Mgk is the labeled message space. For
instance, (scaĜ,m) ∈ Mgk, scaĜ ∈ Tgk.

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 255

We assume that the statement x unambiguously defines some vector Tx of
elements of Tgk. One should think of Tx as describing the labels which define
the correct format of a witness of x.

Definition 3. (Labeled CaP scheme (modified from [11])) A commit-and-prove
scheme CaP = (G, LabGen,Com,P,V) for Lgk consists of five PPT algorithms.

– G(1λ): This algorithm runs in two steps. On input the security parameter λ,
G0(1

λ) outputs a group key gk which includes the description of a group, a
space Kgk of valid commitment keys, a message space Mgk, a randomness
space Rgk and a commitment space Cgk. Algorithm G1(gk) outputs the pair
(gk, ck) where ck ∈ Kgk is a commitment key.

– LabGen(gk, ck, x,W): This algorithm, on input gk, ck ∈ Kgk, a pair (x,W)
such that (gk, x,W) ∈ RL, outputs a public label, kp = (t, t̃), and a secret
label, ks, for each t ∈ Tx.

– Com(gk, ck, (kp, ks,m)): On input gk, ck ∈ Kgk, a public label kp = (t, t̃)
such that (t,m) ∈ Mgk and a secret label ks, this algorithm picks randomness
(t, r) ∈ Rgk and returns a commitment c with label kp such that (kp, c) ∈ Cgk.

– P(gk, ck, x,Op, C): On input gk, ck ∈ Kgk, x ∈ Lgk and sets Op = {(kpi =
(ti, t̃i), k

s
i ,mi, ri) : i ∈ I}, C = {(kpi , ci) : i ∈ I} such that for each i ∈ I,

(kpi , k
s
i ,mi, ri) is a valid opening of (kpi , ci), and such that (gk, x, {(ti,mi) :

i ∈ I}) ∈ RL, this algorithm outputs a proof π.
– V(gk, ck, x, C, π): Given the group key gk, a commitment key ck, a statement

x, a proof π and commitments (̃ti, ci) ∈ Cgk, algorithm V returns 1 if the proof
is accepted and 0 otherwise.

Compared to [11], in our definition commitments admit an extra label pair
(kp, ks) and an algorithm which generates this label LabGen. For the Groth-Sahai
CaP scheme CaPGS, we ignore these additional labels. This extra label will be
necessary when we construct a CaP scheme CaPpar for partial satisfiability of
quadratic equations based on CaPGS , as we implicitly use different GS commit-
ment keys ckj to prove a single statement with CaPpar. The keys used for each
commitment can be seen as public label of the commitment (but not as part
of the witness (ti,mi)) and the secret label ks as the trapdoor (when it exists,
else it is some special symbol). That is why we also say in the definition of P
“(kpi , k

s
i ,mi, ri) is a valid opening of (kpi , ci)”, as the opening might depend on

kpi . Although the simulation trapdoor is not necessary to compute the commit-
ments, we assume that the algorithm Com(gk, ck, (kp, ks,m)) takes also as input
ks, because ks might not only contain the simulation trapdoor but also addi-
tional information which allows to speed up the computation, like the discrete
logarithms of the commitment keys given in kpi .

1

Another difference with [11] is that, we explicitly define a keyspace Kgk. We
assume that membership in Kgk is efficiently decidable for all gk. Further, we

1 Escala and Groth observed that if the prover knows the discrete logarithm of ck,
computation is sped up significantly, as then most exponentiations can be replaced
by operations in Zq.

256 C. Ràfols

distinguish between the group key and the commitment keys. The language for
which we define the proof system depends on gk but not of ck, i.e. it is a group
dependent language2 This is done with the purpose of precisely defining the sets
of hiding and binding keys to define verifiable correlated key generation for the
GS CaP. For the following definition, we restrict ourselves to some CaP scheme
in which algorithm LabGen is trivial (so that we can omit (kp, ks)).

Definition 4. Given some CaP scheme, we define Kt
gk,bind (resp. Kt

gk,hid) as the
set of ck ∈ Kgk such that Com(gk, ck, t,m) is perfectly binding (resp. perfectly
hiding) for all (t,m) ∈ Mgk.

We defer the definitions of perfect completeness and perfect soundness to ap-
pendix B.1. Roughly speaking, completeness guarantees that correctly generated
proofs are accepted, perfect soundness that a proof of a false statement is never
accepted. Both the GS proof system and our scheme satisfy a strong notion of
security, namely composable zero-knowledge.

Definition 5. The commit-and-prove system CaP is (computationally) compo-
sable zero-knowledge if there exist PPT algorithms SimGen, SimCom, SimProve,
SimLabGen such that for all non-uniform polynomial time stateful interactive
adversaries A,

Pr
[
(gk, ck) ← G(1λ) : A(gk, ck) = 1

]
≈ Pr

[
(gk, ck, tk) ← SimGen(1λ) : A(gk, ck) = 1

]
and

Pr
[
(gk, ck, tk)← SimGen(1λ); (x, I)← ACom(gk,ck,·),L̃abGen(gk,ck,·,·)(gk, ck, tk);

π ← P(gk, ck, x, {(kpi , k
s
i ,mi, ri) : i ∈ I}, {(kpi , ci) : i ∈ I}) : A(π) = 1

]
=

Pr
[
(gk, ck, tk)← SimGen(1λ); (x, I)← ASimCom(gk,ck,·), ˜SimLabGen(gk,ck,·)(gk, ck, tk);

π ← SimProve(gk, ck, tk, x, {(kpi , k
s, si) : i ∈ I}, {(kpi , ci) : i ∈ I}) : A(π) = 1

]
,

where a) SimLabGen(gk, ck, tk, x) returns (kpi = (ti, t̃i), k
s
i) for each ti ∈ Tx,

b) ˜SimLabGen(gk, ck, tk, x) (resp. L̃abGen(gk, ck, x)) returns kpi = (ti, t̃i) for each
ti ∈ Tx with the distribution induced by running SimLabGen (resp. by LabGen)
with the same input, c) SimCom(gk, ck, ·) on (kpi , k

s
i) outputs (kpi , ci) ∈ Cgk, d)

A picks (x, I) such that (gk, x, {(ti,mi) : i ∈ I}) ∈ RL.

Finally a non-interactive Zap (NI Zap) is a (computationally) witness indis-
tinguishable proof in the plain model, i.e. without common reference string.
Informally, computational WI just requires that two proofs generated by the
prover on a statement x with different witnesses W0, W1 should be computa-
tionally indistinguishable even for an adversary who chooses (x,W0,W1).

2 As in the original definition of GS Proofs, [16].

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 257

Definition 6. We say that the commit-and-prove system CaP is a NI Zap if the
algorithm G1(gk) is trivial (i.e. (gk, ck =⊥) ← G1(gk)) and the CaP has perfect
completeness, perfect soundness and computational witness indistinguishability.

4 Groth-Sahai NIZK Proofs

In this section we give a high-level description of the GS proof system in terms
of a commit-and-prove scheme as in [11]. We concentrate on the key generation
and commit phase, which are the ones necessary to understand our construction,
for the full description we refer the reader to the original paper.

The GS proof system allows to prove that x is satisfiable, where x encodes
some set of quadratic equations in a bilinear group of the following form:

n∑
j=1

f(αj , yj) +
m∑
i=1

f(xi, βi) +
m∑
i=1

n∑
j=1

f(xi, γijyj) = t, (2)

where A1, A2, AT are Zq-vector spaces equipped with some bilinear map f :
A1 ×A2 → AT , α ∈ An

1 , β ∈ Am
2 , Γ = (γij) ∈ Zm×n

q , t ∈ AT . The modules and
the map f can be defined in different ways as: (a) in pairing-product equations

(PPEs), A1 = Ĝ, A2 = Ȟ, AT = T, f(x̂, y̌) = x̂y̌ ∈ T, (b1) in multi-scalar

multiplication equations in Ĝ (MMEs), A1 = Ĝ, A2 = Zq, AT = Ĝ, f(x̂, y) =

yx̂ ∈ Ĝ, b2) MMEs in Ȟ (MMEs), A1 = Zq, A2 = Ȟ, AT = Ȟ, f(x, y̌) = xy̌ ∈ Ȟ,
and (c) in quadratic equations in Zq (QEs), A1 = A2 = AT = Zq, f(x, y) = xy ∈
Zq. Each element describing an equation receives a label ti and each equation a
label Leq, for instance Leq = QE is a quadratic equation, or Leq = MLin

Ĝ
is a

linear multi-scalar multiplication equation with variables in Ĝ. The classification
of Escala and Groth of equation types (see [11], figure 6) is very fine grained with

G(1λ)

gk ← (q, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1λ)
ω,σ, ξ, ψ ← Z∗

q

v̂ ← (ξĝ, ĝ)� , v̌ ← (ψȟ, ȟ)�

û ← ωv̂ , ǔ ← σv̌

ŵ ← û− (0̂, ĝ)� , w̌ ← ǔ− (0̌, ȟ)�
ck ← (û, v̂, ŵ, ǔ, v̌, w̌)
Return (gk, ck)

SimGen(1λ)

gk ← (q, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1λ)
ω,σ, ξ, ψ,← Z∗

q

v̂ ← (ξĝ, ĝ)� , v̌ ← (ψȟ, ȟ)�

û ← ωv̂ + (0̂, ĝ)� , ǔ ← σv̌ + (0̌, ȟ)�

ŵ ← û− (0̂, ĝ)� , w̌ ← ǔ− (0̌, ȟ)�
ck ← (gk, û, v̂, ŵ, ǔ, v̌, w̌)
tk ← (ck, ω, σ)
Return (gk, ck, tk)

Label t Message Randomness Commitment Kt
gk,bind Kt

gk,hid

scaĜ (scaĜ, x) (scaĜ, r) ĉ ← ŵx+ v̂r ck : ŵ /∈ 〈v̂〉 ck : ŵ ∈ 〈v̂〉
comĜ (comĜ, x̂) (comĜ, r, s) ĉ ← e2x̂+ v̂r + ûs ck : û ∈ 〈v̂〉 ck : û /∈ 〈v̂〉

Fig. 1. Generator algorithms of the CaP scheme of [11] and table describing most
important commitment types

258 C. Ràfols

the objective of augmenting the class of equations which admit zero-knowledge
proofs (softening the requirement t = 0T for PPEs given in [16]) and also of
describing efficiency improvements which only apply to a specific equation type.

Given some equation of the form (2), the first step of the prover is to commit
to all elements describing the equation according to their label, where “commit”
is used in a wide sense as an equivalent to embed the elements in the right space.
That is, for instance, the equation x̂1b̌1+ x̂2b̌2 = 0T is described by x̂1, x̂2, b̌1, b̌2.
As x̂1, x̂2 are variables in Ĝ, they have the label com

Ĝ
, while the constants b̌1, b̌2

have the labels (pubȞ, b̌1) and (pubȞ, b̌2). The commitment to an element with
label comĜ is described in figure 1, and the one to b̌i is simply (0̌, b̌i)

� ∈ Ȟ2.
The latter deviates from the usual definition of commitment in the sense that it
is not computationally hiding.

The vector of labels Tx associated to some statement x, to which we referred
in the syntactic definition of Labeled CaP, is the specification (in some fixed
order) of the label type of all the elements describing the equation, for instance,
in the example above Tx = (com

Ĝ
, com

Ĝ
, (pubȞ, b̌1), (pubȞ, b̌2)). Of course this

vector of labels must be consistent with the equation type Leq.
Recall that GS CaP uses the parameter switching technique of [15]. This means

that the common reference string can be generated in two different, computation-
ally indistinguishable ways: in the soundness setting, not even a computationally
unbounded adversary can convince a verifier of a false statement, while in the
witness indistinguishability (WI) setting, the keys are generated with a trapdoor
which allows to construct simulated proofs.

In the CaP scheme for partial satisfiability we will let the prover choose some
keys ckj and some trapdoors tkj , j = 1, . . . ,m. Each key ckj will be used to
prove/simulate a different atomic statement xi (i.e. satisfiability of some equation
set Si). It is fundamental to define precisely for which type of equations a key
ckj defines perfectly sound proofs or when it allows to simulate them, so that
we can prove meaningful statements about partial satisfiability.

For this, although we do not describe all possible equation types or all pos-
sible labels in Tgk (or their corresponding commitments), we must specify how to
commit to variables. The four possible label types for variables are
sca

Ĝ
, scaȞ, comĜ

, comȞ, which correspond, respectively, to elements 1) in A1 =

Zq, 2) in A2 = Zq, 3) in A1 = Ĝ or 4) in A2 = Ȟ. The interesting thing about
these commitments (see figure 1) is that they are binding or hiding depending on
the way we generate the keys. Very roughly, simulation in GS Proofs works by
opening “commitments” to more than one element. Thus, a necessary condition
to simulate proofs for some equation of the form (2) with a certain ck is that
ck defines a hiding commitment for the variables in one of the modules Ai. In
summary, it is essential to discuss which keys ck are binding/hiding for each
variable type.

Key space and commitments. The space of keys Kgk consists of all tuples (gk, û,
v̂, ŵ, ǔ, v̌, w̌) such that gk is a valid description of an asymmetric bilinear group,

û, v̂ ∈ Ĝ2, ǔ, v̌ ∈ Ȟ2 and ŵ = û − (0̂, ĝ)�, w̌ = ǔ − (0̌, ȟ)�. We define

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 259

e2 := (0, 1)� and ê2 := (0̂, ĝ)�. Commitments to scalars and group elements
are described in the table below (for the group Ȟ they are defined analogously).
Note that in the soundness setting the algorithm G(1λ) outputs keys ck ∈
Ksca

Ĝ

gk,bind ∩ Kcom
Ĝ

gk,bind (see Definition 4) and in the WI setting, SimGen outputs

ck ∈ Ksca
Ĝ

gk,hid ∩ Kcom
Ĝ

gk,hid, but in general a key might be binding/hiding only for
one label t, this is why the CaP formulation of GS Proofs is really convenient to
define correlated key generation.

Right vs Left-Simulatable. The simulation trapdoor tk = (ck, ω, σ) allows to
double-open some commitments. This trapdoor allows to simulate all the con-
sidered equations, but it will be convenient to be more precise. We say that an
equation is left-simulatable if there exists an efficient algorithm SimProve which
takes as input tk = ω (right-simulatable if the same holds for σ). Roughly speak-
ing, an equation x of the form (2) is left (resp. right) simulatable if it is possible
to equivocate enough commitments to elements of A1 (resp. to A2) to 0̂ (resp.
0̌) so that the equation admits the trivial solution. In any case, for our purposes
it is enough to know that there are equations which can only be simulated on
one side and that this can be made precise.

Admissible simulation labels. Further, we say an equation type Leq admits label

tsim = com
Ĝ
if A1 = Ĝ and it is left-simulatable or label tsim = sca

Ĝ
if A1 = Zq

and it is left-simulatable (the same w.r.t. Ȟ and right-simulatable). For instance,
QEs are both left and right-simulatable and admit both labels {scaĜ, scaȞ}, while
linear MMEs in Ĝ admit the label scaĜ if the variables are in Zq but only admit

the label com
Ĝ
if the variables are in Ĝ and the equation is homogeneous.

5 (Simulatable) Verifiable Correlated Key Generation:
Definitions

Let CaP = (G = (G0,G1),Com,P,V) be a commit-and-prove scheme with per-
fect soundness, perfect completeness and composable zero-knowledge and let
SimGen, SimCom, SimProve be the corresponding simulation algorithms.

The definitions in this section are meant to capture the necessary properties
that a CaP scheme must satisfy so that we can extend it to give proofs for
partial relations. Given a monotone span program SP = (M, ρ), we will require
the existence of an algorithm Kcorr (or Kscorr for the simulatable case) which
outputs a set of correlated keys Σ = {ck1, . . . , ckm} ⊂ Kgk. These keys should
be such that it can be publicly verified that the (unknown) subset of binding
keys corresponds to some satisfying assignment of the predicate computed by
SP . Further, Kcorr (Kscorr) should also output a trapdoor for the non-binding
keys.

When P is the predicate OR of two variables, the first definition (of VCKG)
matches the original one of GOS. In this definition, we require the keys to be
created from scratch, given only the group key gk.

260 C. Ràfols

On the other hand, for the second definition (SVCKG), our algorithms take
as input a common reference string ck. In this case, we require the existence of
an algorithm Kscorr which outputs some set of keys with the same properties as
in VCKG when ck is binding. We also require the existence of another algorithm
which outputs only hiding keys with their simulation trapdoor. When ck is
hiding, both should have identically distributed output.

To construct NIZK proofs of partial satisfiability, we will use as a building
block a SVCKG scheme, while a construction of VCKG combined with the GS
CaP will allow us to derive NIWI proofs of partial satisfiability in the plain
model.

In both definitions, the vector T specifies a vector of labels. With these labels
we can define precisely what we mean by “hiding key” or “binding key”, as
this depends on the label type. Later, when we use (S)VCKG to prove partial
satisfiability, we will use the key ckj to prove statement xρ(j). These labels will
guarantee that the key ckj matches the equation type of xρ(j).

Definition 7. CaP admits P -Verifiable Correlated Key Generation for the pred-
icate PΩ : {0, 1}L → {0, 1} computed by a span program SP = (M, ρ) and some
label vector T = (t1, t2, . . . , tL), if there exist two probabilistic polynomial time
algorithms (Kcorr,Vcorr), with the following properties:

a) Given any vA ∈ {0, 1}L such that P (vA) = 1, and gk ← G0(1
λ), algorithm

Kcorr(gk,SP ,vA,T) outputs (Σ,TKAc), where Σ = {ck1, . . . , ckm} is such

that for all j ∈ ρ−1(Ac), ckj ∈ Ktρ(j)
gk,hid, and TKAc := {tkj : j ∈ ρ−1(Ac)} is

the set of the corresponding (valid) trapdoors.
b) For all PPT adversaries D = (D0,D1) and if vA,vB are such that P (vA) =

P (vB) = 1,

Pr
[
gk ← G0(1

λ); (Σ,TKAc) ← Kcorr(gk,SP ,vA,T);

(vA,vB , st) ← D0(gk,SP ,T) : D1(Σ,TKAc∩Bc , st) = 1
]

≈ Pr
[
gk ← G0(1

λ); (Σ,TKBc) ← Kcorr(gk,SP,vB ,T);

(vA,vB, st) ← D0(gk,SP,T) : D1(Σ,TKAc∩Bc , st) = 1
]

c) Given as input (gk,SP , Σ,T), Vcorr outputs a bit b such that, for all PPT
adversaries D:

Pr
[
(Σ,T) ← D(gk,SP ,T);Vcorr(gk,SP, Σ,T) = 1 :

ρ({j : ckj ∈ Ktρ(j)
gk,bind}) /∈ Ω

]
= 0.

Definition 8. CaP admits P -Simulatable Verifiable Correlated Key Generation
for the predicate PΩ : {0, 1}L → {0, 1} computed by a span program SP = (M, ρ)
and some label vector T = (t1, . . . , tL), if there exist three probabilistic polynomial
time algorithms (Kscorr,Vscorr, SimCorr), with the following properties:

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 261

a) as in point a) of definition 7 except that Kscorr receives (gk, ck) ← G(1λ) as
part of the input.

b) Given some (gk, ck, tk) ← SimGen(1λ), algorithm SimCorr(gk, ck, tk,SP,T)
outputs (ck,Σ,TK) such that Σ = {ck1, . . . , ckm} is a set of commitment

keys with ckj ∈ Ktρ(j)
gk,hid for all j ∈ [m] and a set TK := {tkj : j ∈ [m]}

such that (ckj , tkj), j ∈ [m] is a valid pair of commitment key and trapdoor.
Further,

Pr
[
(gk, ck, tk) ← SimGen(1λ); (Σ,TKAc) ← Kscorr(gk, ck,SP ,vA,T) :

D(gk, ck,SP , Σ,T) = 1
]

= Pr
[
(gk, ck, tk) ← SimGen(1λ); (Σ,TK) ← SimCorr(gk, ck, tk,SP,T) :

D(gk, ck,SP, Σ,T) = 1
]

c) Given (gk, ck,SP, Σ,T), Vscorr outputs a bit b such that, for all PPT adver-
saries D:

Pr
[
(gk, ck) ← G(1λ); (Σ,T) ← D(gk, ck,SP,T);Vscorr(gk, ck,SP, Σ,T) = 1 :

ρ({j : ckj ∈ Ktρ(j)
gk,bind}) /∈ Ω

]
= 0.

6 NIZK Proofs and NI Zap of Partial Satisfiability

In this section we formally put together all the pieces of the puzzle: the GS CaP,
the new definition of labeled CaP and the notion of SVCKG (resp. VCKG) to
construct NIZK proofs (resp. a NI Zap) for partial satisfiability.

More specifically, starting from the GS CaP described in section 4, CaPGS =
(G,Com,P,V) for the language defined by relation RL, and any construction of
(S)VCKG, we build a CaP scheme CaPpar = (Gp, LabGenp, Comp,Pp,Vp) and a
NI Zap for the relation Rpar.

Relations of partial satisfiability. Formally,Rpar consists of the tuples (gk,X,W)
such that:

a) X consists of {{xi : i ∈ [L]},T,SP}, where xi is a quadratic equation in the
group described by gk and SP is a monotone span program which com-
putes some predicate P : {0, 1}L → {0, 1} such that CaP admits simulatable
verifiable correlated key generation for P and the vector of labels T,

b) Each statement xi admits the simulation label ti,
c) W is of the form {W̃i : i ∈ [L]}, where for all i, W̃i = {(ti�, m̃i�) : � ∈

[ni], m̃i� = (bi,mi�)} is such that a) if bi = 0, mi� = 0 for all � ∈ [ni] and b)
if bi = 1, Wi := {(ti�,mi�) : � ∈ [ni]} is such that (gk, xi,Wi) ∈ RL,

d) If A := {i ∈ [L] : bi = 1}, then P (vA) = 1.

262 C. Ràfols

6.1 NIZK Proofs of Partial Satisfiability

The main idea of the construction is the following: the prover of the proof system
for partial satisfiability runs Kscorr on input the span program SP (of size m)
encoded in X and some set A accepted by SP . Algorithm Kscorr returns a set
of commitment keys ck1, . . . , ckm and the trapdoors for all ckj , j ∈ ρ−1(Ac).
The set A should correspond to the statements for which the prover has a real
witness. The proof of the rest of the statements can be simulated using the
trapdoors output by Kscorr. For zero-knowledge, the simulator will run SimCorr
to generate only hiding keys with their respective trapdoors. The trapdoor tkj
will be used to simulate the proof of the statement xρ(j), which is possible because
the statement xρ(j) admits the simulation label tρ(j).

– Gp(1
λ): Runs (gk, ck) ← G(1λ).

– LabGenp(gk, ck,X,W) : Runs (ck,Σ,TKAc) ← Kscorr(gk, ck,SP,vA,T), it
parses Σ as {ck1, . . . , ckm}, and for each pair (i, �), it outputs (kpi�, k

s
i�),

where kpi� = (ti�, t̃i�) and

(̃ti�, k
s
i�) =

{
t̃i� = {ckj : j ∈ ρ−1(i)}, ksi� = {tkj : j ∈ ρ−1(i)} if i ∈ Ac,

t̃i� = {ckj : j ∈ ρ−1(i)}, ksi� = 0 if i ∈ A.

– Comp(gk, ck, (k
p
i�, k

s
i�,mi�)): Parse k

p
i� as (ti�, {ckj : j ∈ ρ−1(i)}) and for each

i ∈ [L] and each j ∈ ρ−1(i), it defines

ci�j :=

{
ci�j ← SimCom(gk, ckj , tkj , ti�) if i ∈ Ac,

ci�j ← Com(gk, ckj , ti�,mi�) if i ∈ A.

It outputs (kpi�,
⋃

j∈ρ−1(i) ci�j).

– Pp(gk, ck,X,Op,C): Receives as input the statement X , some set C =⋃
i∈[L]

⋃
j∈ρ−1(i) Cij which is the union of sets of commitments Cij = {ci�j :

� ∈ [ni]}, and a set Op =
⋃

i∈[L]

⋃
j∈ρ−1(i) Opij which is the union of the sets

Opij := {(ti�, ckj , tkj ,mi�, ri�) : � ∈ [ni]}, where each Opij is a valid opening
of Cij (we assume that for simulated commitments mi� is just set to 0). For
each i ∈ [L] and for each j ∈ ρ−1(i),

πj :=

{
πj ← SimProve(gk, ckj , tkj , xi, Opij) if i ∈ Ac,

πj ← P(gk, ckj , xi, Opij) if i ∈ A.
.

Let Πi := {πj : j ∈ ρ−1(i)} and output Π =
⋃

i∈[L] Πi.

– Vp(gk, ck,X,C,Π): Given the group key gk, a commitment key ck, a state-
ment X (which includes a description of T), a proof Π and a set of commit-
ments C, algorithm Vp proceeds as follows:
• From the public types of the commitments in C, it derives a list of
commitment keys Σ = {ck1, . . . , ckm} (or outputs failure if this is not
possible). This is done by checking that for each i ∈ [L] and each � ∈ [ni],
the public types kpi� = (ti�, t̃i�) are consistently assigned. That is, for each
i ∈ [L], t̃i� should encode the same set of cardinal |ρ−1(i)| of commitment
keys {ckj : j ∈ ρ−1(i)} ⊂ Kgk, regardless of �.

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 263

• It runs b ← Vscorr(gk, ck,Σ,T) (the set of labels T is encoded in X). If
b = 0, halts and outputs 0, else it proceeds.

• For each i ∈ [L], and each j ∈ ρ−1(i), it verifies that each of the proofs πj

of statement xi is satisfied individually by running V(gk, ckj , xi, Cij , πj).
• It outputs 0 if any of these checks fails, else it outputs 1.

– SimGenp(1
λ) : Runs (gk, ck, tk) ← SimGen(1λ).

– SimLabGenp(gk, ck, tk,X) : Runs (ck,Σ,TK) ← SimCorr(gk, ck, tk,T) and
for every ti�, it returns kpi� := (ti�, {ckj : j ∈ ρ−1(i)}) and ksi� := {tkj : j ∈
ρ−1(i)}.

– SimComp(gk, ck, (k
p
i�, k

s
i�)) : This algorithm parses kpi� as (ti�, {ckj : j ∈

ρ−1(i)}) and ksi� as k
s
i� = {tkj : j ∈ ρ−1(i)}. It outputs {(kpi�,

⋃
j∈ρ−1(i) ci�j)},

where ci�j ← SimCom(gk, ckj , tkj , ti�).
– SimProvep(gk, ck, tk,X,Op) : For all i ∈ [L], and all j ∈ ρ−1(i), and a set of

commitment openings Op =
⋃

i∈[L]

⋃
j∈ρ−1((i) Opij , this algorithm computes:

πj ← SimProve(gk, ckj, tkj , xi, Opij).

It outputs Π =
⋃

i∈[L] Πi, where Πi := {πj : j ∈ ρ−1(i)}.

Theorem 1. CaPpar is a CaP scheme with perfect completeness, perfect sound-
ness and composable zero-knowledge for Lpar.

Proof. Perfect completeness follows from the completeness of the GS CaP and
the fact, for all i ∈ [L], xi admits the simulation label ti (else the prover could fail
to compute a simulated proof for xi). Perfect soundness follows from the perfect
soundness of the GS CaP and the properties of SVCKG. Indeed, by property c)
of SVCKG, if the verifier accepts the keys Σ = {ck1, . . . , ckm} (after running

Vscorr), then A := ρ({j : ckj ∈ Ktρ(j)
gk,bind}) ∈ Ω. That is, there is some set A ∈ Ω,

such that for every i ∈ A at least one j ∈ ρ−1(i) is a binding key for the label
ti. Therefore, for every i ∈ A, at least one of the proofs in the set Πi (there are
|ρ−1(i)| proofs of xi) is generated with a binding key. By the perfect soundness
of GS Proofs, this means (gk, xi,Wi) ∈ RL. Composable zero-knowledge holds
because, by property b) of SVCKG, the keys output by SimCorr and by Kscorr on
a simulated key ck are identically distributed. The composable zero-knowledge
property of GS Proofs guarantees that if xi is a satisfiable quadratic equation
(that is, if xi is in the language accepted by GS Proofs), then a real proof
computed with a simulated key has the same distribution as a simulated proof.
On the other hand, if xi is not satisfiable, then both in a real proof (computed
with the output of Kscorr) or in a fake proof, the proof is simulated, so in both
cases it follows the same distribution.

6.2 Non-Interactive Zap for Partial Satisfiability

The NI Zap for Satisfiability is constructed in a very similar way as the NIZK
proofs of partial satisfiability, except that one uses as a building block the al-
gorithms for VCKG (instead of SVCKG) and of course, the fact that ck =⊥.

264 C. Ràfols

It is obvious that the resulting construction is complete and soundness follows
from the same arguments as before, namely from property c) of the definition of
VCKG. We next sketch the proof for computational WI.

Suppose an adversary B against the WI of the Zap outputs (X,W0,W1) ∈
Rpar. Each Wb encodes a set Ab ∈ Ω which specifies for which sets of equations
Wb contains a real witness. If A0 = A1, then the adversary will not be able to
distinguish a proof computed with W0 or W1 unless it breaks the composable
zero-knowledge property of GS proofs, which implies that real proofs with diffe-
rent witnesses are computationally indistinguishable and that simulated proofs
are independent of the witness. Therefore, we can assume that A0 �= A1. But
in this case, we can use B to construct an adversary D that breaks property b)
of the VCKG scheme. Indeed, D gives to its challenger (vA0 ,vA1) and receives
(Σ,TKAc

0∩Ac
1
), with Σ generated from Ab, for b ← {0, 1}. Even if b is unknown

to D, it can compute a proof of the statement X . Indeed, for all i ∈ [L], and all
j ∈ ρ−1(i), D can compute a proof πj of the statement xi, as follows:

– if i ∈ A0 ∪ A1, πj is a real proof as it can extract a witness for xi from W0

or W1,
– if i ∈ (A0∪A1)

c = Ac
0∩Ac

1, πj is a simulated proof computed with TKAc
0∩Ac

1

.

Finally, D gives the keys Σ and the proof of X to B, who outputs a bit b′, and
D forwards this bit to its challenger.

Since in the GS CaP, real proofs with a simulated key have the same distri-
bution as simulated proofs, the proof given to B follows the same distribution
as a proof generated with Wb. Thus, |Pr[b′ = b]− 1/2| is non-negligible, so D is
successful with non-negligible probability.

7 (Simulatable) Verifiable Correlated Key Generation:
Constructions

We give some constructions of verifiable correlated key generation in different
flavors. Let SP be a monotone span program computing Ω ⊂ P([L]). From
the construction of proofs of partial satisfiability of last section, we know that
to prove that there is a set of indexes A ∈ Ω such that all Si, for i ∈ A are
satisfiable, the GS CaP must admit (S)VCKG for a vector T = (t1, . . . , tL) such
that each equation Si admits ti as a simulation label. Therefore, we are interested
in constructing P -verifiable correlated key generation for as many possible types
of vectors T and general predicates P , since this means that our CaP for partial
satisfiability will admit a wider class of languages.

7.1 SVCKG for scaĜ and MSPs

This construction of SVCK works for any P : {0, 1}L → {0, 1} computed
by a a monotone span program SP , but only for the vector of labels T =
(scaĜ, . . . , scaĜ) (the case T = (scaȞ, . . . , scaȞ) is defined in a similar way in Ȟ).

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 265

– Kscorr(gk, ck,SP, A,T): The algorithm receives as input gk, ck =
(û, v̂, ŵ, ǔ, v̌, w̌), the description of a MSP SP , a set of indexes A ⊂ [L]
such that SP accepts A and a vector of labels T. It proceeds as follows:
1 It samples τ , ζ ∈ Im(M∗) uniformly at random conditioned on a) ζ0 = 1,

ζj = 0 for all j ∈ ρ−1(Ac) and b) τ0 = 0 (as in lemma 1.)
2 It defines ẑj := τj v̂ + ζjŵ, j ∈ [m] and outputs (ck,Σ,TKAc), where

Σ = {ck1, . . . , ckm}, ckj := (ûj , v̂, ẑj , ǔ, v̌, w̌), ûj := ẑj + (0̂, ĝ)� and
TKAc := {τj : j ∈ ρ−1(Ac)}.

– Vscorr(gk, ck,SP, Σ,T): Parse each key as ckj := (ûj , v̂j , ŵj, ǔj , v̌j , w̌j), and
reject if, for some j ∈ [m], ckj /∈ Kgk, v̂j �= v̂, ǔj �= ǔ or v̌j �= v̌. Else, define

ẑ0 := ŵ and Ẑ := (ẑ0||ẑ1|| . . . ||ẑm). Output 1 if ẐM = 0̂2×d holds, else
output 0.

– SimCorr(gk, ck, tk,SP,T): The algorithm receives (gk, ck, tk) ← SimGen(1λ),
with tk = (ω, σ). It samples a uniform vector in μ� = (μ0, . . . , μm) ∈
Im(M∗) subject to the the restriction μ0 = ω. For all j ∈ [m], it defines
ẑj := μj v̂, ûj := ẑj + (0̂, ĝ)� and ckj := (ûj , v̂, ẑj , ǔ, v̌, w̌). It outputs
(ck,Σ,TK), where Σ = {ck1, . . . , ckm} and TK := {μj : j ∈ [m]}.

Lemma 2. The GS CaP scheme described in section 4 admits simulatable ve-
rifiable correlated key generation for labels T = (sca

Ĝ
, . . . , sca

Ĝ
).

Proof. We prove that the algorithms described above satisfy points a), b), c) of
definition 8.

By definition of ζ, ζj = 0 for all j ∈ ρ−1(i), i ∈ Ac. Therefore, for all i ∈ Ac,
ẑj = τj v̂, so according to figure (1), ckj ∈∈ Ksca

Ĝ

gk,hid and the corresponding
trapdoor is tkj = τj .

To see b), note that all the keys output by SimCorr are obviously in Ksca
Ĝ

gk,hid and
the trapdoor is valid. We just have to argue that the output of the algorithm
SimCorr has the same distribution as the output of Kscorr when (gk, ck, tk) ←
SimGen(1λ). In that case, ŵ = ωv̂ and Kscorr outputs ẑj = τj v̂ + ζjŵ = (τj +
ωζj)v̂, for all j ∈ [m] ∪ {0}. Let ν := τ + ωζ. The constraints imposed on τ , ζ
imply that ν is uniform conditioned on a) ν ∈ Im(M∗), b) ν0 = ω and c) νj = τj
for all j ∈ ρ−1(Ac). Because of part 3) of lemma 1, if {j1, . . . , j�} = ρ−1(Ac), the
distribution of (τj1 , . . . , τj�), is the uniform one conditioned on τ ← Im(M∗).
We conclude that ν is a uniformly random vector in Im(M∗) conditioned to
ν0 = ω, so the outputs of SimCorr and Kscorr are identically distributed, which
proves b).

Finally, for c), let Σ = {ck1, . . . , ckm} be some set of keys accepted by the ver-

ifier, i.e. some set such that Σ ⊂ Kgk and ẐM = 0̂2×d. Since if (gk, ck) ← G(1λ),

the vectors v̂, ŵ are a basis of Ĝ2, we can write each column of Z (numbered
from 0 to m) as ẑj = v̂τj + ŵζj , for some arbitrary values τj , ζj . In this no-

tation, Ẑ = v̂τ� + ŵζ�. Replacing in the verification equation, we have that
(v̂τ� + ŵζ�)M = 0̂2×d. But since v̂, ŵ are linearly independent, the equation
can only hold if ζ�M = 01×d. We can now apply lemma 1, part 1), to conclude
that A := ρ({j : ζj �= 0}) ∈ Ω. But if ζj �= 0, then ckj is a binding key for the
label sca

Ĝ
, which proves c).

266 C. Ràfols

7.2 VCKG for scaĜ and MSPs

This construction is almost identical to the previous one except that for the
non-simulatable case. For the OR predicate of two variables, it matches exactly
the GOS construction.

– Kcorr(gk,SP , A,T): The algorithm first runs the key generation algorithm of the
CaP scheme obtaining gk ← G0(1

λ). Then it proceeds as in the Kscorr algorithm,
except that the vectors ẑj are now defined by ẑj = τj v̂ + ζj(0̂, ĝ)

�.
– Vcorr(gk,Σ,T): The algorithm proceeds as algorithm Kscorr but with ẑ0 := (0̂, ĝ)�.

The proof follows the same lines as the previous one, the only relevant difference
is that to prove point b) of definition 7, we use the DDH Assumption in Ĝ. The
argument is very similar to [15] and is omitted.

7.3 Other Labels

We could not construct (S)VCKG for T = (com
Ĝ
, . . . , com

Ĝ
) for the original

GS CaP based on SXDH. The core of our construction is to use secret sharing
techniques to guarantee that at least a certain subset of the vectors ẑ1, . . . , ẑm is
linearly independent of v̂. The problem is that for group elements, the soundness
condition is exactly the opposite, namely it requires linear dependency of v̂, û
(see Fig. 1). In appendix C.1 we extend the GS CaP based on SXDH to admit new
labels, which allow to commit to group elements and to scalars in a different way,
with respective labels compar

Ĝ
and scapar

Ĝ
(scapar

Ȟ
, compar

Ȟ
). This new instantiation

of GS proofs ˜CaPGS admits (S)VCKG for these new label types, i.e. for any vector
T = (t1, . . . , tL), for ti ∈ {compar

Ĝ
, scapar

Ĝ
}. This means that we can apply our

approach to many more sets of equations S1, . . . ,SL, but at some efficiency cost,
because ˜CaPGS is less efficient that the original GS CaP.

7.4 Efficiency Discussion

Proof size. The proof that some sets of equations Si, i ∈ [L] are partially satisfi-
able requires the prover to send the keys Σ and then a proof (real or simulated)
of satisfiability of each Si. The size of the proofs depends thus on the equations
in Si. Therefore, to understand the performance of our proof system for partial
satisfiability, the best thing is to analyze its overhead, which is the difference
between the size of our proof and the sum of the sizes of a simulated proof of Si,
for all i ∈ [L]. The number of elements necessary to commit to all the variables
in Si is also counted as part of the proof of Si. That is, the overhead is the
difference between proving partial satisfiability and proving that all of Si, i ∈ [L]
hold, using independent variables for each of the Si.

Efficient encoding of Σ. It is quite important for the efficiency comparison to
note that the set Σ of keys output by the correlated key generation algorithm
admit a more efficient encoding. In all our constructions, the description of Σ

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 267

requires to give m vectors ẑ1, . . . , ẑm. Instead of letting the prover choose Σ
and then verifying if the keys are valid with the verification algorithm Vcorr

(or Vscorr) by checking whether ẐM = 0 (where the last m columns of Ẑ are
ẑ1, . . . , ẑm and the first is ẑ0 := ŵ), it is enough to let the prover output only
ẑ1, . . . , ẑm−d. Indeed, let M∗

0 be the (m + 1 − d) × (m + 1 − d) minor formed
by the first m+ 1 − d rows of M∗ and M∗

1 the minor formed by the rest of the
rows. Reordering if necessary, we can assume that M∗

0 is invertible. Then, the
following holds:

Lemma 3. Let Ẑ be an arbitrary matrix in Ĝ2×(m+1), with columns
ẑ0, ẑ1, . . . , ẑm, then:

ẐM = 0 ⇐⇒
(
ẑm+1−d|| . . . ||ẑm

)
=
(
ẑ0||ẑ1|| . . . ||ẑm−d

)
(M∗

1(M
∗
0)

−1)�. (3)

Proof. Denote as f1, f2 the rows of Z. Note that ẐM = 0 if and only if
f1, f2 ∈ Im(M∗), since the columns of M∗ are a basis of all vectors f such
that f�M = 0 (by definition of the parity check matrix). On the other hand,
a vector f ∈ Im(M∗) if and only if there exists some w ∈ Z2

q such that

f� = (M∗
0w||M∗

1w)�. Since M∗
0 has full rank this is equivalent to f ∈ Im(M∗) if

and only if (fm+1−d, . . . , fm)� = M∗
1(M

∗
0)

−1(f0, f1, . . . , fm−d)
�. The statement

follows from applying this reasoning to f1, f2.

The lemma implies that we can eliminate the test of algorithms Vcorr, Vscorr,
and instead let the verifier compute the last d columns of Ẑ on its own using
ẑ1, . . . , ẑm−d. This means that sending Σ requires only 2(m−d) group elements.

Comparison with previous work. We compare our results with the approach of
Groth [14] (simplified by Camenisch et al. [6]) for the statement “1-out-of-L sets
of equations S1, . . . ,SL are satisfiable”. They construct a “compiler” which takes
some sets of satisfiable equations S1, . . . ,SL and turns them into a single set of
equations which is only satisfiable if one of the Si’s is. The compiler works by
(renaming if necessary) assuming the S1, . . . ,SL have independent variables and
adding variables b1, . . . , bL−1, bi ∈ {0, 1} and defining bL := 1− b1 − . . .− bL−1.
For each i ∈ [L], bi modifies the equations in Si so that they admit the trivial
solution if bi = 0 and that they remain unchanged if bi = 1. The overhead is the
cost of proving bi ∈ {0, 1} for all i ∈ [L− 1], which is (L− 1)(6|Ĝ|+ 6|Ȟ|). Our

solution is notably more efficient (only 2|L−1||Ĝ|) when the vector of admissible
simulation labels of S1, . . . ,SL is (sca

Ĝ
, . . . , sca

Ĝ
), although it is not clear what

happens for other T (see the efficiency discussion in appendix C.1).

8 Examples

In this section we give two examples of P -Simulatable Verifiable Correlated Key
Generation. Throughout this section, given a set S ⊂ Zq and some i ∈ S,

λS
i (X) :=

∏
j∈S\{i}

X−j
i−j .

268 C. Ràfols

Example 2. (Or of two equations).

M =
(

1
1
1

)
M∗ =

(
1 0
1 1
−2 −1

)

M∗
0 = (1 0

1 1) M∗
1 = (−2 −1) TM∗ = M∗

1(M
∗
0)

−1 = (−1 −1) .

(M, ρ) is a monotone span program, where ρ(1) = 1, ρ(2) = 2 which computes
the predicate Or of two variables, (M∗, ρ) computes the dual predicate. The
algorithm Kscorr (or Kcorr), receives a vector vA ∈ {0, 1}2 such that P (vA) =
1. Since P is monotone, alternatively we can say that it receives a set A ⊂
{1, 2} such that |A| ≥ 1. It then generates ζ, τ according to one of these two
possibilities:

1. If A = {1}, it sets ζ = (1,−1, 0) = M∗ (1
−2

)
, τ = (0, r,−r) = M∗ (0

−r

)
, for

r ← Zq, that is, ζ, τ ∈ Im(M∗) are uniform conditioned on ζ0 = 1, ζ2 = 0
and τ0 = 0.

2. If A = {2}, ζ = (1, 0,−1) = M∗ (1
−1

)
, τ = (0, r,−r) = M∗ (0

−r

)
, for

r ← Zq, that is, ζ, τ ∈ Im(M∗) are uniform conditioned on ζ0 = 1, ζ1 = 0
and τ0 = 0.

If A = {1, 2}, it can choose one of the previous alternatives arbitrarily, so we
can assume w.l.o.g. that |A| = 1. Then, according to the type of labels which it
receives, it proceeds as follows:

– If T = (scaĜ, scaĜ), it sets ẑ1 = ζ1ŵ + τ1v̂, ẑ2 = ζ2ŵ + τ2v̂, the trapdoor
for the key indexed by Ac is ±r. That is, we have:
1. If A = {1}, ẑ1 = −ŵ+ rv̂, ẑ2 = −rv̂, tk2 = −r.
2. If A = {2}, ẑ1 = rv̂, ẑ2 = −ŵ − rv̂, tk1 = r.

As we explained in section 6, instead of letting the prover of CaPpar run Kscorr

and output (ẑ0 := ŵ, ẑ1, ẑ2) and then let the verifier run Vcorr to see if the keys
are properly generated, one can gain some efficiency by letting the prover only
send ẑ1, and recover ẑ2 as:

ẑ2 = Ẑ0T
�
M∗ ,

where Ẑ0 = (ẑ0||ẑ1) .

Example 3. k-out-of-L equations.

M =

⎛⎝ 1 0 ... 0
1 1 ... 1
...
...

...
1 L ... Lk−1

⎞⎠ M∗ =

⎛⎜⎜⎜⎝
1 0 ... 0

−λ
[L]
1 (0) −λL

1 (0) ... −λ
[L]
1 (0)

−λ
[L]
2 (0) −2λ

[L]
1 (0) ... −2L−kλ

[L]
2 (0)

...
...

...
−λ

[L]
L (0) −Lλ

[L]
L (0) ... −LL−kλ

[L]
L (0)

⎞⎟⎟⎟⎠ .

This is the definition of M, M∗ which is consistent with the definition given
in section 2.3 but as in the more efficient version of our protocol, the matrix

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 269

M does not play any role, we can choose a more efficient encoding of M∗ (this
allows to save in computation for the prover), namely:

M∗ =

⎛⎝ 1 0 ... 0
1 1 ... 1
...
...

...
1 L ... LL−k

⎞⎠ .

It is obvious that with both definitions M∗ computes the same span program as
in one case we just have replaced each row by some scalar multiple of itself, and
this does not change the linear dependencies among the rows. It can be easily
verified that:

TM∗ =

⎛⎜⎜⎝
λS
0 (L−k+1) λS

1 (L−k+1) ... λS
L−k(L−k+1)

λS
1 (L−k+2) λS

0 (L−k+2) ... λS
L−k(L−k+2)

...
...

...
λS
0 (L) λS

1 (L) ... λS
L−k(L)

⎞⎟⎟⎠ ,

where S = {0, 1, . . . , L−k}. That is, if ẑ�i = (ẑi1, ẑi2), then both (ẑ01, ẑ11, . . . , ẑL1)
and (ẑ02, ẑ12, . . . , ẑL2) are evaluations of some univariate polynomial of degree
at most L − k in the points 0, 1, . . . , L and for any j = 1, 2, the transformation
matrix TM∗ which allows to compute (ẑL−k+1j , . . . , ẑLj) from (ẑ0j , . . . , ẑL−kj) is
simply a polynomial interpolation matrix. Further, given some A ∈ Ω(k,L), the
vectors ζ, τ can be defined as the evaluation in 0, 1, . . . , L of two uniformly ran-
dom polynomials ζ(x), τ(x) of degree at most L− k conditioned on 1) ζ(0) = 1
and ζ(i) = 0 for all i ∈ Ac (ζ always exists since |Ac| ≤ L − k and is unique if
|A| = k) and 2) τ(0) = 0.

Another paradigmatic example of access structure realizable by a monotone
span program is the threshold hierarchical one, see Tassa [26]. Although we did
not include any example, recall that our construction is also for non-ideal sss,
that is, the monotone span program might have more than one row with the
same label (this is important since there are not that many known instances of
ideal sss for interesting access structures).

9 Applications

Next we discuss some applications of our results, but we expect that many more
can be found, for instance, in the design of signature schemes with complex
functionalities in the standard model in bilinear groups like attribute-based sig-
natures. Another interesting direction to explore is the application to anonymous
credentials.

Proving that some commitments open to b ∈ {0, 1}L, and wt(b) = 1. Given
some group key gk and some commitment keys ŵ, v̂, our results allow to give
more efficient proofs that each of the commitments in {ĉi : i ∈ [L]} ⊂ Ĝ2 opens
to a bit bi ∈ {0, 1}, and that

∑
i∈[L] bi = 1.

270 C. Ràfols

Alternatively, if we let ĉL := ŵ−
∑

i∈[L−1] ĉi, it is enough to prove that each of

the commitments in {ĉi : i ∈ [L−1]} opens to a bit bi ∈ {0, 1}. In the asymmetric

instantiation of bilinear groups of GS proofs, this requires (L − 1)(4|Ĝ|+ 6|Ȟ|)
elements for the proofs and 2(L−1)|Ĝ| for the description of ĉ1, . . . , ĉL−1. On the
other hand, we can encode the statement as a partial satisfiability statement as:

“(L− 1)-out-of-L of ({∃r1 ∈ Zq : ĉ1 = r1v̂}, . . . , {∃rL ∈ Zq : ĉL = rLv̂}) hold.′′

(4)
Each statement xi = {∃ri ∈ Zq : ĉi = riv̂} can be encoded as two linear
equations (with equation label MLinȞ), and they both admit the simulation
label scaȞ. The size of the proof is thus 2|Ȟ| for the description of the correlated

keys Σ (see section 8), L(2|Ȟ|+2|Ĝ|) for the proof (real or simulated) of xi and

2(L−1)|Ĝ| for the description of ĉ1, . . . , ĉL−1. In conclusion, our approach saves
O(L) elements in the proof size.

We note that if ŵ, v̂ are part of some common reference string generated
by a trusted party, we can prove (4) in zero-knowledge, but we can also take
ŵ = (0̂, ĝ)� and let the prover generate v̂ so that no other party knows its
discrete logarithm. Then using the NI Zap for partial satisfiability, the prover
can create a NIWI proof of (4) without a trusted setup.

Proving membership in a list. Chandran, Groth and Sahai [8] showed how to prove
that a committed value is in some public list {λ1, . . . , λN} ⊂ Ȟ with proof size
O(

√
N). Themain idea is to write the list elements in amatrixR of sizeL×L,L :=√

N and then give two sets of commitments {ĉi : i ∈ [L]}, {d̂i : i ∈ [L]} ⊂ Ĝ2,
each opening to a different bit string of weight 1. Without going into details, using
some homomorphic properties of the commitments, the prover uses one of the bit
strings to (privately) select a row i of the matrixR and the other to select a column
j. With some additional checks, this convinces the verifier that a commitment ĉ
opens to some (secret) position i, j of the matrix R. In summary, for the proof of
membership in a list of size N we need to prove twice a statement of the type 4,
so our results allow to save O(

√
N) group elements.

Ring signatures. Ring signatures [22] allow a signer to sign on behalf of an ad-
hoc group to which it belongs, anonymously. The proof of membership in a list of
size O(

√
N) was designed by Chandran, Groth and Sahai [8] with the objective

of designing more efficient ring signatures. Their scheme (with a signature size
of O(

√
N) when the ring size is N) has the shortest signature size of all the

schemes known in the standard model. Our savings for the proof of membership
translate directly into savings for this construction.

Simulation-sound NIZKs. Simulation-sound NIZKs [21,23] are non-interactive
zero-knowledge proofs with a stronger soundness requirement. More specifically,
no prover should be able to construct a false proof which is accepted by the
verifier even after seeing several simulated proofs of false statements. This notion
is useful to construct IND-CCA2 encryption schemes following the Naor-Yung
paradigm [21].

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 271

One technique to build simulation-sound proofs of satisfiability of some set
of equations S over a bilinear group suggested by Groth [14] and subsequently
explored by several papers with small variations [6,17], is to give a GS proof of
the statement: “S is satisfiable” or “ĉ is a commitment to some signature”. Real
proofs will use a witness for S, while simulated proofs will prove the other branch
of the statement, using as simulation trapdoor the secret key of the signature.

In general, the technique of Groth for constructing simulation-sound proofs
might not be the most efficient for all equation types S, (for instance if S encodes

membership in a linear space of Ĝn, see [1]) but when it is, one should check if our
improvements apply. For instance, in the simulation sound proof of Camenisch
et al. [6], one has to prove the OR of two equations which admit the label

(sca
Ĝ
, sca

Ĝ
), and this has an overhead of only 2|Ĝ|, as opposed to the 6|Ĝ|+6|Ȟ|

elements originally computed in [6]. On the other hand, our techniques do not
seem to help for the simulation sound proof of [17].

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: New constructions and applications. Cryptology ePrint Archive, Report
2014/483 (2014), http://eprint.iacr.org/2014/483

2. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

3. Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of the National
Computer Conference, American Federation of Information, Processing Societies
Proceedings, vol. (48), pp. 313–317 (1979)

4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC 1988, pp. 103–112 (1988)

5. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

6. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: 34th ACM STOC, Montréal, Québec,
Canada, May 19–21, pp. 494–503. ACM Press (2002)

8. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

9. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

10. De Santis, A., Di Crescenzo, G., Persiano, G.: Secret sharing and perfect zero-
knowledge. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 73–84.
Springer, Heidelberg (1994)

http://eprint.iacr.org/2014/483

272 C. Ràfols

11. Escala, A., Groth, J.: Fine-tuning groth-sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014)

12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

13. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

14. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

15. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11 (2012)

16. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

17. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

18. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity
Theory Conference, pp. 102–111 (1993)

19. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

20. Kilian, J.: Use of randomness on algorithms and protocols. MIT Press (1990)
21. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-

phertext attacks. In: 22nd ACM STOC, Baltimore, Maryland, USA, May 14–16,
pp. 427–437. ACM Press (1990)

22. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

23. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, October 17–19, pp. 543–553. IEEE Computer
Society Press, New York (1999)

24. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
26. Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004.

LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004)

A Proof of Lemma 1

We give the proof of parts 2),3) of lemma 1.

Proof. (Lemma 1) Since A ∈ Ω, Ac /∈ Ω∗. Thus, if B is a basis of the vectors
{r∗j : j ∈ ρ−1(Ac)}, the set {r∗j : j ∈ B ∪ {0}} is a set of linearly independent
vectors. Find a set of indexes C ⊂ [m] such that B ∪ {0} ⊂ C and the vectors
{r∗j : j ∈ C} are a basis the space spanned by the rows of M∗. Note that

ζ = M∗ω1 and τ = M∗ω2, if and only if ζj = (r∗j)
�ω1, τj = (r∗j)

�ω2. Because
the rows indexed by C are a basis of the rows of M∗, ζj , τj , j ∈ C, uniquely

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 273

define ζ, τ and further, if we sample a vector ν ← Im(M∗), {νj : j ∈ C} is a
uniform set of values in Zq. This shows that there is always one and only one
vector ν which is compatible with some fixed set of values {νj : j ∈ C}. This
proves part 2), as it implies that if we set ζ0 = 1 and ζj = 0 for all j ∈ B, and
ζj ← Zq for all j ∈ C\(B ∪ {0}), this defines a unique vector ζ which is uniform
conditioned on satisfying the constraints specified in 2). To see 3), just note that,
regardless of whether we sample τ ← Im(M∗), or τ ← Im(M∗) conditioned on
τ0 = 0, the same arguments used so far guarantee that {τj : j ∈ C\{0}} is a
uniform set of values in Zq, and by construction of B and C, {τj : j ∈ ρ−1(Ac)}
are completely determined by a subset of this set, namely by {τj : j ∈ B} and
therefore independent of τ0.

B Security Definitions

B.1 Commit-and-Prove Schemes

Below we give the remaining security definitions for commit-and-prove schemes
as taken from [11] and adapted to our modifications.

Definition 9 (Perfect Completeness). The commit-and-prove system CaP
is (perfectly) correct if for all adversaries A

Pr
[
(gk, ck) ← G(1λ); (x,W = {(ti,mi) : i ∈ I}) ← A(gk, ck);

{(kpi , ksi) : i ∈ I} ← LabGen(gk, ck, x,W);

C = {(kpi , ci) ← Com(gk, ck, (kpi , k
s
i ,mi)) : i ∈ I};

π ← P(gk, ck, x,Op, C) : V(gk, ck, x, C, π) = 1
]
= 1,

where A outputs (x,W) such that (gk, x,W) ∈ RL and Op is a valid set of
openings of C.

A commit-and-prove scheme is sound if it is impossible to prove a false state-
ment.

Definition 10 (Perfect Soundness). The commit-and-prove system CaP is
(perfectly) sound if there exists a deterministic (unbounded) opening algorithm
Open such that for all adversaries A

Pr
[
(gk, ck) ← G(1λ); (x, {(kpi , ci) : i ∈ I}, π) ← A(gk, ck);

{(ti,mi) : (ti,mi) ← Open(gk, ck, (kpi , ci))} :

V(gk, ck, x, {(kpi , ci) : i ∈ I}, π) = 0 ∨ (gk, x, {(ti,mi) : i ∈ I}) ∈ RL

]
= 1.

274 C. Ràfols

C Verifiable Correlated Key Generation For Other
Equation Types

Extending the Groth-Sahai CaP Based on SXDH. We describe an al-
ternative instantiation of the GS CaP scheme based on SXDH. Recall that the
original one does not admit correlated key generation for labels com

Ĝ
(or mixed

labels com
Ĝ
, sca

Ĝ
), while this one does. We just specify how to to generate the

real commitment keys and the simulated keys with the simulation trapdoor, the
rest of the algorithms of the CaP are easy to derive from the original paper
of Groth and Sahai [16] or from the specification of GS proofs for any matrix
assumption [12].

Essentially, the new instantiation introduces new label types so that one
can commit to group elements and to scalars in two different ways. The la-
bels sca

Ĝ
, scaȞ, comĜ

, comȞ indicate that one should commit to a group element
as in the original instantiation of [11]. With these labels we can do what we
described before, namely, we can prove that some equation admitted by the GS
proof system is satisfiable, or that a set of equations with admissible simulation
labels (sca

Ĝ
, . . . , sca

Ĝ
) is partially satisfiable.

The new labels are scapar
Ĝ

, compar

Ĝ
(scapar

Ȟ
, compar

Ȟ
in Ȟ). The new instantiation

of GS proofs we give below admits verifiable correlated key generation for T =
(t1, . . . , tL) where, for all i ∈ [L], ti ∈ {compar

Ĝ
, scapar

Ĝ
} (or for all i ∈ [L],

ti ∈ {scapar
Ȟ

, compar

Ȟ
}). The table in figure 2 describes how to commit with these

new label types, where e3 = (0, 0, 1)� and ê3 = (0̂, 0̂, ĝ)�.
For a complete description of the new CaP, we would need to specify new

equation types Leq and define which types of commitments are compatible with
each equation type, since we are dealing with vectors of potentially different
sizes. Given a quadratic equation written in the form given in equation (2)
(section 4), it is enough that the commitments to all the elements involved
in the equation in the same module Ai are in the same space. For instance
we can define Leq = MLin

Ĝ,par as a linear multi-scalar multiplication equation

in which the variables in A1 = Ĝ are committed with label compar

Ĝ
and the

constants in A2 = Zq are in the usual space Ȟ2. This is cumbersome to specify
but straightforward, and we omit any further details.

A commitment to an element with any of these labels is a vector of dimension
3. Further, with these new labels, we essentially commit to scalars and group
elements in the same way (so that a key can be binding/hiding for scalars and
group elements at the same time). Therefore, there is no longer an efficiency ad-
vantage in the proof size for equations involving scalars over equations involving
group elements3) This has an impact on efficiency, that is why one should only
use these labels to prove statements which are too expensive to prove with the

3 In the original GS proof instantiation, equations involving scaĜ, scaȞ are more effi-
cient than (similar) equations with comĜ, comȞ. For instance, the equation x̂a = t̂
requires one extra proof element compared to âx = t̂, but this is no longer true for
the new labels.

Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability 275

G(1λ)

gk ← (q, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1λ)
ω,σ, ξ, χ, ψ, φ ← Z∗

q

v̂ ← (ξĝ, ĝ)� , v̌ ← (ψȟ, ȟ)�

û ← ωv̂ , ǔ ← σv̌

ŵ ← û− (0̂, ĝ)� , w̌ ← ǔ− (0̌, ȟ)�
â ← (χĝ, ξĝ, ĝ)� , ǎ ← (φȟ, ψȟ, ȟ)�

b̂ ← ωâ+ (ĝ, 0̂, 0̂)� , b̌ ← σǎ+ (ȟ, 0̌, 0̌)�

ck ← (û, v̂, ŵ, ǔ, v̌, w̌, â, b̂, ǎ, b̌)
Return (gk, ck)

SimGen(1λ)

gk ← (q, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1λ)
ρ, ω, ξ, χ, ψ, φ ← Z∗

q

v̂ ← (ξĝ, ĝ)� , v̌ ← (ψȟ, ȟ)�

û ← ωv̂ + (0̂, ĝ)� , ǔ ← σv̌ + (0̌, ȟ)�

ŵ ← û− (0̂, ĝ)� , w̌ ← ǔ− (0̌, ȟ)�
â ← (χĝ, ξĝ, ĝ)� , ǎ ← (φȟ, ψȟ, ȟ)�

b̂ ← ωâ+ (0̂, 0̂, ĝ)�, b̌ ← σǎ+ (0̌, 0̌, ȟ)�

ck ← (û, v̂, ŵ, ǔ, v̌, w̌, â, b̂, ǎ, b̌)
tk ← (ck, σ, ω)
Return (gk, ck, tk)

Label t Message Randomness Commitment Kt
gk,bind Kt

gk,hid

scaĜ (scaĜ, x) (scaĜ, r) ĉ ← ŵx+ v̂r ck : ŵ /∈ 〈v̂〉 ck : ŵ ∈ 〈v̂〉
comĜ (comĜ, x̂) (comĜ, r, s) ĉ ← e2x̂+ v̂r + ûs ck : ê2 /∈ 〈û, v̂〉 ck : ê2 ∈ 〈û, v̂〉
scapar

Ĝ
(scapar

Ĝ
, x) (scapar

Ĝ
, r, s) ĉ ← ê3x+ âr + b̂s ck : ê3 /∈ 〈â, b̂〉 ck : ê3 ∈ 〈â, b̂〉

compar

Ĝ
(compar

Ĝ
, x̂) (compar

Ĝ
, r, s) ĉ ← e3x̂+ âr + b̂s ck : ê3 /∈ 〈â, b̂〉 ck : ê3 ∈ 〈â, b̂〉

Fig. 2. Generator algorithms. The two last coordinates of â (resp. of b̂, ǎ, b̌) correspond
to the vector v̂ (resp. to û, v̌, ǔ). Table describing the most important commitment
types.

normal instantiation. For instance, if one just wants to prove satisfiability of one
PPE, one should use a standard commitment to group elements.

C.1 VCKG for Group Elements

To prove soundness in the constructions of section 7, we used in a fundamen-
tal way that ŵ (or (0̂, ĝ)�) and v̂ are linearly independent. By giving this new
instantiation with an additional dimension, the same arguments follow in a rel-
ative straightforward way. Indeed, the main reason why this new scheme admits
verifiable correlated key generation for these new label types is that both for
binding and hiding keys, b̂ /∈ 〈â〉. Intuitively, the point is that the secret sharing
techniques we are using “work well” with linear independence relations and they
“fail” with linear dependence relations. When we tried to construct correlated
key generation for the label types (com

Ĝ
, . . . , com

Ĝ
), we did not know how to

force the prover to choose binding keys for group elements, i.e. keys such that
û ∈ 〈v̂〉.

We sketch the construction of section 7.2 for the vector of labels (compar

Ĝ
, . . . ,

compar

Ĝ
). Algorithm Kscorr samples two vectors τ ∈ Zm+1

q , κ ∈ Zm+1
q uniformly

at random conditioned on τ0 = 0, κ0 = 0. It also samples ζ as usual, namely, as
a uniform vector conditioned on ζ0 = 1 and ζj = 0 for all j ∈ ρ−1(i), i ∈ Ac. The

vectors ẑj are defined as ẑj = τj â+ ζjb̂+ κj(0̂, 0̂, ĝ)
� and Σ = {ck1, . . . , ckm},

where ckj = (ûj , v̂, ŵj , ǔ, v̌, w̌, â, ẑj , ǎ, b̌) (and ûj , ŵj are changed according to

276 C. Ràfols

ẑj to guarantee that ckj ∈ Kgk (that is, ûj should match the last two coordinates
of ẑj , ŵj = ûj − (0̂, ĝ)�). The construction also works for T = (t1, . . . , tL),
ti ∈ {compar

Ĝ
, scapar

Ĝ
}, since the set of binding/hiding keys for compar

Ĝ
and scapar

Ĝ
is the same.

The proof is identical to the one of lemma 2. Indeed, the key observation is
that if ζj = 0, then (0̂, 0̂, ĝ)� ∈ 〈â, ẑj〉 (unless κj = 0, which occurs only with
negligible probability). This means that the key ckj is hiding, and further the
simulation trapdoor is (τj , κj). On the other hand, if ζj �= 0, since (0̂, 0̂, ĝ)� /∈
〈â, ẑj〉 the key is binding. Therefore, we are in the same situation as in lemma
2. The rest of the algorithms/ proof are also straightforward. Now the matrix

Ẑ ∈ Ĝ3×(m+1) and the verifier checks if ZM = 0̂3×d, where M is the matrix
associated to the span program.

Example. We retake the example of the OR of two equations as defined in
section 8 but for the labels T = (compar

Ĝ
, compar

Ĝ
). The vectors ζ, τ are defined

as explained in section 8. Additionally, one chooses another vector κ ∈ Im(M∗)
uniformly conditioned on κ0 = 0, i.e. κ = (0, s,−s), s ← Zq. Let’s see why
the approach works. For instance, assume that A = {1} was the set used to

compute the keys. In this case, ẑ1 = râ− b̂+ s(0̂, 0̂, ĝ)�, ẑ2 = −râ− s(0̂, 0̂, ĝ)�,

tk2 = (r, s). The reason why the key (0̂, 0̂, ĝ)� /∈ 〈â, ẑ1〉 is because b̂ is linearly
independent of â in the soundness setting.

Efficiency. For the same span program SP , the description of Σ for T =
(t1, . . . , tL) = (sca

Ĝ
, . . . , sca

Ĝ
) is more efficient than when ti ∈ {compar

Ĝ
, scapar

Ĝ
},

because for the latter we need to send 3(m − d)|Ĝ| elements. Additionally, for
this construction there is an overhead that depends on the number of variables
and the equation type. This is because for each variable that we commit to using
one of the labels ti ∈ {compar

Ĝ
, scapar

Ĝ
} we need 3|Ĝ|, as opposed to 2|Ĝ| in the

normal instantiation of GS proofs. For quadratic equations (but not for linear
ones), this also results in a larger proofs. For each equation type, one should
evaluate if the approach is competitive, but for simple statements it looks like
an interesting alternative (for instance, if one wants to prove OR of two linear

equations in Ĝ, each with one variable in Ĝ).

Outlier Privacy�

Edward Lui and Rafael Pass��

Cornell University, USA
{luied,rafael}@cs.cornell.edu

Abstract. We introduce a generalization of differential privacy called
tailored differential privacy, where an individual’s privacy parameter is
“tailored” for the individual based on the individual’s data and the data
set. In this paper, we focus on a natural instance of tailored differential
privacy, which we call outlier privacy : an individual’s privacy parameter
is determined by how much of an “outlier” the individual is. We pro-
vide a new definition of an outlier and use it to introduce our notion
of outlier privacy. Roughly speaking, ε(·)-outlier privacy requires that
each individual in the data set is guaranteed “ε(k)-differential privacy
protection”, where k is a number quantifying the “outlierness” of the
individual. We demonstrate how to release accurate histograms that sat-
isfy ε(·)-outlier privacy for various natural choices of ε(·). Additionally,
we show that ε(·)-outlier privacy with our weakest choice of ε(·)—which
offers no explicit privacy protection for “non-outliers”—already implies
a “distributional” notion of differential privacy w.r.t. a large and natural
class of distributions.

1 Introduction

Enormous amounts of data are collected by hospitals, social networking systems,
government agencies, and other organizations. There are huge social benefits in
analyzing this data, but we must protect the privacy of the individuals in the
data. The current standard definition of privacy for data analysis is differential
privacy [7,5], which requires that the output distribution of the data analysis
algorithm changes very little when a single individual’s data is added or removed
from the data set. Accurate differentially private algorithms for a wide variety
of tasks have been developed, allowing for useful and private data analysis (e.g.,
see [6,4]).

Currently, the standard notion of differential privacy guarantees the same
level of privacy protection for all individuals. More precisely, in ε-differential
privacy, every individual has the same “ε-differential privacy protection”, which
guarantees that the algorithm’s output distribution changes by at most ε when

� A full version of this paper is available at https://eprint.iacr.org/2014/982
�� Pass is supported in part by an Alfred P. Sloan Fellowship, Microsoft New Fac-
ulty Fellowship, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844,
NSF Award CNS-1217821, AFOSR YIP Award FA9550-10-1-0093, and DARPA and
AFRL under contract FA8750-11-2-0211.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 277–305, 2015.
c© International Association for Cryptologic Research 2015

278 E. Lui and R. Pass

adding or removing the individual’s data from the data set. While this is a strong
privacy guarantee if ε is very small (we elaborate more on this below), it clearly
also does result in a non-trivial privacy loss for moderate values of ε. Additionally,
it has also been established that to achieve non-trivial utility, ε cannot be too
small—in particular, ε * 1/n where n is the number of individuals in the data
set. Furthermore, to answer a counting query with ε-differential privacy and with
error at most α, we must have ε ≥ Ω(1/α).

An alternative idea is to provide different levels of privacy protection to differ-
ent individuals—intuitively, some individuals require more privacy than others,
and the algorithm should accommodate this. This general idea, which first ap-
peared in the work of Ghosh and Roth [11], has been partly investigated in a
mechanism design setting (e.g., see [11,8,12,16,15]), where individuals are re-
quested to not only submit their data, but also their “privacy valuation”. The
mechanism then tries to accommodate each individual’s privacy valuation, while
at the same time releasing data that is useful. Unfortunately, however, in the
most realistic setting—where an individual’s privacy valuation may be correlated
with her data and thus also needs to be protected—the literature is plagued by
strong impossibility results.

Tailored Differential Privacy: Protecting Outliers. In this paper, we con-
sider a different approach to deal with the issue that different individuals may
have different privacy needs. Instead of having the individuals specify their own
privacy valuation/parameter, an individual’s privacy parameter will be deter-
mined based on the individual’s data and the data set. In other words, an indi-
vidual’s privacy parameter will be tailored for the individual based on the data
set—we refer to such a notion as tailored differential privacy. In this paper, we
focus on a natural instance of tailored differential privacy: an individual’s pri-
vacy parameter will be determined by how much of an “outlier” the individual
is (w.r.t. the data set). Roughly speaking, “outliers”—intuitively, individuals
that are “far away”, or “vastly different” from most other individuals—will be
granted higher privacy protection than individuals that “mix” with lots of other
individuals. One reason for providing higher privacy protection to outliers is
that we may want to limit the amount of information leaked about a group of
outliers. Let us present an example to illustrate what we mean.

Example 1 (Salaries of a Company’s Employees). Consider the standard
ε-differentially private algorithm for releasing a histogram, which simply adds
(Laplace) Lap(1/ε) noise1 to each bin independently. Suppose such an algorithm
is used to release a histogram of the salaries of a large company’s employees,
where the range of possible salaries is partitioned into intervals, which correspond
to the bins of the histogram. Assume there exists a (small, but non-trivial) group
of, say, 100 managers, and all these managers have similar salaries that belong
to the same bin; assume further that the other employees in the company have
much lower salaries. Since the group of managers is relatively small, we consider

1 Lap(λ) is the Laplace distribution with mean 0 and scale λ, whose associated pdf is

fλ(x) =
1
2λ
exp(− |x|

λ
).

Outlier Privacy 279

them to be outliers and would like to prevent their (approximate) salary from
being revealed. But, if ε is not small enough, by choosing the highest-salary
bin with a noisy count of at least 50, the bin containing the managers can be
predicted with “high” probability (roughly 1− exp(−50ε)).

Leaking the salary information of a small group of managers may perhaps not
be considered a serious “breach” of their privacy. However, the same argument
still holds if we further partition each salary bin into two sub-bins corresponding
to HIV positive and HIV negative individuals. If the fraction of HIV positive
managers is significantly higher than what is usual, this fact will released by the
ε-differentially private algorithm (assuming ε is not too small).

In contrast, if we could provide sufficiently higher privacy protection (i.e., a
sufficiently smaller privacy parameter) to each of the managers, then the amount
of information leaked about the group of managers would be significantly less,
and thus the managers’ salary, or information about their HIV status, will not
be (significantly) revealed.

In the above example, the managers are considered “outliers”—the group of
outliers is “small” and other individuals in the data set are “far” from them;
thus we consider it a violation of their privacy that sensitive information about
them is leaked. In contrast, if the group of managers was “huge”, we would
no longer consider them outliers, and releasing aggregate information about a
huge group of people should not be considered a violation of privacy. Indeed,
note that in the above example, the sensitive information that is leaked is not
about a single individual, it is about the group of managers; this clarifies why
traditional differential privacy (which is only meant to mask a single individual’s
information) does not suffice to protect this information.

The notion of (k, ε)-group differential privacy (which in particular is implied
by ε/k-differential privacy), on the other hand, could be used to protect infor-
mation about the group of managers (if we let k = 100). But using such a strong
notion of privacy would require adding noise proportional to 100/ε to all the bins
in the above example, and would render the released data useless. On the other
hand, if we tailor the level of privacy required by an individual to whether the
individual is an outlier or not (which, looking forward, will be enabled by our
notion of outlier privacy), we could make sure to guarantee (ε/100)-differential
privacy for only the managers (and thus any information about the group of
managers is protected), and only ε-differential privacy for everyone else.

Let us now turn to formalizing our notion of outlier privacy. Towards doing
this, we first need to provide a mathematical definition of what if means for an
individual to be an outlier.

A New Mathematical Definition of “Outliers”. As mentioned above, intu-
itively, outliers are data points or records that are “far away” or “vastly different”
from the rest of the data. There are many existing methods of identifying out-
liers (see [2] for a survey); for example, for a set of data points, an outlier can be
defined as a data point that is not within a certain distance of any other data
point. However, such methods are often problematic for high-dimensional data

280 E. Lui and R. Pass

(which is quite common), since the data points tend to be sparsely spaced and
thus every data point may be an outlier (e.g., see [13]). As far as we know, all of
the existing methods for identifying an outlier only look at the data itself and do
not explicitly consider the algorithm that will be run on the data. In contrast,
similar to the notion of differential privacy, we provide a definition of an outlier
that depends on the algorithm that operates on the data set. (Additionally, ex-
isting methods of identifying outliers are also designed for some specific type of
data (e.g., data points in Rd); in contrast, we seek a method that works for any
type of data.)

We aim to capture the intuition that a data record t in a data set is an outlier
if, “from the perspective of the algorithm”, the data record is not “equivalent” to
sufficiently many data records in the data set. More formally, we say that a data
record t is equivalent to another data record t′ w.r.t. an algorithm A if A can
never distinguish t and t′—that is, for every data set D containing t, the output
distribution of the algorithm A does not change if we replace t by t′ in D. (For
instance, for computing a histogram, two individuals t and t′ are equivalent if
they correspond to the same bin in the histogram.) We now call a data record t
a k-outlier w.r.t. the data set D and the algorithm A if t is equivalent (w.r.t. A)
to at most k records in the data set. The parameter k quantifies to what extent
the data record is an outlier.

Defining Outlier Privacy. We now turn to (informally) defining our notion
of outlier privacy. Roughly speaking, ε(·)-outlier privacy requires that for every
data set D, every k > 0, and every k-outlier t in the data set D, t is guaranteed
“ε(k)-differential privacy protection”—that is, if we remove t from the data set,
the output distribution of the algorithm changes by at most ε(k), where the
metric used is the same as that in differential privacy.

To address the privacy issues illustrated in Example 1, let us first consider
ε(·)-outlier privacy for a specific “threshold” function ε(·), which is specified by
two parameters k and ε; we refer to the resulting notion as (k, ε)-simple outlier
privacy. Roughly speaking, (k, ε)-simple outlier privacy requires ε/k-differential
privacy for k-outliers, but does not have any privacy requirements for the other
individuals. By requiring ε/k-differential privacy for k-outliers, (k, ε)-simple out-
lier privacy provides “(k, ε)-group differential privacy protection” for each group
of k-outliers where the group size is at most k—that is, if we simultaneously
remove k or fewer k-outliers from the data set, the output distribution of the
algorithm changes by at most ε. (This fact follows from the observation that
we can remove the k-outliers in the group one at a time, each time causing the
output distribution to change by at most ε/k; since the group size is bounded
by k, the total change in the output distribution is at most ε.)

Note that (100, ε)-simple outlier privacy suffices to protect the privacy of
the managers in Example 1. However, it does not protect the privacy of any of
the other individuals. A minimal privacy guarantee would be to require that the
managers’ privacy is guaranteed (as a group) and everyone else gets the “individ-
ual” differential privacy guarantee; that is, we seek an algorithm that satisfies
both (100, ε)-simple outlier privacy, and ε-differential privacy. Again, this can

Outlier Privacy 281

be viewed as an instance of ε(·)-outlier privacy for a slightly different threshold
function ε(·). More precisely, our notion of (k, ε)-simple outlier differential pri-
vacy requires ε/k-differential privacy for k-outliers and ε-differential privacy for
the other individuals.

(k, ε)-simple outlier differential privacy provides just two separate levels of
privacy protection. We may also consider a more general instance of ε(·)-outlier
privacy, which we refer to as staircase outlier privacy. In staircase outlier privacy,
there are � thresholds k1 > . . . > k�, and �+1 privacy parameters ε0 > . . . > ε�,
and we require that for every 1 ≤ i ≤ �, every ki-outlier is protected by εi-
differential privacy; also, it is required that all the individuals are protected by
ε0-differential privacy by default.

1.1 Our Results

Our central results consist of demonstrating efficient algorithms for releasing ac-
curate histograms that satisfy ε(·)-outlier privacy for various natural choices of
ε(·)—in particular, we consider, simple outlier privacy, simple outlier differential
privacy, staircase outlier privacy, and finally ε(·)-outlier privacy for a relatively
general choice of ε(·), and provide various (different) algorithms for releasing
histograms that achieve these notions. Additionally, we show that the weakest
notion of just simple outlier privacy (recall that this notion only protects out-
liers, and requires no privacy protection for the other individuals)—which we
demonstrate can be achieved using particularly simple algorithms—actually al-
ready implies a “distributional” notion of differential privacy, and thus also a
distributional notion of simple outlier differential privacy. Roughly speaking, the
distributional notion of differential privacy only requires the differential privacy
property to hold if the data set is drawn from some class of distributions. The
class of distributions can represent a set of possible distributions that contains
the supposed “true distribution”, or the class can represent a set of possible
beliefs an adversary may have about the data set. In our result, we consider a
large and natural class of distributions obtained by sampling from any popula-
tion. Our class of distributions includes quite general distributions/beliefs based
on biased and imperfect sampling from a population, in a setting where the
adversary may even know whether certain individuals were sampled or not.

Algorithms for Simple, Simple Differentially Private, and Staircase
Outlier Privacy. Let us start by giving an example of a (k, ε)-simple out-
lier private algorithm for releasing a histogram (recall that (k, ε)-simple outlier
privacy requires ε/k-differential privacy for all k-outliers, and no privacy for ev-
eryone else). Consider an algorithm that computes a histogram but suppresses
the counts for all bins that have a count ≤ k. A data record t is a k-outlier if
and only if its bin has a count ≤ k, so by suppressing the counts of those bins to
0, we ensure that output of the algorithm does not change if t is removed from
the database. Simple outlier privacy may seem like a weak privacy guarantee—
after all, the privacy of non-outliers is not explicitly protected. However, we will
show that simple outlier privacy in fact implies a certain distributional notion

282 E. Lui and R. Pass

of differential privacy, which might provide sufficient privacy protection in many
settings. Thus, simple outlier privacy already implies a distributional notion of
simple outlier differential privacy.

Let us now turn to directly designing simple outlier differentially private
algorithms. We are able to design a histogram algorithm that achieves (k, ε)-
simple outlier differential privacy. Roughly speaking, the algorithm first adds
sufficient noise to each bin to achieve ε-differential privacy; then, the algorithm
goes through each bin of the histogram, and if the bin has a noisy count that
is less than k, the algorithm adds sufficient noise to the bin to achieve ε/k-
differential privacy. The algorithm then outputs the resulting noisy histogram.

Finally, by generalizing the above approach, we can design a histogram algo-
rithm that achieves staircase outlier privacy. Roughly speaking, the algorithm
first adds sufficient noise to each bin to achieve ε0-differential privacy; then, the
algorithm goes through each of the “levels (i.e., steps) of the staircase” start-
ing from the top, and if a bin currently has a noisy count that is at most the
threshold for the current level i, the algorithm adds sufficient noise to the bin
to achieve εi-differential privacy. The algorithm then outputs the resulting noisy
histogram.

Outlier Private Algorithms for General ε(·). We also provide histogram
algorithms that satisfy ε(·)-outlier privacy for a relatively general ε(·). Let us
provide some intuition for how the outlier private histogram algorithms work.
The standard ε-differentially private algorithm for releasing a histogram sim-
ply adds (Laplace) Lap(1/ε) noise to each bin count independently. By adding
Lap(1/ε) noise to each bin, when a data record t is removed from the data set, the
output distribution over noisy histograms only changes by at most ε (w.r.t. the
metric used in differential privacy). To achieve ε(·)-outlier privacy, the output
distribution can only change by at most ε(k), where k is the count of t’s bin
(t is the data record that is removed). Thus, one may try adding Lap(1/ε(k))
noise to each bin, where k is the count of the bin. However, this does not work,
since the amount of noise added depends on the count k in a way that is too
sensitive. In particular, when we remove t from the data set and the count of t’s
bin decreases from k to k − 1, the magnitude of the noise changes from 1/ε(k)
to 1/ε(k − 1), which changes the output distribution by more than ε(k).

One way to fix this problem is to add noise to the ε(·) function, so that the
1/ε(k) and the 1/ε(k− 1) become noisy and would be “ε′-close” for some ε′ > 0.
To allow for a variety of solutions, we will consider using any algorithm A that
approximates ε(·) in a “differentially private” way—that is, A(k) ≈ A(k − 1)
for every k > 0. Then, we will add ≈ Lap(1/A(kb)) noise to each bin b, where
kb is the count for bin b. This works as long as the noise magnitude 1/A(kb) is
large enough; the noise magnitude 1/ε(kb) is large enough, but since A(kb) only
approximates ε(kb), A(kb) might be too large. Thus, we will also require that
A(kb) is at most ε(kb) with very high probability.

Outlier Privacy 283

Comparison to Related Work. There are some similarities between simple
outlier privacy and the notion of crowd-blending privacy in [9]. Crowd-blending
privacy uses a notion of “ε-blend”, where ε > 0, whereas in our definition of an
outlier, we use a notion of equivalence w.r.t. the algorithm, which corresponds
to ε-blend with ε = 0. Also, in (k, ε)-simple outlier privacy, when removing a
k-outlier, the output distribution is only allowed to change by at most ε/k,
whereas in (k, ε)-crowd-blending privacy, the output distribution is allowed to
change by at most ε. Our result that simple outlier privacy implies distributional
differential privacy is somewhat similar to the result in [9] that states that if one
combines a crowd-blending private algorithm with a natural pre-sampling step,
the combined algorithm is zero-knowledge private (which implies differential
privacy; see [10]) if we view the population as the input data set to the combined
algorithm. In contrast, our result achieves a distributional notion of differential
privacy on the data set as opposed to the population, which is a different model
and definition.

Our result that simple outlier privacy implies distributional differential
privacy also has some similarities to a result in [1], where it is shown that a
histogram algorithm that suppresses small counts achieves a notion of distri-
butional differential privacy (slightly weaker than ours, since their definition
permits choosing a simulator, but in our definition, the simulator has to be the
algorithm itself), but for a class of distributions incomparable to the class we
consider (the classes are somewhat similar, but neither is a subset of the other).
However, our class of distributions includes distributions/beliefs based on biased
and imperfect sampling (from a population) in a setting where the adversary may
even know whether certain individuals were sampled or not; the class of distri-
butions considered in [1] does not consider such an adversarial setting. Also,
we consider the class of simple outlier private algorithms, which includes but is
more general than just histogram algorithms that suppress small counts.

Some Remarks on Outlier Privacy. Our notion of ε(·)-outlier privacy usually
does not satisfy composition; that is, if an algorithm A is εA(·)-outlier private
and an algorithmB is εB(·)-outlier private, the composition of A and B is usually
not (εA+ εB)(·)-outlier private. This is due to the fact that a k-outlier w.r.t. the
composition of A and B might not be a k-outlier w.r.t. A or B.

In our definition of ε(·)-outlier privacy, a k-outlier t is guaranteed “ε(k)-
differential privacy protection”—that is, if we remove t from the data set, the
output distribution of the algorithm only changes by at most ε(k). Note, how-
ever, that this does not mean that if we replace t with any other individual t′,
the output distribution of the algorithm only changes by at most ε(k). In par-
ticular, if we replace t with a “non-outlier” t′, then the output distribution may
change more significantly. More precisely, the only thing we can say about the
change in the output distribution is that it is bounded by ε(k) + ε(k′) if t is an
k-outlier and t′ is an k′-outlier—this follows since removing t changes the output
distribution by at most ε(k), and adding t′ changes the output distribution by
at most ε(k′).

284 E. Lui and R. Pass

Possible Future Directions and Additional Applications. Our results in
this paper have focused mostly on histograms. To some extent, this is because
our notion of an outlier is very liberal, due to the fact that our notion of equiv-
alence between individuals is very strict (and thus it is “easier” to be classified
as an outlier). One can consider generalizing our definition of a k-outlier to a
(k, ε′)-outlier, where the definition is the same except that (k, ε′)-outlier uses ε′-
blending (as in [9]) to define equivalence between individuals. If we are using a
notion of outlier privacy that guarantees at least ε0-differential privacy for every
individual, then every individual would 2ε0-blend with every other individual
(by “transitivity”), so we should choose the blending parameter ε′ to be smaller
than 2ε0. Using the definition of a (k, ε′)-outlier in our various notions of out-
lier privacy, one can perhaps construct useful algorithms that satisfy these new
notions of outlier privacy. For example, the algorithm in [9] for releasing syn-
thetic data points would satisfy our generalized notion of (k, ε, ε′)-simple outlier
privacy where the notion of a (k, ε′)-outlier is used. We leave the exploration of
these generalized notions of outlier privacy for future work.

In the area of robust statistics, one of the main goals is to design statistical
methods and estimators that are not significantly affected by outliers. A simple
approach would be to first remove the outliers from the data set, and then apply
non-robust statistical methods to the remaining data set. In order to use this ap-
proach, one needs a method of identifying outliers. Our mathematical definition
of an outlier, or a variant of it, can be used to remove outliers before running
non-robust statistical methods or algorithms on the data. Also, our notions of
outlier privacy can be adapted to define a notion of “outlier robustness” for
statistical computations. We leave the exploration of such ideas for future work.

2 Outlier Privacy

A data set is a finite multiset of data records, where a data record is simply
an element of some fixed set X , which we refer to as the data universe. Let D
be the set of all data sets. Given a data set D and data records t and t′, let
D−t = D \ {t} and (D, t′) = D + {t′}. Given ε, δ ≥ 0 and two random variables
(or distributions) Z and Z ′, we shall write Z ≈ε,δ Z ′ to mean that for every
Y ⊆ Supp(Z) ∪ Supp(Z ′), we have

Pr[Z ∈ Y] ≤ eε Pr[Z ′ ∈ Y] + δ

and

Pr[Z ′ ∈ Y] ≤ eε Pr[Z ∈ Y] + δ.

We shall also write Z ≈ε Z ′ to mean Z ≈ε,0 Z ′. Differential privacy ([7,5]) can
now be defined in the following manner:

Definition 1 ((ε, δ)-Differential Privacy [7,5]). An algorithm M is said to
be (ε, δ)-differentially private if for every pair of data sets D and D′ differing in
only one data record, we have M(D) ≈ε,δ M(D′).

Outlier Privacy 285

Intuitively, differential privacy protects the privacy of each individual by re-
quiring the output distribution of the algorithm to not change much when an
individual’s data is added or removed from the data set. Achieving differential
privacy often involves adding noise drawn from some distribution, usually the
Laplace distribution. We will use Lap(λ) to denote the Laplace distribution with

mean 0 and scale λ, whose associated pdf is fλ(x) = 1
2λ exp(− |x|

λ). For conve-
nience, we will sometimes abuse notation and use Lap(λ) to denote a random
variable that has the Laplace distribution Lap(λ).

We now define our notion of tailored differential privacy as described in
the introduction. Roughly speaking, (ε(·), δ(·))-tailored differential privacy re-
quires that each individual t in the data set D is protected by (ε(t,D), δ(t,D))-
differential privacy, where ε(·) and δ(·) are functions that, on input a data record
t and a data set D, outputs privacy parameters ε(t,D) and δ(t,D) for t. Recall
that X is the set of possible data records, and D is the set of all data sets.

Definition 2 (Tailored Differential Privacy). Let ε(·), δ(·) : X×D → R≥0∪
{∞}. An algorithm M is said to be (ε(·), δ(·))-tailored differentially private if
for every data set D and every data record t ∈ D, we have M(D) ≈ε(t,D),δ(t,D)

M(D \ {t}).

In this paper, we focus on a specific instance of tailored differential privacy,
which we call outlier privacy. Outlier privacy tailors an individual’s privacy pa-
rameter to the “outlierness” of the individual. Let us first describe our definition
of an outlier. In the definitions below, let M be any algorithm that takes a data
set as input. Roughly speaking, we say that a pair of data records t, t′ ∈ X are
equivalent w.r.t. M (or M-equivalent), denoted t ≡M t′, if the algorithm M
can never distinguish the two data records, regardless of the input data set.

Definition 3 (Equivalent w.r.t. M, or M-Equivalent). Given a pair of
data records t, t′ ∈ X, we say that t is equivalent to t′ w.r.t. M, or t is M-
equivalent to t′, denoted t ≡M t′, if for every data set D′ containing t, we have
M(D′) = M(D′

−t, t
′) (in distribution).

Using the definition of a pair of data records being equivalent w.r.t. an algo-
rithm M, we now define the notion of a k-outlier. Roughly speaking, a k-outlier
is a data record that is M-equivalent to at most k data records in the data set
(including itself).

Definition 4 (k-Outlier). Given a data set D, a data record t ∈ D is said to
be a k-outlier in D w.r.t. M if there are at most k data records in D that are
equivalent to t w.r.t. M.

As the parameter k increases, the property of being a k-outlier becomes weaker
(i.e., easier to satisfy), and the set of k-outliers becomes larger. Using the defi-
nition of a k-outlier, we now define our new notion of privacy called (ε(·), δ(·))-
outlier privacy. Roughly speaking, (ε(·), δ(·))-outlier privacy requires that for

286 E. Lui and R. Pass

every k > 0 and every k-outlier t in the data set, t is protected by (ε(k), δ(k))-
differential privacy—that is, if we remove t from the data set, the output distri-
bution of the algorithm changes by at most (ε(k), δ(k)), where the metric used
is the same as that in (ε, δ)-differential privacy.

Definition 5 ((ε(·), δ(·))-Outlier Privacy). Let ε(·), δ(·) : N → R≥0 ∪ {∞}.
An algorithm M is said to be (ε(·), δ(·))-outlier private if for every data set D,
every k > 0, and every k-outlier t in D, we have M(D) ≈ε(k),δ(k) M(D \ {t}).

We will often write ε(·)-outlier private to mean (ε(·), δ(·))-outlier private with
δ(k) = 0 for every k. (ε(·), δ(·))-outlier privacy generalizes differential privacy by
allowing one to specify different levels of privacy protection for different individ-
uals based on how much of an outlier the individuals are. Intuitively, one may
want to provide greater privacy protection to outliers, since their privacy may
be more at risk. By setting ε(·) and δ(·) to be constants ε and δ respectively, one
recovers the definition of (ε, δ)-differential privacy.

2.1 Simple Outlier Privacy

Let us first consider ε(·)-outlier privacy with a specific ε(·) function, together
which we call (k, ε)-simple outlier privacy. Roughly speaking, (k, ε)-simple outlier
privacy requires ε/k-differential privacy for k-outliers, but does not have any
privacy requirements for the other individuals.

Definition 6 ((k, ε)-Simple Outlier Privacy). Let k, ε > 0. An algorithm
M is said to be (k, ε)-simple outlier private if for every data set D and every
k-outlier t in D, we have M(D) ≈ε/k M(D \ {t}).

(k, ε)-simple outlier privacy is equivalent to ε(·)-outlier privacy with the func-
tion ε(·) defined by ε(k′) = ε/k if k′ ≤ k, and ε(k′) = ∞ otherwise. By requir-
ing ε/k-differential privacy for k-outliers, (k, ε)-simple outlier privacy provides
“(k, ε)-group differential privacy protection” for each group of k-outliers where
the group size is at most k—that is, if we simultaneously remove k or fewer
k-outliers from the data set, the output distribution of the algorithm changes
by at most ε. (This fact follows from the observation that we can remove the
k-outliers in the group one at a time, each time causing the output distribution
to change by at most ε/k; since the group size is bounded by k, the total change
in the output distribution is at most ε.) This privacy protection for groups of
k-outliers can be particularly useful when one needs to protect the privacy of
a group of outliers. In some cases, in order to protect the privacy of a single
outlier, one needs to protect the privacy of an entire group of outliers simulta-
neously. In such cases, ordinary differential privacy may not be sufficient, like
in Example 1 in the introduction. For completeness, let us now formalize what
we mean when we say that (k, ε)-simple outlier privacy provides “(k, ε)-group
differential privacy protection” for each group of k-outliers where the group size
is at most k.

Outlier Privacy 287

Proposition 1. Let M be any algorithm that is (k, ε)-simple outlier private.
Then, for every data set D and every A ⊆ D of size at most k and consisting of
only k-outliers in D, we have M(D) ≈ε M(D \A).

Proof. Let D be any data set, and let A ⊆ D be of size at most k and consisting
of only k-outliers in D. Let A = {t1, . . . , tr}, where r ≤ k. Now, for i = 0, . . . , r,
let D(i) = D \ {t1, . . . , ti}. We note that D(0) = D and D(r) = D \ A. Since
M is (k, ε)-simple outlier private and A only consists of k-outliers in D, and
since k-outliers in D remain as k-outliers after removing data records from D,
we have M(D(i)) ≈ε/k M(D(i+1)) for every 0 ≤ i ≤ r − 1. Thus, we have
M(D) ≈ε M(D \A), as required. (#

Let us now give some examples of simple outlier private algorithms.Our first ex-
ample is an algorithm that computes a histogram but suppresses the small counts
to 0. Intuitively, data records in the same bin are equivalent w.r.t. M, while a
pair of data records belonging to separate bins are not equivalent w.r.t.M. Thus,
a data record is a k-outlier if and only if its bin has a count ≤ k, so to achieve
(k, 0)-simple outlier privacy, the algorithm “suppresses” the counts ≤ k to 0.

Example 2 (Simple Outlier Private Histogram with Suppression of Small
Counts). Let k > 0. Let M be an algorithm that, on input a data set D,
computes a histogram from D, and then for every bin count that is ≤ k, M
“suppresses” (i.e., changes) the bin count to 0. M then outputs the modified
histogram.

Theorem 1. The above algorithm M is (k, 0)-simple outlier private.

Proof. Let D be any data set, and let t be any k-outlier in D. We note that t is
M-equivalent to precisely those records that belong in the same bin as t. Since
t is a k-outlier, there are at most k records in t’s bin. Thus, M will suppress t’s
bin count to 0. We observe that removing t from the data set (and thus from t’s
bin) will still result in M suppressing t’s bin count to 0. Thus, M is (k, 0)-simple
outlier private. (#

Instead of suppressing small counts to 0, one can add noise to the small counts
to achieve (k, ε)-simple outlier privacy.

Example 3 (Simple Outlier Private Histogram with Noise Added to Small
Counts). Let k > 0. Let M be an algorithm that, on input a data set D,
computes a histogram from D, and then for each bin count that is ≤ k, M adds
Lap(k/ε) noise to the bin count independently. M then outputs the modified
histogram.

Theorem 2. The above algorithm M is (k, ε)-simple outlier private.

Proof. Let D be any data set, and let t be any k-outlier in D. We note that
t is M-equivalent to precisely those records that belong in the same bin as t.
Since t is a k-outlier, there are at most k records in t’s bin. Thus, M will add

288 E. Lui and R. Pass

Lap(k/ε) noise to t’s bin count. We observe that removing t from the data set
(and thus from t’s bin) will still result in M adding Lap(k/ε) noise to t’s bin
count; using the pdf of Lap(k/ε) and performing some standard calculations for
proving differential privacy (e.g., see [7]), one can easily show that the noisy
count of t’s bin after removing t is ε/k-close (i.e., ≈ε/k) to the noisy count of t’s
bin before removing t. Thus, M is (k, ε)-simple outlier private. (#

The simple outlier private algorithms above also satisfy a distributional notion
of differential privacy for a large and natural class of distributions, since simple
outlier privacy implies such a distributional notion of differential privacy, which
we show in Section 3.

Relationship of Simple Outlier Privacy to Other Privacy Definitions.
Since (k, ε)-simple outlier privacy requires ε/k-differential privacy for k-outliers
(and no privacy guarantee for the other individuals), we see that ε/k-differential
privacy implies (k, ε)-simple outlier privacy.

Proposition 2. Let k, ε > 0. If an algorithm M is ε/k-differentially private,
then it is (k, ε)-simple outlier private.

Proof. This follows immediately from the definition of ε/k-differential privacy
and (k, ε)-simple outlier privacy. (#

Although (k, ε)-simple outlier privacy can be obtained by achieving
ε/k-differential privacy, achieving ε/k-differential privacy normally requires sub-
stantially more “noise” to be added. As demonstrated in the above examples,
one can achieve better accuracy/utility with (k, ε)-simple outlier privacy because
only the k-outliers require ε/k-differential privacy.

In [9], a notion of a pair of data records “ε-blending with each other” is used (in
their notion of crowd-blending privacy), where it is required that the algorithm
cannot distinguish the two records by more than ε. More precisely, a data record t
ε-blends with t′ w.r.t. M if for every data set D′ containing t, we have M(D′) ≈ε

M(D′
−t, t

′). In this paper, in our definition of equivalence w.r.t. M and in our
definition of a k-outlier, we require the “blending” to be perfect (i.e., ε = 0),
since for an (ε/2)-differentially private algorithm, every record ε-blends with
every other record, and thus there would be no outliers. Furthermore, by setting
ε = 0, the “blends with” relation is an equivalence relation on the set of all
possible data records. For an algorithm releasing histograms, the equivalence
classes are precisely the bins of the histogram. In other words, a pair of data
records blend with one another if and only if they belong to the same bin.
There are also some similarities between simple outlier privacy and the notion
of crowd-blending privacy in [9], which we now recall.

Outlier Privacy 289

Definition 7 (Crowd-blending privacy [9]). An algorithmM is (k, ε)-crowd-
blending private if for every data set D and every data record t ∈ D, at least one
of the following conditions hold:

– There are at least k data records in D that ε-blend with t.
– M(D) ≈ε M(D \ {t})

The first condition in crowd-blending privacy is roughly saying that t is not a
(k−1)-outlier, except that in the definition of (k−1)-outlier, the weaker notion of
ε-blending is used instead of 0-blend. In the second condition, when t is removed
from D, the output distribution of M changes by at most ε, but in (k, ε)-simple
outlier privacy, the output distribution of M is only allowed to change by at
most ε/k (for reasons we have explained above). We now formally show that
simple outlier privacy implies crowd-blending privacy.

Proposition 3. If an algorithm M is (k, ε)-simple outlier private, then it is
(k + 1, ε/k)-crowd-blending private.

Proof. Suppose an algorithm M is (k, ε)-simple outlier private. We will show
that M is also (k + 1, ε/k)-crowd-blending private. Let D be any data set, let
t ∈ D, and let A be the multiset of all data records t′ in D such that t′ ≡M t.
If A is of size at least k + 1, then the first property in (k + 1, ε)-crowd-blending
privacy holds. Otherwise, t is a k-outlier in D, so by the definition of (k, ε)-simple
outlier privacy, we have M(D) ≈ε/k M(D \ {t}), which is the second property
in (k + 1, ε/k)-crowd-blending privacy. (#

2.2 Simultaneously Achieving Simple Outlier Privacy
and Differential Privacy

Although (k, ε)-simple outlier privacy protects the privacy of k-outliers, there is
no privacy guarantee for the other individuals. Thus, we now consider a stronger
notion of outlier privacy that provides ε/k-differential privacy for k-outliers and
ε-differential privacy for everyone else. In other words, the stronger notion of
outlier privacy provides both (k, ε)-simple outlier privacy and ε-differential pri-
vacy. We call this notion of outlier privacy simple outlier differential privacy. We
first generalize (k, ε)-simple outlier privacy to (k, ε, δ)-simple outlier privacy so
that we can define (k, ε, δ)-simple outlier differential privacy.

Definition 8 ((k, ε, δ)-Simple Outlier Privacy). Let k, ε > 0. An algorithm
M is said to be (k, ε, δ)-simple outlier private if for every data set D and every
k-outlier t in D, we have M(D) ≈ε/k,δ M(D \ {t}).

We now define (k, ε, δ)-simple outlier differential privacy.

Definition 9 ((k, ε, δ)-Simple Outlier Differential Privacy). Let k, ε > 0.
An algorithm M is said to be (k, ε, δ)-simple outlier differentially private if M
is (k, ε, δ)-simple outlier private and (ε, δ)-differentially private.

290 E. Lui and R. Pass

We will write (k, ε)-simple outlier differentially private to mean (k, ε, δ)-simple
outlier differentially private with δ = 0. In the definition of (k, ε, δ)-simple outlier
differential privacy, the same parameters ε and δ are used for both the simple
outlier privacy requirement and the differential privacy requirement; however,
one can easily consider a more general definition where separate parameters
are used for the two requirements. (k, ε)-simple outlier differential privacy is
equivalent to ε(·)-outlier privacy with the function ε(·) defined by ε(k′) = ε/k
if k′ ≤ k, and ε(k′) = ε otherwise. We now describe an algorithm for releasing
histograms that achieves simple outlier differential privacy.

Example 4 (Simple Outlier Differentially Private Histogram with Suppression of
Small Counts). Let k, α, ε > 0. Let M be an algorithm that, on input a data
set D, computes a histogram from D, and then adds Lap(1/ε) noise to each bin
count independently. Then, for every new (noisy) bin count that is ≤ k + α/ε,
M “suppresses” the bin count to 0. M then outputs the modified histogram.

Theorem 3. The above algorithm M is (k, ε, e−α/2)-simple outlier differen-
tially private.

Proof. We first show that M is ε-differentially private. We note that M first
computes a noisy histogram using the standard ε-differentially private algorithm
for releasing a noisy histogram. After that, M does not look at the input data
set anymore, so the output of M is simply a post-processing of the output of an
ε-differentially private algorithm. Thus, M itself is ε-differentially private.

We now show that M is (k, 0, e−α/2)-simple outlier private. Let D be any
data set, and let t be any k-outlier in D. We need to show that M(D) ≈0,e−α/2

M(D \ {t}). It suffices to show that regardless of whether the data set is D or
D\{t}, we have that with probability at least 1−e−α/2, M will suppress t’s bin
count to 0. This event occurs precisely when the new (noisy) count for t’s bin is
≤ k + α/ε. Since t is a k-outlier, there are at most k records in t’s bin (before
any noise is added), so the probability of this event is at least the probability
that Lap(1/ε) ≤ α/ε. One can easily verify that this latter event occurs with
probability at least 1− e−α/2, as required. (#

In the above example, instead of suppressing the noisy bin count to 0, the
algorithm M can add Lap(k/ε) noise to the noisy bin count. Let us now describe
such an algorithm more formally.

Example 5 (Simple Outlier Differentially Private Histogram with Noise Added
to Small Counts). Let k, α, ε > 0. Let M be an algorithm that, on input a data
set D, computes a histogram from D, and then adds Lap(1/ε) noise to each bin
count independently. Then, for every new (noisy) bin count that is ≤ k + α/ε,
M adds Lap(k/ε) noise to the noisy bin count. M then outputs the modified
histogram.

Theorem 4. The above algorithm M is (k, ε, e−α)-simple outlier differentially
private.

Outlier Privacy 291

Proof. We first show that M is ε-differentially private. We note that M first
computes a noisy histogram using the standard ε-differentially private algorithm
for releasing a noisy histogram. After that, M does not look at the input data
set anymore, so the output of M is simply a post-processing of the output of an
ε-differentially private algorithm. Thus, M itself is ε-differentially private.

We now show that M is (k, ε, e−α)-simple outlier private. Let D be any data
set, and let t be any k-outlier in D. We need to show that M(D) ≈ε/k,e−α

M(D \ {t}). We first show that regardless of whether the data set is D or
D \ {t}, we have that with probability at least 1− e−α/2, the first noisy count
for t’s bin is ≤ k + α/ε (this is the condition that determines whether Lap(k/ε)
noise will be further added to the noisy bin count). Since t is a k-outlier, there
are at most k records in t’s bin (before any noise is added), so the probability of
this event is at least the probability that Lap(1/ε) ≤ α/ε. One can easily verify
that this latter event occurs with probability at least 1− e−α/2, as required.

Now, let M′ be the same as M except that for t’s bin, instead of checking
the condition that the first noisy count for t’s bin is ≤ k + α/ε, M′ simply
pretends that the condition is true. Then, we have M(D) ≈0,e−α/2 M′(D) and
M(D\{t}) ≈0,e−α/2 M′(D\{t}). Thus, to show thatM(D) ≈ε/k,e−α M(D\{t}),
it suffices to show that M′(D) ≈ε/k M′(D \ {t}). Since M′ adds Lap(k/ε) noise
to t’s bin count, it is easy to show using standard calculations that M′(D) ≈ε/k

M′(D \ {t}), as required. (#

Revisiting the “Salaries of a Company’s Employees” Example. The
above simple outlier differentially private histogram algorithms can be used to
protect the privacy of the managers and the other employees in the example
described in the introduction. As mentioned previously, one can also protect the
privacy of the managers by using a group differentially private algorithm for
releasing a histogram. For comparison, let us now describe the standard group
differentially private algorithm for releasing a histogram.

Example 6 (The Standard Group Differentially Private Histogram). Let k, ε > 0.
Let M be an algorithm that, on input a data set D, computes a histogram from
D, and then adds Lap(k/ε) noise to each bin count independently. M then
outputs the modified histogram.

It is known that the algorithm M is (k, ε)-group differentially private (e.g.,
see [7]).

As we can see, the standard group differentially private histogram algorithm
adds Lap(k/ε) noise to all the bins, including the bins with many individuals
in them. Our simple outlier differentially private algorithms suppress or add
≈ Lap(k/ε) noise (depending on which variant we are using) to only the bins
that contain outliers, and for the other bins, our algorithms only add Lap(1/ε)
noise, which is substantially less than Lap(k/ε) noise. Thus, in the “Salaries of
a Company’s Employees” example, our algorithms have much better accuracy.

292 E. Lui and R. Pass

2.3 Staircase Outlier Privacy

In simple outlier differential privacy, there are only two separate levels of privacy
protection: ε/k-differential privacy for k-outliers, and ε-differential privacy for
everyone else. We can generalize this notion of outlier privacy to have more than
two levels of privacy protection. We call this generalized notion staircase outlier
privacy. In staircase outlier privacy, there are � thresholds k1 > . . . > k�, and
�+ 1 privacy parameters ε0 > . . . > ε�, and we require that for every 1 ≤ i ≤ �,
every ki-outlier is protected by (εi, δ)-differential privacy; also, it is required that
all the individuals are protected by (ε0, δ)-differential privacy by default.

Definition 10 (Staircase Outlier Privacy). Let � > 0, let k1 > . . . > k� > 0,
let ∞ ≥ ε0 > ε1 > . . . > ε� ≥ 0, and let δ ≥ 0. An algorithm M is said to be
((k1, . . . , k�), (ε0, . . . , ε�), δ)-staircase outlier private if M is (ε0, δ)-differentially
private, and for every data set D, every 1 ≤ i ≤ �, and every ki-outlier t in D,
we have M(D) ≈εi,δ M(D \ {t}).

We will write ((k1, . . . , k�), (ε0, . . . , ε�))-staircase outlier private to mean
((k1, . . . , k�), (ε0, . . . , ε�), δ)-staircase outlier private with δ = 0. In the above
definition, a single δ parameter is used, but one can easily generalize the above
definition to allow for � + 1 different levels of δ: δ0 > δ1 > . . . > δ�. Staircase
outlier privacy generalizes simple outlier privacy and simple outlier differen-
tial privacy: (k, ε)-simple outlier privacy is equivalent to (k, (∞, ε/k))-staircase
outlier privacy, and (k, ε, δ)-simple outlier differential privacy is equivalent to
(k, (ε, ε/k), δ)-staircase outlier privacy. ((k1, . . . , k�), (ε0, . . . , ε�), δ)-staircase out-
lier privacy is equivalent to (ε(·), δ)-outlier privacy with a “staircase” ε(·) : N →
R≥0∪{∞} function, where ε(k) = ε0 if k > k1, ε(k) = ε1 if k2 < k ≤ k1, ε(k) = ε2
if k3 < k ≤ k2, and so forth. More formally, ε(·) is defined by ε(k) = εj , where j
is the smallest integer such that k ≤ kj , and j = 0 if no such integer exists.

For convenience and simplicity, we will define x/0 = ∞ and x/∞ = 0 for any
real x > 0. Also, “adding Lap(∞) noise” to some value means suppressing (i.e.,
changing) the value to 0, and “adding Lap(0) noise” to some value means adding
no noise at all to the value, i.e., the value is left unmodified. Let us now describe
a histogram algorithm that achieves staircase outlier privacy. Roughly speaking,
the algorithm first adds noise to each bin to achieve ε0-differential privacy; then,
the algorithm goes through each of the “levels of the staircase” starting from the
top, and if a bin currently has a noisy count that is at most the threshold for
that level, the algorithm adds sufficient noise to the bin to achieve εi-differential
privacy. The algorithm then outputs the resulting noisy histogram.

Example 7 (Staircase Outlier Private Algorithm for Releasing a Histogram). Let
� > 0, let k1 > . . . > k� > 0, and let ∞ ≥ ε0 > ε1 > . . . > ε� ≥ 0. Let α > 0,
and let M be an algorithm that, on input a data set D, computes a histogram
from D, and then adds Lap(1/ε0) noise to each bin count independently. Then,
for i = 1, . . . , �, M does the following: For every current noisy bin count that is
≤ ki + (α/ε0 + · · ·+ α/εi−1), M adds Lap(1/εi) noise to the current noisy bin
count. M then outputs the modified histogram.

Outlier Privacy 293

Theorem 5. The above algorithmM is ((k1, . . . , k�), (ε0, . . . , ε�), �e
−α)-staircase

outlier private.

Proof. We first show that M is ε0-differentially private. We note that M first
computes a noisy histogram using the standard ε0-differentially private algorithm
for releasing a noisy histogram. After that, M does not look at the input data
set anymore, so the output of M is simply a post-processing of the output of an
ε0-differentially private algorithm. Thus, M itself is ε0-differentially private.

We now show that for every data set D, every 1 ≤ i ≤ �, and every ki-outlier
t in D, we have M(D) ≈εi,�e−α M(D\{t}). Let D be any data set, let 1 ≤ i ≤ �,
and let t be any ki-outlier inD. We need to show thatM(D) ≈εi,�e−α M(D\{t}).
We first show that regardless of whether the data set is D or D \ {t}, we have
that with probability at least 1 − �e−α/2, it holds that at every iteration i′ ≤ i
in the algorithm M, the condition that the current noisy count for t’s bin is
≤ ki′+(α/ε0+· · ·+α/εi′−1) is true. We note that this holds if for i′ = 0, . . . , i−1,
the noise Lap(1/εi′) added by M is ≤ α/εi′ (note that the original true count
of t’s bin is ≤ ki′ , since t is a ki-outlier and ki ≤ ki′). One can easily verify that
each of these latter events occurs with probability at least 1− e−α/2. Thus, by
the union bound, with probability at least 1 − �e−α/2, it holds that at every
iteration i′ ≤ i in the algorithm M, the condition that the noisy count for t’s
bin is ≤ ki′ + (α/ε0 + · · ·+ α/εi′−1) is true.

Let M′ be the same as M except that for every iteration i′ ≤ i, instead
of checking the condition that the current noisy bin count for t’s bin is ≤
ki′ +(α/ε0+ · · ·+α/εi′−1), M′ simply pretends that the condition is true. Then,
we have M(D) ≈0,�e−α/2 M′(D) and M(D \ {t}) ≈0,�e−α/2 M′(D \ {t}). Thus,
to show that M(D) ≈εi,�e−α M(D \ {t}), it suffices to show that M′(D) ≈εi

M′(D \ {t}). Since M′ adds Lap(1/εi) noise to t’s bin during iteration i, and
since all the computation afterwards can be viewed as post-processing, it is
easy to show using standard calculations that M′(D) ≈εi M′(D \ {t}), as
required. (#

In the above example, the algorithm M can be modified to output bits for
each bin b indicating at which iterations i noise was added to bin b. The privacy
guarantee (Theorem 5) and its proof would still be exactly the same, but by
outputting such information, a data analyst would know exactly what noise
distributions were added to the true count of each bin.

Analyzing the Accuracy/Utility of the Above Algorithm M. Let us
now investigate the utility/accuracy of the above algorithm M. We note that
M processes each bin separately and independently, so we can simply analyze
the accuracy of a single bin b. Suppose the count of a bin b is exactly k. Let j
be the smallest integer such that k ≤ kj , and j = 0 if no such integer exists.
From the proof of Theorem 5, it is not hard to see that with probability at least
1 − �e−α, it holds that at every iteration i = 1, . . . , j, the algorithm M adds
Lap(1/εi) noise to bin b. This means that with probability at least 1− �e−α, M
will add at least

∑j
i=0 Lap(1/εi) noise to bin b.

294 E. Lui and R. Pass

Let us now try to derive a probabilistic upper bound on the noise added to
bin b. Let us investigate whether noise will be added to bin b on a particular
iteration i′. We note that for iteration i = 1, . . . , i′− 1, M adds either Lap(1/εi)
noise or no noise to bin b, and with probability at least 1−e−α, this noise will not
decrease the current noisy count by more than α/εi. Thus, by the union bound,
with probability at least 1− �e−α, the noisy count at iteration i′ will be at least
k− (α/ε0+ · · ·+α/εi′−1), and if this number is > ki′ +(α/ε0+ · · ·+α/εi′−1), M
will not add any noise to bin b at iteration i′. Let I be the set of i′ ∈ {1, . . . , �}
such that this inequality does not hold, i.e., k − (α/ε0 + · · · + α/εi′−1) ≤ ki′ +
(α/ε0 + · · ·+ α/εi′−1), which is equivalent to k ≤ ki′ + 2(α/ε0 + · · ·+ α/εi′−1).
Then, with probability at least 1− �e−α, the noise distributions added to bin b
is a subset of {i ∈ I : Lap(1/εi)} ∪ {Lap(1/ε0)} (recall that Lap(1/ε0) noise is
added to bin b at the beginning by default).

Suppose j < �. If the ki’s are “well-spaced” and the εi’s are not “too small”,
then we can show that with probability at least 1− �e−α, M will add at most∑j+1

i=0 Lap(1/εi) noise to bin b. More formally, suppose that for every 1 ≤ i ≤
� − 1, we have ki > ki+1 + 2(α/ε0 + · · · + α/εi). Then, by the definition of j
above, we have k > ki for i = j +1, . . . , �, so k > ki+1 +2(α/ε0 + · · ·+ α/εi) for
i = j + 1, . . . , � − 1, which is equivalent to k > ki + 2(α/ε0 + · · · + α/εi−1) for
i = j + 2, . . . , �. This means that for every j + 2 ≤ i ≤ �, we have i /∈ I, so with
probability at least 1− �e−α, M will add at most

∑j+1
i=0 Lap(1/εi) noise to bin b,

as required. We note that
∑j+1

i=0 Lap(1/εi) noise can be substantially lower than
the Lap(1/ε�) noise added by the standard ε�-differentially private algorithm for
releasing a histogram.

2.4 Examples of Outlier Private Histogram Algorithms for General
ε(·), δ(·)

In this section, we provide some examples of outlier private histogram algorithms
for general ε(·) and δ(·) functions. Let us first provide some intuition for how the
outlier private histogram algorithms work. The standard ε-differentially private
algorithm for releasing a histogram simply adds Lap(1/ε) noise to each bin count
independently. By adding Lap(1/ε) noise to each bin, when a data record t
is removed from the data set, the output distribution over noisy histograms
only changes by at most ε (w.r.t. the metric used in differential privacy). To
achieve ε(·)-outlier privacy, the output distribution over noisy histograms can
only change by at most ε(k), where k is the count of t’s bin (t is the data record
that is removed). Thus, one may try adding Lap(1/ε(k)) noise to each bin, where
k is the count of the bin. However, this does not work, since the amount of noise
added depends on the count k in a way that is too sensitive. In particular, when
we remove t from the data set and the count of t’s bin decreases from k to k− 1,
the magnitude of the noise changes from 1/ε(k) to 1/ε(k−1), which changes the
output distribution over noisy histograms by more than ε(k).

Outlier Privacy 295

One way to fix this problem is to add noise to the ε(·) function, so that the
1/ε(k) and the 1/ε(k− 1) become noisy and would be “ε′-close” for some ε′ > 0.
To allow for a variety of solutions, we will consider using any algorithm A that
approximates ε(·) in a “differentially private” way—that is, A(k) ≈ A(k − 1)
for every k > 0. Then, we will add ≈ Lap(1/A(kb)) noise to each bin b, where
kb is the count for bin b. This works as long as the noise magnitude 1/A(kb) is
large enough; the noise magnitude 1/ε(kb) is large enough, but since A(kb) only
approximates ε(kb), A(kb) might be too large. Thus, we will also require that
A(k) is at most ε(k) with very high probability. Below, instead of adding Laplace
noise to each bin, we consider a general algorithm B that outputs a noisy count,
and satisfies B(k, ε′) ≈ε′ B(k − 1, ε′) for every k > 0 and ε′ ≥ 0, which is the
property we need; adding Laplace noise satisfies this property. For generality,
we also add a δ(·) parameter and consider (ε(·), δ(·))-outlier privacy. Let us now
describe the required properties for A.

Definition 11 (Differentially Private Lower Bound for (ε(·), δ(·))). Let
ε(·), δ(·) : N → R≥0 ∪ {∞} be functions. An algorithm A is said to be an
(εA, δA, δ′A)-differentially private lower bound for (ε(·), δ(·)) if A takes an in-
teger k ≥ 0 as input and satisfies the following properties:

– A(k) ≈εA,δA A(k − 1) for every integer k > 0.
– For every k ∈ N, with probability at least 1−δ′A, A(k) outputs an (εtotal, δtotal)

satisfying εA ≤ εtotal ≤ ε(k) and δA + δ′A ≤ δtotal ≤ δ(k).

We now describe our outlier private histogram algorithm for general ε(·) and
δ(·) functions.

Example 8 (Outlier Private Histogram Algorithm for General ε(·), δ(·)). Let
ε(·), δ(·) : N → R≥0 ∪ {∞} be monotone functions. Let A be any (εA, δA, δ′A)-
differentially private lower bound for (ε(·), δ(·)), and suppose that ε(·) and
δ(·) are bounded from below by εA and δA + δ′A respectively, i.e., ε(k) ≥ εA
and δ(k) ≥ δA + δ′A for every k ∈ N. Let B be any algorithm that satisfies
B(k, ε′, δ′) ≈ε′,δ′ B(k − 1, ε′, δ′) for every integer k > 0, every ε′, δ′ ≥ 0.

Let M be an algorithm that, on input a data set D, computes a histogram
from D, and then does the following for each bin b independently: Let kb be the
count for bin b. M runs A(kb) to get its output (εtotal, δtotal), and then runs
B(kb, εtotal − εA, δtotal − δA − δ′A) and uses its output to replace the count kb for
bin b. After going through all the bins, M outputs the modified histogram (and
the output (εtotal, δtotal) of A(kb) for each bin b, if this is desired).

Theorem 6 (Outlier Private Histogram Algorithm for General ε(·),
δ(·)). The above algorithm M is (ε(·), δ(·))-outlier private.

Proof. Let D be any data set, let k > 0, and let t be any k-outlier in D. We
need to show that M(D) ≈ε(k),δ(k) M(D \ {t}). We note that t is equivalent to
(w.r.t. M) with precisely those records that belong to the same bin as t, so k is
an upper bound on the count for t’s bin. Since ε(·) and δ(·) are monotone, we
can assume without loss of generality that k is equal to the count for t’s bin.

296 E. Lui and R. Pass

Now, consider removing t from the data set D; the count for t’s bin decreases
by 1, but the counts of the other bins remain the same. Since M processes each
bin separately and independently, it suffices to show that

B(k, εtotal,k − εA, δtotal,k − δA − δ′A) ≈ε(k),δ(k) B(k − 1, εtotal,k−1 − εA, δtotal,k−1 − δA − δ′A),

(1)

where (εtotal,k, δtotal,k) ∼ A(k) and (εtotal,k−1, δtotal,k−1) ∼ A(k − 1). By defini-
tion of A, we have A(k) ≈εA,δA A(k − 1), so (εtotal,k, δtotal,k) ≈εA,δA (εtotal,k−1,
δtotal,k−1), so

B(k, εtotal,k − εA, δtotal,k − δA − δ′A) ≈εA,δA B(k, εtotal,k−1 − εA, δtotal,k−1 − δA − δ′A).
(2)

By definition of B, we have B(k, ε′, δ′) ≈ε′,δ′ B(k − 1, ε′, δ′) for every ε′, δ′ ≥
0, and by definition of A, with probability at least 1 − δ′A, A(k − 1) outputs
an (εtotal,k−1, δtotal,k−1) satisfying εA ≤ εtotal,k−1 ≤ ε(k − 1) and δA + δ′A ≤
δtotal,k−1 ≤ δ(k − 1), so

B(k, εtotal,k−1 − εA, δtotal,k−1 − δA − δ′A)

≈ε(k−1)−εA,δ(k−1)−δA B(k − 1, εtotal,k−1 − εA, δtotal,k−1 − δA − δ′A). (3)

Now, combining (2) and (3) and noting that ε(k− 1) ≤ ε(k) and δ(k− 1) ≤ δ(k)
(since ε(·) and δ(·) are monotone), we get (1), as required. (#

A typical choice for the algorithm B in the above example is the algorithm
that adds Laplace noise: The algorithm B, on input k ≥ 0 and ε′, δ′ ≥ 0, adds
Lap(1/ε′) noise to k and then outputs the modified (noisy) k. Let us now give
some examples of the algorithm A:

– Adding noise to k and then computing ε(·) on the noisy k: Let εA, α > 0,
and suppose that ε(·) and δ(·) are bounded from below by εA and e−α/2,
respectively. Let A be an algorithm that, on input k ≥ 0, samples λ ∼
Lap(1/εA), lets k

′ = max{�k+λ−α/εA
, 0}, and then outputs (ε(k′), e−α/2).
Then, A is an (εA, 0, e−α/2)-differentially private lower bound for (ε(·), δ(·)).

– Adding noise to ε(k) calibrated to global sensitivity of ε(·): Let εA, α > 0,
and suppose that ε(·) and δ(·) are bounded from below by εA and e−α/2,
respectively. Let Δ(ε) = supk′∈Z>0

|ε(k′)−ε(k′−1)|, and suppose that Δ(ε) <
∞. Let A be an algorithm that, on input k ≥ 0, samples λ ∼ Lap(Δ(ε)/εA),
and then outputs (max {ε(k) + λ− αΔ(ε)/εA, εA} , e−α/2). Then, A is an
(εA, 0, e−α/2)-differentially private lower bound for (ε(·), δ(·)).

– Adding noise to ε(k) calibrated to smooth sensitivity of ε(·): Let εA, α > 0,
and suppose that ε(·) and δ(·) are bounded from below by εA and δA+e−α/2,
respectively. Let δA ∈ (0, 1), and let 0 ≤ β ≤ εA

2 ln(2/δA) . Let S∗
ε,β(k) =

supk′∈Z>0
(|ε(k)− ε(k′)| · e−β|k−k′|), and suppose that S∗

ε,β(k) < ∞ for every
k. Let A be an algorithm that, on input k ≥ 0, samples λ ∼ Lap(2S∗(k)/εA),
and then outputs (max{ε(k)+λ−2αS∗

ε,β(k)/εA, εA}, δA+e−α/2). Then, A is

an (εA, δA, e−α/2)-differentially private lower bound for (ε(·), δ(·)) (see [14]).

Outlier Privacy 297

– Adding noise to the “noise magnitude function” 1/ε(·), calibrated to global
sensitivity of 1/ε(·): Let εA, α > 0, and suppose that ε(·) and δ(·) are bounded
from below by εA and e−α/2, respectively. Let Δ(1/ε) = supk′∈Z>0

|1/ε(k′)−
1/ε(k′ − 1)|, and suppose that Δ(1/ε) < ∞. Let A be an algorithm
that, on input k ≥ 0, samples λ ∼ Lap(Δ(1/ε)/εA), and then outputs(
max

{
1

max{1/ε(k)+λ−αΔ(1/ε)/εA,0} , εA
}
, e−α/2

)
. Then, A is an (εA, 0,

e−α/2)-differentially private lower bound for (ε(·), δ(·)).
– Adding noise to the “noise magnitude function” 1/ε(·), calibrated to smooth

sensitivity of 1/ε(·): Let εA, α > 0, and suppose that ε(·) and δ(·) are
bounded from below by εA and δA + e−α/2, respectively. Let δA ∈ (0, 1),
and let 0 ≤ β ≤ εA

2 ln(2/δA) . Let S∗
1/ε,β(k) = supk′∈Z>0

(|1/ε(k) − 1/ε(k′)| ·
e−β|k−k′|), and suppose that S∗

1/ε,β(k) < ∞ for every k. Let A be an al-

gorithm that, on input k ≥ 0, samples λ ∼ Lap(2S∗(k)/εA), and then

outputs
(
max

{
1

max{1/ε(k)+λ−2αS∗(k)/εA,0} , εA
}
, δA + e−α/2

)
. Then, A is an

(εA, δA, e−α/2)-differentially private lower bound for (ε(·), δ(·)) (see [14]).

In the above example, the algorithm M can also release the output
(εtotal, δtotal) of A(kb) for each bin b. By releasing this extra information, a
data analyst would know exactly what noise distribution was added to the true
count of each bin.

Analyzing the Accuracy/Utility of the Above Algorithm M. Let us
now investigate the utility/accuracy of the above algorithm M. We note that
M processes each bin separately and independently, so we can simply analyze the
accuracy of a single bin b. Suppose the count of a bin b is exactly k. For simplicity,
we will assume that B is the algorithm described above that adds Laplace noise.
Let us now consider the various algorithms for A described above. All of the
algorithms involve adding Laplace noise to some value that is used in determining
the εtotal outputted by A. By using the cdf of the Laplace distribution, one can
obtain a probabilistic upper bound on the amount of noise added, which gives a
probabilistic lower bound on εtotal. Since the algorithm B adds Lap(1

εtotal−εA
) to

bin b, we can obtain a probabilistic upper bound on the amount of noise added
to bin b. If we apply this analysis to each of the above algorithms for A, we get
the following results:

– Adding noise to k and then computing ε(·) on the noisy k: With probability
at least 1 − e−α, the amount of noise added to bin b is at most Lap(1/ε′),
where ε′ = ε(max{�k − 2α/εA
, 0})− εA.

– Adding noise to ε(k) calibrated to global sensitivity of ε(·): With probability
at least 1 − e−α, the amount of noise added to bin b is at most Lap(1/ε′),
where ε′ = max {ε(k)− 2αΔ(ε)/εA − εA, 0}.

– Adding noise to ε(k) calibrated to smooth sensitivity of ε(·): With probability
at least 1 − e−α, the amount of noise added to bin b is at most Lap(1/ε′),
where ε′ = max{ε(k)− 4αS∗

ε,β(k)/εA − εA, 0}.

298 E. Lui and R. Pass

– Adding noise to the “noise magnitude function” 1/ε(·), calibrated to
global sensitivity of 1/ε(·): With probability at least 1 − e−α, the
amount of noise added to bin b is at most Lap(1/ε′), where ε′ =

max
{

1
max{1/ε(k)−2αΔ(1/ε)/εA,0} − εA, 0

}
.

– Adding noise to the “noise magnitude function” 1/ε(·), calibrated to
smooth sensitivity of 1/ε(·): With probability at least 1 − e−α, the
amount of noise added to bin b is at most Lap(1/ε′), where ε′ =

max
{

1
max{1/ε(k)−4αS∗

ε,β(k)/εA,0} − εA, 0
}
.

We note that the amount of noise added in the above algorithms can be
substantially lower than the Lap(1/ε(1)) noise added by the standard ε(1)-
differentially private algorithm for releasing a histogram.

2.5 Comparing the Staircase Algorithm and the Algorithms
for General ε(·), δ(·)

Suppose we want to release a histogram while satisfying (ε(·), δ)-outlier privacy
for some monotone function ε(·) and some small δ > 0. If ε(·) only takes on a
small number of possible values, then ε(·) is a “staircase” (i.e., piecewise con-
stant) function, so we may want to use the staircase outlier private algorithm for
releasing a histogram. If ε(·) takes on infinitely many possible values, then the
staircase algorithm cannot even be used. If ε(·) takes on a large but finite number
of possible values, the staircase algorithm can still be used, but the amount of
noise added to each bin may be too large. This is because the staircase algorithm
goes through all the “levels of the staircase” starting from the top, each time
adding noise if the current noisy count is less than the top boundary of the level.
For bins with a low true count, a lot of noise is added.

For ε(·) functions that take on infinitely many or a large number of possible
values, one would want to use our outlier private algorithm for a general ε(·). For
example, consider the function ε(k) = kε0 for some small constant ε0 > 0. Such a
function has global sensitivity Δ(ε(·)) := supk′∈Z>0

|ε(k′)− ε(k′−1)| = ε0, which
is small. Thus, we can use our general outlier private histogram algorithm and
choose A to be the algorithm described above that adds noise to ε(k) calibrated
to the global sensitivity of ε(·). If ε(·) has high global sensitivity but low “local
sensitivity” for most input values, then one can choose A to be the algorithm
described above that adds noise to ε(k) calibrated to the smooth sensitivity
(see [14]) of ε(·). Recall that we allow ε(·) to take on the value ∞ (usually
for sufficiently high inputs k), meaning that there is no privacy requirement. If
ε(·) does take on the value ∞, then both the global sensitivity and the smooth
sensitivity of ε(·) would be ∞, which is not allowed. In such cases, we may want
to choose A to be one of the algorithms described above that add noise to the
“noise magnitude function” 1/ε(·) instead of ε(·). (Recall that we define 1/∞ to
be equal to 0.) Alternatively, we can choose A to be the algorithm that adds
noise to k and then computes ε(·) on the noisy k.

Outlier Privacy 299

We note that for our outlier private algorithm for general ε(·), the function
ε(·) needs to be bounded from below by some constant εA > 0. This is because
running the algorithm A results in “εA-privacy loss”. Our staircase algorithm
does not have this restriction; the staircase algorithm works even if the lowest
level has an ε requirement of 0, in which case the staircase algorithm suppresses
counts in the lowest level to 0 with very high probability.

3 Simultaneously Achieving Simple Outlier Privacy
and Distributional Differential Privacy

In this section, we show that simple outlier privacy implies a certain notion of
distributional differential privacy, very similar to the one in [1]. Let us first state
the definition of distributional differential privacy w.r.t. a set of distributions
over data sets. Let Φ be any set of distributions over data sets.

Definition 12 (Distributional Differential Privacy w.r.t. Φ). An algo-
rithm M is said to be (ε, δ)-differentially private w.r.t. Φ if for every distribution
φ ∈ Φ and every t ∈

⋃
Supp(φ), if we let D ∼ φ, then

M(D)|t∈D ≈ε,δ M(D \ {t})|t∈D.

The definition in [1] is slightly weaker than ours, since their definition permits
choosing a simulator that is used instead of M on the right hand side of the
≈ε,δ, but in our definition, the simulator has to be the algorithm M itself. The
set of distributions Φ can represent a set of possible distributions that contains
the supposed “true distribution”, or Φ can represent a set of possible beliefs
an adversary may have about the data set (see [1] for more information). We
will consider a very large and natural class of distributions that even includes
relatively “adversarial” beliefs. Let us now describe our class of distributions.

We begin with some necessary terminology and notation. A population is a col-
lection of individuals each holding a data record. For simplicity and convenience,
we will not distinguish between an individual and the data record the individual
holds; thus, an individual is simply a data record, and a population is simply a
multiset of data records. Given a population P and a function π : P → [0, 1], let
Sam(P , π) be the distribution over data sets obtained by sampling each individ-
ual t in the population P with probability π(t) independently. We note that for
Sam(P , π), two individuals in P with the same data record will have the same
probability of being sampled. However, we can easily modify the data universe
X to include personal/unique identifiers so that we can represent an individual
by a unique data record in X .

Let RS(p, p′, �) be the convex hull of the set of all distributions Sam(P , π),
where P is any population, and π : P → [0, 1] is any function such that
|{t ∈ P : π(t) /∈ [p, p′] ∪ {0}}| ≤ �, i.e., for every individual t in P except
for at most � individuals, π assigns to t some probability in [p, p′] ∪ {0}. Such
distributions Sam(P , π) represent sampling from the population P in a very nat-
ural way, where most/all individuals are sampled with probability in between p

300 E. Lui and R. Pass

and p′ (inclusive) or with probability 0. We allow at most � individuals to be
sampled with probability outside this range, to model the fact that an adversary
may know whether certain individuals were sampled or not. The set RS(p, p′, �)
includes all such natural ways of sampling from a population, and also captures
a large class of possible beliefs an adversary may have about the data set. (In
fact, RS(p, p′, �) is the convex hull of such a large set of distributions.)

Let us now state our theorem that says that simple outlier privacy implies
distributional differential privacy w.r.t. RS(p, p′, �).

Theorem 7. Let M be any (k, ε)-simple outlier private algorithm with k ≥ 2,
let 0 < p ≤ p′ < 1, and let 0 ≤ � < k− 1. Then, for every 0 < εSam ≤ ln 2, M is
also (k, εDP , δDP)-distributional differentially private w.r.t. RS(p, p′, �), where

εDP = max

{
ε

k
, ln

(
p′

p

1− p

1− p′

)
+ εSam

}
and

δDP = max

{
1

p
,

1

1− p′

}
e−Ω((k−�)·(1−p′)2·εSam

2).

Remark 1. In Theorem 7, it suffices for M to be (k, ε, ε′)-simple outlier pri-
vate, which is the same as (k, ε)-simple outlier private except that the no-
tion of equivalence is replaced by the notion of ε′-blends. The proof would
be almost exactly the same, but the εDP parameter we achieve would be

εDP = max
{

ε
k , ln

(
p′
p

1−p
1−p′

)
+ εSam + ε′

}
instead (the δDP parameter remains

the same). The reason we start off with a (k, ε)-simple outlier private algorithm
is that, as motivated in the introduction, we want an algorithm that satisfies
both (k, ε)-simple outlier privacy and some notion of (distributional) differential
privacy.

Before we prove Theorem 7, let us make some remarks. Our result (Theorem
7) is somewhat similar to the result in [9] that states that if one combines a
crowd-blending private algorithm with a natural pre-sampling step, the com-
bined algorithm is zero-knowledge private (which implies differential privacy)
if we view the population as the input data set to the combined algorithm. In
contrast, our result achieves a distributional notion of differential privacy on the
data set as opposed to the population, which is a different model and definition.
For example, one difference is that in distributional differential privacy, the in-
dividual t whose privacy we need to protect is guaranteed to be sampled, but in
the model of [9], the individual t in the population might not even be sampled
at all, in which case t’s privacy is already protected. This leads to differences in
the privacy parameters we can achieve.

Our result also has some similarities to a result in [1], where it is shown that
a histogram algorithm that suppresses small counts achieves a notion of distri-
butional differential privacy (described above), but for a class of distributions
incomparable to the class we consider (the classes are somewhat similar, but
neither is a subset of the other). However, our class of distributions includes
distributions/beliefs based on biased and imperfect sampling in a setting where

Outlier Privacy 301

the adversary may even know whether certain individuals were sampled or not;
the class of distributions considered in [1] does not consider such an adversarial
setting. Also, we consider the class of simple outlier private algorithms, which
includes but is more general than just histogram algorithms that suppress small
counts.

Let us now prove Theorem 7. We begin by stating a lemma about the smooth-
ness of the Poisson binomial distribution2 near its expectation, which has ap-
peared in [9], and will be used later in the proof of Lemma 2.

Lemma 1 (Smoothness of the Poisson binomial distribution near its
expectation). Let P be any population, 0 < p ≤ p′ < 1, π : P → [0, 1] be any
function, and εSam > 0. Let A be any non-empty (multi)subset of P such that

π(a) ∈ [p, p′] for every a ∈ A. Let D̃ = Sam(P , π), m̃ = |D̃ ∩ A|, n = |A|,
and p̄ = 1

n

∑
a∈A π(a). Then, for every integer m ∈ {0, . . . , n− 1}, we have the

following:

– If m + 1 ≤ (n + 1)p̄ · eεSam

p̄eεSam+(1−p̄) , then Pr[m̃ = m] ≤ p′

p
1−p
1−p′ e

εSam Pr[m̃ =

m+ 1].

– If m+ 1 ≥ (n+ 1)p̄ · 1
p̄+(1−p̄)eεSam

, then Pr[m̃ = m] ≥ p
p′

1−p′
1−p e−εSam Pr[m̃ =

m+ 1].

The proof of Lemma 1 can be found in the full version of [9]. We now prove a
lemma that roughly says that if an individual is M-equivalent to many people
in the population, then the individual’s privacy is protected.

Lemma 2. Let M be any algorithm, P be any population, 0 < p ≤ p′ < 1, and
π : P → [0, 1] be any function. Let t ∈ P, and let A ⊆ P\{t} such that A �= ∅ and
for every t′ ∈ A, t′ ≡M t and π(t′) ∈ [p, p′]. Let n = |A| and p̄ = 1

n

∑
t′∈A π(t′).

Then, for every 0 < εSam ≤ ln 2, we have

M(Sam(P \ {t}, π) + {t}) ≈εtotal,δtotal
M(Sam(P \ {t}, π)),

where εtotal = ln
(

p′

p
1−p
1−p′

)
+ εSam and δtotal = max

{
1
p̄ ,

1
1−p̄

}
·

e−Ω((n+1)p̄·(1−p̄)2·εSam
2).

Proof. Let 0 < εSam ≤ ln 2, D̃ = Sam(P \ {t}, π), m̃ = |D̃ ∩ A|, and Y ⊆
Range(M). We first show that for every m ∈ {0, . . . , n− 1}, we have

M(D̃ + {t})|m̃=m = M(D̃)|m̃=m+1. (1)

It is known that there exists a “draw-by-draw” selection procedure for drawing
samples from A (one at a time) such that right after drawing the jth sample, the
samples chosen so far has the same distribution as Sam(A, π)||Sam(A,π)|=j (e.g.,

2 The Poisson binomial distribution is the distribution of the sum of independent
Bernoulli random variables, where the success probabilities in the Bernoulli random
variables are not necessarily the same.

302 E. Lui and R. Pass

see Section 3 in [3]). More formally, there exists a vector of random variables
(X1, . . . , Xn) jointly distributed overAn such that for every j ∈ [n], {X1, . . . , Xj}
has the same distribution as Sam(A, π)||Sam(A,π)|=j. Now, fix m ∈ {0, . . . , n−1}.
Then, we have (D̃+{t})|m̃=m = Sam(P \ (A+{t}), π)+{X1, . . . , Xm}+{t} and

D̃|m̃=m+1 = Sam(P \ (A + {t}), π) + {X1, . . . , Xm} + {Xm+1}. The condition
(1) then follows from the fact that t ≡M t′ for every individual t′ ∈ A, and
Supp(Xm+1) ⊆ A. Thus, we have shown (1).

Let α = eεSam

p̄eεSam+(1−p̄) and β = 1
p̄+(1−p̄)eεSam

. Let εtotal = ln(p
′

p
1−p
1−p′) + εSam,

and let δtotal = max{Pr[m̃+ 1 > (n+ 1)p̄ · α],Pr[m̃ < (n+ 1)p̄ · β]}. By Lemma
1 and (1) (and the fact that m = n does not satisfy m + 1 ≤ (n + 1)p̄ · α), we
have

Pr[M(D̃ � {t}) ∈ Y]

≤
∑

m∈{0,...,n}
m+1≤(n+1)p̄·α

Pr[m̃ = m] · Pr[M(D̃ � {t}) ∈ Y | m̃ = m] + Pr[m̃+ 1 > (n+ 1)p̄ · α]

≤
∑

m∈{0,...,n}
m+1≤(n+1)p̄·α

p′

p

1− p

1− p′
eεSam Pr[m̃ = m+ 1] · Pr[M(D̃) ∈ Y | m̃ = m+ 1] + δtotal

≤ eεtotal Pr[M(D̃) ∈ Y] + δtotal (3)

and

Pr[M(D̃ + {t}) ∈ Y]

≥
∑

m∈{0,...,n−1}
m+1≥(n+1)p̄·β

Pr[m̃ = m] · Pr[M(D̃ + {t}) ∈ Y | m̃ = m]

≥
∑

m∈{0,...,n−1}
m+1≥(n+1)p̄·β

p

p′
1− p′

1− p
e−εSam Pr[m̃ = m+ 1] · Pr[M(D̃) ∈ Y | m̃ = m+ 1]

≥ p

p′
1− p′

1− p
e−εSam · (Pr[M(D̃) ∈ Y]− Pr[m̃ < (n+ 1)p̄ · β])

≥ e−εtotal · Pr[M(D̃) ∈ Y]− δtotal. (4)

Thus, we have M(D̃ + {t}) ≈εtotal,δtotal
M(D̃). Now, we observe that

δtotal

= max {Pr[m̃+ 1 > (n+ 1)p̄ · α],Pr[m̃ < (n+ 1)p̄ · β]}

≤ max

{
1

p̄
Pr[m̃+Bin(1, p̄) > (n+ 1)p̄ · α], 1

1− p̄
Pr[m̃+Bin(1, p̄) < (n+ 1)p̄ · β]

}

≤ max

{
1

p̄
exp

(
−Ω

(
(n+ 1)p̄ · (α− 1)2

))
,
1

1− p̄
exp

(
−Ω

(
(n+ 1)p̄ · (1− β)2

))}

≤ max

{
1

p̄
,
1

1− p̄

}
· exp

(
−Ω

(
(n+ 1)p̄ · (1− p̄)2εSam

2
))

,

Outlier Privacy 303

where Bin(1, p̄) is a binomial random variable with 1 trial and success probabil-
ity p̄, and the second last inequality follows from multiplicative Chernoff bounds
(and the fact that α ≤ 2, since εSam ≤ ln 2). (#

We now prove a lemma that roughly says that even if an individual is M-
equivalent to only a few people in the population, the individual’s privacy is still
protected.

Lemma 3. Let M be any (k, ε)-simple outlier private algorithm with k ≥ 2, let
P be any population, and let π : P → [0, 1] be any function. Let t ∈ P, and let
A ⊆ P \ {t} such that t′ ≡M t for every t′ ∈ A. Let n = |A|, s = |{t′ ∈ P \ {t} :
t′ ≡M t and t′ /∈ A}|, and p̄ = 1

n

∑
t′∈A π(t′). Then, if s < k − 1, p̄ > 0, and

np̄ ≤ k−s−1
2 , then we have

M(Sam(P \ {t}, π) + {t}) ≈ε/k,δtotal
M(Sam(P \ {t}, π)),

where δtotal = e−Ω(k−s).

Proof. Suppose s < k− 1, p̄ > 0, and np̄ ≤ k−s−1
2 . Let D̃ = Sam(P \{t}, π) and

m̃ = |D̃ ∩ A|. We note that if m̃ < k − s − 1, then t is M-equivalent to fewer

than k people in D̃ + {t}, and since M is (k, ε)-simple outlier private, we have

M(D̃ + {t})|m̃<k−s−1 ≈ε M(D̃)|m̃<k−s−1

Let δ′ = Pr[m̃ ≥ k − s− 1]. Then, we have

M(D̃ + {t}) ≈ε,δ′ M(D̃). (1)

Let τ = k−s−1
2p̄ . Then, we have n ≤ τ . The lemma now follows from (1) and the

inequality

δ′ = Pr[m̃ ≥ 2τ p̄]

≤ Pr[m̃+Bin(�τ
 − n, p̄) +Bin(1, (τ − �τ
)p̄) ≥ 2τ p̄]

≤ e−Ω(τ p̄)

≤ e−Ω(k−s),

where Bin(j, q) denotes a binomial random variable with j trials and success
probability q, and the second inequality follows from a multiplicative Chernoff
bound (note that the expectation of m̃ + B(�τ
 − n, p̄) + B(1, (τ − �τ
)p̄) is
τ p̄). (#

We will now use the above lemmas to prove Theorem 7.

Proof (of Theorem 7). Recall that RS(p, p′, �) is the convex hull of a set of distri-
butions, which we denote by Φ′. From the definition of distributional differential
privacy w.r.t. RS(p, p′, �), it is easy to see that it suffices to show differential
privacy w.r.t. Φ′ instead. Let φ = Sam(P , π) ∈ Φ′, where P is the population

304 E. Lui and R. Pass

associated with φ, and π : P → [0, 1] is the sampling probability function associ-
ated with φ. It is easy to see that without loss of generality, we can assume that
π(t′) > 0 for every t′ ∈ P . Let t be any individual in P , and let D ∼ Sam(P , π).
We need to show that

M(D)|t∈D ≈εDP ,δDP M(D \ {t})|t∈D.

We note that M(D)|t∈D = M(Sam(P \ {t}, π) + {t}) and M(D \ {t})|t∈D =
M(Sam(P \ {t}, π)). Thus, it suffices to show

M(Sam(P \ {t}, π) + {t}) ≈εDP ,δDP M(Sam(P \ {t}, π)). (1)

To this end, let A = {t′ ∈ P \ {t} : t′ ≡M t and π(t′) ∈ [p, p′]}, n = |A|,
p̄ = 1

n

∑
t′∈A π(t′), and s = |{t′ ∈ P \ {t} : t′ ≡M t and t′ /∈ A}|. We note that

s ≤ l, which we use later in some of the inequalities below. Let τ = k−s−1
2p̄ . We

will consider two cases: n > τ and n ≤ τ .
Suppose n > τ . By Lemma 2, we have

M(Sam(P \ {t}, π) + {t}) ≈εDP ,δ1 M(Sam(P \ {t}, π)),

where

δ1 = max

{
1

p̄
,

1

1− p̄

}
· e−Ω((n+1)p̄·(1−p̄)2·εSam

2)

≤ max

{
1

p
,

1

1− p′

}
· e−Ω((k−s−1)·(1−p′)2·εSam

2)

≤ δDP .

Now, suppose n ≤ τ . By Lemma 3, we have

M(Sam(P \ {t}, π) + {t}) ≈ε2,δ2 M(Sam(P \ {t}, π)),

where ε2 = ε/k ≤ εDP and δ2 = e−Ω(k−s), so δ2 ≤ δDP .
Thus, we have shown (1), as required. (#

References

1. Bassily, R., Groce, A., Katz, J., Smith, A.: Coupled-worlds privacy: Exploiting
adversarial uncertainty in statistical data privacy. In: FOCS. pp. 439–448 (2013)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
put. Surv. 41(3), 15:1–15:58 (2009)

3. Chen, X.H., Dempster, A.P., Liu, J.S.: Weighted finite population sampling to
maximize entropy. Biometrika 81(3), 457–469 (1994)

4. Dwork, C.: The differential privacy frontier (Extended abstract). In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 496–502. Springer, Heidelberg (2009)

5. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

Outlier Privacy 305

6. Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008)

7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

8. Fleischer, L.K., Lyu, Y.H.: Approximately optimal auctions for selling privacy when
costs are correlated with data. In: Proceedings of the 13th ACM Conference on
Electronic Commerce, EC 2012, pp. 568–585. ACM (2012)

9. Gehrke, J., Hay, M., Lui, E., Pass, R.: Crowd-blending privacy. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 479–496. Springer,
Heidelberg (2012)

10. Gehrke, J., Lui, E., Pass, R.: Towards privacy for social networks: A zero-knowledge
based definition of privacy. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 432–
449. Springer, Heidelberg (2011)

11. Ghosh, A., Roth, A.: Selling privacy at auction. In: Proceedings of the 12th ACM
Conference on Electronic Commerce, EC 2011, pp. 199–208. ACM (2011)

12. Ligett, K., Roth, A.: Take it or leave it: Running a survey when privacy comes
at a cost. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 378–391.
Springer, Heidelberg (2012)

13. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP 2008,
pp. 111–125. IEEE Computer Society (2008)

14. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in
private data analysis. In: STOC 2007, pp. 75–84 (2007)

15. Nissim, K., Vadhan, S., Xiao, D.: Redrawing the boundaries on purchasing data
from privacy-sensitive individuals. In: Proceedings of the 5th Conference on Inno-
vations in Theoretical Computer Science, ITCS 2014, pp. 411–422. ACM (2014)

16. Roth, A., Schoenebeck, G.: Conducting truthful surveys, cheaply. In: Proceedings
of the 13th ACM Conference on Electronic Commerce, EC 2012, pp. 826–843. ACM
(2012)

Function-Private Functional Encryption

in the Private-Key Setting�

Zvika Brakerski1,�� and Gil Segev2,� � �

1 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel

zvika.brakerski@weizmann.ac.il
2 School of Computer Science and Engineering,

Hebrew University of Jerusalem, Jerusalem 91904, Israel
segev@cs.huji.ac.il

Abstract. Functional encryption supports restricted decryption keys
that allow users to learn specific functions of the encrypted messages.
Although the vast majority of research on functional encryption has so
far focused on the privacy of the encrypted messages, in many realistic
scenarios it is crucial to offer privacy also for the functions for which
decryption keys are provided.

Whereas function privacy is inherently limited in the public-key set-
ting, in the private-key setting it has a tremendous potential. Specifically,
one can hope to construct schemes where encryptions of messages
m1, . . . ,mT together with decryption keys corresponding to functions
f1, . . . , fT , reveal essentially no information other than the values
{fi(mj)}i,j∈[T]. Despite its great potential, the known function-private
private-key schemes either support rather limited families of functions
(such as inner products), or offer somewhat weak notions of function
privacy.

We present a generic transformation that yields a function-private
functional encryption scheme, starting with any non-function-private
scheme for a sufficiently rich function class. Our transformation preserves
the message privacy of the underlying scheme, and can be instantiated
using a variety of existing schemes. Plugging in known constructions of
functional encryption schemes, we obtain function-private schemes based
either on the Learning with Errors assumption, on obfuscation assump-
tions, on simple multilinear-maps assumptions, and even on the existence
of any one-way function (offering various trade-offs between security and
efficiency).

� The full version of this paper is available as [12].
�� Supported by the Israel Science Foundation (Grant No. 468/14) and by the Alon
Young Faculty Fellowship.

� � � Supported by the European Union’s Seventh Framework Programme (FP7) via a
Marie Curie Career Integration Grant, by the Israel Science Foundation (Grant
No. 483/13), and by the Israeli Centers of Research Excellence (I-CORE) Program
(Center No. 4/11).

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 306–324, 2015.
c© International Association for Cryptologic Research 2015

Function-Private Functional Encryption in the Private-Key Setting 307

1 Introduction

The most classical cryptographic scenario, dating back thousands of years, con-
sists of two parties who wish to secretly communicate in the presence of an
eavesdropper. This classical scenario has traditionally led the cryptographic com-
munity to view the security provided by encryption schemes as an all-or-nothing
guarantee: The encrypted data can be fully recovered using the decryption key,
but it is completely useless without it. In a wide variety of modern scenarios,
however, a more fine-grained approach is urgently needed. Starting with the
seminal notion of identity-based encryption [29,6,13], this need has recently mo-
tivated the cryptographic community to develop a vision of functional encryption
[27,10,26], allowing tremendous flexibility when accessing encrypted data.

Functional encryption supports restricted decryption keys that allow users to
learn specific functions of the encrypted data and nothing else. More specifically,
in a functional encryption scheme, a trusted authority holds a master secret key
known only to the authority. When the authority is given the description of some
function f as input, it uses its master secret key to generate a functional key
skf associated with the function f . Now, anyone holding the functional key skf
and an encryption of some message m, can compute f(m) but cannot learn any
additional information about the message m. Extensive research has recently
been devoted to studying the security of functional encryption schemes and to
constructing such schemes (see, for example, [27,10,26,21,2,5,11,14,15,19] and
the references therein).

Function Privacy in Functional Encryption. The vast majority of research
on functional encryption to date has focused on the privacy of encrypted mes-
sages. In various scenarios, however, one should consider not only privacy for the
encrypted messages but also privacy for the functions for which functional keys
are provided. Consider, for example, a user who subscribes to an on-line storage
service for storing her files. For protecting her privacy, the user locally encrypts
her files using a functional encryption scheme prior to uploading them to the
service. The user can then remotely query her data by providing the service
with a functional key skf corresponding to any query f . Without any additional
privacy guarantees, the functional key skf may entirely reveal the user’s query
f to the service, which is clearly undesirable whenever the query itself contains
sensitive information.

Scenarios of such flavor have motivated the research of function privacy in
functional encryption, first in the private-key setting by Shen, Shi and Waters
[30], and very recently in the public-key setting by Boneh, Raghunathan and
Segev [8,9] followed by Agrawal et al. [1]. Intuitively, function privacy requires
that functional keys reveal no unnecessary information on their functionality.

The extent to which function privacy can be satisfied differs dramatically
between the settings of private-key and public-key encryption. Specifically, in
the public-key setting, where anyone can encrypt messages, only a limited form
of function privacy can be satisfied. This is because given a functional key skf and
the public key pk of the scheme, a malicious user can learn information about the

308 Z. Brakerski and G. Segev

function f by evaluating it on any point m of his choosing (by first encrypting m
and then using skf to decrypt f(m)). This process reveals non-trivial information
about f and in some cases may entirely leak the function’s description (unless
additional restrictions are imposed, see [8,9,1] for more details). As a result,
function-private functional encryption schemes in the public-key setting are quite
restricted, and furthermore such have only been presented respective to limited
function families (e.g., point functions and inner products).

Our Work: Function Privacy in the Private-Key Setting. In this work,
we focus on function privacy in the private-key setting. In this setting, function
privacy has significantly more potential than in the public-key setting, both as a
stand-alone feature and as a very useful building block (see Section 1.2 for subse-
quent work). Specifically, one can hope to achieve the following notion of privacy
(stated informally): Any user that obtains encryptions of messages m1, . . . ,mT ,
and functional keys corresponding to functions f1, . . . , fT , learns essentially no
information other than the values {fi(mj)}i,j∈[T]. This is a strong notion of
privacy which has great (realistic) potential for a wide variety of applications.

Despite its great potential, the known function-private private-key schemes
either support only the inner-product functionality for attribute-based encryp-
tion [30,1], or offer only somewhat weak notions of function privacy [19,17]. We
refer the reader to Section 1.3 for a detailed discussion of the known function
private schemes. This state of affairs has motivated us to explore the following
fundamental question:

Can we construct private-key functional encryption schemes
that support rich and expressive families of functions
while offering strong notions of function privacy?

1.1 Our Contributions

Our work provides a positive answer to the above fundamental question. We
present private-key functional encryption schemes that support rich and expres-
sive families of functions, while offering strong notions of function privacy.

Specifically, we put forward a generic transformation that yields a function-
private private-key functional encryption scheme based on any (possibly non-
function-private) private-key functional encryption scheme that supports all
functions that are computable by bounded-size circuits. In particular, our trans-
formation can be instantiated by the recently developed functional encryption
scheme of Goldwasser et al. [19] that is based on the LWE assumption, by the
schemes of Garg et al. [15], Boyle et al. [11], Ananth et al. [3], and Waters [31]
that are based on obfuscation assumptions, by the scheme of Garg et al. [16] that
is based on simple assumptions on multilinear maps, and even by the scheme of
Gorbunov et al. [21] which is somewhat less efficient but can be based on any
one-way function (we refer the reader to Section 2.2 for more details). Although
most of these constructions are in fact public-key schemes, they are in particular
private-key ones (i.e., in some sense, these schemes currently seem significantly
more powerful than what is required for our transformation).

Function-Private Functional Encryption in the Private-Key Setting 309

The notions of function privacy that are satisfied by our transformation are the
strongest notions that have been proposed so far (we refer the reader to Section
3 for a detailed discussion of these notions). In addition, the resulting scheme
inherits the message privacy of the underlying scheme (i.e., full vs. selective
security, and one-key vs. many-keys security), and supports all functions that are
computable by circuits whose size is slightly smaller than those supported by the
underlying scheme. Finally, we note that our transformation is in fact oblivious
to the computational model that is supported by the underlying scheme and
to its representation (e.g., circuits vs. Turing machines), as long as the scheme
supports a universal function for the model and a few additional basic operations
(see Section 1.4 below).

1.2 Subsequent Work

Our generic construction and proof techniques have already been proved fruit-
ful by Komargodski et al. [24] and by Ananth et al. [4] beyond the context
of function-private functional encryption as its own primitive. Komargodski et
al. presented a construction of a private-key functional encryption scheme for
randomized functions based on any private-key functional encryption scheme
for deterministic functions that is sufficiently expressive. Their work follows-up
on the work of Goyal et al. [23] who put forward the notion of functional en-
cryption for randomized functionalities, and constructed a public-key functional
encryption scheme for randomized functionalities based on the (seemingly sig-
nificantly stronger) assumption of indistinguishability obfuscation. Ananth et
al. presented a construction of a fully-secure functional encryption scheme from
any selectively-secure functional encryption scheme that is sufficiently expressive
(their transformation applies in both the private-key setting and the public-key
setting). Previous constructions of fully-secure schemes were based on assump-
tions that seem significantly stronger, such as obfuscation and multilinear maps
assumptions [11,3,31,16].

One of the key insights underlying both of these works is that in the private-
key setting, where encryption is performed honestly by the owner of the master
secret key, the power of obfuscation may not be needed. Instead, they observed
that in some cases one can rely on the weaker notion of function privacy. More
specifically, both Komargodski et al. and Ananth et al. showed that any suffi-
ciently expressive functional encryption scheme may be appropriately utilized via
our function-privacy techniques for implementing some of the proof techniques
that were so far implemented based on obfuscation (including, for example, a
variant of the punctured programming approach of Sahai and Waters [28]).

1.3 Additional Related Work

Function Privacy. As mentioned above, Shen, Shi and Waters [30] initiated the
research on predicate privacy in attribute-based encryption in the private-key
setting. They constructed a predicate-private inner-product encryption scheme

310 Z. Brakerski and G. Segev

in the private-key setting. Boneh, Raghunathan and Segev [8,9] initiated the
research on function privacy in the public key setting. They constructed function-
private public-key functional encryption schemes for point functions (equiva-
lently, anonymous IBE) and for subspace membership. Since their work is in
the public-key setting, their framework assumes that the functions come from a
distribution of sufficient entropy, as otherwise it seems that no realistic notion
of function privacy can be satisfied.

Agrawal et al. [1] then presented a general framework for function-private
functional encryption both in the private-key setting and in the public-key set-
ting, and explore their plausibility. Most relevant to our work, they presented the
full security notion for function-private functional encryption in the private-key
setting and presented improved constructions for the inner-product functional-
ity in this model. We note that we refer to their notion of full security as full
function privacy (see Definition 3.2).

Reusable Garbled Circuits. The related notion of reusable garbled circuits
(ruGC) is defined as follows. Given a secret key, two procedures can be car-
ried out: Garbling a circuit C (which corresponds to generating a function key)
and encoding of an input x (which corresponds to an encryption of a message).
Given a garbled C and an encoded input x, it is possible to publicly compute
C(x). The security requirement is that an adversary that chooses C to be gar-
bled and then a sequence of inputs x1, . . . , xt to be encoded cannot learn more
than C(x1), . . . , C(xt). Security is formalized in a simulation-based model: The
simulator is required to simulate the garbled circuit without knowing C, and
then it is fed with C(xi) in turn and is required to simulate the encoded inputs.
Goldwasser et al. [19,20] constructed a simulation-secure functional encryption
scheme (without function privacy) and showed how ruGC follows from that prim-
itive1. The similarity to function-private functional encryption is apparent, but
there are some significant differences. It follows from the result of [2] that ruGC,
much like simulation secure functional encryption, cannot securely support an a-
priori unbounded number of circuits, whereas we are able to guarantee function
privacy for any polynomial (a-priori unknown) number of function keys. A very
similar argument shows that the situation where C is chosen after the inputs xi

is also impossible in the context of ruGC (at least under a natural definition of the
simulation process), whereas we would like the inputs and functions to be adap-
tively introduced in arbitrary order. On the flip side, ruGC provides simulation
based security which seems to be a stronger notion than indistinguishability-
based security achieved by our construction.

Multi-Input Functional Encryption. Goldwasser et al. [17] have recently in-
troduced the notion ofmulti-input functional encryption (MIFE) schemes. As the
name suggests, MIFE allows functional keys to correspond to multi-input func-
tions which can be evaluated on tuples of ciphertexts. Slightly simplified, the dream

1 Additional constructions were presented by Boneh et al. [7] who were able to reduce
the garbling overhead from multiplicative to additive in either the size of the circuit
or the size of the encoded input.

Function-Private Functional Encryption in the Private-Key Setting 311

notion of security (specifically, indistinguishability-based security in the private-
key setting, which is most relevant to this work) is that of an adversary that is
allowed to make functional key queries and also message queries containing pairs
of messages (m0,m1), and in response it gets an encryption of mb, where b is a se-
cret bit. We would like the adversary to not be able to guess b unless it obtained a
key to a function that behaves differently on them0’s and on them1’s. This dream
version of security, even just for two inputs, implies function-private private-key
functional encryption: We will use the first input coordinate to encrypt the de-
scription of the function and the second to encrypt the input, and provide a func-
tion key for the universal 2-input function. However, Goldwasser et al. [17] fall
short of achieving this dream version, since their adversary is not allowed to make
message queries adaptively. Furthermore, their construction relies on strong no-
tions of obfuscation (indistinguishability obfuscation and differing input obfusca-
tion), whereas the construction in this paper only relies on private-key function
encryption (which is currently known to be implied by obfuscation, but no reverse
derivation is known and it is quite possible that they can be constructed under
milder assumptions – see Section 2.2).

1.4 Overview of Our Approach

In this section we provide a high-level overview of our approach and techniques.
We begin with a brief description of the notions of function privacy that we con-
sider in this work, and then describe the main ideas underlying our construction.

Function Privacy. Our notion of function privacy is that of Agrawal et al. [1,
Def. 2.7] (generalizing Shen, Shi and Waters [30]), which considers the privacy of
functional keys and the privacy of encrypted messages in a completely symmet-
ric manner. Specifically, we consider adversaries that issue both key-generation
queries of the form (f0, f1) and encryption queries of the form (m0,m1). These
queries are answered by providing a functional key for fb and an encryption of
mb, where all queries are answered using the same bit b ∈ {0, 1}. We allow adver-
saries to adaptively issue any polynomial number of such queries (this number
does not have to be bounded in advance), and their goal is to distinguish the
experiment where b = 0 and the experiment where b = 1. Our only requirement
from such adversaries is that for all key-generation queries (f0, f1) and for all
encryption queries (m0,m1) it holds that f0(m0) = f1(m1). In addition to this
notion, we also consider two “selective” relaxations, and we refer the reader to
Section 3 for more details on our notions of function privacy.

A Failed Attempt. Our starting point is any given private-key functional en-
cryption scheme without function privacy. A natural approach towards achieving
function privacy is to modify its key-generation algorithm so that it provides
functional keys containing only encrypted descriptions of the associated func-
tions. Namely, for generating a functional key for a function f , we will first en-
crypt the description of f using a symmetric encryption scheme SKE = (SKE.KG,
SKE.Enc, SKE.Dec) to obtain a ciphertext cf ← SKE.Enc(SKE.k, f), where SKE.k
is a key for the scheme SKE (which does not change throughout the lifespan of

312 Z. Brakerski and G. Segev

the scheme). Then, the key-generation algorithm would provide a functional key

for the function Ucf (m, k)
def
= (SKE.Dec(k, cf))(m) (that is, the function that first

decrypts cf using the candidate key k, and then applies the resulting function
on m). The semantic security of SKE guarantees that the function Ucf hides the
description of f , as long as the key SKE.k is not known. In order to maintain
the functionality, the message encryption algorithm must also change: Rather
than encrypting the message m alone using the underlying functional encryp-
tion scheme, we will now encrypt the pair (m, SKE.k). One can verify that the
functionality of the scheme still holds since clearly Ucf (m, SKE.k) = f(m).

One could hope to prove that this construction is function private. Indeed,
Goldwasser et al. [19] used this exact scheme to construct reusable garbled cir-
cuits. This approach by itself, however, is insufficient for our purposes. On one
hand, during the proof of security we would like to rely on the semantic security
of SKE for arguing that the function Ucf hides the description of f . This implies
that the key SKE.k should be kept completely secret. On the other hand, the
functionality of the scheme must be preserved even during the proof of security.
Thus, in order to allow adversaries to use the functional key for the function Ucf ,
the key SKE.k must be used while encrypting messages as above. This conflict
is the main challenge that our construction overcomes.

We note that also in the construction of reusable garbled circuits of Gold-
wasser et al. [19] this conflict arises. However, they consider only a selective
single-function security notion asking adversaries to specify a challenge func-
tion f prior to receiving any encryptions. Within such a selective framework,
the conflict is easily resolved: During the proof of security one can preserve the
functionality by modifying the encryption algorithm to encrypt f(m) instead of
encrypting m itself. Thus, the description of the function f is in fact not needed,
but only the value f(m) is needed for each encrypted message m (note that f(m)
is anyway known to the adversary). This approach, however, seems inherently
limited to a selective framework, whereas we would like to allow adversaries to
adaptively query the key-generation and encryption oracles, at any point in time,
and for any polynomial number of queries2.

Our Scheme. To get around the aforementioned obstacle, we show that the
Naor-Yung “double encryption” methodology [25] can be adapted to our setting.
Instead of encrypting the description of f only once, we encrypt it twice using
two independent symmetric keys. For preserving the functionality of the system,
only one out of the two keys will be explicitly needed, and this allows us to attack
the other key. Combined with the message privacy of the underlying functional
encryption scheme, this approach enables us to prove the security of our scheme.

2 The approach of Goldwasser et al. can be extended to deal with any a-priori bounded
number of functions, as long as they are specified in advance (this is done using [21]).
In this case, the length of ciphertexts in their scheme would be linear in the number of
functions. This is in fact inherent to their setting, as they consider a simulation-based
notion of security [2]. We consider indistinguishability-based notions of security, and
would like to inherit the (either full or selective) security of the underlying functional
encryption scheme.

Function-Private Functional Encryption in the Private-Key Setting 313

More specifically, the master secret key of our scheme consists of a master
secret key msk for the underlying functional encryption scheme, and two keys,
SKE.k and SKE.k′, for a symmetric-key CPA-secure scheme. In order to generate
a functional key for a function f , we first generate two symmetric encryptions
c ← SKE.Enc(SKE.k, f) and c′ ← SKE.Enc(SKE.k′, f) of the description of f .
Then, we issue a functional key for the function Uc,c′ which is defined as follows
on inputs of the form (m,m′, k, k′): If k �= ⊥ then decrypt c using k for obtaining
a function f , and output f(m). Otherwise, if k = ⊥, then decrypt c′ using k′

for obtaining a function f ′, and output f(m′). In order to encrypt a message
m, we will use the encryption scheme of the underlying functional encryption
scheme to encrypt (m,⊥, SKE.k,⊥) using its master secret key msk. Note that
this scheme works quite similarly to the aforementioned intuitive idea, only it
has “placeholders” for elements that will be used in the proof.

Towards illustrating some of the ideas underlying the proof of security, con-
sider an adversary that makes just one encryption query (m0,m1), and just
one key-generation query (f0, f1) in some arbitrary order (recall that we require
f0(m0) = f1(m1)). The view of this adversary consists of an encryption of mb

and a functional key for fb for a uniformly chosen bit b ∈ {0, 1}. The proof starts
by modifying the functional key: Instead of computing c′ ← SKE.Enc(SKE.k′, fb)
we compute c′ ← SKE.Enc(SKE.k′, f1). Note that since the key SKE.k′ is in fact
not being used, and since the functionality of the functional key is not hurt (c′

is anyway not used for decryption), the CPA-security of the symmetric scheme
implies that this goes unnoticed. Next, we modify the encryption algorithm to
encrypt (⊥,m1,⊥, SKE.k′) instead of (mb,⊥, SKE.k,⊥). This time the adversary
will not notice the change due to the message-privacy of the underlying func-
tional encryption scheme, since the new and old ciphertexts will decrypt to the
same value fb(mb) = f1(m1) under the modified functional key. Finally, we mod-
ify the functional key once again: Instead of computing c ← SKE.Enc(SKE.k, fb)
we compute c ← SKE.Enc(SKE.k, f1). As before, since the key SKE.k is in fact
not being used, and since the functionality of the functional key is not hurt, then
the CPA-security of the symmetric scheme implies that this goes unnoticed. At
this point, we observe that the view of the adversary is in fact completely inde-
pendent of the choice of the bit b, and the result follows. We refer the reader to
Section 4 for the formal description and proof of our scheme.

1.5 Open Problems

Our work raises various open problems on the feasibility and the design of func-
tional encryption schemes. Some of these are outlined below.

Private-Key vs. Public-Key Functional Encryption. Our construction re-
lies on any private-key functional encryption schemes, but in fact, most of the
existing constructions of such schemes are secure even in the public-key setting
(see Section 2.2). Clearly, any functional encryption scheme that is secure in the
public-key setting is also secure in the private-key one. However, the existing
constructions either apply in a restricted setting or rely on somewhat strong

314 Z. Brakerski and G. Segev

assumptions that are related to program obfuscation. Our work provides addi-
tional motivation for studying private-key FE in hope for achieving constructions
with better efficiency or under improved assumptions. Alternatively, perhaps it
is possible to construct a public-key functional encryption scheme based on any
private-key scheme.

Simulation-Based Function Privacy. Following Shen, Shi and Waters [30]
and Boneh, Raghunathan and Segev [8,9], we consider indistinguishability-based
notions of function privacy. As already observed [10,26], in some cases such
notions do not provide realistic security guarantees for functional encryption
schemes. A (somewhat relaxed) simulation-based notion of function privacy was
recently formalized by Agrawal et al. [1], and an interesting open problem is to
further explore its relation to our notions and to our construction.

Relying on Restricted Function Families. Our construction relies on any
private-key functional encryption scheme that supports a sufficiently rich func-
tion class. Although, as discussed above, various such schemes are known to exist,
an interesting open problem is to construct a function-private scheme based on
any scheme that supports more restricted function classes (e.g., inner products
or subspace membership).

1.6 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce the
basic notation and tools underlying our construction. In Section 3 we introduce
the notions of function privacy that are considered in this work. In Section 4 we
present our generic construction of a function-private scheme.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x ← X the process of sampling a value
x from the distribution X . Similarly, for a set X we denote by x ← X the process
of sampling a value x from the uniform distribution over X . For an integer n ∈ N
we denote by [n] the set {1, . . . , n}. A real function over the natural numbers is
negligible if it vanishes faster than the inverse of any polynomial.

We rely on the following standard notion of a left-or-right oracle when for-
malizing the security of encryption schemes:

Definition 2.1 (Left-or-Right Oracle). Let O be a (possibly probabilistic)
two-input functionality. For each b ∈ {0, 1} we denote by Ob the three-input

functionality Ob(k, x0, x1)
def
= O(k, xb).

2.1 Private-Key Encryption

A private-key encryption scheme over a message space M is a triplet (KG,Enc,
Dec) of probabilistic polynomial-time algorithms. The key-generation algorithm

Function-Private Functional Encryption in the Private-Key Setting 315

KG takes as input the unary representation 1λ of the security parameter λ ∈ N
and outputs a secret key k. The encryption algorithm Enc takes as input a
secret key k and a message m ∈ M, and outputs a ciphertext c. The decryption
algorithm Dec takes as input a secret key k and a ciphertext c, and outputs a
message m or the dedicated symbol ⊥. In terms of correctness we require that
for any key k that is produced by KG(1λ) and for every message m ∈ M it holds
that Dec(k,Enc(k,m)) = m with probability 1 over the internal randomness of
the algorithms Enc and Dec.

In terms of security, we rely on the standard notion of a CPA-secure private-
key encryption scheme that is formulated using a left-or-right encryption ora-
cle. Recall (Definition 2.1) that for an encryption scheme Π = (KG,Enc,Dec)
and for any b ∈ {0, 1} we denote by Encb the left-or-right encryption oracle

Encb(k,m0,m1)
def
= Enc(k,mb).

Definition 2.2 (CPA Security). A private-key encryption scheme Π = (KG,
Enc,Dec) is CPA-secure if for any probabilistic polynomial-time adversary A,
there exists a negligible function ν(λ) such that

AdvCPAΠ,A(λ)
def
=

∣∣∣Pr[AEnc0(k,·,·)(λ) = 1
]
− Pr

[
AEnc1(k,·,·)(λ) = 1

]∣∣∣ ≤ ν(λ),

where the probability is taken over the choice of k ← KG(1λ) and over the ran-
domness of A.

2.2 Private-Key Functional Encryption

We rely on the standard indistinguishability-based notions of full security and
selective security for functional encryption schemes (see, for example, [10,26,5]),
by adapting them to the private-key setting. In this paper, as we consider security
notions for both messages and keys, we refer to the standard notions of security
and selective security as message privacy and selective-message privacy.

A private-key functional encryption scheme over a message space M and a
function space F is a quadruple (Setup,KG,Enc,Dec) of probabilistic polynomial-
time algorithms. The setup algorithm Setup takes as input the unary represen-
tation 1λ of the security parameter λ ∈ N and outputs a master-secret key msk.
The key-generation algorithm KG takes as input a master-secret key msk and
a function f ∈ F , and outputs a functional key skf . The encryption algorithm
Enc takes as input a master-secret key msk and a message m ∈ M, and outputs
a ciphertext c. In terms of correctness we require that for every function f ∈ F
and message m ∈ M it holds that Dec(KG(msk, f),Enc(msk,m)) = f(m) with
all but a negligible probability over the internal randomness of the algorithms
Setup,KG,Enc, and Dec.

In terms of message privacy we require that encryptions of any two messages,
m0 and m1, are computationally indistinguishable for any adversary that may
adaptive obtain functional keys for any function f ∈ F as long as f(m0) =
f(m1). This is formalized via the following definitions. Recall (Definition 2.1)
that for a private-key functional encryption scheme Π = (Setup,KG,Enc,Dec)

316 Z. Brakerski and G. Segev

and for any b ∈ {0, 1} we denote by Encb the left-or-right encryption oracle

Encb(msk,m0,m1)
def
= Enc(msk,mb).

Definition 2.3 (Valid message-privacy adversary). A probabilistic poly-
nomial-time algorithm A is a valid message-privacy adversary if for all private-
key functional encryption schemes Π = (Setup,KG,Enc,Dec), for all λ ∈ N and
b ∈ {0, 1}, and for all f and (m0,m1) with which A queries the oracles KG and
Encb, respectively, it holds that f(m0) = f(m1).

Definition 2.4 (Full Message Privacy). A private-key functional encryption
scheme Π = (Setup,KG,Enc,Dec) over a message space M = {Mλ}λ∈N and a
function space F = {Fλ}λ∈N is fully message private if for any valid message-
privacy adversary A, there exists a negligible function ν(λ) such that

AdvMP
Π,A(λ)

def
=

∣∣∣Pr[AKG(msk,·),Enc0(msk,·,·)(λ) = 1
]

−Pr
[
AKG(msk,·),Enc1(msk,·,·)(λ) = 1

]∣∣∣ ≤ ν(λ),

where the probability is taken over the choice of msk ← Setup(1λ) and over the
randomness of A.

Definition 2.5 (Selective-Message Message Privacy). A private-key func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space M =
{Mλ}λ∈N and a function space F = {Fλ}λ∈N is T -selective-message message
private, where T = T (λ), if for any probabilistic polynomial-time adversary A
there exists a negligible function ν(λ) such that

AdvsMP
Π,A,T (λ)

def
=

∣∣∣Pr[ExptsMP
Π,A,T (λ, 0) = 1

]
− Pr

[
ExptsMP

Π,A,T (λ, 1) = 1
]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptsMP
Π,A,T (λ, b) is defined as

follows:

1. msk ← Setup(1λ).

2. ((m0,1, . . . ,m0,T) , (m1,1, . . . ,m1,T) , state) ← A(1λ), where m0,i,m1,i ∈ Mλ

for all i ∈ [T].

3. c∗i ← Enc(msk,mb,i) for all i ∈ [T].

4. b′ ← AKG(msk,·)(c∗1, . . . , c
∗
T , state), where for each of A’s queries f to KG(msk,

·) it holds that f(m0,i) = f(m1,i) for all i ∈ [T].

5. Output b′.

Such a scheme Π is selective-message message private if it is T -selective-message
message private for all polynomials T = T (λ).

Definition 2.6 (Selective-Function Message Privacy). A private-key func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space M =
{Mλ}λ∈N and a function space F = {Fλ}λ∈N is T -selective-function message

Function-Private Functional Encryption in the Private-Key Setting 317

private, where T = T (λ), if for any probabilistic polynomial-time adversary A
there exists a negligible function ν(λ) such that

AdvsfMP
Π,A,T (λ)

def
=

∣∣∣Pr[ExptsfMP
Π,A,T (λ, 0) = 1

]
− Pr

[
ExptsfMP

Π,A,T (λ, 1) = 1
]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptsfMP
Π,A,T (λ, b) is defined as

follows:

1. msk ← Setup(1λ).

2. (f1, . . . , fT , state) ← A(1λ), where fi ∈ Fλ for all i ∈ [T].

3. skfi ← KG(msk, fi) for all i ∈ [T].

4. b′ ← AEncb(msk,·,·)(skf1 , . . . , skfT , state), where for each of A’s queries (m0,
m1) to Encb(msk, ·, ·) it holds that fi(m0) = fi(m1) for all i ∈ [T].

5. Output b′.

Such a scheme Π is selective-function message private if it is T -selective-function
message private for all polynomials T = T (λ).

Known Instantiations. Private-key functional encryption schemes that satisfy
the notions presented in Definitions 2.4–2.6 (and support circuits of any a-priori
bounded polynomial size) are known to exist based on various assumptions. Most
of the known schemes are in fact public-key schemes, which are in particular
private-key ones3. Each of these scheme can be used to instantiate our generic
transformation.

Specifically, a scheme that satisfies our notion of selective-message message
privacy was constructed by Garg et al. [15] based on indistinguishability obfusca-
tion. Schemes that satisfy the stronger notion of full message privacy (Definition
2.4) were constructed by Boyle et al. [11] and by Ananth et al. [3] based on
differing-input obfuscation, by Waters [31] based on indistinguishability obfus-
cation, and by Garg et al. [16] based on multilinear maps. Moreover, a generic
transformation from selective-message message privacy to full message privacy
was recently showed by Ananth et al. [4].

A scheme that satisfies the notion of 1-selective-function message privacy was
constructed by Gorbunov, Vaikuntanathan and Wee [21] under the sole assump-
tion that public-key encryption exists. In the private-key setting, their transfor-
mation can in fact rely on any private-key encryption scheme (and thus on any
one-way function). By assuming, in addition, the existence of a pseudorandom
generator computable by small-depth circuits (which is known to be implied by
most concrete intractability assumptions), they construct a scheme that satisfies
the notion of T -selective-function message privacy for any predetermined poly-
nomial T = T (λ). However, the length of the ciphertexts in their scheme grows

3 For indistinguishability-based message privacy in the public-key setting, considering
one challenge is equivalent to considering a left-or-right encryption oracle [21]. There-
fore, as public-key schemes are also private-key ones, in our indistinguishability-based
definitions we directly consider left-or-right encryption oracles.

318 Z. Brakerski and G. Segev

linearly with T and with an upper bound on the circuit size of the functions
that the scheme allows (which also has to be known ahead of time). Goldwasser
et al. [19] showed that based on the Learning with Errors (LWE) assumption,
T -selective-function message privacy can be achieved where the ciphertext size
grows with T and with a bound on the depth of allowed functions.

3 Modeling Function Privacy in the Private-Key Setting

In this section we introduce the notions of function privacy that are consid-
ered in this work. We consider three notions: full function privacy, selective-
message function privacy, and selective-function function privacy. These are
indistinguishability-based notions whose goal is to guarantee that functional
keys reveal no unnecessary information on their functionality. Specifically, these
notions ask that any efficient adversary that obtains encryptions of messages
m1, . . . ,mT , and functional keys corresponding to functions f1, . . . , fT , learns
essentially no information other than the values {fi(mj)}i,j∈[T]. Our notions
generalize the standard message-privacy notions for functional encryption (see
Section 2.2) by taking into account function privacy in addition to message
privacy.

Full Function Privacy. The strongest notion that we consider, which we re-
fer to as full function privacy, was recently put forward by Agrawal et al. [1]
who generalized the notion of Shen, Shi and Waters [30] for predicate-privacy in
attribute-based encryption. This notion considers both privacy of functional keys
and privacy of encrypted messages in a completely symmetric manner. Specifi-
cally, we consider adversaries that interact with a left-or-right key-generation or-
acle KGb(msk, ·, ·), and with a left-or-right encryption oracle Encb(msk, ·, ·) (where
both oracles operate using the same bit b)4. We allow adversaries to adaptively
interact with these oracles for any polynomial number of queries (which does not
have to be bounded in advance), and the adversaries’ goal is to distinguish the
cases b = 0 and b = 1. Our only requirement from such adversaries is that for all
(f0, f1) and (m0,m1) with which they query the oracles KGb and Encb, respec-
tively, it holds that f0(m0) = f1(m1). We note that this is clearly an inherent
requirement.

Definition 3.1 (Valid Function-Privacy Adversary). A probabilistic poly-
nomial-time algorithm A is a valid function-privacy adversary if for all private-
key functional encryption schemes Π = (Setup,KG,Enc,Dec), for all λ ∈ N and
b ∈ {0, 1}, and for all (f0, f1) and (m0,m1) with which A queries the oracles
KGb and Encb, respectively, the following three conditions hold:

4 Recall (Definition 2.1) that for a probabilistic two-input functionality O and for b ∈
{0, 1}, we denote by Ob the probabilistic three-input functionality Ob(k, x0, x1)

def
=

O(k, xb).

Function-Private Functional Encryption in the Private-Key Setting 319

1. f0(m0) = f1(m1).

2. The messages m0 and m1 have the same length.

3. The descriptions of the functions f0 and f1 have the same length.

Definition 3.2 (Full function privacy). A private-key functional encryption
scheme Π = (Setup,KG,Enc,Dec) over a message space M = {Mλ}λ∈N and a
function space F = {Fλ}λ∈N is fully function private if for any valid function-
privacy adversary A, there exists a negligible function ν(λ) such that

AdvFPΠ,A(λ)
def
=

∣∣∣Pr[AKG0(msk,·,·),Enc0(msk,·,·)(λ) = 1
]

−Pr
[
AKG1(msk,·,·),Enc1(msk,·,·)(λ) = 1

]∣∣∣ ≤ ν(λ),

where the probability is taken over the choice of msk ← Setup(1λ) and over the
randomness of A.

Selective Notions. We consider two relaxations of our notion of full function
privacy from Definition 3.2. The first, which we refer to as selective-message
function privacy restricts the access that adversaries have to the left-or-right en-
cryption oracle. Specifically, this notion asks that adversaries choose in advance
their set of encryption queries. We note that adversaries are still given oracle
access to the left-or-right key-generation oracle, with which they can interact in
an adaptive manner for any polynomial number of queries. The second, which
we refer to as selective-function function privacy restricts the access that adver-
saries have to the left-or-right key-generation oracle. Specifically, this notion asks
that adversaries choose in advance their set of key-generation queries. We note
that adversaries are still given oracle access to the left-or-right encryption oracle,
with which they can interact in an adaptive manner for any polynomial number
of queries. In addition, we note that our definition of a valid function-privacy
adversary (Definition 3.1) naturally extends to the selective setting.

Definition 3.3 (Selective-Message Function Privacy). A private-key func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space M =
{Mλ}λ∈N and a function space F = {Fλ}λ∈N is T -selective-message function
private, where T = T (λ), if for any probabilistic polynomial-time adversary A
there exists a negligible function ν(λ) such that

AdvsmFP
Π,A,T (λ)

def
=

∣∣∣Pr[ExptsmFP
Π,A,T (λ, 0) = 1

]
− Pr

[
ExptsmFP

Π,A,T (λ, 1) = 1
]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptsMP
Π,A,T (λ, b) is defined as

follows:

1. msk ← Setup(1λ).

2. ((m0,1, . . . ,m0,T) , (m1,1, . . . ,m1,T) , state) ← A(1λ), where m0,i,m1,i ∈ Mλ

for all i ∈ [T].

3. c∗i ← Enc(msk,mb,i) for all i ∈ [T].

320 Z. Brakerski and G. Segev

4. b′ ← AKGb(msk,·,·)(c∗1, . . . , c
∗
T , state), where for each of A’s queries (f0, f1) to

KGb(msk, ·, ·) it holds that f0(m0,i) = f1(m1,i) for all i ∈ [T].

5. Output b′.

Such a scheme Π is selective-message function private if it is T -selective-message
function private for all polynomials T = T (λ).

Definition 3.4 (Selective-function function privacy). A private-key func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space M =
{Mλ}λ∈N and a function space F = {Fλ}λ∈N is T -selective-function function
private, where T = T (λ), if for any probabilistic polynomial-time adversary A
there exists a negligible function ν(λ) such that

AdvsfFPΠ,A,T (λ)
def
=

∣∣∣Pr[ExptsfFPΠ,A,T (λ, 0) = 1
]
− Pr

[
ExptsfFPΠ,A,T (λ, 1) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptsMP
Π,A,T (λ, b) is defined as

follows:

1. msk ← Setup(1λ).

2. ((f0,1, . . . , f0,T) , (f1,1, . . . , f1,T) , state) ← A(1λ), where f0,i, f1,i ∈ Fλ for all
i ∈ [T].

3. sk∗i ← KG(msk, fb,i) for all i ∈ [T].

4. b′ ← AEncb(msk,·,·)(sk∗1, . . . , sk
∗
T , state), where for each of A’s queries (m0,m1)

to Encb(msk, ·, ·) it holds that f0,i(m0) = f1,i(m1) for all i ∈ [T].

5. Output b′.

Such a scheme Π is selective-function function private if it is T -selective-function
function private for all polynomials T = T (λ).

Finally, we observe that due to the symmetry between the roles of the encryp-
tion oracle and the key-generation oracle in these two selective notions, they are
in fact equivalent when switching between the encryption algorithm and key-
generation algorithm of any given scheme. That is, a private-key functional en-
cryption scheme (Setup,KG,Enc,Dec) is selective-message function private if and
only if the scheme (Setup,Enc,KG,Dec) is selective-function function private. To
be a little more accurate, replacing the roles of functions f and message m may
require some standard “type casting” to represent a message as function and
function as message. This is done using universal machines: To cast a function
f as a message, we consider its description as the message to be encrypted. This
means that if Enc only takes bounded length messages, then the new scheme
will only support functions with bounded description lengths. To cast a message
m as a function, we consider a universal function that accepts a description of
a function f and outputs f(m). Again, depending on the computational model
under consideration, this may impose some restrictions. For example, if working
over circuits then the universal circuit imposes an upper bound on the size of
the functions supported by the new scheme, whereas that may not have been
required in the original scheme before the switch (however, in this example, if the
function size was a-priori unbounded in the original scheme, then the message
space after the switch will become a-priori length unbounded).

Function-Private Functional Encryption in the Private-Key Setting 321

4 Our Function-Private Scheme

In this section we present our generic construction of a function-private private-
key functional encryption scheme. Our construction relies on the following two
building blocks:

– A private-key functional encryption scheme FE = (FE.Setup,FE.KG,FE.Enc,
FE.Dec).

– A private-key encryption scheme SKE = (SKE.KG, SKE.Enc, SKE.Dec).5

Our new functional encryption scheme FPE = (Setup,KG,Enc,Dec) is defined
as follows.

The Setup Algorithm. On input the security parameter 1λ the setup al-
gorithm Setup samples FE.msk ← FE.Setup(1λ), SKE.k ← SKE.KG(1λ), and
SKE.k′ ← SKE.KG(1λ). Then, it outputs msk = (FE.msk, SKE.k, SKE.k′).

The Key-Generation Algorithm. On input the master secret key msk and a
function f , the key-generation algorithm KG first computes c ← SKE.Enc(SKE.k,
f) and c′ ← SKE.Enc(SKE.k′, f). Then, it computes FE.SKUc,c′ ← FE.KG(FE.msk,
Uc,c′), where the function Uc,c′ is described in Figure 1. Finally, it outputs
skf = FE.SKUc,c′ .

The Encryption Algorithm. On input the master secret key msk and a
message m, the encryption algorithm Enc outputs c ← FE.Enc(FE.msk, (m,⊥,
SKE.k,⊥)).

The Decryption Algorithm. On input a functional key skf and a ciphertext
c, the decryption algorithm Dec outputs FE.Dec(skf , c).

Uc,c′(m,m′, k, k′)

1. If k �= ⊥, compute f ← SKE.Dec(k, c) and output f(m).

2. Else, if k′ �= ⊥, compute f ′ ← SKE.Dec(k′, c′) and output f ′(m′).

3. Else, output ⊥.

Fig. 1. The function Uc,c′

Note that if the underlying scheme FE supports functions that are computable
by circuits of size at most s, for some sufficiently large polynomial s = s(n), then
our new scheme FPE supports functions that are computable by circuits of size
Ω(s). Specifically, a functional key skf for a function f in the new scheme consists
of a functional key for the function Uc,c′ in the underlying scheme. The function
Uc,c′ is computable in a straightforward manner by a circuit that contains two
copies of a circuit for computing f , and two copies of SKE ’s decryption circuit.
The security of our construction is captured by the following theorem:

5 To be absolutely formal, this building block is implied by the former in an obvious
way.

322 Z. Brakerski and G. Segev

Theorem 4.1. Assuming that the scheme SKE is CPA-secure the following
hold:

1. If the scheme FE is fully message private then the scheme FPE is fully
function private.

2. If the scheme FE is selective-message message private (resp. T -selective-
message message private) then the scheme FPE is selective-message function
private (resp. T -selective-message function private).

3. If the scheme FE is selective-function message private (resp. T -selective-
function message private) then the scheme FPE is selective-function func-
tion private (resp. T -selective-function function private).

As discussed in Section 2.2, Theorem 4.1 can be instantiated based on a
variety of known functional encryption schemes (e.g., [21,3,15,19,11]) that offer
full message privacy, selective-message message privacy, and selective-function
message privacy.

In the full version of this paper [12] we prove Theorem 4.1 by showing that for
any valid function-privacy adversary A for the scheme FPE that there exist a
probabilistic-polynomial time adversary B1 attacking the CPA security of SKE ,
and a probabilistic polynomial-time adversary B2 attacking the message privacy
of FE , such that

AdvFPFPE,A(λ) ≤ 2 ·
(
AdvCPASKE,B1

(λ) + AdvMP
FE,B2

(λ)
)
.

Table 1. The differences between the experiments H(0), . . . ,H(4). Adjacent experi-
ments that differ on the generation of c or c′ are proven indistinguishable using the
CPA security of SKE . Adjacent experiments that differ on the input to FE.Enc are
proven indistinguishable using the message privacy of FE .

Experiment Encryption oracle Key-generation oracle

H(0) FE.Enc(FE.msk, (m0,⊥,SKE.k,⊥))
c ← SKE.Enc(SKE.k, f0)

c′ ← SKE.Enc(SKE.k′, f0)

H(1) FE.Enc(FE.msk, (m0,⊥,SKE.k,⊥))
c ← SKE.Enc(SKE.k, f0)

c′ ← SKE.Enc(SKE.k′, f1)

H(2) FE.Enc(FE.msk, (⊥,m1,⊥,SKE.k′))
c ← SKE.Enc(SKE.k, f0)

c′ ← SKE.Enc(SKE.k′, f1)

H(3) FE.Enc(FE.msk, (⊥,m1,⊥,SKE.k′))
c ← SKE.Enc(SKE.k, f1)

c′ ← SKE.Enc(SKE.k′, f1)

H(4) FE.Enc(FE.msk, (m1,⊥,SKE.k,⊥))
c ← SKE.Enc(SKE.k, f1)

c′ ← SKE.Enc(SKE.k′, f1)

Function-Private Functional Encryption in the Private-Key Setting 323

The proof consists of a sequence of five hybrid experiments, denoted H(0), . . . ,
H(4), where each two consecutive experiments are computationally indistinguish-
able from A’s point of view. Each such experiment H(i) is completely character-
ized by its key-generation oracle and its encryption oracle, where the differences
between these experiments are summarized in Table 1.

Acknowledgments. We thank Shweta Agrawal and Vinod Vaikuntanthan for
insightful discussions.

References

1. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A.,
Prabhakaran, M., Sahai, A.: Function private functional encryption and prop-
erty preserving encryption: New definitions and positive results. Cryptology ePrint
Archive, Report 2013/744 (2013)

2. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
New perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

3. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013)

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: The trojan method in
functional encryption: From selective to adaptive security, generically. Cryptology
ePrint Archive, Report 2014/917 (2014)

5. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility re-
sults, impossibility results and the quest for a general definition. In: Abdalla, M.,
Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Heidelberg (2013)

6. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
Journal on Computing 32(3), 586–615 (2003), Preliminary version in Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

7. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

8. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: Hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013)

9. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013)

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

11. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

12. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. Cryptology ePrint Archive, Report 2014/550 (2014)

13. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

324 Z. Brakerski and G. Segev

14. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013)

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 40–49 (2013)

16. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption
without obfuscation. Cryptology ePrint Archive, Report 2014/666 (2014)

17. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014) Merge of [18] [22]

18. Goldwasser, S., Goyal, V., Jain, A., Sahai, A.: Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/727 (2013)

19. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of the 45th
Annual ACM Symposium on Theory of Computing, pp. 555–564 (2013)

20. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

22. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774 (2013)

23. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized
functionalities. Cryptology ePrint Archive, Report 2013/729 (2013)

24. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. To appear in Pro-
ceedings of the 12th Theory of Cryptography Conference (2015)

25. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, pp. 427–437 (1990)

26. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

27. Sahai, A., Waters, B.: Slides on functional encryption (2008),
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

28. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pp. 475–484 (2014)

29. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

30. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

31. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. Cryptology ePrint Archive, Report 2014/588 (2014)

http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

Functional Encryption

for Randomized Functionalities

Vipul Goyal1, Abhishek Jain2,�, Venkata Koppula3,��, and Amit Sahai4,� � �

1 Microsoft Research, India
vipul@microsoft.com

2 Johns Hopkins University, USA
abhishek@cs.jhu.edu

3 University of Texas, Austin, USA
kvenkata@cs.utexas.edu

4 UCLA and the Center for Encrypted Functionalities, USA
sahai@cs.ucla.edu

Abstract. In this work, we present the first definitions and constructions
for functional encryption supporting randomized functionalities. The
setting of randomized functionalities require us to revisit functional en-
cryption definitions by, for the first time, explicitly adding security
requirements for dishonest encryptors, to ensure that they cannot improp-
erly tamper with the randomness that will be used for computing outputs.
Our constructions are built using indistinguishability obfuscation.

1 Introduction

Originally, encryption was thought of as a way to encrypt “point to point”
communication. However, in the contemporary world with cloud computing and
complex networks, it has become clear that we need encryption to offer more
functionality. To address this issue, the notion of functional encryption (FE) has
been developed [25,18,5,19,4,21]. In a functional encryption for a family F , it is
possible to derive secret keys Kf for any function f ∈ F from a master secret
key. Given an encryption of some input x, that user can use its secret key Kf to
obtain f(x), and should learn nothing else about x beyond f(x).

� The author is partly funded by NSF CNS-1414023. Part of the research was con-
ducted while visiting Microsoft Research, India.

�� Part of this research was conducted during internship at Microsoft Research, India.
� � � Research supported in part from a DARPA/ONR PROCEED award, NSF Fron-

tier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox
Faculty Research Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant. This material is based upon
work supported by the Defense Advanced Research Projects Agency through the
U.S. Office of Naval Research under Contract N00014-11- 1-0389. The views ex-
pressed are those of the author and do not reflect the official policy or position
of the Department of Defense, the National Science Foundation, or the U.S. Gov-
ernment.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 325–351, 2015.
c© International Association for Cryptologic Research 2015

326 V. Goyal et al.

A driving force behind functional encryption research has been to understand
what class of functions can be supported by functional encryption. This remark-
able line of research has progressed to now encompass all functions describable
by deterministic polynomial-size circuits [24,16,15,8,11]. We continue this line of
research to move even beyond deterministic polynomial-size circuits: specifically,
we consider the case of randomized functionalities. Indeed, not only are random-
ized functionalities strongly motivated by real-world scenarios, but randomized
functionalities present new challenges for functional encryption. Techniques de-
veloped in the context of functional encryption for deterministic circuit do not
directly translate into techniques for randomized circuits. To understand the
basic technical problem, below we give an illustrative example.

Let us illustrate the desiderata for functional encryption for randomized func-
tions by considering an example of performing an audit on an encrypted database
through random sampling. Suppose there is a bank that maintains large secure
databases of the transactions in each of its branches. There is an auditor Alice
who would like to gain access to a random sample of database entries from each
branch in order to manually audit these records and check for improper trans-
actions. We note that random sampling of transactions for manual analysis is
quite common during audits. There are two primary concerns:

– The auditor wants to ensure that cheating in a branch is caught with rea-
sonable probability.

– The organization wants to ensure that a malicious auditor cannot learn un-
desirable information (e.g., too much about a particular customer) from the
encrypted databases. In particular, it wants to ensure that a malicious audi-
tor cannot gain access to arbitrarily chosen parts of the database, but rather
is limited to seeing only a randomly selected sample for each branch.

If we try to solve this problem naively using functional encryption, by giving
the auditor a secret key SKf that lets it obtain a random subset of an encrypted
database CT, we are faced with the question: where does the randomness come
from? Clearly, the randomness cannot be specified in the ciphertext alone since
then a cheating encrypter (bank branch) could influence it. It cannot be specified
in the decryption key alone as well: then auditor would get the same (or corre-
lated) sample from the databases of different branches. (We also stress that since
functional encryption does not guarantee function privacy, randomness present
in the function f , even if chosen by a trusted party, would be known to Alice.)

Even if the randomness was chosen by an XOR of coins built into the decryp-
tion key and the ciphertext, this would allow malicious encryptors, over time,
to ensure correlations among the random coins used by the auditor when in-
specting different databases (or the same database after updates to it). Such
correlations could potentially be used to eventually learn completely the coins
embedded in the decryption key (based on the auditor’s actions in response to
planted improprieties in databases). Another option is to use a pseudorandom
function (PRF) whose key is inbuilt in the decryption key. However again, since
functional encryption does not guarantee function privacy, the PRF key could

Functional Encryption for Randomized Functionalities 327

be completely leaked to a malicious auditor. As a result, the sample would not
be “random” anymore in the auditor’s view (since he knows the PRF key).

This scenario also illustrates the importance of dealing with dishonest en-
cryptors in the context of functional encryption for randomized functionalities,
because of the influence they can have on the choice of coins used in computing
the output. The issue of dishonest encryptors is, in fact, also relevant to the
case of deterministc functionalities.1 However, to the best of our knowledge, this
issue was never considered explicitly in previous work on functional encryption.
This is perhaps because in the context of deterministic functionalities, the issue
of dishonest encryptors seems very related to simple correctness, which is not
the case in the current work.

Defining functional encryption for randomized functionalities. To avoid the
problems sketched in the examples above, we define functional encryption for
randomized functionalities using the simulation paradigm: We want that an ad-
versary, given SKf and an honestly generated encryption of x, be simulatable
given only f(x; r) where r is true randomness that is completely unknown to the
adversary. At the same time, consider an adversary that can generate dishonest
ciphertexts ĈT and learn from outside the output of decrypting ĈT using a se-
cret key SKg (that is unknown to the adversary). We want such an adversary
to be simulatable given only g(x̂; r), where x̂ is an input that is information-

theoretically fixed by ĈT and r is again true randomness that is unknown to
the adversary. Note that a crucial feature of our definition is that if a party uses
a secret key SKf on a particular ciphertext CT, it will always get back f(x; r)
for the same randomness r. In other words, the user cannot repeatedly sample
the functionality to obtain multiple outputs for different random coins. This al-
lows users of our definition to more tightly control how much information an
adversary or user learns. However, given two distinct ciphertexts CT1 and CT2

both encrypting x, a malicious user possessing SKf should obtain exactly two
independent samples of the output of the function: f(x; r1) and f(x; r2).

Application to differentially private data release. A natural application of func-
tional encryption would be to provide non-interactive differentially private data
release with high levels of accuracy. Consider a scenario where a government
would like to allow researchers to carry out research studies on different hospital
patient record databases, but only if the algorithm that analyzes the patient
data achieves a sufficient level of differential privacy. Without using cryptogra-
phy, methods for allowing the hospitals to publish differentially private data that
would allow for meaningful and diverse research studies must incur very high ac-
curacy loss [10]. An alternative would be to have a government agency review a

1 For example, the FE schemes in [16,15] are not secure against a dishonest encryptor
who uses the simulator algorithm to create ciphertexts. Indeed, such an adversary can
force arbitrary outputs on an honest receiver. However, a straightforward compilation
of these schemes with simulation-sound NIZK proofs of knowledge yields security
against dishonest encryptors.

328 V. Goyal et al.

specific research algorithm f , and if the algorithm guarantees sufficient privacy,
to issue a secret key SKf that the researcher could use to obtain the output of
her algorithm on any hospital’s encrypted patient records. Note that in such a
setting, the hospital patient record could be encrypted and stored without any
noise addition. The noise could be added by the algorithm f after computing
the correct output. Such a setting would ensure very high accuracy (essentially
the same as the interactive setting where the hospitals store data in clear and
answer the researcher queries after adding noise in an online fashion).

Note however, to achieve differential privacy, such an algorithm f must be ran-
domized. Furthermore, typical differentially private algorithms require that the
randomness used to compute the output must be correctly and freshly sampled
each time and be kept secret (or else the differential privacy could be com-
pletely compromised). By realizing functional encryption that would allow such
randomized function evaluation, we would simultaneously remove the need for
the hospital to participate in any study beyond simply releasing an encrypted
database, and remove the need for the researcher to share his hypothesis and
algorithm with any entity beyond the government regulatory body that issues
secret keys.

1.1 Our Results

We show how to formalize the definition sketched above, generalizing the
simulation-based security definitions given in [4,21]. We then construct a func-
tional encryption scheme supporting arbitrary randomized polynomial-size
circuits assuming indistinguishability obfuscation for circuits and one-way func-
tions. We prove security in the selective model that can be amplified to full
security using standard complexity leveraging.

While our focus is on simulation-based security, we note that it cannot be
realized for an unbounded number of messages [4,3]. Towards that end, in Sect.
2.1, we also provide indistinguishability based security definitions for random-
ized functions, generalizing the case of deterministic functions [4,21]. We prove
security in the selective model for an unbounded number of messages (again,
this can be amplified to full security using standard complexity leveraging2).

The starting point for our construction is the functional encryption scheme
of [11] for polynomial-size deterministic circuits. In that scheme, in essence the
secret key SKf is built upon obfuscating the function f using an indistinguisha-
bility obfuscator [2]. We show how to modify this construction to achieve our
notion of functional encryption for randomized functionalities by building upon
the recently introduced idea of punctured programming [26]. In particular, we
embed a psuedo-random function (PRF) key into the obfuscated program, which
is executed on the ciphertext, to obtain the randomness used to derive the out-
put. We adapt ideas from [9,23] to ensure that valid ciphertexts are unique.

2 Subsequent to our work, Waters [27] gave a construction of fully secure functional
encryption (for deterministic functions) from indistinguishability obfuscation, with-
out complexity leveraging. We leave the problem of adapting our techniques to the
scheme of [27] for future work.

Functional Encryption for Randomized Functionalities 329

The core of our argument of security is to show that indistinguishability obfus-
cation guarantees the secrecy of the random coins derived by this method.

Our results immediately imply the application to differential privacy: Consider
two “neighboring” databases x0 and x1. Differential privacy guarantees that the
statistical distance between the distributions of outputs of the mechanism f for
these two databases is at most eε, a small (but non-negligible) quantity. Now
consider an adversary’s view given an encryption of x0. By our simulation-based
notion of security, the adversary’s view can be simulated given only f(x0; r)
where r is true (secret) randomness. This view is eε close to the view that would
be generated given only f(x1; r), by differential privacy of f . Finally we apply
our definition to show that this view is negligibly close to the real adversary’s
view given an encryption of x1. Thus, our functional encryption scheme when
applied to f yields a computationally differentially private mechanism.

1.2 Other Applications

Subsequent to our work, Garg et al. [12] use functional encryption for randomized
functions in NC1 as a crucial tool to construct fully secure functional encryption
for all circuits from multilinear maps. We refer the reader to their paper for more
details.

1.3 Related Work

In an independent and concurrent work, Alwen et al. [1] also study functional
encryption for randomized functions.3 The main difference between their work
and ours is that they do not consider security against malicious encryptors. In
particular, they provide a construction of FE for randomized functions from FE
for deterministic functions by encrypting a PRF key along with every message.
This PRF key is evaluated over the identifier associated with a function key
to sample randomness on the fly, which is then used to compute the function
output. Interestingly, they show that a 2-ary version of randomized FE can be
used to construct fully homomorphic encryption (see [1] for details). However,
they do not provide a construction of such an FE scheme.

We note that while the security definition of [1] suffices for their target appli-
cation, in this work, we model randomized functionalities following the standard
approach in secure computation where in the ideal world, no single party has
full control over the randomness used in the function evaluation and instead
the randomness is chosen by the trusted party. In particular, we require that
the randomness used for the computation is chosen uniformly even if either of
the parties is malicious. Indeed, as discussed earlier, this is the main source of
non-triviality in our results.

3 See [17] for the eprint version of our work.

330 V. Goyal et al.

1.4 Organization

The rest of this paper is organized as follows. We start by presenting the formal
definitions for functional encryption for randomized functionalities (Sect. 2).
Next, we recall the definitions for various cryptographic primitives used in our
construction (Sect. 3). We then present our construction of functional encryption
for randomized functionalities (Sect. 4) and prove its security in the selective
model (Sect. 5).

2 Functional Encryption for Randomized Functions

In this section, we present definitions for functional encryption for randomized
functions (or rand-FE for short). We start by presenting the syntax for rand-FE
and then proceed to give the security definitions for the same.

Syntax. Throughout the paper, we denote the security parameter by 1κ. Let
X = {Xκ}κ∈N, R = {Rκ}κ∈N and Y = {Yκ}κ∈N be ensembles where each Xκ,
Rκ and Yκ is a finite set. Let F = {Fκ}κ∈N be an ensemble where each Fκ is a
finite collection of randomized functions. Each function f ∈ Fκ takes as input a
string x ∈ Xκ and randomness r ∈ Rκ and outputs f(x; r) ∈ Yκ.

A functional encryption scheme FE for randomized functions F consists of
four algorithms (rFE.Setup, rFE.Enc, rFE.Keygen, rFE.Dec):

– Setup rFE.Setup(1κ) is a PPT algorithm that takes as input the security
parameter κ and outputs the public key MPK and the master secret key
MSK.

– Encryption rFE.Enc(x,MPK) is a PPT algorithm that takes as input a
message x and the public key MPK and outputs a ciphertext CT.

– Key Generation rFE.Keygen(f,MSK) is a PPT algorithm that takes as
input a function f ∈ F and the master secret key MSK and outputs a secret
key SKf .

– Decryption rFE.Dec(CT, SKf) is a deterministic algorithm that takes as
input a ciphertext CT, the public key MPK and a secret key SKf and outputs
a string y ∈ Yκ.

Definition 1 (Correctness). A functional encryption scheme FE for random-
ized function family F is correct if for every polynomial n = n(κ), every f ∈ Fn

κ

and every x ∈ Xn
κ , the following two distributions are computationally indistin-

guishable:

1. Real:
{
rFE.Dec

(
CTi, SKfj

)}n,n

i=1,j=1
, where:

– (MPK,MSK) ← rFE.Setup(1κ)
– CTi ← rFE.Enc(xi,MPK) for i ∈ [n]
– SKfj ← rFE.Keygen(fj ,MSK) for j ∈ [n]

2. Ideal: {fj (xi; ri,j)}n,ni=1,j=1 where ri,j ← Rκ

Functional Encryption for Randomized Functionalities 331

Remark 1. We note that unlike the case of deterministic functions where it suf-
fices to define correctness for a single ciphertext and a single key, in the case
of randomized functions, it is essential to define correctness for multiple cipher-
texts and functions. To see this, consider the scenario where a secret key SKf

corresponding to a function f is implemented in such a way that it has some
“fixed” randomness r hardwired in it. Now, upon decrypting any ciphertext
CT ← rFE.Enc(x,MPK) with SKf , one would obtain the output f(x; r) w.r.t.
the same randomness r. Note that this clearly incorrect implementation of SKf

would satisfy the correctness definition for a single ciphertext and a single key,
but will fail to satisfy our definition given above.

2.1 Security for Functional Encryption

We now present our security definitions for rand-FE. We first observe that existing
security definitions for functional encryption only consider the malicious receiver
setting, in that they intuitively guarantee that an adversary who owns a secret
key SKf corresponding to a function f cannot learn anymore than f(x) from an
encryption of x. In this work, we are also interested in achieving security against
malicious senders. In particular, we would like to guarantee that an adversarial
encryptor cannot force “bad” outputs on an honest receiver. As discussed earlier,
this is particularly important when modeling randomized functions.

We consider a a unified adversarial model that captures both malicious re-
ceivers and malicious senders. We present both simulation-based and indistin-
guishability based security definitions. For simplicity, we present our security
definitions for the selective model, where the adversary must decide the chal-
lenge messages up front, before the system parameters are chosen.

Simulation Based Security. We now present a simulation-based security def-
inition (or, SIM-security) for rand-FE. If we only consider malicious receivers,
then our definition looks essentially identical to the standard (selective) SIM-
security definition for FE (for deterinistic functions) [4,21]. In order to provide
security against adversarial senders, we extend the existing definition. To under-
stand the main idea behind our definition, let us consider an honest receiver who
owns a secret key SKf corresponding to a function f . Then, in order to formalize
the intuition that an adversarial sender cannot force “incorrect” outputs on this
honest receiver, we allow the adversary to make decryption queries for arbitrary
ciphertexts4 w.r.t. the secret key SKf . In the ideal world, the simulator must
be able to“extract” the plaintext x from each decryption query and compute as
output f(x; r) for some true randomness r. We then require that the decryption
query in the real world yields an indistinguishable output.

We now proceed to give our formal definition. For simplicity, below we define
security w.r.t. black-box simulators, although we note that our definition can
be easily extended to allow for non-black-box simulation following [3,8]. Our
definition is parameterized by q that denotes the number of challenge messages.

4 This is similar in spirit to the standard chosen-ciphertext security notion for public-
key encryption.

332 V. Goyal et al.

Definition 2 (SIM-security for rand-FE). A functional encryption scheme FE
for the randomized function family F is said to be q-SIM-secure if there exists a
simulator S = (S1, S2, S3) such that for every PPT adversary A = (A1, A2, A3),
the outputs of the following two experiments are computationally indistinguishable:

Experiment REALFE
A (1κ):

(x, st1)← A1 (1
κ) where x ∈ X q

κ

(MPK,MSK)← rFE.Setup(1κ)

st2 ← A
O1(MSK,·), O2(MSK,·,·)
2 (MPK, st1)

CT∗
i ← rFE.Enc(xi,MPK) for i ∈ [q]

α ← A
O1(MSK,·), O2(MSK,·,·)
3 (CT∗, st2)

Output (x, {f} , {g} , {y}, α)

Experiment IDEALFE
A (1κ):

(x, st1)← A1 (1
κ) where x ∈ X q

κ

(MPK,CT∗, st′)← S1 (1
κ)

st2 ← A
O′

1(·), O′
2(·,·)

2 (MPK, st1)

α ← A
O′

1(·), O′
2(·,·)

3 (CT∗, st2)
Output

(
x,
{
f ′
}
,
{
g′
}
, {y′}, α

)

where,

1. Real experiment: In this experiment, O1(MSK, ·) denotes the key gener-
ation oracle rFE.Keygen(·,MSK). The set {f} denotes the key queries made
by A2 and A3.
O2(MSK, ·, ·) denotes a decryption oracle that takes inputs of the form (CT, g)
where g ∈ F . If the query is from A3, then we require that CT �= CT∗

i . O2

computes SKg ← rFE.Keygen(g,MSK) and returns rFE.Dec(CT, SKg). The
set {g} denotes the functions that appear in the decryption queries of A2

and A3 and {y} denotes the responses of O2.
2. Ideal experiment: O′

1(·) denotes the simulator algorithm S2(st
′, ·) that

has oracle access to the ideal functionality KeyIdeal(x, ·). The functionality
KeyIdeal accepts key queries f ′ and returns f ′(xi, ri) for every xi ∈ x and
randomly chosen ri ∈ Rκ. The set {f ′} denotes the key queries made by S2

to KeyIdeal.
O′

2(·, ·) denotes the simulator algorithm S3(st
′, ·, ·) that has oracle access to

ideal functionality DecryptIdeal(·, ·). The functionality DecryptIdeal accepts
input queries (x, g′) and returns y′ = g′(x; r) for randomly chosen r ∈ Rκ.
The set {g′} denotes the functions that appear in the queries of S3 and {y′}
denotes the responses of DecryptIdeal.

We note that in the above selective security definition, pre-ciphertext key queries
are essentially redundant since an adversary can defer all such queries to the
post-ciphertext key query phase. Nevertheless, we present our definition in the
above form to remain syntactically consistent with the full security definition
that consists of two distinct key query phases.

Indistinguishability Based Security. Here we present indistinguishability-
based security definitions for rand-FE. We give two (incomparable) definitions:
the first definition, referred to as INDpre-security allows for adversaries that make
key queries before obtaining the public key. The second definition, referred to as

Functional Encryption for Randomized Functionalities 333

INDpost-security, allows for key queries after the adversary receives the public
key, but puts additional constraints on the distribution of these queries. In both
cases, we strengthen the adversary by allowing decryption queries in a similar
manner as the SIM-security definition.

Security against key queries before public key. We first give a security definition
for the case where the adversary is restricted to making key queries before ob-
taining the public key. Similar to the FE definition for deterministic functions
[4,21], we consider two worlds: a left world where the adversary requests cipher-
texts for challenge message x0, and a right world where the challenge message is
x1. Our definition differs from standard definition for (deterministic) FE in two
ways. First, instead of requiring the outputs corresponding to x0 and x1 to be
equal (for every key query f), we now require them to be computationally indis-
tinguishable5 (given the auxiliary input of the adversary). Second, we strengthen
the adversary by allowing her to make decryption queries in the same manner
as the SIM-security definition.

Definition 3 (INDpre-secure rand-FE). A functional encryption scheme FE is
INDpre-secure if for every non-uniform PPT adversary A = (A1, A2, A3), every
z ∈ {0, 1}∗, the distributions Exp0FE,A(1

κ, z) and Exp1FE,A(1
κ, z) are computa-

tionally indistinguishable, where ExpbFE,A(1
κ, z) is defined as follows :

Experiment ExpbFE,A(1
κ, z):

(MPK,MSK) ← rFE.Setup(1κ)

(x0, x1, st1) ← A
rFE.Keygen(·,MSK)
1 (1κ, z) where x0, x1 ∈ Xκ

st2 ← A
O(MSK,·,·)
2 (MPK, st1)

CT∗ ← rFE.Enc(xb,MPK)
Output A3(CT

∗, st2)

In the above experiment:

1. Let {f} denote the list of key queries made by A1 to the key generation oracle.
Then, the distributions (z, {f (x0)}) and (z, {f (x1)}) are computationally
indistinguishable.

2. O(MSK, ·, ·) denotes a decryption oracle that takes inputs of the form (CT, g)
where g ∈ F . It then computes SKg ← rFE.Keygen(g,MSK) and returns
rFE.Dec(CT, SKg).

Remark 2 (Unbounded INDpre security). Definition 3 can be naturally extended
to allow for multiple challenge messages. The constraint on the key queries {f}
made by A2 will now be that given the challenge message vectors (x0,x1), for
every i, the distributions (z, {f (x0[i])}) and (z, {f (x1[i])}) are computationally
indistinguishable. We call this unbounded INDpre security.

Note that by a standard hybrid argument, INDpre security (for one message)
implies unbounded INDpre security.

5 We note that this condition cannot be verified efficiently.

334 V. Goyal et al.

Security against key queries after public-key. Next we give a security definition
for the case where the adversary is allowed to make key queries after obtaining
the public key. The crucial difference from the previous definition is that we
now require that the output distributions in the left and right world should be
statistically indistinguishable.

Definition 4 (INDpost-secure rand-FE). A functional encryption scheme FE
is INDpost-secure for the randomized function family F if for every non-uniform
PPT adversary A = (A1, A2), every z ∈ {0, 1}∗, the distributions Exp0FE,A(1

κ, z)

and Exp1FE,A(1
κ, z) are computationally indistinguishable, where ExpbFE,A(1

κ, z)
is defined as follows :

Experiment ExpbFE,A(1
κ, z):

(MPK,MSK) ← rFE.Setup(1κ)
(x0, x1, st1) ← A1(1

κ, z) where x0, x1 ∈ Xκ

CT∗ ← rFE.Enc(xb,MPK)

Output A
rFE.Keygen(·,MSK),O(MSK,·,·)
2 (MPK,CT∗, st1)

In the above experiment:

1. Let {f} denote the list of key queries made by A2 to the key generation
oracle. Then the distributions (MPK, z, {f (x0)}) and (MPK, z, {f (x1)}) are
statistically indistinguishable.

2. O(MSK, ·, ·) denotes a decryption oracle that takes inputs of the form (CT, g)
where CT �= CT∗ and g ∈ F . It computes SKg ← rFE.Keygen(g,MSK) and
returns rFE.Dec(CT, SKg).

Remark 3 (Unbounded INDpost security). Similar to Definition 3, the above def-
inition can also be naturally extended to capture security for multiple challenge
messages. We call this unbounded INDpost security. Note that one-message INDpost

security implies unbounded INDpost security.

Remark 4 (Statistical vs Computational Indistinguishability). Note that if we
modify Definition 4 by requiring the output distributions to be computationally
indistinguishable (as in Definition 3, then it may result in a circularity. Consider
a key query f from A2 that simply re-encrypts the plaintext underlying the
challenge ciphertext CT∗

b .
6 In this case, the requirement on the output distribu-

tions is the same as our desired security guarantee for the challenge ciphertexts,
which results in a vaccuous definition. By requiring the output distributions to
be statistically indistinguishable, we are able to break such circularity.

SIM implies IND. It is easy to see that SIM-security implies both INDpre and
INDpost security. Furthermore, since INDpre (resp., INDpost) security for one mes-
sage implies unbounded INDpre (resp., INDpost) security, we have that 1-SIM
security implies unbounded INDpre and INDpost security. We state it below:

6 Note that in Definition 3, such a query is not possible since the adversary is required
to make all the key queries before receiving the public key.

Functional Encryption for Randomized Functionalities 335

Lemma 1. Let FE be a 1-SIM-secure FE scheme for randomized function fam-
ily F . Then FE is also unbounded INDpre-secure and unbounded INDpost-secure
for F .

The proof follows in the same manner as the case of deterministic functions [4].
We provide a sketch in Appendix B for the case of one message. Combining this
with remarks 2 and 3 yields the proof of lemma 1 for unbounded messages.

3 Preliminaries

In this section, we present definitions for various cryptographic primitives that we
shall use in our construction of functional encryption for randomized functions.
We assume familiarity with standard semantically secure public-key encryption
and strongly unforgeable signature schemes and omit their formal definition
from this text. Below, we recall the notions of indistinguishability obfuscation,
puncturable pseudorandom functions, non-interactive witness indistinguishable
proof systems and perfectly binding commitment schemes.

3.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation that was defined by
Barak et al. [2]. Intuitively speaking, we require that for any two circuits C1 and
C2 that are “functionally equivalent” (i.e., for all inputs x in the domain, C1(x) =
C2(x)), the obfuscation of C1 must be computationally indistinguishable from
the obfuscation of C2. Below we present the formal definition following the syntax
of [11].

Definition 5. (Indistinguishability Obfuscation) A uniform PPT machine iO is
called an indistinguishability obfuscator for a circuit class {Cκ} if the following
holds:

– Correctness: For every κ ∈ N, every C ∈ Cκ, every input x in the domain
of C, we have that

Pr[C′(x) = C(x) : C′ ← iO(C)] = 1

– Indistinguishability: For every κ ∈ N, for all pairs of circuits C0, C1 ∈ Cκ,
if C0(x) = C1(x) for all inputs x, then for all PPT adversaries A, we have:

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Recently, Garg et al. [11] gave the first candidate construction for an indistin-
guishability obfuscator iO for the circuit class P/poly. Subsequent to their work,
Pass et al [22] construct an indistinguishability obfuscator based on an “uber”
assumption on multilinear encodings. More recently, Gentry et al [13] construct
an indistinguishability obfuscator based on the multilinear subgroup elimination
assumption.

336 V. Goyal et al.

3.2 Puncturable Pseudorandom Functions

Puncturable family of PRFs are a special case of constrained PRFs [6,7,20],
where the PRF is defined on all input strings except for a set of size polynomial
in the security parameter. Below we recall their definition, as given by [26].

Syntax A puncturable family of PRFs is defined by a tuple of algorithms (Key,
Eval, Puncture) and a pair of polynomials n(·) and m(·) :

– Key Generation Key(1κ) is a PPT algorithm that takes as input the se-
curity parameter κ and outputs a PRF key K

– Punctured Key Generation Puncture(K,S) is a PPT algorithm that
takes as input a PRF key K, a set S ⊂ {0, 1}n(κ) and outputs a punctured
key KS

– Evaluation Eval(K,x) is a deterministic algorithm that takes as input a
key K (punctured key or PRF key), a string x ∈ {0, 1}n(κ) and outputs
y ∈ {0, 1}m(κ)

Definition 6. A family of PRFs Key, Eval, Puncture is puncturable if it satisfies
the following properties :

– Functionality preserved under puncturing. Let K ← Key(1κ), KS ←
Puncture(K,S). Then, for all x /∈ S, Eval(K,x) = Eval(KS , x).

– Pseudorandom at punctured points. For every PPT adversary (A1, A2)
such that A1(1

κ) outputs a set S ⊂ {0, 1}n(κ), x ∈ S and state st, consider
an experiment where K ← Key(1κ) and KS ← Puncture(K,S). Then∣∣Pr[A2(KS , x,Eval(K,x), st) = 1]− Pr[A2(KS , x, Um(κ), st) = 1]

∣∣ ≤ negl(κ)

where U� denotes the uniform distribution over � bits.

As observed by [20,6,7], the [14] construction of PRFs from one-way functions
easily yield puncturable PRFs.

Theorem 1 ([14,20,6,7]). If one-way functions exist, then for all polynomials
n(κ) and m(κ), there exists a puncturable PRF family that maps n(κ) bits to
m(κ) bits.

We note that in the above construction, the size of the punctured key KS

grows linearly with the size of the punctured set S.

3.3 Non-Interactive Witness Indistinguishable Proofs

In this section, we present the definition for non-interactive witness-
indistinguishable (NIWI) proofs. We emphasize that we are interested in proof
systems, i.e., where the soundness guarantee holds against computationally un-
bounded cheating provers.

Functional Encryption for Randomized Functionalities 337

Syntax. Let R be an efficiently computable relation that consists of pairs (x,w),
where x is called the statement and w is the witness. Let L denote the language
consisting of statements in R. A non-interactive proof system for a language L
consists of a setup algorithm NIWI.Setup, a prover algorithm NIWI.Prove and a
verifier algorithm NIWI.Verify, defined as follows:

– Setup NIWI.Setup(1κ) is a PPT algorithm that takes as input the security
parameter 1κ and outputs a common reference string crs.

– Prover NIWI.Prove(crs, x, w) is a PPT algorithm that takes as input the
common reference string crs, a statement x along with a witness w. (x,w) ∈
R; if so, it produces a proof string π, else it outputs fail.

– Verifier NIWI.Verify(crs, x, π) is a PPT algorithm that takes as input the
common reference string crs and a statement x with a corresponding proof
π. It outputs 1 if the proof is valid, and 0 otherwise.

Definition 7 (NIWI). A non-interactive witness-indistinguishable proof system
for a language L with a PPT relation R is a tuple of algorithms (NIWI.Setup,
NIWI.Prove, NIWI.Verify) such that the following properties hold:

– Perfect Completeness: For every (x,w) ∈ R, it holds that

Pr[NIWI.Verify(crs, x,NIWI.Prove(crs, x, w)) = 1] = 1

where crs ← NIWI.Setup(1κ), and the probability is taken over the coins of
NIWI.Setup, NIWI.Prove and NIWI.Verify.

– Statistical Soundness: For every adversary A, it holds that

Pr[NIWI.Verify(crs, x, π) = 1 ∧ x /∈ L | crs ← NIWI.Setup(1κ); (x, π) ← A(crs)] = negl(1κ)

– Witness Indistinguishability: For any triplet (x,w0, w1) such that
(x,w0) ∈ R and (x,w1) ∈ R, the distributions {crs,NIWI.Prove(crs, x, w0)}
and {crs, NIWI.Prove(crs, x, w1)} are computationally indistinguishable,
where crs ← NIWI.Setup(1κ).

Recently, it was shown by Sahai and Waters [26] that NIWI proofs can be
constructed from indistinguishability obfuscation and one-way functions.

3.4 Commitment Schemes

A commitment scheme Com is a PPT algorithm that takes as input a string x
and outputs C ← Com(x). A perfectly binding commitment scheme must satisfy
the perfect binding and computational hiding properties :

– Perfectly Binding: This property states that two different strings cannot
have the same commitment. More formally, ∀x1 �= x2, s1, s2 Com(x1; s1) �=
Com(x2; s2)

– Computational Hiding: For all strings x0 and x1 (of the same length),
for all PPT adversaries A, we have that :

|Pr[A(Com(x0)) = 1]− Pr[A(Com(x1) = 1)]| ≤ negl(κ)

338 V. Goyal et al.

For simplicity of exposition, we present our FE scheme in Sect. 4 using a non-
interactive perfectly binding scheme. We stress, however, that it is actually suffi-
cient to use a standard 2-round statistically binding scheme in our construction.
Such schemes can be based on one way functions.

4 Our Construction

Let F denote the family of all PPT functions. We now present a functional
encryption scheme FE for F . For any a priori bounded q = poly(κ), we prove
that FE is q-SIM-secure. Note that from Lemma 1, it follows that FE is also
unbounded INDpre and INDpost secure.

Note that in the case of SIM-security, the size of the secret keys in FE grows
linearly with q. It follows from [4,3,8] that such a dependence on q is necessary.

Notation. Let (NIWI.Setup, NIWI.Prove, NIWI.Verify) be a NIWI proof system.
Let Com be a perfectly binding commitment scheme. Let iO be an indistinguisha-
bility obfuscator for all efficiently computable circuits. Let (Key, Puncture, Eval)
be a puncturable family of PRF. Let (Gen, Sign, Verify) be a strongly unforge-
able one-time signature scheme. Finally, let (PKE.Setup, PKE.Enc, PKE.Dec) be
a semantically secure public-key encryption scheme.

Let c-len = c-len(1κ) denote the length of ciphertexts in (PKE.Setup, PKE.Enc,
PKE.Dec) . Let v-len = v-len(1κ) denote the length of verification keys in (Gen,
Sign, Verify). We shall use a parameter len = 2 · c-len+ v-len in the description of
our scheme. We now proceed to describe our scheme FE = (rFE.Setup, rFE.Enc,
rFE.Keygen, rFE.Dec).

Setup rFE.Setup(1κ): The setup algorithmfirst computes a CRS crs ← NIWI.Setup
for the NIWI proof system. Next, it computes two key pairs – (PK1, SK1) ←
PKE.Setup(1κ), (PK2, SK2) ← PKE.Setup(1κ) – of the public-key encryption
scheme. Finally, it computes a commitment C ← Com(0len).

The public key MPK = (crs, PK1, PK2, C) and the master secret key MSK =
SK1. The algorithm outputs (MPK,MSK).

Encryption rFE.Enc(x,MPK): To encrypt a message x, the encryption algo-
rithm first generates a key pair (sk, vk) ← Gen(1κ) of the one-time signature
scheme. It then computes ciphertexts c1 ← PKE.Enc(x, PK1; r1) and c2 ←
PKE.Enc(x, PK2; r2). Next, it computes a NIWI proof π ← NIWI.Prove(crs, z, w)
for the NP statement z = (z1 ∨ z2) where z1 and z2 are defined as follows:

z1 :=(∃x, s1, s2 such that c1 = PKE.Enc(x, PK1; s1)∧c2 = PKE.Enc(x, PK2; s2))
(1)

z2 := (∃s such that C = Com(c1‖c2‖vk, s) (2)

A witness wreal = (x, s1, s2) for z1 is referred to as the real witness, while a
witness wtrap = s for z2 is referred to as the trapdoor witness.

Functional Encryption for Randomized Functionalities 339

The honest encryption algorithm uses the real witness wreal to compute π.
Finally, it computes a signature σ ← Sign(c1‖c2‖π, sk) on the string c1‖c2‖π
using sk. The output of the algorithm is the ciphertext CT = (c1, c2, π, vk, σ).

Key Generation rFE.Keygen(f,MSK): On input f ,the key generation algorithm
first chooses a fresh PRF key K ← Key(1κ). It then computes the secret key
SKf ← iO(Gf) where the function Gf is described in Fig. 1. Note that Gf has
the public key MPK, the secret key SK1 and the PRF key K hardwired in it.

Input: Ciphertext CT
Constants: MPK, SK1, K, f

1. Parse CT = (c1, c2, π, vk, σ).
2. If Verify(σ, c1‖c2‖π, vk) = 0, then output ⊥ and stop, otherwise continue to
the next step.

3. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the
next step. Here z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding
to π.

4. Compute x ← PKE.Dec(c1, SK1).
5. Compute r ← Eval(K, c1‖c2‖vk).
6. Output f(x; r).

Fig. 1. Functionality Gf

The algorithm outputs SKf as the secret key corresponding to f .

Size of Function Gf . In order to prove that FE is q-SIM-secure, we require
the function Gf to be padded with zeros such that |Gf | = |Sim.Gf |, where the
“simulated” functionality Sim.Gf is described later in Fig. 2. In this case, the
size of SKf grows linearly with q.

Decryption rFE.Dec(CT, SKf): On input CT, the decryption algorithm computes
and outputs SKf (CT).

This completes the description of FE . We prove the correctness of FE in
Appendix A.

Theorem 2. Assuming indistinguishability obfuscation for all polynomial-time
computable circuits and one-way functions, the proposed scheme FE is 1-SIM-
secure.

5 Proof of Theorem 2

We now prove that the proposed scheme FE is 1-SIM-secure. Our proof can be
naturally extended to q-SIM-security, for any a priori fixed q = poly(κ).

340 V. Goyal et al.

We first construct an ideal world adversary aka simulator S in Sect. 5.1. Next,
in Sect. 5.2, we prove indistinguishability of the outputs of the real and ideal
world experiments via a hybrid argument.

5.1 Description of Simulator

We describe a simulator S = (S1, S2, S3) that makes black-box use of a real
world adversary A = (A1, A2, A3).

Algorithm S1. S1 first performs a simulated setup procedure. Namely, it first
computes a CRS crs ← NIWI.Setup(1κ) for the NIWI proof system and two
key pairs – (PK1, SK1) ← PKE.Setup(1κ) and (PK2, SK2) ← PKE.Setup(1κ) –
for the public-key encryption scheme. Next, it chooses a key pair for the sig-
nature scheme - (sk∗, vk∗) ← Gen(1κ). Then, it computes the commitment
C in the following manner: (a) First compute c∗1 ← PKE.Enc(0, PK1) and
c∗2 ← PKE.Enc(0, PK2). (b) Next, compute C ← Com(c∗1‖c∗2‖vk∗). Let s de-
note the randomness used to compute C .

S1 constructs a proof π∗ by using the trapdoor witness s, that is, π∗ ←
NIWI.Prove(crs, y, s), where the statement y = (c∗1, c

∗
2, vk

∗, PK1, PK2, C). Fi-
nally, it computes σ∗ ← Sign(c∗1‖c∗2‖π∗, sk∗). It sets MPK = (crs, PK1, PK2, C)
and challenge ciphertext CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗).

Algorithm S2. S2 simulates the key generation oracle. Whenever A2 or A3 makes
a key query for a function f , S2 performs the following sequence of steps:

1. Query the ideal functionality KeyIdeal on input f . Let y∗ be the output of
KeyIdeal .

2. Compute a PRF key K ← Key(1κ) and a punctured key K ′ ← Puncture(K,
c∗1‖c∗2‖vk∗).

3. Compute the secret key SKf ← iO(Sim.Gf) where the functionality Sim.Gf

is described in Fig. 2. Sim.Gf has the public key MPK, secret key SK1, the
punctured key K ′, the challenge ciphertext CT∗ and the output value y∗

hardwired in it.
4. Return SKf .

Algorithm S3. S3 simulates the decryption oracle. Whenever A2 or A3 makes a
decryption query (CT, g) where CT = (c1, c2, π, vk, σ), S3 performs the following
sequence of steps:

1. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the
next step.

2. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to
the next step. Here z = (c1, c2, vk, PK1, PK2, C) is the statement corre-
sponding to π.

3. Compute x ← PKE.Dec(c1, SK1).
4. Return DecryptIdeal(x, g).

Functional Encryption for Randomized Functionalities 341

Input: Ciphertext CT
Constants: MPK, SK1, K

′, f , CT∗ = (c∗1 , c
∗
2, π

∗, vk∗, σ∗), y∗

1. Parse CT = (c1, c2, π, vk, σ).
2. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the
next step.

3. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the
next step. Here z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding
to π.

4. If (c1‖c2‖vk = c∗1‖c∗2‖vk∗) output y and stop.
5. Compute x ← PKE.Dec(c1, SK1).
6. Compute r ← Eval(K′, c1‖c2‖vk).
7. Output f(x; r).

Fig. 2. Functionality Sim.Gf

5.2 Indistinguishability of the Outputs

We now describe a series of hybrid experiments H0, . . . ,H11, where H0 corre-
sponds to the real world and H11 corresponds to the ideal world experiment.

Hybrid H0: This is the real experiment. Here, each decryption query (CT, g) is
answered using a decryption key skg ← iO(Gg) where Gg is defined in the same
manner as Gf , except that it has function g hardwired in it.

Hybrid H1: This experiment is the same as H0 except in the manner in which
the key queries of the adversary are answered. Let CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗)
denote the challenge ciphertext. Whenever the adversary A2 or A3 makes a key
query f , we perform the following steps:

1. Compute a PRF key K ← Key(1κ) and then compute a punctured key
K ′ ← Puncture(K, c∗1‖c∗2‖vk∗).

2. Compute r ← Eval(K, c∗1‖c∗2‖vk∗) and y∗ = f(x; r).
3. Compute the secret key SKf ← iO(Sim.Gf) where the functionality Sim.Gf

is described in Fig. 2. Note that Sim.Gf has the public key MPK, master
secret key MSK, the punctured key K ′, the challenge ciphertext components
ct∗ and the output value y∗ (as computed above) hardwired in it.

4. Return SKf .

Hybrid H2: This experiment is the same as H1, except that we now answer the
key queries of A2 and A3 in the same manner as the simulator S2.

Hybrid H3: This experiment is the same as H2, except that the setup algorithm
computes the commitment C in the following manner: let CT∗ = (c∗1, c

∗
2, π

∗, vk∗,
σ∗) denote the challenge ciphertext. Then, C ← Com(c∗1‖c∗2‖vk∗).

342 V. Goyal et al.

Hybrid H4: This experiment is the same as H3, except that we modify the chal-
lenge ciphertext CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗): the proof string π∗ is now computed
using the trapdoor witness s where s is the randomness used to compute the
commitment C.

Hybrid H5: This experiment is the same as H4, except that in the challenge
ciphertext CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗), the second ciphertext c∗2 is an encryption
of zeros, i.e., c∗2 ← PKE.Enc(0, PK2).

Hybrid H6: This experiment is the same as H5, except that for every key query
f , the secret key SKf is computed as SKf ← iO(Sim.G′

f) where Sim.G′
f is the

same as function Sim.Gf except that:

1. It has secret key SK2 hardwired instead of SK1.
2. It decrypts the second component of each input ciphertext using SK2.

More concretely, in Step 5 of Sim.G′
f , plaintext x is computed as x ←

PKE.Dec(c2, SK2).

Hybrid H7: This experiment is the same as H6, except that we modify the manner
in which the decryption queries of A2 and A3 are answered: each query (CT, g) is
answered using a decryption key skg ← iO(G′

f) where G′
g is the same as function

Gg except that:

1. It has secret key SK2 hardwired instead of SK1.
2. It decrypts the second component of each input ciphertext using SK2. More

concretely, in Step 4 of Gg, plaintext x is computed as x ← PKE.Dec(c2, SK2).

Hybrid H8: This experiment is the same as H7, except that in the challenge
ciphertext CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗), the first ciphertext c∗1 is an encryption of
zeros, i.e., c∗1 ← PKE.Enc(0, PK1).

Hybrid H9: This experiment is the same as H8, except that we modify the manner
in which the decryption queries of A2 and A3 are answered: each query (CT, g)
is answered using a decryption key skg ← iO(Gf).

Hybrid H10: This experiment is the same as H9, except that we change the
manner in which the key queries are answered. For every key query f , the secret
key SKf is computed as SKf ← iO(Sim.Gf).

Hybrid H11: This experiment is the same as H10, except that we now answer the
decryption queries of A2 and A3 in the same manner as the simulator algorithm
S3. Note that this is the ideal experiment.

This completes the description of the hybrid experiments. Next, we prove
that for every i, the outputs of experiments Hi and Hi+1 are computationally
indistinguishable.

Lemma 2. Assuming that iO is an indistinguishability obfuscator, hybrid ex-
periments H0 and H1 are computationally indistinguishable.

Functional Encryption for Randomized Functionalities 343

Proof. Note that the only difference in H0 and H1 is that in the former exper-
iment, we output iO(Gf) as the key corresponding to any key query f , while
in the latter experiment, we output iO(Sim.Gf). In order to prove that these
two hybrids are computationally indistinguishable, we show that for every key
query f , Gf and Sim.Gf have identical input-output behavior. Then, by security
of indistinguishability obfuscation, we would have that iO(Gf) and iO(Sim.Gf)
are computationally indistinguishable, which in turn would imply H0 and H1 are
computationally indistinguishable.

Observation 1. For any input CT = (c1, c2, π, vk, σ), Gf outputs ⊥ if and only
if Sim.Gf outputs ⊥.

Note that both Gf and Sim.Gf output ⊥ if and only if either the signature σ does
not verify or the proof π does not verify; that is, either Verify(σ, c1‖c2‖π, vk) = 0
or NIWI.Verify(crs, y, π) = 0 where y = (c1, c2, vk, PK1, PK2, C). Let us call an
input CT = (c1, c2, π, vk, σ) valid if both the signature σ and proof π verify.
Next, we prove that both Gf in H0 and Sim.Gf in H1 have the same functionality
for all valid inputs.

Claim 1. For any valid input CT = (c1, c2, π, vk, σ), Gf (CT) = Sim.Gf (CT).

Proof. We consider two cases : c1‖c2‖vk �= c∗1‖c∗2‖vk∗ and c1‖c2‖vk = c∗1‖c∗2‖vk∗.
For the first case, note that by the first property of constrained PRF, it follows
that Eval(K, c1‖c2‖vk) = Eval(K ′, c1‖c2‖vk) = r. Both Gf in H0 and Sim.Gf in
H1 decrypt c1 using SK1 to compute x, and then output f(x, r).

In the second case, Gf computes r ← Eval(K, c∗1‖c∗2‖vk∗), and then computes
x by decrypting c1 and outputs y = f(x; r). On the other hand, Sim.Gf simply
outputs the hard-wired value y∗ when c1‖c2‖vk = c∗1‖c∗2‖vk∗. However, note that
y∗ = y, thereby ensuring that Gf (CT

∗) = Sim.Gf (CT
∗).

Using the above claims, we can now describe our reduction. Assume A2 and
A3 together make a total of � key queries. We define hybrids H0,i, 0 ≤ i ≤ �, as
follows: in H0,i, we respond to the first � − i queries using FE.Keygen as in H0,
and respond to the last i queries as in H1.

Claim 2. If ∃ a PPT distinguisher A that can distinguish the outputs of H0,i

and H0,i+1 with non negligible advantage, then there exists a PPT adversary B
that can break the security of iO with non-negligible advantage.

Let C be the challenger for obfuscation. Adversary B works as follows:

1. It first honestly computes (MPK, st′,CT∗).
2. For the first (� − i − 1) key queries f , B computes the key for f using

rFE.Keygen(·,MSK). For the last i key queries f , B computes the key for f
as in H1.

3. For the (�−i)’th key query for function f , B chooses a PRF key K, computes
K ′ ← Puncture(K, c∗1‖c∗2‖vk∗) and y = f(x;Eval(K, c∗1‖c∗2‖vk∗)). It then
defines programs Gf , Sim.Gf and sends them to C, and receives an obfuscation
SKf , which it passes on to the adversary.

344 V. Goyal et al.

4. B runs the rest of the experiment in the same manner as in H0 and H1.
5. Finally, B sends the output of the experiment to A and returns its output

to C.

Now, if C returns obfuscation of Gf , then B perfectly simulates experiment H0,i,
else it simulates experiment H0,i+1. Thus, if A distinguishes the outputs with non
negligible advantage, then clearly B breaks the security of indistinguishability
obfuscation with non negligible advantage.

Lemma 3. Assuming (Key,Eval,Puncture) is a puncturable family of PRFs, hy-
brid experiments H1 and H2 are computationally indistinguishable.

Proof. Assume A2 and A3 make a total of � key queries. We consider � inter-
mediate hybrids H1,i for 0 ≤ i ≤ � where in H1,i, we respond to the first � − i
key queries as in H1, and the remaining i key queries as in H2. We show that if
there exists a PPT distinguisher A that can distinguish the outputs of H1,i and
H1,i+1 with non-negligible advantage, then there exists a PPT adversary B that
can break the security of puncturable PRFs with non-negligible advantage. The
construction of B is as follows :

1. B first computes MPK,MSK,CT∗ honestly.
2. For the first (�− i− 1) key queries from A3, B responds in the same manner

as in H1. For the last i key queries, B responds as in H2.
3. For the (�− i)’th key query f , B first sends (c∗1‖c∗2‖vk∗) to the challenger C

and receives (K ′, r), where K ′ = Puncture(K, c∗1‖c∗2‖vk∗) for some PRF key
K and r is either Eval(K, c∗1‖c∗2‖vk∗) or a uniformly random string in Rκ. It
then defines the function Sim.Gf as before. B sends iO(Sim.Gf) as the key
for function f .

4. B runs the rest of the experiment in the same manner as in H1 and H2.
5. Finally, B sends the output of the experiment to A and returns its output

to C.

Note that if r was computed as Eval(K, c∗1‖c∗2‖vk∗), then B perfectly simulates
experiment H1,i, else it simulates H1,i+1. Thus, if A can distinguish the outputs
of H1,i and H1,i+1 with non-negligible advantage, then B can break security of
puncturable PRFs with non-negligible advantage.

Lemma 4. Assuming Com is a computationally hiding commitment scheme,
hybrid experiments H2 and H3 are computationally indistinguishable.

Proof. Note that the only difference between experiments H2 and H3 is that
C is computed as a commitment to 0len in the former case and (c∗1‖c∗2‖vk∗) in
the latter. Then, assume that ∃ PPT distinguisher A that can distinguish the
outputs of H2 and H3 with non-negligible advantage. Using A, we can construct
a PPT algorithm B that breaks the computational hiding property of Com as
follows:

1. B first runs A1 to obtain x. It then computes (PK1, SK1) ← PKE.Setup(1κ),
(PK2, SK2) ← PKE.Setup(1κ), crs ← NIWI.Setup and (sk∗, vk∗) ← Gen(1κ).

Functional Encryption for Randomized Functionalities 345

2. Next, it computes c∗1 ← PKE.Enc(x, PK1), c
∗
2 ← PKE.Enc(x, PK2) and con-

structs a valid proof π∗ using the real witness. Then it signs c∗1‖c∗2‖π∗ using
sk∗ to compute σ∗. It sets CT∗ = (c∗1, c

∗
2, π

∗, vk∗, σ∗)
3. B sends 0len and (c∗1‖c∗2‖vk∗) to C, and receives C, which is either a commit-

ment to 0len or (c∗1‖c∗2‖vk∗).
4. B simulates the rest of the experiment as in H2 and H3.
5. Finally, B sends the output of the experiment to A and returns its output

to C.

Now, if C is a commitment to 0len, then B perfectly simulates H2, else it simulates
H3. Thus, if A can distinguish the outputs of H4 and H5 with non-negligible
advantage, then B breaks the hiding of Com.

Lemma 5. Assuming witness indistinguishability of NIWI, hybrid experiments
H3 and H4 are computationally indistinguishable.

Proof. In H3, we use the real witness for proving that c∗1 and c∗2 are encryptions
of the same message, while in H4, we use the trapdoor witness for proving that
C is a commitment to (c∗1‖c∗2‖vk∗). Since NIWI is witness indistinguishable, the
two hybrids are computationally indistinguishable.

Lemma 6. Assuming (PKE.Setup,PKE.Enc,PKE.Dec) is IND-CPA secure, hy-
brid experiments H4 and H5 are computationally indistinguishable.

Proof. We show that if there exists an efficient distinguisher A that can distin-
guish between H4 and H5, then there exists an efficient adversary B that breaks
IND-CPA security. B is defined as follows:

1. B first receives a public key pk from IND-CPA challenger C.
2. B computes (PK1, SK1) ← PKE.Setup(1κ), crs ← NIWI.Setup, (sk∗, vk∗) ←

Gen(1κ) and sets PK2 = pk. Next, it encrypts the challenge message x using
PK1 to compute ciphertext c∗1

3. B sends (0, x) as its challenge messages to C, and receives a ciphertext c. It
sets c∗2 = c. Next, it computes the commitment C = Com(c∗1‖c∗2‖vk∗).

4. B runs the rest of the experiment in the same manner as in H4 and H5.
5. Finally, B sends the output of the experiment to A.
6. If A outputs H4, then B outputs that c is an encryption of x. Else it outputs

c is an encryption of 0.

Now, if c is an encryption of x, then B perfectly simulates experiment H4, else it
simulates H5. Then, clearly, if A’s output is correct, then so is B’s output. Hence,
if A can distinguish the outputs of the two experiments with non negligible
advantage, then B can win the IND-CPA game with the same advantage.

Lemma 7. Assuming NIWI is statistically sound, iO is an indistinguishability
obfuscator and Com is perfectly binding, hybrid experiments H5 and H6 are com-
putationally indistinguishable.

Proof. As in the proof of Lemma 2, we first argue that both Sim.Gf and Sim.G′
f

have identical input-output behavior.

346 V. Goyal et al.

Observation 2. For all inputs CT = (c1, c2, π, vk, σ), Sim.Gf (CT) = ⊥ if and
only if Sim.G′

f (CT) = ⊥.

Both Sim.Gf and Sim.G′
f output ⊥ if and only if either Verify(σ, c1‖c2‖π, vk) = 0

or NIWI.Verify(crs, y, π) = 0 where y = (c1, c2, vk, PK1, PK2, C). Therefore, we
only need to consider valid inputs. Next, we show that any valid input must
satisfy one of the two properties listed below.

Claim 3. Any valid ciphertext CT = (c1, c2, π, vk, σ) should satisfy one of the
following properties :
– c1 and c2 are encryptions of the same message
– c1‖c2‖vk = c∗1‖c∗2‖vk∗.

Proof. Suppose, on the contrary, there exists a valid input such that it satisfies
neither of the properties. Since NIWI is statistically sound, if the input is valid,
then the statement y = (c1, c2, vk, PK1, PK2, C) must have either a real witness
or a trapdoor witness. Since c1 and c2 are encryptions of different messages, a
real witness does not exist. Therefore, for the input to be valid, there must exist
a trapdoor witness; that is, there exists an s such that C = Com(c1‖c2‖vk; s).
However, since C = Com(c∗1‖c∗2‖vk∗) and Com is perfectly binding, it follows
that (c1‖c2‖vk) = (c∗1‖c∗2‖vk∗). Thus, we have a contradiction.

Using the previous claim, we can now argue that both Sim.Gf and Sim.G′
f

have identical input-output behavior.

Claim 4. For all valid inputs CT = (c1, c2, π, vk, σ), both Sim.Gf and Sim.G′
f

have the same functionality.

Proof. If both c1 and c2 are encryptions of the same message, then we have that
PKE.Dec(c1, SK1) = PKE.Dec(c2, SK2) = x. Therefore both programs Sim.Gf

and Sim.G′
f output f(x; r), where r ← Eval(K, c1‖c2‖vk) = Eval(K ′, c1‖c2‖vk).

If c1‖c2‖vk = c∗1‖c∗2‖vk∗, then both Sim.Gf and Sim.G′
f output y∗, where y∗ is

KeyIdeal’s response to query x. Therefore, for all valid inputs, Sim.Gf and Sim.G′
f

have identical input-output behavior.

We now describe our reduction. Assume A2 and A3 make a total of � key
queries. Consider intermediate hybrids H5,i 0 ≤ i ≤ �. In H5,i, we use SK1 for
the first � − i key queries, and SK2 for the remaining i queries. Now, suppose
that there exists a PPT distinguisher A that can distinguish the outputs of H5,i

and H5,i+1. Then, there ∃ an adversary B that can break the security of iO. B
is constructed as follows:

1. B generates MPK,CT∗ as in H5. It sets st′ = SK1, SK2,CT
∗.

2. For the first (�− i− 1) key queries by A, B responds as in H5. For the last i
queries, B responds as in H6.

3. For the (� − i)’th key query f , B queries KeyIdeal with f and receives
y. Next, it chooses a PRF Key K, computes punctured key K ′ ←
Puncture(K, c∗1‖c∗2‖vk∗) and defines functions Sim.Gf and Sim.G′

f . B sends
Sim.Gf and Sim.G′

f to the obfuscation challenger C, receives challenge obfus-
cation SKf , which it passes on to A2.

Functional Encryption for Randomized Functionalities 347

4. B runs the rest of the experiment in the same manner as in H5 and H6.
5. Finally, B sends the output of the experiment toA and forwardsA’s response

to C.

Now, if C returns obfuscation of Gf , then B perfectly simulates experiment
H5,i, else it simulates experiment H5,i+1. Thus, if A distinguishes the outputs
with non negligible advantage, then clearly B breaks the security of indistin-
guishability obfuscation with non negligible advantage.

Lemma 8. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time sig-
nature scheme, NIWI is statistically sound and Com is perfectly binding, hybrid
experiments H6 and H7 are statistically indistinguishable.

Proof. As shown in claim 3, any valid ciphertextCT = (c1, c2, π, vk, σ) is such that
either c1 and c2 are encryptions of the same message or c1‖c2‖vk = c∗1‖c∗2‖vk∗.
However, recall that for decryption queries, we only require that CT �= CT∗.

If both c1 and c2 encrypt the same value, then clearly the use of SK1 or SK2

is indistinguishable. Then, lets consider the case where c1‖c2‖vk = c∗1‖c∗2‖vk∗,
yet CT �= CT∗. In this case, it must be that π∗‖σ∗ �= π‖σ. Now, if π �= π∗,
then since vk = vk∗ and (c1‖c2‖π) �= (c∗1‖c∗2‖π∗), we have that σ is a forgery
for (c1‖c2‖π). On the other hand, if π = π∗, then it must be that σ �= σ∗. In
this case, we have that σ is a strong forgery for (c1‖c2‖π) = (c∗1‖c∗2‖π∗). We
can therefore break the security of the strongly unforgeable one time signature
scheme.

Lemma 9. Assuming (PKE.Setup,PKE.Enc,PKE.Dec) is IND-CPA secure, hy-
brid experiments H7 and H8 are computationally indistinguishable.

Proof. Same as proof for Lemma 6.

Lemma 10. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time
signature scheme, NIWI is statistically sound and Com is perfectly binding, hybrid
experiments H8 and H9 are statistically indistinguishable.

Proof. Same as in proof of Lemma 8.

Lemma 11. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time sig-
nature scheme, NIWI is statistically sound, iO is indistinguishability obfuscator
and comm is perfectly binding, hybrid experiments H9 and H10 are computation-
ally indistinguishable.

Proof. Same as in proof for Lemma 7.

Lemma 12. Assuming (Key,Eval,Puncture) is a puncturable family of PRFs,
hybrid experiments H10 and H11 are computationally indistinguishable.

Proof. In H10, on receiving a decryption query (CT, g), we sample PRF keyK and
decrypt CT using skg ← iO(Gg), where CT = (c1, c2, π, vk, σ) and Gg uses ran-
domness r ← Eval(K, c1‖c2‖vk) to compute the output g(x,Eval(K, c1‖c2‖vk)).

348 V. Goyal et al.

On the other hand, in H11, the output is computed as g(x, r) ← DecryptIdeal(x, g)

where r
$← Rκ.

If there exists an efficient adversary that can distinguish between the outputs
of H10 and H11 with non negligible probability, then there exists an efficient
adversary that can distinguish between the output of Eval from a truly ran-
dom string with non negligible probability, thereby breaking the security of a
pseudorandom function.

Acknowledgements. We thank Gil Segev for helpful comments on our security
definitions. We also thank Ran Canetti, Shafi Goldwasser, Brent Waters and
Xiang Xe for useful discussions.

References

1. Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro, S., Wil-
son, D.A.: On the relationship between functional encryption, obfuscation, and
fully homomorphic encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308,
pp. 65–84. Springer, Heidelberg (2013)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility re-
sults, impossibility results and the quest for a general definition (2013)

4. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

5. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013)

7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

8. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013)

9. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC, pp. 542–552 (1991)

10. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complex-
ity of differentially private data release: efficient algorithms and hardness results.
In: STOC, pp. 381–390 (2009)

11. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

Functional Encryption for Randomized Functionalities 349

12. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryp-
tion without obfuscation. IACR Cryptology ePrint Archive 2014, 666 (2014),
http://eprint.iacr.org/2014/666

13. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. IACR Cryptology ePrint
Archive 2014, 309 (2014), http://eprint.iacr.org/2014/309

14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986), http://doi.acm.org/10.1145/6490.6503

15. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC (2013)

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

17. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized
functionalities. IACR Cryptology ePrint Archive 2013, 729 (2013)

18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security (2006)

19. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

20. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: ACM CCS (2013)

21. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010 (2010)

22. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

23. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

24. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM Conference on Computer and Communications Security, pp. 463–
472 (2010)

25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

26. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable en-
cryption, and more. In: STOC (2014)

27. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. IACR Cryptology ePrint Archive 2014, 588 (2014),
http://eprint.iacr.org/2014/588

A Correctness of FE
Theorem 3. If (Key,Puncture,Eval) is a PRF, then the proposed scheme FE
satisfies correctness.

Proof. We first prove this theorem for a single key. Fix any f ∈ Fκ,x ∈ Xn
κ .

Consider the distribution Real1: {rFE.Dec(CTi, SKf)}ni=1, where (MPK,MSK) ←
rFE.Setup(1κ), CTi = (ci,1, ci,2, πi, vki, σi) ← rFE.Enc(xi,MPK) for i ∈ [n]

http://eprint.iacr.org/2014/666
http://eprint.iacr.org/2014/309
http://doi.acm.org/10.1145/6490.6503
http://eprint.iacr.org/2014/588

350 V. Goyal et al.

and Kf ← rFE.Keygen(f,MSK). Similarly, consider the Ideal1 distribution
{f(xi, ri)}ni=1, where ri ← Rκ.

Claim 5. Assuming Eval(·, ·) is a PRF, Real1 and Ideal1 distributions are com-
putationally indistinguishable.

Proof. Note that rFE.Dec(CTi, SKf) = f(xi,Eval(K, ci,1‖ci,2‖vki)). Therefore,
the Real1 distribution is {f(xi,Eval(K, ci,1‖ci,2‖vki))}ni=1. Suppose there exists
an adversary A that can distinguish between the distributions Real1 and Ideal1
with non-negligible advantage. Then there exists an adversary B that can break
the PRF security of Eval(·, ·). The reduction is as follows :

1. PRF challenger C chooses a bit b ← {0, 1}.
2. For i = 1 to n

(a) B sends (ci,1‖ci,2‖vki) to C, and receives r. If b = 0, r =
Eval(K, ci,1‖ci,2‖vki), else r ← Rκ.

(b) B computes yi = f(xi, r).
3. B sends y to A, and depending on A’s guess, B outputs 0 or 1.

Clearly, if A distinguishes between the distributions Real1 and Ideal1 with non-
negligible advantage, then B breaks the PRF security with non-negligible ad-
vantage.

This lemma can be extended, via a standard hybrid argument, to prove that the
Real and Ideal distributions are computationally indistinguishable.

B SIM Security Implies INDpre and INDpost Security

We first prove that 1-SIM security implies one-message INDpre security. We actu-

ally prove the stronger statement that 1-S̃IM security implies one-message INDpre

security where in S̃IM security, the adversary is restricted to making all of the
key queries before receiving the public key. Let x0, x1 ∈ Xκ be any two mes-
sages. Let REAL0(1κ) correspond to real world experiment in Definition 3 where

the challenge ciphertext corresponds to the encryption of x0. From 1-S̃IM secu-

rity, we have that REAL0(1κ) is computationally indistinguishable to ˜IDEAL
0

(1κ)

where ˜IDEAL
0

(1κ) is the corresponding ideal world in Definition 2. (In partic-

ular, in ˜IDEAL
1

(1κ), the simulator receives the output of every key query f on
message x0.) Now, since Definition 3 requires the promise that (z, {f (x0)}) and
(z, {f (x1)}) are computationally indistinguishable, we have that ĨDEAL

0

(1κ) is

computationally indistinguishable from ˜IDEAL
1

(1κ), where ˜IDEAL
1

(1κ) is de-

fined analogously to IDEAL0(1κ).7 Now, finally, we can invoke 1-S̃IM-security

7 One may note that since the simulator in our definition performs the key
generation in the ideal world, we actually require (MPK,MSK, z, {f (x0)}) and
(MPK,MSK, z, {f (x1)}) to be computationally indistinguishable. This, however, fol-
lows immediately since the key queries {f} are independent of the public key MPK.

Functional Encryption for Randomized Functionalities 351

once again to argue that ˜IDEAL
1

(1κ) and REAL1(1κ) are computationally indis-
tinguishable. Combining the above, we have that REAL0(1κ) and REAL1(1κ) are
computationally indistinguishable, as required.

The proof that 1-SIM security implies one-message INDpost security follows in
a similar manner as above. In particular, note that in this case, we have the
promise from Definition 4 that (z, {f (x0)}) and (z, {f (x1)}) are statistically
indistinguishable. This immediately implies that (MPK,MSK, z, {f (x0)}) and
(MPK,MSK, z, {f (x1)}) are computationally indistinguishable. The rest of the
steps of the proof follow similarly as above.

Functional Encryption for Randomized

Functionalities in the Private-Key Setting
from Minimal Assumptions

Ilan Komargodski1,�, Gil Segev2,��, and Eylon Yogev1,�

1 Weizmann Institute of Science, Rehovot 76100, Israel
{ilan.komargodski,eylon.yogev}@weizmann.ac.il

2 Hebrew University of Jerusalem, Jerusalem 91904, Israel
segev@cs.huji.ac.il

Abstract. We present a construction of a private-key functional en-
cryption scheme for any family of randomized functionalities based on
any such scheme for deterministic functionalities that is sufficiently ex-
pressive. Instantiating our construction with existing schemes for deter-
ministic functionalities, we obtain schemes for any family of randomized
functionalities based on a variety of assumptions (including the LWE
assumption, simple assumptions on multilinear maps, and even the exis-
tence of any one-way function) offering various trade-offs between secu-
rity and efficiency.
Previously, Goyal, Jain, Koppula and Sahai [TCC, 2015] constructed

a public-key functional encryption scheme for any family of randomized
functionalities based on indistinguishability obfuscation.
One of the key insights underlying our work is that, in the private-

key setting, a sufficiently expressive functional encryption scheme may be
appropriately utilized for implementing proof techniques that were so far
implemented based on obfuscation assumptions (such as the punctured
programming technique of Sahai and Waters [STOC, 2014]). We view
this as a contribution of independent interest that may be found useful
in other settings as well.

1 Introduction

The cryptographic community’s vision of functional encryption [28,11,27] is
rapidly evolving. Whereas traditional encryption schemes offer an all-or-nothing
guarantee when accessing encrypted data, functional encryption schemes offer
tremendous flexibility. Specifically, such schemes support restricted decryption

� Research supported in part by a grant from the Israel Science Foundation, the I-
CORE Program of the Planning and Budgeting Committee, BSF and the Israeli
Ministry of Science and Technology.

�� Supported by the European Union’s Seventh Framework Programme (FP7) via a
Marie Curie Career Integration Grant, by the Israel Science Foundation (Grant
No. 483/13), and by the Israeli Centers of Research Excellence (I-CORE) Program
(Center No. 4/11).

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 352–377, 2015.
c© International Association for Cryptologic Research 2015

Functional Encryption for Randomized Functionalities 353

keys that allow users to learn specific functions of the encrypted data and noth-
ing else.

Motivated by the early examples of functional encryption schemes for specific
functionalities (such as identity-based encryption [30,8,16]), extensive research
has recently been devoted to the construction of functional encryption schemes
for rich and expressive families of functions (see, for example,
[28,11,27,23,2,7,13,17,18,22,32,19,15,5] and the references therein).

Until very recently, research on functional encryption has focused on the case
of deterministic functions. More specifically, in a functional encryption scheme
for a family F of deterministic functions, a trusted authority holds a master
secret key msk that enables to generate a functional key skf for any function
f ∈ F . Now, anyone holding the functional key skf and an encryption of some
value x, can compute f(x) but cannot learn any additional information about
x. In many scenarios, however, dealing only with deterministic functions may
be insufficient, and a more general framework allowing randomized functions is
required.

Functional Encryption for Randomized Functionalities. Motivated by
various real-world scenarios, Goyal et al. [24] have recently put forward a gener-
alization of functional encryption to randomized functionalities. In this setting,
given a functional key skf for a randomized function f and given an encryp-
tion of a value x, one should be able to obtain a sample from the distribution
f(x). As Goyal et al. pointed out, the case of randomized functions presents new
challenges for functional encryption. These challenge arise already when formal-
izing the security of functional encryption for randomized functions1, and then
become even more noticeable when designing such schemes.

Goyal et al. [24] presented a realistic framework for modeling the security of
functional encryption schemes for randomized functionalities. Even more impor-
tantly, within their framework they constructed a public-key functional encryp-
tion scheme supporting the set of all randomized functionalities (that are
computable by bounded-size circuits). Their construction builds upon the elegant
approach of punctured programming due to Sahai andWaters [29], and they prove
the security of their construction based on indistinguishability obfuscation [6,18].

Identifying the Minimal Assumptions for Functional Encryption. The
work of Goyal et al. [24] naturally gives rise to the intriguing question of whether
functional encryption for randomized functionalities can be based on assump-
tions that are seemingly weaker than indistinguishability obfuscation. On one
hand, it may be the case that functional encryption for randomized functionali-
ties is indeed a significantly more challenging primitive than functional encryp-
tion for deterministic functionalities. In this case, it would be conceivable to use

1 For example, an adversary holding a functional key skf and an encryption of a value
x, should not be able to tamper with the randomness that is used for sampling
from distribution f(x). This is extremely well motivated by the examples provided
by Goyal et al. in the contexts of auditing an encrypted database via randomized
sampling, and of performing differentially-private analysis on an encrypted database
via randomized perturbations. We refer the reader to [24] for more details.

354 I. Komargodski, G. Segev, and E. Yogev

the full power of indistinguishability obfuscation for constructing such schemes.
On the other hand, however, it may be possible that a functional encryption
scheme for randomized functions can be constructed in a direct black-box man-
ner from any such scheme for deterministic functions.

This question is especially interesting since various functional encryption
schemes for (general) deterministic functionalities are already known to exist
based on assumptions that seem significantly weaker than indistinguishability
obfuscation (such as Learning with Errors assumption or even the existence of
any one-way function) offering various trade-offs between security and efficiency
(see Section 2.2 for more details on the existing schemes).

1.1 Our Contributions

In this work we consider functional encryption in the private-key setting, where
the master secret key is used both for generating functional keys and for encryp-
tion. In this setting we provide an answer to the above question: we present a
construction of a private-key functional encryption scheme for any family F of
randomized functions based on any private-key functional encryption scheme for
deterministic functions that is sufficiently expressive2. Inspired by the work of
Goyal et al. [24] in the public-key setting, we prove the security of our construc-
tion within a similarly well-motivated framework for capturing the security of
private-key functional encryption for randomized functions.

Instantiations. Our resulting scheme inherits the flavor of security guaran-
teed by the underlying scheme (e.g., full vs. selective security, and one-key vs.
many-keys security), and can be instantiated by a variety of existing functional
encryption schemes. Specifically, our scheme can be based either on the Learn-
ing with Errors assumption, on obfuscation assumptions, on multilinear-maps
assumptions, or even on the existence of any one-way function (offering various
trade-offs between security and efficiency – we refer the reader to Section 2.2 for
more details on the possible instantiations).

Applicable Scenarios. Following-up on the motivating applications given by
Goyal et al. [24] in the contexts of auditing an encrypted database via random-
ized sampling, and of performing differentially-private analysis on an encrypted
database via randomized perturbations, we observe that these two examples are
clearly valid in the private-key setting as well. Specifically, in both applications,
the party that provides functional keys is more than likely the same one who
encrypts the data.

Obfuscation-Based Techniques via Function Privacy. One of the key in-
sights underlying our work is that in the private-key setting, where encryption is
performed honestly by the owner of the master secret key, the power of indistin-
guishability obfuscation may not be needed. Specifically, we observe that in some

2 Our only assumption on the underlying scheme is that it supports the family F (when
viewed as a family of single-input deterministic functions), supports the evaluation
procedure of a pseudorandom function family, and supports a few additional basic
operations (such as conditional statements).

Functional Encryption for Randomized Functionalities 355

cases one can instead rely on the weaker notion of function privacy [31,9,1,15].
Intuitively, a functional encryption scheme is function private if a functional key
skf for a function f reveals no “unnecessary” information on f . For functional
encryption in the private-key setting, this essentially means that encryptions of
messages m1, . . . ,mT together with functional keys corresponding to functions
f1, . . . , fT reveal essentially no information other than the values {fi(mj)}i,j∈[T].
Brakerski and Segev [15] recently showed that a function-private scheme can be
obtained from any private-key functional encryption scheme.

Building upon the notion of function privacy, we show that any private-key
functional encryption scheme may be appropriately utilized for implementing
some of the proof techniques that were so far implemented based on indistin-
guishability obfuscation. These include, in particular, a variant of the punctured
programming approach of Sahai and Waters [29]. We view this as a contribution
of independent interest that may be found useful in other settings as well.

1.2 Additional Related Work

A related generalization of functional encryption is that of functional encryption
for multiple-input functions due to Goldwasser et al. [21]. A multiple-input func-
tional encryption scheme for a function family F allows generating a functional
key skf for any function f ∈ F , and this enables to compute f(x, y) given an
encryption of x and an encryption of y, while not learning any additional in-
formation. Although capturing the security guarantees that can be provided by
such schemes is quite challenging, multiple-input functional encryption might be
useful for dealing with single-input randomized functionalities: One can view a
randomized function f(x; r) as a two-input function, where its first input is the
actual input x, and its second input is the randomness r (that is possibly de-
rived by a PRF key). However, the construction of Goldwasser et al. is based on
indistinguishability obfuscation, and our goal is to rely on weaker assumptions.
In addition, it is not clear that the notion of security of Goldwasser et al. suffices
for capturing our notion of “best-possible” message privacy which allows for an
a-priori non-negligible advantage in distinguishing the output distributions of
two randomized functions (see Sections 1.3 and 3 for our notion of privacy).

Our construction relies on the notion of function privacy for functional en-
cryption schemes, first introduced by Boneh et al. [9,10] in the public-key setting,
and then studied by Agrawal et al. [1] and by Brakerski and Segev [15] in the
private-key setting (generalizing the work on predicate privacy in the private-key
setting by Shen et al. [31]). As discussed in Section 1.1, for functional encryption
in the private-key setting, function privacy essentially means that encryptions of
messages m1, . . . ,mT together with functional keys corresponding to functions
f1, . . . , fT reveal essentially no information other than the values {fi(mj)}i,j∈[T].
In terms of underlying assumptions, we rely on the fact that Brakerski and Segev
[15] showed that a function-private scheme can be obtained from any private-key
functional encryption scheme.

356 I. Komargodski, G. Segev, and E. Yogev

Lastly, Alwen et al. [3] studied the relationship between functional encryption
and fully homomorphic encryption. In their work, they define the notion of a
public-key multi-input functional encryption scheme for randomized function-
alities, and construct such a scheme assuming a public-key multi-input func-
tion encryption scheme for deterministic functionalities. This result is somewhat
incomparable to ours since public-key multi-input functional encryption seems
significantly stronger than the assumptions underlying our approach (e.g., it is
known to imply indistinguishability obfuscation [21]).

1.3 Overview of Our Approach

A private-key functional encryption scheme for a family F of randomized func-
tions consists of four probabilistic polynomial-time algorithms (Setup,KG,Enc,
Dec). The syntax is identical to that of functional encryption for determinis-
tic functions (see Section 2.2), but the correctness and security requirements
are more subtle. In this section we begin with a brief overview of our notions
of correctness and security. Then, we provide a high-level overview of our new
construction, and the main ideas and challenges underlying its proof of security.

Correctness and Independence of Decrypted Values. Our notion of cor-
rectness follows that of Goyal et al. [24] by adapting it to the private-key setting.
Specifically, we ask that for any sequence of messages x1, . . . , xT and for any se-
quence of functions f1, . . . , fT ∈ F , it holds that the distribution obtained by
encrypting x1, . . . , xT and then decrypting the resulting ciphertexts with func-
tional keys corresponding to f1, . . . , fT is computationally indistinguishable from
the distribution {fj(xi; ri,j)}i,j∈[T] where the ri,j ’s are sampled independently
and uniformly at random. As noted by Goyal et al. [24], unlike in the case of de-
terministic functions where is suffices to define correctness for a single ciphertext
and a single key, here it is essential to define correctness for multiple (possibly
correlated) ciphertexts and keys. We refer the reader to Section 3.1 for our formal
definition.

“Best-Possible” Message Privacy. As in functional encryption for deter-
ministic functions, we consider adversaries whose goal is to distinguish between
encryptions of two challenge messages, x∗

0 and x∗
1, when given access to an en-

cryption oracle (as required in private-key encryption) and to functional keys of
various functions. Recall that in the case of deterministic functions, the adversary
is allowed to ask for functional keys for any function f such that f(x∗

0) = f(x∗
1).

When dealing with randomized functions, however, it is significantly less clear
how to prevent adversaries from choosing functions f that will enable to easily
distinguish between encryptions of x∗

0 and x∗
1. Our notions of message privacy

ask that the functional encryption scheme under consideration will not add a
non-negligible advantage to the (possibly non-negligible) advantage that adver-
saries may already have in distinguishing between the distributions f(x∗

0) and
f(x∗

1). That is, given that adversaries are able to obtain a sample from the dis-
tribution f(x∗

0) or from the distribution f(x∗
1) using the functional key skf , and

may already have some advantage in distinguishing these distributions, we ask

Functional Encryption for Randomized Functionalities 357

for “best-possible” message privacy in the sense that essentially no additional
advantage can be gained.

Concretely, if the distributions f(x∗
0) and f(x∗

1) can be efficiently distinguished
with advantage at most Δ = Δ(λ) to begin with (where Δ does not necessarily
have to be negligible), then we require that no adversary that is given a functional
key for f will be able to distinguish between encryptions of x∗

0 and x∗
1 with

advantage larger than Δ + neg(λ), for some negligible function neg(·). More
generally, an adversary that is given functional keys for T = T (λ) such functions
(and access to an encryption oracle), should not be able to distinguish between
encryptions of x∗

0 and x∗
1 with advantage larger than T · Δ + neg(λ). We note

that our approach for realistically capturing message privacy somewhat differs
from that of Goyal et al. [24], and we refer the reader to the full version [26] for
a brief comparison between the two approaches3.

We put forward two flavors of “best-possible” message privacy, a non-adaptive
flavor and an adaptive flavor, depending on the flavor of indistinguishability
guarantee that is satisfied by the function family under consideration. Details
follow.

Out first notion addresses function families F such that for a randomly sam-
pled f ← F , no efficient adversary given f can output x0 and x1 and distinguish
the distributions f(x0) and f(x1) with probability larger than Δ (note again
that Δ does not have to be negligible). One possible example for such a function
family is a function that on input x samples a public-key pk for a public-key
encryption scheme, and outputs pk together with a randomized encryption of
x. Our second notion addresses function families F such that no efficient ad-
versary can output f ∈ F together with two inputs x0 and x1, and distinguish
the distributions f(x0) and f(x1) with probability larger than Δ. One possible
example for such a function family is that of differentially private mechanisms,
as discussed by Goyal et al. [24]. We refer the reader to Section 3.2 for more
information and the formal definitions.

Our Construction. Let (Setup,KG,Enc,Dec) be any private-key functional en-
cryption scheme that provides message privacy and function privacy4. Our new
scheme is quite intuitive and is described as follows:

– The setup and decryption algorithms are identical to those of the underlying
scheme.

– The encryption algorithm on input a message x, samples a string s uniformly
at random, and outputs an encryption ct ← Enc(msk, (x,⊥, s,⊥)) of x and s
together with two additional “empty slots” that will be used in the security
proof.

3 We emphasize that we view the main contribution of our paper as basing the se-
curity of our scheme on any underlying functional encryption scheme (and avoiding
obfuscation-related assumptions), and not as offering alternative notions of message
privacy.

4 As discussed above, function privacy can be assumed without loss of generality using
the transformation of Brakerski and Segev [15].

358 I. Komargodski, G. Segev, and E. Yogev

– The key-generation algorithm on input a description of a randomized func-
tion f , samples a PRF key K, and outputs a functional key for the deter-
ministic function Leftf,K defined as follows: On input (xL, xR, s, z) output
f(xL; r) where r = PRFK(s).

The correctness and independence of our scheme follow in a straightforward
manner from the correctness of the underlying scheme and the assumption that
PRF is pseudorandom. In fact, it suffices that PRF is weakly pseudorandom (i.e.,
computationally indistinguishable from a truly random function when evaluated
on independent and uniformly sampled inputs).

As for the message privacy of the scheme, recall that we consider adversaries
that can access an encryption oracle and a key-generation oracle, and should not
be able to distinguish between an encryption Enc(msk, (x∗

0,⊥, s∗,⊥)) of x∗
0 and an

encryption Enc(msk, (x∗
1,⊥, s∗,⊥)) of x∗

1 with advantage larger than T ·Δ+neg(λ)
(where T is the number of functional keys given to the adversary, and Δ is the a-
priori distinguishing advantage for the functions under consideration as described
above).

The first step in our proof of security is to replace the challenge ciphertext with
a modified challenge ciphertext Enc(msk, (x∗

0, x
∗
1, s

∗,⊥)) that contains informa-
tion on both challenge messages (this is made possible due to the message privacy
of the underlying scheme). Next, denoting the adversary’s key-generation queries
by f1, . . . , fT , our goal is to replace the functional keys Leftf1,K1 , . . . , LeftfT ,KT

with the functional keys Rightf1,K1
, . . . ,RightfT ,KT

, where the function Rightf,K
is defined as follows: On input (xL, xR, s, z) output f(xR; r) where r = PRFK(s).
At this point we note that, from the adversary’s point of view, when providing
only Left keys the modified challenge ciphertext is indistinguishable from an
encryption of x∗

0, and when providing only Right keys the modified challenge
ciphertext is indistinguishable from an encryption of x∗

1.
The most challenging part of the proof is in bounding the adversary’s advan-

tage in distinguishing the sequences of Left and Right keys, based on the function
privacy and the message privacy of the underlying scheme. The basic idea is to
switch the functional keys from Left to Right one by one, following different proof
strategies for pre-challenge keys and for post-challenge keys5.

When dealing with a pre-challenge key skf , the function f is already known
when producing the challenge ciphertext. Therefore, we can use the message
privacy of the underlying scheme and replace the (already-modified) challenge ci-
phertext with Enc(msk, (x∗

0, x
∗
1, s

∗, z∗)), where z∗ = f(x∗
0; r

∗) and r∗ = PRFK(s∗).
Then, we use the function privacy of the underlying scheme, and replace the func-
tional key Leftf,K with a functional key for the function OutputZ that simply
outputs z whenever s = s∗. From this point on, we use the pseudorandomness
of PRF and replace r∗ = PRFK(s∗) with a truly uniform r∗, and then replace
z∗ ← f(x∗

0) with z∗ ← f(x∗
1). Similar steps then enable us to replace the func-

tional key OutputZ with a functional key for the function Rightf,K .

5 We use the term pre-challenge keys for all functional keys that are obtained before
the challenge phase, and the term post-challenge keys for all functional keys that are
obtained after the challenge phase.

Functional Encryption for Randomized Functionalities 359

When dealing with a post-challenge key skf , we would like to follow the
same approach of embedding the value f(x∗

0; r
∗) or f(x∗

1; r
∗). However, for post-

challenge keys, the function f is not known when producing the challenge cipher-
text. Instead, in this case, the challenge messages x∗

0 and x∗
1 are known when

producing the functional key skf . Combining this with the function privacy of
the underlying scheme enables us to embed the above values in the functional
key skf , and once again replace the Left keys with the Right keys. We refer the
reader to Section 4 for the formal description of our scheme and its proof of
security.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide
an overview of the basic notation and standard tools underlying our construc-
tion. In Section 3 we introduce our notions of security for private-key functional
encryption schemes for randomized functionalities. In Section 4 we present our
new scheme and prove its security. Formal proofs of the claims that are stated
in Section 4 can be found in the full version [26].

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x ← X the process of sampling a value
x from the distribution X . Similarly, for a set X we denote by x ← X the process
of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling
a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. A function neg : N → R is negligible if for every constant c > 0
there exists an integer Nc such that neg(λ) < λ−c for all λ > Nc.

The statistical distance between two random variables X and Y over a fi-
nite domain Ω is defined as SD(X,Y) = 1

2

∑
ω∈Ω |Pr[X = ω]− Pr[Y = ω]|. Two

sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computa-
tionally indistinguishable if for any probabilistic polynomial-time algorithm A
there exists a negligible function neg(·) such that∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]

∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N.

2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval)
be a function family with the following syntax:

– PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the
unary representation of the security parameter λ, and outputs a key K ∈ Kλ.

360 I. Komargodski, G. Segev, and E. Yogev

– PRF.Eval is a deterministic polynomial-time algorithm that takes as input a
key K ∈ Kλ and a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range
of the function family, respectively. For easy of notation we may denote by
PRF.EvalK(·) or PRFK(·) the function PRF.Eval(K, ·) for K ∈ Kλ. The following
is the standard definition of a pseudorandom function family.

Definition 1 (Pseudorandomness). A function family PRF = (PRF.Gen,
PRF.Eval) is pseudorandom if for every probabilistic polynomial-time algorithm
A there exits a negligible function neg(·) such that

AdvPRF,A(λ)
def
=

∣∣∣∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr

f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣ ≤
neg(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of functions that map Xλ

into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely
on the seemingly stronger (yet existentially equivalent) notion of a puncturable
pseudorandom function family [25,12,29,14]. In terms of syntax, this notion asks
for an additional probabilistic polynomial-time algorithm, PRF.Punc, that takes
as input a key K ∈ Kλ and a set S ⊆ Xλ and outputs a “punctured” key KS. The
properties required by such a puncturing algorithm are capture by the following
definition.

Definition 2 (Puncturable PRF). A pseudorandom function family PRF =
(PRF.Gen,PRF.Eval,PRF.Punc) is puncturable if the following properties are sat-
isfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and
for every x ∈ Xλ \ S it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS (x)] = 1.

2. Pseudorandomness at Punctured Points: Let A = (A1,A2) be any
probabilistic polyomial-time algorithm such that A1(1

λ) outputs a set S ⊆
Xλ, a value x ∈ S, and state information state. Then, for any such A there
exists a negligible function neg(·) such that

AdvpuPRF,A(λ)
def
=

|Pr [A2(KS,PRF.EvalK(x), state) = 1]− Pr [A2(KS , y, state) = 1]| ≤ neg(λ)

for all sufficiently large λ ∈ N, where (S, x, state) ← A1(1
λ), K ← PRF.Gen

(1λ), KS = PRF.Punc(K,S), and y ← Yλ.

As observed by [25,12,29,14] the GGM construction [20] of PRFs from one-way
functions can be easily altered to yield a puncturable PRF.

Functional Encryption for Randomized Functionalities 361

2.2 Private-Key Functional Encryption

A private-key functional encryption scheme over a message space X = {Xλ}λ∈N

and a function space F = {Fλ}λ∈N is a quadruple (Setup,KG,Enc,Dec) of proba-
bilistic polynomial-time algorithms. The setup algorithm Setup takes as input the
unary representation 1λ of the security parameter λ ∈ N and outputs a master-
secret key msk. The key-generation algorithm KG takes as input a master-secret
key msk and a function f ∈ Fλ, and outputs a functional key skf . The encryption
algorithm Enc takes as input a master-secret key msk and a message x ∈ Xλ,
and outputs a ciphertext ct. In terms of correctness we require that for all suffi-
ciently large λ ∈ N, for every function f ∈ Fλ and message x ∈ Xλ it holds that
Dec(KG(msk, f),Enc(msk, x)) = f(x) with all but a negligible probability over
the internal randomness of the algorithms Setup, KG, and Enc.

In terms of security, we rely on the private-key variants existing indistinguisha-
bility based notions for message privacy (see, for example, [11,27,7]) and function
privacy (see [1,15]). When formalizing these notions it would be convenient to
use the following standard notion of a left-or-right oracle.

Definition 3 (Left-or-Right Oracle). Let O(·, ·) be a probabilistic two-input
functionality. For each b ∈ {0, 1} we denote by Ob the probabilistic three-input

functionality Ob(k, z0, z1)
def
= O(k, zb).

Message Privacy

A functional encryption scheme is message private if the encryptions of any
two messages x0 and x1 are computationally indistinguishable given access to
an encryption oracle (as required in private-key encryption) and to functional
keys for any function f such that f(x∗

0) = f(x∗
1). We consider two variants of

message privacy: (full) message privacy in which adversaries are fully adaptive,
and selective-function message privacy in which adversaries must issue their key-
generation queries in advance.

Definition 4 (Message Privacy). A functional encryption scheme FE = (
Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function space
F = {Fλ}λ∈N is message private if for any probabilistic polynomial-time adver-
sary A there exists a negligible function neg(·) such that

AdvMP
FE,A,F (λ)

def
=∣∣∣Pr [AKG(msk,·),Enc0(msk,·,·)(1λ) = 1

]
− Pr

[
AKG(msk,·),Enc1(msk,·,·)(1λ) = 1

]∣∣∣
≤ neg(λ)

for all sufficiently large λ ∈ N, where for every (x0, x1) ∈ Xλ × Xλ and f ∈ Fλ

with which A queries the oracles Encb and KG, respectively, it holds that f(x0) =
f(x1). Moreover, the probability is taken over the choice of msk ← Setup(1λ) and
the internal randomness of A.

362 I. Komargodski, G. Segev, and E. Yogev

Definition 5 (Selective-Function Message Privacy). A functional encryp-
tion scheme FE = (Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N and
a function space F = {Fλ}λ∈N is T -selective-function message private, where
T = T (λ), if for any probabilistic polynomial-time adversary A = (A1,A2) there
exists a negligible function neg(·) such that

AdvsfMP
FE,A,F ,T (λ)

def
=∣∣∣Pr [Expt(0)FE,A,F ,T (λ) = 1

]
− Pr

[
Expt

(1)
FE,A,F ,T (λ) = 1

]∣∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the random

variable Expt
(b)
FE,A,F ,T (λ) is defined as follows:

1. msk ← Setup(1λ).

2. (f1, . . . , fT , state) ← A1(1
λ), where fi ∈ Fλ for all i ∈ [T].

3. skfi ← KG(msk, fi) for all i ∈ [T].

4. b′ ← AEncb(msk,·,·)
2 (skf1 , . . . , skfT , state), where for each ofA2’s queries (x0, x1)

∈ Xλ ×Xλ to Encb(msk, ·, ·) it holds that fi(x0) = fi(x1) for all i ∈ [T].

5. Output b′.

Such a scheme is selective-function message private if it is T -selective-function
message private for all polynomials T = T (λ).

Known Constructions. Private-key functional encryption schemes that satisfy
the notions presented in Definitions 4 and 5 (and support circuits of any a-priori
bounded polynomial size) are known to exist based on various assumptions. The
known schemes are in fact public-key schemes, which are in particular private-
key ones.

Specifically, a public-key scheme that satisfies the notion of 1-selective func-
tion message privacy was constructed by Gorbunov, Vaikuntanathan and Wee
[23] under the sole assumption that public-key encryption exists. In the private-
key setting, their transformation can in fact rely on any private-key encryption
scheme (and thus on any one-way function). By assuming, in addition, the exis-
tence of a pseudorandom generator computable by small-depth circuits (which
is known to be implied by most concrete intractability assumptions), they con-
struct a scheme that satisfies the notion of T -selective-function message privacy
for any predetermined polynomial T = T (λ). However, the length of the cipher-
texts in their scheme grows linearly with T and with an upper bound on the
circuit size of the functions that the scheme allows (which also has to be known
ahead of time). Goldwasser et al. [22] showed that based on the Learning with
Errors (LWE) assumption, T -selective-function message privacy can be achieved
where the ciphertext size grows with T and with a bound on the depth of allowed
functions.

In addition, schemes that satisfy the notion of (full) message privacy (Defini-
tion 4) were constructed by Boyle et al. [13] and by Ananth et al. [4] based on
differing-input obfuscation, by Waters [32] based on indistinguishability obfus-
cation, and by Garg et al. [19] based on multilinear maps. Very recently, Ananth

Functional Encryption for Randomized Functionalities 363

et al. [5] gave a generic transformation from selective-message message privacy
to full message privacy. We conclude that there is a variety of constructions of-
fering various flavors of security under various assumptions that can be used as
a building block in our construction.

Function Privacy

A private-key functional-encryption scheme is function private [31,1,15] if a
functional key skf for a function f reveals no “unnecessary” information on
f . More generally, we ask that encryptions of messages m1, . . . ,mT together
with functional keys corresponding to functions f1, . . . , fT reveal essentially no
information other than the values {fi(mj)}i,j∈[T]. We consider two variants of
function privacy: (full) function privacy in which adversaries are fully adaptive,
and selective-function function privacy in which adversaries must issue their key-
generation queries in advance.

Definition 6 (Function Privacy). A functional encryption scheme FE = (
Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function space
F = {Fλ}λ∈N is function private if for any probabilistic polynomial-time adver-
sary A there exists a negligible function neg(·) such that

AdvFPFE,A,F(λ)
def
=∣∣∣Pr [AKG0(msk,·,·),Enc0(msk,·,·)(1λ) = 1

]
− Pr

[
AKG1(msk,·,·),Enc1(msk,·,·)(1λ) = 1

]∣∣∣
≤ neg(λ)

for all sufficiently large λ ∈ N, where for every (f0, f1) ∈ Fλ×Fλ and (x0, x1) ∈
Xλ × Xλ with which A queries the oracles KGb and Encb, respectively, it holds
that f0(x0) = f1(x1). Moreover, the probability is taken over the choice of msk ←
Setup(1λ) and the internal randomness of A.

Definition 7 (Selective-Function Function Privacy). A functional encryp-
tion scheme FE = (Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N

and a function space F = {Fλ}λ∈N is said T -selective-function function private,
where T = T (λ), if for any probabilistic polynomial-time adversary A = (A1,A2)
there exists a negligible function neg(·) such that

AdvsfFPFE,A,F ,T (λ)
def
=∣∣∣Pr [Expt(0)FE,A,F ,T (λ) = 1

]
− Pr

[
Expt

(1)
FE,A,F ,T (λ) = 1

]∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the random

variable Expt
(b)
FE,A,F ,T (λ) is defined as follows:

1. msk ← Setup(1λ).

2. ((f0,1, . . . , f0,T), (f1,1, . . . , f1,T), state) ← A1(1
λ), where fσ,i ∈ Fλ for all

σ ∈ {0, 1} and i ∈ [T].

364 I. Komargodski, G. Segev, and E. Yogev

3. sk∗i ← KG(msk, fb,i) for all i ∈ [T].

4. b′ ← AEncb(msk,·,·)
2 (sk∗1, . . . , sk

∗
T , state), where for each query (x0, x1) ∈ Xλ ×

Xλ to Encb(msk, ·, ·) it holds that f0,i(x0) = f1,i(x1) for all i ∈ [T].

5. Output b′.

Such a scheme is selective-function function private if it is T -selective-function
function private for all polynomials T = T (λ).

Known Constructions. Brakerski and Segev [15] showed how to transform
any (selective-function or fully secure) message-private functional encryption
scheme into a (selective-function or fully secure, respectively) functional encryp-
tion scheme which is also function private. Thus, any instantiation of a message-
private (or selective-function message private) function encryption scheme as
discussed in Definition 3 can be used as a building block in our construction.

3 Private-Key Functional Encryption for Randomized
Functionalities

In this section we present a framework for capturing the security of private-key
functional encryption for randomized functionalities. Our framework is inspired
by that of Goyal et al. [24] in the public-key setting, but takes a slightly different
approach as we discuss below.

Throughout this section, we let F = {Fλ}λ∈N be a family of randomized
functionalities, where for every λ ∈ N the set Fλ consists of functions of the
form f : Xλ × Rλ → Yλ. That is, such a function f maps Xλ into Yλ using
randomness from Rλ.

A private-key functional encryption scheme for a family F of randomized
functions consists of four probabilistic polynomial-time algorithms (Setup,KG,
Enc,Dec) with the same syntax that is described in Section 2.2 for deterministic
functions. Although the syntax in this setting is the same as in the deterministic
setting, the correctness and security requirements are more subtle.

3.1 Correctness and Independence

In terms of correctness we rely on the definition of Goyal et al. [24] (when adapted
to the private-key setting). As discussed in Section 1.3, we ask that for any se-
quence of messages x1, . . . , xT and for any sequence of functions f1, . . . , fT ∈ F ,
it holds that the distribution obtained by encrypting x1, . . . , xT and then decrypt-
ing the resulting ciphertexts with functional keys corresponding to f1, . . . , fT is
computationally indistinguishable from the distribution {fj(xi; ri,j)}i,j∈[T] where
the ri,j ’s are sampled independently and uniformly at random.

Definition 8 (Correctness). A functional encryption scheme Π = (Setup,
KG,Enc,Dec) for a family F of randomized functions is correct if for all suffi-
ciently large λ ∈ N, for every polynomial T = T (λ), and for every x1, . . . , xT ∈

Functional Encryption for Randomized Functionalities 365

Xλ and f1, . . . , fT ∈ Fλ, the following two distributions are computationally
indistinguishable:

– Real(λ)
def
=
{
Dec(skfj , cti)

}
i,j∈[T]

, where:

• msk ← Setup(1λ),

• cti ← Enc(msk, xi) for all i ∈ [T],

• skfj ← KG(msk, fj) for all j ∈ [T].

– Ideal(λ)
def
= {fj(xi)}i,j∈[T].

As noted by Goyal et al. [24], unlike in the case of deterministic functions
where is suffices to define correctness for a single ciphertext and a single key, here
it is essential to define correctness for multiple (possibly correlated) ciphertexts
and keys. We refer the reader to [24] for more details.

3.2 “Best-Possible” Message Privacy

We consider indistinguishability-based notions for capturing message privacy in
private-key functional encryption for randomized functionalities. As in the (stan-
dard) case of deterministic functions (see Section 2.2), we consider adversaries
whose goal is to distinguish between encryptions of two challenge messages x∗

0

and x∗
1, when given access to an encryption oracle (as required in private-key

encryption) and to functional keys of various functions. Recall that in the case
of deterministic functions, the adversary is allowed to ask for functional keys for
any function f such that f(x∗

0) = f(x∗
1).

As discussed in Section 1.3, our notions of message privacy ask that the func-
tional encryption scheme under consideration will not add any non-negligible
advantage to the (possibly non-negligible) advantage that adversaries holding a
functional key for a function f may already have in distinguishing between the
distributions f(x∗

0) and f(x∗
1) to begin with. That is, given that adversaries are

able to obtain a sample from the distribution f(x∗
0) or from the distribution

f(x∗
1) using the functional key skf , and may already have some advantage in

distinguishing these distributions, we ask for “best-possible” message privacy in
the sense that essentially no additional advantage can be gained.

In what follows we put forward two flavors of “best-possible” message privacy,
depending on the flavor of indistinguishability guarantee that is satisfied by the
function family under consideration.

Message Privacy for Non-Adaptively-Admissible Functionalities. Our
first notion is that of non-adaptively-admissible function families. These are fam-
ilies F such that for a randomly sampled f ← F , no efficient adversary on input
f can output x0 and x1 and distinguish the distributions f(x0) and f(x1) with
probability larger than Δ (note again that Δ does not have to be negligible).
One possible example for such a function family is a function that on input
x samples a public-key pk for a public-key encryption scheme, and outputs pk
together with a randomized encryption of x.

For such function families we consider a corresponding notion of message
privacy in which the adversary obtains functional keys only for functions that

366 I. Komargodski, G. Segev, and E. Yogev

are sampled uniformly and independently from F . This is formally captured by
the following two definitions.

Definition 9 (Non-Adaptively-Admissible Function Family). A family
F = {Fλ}λ∈N of efficiently-computable randomized functions is Δ(λ)-non-
adaptively admissible if for any probabilistic polynomial-time algorithm A =
(A1,A2) it holds that

AdvnaADM
F ,A (λ)

def
=

∣∣∣∣Pr [ExptnaADM
F ,A (λ) = 1

]
− 1

2

∣∣∣∣ ≤ Δ(λ)

for all sufficiently large λ ∈ N, where the random variable ExptnaADM
F ,A (λ) is defined

via the following experiment:

1. b ← {0, 1}, f ← Fλ.

2. (x0, x1, state) ← A1(1
λ, f).

3. y = f(xb; r) for r ← {0, 1}∗.
4. b′ ← A2(y, state).

5. If b′ = b then output 1, and otherwise output 0.

Definition 10 (Message Privacy; Non-Adaptive Case). Let F = {Fλ}λ∈N

be a Δ(λ)-non-adaptively admissible function family. A private-key functional
encryption scheme Π = (Setup,KG,Enc,Dec) is message private with respect to
F if for any probabilistic polynomial-time adversary A = (A1,A2) and for any
polynomial T = T (λ) there exists a negligible function neg(λ) such that

AdvnaMPRF
Π,F ,A,T (λ)

def
=

∣∣∣∣Pr [ExptnaMPRF
Π,F ,A,T (λ) = 1

]
− 1

2

∣∣∣∣ ≤ T (λ) ·Δ(λ) + neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExptnaMPRF
Π,F ,A,T (λ) is

defined via the following experiment:

1. b ← {0, 1}, msk ← Setup(1λ), f1, . . . , fT ← Fλ.

2. skfi ← KG(msk, fi) for all i ∈ [T].

3. (x∗
0, x

∗
1, state) ← AEnc(msk,·)

1 (1λ, f1, . . . , fT , skf1 , . . . , skfT).

4. c∗ = Enc(msk, x∗
b).

5. b′ ← AEnc(msk,·)
2 (c∗, state).

6. If b′ = b then output 1, and otherwise output 0.

Message Privacy for Adaptively-Admissible Functionalities. Our second
notion is that of adaptively-admissible function families. These are families F
such that no efficient adversary can output f ∈ F together with two inputs x0

and x1, and distinguish the distributions f(x0) and f(x1) with probability larger
than Δ. One possible example for such a function family is that of differentially
private mechanisms, as discussed by Goyal et al. [24]. Specifically, these are
randomized functions that on any two inputs that differ on only a few of their

Functional Encryption for Randomized Functionalities 367

entries, produce output distributions whose statistical distance is polynomially
small (i.e., Δ is polynomial in 1/λ)6.

It is easy to observe that there are function families that are non-adaptively
admissible but are not adaptively admissible. One possible example is functions
of the form fpk that are indexed by a public encryption key pk, and on input x
output a randomized encryption of x under pk. Giving adversaries the possibility
of adaptively choosing such functions, they can choose a function fpk for which
they know the corresponding decryption key sk. In this case, although for a
randomly chosen pk the distributions fpk(x0) and fpk(x1) are computationally
indistinguishable, they may be easily distinguishable given the randomness used
by the adversary (from which it may be easy to compute the corresponding
decryption key sk).

For adaptively-admissible function families we consider a corresponding
notion of message privacy in which the adversary obtains functional keys for
functions that are adaptively chosen from F . This is formally captured by the
following two definitions.

Definition 11 (Adaptively-Admissible Function Family). A family F =
{Fλ}λ∈N of efficiently-computable randomized functions is Δ(λ)-adaptively ad-
missible if for any probabilistic polynomial-time algorithm A = (A1,A2) it holds
that

AdvaADM
F ,A (λ)

def
=

∣∣∣∣Pr [ExptaADM
F ,A (λ) = 1

]
− 1

2

∣∣∣∣ ≤ Δ(λ)

for all sufficiently large λ ∈ N, where the random variable ExptaADM
F ,A (λ) is defined

via the following experiment:

1. b ← {0, 1}.
2. (f, x0, x1, state) ← A1(1

λ), where f ∈ Fλ.

3. y = f(xb; r) for r ← {0, 1}∗.
4. b′ ← A2(y, state).

5. If b′ = b then output 1, and otherwise output 0.

Definition 12 (Message Privacy; Adaptively-Admissible Case). Let F =
{Fλ}λ∈N be a Δ(λ)-adaptively admissible function family. A private-key func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) is message private with re-
spect to F if for any probabilistic polynomial-time adversary A = (A1,A2) that
issues at most T = T (λ) key-generation queries there exists a negligible function
neg(λ) such that

AdvaMPRF
Π,F ,A(λ)

def
=

∣∣∣∣Pr [ExptaMPRF
Π,F ,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ T (λ) ·Δ(λ) + neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExptaMPRF
Π,F ,A(λ) is defined

via the following experiment:

6 The definitions of differential privacy are in fact stronger than requiring small sta-
tistical distance.

368 I. Komargodski, G. Segev, and E. Yogev

1. b ← {0, 1}, msk ← Setup(1λ).

2. (x∗
0, x

∗
1, state) ← AEnc(msk,·),KG(msk,·)

1 (1λ).

3. c∗ = Enc(msk, x∗
b).

4. b′ ← AEnc(msk,·),KG(msk,·)
2 (c∗, state).

5. If b′ = b then output 1, and otherwise output 0.

4 Our Functional Encryption Scheme

In this section we present our construction of a private-key functional encryption
scheme for randomized functionalities. Let F = {Fλ}λ∈N be a family of random-
ized functionalities, where for every λ ∈ N the set Fλ consists of functions of the
form f : Xλ ×Rλ → Yλ (i.e., f maps Xλ into Yλ using randomness from Rλ).
Our construction relies on the following building blocks:

1. A private-key functional encryption scheme FE = (FE.Setup,FE.KG,FE.Enc,
FE.Dec).

2. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval). We assume
that for every λ ∈ N and for every key K that is produced by PRF.Gen(1λ),
it holds that PRF.Eval(K, ·) : {0, 1}λ → Rλ.

As discussed in Section 1.1, we assume that the scheme FE is sufficiently
expressive in the sense that it supports the function family F (when viewed as a
family of single-input deterministic functions), the evaluation procedure of the
pseudorandom function family PRF, and a few additional basic operations (such
as conditional statements). Our scheme Π = (Setup,KG,Enc,Dec) is defined as
follows.

– The Setup Algorithm. On input the security parameter 1λ the setup al-
gorithm Setup samples FE.msk ← FE.Setup(1λ), and outputs msk = FE.msk.

– The Key-Generation Algorithm. On input the master secret key msk
and a function f ∈ Fλ, the key-generation algorithm KG samples K ←
PRF.Gen(1λ) and outputs skf ← FE.KG(msk, Leftf,K), where Leftf,K is a
deterministic function that is defined in Figure 1.

– The Encryption Algorithm. On input the master secret key msk and a
message x ∈ Xλ, the encryption algorithm Enc samples s ← {0, 1}λ and
outputs ct ← FE.Enc(msk, (x,⊥, s,⊥)).

– The Decryption Algorithm. On input a functional key skf and a cipher-
text ct, the decryption algorithm Dec outputs FE.Dec(skf , ct).

The correctness and independence of the above scheme with respect to any
family of randomized functionalities follows in a straightforward manner from
the correctness of the underlying functional encryption scheme FE and the as-
sumption that PRF is a pseudorandom function family (in fact, it suffices that
PRF is a weak pseudorandom function family). Specifically, consider a sequence
of messages x1, . . . , xT and a sequence of functions f1, . . . , fT . As the encryp-
tion FE.Enc(msk, (xi,⊥, si,⊥)) of each message xi uses a uniformly sampled si ∈

Functional Encryption for Randomized Functionalities 369

Leftf,K(xL, xR, s, z):

1. Let r = PRF.Eval(K, s).

2. Output f(xL; r).

Rightf,K(xL, xR, s, z):

1. Let r = PRF.Eval(K, s).

2. Output f(xR; r).

Fig. 1. The functions Leftf,K and Rightf,K . The function Leftf,K is used by the actual
scheme, whereas the function Rightf,K is used in the proofs of its security.

{0, 1}λ, and the functional key for a function fj contains a freshly sampled keyKj

for the pseudorandom function family, the distribution {fj(xi;PRF.Eval(Kj , si)}
is computationally indistinguishable from the distribution {fj(xi; ri,j)}, where
the ri,j ’s are sampled independently and uniformly at random.

The following two theorems capture the security of the scheme. These theo-
rems state that under suitable assumptions on the underlying building blocks,
the scheme is message private for non-adaptively-admissible randomized func-
tionalities and for adaptively-admissible randomized functionalities.

Theorem 1. Assuming that PRF is a pseudorandom function family and that
FE is selective-function function private, then Π is message private for non-
adaptively-admissible randomized functionalities.

Theorem 2. Assuming that PRF is a puncturable pseudorandom function fam-
ily and that FE is function private, then Π is message private for adaptively-
admissible randomized functionalities.

As discussed in Sections 2.1 and 2.2, Theorems 1 and 2 can be instantiated
based on a variety of known pseudorandom function families and functional
encryption schemes. In particular, Theorem 1 can be based on the minimal as-
sumption that a selective-function message-private functional encryption scheme
exists, and Theorem 2 can be based on the minimal assumption that a message-
private functional encryption scheme exists.

Due to lack of space we omit the proof of Theorem 1 and include only the
proof of Theorem 2. We refer to the full version of the paper [26] for the missing
details.

4.1 Proof of Theorem 2

We prove that the scheme Π is message private for adaptively-admissible func-
tionalities (see Definition 12) based on the assumptions that PRF is a puncturable
pseudorandom function family and that FE is function private (see Definition 6).

Let A be a probabilistic polynomial-time adversary that issues at most T1 =
T1(λ) pre-challenge key-generation queries, at most T2 = T2(λ) post-challenge
key-generation queries (where T = T1 + T2), and at most T = T (λ) encryption
queries (note that T1, T2 and T may be any polynomials and are not fixed in

370 I. Komargodski, G. Segev, and E. Yogev

advance), and let F be a Δ-adaptively admissible family of randomized func-
tionalities. We denote by f1, . . . , fT the key-generation queries that are issued
by A.

We present a sequence of experiments and upper bound A’s advantage in dis-
tinguishing each two consecutive experiments. Each two consecutive experiments
differ either in the distribution of their challenge ciphertexts or in the distribu-
tion of the functional keys that are produced by the key-generation oracle. The
first experiment is the experiment ExptaMPRF

Π,F ,A,T (λ) (see Definition 12), and the
last experiment is completely independent of the bit b. This enables us to prove
that there exists a negligible function neg(·) such that

AdvaMPRF
Π,F ,A,T (λ)

def
=

∣∣∣∣Pr [ExptaMPRF
Π,F ,A,T (λ) = 1

]
− 1

2

∣∣∣∣ ≤ T (λ) ·Δ(λ) + neg(λ)

for all sufficiently large λ ∈ N. Throughout the proof we use, in addition to
the functions Leftf,K and Rightf,K that were defined in Figure 1, the functions
PuncOutputYf,K′,y,s∗ and PuncOutputZf,K′,s∗ that are defined in Figure 2. In

PuncOutputYf,K′,y,s∗(xL, xR, s, z):

1. If s = s∗ then output y.

2. Otherwise, let r = PRF.Eval(K′, s)
and output f(xL; r).

PuncOutputZf,K′,s∗(xL, xR, s, z):

1. If s = s∗ then output z.

2. Otherwise, let r = PRF.Eval(K′, s)
and output f(xL; r).

Fig. 2. The functions PuncOutputYf,K′ ,y,s∗ and PuncOutputZf,K′ ,s∗ .

what follows we describe the experiments. We note that in all experiments the
encryption oracle is as defined by the encryption procedure of the scheme.

Experiment H(0)(λ). This is the experiment ExptaMPRF
Π,F ,A(λ) (see Definition 12).

ExperimentH(1)(λ). This experiment is obtained from the experimentH(0)(λ)
by modifying the encryption oracle so that on the challenge input (x∗

0, x
∗
1) it

samples s∗ ← {0, 1}λ and outputs ct ← FE.Enc(msk, (x∗
b , x∗

1 , s∗,⊥)) instead of

ct ← FE.Enc(msk, (x∗
b , ⊥ , s∗,⊥)).

Note that for each function f ∈ {f1, . . . , fT } with an associated PRF key K,
for the deterministic function Leftf,K and the challenge ciphertext it holds that
Leftf,K(x∗

b , x
∗
1, s

∗,⊥) = Leftf,K(x∗
b ,⊥, s∗,⊥). Therefore, the message privacy of

the underlying scheme FE (with respect to deterministic functions) guarantees
that the adversary A has only a negligible advantage in distinguishing exper-
iments H(0) and H(1). Specifically, let F ′ denote the family of deterministic
functions Leftf,K and Rightf,K for every f ∈ F and PRF key K (as defined in
Figure 1) as well as the function PuncOutputYf,K′,y,s∗ and PuncOutputZf,K′,s∗

for every f ∈ F , punctured PRF key K ′, value y ∈ Yλ and string s∗ ∈ {0, 1}λ (as
defined in Figure 2). In the full version (see [26]) we prove the following lemma:

Functional Encryption for Randomized Functionalities 371

Lemma 1. There exists a probabilistic polynomial-time adversary B(0)→(1) such
that ∣∣∣Pr [H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ AdvMP
FE,F ′,B(0)→(1),T (λ).

Experiment H(2,i)(λ) where i ∈ [T2 + 1]. This experiment is obtained from
the experiment H(1)(λ) by modifying the post challenge key-generation oracle to
generate keys as follows. The functional keys for the fT1+1, . . . , fT1+i−1 are gen-
erated as PuncOutputYf,K′,y,s∗ (the definition of PuncOutputYf,K′,y,s∗ appears

in Figure 2), where K ′ is generated by sampling a PRF key K ← PRF.Gen(1λ)
and then puncturing it at s∗, and where y ← f(x∗

b), and the functional keys for
fT1+i, . . . , fT1+T2 = fT are generated as PuncOutputYf,K′,y,s∗ , where K ′ and s∗

are as before but y = f(x∗
b ;PRFK(s∗)).

Note that every x �= x∗
b with which the encryption oracle is queries (with

probability negligibly close to 1) it holds that s �= s∗, hence, using the function-
ality feature of the punctured PRF, for every f ∈ {fT1+1, . . . , fT } it holds that
Leftf,K(x, x, s,⊥) = PuncOutputYf,K′,y,s∗(x, x, s,⊥). In addition, for the chal-
lenge x∗

b it holds that Leftf,K(x∗
b , x

∗
1, s

∗,⊥) = PuncOutputYf,K′,y,s∗(x
∗
b , x

∗
1, s

∗,⊥)
since PuncOutputYf,K′,y,s∗ simply outputs y, where y = f(x∗

b ;PRFK(s∗)). Thus,
the function-privacy of the underlying scheme FE guarantees that the adversary
A has only a negligible advantage in distinguishing experiments H(1)(λ) and
H(2,1)(λ). In the full version (see [26]) we prove the following lemma:

Lemma 2. There exists a probabilistic polynomial-time adversary B(1)→(2,1)

such that∣∣∣Pr [H(1)(λ) = 1
]
− Pr

[
H(2,1)(λ) = 1

]∣∣∣ ≤ AdvFPFE,F ′,B(1)→(2,1),T (λ) + neg(λ).

Moreover, note that the pseudorandomness of PRFK(·) at punctured point s∗

(see Definition 2) guarantees that the adversary A has only a negligible advan-
tage in distinguishing experiments H(2,i) and H(2,i+1). In the full version (see
[26]) we prove the following lemma:

Lemma 3. For every i ∈ [T2] there exists a probabilistic polynomial-time adver-
sary B(2,i)→(2,i+1) such that∣∣∣Pr [H(2,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣∣∣ ≤ AdvpuPRF,B(2,i)→(2,i+1)(λ).

Experiment H(3,i)(λ) Where i ∈ [T2 + 1]. This experiment is obtained from
the experiment H(2,T2)(λ) by modifying the post-challenge key-generation or-
acle as follows. The functional keys for the fT1+1, . . . , fT1+i−1 are generated
as PuncOutputYf,K′,y,s∗ , where K ′ is generated by sampling a PRF key K ←
PRF.Gen(1λ) and then puncturing it at s∗, and where y ← f(x∗

1) , and the func-

tional keys for fT1+i, . . . , fT1+T2 are generated as PuncOutputYf,K′,y,s∗ , where

K ′ and s∗ are as before but y ← f(x∗
b). We observe thatH(2,T+1)(λ) = H(3,1)(λ).

372 I. Komargodski, G. Segev, and E. Yogev

The adaptive admissibility of the function family F (see Definition 11) guar-
antee that the advantage of the adversary A in distinguishing experiments H(3,i)

and H(3,i+1) is at most Δ(λ). In the full version (see [26]) we prove the following
lemma:

Lemma 4. For every i ∈ [T2] there exists a probabilistic polynomial-time adver-
sary B(3,i)→(3,i+1) such that∣∣∣Pr [H(3,i)(λ) = 1

]
− Pr

[
H(3,i+1)(λ) = 1

]∣∣∣ ≤ AdvaADM
F ,B(3,i)→(3,i+1) ≤ Δ(λ).

Experiment H(4,i)(λ) where i ∈ [T1 + 1]. This experiment is obtained from
the experiment H(3,T)(λ) by modifying the pre-challenge key-generation or-
acle as follows. The functional keys for f1, ..., fi−1 are generated as skf ←
FE.KG(msk, Rightf,K) instead of as skf ← FE.KG(msk, Leftf,K) (where

Rightf,K is defined in Figure 1), and the functional keys for fi, ..., fT1 are gener-

ated as before (i.e., as skf ← FE.KG(msk, Leftf,K)). We observe that H(3,T+1)(λ)
= H(4,1)(λ).

Experiment H(5,i)(λ) where i ∈ [T1]. This experiment is obtained from the
experiment H(4,i)(λ) by modifying the encryption oracle so that on the challenge
input (x∗

0, x
∗
1) it samples s∗ ← {0, 1}λ and outputs ct ← FE.Enc(msk, (x∗

b , x
∗
1, s

∗,

z∗)), where z∗ = fi(x
∗
b ;PRF.Eval(Ki, s

∗)), instead of ct ← FE.Enc(msk, (x∗
b , x

∗
1,

s∗, ⊥)).
Notice that both Leftf,K and Rightf,K are defined to ignore the fourth in-

put z, hence, for the first i − 1 keys it holds that Rightf,K(x∗
b , x

∗
1, s

∗,⊥) =
Rightf,K(x∗

b , x
∗
1, s

∗, z∗) and for the next T1−i+1 keys it holds that Leftf,K(x∗
b , x

∗
1,

s∗,⊥) = Leftf,K(x∗
b , x

∗
1, s

∗, z∗). Therefore, the message privacy of the underly-
ing scheme FE guarantees that the adversary A has only a negligible advantage
in distinguishing experiments H(4,i) and H(5,i). In the full version (see [26]) we
prove the following lemma:

Lemma 5. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(4,i)→(5,i) such that∣∣∣Pr [H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣∣∣ ≤ AdvMP
FE,F ′,B(4,i)→(5,i),T (λ).

Experiment H(6,i)(λ) Where i ∈ [T1]. This experiment is obtained from
the experiment H(5,i)(λ) by modifying the behavior of the pre-challenge key-
generation oracle on the ith query fi (without modifying its behavior on all other
queries). On input the ith query fi, the pre-challenge key-generation oracle com-

pute skfi ← FE.KG(msk, PuncOutputZfi,K′
i,s

∗) instead of skfi ← FE.KG(msk,

Leftfi,Ki) (where the function PuncOutputZfi,K′
i,s

∗ is defined in Figure 2).

Note that by the functionality feature of the punctured PRF (see Defini-
tion 2), for every ciphertext (x,⊥, s, z) which is not the challenge ciphertext (with

Functional Encryption for Randomized Functionalities 373

probability negligibly close to 1) it holds that PuncOutputZfi,K′
i,s

∗(x,⊥, s, z) =

Leftfi,Ki(x,⊥, s, z) (since s �= s∗ with very high probability). For the challenge
ciphertext the latter also holds since PuncOutputZfi,K′

i,s
∗(x∗

b , x
∗
1, s

∗, z∗) outputs

z∗ = fi(x
∗
b ;PRFKi(s

∗)). Thus, the function-privacy of the underlying scheme FE
guarantees that the adversary A has only a negligible advantage in distinguish-
ing experiments H(6,i)(λ) and H(7,i)(λ). In the full version (see [26]) we prove
the following lemma:

Lemma 6. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(5,i)→(6,i) such that∣∣∣Pr [H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣∣∣ ≤ AdvFPFE,F ′,B(5,i)→(6,i) ,T (λ) + neg(λ).

Experiment H(7,i)(λ) where i ∈ [T1]. This experiment is obtained from
the experiment H(6,i)(λ) by modifying the encryption oracle so that on the
challenge input (x∗

0, x
∗
1) it outputs ct ← FE.Enc(msk, (x∗

b , x
∗
1, s

∗, z∗)), where

z∗ = fi(x
∗
b ; r∗) for a fresh and uniformly sampled value r∗ instead of z∗ =

fi(x
∗
b ; PRF.Eval(Ki, s

∗)).

The pseudorandomness at punctured point s∗ of PRF.Eval(Ki, ·) guarantees
that the adversary A has only a negligible advantage in distinguishing exper-
iments H(6,i) and H(7,i). In the full version (see [26]) we prove the following
lemma:

Lemma 7. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(6,i)→(7,i) such that∣∣∣Pr [H(6,i)(λ) = 1

]
− Pr

[
H(7,i)(λ) = 1

]∣∣∣ ≤ AdvpuPRF,B(6,i)→(7,i) (λ).

Experiment H(8,i)(λ) Where i ∈ [T1]. This experiment is obtained from
the experiment H(7,i)(λ) by modifying the encryption oracle so that on the
challenge input (x∗

0, x
∗
1) it outputs ct ← FE.Enc(msk, (x∗

b , x
∗
1, s

∗, z∗)), where z∗ =

fi(x∗
1 ; r∗) instead of z∗ = fi(x∗

b ; r∗) (both with fresh and uniform r∗).

The adaptive admissibility of the function family F (see Definition 11) guar-
antees that the advantage of the adversaryA in distinguishing experimentsH(7,i)

and H(8,i) is at most Δ(λ). In the full version (see [26]) we prove the following
lemma:

Lemma 8. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(7,i)→(8,i) such that∣∣∣Pr [H(7,i)(λ) = 1

]
− Pr

[
H(8,i)(λ) = 1

]∣∣∣ ≤ AdvaADM
F ,B(7,i)→(8,i) ≤ Δ(λ).

Experiment H(9,i)(λ) Where i ∈ [T1]. This experiment is obtained from
the experiment H(8,i)(λ) by modifying the encryption oracle so that on the

374 I. Komargodski, G. Segev, and E. Yogev

challenge input (x∗
0, x

∗
1) it outputs ct ← FE.Enc(msk, (x∗

b , x
∗
1, s

∗, z∗)), where z∗ =

fi(x
∗
1; PRF.Eval(Ki, s

∗)) instead of z∗ = fi(x
∗
1; r∗) for a fresh and uniformly

sampled value r∗.
The pseudorandomness at punctured point s∗ of PRF.Eval(Ki, ·) guarantees

that the adversary A has only a negligible advantage in distinguishing experi-
ments H(9,i) and H(10,i). The proof of the following lemma is essentially identical
to the proof of Lemma 7 (see [26]):

Lemma 9. For every i ∈ [T1] there exists a probabilistic polynomial-time adver-
sary B(8,i)→(9,i) such that∣∣∣Pr [H(8,i)(λ) = 1

]
− Pr

[
H(9,i)(λ) = 1

]∣∣∣ ≤ AdvpuPRF,B(8,i)→(9,i) (λ).

Experiment H(10,i)(λ) Where i ∈ [T1]. This experiment is obtained from
the experiment H(9,i)(λ) by modifying the behavior of the pre-challenge key-
generation oracle on the ith query fi (without modifying its behavior on all other
queries). On input the ith query fi, the key-generation oracle compute skfi ←
FE.KG(msk, Rightfi,Ki

) instead of skfi ← FE.KG(msk, PuncOutputZfi,K′
i,s

∗).

As in the proof of Lemma 6, the function privacy of the underlying scheme
FE (with respect to deterministic functions) guarantees that the adversary A
has only a negligible advantage in distinguishing experiments H(9,i) and H(10,i).
The proof of the following lemma is essentially identical to the proof of Lemma 6
(see [26]):

Lemma 10. For every i ∈ [T1] there exists a probabilistic polynomial-time ad-
versary B(9,i)→(10,i) such that∣∣∣Pr [H(9,i)(λ) = 1

]
− Pr

[
H(10,i)(λ) = 1

]∣∣∣ ≤ AdvFPFE,F ′,B(9,i)→(10,i),T (λ) + neg(λ).

Next, we observe that experimentH(4,i+1)(λ) is obtained from the experiment
H(10,i)(λ) by modifying the challenge ciphertext to be computed using z∗ = ⊥
instead of z∗ = fi(x

∗
1;PRF.Eval(Ki, s

∗)).
Note that for each function f ∈ {f1, . . . , fT } with an associated PRF key K,

for the deterministic functions Leftf,K and Rightf,K and the challenge ciphertext
it holds that Leftf,K(x∗

b , x
∗
1, s

∗,⊥) = Leftf,K(x∗
b , x

∗
1, s

∗, z∗) and Rightf,K(x∗
b , x

∗
1,

s∗,⊥) = Rightf,K(x∗
b , x

∗
1, s

∗, z∗). Therefore, the selective-function message pri-
vacy of the underlying scheme FE (with respect to deterministic functions) guar-
antees that the adversary A has only a negligible advantage in distinguishing
experiments H(10,i) and H(4,i+1). The proof of the following lemma is essentially
identical to the proof of Lemma 5 (see [26]):

Lemma 11. For every i ∈ [T1] there exists a probabilistic polynomial-time ad-
versary B(10,i)→(4,i+1) such that∣∣∣Pr [H(10,i)(λ) = 1

]
− Pr

[
H(4,i+1)(λ) = 1

]∣∣∣ ≤ AdvMP
FE,F ′,B(10,i)→(4,i+1),T (λ).

Functional Encryption for Randomized Functionalities 375

Experiment H(11)(λ). This experiment is obtained from the experiment H
(4,T+1)(λ) by modifying the encryption oracle so that on the challenge in-

put (x∗
0, x

∗
1) it outputs ct ← FE.Enc(msk, (x∗

1 , x∗
1, s

∗,⊥)) instead of ct ←
FE.Enc(msk, (x∗

b , x∗
1, s

∗,⊥)). Note that this experiment is completely indepen-

dent of the bit b, and therefore Pr
[
H(11)(λ) = 1

]
= 1/2.

In addition, note that for every function f ∈ {f1, . . . , fT1} with an associated
PRF key K, for the deterministic function Rightf,K it holds that Rightf,K(x∗

b , x
∗
1,

s∗,⊥) = Rightf,K(x∗
1, x

∗
1, s

∗,⊥). Therefore, the message privacy of the underlying
scheme FE (with respect to deterministic functions) guarantees that the adver-
sary A has only a negligible advantage in distinguishing experiments H(4,T1+1)

and H(11). The proof of the following lemma is essentially identical to the proof
of Lemma 1 (see [26]):

Lemma 12. There exists a probabilistic polynomial-time adversaryB(4,T1+1)→(11)

such that∣∣∣Pr [H(4,T1+1)(λ) = 1
]
− Pr

[
H(11)(λ) = 1

]∣∣∣ ≤ AdvsfFPFE,F ′,B(4,T+1)→(11),T (λ).

Finally, putting together Lemmas 1–12 with the facts that ExptaMPRF
Π,F ,A,T (λ) =

H(0)(λ), H(1)(λ) = H(2,1)(λ), H(2,T+1)(λ) = H(3,1)(λ), H(3,T+1)(λ) = H(4,1)(λ)
and Pr

[
H(11)(λ) = 1

]
= 1/2, we observe that

AdvaMPRF
Π,F ,A,T

def
=

∣∣∣∣Pr [ExptaMPRF
Π,F ,A,T (λ) = 1

]
− 1

2

∣∣∣∣
=

∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤

∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(1)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(1)(λ) = 1

]
− Pr

[
H(2,1)(λ) = 1

]∣∣∣
+

3∑
j=2

T2∑
i=1

∣∣∣Pr [H(j,i)(λ) = 1
]
− Pr

[
H(j,i+1)(λ) = 1

]∣∣∣
+

T1∑
i=1

9∑
j=4

∣∣∣Pr [H(j,i)(λ) = 1
]
− Pr

[
H(j+1,i)(λ) = 1

]∣∣∣
+

T1∑
i=1

∣∣∣Pr [H(10,i)(λ) = 1
]
− Pr

[
H(4,i+1)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(4,T+1)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤ (T1(λ) + T2(λ)) ·Δ(λ) + neg(λ)

= T (λ) ·Δ(λ) + neg(λ).

Acknowledgments. We thank Zvika Brakerski for various insightful
discussions.

376 I. Komargodski, G. Segev, and E. Yogev

References

1. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prab-
hakaran, M., Sahai, A.: Function private functional encryption and property
preserving encryption: New definitions and positive results. Cryptology ePrint
Archive, Report 2013/744 (2013)

2. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
New perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

3. Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro, S., Wil-
son, D.A.: On the relationship between functional encryption, obfuscation, and
fully homomorphic encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308,
pp. 65–84. Springer, Heidelberg (2013)

4. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013)

5. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: The trojan method in
functional encryption: From selective to adaptive security, generically. Cryptology
ePrint Archive, Report 2014/917 (2014)

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. Journal of the
ACM 59(2), 6 (2012)

7. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility re-
sults, impossibility results and the quest for a general definition. In: Abdalla, M.,
Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Heidelberg (2013)

8. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
Journal on Computing 32(3), 586–615 (2003), preliminary version in: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

9. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: Hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013)

10. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013)

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

12. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013)

13. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

14. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

15. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. Cryptology ePrint Archive, Report 2014/550 (2014)

16. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

Functional Encryption for Randomized Functionalities 377

17. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013)

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 40–49 (2013)

19. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption
without obfuscation. Cryptology ePrint Archive, Report 2014/666 (2014)

20. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33(4), 792–807 (1986)

21. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

22. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of the 45th
Annual ACM Symposium on Theory of Computing, pp. 555–564 (2013)

23. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

24. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized
functionalities. Cryptology ePrint Archive, Report 2013/729 (2013), to appear in
TCC 2015

25. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Proceedings of the 20th Annual ACM
Conference on Computer and Communications Security, pp. 669–684 (2013)

26. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. Cryptology ePrint
Archive, Report 2014/868 (2014)

27. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

28. Sahai, A., Waters, B.: Slides on functional encryption (2008),
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

29. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pp. 475–484 (2014)

30. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

31. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

32. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. Cryptology ePrint Archive, Report 2014/588 (2014)

http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

Separations in Circular Security

for Arbitrary Length Key Cycles

Venkata Koppula, Kim Ramchen, and Brent Waters�

University of Texas at Austin, Austin, USA
{kvenkata,kramchen,bwaters}@cs.utexas.edu

Abstract. While standard notions of security suffice to protect any mes-
sage supplied by an adversary, in some situations stronger notions of
security are required. One such notion is n-circular security, where ci-
phertexts Enc(pk1, sk2),Enc(pk2, sk3), . . . ,Enc(pkn, sk1) should be indis-
tinguishable from encryptions of zero.

In this work we prove the following results for n-circular security,
based upon recent candidate constructions of indistinguishability obfus-
cation [18,16] and one way functions:

– For any n there exists an encryption scheme that is IND-CPA secure
but not n-circular secure.

– There exists a bit encryption scheme that is IND-CPA secure, but
not 1-circular secure.

– If there exists an encryption system where an attacker can distin-
guish a key encryption cycle from an encryption of zeroes, then in
a transformed cryptosystem there exists an attacker which recovers
secret keys from the encryption cycles.

The last result is generic and applies to any such cryptosystem.

1 Introduction

The classical notion of secure encryption, due to Goldwasser and Micali [20]
demands that random encryptions of two messages submitted by the adversary
should be indistinguishable. However this security notion makes no guarantees
about the security of encrypting messages which the adversary is unable to gen-
erate - indeed this was observed by Goldwasser and Micali. Of particular interest
is when an adversary can receive encryptions of messages which depend upon
the secret key. The resulting notion of security against key dependent message
attacks was first studied by Black et al [8].

� Supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA through
the U.S. Office of Naval Research under Contract N00014-11-1-0382, DARPA
N11AP20006, Google Faculty Research award, the Alfred P. Sloan Fellowship, Mi-
crosoft Faculty Fellowship, and Packard Foundation Fellowship. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Department of Defense or
the U.S. Government.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 378–400, 2015.
c© International Association for Cryptologic Research 2015

Separations in Circular Security for Arbitrary Length Key Cycles 379

A particularly prominent special case of KDM security, introduced by Ca-
menisch and Lysyanskaya [14], is n-circular security. Let pk1, . . . , pkn be public
keys. An encryption scheme is said to be n-circular secure, if an adversary is
unable to distinguish Enc(pk1, sk2),Enc(pk2, sk3), . . . ,Enc(pkn, sk1) from corre-
sponding zero encryptions. Camenisch and Lysyanskaya used circular secure en-
cryption to build an anonymous credentials scheme with “all or nothing” sharing
[14]. In fact, circular security for n ≥ 1 arises naturally in many other applica-
tions. A common scenario is when a disk utility is used to encrypt a partition
on which the secret key has been stored. Another situation is Gentry’s “boot-
strapping” of a somewhat homomorphic encryption to a fully homomorphic en-
cryption [19]. In this case the decryption circuit associated with the secret key
is encrypted and published in the public parameters and used to “refresh” a
ciphertext periodically. Finally, circular security is used in formal methods to
prove the soundness of symbolic protocols [2,22].

There have been several postive results on circular security and more generally
KDM security. In the random oracle model, Black et al. [8] and independently
Camenisch and Lysyanskaya [14] gave constructions for KDM secure encryption.
Some time later Boneh, Hamburg, Halevi and Ostrovsky gave the first construc-
tion of circular secure encryption in the standard model [9]. Their construction
provided instantiations of n-circular secure encryption for arbitrary n and in
fact provided security for a broader class of key dependent messages - namely
all affine functions of the secret key. Continuing in this vein, Applebaum et al
[5] presented efficient constructions for affine functions under the LWE and LPN
assumptions - the former for public key encryption and both for symmetric key
encryption. Later works [21,11,7,12,4,23,13,3] focussed on extending the class of
functions and improving efficiency of the constructions.

While there have been many positive advances for circular secure encryption
and related functionalities, fewer negative results are known. One fundamental
question is whether it might be possible that circular security is implied by se-
mantic security? If this held, then it would have important consequences for
the design of cryptographic primitives. In particular, an affirmative answer for
any n would imply a method to construct secure fully homomorphic encryption
from mildly or leveled homomorphic encryption. For small n concrete negative
results are known. Indeed for n = 1, a folklore counterexample exists. For n = 2,
Acar et al. [1] presented a counterexample under the SXDH assumption. Cash
et al. [15] showed how to strengthen this result, with a counterexample for n = 2
under a weaker definition of circular security. Despite these advances, for n > 2
the problem has largely remained open.

A related question is whether bit-by-bit encryption might suffice for protecting
the secret key, i.e. ensure 1-circular security. Again there is partial negative
information in that Rothblum [25] has showed, interestingly, that if there exist
l-multilinear groups of order p, with p ≤ 2l, in which the SXDH assumption
holds, then there exists a semantically secure encryption scheme which is not 1-
circular secure. Unfortunately, existing candidates for multilinear group schemes

380 V. Koppula, K. Ramchen, and B. Waters

[17,16] do not meet the SXDH requirement.1 Consequently there are no existing
candidates for the Rothblum counterexample. As Rothblum observes, if bit by bit
encryption implied circular security, this would give another avenue for utilizing
Gentry’s bootstrapping.

1.1 Our Contribution

We present the following results:

Counterexample for n-Circular Security. We construct an encryption
scheme that is IND-CPA secure but not n-circular secure.

Bit Encryption Counterexample. We construct a bit encryption scheme
that is IND-CPA secure, but not circular secure.

Key Recovery from n-Circular Insecurity. Suppose there exists an IND-
CPA secure encryption system where there exists an adversary that can dis-
tinguish an encryption cycle from the encryption of zeroes. We show how to
transform this into an IND-CPA security cryptosystem where the adversary
can recover the secret keys from the encryption cycle.

Both the constructions utilize the recent construction of indistinguishability
obfuscation for polynomial sized circuits by Garg et al. [18] and one way func-
tions. An indistinguishability obfuscation of a program g is a program iO(g)
with a weaker security guarantee: if two programs g and g′ have the same input-
output behavior, then iO(g) and iO(g′) are computationally indistinguishable.
As argued by [18,27], indistinguishability obfuscation is the weakest definition of
obfuscation, and unlike black box obfuscation, there are no known impossibility
results for indistinguishability obfuscation.

Counterexample for n-circular security: We begin by giving intuition for our
encryption scheme. Let us consider any IND-CPA secure encryption scheme
PKE = (Keygen,Encrypt,Decrypt). We show how this encryption scheme can
by modified by providing some auxiliary information as part of the ciphertext,
so that the scheme is n-circular insecure, and at the same time, remains IND-CPA
secure. We approach the problem in two steps. We first design an approach that
works with black box obfuscation. Then we design new techniques to move our
construction and proof of security to use indistinguishability obfuscation.

To construct our counterexample we begin with a standard encryption system
and then modify the encryption algorithm. When encrypting a message m, in
addition to the PKE ciphertext c, we also give out a cycle detection program gm

which can be used to detect whether a cycle is present or not. The program gm

has m hardwired, takes n inputs c1, . . . , cn, and works as follows: It decrypts,
if possible, c2 using m to obtain m2, c3 using m2 to obtain m3 and so on.

1 One interesting question is whether there is a simple modification of Rothblum’s
candidate construction and proof that can be modified to work under the current
multilinear candidates. Neither we nor the author of the construction are aware of
any such modification [26].

Separations in Circular Security for Arbitrary Length Key Cycles 381

If any decryption fails, it aborts and outputs 0. If it reaches the end of cycle, it
outputs 1.

Let us consider a polynomial time adversary who is given n ciphertexts
ct1, . . . , ctn, where each cti consists of a PKE ciphertext ci and a program gi.
The adversary runs program g1 with inputs c1, . . . , cn. If these are encryptions of
secret keys sk2, . . . , skn, sk1 respectively, then g1 runs to completion outputting
1, else it outputs 0. Therefore, using this additional information, we can detect
whether there is a cycle or not. However, this scheme in itself is not IND-CPA
secure since gm may leak the value m. Therefore, as part of the ciphertext, we
publish a black box obfuscation of gm: O(gm). One can then argue that black
box obfuscation ensures that the value m is not leaked, and hence it is IND-CPA
secure.

Unfortunately, as shown by [6], it is not possible to achieve general black box
obfuscation even for simple functionalities;2 therefore, we modify our construc-
tion so as to use the weaker indistinguishability obfuscation. Our key idea is to
have a set of valid and invalid public keys for each secret key such that the valid
and invalid public keys are computationally indistinguishable from just the pub-
lic key, but validity is discernible given a secret key. In our system we use such
keys. In addition, at the end of the cycle detection program, we add a validity
check, to ensure that pk1 is a valid public key corresponding to mn.

While this modification still ensures that the scheme is n-circular insecure,
we need to prove IND-CPA security. Our proof of this proceeds in two hybrid
steps. First, since the valid and invalid keys are indistinguishable, the real IND-
CPA security game is computationally indistinguishable from one in which we
substitute invalid public keys for the real ones. Next, we observe that these
invalid public keys must necessarily fail the validity check at the end of the
cycle detection program, and therefore the program always outputs 0. Therefore,
instead of outputting an obfuscation of the cycle detection program, if we output
the obfuscation of a program that always outputs 0, the two hybrids remain
indistinguishable by the property of indistinguishability obfuscation. Finally, a
program that always aborts leaks no information about m, and therefore the
scheme is IND-CPA secure.

One potential view of this is as a novel and extreme application of punctured
programming [27]. Once we alter the keys to be invalid, we can completely gut the
obfuscated program to be one that simply outputs 0. In indepedent and concur-
rent work Boneh and Zhandry [10] apply a notion similar to our invalid/valid key
structure (although they do not use that terminology) to building multi-party
key exchange, broadcast and traitor tracing systems. An important contribution
of both papers is that they demonstrate the power of altering the structure of
public keys in combination with indistinguishability obfuscation.

2 It is of course possible that black box obfuscation is obtainable for this particular
functionality. However, we view obtaining our negative result under indistinguisha-
bility obfuscation as an important goal.

382 V. Koppula, K. Ramchen, and B. Waters

Bit encryption counterexample: We now consider the problem of bit encryption.
We first observe that the aforementioned ‘chasing the cycle’ technique cannot
be used for bit encryption. However, in this case, all encryptions use the same
public key. As a result, we can now give out useful auxiliary cryptographic ma-
terial as part of the public key. Here we again use the valid-invalid public keys
technique. In particular, we modify the Keygen algorithm. Suppose we have a
Keygen algorithm for a valid-invalid PKE system as described above that out-
puts pk, sk. Let pk′ be the part of pk used for checking whether pk is a valid
public key corresponding to sk, and sk′ the part of sk used for decrypting ci-
phertexts. Now consider the program gpk

′,sk′ that has pk′, sk′ hardwired, and
takes l inputs c1, . . . , cl. Program gpk

′,sk decrypts each of the inputs using sk′

and checks (using pk′) whether pk is a valid public key corresponding to the
resulting string. In our modified encryption scheme, in addition to pk, we also
give out an indistinguishability obfuscation of program gpk

′,sk′ .
Clearly, this encryption scheme is not bit circular secure. To prove IND-CPA

security, we use similar hybrids as before. In the first hybrid experiment, we
switch from valid to invalid public keys. Since the valid and invalid public keys
are computationally indistinguishable, these hybrid experiments are computa-
tionally indistinguishable. Finally, we output an obfuscation of a program that
always aborts, thereby ensuring that no information about the secret key sk is
leaked by the program obfuscation.

Key recovery from n-circular insecurity: One interesting question posed in the
setting of circular security is what is the right definition of security. While pre-
venting against cycle detection is seemingly the strongest notion, in many ap-
plications such as Gentry’s bootstrapping it might be sufficient if the system
remained semantically secure (for other messages) in the presence of a key cycle,
even if the key cycle itself were detectable. Likewise, a counterexample for such
a weaker notion of security would be a stronger result. Cash et al. [15] improved
upon the work of Acar et al. [1] by giving a such a stronger counterexample
which allowed for an attacker to completely recover private keys for the case of
key cycles of length two.

The key-recovery from cycles technique of Cash et. al. was tailored specifically
to the case of bilinear maps. In this work, we show that if for any n there exists
an encryption system where an attacker can distinguish a key encryption cycle
from a encryption of zeroes, then we can create a transformed cryptosystem
where there exists an attacker which recovers secret keys from the encryption
cycles. Thus, for obtaining a strong key recovery counterexample, one only needs
to work to obtain a cycle detection counterexample.

Our methods here are in spirit similar to Rothblum’s result in [25] for the bit
encryption case. When encrypting a message, we also publish a hint for each bit
of the message, indicating whether the bit is 0 or 1. To determine the bit, we
use the cycle detection algorithm. As a consequence, this hint works if and only
if we have a cycle of secret keys, therefore ensuring both IND-CPA security and
key recovery.

Separations in Circular Security for Arbitrary Length Key Cycles 383

Relation to [24] On October 2013, we initially posted on eprint a paper that
contained our three main results: (i) a construction of a public key encryption
scheme that is IND-CPA secure but not n-circular secure, (ii) the construction
of a bit encryption scheme that is IND-CPA secure but not 1-circular secure and
(iii) a transformation of an encryption scheme in which key cycles can be distin-
guished from encryption of zeroes into one which secret keys can be recovered
from encryption cycles. The first two results are based upon indistinguishability
obfuscation [18], the last result is completely generic.

Very shortly thereafter, Marcedone and Orlandi [24] showed how to construct
a public key encryption scheme that is IND-CPA secure but not n-circular secure
using the virtual black box [6] notion of obfuscation. This result was similar to
our result (i); however, they used virtual black box obfuscation instead of in-
distinguishability obfuscation. Four months later, the authors added a result
showing an n-circular security counterexample using indistinguishability obfus-
cation, thus matching one of the results contained in this work. (There are no
analogues of the other two results in their paper.) The ideas used by [24] 3 for
the counterexample posted in February 2014 are very similar to the ones we
used in our result (i), posted in October 2013. We strongly view our paper as
the origination of the ideas behind this result.

2 Preliminaries

Definition 1 (Public Key Encryption). A public key encryption scheme
PKE is a set of three algorithms (Keygen, Encrypt, Decrypt) satisfying the fol-
lowing properties :

– Key Generation Keygen(1λ) is a randomized algorithm that takes as input
the security parameter λ and outputs public key pk and secret key sk.

– Encryption Encrypt(pk,m) is a randomized algorithm that takes as input a
public key pk, message m and outputs a ciphertext ct.

– Decryption Decrypt(sk, ct) is a deterministic algorithm that takes as input
a secret key sk, a ciphertext ct and outputs m.

For correctness, we require that for all m,

Pr[Decrypt(sk,Encrypt(pk,m)) �= m : (pk, sk) ← Keygen(1λ)] ≤ negl(λ).

A public key cryptosystem is called a bit encryption scheme if its message space
is {0, 1}.

We define various security notions for public key cryptosystems.

3 The updated draft [24] was accepted in SCN 2014.

384 V. Koppula, K. Ramchen, and B. Waters

Definition 2 (IND-CPA Security).
Let PKE = (Keygen,Encrypt,Decrypt) be a public key cryptosystem. Consider

the following game between challenger C and adversary A :

IND-CPA :

1. C computes (pk, sk) ← Keygen(1λ) and sends pk to A.
2. A sends challenge plaintext messages m0,m1 such that |m0| =

|m1| to C.
3. C chooses a bit b

$← {0, 1}, computes ct ← Encrypt(pk,mb) and
sends ct to A.

4. A outputs a bit b′

The advantage of A is AdvA = Pr[b = b′]− 1
2 .

PKE is said to be IND-CPA secure if for all PPT algorithms A, AdvA ≤ negl(λ).

2.1 Circular Security

Definition 3 (n-Circular Security [14]).
Let PKE = (Keygen,Encrypt,Decrypt) be a public key cryptosystem. Consider

the following game between challenger C and adversary A :

n-Circular Security :

1. C computes (pki, ski) ← Keygen(1λ) for 1 ≤ i ≤ n

2. C chooses a bit b
$← {0, 1}.

– If b = 0, C computes yi = Encrypt(pki, sk(i mod n)+1) for
1 ≤ i ≤ n

– Else C computes yi = Encrypt(pki, 0
|sk(i mod n)+1|) for 1 ≤

i ≤ n
3. C sends (pk1, . . . , pkn, y1, . . . , yn) to A.
4. A outputs b′.

The advantage of A is AdvA = Pr[b = b′]− 1
2 .

PKE is said to be n-circular secure if for all PPT algorithms A, AdvA ≤ negl(λ)

A weak notion of circular security was defined in [15] as follows :

Definition 4 (n-Weak Circular Security). Let PKE = (Keygen,Encrypt,
Decrypt) be a public key cryptosystem. Consider the following game between chal-
lenger C and adversary A :

Separations in Circular Security for Arbitrary Length Key Cycles 385

n-Weak Circular Security :

1. C computes (pki, ski) ← Keygen(1λ) for 1 ≤ i ≤ n.
Next, it computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n.
It sends (pk1, . . . , pkn, y1, . . . , yn) to A.

2. A sends challenge plaintext messages m0,m1 such that |m0| =
|m1| and j ∈ [1, n] to C

3. C chooses a bit b
$← {0, 1} and sends Encrypt(pkj ,mb) to A.

4. A outputs b′

The advantage of A is AdvA = Pr[b = b′]− 1
2 .

PKE is said to be n-weak circular secure if for all PPT algorithms A, AdvA ≤
negl(λ)

Definition 5 (n-Circular Security with respect to Key Recovery). Let
PKE = (Keygen,Encrypt,Decrypt) be a public key cryptosystem. Consider the
following game between challenger C and adversary A :

n-Circular Security with respect to Key Recovery :

1. C computes (pki, ski) ← Keygen(1λ) for 1 ≤ i ≤ n.
Next, it computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n.
It sends (pk1, . . . , pkn, y1, . . . , yn) to A.

2. A outputs sk′1.

The advantage of A is AdvA = Pr[sk1 = sk′
1].

PKE is said to be n-circular secure with respect to key recovery if for all PPT
algorithms A, AdvA ≤ negl(λ)

Remark. If a public key encryption scheme is n-circular secure, then it is also
n-weak circular secure. Similarly, if a scheme is n-weak circular secure, then it
is also n-circular secure with respect to key recovery.

The notion of circular security can be extended to bit encryption schemes.
The following definition is actually equivalent to Definition 3 in the case that
n = 1, but will be slightly more convenient to work with.

Definition 6 (1-Circular Security of Bit-by-bit Encryption). Let PKE =
(Keygen,Encrypt,Decrypt) be a bit encryption scheme. Consider the following
game between challenger C and adversary A :

386 V. Koppula, K. Ramchen, and B. Waters

1-Circular Security of Bit-by-bit Encryption :

1. C chooses b
$← {0, 1}. C generates the public key and secret key

(pk, sk) ← Keygen(1λ) and sends pk to A.
2. For a polynomial number of queries

(a) A queries for encryption of jthi bit of sk.
(b) If b = 1, C sends ct ← Encrypt(pk, skji). Else C sends ct ←

Encrypt(pk, 0).
3. A outputs b′

The advantage of A is AdvA = Pr[b = b′]− 1
2 .

PKE is said to be bit circular secure if for all PPT algorithms A, AdvA ≤ negl(λ)

Rothblum in [25] showed that this notion of bit circular security, which he
called circular security with respect to indistinguishability of oracles, is equiv-
alent to the seemingly stronger notion where the adversary must extract the
entire secret key, given encryptions of the secret key bits. Therefore, it suffices
to restrict our attention to this notion of bit circular security.

2.2 Indistinguishability Obfuscation

Next, we recall the definition of indistinguishability obfuscation from [27].

Definition 7. (Indistinguishability Obfuscation) A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies
the following conditions:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C′(x) = C(x) where C′ ← iO(λ,C).

– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher (Samp,D), there exists a negligible function negl(·) such that
the following holds: if for all security parameters λ ∈ N,Pr[∀x,C0(x) =
C1(x) : (C0;C1;σ) ← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(λ,C0)) = 1 : (C0;C1;σ) ← Samp(1λ)]−
Pr[D(σ, iO(λ,C1)) = 1 : (C0;C1;σ) ← Samp(1λ)]| ≤ negl(λ)

In a recent work, [18] showed a candidate indistinguishability obfuscator for the
circuit class P/poly.

3 Counter Example for n-Circular Security

In this section, we describe how to build for any n, a cryptosystem PKE that is
IND-CPA secure, but not n-circular secure.

Let PKEA = (KeygenA,EncryptA,DecryptA) be a public key encryption scheme
with message space MA = {0, 1}2l, key space KA ⊆ {0, 1}l and ciphertext space
CA. Let G : {0, 1}l → {0, 1}2l be a PRG family. We construct cryptosystem PKE
= (Keygen, Encrypt, Decrypt) as follows:

Separations in Circular Security for Arbitrary Length Key Cycles 387

– Keygen(1λ): Let (skA, pkA) ← KeygenA(1
λ). Let r

$← {0, 1}l and t = G(r).
Set sk = (skA, r). Set pk = (pkA, t).

– Encrypt(pk,m, r): Parse pk = (pkA, t). Let C ← EncryptA(pkA,m).
Let CycleFind be a circuit defined as follows :

CycleFind :
Inputs : C1, . . . , Cn ∈ CA
Constants : m, t.
1. Parse m = (sk2, r).
2. For i=2 to n

(a) Let (sk(i mod n)+1, r(i mod n)+1) = DecryptA(ski, Ci) or out-
put ⊥ if DecryptA fails.

3. If G(r1) = t output 1, else output ⊥.

The circuit CycleFind takes as input n ciphertexts C1, . . . , Cn, and has con-
stants m, t hardwired, where the circuit is appropriately padded to be of the
same size as the corresponding ones in the security proof.
Compute obfuscation of circuit CycleFindm,t as O ← iO(λ,CycleFindm,t).
The ciphertext ct = (C,O).

– Decrypt(sk, ct):Parse sk = (skA, r) and ct = (C,O). OutputDecryptA(skA, C).
String O is ignored.

Correctness follows immediately from the correctness of the original scheme
PKEA.

3.1 The Attack

Proposition 1. The above construction is n-circular insecure.

Proof. We construct a polynomial time adversary A that breaks the n-circular
security of the above construction as follows. A receives (pk1, . . . , pkn, y1, . . . , yn)
from the challenger. A parses yi as (Ci,Oi) where Oi is a circuit. A outputs
the value b ← O1(C1, . . . , Cn). By construction this is 1 iff (y1, . . . , yn) is an
encryption cycle with respect to PKE .

3.2 IND-CPA Security

In order to show that our construction is IND-CPA secure, we construct a series
of hybrid experiments as follows.

Game 0: IND-CPA Game

1. Choose r
$← {0, 1}l and set t = G(r).

2. Let (skA, pkA) ← KeygenA(1
λ).

3. Let sk = (skA, r) and pk = (pkA, t).
4. Suppose A sends m0,m1 : |m0| = |m1|.
5. Choose b

$← {0, 1}.

388 V. Koppula, K. Ramchen, and B. Waters

6. Let C = EncryptA(pkA,mb).
7. Let O = iO(λ,CycleFind) where CycleFind is the circuit described above.
8. Let ctb = (C,O). Send ctb to A.
9. Let b′ ← A2(δ, ctb).

A wins if b = b′ and has advantage AdvA = Pr[b = b′]− 1/2.

Game 1: This game proceeds identically as the IND-CPA game, except we modify
Step 1 as follows.

1. Choose r
$← {0, 1}l and choose t

$← {0, 1}2l. Note that r is information
theoretically hidden in this experiment.

Game 2: This game proceeds identically as Game 1, except we modify Step 7
as follows.
Let CycleReject be the following circuit:

CycleReject :
Inputs : C1, . . . , Cn ∈ CA
Constants : 0w

′

1. Output ⊥

The circuit CycleReject takes as input n ciphertexts C1, . . . , Cn, has zero
padding of length w′. The constant w in circuit CycleFind and w′ in circuit
CycleReject are chosen such that the size of circuits CycleFind and CycleReject
are equal.
Let O = iO(λ,CycleReject).

Proposition 2. Suppose that there exists a polynomial time adversary A such
that Game0AdvA−Game1AdvA = ε. Then there exists a polynomial time adver-
sary B who distinguishes the output of G from random with advantage εPRG = ε.

Proof. The only modification is that t is computed as random 2l-bit string rather
than the output of G. The algorithm B is defined as follows :

1. B receives t ∈ {0, 1}2l from PRG Challenger C, where t is either a pseudo-
random string generated by G or a truly random string.

2. B computes (skA, pkA) ← KeygenA(1
λ). It sets pk = (pkA, t) and sends it to

A.
3. A sends challenge messages m0,m1.

4. B chooses b
$← {0, 1}. It sets C = EncryptA(pkA,mb). Next, it defines circuit

CycleFind, which has mb and t hard-wired. Therefore, B can define CycleFind,
and hence compute O ← iO(λ,CycleFind). Hence it sets ct = (C,O) and
sends it to A.

5. A outputs a bit b′. If (b = b′) B outputs that the string was pseudorandom.
Else B outputs the string was random.

Separations in Circular Security for Arbitrary Length Key Cycles 389

If C sends an output of G, then this experiment corresponds to Game 0. If C sends
a truly random string t, then this corresponds to Game 1. Therefore, if A can
distinguish between Game 0 and Game 1 with advantage ε, then B distinguishes
a pseudorandom string form a truly random string with advantage ε.

Proposition 3. Suppose that there exists a polynomial time adversary A such
that Game1AdvA - Game2AdvA = ε. Then there exists a polynomial time ad-
versary B who breaks the indistinguishability obfuscation with advantage εiO = ε.

Proof. Recall that B should comprise a pair of adversaries (Samp,D) as in
Definition 2.2. We construct these adversaries as follows.
Samp(1λ) :

1. Choose r
$← {0, 1}l and t

$← {0, 1}2l.
2. Let (skA, pkA) ← KeygenA(1

λ).
3. Let sk = (skA, r) and pk = (pkA, t).
4. Let (m0,m1) ← A(pk) : |m0| = |m1|.
5. Choose b

$← {0, 1}.
6. Let CycleFind be the circuit described in our construction with constants

(mb, t, 0
w) hardwired.

Let CycleReject be the circuit described in Game 2 with constant 0w
′
hard-

wired.
7. Output (g0 = CycleFind, g1 = CycleReject).
8. Set σ = (b,m0,m1, pk).
D(σ, iO(λ, gz)) :
1. Let C = EncryptA(pkA,mb), let O = iO(λ, gz).
2. Let ct = (C,O).
3. Let b′ ← A(ct, pk).
4. D guesses 1 if b = b′.

We first prove that B produces circuits g0, g1 which are equivalent on all inputs,
with overwhelming probability. Observe that with overwhelming probability t is

not in the range of G since t
$← {0, 1}2l and hence CycleFind(x) outputs ⊥ for all

x. Thus Samp produces circuits CycleReject and CycleFind which are equivalent
on all inputs with overwhelming probability, by the random choice of t.

All that remains is to show AdvB = ε. Let pz = Pr[D(σ, iO(λ, gz)) = 1]
for z = 0, 1. Note that g0 = CycleFind, hence when z = 0 the event b = b′

occurs iff A wins Game 1. Similarly g1 = CycleReject, hence when z = 1, the
event b = b′ occurs iff A wins Game 2. Then p0 = 1/2 + Game1AdvA, while
p1 = 1/2+Game2AdvA. Thus AdvB = p0−p1 = Game1AdvA−Game2AdvA = ε.

Finally, we need to show that any polynomial time adversary has only negli-
gible advantage in Game 2. This follows from the fact that PKEA is IND-CPA
secure.

Proposition 4. If there exists a polynomial time adversary A with non negligi-
ble advantage ε in Game 2, then there exists a polynomial time algorithm B that
can break the IND-CPA security of PKEA with advantage εA = ε.

390 V. Koppula, K. Ramchen, and B. Waters

Proof. Suppose A has advantage ε in Game 2. We define B as follows :

1. B receives pkA from the IND-CPA Challenger C. It chooses t
$← {0, 1}2l and

sends public key pk = (pkA, t) to A.
2. A sends challenge messages m0,m1, which are passed on to C, and receives

ciphertext C.
3. B computes O ← iO(λ,CycleReject) and sends ciphertext ct = (C,O) to A.
4. A sends bit b′, which B passes on to C.

Note that if A wins Game 2, then B wins the IND-CPA game. Hence the result
follows.

The advantage of any polynomial time IND-CPA adversary against PKE is at
most εPRG + εiO + εA. Therefore we have the following theorem.

Theorem 1. Assuming that G is a secure PRG family, iO is an indistinguisha-
bility obfuscator and PKEA is an IND-CPA secure encryption scheme, PKE is
IND-CPA secure but not n-circular secure.

4 Counter Example for 1-Circular Security of Bit-by-bit
Encryption

In this section, we describe a bit encryption scheme that is IND-CPA secure, but
is not 1-circular secure.
Let PKEA = (KeygenA,EncryptA, DecryptA) be a bit encryption cryptosystem
with key space KA ⊆ {0, 1}l and ciphertext space CA. Let G : {0, 1}l → {0, 1}2l
be a PRG. We construct a bit encryption cryptosystem PKE = (Keygen,Encrypt,
Decrypt) as follows :

– Keygen(1λ) : Let (pkA, skA) ← KeygenA(1
λ). Choose r

$← {0, 1}l and com-
pute t = G(r). Define a circuit BitCycleFind as follows :

BitCycleFind :
Inputs : C1, . . . , Cl ∈ CA
Constants : skA, t, 0w for an appropriately chosen w
1. For i = 1 to l

(a) Let xi = DecryptA(skA, Ci) or output ⊥ if DecryptA fails.
2. Let x = x1 . . . xl. If G(x) = t output 1, else output ⊥.

The circuit takes as input l ciphertexts, and has constants skA, t and 0w

hardwired. As in the multi-bit encryption, the zero padding is required for
the security proof.
Compute obfuscation of circuit BitCycleFind as O ← iO(λ,BitCycleFind). Set
pk = (pkA, t, O) and sk = (skA, r).

– Encrypt(pk,m) : Parse pk = (pkA, t, O). Compute ciphertext ct ←
EncryptA(pkA,m).

– Decrypt(sk, ct) : Parse sk = (skA, r). Output Decrypt(skA, ct).

The correctness of PKE follows directly from the correctness of PKEA.

Separations in Circular Security for Arbitrary Length Key Cycles 391

4.1 The Attack

Proposition 5. The above construction is not bit circular secure.

Proof. We construct a polynomial time adversary A that breaks the bit cir-
cular security of the above construction as follows. A receives public key pk =
(pkA, t, O). Next, it queries for encryptions of the last l bits of the second compo-
nent of the secret key, and receives ct1, . . . , ctl. A outputs b = O(ct1, . . . , ctl). By
construction, it follows that A outputs 1 iff the challenger outputs encryptions
of the bits of the secret key sk.

4.2 IND-CPA Security

In this section, we show that our construction PKE = (Keygen, Encrypt, Decrypt)
is IND-CPA secure.
As before we construct a sequence of hybrid experiments, and show that the
outputs of the hybrid experiments are computationally indistinguishable.

Game 0: IND-CPA

1. Choose r
$← {0, 1}l and set t = G(r).

2. Let (pkA, skA) ← KeygenA(1
λ).

3. Let O = iO(λ,BitCycleFind) as described in the construction.
4. Let sk = (skA, r) and pk = (pkA, t, O). Send pk to A.

5. Choose b
$← {0, 1}.

6. Let ctb ← EncryptA(pkA, b). Send ct to A.
7. Let b′ ← A(ctb).

A wins if b = b′ and has advantage AdvA = Pr[b = b′]− 1/2.

Game 1: This game proceeds identically as the IND-CPA game, except we modify
Step 1 as follows.

1. Choose r
$← {0, 1}l and choose t

$← {0, 1}2l. Note that r is information
theoretically hidden in this experiment.

Game 2: This game proceeds identically as Game 1, except we modify Step 3
as follows.
Let BitCycleReject be the following circuit:

BitCycleReject :
Inputs : C1, . . . , Cl ∈ CA
Constants : 0w

′

1. Output ⊥

392 V. Koppula, K. Ramchen, and B. Waters

The circuit BitCycleReject takes as input l ciphertexts C1, . . . , Cl, has zero
padding of length w′. The constants w in circuit BitCycleFind and w′ in circuit
BitCycleReject are chosen such that |BitCycleFind| = |BitCycleReject|
Let O = iO(λ,BitCycleReject).

The proofs of the following indistinguishability results are similar to those of
the previous section and are included in Appendix A.

Proposition 6. Suppose that there exists a polynomial time adversary A such
that Game0AdvA - Game1AdvA = ε. Then there exists a polynomial time adver-
sary B who distinguishes the output of G from random with advantage εPRG = ε.

Proposition 7. Suppose that there exists a polynomial time adversary A such
that Game1AdvA - Game2AdvA = ε. Then there exists a polynomial time ad-
versary B who breaks the indistinguishability obfuscation with advantage εiO = ε.

Proposition 8. If there exists a polynomial time adversary A with non-negligible
advantage ε in Game 2, then there exists a polynomial time algorithm B that can
break the IND-CPA security of PKEA with advantage εA = ε.

Then, combining the above results, we have the following theorem.

Theorem 2. Assuming that G is a secure PRG family, iO is an indistinguisha-
bility obfuscator and PKEA is an IND-CPA secure bit encryption scheme, PKE
is IND-CPA secure but not 1-circular secure.

5 Key Recovery from Circular Insecurity

In this section we show how to transform any IND-CPA encryption scheme which
is n-circular insecure into a new IND-CPA scheme which is n-circular insecure
with respect to key recovery. An interesting point of comparison is a result of Cash
et al. [15]. As described in the introduction their counterexample is particular to
a specific construction for n = 2 length key cycles. We show how to generically
‘leap’ from any cycle detection insecure construction to one which is insecure
against key recovery, but maintains IND-CPA security.

Our generic transformation proceeds in two steps. We begin with an IND-CPA
encryption system that is insecure against cycle detection attacks. That is there
exists a polynomial p(·) and an infinite set S ⊆ N where the advantage of the
attacker is greater than 1/p(λ) for all λ ∈ S. We show that if such a system
exists, then there exists a cryptosystem with an attacker that has advantage of
1/2−negl(λ) for all λ ∈ S. (i.e. the probability of winning the game is 1−negl(λ)
for all λ ∈ S.) This effectively amplifies the probability of winning within that
restricted set. Our amplification technique is just a simple repetition.

Next, we show how such an amplified cycle detection encryption system can
be transformed into one where a key recovery attack is possible. Our approach is
to create an encryption system where the encryption algorithm will go through
the message M bit by bit and encode each 1 as a M and each 0 and a string
of 0’s. Then if there is a key cycle, the underlying cycle detection algorithm can
recover the bits of M one by one using the cycle detection algorithm/attacker
of the underlying scheme.

Separations in Circular Security for Arbitrary Length Key Cycles 393

5.1 A Circular Key Recoverable Cryptosystem

Amplification We first state our amplification lemma which is proved in Ap-
pendix B.1.

Claim 1 Let PKE ′
A be an IND-CPA secure public key cryptosystem that is n-

circular secure i.e. there exists a polynomial time algorithm D′ and a polynomial
p(·) such that for infinitely many λ ∈ N, AdvD′(λ) > 1/p(λ). Then there exists
an IND-CPA secure public key cryptosystem PKEA, which is constructed using
PKE ′

A as a black box, for which there exists an n-circular security adversary D
with advantage 1/2−negl(λ) (i.e. with probability 1−negl(λ)) for all such λ ∈ N.

Our Transformation Let PKEA be an IND-CPA encryption scheme for which
there exists an n-circular security adversary D with AdvD(λ) ≥ 1/2 − negl(λ)
for infinitely many λ ∈ N. Let MA = {0, 1}l be the message space. For an l-bit
message M , we will let M [i] denote the i-th bit of M where i ∈ [l]. We construct
an IND-CPA encryption scheme PKE which is n-circular insecure with respect
to key recovery as follows.

IND-CPA n-Circular key recoverable PKE :
Inputs : IND-CPA n-Circular insecure PKEA.

– Keygen(1λ): Let (skA, pkA) ← KeygenA(1
λ). Let sk = skA,

pk = pkA. Output (sk, pk).
– Encrypt(pk,M):

• Let CH = EncryptA(pk,M).
1. For i = 1 . . . l

Let Ci = EncryptA(pk,M) if M [i] = 1, else Ci =
EncryptA(pk, 0

|M|).
2. Output ct = (CH , C1, . . . , Cl).

– Decrypt(sk, ct): Compute M ← DecryptA(sk, CH) and M ′
i ←

DecryptA(sk, Ci) for i = 1, . . . , l. If ∀i ∈ [l] M ′
i = M · M [i]

output M , otherwise output ⊥.

The proof of the following claim is straightforward and is included in Ap-
pendix B.2.

Claim 2 PKE is IND-CPA secure if PKEA is IND-CPA .

We now formally show that if the old cryptosystem PKEA is n-circular insecure,
the new cryptosystem PKE is n-circular insecure with respect to key recovery.
We rely on the following result which is proved in Appendix B.3. Claim 3 states
that any circular security adversary can be used to distinguish an encryption
cycle from a modified encryption cycle in which a zero encryption has been
substituted in the last position. The proof utilizes a hybrid argument.

Claim 3 Let PKEA be an IND-CPA public key cryptosystem. Suppose that D
has advantage AdvD(λ) in the circular security game against PKEA. Then D

394 V. Koppula, K. Ramchen, and B. Waters

distinguishes the following distributions with advantage AdvD(λ) − negl(λ).

D0 = [pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, sk1) :

(pki, ski)← KeygenA(1
λ)]

D1 = [pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, 0
|sk1|) :

(pki, ski)← KeygenA(1
λ)]

Armed with the above claims we are now ready to prove the following lemma.

Lemma 1. Suppose there exists an algorithm D with advantage AdvD(λ) =
1/2− negl(λ) in the n-circular security game against PKEA for infinitely many
λ ∈ N. Then there exists an algorithm R with advantage at least 1/2 − negl(λ)
in the n-circular key recovery security game against PKE for all such λ ∈ N.

Proof. Let D be an algorithm such with advantage in the n-circular security
game against PKEA at least 1/2− negl(λ) for infinitely many λ ∈ N. Consider
the following algorithm R interacting with the n-circular security with respect
to key recovery challenger C:

1. C runs (pki, ski) ← Keygen(1λ).
2. C computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n.
3. C sends (pk1, . . . , pkn, y1, . . . , yn) to R.
4. R parses yi = (Ci,H , Ci,1, . . . Ci,l) for 1 ≤ i ≤ n.
5. R for j = 1 . . . l.

(a) Forms the vector wj = (C1,H , . . . , Cn−1,H , Cn,j).
(b) Lets sk1[j] ← D(pk1, . . . , pkn, wj).

6. R output sk1.

Fix any such λ ∈ N. Note that Cn,j is either a random encryption of sk1 or
0. Note that D distinguishes an n-encryption cycle from n zero encryptions
with advantage at least 1/2 − negl(λ). Thus Claim 3 implies that D on input
(pk1, . . . , pkn, wj) distinguishes whether Cn,j is an encryption of sk1 or 0 with
advantage at least AdvD′(λ)−negl(λ) = 1/2−negl(λ). Thus D fails to recover the
j-th bit of sk1 with probability at most negl(λ). Then R recovers sk1 correctly
except with probability atmost n · negl(λ), which is negligible.

Combining Claim 1 and Lemma 1, we get the following theorem.

Theorem 3. Suppose there exists an algorithm D with non-negligible advantage
in the n-circular security game against PKE ′

A for infinitely many λ ∈ N. Then
there exists an algorithm R with advantage at least 1/2−negl(λ) in the n-circular
key recovery security game against PKE for all such λ ∈ N.

Acknowledgements. The authors are grateful to Ron Rothblum for helpful
comments and suggestions.

Separations in Circular Security for Arbitrary Length Key Cycles 395

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 403–422. Springer, Heidelberg (2010)

2. Adão, P., Bana, G., Herzog, J.C., Scedrov, A.: Soundness of formal encryption
in the presence of key-cycles. In: de Capitani di Vimercati, S., Syverson, P.F.,
Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer,
Heidelberg (2005)

3. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based en-
cryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-30057-8_20

4. Applebaum, B.: Key-dependent message security: Generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 527–546. Springer, Heidelberg (2011)

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-03356-8_35

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

7. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

8. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages (2001) (manuscript)

9. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

10. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/642 (2013), http://eprint.iacr.org/

11. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

12. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryp-
tion beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597,
pp. 201–218. Springer, Heidelberg (2011)

13. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-22792-9_29

14. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001),
http://dx.doi.org/10.1007/3-540-44987-6_7

15. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 540–557. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-642-30057-8_20
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/3-540-44987-6_7

396 V. Koppula, K. Ramchen, and B. Waters

16. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

17. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate in-
distinguishability obfuscation and functional encryption for all circuits. Cryptology
ePrint Archive, Report 2013/451 (2013)

19. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009), http://crypto.stanford.edu/craig

20. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

21. Haitner, I., Holenstein, T.: On the (im)possibility of key dependent encryption. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg
(2009), http://dx.doi.org/10.1007/978-3-642-00457-5_13

22. Laud, P.: Encryption cycles and two views of cryptography. In: NORDSEC 2002 -
Proceedings of the 7th Nordic Workshop on Secure IT Systems Karlstad University
Studies 2002:31, pp. 85–100 (2002)

23. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key en-
cryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 507–526. EUROCRYPT, Heidelberg (2011)

24. Marcedone, A., Orlandi, C.: Obfuscation ==> (ind-cpa security =/=> circular
security). Cryptology ePrint Archive, Report 2013/690 (2013),
http://eprint.iacr.org/

25. Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013)

26. Rothblum, R.: Personal communication (2014)
27. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable en-

cryption, and more. Cryptology ePrint Archive, Report 2013/454 (2013)

A Counter Example for 1-Circular Security of Bit-by-bit
Encryption

Proposition 6. Suppose that there exists a polynomial time adversary A such
that Game0AdvA - Game1AdvA = ε. Then there exists a polynomial time adver-
sary B who distinguishes the output of G from random with advantage εPRG = ε.

Proof. In Game 0, t is an output of G, while in Game 1, t is a truly random
2l-bit string. The algorithm B is defined as follows :

1. B receives t ∈ {0, 1}2l from PRG Challenger C, where t is either a pseudo-
random string generated by G or a truly random string.

2. B computes (pkA, skA) ← KeygenA(1
λ). Next, it computes O =

iO(λ,BitCycleFind) as described in Game 0. It sets pk = (pkA, t, O) and
sends it to A.

3. B chooses b
$← {0, 1}. It sets ctb ← EncryptA(pkA, b) and sends it to A.

4. A outputs a bit b′. If (b = b′) B outputs that t was pseudorandom. Else B
outputs that t was random.

http://crypto.stanford.edu/craig
http://dx.doi.org/10.1007/978-3-642-00457-5_13
http://eprint.iacr.org/

Separations in Circular Security for Arbitrary Length Key Cycles 397

Clearly, as shown in Proposition 2, if A wins the game with non negligible
probability, then so does B.
Proposition 7. Suppose that there exists a polynomial time adversary A such
that Game1AdvA - Game2AdvA = ε. Then there exists a polynomial time ad-
versary B who breaks the indistinguishability obfuscation with advantage εiO = ε.

Proof. B comprises a pair of adversaries (Samp,D) as in Definition 7. We con-
struct these adversaries as follows.
Samp(1λ) :

1. Choose r
$← {0, 1}l and t

$← {0, 1}2l.
2. Let (skA, pkA) ← KeygenA(1

λ).
3. Let BitCycleFind be the circuit described in our construction with constants

(skA, t, 0w) hardwired and BitCycleReject be the circuit described in Game 2
with constant 0w

′
hardwired.

4. Output (g0 = BitCycleFind, g1 = BitCycleReject).
5. Set σ = (pkA, t).
D(σ, iO(λ, gz)) :
1. Parse σ = (pkA, t). Set pk = (pkA, t, iO(λ, gz))

2. Let b
$← {0, 1}. ct ← EncryptA(pkA, b).

3. Let b′ ← A(pk, ct).
4. D guesses 1 if b = b′.
Note that since t is chosen uniformly at random, except with negligible proba-
bility, t is not in the range of G. Hence BitCycleFind(x) outputs ⊥ for all x. Thus
Samp produces circuits BitCycleReject and BitCycleFind which are equivalent on
all inputs with overwhelming probability, by the random choice of t.

Similar to the proof for Proposition 3, we can argue that if A distinguishes
between the outputs of Game 1 and Game 2 with advantage ε, then B breaks
the indistinguishability obfuscation with advantage ε.

Proposition 8. If there exists a polynomial time adversary A with non-negligible
advantage ε in Game 2, then there exists a polynomial time algorithm B that can
break the IND-CPA security of PKEA with advantage εA = ε.

Proof. Suppose A has advantage ε in Game 2. We define B as follows :

1. B receives pkA, ct from the IND-CPA Challenger C. It chooses t $← {0, 1}2l and
computes O ← iO(λ,BitCycleReject). It sends public key pk = (pkA, t, O)
and ciphertext ct to A.

2. A sends bit b′, which B passes on to C.
Note that if A wins Game 2, then B wins the IND-CPA game. Hence the result
follows.

B Key Recovery From Circular Insecurity

B.1

Claim 1 Let PKE ′
A be an IND-CPA secure public key cryptosystem that is n-

circular secure i.e. there exists a polynomial time algorithm D′ and a polynomial

398 V. Koppula, K. Ramchen, and B. Waters

p(·) such that for infinitely many λ ∈ N, AdvD′(λ) > 1/p(λ). Then there exists
an IND-CPA secure public key cryptosystem PKEA, which is constructed using
PKE ′

A as a black box, for which there exists an n-circular security adversary D
with advantage 1/2−negl(λ) (i.e. with probability 1−negl(λ)) for all such λ ∈ N.

Proof. Let PKE ′
A = (Keygen′A,Encrypt′A,Decrypt′A). Let t(λ) = λ · p(λ)2 be the

amplification factor. We now define PKEA = (KeygenA,EncryptA,DecryptA) as
follows.

– KeygenA(1
λ) : Compute t public key, secret key pairs. (pki, ski)

$←
Keygen′A(1

λ) for 1 ≤ i ≤ t. The public key pk = (pk1, . . . , pkt) and the
secret key is (sk1, . . . , skt).

– EncryptA(pk,m) : Parse pk = (pk1, . . . , pkt) and m = (m1, . . . ,mt) such

that |mi| = |mj | for all i, j. Compute t ciphertexts ct1, . . . , ctt, where cti
$←

Encrypt′A(pki,mi). The ciphertext ct = (ct1, . . . , ctt).
– DecryptA(sk, ct) : Parse sk = (sk1, . . . , skt) and ct = (ct1, . . . , ctt). Output

Decrypt′A(sk1, ct1).

IND-CPA security of PKEA follows from hybrid argument. We need to show that
there exists an algorithm D such that for infinitely many λ, AdvD(λ) > 1/2 −
negl(λ) in the n-circular security game. Note that each ciphertext cti consists
of t ciphertexts (cti1, . . . , ctit), and for all 1 ≤ j ≤ t, either (ct1j , . . . , ctnj) is
an encryption cycle or an encryption of zeroes. By construction, it follows that
each of these cycles is independent, since we have t independent invocations of
Keygen′A during KeygenA.

D is defined as follows :

D′ :

1. For 1 ≤ i ≤ t, compute di
$← D′(ct1i, . . . , ctni)

2. Output majority of {d1, . . . , dt}.

If we have an encryption cycle, then, for each 1 ≤ j ≤ t, we have
Pr[D′(ct1i, . . . , ctni) = 1] > 1/2+1/p(λ). Since we have t = λ ·p(λ)2 invocations,
using Chernoff bounds, it follows that Pr[D(ct1, . . . , ctn) = 1] > 1− negl(λ).

Similarly, if we have encryptions of zeroes, then for each 1 ≤ j ≤ t,
Pr[D′(ct1i, . . . , ctni) = 1] < 1/2 − 1/p(λ). Using Chernoff bounds, we get that
Pr[D(ct1, . . . , ctn) = 1] < negl(λ).

B.2

Claim 2 PKE is IND-CPA secure if PKEA is IND-CPA .

Proof. To prove this claim it will be convenient to define C0 =: CH and M [0] =:
1. Suppose that adversary A has advantage ε(λ) in the IND-CPA game against
PKE . We construct an adversary B which has advantage ε(λ)/(l + 1) in the
IND-CPA game against PKEA.

Separations in Circular Security for Arbitrary Length Key Cycles 399

1. B receives pkA from the challenger and forwards it to A.
2. A makes some ciphertext queries to Encrypt which are answered using

EncryptA.
3. B receives two l-bit message M0,M1 from A.

4. B chooses i∗
$← {0, . . . , l} and forms M ′

0 = M0 ·M0[i
∗] and M ′

1 = M1 ·M1[i
∗].

If M ′
0 = M ′

1 it aborts, otherwise it sends M ′
0 and M ′

1 to the challenger.
5. B receives ct′b = EncryptA(M

′
b) from the challenger.

6. B forms the ciphertext ct = (C0, . . . Cl) where

Ci =

⎧⎨⎩
EncryptA(pk,M0 ·M0[i]) : i < i∗

ct′b : i = i∗

EncryptA(pk,M1 ·M1[i]) : i > i∗

and forwards ct to A.
7. B receives bit z from A.
8. Step 2 may be repeated.
9. B sends guess b′ = z to the challenger.

Define for i = 0 . . . l, pi = Pr[b′ = 0|i∗ = i, b = 0] and qi = Pr[b′ = 0|i∗ =
i, b = 1]. Since A has advantage ε in the IND-CPA game against PKE , we have

ε = 1/2 · (pl − q0). By inspection pi−1 = qi hence ε = 1/2 · (
∑l

i=0(pi − qi)).

Then ε = 1/2 · (
∑l

i=0 pi −
∑l

i=0 qi) = 1/2 · (Pr[b′ = 0|b = 0] − Pr[b′ = 0|b =
1])·(l+1) = AdvB ·(l+1). Thus B has advantage ε/(l+1) which is non-negligible
if ε is non-negligible.

B.3

Claim 3 Let PKEA be an IND-CPA public key cryptosystem. Suppose that D
has advantage AdvD(λ) in the circular security game against PKEA. Then D
distinguishes the following distributions with advantage AdvD(λ) − negl(λ).

[pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, sk1) :

(pki, ski) ← KeygenA(1
λ)]

[pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, 0
|sk1|) :

(pki, ski) ← KeygenA(1
λ)]

Proof. In order to prove this result, we define n intermediate hybrid experiments
Hj : 1 ≤ j ≤ n, and show that D has overwhelming advantage in each of the
hybrids. Hybrid Hj is defined as follows :

400 V. Koppula, K. Ramchen, and B. Waters

Hj :

1. C computes (pki, ski) ← KeygenA(1
λ) for 1 ≤ i ≤ n

2. C chooses a bit b
$← {0, 1}.

– If b = 0, C computes yi = EncryptA(pki, sk(i mod n)+1) for
1 ≤ i ≤ n

– Else C computes yi = EncryptA(pki, sk(i mod n)+1) for i < j

and yi = EncryptA(pki, 0
|sk(i mod n)+1|) for i ≥ j

3. C sends (pk1, . . . , pkn, y1, . . . , yn) to D.
4. D outputs b′.

H1 corresponds to the n-circular security game, while Hn corresponds to the case
where an encryption cycle might be modified by substituting a zero encryption in
the last position. Let AdvD(Hj) denote the advantage of D in hybrid experiment
Hj . Suppose AdvD(Hj) − AdvD(Hj+1) is non-negligible. Then there exists a
polynomial time adversary A that can break the IND-CPA security of PKE using
D.

1. A receives public key pk from the IND-CPA challenger C.
2. A generates n − 1 public key, secret key pairs (pki, ski)

$← Keygen(1λ) for
2 ≤ i ≤ n.

3. A sends skj+1, 0
|skj+1| as challenge messages to C and receives ct as the

ciphertext.
4. A computes the remaining n − 1 ciphertexts (ct1, . . . , ctj−1, ctj+1, . . . , ctn)

as in the hybrids, and then runs D on this input.
5. Depending on the output of D, A sends its guess to C.

Note that the advantage of A is equal to AdvD(Hj) − AdvD(Hj+1). We have
AdvD(H1) = ε. Therefore, the advantages of D in each of the successive hybrids
is ε− negl(λ), and in particular, its advantage in Hn is ε− negl(λ).

ZAPs and Non-Interactive

Witness Indistinguishability
from Indistinguishability Obfuscation

Nir Bitansky1,� and Omer Paneth2,��

1 MIT, USA
2 Boston University, USA

Abstract. We present new constructions of two-message and one-
message witness-indistinguishable proofs (ZAPs and NIWIs). This
includes:
– ZAPs (or, equivalently, non-interactive zero-knowledge in the com-
mon random string model) from indistinguishability obfuscation and
one-way functions.

– NIWIs from indistinguishability obfuscation and one-way permuta-
tions.

The previous construction of ZAPs [Dwork and Naor, FOCS 00] was
based on trapdoor permutations. The two previous NIWI constructions
were based either on ZAPs and a derandomization-type complexity as-
sumption [Barak, Ong, and Vadhan CRYPTO 03], or on a specific num-
ber theoretic assumption in bilinear groups [Groth, Sahai, and Ostrovsky,
CRYPTO 06].

1 Introduction

Zero-knowledge proofs [GMR89] and their feasibility for NP [GMW91] are fun-
damental to modern cryptography, allowing to prove any NP statement while
guaranteeing total privacy of the witness. One of the main pillars on which
this exquisite guarantee relies is interaction. Minimizing interaction from zero-
knowledge protocols has drawn significant efforts. Since even two-message zero-
knowledge, without any setup assumptions, is impossible [GO94], these efforts
have either focused on non-interactive zero-knowledge (NIZK) in the trusted
common random string (or common reference string) model [BFM88], or on
achieving non-interactive systems with weaker security guarantees. One notable
relaxation is that of witness indistinguishability (WI), guaranteeing that the
proof does not reveal which one of many witnesses is used.

Following this direction, Dwork and Naor [DN07] show that, unlike zero-
knowledge, two-message WI, or as they term ZAPs, can be achieved without any

� Part of this work was done while at Tel Aviv university and supported by an IBM
Ph.D. Fellowship and the Check Point Institute for Information Security.

�� Supported by the Simons award for graduate students in theoretical computer science
and an NSF Algorithmic foundations grant 1218461.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 401–427, 2015.
c© International Association for Cryptologic Research 2015

402 N. Bitansky and O. Paneth

setup. Specifically, they show that assuming one-way functions, the existence of
ZAPs in the plain model is equivalent to that of NIZKs in the common random
string model. The latter were constructed by Feige, Lapidot, and Shamir from
trapdoor permutations [FLS99]. Furthermore, in ZAPs, the verifier’s message is
a random string that can be used for multiple proofs, giving rise to a completely
non-interactive WI system where the first message is fixed non-uniformly. This
provided evidence that diverging from the strong notion of zero-knowledge may
very well allow to remove interaction altogether.

Barak, Ong, and Vadhan [BOV07] then constructed completely non-interactive
WI (NIWI), without any non-uniformity, by derandomizing the ZAP verifier un-
der the assumption thatDtime(2O(n)) has a problem of non-deterministic circuit
complexity 2Ω(n). Groth, Ostrovsky, and Sahai [GOS12] subsequently constructed
NIWIs under the decision linear assumption on bilinear groups.

ZAPs and NIWIs have found a great number of applications in cryptography,
but only few candidate constructions, from specific assumptions, are known. In
particular, both [DN07] and [BOV07] rely on trapdoor permutations, for which
there are very few candidates, all based on factoring-related assumptions. Alter-
natively, the [GOS12] construction is based on a specific assumption on bilinear
groups. Different constructions from different computational assumptions are
still sought after. In this work, we provide new constructions of ZAPs and NIWIs
under a rather different type of assumption: indistinguishability obfuscation.

Indistinguishability Obfuscation. The goal of obfuscation is to make code
unintelligible while preserving its functionality. It has been long considered to be
a holy grail of cryptography, with diverse and far reaching applications. Up until
recently, there were no candidates obfuscators, except for very restricted classes
of programs, and in fact, some classes were shown to be unobfuscatable under
the natural virtual black-box notion [BGI+01]. This dramatically changed with

the work by Garg et al. [GGH
+

13b] who proposed a candidate construction of
general-purpose obfuscators, based on graded multilinear encodings [GGH13a],
and conjectured that it satisfies the seemingly weak notion of indistinguishability
obfuscation (iO) [BGI+01], for which no impossibility results are known. This
notion only requires that it is hard to distinguish an obfuscation of C0 from an
obfuscation of C1, for any two circuits C0 and C1 of the same size that compute
the exact same function.

Perhaps surprisingly, iO has been shown to have variety of powerful appli-
cations, such as functional encryption, deniable encryption, two-message multi-
party computation [GGH

+

13b, SW14, GGHR14], and many more. Still, some
basic primitives have so far evaded the long arms of iO, including collision-
resistant hashing, fully-homomorphic encryption, and also trapdoor permuta-
tions, which as said above, are essential in generic ZAP and NIWI constructions.

1.1 Results

We provide new constructions of ZAPs and NIWIs based on iO.

Our first result is a construction of ZAPs (or NIZKs):

ZAPs and NIWIs from Indistinguishability Obfuscation 403

Theorem 1.1 (informal). Assuming indistinguishability obfuscation for a cer-
tain family of polysize circuits and one-way functions, there exist ZAPs in the
plain model and NIZKs in the common random string model, for every language
in NP.1

The new ZAP can, in particular, be plugged into the result of Barak, Ong,
and Vadhan [BOV07] to obtain a NIWI for all of NP, assuming in addition
the existence of a language in Dtime(2O(n)) with circuit complexity 2Ω(n). We
give a new construction of NIWIs based on indistinguishability obfuscation and
one-way permutations.

Theorem 1.2 (informal). Assuming indistinguishability obfuscation for a cer-
tain family of polysize circuits and one-way permutations, there exist NIWI
proofs, for every language in NP.

As explained below, in our construction of NIWI, one-way permutations are
used to construct a dense non-interactive commitment scheme. We show that
such commitments are somewhat inherent (see more details below).

Comparison to Previous Constructions. Sahai and Waters [SW14] con-
structed, from iO, non-adaptive NIZK arguments in the common reference string
model; these are insufficient to obtain ZAPs (let alone, NIWIs).

The assumptions that we rely on for either NIWIs, or NIZKs in the random
string model (or equivalently, ZAPs) are incomparable to previously used as-
sumptions. Our main assumption is iO, which is not formally known to be either
weaker or stronger. While perhaps not weaker, iO does seem to be of differ-
ent nature than the previous assumptions. Indeed, previous constructions are
based on primitives with an exact combinatorial or algebraic structure, such as
trapdoor permutations [DN07, BOV07], or bilinear maps in appropriate groups
[GOS12]. Finding candidates adhering to such exact structures has proven to be
challenging, and such candidates remain scarce. In contrast, iO has candidates
based on noisy graded encodings [GGH

+

13b], which by now already have several
proposed instantiations [GGH13a, CLT13, GGH14]. Future constructions of iO
may be based on primitives with even less algebraic structure.

While our construction of NIZKs relies solely on iO and one-way functions, the
NIWI construction also requires (certifiable) one-way permutations, which are
already a rather structured object, with only few more candidates than trapdoor
permutations (based on the hardness of discrete logs). We find that the main
appeal of the suggested NIWI construction, compared to previous ones, is its
relative simplicity.

1.2 Techniques

We now overview the techniques behind our constructions. We start with the
construction of ZAPs, and then move on to the NIWI construction.

1 The assumption of one-way functions can be replaced with assuming NP �= coRP
[KMN+14].

404 N. Bitansky and O. Paneth

ZAPs. Our main technical contribution towards obtaining ZAPs is a construc-
tion of invariant signatures in the common random string model, a concept pre-
sented by Goldwasser and Ostrovsky [GO92]. We then apply a series of generic
transformations from the literature: in the common random string model, in-
variant signatures imply NIZKs [GO92], which imply ZAPs [DN07] (in the plain
model). As a secondary contribution, we also give a full description and proof of
the first transformation, previously sketched in [GO92]. Details follow.

Invariant Signatures. Invariant signatures, introduced by Goldwasser and Os-
trovsky [GO92], are digital signatures where all valid signatures of any message
are either identical, or share a common property. Concretely, we say that a sig-
nature scheme is invariant if there is some efficiently computable property P
of signatures such that for any message m∗ and any verification key vk there
is a unique value Pvk(m

∗) such that P (σ) = Pvk(m
∗) for any valid signature

σ with respect to vk. Furthermore, it is required that for every message m∗,
for an honestly generated verification key (sampled independently of m∗), the
property value Pvk(m

∗) is pseudo-random, even given the verification key and
a signature oracle on messages m �= m∗. Like in [GO92], we consider a relaxed
notion of invariant signatures in the common random string model (CRS). Here
we require that the property value P of valid signatures is unique for every
verification key vk, with overwhelming probability over the choice of the CRS.
Pseudo-randomness of Pvk should hold even given the CRS.2

Before explaining how we construct invariant signatures, let us first motivate
them by recalling how they are utilized in the construction of NIZKs.

NIZKs from Invariant Signatures. Goldwasser and Ostrovsky gave a trans-
formation from invariant signatures to NIZKs [GO92]. Their transformation is
based on the construction of Feige, Lapidot and Shamir [FLS99] of NIZKs in the
hidden-bits model. In this model, a random hidden string is available to the prover
but is hidden from the verifier. The prover can reveal to the verifier specific bits
of the hidden string in the locations of its choice, but it cannot change the value
of these bits. [FLS99] also show how to compile a NIZK in the hidden-bits model
into a NIZK in the CRS model assuming trapdoor permutations. [GO92] gave a
different compilation technique based on invariant signatures. Next, we describe
such a compilation following the same high-level idea as [GO92, BGRV09].

We interpret the CRS (available to both prover and verifier) as containing a
CRS for the invariant signature, as well as a sequence of messages {mi} and one-
time pad bits {si} where every (mi, si) will be used to obtain a single hidden bit
bi. The prover will sample keys (sk, vk) for the invariant signature and send the
verification key vk to the verifier as part of the proof. The hidden bit bi is then
defined as the bit Pvk(mi), the property value of the message mi, XORed with

2 In the original definition of [GO92], pseudo-randomness is also required for messages
m∗ sampled adaptively after the verification key. While we do not achieve such
adaptive pseudo-randomness, the above selective pseudo-randomness will suffice for
our purpose.

ZAPs and NIWIs from Indistinguishability Obfuscation 405

the the one-time pad bit si. To reveal the bit bi, the prover sends to the verifier a
signature σi on mi. The verifier can compute bi by computing P (σi) = Pvk(mi).

The uniqueness of the signature guarantees that the prover cannot affect the
value of the hidden bits. Note that the prover can always affect the value of bi
by choosing the verification key vk. However, since the length of vk is bounded,
this issue can be overcome via soundness amplification [FLS99, GO92]). Another
problem is that the prover might affect the distribution of the hidden bits by
choosing a verification key such that Pvk(·) is unbalanced. In [GO92, BGRV09],
this is addressed by certifying the fact that Pvk(·) is balanced, using a similar
approach to [BY96]. In our construction, we guarantee that the hidden bits
are uniformly distributed by simply XORing Pvk(mi) with the random one-time
pad bit si. Finally, the pseudo-randomness of Pvk guarantees that the bits not
revealed by the prover remain hidden from the verifier.

Constructing Invariant Signatures. The starting point of our construction
is the selectively-secure signature scheme of Sahai-Waters based on iO and one-
way functions [SW14]. The basic idea behind the construction is as follows. The
secret signing key is simply a key K for a pseudo-random function PRFK , and
a signature σ on message m is simply σ = PRFK(m). The public verification
key is an obfuscation C̃ ← iO(CK) of a circuit CK that given any m returns
ym = f(PRFK(m)) for some one-way function f . Verification of any σ for m is
simply done by computing f(σ) and comparing to the value ym output by C̃K .

Sahai and Waters show, based on the indistinguishability obfuscation guar-
antee, that their scheme is selectively-secure; namely, it is impossible to forge
a signature for any preselected message m∗, even given a signature oracle on
other messages. The idea is to consider an alternative to the the circuit CK that
computes the same function, but while only “knowing” ym∗ , and without ac-
tually “knowing” the preimage PRFK(m∗). This is achieved using their elegant
puncturing technique. Specifically, instead of using any PRF family, they use a
puncturable PRF. In such PRFs, it is possible to puncture a given key K at
an arbitrary point m∗ in the domain of the function. The punctured function
PRFKm∗ , with punctured key Km∗ , preserves functionality at any other point,
but hides any information on the point PRFK(m∗); namely, the value PRFK(m∗)
is pseudo-random, even given (m∗,Km∗). Such puncturable PRFs follow from
the GGM [GGM86] construction [BW13, BGI14, KPTZ13].

Using a puncturable PRF in the implementation of CK , it can be shown that
if a forger succeeds in finding a preimage of ym∗ = f(PRFK(m∗)), it would
also succeed had we provided it with an obfuscation of the alternative circuit
CKm∗ ,ym∗ . The circuit CKm∗ ,ym∗ computes the same function as CK , but in
a different way: it only has the punctured key Km∗ , and has the value ym∗

directly hardwired into it, so that it does not have to evaluate the PRF in
order to compute it. Thus, the fact that the forger still succeeds follows by
the guarantee of indistinguishability obfuscation. However, now by the pseudo-
randomness guarantee at the punctured point m∗, we know that PRFK(m∗) is
pseudo random, even given the circuit CKm∗ ,ym∗ , and thus the forger can be
used to invert the one-way function f .

406 N. Bitansky and O. Paneth

We next observe that the Sahai-Waters signature scheme can be made invari-
ant as follows. To get uniqueness, we can use an injective one-way function f
instead of an arbitrary one-way function. Indeed, this guarantees that for any,
even malicious, verification key C̃ and any message m, the value y∗ = C̃(m) has
a unique preimage under f that will be accepted in verification. To get (selective)
pseudo-randomness, rather than just (selective) unforgeability, we can define the
property P to extract a Goldreich-Levin hardcore bit [GL89] from the unique
signature with respect to a fixed seed put in the verification key; this preserves
uniqueness.

The above solution requires the extra assumption that injective one-way func-
tions exist. We show that a more significant modification of the SW scheme al-
lows to rely on any one-way function. Unlike the solution above that did not rely
on a CRS, the new solution will (as explained before, this is still sufficient for
our purposes). The basic idea is the following. Imagine we had at our expense a
non-interactive perfectly-binding commitment scheme Com. We could then aug-
ment the circuit CK to output, instead of a one-way function f(PRFK(m∗)),
a commitment cm∗ = Com(b; r), to plaintext b = PRFK(m∗), where the ran-
domness r is derived, say, by applying another PRFK′ to m∗ (or simply setting
(b, r) = PRFK(m∗)). A signature would then include the plaintext underlying
the commitment PRFK(m∗) and the randomness r = PRFK′(m∗). The unique
property P will simply be the plaintext b.

Indeed, uniqueness will now follow by the perfect binding of the commitment,
and pseudo-randomness of b will follow using a similar puncturing argument to
the one above, coupled with the hiding of the commitment Com. However, non-
interactive perfectly-binding commitments are only known based on injective
one-way functions [Blu81], which may take us back to square one. Here the CRS
comes to our aid. We can use Naor’s [Nao91] two-message statistically-binding
commitment scheme, where the first receiver message is simply a random string
that can be put in the CRS; indeed, this commitment can be based on any
one-way function.

NIWIs. The first stepping stone in our NIWI construction is a natural idea
suggested by Niu et al. [NLLT14], where it is described using the terminology
of witness encryption [GGSW13]. In witness encryption, anyone can encrypt a
message m under a public candidate instance x for some NP language L (x is
thought of as the public key); if x ∈ L, anyone holding a corresponding witness
w can decrypt the encrypted Encx(m); however, if x /∈ L, the encryption is
semantically secure; namely, Encx(m) is computationally indistinguishable from
Encx(m

′) for any two messages m,m′. Such a scheme can be easily constructed
from any indistinguishability obfuscator (as we shall soon see).

Given a witness encryption scheme, Niu et al. suggest the following candidate
for a NIWI. Given (x,w) ∈ RL, a proof that x ∈ L is simply an indistinguisha-
bility obfuscation D̃ ← iO(Dx,w) of the witness decryption circuit Dx,w that
given a witness encryption Encx(m), decrypts it with the witness w and outputs
m. Verification is done by running the circuit D̃ on an encryption Encx(m) of a

ZAPs and NIWIs from Indistinguishability Obfuscation 407

random m ← {0, 1}n, and testing whether it successfully decrypts m. Indeed, if
x /∈ L, D̃ fails with overwhelming probability due to semantic security.

What about witness indistinguishability? at first it seems that regardless of
which witness w is used by Dx,w, it has the same functionality, since any wit-
ness can be used for decryption. Thus, WI should follow by the iO guarantee.
However, this argument is flawed—while, for valid (honestly generated) witness
encryptions Encx(m), Dx,w behaves the same regardless of the witness, this might
not be true for maliciously generated encryptions.

To illustrate this consider a witness encryption scheme implemented using
indistinguishability obfuscation, where Encx(m) consists of an obfuscation Ẽ ←
iO(Em

x) for the circuit Em
x that given as input a proper witness w ∈ RL(x) out-

puts m and otherwise ⊥. For x /∈ L, such a circuit always returns ⊥, regardless
of m, and thus semantic security follows from iO. However, if we instantiate the
above candidate NIWI with this witness encryption scheme, the result will be
completely insecure. A malicious verifier may obfuscate an arbitrary circuit, in-
stead of a proper circuit Em

x , and distinguish between different witnesses. Taken
to the extreme, it could just obfuscate the identity, and recover from D̃ the entire
witness w.

Fixing the NIWI Using ZAPs. the above problem can be resolved by re-
quiring that the malicious verifier proves to D̃ that its witness encryption is
indeed a proper encryption of some plaintext with some randomness. However,
to maintain soundness, this should be done while keeping the one-wayness of
m. To achieve this, we rely on ZAPs, and the Feige-Shamir trapdoor paradigm
[FS89]: the prover will hard-code into D̃ a random first message for a ZAP, and
the verifier will prove to D̃ that either Ẽ was generated properly or that some
“trapdoor” statement is true. In order to assure that the verifier’s encryption is
proper, the trapdoor statement is usually chosen such that it is true, but it is
hard for the verifier to find a witness for it, for example, stating that a random
sting is in the image of a one-way permutation. However, in our setting, since
the ZAP is not a proof of knowledge, such a trapdoor statement is insufficient.

In our protocol, we do not rely on the fact that the trapdoor statement is
hard to prove, but rather we aim to design a trapdoor statement such that, if
true, certifies the validity of the witness encryption Ẽ. The problem is that such
certification cannot use the encryption’s randomness or the plaintext m as a
witness, otherwise we cannot argue that the ZAP hides m. The key observation
is that it is enough to certify that the encryption Ẽ behaves in the same way on
any two potential witnesses. To implement this idea, the trapdoor statement will
include a pair of perfectly binding commitments c1, c2 chosen by the prover (the
honest prover commits to all-zero strings). The statement asserts that there is
a pair of candidate witnesses w1, w2 such that c1, c2 are commitments to w1, w2

and the verifier’s encryption Ẽ decrypts to the same value when decrypted with
either w1 or w2.

Let us describe the intuition behind the proof of security. To prove soundness,
we rely on the fact that c1, c2 are are computed using a dense commitment
scheme, where every string has some valid decommitment. Assume there exists

408 N. Bitansky and O. Paneth

an accepting proof (D̃, c1, c2) for a false statement x /∈ L, meaning that D̃
manages to invert a witness encryption Ẽ for a random message, given also the
ZAP described above. We show that, D̃ must break the semantic security of the
witness encryption. Indeed, letting w1, w2 be the plaintexts underlying c1, c2, we
note that, since x /∈ L, decrypting with either one results in the same value ⊥.
Therefore, the trapdoor statement is true, and we could have used it to compute
a ZAP proof π, without compromising the semantic security of Ẽ. Since D̃ cannot
tell the difference between the two ZAP proofs, it would still invert Ẽ, and thus
violate semantic security. We note that for the above argument to go through,
we rely on the fact that the ZAP guarantees witness-indistinguishability against
non-uniform verifiers; indeed, the reduction described above gets a non-uniform
advice: the decommitment information for the commitments c1, c2.

To show that the proof is WI, consider any instance x ∈ L with two valid
witnesses w1, w2. We go through several hybrid experiments. We start by using
the hiding property of the commitment to replace c1 and c2 with commitments to
w1 and w2, instead of all-zero strings. Now if the verifier generates an encryption
Ẽ with a valid ZAP proof π it follows from the the soundness of the ZAP and
the binding of the commitment that either Ẽ is a valid witness encryption, or Ẽ
decrypts to the same value when decrypted with either w1 or w2. In any case,
the witness decryption circuits Dx,w1 and Dx,w2 agree on the input (Ẽ, π). By
the iO guarantee, the obfuscated decryption circuits are thus indistinguishable,
and we can replace one with the other.

A Note on Statistical Soundness. At first glance, it may seem that our
reliance on computational primitives such as witness encryption implies that
the resulting system is only computationally sound; we stress, however, that
soundness is statistical.3 To cheat in our protocol, the (unbounded) prover must
produce a proof consisting of a small circuit (allegedly an obfuscated witness
description circuit). The soundness of the system is based on the fact that
this computationally-bounded circuit cannot break the security of the under-
ling primitives. Indeed, the computational assumptions imply that such a circuit
simply does not exist.

Additionally, we note that the soundness we get is statistical and not perfect
as in [BOV07, GOS12]. In the language of [BOV07], we get MA proofs rather
than NP proofs (for all languages in NP).

On the Necessity of Dense Commitments. The NIWI construction de-
scribed above can be based on a non-interactive commitment scheme satisfying
the following properties. First, it is computationally hiding. Second, it is statis-
tically binding, but only against honest committers; namely, honestly generated
commitments can only be opened to a single value. Finally, the commitment is
dense; that is, every string in the range of the commitment, can be opened to at
least one value (commitments that are not generated honestly may potentially

3 In fact, any single message argument system that is sound against non-uniform
provers must be statistically sound, as accepting proofs for false statements may be
hardwired to the prover.

ZAPs and NIWIs from Indistinguishability Obfuscation 409

be opened to more than one value). We observe that such dense commitments
are somewhat necessary. Specifically, using NIWIs, we can transform any non-
interactive statistically binding commitment into a commitment satisfying the
above three requirements (note that statistically-binding commitments can be
constructed from any injective one-way function [Blu81].)

The basic idea is to commit twice to the same value and add a NIWI proof
that one of the two commitments were honestly generated. A valid opening of
this commitment would consist of an opening of any one of the two underlying
commitments. If the NIWI is not accepting, the committed value is set arbitrar-
ily to zero.4 The hiding of the new commitment follows from that of the original
commitment, together with the witness-indistinguishability of the NIWI. Bind-
ing, for honestly generated commitments (where the two underlying plaintexts
are identical), follows from the binding property of the original commitment.
Finally, the fact that the new commitment is dense follows directly from the
soundness of the NIWI.

We note that it may still be possible that NIWIs, and in particular, dense
commitments as above, can be based on iO and any one-way function.

Organization. In Section 2, we present the basic definitions used in the paper.
In Section 3, we define and construct invariant signatures. In Section 4, we
describe the Goldwasser-Ostrovsky transformation from invariant signatures to
NIZKs. Section 5 describes the NIWI construction.

2 Definitions

2.1 Non-Interactive Zero-Knowledge

Definition 2.1. A pair of PPT algorithms (P ,V) is a NIZK proof in the CRS
model if they satisfy the following properties:

1. Completeness: there exists a polynomial r denoting the length of the common
random string such that for every (x,w) ∈ RL we have that:

Pr
P,crs←{0,1}r(|x|)

[V(x, crs, π) = 1 : π ← P(x,w, crs)] = 1 .

2. Soundness: for every x /∈ L we have that:

Pr
crs←{0,1}r(|x|)

[∃π : V(x, crs, π) = 1] < 2−|x| .

3. Zero-Knowledge: there exists a PPT algorithm S such that:{
(crs,P(x,w, crs)) : crs ← Ur(|x|)

}
(x,w)∈RL

≈c {S(x)}(x,w)∈RL

4 Here we assume NIWI with perfect soundness. In particular we assume that the
verification procedure of the NIWI is deterministic. Dense commitments satisfying a
slightly more involved definition can be constructed from NIWI with only statistical
soundness.

410 N. Bitansky and O. Paneth

Remark 2.1. Definition 2.1 considers only non-adaptive soundness and zero-
knowledge. Additionally, zero-knowledge is not guaranteed when multiple state-
ment are proven with respect to the same CRS. We note that any NIZK proof
system for NP can be transformed into a system that does not have these dis-
advantages assuming only OWFs [FLS99].

2.2 ZAPs

ZAPs [DN07] are two-message public-coin witness-indistinguishable proofs,
defined as follows.

Definition 2.2. A pair of algorithms (P ,V), where P is PPT and V is (deter-
ministic) polytime, is a ZAP for an NP relation RL if it satisfies:

1. Completeness: there exists a polynomial r such that for every (x,w) ∈ RL,

Pr
P,r←{0,1}r(|x|)

[V(x, π, r) = 1 : π ← P(x,w, r)] = 1 .

2. Adaptive soundness: for every malicious prover P∗ and every n ∈ N:

Pr
r←{0,1}r(n)

[
∃x ∈ {0, 1}n \ L
π ∈ {0, 1}∗ : V(x, π, r) = 1

]
≤ 2−n .

3. Witness indistinguishability: for any sequence I =
{(x,w1, w2) : w1, w2 ∈ RL(x)} and any first-message sequence R ={
rx,w1,w2 ∈ {0, 1}r(|x|) : (x,w1, w2) ∈ I

}
:

{π1 ← P(x,w1, rx,w1,w2)}(x,w1,w2)∈I ≈c {π2 ← P(x,w2, rx,w1,w2)}(x,w1,w2)∈I .

2.3 NIWIs

NIWIs [BOV07] are completely non-interactive witness-indistinguishable proofs.

Definition 2.3. A pair of PPT algorithms (P ,V) is a NIWI for an NP relation
RL if it satisfies:

1. Completeness: for every (x,w) ∈ RL,

Pr
P
[V(x, π) = 1 : π ← P(x,w)] = 1 .

2. Soundness: there exists a negligible function μ, such that for every x /∈ L
and π ∈ {0, 1}∗:

Pr
V
[V(x, π) = 1] ≤ μ(|x|) .

3. Witness indistinguishability: for any sequence I =
{(x,w1, w2) : w1, w2 ∈ RL(x)}:

{π1 : π1 ← P(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← P(x,w2)}(x,w1,w2)∈I .

ZAPs and NIWIs from Indistinguishability Obfuscation 411

2.4 Indistinguishability Obfuscation

Indistinguishability obfuscation (iO) was introduced in [BGI+01] and given a

candidate construction in [GGH
+

13b], and subsequently in [BR13, BGK+13].

Definition 2.4 (Indistinguishability Obfuscation [BGI+01]). A PPT al-
gorithm iO is said to be an indistinguishability obfuscator for a collection of
polysize circuits C =

⋃
n∈N Cn, if it satisfies:

1. Functionality: For any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1 .

2. Indistinguishability: For any polysize distinguisher D there negligible function
μ, such that for any n ∈ N and C1, C2 ∈ Cn of the same size and functionality∣∣∣Pr

iO
[D(iO(C1)) = 1]− Pr

iO
[D(iO(C2)) = 1]

∣∣∣ ≤ μ(n) .

3 Invariant Signatures from Indistinguishability
Obfuscation

In this section, we recall the definition of invariant signatures [GO92] in the
common random string (CRS) model and construct them based on iO.

Roughly, invariant signatures are digital signatures where valid signatures of
any message are either identical, or share a common property. More accurately,
there is an efficiently computable property P of signatures such that for any mes-
sage m∗ and any verification key vk there is a unique value Pvk(m

∗) such that
P (σ) = Pvk(m

∗) for any valid signature σ with respect to vk. Furthermore, it is
required that for every message m∗, for an honestly generated verification key
(sampled independently of m∗), the property value Pvk(m

∗) is pseudo-random,
even given the verification key and a signature oracle on messages m �= m∗.
Like in [GO92], we consider a relaxed notion of invariant signatures in the com-
mon random string model (CRS). Here the property value P is unique for every
verification key vk, with overwhelming probability over the choice of the CRS,
and pseudo-randomness of Pvk should hold even given the CRS. (In the original
definition of [GO92], pseudo-randomness is also required for messages m∗ sam-
pled adaptively after the verification key. While we do not achieve such adaptive
pseudo-randomness, the above selective pseudo-randomness will suffice for our
purpose.)

Definition 3.1 (Invariant Signatures in the CRS Model). A triple of poly-
time algorithms (Gen, Sign,Ver), where Gen is randomized, is a digital signature
scheme with invariant signatures and selective security in the CRS model if it
satisfies the following properties:

1. Syntax and completeness: There exists a polynomial r such that for every
security parameter n ∈ N, and for every message m ∈ {0, 1}∗ we have that:

Pr
crs←Ur(n)

[Vervk(crs,m, σ) = 1 : σ ← Signsk(m), (sk, vk) ← Gen(crs)] = 1 .

412 N. Bitansky and O. Paneth

2. Uniqueness: There exists a deterministic, efficiently computable, predicate

P : {0, 1}∗ → {0, 1}, and a negligible function μ such that:

Pr
crs←Ur(n)

[∃m, vk, σ1, σ2 : P (σ1) �= P (σ2) ∧ Vervk(crs,m, σ1) = Vervk(crs,m, σ2) = 1] ≤ μ(n) .

3. Pseudo-randomness: For every poly-size adversary A, there exists a negligible
function μ such that for every security parameter n ∈ N, and for every
message m ∈ {0, 1}n:∣∣∣∣PrA,crs←Ur(n)

[A
Sign∗sk,m (crs, vk, m,P (Signsk(m))) = 1 : (sk, vk) ← Gen(crs)]−

PrA,crs←Ur(n),b←U1
[A

Sign∗sk,m (crs, vk,m, b) = 1 : (sk, vk) ← Gen(crs)]

∣∣∣∣ ≤ μ(n) ,

where Sign∗sk,m is an oracle that is identical to Signsk excpet that on input m
it outputs ⊥.

Remark 3.1 (Unforgeability). We do not explicitly require that the signature
scheme is unforgeable against selective attackers. Unforgeability is, in fact, im-
plied by uniqueness and the pseudo-randomness properties. In particular, if an
adversary can forge a signature σ on a message m, it can compute P (σ) and
break pseudo-randomness.

Sahai and Waters construct digital signature scheme with based on iO and one-
way functions [SW14]. As outline in the introduction, we observe that a mod-
ification of their construction is also invariant assuming also injective one-way
functions.

Theorem 3.1 (follows from [SW14]). Assuming indistinguishability obfus-
cation and injective OWFs, there exists a selectively secure invariant signature
scheme.

We show that, in the CRS model, we can in fact construct selectively secure
invariant signatures based on iO and any one-way function.

Theorem 3.2. Assuming indistinguishability obfuscation and one-way func-
tions, there exists a selectively-secure invariant signature scheme in the CRS
model.

Like the Shahi-Waters construction, the construction here relies on their
punctured program paradigm. We next define puncturable pseudo-random
functions, a central tool in our construction, and then move to describe the
construction.

3.1 Puncturable PRFs

We consider a simple case of the puncturable PRFs where any PRF might be
punctured at a single point. The definition is formulated as in [SW14].

ZAPs and NIWIs from Indistinguishability Obfuscation 413

Definition 3.2 (Puncturable PRFs). Let �,m be polynomially bounded
length functions. An efficiently computable family of functions

PRF =
{
PRFK : {0, 1}m(n) → {0, 1}�(n)

∣∣∣ K ∈ {0, 1}n, n ∈ N
}

,

associated with an efficient (probabilistic) key sampler KPRF , is a puncturable
PRF if there exists a puncturing algorithm Punc that takes as input a key K ∈
{0, 1}n, and a point x∗, and outputs a punctured key Kx∗, so that the following
conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}�(n),

Pr
K←KPRF (1n)

[∀x �= x∗ : PRFK(x) = PRFKx∗ (x) | Kx∗ = Punc(K,x∗)] = 1 .

2. Indistinguishability at punctured points: The following ensembles are compu-
tationally indistinguishable:
– {x∗,Kx∗ ,PRFK(x∗) | K ← KPRF (1n), Kx∗ = Punc(K,x∗)}x∗∈{0,1}m(n),n∈N

–
{
x∗,Kx∗ , u

∣∣ K ← KPRF (1n), Kx∗ = Punc(K,x∗), u ← {0, 1}�(n)
}
x∗∈{0,1}m(n),n∈N

.

To be explicit, we include x∗ in the distribution; throughout, we shall assume
for simplicity that a punctured key Kx∗ includes x∗ in the clear. As shown in
[BGI14, BW13, KPTZ13], the GGM [GGM86] PRF yield puncturable PRFs as
defined above.

3.2 Invariant Signatures Construction

We now present the details of our construction, an overview is given in the
introduction. We shall rely on the following primitives:

– A two-message statistically binding commitment Com with a random first
message based on any one-way function [Nao91]. We denote by C, S the
polynomials such that Coms(b; r) ∈ {0, 1}C(n) is a commitment to a bit b, and
where the first commitment message is s ∈ {0, 1}S(n), and the randomness
is r ∈ {0, 1}n.

– A family of puncturable PRFs PRF = {PRFK} from {0, 1}n to {0, 1}n+1

associated with a key sampler KPRF and a puncturing algorithm Punc.
– An indistinguishability obfuscator iO.

Construction 3.3 (A selectively-secure invariant signature)

The CRS. The CRS consists of a random first message s for Com. Throughout
the construction, one may identify the notation crs with that of s.

The algorithm Gen. Given the CRS s, Gen samples a PRF key K ←
KPRF (1

n). Gen sets sk = K and sets vk = iO([Cs,K]�) where [CK]� is a
“commitment to pseudo-random property” circuit Cs,K , given by Figure 1,
padded up to length the maximum size � of the circuits given in Figures 1,2.

414 N. Bitansky and O. Paneth

Hardwired: CRS containing a first message s ∈ {0, 1}S(n) for Com and a PRF
key K ← KPRF (1

n).
Input: Message m ∈ {0, 1}n.
Output: Obtain (b′, r′) = PRFK(m) and output Coms(b

′, r′).

Fig. 1. The “commitment to pseudo-random property” circuit Cs,K

Hardwired:
1. CRS containing a first message s ∈ {0, 1}S(n) for Com.
2. Punctured PRF key Km∗ = Punc(K,m∗) where K ← KPRF (1

n).
3. Commitment c∗ ∈ {0, 1}C(n).

Input: Message m ∈ {0, 1}n.
Output:

1. If m = m∗, output c∗.
2. Else, obtain (b′, r′) = PRFKm∗ (m) and output Coms(b

′, r′).

Fig. 2. The circuit Cs,Km∗ ,c∗

The algorithm Sign. Given the secret key K and a message m output (b′, r′) =
PRFK(m).

The algorithm Ver. Given the obfuscated circuit vk, the CRS s, a message m
and a signature σ = (b, r), obtain c = vk(m). Output 1 if c = Coms(b; r).
Otherwise, output 0.

Proposition 3.1. Construction 3.3 is a selectively-secure invariant signature
scheme in the CRS model.

Proof. It is straightforward to verify the completeness of the construction. Next
we prove the uniqueness and pseudo-randomness properties.

Uniqueness. For a signature σ = (b, r) let P (σ) be the a predicate that outputs
b. Let G be the event, over the choice of the CRS crs that there exist a message
m ∈ {0, 1}n, a verification key vk and a pair of signatures σ1 = (b1, r1), σ2 =
(b2, r2) such that:

P (σ1) �= P (σ2) ∧ Vervk(crs,m, σ1) = Vervk(crs,m, σ2) = 1 .

Equivalently, b1 �= b2 and Coms(b1; r1) = Coms(b2; r2) = vk(m). Since with
overwhelming probability Coms is perfectly binding property of Com, it holds
that Prcrs←Ur(n)

[G] ≤ negl(n), as required.

Pseudo-Randomness. Fix any polysize adversary A, and for every message
m ∈ {0, 1}n, let p0(m) denote the probability that it outputs 1 given the unique
property b of any signature (b, r) on m:

ZAPs and NIWIs from Indistinguishability Obfuscation 415

p0(m) = Pr

[
ASign∗sk,m(·)(crs, vk,m, P (Signsk(m))) = 1 :

crs ← Ur(n)

(sk, vk) ← Gen(crs)

]

= Pr

⎡⎢⎢⎣APRF∗
K,m(·)(s, vk,m, b) = 1 :

s ← Ur(n)

K ← KPRF (1
n)

(b, r) = PRFK(m)
vk ← iO([Cs,K]�)

⎤⎥⎥⎦ ,

where Sign∗sk,m(·) ≡ PRF∗
K,m(·) is an oracle that is identical to Signsk(·) ≡

PRFK(·), except that on input m it outputs ⊥.
Consider an alternative experiment where vk is chosen to be an obfuscation

of the circuit Cs,Km,c∗ , rather than Cs,K , where c∗ = Coms(b, r), and (b, r) are
computed as before. Let p1(m) denote the probability that A outputs 1 in this
augmented experiment:

p1(m) = Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎣
APRF∗

K,m(·)(s, vk,m, b) = 1 :

s ← Ur(n)

K ← KPRF (1
n)

Km ← Punc(K,m)
(b, r) = PRFK(m)

c∗ = Coms(b, r)

vk ← iO([Cs,Km,c∗]�)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Since the circuits Cs,K and Cs,Km,c∗ are equivalent, it follows from the secu-
rity of iO that the circuits iO([Cs,K]�) and iO([Cs,Km,c∗]�) are computationally
indistinguishable, and therefore

|p0(m)− p1(m)| < negl(n) .

Next, consider another experiment where the signature (b, r) is chosen uniformly
at random, instead of being set to PRFK(m). We denote by p2(m) be the prob-
ability that A outputs 1 in this experiment:

p2(m) = Pr

⎡⎢⎢⎢⎢⎢⎢⎣A
PRF∗

K,m(·)(s, vk,m, b) = 1 :

s ← Ur(n)

K ← KPRF (1
n)

Km ← Punc(K,m)

(b, r) = Un+1

c∗ = Coms(b, r)
vk ← iO([Cs,Km,c∗]�)

⎤⎥⎥⎥⎥⎥⎥⎦ .

By the indistinguishability at punctured points property of PRF :

|p1(m)− p2(m)| ≤ negl(n) ;

Indeed, to distinguish between Km,PRFK(m) and Km, U|m|+1), a distinguisher
can perfectly emulate A, by answering its oracle queries m′ �= m using the
punctured key Km.

416 N. Bitansky and O. Paneth

Consider yet another experiment where, instead of giving A the bit b, we
replace it with a random independent bit. We denote by p3(m) the probability
that the adversary outputs 1 in this experiment:

p3(m) = Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
APRF∗

K,m(·)(s, vk,m, b′) = 1 :

b′ ← U1

s ← Ur(n)

K ← KPRF (1
n)

Km ← Punc(K,m)
(b, r) = Un+1

c∗ = Coms(b, r)
vk ← iO([Cs,Km,c∗]�)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, by the computational hiding property of Com:

|p2(m)− p3(m)| ≤ negl(n) .

We define the probabilities p4, p5 in the same way we defined p1, p0 respectively,
except that in these experiments, A gets a random independent bit b′; that is,

p4(m) = Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
APRF∗

K,m(·)(s, vk,m, b′) = 1 :

b′ ← U1

s ← Ur(n)

K ← KPRF(1
n)

Km ← Punc(K,m)

(b, r) = PRFK(m)

c∗ = Coms(b, r)
vk ← iO([Cs,Km,c∗]�)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

p5(m) = Pr

⎡⎢⎢⎢⎢⎢⎣APRF∗
K,m(·)(s, vk,m, b′) = 1 :

b′ ← U1

s ← Ur(n)

K ← KPRF (1
n)

(b, r) = PRFK(m)

vk ← iO([Cs,K]�)

⎤⎥⎥⎥⎥⎥⎦ ,

Following the same arguments as before:

|p3(m)− p4(m)| ≤ negl(n) , |p4(m)− p5(m)| ≤ negl(n) ,

and overall:
|p0(m)− p5(m)| ≤ negl(n) .

Thus, we have shown as required that for every m ∈ {0, 1}n:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡⎢⎢⎣APRF∗
K,m(·)(s, vk,m, b) = 1 :

s ← Ur(n)

K ← KPRF (1
n)

(b, r) = PRFK(m)
vk ← iO([Cs,K]�)

⎤⎥⎥⎦

−Pr

⎡⎢⎢⎢⎢⎣APRF∗
K,m(·)(s, vk,m, b′) = 1 :

b′ ← U1

s ← Ur(n)

K ← KPRF (1
n)

(b, r) = PRFK(m)
vk ← iO([Cs,K]�)

⎤⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(n) .

ZAPs and NIWIs from Indistinguishability Obfuscation 417

4 NIZKs and ZAPs from Invariant Signatures

In this section, we show how to construct NIZKs in the CRS model based on
invariant signatures. A construction of ZAPs from NIZKs is given in [DN07].
Feige, Lapidot and Shamir constructed a NIZK proof system that is uncondi-
tionally secure in the hidden-bits model. They also showed how to transform
NIZK in the hidden-bits model to NIZK in the CRS model. Goldwasser and Os-
trovsky give a different transformation based on invariant signatures. We present
a transformation that follows [GO92], in most parts, and provide a full proof of
security.

We start by formally defining NIZK in the hidden-bits model. In this model, a
random string crs is sampled as a trusted setup. The prover can read all the bits
of crs and reveal a subset of these bits to the verifier, corresponding to indices
I. The prover cannot change the bits of crs, and the verifier gets no information
about the bits of crs that where not revealed by the prover.

Definition 4.1 (NIZK Proof in the Hidden-Bits Model). A pair of PPT
algorithms (P ,V) is a NIZK proof in the hidden-bits model if it satisfies the
following properties:

1. Completeness: there exists a polynomial r denoting the length of the hidden
random string, such that for every (x,w) ∈ RL we have that:

Pr
P,crs←{0,1}r(|x|)

[V(x, crs|I , π) = 1 : (π, I) ← P(x,w, crs)] = 1 ,

where I ⊆ [r(|x|)] and crs|I = {(i, crs[i]) : i ∈ I}.
2. Soundness: for every x /∈ L we have that:

Pr
crs←{0,1}r(|x|)

[∃π, I : V(x, crs|I , π) = 1] < 2−n .

3. Zero-Knowledge: there exists a PPT algorithm S such that:{
(crs|I , π) : crs ← Ur(|x|), (π, I) ← P(x,w, crs)

}
(x,w)∈RL

≈c {S(x)}(x,w)∈RL .

Next we construct a NIZK proof in the CRS model.

Construction 4.1 (NIZK in the CRS Model). We make use of the follow-
ing primitives:

– A selectively secure invariant signature scheme (Gen, Sign,Ver) with an in-
variant predicate P . For security parameter n, let rσ = rσ(n) be the length
of the CRS, and let k = k(n) be the length of the verification key.

– A NIZK proof system (Phb,Vhb) in the hidden-bits model with hidden random
string of length r = r(n).

The NIZK system (P ,V) in the CRS model is defined as follows:

418 N. Bitansky and O. Paneth

The CRS. The common random string is of length rσ + k · r · (n+1). The first
rσ bits of the CRS are interpreted as a CRS for the signature scheme crsσ.
We think of the rest of the CRS as divided into k · r blocks, each of length
n+ 1. For every i ∈ [k], j ∈ [r], we think of the (i, j)-th block as divided into
a message mi,j ∈ {0, 1}n and a one-time pad bit si,j ∈ {0, 1}.

The prover P. Given (x,w) ∈ RL, and the CRS (crsσ, {mi,j , si,j}) P
1. samples a pair of keys (sk, vk) ← Gen(1n),
2. computes the strings {c̃rsi ∈ {0, 1}r : i ∈ [k]} such that c̃rsi[j] = P (σi,j)⊕

si,j and σi,j = Signsk(mi,j),
3. for i ∈ [k], emulates Phb(x,w, c̃rsi) and obtains a proof string πi and a

set of indices Ii,
4. outputs a proof that contains the verification key vk and the hidden-bits

proofs {πi, Σi : i ∈ [k]}, where Σi = {(j, σi,j) : j ∈ Ii}.
The verifier V. Given x, the CRS (crsσ, {mi,j , si,j}), and a proof (vk, {πi, Σi}),

V
1. for every i ∈ [k], j ∈ [r] such that (j, σi,j) ∈ Σi verifies that

Vervk(crsσ,mi,j , σi,j) = 1; otherwise, V rejects,
2. for i ∈ [k], computes the set c̃rsi(Σi) =

{(j, P (σi,j)⊕ si,j) : (j, σi,j) ∈ Σi},
3. for each i ∈ [k], emulates Vhb(x, crsi(Σi), πi),
4. accepts iff the emulation of Vhb accepts for every i.

Proposition 4.1. The protocol given by Construction 4.1 is a NIZK proof in
the CRS model.

Proof. The completeness property of (P ,V) follows from the completeness of
(Phb,Vhb) by construction. Next we prove the soundness and zero-knowledge
properties.

Soundness. Fix some x ∈ {0, 1}n \ L. Let (crsσ, {mi,j , si,j : i ∈ [k], j ∈ [r]}) be
uniform random variables describing the content of the CRS. Let {c̃rsi : i ∈ [k]}
be the set of hidden random strings for the protocol (Phb,Vhb) computed by the
honest prover P from {mi,j , si,j} .

We prove that with overwhelming probability over the CRS, there is no proof
(vk′, {π′

i, Σ
′
i}) that will make V accept. The uniqueness property of the signature

holds with overwhelming probability over the crsσ; from hereon, we condition
on this event. Fix some i ∈ [k] and a verification key vk′. Recall that for every
i ∈ [k], j ∈ [r], we have that c̃rsi[j] = P (σi,j)⊕ si,j . By the uniqueness property
of the signature, the value of P (σi,j) is determined by the CRS of the signature
crsσ, the verification key vk and the messages {mi,j} and is independent of the
pad bits {si,j}. It follows that c̃rsi is uniformly distributed.

Let I ′
i ⊆ [r] be a set of indices such that Σ′

i is of the form Σ′
i ={

(j, σ′
i,j) : j ∈ I ′

i

}
for some signatures

{
σ′
i,j

}
. By the uniqueness property of

the signature we have that if Σ′
i contains an element (j, σ′

i,j) such that c̃rsi[j] �=
P (σi,j)⊕ si,j the verifier V rejects the proof. Therefore, if V accepts, it must be
that c̃rsi(Σ

′
i) = c̃rsi|I′

i
, where:

ZAPs and NIWIs from Indistinguishability Obfuscation 419

c̃rsi(Σ
′
i) =

{
(j, σ′

i,j ⊕ si,j) : (j, σ
′
i,j) ∈ Σ′

i

}
,

c̃rs
′
i|I′

i
=
{
(j, c̃rs

′
i[j]) : j ∈ I ′

i

}
.

It follows that:

Pr
mi,j ,si,j

[∃π′
i, Σ

′
i :Vhb(x, c̃rsi(Σ

′
i), π

′
i) = 1] = Pr

c̃rsi←Ur

[∃π′
i, I ′

i : Vhb(x, c̃rsi|I′
i
, π′

i) = 1] .

By the soundness of (Phb,Vhb) we have that the above probability is at most
2−n. Since this is true independently for every i and since V accepts iff all k
executions of Vhb accept, we have that:

Pr
mi,j ,si,j

[∃ {π′
i, Σ

′
i} : Vhb(x, {mi,j , si,j} , (vk′, {π′

i, Σ
′
i})) = 1] ≤ 2−n·k .

Since there are at most 2k verification keys, by a union bound:

Pr
mi,j ,si,j

[∃vk′, {π′
i, Σ

′
i} : Vhb(x, {mi,j , si,j} , (vk′, {π′

i, Σ
′
i})) = 1] ≤ 2−n ,

as required.

Zero-Knowledge. We start be describing the simulator S.
1. S is given as input a statement x ∈ L of length n.
2. For every i ∈ [k], execute the simulator Shb of the protocol (Phb,Vhb) and

obtain:
(Bi, πi) ← S(x) ,

where Bi = {(j, bi,j) : j ∈ Ii} for some set Ii ⊆ [r] and bits {bi,j}.
3. Sample crsσ ← Urσ(n) and (sk, vk) ← Gen(crsσ).
4. For every i ∈ [k], j ∈ [r] sample mi,j ← Un

5. For every i ∈ [k], j ∈ [r] if j /∈ Ii sample si,j ← U1, otherwise set:

si,j = P (Signsk(mi,j))⊕ bi .

6. Output the CRS (crsσ, {(mi,j , si,j) : i ∈ [k], j ∈ [r]}). Output a simulated
proof containing the verification key vk and the simulated hidden-bits proofs
{πi, Σi : i ∈ [k]} where

Σi = {(j, Signsk(mi,j)) : j ∈ Ii} .

Next we prove that the output of the simulator is indistinguishable from an
honestly generated proof. For 0 ≤ i ≤ k consider the experiment Hi where
for every i′ ≤ i the messages and pad bits {(mi′,j , si′,j) : j ∈ [r]} are chosen
uniformly, and the hidden-bits proof (πi′ , Σi′) is computed following the hon-
est prover strategy, and for every i < i′ they are computed according to the
simulated strategy as above. For every (x,w) ∈ RL we have that:

H0(x,w) ≈ S(x) ,

Hk(|x|)(x,w) ≈
{
(crs,P(x,w, crs)) : mi,j ← U|x|, si,j ← U1

}
.

Therefore, the correctness of the simulation follows from the next claim.

420 N. Bitansky and O. Paneth

Claim. For every polysize distinguisher D, there exists a negligible function μ
such that for every (x,w) ∈ RL and for every i ∈ [k(|x|)]

|Pr[D(Hi−1(x,w)) = 1]− Pr[D(Hi(x,w)) = 1]| ≤ μ(|x|) .

Proof. For i ∈ [k(|x|)], consider the experiment H ′
i that is defined just like Hi

except that instead of sampling (Bi, πi) ← S(x), we do the following:

1. Sample a random string c̃rsi ← Ur(|x|).
2. Emulate Phb(x,w, c̃rsi) and obtain the proof string πi and the set of indices

Ii.
3. Set Bi = c̃rsi|Ii = {(j, c̃rsi[j]) : j ∈ Ii}.
By the zero-knowledge property of (Phb,Vhb):{

(c̃rsi|Ii , πi) : c̃rsi ← Ur(|x|), (πi, Ii) ← Phb(x,w, c̃rsi)
}
(x,w)∈RL

≈c {S(x)}(x,w)∈RL ,

and therefore, for every (x,w) ∈ RL and for every i ∈ [k(|x|)]:

|Pr[D(H ′
i(x,w)) = 1]− Pr[D(Hi(x,w)) = 1]| ≤ negl(|x|) . (1)

For every 0 ≤ j ≤ r(|x|) consider the experiment H ′
i,j that is defined just like

H ′
i except that for all j

′ ≤ j we set:

si,j′ = P (Signsk(mi,j′))⊕ c̃rsi[j
′] . (2)

For j′ > j choose si,j′ as in the experiment H ′
i. That is, if j

′ ∈ Ii we set si,j′ as
in 2 and if j′ /∈ Ii we sample si,j′ uniformly.

Note that the output distribution of the experiments H ′
i,j−1 and H ′

i,j may
differ when j /∈ Ii. This is due to the fact that conditioned on j /∈ Ii, the
bit c̃rsi[j] may no longer be uniform. However, based on the pseudo-randomness
property of the signature we will show that the experiments are computationally
indistinguishable.

Claim. For every polysize distinguisher D, there exists a negligible function μ
such that for every (x,w) ∈ RL and for every i ∈ [k(|x|)], j ∈ [r(|x|)]:∣∣Pr[D(H ′

i,j−1(x,w)) = 1]− Pr[D(H ′
i,j(x,w)) = 1]

∣∣ < μ(|x|) .

Proof. Assume towards contradiction that there is a distinguisher D and a poly-
nomial p such that for infinitely many (x,w) ∈ RL there exist i ∈ [k(|x|)], j ∈
[r(|x|)] such that:∣∣Pr[D(H ′

i,j−1(x,w)) = 1]− Pr[D(H ′
i,j(x,w)) = 1]

∣∣ > 1

p(|x|) . (3)

We construct a distinguisher D̃ that breaks the pseudo-randomness property of
the signature. That is for infinity many values of n:∣∣∣∣∣∣∣
Pr

[
m ← Un, (sk, vk)← Gen(crsσ), crsσ ← Urσ(n), b = P (Signsk(m)) :

D̃Signsk(·)(crsσ, vk,m, b) = 1

]
−

Pr

[
m ← Un, (sk, vk)← Gen(crsσ), crsσ ← Urσ(n), b ← U1 :

D̃Signsk(·)(crsσ, vk, m, b) = 1

]
∣∣∣∣∣∣∣ >

1

p(|x|) ,

(4)

ZAPs and NIWIs from Indistinguishability Obfuscation 421

where D̃ never queries its oracle on m. D̃ will have hardcoded (x,w) ∈ RL
and i, j for which (3) holds. Then D̃(crsσ, vk,m, b) emulates H ′

i,j(x,w) with the
following modifications:

1. When the experiment H ′
i,j(x,w) samples crsσ and vk, D uses its input crsσ

and vk instead.
2. Every time a the emulation needs to sign a message D̃ forwards the message

to the signing oracle (note that the experiment H ′
i,j(x,w) does not use the

secret key sk except for signing messages).
3. If j /∈ Ii set si,j = b⊕ c̃rsi[j] .

We have that:

Pr[D(H′
i,j(x,w)) = 1] = Pr

[
m ← Un, (sk, vk) ← Gen(crsσ), crsσ ← Urσ(n), b = P (Signsk(m)) :

D̃Signsk(·)(crsσ , vk,m, b) = 1

]
,

Pr[D(H′
i,j−1(x,w)) = 1] = Pr

[
m ← Un, (sk, vk) ← Gen(crsσ), crsσ ← Urσ(n), b ← U1 :

D̃Signsk(·)(crsσ , vk,m, b) = 1

]
,

and therefore, (4) follows from (3) and we get a contradiction to the pseudo-
randomness property of the signature.

The experiment H ′
i,0 is identical to the experiment H ′

i by definition. It follows
from Claim 4 that for every (x,w) ∈ RL and for every i ∈ [k(|x|)]:∣∣∣Pr[D(H ′

i(x,w)) = 1]− Pr[D(H ′
i,r(|x|)(x,w)) = 1]

∣∣∣ ≤ negl(|x|) . (5)

Note that for i ∈ [k], the experiment Hi−1 is identical to the experiment
H ′

i,r(|x|) except for the order in which the the pad bits {si,j} and the random

hidden string c̃rsi are sampled. Specifically, in the experiment Hi−1:

1. First sample mi,j ← U|x|, si,j ← U1, for every j ∈ [r(|x|)].
2. Then compute c̃rsi where c̃rsi[j] = P (Signsk(mi,j))⊕ si,j .

Since in both experiments Hi−1 and H ′
i,r(|x|) we have that c̃rsi is uniform and

mi,j , si,j are uniform conditioned on the fact that:

c̃rsi[j] = P (Signsk(mi,j))⊕ si,j ,

we have that the experiments Hi−1 and H ′
i,r(|x|) are identical. Combining this

with (1) and (5) we get that for every (x,w) ∈ RL and for every i ∈ [k(|x|)]:

|Pr[D(Hi−1(x,w)) = 1]− Pr[D(Hi(x,w)) = 1]| ≤ negl(|x|) ,

as required.

5 Non-Interactive Witness-Indistinguishability

In this section, we construct a NIWI proof system based on indistinguishability
obfuscation and one-way permutations.

422 N. Bitansky and O. Paneth

Theorem 5.1. Assuming iO for P/poly and one-way permutations, there exist
NIWI proof for every language in NP.5

We now describe the NIWI system yielding the theorem. A high-level overview of
the construction and the main ideas behind it are provided in the introduction.

Primitives and Notation. The construction relies on an indistinguishability
obfuscator iO, a ZAP system (that can be constructed from iO and OWFs as in
Section 4), and a non-interactive (one message) statistically binding commitment
Com. We require that Com is dense, in the sense that every string of appropriate
length is a valid commitment to some message. Such a commitment can be
constructed from one-way permutations [Blu81].

Let L be any NP language. For every candidate instance x ∈ {0, 1}n and
message m ∈ {0, 1}n, denote by Em

x the canonical “witness-encryption” circuit
that given any w ∈ RL(x) outputs m and otherwise outputs ⊥. Let T be the
NP language containing instances of the form (x, c1, c2, Ẽ) where x is candidate
instance for L, c1, c2 are commitments, and Ẽ is an obfuscation such that at
least one of the following conditions holds:

1. Ẽ is a valid obfuscation of a witness-encryption circuit. That is, there exist
randomness r and a message m such that Ẽ = iO(Em

x ; r).
2. Ẽ has the same output on the plaintexts underlying the commitments c1, c2.

That is, there exist decommitments (w1, r1) and (w2, r2) such that:

c1 = Com(w1; r1) ∧ c2 = Com(w2; r2) ∧ Ẽ(w1) = Ẽ(w2) .

Finally, let Ds,c1,c2
x,w be a “witness-decryption” circuit as described in Figure 3.

Hardwired:
1. Instance and witness (x,w) ∈ RL,
2. first ZAP message s,
3. commitments c1, c2.

Input:
1. A circuit Ẽ,
2. second ZAP message π.

Output:
1. Verify that π is a valid proof for the statement (x, c1, c2, Ẽ) ∈ T with
respect to the first message s. If not, output ⊥.

2. Output Ẽ(w).

Fig. 3. The “witness-decryption” circuit Ds,c1,c2
x,w

5 We assume iO for all circuits for simplicity of exposition; naturally, it suffices to
have iO for a certain restricted class of circuits that we use in our construction and
analysis.

ZAPs and NIWIs from Indistinguishability Obfuscation 423

Construction 5.2 (NIWI Proof). The NIWI system (P ,V) is defined as fol-
lows:

The prover P given x ∈ {0, 1}n ∩ L and w ∈ RL(x):
1. Sample a first ZAP message s ∈ {0, 1}poly(n),
2. compute a pair of commitments to the all zero string c1, c2 ← Com(0|w|),
3. compute the obfuscation D̃ ← iO(Ds,c1,c2

x,w),

4. output (s, c1, c2, D̃) as the proof.
The verifier V given x and the proof (s, c1, c2, D̃):

1. Sample a message m ← {0, 1}n,
2. compute the obfuscation Ẽ ← iO(Em

x),
3. compute a proof π for the statement (c1, c2, Ẽ) ∈ T with respect to the

first message s. Use m and the randomness used to compute Ẽ as a
witness for the fact that Ẽ is a valid obfuscation of a witness-encryption
circuit,

4. accept if m = D̃(Ẽ, π) accept, otherwise reject.

Proposition 5.1. The protocol given by Construction 5.2 is a NIWI proof.

Proof. The completeness of the system follows readily from the completeness of
the ZAP and the functionality of iO. We focus on proving soundness and then
witness-indistinguishability.

Soundness. Assume towards contradiction that there exist a polynomial p such
that for infinitely many x /∈ L there exists a proof (s, c1, c2, D̃) such that:

Pr[V(x, (s, c1, c2, D̃)) = 1] ≥ 1

p(|x|) .

Let m be the random message sampled by V in a random execution, and let
(Ẽ, π) be the obfuscation and proof computed by V . By our assumption:

Pr[D̃(Ẽ, π) = m] ≥ 1

p(|x|) .

Let (w1, r1) and (w2, r2) be decommitments of c1, c2 respectively (such decom-
mitments exist since Com is dense). Since x /∈ L, and by the (perfect) function-
ality of iO, the circuit Ẽ outputs ⊥ on all inputs. Therefore, the decommitments
(w1, r1), (w2, r2) can be used as a witness for the statement (c1, c2, Ẽ) ∈ T . Let
π′ be a proof for the statement (c1, c2, Ẽ) ∈ T with respect to the first message s
computed using the witness (w1, r1), (w2, r2). By the witness indistinguishability
of the ZAP: π ≈c π′. Therefore,

Pr[D̃(Ẽ, π′) = m] ≥ 1

p(|x|) − negl(|x|) .

Let Ẽ′′ = iO(E0n

x). Since the circuits Ẽ and Ẽ′′ are of the same size, and
since both output ⊥ on all inputs, it follows from the security of iO that Ẽ ≈c

Ẽ′′. Let π′′ be a proof with respect to Ẽ′′ rather than for Ẽ. Then (Ẽ, π′) ≈c

424 N. Bitansky and O. Paneth

(Ẽ′′, π′′). Indeed, a distinguisher between (Ẽ, π′), (Ẽ′′, π′′) can be reduced to a
distinguisher between Ẽ, Ẽ′′, since computing π′ and π′′ does not require the
randomness underlying Ẽ1, Ẽ2). Hence, it also holds that:

Pr[D̃(Ẽ′′, π′′) = m] ≥ 1

p(|x|) − negl(|x|) .

Since m is uniform in {0, 1}|x| and in the above experiment the view of D̃ is
independent of m, we get a contradiction.

Witness Indistinguishability. Let I = {(x,w1, w2) : w1, w2 ∈ RL(x)}, be a
sequence of instances x ∈ L, with two corresponding witnesses w1, w2. We show
that{
(s, c1, c2, D̃) ← P(x,w1))

}
(x,w1,w2)∈I

≈c

{
(s, c1, c2, D̃) ← P(x,w2))

}
(x,w1,w2)∈I

,

by considering a sequence of hybrid distributions.

Hyb1: Here (c1, c2, D̃) ← P(x,w1) corresponds to a proof using the first witness
w1.

Hyb2: Here for each b ∈ {0, 1}, cb ← Com(wb) is a commitment to the corre-
sponding witness rather than to the all-zero string. By the computational-hiding
of Com, Hyb2 ≈c Hyb1.

Hyb3: Here the first ZAP message s is sampled conditioned the on the ZAP being
absolutely sound; that is, there exists no accepting proof, with respect to s, for
any false statement. By the soundness of the ZAP, this holds with overwhelming
probability and thus Hyb3 ≈s Hyb2.

Hyb4: Here instead of sampling D̃ ← iO(Ds,c1,c2
x,w1

) using w1, it is sampled using

w2, i.e., D̃ ← iO(Ds,c1,c2
x,w2

). To show that Hyb4 ≈c Hyb5, we show that for any
realization of s, c1, c2 (which have the same distribution in Hyb4,Hyb5), the two
circuits Ds,c1,c2

x,w1
, Ds,c1,c2

x,w2
have the exact same functionality and thus, by the iO

guarantee, iO(Ds,c1,c2
x,w1

) ≈c iO(Ds,c1,c2
x,w2

). Indeed, for any input (Ẽ, π) for Ds,c1,c2
x,wb

,
there are two options:

1. π is not a valid proof for the statement (x, c1, c2, Ẽ) ∈ T with respect to
the first message s. In this case, by the definition of Ds,c1,c2

x,wb
, it holds that

Ds,c1,c2
x,w1

(Ẽ, π) = Ds,c1,c2
x,w2

(Ẽ, π) = ⊥.

2. π is a valid proof. In this case, by the soundness of the ZAP, (x, c1, c2, Ẽ) ∈ T .
This in turn implies one of two cases

(a) Ẽ is a valid obfuscation iO(Em
x), in which case by the definition of Em

x ,
and the functionality of iO, Ẽ(w1) = Ẽ(w2).

(b) c1, c2 can be opened to w̃1, w̃2, such that Ẽ(w̃1) = Ẽ(w̃2), in which case
by the binding of Com, for both b ∈ {0, 1}, wb = w̃b, and thus also
Ẽ(w1) = Ẽ(w2).

So in either case Ds,c1,c2
x,w1

(Ẽ, π) = Ds,c1,c2
x,w2

(Ẽ, π), as required.

ZAPs and NIWIs from Indistinguishability Obfuscation 425

Hyb5: Here we remove the requirement that s is sampled conditioned on absolute
soundness. Like before, it holds that Hyb5 ≈s Hyb4 by the soundness of the ZAP.

Hyb6: Here (c1, c2, D̃) ← P(x,w2) corresponds to a proof using the first witness
w2. This hybrid differs from Hyb5 only in that c1, c2 are commitments to all-zero
strings rather than to w1, w2. Like before, it holds that Hyb6 ≈c Hyb5 by the
computational hiding of the commitment Com.

Remark 5.1 (Relying on relaxed dense commitments). The non-interactive
commitment scheme used in the NIWI construction can be somewhat relaxed.
Indeed, it suffices to require a non-interactive commitment scheme that is statis-
tically binding, but only against honest committers; namely, honestly generated
commitments can only be opened to a single value. The commitment should still
be dense in the sense that every string in the range of the commitment, can be
opened to at least one value (commitments that are not generated honestly may
potentially be opened to more than one value).

Remark 5.2 (Using witness-encryption generically). We note that we refrain
from explicitly defining witness encryption, and in the above construction, di-
rectly implement witness encryption using iO (which we anyhow rely on). While
we find that thinking about witness encryption in terms of obfuscation is helpful
in this context, it is possible to state the construction in terms of generic witness
encryption.

Acknowledgements. We thank Ran Canetti for discussions and valuable ad-
vice. We thank Rafail Ostrovsky for discussions on the the way that unbalanced
properties are dealt with in [GO92], and for referring us to [BGRV09]. We also
thank Sanjam Garg for discussing NIZKs based on graded encodings.

References

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: STOC, pp. 103–112 (1988)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. CRYPTO, Heidelberg
(2001)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudo-
random functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 501–519. Springer, Heidelberg (2014)

[BGK+13] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting ob-
fuscation against algebraic attacks. Cryptology ePrint Archive, Report
2013/631 (2013), http://eprint.iacr.org/

[BGRV09] Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak
verifiable random functions. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 558–576. Springer, Heidelberg (2009)

[Blu81] Blum, M.: Coin flipping by telephone. In: Proceedings of the 18th Annual
International Cryptology Conference, pp. 11–15 (1981)

http://eprint.iacr.org/

426 N. Bitansky and O. Paneth

[BOV07] Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography.
SIAM J. Comput. 37(2), 380–400 (2007)

[BR13] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. Cryptology ePrint Archive, Report
2013/563 (2013), http://eprint.iacr.org/

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[BY96] Bellare, M., Yung, M.: Certifying permutations: Noninteractive zero-
knowledge based on any trapdoor permutation. J. Cryptology 9(3), 149–
166 (1996)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[DN07] Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6),
1513–1543 (2007)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[FS89] Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544.
Springer, Heidelberg (1990)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH
+

13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: FOCS (2013)

[GGH14] Gentry, C., Gorbunov, S., Halevi, S.: Graded multilinear maps
from lattices. Cryptology ePrint Archive, Report 2014/645 (2014),
http://eprint.iacr.org/

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: STOC, pp. 467–476 (2013)

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions.
In: STOC 1989: Proceedings of the Twenty-first Annual ACM Symposium
on Theory of Computing, pp. 25–32. ACM, New York (1989)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of in-
teractive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity for all languages in np have zero-knowledge proof systems.
J. ACM 38(3), 691–729 (1991)

[GO92] Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive
zero-knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 228–245. Springer, Heidelberg (1993)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology 7(1), 1–32 (1994)

http://eprint.iacr.org/
http://eprint.iacr.org/

ZAPs and NIWIs from Indistinguishability Obfuscation 427

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. J. ACM 59(3), 11 (2012)

[KMN+14] Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.:
One-way functions and (im)perfect obfuscation. IACR Cryptology ePrint
Archive, 2014:347 (2014)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: ACM Conference on
Computer and Communications Security, pp. 669–684 (2013)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2),
151–158 (1991)

[NLLT14] Niu, Q., Li, H., Liang, B., Tang, F.: One-round witness indistinguishability
from indistinguishability obfuscation. IACR Cryptology ePrint Archive,
2014:176 (2014)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deni-
able encryption, and more. In: STOC (2014)

Random-Oracle Uninstantiability

from Indistinguishability Obfuscation

Christina Brzuska1, Pooya Farshim2, and Arno Mittelbach3

1 Microsoft Research Cambridge, UK
2 Queen’s University Belfast, Northern Ireland, UK

3 Darmstadt University of Technology, Germany
{christina.brzuska,pooya.farshim}@gmail.com

mail@arno-mittelbach.de

Abstract. Assuming the existence of indistinguishability obfuscation
(iO), we show that a number of prominent transformations in the random-
oracle model are uninstantiable in the standard model. We start by
showing that the Encrypt-with-Hash transform of Bellare, Boldyreva and
O’Neill (CRYPTO 2007) for converting randomized public-key encryp-
tion schemes to deterministic ones is not instantiable in the standard
model. To this end, we build on the recent work of Brzuska, Farshim
and Mittelbach (CRYPTO 2014) and rely on the existence of iO for
Turing machines or for circuits to derive two flavors of uninstantiability.
The techniques that we use to establish this result are flexible and lend
themselves to a number of other transformations such as the classical
Fujisaki–Okamoto transform (CRYPTO 1998) and transformations akin
to those by Bellare and Keelveedhi (CRYPTO 2011) and Douceur et al.
(ICDCS 2002) for obtaining KDM-secure encryption and de-duplication
schemes respectively. Our results call for a re-assessment of scheme design
in the random-oracle model and highlight the need for new transforms
that do not suffer from iO-based attacks.

Keywords: Random oracle, uninstantiability, indistinguishability ob-
fuscation, deterministic encryption, UCE, Fujisaki–Okamoto transform,
KDM security, message-locked encryption.

1 Introduction

1.1 Background

The random-oracle model (ROM) [18] is an idealized model of computation
where all parties, honest or otherwise, have oracle access to a uniformly cho-
sen random function. Random oracles model ideal hash functions and have
found a plethora of applications in cryptography. They have enabled the security
proofs of a wide range of practical cryptosystems which include, amongst oth-
ers, digital signature schemes, CCA-secure encryption, key-exchange protocols,
identity-based encryption, cryptosystems that are resilient to related-key and
key-dependent-message attacks, as well as more advanced security goals such

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 428–455, 2015.
c© International Association for Cryptologic Research 2015

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 429

as deterministic encryption of high-entropy messages, de-duplication schemes,
and point-function obfuscators. After designing and analyzing the scheme in the
random-oracle model, one then instantiates the oracle via a concrete, possibly
keyed, hash function. In this paper we revisit this methodology and show that
a number of prominent ROM cryptosystems cannot be securely instantiated in
the standard model.

1.2 Uninstantiability

The power and practicality of random oracles drew early attention to their
standard-model instantiations. Canetti, Goldreich and Halevi (CGH) [33] demon-
strated a general negative result by constructing digital signature and encryption
schemes which are secure in the random-oracle model but become insecure as
soon as the oracle is instantiated with any concrete hash function. Such unin-
stantiable schemes rely on the existence of a compact description for concrete
hash functions and lack of one for truly random functions. Roughly speaking,
the idea is to take a secure ROM scheme and tweak it slightly so that it behaves
securely unless it is run on messages that match the code of the hash function
used in the instantiation, in which case it does something “obviously insecure”
(e.g., returns the signing key or the message).

A number of other works have further studied uninstantiability problems as-
sociated with random oracles. In a follow-up work [34], CGH extend their result
to signature schemes which only support short messages. Bellare, Boldyreva and
Palacio [8] show that no instantiation of the hashed ElGamal key-encapsulation
mechanism composes well with symmetric schemes, even though it enjoys this
property in the ROM. Goldwasser and Kalai [44] study the Fiat–Shamir heuristic
and establish uninstantiability results for it. Nielsen [51] gives an uninstantiable
cryptographic task, namely that of non-interactive, non-committing encryption,
which although achievable in the ROM, is infeasible in the standard model. CGH-
type uninstantiability has been adapted to other models of computations such
as the ideal-cipher model [21] and the generic-group model [36].

A number of recent works have looked into ROM (un)instantiability in light
of the recently proposed candidate for indistinguishability obfuscation (iO) [39].
A secure indistinguishability obfuscator guarantees that the obfuscations of any
two functionally equivalent programs (modeled as circuits or Turing machines)
are computationally indistinguishable. On the positive side, Hohenberger, Sahai
and Waters [46] show how to instantiate the hash function in full-domain hash
(FDH) signatures using iO. Bellare, Stepanovs and Tessaro [19] show the first
standard-model construction for polynomially many hardcore bits for any one-
way function. Recently, Brzuska and Mittelbach [31] have shown how to use
iO to instantiate certain forms of Universal Computational Extractors (UCEs).
UCE is a novel framework of security notions introduced by Bellare, Hoang and
Keelveedhi [12] and can be used to generically instantiate random oracles in
many protocols.

430 C. Brzuska P. Farshim, and A. Mittelbach

On the negative side, Brzuska, Farshim and Mittelbach [27] show that un-
der the existence of iO, several security notions in the UCE framework are
uninstantiable in the standard model, and proposed fixes to salvage many of
the applications. Brzuska and Mittelbach [30] show that assuming iO, multi-bit
output point-function obfuscation secure in the presence of auxiliary information
cannot be realized. Both results can be interpreted as conditional uninstantiabil-
ity results as ROM constructions for both UCEs [12,50] and strong multi-output
bit point obfuscation [48] exist. Bitansky et al. [20] show that indistinguishabil-
ity obfuscation rules out the existence of certain types of extractable one-way
function families which can be constructed in the random-oracle model [32].

1.3 Our Results

Our work continues the study of uninstantiability of random oracles and shows
that a number of well-known and widely deployed ROM transforms are provably
uninstantiable if indistinguishability obfuscators exist. More specifically, we are
interested in ROM transformations TRO that take as input any standard-model
scheme S which is guaranteed to satisfy a mild form of security, and convert S
into a new scheme TRO[S] in the random-oracle model that meets a stronger level
of security. A fundamental question for such transforms is their instantiability,
that is, whether or not there exists an efficient hash function H such that TH[S] is
strongly secure for any mildly secure S. We show a number of negative results in
this direction, which take the form: there is a mildly secure scheme S∗ such that
no matter which hash function H is picked, scheme TH[S∗] is provably insecure.

Our results come in two flavors depending on the class of programs that the
indistinguishability obfuscator supports. Assuming iO for circuits of a priori
bounded size b, we show there is a ROM cryptosystem which is uninstantiable
with respect to keyed hash functions of description size at most b. This means
that there exists a scheme Sb such that for any hash function H of description
size at most b the scheme TH[Sb] is insecure. This, in particular, yields an unin-
stantiability result for any fixed and finite set of hash functions. This result,
however, does not rule out instantiating the oracle with hash functions which
have larger description size and are in some sense “more complex” than the base
scheme. By assuming the existence of iO for Turing machines we are able to
further strengthen this result to one which rules out instantiations with respect
to any, possibly scheme-dependent, hash function.

Overview of BFM. We build on techniques of Brzuska, Farshim and Mittel-
bach (BFM) [27] to construct our uninstantiable schemes and briefly recall their
technique here. BFM utilize the power of indistinguishability obfuscation to
show that a recent notion of security for hash functions known as UCE1 is

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 431

uninstantiable in the standard model.1 To this end, BFM construct an adversary
which outputs an indistinguishability obfuscation of the Boolean circuit

C[x, y](hk) := (H(hk, x) = y) ,

where x is a random domain point and y is the corresponding hash value
which could be real or ideal. That is, the circuit C[x, y] has x and y hard-coded
into it and gets as input a hash key hk, computes H(hk, x) and outputs 1 if and
only if this value is equal to y.

BFM need to argue that an indistinguishability obfuscation of this circuit
hides x whenever y is truly random (and not computed by applying the hash-
function to x). They prove this by a counting argument that establishes that,
under appropriate restrictions on the lengths of y and the length of the key
hk, the above circuit implements the constant zero circuit with overwhelming
probability. They then employ the security of the obfuscator to conclude as
the zero circuit is independent of x. The restriction that they require, is that
the number of hash keys hk is much smaller than the size of the range 2|y|,
which means that y (with overwhelming probability) is outside the image of the
function H(·, x) that has a fixed x and maps hash-keys hk to H(hk, x). On the
other hand, the above circuit returns 1 when the hash value y is computed as
H(hk, x) and hk as the correct hash key is plugged into C[x, y].

Techniques. In our uninstantiability results for encryption, we will embed an
obfuscated program into the ciphertext.2 We now describe this program which
is a universal variant of the BFM circuit. This program takes as input the full
description of a hash function Hhk, including its key hk if there is one, and returns
the result of running the BFM circuit on the input hash-function description. It
performs the latter in the standard way by using a universal evaluator UEval,
which could be a universal Turing machine or a universal circuit evaluator, de-
pending on the considered model of computation.

P[x, y](Hhk) := (UEval(Hhk, x) = y) .

So, the programP[x, y] has x and y hard-coded and takes as input a description of
Hhk, computes Hhk(x) and checks whether this value is equal to y. In other words,
we no longer consider a fixed keyed hash function, but instead (potentially) look
at the set of all hash functions on a given range and domain.3 (Similar ideas have

1 In UCE1 (later renamed to UCE[Scup]) security a two-stage adversary needs to
distinguish a hash function from a random oracle. The first-stage adversary is given
oracle access to either the hash function under a random key or the random oracle.
It does not get to see the hash key but can leak a message to the second-stage
adversary on termination, which additionally gets the hash key and outputs a bit.
The second-stage adversary can no longer call the oracle. UCE1 security requires
that the leaked message should be such that it does not computationally reveal any
of the oracle queries when the oracle is a random function.

2 We speak of programs which can be modeled either as circuits or as Turing machines.
3 Alternatively, we are looking at the universal hash function.

432 C. Brzuska P. Farshim, and A. Mittelbach

been used by Brzuska and Mittelbach [30] to study the feasibility of multi-bit
output point function obfuscation in the presence of auxiliary inputs under the iO
assumption.) Note that P[x, y] is either a circuit or a Turing machine depending
on the underlying universal evaluator UEval. In adopting this approach, a number
of technicalities need to be addressed, which we discuss next.

Our ultimate goal is to derive a strong result which rules out instantiations (of
a transformation) by arbitrary hash functions. This means that program P above
should accept inputs of arbitrary length. This, however, lies beyond the powers of
the circuit model of computation which current indistinguishability obfuscators
support. We address this problem in two incomparable ways. First, we weaken
target uninstantiability and under iO for circuits rule out instantiations by a
priori bounded-size hash functions. Second, in order to strengthen this result to
full uninstantiability, we consider a stronger form of iO which supports Turing
machines. For our purposes, the crucial difference between iO for circuits and
iO fro Turing machines is that an obfuscated Turing machine is still a Turing
machine which can process inputs of arbitrary length. (Note that the actual
Turing machine that we need to obfuscate is a universal Turing machine and has
an a priori fixed size.) Our theorem statements will therefore contain two parts
to reflect this trade off between the strength of assumptions and the reach of the
uninstantiability result obtained.

A second problem arises from the fact that the number of possible hash func-
tion descriptions might be greater than 2|y| so that we cannot directly apply
BFM’s counting argument. We overcome this obstacle by composing both sides
of the equality in P with a pseudorandom generator (PRG) and look at

P[x, y](Hhk) := (PRG(UEval(Hhk, x)) = PRG(y)) .

This does not affect the success probability of the attack and allows us to argue
that x remains hidden as follows: First note that the right-hand side PRG(y) is
a constant that does not depend on the program input and can thus be hard-
coded into the program. Now, in a first step we can replace the right hand-
side value with a truly random value by the security of the PRG. Note that in
this step we do not rely on the security of the obfuscator and merely use the
indistinguishability of program descriptions. Indeed, the two programs might
implement significantly different functionalities. Next, we use the fact that a
truly random value is, with overwhelming probability, outside the range of a PRG
with sufficiently long stretch. Hence, the obfuscations of the above program are
computationally indistinguishable from those of the zero program. We note that
our usage of the PRG is somewhat similar to that by Sahai and Waters in their
construction of a CCA-secure PKE scheme from iO [55], the range extension of
Matsuda and Hanaoka [49] of a multi-bit point function to obtain shorter point
values, the range-extension of a UCE1-secure hash function by Bellare, Hoang
and Keelveedhi [14], and the negative result of Brzuska and Mittelbach [30] on
multi-bit point-function obfuscation with auxiliary inputs.

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 433

Assumptions. Garg et al. [39] construct an indistinguishability obfuscator forNC1

circuits based on intractability assumptions related tomulti-linearmaps, and show
how to bootstrap it to support all polynomial-time circuits via a fully homomor-
phic encryption scheme with a decryption circuit in NC1. The authors validate
their multi-linear intractability assumption in a generic model of computation. Re-
cent results show how to improve the assumptions used in constructing indistin-
guishability obfuscators [52,26,4,3,42], further supporting their plausibility.

Indistinguishability obfuscation for Turing machines has been constructed in
the works of Boyle, Chung and Pass [25] and Ananth et al. [2]. The authors
study a stronger primitive called extractability or differing-inputs obfuscation
(diO) which extends iO to circuits (and Turing machines) that are not necessarily
functionally equivalent. The requirement is that any adversary that can break the
indistinguishability property can be converted to an extractor that can output
a point on which the two circuits differ. Boyle, Chung and Pass [25] and Ananth
et al. [2] show how to build iO for Turing machines assuming diO for circuits.
The plausibility of differing-inputs obfuscation, however, has become somewhat
controversial due to a recent result of Garg et al. [40]. These authors show that
the existence of a special-purpose obfuscator for a signature scheme implies that
diO with arbitrary auxiliary input cannot exist. Although we currently do not
know how to build this special-purpose obfuscator, its existence appears to be a
milder assumption than diO, one can consider its existence to be more likely. It is
therefore important to seek alternative instantiations of iO for Turing machines
from assumptions that are weaker than diO for circuits. Indeed, very recently and
shortly after the appearance of this work, Koppula, Lewko and Waters [47] have
succeeded in constructing iO for Turing machines without relying on diO, and
using iO for circuits, one-way functions and injective pseudorandom generators.

Deterministic encryption. Our first result establishes the uninstantiability of
the Encrypt-with-Hash (EwH) transform of Bellare, Boldyreva and O’Neill [7],
whereby one converts a randomized IND-CPA public-key encryption scheme into
a deterministic public-key encryption (D-PKE) scheme D-PKE by extracting the
randomness needed for encryption via hashing the message and the public key,
that is, the encryption algorithm D-PKE.EncRO(·,·)(m, (hk, pk)) first computes
random coins r ← RO(hk, pk‖m) and then invokes the base encryption algo-
rithm on message m, public key pk and random coins r to generate a ciphertext.
This simple transformation meets the strongest notion of security that has been
proposed for deterministic encryption (that is, PRIV security) in the ROM if
the underlying encryption scheme is IND-CPA secure. Standard-model construc-
tions, on the other hand, achieve weaker levels of security, e.g., security against
block sources [10,22] or q-bounded adversaries [38,29]. To this end, we ask if any
hash function can be used to instantiate the random oracle within the EwH trans-
form. Assuming iO for circuits/Turing machines, we build an IND-CPA secure
encryption scheme such that when the EwH transform is applied to this specially
devised encryption scheme together with some (b-bounded) hash-function, the
resulting scheme is not PRIV-secure, not even for block-sources or 1-bounded
PRIV-security.

434 C. Brzuska P. Farshim, and A. Mittelbach

Starting with an arbitrary scheme PKE we consider a new scheme PKE∗ which
includes an indistinguishability obfuscation of the following program as part of
its ciphertexts.

P[pk,m, r](Hhk) := if (PRG(UEval(Hhk, pk‖m)) = PRG(r))

return m

else return 0

This program performs a check similar to that of the universal BFM circuit,
but instead of returning a Boolean value returns the encrypted messages when
the check passes. That is, in P[pk,m, r], the public-key pk, the message m and the
randomness r are parameters, and the program takes as input a hash-function
Hhk (potentially with some hard-coded key hk), evaluates Hhk on pk||m to get
some value y. Then, it applies PRG to y and checks whether PRG(y) is equal to
PRG(r). If this is the case, it returns the message m. Else, it returns 0.

We can use an obfuscation of this programto attack the security ofEwHH[PKE∗].
The second stage of the adversary runs this program on the description Hhk of the
hash function that is used in the instantiation (with hard-coded hk) to obtain the
encrypted message. A corollary of this result is that under iO, no security assump-
tion (single or multi-staged, falsifiable or not) is strong enough to build D-PKEs
via EwH. In particular, a new UCE assumption used to instantiate EwH [15] is
uninstantiable assuming iO for Turing machines (and b-bounded uninstantiable
assuming iO for circuits). We remark that our results are incomparable to those of
Wichs [57] who shows an unconditional unprovability result for D-PKEs using ar-
bitrary techniques from single-stage assumptions. (Our results are conditional and
showuninstantiability of EwH regardless of the assumptions used.) This result nat-
urally extends to the Randomized-Encrypt-with-Hash [9] transform for building
hedged PKEs.

The Fujisaki–Okamoto transform. The above result generalizes to a wider class
of (possibly randomized) admissible transformations that use their underlying
PKE schemes in a structured way and admit recovery algorithms that satisfy
certain correctness properties. (We leave the details to the main body.) Some-
what surprisingly, the Fujisaki–Okamoto (FO) transform for converting CPA
into CCA security is admissible and thus suffers from uninstantiability. The FO
transform, which dates back to the 1990s, is a simple and flexible technique
to boost security of various schemes and has been widely used in identity-based
encryption [24], its hierarchical and fuzzy variants [43,56], forward-secure encryp-
tion [35], and certificateless and certificate-based encryption [1,41] to mention
a few. Our results, once again, come in two flavors depending on the strength
of the underlying obfuscator. Our techniques can be further tweaked to show
that one cannot instantiate the oracle used within the asymmetric component
of the FO transform. This means that the POWHF-encryption assumption of
Boldyreva and Fischlin [23] used for partial instantiation of the oracles in FO is
also uninstantiable if iO/iO for Turing machines exists.

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 435

Other constructs. The uninstantiability problems arising from the existence of
indistinguishability obfuscators are not limited to deterministic encryptions and
its generalizations. We revisit the work of Bellare and Keelveedhi (BK) [16] on
authenticated and misuse-resistant encryption of key-dependent data and show
that it too suffers from uninstantiability problems. Roughly speaking, BK give a
transformation called RHtE to convert authenticated encryption into one which
resists key-dependent-message (KDM) attacks. This is done by hashing the key
with a random nonce to derive the actual key used in encryption: one encrypts
m as (N,Enc(H(hk, N‖k),m)) for a random nonce N . Our iO-based uninstan-
tiability result describes an IND-CPA and INT-CTXT-secure authenticated en-
cryption (AE) scheme whose BK transformation is not KDM secure.

Interestingly, BK require the base scheme to meet a stronger security level
than IND-CPA: ciphertexts should be indistinguishable from random strings.
BK do not consider this difference to be of major importance; in the abstract
of their paper they write that they present a RO-transform RHtE that endows
any AE-scheme with this security. Our result brings this stronger requirement
to light, and shows that assuming that ciphertexts are pseudorandom might be
a way to circumvent uninstantiability as the current state-of-the-art obfuscators
produce programs that are structured and do not look random. Conversely, if an
indistinguishability obfuscator can produce obfuscations of the zero circuit that
look random,4 then reverting to the stronger security notion would no longer be
of any help.

As a final example we show that the Convergent-Encryption transform of
Douceur et al. [37] formalized by Bellare, Keelveedhi and Ristenpart (BKR) [17]
for building message-locked encryption is also uninstantiable. Once again, BKR
formally rely on pseudorandomness of ciphertexts but similar observation to
those given above for BK apply here too.

Comparison with CGH. Recall that Canetti, Goldreich and Halevi (CGH) [33]
show the uninstantiability of certain ROM digital signature and encryption
schemes without relying on iO. Their technique is to give a (contrived) scheme
that is secure in the random oracle model but behaves anomalously on cer-
tain inputs that are related to a compact description of the hash function. Our
uninstantiability results share these features, that is, neither their nor our unin-
stantiability results apply to “natural” schemes. For instance, it is not known
if Encrypt-with-Hash when used with ElGamal is uninstantiable or not. On the
other hand, our results apply to natural transformations.

It is natural to ask if CGH-like techniques can be directly applied here so as to
obtain uninstantiability results that do not rely on the iO machinery. For unin-
stantiability with respect to unkeyed hash functions, one can indeed construct
anomalous PKE schemes which follow the CGH paradigm and give the desired

4 Note that generally, obfuscations of circuits cannot look random, because obfusca-
tion maintains functionality and thus, the obfuscations of the zero circuit would be
distinguishable from those of the constant one circuit. This trivial attack, however,
does not apply here if we require pseudorandomness only for the zero circuit.

436 C. Brzuska P. Farshim, and A. Mittelbach

uninstantiability result for Encrypt-with-Hash. For keyed hash functions, on the
other hand, there seems to be an inherent limitation to CGH-like techniques.
For instance, the security model for D-PKEs do not allow message distributions
to depend on the hash key as this value is included in the public key and the
latter is denied to the first-stage adversary. Consequently there is no way to
generate messages which contain the full description of the hash function used,
including its key, which seems to be necessary when applying CGH-like tech-
niques. It might appear that this issue can be easily resolved by noting that the
encryption routine does have access to the hash key, and a full description of
the hash function can be formed at this point. The caveat, however, is that such
an uninstantiable scheme no longer falls under the umbrella of schemes arising
from the Encrypt-with-Hash transform. More precisely, although we can freely
modify the base PKE to prove uninstantiability, the transformation is fixed and
it only allows black-box access to the hash function and denies encryption access
to the hash key.5 This observation applies to other transformations as well. For
instance, in the FO transformation the message that is asymmetrically encrypted
is chosen uniformly at random and thus cannot be set to the description of the
hash function. To summarize, although the description of the hash function will
be eventually made public, the adversarial scheme never gets to the hash func-
tion in full and needs to coordinate the attack with the actual adversary, who
sees the hash key, to be successful. Indistinguishability obfuscation allows this
distributed attack to be carried out.

Concurrent work. In concurrent and independent work, Green et al. [45] use iO
and techniques similar to ours to demonstrate the uninstantiability of random-
oracle schemes. Like us, they embed an obfuscated program into schemes in
order to make them uninstantiable. Our results, however, rule out the instantia-
bility of (existing) random-oracle transformations whereas Green at al. construct
uninstantiable schemes for primitives which cannot be targeted with CGH-like
techniques. For instance bit encryption falls outside the reach of CGH as its
input space is too short and cannot be made to behave anomalously on special
long inputs. Green et al. show that indistinguishability obfuscation can be used
to extended CGH to such constrained primitives.

Primitive design. The shortcomings of ROM primitives that we have identified
call for a re-assessment of primitives whose security analyses have only been
carried out in idealized models of computation. To highlight the importance of
this task, we propose a new transform for building deterministic encryption that
is specifically designed to bypass our attacks. In this transform one encrypts
two values independently across two invocations of the underlying encryption
algorithm to make sure that the information needed for the attack is not available
to any of the invocations. (This transform, in particular, is not admissible.) We
prove this scheme secure in the ROM, but show that the program that one

5 Despite this, CGH-like techniques render Encrypt-with-Hash uninstantiable when
stronger notions of security are considered [53].

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 437

would need to successfully attack the construction (assuming the availability of
all needed information) can be split into several programs such that by feeding
obfuscations of one program into the obfuscations of another an attack can be
launched. We leave the characterization of the class of transformations which
fall prey to extensions of the iO attack as an interesting open problem.

We believe that the structural soundness of ROM schemes should be fur-
ther validated by studying if attacks similar to those given in this work can be
launched against them. To provably rule out such attacks one needs to reduce se-
curity to assumptions, which although strong, are not known to be uninstantiable
under existence of (d)iO. Candidate examples include UCEs against statistically
and/or strongly unpredictable sources [27,31] and indeed indistinguishability ob-
fuscation itself. We note that recently Bellare and Hoang [11] have proposed a
D-PKE transform starting from lossy trapdoor function and statistical UCEs.
This approach can be further combined with stronger assumptions on the base
schemes (such as pseudorandomness of ciphertexts). Indeed, it would be inter-
esting to derive positive results that circumvent iO-based uninstantiability by
merely exploiting the pseudorandomness of ciphertexts, even for somewhat arti-
ficial tasks. These would strengthen our confidence in applying the random-oracle
methodology despite the broad uninstantiability results presented in this paper.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N and assume that it is
implicitly given to all algorithms in the unary representation 1λ. We denote the
set of all bit strings of length � by {0, 1}�, the set of all bit strings of finite length
by {0, 1}∗, the length of x ∈ {0, 1}∗ by |x|, the concatenation of two strings
x1, x2 ∈ {0, 1}∗ by x1‖x2, and the exclusive-or of two strings x1, x2 ∈ {0, 1}∗
of the same length by x1 ⊕ x2. The i-th bit of a string x is indicated by x[i].
We denote the empty string by ε. A vector of strings x is written in boldface,
and x[i] denotes its i-th entry. The number of entries of x is denoted by |x|.
For a finite set X , we denote the cardinality of X by |X | and the action of
sampling x uniformly at random from X by x←$ X . For a random variable X
we denote the support of X by [X]. A real-valued function ν(λ) is negligible if
ν(λ) ∈ O(λ−ω(1)). We denote the set of all negligible functions by negl.

An algorithm is a randomized, stateless Turing machine unless otherwise
stated. We call an algorithm efficient or PPT if its runtime on any choice of
inputs and random coins is at most a polynomial function of the security pa-
rameter. The action of running an algorithm A on input x and random coins r
is denoted by y ← A(x; r). If A is randomized and no randomness is specified,
then we assume that A is run with freshly and uniformly generated random
coins and write y←$ A(x). An adversary is a tuple of stateful PPT algorithms.
We omit explicit input and output states to ease notations. When an adversary
A = (A1,A2) consists of two stages A1 and A2, these two stages are assumed to
be distinct algorithms that do not share any state, unless explicitly permitted
to do so by a game.

438 C. Brzuska P. Farshim, and A. Mittelbach

Turing machines and circuits. Throughout the paper we consider two models of
computation: Turing machines and circuits. Recall that a Turing machine can
take inputs of arbitrary length whereas the input length to a circuit is fixed.
We denote the runtime of a Turing machine M on input x by timeM(x) and
its description size by |M|. We denote the size (a.k.a. runtime) of a circuit C
by |C|. A universal Turing machine UM is a machine that takes two inputs
(M, x), interprets M as the description of a Turing machine and returns M(x).
A universal circuit UC is defined analogously on descriptions of circuits C and
inputs x for them. Note that UC only accepts inputs (C, x) of a specific total
length, whereas UM can take inputs of arbitrary length. In order to simplify the
presentation we use the term program to refer to either a Turing machine or a
circuit. We may, therefore, speak of a universal program UEval, which denotes
either a universal Turing machine UM or a universal circuit UC, and evaluates
a program P on some input x. When defining a program, we use the notation
P[z](·) to emphasize the fact that the value z is hard-coded into P.

Indistinguishability obfuscation. We define indistinguishability obfuscation for
circuits and Turing machines under a single definition. Roughly speaking, an
indistinguishability obfuscator (iO) ensures that the obfuscations of any two
functionally equivalent programs (that is, circuits or Turing machines) are
computationally indistinguishable. Indistinguishability obfuscation was originally
proposed by Barak et al. [6,5] as a potential weakening of the virtual-black-
box obfuscation property, for which wide infeasibility results are known. Here
we give a game-based definition of indistinguishability obfuscation in the style
of [19] with extensions to also cover obfuscation for Turing machines [2]. We only
consider the setting where both the sampler and distinguisher are uniform but
allow the sampler to output inequivalent programs with negligible probability.
This game-based formulation is convenient for use in proofs of security.

A PPT algorithm iO is called an indistinguishability obfuscator for a program
class P = {Pλ}λ∈N if iO on input the security parameter 1λ and (the description
of) a program P outputs a program P′ and furthermore the following conditions
are satisfied:

– Correctness. For all λ ∈ N, all P ∈ Pλ, and all P′ ←$ iO(1λ,P), the
programs P and P′ are functionally equivalent. That is, P(x) = P′(x) for all
input values x.

– Succinctness. There is a polynomial poly such that for all λ ∈ N, all P ∈ Pλ

and all P′ ←$ iO(1λ,P) we have that |P′| ∈ O(poly(λ+ |P|)).
– Input-specific runtime. There is a polynomial poly such that for all λ ∈ N,

all P ∈ Pλ and all P′ ←$ iO(1λ,P) and all input values x we have that
TimeP′(x) ∈ O(poly(λ+ TimeP(x))).

– Security. For any pair of PPT adversaries (S,D), where S is an equivalent
sampler, i.e., where

AdveqS (λ) := Pr[∃x s.t.P0(x) �= P1(x) ∨ TimeP0(x) �= TimeP1(x) :

(P0,P1, aux)←$ S(1λ)]

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 439

is negligible, we have that

AdvioiO,S,D(λ) := 2 · Pr
[
IOS,D

iO (λ)
]
− 1 ∈ negl ,

where game IO is shown in Figure 1 on the left.

When working with circuits, succinctness and runtime requirements are redun-
dant and follow from the facts that iO is polynomial time and that the size and
runtime of a circuit are identical.

Garg et al. [39] prove that under intractability assumptions related to multi-
linear maps an indistinguishability obfuscator supporting all NC1 circuits exists.
Assuming the existence of a perfectly correct, leveled fully homomorphic en-
cryption scheme and a perfectly sound non-interactive witness-indistinguishable
proof system, they also show how to extended this to support all polynomial-size
circuits, i.e., the family C := {Cb(λ)}λ∈N where b is a polynomial and

Cb(λ) := {C : C is a valid circuit of size at most b(λ)} .

Several follow-up works improved the assumptions underlying indistinguishabil-
ity obfuscators as well as the performance [52,26,3,4,42]. As mentioned above,
circuits and obfuscations thereof admit fixed-length inputs only.

Remark. We define indistinguishability obfuscation with respect to circuit sam-
plers that are overwhelmingly equivalent, i.e., where

AdveqS (λ) ∈ negl .

Although we allow samplers to not always output functionally equivalent circuits,
the randomized sampler only errs with negligible probability. For any bound b,
existence of iO for Cb(λ) under our definition is implied by the (non-uniform)
definition of Garg et al. [39].

Ananth et al. [2] and Boyle et al. [25] give constructions of indistinguishability
obfuscators for Turing machines which admit inputs of arbitrary lengths. Their
constructions achieve the stronger notion of differing-inputs (a.k.a. extractabil-
ity) obfuscation, initially also suggested in the work of Barak et al. [6,5]. This
type of obfuscation can be regarded as a generalization of indistinguishability
obfuscation to programs which are not necessarily functionally equivalent. We
recall [2, Theorem 3] and refer the reader to the original works for details and
discussion.

Theorem 1 (Ananth et al. [2]). Under the existence of CPA-secure leveled
fully homomorphic encryption, succinct non-interactive arguments of knowledge
(SNARKs), differing-inputs obfuscation for all circuits in P/poly, and collision-
resistant hash functions, there exists a differing-inputs obfuscator for the class
of all Turing machines M := {Mλ}λ∈N, where

Mλ := {M : M is a valid Turing machine of description size at most λ} .

Koppula, Lewko and Waters [47] have succeeded in constructing iO for Turing
machines without relying on diO, and using iO for circuits, one-way functions
and injective pseudorandom generators.

440 C. Brzuska P. Farshim, and A. Mittelbach

IOS,D
iO (λ)

(P0,P1, aux)←$ S(1λ)
b←$ {0, 1}
P′ ←$ iO(1λ,Pb)

b′ ←$ D(P′, aux)

return (b = b′)

IND-CPAA
PKE(λ)

(sk, pk)←$ PKE.Kg(1λ)

(m0, m1)←$ A(pk)
b←$ {0, 1}
c←$ PKE.Enc(pk,mb)

b′ ←$ A(c)
return (b = b′)

INDA1,A2
D-PKE (λ)

(m0,m1)←$ A1(1
λ)

(sk, pk)←$ D-PKE.Kg(1λ)

b←$ {0, 1}
for i = 1 . . . |m0|do

c[i]← D-PKE.Enc(pk,mb[i])

b′ ←$ A2(pk, c)

return (b = b′)

Fig. 1. Left: IO game defining the security of an indistinguishability obfuscator. Mid-
dle: The IND-CPA game for a public-key encryption scheme. Right: The IND security
game for deterministic PKEs.

Public-key encryption. A public-key encryption scheme PKE := (PKE.Kg,
PKE.Enc, PKE.Dec) consists of three PPT algorithms as follows. On input the
security parameter, the randomized key-generation algorithm PKE.Kg(1λ) gener-
ates a key pair (sk, pk). The randomized encryption algorithm PKE.Enc(pk,m; r)
gets a message m, a public key pk and possibly some explicit random coins r and
outputs a ciphertext c. The deterministic decryption algorithm PKE.Dec(sk, c) is
given a ciphertext c and secret key sk and outputs a plaintext m or a special sym-
bol ⊥. We denote the supported message length by PKE.il(λ) and the maximum
length of random strings used to encrypt a PKE.il(λ)-bit message by PKE.rl(λ).
We say that scheme PKE is correct if for all λ ∈ N, all m ∈ PKE.il(λ), all
(sk, pk) ∈ [PKE.Kg(1λ)] and all c ∈ [Enc(pk,m)] we have that PKE.Dec(sk, c) = m.
We say that PKE is IND-CPA secure, if the advantage of any PPT adversary A
in the IND-CPA game (shown in Figure 1; center) defined by

Advind-cpaPKE,A(λ) := 2 · Pr
[
IND-CPAA

PKE(λ)
]
− 1

is negligible.

Function families. Following [19], we define a function family FF as a five tuple
of PPT algorithms (FF.Kg,FF.Ev,FF.kl,FF.il,FF.ol) where the algorithms FF.kl,
FF.il, and FF.ol are deterministic and on input 1λ specify the key, input, and out-
put lengths, respectively. The key-generation algorithm FF.Kg gets the security
parameter 1λ as input and outputs a key fk ∈ {0, 1}FF.kl(λ). The determinis-
tic evaluation algorithm FF.Ev takes as input the security parameter 1λ, a key
fk, a message x ∈ {0, 1}FF.il(λ) and generates a hash value FF.Ev(1λ, fk, x) ∈
{0, 1}FF.ol(λ). We will often refer to function families as hash functions in this
work.

PRFs and PRGs. We say that a function family FF is pseudorandom if for any
PPT adversary A we have that

AdvprfFF,A(λ) := Pr
[
AFF.Ev(fk,·)(1λ) = 1

]
− Pr

[
ARO(·)(1λ) = 1

]
∈ negl .

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 441

In the first term above, the probability is taken over a random choice of a key
fk ∈ {0, 1}FF.kl(λ) and in the second over a random choice of RO with domain
{0, 1}FF.il(λ) and range {0, 1}FF.ol(λ).

We say (PRG,PRG.il,PRG.ol) is a secure pseudorandom generator if PRG on
strings of length PRG.il(λ) outputs strings of length PRG.ol(λ) and for any PPT
adversary A we have that

AdvprgPRG,A(λ) := Pr[A(1λ,PRG(s)) = 1 :s←$ {0, 1}PRG.il(λ)]
− Pr[A(1λ, y) = 1 : y←$ {0, 1}PRG.ol(λ)]

is negligible.

Keyed random oracles. Most random-oracle transformations and schemes in the
literature are analyzed in the “unkeyed” random-oracle model, and this reflects
the fact that a fixed unkeyed hash function will be used in their instantiations.
Keyed hash functions, however, are more powerful when it comes to instantiating
random oracles and this leaves the question of how the scheme is to be instantiated
with a keyed hash function, that is, how the hash key is to be generated and who
gets access to it is rather unclear. For example, if we consider a transformation of
symmetric encryption schemes, the hash key could be part of the key-generation
process in which case it remains hidden from the adversary, or it could be a param-
eter generated during set-up, in which case it would be available to the adversary.
We therefore use a generalization of the standard random-oracle model whereby
all parties get access to a keyed random function. More precisely, in the (kl, il, ol)-
ROM, where (kl, il, ol) specify various lengths as before, on security parameter λ
all parties get access to a random function of the form

RO(·, ·) : {0, 1}kl(λ) × {0, 1}il(λ) −→ {0, 1}ol(λ) .

Note that we recover the standard unkeyed random-oracle model when kl(λ) = 0
(there is only one key ε, the empty string). In defining the security of a cryptosys-
tem, the underlying probability space is extended to include a random choice
of a keyed function (and choices of random key as specified by the scheme).
Whether or not a party gets to see the hash key depends on the specification of
the scheme and its security model. For instance, if a keyed ROM scheme includes
hash keys under its public keys, an honest or malicious party gets to sees the
hash key whenever it gets to see the public key. As our result is a negative result,
it suffices to consider weak adversaries that do not get oracle access and/or the
hash key in some of their stages, because weaker adversaries correspond to a
stronger negative result.

(Un)instantiability. Given a scheme in the keyed ROM, we consider its standard-
model instantiations via (concrete) keyed hash functions. Formally, this entails:
(1) using a hash function that has key, input and output lengths that are identical
to those of the keyed random oracle, (2) running the key-generation algorithm
whenever a hash key is generated in the ideal scheme, and (3) calling the evalu-
ation routine of the hash function whenever an oracle query is placed. Given a

442 C. Brzuska P. Farshim, and A. Mittelbach

keyed ROM scheme and a security model for it, we say that the scheme is in-
stantiable if there exists a hash function which when used to instantiate the
scheme (and its security model) results in a secure scheme (with respect to the
instantiated security model). Conversely, we say that a scheme is (strongly) unin-
stantiable if no hash function can securely instantiate the ideal scheme. Finally,
for a polynomial bound p, we call a scheme b-uninstantiable, if no hash function
of size at most b(λ) can securely instantiate the scheme.

3 Deterministic Encryption

We start by studying the Encrypt-with-Hash (EwH) transform of Bellare,
Boldyreva and O’Neill (BBO) [7] for building deterministic encryption from
standard (randomized) encryption schemes. We show that under the existence
of indistinguishability obfuscation there is an IND-CPA public-key encryption
scheme that cannot be safely used within EwH. We begin by formally defining
the syntax and security of deterministic PKEs and the EwH transform. We then
prove uninstantiability, and end with two corollaries of this result.

3.1 Definitions

Deterministic public-key encryption. Deterministic public-key encryption was
first introduced by Bellare, Boldyreva and O’Neill [7]. The syntax and cor-
rectness of a deterministic public-key encryption (D-PKE) scheme D-PKE :=
(D-PKE.Kg,D-PKE.Enc,D-PKE.Dec) is defined similarly to a randomized PKE
scheme with the difference that the encryption routine is deterministic (i.e.,
D-PKE.rl(λ) = 0). BBO [7] model the security of D-PKEs via a form of simulation-
based notion called PRIV. In later works, Bellare et al. [10] and independently
Boldyreva, Fehr and O’Neill [22] introduce an indistinguishability-based notion
called IND and show that it implies is equivalent to PRIV security. The IND
game is formally defined in Figure 1 on the right.6 Roughly speaking, an IND
adversary A := (A1,A2) consists of two stages. On input the security parameter,
adversary A1 outputs a pair of message vectors (m0,m1) of the same dimension
that have distinct components and component-wise contain messages of the same
length. (Adversary A1 does not get to see the public key.) Furthermore, each
component is required to have super-logarithmic min-entropy. This condition is
formalized by requiring that for any x ∈ {0, 1}D-PKE.il(λ), any b ∈ {0, 1} and any
i ∈ [|mb|],

Pr
[
x = mb[i] : (m0,m1)←$ A1(1

λ)
]
∈ negl .

A key pair (pk, sk)←$ D-PKE.Kg(1λ) is then chosen, and according to the chal-
lenge bit b, one of the two message vectors is encrypted component-wise. The
second-stage adversary A2 is run on the resulting vector of ciphertexts and the

6 Bellare et al. [10] allow an additional zeroth-stage adversary to output shared state
for adversaries A1 and A2. As we prove an impossibility result we choose the weaker
definition where this shared state is empty.

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 443

public key, and wins the game if it correctly guesses the hidden bit b. We define
the advantage of an adversary A in the IND game (see Figure 1) against scheme
D-PKE by

AdvindD-PKE,A1,A2
(λ) = 2 · Pr

[
INDA1,A2

D-PKE (λ)
]
− 1 .

We say that scheme D-PKE is IND secure if the advantage of any PPT adversary
A = (A1,A2) in the IND game is negligible. The 1-bounded version of this
security model demands that the two vectors (m0,m1) only contain a single
message each.

The Encrypt-with-Hash transform. The Encrypt-with-Hash (EwH) transform
constructs a deterministic public-key encryption scheme from a (randomized)
public-key encryption scheme PKE in the random-oracle model [7]. We present
this transform in the keyed ROM, and note that it matches the original transform
for singleton key spaces. The keyed RO is assumed to have a range which matches
the randomness space of the PKE scheme and a domain which consisting of all bit
strings of length the maximum length of public keys plus the length of messages.
The EwH transform operates as follows.

The key-generation generates a key pair using the key-generation algorithm
of the base PKE scheme. It also generates a hash key hk←$ {0, 1}kl(λ) and re-

turns (sk, (hk, pk)). Algorithm D-PKE.EncRO(·,·)(m, (hk, pk)) first computes ran-
dom coins r ← RO(hk, pk‖m) and then invokes the base encryption algorithm
on m and pk and coins r to generate a ciphertext. The decryption routine is iden-
tical to that of the underlying scheme (plus a ciphertext re-computation check
to ensure non-malleability). EwH results in an IND-secure D-PKE scheme in the
keyed ROM when starting from an IND-CPA public-key encryption scheme.

Key access in EwH. With the formalism introduced above, both adversaries A1

and A2 get oracle access to RO(·, ·). The first-stage adversary, however, does not
get to see hk since the hash key is distributed as a component of the public keys.
The second-stage adversary, on the other hand, does get to see it. A stronger
model where the hash key is given out in the first stage can be considered. EwH
meets this stronger notion of security, but since our results are negative we use
the conventional (and weaker) IND model.

3.2 Uninstantiability of EwH

When the EwH transformation is instantiated with an unkeyed random oracle
a CGH-style uninstantiability result can be directly established [33]. (This in
particular shows that the use of a keyed hash function is necessary to instan-
tiate EwH.) Given an arbitrary PKE scheme PKE, consider a tweaked variant
of it PKE′ which first interprets parts of the message m as the description of a
hash function H (together with its single key) and checks if the provided random
coins r match the hash value H(pk‖m). If so, it returns 0‖m and else it returns
1‖PKE.Enc(pk,m; r). Scheme PKE′ is still IND-CPA secure because the proba-
bility that a truly random value r matches H(pk‖m) is negligible. On the other

444 C. Brzuska P. Farshim, and A. Mittelbach

hand, when the random coins are generated deterministically by applying a hash
function, an IND adversary which asks for encryptions of mi‖H for any two high
min-entropy messages m0 and m1 which differ, say, on their most significant
bits can easily win the game.7 The standard IND game, however, restricts the
first-stage adversary not to learn the public key, and thus, it cannot guess the
(high min-entropy) hash key.

We show how to use indistinguishability obfuscation to extend the above
uninstantiability to keyed hash functions. As mentioned in the introduction, our
result comes in the weak and strong flavors depending on the programs that the
obfuscator is assumed to support. Assuming iO for Turing machines we obtain a
strong uninstantiability result: there exists an IND-CPA encryption scheme that
cannot be securely used in EwH in conjunction with any keyed hash function.
Assuming the weaker notion of iO for circuits, we get b-uninstantiability: for any
polynomial bound b there exists an IND-CPA scheme that cannot be securely
used in EwH for any hash function whose description size is at most b. The latter
result is still quite strong as, in particular, it means that for any finite set of
hash functions (e.g., those which are standardized), we can give a PKE scheme
that when used within EwH yields an insecure D-PKE scheme for any choice of
hash function from the set. We note that the adversarial PKE scheme that we
construct depends only on an upper bound on description sizes and not on their
implementation details.

Theorem 2 (Uninstantiability of EwH). Assuming the existence of indistin-
guishability obfuscation for Turing machines M (resp. b-bounded circuits Cb),
the EwH transform is uninstantiable (resp. b-uninstantiable) with respect to IND
security in the standard model.

We start by giving a high-level description of the proof before presenting the de-
tails. We may assume, without loss of generality, that an IND-CPA-secure PKE
scheme exists as otherwise uninstantiability trivially holds. This, in turn, implies
that we can also assume the existence of a secure pseudorandom generator.

Now given an IND-CPA-secure PKE scheme PKE, we construct a tweaked
scheme PKE∗ that is also IND-CPA secure but the D-PKE scheme EwHH[PKE∗]
fails to be IND secure.

To construct the adversarial scheme PKE∗ we follow a similar strategy to CGH.
The fundamental difference here is that PKE∗.Enc does not have access to the
hash key. To overcome this problem, we consider the obfuscation of a program
P′ that implements a universal variant of the BFM circuit [27], i.e., it takes as
input the description of a hash function H(hk, ·), with a hard-wired key, runs it
on two values m and pk embedded into P′, and outputs m if the result matches
a third hard-wired value r:

P′[pk,m, r]
(
H(hk, ·)

)
:= if H(hk, pk‖m) = r return m else return 0 .

7 This attack generalizes to the setting where the first-stage adversary can guess the
hash key with non-negligible probability and in particular, EwH is uninstantiable
with respect to the stronger IND model discussed above.

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 445

The tweak that we introduce in PKE∗ is that the encryption operation appends
obfuscations of P′[pk,m, r] to its ciphertexts, where pk, m and r are the values
input to the encryption routine.

We need to argue (1) that this tweak allows an adversary to break the scheme
whenever the hash function is instantiated and (2) that outputting such an
indistinguishability obfuscation of P′ does not hurt the IND-CPA security of
PKE∗.

For (1), note that given an obfuscation of P′[pk,m, r] as well as a description
of H(hk, ·), an adversary can recover m by running the above circuit on H(hk, ·).
Now the second stage of the IND adversary gets the public key and thus the
description of the hash-function H(hk, ·). Furthermore, it also gets a ciphertext
which contains an obfuscation of P′[pk,m, r]. Hence, the second-stage adversary
has all the information needed to break the IND security of the deterministic
encryption scheme EwHH[PKE∗].

Now, intuitively, this insecurity might have nothing to do with the transform
because the tweaked scheme PKE∗ is already insecure anyway. Hence, we also
need to argue that PKE∗, as a randomized encryption scheme, is IND-CPA secure.
Following BFM, we try to prove this by showing that the obfuscated circuit
is functionally equivalent to the zero circuit and hence it does not leak any
information about m.

We would like to argue that for a truly random r—such an r is used in ran-
domized encryption—P′ implements the constant zero program Z. Indeed, if r is
sufficiently longer than |pk|+ |m| then for any fixed H(hk, ·), over a random choice
of r the check performed by P′ would fail with all but negligible probability. This,
however, does not necessarily mean that the circuit is functionally equivalent to Z
as there could exist a hash function H(hk, ·) which passes the check. Contrary to
BFM, we cannot bound the probability of this event via the union bound as the
number of hash descriptions might exceed the size of the randomness space.

To resolve this issue, we consider a further tweak to the base scheme. We
consider a scheme which has a much smaller randomness space and instead
uses coins that are pseudorandomly generated. This ensures that the randomness
space used by PKE is sparse within the set of all possible coins, allowing a
counting argument to go through. We adapt the program above to cater for the
new tweaks:

P[pk,m,PRG(r)]
(
H(hk, ·)

)
:= if PRG(H(hk, pk‖m)) = PRG(r)

return m

else return 0 .

At this point it might appear that no progress has been made as the above
program, for reasons similar to those given above, is not functionally equiva-
lent to Z. We note, however, that for a truly random s ∈ {0, 1}PRG.ol(λ) the
program P[pk,m, s] has a description which is indistinguishable from that of
P[pk,m,PRG(r)] down to the security of PRG. Furthermore for such an s, this
program can be shown to be functionally equivalent to the zero circuit with
overwhelming probability as s will be outside the range of the PRG with over-

446 C. Brzuska P. Farshim, and A. Mittelbach

whelming probability. These two steps allow us to prove that obfuscations of P
leak no information about m, and show that scheme PKE∗ is IND-CPA secure.

Finally, notice that obfuscations of P (similarly to those of P′) allow an IND
adversary to break the resulting EwH-transformed scheme: simply run the ob-
fuscation of P on the description of the hash function used in the instantiation
(with a hard-wired key) to recover the encrypted message.

Not that formally program P will use a universal program evaluator to run
its input hash-function descriptions. If the (obfuscated) program is a Turing
machine, it can be run on arbitrary large descriptions and arbitrarily sized hash
functions are ruled out. On the other hand, if the program is a circuit, it has
an a priori fixed input length, and thus can only be run on hash functions that
respect the input-size restrictions. We next formalize this proof intuition.

Proof (of Theorem 2). Let PKE be an IND-CPA-secure public-key encryption
scheme, PRG be a pseudorandom generator of appropriate stretch and iO be an
indistinguishability obfuscator supporting either Turing machines or circuits. We
define a modified PKE scheme PKE∗ as follows. The key-generation algorithm
is unchanged. The adapted encryption algorithm is defined as shown below by
appending an obfuscated program P to its outputs. UEval denotes a universal
program evaluator. The modified decryption algorithm ignores the P component
and decrypts as in the base scheme.

Algo. PKE∗.Enc(pk,m; r‖r′)

s ← PRG(r)

c ← PKE.Enc(pk,m; s)

P ← iO(P[pk,m, s](·); r′)
return (c,P)

Prog. P[pk,m, s](H(hk, ·))

r‖r′ ← UEval(H(hk, ·), pk‖m)
s′ ← PRG(r)

if (s′ = s) then return m

return 0

When we consider the above construction with respect to circuits, we need to
specify an extra parameter b that upper-bounds the size of the inputs to the
universal circuit evaluator. This maximum size of programs that the universal
circuit admits corresponds to the maximum size of the hash functions that our
uninstantiability proof applies to. Note that when the construction is considered
for Turing machines, the input size is arbitrary.

We show that the above tweaked scheme PKE∗ is IND-CPA secure via a
sequence of four games that we describe next. We present the pseudocode in
Figure 2.

Game0: This game is identical to the IND-CPA game for the randomized base
scheme PKE∗ and an arbitrary adversary A.

Game1: In this game the randomness s used in encryption is no longer generated
via a PRG call and is sampled uniformly at random.

Game2: In this game the ciphertext component P is generated as an indistin-
guishability obfuscation of the zero program (that is, Turing machine or
circuit) Z padded to the appropriate length (and running time).

We now show that each of the above transitions negligibly changes the game’s
output with respect to any adversary A.

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 447

Game0(λ)

b←$ {0, 1}
(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)
r‖r′ ←$ {0, 1}PKE.rl(λ)

s ← PRG(r)

c ← PKE(pk,mb; s)

P ← iO(P[pk,mb, s]; r
′)

b′ ←$ A(c,P)
return (b′ = b)

Game1(λ)

b←$ {0, 1}
(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)
r‖r′ ←$ {0, 1}PKE.rl(λ)

s ← {0, 1}PRG.ol(λ)

c ← PKE(pk,mb; s)

P ← iO(P[pk,mb, s]; r
′)

b′ ←$ A(c,P)
return (b′ = b)

Game2(λ)

b←$ {0, 1}
(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)
r‖r′ ←$ {0, 1}PKE.rl(λ)

s ← {0, 1}PRG.ol(λ)

c ← PKE(pk,mb; s)

P ← iO(Z|P[pk,mb,s]|; r
′)

b′ ←$ A(c,P)
return (b′ = b)

PRG iO

Fig. 2. Hybrids used in the proof of Theorem 2. The highlighted lines show the changes
in game transitions.

Game0 to Game1. We bound the difference in these games by the security of
PRG. Note that a PRG adversary that gets as input y, a PRG image under a
uniformly random seed or a truly uniformly random value, can perfectly simulate
games Game0 and Game1 for A by using y in place of s. If y is a PRG image,
then Game0 is run and if y is uniformly random the Game1 is run:

Pr[Game0(λ)] − Pr[Game1(λ)] ≤ AdvprgPRG,A(λ) .

Game1 to Game2. We show that this hop negligibly affects the winning proba-
bility of A down to the security of the indistinguishability obfuscator. We let S
to be the sampler which runs all the steps of Game1 using the first phase of A
up to the generation of P. It then sets P0 := P[pk,mb, s], P1 := Z|P0| and aux
to be the ciphertext component c and the internal state of the first phase of the
IND-CPA adversary. Algorithm D receives an obfuscationP of either P0 or P1,
and resumes the second phase of A on (c,P) using the state recovered from aux.
When P0 is obfuscated A is run according to the rules of Game1 and when P1 is
obfuscated A is run according to the rules of Game2. Hence,

Pr[Game1(λ)]− Pr[Game2(λ)] ≤ AdvioiO,S,D(λ) .

We must show that the sampler S constructed above outputs functionally equiv-
alent circuits with overwhelming probability. Assuming that the stretch of the
PRG is sufficiently large, i.e., PRG.ol(λ) ≥ 2 ·PRG.il(λ), by the union bound the
probability over a random choice of s that there exists an r ∈ {0, 1}PRG.il(λ) such
that PRG(r) = s is upper bounded by 2PRG.il(λ)−PRG.ol(λ) ≤ 2−PRG.il(λ). Hence,
the probability that P0 is functionally inequivalent to the zero circuit is upper
bounded by 2−PRG.il(λ), that is,

Pr
[
∃xP0(x) �= 0 : (P0,P1, aux)←$ S(1λ)

]
≤ 2−PRG.il(λ) .

448 C. Brzuska P. Farshim, and A. Mittelbach

When working with Turing machines, we also need to ensure that the two pro-
grams used above respect the run-time requirements of the definition of a secure
indistinguishability obfuscator for Turning machines. Formally, we will imple-
ment the Turing machines P and Z obliviously as follows. We first consider an
oblivious Turing machine which takes in the description of the hash function and
a message as input and performs exactly the same computation that P does. We
then implement P by fixing the message input of this machine to that passed to
the encryption algorithm, retaining the machine’s oblivious structure. The same
strategy will be used in constructing the zero circuit, where the constant zero
message (of correct length) is hard-wired in. Since these machines are oblivious,
their runtimes depend only on the sizes of the message and the hash description
and hence coincide.

Game2. We reduce the advantage of A in Game2 to the IND-CPA security of
scheme PKE. The only difference between this game and the usual IND-CPA
game for PKE is that an obfuscation of Z|P[pk,mb,s]| is attached to the ciphertexts.
This program has a public description and hence its obfuscations can be perfectly
simulated. Hence,

2 · Pr[Game2(λ)] − 1 ≤ Advind-cpaPKE∗,A(λ) .

The attack. To conclude the proof, we show there exists an adversary (A1,A2)
that breaks the IND security of EwHH[PKE∗] for any function H that respects
the input requirements of P (arbitrary if P is a Turing machine, and b-bounded if
a circuit). Adversary A1 chooses two values x0, x1 ←$ {0, 1}PKE.il(λ)−1 uniformly
at random and outputs messages m0 := x0‖0 and m1 := x1‖1. Observe that A1

adheres to the entropy requirements of admissible IND adversaries. Adversary
A2 gets as input the public key (pk, hk) and a ciphertext (c,P). It then evaluates
P on the description of hash function H(hk, ·) with key hk recovered from the
public key and hard-coded into the program description. (Note that if we are
considering circuits, the description of this circuit must have size at most b(λ).)
Adversary A2 returns the least significant bit of P’s output. This adversary and
its operation within the IND game is shown in Figure 3. By the correctness of
the obfuscator, (A1,A2) always win IND with probability 1 irrespectively of the
message that is encrypted:

AdvindD-PKE,A1,A2
(λ) = 1 .

(#

3.3 Consequences for UCEs

We turn to Universal Computational Extractors (UCEs), a novel notion intro-
duced by Bellare, Hoang and Keelveedhi (BHK) [12] to generically instantiate
random oracles across a number of cryptographic protocols. UCEs constitute a
set of assumptions that roughly speaking model the strong extractor properties

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 449

INDA1,A2

EwHH[PKE∗](λ)

1 : b←$ {0, 1}

2 : (m0,m1)←$ A1(1
λ)

x0 ←$ {0, 1}PKE.il(λ)−1

x1 ←$ {0, 1}PKE.il(λ)−1

return (x0‖0, x1‖1)

3 : (sk, pk)←$ D-PKE.Kg(1λ)

4 : hk←$ HKg(1λ)

5 : (c,P)← EwHH[PKE∗].Enc((pk, hk),mb)

r‖r′ ← H.Ev(hk, pk‖mb)

(c,P)← PKE∗.Enc((pk, hk),mb; r‖r′)
s ← PRG(r)
c ← PKE.Enc(pk,mb; s)

P ← iO(P[pk,mb, s](·); r′)
return (c,P)

return (c,P)

6 : b′ ← A2(1
λ, (pk, hk), (c,P))

mb ← P(H(hk, ·))
b′ ← mb[|mb|]
return b′

7 : return (b = b′)

Fig. 3. The IND-security game for scheme EwHH[PKE∗] with our adversary (A1,A2)
as constructed in the proof of Theorem 2. The boxed algorithms are to be understood
as subroutines.

enjoyed by (keyed) random oracles. One application of this new framework has
been to the EwH transform. BHK [15] show that if a scheme PKE is IND-CPA
secure and a hash function H meets what they call UCE[Scup ∩ SPKE] security
then EwHH[PKE] is IND secure. (We refer the reader to the May 2014 version
of the paper for the details.) We emphasize that this security definition depends
on the PKE scheme, because the source class SPKE is restricted to those which
run the PKE scheme as a subroutine. Our negative results on EwH show that
UCE[Scup ∩ SPKE] security is uninstantiable.

Corollary 1 (UCE[Scup ∩ SPKE] Uninstantiability). Assuming the existence
of indistinguishability obfuscation for Turing machines M (resp. b-bounded cir-
cuits Cb), UCE[Scup ∩ SPKE] security for hash functions is uninstantiable (resp.
b-uninstantiable) in the standard model.

We remark that BHK based the security of EwH on other stronger UCE as-
sumptions [12,13]. Our results also show the uninstantiability of these notions

450 C. Brzuska P. Farshim, and A. Mittelbach

assuming indistinguishability obfuscation and in particular imply the negative
results of [27]. In particular, we can rule out the instantiatiability of the so-
called bounded paralell sources [13] by considering sources that internally run an
obfuscator. (This translates to D-PKE schemes which run an obfuscator in their
encryption routine as we constrcut above.) The results of BFM [27], however,
rule out a wider choice of parameters for bounded paralell sources.

3.4 Extension to Hedged PKEs

Hedged public-key encryption, introduced by Bellare et al. [9] models the security
of public-key encryption schemes where the random coins used in encryption
might have low entropy. Indistinguishability under chosen-distribution attacks
(IND-CDA) shown in Figure 4 formalizes the security of hedged PKEs. This
notion is similar to IND and the only difference is that the adversary additionally
to the two message vectors also outputs a randomness vector. The high min-
entropy restriction is spread over the message and randomness vectors. When
the length of the randomness entries is 0, one recovers the IND model for D-
PKEs. A transform similar to EwH, called Randomized Encrypt-with-Hash, can
be defined for hedged PKEs [9]: hash the message, public key and the randomness
to obtain new coins, and use them in encryption. Our uninstantiability result
can be immediately adapted to this transform as long as the message space has
super-polynomial size:

Prog. P[pk,m, s](H, ρ)

r ← UEval(H, pk‖m‖ρ)
s′ ← PRG(r)

if (s′ = s) then return m

return 0

That is, the program takes an additional input ρ that allows the attacker to
specify the randomness. We note that this requires the adversary to choose
the randomness in a predictable way, which does not violate the min-entropy
requirements as long as the min-entropy of the messages is sufficiently high. We
note that if one strengthens the IND-CDA notion to require the randomness
distribution to have super-logarithmic min entropy, our attacks would no longer
work. This in particular is the case if the message space of the scheme is small.

3.5 Other Uninstantiability Results

In the full version of the paper [28] we show that our uninstantiability results
can be further leveraged to rule out standard-model instantiations of a number
of other known transformations. We generalize the iO attack to what we call
admissible transformations, and show that the classical and widely deployed
Fujisaki–Okamoto transformation [FO99] falls under it. We also show that a
generic approach to building secure symmetric encryption in the presence of

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 451

IND-CDAA1,A2
H-PKE (λ)

b←$ {0, 1}
(m0,m1, r)←$ A1(1

λ)

(sk, pk)←$ H-PKE.Kg(1λ)

for i = 1 . . . |m0|do
c[i]← H-PKE.Enc(pk,mb[i]; r[i])

b′ ←$ A2(pk, c)

return (b′ = b)

Fig. 4. The IND-CDA security game for hedged public-key encryption without initial
adversaries. Our results carry over to a setting where an initial adversary that passes
state to the first and second phase of the attack is present [54].

key-dependent messages, and another one for building de-duplication schemes
are uninstantiable.

In the full version, we also explore new classes of D-PKE transformations that
lie beyond those captured by admissible transformations. We present a candidate
transformation that is specifically designed to foil our iO attack. We first show
that this transformation is structurally sound by proving it secure in the ROM.
We then show how to extend our techniques to this (and potentially other classes
of) transformations. Our goal is to illustrate the flexibility of our main technique
and show that it can be tweaked and extended in many ways.

4 Concluding Remarks

The uninstantiability results presented in this paper (and the generalization pre-
sented in the full version [28]) demonstrate the applicability of our techniques to
a more general class of transforms beyond those captured by admissible transfor-
mations. It seems an intricate task to characterize the class of transformations
which are subject to our iO-based attacks. It is also an interesting and non-
trivial question to propose a D-PKE transformation that is not subject to our
uninstantiability result.

One promising avenue is to build schemes based on assumptions from the
framework of Universal Computational Extractors (UCEs) [15]. For instance,
Bellare, Hoang and Keelveedhi [15] show that message-locked encryption can be
based on UCE[Ssup], that is, UCEs with statistically unpredictable sources. This
result, however, is not generic with respect to symmetric encryption schemes
but rather fixes the base symmetric scheme. Note also that iO is not known
to contradict statistical UCEs [27]. Very recently, Bellare and Hoang [11] have
proposed a similar transform for D-PKE starting from lossy trapdoor functions.

Alternatively, one could switch to schemes that meet stronger notions of se-
curity. For instance, IND$-type security notions that require the ciphertexts to
be indistinguishable from random do not lend themselves to out attacks as it is

452 C. Brzuska P. Farshim, and A. Mittelbach

unclear if obfuscation schemes can provide circuits which are indistinguishable
from random strings.

Acknowledgments. Part of this work was done while Christina Brzuska was
a post-doctoral researcher at Tel Aviv University and supported by the Israel
Science Foundation (grant 1076/11 and 1155/11), the Israel Ministry of Science
and Technology (grant 3-9094), and the German-Israeli Foundation for Scientific
Research and Development (grant 1152/2011). Pooya Farshim was supported in
part by EPSRC research grant EP/L018543/1. Arno Mittelbach was supported
by CASED (www.cased.de) and the German Research Foundation (DFG) SPP
1736.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs ob-
fuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013),
http://eprint.iacr.org/2013/689

3. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoid-
ing barrington’s theorem. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS
2014: 21st Conference on Computer and Communications Security, November 3–7,
pp. 646–658. ACM Press, Scottsdale (2014)

4. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48 (2012),
http://doi.acm.org/10.1145/2160158.2160159

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

7. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

8. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

9. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In: Mat-
sui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidel-
berg (2009)

10. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

11. Bellare, M., Hoang, V.T.: UCE+LTDFs: Efficient, subversion-resistant PKE
in the standard model. Cryptology ePrint Archive, Report 2014/876 (2014),
http://eprint.iacr.org/2014/876

www.cased.de
http://eprint.iacr.org/2013/689
http://doi.acm.org/10.1145/2160158.2160159
http://eprint.iacr.org/2014/876

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 453

12. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via uCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013)

13. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
Cryptology ePrint Archive, Report 2013/424. (September 22, 2013) (Version after
initial BFM attack), http://eprint.iacr.org/2013/424/20130924:163256)

14. Bellare, M., Hoang, V.T., Keelveedhi, S.: Personal communication (September
2013)

15. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
Cryptology ePrint Archive, Report 2013/424 (May 20, 2014), (Latest version at
the time of writing), http://eprint.iacr.org/2013/424

16. Bellare, M., Keelveedhi, S.: Authenticated and misuse-resistant encryption of key-
dependent data. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 610–
629. Springer, Heidelberg (2011)

17. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013)

18. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93: 1st Conference on Com-
puter and Communications Security, November 3–5, pp. 62–73. ACM Press, Fairfax
(1993)

19. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer,
Heidelberg (2014)

20. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on The-
ory of Computing, May 31–June 3, pp. 505–514. ACM Press, New York (2014)

21. Black, J.: The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 328–340.
Springer, Heidelberg (2006)

22. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

23. Boldyreva, A., Fischlin, M.: Analysis of random oracle instantiation scenarios for
OAEP and other practical schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 412–429. Springer, Heidelberg (2005)

24. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

25. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

26. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25.
Springer, Heidelberg (2014)

27. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
uCEs: The case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014)

28. Brzuska, C., Farshim, P., Mittelbach, A.: Random oracle uninstantiability from in-
distinguishability obfuscation. Cryptology ePrint Archive, Report 2014/867 (2014),
http://eprint.iacr.org/2014/867

http://eprint.iacr.org/2013/424/20130924:163256
http://eprint.iacr.org/2013/424
http://eprint.iacr.org/2014/867

454 C. Brzuska P. Farshim, and A. Mittelbach

29. Brzuska, C., Mittelbach, A.: Deterministic public-key encryption from indistin-
guishability obfuscation and point obfuscation (September 2014)

30. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point
obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg (2014)

31. Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via UCEs. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 122–
141. Springer, Heidelberg (2014)

32. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg
(2008)

33. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th Annual ACM Symposium on Theory of Computing,
May 23–26, pp. 209–218. ACM Press, Dallas (1998)

34. Canetti, R., Goldreich, O., Halevi, S.: On the random-oracle methodology as ap-
plied to length-restricted signature schemes. Cryptology ePrint Archive, Report
2003/150 (2003), http://eprint.iacr.org/2003/150

35. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

36. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109.
Springer, Heidelberg (2002)

37. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: International Confer-
ence on Distributed Computing Systems, pp. 617–624 (2002)

38. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
New constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

39. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science, October 26–29, pp. 40–
49. IEEE Computer Society Press, Berkeley (2013)

40. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

41. Gentry, C.: Certificate-based encryption and the certificate revocation problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

42. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation from
the multilinear subgroup elimination assumption. Cryptology ePrint Archive, Re-
port 2014/309 (2014), http://eprint.iacr.org/2014/309

43. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

44. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th Annual Symposium on Foundations of Computer Science, October 11-14,
pp. 102–115. IEEE Computer Society Press, Cambridge (2003)

http://eprint.iacr.org/2003/150
http://eprint.iacr.org/2014/309

Random-Oracle Uninstantiability from Indistinguishability Obfuscation 455

45. Green, M.D., Katz, J., Malozemoff, A.J., Zhou, H.S.: A unified approach to ide-
alized model separations via indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2014/863 (2014), http://eprint.iacr.org/2014/863

46. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

47. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. Cryptology ePrint Archive, Report 2014/925
(2014), http://eprint.iacr.org/2014/925

48. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004)

49. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via point obfuscation. In:
Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 95–120. Springer, Heidelberg
(2014)

50. Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 603–621.
Springer, Heidelberg (2014)

51. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

52. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

53. Raghunathan, A., Segev, G., Vadhan, S.P.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013)

54. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

55. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing, May 31–June 3, pp. 475–484. ACM Press, New York (2014)

56. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

57. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.) ITCS 2013: 4th Innovations in Theoretical Computer Science,
January 9–12, pp. 111–126. Association for Computing Machinery, Berkeley (2013)

http://eprint.iacr.org/2014/863
http://eprint.iacr.org/2014/925

On Obfuscation with Random Oracles

Ran Canetti1,2,�, Yael Tauman Kalai3, and Omer Paneth1,��

1 Boston University, USA
2 Tel Aviv University, Israel
3 Microsoft Research, USA

Abstract. Assuming trapdoor permutations, we show that there ex-
ist function families that cannot be VBB-obfuscated even if both the
obfuscator and the obfuscated program have access to a random ora-
cle. Specifically, these families are the robust unobfuscatable families of
[Bitansky-Paneth, STOC 13].
Our result stands in contrast to the general VBB obfuscation algo-

rithms in more structured idealized models where the oracle preserves
certain algebraic homomorphisms [Canetti-Vaikuntanathan, ePrint 13;
Brakerski-Rothblum, TCC 14; Barak et al., Eurocrypt 14].

1 Introduction

Program obfuscators, namely efficient compilers that transform an arbitrary pro-
gram into one that has the same functionality but is otherwise “impenetrable”,
are an intriguing concept. The widely applicable interpretation of “impenetra-
ble,” called virtual black-box (VBB) [BGI+01], requires that the obfuscated
version of a program helps learn any predicate of the program no more than
does oracle access to the program’s input-output functionality.

While a number of program families of interest are known to be VBB obfuscat-
able (under some strong hardness assumptions), e.g. [Can97, Wee05, BCKP14],
no general-purpose VBB-obfuscators of all programs can exist. Indeed [BGI+01]
show that, assuming one way functions, there exist unobfuscatable functions.
These are functions that have a succinct description that cannot be effectively
learned when having only oracle access to the function. At the same time, how-
ever, this succinct description can be extracted from any program that computes
the function. Clearly, no program that computes such a function can possibly
be VBB-obfuscated.

The construction of [BGI+01] makes crucial use of the fact that programs
can be represented as strings and in particular can be executed with their own
specification as input. In contrast, in some abstract models where programs do
not necessarily have succinct representations as strings VBB obfuscation is in
fact obtainable. One example is “hardware assisted” obfuscation, where some

� Supported by the Check Point Institute for Information Security, ISF grant 1523/14,
the NSF MACS Frontier project, and NSF Algorithmic Foundations grant 1218461.

�� Supported by the Simons award for graduate students in theoretical computer science
and an NSF Algorithmic foundations grant 1218461.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 456–467, 2015.
c© International Association for Cryptologic Research 2015

On Obfuscation with Random Oracles 457

part of the computation is modeled as a black-box representing impenetrable
secure hardware [GIS+10, BCG+11].

Another example is motivated by the recent candidate construction of obfus-
cation for all circuits of Garg et. al. [GGH+13b], that is based on an algebraic
primitive called graded encodings [GGH13a]. The works of [BR14, BGK+14]
prove that close variants of the proposed candidate are VBB secure in a model
where the graded encodings are implemented by an ideal oracle. [CV13] study a
different construction based on ideal pseudofree groups. Here, idealized models
serve as an intermediate steps on the way to full-fledged obfuscation, namely as
a model for developing potentially viable obfuscation algorithms and for under-
standing their security properties, as well as the computational assumptions on
which their security might be based.

This raises natural questions: What are the simplest and minimally-structured
abstract models that allow for general-purpose VBB obfuscation? For instance,
do general-purpose VBB obfuscators exist in the random-oracle model? Do they
exist in the generic group model [Sho97, BS84]? In fact, is there any non-trivial
abstract model of computation where general-purpose VBB obfuscation is im-
possible?

Answers to the above question may shed light on what algebraic structure
(if any) is inherent for secure obfuscation — even in the plain model, and even
when attempting to obtain only weaker notions of obfuscation such as indistin-
guishability obfuscation.

We note that Barak et al. show that their impossiblity holds even when all en-
tities, namely the program to be obfuscated, the obfuscator and the obfuscated
program have access to a random oracle. 1 Goldwaser and Rothblum [GR14] ex-
tend this to show that even the considerably weaker notion of indistinguishability
obfuscation is unobtainable in general in this setting. However, these results do
not answer the above questions. Specifically, they leave open the possibility of
obfuscating fully specified programs that do not access the random oracle. In-
deed, Lynn et al. ask whether general purpose obfuscation is possible in that
setting [LPS04].

1.1 This Work

We consider obfuscation in the setting of Lynn et al. [LPS04], where both the
obfuscator and the obfuscated program have access to a random oracle, and
where the obfuscator is only required to operate on fully specified programs that
do not have access to the random oracle. Furthermore, we give the adversary
access to the same oracle. Here we show:

Theorem 1.1 (Main Theorem, informal). Assume trapdoor permutations
exist. Then there exist function families that cannot be VBB obfuscated, even
in a model where the obfuscator and the obfuscated function have access to a
random oracle.
1 In fact, [BGI+01] prove that their negative result holds in the more general settings
of bounded relativization.

458 R. Canetti, Y.T. Kalai, and O. Paneth

Our impossibility extends to the case where the obfuscator and obfuscated
program have access to an invertible random permutation rather than a random
function. That is, the oracle represents a random permutation, and can be asked
both to evaluate the function and to invert it. It also extends to the case of
approximate obfuscation, where the obfuscated program is only required to agree
with the original program on a significant fraction of the inputs.

1.2 Techniques

The starting point of our proof is the existence of robust unobfuscatable functions
(RUFs) which are a strengthening of the unobfuscatable functions of [BGI+01].
Essentially, RUFs have a succinct description that cannot be effectively learned
having only oracle access to the function. At the same time, this description can
be extracted from any program that approximates the function, namely agrees
with the function on some large fraction of the inputs, say 90%. Bitansky and
Paneth [BP13] construct RUFs from any trapdoor permutation.

Our proof now proceeds by transforming any obfuscator in the RO model
into an obfuscator in the plain model, namely one where the RO is not used.
The transformation loses in correctness: the resulting plain-model obfuscator
generates a program that computes the function correctly only on some fraction
of the inputs. Still, impossibility is demonstrated by applying the transformation
to an obfuscator for a family of RUFs.

We describe in more detail the transformation from obfuscation in the RO
model to obfuscation in the plain model. Let OR be an obfuscator in the RO
model. Our goal is to transform OR into an obfuscator O in the plain model.
We start by describing a simple warm-up. Let O be the following plain-model
obfuscator: given a description of a program C, the obfuscator O emulates an
execution of the RO obfuscator OR(C), answering every oracle query of OR

randomly and independently (repeated queries are answered consistently), and
obtains a RO obfuscation C̃R of C. Let RC be the set of RO query-answer pairs
that occurred during the emulation of OR(C). The obfuscator O then outputs
an obfuscated program C̃ that has hard-coded to it the description of the RO
obfuscation C̃R and the set RC . Given an input x, the obfuscation C̃ emulates
the RO obfuscation C̃R(x). C̃ answers any RO query made by C̃R as follows: if
the query appears in the set RC it is answered consistently with RC , otherwise,
a random answer is given.2

The correctness of O follows directly from the correctness of OR in the RO
model since, when C̃ emulates the program C̃R, all the RO queries made by C̃R

are answered randomly and consistently with the answers given to the obfuscator
OR(C) that generated C̃R. However, even if OR is a VBB obfuscator in the RO
model, the obfuscator O may be completely insecure, since the obfuscation C̃
includes the set RC in the clear. This may reveal information about the program
C.
2 This results in a randomized obfuscated program. In the full construction we make
the obfuscated program deterministic by including in the description of the obfus-
cated program a list of random oracle answers that are reused in every evaluation.

On Obfuscation with Random Oracles 459

In our actual transformation, the obfuscation C̃ will include a different set of
RO query-answer pairs RX that on the one hand, will give no information about
the program C, but on the other hand, will result in a obfuscation that is only
approximately correct.

The actual plain-model obfuscator O starts by emulating the random oracle
obfuscator OR(C) and obtains the RO obfuscation C̃R and the set RC as before.
Next, O “tests” the RO obfuscation C̃R to learn which oracle queries are often
made by C̃R when executed on a random input. Specifically, O samples random
inputs x1, . . . , x� used to test the program C̃R. The set RX is initially empty.
For every i ∈ [�], O emulates the RO obfuscation C̃R(xi) and answers any RO
query made by C̃R as follows: if the query appears in the set RC or in the set
RX it is answered consistently, otherwise, a random answer is given. In both
cases, the query-answer pair is added to the set RX . Note that the final set RX

may not contain all the queries in RC and it may also contain queries outside
RC .

Finally, the obfuscator O outputs an obfuscated program C̃ that has hard-
coded to it the description of the RO obfuscation C̃R and the set RX . As before,
the obfuscation C̃ on an input x emulates the RO obfuscation C̃R(x) and answers
any RO query made by C̃R as follows: if the query appears in the set RX it is
answered consistently with RX , otherwise, a random answer is given.

We argue that the new set RX gives no information about the program C:
Consider the following alternative way to sample the setRX . Let R be a random
function that is consistent with the query-answer pairs in RC . Now execute
the RO obfuscation C̃R on random inputs x1, . . . , x� and given oracle access to
R. The set RX simply contains all the query-answer pairs that occur in these
executions. Intuitively, since RX can be sampled given the RO obfuscation C̃R

and oracle access to R, it follows from the VBB security of the RO obfuscator
OR that RX reveals no information about the program C.

To argue that C̃ is approximately correct, consider an evaluation of C̃ on a
random input x. C̃ emulates the RO obfuscation C̃R(x) and answers any RO
query made by C̃R randomly and consistently with the set RX . As discussed in
the warm-up, if all of the queries made by C̃R were answered consistently with
the set RC , perfect correctness would have followed from the correctness of OR

in the RO model. However, the emulation of C̃R(x) may make a query that is in
the set RC but not in the set RX . Such a query will be answered randomly in a
way that may not be consistent with the answer in RC and correctness may be
lost. We can therefore bound the probability that C̃(x) disagrees with C(x) by
the probability that C̃R(x) makes a query q ∈ RC \ RX . Such a query q must
not have been asked by any of the test executions of C̃R on the random inputs
x1, . . . , x�, otherwise it would have been added to the set RX . The probability
that a query in RC is asked by C̃(x) but is not asked by C̃(xi) for any i ∈ [�] is
inversely proportional to �. Therefore, by making � large enough, we can make
the correctness error sufficiently small (recall that any constant correctness error
that is bounded away from 1 is sufficient for the negative result of [BP13] to hold).

460 R. Canetti, Y.T. Kalai, and O. Paneth

Connection to [IR89]. Our proof follows the same outline as the proof of Impagli-
azzo and Rudich [IR89] separating key-agreement protocols from one-way func-
tions (as well as many subsequent works). In essence, Impagliazzo and Rudich
rule out existence of key-agreement protocols secure gainst unbounded adver-
saries in the RO model. They do so in two steps: first they transform any key-
agreement protocol in the RO model into a key-agreement protocol in the plain
model. Next they rely on the impossibility for information-theoretically secure
key-agreement. We follow the same two steps: first we transform any general
(possibly approximate) obfuscator in the RO model to a general approximate
obfuscator in the plain model. Next we rely on the impossibility of the latter.
Note that in our case the impossibility in the plain model is stronger in the
sense that it rules out existence of a primitive that provides only computational
security.

2 Impossibility of Obfuscation in the RO Model

In this section we prove an impossibility result for general purpose obfuscation
in the RO model. We start by defining approximate obfuscation and state the
known impossibility result for obfuscation with approximate correctness.

2.1 Approximate Obfuscation

We define approximate obfuscation, both in the RO model and in the plain
model.

Let F = {Fk}k∈{0,1}∗ be a family of functions such that Fk has a domain
D|k|.

Definition 2.1 (Approximate Obfuscation). For a function ε : N → [0, 1],
a PPT algorithm O is a secure ε-approximate obfuscator for F if it satisfies the
following requirements:

– Approximate Functionality: for all n ∈ N, k ∈ {0, 1}n:

Pr
x←Dn

[O(k)(x) �= Fk(x)] ≤ ε(n) ,

where the probability is also over the coins of the obfuscator O.
– Virtual Black-Box: for every poly-size adversary A there exists a poly-size

simulator S and a negligible function μ such that for every k ∈ {0, 1}∗:∣∣∣Pr[A(O(k)) = 1]− Pr[SFk(1|k|) = 1]
∣∣∣ ≤ μ(|k|) ,

where the probabilities are over the coins of the obfuscator O, the adversary
A and the simulator S.

Definition 2.2 (Approximate Obfuscation in the RO model). For a
function ε : N → [0, 1], a PPT algorithm O is a secure ε-approximate obfus-
cator for F in the RO model if it satisfies the following requirements:

On Obfuscation with Random Oracles 461

– Approximate Functionality: for all n ∈ N, k ∈ {0, 1}n:

Pr
x←Dn

[OR(k)(x) �= Fk(x)] ≤ ε(n) ,

where R : {0, 1}∗ → {0, 1}∗ is a random function, and the probability is also
over R and the coins of the obfuscator O.

– Virtual Black-Box: for every poly-size adversary A there exist a poly-size
simulator S and a negligible function μ such that for every k ∈ {0, 1}∗ :∣∣∣Pr[AR(OR(k)) = 1]− Pr[SFk(1|k|) = 1]

∣∣∣ ≤ μ(|k|) ,

where the probabilities are over R, the coins of the obfuscator O, the adver-
sary A, and the simulator S.

Next we formally state the known impossibility results for approximate obfus-
cation in the plain model. The following is a direct corollary of [BP13, Theorem
3.1, Theorem 4.1, Lemma 4.1].

Corollary 2.1 ([BP13]). Assuming trapdoor permutations, there exists a fam-
ily of functions F such that an

(
1
2 − ε

)
-approximate obfuscator for F does not

exist for every noticeable function ε.

Remark 2.1 (More on the impossibility of approximate obfuscation). The work
of [BP13] constructs a family of error-robust unobfuscatable functions. These are
families {Fk}k∈{0,1}∗ such that given oracle access to Fk for a random key k, the
key remains completely hidden. However, given the code of any function that
agrees with Fk on 1

2 + ε of the inputs, it is possible to fully recover the key k.
This implies the following strong impossibility for approximate obfuscation: For
any

(
1
2 − ε

)
-approximate obfuscator for {Fk}, with probability at least ε

2 over
the coins the the obfuscation, the obfuscated function agrees with the original
function with probability at least 1+ε

2 . Therefore, with noticeable probability
over the coins the the obfuscation, it is always possible to reconstruct the entire
key from the obfuscated program.

2.2 The Impossibility

We start by describing a transformation from any (possibly approximate) obfus-
cation in the RO model to an approximate obfuscation in the plain model. The
approximation error of the resulting obfuscation will be slightly larger then that
of the original obfuscation.

Theorem 2.1. If a family of functions F has a secure ε-approximate obfuscator
in the RO model then it has a secure (ε+ δ)-approximate obfuscator in the plain
model for every noticeable function δ.

Then, we combine the transformation in Theorem 2.1 with the known impossi-
bility result for approximate obfuscation (Corollary 2.1) to derive the following
impossibility for obfuscation in the RO model:

462 R. Canetti, Y.T. Kalai, and O. Paneth

Corollary 2.2. Assuming trapdoor permutations, there exists a family of func-
tions F such that an

(
1
2 − ε

)
-approximate obfuscator for F in the RO model does

not exist for every noticeable function ε.

Next we prove Theorem 2.1. See Section 1.2 for a high-level overview of the
proof.

Proof. Let O be a secure ε-approximate obfuscator for F in the RO model,
making at most � = �(|k|) queries to the oracle. We construct a secure (ε + δ)-
approximate obfuscator O′ for F in the plain model.

The obfuscator O′:

1. On input k, emulate O(k) as follows. Run O on input k, answer every oracle
query made by O(k) randomly (assume w.l.o.g that O never makes the same
query twice), and obtain an obfuscated oracle circuit C. Set Rk to be all the
queries made by O(k) and their answers.

2. Set RC to be the empty set.

3. For i = 1 to
⌈
|C|·�
δ

⌉
:

(a) Sample xi ← D|k|.
(b) Execute C(xi). For every oracle query made by C(xi), if it is in RC ∪Rk

then answer consistently, otherwise answer randomly (assume w.l.o.g
that C never makes the same query twice). Add all new pairs of queries
made by C(xi) and their answers to RC .

4. Sample |C| random oracle answers r1, . . . , r|C|.
5. Output the description of a circuit C′ as follows:

(a) The circuit C′ has the description of C, the set RC and the answers {ri}
hardcoded into it.

(b) On input x, C′ emulates C(x). Let qi be the i-th oracle query made by
C(x). If qi is in RC , C

′ answers consistently, otherwise, C′ answers with
ri.

(c) C′ outputs the same as C(x).

Next we show that O′ is a secure (ε+ δ)-approximate obfuscator. That is, O′

satisfies the approximate functionality and the virtual black-box requirements.

Approximate functionality. Fix a key k ∈ {0, 1}n, let ε = ε(n), δ = δ(n), and let
x be a random input sampled from Dn. By the approximate functionality of O,
the circuit C produced by O(k) satisfies:

Pr
x
[CR(x) �= Fk(x)] ≤ ε . (1)

Let C′ be the obfuscated circuit generated by the plain-model obfuscator
O′(k). Recall that C′(x) emulates the execution of C(x) and the answers the
oracle queries made by C. Queries that are in RC are answered consistently
with R, and queries outside RC are answered from the set of random answers
{ri}. Since every distinct query made by C(x) is answered randomly and inde-
pendently, we can consider an identical experiment where C′ answers all of C’s

On Obfuscation with Random Oracles 463

queries using a random oracle R′ which agrees with R on all the queries in RC .
Additionally, all the answers of R and R′ outside the set Rk ∪ RC are random
independent of C. Let G(x) be the event that the execution of CR′

(x) does not
query R′ on any query in the set Rk \ RC . We have that conditioned on G(x),
the output of CR′

(x) and of CR(x) are identically distributed, and specifically:

Pr
x
[(CR′

(x) �= Fk(x)) ∧G(x)] = Pr
x
[(CR(x) �= Fk(x)) ∧G(x)] ≤ ε .

Therefore, we can bound the probability of error on x by bounding the proba-
bility of the event ¬G(x) as follows:

Pr
x
[CR′

(x) �= Fk(x)] ≤ Pr
x
[(CR′

(x) �= Fk(x))∧G(x)]+Pr
x
[¬G(x)] ≤ ε+Pr

x
[¬G(x)] .

Thus, to prove approximate functionality it suffices to prove the following claim,
bounding the probability of the event ¬G(x).

Claim 2.2

Pr
x
[¬G(x)] ≤ δ.

Proof (Proof of Claim 2.2.) We start by giving a high-level overview of the proof.
For a random input x, the execution of C(x) makes at most |C| oracle queries.
To bound the probability of the event ¬G(x) we bound the probability that the
i’th query of CR′

(x) is the first query to fall in the set Rk \RC , for every i ∈ |C|.
To this end, we argue that the for every query q ∈ Rk, the probability that the
i’th query of CR′

(x) is indeed q, but q was never queried during the “testing
phase” of O′ (Step 3) is small. (if q is queried queried during testing phase then
q ∈ RC .)

Recall that in the testing phase of O′ we execute CR on many random inputs.
Since we are only bounding the probability that the i’th query of CR′

(x) is the
first query to fall outside the set Rk \ RC , we can condition on the event that
all previous queries do not fall in the set Rk \ RC . Conditioned on this event,
by the definition of the oracles R and R′, the i-th query of CR′

and of CR are
identically distributed. Therefore, the probability that the i’th query of CR′

(x)
is q, but q was never queried in any of the test executions is bounded by the
inverse of the number of test executions. Since the number of different queries
q ∈ Rk is bounded by � we get the required bound on probability that the i’th
query of CR′

(x) falls in the set Rk \ RC , and therefore also on the probability
of the event ¬G(x).

We continue with the formal proof of the claim. Let:

I =

⌈
|C| · �

δ

⌉
,

be the number if iterations of the loop in Step 3 of O′. Let qj be the j-th query
C(x) makes. Let qi,j be the j-th query made by the emulation of C on the

464 R. Canetti, Y.T. Kalai, and O. Paneth

random input xi in the i-th iteration of the loop in Step 3. For every j ∈ [�], let
Gj(x) the event that qj /∈ Rk \ {qi,j}i∈[I]. Note that

Gj(x) ⇒ qj /∈ Rk \ RC ,

and therefore,

∀jGj(x) ⇒ G(x) .

Thus we can bound the probability of the event ¬G(x) as follows:

Pr
x
[¬G(x)] ≤ Pr

x
[¬G1(x) ∨ · · · ∨ ¬G|C|(x)]

=
∑
j∈|C|

Pr
x
[G1(x) ∧ · · · ∧Gj−1(x) ∧ ¬Gj(x)] .

It is therefore sufficient to show that for every j ∈ [|C|],

Pr
x
[G1(x) ∧ · · · ∧Gj−1(x) ∧ ¬Gj(x)] ≤

δ

|C| .

To this end, fix j ∈ [|C|] and fix the oracles R and R′. Let G̃j−1(x) denote
the event:

G1(x) ∧ · · · ∧Gj−1(x) .

Note that:

Pr
x
[G̃j−1(x) ∧ ¬Gj(x)] ≤ Pr

x
[¬Gj(x)|G̃j−1(x)]

and therefore, it suffices to prove that:

Pr
x
[¬Gj(x)|G̃j−1(x)] ≤

δ

|C| .

For every query q denote by

pq � Pr
x
[qj = q|G̃j−1(x)] .

Since for every i ∈ [I], x and xi are both uniform in Dn and since the oracles R
and R′ only differ on queries in the set Rk ∩ RC we have that conditioned on
G̃j−1(x) the view of the two executions:

CR′
(x) and CR(xi)

up until the j-th query, are identically distributed. Therefore, for every i ∈ [I]:

pq = Pr
x
[qj = q|G̃j−1(x)] = Pr

x
[qi,j = q|G̃j−1(x)] .

On Obfuscation with Random Oracles 465

Thus, as desired,

Pr
x
[¬Gj(x)|G̃j−1(x)] ≤∑

q∈Rk

Pr
x
[(qj = q) ∧ (∀i, qi,j �= q) |G̃j−1(x)] ≤

∑
q∈Rk

pq(1− pq)
|C|·�

δ ≤ (2)

∑
q∈Rk

δ

|C| · � ≤ δ

|C| ,

where (2) follows from the fact that the expression pq(1− pq)
e is maximized by

pq =
1

e+1 . This completes the proof of Claim 2.2.

Virtual Black-Box. Fix a key k ∈ {0, 1}n and let A′ be an adversary that tries
to learn some information from the obfuscation O′(k). We show how to use the
code of A′ to construct an adversary A that learns the same information from
the obfuscation O(k) where both A and O have access to the same random
oracle. That is, we will show that:

Pr[AR(OR(k)) = 1] = Pr[A′(O′(k)) = 1] , (3)

where the probabilities are overR, the coins of the obfuscatorsO and O′, and the
coins of the adversaries A and A′. By the security of O, there exist a simulator
S and a negligible function μ such that:∣∣Pr[AR(OR(k)) = 1]− Pr[SFk(1n) = 1]

∣∣ ≤ μ(n) . (4)

It follows from Equations (3) and (4) that S is a good simulator for A′ as well.
It is left to show how to construct an adversary A that satisfies Equation (3).
Loosely speaking, given an obfuscation O(k), A will use the same strategy of
the obfuscator O′ to transform the obfuscation O(k) into an obfuscation O′(k)
and then execute A′ on O′(k). A will use its random oracle to answer queries
made by O(k). Formally, A is defined as follows:

1. Given an obfuscated input circuit C and given access to oracle R, repeat the

following for i = 1 to
⌈
|C|·�
δ

⌉
:

(a) Sample xi ← Dn.
(b) Execute C(xi) and forward its oracle queries to R.

2. Sample |C| random oracle answers r1, . . . , r|C|.
3. Set RC to be the set of queries made by C in Step 1 and their answers.

Construct a circuit C′ from C, RC and {ri} as in Step 5 of the obfuscator
O′.

4. Output the same as A′(C′).

By construction, the circuit C′ used by A in Step 4 is distributed identically to
the output of O′(k) and therefore Equation (3) holds.

466 R. Canetti, Y.T. Kalai, and O. Paneth

References

[BCG+11] Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T.,
Rothblum, G.N.: Program obfuscation with leaky hardware. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 722–739.
Springer, Heidelberg (2011)

[BCKP14] Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box ob-
fuscation for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting ob-
fuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014)

[BP13] Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation
and applications to resettable cryptography. In: STOC, pp. 241–250 (2013)

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[BS84] Babai, L., Szemerédi, E.: On the complexity of matrix group problems I.
In: 25th Annual Symposium on Foundations of Computer Science, West
Palm Beach, Florida, USA, October 24-26, pp. 229–240 (1984)

[Can97] Canetti, R.: Towards realizing random oracles: Hash functions that hide
all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 455–469. Springer, Heidelberg (1997)

[CV13] Canetti, R., Vaikuntanathan, V.: Obfuscating branching programs using
black-box pseudo-free groups. IACR Cryptology ePrint Archive, 2013:500
(2013)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: FOCS (2013)

[GIS+10] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryp-
tography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

[GR14] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryp-
tology 27(3), 480–505 (2014)

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, Seattle, Washigton, USA, May 14-17, pp. 44–61
(1989)

On Obfuscation with Random Oracles 467

[LPS04] Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for
obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997)

[Wee05] Wee, H.: On obfuscating point functions. IACR Cryptology ePrint
Archive, 2005:1 (2005)

Obfuscation of Probabilistic Circuits
and Applications

Ran Canetti1, Huijia Lin2, Stefano Tessaro2, and Vinod Vaikuntanathan3

1 Boston University, USA and Tel Aviv University, Israel
2 UC Santa Barbara, USA

3 MIT CSAIL, USA

Abstract. This paper studies the question of how to define, construct,
and use obfuscators for probabilistic programs. Such obfuscators compile
a possibly randomized program into a deterministic one, which achieves
computationally indistinguishable behavior from the original program as
long as it is run on each input at most once. For obfuscation, we propose
a notion that extends indistinguishability obfuscation to probabilistic
circuits: It should be hard to distinguish between the obfuscations of any
two circuits whose output distributions at each input are computationally
indistinguishable, possibly in presence of some auxiliary input. We call
the resulting notion probabilistic indistinguishability obfuscation (pIO).
We define several variants of pIO, and study relations among them.

Moreover, we give a construction of one of our variants, called X-pIO,
from sub-exponentially hard indistinguishability obfuscation (for deter-
ministic circuits) and one-way functions.
We then move on to show a number of applications of pIO. In

particular, we first give a general and natural methodology to achieve
fully homomorphic encryption (FHE) from variants of pIO and of
semantically secure encryption schemes. In particular, one instantiation
leads to FHE from any X-pIO obfuscator and any re-randomizable
encryption scheme that’s slightly super-polynomially secure.
We note that this constitutes the first construction of full-fledged FHE

that does not rely on encryption with circular security.
Moreover, assuming sub-exponentially secure puncturable PRFs com-

putable in NC1, sub-exponentially-secure indistinguishability obfusca-
tion for (deterministic) NC1 circuits can be bootstrapped to obtain
indistinguishability obfuscation for arbitrary (deterministic) poly-size
circuits (previously such bootstrapping was known only assuming FHE
with NC1 decryption algorithm).

1 Introduction

Program obfuscation, namely the algorithmic task of turning input programs into
“unintelligible” ones while preserving their functionality, has been a focal point
for cryptography for over a decade. However, while the concept is intuitively
attractive and useful, the actual applicability of obfuscation has been limited.
Indeed, the main notion to be considered has been virtual black box (VBB) [7]

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 468–497, 2015.
c© International Association for Cryptologic Research 2015

Obfuscation of Probabilistic Circuits and Applications 469

which, while natural and intuitively appealing, is very strong, hard to satisfy,
and also not easy to use. In fact, for many program classes of interest, VBB
obfuscation is unattainable [7,26,10].

All this changed with the recent breakthrough results of [21,37]. Their
contribution is twofold: First they demonstrate a candidate general obfuscation
algorithm for all circuits, thus reviving the hope in the possibility of making
good of the initial intuitive appeal of program obfuscation as an important
and useful cryptographic primitive. Second, they demonstrate how to make
use of a considerably weaker notion of secure obfuscation than VBB, namely
indistinguishability obfuscation (IO), initially defined in [7]. Indeed, following
[21,37] there has been a gush of works demonstrating how to apply IO to a
plethora of situations and applications, and even resolving long standing open
problems.

Obfuscating Probabilistic Programs. Still, exiting notions of obfuscation,
VBB and IO included, predominantly address the task of obfuscating determinis-
tic programs. That is, the program to be obfuscated is a sequence of deterministic
operations. This leaves open the question of obfuscating probabilistic programs,
namely programs that make random choices as part of their specification, and
whose output, on each input, is a random variable that depends on the internal
random choices.

A priori it may not be clear what one wants to obtain when obfuscating such
programs, or why is the problem different than that of obfuscating deterministic
programs. Indeed, why not just obfuscate the deterministic program that takes
both “main” and “random” input, and leave it to the evaluator to choose some
of the input at random, if she so desires?

The main drawback of this approach is that it does not allow the obfuscation
mechanism to hide the random choices of the program from the evaluator.
Consider for instance the task of creating a program that allows generating
elements of the form gr, hr for a random r, where g, h are two generators of a
large group, and where r should remain hidden even from the evaluator of the
program. Alternatively, consider the task of obfuscation-based re-encryption:
Here we wish to “obfuscate” the program that decrypts a ciphertext using an
internal decryption key, and then re-encrypts the obtained plaintext under a
different key, using fresh randomness — all this while keeping the plaintext
hidden from the evaluator.

Indeed, in both these examples, the goal is to create an obfuscation mechanism
with two additional properties, stated very informally as follows: (a) the internal
random choices of the obfuscated program should “remain hidden” from the
evaluator, up to what is learnable from the output, and (b) the random choices
of the program should remain “random”, or “unskewed”, as much as possible.

How can we define these properties in a sensible way? Barak et al. [7] take
a first stab by defining the concept of obfuscators for sampling algorithms,
namely algorithms that take only random input and at each execution output
a sample from a distribution. Essentially, their definition requires that the (one
bit) output of any adversary that has access to an obfuscated version of such a

470 R. Canetti et al.

sampling algorithm be simulatable given only poly-many random samples from
the distribution. However, while this definition does capture much of the essence
of the problem, it is subject to essentially the same unattainability results that
apply to VBB obfuscation.

Probabilistic IO. We propose an alternative definition for what it means to
obfuscate probabilistic circuits. Our starting point is IO, rather than VBB, and
hence we refer to the resulting general notion as indistinguishability obfuscation
for probabilistic circuits, or pIO for short. This both reduces the susceptibility to
unattainability results and allows making stronger distributional requirements
on the outputs.

Consider a randomized circuit, namely a circuit C that takes an input x and
a uniformly chosen random input r, and returns the random variable C(x, r).
The basic idea is to compile such a circuit into a deterministic obfuscated circuit
Λ = O(C) that has essentially the same output distribution as the original circuit
— with the one caveat that if Λ is run multiple times on the same input then it
will give the same output.

The security requirements from a pIO obfuscator O for a family of circuits
C are thus three: First, polynomial slowdown should hold as usual. Second,
functionality should be preserved in the sense that for any C ∈ C and for any
input x it should hold that C(x) ≈c Λ(x). Note that in C(x) the probability
is taken over the random choices of C (i.e., the sampling of r), whereas Λ is a
deterministic circuit and the probability is taken only over the random choices
of O. In fact, we make the stronger requirement that no efficient adversary can
distinguish whether it is given oracle access to the randomized oracle C(·) or the
deterministic oracle Λ(·), as long as it does not submit repetitive queries to the
oracles.)

Third, obfuscation should hold in the sense that O(C1) ≈c O(C2) for any
two circuits C1 and C2 where the output distributions of C1(x) and C2(x)
are “similar” for all inputs x, where similar means in general computationally
indistinguishable. This property is trickiest to define, and to stress this even
further, we note that the indistinguishability of O(C1) and O(C2) does not
follow from IO even if the distributions of C1(x) and C2(x) are identical.
Another important aspect is that we often need to consider programs that are
parameterized by some additional system parameters, such as a public key of a
cryptosystem. We thus extend the definition to consider also families of circuits
with auxiliary input.

Concretely, we consider four variants of the above intuitive notion, depending
on the specific notion of indistinguishability of probabilistic circuits assumed on
the distribution. The four variants we consider differ in the level of adaptivity
in choosing the inputs on which the programs are run in the experiment that
determines whether programs are indistinguishable. Our formalization follows
the approach of [9,2], capturing the strength of an IO algorithm O in terms of
the distributions on triples (C1, C2, z) on which it succeeds in making O(C1) and
O(C2) indistinguishable (given z).

Obfuscation of Probabilistic Circuits and Applications 471

A Construction for X-pIO. As our first main result, we show how to construct
a general X-pIO scheme, where X-pIO is one of our four variants (see definition
within), from any subexponentially secure IO scheme and one way function.
The scheme is natural: X-piO(C) is the result of applying an indistinguishability
obfuscator to the following circuit. First apply the puncturable PRF to the input
x to obtain a pseudorandom value r, using a hard-coded PRF secret key. Next,
we run the circuit C on input x and random input r.

We show by reduction that if the underlying IO and puncturable PRF are sub-
exponentially secure then the scheme is X-pIO. Furthermore, one can consider
the same natural construction as a candidate implementation of any of the other
variants of pIO.

Applications: FHE and Bootstrapping. To demonstrate the usefulness of
pIO we present two natural applications of the notion, which are arguably of
independent interest.

Our first application (see Section 2.2) is to constructing fully homomorphic
encryption schemes. Here we provide a natural construction of fully homomor-
phic encryption from pIO (or, in turn from sub-exponentially secure IO and
puncturable PRFs.) In fact, we provide the first full-fledged FHE scheme that
does not rely on circular security assumptions for encryption.

We proceed in two steps. First we show how to obtain leveled homomorphic
encryption (LHE), where only a prespecified number of homomorphic operations
can be made securely. The basic idea is to use pIO to transform an underlying
encryption scheme with some mild structural properties (such as rerandomiz-
ability) into an LHE. We give a number of different instantiations of the general
scheme, where each instantiation uses a different variant of pIO and a different
type of encryption scheme as a starting point.

The second step transforms the resulting LHE into a full-fledged FHE, again
assuming IO and puncturable PRFs. (All primitives from LHE to IO to PRFs
are required to be slightly super-polynomially secure.) While this transformation
works in general for any LHE with a-priori fixed polynomial decryption depth, it
is particularly suitable for LHEs that result from our pIO based construction in
that it uses the same underlying primitives and assumptions. These constructions
use in an inherent way the concept of obfuscation of randomized circuits, and in
particular probabilistic IO.

As a second application, discussed in Section 2.3, we consider variants
of bootstrapping, transforming IO obfuscation (both probabilistic and not
probabilistic) for weak classes (such as low-depth circuits) into obfuscation for
arbitrary polynomial-size circuits.

Organization. Section 2 gives a detailed high-level and self-contained overview
of the contributions of this paper, both at the definitional level, as well as in
terms of applications.

Further down, Section 3 presents our definitions of pIO and studies relations
among them. Moreover, it presents the construction of X-pIO from IO and
puncturable PRFs. Section 4 present the application to FHE, whereas the
application to bootstrapping IO is deferred to the full version for lack of space.

472 R. Canetti et al.

d-pIO

mw-pIO

w-pIO X-pIO

IO

dIO

subexp-
IO

Fig. 1. Notions of obfuscation for probabilistic circuits: Arrows indicate
implication, whereas lack of arrows among azure boxes implies a formal separation.
The thicker line indicates that the implication holds under the assumption of
subexponentially-hard puncturable PRFs.

2 Overview

We provide an overview of the definitions and results in this work.

2.1 Our Definitional Framework: IO for Probabilistic Circuits

The first contribution of this paper, found in Section 3, is the definition and
study of IO notions for probabilistic circuits, or pIO. For our purposes, a
probabilistic obfuscator piO transforms a (usually probabilistic, i.e. randomized)
circuit C into a deterministic circuit Λ := piO(C) with the property that Λ(x)
is computationally indistinguishable from C(x) the first time it is invoked, even
when the circuits are invoked as oracles multiple times on distinct inputs. (Across
multiple calls with the same input, Λ(x) returns the same value over and over,
whereas C(x) returns a fresh random output.)

As for security, we want to ensure indistinguishability of piO(C0) and piO(C1)
whenever C0(x) and C1(x) are computationally indistinguishable for every input
x, rather than identical as in IO. However, formalizing this concept is challenging,
due to the exponential number of inputs and the fact that C0, C1 are usually
chosen from some distribution.

Four pIO Notions. Following the approach of [9,2], we capture different pIO
notions via classes of samplers, where such a sampler is a distributions D
(parametrized by the security parameter) outputting triples (C0, C1, z), such
that C0, C1 are circuits, and z is some (generally correlated) auxiliary input.
Different pIO notions result from different requirement in terms of the class of
samplers for which a certain obfuscator piO guarantees indistinguishability of the

Obfuscation of Probabilistic Circuits and Applications 473

obfuscations of C0 and C1 (given the auxiliary input z), in addition to the above
correctness requirement. Concretely, we consider four different notions matching
different approaches to formalizing the above computational indistinguishability
requirement on all inputs:

X-Ind pIO (X-pIO). In the simplest notion, we require that for every statically
chosen input x, the distributions of C0(x) and C1(x) are indistinguishable,
given z, where the randomness is over the sampled (C0, C1, z). While this
results in an unachievable notion, we additionally require the distinguishing
advantage to be very small, smaller than negl · X−1, for some negligible
function, where X is the number of inputs of the circuits. The requirement
on the small distinguishing gap seems stringent and leads to a weak notion,
but we show that it is necessary.

Dynamic-input pIO (d-pIO). A d-pIO obfuscator is required to work on
samplers D such that any PPT attacker, given a triple (C0, C1, z) sampled
from D, cannot find (adaptively) an input x for which, when given
additionally Cb(x) for a random b, it can guess the value of b with noticeable
advantage over random guessing.

Worst-case-input pIO (w-pIO and mw-pIO). A w-pIO obfuscator weakens
the above notion by only working on samplers for which the above
indistinguishability requirement holds for (much) stronger attackers where
the choice of x after sampling (C0, C1, z) is made without any computational
restrictions, whereas the final guess, after learning Cb(x), is restricted to be
polynomial-time. This captures the fact that the choice of the input x is
worst case as to maximize the guessing probability in the second stage.
The (stronger) notion where we enlarge our sampler class to only require
indistinguishability for attackers not passing such state is referred to as
memory-less worst-case-input pIO (or mw-pIO for short).

We prove that d-pIO implies mw-pIO, and mw-pIO implies both w-pIO and
X-pIO, but the latter two notions do not imply each other. These relations are
summarized in Figure 1 below. The fact that mw-pIO implies X-pIO is surprising
at first, as on one hand we are restricting the power of the attacker, but on
the other hand we are simplifying its task by choosing our barrier at negl/X
advantage, and it is not clear what prevails.

The notion of d-pIO is a natural generalization of the notion of differing inputs
obfuscation [7,13,2], and therefore directly suffers from recent implausibility
results [22] in its most general form. In contrast, achievability of mw-pIO and the
even weaker notion of w-pIO is not put in question by similar results, and the
original IO notion is recovered from both w-pIO and mw-pIO when restricting
them to deterministic circuits only. We in fact feel comfortable in conjecturing
that w-pIO is achieved by a construction first transforming a randomized circuit
C into a deterministic one Dk(x) = C(x;PRF(k, x)) for a PRF key k, then
applying an existing obfuscator O to Dk, such as those from [21,6,17].

X-Ind pIO from Sub-Exponential IO. The main technical result of this part
is a proof that for X-pIO, the above approach indeed provably yields a secure

474 R. Canetti et al.

obfuscator if the PRF is puncturable and if the obfuscator O = iO is an IO, as
long as additionally PRF and iO are subexponentially secure. In this context, sub-
exponential means that no PPT attacker can achieve better than sub-exponential
advantage, an assumption which we believe to be reasonable.

2.2 Application 1: Fully-Homomorphic Encryption

The first testbed for our pIO notions, discussed in Section 4, is a generic
construction of leveled homomorphic-encryption (or LHE, for short) from a
regular encryption scheme. We are then going to boost this to achieve fully-
homomorphic encryption (FHE) without any circular security assumptions using
a technique of independent interest.

The LHE Construction.When trying to build a LHE scheme using ofuscation,
the following natural and straightforward idea came up immediately. Starting
from a CPA-secure encryption, we generate public-key and secret-key pairs for
all levels (pk0, sk0), . . . , (pkL, skL), and then, as part of the evaluation key, add

for every level i ∈ {1, . . . , L}, the pIO obfuscation of the circuit Prog(ski−1,pki)

which takes two ciphertexts α = Enc(pki−1, a) and β = Enc(pki−1, b) (where a
and b are bits), decrypts them using ski−1, and then outputs a fresh encryption
c = Enc(pki, a NAND b). The outputs of this circuit, given ski−1 and pki (but
not ski) are computationally indistinguishable from those of a “trapdoor” circuit

tProg(pki) which instead ignores its inputs, and simply outputs a fresh encryption
c = Enc(pki, 0) of 0. Note that this circuit is independent of ski−1. We therefore
hope that by relying on some pIO notion for the sampler Dski−1 that outputs
(Prog(ski−1,pki), tProg(pki), pki) (and through a careful hybrid argument), one
might transform the honest evaluation key to one that contains only obfuscations
of the “trapdoor” circuits; in the latter case, since the evaluation key depends
only on public keys, the semantic security of the LHE scheme reduces down to
that of the underlying CPA scheme. The nice feature of this approach is that
it builds on top of any already existing encryption scheme (say ElGamal), and
that for all levels, ciphertexts are of the same type and size. A similar generic
approach was for example abstracted in the work of Alwen et al. [1], and proved
secure under ad-hoc obfuscation assumptions.

Unfortunately, it turns out that the above approach generically works for
every CPA-secure scheme only when using d-pIO, which, as we discussed above,
is somewhat brittle. Indeed, the above sampler Dski−1 is not contained in the
classes associated with X-pIO and w-pIO. With respect to X-pIO there is no
guarantee that encryptions (of values (a NAND b) or 0) are negl/X close to
each other (note that here the domain size X corresponds to the length |α| +
|β| of the two input ciphertexts). It seems that to fix the problem, one could
simply re-encrypt under an encryption scheme which is negl/X secure (which
exists assuming sub-exponentially secure CPA encryption), but this results in
a longer output ciphertext of size poly(logX) (i.e., poly(|α| + |β|)), leading to
exponentially growing ciphertext with the depth.

With respect to w-pIO (and to mw-pIO also), the main challenge with the
above sampler is that given the two circuits, the adversarial first stage is

Obfuscation of Probabilistic Circuits and Applications 475

computationally unbounded and can (for example) find a secret key correspond-
ing to the public key, and pass it on to the second stage, which proceeds in
distinguishing encryptions (of values (a NAND b) and 0 again) using the secret
key efficiently.

LHE via trapdoor encryption. We get around the above conundrum by
using a generalization of CPA encryption—called trapdoor encryption: The
idea here is that the encryption scheme can generate a special trapdoor key
which is indistinguishable from a real public-key, but it does not guarantee
decryption any more. In this way, we expect to be able to guarantee stronger
ciphertext indistinguishability (even statistical) under a trapdoor key which
cannot be satisfied by normal encryption scheme as long as correctness needs
to be guaranteed. In particular, we modify the proof in the above approach as
follows: In the hybrids, the obfuscations in the evaluation key are changed one by
one in the reverse order; to change the obfuscation of circuit Prog(ski−1,pki), first
replace the public key with a trapdoor key tpki, and then move to an obfuscation

of a modified trapdoor circuit tProg(tpki) with the trapdoor key built in. Now
thanks to the stronger ciphertext indistinguishability under the trapdoor key,
it suffices to use weak notions of pIO. In this paper, we provide the following
instantiations of this paradigm:

– Lossy encryption + w-pIO. In order to instantiate the construction from
w-pIO, we consider encryption schemes which are statistically secure under
a trapdoor key, so-called lossy encryption schemes [8]. Such schemes can
be built using techniques from a variety of works [31,34,8,35], and admit
instantiations from most cryptographic assumptions. This gives an LHE
construction from w-pIO and any lossy encryption schemes.1

– Re-randomizable encryption + sub-exponential IO. Existing con-
structions of lossy encryption unfortunately do not allow a distinguishing
gap of negl/X without having the ciphertext size growing polynomially
in logX . Instead, we construct a trapdoor encryption scheme with such
a tiny distinguishing gap under the trapdoor key, from any re-randomizable
(secret or public-key) encryption scheme: The (honest) public key of the
trapdoor encryption scheme consists of two encryptions (c0, c1) of 0 and
1 of the underlying re-randomizable encryption scheme, and to encrypt a
bit b, one simply re-randomizes cb; the trapdoor key, on the other hand,
simply consists of two encryptions (c0, c

′
0) of both 0. By the semantic

security of the underlying scheme, the honest and trapdoor keys are
indistinguishable. Furthermore, if the re-randomizability of the underlying
scheme guarantees that re-randomization of one ciphertext or another of
the same plaintext yields identical distributions, then encryptions under
the trapdoor keys are perfectly hiding. Many encryption schemes such as
ElGamal, Goldwasser-Micali [27], Paillier [33], Damg̊ard-Jurik [20], satisfy

1 In fact, this instantiation only requires an even weaker w-pIO notion where sampler
indistinguishability must hold against computationally unbounded adversaries in
both stages.

476 R. Canetti et al.

the perfect re-randomizability. Therefore, when relying on such a scheme,
the corresponding samplers is negl/X-indistinguishable, for any X ; hence
X-pIO suffices. Combined with the aforementioned construction of X-pIO,
this also gives us leveled LHE from any re-randomizable encryption scheme
and sub-exponentially hard IO and one-way functions.

We also note that the instantiation from d-pIO mentioned above from any CPA-
secure encryption scheme is also a (trivial) application of the above general
result.

From LHE to FHE. As a final contribution of independent interest, we use
IO to turn an LHE scheme info an FHE scheme via techniques inspired by the
recent works of Bitansky, Garg, and Telang [11], and of Lin and Pass [32].

The basic idea is to instantiate the above LHE construction on super-
polynomially many levels, but to represent these keys succinctly. This is done
by considering a circuit Γ that on input i genarates the i-th level evaluation
key, i.e., the pIO obfuscation of Prog(ski−1,pki) (in the evaluation key for super-
polynomially many levels), where the key pairs (pki−1, ski−1) and (pki, ski) are
generated using pseudo-random coins PRF(k, i − 1) and PRF(k, i) computed
using a puncturable PRF on a hard-coded seed k; (the pIO obfuscations also
use pseudo-random coins as well). The new succinct evaluation key is the IO-
obfuscation of this circuit Γ , while the public key is pk0 (generated using coins
PRF(k, 0)) and the secret key is the PRF seed k. In order for this approach to be
secure, we need the IO obfuscation to be slightly super-polynomially secure (not
necessarily sub-exponentially secure), in order to accommodate for a number of
hybrids in the proof which accounts to the (virtual) super-polynomial number of
levels implicitly embedded in the succinct representation. In particular, we get
this step almost for free (in terms of assumptions) when starting with our LHE
constructions, either because we assume sub-exponential IO in the first place, or
assuming just a slightly stronger form of w-pIO and d-pIO than what necessary
above.

We also observe that this is a special case of a more general paradigm of
using IO to turn any LHE with a fixed decryption depth (independent of the
maximum evaluation level) into an FHE, which applies to almost all known
LHE schemes (e.g. [23,18,16,15,24]). We believe that this general transformation
is of independent interest, especially because it does not rely on any encryption
scheme with circular security.

2.3 Application 2: Bootstrapping IO

Our second contribution is to use the notion of pIO to provide a simple way of
bootstrapping (standard, deterministic) IO for weak circuit classes, such asNC1,
into ones for all polynomial-size circuits. In the very first candidate construction
of IO for P/poly, Garg et al. [21] show how to obtain full fledged IO assuming
the existence of indistinguishability obfuscation for a weak circuit class WEAK,
as well as a fully homomorphic encryption scheme whose decryption can be
computed in WEAK (given the known FHE schemes, one can think of WEAK

Obfuscation of Probabilistic Circuits and Applications 477

as NC1). The natural question that remained is: Can we achieve bootstrapping
without the FHE assumption?

We show a new way to bootstrap indistinguishability obfuscation, without
assuming that FHE schemes exist. Instead, our assumption is the existence
of sub-exponentially hard indistinguishability obfuscation for a complexity
class WEAK and a sub-exponentially secure puncturable PRF computable
in WEAK. Our technique is inspired by the recent work of Applebaum [3]
that shows how to bootstrap VBB obfuscations from WEAK to P/poly using
randomized encodings; however his transformation strongly relies on the fact
that the starting point is a VBB obfuscation.

The idea is to apply the “randomized encodings” paradigm which was
originally proposed in the context of multiparty computation [29,4] and has
found many further uses ever since. A randomized encoding RE for a circuit
family C is a probabilistic algorithm that takes as input a circuit C ∈ C and an
input x, and outputs its randomized encoding (Ĉ, x̂). The key properties of RE

are that: (1) given Ĉ and x̂, one can efficiently recover C(x); (2) given C(x), one

can efficiently simulate the pair (Ĉ, x̂), implying that the randomized encoding
reveals no information beyond the output C(x); and (3) computing RE is very
fast in parallel. In particular, the work of Applebaum, Ishai and Kushilevitz [5],
building on Yao’s garbled circuits, showed a way to perform randomized encoding
of any circuit in P/poly using a circuit RE ∈ NC0, assuming a PRG in
⊕L/poly (which is implied by most cryptographic assumptions). The typical
use of randomized encodings is to reduce computing a circuit C to the easier
task of computing its randomized encoding RE(C, ·).

Therefore, to obfuscate a circuit C ∈ P/poly, the natural idea is obfuscating
its randomized encoding RE(C, x; r) using an appropriate pIO scheme for NC0.
(Here, pIO comes into play naturally, since RE is a randomized circuit.) We
show that, in fact, X-pIO suffices for this purpose: Assuming that randomized
encoding is sub-exponentially secure, then for any two functionally equivalent
circuits C1 and C2, their randomized encoding RE(C1, x; r) and RE(C2, x; r)
have indistinguishable outputs for every input x, where the distinguishing gap
is as small as negl(λ)2−|x|2. Therefore, obfuscating RE(C1, ·) and RE(C2, ·)
using an X-pIO scheme piO yields indistinguishable obfuscated programs, and
hence iO(C) = piO(RE(C, ·)) is an indistinguishable obfuscator for all P/poly.
Since, our construction of X-pIO from sub-exponentially indistinguishable IO
preserves the class of circuits modulo the complexity of the sub-exponentially
indistinguishable puncturable PRF. Put together, we are able to bootstrap sub-
exponentially indistinguishable IO for a weak class, say NC1, to IO for all of
P/poly, assuming a sub-exponentially indistinguishable PRF computable in the
weak class of circuits.
Bootstrapping pIO. The same technique above can be applied to bootstrap
worst-case-input pIO from NC0 to P/poly, assuming the existence of a PRG in
⊕L/poly. The key observation here is that since pIO handles directly randomized

2 This can be done by using a sufficiently large security parameter when generating
the randomized encoding.

478 R. Canetti et al.

circuits, it can be used to obfuscate the randomized encoding RE(C, ·) (without
relying on pseudorandom functions). Furthermore, the security of the random-
ized encoding holds for any input and auxiliary information (even ones that are
not efficiently computable). Then, given any two circuits C1(x; r), C2(x; r) whose
outputs are indistinguishable even for dynamically chosen worst-case inputs,
their randomized encoding C′

1(x; r, r
′) = RE(C1, (x, r); r

′) and C′
2(x; r, r

′) =
RE(C2, (x, r); r

′) are also indistinguishable on dynamically chosen worst case
inputs. This is because, over the random choice of r and r′, the distributions
of C′

1(x; r, r
′) and C′

2(x; r, r
′) can be simulated using only C1(x; r) and C2(x; r),

which are indistinguishable. Therefore a worst-case-input pIO scheme for NC0

suffices for obfuscating the circuit C′(x; r, r′) = RE(C, (x, r); r), leading to a
worst-case-input pIO scheme for all P/poly. Following the same approach, we
can bootstrap dynamic-input pIO for NC0 to dynamic-input pIO for P/poly
assuming a PRG in ⊕L/poly . Similarly, we can also bootstrap X-pIO for NC0

to X-pIO for P/poly, but relying on the sub-exponential security of the PRG.
The stronger security of PRG is needed so that the randomized encoding can be
made negl(λ)/X(λ) indistinguishable.

3 IO for Probabilistic Circuits

3.1 IO for General Samplers over Probabilistic Circuits

We start with the notion of indistinguishability obfuscation for general classes of
samplers over potentially probabilistic circuits, called pIO for samplers in class S.
Here, a sampler is a distribution ensemble over pairs of potentially randomized
circuits, together with an auxiliary input. Below, we define various notions of
obfuscation for probabilistic circuits instantiating the general definition with
classes of samplers that produce pairs of probabilistic circuits satisfying different
variants of our point-wise indistinguishability requirement.

More formally, let C = {Cλ}λ∈N be a family of sets of (randomized) circuits,
where Cλ contains circuits of size poly(λ). Extending the notation of [9], a circuit
sampler for C is a distribution ensemble D = {Dλ}λ∈N, where the distribution
Dλ ranges over triples (C0, C1, z) with C0, C1 ∈ Cλ such that C0, C1 take inputs
of the same length, and z ∈ {0, 1}poly(λ). Moreover, a class S of samplers for C
is a set of circuit samplers for C.

The following definition captures the notion of pIO for a class of samplers.

Definition 1 (pIO for a Class of Samplers). A uniform PPT machine piO is
an indistinguishability obfuscator for a class of samplers S over the (potentially
randomized) circuit family C = {Cλ}λ∈N if the following two conditions hold:

Correctness: piO on input a (potentially probabilistic) circuit C ∈ Cλ and the
security parameter λ ∈ N (in unary), outputs a deterministic circuit Λ of
size poly(|C|, λ).
Furthermore, for every non-uniform PPT distinguisher D, every (potentially
probabilistic) circuit C ∈ Cλ, and string z, we define the following two
experiments:

Obfuscation of Probabilistic Circuits and Applications 479

– Exp1D(1
λ, C, z): D on input 1λ, C, z, participates in an unbounded number

of iterations of his choice. In iteration i, it chooses an input xi; if xi is
the same as any of the previously chosen input xj for j < i, then abort;
otherwise, D receives C(xi; ri) using fresh random coins ri (ri = null if
C is deterministic). At the end of all iterations, D outputs a bit b. (Note
that D can keep state across iterations.)

– Exp2D(1
λ, C, z): Obfuscate circuit C to obtain Λ

$← piO(1λ, C; r) using
fresh random coins r. Run D as described above, except that in each
iteration, feed D with Λ(xi) instead.

Overload the notation ExpiD(1
λ, C, z) as the output of D in experiment ExpiD.

We require that for every non-uniform PPT distinguisher D, there is a
negligible function μ, such that, for every λ ∈ N, every C ∈ Cλ, and every
auxiliary input z ∈ {0, 1}poly(λ),

AdvD(1
λ, C, z) = |Pr[Exp1D(1λ, C, z)]− Pr[Exp2D(1

λ, C, z)]| = μ(λ) .

Security with Respect to S: For every sampler D = {Dλ}λ∈N ∈ S, and for
every non-uniform PPT machine A, there exists a negligible function μ such
that∣∣Pr[(C1, C2, z)

$← Dλ : A(C1, C2, piO(1λ, C1), z) = 1]−

− Pr[(C1, C2, z)
$← Dλ : A(C1, C2, piO(1λ, C2), z) = 1]

∣∣ = μ(λ) .

where μ is called the distinguishing gap.

Furthermore, we say that piO is δ-indistinguishable if the distinguishing gap μ
bounded by δ. Especially, piO is sub-exponentially indistinguishable if μ(λ) is
bounded by 2−λε

for a constant ε.

Note that the sub-exponential indistinguishability defined above is weaker
than usual sub-exponential hardness assumptions in that the distinguishing gap
only needs to be small for PPT distinguishers, rather than sub-exponential ones.

An obvious (but important) remark is that an obfuscator piO for the class S
is also an obfuscator for any class S′ ⊆ S, whereas conversely, if no obfuscator
exists for S′ (or its existence is implausible), then the same is true for S ⊇ S′.

3.2 Static-input pIO for Circuits

Arguably, the simplest way to formulate the property that two circuits are
indistinguishable on every input is to require that this true for every statically
chosen input, i.e., chosen independently of the random choice of the sampler.
This results in the following definition, which we state for completeness, but
that we will have to further restrict below to by-pass impossibility:

Definition 2 (Static-input Indistinguishable Samplers). The class Ss-Ind

of static-input indistinguishable samplers for a circuit family C contains all
circuit samplers D = {Dλ}λ∈N for C with the following property: For all non-
uniform PPT A = (A1,A2), the advantage of A in the following experiment is
negligible.

480 R. Canetti et al.

Experiment static-input-INDD
A(1λ):

1. (x, st)
$← A1(1

λ) // A1 chooses challenge input x statically.

2. (C0, C1, z)
$← Dλ

3. y
$← Cb(x), where b

$← {0, 1}.
4. b′

$← A2(st, C0, C1, z, x, y)

The advantage of A is Pr[b′ = b]− 1/2.

Unfortunately, we now show that pIO for general static-input indistinguishable
samplers is (unconditionally) impossible, but we will see below that a further
restriction of the class Ss-Ind will bypass this impossibility.

Proposition 1. There exists a static-input indistinguishable sampler D∗ over
deterministic circuits, such that, there is no pIO for D∗.

Proof. Consider the following sampler D∗: D∗
λ samples (C0, C1, z) where C0 is

an all zero circuit, C1 computes a point function that outputs 1 at a single point
s chosen uniformly randomly, and z is set to s. Clearly, D∗ is a static-input
indistinguishable sampler. Indeed, for any fixed input x, with overwhelming
probability D∗ samples (C0, C1, s), with a differing input s �= x. Thus, the
outputs C0(x) = C1(x) = 0 cannot be distinguished.

However, any piO achieving correctness cannot be secure for this sampler D∗:
An adversary can easily tell apart (C0, C1, s, Λ0 = piO(C0)) from (C0, C1, s, Λ1 =
piO(C1)) by simply evaluating Λ0 and Λ1 on input s.

X-Ind pIO. To circumvent impossibility, we consider a smaller class of static-
input indistinguishable samplers, SX-Ind ⊂ Ss-Ind. In fact, in Section 3.6 we give
a construction for such a pIO assuming sub-exponentially indistinguishable IO.

The samplers D we consider satisfy that the distinguishing gap of any PPT
adversary in the above static-input-IND experiment is bounded by negl · X−1,
where X is the number of “differing inputs” that circuits C0, C1 sampled from
D have, and negl is some negligible function. More precisely:

Definition 3 ((Static-input) X-Ind-Samplers). Let X(λ) be a function
bounded by 2λ. The class SX-Ind of (static-input) X-Ind-samplers for a circuit
family C contains all circuit samplers D = {Dλ}λ∈N for C with the following
property: For every λ ∈ N, there is a set X = Xλ ⊆ {0, 1}∗ of size at most X(λ)
(called the differing domain), such that,

X differing inputs: With overwhelming probability over the choice of

(C0, C1, z)
$← Dλ, for every input outside the differing domain, x �∈ X ,

it holds that C0(x
′; r) = C1(x

′; r) for every random string r.
X-indistinguishability: For all non-uniform PPT A = (A1,A2), the advan-

tage of A in the experiment static-input-INDD
A(1λ) defined in Definition 2 is

neglX−1.

Obfuscation of Probabilistic Circuits and Applications 481

Definition 4 (X-Ind pIO for Randomized Circuits). Let X be any function
bounded by 2λ. A uniform PPT machine X-piO is an X-pIO for randomized
circuits, if it is a pIO for the class of X-Ind samplers SX-Ind over C that includes
all randomized circuits of size at most λ.

We note that the notion of a differing set is added for flexibility purposes,
as our constructions below will allow for it. We stress that its definition is not
allowed to depend on the circuits which are actually sampled, and must be fixed
a-priori. Also, note that the notion encompasses the setting where C0(x) and
C1(x) are identically distributed, or are statistically very close.

The notion ofX-Ind pIO is the “best-possible” achievable with respect of static
input. Indeed, one can modify the distribution D∗ constructed in Proposition 1
to have C1(s) output 1 with probability 1

p(λ) for a polynomial p. The differing

domain there is the whole domain, i.e., Xλ = {0, 1}λ (since the circuit may
differ at any point.) This makes the sampler exactly X ·p−1 indistinguishable for
static adversaries, as C1(x) �= C0(x) with probability X · p−1 over the choice of
(C0, C1, z). Yet, pIO for this sampler is impossible, as again, the circuits differ
on input z = s with probability 1

p(λ) . This impossibility cannot be pushed any

further, and indeed general X-pIO is possible, as shown in Section 3.6.

3.3 Dynamic-input pIO for Circuits

The above notion, while achievable, makes an unnaturally strong indistinguisha-
bility requirement. We explore alternative notions where the distinguishing gap
is not required to be as small. We start with a natural sampler notion asking
for indistinguishability on every input x adaptively chosen by a (PPT) adversary
A1 on input (C0, C1, z).

Definition 5 (Dynamic-input Indistinguishable Samplers). The class
Sd-Ind of dynamic-input indistinguishable samplers for a circuit family C contains
all circuit samplers D = {Dλ}λ∈N for C with the following property: For all non-
uniform PPT A = (A1,A2), the advantage of A in the following experiment is
negligible.

Experiment. dynamic-input-INDD
A(1λ):

1. (C0, C1, z)
$← Dλ

2. (x, st)
$← A1(C0, C1, z)

3. y
$← Cb(x), where b

$← {0, 1}
4. b′

$← A2(st, C0, C1, z, x, y)

The advantage of A is Pr[b′ = b]− 1/2.

We note that the restriction to requiring indistinguishability on a single input
is without loss of generality, as it follows from a standard hybrid argument that
the advantage of any efficiency adversary is still negligible even if it receives
samples from Cb(x) for an unbounded number of adaptively chosen inputs.

482 R. Canetti et al.

We can now use the above sampler class to directly obtain the notion of
Dynamic-input pIO for randomized circuits.

Definition 6 (Dynamic-input pIO for Randomized Circuits). A uniform
PPT machine d-piO is a dynamic-input pIO (or d-pIO) for randomized circuits,
if it is a pIO for the class of dynamic-input indistinguishable samplers Sd-Ind over
C that includes all randomized circuits of size at most λ.

Differing-Input Indistinguishability Obfuscation. It is not hard to see that we
can recover the notion of differing-inputs indistinguishability obfuscation (dIO)
for circuits [7,13,2], by just restricting the above definition of d-pIO to the class
C′ = {C′

λ}λ∈N
of deterministic circuits.

This means that the notion of dynamic-input pIO generalizes dIO to random-
ized circuits. In a recent work by Garg et al. [22], it was shown that assuming
strong obfuscation for a specific sampler of circuits and auxiliary inputs, it is
impossible to construct differing-input IO for general differing-input samplers
over circuits. Since dynamic-input pIO implies differing-input IO, a construction
of d-pIO for general dynamic-input indistinguishable samplers is also implausible.
However, a construction of d-pIO for specific dynamic-input indistinguishable
samplers remains possible, as in the case of dIO.

3.4 Worst-case-input pIO for Circuits

In light of the implausibility of general dynamic-input pIO, we seek for a weaker
notion, which is possibly achievable. The resulting notion is what we consider the
most natural formalization of IO in the probabilistic setting, but in contrast to
X-pIO above, we are only able to conjecture the existence of suitable obfuscators.

We first introduce the following class of samplers:

Definition 7 (Worst-case-input Indistinguishable Samplers). The class
Sw-Ind of worst-case-input indistinguishable samplers for a circuit family C
contains all circuit samplers D = {Dλ}λ∈N for C with the following property:
For all adversary A = (A1,A2) where A1 is an unbounded non-uniform machine
and A2 is PPT, the advantage of A in the following experiment is negligible.

Experiment worst-case-input-INDD
A(1λ):

1. (C0, C1, z)
$← Dλ

2. (x, st) = A1(C0, C1, z) // A1 is unbounded.

3. y
$← Cb(x), where b

$← {0, 1}
4. b′

$← A2(st, C0, C1, z, x, y) // A2 is PPT.

The advantage of A is Pr[b′ = b]− 1/2.

Obfuscation of Probabilistic Circuits and Applications 483

This directly yields the notion of worst-case-input pIO:

Definition 8 (Worst-case-input pIO for Randomized Circuits). A uni-
form PPT machine w-piO is a worst-case-input pIO (or w-pIO) for randomized
circuits, if it is a pIO for the class of worst-case-input indistinguishable samplers
Sw-Ind over C that includes all randomized circuits of size at most λ.

Note that in the above definition, since A1 is computationally unbounded,
its best strategy on input (C0, C1, z) is to choose (x∗, st∗) that maximizes the
guessing advantage of A2 and hence worst-case-input indistinguishable samplers
can be seen as producing pairs of probabilistic circuits satisfying that no efficient
adversary (A2) can distinguish their output C0(x) or C1(x) on any input x.

The above definition implies a limited form of multi-input indistinguishability:
By a hybrid argument, for a worst-case-input sampler the advantage of any
adversary (A1,A2) in the above experiment is negligible even if A1 can choose
a polynomial number of inputs (x1, · · · , x�, st) at once and A2 receives output

samples yi
$← Cb(xi) for all these inputs, i.e., it is given (st, C0, C1, z, {xi}, {yi}).

However, we cannot prove an adaptive form of multi-input indistinguishability,
due to the asymmetric computational powers of A1 and A2.
Memory-less worst-case-input pIO: Forbidding state-passing. Passing state be-
tween A1 and A2 in the above definition of worst-case-input indistinguishable
samplers appears somewhat unavoidable for any “meaningful” way of defining
Sw-Ind. Indeed, if we have a sampler D ∈ Sw-Ind, then for any length function �,
we also would like any sampler D′ constructed as follows to be also in Sw-Ind:
D′

λ samples (C0, C1, z) from the same distribution as Dλ, but instead returns
a triple (C′

0, C
′
1, z) where C′

b is a circuit such that C′
b(x;x

′) = Cb(x) for any
x′ ∈ {0, 1}�(λ), i.e., the last �(λ) bits of the input are ignored. For such a pair,
the adversaryA1 can always use the last �(λ) bits of the input (which are ignored
by the circuit) to pass on some helpful, not efficiently computable, information
to A2 that would help distinguish.

Explicitly forbidding state passing will however be useful when establishing
the landscape of relationships among notions below. In particular, we define
Smw-Ind as the class of memory-less worst-case-input indistinguishable samplers,
which consists of all samplers D for which the advantage in worst-case-input-
INDD

A(1λ) is negligible for any A = (A1,A2) such that A1 is unbounded and
outputs st = ⊥, whereas A2 is PPT. Note that clearly Sw-Ind ⊆ Smw-Ind. This
then is used in the following definition.

Definition 9 (Memory-less worst-case-input pIO for Randomized Cir-
cuits). A uniform PPT machine mw-piO is a memory-less worst-case-input
pIO (or mw-pIO) for randomized circuits, if it is a pIO for the class of memory-
less worst-case-input indistinguishable samplers Smw-Ind over C that includes all
randomized circuits of size at most λ.

Indistinguishability Obfuscation. The notion of worst-case-input pIO is a direct
generalization of IO to the case of randomized circuits. We can recover the
original notion of indistinguishability obfuscation (IO) for circuits [7,21] by

484 R. Canetti et al.

restricting Definition 8 of worst-case-input pIO to the class C′ = {C′
λ}λ∈N

of

deterministic circuits. Also, note that the classes Smw-Ind and Sw-Ind are the same
(and thus the notion of memory-less worst-case-input and worst-case-input pIO)
when restricted to deterministic circuits.

3.5 Relations

In the full version, we prove a number of relations among notions, some of which
are quite non-trivial to establish. They are summarized by the following theorem.

Theorem 1 (Relations Among pIO notions).

– A dynamic-input pIO obfuscator is also a memory-less worst-case-input pIO
obfuscator for randomized circuits.

– A memory-less worst-case-input pIO obfuscator is also a worst-case-input
pIO obfuscator.

– A memory-less worst-case-input pIO obfuscator is also an X-Ind pIO
obfuscator.

Moreover, all of these implications are strict, i.e., their converses are not true,
assuming subexponentially-secure (trapdoor) one-way permutations exist.

3.6 Construction of X-Ind pIO from Sub-exp Indistinguishable IO

In this section, we prove the existence of a construction of an X-Ind pIO
obfuscator (as in Definition 4) from sub-exponentially hard IO. It relies on sub-
exponentially secure puncturable PRFs, which we now recall

Definition 10 (Puncturable PRFs). A puncturable family of PRFs is given
by a triple of uniform PPT machines Key, Puncture, and PRF, and a pair of
computable functions n(·) and m(·), satisfying the following conditions:

Correctness. For all outputs K of Key(1λ), all points i ∈ {0, 1}n(λ), and K−i =
Puncture(K, i), we have that PRF(K−i, x) = PRF(K,x) for all x �= i.

Pseudorandom at Punctured Point. For every PPT adversary (A1,A2),
there is a neligible function μ, such that in an experiment where A1(1

λ)

outputs a point i ∈ {0, 1}n(λ) and a state σ, K
$← Key(1λ) and K−i =

Puncture(K, i), the following holds∣∣Pr[A2(σ,K−i, i,PRF(K, i)) = 1]− Pr[A2(σ,K−i, i, Um(λ)) = 1]
∣∣ ≤ μ(λ)

As observed by [12,14,30], the GGM tree-based construction of PRFs [25]
from PRGs yields puncturable PRFs. Furthermore, if the PRG underlying the
GGM construction is sub-exponentially hard (and this can in turn be built
from sub-exponentially hard OWFs), then the resulting puncturable PRF is
sub-exponentially pseudo-random.

We are now ready to move to our theorem. Its formal proof is deferred to the
full version, but we give a detailed description of the main ideas below.

Obfuscation of Probabilistic Circuits and Applications 485

Theorem 2 (Existence of X-Ind pIO.). Assume the existence of a sub-
exponentially indistinguishable indistinguishability obfuscator iO for circuits and
a sub-exponentially secure puncturable PRF (Key,Puncture,PRF). Then, there
exists a X-Ind pIO obfuscator X-piO for randomized circuits.

We first describe our construction of X-Ind pIO, denoted as X-piO. Recall
that by our assumption, both iO and the puncturable PRF (Key,Puncture,PRF)
have a 2−λε

distinguishing gap for some constant ε ∈ (0, 1) and any non-uniform
PPT distinguisher. Also, in the following, we implicitly identify strings with
integers (via their binary encoding) and vice versa.

Construction X-piO: On input 1λ and a probabilistic circuit C of size
at most λ, proceed as follows:

1. Let λ′ = λ′(λ) = (λ log2(λ))1/ε. Sample a key of the PRF function
K ← Key(1λ

′
).

2. Construct deterministic circuit E(C,K) which outputs
C(x ; PRF(K,x)). By construction the size of E(C,K) is bounded
by a polynomial p(λ′) ≥ λ′ in λ′.

3. Let λ′′ = p(λ′) ≥ λ′. Obfuscate E(C,K) using iO, Λ
$←

iO(1λ
′′
, E(C,K)).

4. Output Λ.

To see why the construction works, consider two circuits C1, C2 sampled
satisfying the indistinguishability requirement imposed by X-Ind pIO, their
obfuscation are the IO obfuscated programs Λ1, Λ2 of the two derandomized
circuits Dk

1 , D
k
2 . The challenge lies in how to apply the security guaranetees of IO

on two circuits Dk
1 , D

k
2 that have completely different functionality. Our hope is

to leverage the fact that the original circuits C1, C2 are strongly indistinguishable
together with the sub-exponential pseudo-randomness of PRF; indeed, when the
PRF key is sufficiently long, it holds that for every x, the output pair Dk

1(x) and
Dk

2 (x) is
1

X2ω(log(λ)) -indistinguishable. Thus by a simple union bound over all X

inputs, even the entire truth tables
{
Dk1

1 (x)
}
,
{
Dk2

2 (x)
}

are indistinguishable.

However, even given such strong guarantees, it is still not clear how to apply IO.
We overcome the challenge by considering a sequence of X + 1 hybrids {Hi},

in which we obfuscate a sequence of “hybrid circuits”
{
Ek

i (x)
}

that “morph”

gradually from Dk
1 to Dk

2 . More specifically, circuit Ek
i evaluates the first i inputs

using Dk
2 , and the rest using Dk

1 . In any two subsequent hybrids, the circuits
Ek

i−1 and Ek
i only differ at whether the i’th input is evaluated using Dk

1 or

Dk
2 . Consider additionally two auxiliary hybrids H+

i−1, H
+
i where two circuits

F
k−i,y
i−1 , F

k−i,y
′

i modified from Ek
i−1, E

k
i are obfuscated; they proceed the same as

Ek
i−1, E

k
i respectively, except that they use internally a PRF key k−i punctured

at point i, and output directly y and y′ for input i respectively. Then, when y and
y′ are programmed to be exactly y = Ek

i−1(i) = Dk
1 (i) and y′ = Ek

i (i) = Dk
2 (i),

the two circuits compute exactly the same functionality as Ek
i−1, E

k
i . By IO, these

auxilary hybrids are indistinguishable from hybrids Hi−1 and Hi respectively.

486 R. Canetti et al.

Then, by the fact that y = Ek
i−1(i) = Dk

1 (i) and y′ = Ek
i (i) = Dk

2 (i) are
indistinguishable (which in turn relies on the pseudo-randomness of the PRF
function), the two auxiliary hybrids H+

i−1, H
+
i are indistinguishable, and thus

so are Hi−1 and Hi. Furthermore, since the distinguishing gap of IO and PRF
are bounded by 1

X2ω(log λ) , it follows from a hybrid argument that H0 and HX ,

which contain the IO obfuscations of Dk
1 (x) and Dk

2 (x), respectively, are
1

2ω(log λ) -
indistinguishable.
Other notions. While we cannot prove this statement in any meaningful model,
we also conjecture that the same construction is w-pIO obfuscator for randomized
circuits.

4 Application 1: Fully Homomorphic Encryption

We now describe how to construct leveled and fully homomorphic encryption
schemes using different notions of pIO. (See the Introduction for an overview of
the constructions.)

4.1 Trapdoor Encryption Schemes

Trapdoor encryption schemes have two modes: In the honest mode, an honest
public key is sampled and the encryption and decryption algorithms work as in
a normal CPA-secure encryption scheme with semantic security and correctness;
additionally, there is a “trapdoor mode”, in which a indistinguishable “trapdoor
public key” is sampled and the encryption algorithm produces ciphertexts that
may have stronger indistinguishability properties than these in the honest mode,
at the price of losing correctness. More precisely,

Definition 11 (Trapdoor Encryption Scheme). We say that Π = (KeyGen,
Enc,Dec, tKeyGen) is a trapdoor encryption scheme, if (KeyGen,Enc,Dec) is
a CPA-secure encryption scheme and the trapdoor key generation algorithm
tKeyGen satisfies the following additionally properties:

Trapdoor Public Keys: The following two ensembles are indistinguishable:{
(pk, sk)

$← KeyGen(1λ) : pk
}
λ
≈
{
tpk

$← tKeyGen(1λ) : tpk
}
λ

Computational Hiding: The following ensembles are indistinguishable.{
tpk

$← tKeyGen(1λ) : Enctpk(0)
}
λ
≈
{
tpk

$← tKeyGen(1λ) : Enctpk(1)
}
λ

The basic definition of trapdoor encryption scheme only requires encryption
of different bits under a freshly generated trapdoor public key to be computa-
tionally indistinguishable. As discussed before, this definition is a generalization
of CPA encryption in the following sense,

Lemma 1. Let Π ′ = (KeyGen,Enc,Dec) be a CPA-encryption scheme. Then
Π = (KeyGen,Enc,Dec, tKeyGen = KeyGen) is a trapdoor encryption scheme.

Obfuscation of Probabilistic Circuits and Applications 487

The basic trapdoor encryption scheme does not provide any advantage in the
trapdoor mode than the honest mode. Below, we consider two stronger security
properties in the trapdoor mode.

Definition 12 (Statistical Trapdoor Encryption Scheme). We say that
trapdoor encryption scheme Π = (KeyGen,Enc,Dec, tKeyGen) is a statistical
trapdoor encryption scheme, if the computational hiding property in Definition 11
is replaced by the following.

Statistical hiding: The following ensembles are statistically close.{
tpk

$← tKeyGen(1λ) : Enctpk(0)
}
λ
≈s

{
tpk

$← tKeyGen(1λ) : Enctpk(1)
}
λ

We note that any lossy encryption scheme as defined by Bellare, Hofheinz and
Yilek [8] implies a statistical trapdoor encryption scheme. A lossy encryption
scheme has a key generation algorithm KeyGen that takes as input the security
parameter 1λ and additionally a variable m ∈ {injective, lossy} indicating
whether to generate a key in the injective mode or in the lossy mode. A key
generated in the injective mode ensures decryption correctness and semantic
security, whereas a key generated in the lossy mode statistically loses information
of the plaintexts, that is, encryption of different bits are statistically close.
Therefore, we have:

Lemma 2. Let Π ′ = (Gen′,Enc,Dec) be a lossy encryption scheme. Then
Π = (KeyGen,Enc,Dec, tKeyGen) where KeyGen(1λ) = Gen′(1λ, injective) and
KeyGen(1λ) = Gen′(1λ, lossy), is a statistical trapdoor encryption scheme.

Definition 13 (μ-Hiding Trapdoor Encryption Scheme). Let μ be any
functionWe say that trapdoor encryption schemeΠ = (KeyGen,Enc,Dec, tKeyGen)
is a μ-Lossy trapdoor encryption scheme, if the computational hiding property in
Definition 11 is replaced by the following.

μ-hiding: For any non-uniform PPT adversary A, the following holds:∣∣∣Pr[tpk $← tKeyGen(1λ) : A(Enctpk(0)) = 1]

− Pr[tpk
$← tKeyGen(1λ) : A(Enctpk(1)) = 1]

∣∣∣ ≤ μ(λ)

where μ is called the distinguishing gap.

One of the instantiations of our general transformation for obtaining FHE
relies on sub-exponentially indistinguishable IO and a μ-hiding trapdoor en-
cryption scheme where μ is bounded by negl(λ)2−2l(λ) and l(λ) is an upper
bound on the length of the ciphertext. In other words, the distinguishing gap
is much smaller than the inverse exponentiation of the ciphertext length. We
construct such a μ-hiding trapdoor encryption scheme using a μ-rerandomizable
encryption. In fact, our construction achieves the stronger property of perfect
hiding, that is, μ = 0.

488 R. Canetti et al.

Definition 14 (μ-Rerandomizable Encryption Scheme). We say that a
quadruple of uniform PPT algorithms Π = (Gen,Enc,Dec, reRand) is a μ-
rerandomizable encryption scheme, if (Gen,Enc,Dec) is a CPA-secure encryption
scheme, and additionally the algorithm reRand satisfies the following property:

μ-Rerandomizability: For every non-uniform PPT adversary A, the following
holds for every λ ∈ N.∣∣∣Pr[A(pk, c0, c1, reRandpk(c0)) = 1]

− Pr[A(pk, c0, c1, reRandpk(c1)) = 1]
∣∣∣ ≤ μ(λ)

where (pk, sk)
$← Gen(1λ), c0

$← Encpk(b) and c1
$← Encpk(b).

We way that Π is perfectly re-randomizable, if the distinguishing gap μ above is
zero.

Many encryption scheme such as ElGamal, Goldwasser-Micali [27], Pail-
lier [33], Damg̊ard-Jurik [20], are in fact perfectly rerandomizable as per [36,28]
and satisfy our definition. Furthermore, we show that

Lemma 3. Let μ be a negligible function. Every μ-rerandomizable CPA encryp-
tion scheme can be transformed into a μ-hiding trapdoor encryption scheme.

An overview of the construction was provided in the Introduction (See “LHE
via trapdoor encryption”). We defer the formal construction and proof to the
full version [19].

4.2 From Trapdoor Encryption to Leveled Homomorphic
Encryption

In this section, we present our general transformation from a trapdoor encyrption
scheme Π = (KeyGen,Enc,Dec, tKeyGen) to a leveled fully homomorphic
encryption scheme LHE, relying on a pIO scheme piO for a specific class SΠ

of samplers defined by Π as described in Figure 3; (more explanation on the
class is provided in the proof of semantic security).

Proposition 2. Let Π be any trapdoor encryption scheme. Assume the exis-
tence of pIO for the class of samplers SΠ defined by Π as in Figure 3. Then, Π
can be transformed into a leveled homomorphic encryption scheme.

Below we first describe our construction and then prove its correctness and
semantic security in Lemma 4 and 5. Without loss of generality, we assume that
the public, secret keys and ciphertexts of Π have lengths bounded by l(λ). Below
we first describe our construction.

Construction of LHE: Let L = L(λ) be the depth of the circuits that we want
to evaluate. The four algorithms of the scheme proceed as follows:

Obfuscation of Probabilistic Circuits and Applications 489

– Key generation: LHE.Keygen(1λ, 1L) does the following for every level i
from 0 to L.
• samples a pair of keys (pki, ski)

$← KeyGen(1λ) of Π ;

• for i ≥ 1, obfuscate the circuit Pi = Prog(ski−1,pki) as described in

Figure 2, that is, sample Λi
$← piO(1s, Pi) where the security parameter

s = s(λ) for obfuscation is an upper-bound on the size of all Pi’s.
3

Finally outputs pk = pk0, sk = skL, evk = {Pi}0≤i≤L.
– Encryption: LHE.Encpk(m) outputs a fresh encryption of m under pk = pk0

using Π , c
$← Encpk0(m).

– Decryption: LHE.Decsk(c) decrypts c using the secret key sk = skL to
obtain m = DecskL(c).

– Homomorphic evaluation: LHE.Evalevk(C, c1, . . . , c�) on input a layered
circuit C (consisting of only NAND gates) of depth at most L, evaluate C
layer by layer; in iteration i, layer i ∈ [L] is evaluated (the first layer is
connected with the input wires): At the onset of this iteration, the values
of the input wires of layer i has been homomorphically evaluated in the
previous iteration and encrypted under key pki−1 (in the first iteration,
these encryptions are simply c1, · · · , c�); for each NAND gate g in this layer
i, let α(g), β(g) be encryption of the values of its input wires; evaluate
g homomorhpically by computing γ(g) = Λi(α(g), β(g)) to obtain an
encryption of the value of g’s output wire under public key pki. At the
end, output the encryptions generated in the last iteration L.

sk, pk, tpk, α, and β are strings of length l(λ).

Circuit Prog(sk,pk)(α, β): Decrypt α and β to obtain a = Decsk(α) and b =

Decsk(β); output γ
$← Encpk(a NAND b).

Circuit tProg(tpk)(α, β): Output γ
$← Enctpk(0).

Both circuits are padded to their maximum size. Let s(λ) be an upper bound
on their sizes.

Fig. 2. Circuits used in the construction of LHE and its analysis

It follows from the correctness of pIO and Π that the scheme LHE is correct;
we refer the reader to the full version [19] for a formal proof.

Lemma 4. If pIO and Π are correct, then LHE has homomorphism.

3 This is because the obfuscator piO(1λ, C) works with classes of circuits Cλ of size at
most λ.

490 R. Canetti et al.

Proof of Semantic Security of LHE. Towards establishing the semantic
security of LHE, we rely on the security property of pIO for the class of
samplers SΠ defined by the trapdoor encryption schemeΠ used in LHE. Roughly
speaking, samplers in SΠ samples pairs of circuits where one of them is identical
the “honest” program used for generating the evaluation key in LHE, except
that a trapdoor public key tpk (instead of an honest public key) is hardwired

in (that is, Prog(sk,tpk)), and the other one is a “trapdoor” program tProg(tpk)

as described in Figure 2 that always generates a ciphertext of 0 under the
“trapdoor” public key hardwired inside. More precisely, we describe the class
of samplers in Figure 3.

Π = (KeyGen,Enc,Dec, tKeyGen) is a trapdoor encryption scheme, SK =
{skλ} is a sequence of strings of length l(λ), and s(λ) is an upper bound on
the sizes of programs Prog(sk,tpk) and tProg(tpk).

The Sampler DSK: The distribution DSK
s samples a trapdoor public key

tpk
$← tKeyGen(1λ), and outputs C0 = Prog(sk,tpk), C1 = tProg(tpk) and

z = tpk, where sk = skλ.
The Class SΠ : Let SΠ be the class of samplers that include distribution

ensembles DSK for all sequence of strings SK of length l(λ).

Fig. 3. The class of samplers for proving the semantic security of LHE

Next we show that LHE is semantic secure. We note that for the proof to go
through, we only rely on the fact that piO is a pIO for the above described class
SΠ and the fact that trapdoor public keys of the trapdoor encryption scheme
Π are indistinguishable from honest public keys. The proof actually does not
depend on any hiding property in the trapdoor mode, which will only play a role
later when instantiating pIO for SΠ .

Lemma 5. Assume that Π is a trapdoor encryption scheme and piO is a pIO
for the class of samplers SΠ in Figure 3. Then, LHE is semantically secure.

Proof. Fix any polynomial time adversary A. We want to show that for every
λ ∈ N, it holds that, the advantage of the adverary AdvCPA[A] is negligible.

|Pr[A(pk, evk, LHE.Encpk(0)) = 1]− Pr[A(pk, evk, LHE.Encpk(1)) = 1]| < negl(λ) ,

where (pk, evk, sk)←LHE.Keygen(1λ).
Towards this, we consider two sequences of hybrids Hb

0 , · · · , Hb
L for b ∈

{0, 1}. Hb
0 is exactly an honest CPA game with the adversary A where it

receives a challenge ciphertext that is an encryption of b; in intermediate
hybrids, the adversary A participates in a modified game. We show that for
every two subsequent hybrids Hb

i , H
b
i+1, as well as H0

L, H
1
L, the view of A is

indistinguishable. Below we formally describe all the hybrids.

Obfuscation of Probabilistic Circuits and Applications 491

Hybrid Hb
0: Hybrid Hb

0 is an honest CPA game with A, where A receives

(pk, evk, c∗=LHE.Encpk(b)) for freshly sampled (pk, evk, sk)
$←LHE.Keygen(1λ).

By construction of LHE, the view of A is,

view[A]b0 =
(
pk = pk0, evk = (Λ1, · · · , ΛL), cb = Encpk0(b)

)
Hybrid Hb

i for i > 0: Hybrid Hb
i proceeds identically to Hb

0 except that the
evaluation key evk is sampled in a different way. Recall that in Hb

0 , evk
consists of the obfuscated circuits Λ1, · · · , ΛL of circuits P1, · · · , PL, where
Pj = Prog(skj−1,pkj). In Hb

i , the last i circuits PL−i+1, · · · , PL are replaced

with tPL−i+1, · · · , tPL, where tPj = tProg(tpkj) (see Figure 2) hardwired

with a freshly sampled “trapdoor” public key tpkj
$← tKeyGen(1λ). Let

tΛL−i+1, · · · , tΛL be the obfuscated circuits of tPL−i+1, · · · , tPL. Then evki
in Hb

i consists of evki = Λ1, · · · , ΛL−i, tΛL−i+1, · · · , tΛL. The view of A in
Hb

i is

view[A]bi =
(
pk0, evki = (Λ1, · · · , ΛL−i, tΛL−i+1, · · · , tΛL), cb = Encpk0(b)

)
To show that the A cannot distinguish the two CPA games, it is equivalent

to show that A cannot distinguish hybrids H0
0 and H1

0 . Towards this, it suffices
to prove that A cannot distinguish any of the neighboring hybrids, that is,

– The views of A in H0
L and H1

L are indistinguishable,
– For every b and 0 ≤ i ≤ L, the views of A in Hb

i and Hb
i+1 are

indistinguishable,

Towards showing the first indistinguishability, we observe that in H0
L and

H1
L, the evaluation key evkL consists of only obfuscation of the “trapdoor”

programs {tΛi
$← piO(1s, tProg(tpkj))} which does not depend on any secret

key skj . Thus by the semantic security of Π , encryption Encpk0(0) and Encpk0(1)
are indistinguishable, and hence so are the views of A in H0

L and H1
L.

Towards showing the second indistinguishability, we observe that the only
difference between Hb

i and Hb
i+1 lies in whether the evaluation key contains an

obfuscation ΛL−i of the honest program Prog(skL−i−1,pkL−i) for layer L− i, or an

obfuscation tΛL−i of the trapdoor program tProg(tpkL−i). Furthermore, in both
Hb

i and Hb
i+1 the generation of the evaluation key does not depend on skL−i,

and hence neither do the views of A. Thus to show the indistinguishability of the
views of A it suffices to show the indistinguishability of the following ensembles,
from which the views of A in Hb

i and Hb
i+1 can be reconstructed.{

ΛL−i, pkL−i, pkL−i−1,)
}
λ
≈
{
tΛL−i, tpkL−i, pkL−i−1)

}
λ

where in the above distributions (pkL−i, skL−i) and (pkL−i−1, skL−i−1) are all
randomly sampled honest keys of Π , tpkL−i is a randomly sampled trapdoor
public key, and ΛL−i and tΛL−i are obfuscations of the honest program or
the trapdoor program as in Hb

i and Hb
i+1. We argue why the views of A in

Hb
i and Hb

i+1 can be reconstructed from the left and right random variables

492 R. Canetti et al.

respectively: This is because ΛL−i and tΛL−i correspond respectively to the
(L − i)’th obfuscation in the evaluation key in Hb

i and Hb
i+1, and the other

obfuscated programs Λ1, · · ·ΛL−i−1, tΛL−i+1, · · · , tΛL in the evaluation key can
be sampled efficiently given pkL−i−1 together with pkL−i or tpkL−i; finally,
encryption of b under pk0 can be sampled independently.

We show the above indistinguishability in two steps, via an intermediate
hybrid where an obfuscation Λ′

L−i of the hybrid program Prog(skL−i−1,tpkL−i)

is sampled; the hybrid program is the same as the honest program except that
a trapdoor public key tpkL−i is hardwired.{

ΛL−i, pkL−i , pkL−i−1,)
}
λ
≈
{

Λ′
L−i, tpkL−i , pkL−i−1,)

}
λ

(1){
Λ′
L−i , pkL−i, pkL−i−1,)

}
λ
≈
{

tΛL−i , tpkL−i, pkL−i−1)
}
λ

(2)

Equation (1) follows directly from the fact that a randomly sampled trapdoor
public key is indistinguishable from an honest public key.

Equation (2) holds following the pIO security for the class of samplers SΠ .
More specifically, to show the equation, it suffices to show that it holds for every
fixed sequence of pairs S =

{
(pkL−i−1, skL−i−1)

}
of length l(λ) each. Fix such a

sequence S and let SK = {skL−i−1} be the sequence of secret keys only. Notice
that the sampler DSK described in Figure 3 produces exactly the hybrid and
trapdoor programs as above, that is,

(C0 = Prog(skL−i−1,tpkL−i), C1 = tProg(tpkL−i), z = tpkL−i)
$← DSK

s

Thus for the fixed sequence S, Equation (2) is equivalent to the following:{
(C0, C1, z)

$← DskL−i−1
s : (C0, C1, piO(1s, C0), z)

}
λ

≈
{
(C0, C1, z)

$← DskL−i−1
s : (C0, C1, piO(1s, C1), z)

}
λ

This indistinguishability follows directly from the premise that piO is a pIO for
the sampler DSK . Thus the views ofA in Hb

i and Hb
i+1 are indistinguishable.

Instantiation of LHE. We show how to instantiate our general transformation
from any trapdoor encryption scheme to a LHE scheme, more precisely, how to
realize the premise of Proposition 2.
Instantiation 1: Rerandomizable Encryption + Sub-exponential IO. The first
instantiation uses a ν-hiding trapdoor encryption scheme Π and a X-Ind pIO for
appropriate functions ν and X . Let us specify the functions: First, set ν(λ) =
negl(λ)2−2l(λ), where l(λ) is an upper bound on the lengths of the ciphertexts of
Π . Second, to set the function X , recall that every sampler DSK

s
4 in the class

SΠ produces circuits C0 = Prog(sk,tpk) and C1 = tProg(tpk) of size s(λ) and input

4 We remind the reader that all variables related with the encryption scheme Π , such
as pk, sk, tpk, are generated using security parameter λ, while the pIO scheme piO
and the related samplers all use security parameter s = s(λ).

Obfuscation of Probabilistic Circuits and Applications 493

length 2l(λ); by setting X(s(λ)) = 22l(λ), we have that the two sampled circuits
C0, C1 differ at most X(s) inputs and the output distributions of C0 and C1

are negl(λ)X(λ)−1-indistinguishable following from the ν-hiding property of Π .
Therefore DSK is an X-Ind sampler.

Therefore, any X-Ind pIO scheme is a pIO scheme matching the ν-hiding
trapdoor encryption scheme Π . Furthermore, by Lemma 3, the existence of a
ν-rerandomizable encryption scheme (in particular, a perfectly rerandomizable
one) implies that of a ν-hiding trapdoor encryption scheme. By Theorem 2, X-
Ind pIO can be constructed from any sub-exponentially indistinguishable IO and
sub-exponentially secure OWFs. Therefore, following Proposition 2, we have

Corollary 1 (LHE from Rerandomizable Encryption and Sub-exp
Secure IO and OWF.). Let Π be a perfectly rerandomizable encryption
scheme. Assume the existence of sub-exponentially indistinguishable IO for
circuits and sub-exponentially secure one-way functions. Π can be turned into a
leveled homomorphic encryption scheme.

Instantiation 2: Lossy Encryption + worst-case-input pIO. The second instanti-
ation combines a lossy encryption scheme, which by Lemma 2 directly implies
a statistical trapdoor encryption scheme Π , with a worst-case-input pIO. By
the statistical hiding property of the trapdoor mode of Π , every sampler DSK

in the class SΠ corresponding to Π samples circuits C0 = Prog(sk,tpk) and
C1 = tProg(tpk) with statistically close output distributions for every input.
Therefore, DSK is a worst-case-input indistinguishable sampler. In other words,
any worst-case-input pIO is a pIO for the class SΠ . Following Proposition 2,

Corollary 2 (LHE from Lossy Encryption and worst-case-input pIO).
Let Pi be a lossy encryption scheme. Assume the existence of a worst-case-
input pIO scheme piO. Then, Π can be transformed into a leveled homomorphic
encryption scheme.

Instantiation 3: CPA Encryption + Dynamic-input pIO for Specific Class.
Finally, we observe that any CPA encryption Π can be turned into a LHE,
if there exits a strong notion of pIO, namely dynamic-input pIO for SΠ . As
observed in Lemma 1, any CPA encryption scheme Π = (Gen,Enc,Dec) directly
implies a trapdoor encryption scheme Π ′ = (Gen,Enc,Dec, tKeyGen = Gen)
with a computationally hiding trapdoor mode. This implies that every sampler
DSK in the matching class SΠ is a dynamic-input indistinguishable sampler.
Therefore,

Corollary 3. Let Π be any CPA encryption scheme and Π ′ the corresponding
trapdoor encryption scheme. Assume the existence of a dynamic-input pIO
scheme piO for SΠ′

. Then, Π can be transformed into a leveled homomorphic
encryption scheme.

We note that although general pIO for all dynamic-input indistinguishable
samplers is implausible by [22], pIO for the specific class of samplers SΠ′

circumvents the implausibility result. This is because the implausibility of [22]

494 R. Canetti et al.

applies only to a specific class of samplers that produce (C0, C1, z) where z
is an obfuscated program that essentially distinguishes circuits with the same
functionality as C0 from ones with the same functionality as C1 using only
their I/O interfaces. However, samplers in SΠ′

produce auxiliary input that is a
public key pk of Π , which cannot be used to tell apart circuits of functionalities
identical to Prog(sk,pk) or tProg(pk) through only their I/O interfaces, due to the
semantic security of Π . Therefore, dynamic-input pIO for SΠ′

circumvents the
implausibility. We consider the same construction of X-Ind pIO as a potential
candidate construction of dynamic-input pIO for SΠ′

.

4.3 From LHE to FHE

In this section, we show how to transform any leveled homomorphic encryption
scheme LHE with a fixed decryption depth into a fully homomorphic one, without
relying on circular security. More specifically,

– we say that a LHE scheme LHE = (LHE.Keygen, LHE.Enc, LHE.Dec, LHE.Eval)
has a fixed decryption depth DLHE.Dec(·), if for every polynomial depth L,
every (pk, sk, evk) in the support of LHE.Keygen(1λ, 1L(λ)), every freshly
generated or homomorphically evaluated ciphertext c∗ in the support of
LHE.Enc(pk, ·) or LHE.Eval(pk, (C, · · ·)) with a depth L(λ) circuit C, the
decryption algorithm LHE.Decsk(c

∗) has depth bounded by DLHE.Dec(λ).

We now sketch a general transformation that turns any LHE scheme with a
fixed decryption depth into a FHE. The transformation proceeds in two steps.

A “imaginary” FHE with a non-succinct evaluation key: In a first step,
imagine a FHE scheme with an evaluation key evk that consists of a super-
polynomial number L(λ) of layer evaluation keys each of size poly(λ).
Each layer � ∈ [L] is associated with a key tuple (pk�, sk�, evk�) of LHE
that supports evaluating circuits of depth D′ = DLHE.Dec + 1; moreover,
for each layer, an encryption of the secret key sk�−1 under the public

key pk� is released, that is, Λ� = (pk�, evk�, c�) where (pk�, sk�, evk�)
$←

LHE.Keygen(1λ, 1D
′
) for D′ = DLHE.Dec + 1 and c� = LHE.Encpk�(sk�−1).

Each Λ� is a layer evaluation key: Given two ciphertexts α, β of bits a and
b under pk�−1, we can obtain an encryption γ of a NAND b under pk�, by
evaluating homomorphically over c� the function fα,β(sk�−1) that decrypts
α, β using sk�−1 and computes NAND of the decrypted bits. Since fα,β has
depth exactlyDLHE.Dec+1, the homomorphic computation yields a ciphertext
γ of a NAND b under pk� correctly.
Therefore by publishing a super-polynomially number L of layer evaluation
keys evk = (Λ1, · · ·ΛL), the scheme supports homomorphic evaluation of
any polynomial depth circuits.

“Compress” the size of the evaluation key: The next step is to “com-
press” the size of the super-polynomially long evaluation key to obtain a
FHE with succinct evaluation key. This step relies on an IO for circuits and
a puncturable PRF. The idea is to obfuscate a master circuit Γ that on input

Obfuscation of Probabilistic Circuits and Applications 495

� ∈ [L] computes the �’th layer evaluation key Λ� produced using pseudo-
random coins generated with a puncturable PRF and hardwired PRF keys
k, k′. That is,

Λ� = Γ (k,k′)(�), where (pk�, sk�, evk�) = LHE.Keygen(1λ, 1D
′
;PRF(k, �)),

(pk�−1, sk�−1, evk�−1) = LHE.Keygen(1λ, 1D
′
;PRF(k, �− 1)),

c� = LHE.Encpk�(sk�−1;PRF(k
′, �))

Λ� = (pk�, evk�, c�)

Since the size of the master program Γ (k,k′) is a fixed polynomial in λ, the

new evaluation key evk
$← iO(1s, Γ k,k′

) is succinct, of a fixed polynomial
size in λ (where s an upperbound on the size of Γ and k, k′ are randomly
sampled PRF keys). It follows from a careful hybrid argument over the
virtual super-polynomial number of levels (similar to that in [11,32]) that
the semantic security of LHE remains even when the new evaluation key
is additionally released, provided that all primitives from LHE, to iO to
PRF all have a slightly inverse super-polynomially small distinguishing gap
μ(λ) = negl(λ)L(λ)−1 .

Finally, we note that any LHE scheme with decryption in NC1 have a
fixed decryption depth (in particular, the depth is bounded by λ). Many
known constructions, for example [23,18,16,15,24] satisfy this property. Thus, if
these constructions are slightly super-polynomially secure, by assuming slightly
stronger underlying assumptions (for instance the LHE scheme of [18] can be
made slightly super-polynomially secure if assuming that the underlying learning
with error assumption is slightly super-polynomially secure), they can be directly
transformed into a FHE assuming slightly super-polynomially secure IO and
OWFs (without assuming circular security).

We also note that our LHE scheme constructed in Section 4.2 has a fixed
decryption depth, since its decryption algorithm is identical to that of the
underlying trapdoor encryption scheme. It can also be transformed into a FHE
using the above general transformation. In the full version [19], we provide a
formal description and security proof of the FHE transformed from our LHE.

Acknowledgements. Ran Canetti’s research is supported by the Check Point
Institute for Information Security, ISF grant 1523/14, the NSF MACS Frontier
project, and NSF Algorithmic Foundations grant 1218461. Huijia Lin’s research
is partially supported by a gift from the Gareatis Foundation. Stefano Tessaro’s
research was partially supported by NSF Grant CNS-1423566 and a gift
from the Gareatis Foundation. Vinod Vaikuntanathan’s research was supported
by DARPA Grant number FA8750-11-2-0225, an Alfred P. Sloan Research
Fellowship, an NSF CAREER Award CNS-1350619, NSF Frontier Grant CNS-
1414119, a Microsoft Faculty Fellowship, and a Steven and Renee Finn Career
Development Chair from MIT.

496 R. Canetti et al.

References

1. Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Dov Gordon, S., Tessaro, S.,
Wilson, D.A.: On the relationship between functional encryption, obfuscation, and
fully homomorphic encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308,
pp. 65–84. Springer, Heidelberg (2013)

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs
obfuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013),
http://eprint.iacr.org/

3. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. IACR
Cryptology ePrint Archive, 2013:699 (2013)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: FOCS, pp.
166–175. IEEE Computer Society (2004)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Computational Complexity 15(2), 115–162
(2006)

6. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

8. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

9. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer,
Heidelberg (2014)

10. Bitansky, N., Canetti, R., Cohn, H., Goldwasser, S., Kalai, Y.T., Paneth, O., Rosen,
A.: The impossibility of obfuscation with auxiliary input or a universal simulator.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
71–89. Springer, Heidelberg (2014)

11. Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and their
applications. Cryptology ePrint Archive, Report 2014/771 (2014),
http://eprint.iacr.org/

12. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013)

13. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

14. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom
functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519.
Springer, Heidelberg (2014)

15. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

16. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

17. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer,
Heidelberg (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/

Obfuscation of Probabilistic Circuits and Applications 497

18. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106 (2011), References are to full version:
http://eprint.iacr.org/2011/344

19. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. Cryptology ePrint Archive, Report 2014/882 (2014),
http://eprint.iacr.org/

20. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K.-C. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

21. Garg, S., Gentry, C., Halevi, S., Sahai, A., Raikova, M., Waters, B.: Candidate
Indistinguishability Obfuscation and Functional Encryption for all circuits. In:
FOCS (2013)

22. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

24. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

25. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

26. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS, pp. 553–562. IEEE Computer Society (2005)

27. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

28. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption:
Constructions from general assumptions and efficient selective opening chosen
ciphertext security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 70–88. Springer, Heidelberg (2011)

29. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: FOCS, pp. 294–304. IEEE
Computer Society (2000)

30. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung,
M. (eds.) CCS, pp. 669–684. ACM (2013)

31. Kol, G., Naor,M.: Games for exchanging information. In: STOC, pp. 423–432 (2008)
32. Lin, H., Pass, R.: Succinct garbling schemes and applications. Cryptology ePrint

Archive, Report 2014/766 (2014), http://eprint.iacr.org/
33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

34. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

35. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011)

36. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007)

37. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: STOC, pp. 475–484 (2014)

http://eprint.iacr.org/2011/344
http://eprint.iacr.org/
http://eprint.iacr.org/

Graph-Induced Multilinear Maps from Lattices

Craig Gentry1, Sergey Gorbunov2, and Shai Halevi1

1 IBM Research, Yorktown, NY, USA
cbgentry@us.ibm.com, shaih@alum.mit.edu

2 MIT, Cambridge, MA, USA
sergeyg@mit.edu

Abstract. Graded multilinear encodings have found extensive appli-
cations in cryptography ranging from non-interactive key exchange
protocols, to broadcast and attribute-based encryption, and even to
software obfuscation. Despite seemingly unlimited applicability, essen-
tially only two candidate constructions are known (GGH and CLT).
In this work, we describe a new graph-induced multilinear encoding
scheme from lattices. In a graph-induced multilinear encoding scheme
the arithmetic operations that are allowed are restricted through an
explicitly defined directed graph (somewhat similar to the “asymmetric
variant” of previous schemes). Our construction encodes Learning With
Errors (LWE) samples in short square matrices of higher dimensions.
Addition and multiplication of the encodings corresponds naturally to
addition and multiplication of the LWE secrets. Security of the new
scheme is not known to follow from LWE hardness (or any other “nice”
assumption), at present it requires making new hardness assumptions.

Keywords: Multilinear maps, Lattices, LWE.

1 Introduction

Cryptographic multilinear maps are an amazingly powerful tool: like homomor-
phic encryption schemes, they let us encode data in a manner that simultaneously
hides it and permits processing on it. But they go even further and let us
recover some limited information (such as equality) on the processed data
without needing any secret key. Even in their simple bi-linear form (that only
supports quadratic processing) they already give us pairing-based cryptography
[28,39,5], enabling powerful applications such as identity- and attribute-based
encryption [6,40,26], broadcast encryption [8] and many others. In their general
form, cryptographic multilinear maps are so useful that we had a body of work
examining their applications even before we knew of any candidate constructions
to realize them [9,37,35,38]. Formally, a non-degenerate map between order-q
algebraic groups, e : Gd � GT , is d�multilinear if for all a1, . . . , ad � Zq and
g � G,

e�ga1 , . . . , gad� � e�g, . . . , g�a1�...�ad .

We say that the map e is “cryptographic” if we can evaluate it efficiently and at
least the discrete-logarithm in the groups G,GT is hard.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 498–527, 2015.
c© International Association for Cryptologic Research 2015

Graph-Induced Multilinear Maps from Lattices 499

In a recent breakthrough, Garg, Gentry and Halevi [19] gave the first
candidate construction that “approximate” multilinear maps from ideal lattices,
followed by a second construction by Coron, Lepoint and Tibouchi [16] over
the integers. (Some optimizations to the GGH scheme were proposed in [30]). In
these constructions there are no explicit algebraic groups, and the transformation
a �� ga is replaced by some (randomized) encoding function. These constructions
are called graded encoding schemes, where the “graded” adjective refers to the
ability to carry out intermediate computations. One way to think of these
intermediate computations is as a sequence of levels (or groups) G1, . . . , Gd and
a set of maps eij such that for all gai � Gi, g

b
j � Gj (satisfying i � j 	 d),

eij�gai , gbj� � gabi�j . Asymmetric variant of graded encoding schemes provides
additional structure on how these encodings can be combined. Each encoding
is assigned with a set of levels S
 �N �. Given two encodings gaS , g

b
S� the map

allows to compute gabS�S� only if S S� � �.
Both [19] and [16] constructions begin from some variant of homomorphic

encryption and use public-key encryption as the encoding method. The main
new ingredient, however, is that they also publish a defective version of the secret
key, which cannot be used for decryption but can be used to test if a ciphertext
encrypts a zero. (This defective key is called the “zero-test parameter”.) Over the
last two years, the applications of (graded) multilinear maps have expanded much
further, supporting applications such as witness encryption, general-purpose
obfuscation, functional encryption, and many more [21,20,18,7,11].

1.1 Our Results

We present a new “graph-induced” variant of multilinear maps. In this variant,
the multilinear map is defined with respect to a directed acyclic graph. Namely,
encoded value are associated with paths in the graph, and it is only possible
to add encoding relative to the same paths, or to multiply encodings relative
to “connected paths” (i.e., one ends where the other begins) Our candidate
construction of graph-induced multilinear maps does not rely on ideal lattices
or hard-to-factor integers. Rather, we use standard random lattices such as
those used in LWE-based cryptography. We follow a similar outline to the
previous constructions, except our instance generation algorithm takes as input a
description of a graph. Furthermore, our zero-tester does not include any secrets
about the relevant lattices. Rather, in our case the zero-tester is just a random
matrix, similar to a public key in common LWE-based cryptosystems.

Giving up the algebraic structure of ideal lattices and integers could contribute
to a better understanding of the candidate itself, reducing the risk of unforeseen
algebraic crypt-analytical attacks. On the flip side, using our construction is
sometimes harder than previous construction, exactly because we give up some
algebraic structure. In terms of security, we were not able so far to reduce
any of our new construction to “nice” hardness assumptions, currently they
are all just candidate constructions, that withstood our repeated cryptanalytic
attempts at breaking them. Still we believe that our new construction is a well
needed addition to our cryptographic toolbox, providing yet another avenue for

500 C. Gentry, S. Gorbunov, and S. Halevi

implementing multilinear maps. This is particularly important in light of the new
techniques for attacking these schemes [15]. For more discussion see Section 4.2.

Our Techniques. Our starting point is the new homomorphic encryption (HE)
scheme of Gentry, Sahai andWaters [25]. The secret key in that scheme is a vector
a � Zm

q , and a ciphertext encrypting μ � Zq is a matrix C � Zm�m
q with small

entries such that C � a � μ � a� e for some small error vector e. In other words,
valid ciphertexts all have the secret key a as an “approximate eigenvector”, and
the eigenvalue is the message. Given the secret eigenvector a, decoding arbitrary
μ’s becomes easy.

This HE scheme supports addition and multiplication, but we also need a
public equivalent of the approximate eigenvector for zero-testing. The key idea is
to replace the “approximate eigenvector” with an “approximate eigenspace” by
increasing the dimensions. Instead of having a single approximate eigenvectors,
our “approximate eigenspace” is described by n vectors A � Zm�n

q . The
approximate eigenvalues will not merely be elements of Zq, but rather matrices
S � Zn�n

q with small entries. An encoding of S is a matrix C � Zm�m with small
entries such that

C �A � A � S�E

for small noise matrix E � Zm�n
q . In other words, C is a matrix that maps any

column vector in A to a vector that is very close to the span of A. In that sense,
A is an approximate eigenspace. In the HE scheme, a was a secret key that
allowed us to easily recover μ. However, for the eigenspace setting, assuming A
is just a uniformly random matrix and S is a random small matrix, A � S�E is
an LWE instance that looks uniform even when given A.

Overview of Our Construction. Our construction is parametrized by a directed
acyclic graph G � �V,E�. For each node v � V , we assign a random matrix
Av � Zm�n

q . Any path u � v (which can be a single edge) can be assigned with
an encoding D � Zm�m

q of some plaintext secret S � Zn�n
q satisfying

D �Au � Av � S�E (1)

for some small error E � �χ�m�n.
Adding and multiplying encodings corresponds to addition and multiplication

of matrices. Addition of encodings can only be performed relative to the same
path u � v. For example, given encodings D1,D2 at path u � v, we have that:

�D1 �D2� �Au � Av � S1 �Av � S2 � Av � �S1 � S2�.
Multiplication of encodings can only be performed when they form a complete
path. That is, given encodings D1 and D2 relative to paths u � v and v � w
respectively, we have:

D2 �D1 �Au � D2 � �Av � S1 �E1�
� �Aw � S2 �E2� � S1 �D2 � E1

� Aw � S2 � S1 �E2 � S1 �D2 � E1�����������������������
E�

(2)

Graph-Induced Multilinear Maps from Lattices 501

where E� is small since the errors and matrices S1,D2 have small entries.
Furthermore, it is possible to compare two encodings with the same sink node.
That is, given D1 and D2 relative to paths u � v and w � v, it is sufficient to
check if D1 �Au �D2 �Aw is small since if S1 � S2, then we have

D1 �Au �D2 �Aw � �Av � S1 �E1� � �Av � S2 �E2� � E1 �E2 (3)

Hence, the random matrices Au,Aw � Zq, which are commonly available in the
public parameters, is sufficient for comparison and zero-testing.

As we explain in Section 3, generating the encoding matrices requires knowing
a trapdoor for the matrices Ai. But for the public-sampling setting, it is possible
to generate encodings of many random matrices during setup, and later anyone
can take a random linear combinations of them to get “fresh” random encodings.

We remark that since S needs to be small in Eqn. (2), our scheme only
supports encoding of small plaintext elements, as opposed to arbitrary plaintext
elements as in previous schemes.1 Another difference is that in the basic
construction our plaintext space is a non-commutative ring (i.e. square matrices).
We extend to the commutative setting in Section 3.2.

Variations and Parameters. One standard way of improving parameters is to
switch to a ring-LWE setting, where scalars are taken from a large polynomial
ring (rather than being just integers), and the dimension of vectors and matrices
is reduced proportionally. In our context, we can also use the same approach to
move to a commutative plaintext space, see Section 3.2.

1.2 Applications

Our new constructions support many of the known cryptographic uses of graded
encoding. Here we briefly sketch two of them.

Non-interactive Multipartite Key-Exchange. Consider k-partite key-exchange.
We design a graph in a star topology with k-branches each of length k�1 nodes,
where each player is associated with one of these branches. All branches meet at
the common sink nodeA0. For each branch, we associate encodings of small LWE
secrets t1, . . . , . . . , tk in a specific order, where the same values are used in all the
branches, but in different order. The public parameters consists of the encoding of
many such plaintext values. Each player then takes random linear combinations
of these encodings so as to obtain the encoding of the same plaintext value
relative to one edge on each branch. The player stores the encoding along its
own branch as its secret key and broadcasts the rest of to other players. Assume
some canonical ordering of the players. Each player computes the k� 1 product

1 The only exception is that the leftmost plaintext matrix S in a product could encode
a large element, as Eqn. (2) is not affected by the size of S1. Similarly the rightmost
encoding matrix D in a product need not be small. We do not use these exceptions
in the current paper, however.

502 C. Gentry, S. Gorbunov, and S. Halevi

of the other players’ encodings along its own branch and multiplied also by its
secret encoding. This yields an encoding D of T� ��i��k	 si, satisfying

D �Aj,1 � A0 �
�
i��k	

si � noise

And the players obtain the shared secret key by applying a randomness extractor
on the most significant bits.

Branching-Program Obfuscation. Perhaps the “poster application” of cryp-
tographic graded encodings is to obtain general-purpose obfuscation [20],
[12,4,36,23], with the crucial step being the use of graded encoding to obfuscate
branching programs . These branching programs are represented as a sequence
of pairs of encoded matrices, and the user just picks one matrix from each pair
and then multiply them all in order.

This usage pattern of graded encoding fits very well into our graph-induced
scheme since these matrices are given in a pre-arranged order. We describe a
candidate obfuscation construction from our multilinear map based on a path
graph. Informally, to obfuscate a length-L matrix branching program �Bi,b�, we
first perform Kilian’s randomization and then encode values R
1

i
1Bi,0Ri and

R
1
i
1Bi,1Ri relative to the edge i. The user can then compute an encoding of a

product of matrices corresponding to its input. If the product
�

i��L	Bi,xvari � I,
then the user obtains an encoding D satisfying:

D �A0 � AL � I� noise

Given AL � I � noise� in the public parameters (or its encoding), the user can
then learn the result of the computation by a simple comparison. We note
that our actual candidate construction is more involved as we deploy additional
safeguards from the literature (See Section 5.2).

1.3 Organization

In Section 2, we provide some background and present the syntax of graph-
induced multilinear maps. In Section 3, we describe our basic construction in
the non-commutative variant. In Subsection 3.2 we show how to extend our
basic construction to commutative variant. In Section 4, we analyze the security
of our construction. In Section 5 we present applications of our construction to
key-exchange and obfuscation.

2 Preliminaries

Notation. For any integer q � 2, we let Zq denote the ring of integers modulo
q and we represent Zq as integers in ��q�2, q�2�. We let Zn�m

q denote the set of
n�m matrices with entries in Zq. We use bold capital letters (e.g. A) to denote
matrices, bold lowercase letters (e.g. x) to denote vectors.

Graph-Induced Multilinear Maps from Lattices 503

If A1 is an n�m matrix and A2 is an n�m� matrix, then �A1�A2� denotes the
n� �m�m�� matrix formed by concatenating A1 and A2. Similarly, if A1,A2

have dimensions n � m and A2 is an n� �m, respectively, then we denote by
�A1�A2� the �n � n�� �m matrix formed by putting A1 on top of A2. Similar
notations apply to vectors. When doing matrix-vector multiplication we usually
view vectors as column vectors.

A function f�n� is negligible if it is o�n
c� for all c � 0, and we use negl�n� to
denote a negligible function of n. We say that f�n� is polynomial if it is O�nc�
for some c � 0, and we use poly�n� to denote a polynomial function of n. An
event occurs with overwhelming probability if its probability is 1� negl�n�. The
notation �x� denotes the nearest integer to x, rounding toward 0 for half-integers.

The �� norm of a vector is denoted by �x� � maxi �xi�. We identify
polynomials with their representation in some standard basis (e.g., the standard
coefficient representation), and the norm of a polynomial is the norm of the
representation vector. The norm of a matrix, �A�, is the norm of its largest
column.

Extractors. An efficient �n,m, �, ε�-strong extractor is a poly-time algorithm
Extract : �0, 1�n � �0, 1�� such that for any random variable W over �0, 1�n with
min-entropy m, it holds that the statistical distance between �Extractα�W �, α�
and �U�, α� is at most ε. Here, α denotes the random bits used by the extractor.
Universal hash functions [14,41] can extract � � m� 2 log 1

ε � 2 nearly random
bits, as given by the leftover hash lemma [27]. This will be sufficient for our
applications.

2.1 Lattice Preliminaries

Gaussian Distributions. For a real parameter σ � 0, define the spherical
Gaussian function on Rn with parameter σ as ρσ�x� � exp��π��x��n�σ2� for all
x � Rn. This generalizes to ellipsoid Gaussians, where we replace the parameter
σ � R by the (square root of the) covariance matrix Σ � Rn�n: For a rank-
n matrix S � Rm�n, the ellipsoid Gaussian function on Rn with parameter
S is defined by ρS�x� � exp��πxT �STS�
1x� for all x � Rn. The ellipsoid
discrete Gaussian distribution with parameter S over a set L � Rn is DL,S�x� �
ρS�x��ρS�L�, where ρS�L� denotes

�
x�L ρS�x� and serves as just a normalization

factor. The same notations also apply the to spherical case, DL,σ���, and in
particular DZn,r denotes the n-dimensional discrete Gaussian distribution.

It follows from [33] that when L is a lattice and σ is large enough relative to
its “smoothing parameter” (alternatively its λn or the Gram-Schmidt norm of
one of its bases), then for every point c � Rn we have

Pr
� �x� c� � σ

�
n : x

R� DL,σ,c

	 	 negl�n�.

Also under the same conditions, the probability for a random sample from DZm,σ

to be 0 is negligible.

504 C. Gentry, S. Gorbunov, and S. Halevi

Trapdoors for Lattices

Lemma 1 (Lattice Trapdoors [3,24,32]). There is an efficient randomized
algorithm TrapSamp�1n, 1m, q� that, given any integers n � 1, q � 2, and
sufficiently large m � Ω�n log q�, outputs a parity check matrix A � Zm�n

q and
some ‘trapdoor information’ τ that enables sampling small solutions to rA � u
�mod q�.

Specifically, there is an efficient randomize algorithm PreSample such that for
large enough s � Ω��n log q� and with overwhelming probability over �A, τ� �
TrapSamp�1n, 1m, q�, the following two distributions are within negl�n� statistical
distance:

– D1�A, τ � chooses a uniform u � Zn
q and uses τ to solve for rA � u �mod q�,

D1�A, τ � def�
�u, r� : u� Zn
q ; r� PreSample�A, τ,u, s�� .

– D2�A� chooses a Gaussian r� DZm,s and sets u :� rA mod q,

D2�A� def� ��u, r� : r� DZm,s; u :� rA mod q� .

We can extend PreSample from vectors to matrices by running it k times
on k different vectors u and concatenating the results, hence we write R �
PreSample�A, τ,U, s�.

We also note that any small-enough full rank matrixT (over the integers) such
that TA � 0 �mod q� can be used as the trapdoor τ above. This is relevant to
our scheme because in many cases an “encoding of zero” can be turned into such
a trapdoor (see Section 4).

2.2 Graded Multilinear Encodings

The notion of graded encoding scheme that we relaize is similar (but not exactly
identical) to the GGH notion from [19]. Very roughly, a graded encoding scheme
for an algebraic “plaintext ring R” provides methods for encoding ring elements
and manipulating these encodings. Namely we can sample random plaintext
elements together with their encoding, can add and multiply encoded elements,
can test if a given encoding encodes zero, and can also extract a “canonical
representation” of a plaintext element from an encoding of that element. k

Syntax of Graph-Induced Graded Encoding Schemes. There are several
variations of graded-encoding systems in the literature, such as public/secret
encoding, with/without re-randomization, symmetric/asymmetric, etc. Below
we define the syntax for our scheme, which is still somewhat different than all
of the above. The main differences are that our encodings are defined relative
to edges of a directed graph (as opposed to levels/sets/vectors as in previous
schemes), and that we only encode “small elements” from the plaintext space.
Below we provide the relevant definitions, modifying the ones from [19].

Graph-Induced Multilinear Maps from Lattices 505

Definition 1 (Graph-Induced Encoding Scheme). A graph-based graded
encoding scheme with secret sampling consists of the following (polynomial-time)
procedures,Ges � �PrmGen, InstGen, Sample,Enc, add, neg,mult,ZeroTest,Extract�:

– PrmGen�1λ, G, C�: The parameter-generation procedure takes the security
parameter λ, underlying directed graph G � �V,E�, and the class C of
supported circuits. It outputs some global parameters of the system gp, which
includes in particular the graph G, a specification of the plaintext ring R and
also a distribution χ over R.
For example, in our case the global parameters consists of the dimension n
of matrices, the modulus q and the Gaussian parameter σ.

– InstGen�gp�: The randomized instance-generation procedure takes the global
parameters gp, and outputs the public and secret parameters sp, pp.

– Sample�pp�: The sampling procedure samples an element in the the plaintext
space, according to the distribution χ.

– Enc�sp, p, α�: The encoding procedure takes the secret parameters pp, a path
p � u � v in the graph, and an element α � R from the support of the
Sample procedure, and outputs an encoding up of α relative to p. 2

– neg�pp, u�, add�pp, u, u��, mult�pp, u, u��. The arithmetic procedures are de-
terministic, and they all take as input the public parameters and use them
to manipulate encodings.
Negation takes an encoding of α � R relative to some path p � u � v and
outputs encoding of �α relative to the same path. Addition takes u, u� that
encode α, α� � R relative to the same path p, and outputs an encoding of
α � α relative to p. Multiplication takes u, u� that encode α, α� � R relative
to consecutive paths p � u � v and p� � v � w, respectively. It outputs an
encoding of α � α� relative to the combined path u � w.

– ZeroTest�pp, u�: Zero testing is a deterministic procedure that takes the public
parameters pp and an encoding u that is tagged by its path p. It outputs 1 if
u is an encoding of zero and 0 if it is an of a non-zero element.

– Extract�pp, u�: The extraction procedure takes as input the public parameters
pp and an encoding u that is tagged by its path p. It outputs a λ-bit string that
serves as a “random canonical representation” of the underlying plaintext
element α (see below).

Correctness. The graph G, in conjunction with the procedures for sampling,
encoding, and arithmetic operations, and the class of supported circuits,

implicitly define the set SG of “valid encodings” and its partition into sets S
�α
G

of “valid encoding of α”.
Namely, we consider arithmetic circuits whose wires are labeled by paths in G

in a way that respects the permitted operations of the scheme (i.e., negation and
addition have all the same labels, and multiplication has consecutive input paths
and the output is labeled by their concatenation). Then SG consists of all the

2 See the description below for the meaning of “up is an encoding of α relative to p”,
formally up is just a bit string, which is tagged with its path p.

506 C. Gentry, S. Gorbunov, and S. Halevi

encoding that can be generated by running the sampling/encoding procedures
to sample plaintext elements and compute their encoding, then computing the
operations of the scheme according to Π , and finally collecting the encoding at

the output of Π . An encoding u � SG belongs to S
�α
G if there exists such circuit

Π and inputs for which Π outputs α when evaluated on plaintext elements. Of

course, to be useful we require that the sets S
�α
G form a partition of SG.

We can also sub-divide each S
�α
G into S

�α
G,p for different paths p in the graph,

depending on the label of the output wire of Π (but here it is not important

that these sets are disjoint), and define SG,p �
�

α�R S
�α
G,p.

Note that the sets S
�α
G,p can be empty, for example in our construction the

sampling procedure only outputs “small” plaintext values α, so a “large” β

would have S
�β
G,p � �. Below we denote the set of α’s with non-empty encoding

sets (relative to path p) by SMALLG,p
def� �α � R : S

�α
G,p � ��, and similarly

SMALLG
def� �α � R : S

�α
G � ��.

We assume for simplicity that the sets SMALL depend only on the global
parameters gp and not the specific parameters sp, pp. (This assumption holds
for our construction and it simplifies the syntax below.)

We can now state the correctness conditions for zero-testing and extraction.
For zero-testing we require that ZeroTest�pp, u� � 1 for every u � S�0 (with
probability one), and for every α � SMALLG, α � 0 it holds with overwhelming
probability over instance-generation that ZeroTest�pp, u� � 0 for every encoding

u � S
�α
G .

For extraction,we roughly require that Extract outputs the same string on all
the encodings of the same α, different strings on encodings of different α’s, and
random strings on encodings of “random α’s.” Formally, we require the following
for any global parameters gp output by PrmGen:

– For any plaintext element α � SMALLG and path p in G, with overwhelming
probability over the parameters �sp, pp� � InstGen�gp�, there exists a single

value x � �0, 1�λ such that Extract�pp, u� � x holds for all u � S
�α
G,p.

– For any α � α� � SMALLG and path p in G, it holds with overwhelming

probability over the parameters �sp, pp� � InstGen�gp� that for any u � S
�α
G,p

and u� � S
�α�
G,p , Extract�pp, u� � Extract�pp, u��.

– For any path p in G and distribution D over SMALLG,p with min-entropy
3λ or more, it holds with overwhelming probability over the parameters
�sp, pp� � InstGen�gp� that the induced distribution �Extract�pp, u� : α �
D, u � S

�α
d � is nearly uniform over �0, 1�λ.

In some applications these conditions can be weakened. For example we often
only need them to hold for some paths in G rather than all of them (e.g., we
only care about source-to-sink paths).

Graph-Induced Multilinear Maps from Lattices 507

Variations

No Re-randomization. In some applications one may want to re-randomize a
given encoding, obtaining a “fresh” encoding of the same value. The common
way of obtaining this functionality is by providing encoding of zeros in the public
parameter and adding a subset-sum of them. For our construction this turns
out to be insecure, see Section 4. Hence this construction does not support re-
randomization.

Public Sampling of Encoded Elements. Another useful variation allows a public
sampling procedure that takes as input pp rather than sp and outputs both a
plaintext α and its encoding up relative to some path p. The common way of
implementing it is to add to the public parameters many plaintext-encoding pairs
�αi, ui� (e.g., wrt the edges in G). Then a public sampling procedure can just use
a subset sum of these tuples as a new sample. (One can make the distribution of
these new samples “nice”, e.g., by using the leftover-hash over Gaussians from
[2,1].) In our construction this is sometimes insecure, specifically when applied
to our commutative variant, see Section 4. We do not know of attacks on public
sampling in the non-commutative case, but the fact that the commutative case
is insecure seems worrisome.

3 Our Graph-Induced Multilinear Maps

The plaintext space in our basic scheme is the non-commutative ring of matrices
R � Zn�n

q , later in Section 3.2 we describe a commutative variant. In this section
we only deal with correctness of these schemes, their security is discussed in
Section 4.

As sketched in the introduction, for the basic scheme we have an underlying
directed acyclic graph G � �V,E�, we identify a random matrix Av � Zm�n

q

with each node v � V , and encodings in the scheme are defined relative to
paths. A small plaintext matrix S � R is encoded wrt to the path u � v via
another small matrix D � Zm�m

q such that D � Au � Av � S. In more detail,
we have the following graded encoding scheme Ges � �PrmGen, InstGen, Sample,
Enc, add, neg,mult,ZeroTest,Extract�:
– PrmGen�1λ, G, C�: On input the security parameter λ, an underlying DAG

G � �V,E�, and class C of supported circuits, we compute:

1. LWE parameters n,m, q and error distribution χ � DZ,s.
2. A Gaussian parameters σ for PreSample.
3. Another parameter t for the number of most significant bits used for

zero-test and extraction.

The constraints that dictate these parameters are described in Appendix A.
The resulting parameters for a DAG of diameter d are n � Θ�dλ log�dλ��,
q � �dλ�Θ�d, m � Θ�nd log q�, s � �

n, σ �

n�d� 1� log q, and t �
��log q��4��1. These global parameters gp (including the graph G) are given
to all the procedures below.

508 C. Gentry, S. Gorbunov, and S. Halevi

– InstGen�gp�: Given the global parameters, instance-generation proceeds as
follows:
1. Use trapdoor-sampling to generate �V � matrices with trapdoors, one for

each node.
�v � V,

�
Av, τv

�� TrapSamp�1n, 1m, q�
2. Choose the randomness-extractor seed β from a pairwise-independent

function family, and a uniform “shift matrix” Δ � Zm�n
q .

The public parameters are pp :� ��Av : v � V �, β,Δ� and the secret
parameters include also the trapdoors �τv : v � V �.

– Sample�pp�: This procedure just samples an LWE secret S� �χ�n�n as the
plaintext.

– Enc�sp, p,S�: On input the matrices Au,Av, the trapdoor τu, and the small
matrix S, sample an LWE error matrix Ei � �χ�m�n, set V � Av � S �
E � Zm�n

q , and then use the trapdoor τu to compute the encoding Dp s.t.
Dp �Au � V, Dp � PreSample�Au, τu,V, σ�. The output is the plaintext S
and encoding Dp.

– The arithmetic operations are just matrix operations in Zm�m
q :

neg�pp,D� :��D, add�pp,D,D�� :� D�D�, and mult�pp,D,D�� :� D�D�.

To see that negation and addition maintain the right structure, let D,D� �
Zm�m
q be two encodings reltive to the same path u � v. Namely D �Au �

Av � S�E and D� �Au � Av � S� �E�, with the matrices D,D�,E,E�,S,S�

all small. Then we have

�D �Au � Av � ��S� � ��E�,
and �D�D�� �Au � �Av � S�E� � �Av � S� �E���Av � �S�S����E�E��,
and all the matrices �D,�S,�E, D �D�, S � S�, E � E� are still small.
For multiplication, consider encodings D,D� relative to paths v � w and
u � v, respectively, then we have

�D �D�� �Au � D � �Av � S� �E�
�

� �Aw � S�E
� � S� �D �E� � Aw � �S � S����E � S��D �E���������������������

E�

,

and the matrices D �D�, S � S�, and E� are still small.
Of course, the matrices D,S,E all grow with arithmetic operations, but our
parameter-choice enures that for any encoding relative to any path in the
graph u � v (of length 	 d) we have D �Au � Av � S� E where E is still
small, specifically �E� � q3�4 	 q�2t�1.

– ZeroTest�pp,D�. Given an encoding D relative to path u � v and the matrix
Au, our zero-test procedure outputs 1 if and only if �D �Au� � q�2t�1.

– Extract�pp,D�: Given an encoding D relative to path u � v, the matrix Au

and shift-matrix Δ, and the extrator seed β, we compute D �A0�Δ, collect
the t most-significant bits from each entry (when mapped to the interval
�0, q � 1�), and apply the randomness extractor, outputting

w :� RandExtβ
�
msbt�D �Au �Δ��

Graph-Induced Multilinear Maps from Lattices 509

3.1 Correctness

Correctness of the scheme follows from our invariant, which says that encoding
of some plaintext matrix S relative to any path u � v of legnth 	 d satisfies
D �Au � Av � S�E for �E� � q�2t�1.

Correctness of Zero-Test. An encoding of zero satisfies D � Au � E, hence
�D �Au� � q�2t�1. On the other hand, since Av is uniform then for any nonzero
S we only get �Av � S� 	 q�2t with exponentially small probability, and since
�E� � q�2t�1 then

�D �Au� � �Av � S� � �E� � q�2t � q�2t�1 � q�2t�1.

Hence with overwhelming probability over the choise of Av, our zero-test will
output 0 on all the encoding of S.

Correctness of Extraction. We begin by proving that for any plaintext matrix
S and any encoding D of S (relative to u � v), with overwhelming probability
over the parameters we have that msbt�D �Au �Δ� � msbt�Av � S�Δ�.

Since the two matrices M � Av � S�Δ and M� � D �Au �Δ differ in each
entry by at most q�2t�1 modulo q, they can only differ in their top t bits due to
the mod-q reduction, i.e., if for some entry we have �M�k,� � 0 but �M��k,� � q
or the other way around. (Recall that here we reduce mod-q into the interval
�0, q� 1�.) Clearly, this only happens when M �M� � 0 �mod q�, in particular
we need

� � q�2t�1 � �AvS�Δ�k,� � q�2t�1.

For any S and Av, the last condition occurs only with exponentially small
probability over the choise ofΔ. We conclude that if all the entries of �Av �S�Δ�
are larger than q�2t�1 (modulo q), which happens with overwhelming probability,
then for all level-i encodings D of S, the top t bits of D �Au agree with the top
t bits of Av �S. We call a plaintext matrix S “v-good” if the above happens, and
denote their set by GOODv. With this notation, the arguments above say that
for any fixed S, v, we have S � GOODv with overwhelming probability over the
instance-generation randomness.

Same Input Implies Same Extracted Value. For any plaintext matrix S �
GOODv, clearly all its encodings relative to u � v agree on the top t bits
of D �Au (since they all agree with Av � S). Hence they all have the same
extracted value.

Different Inputs Imply Different Extracted Values. If D,D� encode dif-
ferent plaintext matrices then D � D� is an encoding of non-zero, hence
��D �D�� �Au� � q�2t except with negligible probability, D �Au �Δ and
D� �Au�Δ must differ somewhere in their top t bits. Since we use universal
hashing for our randomness extractor, then with high probability (over the
hash function β) we get RandExtβ

�
msbt�D �Au�Δ�� � RandExtβ

�
msbt�D� �

Au �Δ��.

510 C. Gentry, S. Gorbunov, and S. Halevi

Random Input Implies Random Extracted Value. Fix some high-entropy
distribution D over inputs S. Since for every S we have Pr�S � GOODv� �
1 � negl�λ� then also with overwheling probability over the parameters we
have PrS�D�S � GOODv� � 1� negl�λ�. It is therefore enough to show that
RandExtβ�msbt�Av � S�Δ�� is nearly uniform on S� D.
We observe that the function H�S� � Av �S�Δ is itself pairwise independent
on each column of the output separately, and therefore so is the function
H ��S� � msbt�H�S��. 3 We note that H � has very low collision probability,
its range has many more than 6λ bits in every column, so for every S � S�

we get PrH� �H ��S� � H ��S��� 2
6λ. Therefore H � is a good condenser,
i.e., if the min-entropy of D is above 3λ, then with overwhelming probability
over the choise of H , the min-entropy of H ��D� is above 3λ � 1 (say). By
the extraction properties of RandExt, this implies that RandExtβ�H ��D�� is
close to uniform (whp over β).

3.2 A Commutative Variant

In some applications it may be convenient or even necessary to work with a
commutative plaintext space. Of course, simply switching to a commutative
sub-ring of the ring of matrices (such as s � I for a scalar s and the identity I)
would be insecure, but we can make it work by moving to a larger ring.

Cyclotomic Rings. We switch from working over the ring of integers to working
over polynomial rings, R � Z�x���F �X�� and Rq � R�qR for some degree n
irreducible integer polynomial F �X� � Z�X� and an integer q � Z. Elements
of this ring correspond to degree-�n � 1� polynomials, and hence they can be
represented by n-vectors of integers in some convenient basis. The norm of a
ring element is the norm of its coefficient vector, and this can be extended as
usual for norm of vectors and matrices over R. Addition and multiplication are
just polynomial addition and multiplication modulo F �X� (and also modulo q
when talking about Rq).

As usual, we need a ring where the norm of a product is not much larger
than the product of the norms, and this can be achieved for example by using
F � ΦM �X�, the M ’th cyclotomic polynomial (of degree n � φ�M�). All the
required operations and lemmas that we need (such as trapdoor and pre-image
sampling etc.) can be extended also to this setting, see e.g. [31].

The construction remains nearly identical, except all operations are now
performed over the rings R and Rq and the dimensions are changed to match. We
now have the “matrices” Av � Rm�1

q with only one column (and similarly the

error matrices are E � Rm�1
q), and the plaintext space is Rq itself. An encoding

of plaintext element s � Rq relative to path u � v is a small matrix D � Rm�m
q

such that
D �Au � Av � s�E

3 If q is not a power of two then H � does not produce uniformly random t-bit strings.
But still its outputs on any two S� � S are independent, and each has almost full
(min-)entropy, which sufficies for our purposes.

Graph-Induced Multilinear Maps from Lattices 511

where E� is some small error term. As before, we only encode small plaintext
elements, i.e., the sampling procedure draws s from a Gaussian distribution with
small parameter. The operations all remain the same as in the basic scheme.

We emphasize that it is the plaintext space that is commutative, not the
space of encoding. Indeed, if we have D,D� that encode s, s� relative to paths
v � w and u � v, respectively, we can only multiply them in the order D �D�.
Multiplying in the other order is inconsistent with the graph G and hence is
unlikely to yield a meaningful result. What makes the commutative scheme useful
is the ability to multiply the plaintext elements in arbitrary order. For example
for D,D� that encode s, s� relative to paths u � w and v � w, we can compute
either D �Au � s� or D� �Av � s and the results will both be close Av � ss� (and
hence also close to each other).

3.3 Public Sampling and Some Other Variations

As mentioned in Section 2.2, for the non-commutative version we can provide a
public sampling procedure relative to any desired path p � u � v by publishing
with the public parameters a collection of pairs generated by the secret sampling
procedure above, ��Sk,Dk� : k � 1, . . . , �� (for some large enough �). The public
sampling procedure then takes a random linear combination of these pairs as a
new sample, namely it chooses r � DZ�,σ� and compute the encoding pair as:

�S,D� :�
��

i���	 riSi ,
�

i���	 riDi

�
. It is easy to see that the resulting D

encodes S relative to the edge e. Also by the leftover-hash over Gaussians [2,1],
the plaintext matrix S is distributed according to a Gaussian distribution whp.
We again caution that adding these encodings is insecure in the commutative
case, as noted in Section 4.

Some Safeguards. Since our schemes are graph-based, and hence the order of
products is known in advance, we can often provide additional safeguards using
Kilian-type randomization [29] “on the encoding side”. Namely, for each internal
node v in the graph we choose a random invertible m�m matrix modulo q Rv,
and for the sinks and sources we set Rv � I. Then we replace each encoding C
relative to the path u � v by the masked encoding C� :� R
1

v �C �Ru.
Clearly, this randomization step does not affect the product on any source-

to-sink path in the graph, but the masked encodings relative to any other path
no longer consist of small entries, and this makes it harder to mount the attacks
from Section 4.

Other safeguards of this type includes the observations that encoding matrices
relative to paths that end at a sink node need not have small entries since the
size of the last matrix on a path does not contribute to the size of the final error
matrix. Similarly plaintext elements encoded on paths that begin at source nodes
need not be small, for the same reason.

We remark that applying the safeguards from above comes with a price tag:
namely the encoding matrices no longer consist of small entries, hence it takes
more bits to represent them.

512 C. Gentry, S. Gorbunov, and S. Halevi

Finally, we observe that sometimes we do not need to give explicitly the
matrices Au corresponding to source nodes, and can instead “fold them” into
the encoding matrices. That is, instead of providing both A and C such that
B � D�A � A� �S, we can publish only the matrix B and keepA,D hidden. This
essentially amounts to shortening the path by one, starting it at the matrix B.
(Of course, trying to repeat this process and further process the path will lead
to exponential growth in the number of matrices that we need to publish.)

3.4 Hardness Assumptions

One can verify that the hardness of some simple tasks related to the construction
above follows from the hardness of standard LWE. For example, when the graph
has just a single edge A1 � A0 then given A0, A1 and C it is hard to determine
whether C is a valid encoding relative to this edge: The reduction begins with
�A0, B� (where either B � A0S � E or B is random), then chooses A1 with a
trapdoor and samples C as a small solution to CA1 � B. For the same reason,
given A0, A1 and a valid encoding C on the edge A1 � A0, it is hard to recover
the plaintext S which is encoded by C (assuming the hardness of search-LWE).

However, such simple hardness assumptions do not seem too useful, since in
most applications we presumably need an underlying set of plaintext matrices
and some expression that evaluates to zero in them (so that we can use the
zero-test). Hence it appears that useful hardness assumptions would have to
argue about the hardness of a collection of LWE instances with related secrets.
Moreover, in settings where we have multiple secrets encoded on each edge, we
do not know how to generate these encodings without knowing trapdoors for all
the non-sink matrices, which makes it impossible to reduce hardness to LWE
instances involving these matrices.

Below we describe one type of “useful hardness assumptions” for our scheme.
(This is similar to what we need in our key-exchange protocol for n � 2, but
without the commutativity.) Although this assumption is neither necessary nor
sufficient for any application that we know of, it may still be interesting to study
as an instrument for gaining better understanding of the security properties of
this scheme.

The underlying graph has three chains that end at a common sink, two of
length 2 and one of length 1, and we have two “target” random plaintext matrices
S1, S2 and a few “auxiliary” random plaintext matrices T1, T2, T2. The adversary
gets the source matrices (A,A�, B� in the picture below) and multiple encoding
of the plaintext matrices, relative to edges as depicted below:

C

B�

BA B� A�
S1, T1 S2, T2

S2, T2T1

S1, T3

Graph-Induced Multilinear Maps from Lattices 513

The adversary also gets a matrix U � Zm�n
q , and it needs to distinguish the

case U � C� �S1 � S2� �E (for a small Gaussian E) from the case where U is
random. It is easy to see that given these encodings anyone can compute U� �
C� �S2 � S1�, but this is the non-commutative case so we do not immediately
get an approximation of C � �S1 � S2�. Note that the encoded auxiliary Ti’s
do not play much of a role here, but nontheless their presence seems to hinder
reduction to LWE. Also the choice of what plaintext matrix to encode relative
to what edge was made so as to avoid the attacks from Section 4 below.

4 Cryptanalysis

Below we describe several attacks and “near attacks” on some variations of our
scheme, these attacks guided our choices in designing these scheme.

4.1 Encoding of Zero is a Weak Trapdoor

The main observation in this section is that an encoding of zero relative to a path
u � v can sometimes be used as a weak form of trapdoor for the matrix Au.
Recall from [3,24] that a full-rank m�m matrix T with small entries satisfying
TA � 0 �mod q� can be used as a trapdoor for the matrix A as per Lemma 1.
An encoding of zero relative the path u � v is a matrix C such that CAu � E
�mod q� for a small matrix E. This is not quite a trapdoor, but it appears close
and indeed we show that it can often be used as if it was a real trapdoor.

Let us denote by A�
u � �Au�I� the �m � n� � n matrix whose first m rows

are those of Au and whose last n rows are the n� n identity matrix. Given the
matricesAu andC as above, we can compute the small matrix E � CAu mod q,
then set C� � �C���E�� to be the m � �m � n� matrix whose first m columns
are the columns of C and whose last n columns are the negation of the columns
of E. Clearly C� is a small matrix satisfying C�A�

u � 0 �mod q�, but it is not a
trapdoor yet because it has rank m rather than m� n.

However, assume that we have two encodings of zero, relative to two (possibly
different) paths that begin at the same node u. Then we can apply the procedure
above to get two such matrices C�

1 and C�
2, and now we have 2m rows that are

all orthogonal to A�
u mod q, and it is very likely that we can find m� n among

them that are linearly independent. This gives a full working trapdoor T�
u for

the matrix A�
u, what can we do with this trapdoor?

Assume now that the application gives us, in addition to the zero encodings
for path that begin with u, also an encoding of a plaintext elements S � 0
relative to some path that ends at u, say w � u. This is a matrix D such
that DAw � AuS � E, namely B � DAw mod q is an LWE instance relative
to public matrix Au, secret S, and error term E. Recalling that the plaintext
S in our scheme must be small, it is easy to convert B into an LWE instance
relative to matrix A�

u � �Au�I�, for which we have a trapdoor: Simply add n
zero rows at the bottom, thus getting B� � �B�0�, and we have B� � A�

uS�E�,

514 C. Gentry, S. Gorbunov, and S. Halevi

with E� � �E���S�� a small matrix.4 Given B� and A�
u, in conjunction with the

trapdoor T�
u, we can now recover the plaintext S.

We note that a consequence of this attack is that in our scheme it is unsafe for
the application to allow computation of zero-encoding, except perhaps relative
to source-nodes in the graph. As we show in Section 5, it is possible to design
applications that get around this problem.

Extensions. The attacks from above can be extended even to some cases where
we are not given encodings of zero. Suppose that instead we are given pairs
��Ci,C

�
i��i, where the two encodings in each pair encode the same plaintext

Si relative to two paths with a common end point, u � v and u� � v. In
this case we can use the same techniques to find a “weak trapdoor” for the
concatenated matrix A� � �Au�Au�� of dimension 2m � n, using the fact that
�Ci���C�

i�� �A� � �AvSi �Ei� � �AvSi �E�
i� � Ei �E�

i.
If we are also given a pair �D,D�� that encodes the same element S relative

to two paths that end at u, u�, respectively, then we can use these approximate
trapdoors to find S, since �D,D�� (together with the start points of these paths)
yield an LWE instance relative to public matrix A� and the secret S.

Corollary 1: No Re-randomization. A consequence of the attacks above is
that in our scheme we usually cannot provide encoding-of-zero in the public
parameters. Hence the re-randomization technique by adding encodings of zero
usually cannot be used in our case.

Corollary 2: No Commutative plaintext/encoding pairs. Another consequence
of the attacks above is that at least in the commutative case it is not safe to
provide many pairs �si, Ci� s.t. Ci is an encoding of the scalar si along a path
u � v. The reason is that given two such pairs �s1, C1�, �s2, C2� we can compute
an encoding of zero along the path u � v as s1C2 � s2C1.

4.2 The Cheon et al. Attacks

Very recently, Cheon, Han, Lee, Ryu, and Stehlé described in [15] a serious attack
on the CLT encoding scheme, and their techniques were shown to extend also
to other settings [10,22,17]. This attack leverages a large number of expressions
that evaluate to zero — multiplied by the zero-test parameter — in order to
setup a system of euqations in the secret parameters of the scheme. That system
of equations is over the integers without any modular reduction, and it is often
possible to use linear-algebra tools to extract from it useful information and
break the scheme.

In principle, the techniques used in these attacks may be applicable also to our
new scheme, since here too we obtain small values after multiplying by the zero-
test parameter (and hence get a system of equations without modular reduction).

4 B� does not have the right distribution for an LWE instance, but using the trapdoor
we can solve the worst-case BDD, not just the average-case LWE, so the attack still
stands.

Graph-Induced Multilinear Maps from Lattices 515

But so far we were not able to find any actual case where this line of attacks
is applicable to our scheme. The main reason is that the attacks from above
are often more powerful: in many cases where the Cheon et al. attacks could be
applied we get an easier break using the encoding-of-zero-as-trapdoor technique
from above. Another reason why it may be harder to apply these attacks is that
the quantities of interest here are matrices rather than single elements (at least
in the non-commutative case), which could make solving the equations harder.

4.3 Recovering Hidden Av’s.

As we noted earlier, in many applications we only need to know the matrices Au

for source nodes u and there is no need to publish the matrices Av for internal
nodes. This raises the possibility that we might get better security by withholding
the Av’s of internal nodes.

Trying to investigate this possibility, we show below two “near attacks” for
recovering the public matrices of internal nodes from those of source nodes in
the graph. The first attack applies to the commutative setting, and is able to
recover an approximate version of the internal matrices (with the approximation
deteriorating as we move deeper into the graph). The second attack can recover
the internal matrices exactly, but it requires a full trapdoor for the matrices of the
source nodes (and we were not able to extend it to work with the “approximate
trapdoors” that one gets from an encoding of zero).

The conclusion from these “near attacks” is uncertain. Although is still
possible that withholding the internal-node matrices helps security, it seems
prudent to examine the security of candidate applications that use our scheme
in a setting where the Av’s are all public.

Recovering the Av’s in the commutative setting. For this attack we are given
a matrix Au, and many encodings relative to the path u � v, together with
the corresponding plaintext elements (e.g., as needed for the public-encoding
variant). Namely, we have Au, small matrices C1, . . . ,Ct (for t � 1) and small
ring elements s1, . . . , st such that Cj �Au � Av � sj � Ej holds for all j, with
small Ej ’s. Our goal is to find Av.

We note that the matrix Av and the error vectors Ej are only defined upto
small additive factors, since adding 1 to any entry in Av can be offset by
subtracting the sj ’s from the corresponding entry in the Ej’s. Hence the best we
can hope for is to solve for Av upto a small additive factor (resp. for the Ej ’s
upto a small additive multiple of the sj ’s). Denoting Bj :� Cj �Au � Av �sj�Ej,
we compute for j � 1, . . . , t� 1,

Fj :� Bj � sj�1 �Bj�1 � sj
� �Av � sj �Ej� � sj�1 � �Av � sj�1 �Ej�1� � sj � Ej � sj�1 �Ej�1 � sj .

516 C. Gentry, S. Gorbunov, and S. Halevi

This gives us a non-homogeneous linear system of equations (with the sj ’s and
Fj ’s as coefficients), which we want to solve for the small solution Ej ’s. Writing
this system explicitly we have

�
����
�s2� ��s1�

�s3� ��s2�
. . .

. . .

�st� ��st
1�

�
ÆÆÆ�

�
������

X1

X2

...
Xt
1

Xt

�
ÆÆÆÆÆ�
�

�
����

F1

F2

...
Ft
1

�
ÆÆÆ�,

where �s� denotes the m�m matrix Im�m � s. Clearly this system is partitioned
into m independent systems, each of the form

�
����

s2 �s1
s3 �s2

. . .
. . .

st �st
1

�
ÆÆÆ�

�
������

x1,�

x2,�

...
xt
1,�

xt,�

�
ÆÆÆÆÆ�
�

�
����

f1,�
f2,�
...

ft,�

�
ÆÆÆ�,

with xj,�, fj,� being the �’th entries of the vectors Xj ,Fj , respectively. These
systems are under-defined, and to get the Ei’s we need to find small solutions
for them. Suppressing the index �, we denote these systems in matrix form by
Mx � f , and show how to find small solutions for them.

At first glance this seems like a SIS problem so one might expect it to be hard,
but here we already know a small solution for the corresponding homogeneous
system, namely the solution xj � sj for all j. Below we assume that the sj do
not all share a prime factor (i.e., that GCD�s1, s2, . . . , st� � 1), and also that at
least one of them has a small inverse in the field of fractions of R. (These two
conditions hold with good probability, see discussion in [19, Sec 4.1].)

To find a small solution for the inhomogeneous system, we begin by computing
an arbitrary solution for it over the ring R (not modulo q). We note that a
solution exists (in particular the Ej ’s solve this system over R without mod-q
reduction), and we can use Gaussian elimination in the field of fractions of R to
find it. Denote that solution that was found by g � R, namely we haveMg � f . 5

Since over R this is a �t�1��t system then its solution space is one-dimensional.
Hence every solution to this system (and in particular the small solution that
we seek) is of the form e � g � s � k for some k � R. 6

Choosing one index j such that the element 1�sj in the field of fractions
is small, we compute a candidate for the scalar k simply by rounding, k� :�
� �gj�sj�, where division happens in the field of fractions. We next prove that
indeed the vector e� � g � s � k� is a small vector over R. Clearly e� � Rt since

5 Using Gaussian elimination may yield a fractional solution g�, but we can “round
it” to an integral solution by solving for k� the equation g��s �k� � 0 �mod 1�, then
setting g � g� � s � k�.

6 In general the scalar k may be fractional, but if GCD�s1, s2, . . . , st� � 1 then k must
be integral.

Graph-Induced Multilinear Maps from Lattices 517

k� � R and g, s � Rt, we next prove that it must be small by showing that “the
right scalar k” must be close to the scalar k� that we computed. First, observe
that e�j � gj � sj � k� must be small, since

e�j � gj � sj � k� � gj � �gj�sj� � sj � gj � �gj�sj � εj� � sj � �εj � sj ,

with εj the rounding error. Since both εj and sj are small, then so is e�j .
Now consider the “real value” ej, it too is small and is obtained as gj � sj � k

for some k � R. It follows that ej � e�j � sj � �k� k�� is small, and since we know
that 1�sj is also small then it follows that so is k � k� � �ej � e�j��sj . We thus
conclude that e� � g � k� � s � e� �k � k�� � e is also small.

Repeating the same procedure for all the m independent systems, we get a
small solution �E�

j , j � 1, . . . , t� to the system Bj � Av �sj�E�
j. Subtracting the

E�
j ’s from the Bj ’s and dividing by the sj ’s give us (an approximation of) Av.

Recovering the Av’s using trapdoors. Suppose that we are given Au, encodings
Cj and the corresponding plaintext matrices Sj , s.t. Bj :� Cj �Au � Av �Sj�Ej

�mod q� for small errors Ej. Suppose that in addition we are also given a full
working trapdoor for the matrix Av, say, in the form of a small full-rank matrix
T over R s.t. T �Av � 0 �mod q�. We can then use T to recover the errors Ej

from the LWE instances Bj , which can be done without knowing Av: Let T

1

be the inverse of T over R, we compute Ej � T
1 � �T � Bj mod q�. Once we
have the error matrices Ej we can subtract them and get the set of equations
Bj � Ej � Av � Sj �mod q�, where the entries of Av are the unknowns. With
sufficiently many of these equations, we can then solve for Av.

We note that so far we were unable to extend this attack to using the “weak
trapdoor” that one gets from an encoding of zero wrt paths of the form v � w.
Indeed the procedure from Section 4.1 for recovering a stronger trapdoor from
the weak one relies on knowing Av.

5 Applications

5.1 Multipartite Key-Agreement

For our first application, we describe a candidate construction for a non-
interactive multipartite key-agreement protocol using the commutative variant
of our graph-based encoding scheme. As is usual with multipartite key-agreement
from multilinear maps, each party i is contributing an encoding of some secret si
and the shared secret is derived from an encoding of the product s � �

i si.
However in our case we need to use extra caution to protect against the “weak
trapdoor attacks” from Section 4.1.

To that end, we design our graph to ensure that the adversary is never given
encodings of the same element on two paths with a common end-point, and also
is not given an encoding and the corresponding plaintext on any edge. For an
k-partite protocol we use a graph topology of k directed chains that meet at a
common point, where the contribution of any given party appears at different

518 C. Gentry, S. Gorbunov, and S. Halevi

edges on different chains (i.e. the first edge on one chain, the second edge on
another, the third edge on a third chain, etc.)

That is, each player i has a directed path of matrices, Ai,1, . . . ,Ai,k�1, all
sharing the same end-point, i.e., Ai,k�1 � A0 for all i. Note that every chain
has k edges, and for the chain “belonging” to party i we will broadcast on its
edges encodings of all the secrets sj , j � i, but not an encoding of si, that last
encoding will only be known to party i. Party i will multiply these encodings
(the one that only it knows, and all the ones that are publicly available) to get
an encoding of

�
i sj relative to the path Ai,1 � A0. Namely, a matrix Di such

that Di �Ai,1 � A0 �
�

i sj . The shared secret is then obtained by applying the
extraction procedure to this Di.

The assignment of which secret is encoded on what edge of what chain is done
in a “round robin” fashion. Specifically, the i’th secret si is encoded on the j’th
edge of the chain belonging to party i� � j � i � 1. In other words, the secret
that we encode on the edge Ai,j � Ai,j�1 in the graph is sj
i�1, with index
arithmetic modulo k. An example of the assignment of secrets to edges for a
4-partite protocol is depicted in Figure 1.

Of course, we must publish encodings that would allow the parties to choose
their secrets and provide encodings for them. This means that together with
the public parameters we also publish encodings of many plaintext elements
�ti,� : i � 1, . . . , k, � � 1, . . . , N� (for a sufficiently large N), for each ti,� we
publish encoding of it relative to all the edges Ai�,i�i�
1 � Ai�,i�i� for all i, i�

(index arithmetic modulo k� 1). Party i then chooses random small coefficients
ri,� and computes its encoding relative to each edge Ai�,i�i�
1 � Ai�,i�i� as the
linear combination of the encodings on that edge with the coefficient ri,�. We are
now ready to describe our scheme NMKE � �KE.Setup,KE.Publish,KE.Keygen�.

A0

A1,4A1,3A1,2A1,1

A2,4A2,3A2,2A2,1

A3,4 A3,3 A3,2 A3,1

A4,4 A4,3 A4,2 A4,1

s1 s2 s3

s4

s4 s1 s2 s3

s3s4s1

s2

s2s3s4s1

Fig. 1. Graph for a 4-partite key-agreement protocol

– KE.Setup�1λ, k�: The setup algorithm takes as input the security parameter
1λ and the total number of players k.

1. Run the parameter-generation and instance-generation of our graph-
based encoding scheme for the graph consisting of k chains with a
common end-point, each of length k edges. Let ei,j denote the j’th edge
on the i’th chain.

2. Using the secret parameters, run the sampling procedure of the encoding
scheme to choose random plaintext elements ti,� for i � 1, . . . , k and
� � 1, . . . , N , and for each ti,� compute also an encoding of it relative to

Graph-Induced Multilinear Maps from Lattices 519

all the edges ei�,j for j � i� i� �mod k�. Denote the encoding of ti,� on
chain i� (relative to edge ei�,i�i� mod k) by Ci,�,i� .

The public parameters of the key-agreement protocol include the public
parameters of the encoding scheme (i.e., the matrices for all the source nodes
Ai,1), and also the encoding matrices �Ci,�,i� : i, i

� � 1, . . . , k, � � 1, . . . , N� .
– KE.Publish�pp, i� : The i’th party chooses random small plaintext elements

ri,� � χ for � � 1, . . . , N and then sets Di,i� �
�

� Ci,�,i� � ri,� for all i�. It
keeps Di,i as its secret and broadcast all the other Di,i� ’s.

– KE.Keygen�pp, i, ski, �pubj�j�i� : Party i collects all the matrices Di�,i

(encoding the secrets si� relative to “its chain” i) and orders them according
to j � i � i�. Namely, it sets Fj,i � Di�j mod k,i for j � 1, . . . k, then

computes the product F�
i � �

�k
j�1 Fj,i� �Ai,1. Finally, party i applies the

extraction procedure of the encoding scheme to obtain the secret key, setting
ssk � Extract

�
F�

i

�
.

Security. Unfortunately, we were not able to reduce the security of this candidate
scheme to any “nicer” assumption. As such, at present the only evidence of
security that we can offer is the failure of our attempts to cryptanalyze it.

The basic attack from Section 4.1 does not seem to apply here since the
public parameters do not provide any encoding of zero (not even relative to A0).
Similarly, the extended attacks do not seem to apply since the only common end-
point in the graph is A0, and no two paths that end at A0 include an encoding
of the same element.

We note that the attacker can use the public parameters to compute an
approximate trapdoors for concatenated matrices of the form �A0 � ti,�,i����A0��
(or similar), but the broadcast messages of the parties do not provide LWE
instances relative to these matrices.

Finally, we note that as for any other application of this encoding scheme, it
seems that security would be enhanced by applying the additional safeguards
that were discussed at the end of Section 3. That is, we can use Kilian-style
randomization on the encoding side, by choosing k invertible matrices for each
chain, Ri,1, . . . ,Ri,k, where the first and last are set to the identity and the
others are chosen at random. Then we can replacing each encoding matrix C
in the public parameters by C� :� R
1 � C �R� using the randomizer matrices
R,R� belonging to the two adjacent nodes. We can also choose the first encoding
matrix in each chain to have large entries.

This has no effect on the product of all the encoding matrices along the i�-th
chain, but the new matrices C� no longer have small entries, which seems to aid
security. On the down side, this increases the size of the encodings roughly by a
log q� logn factor.

5.2 Candidate Branching-Program Obfuscation

We next describe how to adapt the branching-program obfuscation constructions
from previous work [18,13,4,36] to use our encoding schemes. We remark that on
some level this is the simplest type of constructions to adapt to our setting, since

520 C. Gentry, S. Gorbunov, and S. Halevi

we essentially need only a single chain and there almost no issues of providing
zero-encoding in the public parameters (or encodings of the same plaintext
relative to different nodes in the graph).

Roughly speaking, previous works all followed a similar strategy for obfuscat-
ing branching programs. Starting from a given oblivious branching program,
encoded as permutation matrices, they all applied Kilian’s randomization
strategy to randomized these matrices, then added some extra randomization
steps (mostly multiplication by random scalars) to protect against partial-
evaluation and mixed-input attacks, and finally encoded the resulting matrices
relative to specially-designed sets/levels. The specific details of the extra
randomization steps are somewhat different between the previous schemes, but
all these techniques have their counterparts in our setting. Below we explain how
to adapt the randomization techniques from previous work to our setting, and
then describe one specific BP-obfuscation candidate.

Matrices vs. individual elements. Our scheme natively encodes matrices, rather
than individual elements. This has some advantages, for example we need
not worry about attacks that mix and match encoded elements from different
matrices. At the same time it also poses some challenges, in particular some
of the prior schemes worked by comparing to zero one element of the resulting
matrix at the end of evaluation, an operation which is not available in our case.

To be able to examine sub-matrices (or single elements), we adopt the
“bookend encoding” trick from [18]. That is, we add to our chain a new source
u� and a new sink v�, with edges from u� to the old source and from the old
sink to v�. On the edge from u� we encode a matrix T which is only nonzero
in the columns that we want to examine, and on the edge to v� we encode a
matrix S which is only nonzero in the rows that we wish to examine. This way,
we should have the matrix T �U �S encoded relative to a path u� � v�, and that
matrix is only nonzero in the sub-matrix of interest. In the candidate below we
somewhat improve on this by folding the source matrix Au� into the encoding of
T, publishing instead the matrix Au� �T (and in fact making T a single column
vector).

Only small plaintexts. In our scheme we can only encode “small plaintext
elements”, not every plaintext element. This is particularly relevant for Kilian
randomization technique, since it requires that we multiply by both R and R
1

for each randomizer matrix R. One way to get randomizer matrices with both R
and R
1 small matrices with four quadrants consisting of I,R,0, I (in any order
that yields determinant 1). Multiplying a sequence of these types of matrices
above yields a high-entropy distribution of randomizer matrices with the desired
property, and seemingly without obvious algebraic structure. Another family
of matrices where both the matrix and its inverse are small are permutation
matrices (and of course we can mix and match these families). Concretely, we
speculate that a randomizer of the form

R � Π1 �
�
0 I
I R1

�
�Π2 �

�
I 0
R2 I

�
�Π3 �

�
R3 I
I 0

�
�Π4 �

�
I R4

0 I

�
�Π5 (4)

Graph-Induced Multilinear Maps from Lattices 521

(with the Πi’s random permutations and the Ri’s random small matrices) has
sufficient entropy and lack of algebraic structure to serve as randomizers for our
scheme.

We note that although these randomizers are far from uniform, there may
still be hope of using some of the tools developed in [13,4,36] (where the analysis
includes a reduction to Kilian’s information-theoretic argument). This is because
the matrices before randomization are permutation matrices, and hence the
random permutations Πi can be used to perfectly randomize them. In this
way, one can view the Ri’s are merely “safeguards” to protect against possible
weaknesses in the encoding scheme, and the Πi’s are “ideal model randomizers”
than can be used in an ideal-model analysis. So far we did not attempt such
analysis, however.

Another way to introduce Kilian-type rerandomization in our setting is the
aforementioned option of applying it “on the encoding side,” i.e., choosing
random m�m invertible matrices P modulo q and set C� � P
1 �C �P�.

Multiplicative binding and sraddling sets. Another difference between our setting
and that of GGH or CLT is that the previous schemes support encoding relative
to arbitrary subsets of a universe set, so there are exponentially many potential
sets to use. In our scheme the encoding is relative to edges of a given graph, and
there can be only polynomial many of them. This difference seems particularly
critical in the design of sraddling sets [4,36].

On a second look, however, this issue is more a question of modeling, rather
than a real difference. The different encoding sets in the “asymmetric variants”
of [19,16] are obtained just by multiplying by different random secret constants
(e.g., the zi’s from GGH), and we can similarly multiply our encoding matrices by
such random constants mod q (especially when working over a large polynomial
ring). We use that option in the candidate scheme that we describe below.

We note that similar effects can be obtained by the multiplicative binding
technique of [18]. Roughly speaking, the main difference between multiplicative
binding and sraddling sets is that the former multiplies by constants “on the
plaintext side” while the latter multiplies “on the encoding side.” In our setting
we can do both, and indeed it seems prudent to do so.

A Concrete BP-Obfuscation Candidate. For our concrete candidate below
we work over a large polynomial ring of dimension k, and we will use small-
dimension matrices over this ring (roughly as high as the dimension of the
underlying branching program).

Let Sym�w� be the set of w�w permutation matrices and consider a length-n
branching program over � bit inputs:

BP � ��ind�i�,Bi,0,Bi,1 : i � �n�, ind�i� � ���,Bi,b � Sym�w��

For a bit position j � ���, let Ij be the steps in the branching program that
examines j’th input bit: Ij � �i � �n� : ind�i� � j�. We obfuscate BP as follows:

522 C. Gentry, S. Gorbunov, and S. Halevi

– Following the original construction of [20] we embed the Bi,σ’s inside higher-
dimension matrices with random elements on the diagonal, but in our case
it is sufficient to have only two such random entries (so the dimension only
grows form w to w � 2). Denote the higher-dimension matrices by B�

i,σ.
We also follow the original construction of [20] by applying the same
transformation to a “dummy program”DP of the same length that consists of
only the identity matrices, letD�

i,σ be the higher-dimension dummy matrices.
– We proceed to randomize these branching programs a-la-Kilian “on the

plaintext side,” by choosing randomizing matrices Ri’s as per the form
of Eqn. (4) such that both Ri and R
1

i are small, and setting B�
i,σ �

Ri
1B
�
i,σR

1
i . The dummy program is randomized similarly.

– We then prepare �w� 2� � �w� 2� “bookend matrices” S,S�, and “bookend
column vectors” t, t�. S is random and small except the first row which
is zero, t is random and small except the second entry which is zero, and
similarly for S� and t�, subject to S� � t� � S � t. Then we set S̃ � SR
1

0 and
t̃ � Rnt, and similarly S̃� � S�R
1

0 and t̃� � Rnt
�.

– Next we use our encoding scheme to encode these matrices relative to a graph
with two chains with a common end-point, each of length n� 2. Namely we
have A1 � . . .� An�2 and A�

1 � . . .� A�
n�1 � An�2.

For each i � �n�, we encode the two matrices B�
n
i�1,b relative to the edge

Ai � Ai�1, i.e., we have

Cn
i�1,b �Ai � Ai�1 �B�
n
i�1,b �Ei,b

for some small error Ei,b. Similarly we encode the dummy program with the
two matrices D�

n
i�1,b encoded relative to the edge A�
i � A�

i�1, i.e.,

C�
n
i�1,b �A�

i � A�
i�1 �D�

n
i�1,b �E�
i,b

– Encode S̃, S̃� relative to the edges leading to the common sink, i.e. compute
the encoding matrices CS ,C

�
S� such that

CS �An�1 � An�2 � S̃�ES and C�
S� �A�

n�1 � An�2 � S̃� �E�
S�

– Compute the encoded bookend vectors, folded into the two sources A1 and
A�

1, namely a � A1 � t̃� et and a� � A�
1 � t̃� � e�t.

– We next apply both the multiplicative bundling and the the Kilian-style
randomization also on the encoding side. Namely we sample random full-
rank matrices P0, . . . ,Pn and P�

0, . . . ,P
�
n, and also random scalars modulo q

�βi,0, βi,1, β
�
i,0, β

�
i,1 : i � �n��, subject to constraints

�
i�Ij

βi,0 �
�

i�Ij
β�i,0 ��

i�Ij
βi,1 �

�
i�Ij

β�i,1 � 1.

We then set Ĉi,σ � P
1
i
1 �Ci,σ �Pi � βi,σ and Ĉ�

i,σ � P�
1
i
1 �C�

i,σ �P�
i � β�i,σ,

and also ĈS � CS �P0 and Ĉ�
S� � C�

S� �P�
0 and â � P
1

n a and â� � P�
1
n a�.

– The obfuscation consists of all the matrices and vectors above, namely

O�BP� �
��

ĈS ,

Ĉi,σ : i � �n�, σ � �0, 1��, â

�
,

�
Ĉ�

S� ,

Ĉ�

i,σ : i � �n�, σ � �0, 1��, â�
��

Graph-Induced Multilinear Maps from Lattices 523

Evaluation. On input x � �0, 1�� the user choose the appropriate encoding

matrices Ĉi,0 or Ĉi,1 depending on the relevant input bit (and the same for

Ĉ�
i,0 or Ĉ�

i,1) and then multiply in order setting

y � ĈS � �
n�

i�1

Ĉi,x�ind�i	� � a � An�2 �
�
S � �

n�
i�1

B�
i,x�ind�i	� � t

�� e

and

y� � Ĉ�
S� � �

n�
i�1

Ĉ�
i,x�ind�i	� � a� � An�2 �

�
S� � �

n�
i�1

D�
i,x�ind�i	� � t�

�� e�,

The output is 1 if �y � y�� � q3�4 and 0 otherwise. Note that indeed if�n
i�1 Di,x�ind�i	 � I then both y and y� are roughly equal to An�2 � S � t �

��n
i�1 αi,x�ind�i	�, as needed.

Security. As before, this is merely a candidate and we do not know how to
reduce its security to any “nice” assumption. However the type of attacks that
we know against these scheme do not seem to apply to this candidate.

Acknowledgments. We thank Zvika Brakerski for pointing out to us vulner-
abilities in earlier versions of this work. We also thank Vinod Vaikuntanathan
for insightful discussions.

References

1. Aggarwal, D., Regev, O.: A note on discrete gaussian combinations of lattice
vectors. CoRR abs/1308.2405 (2013)

2. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete gaussian leftover hash lemma
over infinite domains. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I.
LNCS, vol. 8269, pp. 97–116. Springer, Heidelberg (2013)

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999)

4. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen and Oswald [34], pp. 221–238

5. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J.
of Computing 32(3), 586–615 (2003); extended abstract in Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 213–615. Springer, Heidelberg (2001)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

7. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014), http://dx.doi.org/10.1007/978-3-642-55220-5_30

http://dx.doi.org/10.1007/978-3-642-55220-5_30

524 C. Gentry, S. Gorbunov, and S. Halevi

8. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005),
http://dx.doi.org/10.1007/11535218_16

9. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography.
Contemporary Mathematics 324, 71–90 (2003)

10. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against
zeroizing attacks. Cryptology ePrint Archive, Report 2014/930 (2014),
http://eprint.iacr.org/

11. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014),
http://dx.doi.org/10.1007/978-3-662-44371-2_27

12. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

13. Brakerski, Z., Rothblum, G.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25.
Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-642-54242-8_1

14. Carter, J., Wegman, M.N.: Universal classes of hash functions. Journal of Computer
and System Sciences 18(2), 143–154 (1979)

15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. Cryptology ePrint Archive, Report 2014/906 (2014),
http://eprint.iacr.org/

16. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the
integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-40041-4_26

17. Coron, J.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate fixes of
multilinear maps over the integers. Cryptology ePrint Archive, Report 2014/975
(2014), http://eprint.iacr.org/

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp.
40–49 (October 2013)

19. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from
ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-38348-9_1, Full version at
http://eprint.iacr.org/2013/451

20. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. Cryptology ePrint Archive, Report 2013/128
(2013)

21. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Proceedings of the Forty-fifth Annual ACM Symposium on
Theory of Computing, STOC 2013, pp. 467–476. ACM, New York (2013),
http://doi.acm.org/10.1145/2488608.2488667

22. Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes:
Cryptanalyzing multilinear maps without encodings of zero. Cryptology ePrint
Archive, Report 2014/929 (2014), http://eprint.iacr.org/

http://dx.doi.org/10.1007/11535218_16
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://eprint.iacr.org/2013/451
http://doi.acm.org/10.1145/2488608.2488667
http://eprint.iacr.org/

Graph-Induced Multilinear Maps from Lattices 525

23. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014), http://eprint.iacr.org/

24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, STOC 2008, pp. 197–206. ACM (2008)

25. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-40041-4_5

26. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS, pp. 89–98 (2006)

27. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28, 1364–1396 (1999),
http://dx.doi.org/10.1137/S0097539793244708

28. Joux, A.: A one round protocol for tripartite diffie hellman. Journal of Cryptol-
ogy 17(4), 263–276 (2004), http://dx.doi.org/10.1007/s00145-004-0312-y

29. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp.
20–31. ACM, New York (1988), http://doi.acm.org/10.1145/62212.62215

30. Langlois, A., Stehlé, D., Steinfeld, R.: Gghlite: More efficient multilinear maps from
ideal lattices. In: Nguyen and Oswald [34], pp. 239–256

31. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

32. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

33. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

34. Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer,
Heidelberg (2014)

35. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal authenticated
data structures with multilinear forms. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010. LNCS, vol. 6487, pp. 246–264. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-17455-1_16

36. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

37. Rückert, M., Schröder, D.: Aggregate and verifiably encrypted signatures
from multilinear maps without random oracles. In: Park, J.H., Chen, H.-H.,
Atiquzzaman, M., Lee, C., Kim, T.-H., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576,
pp. 750–759. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-02617-1_76

38. Rothblum, R.: On the circular security of bit-encryption. In: Sahai, A.
(ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-36594-2_32

39. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000, Okinawa, Japan (January 2000)

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1007/s00145-004-0312-y
http://doi.acm.org/10.1145/62212.62215
http://dx.doi.org/10.1007/978-3-642-17455-1_16
http://dx.doi.org/10.1007/978-3-642-02617-1_76
http://dx.doi.org/10.1007/978-3-642-36594-2_32

526 C. Gentry, S. Gorbunov, and S. Halevi

40. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

41. Wegman, M.N., Carter, J.: New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981)

A Parameter Selection

We now describe the parameter-generation procedure PrmGen, showing how to
choose the parameters for our scheme. The procedure takes as input the security
parameter λ, a DAG G with diameter d, and the class C of supported circuits.
It outputs n,m, q and the Gaussian parameters s, σ. The constraints that these
parameters need to satisfy are the following:

– It should be possible to efficiently sample from the input/error distribution
χ � DZ,s, and the LWE problem with parameters n,m, q, χ should be hard.
This means that we need (say) s � �n and q�s � 2n�λ.

– It should possible to generate trapdoor for the Av’s, that enables sampling
from PreSample with parameter σ. By Lemma 1, this means that we need
m � Ω�n log q� and σ � Ω��n log q�.

– For any supported circuit, the size of the error E at the output of the circuit
must remain below q3�4. Namely if the output is an encoding D of the
plaintext matrix S relative to path u � v, then we need ��DAu�AbS�q� �
q3�4.

Let us now analyze the error size in the system. We assume here that we
use truncated Gaussian distributions, i.e. we condition DZ,s on the output

being smaller than b
def� s

�
λ (which only affect the distribution negligibly.)

We similarly condition PreSample on the output being shorter than B
def� σ

�
λ.

With our settings, we get b 	 n and B 	 n
�
log q. Hence the sample procedure

always outputs �S,C,D� with the plaintext satisfying �S� � b and the encoding
matrices satisfying �C�, �D� � B.

To analyze the noise development, recall that when multiplying A � Zu�v

by B � Zv�w we have �AB� 	 �A� � �B� � v. This means in particular that
multiplying i encoding matrices we get an encoding matrix D � Zm�m

q with

�D� � Bimi
1 and similarly multiplying i plaintext matrices we get a plaintext
matrix S � Zn�n

q with �S� � bini
1. Regarding the error, one can show by
induction that the product of i encoding matrices has an error E � Zm�n

q with

�E� � b �
i
1�
j�0

Bjmjbd
1
jnd
1
j � b � i �Bi
1mi
1.

Given a class C of permitted circuits, we consider the canonical representation
of the polynomials in this class as sums of monomials. Let D be a bound on the
degree of these polynomials, R be a bound on the size of the coefficients, and N

Graph-Induced Multilinear Maps from Lattices 527

be a bound on the number of monomials. Note that in our setting, the degree-
bound D cannot be larger than the diameter of the graph G (since G is acyclic
and hence cannot have directed paths longer than d). The size of the error in
this case could grow as much as N � R � b � D � BD
1mD
1. With b 	 n and
B 	 n

�
log q, we thus have the constraint

q3�4 � N � R � n �D � �nlog q
�D
1

mD
1

� N � R � nD �mD
1 �D � � log q
��D
1�2

. (5)

Substituting m � Θ�n log q�, and q � 2n�λ, we can use Eqn. (5) to solve for
n in terms of λ,N,R and D. With D 	 d and assuming the (typical) case of
R � poly�λ� and N � dd, it can be verified that this bound is satisfied using
n � Θ�dλ log�dλ��. This setting yields q � 2n�λ � 2Θ�d log�dλ � �dλ�Θ�d and
m � Θ�n log q� � Θ�d2λ2 log2�dλ��.

Note that with this setting, each matrix Av � Zm�n
q is of size mn log q �

Θ�d4λ2 log4�dλ�� bits. The public parameters typically contain just one or a
handful of such matrices (corresponding to the source nodes in G), but the secret
parameters contain all of them. Hence the secret parameters are of size Θ��V � �
d4λ2 log4�dλ�� � Ω�d5λ2 log4�dλ�� bits. (We have �V � � d since the diameter of
G is d.) The encoding matrices are of dimension m �m, but their entries are
small, so they can be represented by roughly m2 logn � Θ�d4λ2 log5�dλ�� bits.

Working over a larger ring. As usual, we can get better parameters by working
over larger rings, and let n denote the extension degree of the ring. In this case
the matrices A are m � 1 column vectors over the larger ring, and we can find
trapdoors for these matrices already for m � Θ�log q�, and also the plaintext
elements are now scalars (or constant-degree matrices).

This only affects Eqn. (5) or the solution n � Θ�dλ log�dλ�� by a constant
factor, and hence shaves only a constant factor from the number of bits in q �
2Θ�d log�dλ, but now we have m � Θ�log q� � Θ�d log�dλ��. With each scalar
in Rq represented by n log q bits, it takes mn log q � Θ�d3λ log3�dλ�� bits to
represent each matrix Av � Rm�1

q , and Θ�m2 logn� � Θ�d3λ log4�dλ�� bits to
represent each encoding matrix with small entries.

Obfuscating Circuits via Composite-Order

Graded Encoding

Benny Applebaum1,� and Zvika Brakerski2,��

1 School of Electrical Engineering, Tel-Aviv University, Israel
benny.applebaum@gmail.com

2 Weizmann Institute of Science, Israel
zvika.brakerski@weizmann.ac.il

Abstract. We present a candidate obfuscator based on composite-order
Graded Encoding Schemes (GES), which are a generalization of multilin-
ear maps. Our obfuscator operates on circuits directly without convert-
ing them into formulas or branching programs as was done in previous
solutions. As a result, the time and size complexity of the obfuscated
program, measured by the number of GES elements, is directly propor-
tional to the circuit complexity of the program being obfuscated. This
improves upon previous constructions whose complexity was related to
the formula or branching program size. Known instantiations of Graded
Encoding Schemes allow us to obfuscate circuit classes of polynomial de-
gree, which include for example families of circuits of logarithmic depth.

We prove that our obfuscator is secure against a class of generic al-
gebraic attacks, formulated by a generic graded encoding model. We
further consider a more robust model which provides more power to the
adversary and extend our results to this setting as well.

As a secondary contribution, we define a new simple notion of algebraic
security (which was implicit in previous works) and show that it captures
standard security relative to an ideal GES oracle.

1 Introduction

General-purpose program obfuscation allows us to transform an arbitrary com-
puter program into an “unintelligible” form while preserving its functionality.
Syntactically, an obfuscator for a function family C = {CK} is a randomized
algorithm that maps a function CK ∈ C (represented by an identifier K) into a
“program” Ĉ ∈ {0, 1}∗. The obfuscated program should preserve the same func-
tionality as CK while hiding all other information about CK . The first property
is formalized via the existence of an efficient universal evaluation algorithm Eval

� Supported by the European Unions Horizon 2020 Programme (ERC-StG-2014-2020)
under grant agreement no. 639813 ERC-CLC, ISF grant 1155/11, Israel Ministry of
Science and Technology (grant 3-9094), GIF grant 1152/2011, and the Check Point
Institute for Information Security.

�� Supported by ISF grant 468/14 and by an Alon Young Faculty Fellowship.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 528–556, 2015.
c© International Association for Cryptologic Research 2015

Obfuscating Circuits via Composite-Order Graded Encoding 529

which, given an input x and an obfuscated program Ĉ, outputs CK(x). The sec-
ond property has several different formulations, most notably Virtual Black-Box
(VBB) and Indistinguishability Obfuscation (iO) [5].

The first candidate general-purpose obfuscator has been introduced by Garg
et al. [11]. Their work and follow-ups such as [8,4] relied on Graded Encoding
Schemes (GES) [10,9] which generalize the more traditional notion of multilin-
ear maps. All these works share a similar two-step outline. First it is shown
how to use the GES to obfuscate function families from a weak complexity class
such as NC1 (the class of polynomial-size circuits with logarithmic depth and
bounded fan-in gates), and then the weak obfuscator is bootstrapped into a
general-purpose obfuscator for arbitrary polynomial-size circuits based on low-
complexity fully homomorphic encryption [11,8,4] or on low-complexity pseu-
dorandom functions [14,2]. Following [1], we refer to the first step as the “core
obfuscator”.

Somewhat mysteriously, all known core obfuscators are applied to the branch-
ing program representation of the function. Hence, in order to obfuscate some
family of circuits (say in NC1) one has to first convert the given circuit into a
branching program, and only then use the core obfuscator. This is both unnatu-
ral and inefficient. Indeed, the complexity of existing core obfuscators (in terms
of computation, program size, and number of multilinear levels) grow with the
formula size or branching program size of the obfuscated program, which are
polynomially larger than the circuit size. From a more principal point of view,
one may wonder whether the use of branching programs is inherent or is just
a limitation of our current techniques. In this paper, we study the existence of
“direct circuit obfuscators”. Specifically, we ask:

Is it possible to obfuscate a function family C with complexity which is
linear in the circuit complexity of C?

Following [1], we assume that the family C = {CK} is represented by some
universal evaluator U which given an index K of a function CK ∈ C and an
input x outputs the value CK(x). The (circuit) complexity of C is measured by
the (circuit) complexity of U and the size of C is measured by the bit-length of
the identifiers K. (These are natural complexity measures which lower-bound
the time/size complexity of the any obfuscator for C. See Remark 1.2.)

1.1 Our Results

We take a step towards answering the above question in the affirmative: We
construct new core obfuscators for any circuit family C, where the size of an
obfuscated program, measured by the number of GES elements, is proportional
to the size of C, and its time-complexity, measured by the number of GES op-
erations, is proportional to the circuit complexity of C. This falls short of a full
answer to the above question since in current GES candidates, the element size
depends on the total evaluated degree, a property which is inherited by our con-
structions. Our constructions are based on composite order Graded Encoding
Scheme [13], and are proved to achieve indistinguishability against adversaries

530 B. Applebaum and Z. Brakerski

which are limited to algebraic attacks allowed in a generic GES model. In fact,
we study two different variants of the generic model (one is weaker than the
other) and provide corresponding constructions in each of these models. Before
stating our results, a few words about generic models are in order.

Generic Graded Encoding Schemes. A Graded Encoding Scheme is parameter-
ized by a ring R and a top level multiset vzt over the universe [τ]. Intuitively,
the GES defines (exponentially) many encodings of the ring where each encod-
ing is indexed by a multiset v ⊆ vzt. (A multiset is represented by an integer
vector Nτ .) In our first (and weaker) generic model MRG (for Multiple-encoding
Random GES), the encoding of a ring element g ∈ R under an index v, de-
noted by [g]v, is distributed uniformly over an exponentially large set of ran-
dom strings.1 As a result, the adversary can manipulate encodings only via the
use of a GES oracle that supports some restricted set of “legal” operations. In
particular, the adversary is allowed to: (1) compute addition/subtraction for en-
codings that share the same index [g]v ± [g′]v = [g± g′]v; (2) multiply elements
with distinct indices as long as the union of their indices is still a subset of
vzt, i.e., [g]v × [g′]v′ = [g · g′]v⋃

v′ ; and (3) zero-test a top-level encoding, i.e.,
isZero([g]vzt) = 1 ⇔ g = 0. In this model we prove the following theorem:

Theorem 1.1. There exists an indistinguishability obfuscator SimpleObf with
respect to MRG for any circuit family C in NC1. Moreover, for a function family
C = {CK}K∈{0,1}m which is indexed by m-bit strings, operates on n-bit inputs,
and can be universally computed by a t-size circuit of depth d, the following hold:

– (Size) The obfuscated program contains 4n+ 2m+ 2 ring elements.

– (Evaluation complexity) The complexity of the evaluation algorithm is O(t),
and it can be represented as an O(t)-size arithmetic circuit with oracle gates
to the GES oracle.

– (GES parameters) The underlying ring is a composite order ring Zp1 × Zp2

where p1 and p2 are large co-primes (whose bit length is polynomial in the
security parameter) and the L1 norm of the zero-testing level vzt is upper-
bounded by 2d.2

1 An alternative way to model a generic attack is to assume that the adversaries is
given abstract handles to the encodings. We prefer the current model due to its
simplicity and for the sake of consistency with previous works. We futrher note
that security in the current (random string) model immediately implies security in
the “handle model”. Since our model only gives more power to the adversary and
not to the honest user (since correctness should hold even for non random GES
instantiations).

2 The L1 norm of vzt essentially corresponds to the (maximal) total degree of poly-
nomials that can be evaluated on the GES elements. The upper-bound of 2d can
be replaced with the more refined bound of the total degree of the universal evalu-
ation algorithm. All known instantiations of graded encoding schemes require that
‖vzt‖1 is polynomial in the security parameter, hence the importance of bounding
this parameter.

Obfuscating Circuits via Composite-Order Graded Encoding 531

Remark 1.2. The above parameters are essentially optimal (up to the depen-
dency in the element size of the GES and the security parameter). Indeed, by the
correctness property, any obfuscation scheme for C with size M and evaluation
complexity T naturally defines an M -bit length indexing for C and a correspond-
ing T -time universal evaluation algorithm. Hence, the size/time-complexity of
the obfuscated program cannot beat the size/complexity of C.

While the above scheme has a fairly low overhead, it relies on a strong generic
model. Specifically, the scheme becomes insecure if the adversary manages to
zero-test element whose encoding [g]v lies in a low-level v � vzt. This vulner-
ability puts a strong restriction on the class of potential implementations. For
example, GES in which each ring element has a unique encoding (in each level)
cannot be used as it trivially permits low-level zero-testing.3 Note that known
candidates for bilinear maps have exactly this property. Currently, only few can-
didates for GES are known [10,9], and based on our current understanding, it is
possible to tweak these candidates into forbidding low-level zero-testing.4 Still, it
is desirable to obtain results in a more robust model which allows the adversary
to zero-test low-level encodings. Formally, we define a different ideal GES oracle
URG (for Unique-encoding Random GES) which, for every level v, assigns for
every ring element g ∈ R a unique (randomly chosen) encoding. In this model,
we prove the following result.5

Theorem 1.3. There exists an indistinguishability obfuscator RobustObf with
respect to URG for any circuit family C in NC1, where the URG oracle is defined
over an (n + 2)-composite order ring R = Zp1 × · · · × Zpn+2 . Furthermore, the
size, evaluation complexity and the L1 norm of the zero-testing level are exactly
as in Theorem 1.1.

The use of O(n)-composite order rings introduces an indirect efficiency overhead.
Indeed, the description length of ring elements and the computational cost of
oracle operations now grow with the input length n (and the security parameter).
It is important to note that this overhead is independent of the size/complexity

3 To test if [g]v is an encoding of zero simply check if the string [g]v + [g]v equals to
[g]v.

4 It may be surprising that such tweaking could exist, since one can always increase
the level from v to vzt by multiplying with a non-zero element of level (vzt − v).
However, in known instantiations, it is possible generate public parameters that
cannot be used for generating new encodings, thus restricting the adversary to only
have access to those levels provided in the obfuscated program. Those, in turn, are
designed so there is no way to obtain an encoding at level (vzt −v) for “dangerous”
values of v. (This is somewhat similar to the “straddling sets” technique [4].)

5 It is important to emphasize that the honest parties (the obfuscator and evaluator)
do not exploit the fact that elements have unique encodings, as they are required to
work with respect to any GES implementation. (See Section 3). Therefore, the URG
model is strictly better than theMRG model in the sense that an obfuscation which
is secure relatively to URG is also secure relatively to MRG. The reverse direction
does not necessarily hold as demonstrated by SimpleObf from Theorem 1.1.

532 B. Applebaum and Z. Brakerski

of C, and so, for sufficiently large/complicated circuit families, we may still get
an asymptotic advantage over alternative branching-program based approaches.

Definitional contribution. As already mentioned, we prove security relative to
an ideal GES oracle (either URG or MRG). Towards this goal, we propose a
new algebraic abstraction of canonical GES-based obfuscators and define a cor-
responding notion of algebraic security (which was explicit in [8,4,1]). Roughly
speaking, a GES-based obfuscator is in canonical form, if given a program iden-
tifier K, it samples a tuple a = (a1, . . . , a�) from the underlying ring R, and then
outputs a GES-encoding of these elements under the labels (v1, . . . ,v�) which
depend only on the length parameters but otherwise are independent of the pro-
gram identifer. Hence, an obfuscator is essentially a mapping from a program
identifier K to distribution DK over R�.

For algebraic security, an adversary A is a polynomial over � variables (de-
scribed by an arithmetic circuit) which is evaluated over the tuple a = (a1, . . . , a�)
sampled from DK . The outcome of the attack is the bit isZero(A(a)). Security re-
quires the existence of a simulator S that given an oracle access to CK can predict
isZero(A(DK)) with all but negligible probability.

Abstracting previous works, we show that algebraic security implies (stan-
dard) security relative to an ideal GES oracles.6 Note that algebraic security
considers only a static attack (a single query to DK) whereas standard security
(VBB or iO) corresponds to an adaptive game with possibly many queries. Cor-
respondingly, algebraic security is much easier to work with. (Indeed, a notable
part of the proofs of [8,4] is devoted to essentially reducing standard security
to algebraic security.) More importantly, algebraic security does not depend on
the GES oracle at all. As such, it crystalizes the information-theoretic properties
that are required in order to achieve security in an ideal GES model. We hope
that this abstraction will be valuable for future constructions, and that our gen-
eral lemma (algebraic security ⇒ standard security) will allow to work directly
with algebraic security.

1.2 Our Techniques

To illustrate our techniques let us consider the following simplified physical
model. The obfuscator is allowed to put ring elements in locked boxes (marked
by multisets) and everyone can add/multiply boxes at most T times. After per-
forming T operations the box is opened only if its content is equal to zero.

A naive way to obfuscate a function CK in this model is to put the identifier’s
bits K1, . . . ,Km in m separate boxes (labeled by v1, . . . ,vm), and prepare for
each input xi a pair of boxes (labeled by vi,0,vi,1) with the values 0 and 1. Given
these boxes and an input x, the evaluator can choose the boxes vi,xi , propagate

6 The difference between URG and MRG will arise by putting different syntactic
restrictions on the class of “legal” polynomials A. Furthermore, an efficient simula-
tor corresponds to VBB security while inefficient simulator corresponds to indistin-
guishability obfuscation.

Obfuscating Circuits via Composite-Order Graded Encoding 533

the values according to the (arithmetization of the) universal circuit Û(·, ·) and
obtain a box which holds the value Û(x,K). Assuming that the circuit’s size is
T , the resulting box will be opened if and only if CK(x) = 0.

This construction is insecure for several reasons. First and foremost, one can
ignore the structure of the universal circuit Û and compute any other T -size
circuit F (x,K). As a result one can easily extract the identifier K and completely
learn the function. We resolve this problem via a novel use of authenticators.
Assume that the each box has two slots. We keep the second slot untouched as
in the previous obfuscator, and fill the first slot with n+m random authenticators
y1, . . . , yn+m where the zero-box and the one-box that correspond to the same
input variable xi share the same authenticator yi. In addition, let us add another
box (labeled by v0) that contains the pair (0, y0) where y0 = Û(y1, . . . , yn+m),
and let us increase the bound on the number of operations to T + 1. Given
an input x, we can apply Û to the boxes vi,xi , obtain a box with the pair

(Û(x,K), Û(y)), subtract the result from the last v0 box and check for zero.
In terms of security, we are now protected from attacks that respect the in-

put x. Specifically, if the adversary apply some (n + m + 1)-variate polynomial

F (V0, (V1, . . . , Vm), (V ′
1 , . . . , V

′
n)) �=

(
Û((V ′

1 , . . . , V
′
n), (V1, . . . , Vm)) − V0

)
to the

boxes v0, (v1, . . . ,vm), (v1,x1 , . . . ,vn,xn) for some x ∈ {0, 1}n, then the result is
almost surely non-zero. To see this, let us focus on the first slot of
F (v0, (v1, . . . ,vm), (v1,x1 , . . . ,vn,xn)) and substitute y0 = Û(y1, . . . , yn+m). Then
the polynomial F simplifies to a non-trivial low-degree polynomial over the ran-
dom values y1, . . . , yn+m and therefore (by Schwartz-Zippel) vanishes with negli-
gible probability.7

We adopt the above outline to the GES setting where the two-slot boxes are
emulated via the use of a composite-order ring R = Zp1 × Zp2 where p1, p2 are
two (large) co-prime integers. Note that there are still several technicalities. First,
unlike the simplified boxes model, in the GES setting, addition can be applied
only over encodings from the same level. We solve this problem by representing

each value w ∈ R by a pair ([r]v, [r · w]v) where r
R← R is a (unique) random-

izer. This “El-Gamal” encoding (which was also used in prior works, cf. [6]) nat-
urally supports addition and multiplication. Namely, if two ring elements w,w′

are in El-Gamal form ([r]v, [rw]v) and ([r′]v′ , [r′w′]v′) then their sum can be com-
puted by “cross-multiplication” and their product can be computed by computing
component-wise product.

In addition, the resulting construction is vulnerable to “input-mixing” attacks
in which the adversary uses two boxes vi,0,vi,1 which correspond to the same
input variable. We solve this issue via the use of straddling sets similarly to [4].
Roughly speaking, straddling sets force consistency by making sure that input-
mixing attacks cannot reach to the top (zero-testing) level. These modifications
eventually lead to our basic obfuscator SimpleObf.

7 The above argument is somewhat inaccurate as one has to take into account the case
where F is a multiple of (Û(· · ·)− V0). A formal proof appears in Section 5.

534 B. Applebaum and Z. Brakerski

Interestingly, SimpleObf is completely broken if low-level zero-testing is allowed.
Recall that yi is shared among the zero and one encoding of the i-th input. There-
fore, one can zero-out yi in a low-level encoding by subtracting their El-Gamal
encodings, thus obtaining an element that has zero in one of the slot. At this point
one can zero-out all authenticators as well, and fully recover the string K using
low-level zero-testing.

Solving this issue is the main technical challenge addressed by our more robust
obfuscator RobustObf. As a first step, we add more slots to the encoding (using
(n+2) subringsR = Zp1 × . . . · · ·Zpn+2) and make sure that the pair of encodings
which share the same yi, hold distinct (random) values on all other slots. In order
to preserve the functionality we must allow the honest evaluator to zero-out the
additional slots (while preventing the adversary from doing so in a low-level). To
this end, we publish some auxiliary elements ŵi whose i-th slot is zero. We pub-
lish two copies of each ŵi, each in a different level v̂i,0, v̂i,1, and an appropriate
straddling set structure that guarantees that the v̂i,0 copy can only interact with
vi,0 and vice versa. Now, if the previous attack is sought, the attacker will attempt
to subtract vi,0 from vi,1, but then it will need to multiply by one of v̂i,0 or v̂i,1.
Since both operations are forbidden by the straddling sets, the attack seems to be
prevented.

Alas, we recall that functionality needs to hold as well. The element w0, which
generalizes the y0 that we had before, now must have 0 in all of the new slots,
since after the honest evaluator finishes multiplying with the ŵ values, it needs
to compare against w0. This leaves us vulnerable to an attacker that will use w0

instead of the ŵ to zero out coordinates ahead of time. To solve this last prob-
lem, we present our final trick, the shifted El-Gamal encoding. Instead of encoding
([r]v, [rw]v), we will now use ([r]v, [rw]v+v∗), where v∗ is a special vector used by
all of the encodings. The result of this change is that now, if addition/subtraction
is performed, the v∗ part of the result is the same as of the operands, but if multi-
plication is performed, the v∗ part is the sum of the v∗’s of the operands. There-
fore the v∗ part keeps track of the multiplicative degree of the evaluation process.
Finally, the element w0 will be encoded as ([r]v0 , [rw0]v0+Dv∗), whereD is the to-
tal multiplicative degree of our evaluation process. This means that one can only
add/subtract with w0, and never multiply (otherwise the v∗ multiple goes beyond
D and we set the zero-test level to not allow this). This prevents misuse of w0 and
completes the description of RobustObf.

See Section 4 for the construction and Section 5 for the proof of security.

Remark 1.4 (The degree restriction).Due to noise issues, current instantiations of
GES only support poly(λ)-multiplicative degree. In particular, the representation
length of each element is proportional to the degree. In our context, this restriction
translates to a degree restriction on the universal circuit U .8 For the (typical) case
of balanced circuits, this results in a logarithmic-depth restriction.

8 For our purposes, the degree of a boolean circuit is its formula size.

Obfuscating Circuits via Composite-Order Graded Encoding 535

1.3 Related Works

Ananth et al. [1] explored the efficiency of obfuscating formulae. They considered
two settings. One where the formula is represented as a sequence of variables and
gates, and another more similar to our formulation where there is a universal eval-
uator (in the form of a formula in their case), and the specific function is specified
as a key to this evaluator. In the latter case, which is more relevant for the sake
of comparison, they show how to obfuscate classes with formula size s with obfus-
cated program size and complexity almost as low asO(s). This is in comparison to
previousmethods that usedBarrington’s theoremand achievedO(s2) for balanced
formulae orO(s3.64) for unbalanced. Still, their complexity measure remained the
formula size of the function family, whereas in this work we show that one can ob-
fuscate relative to the circuit size of the family which may be smaller. On the flip
side, we use composite order graded encoding schemes that are even newer and
less substantiated (and possibly less efficient) than standard prime-order graded
encoding schemes.

Composite order graded encoding schemes have beenusedbyGentry,Lewkoand
Waters [13] and by Gentry, Lewko, Sahai and Waters [12] to introduce improved
security reductions for witness encryption and for obfuscation (respectively). In
particular they showed that in this setting one can construct a witness encryption
scheme or an obfuscator, and prove security in the standard model based on expo-
nential hardness assumptions.

Concurrent and Independent Work. In a very recent concurrent and independent
work, Zimmerman [18] presented an obfuscator which is almost identical to our
simpler obfuscator SimpleObf. Zimmerman also presents applications for this new
obfuscation method for circuits. Security is proven in a generic model where zero
testing below the last level is impossible, similar to our MRG oracle. Both the
obfuscator from [18] and our SimpleObf are completely broken in a more challeng-
ing model where it is possible to test for zero at low levels. Our second obfuscator
RobustObf addresses this issue and provides security in the more challenging set-
ting represented by the GES oracle URG, at the expense of being less efficient. On
the other hand, we only prove that our obfuscators are secure indistinguishability
obfuscator in the generic model, whereas [18] proves the more stringent notion of
virtual black box security.

Road map. Section 2 defines Graded Encoding over Composite Order Groups and
ideal GES oracles. Section 3 defines GES-based obfuscation, suggests two alterna-
tive security definitions (standard oracle-based definition and algebraic security)
and shows that one implies the other. Section 4 describes our new constructions
and Section 5 is devoted to the proof of their security. In this extended abstract,
most of the proofs are omitted. Full proofs appear in [3].

536 B. Applebaum and Z. Brakerski

2 Graded Encoding over Composite Order Groups

2.1 General Notation

Partial Order of Natural Valued Vectors. For an integer τ ∈ N, we view vectors in
Nτ as multisets over the universe [τ]. Correspondingly, we define a partial ordering
on vectors Nτ which corresponds to inclusion. In particular, we say that v ≤ w if
for all i ∈ [τ] it holds that v[i] ≤ w[i]. If there exists a coordinate i for which the
above does not hold, we say that v �≤ w. We note that since our vectors are defined
over the naturals, this relation is monotonous: If v ≤ w then for all w′ ∈ Nτ it
also holds that v ≤ (w + w′), and dually if v �≤ w then for all v′ ∈ Nτ it holds
that (v + v′) �≤ w.

CRT representation. Let σ ∈ N, let p1, . . . , pσ be distinct coprime numbers and let
P =

∏σ
i=1 pi. Considering the ring ZP , the Chinese Remainder Theorem (CRT)

asserts that there is an isomorphism ZP
∼= Zp1 × · · · × Zpσ such that if a ∼=

(a1, . . . , aσ) and b ∼= (b1, . . . , bσ), then a + b ∼= (a1 + b1, . . . , aσ + bσ) and a · b ∼=
(a1 ·b1, . . . , aσ ·bσ). For a given isomorphism, we will denote by a�i� the component
ai = a (mod pi).

2.2 Syntax

We begin with the definition of a graded encoding scheme in composite order
groups. The definition is adapted from [10] and follow-up works, but our notation
deviates somewhat from that of some previous work.

Definition 2.1 (Graded Encoding Scheme). LetR be a ring, and let vzt ∈ Nτ

be an integer vector of dimension τ ∈ N. A graded encoding scheme for R,vzt is
a collection of sets {[α]v ⊂ {0, 1}∗ : v ∈ Nτ ,v ≤ vzt, α ∈ R} with the following
properties:

1. For every index v ≤ vzt, the sets {[α]v : α ∈ R} are disjoint, and so they are a
partition of the indexed set [R]v =

⋃
α∈R[α]v. We slightly abuse notation and

often denote a = [α]v instead of a ∈ [α]v.
2. There are binary operations “+” and “−” such that for all v ∈ {0, 1}τ ,α1, α2 ∈

R and for all u1 = [α1]v, u2 = [α2]v:

u1 + u2 = [α1 + α2]v and u1 − u2 = [α1 − α2]v ,

where α1 + α2 and α1 − α2 are addition and subtraction in R.
3. There is an associative binary operation “×” such that for all v1,v2 ∈ Nτ such

that v1 + v2 ≤ vzt, for all α1, α2 ∈ R and for all u1 = [α1]v1 , u2 = [α2]v2 , it
holds that

u1 × u2 = [α1 · α2]v1+v2 ,

where α1 · α2 is multiplication in R.

Obfuscating Circuits via Composite-Order Graded Encoding 537

The above definition does not touch upon the computational aspects of graded
encoding schemes, which are described below. We note that there is a difference
between the definition below and the definitions for the prime order definitions.

Definition 2.2 (Efficient Procedures for Graded Encoding Scheme).We
consider a graded encoding schemes (see above) where the following procedures are
efficiently computable.

– Composite-Order Instance Generation: InstGen(1λ, 1σ,vzt, 1
‖vzt‖1) outputs the

set of parameters params, a description of a Graded Encoding Scheme relative
to vzt and relative to a ring R such that R ∼= Zp1 × · · · ×Zpσ , where all pi are
pairwise coprime numbers, i.e. R ∼= ZN for N =

∏
pi.

9

In addition, the procedure outputs a subset evparams ⊂ params that is suf-
ficient for computing addition, multiplication and zero testing, but may be in-
sufficient for sampling, encoding or for randomization.
We note that for known GES candidates, the running time of the setup proce-
dure (and all other procedures) scales with ‖vzt‖1, and hence we require that this
value is provided in unary representation in addition to vzt itself. It is conceiv-
able that more efficient instantiations that do not require this additional input
will be discovered in the future.

– Ring Sampler: samp(params) outputs a “level zero encoding” A ∈ [a]0 for a

nearly uniform a
R← R.

– Sub-Ring Sampler: subsamp(params, i∗), where i∗ ∈ [σ] outputs a “level zero
encoding” in a CRT sub-ring of R. Namely, it outputs A ∈ [a]0 for an element
a ∼= (a1, . . . , aσ), such that ai∗ is nearly uniform in pi∗ , and for all i �= i∗ it
holds that ai = 0. We stress it is very important for the security of our con-
structions that evparams does not enable such functionality.

– Encode and Re-Randomize: encRand(params, i, a) takes as input an index v ≤
vzt and A = [a]0, and outputs an encoding B = [a]v, where the distribution
of B is (statistically close to being) only dependent on a and not otherwise de-
pendent on A.

– Addition and Negation: add(evparams,A1, A2) takes A1 = [a1]v, A2 =
[a2]v, and outputs B = [a1 + a2]v. (If the two operands are not in the same
indexed set, then add returns ⊥). We often use the notation u1 + u2 to
denote this operation when evparams is clear from the context. Similarly,
negate(evparams,A1) = [−a1]v.

– Multiplication: mult(evparams,A1, A2) takes A1 = [a1]v1 , A2 = [a2]v2 . If
v1 + v2 ≤ vzt, then mult outputs B = [a1 · a2]v1+v2 . Otherwise, mult outputs
⊥. We often use the notation A1×A2 to denote this operation when evparams
is clear from the context.

– Zero Test: isZero(evparams,A) outputs 1 if A = [0]vzt, and 0 otherwise.

Noisy encodings. In known candidate constructions, encodings are noisy and the
noise level increases with addition and multiplication operations, so one has to be

9 In our security model, we will require that each prime factor of N is chosen from a
distribution with roughly (‖vzt‖1 + ω(log λ)) bits of entropy. See Section 5.

538 B. Applebaum and Z. Brakerski

careful not to go over a specified noise bound. However, the parameters can be
set so as to support O(‖vzt‖1) operations, so long as InstGen is allowed to run in
poly(‖vzt‖1) time, as our function interface compels. This will be sufficient for our
purposes and we therefore ignore noise management throughout this manuscript.

Remark 2.3. Given params, we can use subsamp to efficiently generate level-0
encodings of related elements, so long as each of their CRT components can be
expressed as a polynomial size arithmetic circuit applied to a set of uniformly dis-
tributed variables. These variables may not be shared across CRT components,
but they can be shared between elements. E.g. in a 2-composite GES, one can gen-
erate [((a1 + a2) · a3, b1)]0, [(a3 + a4, b2)]0, [(a1 · a2, b1 + b2)]0 (but cannot gener-
ate in addition [(b1, a1)]0. (Note that the product of level zero-encoding results in
a level zero encoding.) Combining the above with access to encRand allows, given
params to encode the aforementioned elements to arbitrary indices v ≤ vzt.

Remark 2.4. For our applicationwe require that it is intractable to execute subsamp
using only evparams and without access to params. Our application involves an
adversary that is given a set of encodings and evparams. If the adversary is able to
perform sub-ring sampling or to modify the level of an encoded element, then our
obfuscator will be insecure.

Further, in our first construction, the adversary should not be able to apply
zero-testing to encodings in level v < vzt, and these encodings need to appear
the same as encodings of non-zero elements. This in turn means that we must
forbid the adversary to run samp, encRand as well, since these will allow to “lift”
an encoding from level v to level vzt and run isZero. While this may seem like a
severe limitation, known candidates appear to have this property.

Concrete instantiations. The candidate constructions of [10,9] do not support the
above functionality out of the box. Specifically, [10] only allowsR of prime order,
whereas [9] does natively support composite order groups, but its security features
are unclear if sub-ring sampling is allowed. This issue has been extensively ad-
dressed in [13, Appendix B of full version]. In particular the authors there present
a variant of [9] that appears to overcome the aforementioned security issues. This
variant supports a σ-product ring R ∼= (Zp1 × · · · × Zpσ) where the pi’s are com-
posite numbers with large prime divisors. Note that this is compatible with our
requirements which allow the pi’s to be non-primes. Furthermore, this variant ad-
heres to the constraints we need to impose as per Remark 2.4. Overall, to the best
of our knowledge, this candidate is consistent with the requirements of our obfus-
cator (although we prove security only in a generic model and not under explicit
assumptions).

2.3 Ideal GES Oracles

We would like to prove the security of our construction against generic adver-
saries. To this end, we will use the generic graded encoding schememodel, adapted
from [6,7,8,4], which is analogous to the generic group model (see Shoup [17] and

Obfuscating Circuits via Composite-Order Graded Encoding 539

Maurer [15]). Intuitively, we would like to guarantee that the encoding of a ring
element is independent of the element itself, and so the adversary can manipu-
late elements only via the GES oracle. One way to formulate this restriction is to
prove security relative to an oracle that implements a truly randomGES.We focus
on two particular (inefficient) GES oracles: the unique random generic encoding
scheme oracle URG and the multiple-encoding random GES oracle MRG. Both
variants will be defined with respect to some probability distribution ensemble
{Rλ,σ,vzt} over rings.

The URG Oracle. Upon initialization of InstGen(1λ, 1σ,vzt, 1
‖vzt‖1), the oracle

URG samples a ring R R← Rλ,σ,vzt and encodes each element a ∈ R in level v ≤
vzt by a string (v, ρ) where ρ is random string of length t = (log |R|·λ). The oracle
also releases random private/public parameters evparams, secparams ∈ {0, 1}λ
which are associated with this encoding. From now on, the oracle supports all the
GES-operations with resect to the above encoding. It is not hard to see that the
only way that A can obtain valid encodings is by calls to the oracle URG (except
with negligible probability).

The oracle URG is practically identical to the random GES oracle of [8], and
similarly to that work we will also consider an online variant of URG, or rather
a variant that approximates URG to within negligible statistical distance. This
is done by an online polynomial time process, which samples the representations
on-the-fly. Specifically, the oracle will maintain a table of entries of the form
(v, a, labelv,a), where labelv,a ∈ {0, 1}t is the representation of [a]v in URG. The
table is initially empty. Every time URG is called for some functionality, it checks
that its operands indeed correspond to an entry in the table, in which case it can
retrieve the appropriate (v, a) to perform the operation. If the operands are not in
the table, URG returns ⊥. Whenever URG needs to return a value [a]v, it checks
whether (v, a) is already in the table, and if so returns the appropriate labelv,a.
Otherwise it samples a new uniform label, and inserts a new entry into the table.

When interacting with an adversary that only makes a polynomial number of
calls, the online version of URG is within negligible statistical distance of the of-
fline version (in fact, the statistical distance is exponentially small in λ). This is
because the only case when the online oracle implementation differs from the of-
fline one is when when the adversary guesses a valid label that it has not seen (in
the offline setting). This can only occur with exponentially small probability due
to the sparsity of the labels. The running time of the online oracle is polynomial
in the number of oracle calls.

Defining Multiple-encoding random GES. We would like to define a similar ran-
dom oracle which assigns exponentially many possible encodings for each element
in each level. The interface to this oracle has to be defined carefully. Consider, for
example, the case where we have three labels A,B,C where A = [a]v,B = [b]v,
C = [c]v and we compute the term (A + B) × C and the term A × C + B × C.
We have to specify whether the resulting label will be identical or not. We choose
the more conservative approach and assume that in such a case the label will be
indeed identical. In contrast, the labels of A+B and A′+B should disagree when

540 B. Applebaum and Z. Brakerski

A,A′ are two independent labels of a (e.g., both A and A′ were generated using
two different calls to encRand on some labelA0 = [a]0). To formalize these require-
ments we define an online version of the Multiple-encoding RandomGES (MRG)
oracle.

The (online) MRG Oracle. The oracle MRG is initialized similarly to the URG
oracle, except that each ring element a ∈ R in level v ≤ vzt is encoded by 2λ

strings of the form (v, ρi) where ρi is random string of length t = (log |R| · λ2).
Whenever a sampling query is made,MRG generates an element a fromR or the
appropriate sub-ring, a uniform length t label, but it also generates a new formal
variableXi, it then stores the tuple (0, a,Xi, label0,a,Xi) in its table. Whenever an
encRand query is made, again a random label and a new formal variable Xi′ are
chosen, and the tuple (v, a,Xi′ , labelv,a,Xi′) is stored. Whenever an “arithmetic”
query is made, MRG looks up the input labels and finds the appropriate labels
in its table, and adds or multiplies the respective formal variables (which will now
become formal polynomial). Thus, the table will now contain tuples of the form

(v, a, poly(�X), labelv,a,poly(�X)), and labels will be unique if the respective formal

polynomials are distinct. Finally, for zero-test queries,MRG will test whether the
actual value is the zero value in R and respond accordingly.

Both oracles support the standardGES operations with respect to the resulting
encodings. We note that URG (which essentially corresponds to the traditional
notion of multilinear maps) is more robust than MRG as it gives more power to
the adversary (for example it can easily detect if it has two encodings of the same
element). Specifically, it is not hard to show that if a construction is secure with
respect to URG then it is also secure with respect toMRG. (Formally, theMRG
oracle can be efficiently emulated using a URG oracle.)

3 GES-Based Obfuscators

In this section we define the notion of GES-based obfuscators. Our definitions
somewhat deviate from the more traditional definitions formulated in [5]. Specif-
ically, to allow a more fine-grained notions of efficiency, we distinguish between
the description-length and the time complexity of the obfuscated program. Fur-
thermore, we adopt the definition to the GES setting and distinguish between cor-
rectness, which should hold for any syntactically valid (possibly trivial) GES, and
security, which should hold with respect to some “ideal” GES oracle. Finally, we
show (Section 3.2) that for natural GES-based obfuscators, security with respect
to ideal oracles boils down to certain algebraic properties of the obfuscator’s out-
put (referred to as algebraic security). This abstraction (which was implicit in pre-
vious works) allows us to decouple the computational properties of the GES from
the information-theoretic properties of the obfuscator. Indeed, the security of our
obfuscator will be established using the algebraic definition.

Obfuscating Circuits via Composite-Order Graded Encoding 541

3.1 Main Definitions

We begin by recalling the notion of efficient function families.

Function family. Let C = {CK}K∈{0,1}∗ be a family of efficiently computable func-

tions, where for everyK ∈ {0, 1}m(n) the functionCK operates on inputs of length
n. We will assume that C is represented by a uniform family of polynomial-size
universal evaluation circuits U = {Un}n∈N, where Un maps an identifier K ∈
{0, 1}m(n) and input x ∈ {0, 1}n to the output CK(x). The computational com-
plexity of C (with respect to the representation U) is the circuit size of U and the
representation size of C is m(n). We say that C is in NC1 if U is computed by
polynomial-size circuits of logarithmic depth.10

GES-based Obfuscators: Syntax. A GES-based obfuscation scheme for a family of
efficiently computable functions C consists of a pair of PPT algorithms: an obfus-
cator Obf and an evaluator Eval, which have oracle access to a GES. The input to
the obfuscator is an identifier K ∈ {0, 1}m(n) of a function CK ∈ C, an unary rep-
resentation of the security parameter 1λ, and an unary representation 1n of the in-
put length ofCK . The obfuscator outputs an obfuscated program Ĉ ∈ {0, 1}∗. The
evaluation algorithm Eval maps an obfuscated program Ĉ, an input x ∈ {0, 1}n,
and an unary representations of the security parameter 1λ to a string y. We note
that the efficiency requirement on the obfuscatorObf implicitly puts a polynomial
restriction on the size of the obfuscated program Ĉ.

Correctness should hold with respect to an arbitrary GES implementation.

Definition 3.1 (PreservingFunctionality).AGES-based obfuscation scheme
(Obf,Eval) for C is functionality preserving if for every instantiation of GES G,
every n ∈ N, every CK ∈ C where K ∈ {0, 1}m(n), and every x ∈ {0, 1}n, with
all but negl(λ) probability over the coins of Obf,Eval and the GES oracle G it holds
that:

EvalG(1n, 1λ, Ĉ, x) = CK(x), where Ĉ
R← ObfG(1n, 1λ,K).

We define Indistinguishability Obfuscator with respect to some (possibly ineffi-
cient) GES instantiation. Our definition is formulated in terms of unbounded sim-
ulation which is equivalent to the more standard indistinguishability-based defi-
nition (cf. [8]).

Definition 3.2 (IndistinguishabilitySecurity [5]).AGES-based obfuscation
scheme (Obf,Eval) for C is called an Indistinguishability Obfuscator (iO) with re-
spect to some GES instantiation G if for every (non-uniform) polynomial size ad-
versary A, there exists a (computationally unbounded) simulator S, such that for
every n ∈ N and for every CK ∈ C where K ∈ {0, 1}m(n):∣∣Pr[AG(1λ, Ĉ) = 1]− Pr[SCK (1|K|, 1n, 1λ) = 1]

∣∣ = negl(λ),

10 We note that the family of all depth-d size-s circuits for some s(n) ∈ poly(n) and
d(n) ∈ O(log n) admit a universal evaluation circuit in NC1 of size s(n) · 2d(n).

542 B. Applebaum and Z. Brakerski

where Ĉ
R← ObfG(1n, 1λ,K). If the simulator can be implemented by (non-uniform)

polynomial size circuits than the obfuscator is Virtually Black-Box (VBB) secure.

We will instantiate the above definition with the ideal oracles URG and MRG
defined in Section 2.3.

3.2 Algebraic Security

In this section we present a notion of security that will be easier to work with, and
prove its equivalence to the randomGES model above. This model and the equiv-
alence are implicit in previous works. As before, we let Rλ,σ,vzt be some ensemble
of probability distributions over rings.

Definition 3.3 (Obfuscator in Canonical Form). An obfuscator is in canon-
ical form if it can be presented as follows. (Recall that the obfuscator is given a se-
curity parameter 1λ, an input length 1n, and a program identifierK ∈ {0, 1}m(n).)

1. Based on n, the obfuscator deterministically generates � = �(n) integer-valued
vectors v1, . . . ,v�, a zero-testing vector vzt and a ring arity σ ∈ N.

2. Based on λ,K, n, the obfuscator defines a joint distribution Dλ(n,K) over �
(generic) ring elements (a1, . . . , a�).

11

3. Then, the obfuscator initializes the GES which samples R R← Rλ,σ,vzt the ob-
fuscator samples the tuple (a1, . . . , a�) from R according to the distribution
Dλ(n,K), and outputs the vector of encodings ([a1]v1 , . . . , [a�]v�

) together with
the evaluation parameters evparams.

Overall, such a canonical obfuscator can be defined by the length function � = �(n),
the ring arity σ(n), the vectors Vn = (v1, . . . ,v�,vzt), the distribution Dλ(n,K),
and the ring distribution Rλ,σ,vzt .

Intuitively, an adversary who gets an obfuscated program ([a1]v1 , . . . , [a�]v�
)

can choose some polynomial and check if it is evaluated to zero on the ring elements
(a1, . . . , a�). Security should guarantee that such an attack gives no information
on the program K beyond what follows from an oracle access to CK . That is, we
would like to have a simulator that given an oracle access to CK can tell whether a
given an adversaryA (i.e., some arithmetic circuits) evaluates to zero onDλ(n,K).

We will formalize this notion of security in Definition 3.6, but before that we de-
fine a family of ring-independent adversaries. We will focus on the class of purely
arithmetic circuits with arbitrary fan-out. These circuits will not have any con-
stants and will contain only input, addition and multiplication gates. Since it con-
tains no constants, it is not ring-specific and one can consider the evaluation of
the same circuit over various rings. Formally, each such circuit naturally defines a
polynomial with integer coefficients.

11 More precisely, the distribution is defined by randomized arithmetic circuits with GES
oracle-gates to the underlying ring, as explained in Remark 2.3.

Obfuscating Circuits via Composite-Order Graded Encoding 543

Definition 3.4. A purely arithmetic circuit A is a circuit which contains input
gates (no fan-in, fan out > 0), an output gate (fan-in 1, fan out 0) and operator
gates for addition (+), subtraction (−) and multiplication (×) with fan-in 2 and
fanout > 0. The size of A is the number of gates in A. Given a purely arithmetic
circuit A with � input gates and a ring R, we let PA,R ∈ R[X1, . . . , X�] denote the
�-variate polynomial defined by the circuit A by associating a formal variable Xi

with each input gate. When the subscript R is omitted we view PA as a polynomial
over the integers.

Wewill consider adversariesA that respect the GES-indexing, namely, addition
and multiplication can be applied only according to the algebra induced by the
GES indexing.

Definition 3.5 (V -CompatibleCircuits).Apurely arithmetic circuitA is eval-
uated over the integer-valued vectors (v1 , . . . ,v�) via the following recursive process.
The i-th input gate takes the value vi, a multiplication gate with inputs v,v′ takes
the value v+v′, and an addition (or subtraction) gate with identical inputs v = v′

takes the value v. If there exists an addition (subtraction) gate with non-identical
inputs v �= v′ then the circuit is defined to be syntactically-illegal.We say thatA is
compatiblewith V = ((v1, . . . ,v�),vzt) if the computationA(v1, . . . ,v�) is syntac-
tically legal and the level v of the output gate is lower or equal to the zero-test level
vzt, i.e., v ≤ vzt. When v = vzt we say that A is strongly compatible with V .

We can now define a simulation-based definition of security which is parame-
terized by some family of arithmetic circuits Aλ.

Definition 3.6 (Algebraic Security). Let A = {Aλ,n} be some class of purely
arithmetic circuits where every circuit A ∈ Aλ,n has �(n) inputs. We say that a
canonical obfuscator (�, σ, V,D,Rλ,σ,vzt) is secure against A if there exists a (pos-
sibly unbounded) randomized algorithm S (simulator) such that for every input
length n, function identifier K ∈ {0, 1}m(n), and adversary A ∈ Aλ,n we have∣∣∣∣∣ Pr

RR←Rλ,σ,vzt

[PA,R(Dλ(n,K)) = 0]− Pr[SCK (1λ, 1n, A) = 0]

∣∣∣∣∣ ≤ negl(λ).

By default, we consider security against the class of all poly(λ, n)-size purely arith-
metic circuitsA = {Aλ,n}which are Vn-compatible (resp., strongly Vn-compatible)
and refer to this notion as algebraic security (resp., strong algebraic security).

We note that the case of efficient simulator S corresponds to VBB security and
the inefficient case to the notion of iO. Also, different choices of adversaries A
may be considered in order to capture the operations accessible for the adversary
in other generic models. A larger class provides stronger security. Note that the
class of Vn-compatible adversaries is strictly larger than the class of strongly Vn-
compatible, and so security against the former strictly implies security against the
latter.

544 B. Applebaum and Z. Brakerski

The following lemma, which is implicit in previous works (cf. [8]), shows that
security in the algebraic model implies security in the generic model.

Lemma 3.7. If a canonical GES-based obfuscator (�, σ, V,D,R) is algebraically
secure (resp., strong algebraically secure) then it is a secure indistinguishably ob-
fuscator relative to the GES oracle URG (resp., MRG) over the ring distribution
R. Furthermore, if the above holds with efficient simulation then the conclusion is
strengthened to VBB security in the corresponding model.

The proof of the lemma (which is implicit in previous works) is differed to the full
version.

4 Description of the Obfuscator and Correctness

4.1 Setting and Definitions

Let C = {CK}K∈{0,1}∗ be a family of efficiently computable functions with n-bit

inputs, representation size m = m(n) and universal evaluator U . Let Û be the
arithmetized version of U . Namely an arithmetic circuit with {+,−,×} gates such
that for any ring R, if (x,K) ∈ {0, 1}n+m ⊆ Rn+m, then Û(x,K) = CK(x). We
let DÛ denote the degree of the polynomial computed by Û .

Consider an enumeration of the wires of Û in topological order, such that the
first n+m wires refer to the wires of the x,K inputs. For each wire i, we define a
vector si ∈ Zn+m+1 as follows. If i ≤ n+m, then si = ei (the ith indicator vector).
For a wire iwhich is the output wire of a gate whose input wires are j1, j2, we define
si = sj1 + sj2 . We define the multiplicity of input wire i to be Mi = sout[i], where

“out” is the output wire of Û . (Note that we only used the first (n+m) coordinates
of the vectors. The last coordinate will be utilized in the actual construction for
the purpose of checking the consistency of the computation.)

4.2 The Obfuscator SimpleObf

For all i ∈ [n], b ∈ {0, 1}, we define vi,b ∈ Z(n+m+1)×3 as vi,b = ei ⊗ [b, 1, 1− b].
We further define v̂i,b = ei ⊗ [(1 − b) ·M [i], 0, b ·M [i]].

For all i ∈ {n+ 1, . . . , n + m} we define vi = ei ⊗ [1, 1, 1] and similarly v0 =
en+m+1⊗[1, 1, 1]. Lastly, we define vzt = (sout+en+m+1)⊗[1, 1, 1] ∈ Z(n+m+1)×3.
We note that for all x ∈ {0, 1}n it holds that vzt = v0+

∑n
i=1(M [i]·vi,xi+v̂i,xi)+∑n+m

i=n+1 M [i] · vi.
We illustrate the various level vectors in Figure 1.

Obfuscating Circuits via Composite-Order Graded Encoding 545

vi,0 =

⎡
⎣ 0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0

⎤
⎦ , vi,1 =

⎡
⎣ 0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎦ , vi =

⎡
⎣ 0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0

⎤
⎦

v̂i,0 =

⎡
⎣ 0 · · · M [i] · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎦ , v̂i,1 =

⎡
⎣ 0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · M [i] · · · 0 0

⎤
⎦

v0 =

⎡
⎣ 0 · · · 0 10 · · · 0 1
0 · · · 0 1

⎤
⎦ , vzt =

⎡
⎣M [1] · · · M [n+m] 1
M [1] · · · M [n+m] 1
M [1] · · · M [n+m] 1

⎤
⎦

Fig. 1. The level vectors for obfuscator SimpleObf

Obfuscator SimpleObf:

– Input: Circuit identifier K ∈ {0, 1}m where CK ∈ C.
– Output: Obfuscated program with the same functionality as CK .
– Algorithm:

1. Instantiate a 2-composite graded encoding scheme

(params, evparams) = InstGen(1λ, 12,vzt, 1
‖vzt‖1) .

2. For all i ∈ [n], b ∈ {0, 1}, compute random encodings Ri,b = [ri,b]vi,b
as well

as encodings of Zi,b = [ri,b · wi,b]vi,b
, where wi,b = (yi, b) and yi is uniform.

3. For all i ∈ [n], b ∈ {0, 1}, compute random encodings R̂i,b = [r̂i,b]v̂i,b
as well

as encodings of Ẑi,b = [r̂i,b · ŵi]v̂i,b
, where ŵi = (ŷi, β̂i) are uniform.

4. For all i ∈ {n+1, . . . , n+m}, compute random encodings Ri = [ri]vi as well
as encodings of Zi = [ri ·wi]vi , where wi = (yi,Ki−n), where Ki is the ith bit
of the circuit description and yi is uniform.

5. Compute random encoding R0 = [r0]v0 and Z0 = [r0w0]v0 , where w0 =(∏
i∈[n] ŵi

)
· (y0, 1) and y0 = Û(y1, . . . , yn+m).

6. The obfuscated program will contain the following:

– The evaluation parameters evparams.
– For all i ∈ [n], b ∈ {0, 1} the elements Ri,b, Zi,b, R̂i,b, Ẑi,b.
– For all i ∈ {n+ 1, . . . , n+m} the elements Ri, Zi.
– The elements R0, Z0.

We note that all of the required encodings can be efficiently generated using
params, as explained in Remark 2.3.

546 B. Applebaum and Z. Brakerski

An important feature of our obfuscator that will be used in the proof is that all
of the information that depends on the circuit CK resides in the second element
of the CRT representation, and the distribution of the first element is completely
independent of CK .

4.3 The Obfuscator RobustObf

For simplicity of presentation, we assume w.l.o.g that Û is such that the inputs
to every multiplication gate have the same degree (as polynomials in the input
variables and program description). This is straightforward to achieve by adding
the constant 1 as one of the elements of the program description, and multiplying
by this variable (raised to the proper degree) to balance the input degrees.

For all i ∈ [n], b ∈ {0, 1}, we define vi,b ∈ Z(n+m+1)×4 as vi,b = ei ⊗ [b, 1, 1−
b, 0]. We further define v̂i,b = ei ⊗ [(1− b) ·M [i], 0, b ·M [i], 1].

For all i ∈ {n + 1, . . . , n + m} we define vi = ei ⊗ [1, 1, 1, 1]. We define v0 =
en+m+1⊗ [1, 1, 1, 0] and v∗ = en+m+1⊗ [0, 0, 0, 1]. Lastly, we define vzt = (sout+
en+m+1) ⊗ [1, 1, 1, 0] + (

∑n+m
i=1 ei) ⊗ [0, 0, 0, 1] + D · v∗ ∈ Z(n+m+1)×4, where

D = DÛ +n (and DÛ , as defined above, is the degree of the polynomial computed

by Û). We note that for all x ∈ {0, 1}n it holds that vzt = v0+
∑n

i=1(M [i] ·vi,xi +

v̂i,xi) +
∑n+m

i=n+1 M [i] · vi +D · v∗.
We illustrate the various level vectors in Figure 2.

Obfuscator RobustObf:

– Input: Circuit identifier K ∈ {0, 1}m where CK ∈ C.
– Output: Obfuscated program with the same functionality as CK .
– Algorithm:

1. Instantiate a (n+ 2)-composite graded encoding scheme

(params, evparams) = InstGen(1λ, 1n+2,vzt, 1
‖vzt‖1) .

2. For all i ∈ [n], b ∈ {0, 1}, compute random encodings Ri,b = [ri,b]vi,b
as well

as encodings of Zi,b = [ri,b · wi,b]vi,b+v∗ , where wi,b = (yi, b, ρi,b,1, . . . , ρi,b,n)
and yi, ρi,b,j are uniform.

3. For all i ∈ [n], b ∈ {0, 1}, compute random encodings R̂i,b = [r̂i,b]v̂i,b
as well as

encodings of Ẑi,b = [r̂i,b · ŵi]v̂i,b+v∗ , where ŵi = (ŷi, β̂i, ρ̂i,1, . . . , ρ̂i,n), where

ŷi, β̂i, {ρ̂i,j}j �=i are all uniform, but ρ̂i,i = 0.
4. For all i ∈ {n+1, . . . , n+m}, compute random encodings Ri = [ri]vi as well

as encodings of Zi = [ri ·wi]vi+v∗ , where wi = (yi,Ki−n, ρi,1, . . . , ρi,n), where
Ki is the ith bit of the circuit description and yi, ρi,j are uniform.

5. Compute random encoding R0 = [r0]v0 and Z0 = [r0w0]v0+Dv∗ , where w0 =(∏
i∈[n] ŵi

)
· (y0, 1, 0, . . . , 0) and y0 = Û(y1, . . . , yn+m).

6. The obfuscated program will contain the following:
– The evaluation parameters evparams.

Obfuscating Circuits via Composite-Order Graded Encoding 547

vi,0 =

⎡
⎢⎢⎣
0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎥⎥⎦ , vi,1 =

⎡
⎢⎢⎣
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎥⎥⎦ , vi =

⎡
⎢⎢⎣
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

⎤
⎥⎥⎦

v̂i,0 =

⎡
⎢⎢⎣
0 · · · M [i] · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0

⎤
⎥⎥⎦ , v̂i,1 =

⎡
⎢⎢⎣
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · M [i] · · · 0 0
0 · · · 1 · · · 0 0

⎤
⎥⎥⎦

v0 =

⎡
⎢⎢⎣
0 · · · 0 1
0 · · · 0 1
0 · · · 0 1
0 · · · 0 0

⎤
⎥⎥⎦ , v∗ =

⎡
⎢⎢⎣
0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
0 · · · 0 1

⎤
⎥⎥⎦

vzt =

⎡
⎢⎢⎣
M [1] · · · M [n] M [n+ 1] · · · M [n+m] 1
M [1] · · · M [n] M [n+ 1] · · · M [n+m] 1
M [1] · · · M [n] M [n+ 1] · · · M [n+m] 1

1 · · · 1 0 · · · 0 D

⎤
⎥⎥⎦

Fig. 2. The level vectors for obfuscator RobustObf

– For all i ∈ [n], b ∈ {0, 1} the elements Ri,b, Zi,b, R̂i,b, Ẑi,b.
– For all i ∈ {n+ 1, . . . , n+m} the elements Ri, Zi.
– The elements R0, Z0.

As in our previous obfuscator, all of the required encodings can be efficiently
generated using params, as explained in Remark 2.3.

Note that again all of the information that depends onCK appears in the second
component of R, and the distributions in all other components are independent
of K.

4.4 Evaluating an Obfuscated Program

We will now describe the evaluator for our obfuscators SimpleObf and RobustObf.
Due to their very similar structure, we are able to present a single evaluator that
works for both obfuscators. In the context of SimpleObf we will define v∗ = 0 and
ignore the last n sub-rings of the ring R.

As can be seen in the description of our obfuscator above, the obfuscated circuit
is encoded in the w variables, and each w variable in turn is encoded relative to
an r variable. We first show that these pairs of encodings of r and r · w can be

548 B. Applebaum and Z. Brakerski

manipulated algebraically while keeping the invariant that each value is encoded
relative to an r. This is demonstrated by the following procedure.

Procedure PairOp:

– Input: GES evaluation parameters evparams, pairs of encodings(
R1 = [r1]v1 , Z1 = [r1w1]v1+kv∗

)
,
(
R2 = [r2]v2 , Z1 = [r2w2]v2+kv∗

)
, op-

eration op ∈ {×,+,−}.
– Output: Pair of encodings

(
R∗ = [r1r2]v1+v2 , Z =

[r1r2 · (w1 op w2)]v1+v2+tk·v∗
)
, where t = 1 for op ∈ {+,−} and t = 2

for op ∈ {×}. If (v1 + v2 + tk · v∗) > vzt, the procedure outputs ⊥.
– Algorithm:

1. Compute R∗ = R1 ×R2.
2. If op = × compute Z∗ = Z1 × Z2.
3. If op = + compute Z∗ = Z1 ×R2 +R1 × Z2.
4. If op = − compute Z∗ = Z1 ×R2 −R1 × Z2.

We note that PairOp can be applied iteratively to evaluate any arithmetic circuit
on pairs of encodings. The multiplicity of v∗ will be exactly the multiplicative
degree of the evaluated circuit. We can now describe our evaluator for obfuscated
programs.

Procedure Eval:

– Input:Obfuscated program as produced by SimpleObf(K) for some identifier
K:

O =

(
evparams, {Ri,b, Zi,b, R̂i,b, Ẑi,b} i∈[n],

b∈{0,1}
, {Ri, Zi}n+m

i=n+1, {R0, Z0}
)

,

input x ∈ {0, 1}n.
– Output: Value O(x) ∈ {0, 1}.
– Algorithm:

1. We consider the pairs of elements (Ri,xi , Zi,xi) for i ∈ [n], and Ri, Zi for i =

n+1, . . . , n+m.We apply the circuit Û on these pairs of encodings as described
above, to obtain a pair:

RU = [rU]vU , ZU = [rU · wU]vU+DÛ ,

where vU =
∑n

i=1 M [i] · vi,xi +
∑n+m

i=n+1 M [i] · vi and

wU = Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

= (Û(y1, . . . , yn, yn+1, . . . , yn+m), Û(x,K),—)

= (Û(�y), CK(x),—)

Obfuscating Circuits via Composite-Order Graded Encoding 549

where the values denoted by “—” will not matter for correctness so we will not
explicitly mention them to avoid cluttering (recall that the simpler obfuscator
SimpleObf does not need these values at all).

2. We take the product of the pair of elements (RU , ZU) with the pairs
(R̂i,xi , Ẑi,xi) to obtain

R̂U = [r̂U]v̂U , ẐU = [r̂U · ŵU]v̂U+Dv∗ ,

where ŵU =
∏n

i=1 ŵi · wU , and

v̂U =

n∑
i=1

M [i] · vi,xi +

n+m∑
i=n+1

M [i] · vi +

n∑
i=1

v̂i,xi = vzt − v0 .

3. We subtract the pair (R̂U , ẐU) from the pair (R0, Z0), to obtain

R′′ = [r′′]v̂U+v0
, Z ′′ = [r′′ · w′′]v̂U+Dv∗+v0

,

and we notice that indeed (v̂U +Dv∗ + v0) = vzt and

w′′ = w0 −
n∏

i=1

ŵi · (Û(�y), CK(x),—) =

n∏
i=1

ŵi · (Û(�y)− Û(�y), 1− CK(x),—) .

Recalling that
∏n

i=1 ŵi = (α, β, 0, . . . , 0), for some values α, β, we have that

w′′ = (0, β(1− CK(x)), 0, . . . , 0) .

4. Finally, zero testing is applied to Z ′′. If isZero(Z ′′) = 1 then output 1, other-
wise output 0.

5 Generic Security of Our Construction

5.1 Useful Algebraic Tools

We will use the following corollary of the Schwartz-Zippel lemma [16,19].

Fact 5.1. Let σ ∈ N, let p1, . . . , pσ be distinct primes and let P =
∏σ

i=1 pi. Then
a multivariate polynomial of total degree d has at most dσ roots over ZP .

The proof is deferred to the full version.
For a univariate polynomial P , defined over a field, it holds that (x − a)|P (x)

if and only if P (a) = 0. The following lemma generalizes this fact to the case of
multivariate polynomials over the integers.

550 B. Applebaum and Z. Brakerski

Fact 5.2. LetP (x1, . . . , xn) ∈ Z[x1, . . . , xn] and letA(x2, . . . , xn) ∈ Z[x1, . . . , xn]
(however x1 does not appear in A). Then(

(x1 −A(x2, . . . , xn))|P (x1, . . . , xn)
)
↔ P (A(x2, . . . , xn), x2, . . . , xn) ≡ 0 .

The proof is deferred to the full version.
Next we present a bound on the size of the coefficients of a polynomial computed

by a purely arithmetic circuit of bounded size and bounded degree.

Fact 5.3. Let C be a purely arithmetic circuit (as per Definition 3.4) of size s and
degree d. Then the polynomial ‖PC‖1 ≤ 2sd (where the norm refers to the �1 norm
of the coefficient vector of PC).

The proof is deferred to the full version. A polynomial is free of some variable or
monomial if this variable/monomial does not appear in its expansion. A formal
definition follows.

Definition 5.4. Let P (X1, . . . , Xn) be a polynomial. We say that P is Xi-free if
all monomials that contain Xi take zero value in P ’s coefficient vector. We ex-
tend this notation to monomials and say that P is (

∏
Xdi

i)-free if all monomials

that are divisible by (
∏

Xdi

i) take zero value in P ’s coefficient vector. For a set of
monomials {M1, . . . ,Mk} we say that P is {M1, . . . ,Mk}-free if it is Mj-free for
all j = 1, . . . , k.

Obfuscators in El-Gamal form. Recall that a canonical obfuscator is defined by
length function � = �(n), ring arity σ(n), integer-valued vectors (v1, . . . ,v�,vzt),
and a distributionDλ(n,K) over �(n) ring elements (a1, . . . , a�). A canonical form
obfuscator is in El-Gamal form (EG in short) if the ring elements (ai)i∈[�] can be
partitioned to pairs (ri, zi)�/2 where the vector (r1, . . . , r�/2) is a vector of uni-
formly and independently chosen ring elements, and zi = ri ·wi for some wi ∈ R.
(The same wi may appear twice and may not be uniformly distributed, and fur-
thermore ri, zi may not be encoded in the same level.)

Note that both of our obfuscators are in El-Gamal form.

5.2 Admissible Distributions on Composites and Rings

We define the notion of admissible distributions over composite numbers (and by
extension over rings). Intuitively, a probability distribution Nk is k-admissible if
it samples a poly(k)-bit integer with the property that the min-entropy of every
prime factor of Nk is at least Ω(k). A formal definition follows.

Definition 5.5. An ensemble of probability distributions {Nk} is k-admissible if
Nk samples a poly(k)-bit integer with the property that the min-entropy of every
prime factor of Nk is at least Ω(k). An ensemble of probability distributions over
rings {Rk} is k-admissible ifRk

∼= ZN and the random variable N is k-admissible.

It is not hard to see that every small fixed integer x is likely to be co-prime to

y
R← Nk.

Obfuscating Circuits via Composite-Order Graded Encoding 551

Lemma 5.6. Let Nk be some k-admissible distribution. Then for all x ∈ Z \ {0},
it holds that

Pr
y

R←Nt,k

[gcd(|x|, y) > 1] ≤ log |x| · poly(k) · 2−Ω(k) ≤ log |x| · 2−Ω(k) .

The proof is deferred to the full version.
It follows for an admissible ring distribution, any fixed (short) list of (small)

integers is unlikely to hit non-invertible ring element.

Corollary 5.7. Let L ∈ N and let L ⊆ Z \ {0} be a list of L integers such that
all x ∈ L, |x| ≤ 2poly(λ). Let R ∼= ZN be a ring where N is chosen from some
(logL + ω(logλ))-admissible distribution. Then, the probability that there exists
x ∈ L which is not a unit in R is negl(λ).

5.3 Proof Outline

In this section we describe the common general outline of the proof that will be
applied both to SimpleObf (Section 5.4) and to RobustObf (Section 5.5).

Since our constructions are in canonical form (in fact, in El-Gamal form) it
suffices, by Lemma 3.7, to prove algebraic security according to Definition 3.6.

Fix some function identifier K and polynomial P . We note that P is associated
with a purely arithmetic circuit of polynomial size and polynomial degree. The
latter is since the degree cannot go above ‖vzt‖1. Since our obfuscator is in EG
form, we can re-write P as a sum of terms of the form

M(r) ·Q(w) ,

where M is a monomial and Q is a polynomial. It suffices to show that given an
oracle access to CK , we can determine if the above product equals to zero with
more than negligible probability (where the probability is taken over Dλ(K)).

In the simulation we use the min-entropy of the orders pi of the sub-rings of R
as follows. We present a simulator that needs not know any information about the
order ofR or its sub-rings. However, this simulator succeeds only as long as a list of
non-zero integers L generated during the simulation does not contain any element
that is not a unit in R. The length of the list will be bounded by 2‖vzt‖1 · poly(λ),
and the absolute value of each of these numbers will be at most 2poly(λ). Fact 5.3
and Corollary 5.7 thus guarantee that the simulation fails only with negligible
probability.

Formally, our simulator (which is oblivious to the order of the ring) is going to
have the following properties:

1. The simulator will generate, as a by product, a list L of L = 2‖vzt‖1 · poly(λ)
integers of absolute value at most 2poly(λ). In particular, the list is a subset
of the coefficients of the polynomial P . Since P is computable by a purely
arithmetic circuit of size poly(λ) and degree at most ‖vzt‖1, the bounds will
follow from Fact 5.3.

552 B. Applebaum and Z. Brakerski

2. We will prove that as long as all of the elements of L (cast into R) are units
in R, the simulation is successful.

3. The distribution of R as described in our model will guarantee, by Corol-
lary 5.7, that the event of simulation failure due to L containing a non-unit is
negligible.

The specifics of applying this outline will vary between the specific obfuscators.

5.4 Algebraic Security Proof for SimpleObf

Theorem 5.8. The obfuscator SimpleObf is secure relative to theGES oracleMRG
defined over any (‖vzt‖1 + ω(log(λ)))-admissible ring distribution.

We follow the outline from Section 5.3. We start with structural claims on Q,
viewed as a polynomial over the integers.

Lemma 5.9. There exists x = (x1, . . . , xn) ∈ {0, 1}n such that Q is
{wi,1−xi}i∈[n]-free.

The proof is deferred to the full version.

Lemma 5.10. The polynomialQ is
{
w

(M [i]+1)
i,b , w

(M [i]+1)
i , ŵ2

i , w
2
0

}
i∈[n],b∈{0,1}

-free.

The proof is deferred to the full version.

Lemma 5.11. The polynomial P (r, w) can be written as a sum of at most T =
2‖vzt‖1 terms of the form M(r)Q(w), where M is a monomial.

The proof is deferred to the full version.
We can now distinguish between two cases.

1. It holds that⎛⎝w0 −
(∏
i∈[n]

ŵi

)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

⎞⎠ � |Q

for any x = (x1, . . . , xn) ∈ {0, 1}n.
2. There exists x = (x1, . . . , xn) ∈ {0, 1}n such that⎛⎝w0 −

(∏
i∈[n]

ŵi

)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

⎞⎠ |Q .

Lemma 5.12 (Case 1). Let x = (x1, . . . , xn) ∈ {0, 1}n be the value guaranteed
to exist in Lemma 5.9. If it holds that⎛⎝w0 −

(∏
i∈[n]

ŵi

)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

⎞⎠ � |Q , (1)

then
Pr

Dλ(K)
[Q = 0] = negl(λ) .

Obfuscating Circuits via Composite-Order Graded Encoding 553

The proof is deferred to the full version.

Lemma 5.13. Let x = (x1, . . . , xn) ∈ {0, 1}n be the value guaranteed to exist in
Lemma 5.9. If it holds that⎛⎝w0 −

(∏
i∈[n]

ŵi

)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

⎞⎠ |Q(w) ,

then there exists a constant a′ such that

Q(w) = a′ ·

⎛⎝w0 −
(∏
i∈[n]

ŵi

)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

⎞⎠ .

The proof is deferred to the full version.

Lemma 5.14 (Case 2). If there exists x = (x1, . . . , xn) ∈ {0, 1}n such that

Q(w) = a ·

⎛⎝w0 −

⎛⎝∏
i∈[n]

ŵi

⎞⎠ · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

⎞⎠ ,

Then if CK(x) = 0 then PrDλ(K)[Q = 0] = negl(λ), and if CK(x) = 1 then
PrDλ(K)[Q = 0] = 1.

The proof is deferred to the full version.
Overall, the simulator can determine whether Q evaluates to zero. In the first

case, it will simply say that Q does not evaluates to zero, and in the second case
it will test if CK(x) = 1 and, only if this test passes, it will output Yes (meaning
that Q evaluates to zero). By lemmas 5.12 and 5.14 the simulator errs with no
more than negligible probability.

5.5 Algebraic Security Proof for RobustObf

We will prove the following theorem.

Theorem 5.15. The obfuscator RobustObf is secure relative to the GES oracle
URG defined over any (‖vzt‖1 + ω(log(λ)))-admissible ring distribution.

Since we aim for security relative to MRG (using Lemma 3.7), we should take
into account the possibility that the adversary P is of level smaller than vzt. We
follow the outline from Section 5.3 by viewing P as a sum of terms of the form
M(r) · Q(w). We will analyze the probability that Q(Dλ(K)) evaluates to zero,
starting with a few structural claims on Q.

Lemma 5.16. There exists a constant a and aw0-free polynomialQ′(w) such that

Q(w) = a · w0 −Q′(w) .

554 B. Applebaum and Z. Brakerski

The proof is deferred to the full version.

Lemma 5.17. For all i ∈ [n], the polynomial Q (and therefore also Q′ from
Lemma 5.16) is ŵ2

i -free.

The proof is deferred to the full version.
We can now distinguish between three main cases.

1. It holds that
(∏

i∈[n] ŵi

)
� |Q′(w).

2. It holds that
(∏

i∈[n] ŵi

)
|Q′(w), namely there exists a polynomialQ′′(w)which

is {w0, ŵ1, . . . , ŵn}-free and

Q(w) = aw0 −
(∏
i∈[n]

ŵi

)
·Q′′(w) .

However,

Q′′(w) �= a · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

for any x = (x1, . . . , xn) ∈ {0, 1}n.
3. There exists x = (x1, . . . , xn) ∈ {0, 1}n such that

Q(w) = a·

⎛⎝w0 −

⎛⎝∏
i∈[n]

ŵi

⎞⎠ · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

⎞⎠ . (2)

Lemma 5.18 (Case 1). If ∃i. ŵi � |Q′(w), then

Pr
w

R←Dλ(K)

[Q(w) = 0] = negl(λ) .

The proof is deferred to the full version.

Lemma 5.19. If Q′(w) =
(∏

i∈[n] ŵi

)
· Q′′ for some Q′′, then there exists x =

(x1, . . . , xn) ∈ {0, 1}n such that Q′′ is {wi,1−xi}i∈[n]-free.

Werecall thatbyLemma5.17,Q′′(w) is also {ŵi}i∈[n]-free.Theproof ofLemma5.19
is deferred to the full version.

Lemma 5.20 (Case 2). If Q′ =
(∏

i∈[n] ŵi

)
·Q′′ and for the x from Lemma 5.19

it holds that Q′′ �= a · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m), then PrDλ(K)[Q =
0] = negl(λ).

The proof is deferred to the full version.

Lemma 5.21 (Case 3). If there exists x = (x1, . . . , xn) ∈ {0, 1}n such that

Q = a ·

⎛⎝w0 −

⎛⎝∏
i∈[n]

ŵi

⎞⎠ · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

⎞⎠ ,

Then if CK(x) = 0 then PrDλ(K)[Q = 0] = negl(λ), and if CK(x) = 1 then
PrDλ(K)[Q = 0] = 1.

Obfuscating Circuits via Composite-Order Graded Encoding 555

The proof is deferred to the full version.
Overall, the simulator can determine whether Q evaluates to zero. In the first

and second cases, it will simply say that Q does not evaluates to zero, and in the
third case it will test if CK(x) = 1 and, only if this test passes, it will output Yes
(meaning that Q evaluates to zero). By lemmas 5.18, 5.20 and 5.21 the simulator
errs with no more than negligible probability.

References

1. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoid-
ing barrington’s theorem. Cryptology ePrint Archive, Report 2014/222 (2014),
http://eprint.iacr.org/

2. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions.
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874,
pp. 162–172. Springer, Heidelberg (2014)

3. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded en-
coding (2014); Full version of this paper. Available at the authors homepage

4. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang,
K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012); Prelim-
inary version in Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer,
Heidelberg (2001)

6. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer,
Heidelberg (2013)

7. Brakerski, Z., Rothblum, G.N.: Black-box obfuscation for d-cnfs. In: Innovations
in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA, January 12-14,
pp. 235–250. ACM (2014)

8. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 1–25. Springer, Heidelberg (2014)

9. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

10. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17.
Springer, Heidelberg (2013)

11. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate in-
distinguishability obfuscation and functional encryption for all circuits. In: 54th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2013, October
26-29, pp. 40–49. IEEE Computer Society, Berkeley (2013)

12. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. IACR Cryptology ePrint
Archive, 2014:309 (2014)

13. Gentry, C., Lewko, A.B., Waters, B.: Witness encryption from instance independent
assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

http://eprint.iacr.org/

556 B. Applebaum and Z. Brakerski

14. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

15. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005)

16. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
J. ACM 27(2), 701–717 (1980)

17. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

18. Zimmerman, J.: How to obfuscate programs directly. Cryptology ePrint Archive,
Report 2014/776 (2014), http://eprint.iacr.org/

19. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
EUROSAM1979 and ISSAC1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg
(1979)

http://eprint.iacr.org/

Adaptively Secure Two-Party Computation

from Indistinguishability Obfuscation�

Ran Canetti1,3,��, Shafi Goldwasser2, and Oxana Poburinnaya3

1 Tel-Aviv University, Israel
canetti@bu.edu

2 Weizmann, Israel and MIT, USA
shafi@csail.mit.edu

3 Boston University, USA
oxanapob@bu.edu

Abstract. We present the first two-round, two-party general function
evaluation protocol that is secure against honest-but-curious adaptive
corruption of both parties. In addition, the protocol is incoercible for
one of the parties, and fully leakage tolerant. It requires a global (non-
programmable) reference string and is based on one way functions and
general-purpose indistinguishability obfuscation with sub-exponential se-
curity, as well as augmented non-committing encryption.
A Byzantine version of the protocol, obtained by applying the Canetti

et al. [STOC 02] compiler, achieves UC security with comparable effi-
ciency parameters, but is no longer incoercible.1

1 Introduction

Obtaining adaptive security, namely guaranteeing security against adversaries that
decide who to corrupt in an adaptive way depending on their view of the compu-
tation so far, has been a major challenge in secure computation since its inception.
Indeed, adaptive securityprovides amore realisticmodeling of adversarial behavior
and party infection in modern communication networks. Furthermore, when com-
bined with an additional property called corruption oblivious simulation, adaptive
security implies a strong variant of leakage tolerance [BCH12], namely resilience to
side channel attacks on the participating computational devices.

Guaranteeing adaptive security turns out to be considerably more challenging
than guaranteeing security in the static setting where the set of corrupted parties
is fixed in advance. As in the static setting, the security guarantees become
stronger when the adversary is allowed to corrupt more parties. Furthermore,
while in the static case the situation where all the parties are corrupted is trivial,

� Research Supported by the NSF MACS Frontier project.
�� Supported in addition by the Check Point Institute for Information Security, ISF
grant 1523/14, and NSF Algorithmic Foundations grant 1218461.

1 c©IACR 2015. This article is the final version submitted by the authors to the
IACR and to Springer-Verlag on January 13. The version published by Springer-
Verlag is available at the beginning of March 2015.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 557–585, 2015.
c© International Association for Cryptologic Research 2015

558 R. Canetti, S. Goldwasser, and O. Poburinnaya

in the adaptive case protecting against adversaries that can eventually corrupt all
parties is by far the hardest case. Note that withstanding corruption of all parties
is crucial for guaranteeing meaningful security of a protocol within a larger
system or context. Also, the transformation from adaptive security to leakage
tolerance is most meaningful in this case (namely, leakage from all parties). In
particular:

– The best round complexity of a fully adaptively secure protocol (namely
a protocol that does not rely on secure erasure of information and that

withstands adaptive corruption of all parties) is
∼
Ω (d), where d is the depth

of the circuit being evaluated [BGW88, CFGN96, CLOS02]. (The works
of [IPS08], [GS12] obtain constant number of rounds; however they cannot
support corruption of all parties.) Furthermore, this is the best known round
complexity even in the case of two party computation, even for the honest
but curious setting, and even in the common reference string model.

– No fully leakage-tolerant (hence also no non-erasing oblivious simulation
adaptively secure) general function evaluation protocol is known, with any
number of rounds. Again, this holds even for honest-but-curious corruptions
and even for two party protocols. (The protocol of [BDL14] obtains leakage
tolerance in a setting with an initial, leakage free interactive set-up state.)

Our results. We present a two-message, two party secure function evaluation
protocol that is secure against adaptive honest-but-curious corruption of all par-
ties — thereby resolving a long standing open problem in the theory of secure
computation. Furthermore, the protocol has non-erasing oblivious simulation,
implying leakage tolerance. Security is based on subexponentially secure indis-
tinguishability obfuscation for all circuits and one way functions, as well as
augmened non-committing encryption as in [DN00, CLOS02].

The protocol requires a global, non-programmable reference string. Specifi-
cally, the string contains an obfuscated program to be run by parties. We call
this mild version of the reference string model the factory model, since it is rem-
iniscent of a setting where the obfuscated program is generated by a “trusted
factory”.

The protocol is also incoercible [CG96] for one of the parties. That is, it
provides one of the parties with a mechanism to present “convincing evidence”
that explains its outgoing messages as resulting from any arbitrary input value
(that may be different than the input value actually used). This holds even when
the “coercer” expects to see the full internal state of the party. That is, we show:

Theorem 1. Assume existence of sub-exponentially secure indistinguishability
obfuscators for all circuits and one way functions, as well as augmented non-
committing encryption. Then there exists a two-message, two party protocol,

Adaptively Secure Two-Party Computation 559

in the factory model, for evaluating any function with UC security in the presence
of adaptive, honest-but-curious corruption of both parties. Furthermore:
(a) The protocol is leakage tolerant as in [BCH12].
(b) The protocol is incoercible with respect to one of the parties.

In fact we show that the protocol satisfies a stronger variant of the [CG96]
definition, that avoids a weakness in the original definition and is also universally
composable. Furthermore, new definition may be of interest independently of
the present protocol; in particular, it applies also to multi-party protocols and
general (Byzantine) corruptions.

Compiling this protocol via the [GMW87, CLOS02] compiler, we obtain a
constant-round, adaptively secure UC protocol for Byzantine adversaries in the
standard CRS model. While the protocol remains leakage resilient, it is no longer
incoercible.

The protocol and techniques. Before presenting the protocol, let us recall the
definition of adaptive security. Security requires existence of a simulator that
has access only to the trusted party for the function, and still emulates for the
adversary (or, rather, the environment) an execution with the actual protocol.
Since we are in the honest but curious model, we can assume without loss of
generality that the adversary first waits to see the entire communication of the
protocol to the end, and then corrupts all parties. The simulator should first
create a simulated public transcript of the computation; then, when a party is
corrupted and the simulator learns the input and the output of that party, the
simulator should present the adversary with the appropriate random choices of
the party that are consistent with the party’s input and messages sent.

Our starting point is Yao’s garbled circuit two party protocol, together with
a two-message oblivious transfer. Recall that the first message in the protocol
is the first OT message from the evaluator to the garbler. The second message,
from the garbler to the evaluator, consists of the second OT message together
with the garbled circuit. The evaluator then outputs the result of the compu-
tation. (If both parties wish to learn the output then they run another copy of
the protocol in parallel, with reverse roles; or the evaluator can send the result
to the garbler, but this adds one more round.)

When the OT is adaptively secure (as in, say, [CLOS02]) and the garbler’s
message is encrypted using non-commiting encryption, the protocol becomes
adaptively secure with respect to the corruption of the evaluator. That is, the
simulator can indeed create the transcript of the communication ahead of time
(this is just ciphertexts of non-committing encryption) and when the evaluator is
corrupted, provide the receiver message for the adaptively secure OT protocol.
Note however that here the simulator has to commit to the garbled circuit,
without knowing the garbler’s input.

Now, simulating the corruption of the garbler gets stuck: Here the environment
expects to see the internal randomness of the garbler, including the random
choices used for the generation of the garbled circuit. This we do not know how
to do efficienty. In fact, in some cases such valid opening simply does not exist.

560 R. Canetti, S. Goldwasser, and O. Poburinnaya

Our approach to get around this apparently inherent difficulty is to provide
the garbler with an obfuscated version of his program. That is, let the common
reference string contain an obfuscated version of the garbler’s program. The
garbler will then run the obfuscated program on its input and random input
and send the resulting message. The hope is that this will hide the internal
randomness of the garbling, even when the environment sees the random input
of the party.

However, this naive attempt does not work by itself, since the randomness
for the protocol may well be correlated with the internal randomness that’s
not supposed to be leaked. We address this issue by applying a pseudorandom
function to the random and real inputs, and using the result as randomness to
the protocol. In addition, to make the simulation go through with only indis-
tinguishability obfuscation we follow the lead of Sahai and Waters [SW14] and
use puncturable PRFs and an “explain” algorithm that allows the simulator to
generate randomness that “explains” any given outgoing message.

As simple as the protocol is, the proof of security is rather delicate. One subtle
point that deserves highlighting is the treatment of adaptivity in the choice of
inputs. We first prove security in a model where the inputs are “selective”:
the environment determines the inputs to the computation before it sees the
reference string (namely the obfuscated programs). This is a rather weak security
model. We then extend the analysis to the setting where the environment chooses
the inputs adaptively. Here is where we use the sub-exponential security of the
indistinguishability obfuscator: the analysis here requires as many hybrids as the
number of potential inputs to the computation. This number can be exponential.
We note, however, that since the parameters of the obfuscation can be chosen
to be larger than the size of the inputs to the computation, this requires only
sub-exponential security of the iO in use.

Finally we remark that the trust requirements from the reference string are
relatively mild. First, it is non-programmable, in the sense that the simulator
need not know any secret information related to the string. This means that the
same instance of the reference string (namely, the same obfuscated program)
can be used by multiple protocols and instances thereof without compromising
security [CDPW07]. Second, static security holds even if the secrets associated
with the reference string, namely the secrets of the obfuscation and the secret
keys, are exposed.

Concurrent work. Concurrently to and independently from this work, two other
works develop fully adaptively secure protocols using indistinguishability obfus-
cation. Both of these works appear in these proceedings [GP14, DKR14]. We give
account of theseworks. Like ours, bothworksdescribe protocols for evaluating gen-
eral functions, not only adaptively well formed ones as in [CLOS02]. Furthermore,
all works obtain resilience against adaptive corruption for all parties. Finally, all
works use the CRSmodel, where the CRS contains indistinguishability-obfuscated
programs.

Adaptively Secure Two-Party Computation 561

Dachman-Soled, Katz and Rao [DKR14] describe a general mechanism to
transfrom programs into deniable ones, and use this mechanism to construct
a four-round, multiparty, adaptively secure protocol against honest-but-curious
corruptions. They then compile their protocol using the [CLOS02] compiler to
handle Byzantine corruptions. Their analysis assumes only indistinguishability
obfuscator and one way functions that are secure against polysize adversaries.
Garg and Polychroniadou [GP14] directly describe a multi-party, two round,
adaptively secure protocol against Byzantine corruptions. Similarly to this work,
their analysis assumes sub-exponentially secure indistinguishability obfuscation
and one way functions. Both protocols need a programmable (i.e., non-global)
CRS, and neither protocol is incoercible.

Organization. Section 2 sketches the models of computation and recalls the
main results of this work. Section 3 provides an overview of the construction.
Section 4 provides a detailed presentation and analysis of the main protocol.

2 The Models of Computation

We consider the standard UC model of computation (as in [Can01]) with adap-
tive, honest-but-curious party corruptions. The parties and the environment have
access to a global, public common reference string functionality. That is, the func-
tionality first draws the reference string from a predefined distribution; next, all
parties, including the adversary and the environment, obtain that string.

In our protocol the reference string is a description of programs run by parties;
these programs are obfuscated and contain secret keys which shouldn’t be known
to the parties. We refer to such a global reference string model as “the factory
model”, since it is intended to represent a situation where all parties obtain the
program from a trusted “factory”.

Leakage tolerance. Wewill show that our protocol is leakage-tolerant.The leakage
tolerance model we consider is the one in [BCH12], which is aimed as capturing
protocols that are tolerant to arbitrary amount of leakage, and where the secu-
rity loss grows gradually with the amount of leakage. More specifically, in that
model a protocol π computes a function f in a leakage tolerant way if no adversar-
ial environment can tell whether it is interacting with the parties running π, while
obtaining some �-bit leakage function of the individual internal states of the par-
ticipants, or alternatively with a simulator and an ideal process for evaluating f ,
in which the simulator obtains some arbitrary �-bit function of each of the inputs
of the parties.

It is shown there that if a protocol is shown to be adaptively secure with a
special type of simulator, called corruption oblivious simulator (defined below),
then the protocol is leakage tolerant.

A simulator is corruption oblivious if the information it gathers upon corrup-
tion of a party, namely the secret input (and potentially also the secret output)
of that party, is used only to generate a simulated view of the local state of that

562 R. Canetti, S. Goldwasser, and O. Poburinnaya

party. This information is not used anywhere else in the simulation. Formally,
the simulator creates a special subroutine for simulating the internal state of
that party. The newly learned input of the corrupted party does not leave the
confines of this subroutine. It is shown in [BCH12] that if a protocol is adaptively
secure with a corruption oblivious simulator then it is also leakage tolerant.

Incoercibility. Incoercibility aims to protect the protocol participants from exter-
nal authoritative (or otherwise coercive) entities that try to entice a party to reveal
its state voluntarily. The idea is to provide parties with a “faking” algorithm that
takes any desired fake value of the secret input, and exhibits “fake randomness”
that is consistent with both the newly decided fake value and all the past messages
sent by the party so far. Incoercible computation was defined in [CG96], where a
generic construction from any deniable encryption scheme [CDNO97, SW14] is
given. However, the construction there has a large number of rounds and works
only when strictly less than half of the parties are either coerced or corrupted.

We revisit the definition of coercion-free computation, providing a new def-
inition that is significantly stronger than the one in [CG96]. Specifically, the
security guarantees provided by the new definition are preserved under univer-
sal composition. The definition also overcomes another weakness in the [CG96],
as explained below. The definition here fleshes out ideas from [Can01, P. 59].

Informally, the definition captures incoercibility by asking that the protocol
in question emulates an ideal functionality that employs the following “ideally
incoercible” corruption process. Whenever the ideal functionality is asked by the
ideal-model adversary to provide the internal information of some participant
P in the protocol, the ideal functionality first asks the environment (represent-
ing the entity that invoked party P to participate in the protocol) whether to
reveal the real input that P contributed to the computation, or alternatively
whether to report some fake input. If the environment instructs to reveal the
real input, then the functionality returns the real input of P to the adversary. If
the environment provides a fake value x, then the functionality returns x to the
adversary. Crucially, the adversary does not learn whether the value provided
was fake or real.2

Now, consider a protocol π that realizes such an ideal functionality F , and
consider a party P that runs π. Now, upon receiving a corruption message from
the adversary, π must instruct P to first ask the environment (which, again,
represents the entity that invoked party P to participate in the protocol) whether
to report the real internal state or to provide a fake one. If the response is to
reveal the real input, then we require that P reveals its true internal state. If

2 We remark that the definition in [CG96] reveals to the ideal-model adversary
whether the value provided by the functionality is real or fake. This renders that
definition weak. For instance, consider a protocol with a faking algorithm that out-
puts the empty string as “fake randomness”. While this protocol should clearly not
be considered as “incoercible”, it could be accepted by a simulation based definition
— as long as the simulator knows which parties are coerced and which ones are
corrupted, since there is no problem for the simualtor to output an empty string
upon coercion request.

Adaptively Secure Two-Party Computation 563

the response is fake input value x, then P follows the instructions of π for such
a case.

We argue that if π emulates F in the usual (UC) sense then this means that
π is incoercible. Indeed, F provides “ideal incoercibility” in the sense that there
the ideal adversary learns nothing about whether a party revealed the real or the
fake input - beyond what is revealed by the legitimate outputs of the corrupted
parties. Thus, the same must hold also with respect to the real adversary that
interacts with π - or else the environment could tell the difference between the
two interactions. Note however that this arument hinges on two facts: (a) in the
real world the corrupted party must reveal its real input upon corruption, when
instructed so by the environment, and (b) that the ideal adversary is not being
told whether the input value it received upon corruption is real or fake.

More formally, we define incoercible protocols in two steps. First we define
what it means for an ideal functionality to be incoercible. Next, we define what
it means for a protocol to be corruption-compliant. A protocol will be incoercible
if it is corruption compliant and in addition it UC-emulates an incoercible ideal
functionality.

We consider ideal functionalities F where each input to F is associated with
two party identities: the first, P represents the identity of the protocol partic-
ipant that holds this input, and the second, CP is the identity of the “calling
party”, namely the party that provided the input value(s) to P , and will obtain
the output value(s) from the computation. Such an ideal functionality F is in-
coercible if it behaves as follows upon receiving a corrupt P message from the
adversary. F first outputs to CP a corrupted value. Next, if CP responds with
do not fake then F returns to the adversary all the inputs received from CP

and all the output passed to CP in this interaction so far. If CP responds with
fake to x then F interprets x as a list of inputs and outputs and hands this
list to the adversary instead of the real one.

We consider protocols π that attempt to UC-emulate an incoercible ideal
functionality. We say that such a protocol π is corruption compliant if, after
having received a corrupt P message from the adversary, followed by a do

not fake input from its caller, CP , P forwards its entire internal state to the
adversary. (Note that we do not restrict what π instructs to do in case that CP

responds by fake to x. Indeed, this is the essence of the “faking procedure”
that should be specified in π.)

In general, a protocol π is incoercible if it is corruption-compliant and it
UC-emulates an incoercible ideal functionality. We also provide a definition of
incoercible distributed function evaluation. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an
n-party function, and let Ff be the incoercible ideal functionality that computes
f , say with respect to some fixed set of party identities P1, ..., Pn. That is, upon
receiving inputs from the calling parties of P1, ..., Pn, Ff evaluates f on these
inputs and provides the caller of each Pi with its corresponding output value
f(x1, ..., xn)i. Party corruptions are handled in an incoercible way as described
above.

564 R. Canetti, S. Goldwasser, and O. Poburinnaya

Definition 1. Protocol π evaluates an n-party function f : ({0, 1}∗)n →
({0, 1}∗)n if it is corruption-compliant and it UC-emulates Ff .

Note that the above definition of incoercibility did not specify whether the
corruptions are honest-but-curious or Byzantine. Indeed, this definition is mean-
ingful in both cases.

3 Protocol Overview

Let’s first recall how the original Yao protocol looks like. Let’s say parties P0

and P1 have inputs x0 and x1 and they want to evaluate y = C(x0, x1) for some
circuit C. P0 generates a garbled circuit: that is, for every wire of C P0 creates
two random labels l0, l1, and a garbled circuit consists of 4 encryptions of output
label under input labels as keys, and the result table, which lists 0 and 1 labels
for output gates.

P0 sends to P1 the garbled circuit together with the labels corresponding to
P0’s input. Then for every P0’s input bit P0 and P1 run OT protocol, after
which P1 learns the keys corresponding to his input. At this point P1 has all
information he needs to evaluate the circuit: it has all input labels, and it keeps
evaluating the circuit gate by gate, until finally it learns output labels. Then it
uses result table to learn the output.

As shown in [LP09], the original Yao protocol is statically secure, given aug-
mented non-committing encryption [DN00, CLOS02]. In particular, when P1 is
corrupted, Simulator learns x1 and y and shows a fake garbled circuit which
always evaluates to y and is indistignuishable from the real garbled circuit. (It
cannot show the real garbled circuit since it doesn’t know x0.) Also the simulator
shows labels corresponding to P0’s and P1’s inputs. Here it is crucial that an
adversary sees only one label per each input bit and therefore cannot distinguish
between a fake circuit and a real one.

The same simulation works in adaptive case with erasures: P0 should erase
its internal state before sending the second message. However, in the adaptive
case without erasures this simulation fails: an adversary could corrupt P0 after
corrupting P1 and learning a fake garbled circuit. For every P1’s input bit, a
simulator has to show both labels since these labels were P0’s input in OT pro-
tocol. Now the adversary sees one label for each one of P0’s input bits and both
labels for P1’s input bit. This allows the adversary to detect that the garbled
circuit is not valid.

Indeed, consider a circuit that consists of just one AND gate. The simulator
corrupts P1 and learns its input x1 = 0 and y = 0. At this point the simulator
still doesn’t know P0’s input, but it has to show the garbled circuit, therefore
it shows fake circuit where all four ciphertexts encrypt the same key l0, and it
shows the result table where l0 is decrypted to 0. Now the simulator corrupts P0

and learns x0 = 1. It has to show keys corresponding to both x1 = 0 and x1 = 1.
This means that the adversary knows the keys for x0 = 1, x1 = 0 and x1 = 1
and can evaluate the circuit on inputs (1, 1) and (1, 0). Since the circuit is just
an AND gate, the result should be different. However, since our garbled circuit

Adaptively Secure Two-Party Computation 565

contained the same key in all four encryptions, an adversary trying to evaluate
the circuit will get 0 in both cases and will detect cheating.

The problem is that an adversary learns too much at the moment of cor-
ruption: learning both keys for P1’s input allows him to evaluate the circuit on
many inputs and to check that the circuit is a fake. To avoid this problem, we
change the protocol such that P0 himself doesn’t know the keys for P1’s input.
In order to achieve this, we “glue together” the garbled circuit generation, the
input labels generation and the OT into one program P which outputs the next
message function for the Yao protocol. This program will be obfuscated by the
factory. Now, P0 will run this program on his input and local randomness and
send its output to P1.

Naively one may hope that, since the program is obfuscated, P0 himself doesn’t
know more than just inputs he used and output it sent to P1 (in particular, it
doesn’t know the keys for P1’s input). However, this is not enough: it might be
the case that the input itself reveals the keys (say, if the keys are just set to be
some substring of the random input). To deal with this problem, we don’t use
the random input directy in the protocol. Instead, we first apply a pseudoran-
dom function to the input and random input, and then use the output of the
pseudorandom function as the random input to the protocol.

The next set of challenges deals with making the above plan to work with an
obfuscation mechanism that only guarantees indistinguishability obfuscation.
Here we follow the lead of Sahai and Waters [SW14] and use similar constructs
and techniques as there. Specifically, we use the technique of embedding “hidden
triggers” in the random input to the program P . If the program recognizes a
hidden trigger then it just outputs the value encrypted in that trigger. Else, the
program used the randomness as in the Yao protocol. We publish P together
with a “faking” algorithm Explain that allows anyone to generate hidden trig-
gers of one’s choice. This addition has a twofold effect: For one it provides for
incoercibility for the garbler. In addition it also simplifies the proof of security.

Throughout, and following [SW14], we employ constrained, or puncturable
pseudorandom functions [GGM86, BGI13, BW13], which enables applying in-
distinguishability obfuscation to pseudorandom function in a meaningful way.

We describe and analyze the scheme in a simple setting where the parties have
secure communication channels, and with only honest but curious corruptions.
Once we have such a protocol, we can implement secure channels using non-
committing encryption. We can also deal with Byzantine corruptions by forcing
semi-honest behavior.

We also assume without loss of generality that only the evaluator learns the
output. If both parties need to obtain outputs from the computation then they
can run the same protocol twice, on the same inputs but with reverse roles.
(Alternatively, at the cost of adding a message to the protocol, the evaluator
can send the function value to the garbler.)

566 R. Canetti, S. Goldwasser, and O. Poburinnaya

Implementing secure channels. As we will see later, only the second message
in our protocol should be sent over a secure channel. This means that P1 can
send EKNCE in the first message, and the protocol still remains two-round after
implementing secure channels.

Corruption obliviousness and leakage resilience. The naive protocol, described
above, does not naturally lend to corruption-oblivious simulation. Indeed, to
simulate the corruption of the garbler, the simulator needs to come up with a
second message, namely a garbled circuit, that outputs the correct output of
the computation. This needs to be done without knowing the input or output of
the evaluator, and only using the input of the garbler. Furthermore, when the
evaluator is corrupted, the simulator needs to come up with the same garbled
circuit, without knowing the input of the garbler. This is not known to be possible
in general. We get around this issue by making a simple modification to the
protocol: Instead of evaluating f(x0, x1), the parties will use the above protocol
to evaluate f ′(x0, (x1, z)) = f(x0, x1) ⊕ z. The evaluator, P1, will choose z at
random, and after obtaining the output value y, it will set its output to be y⊕z.

With this modification in place, the simulator can set the output of the garbled
circuit to be a random value fixed in advance and then deal with the corruption
of the parties in an oblivious way.

Incoercibility. We provide incoercibility for the garbler. This is done in a straigh-
forward way: Since the explain procedure is public, a coerced garbler can demon-
strate random input that explains any input value of its choice, in the same way
as in [SW14].

Handling Byzantine corruptions. Here we use the generic transformation of
[CLOS02] (based on [GMW87]) that transforms a protocol that is secure against
adaptive honest but curious corruptions into a protocol that is secure against
adaptive Byzantine corruptions.

4 Detailed Description and Analysis

Preliminaries. In our construction we use the following primitives. The reader
is referred to the papers cited for detailed definitions.

1. Indistinguishability obfuscation iO for polynomial-size circuits, as defined,
constructed and used in [BGI+01, GR14, GGH+13, SW14].

2. Augmented non-committing encryption scheme Enc ([DN00, CLOS02]). We
denote its generation, oblivious generation and inverting algorithms as
Enc.Gen, Enc.oGen and Enc.Inv.

3. Puncturable PRFs which are additionally extracting or injective [BGI13,
BW13, SW14].

4. The garbled circuit generation algorithm Gen together with an algorithm
SimGen for generating fake garbled circuit from [LP09]. These programs use
a special encryption scheme which they call a public key encryption with
elusive efficiently verifiable range.

Adaptively Secure Two-Party Computation 567

Deterministic single-party-output functionalities. First, we recall that it suffices
to be able to compute deterministic functionalities: indeed, there exists a stan-
dard reduction of any randomized functionality to a deterministic one, given by
fdet((x0, r0), (x1, r1)) = frand(x0, x1; r0 ⊕ r1). Second, it is enough to compute
functionalities where only one party gets the output (and the other party gets
nothing): parties can run in parallel two instances of the protocol with the same
input, where in the first execution only the first party generates output and in
the second execution only the second party generates output.

In our protocol P0 is the garbler and P1 is the evaluator for the Yao protocol.
The natural thing to do would be to create a garbled circuit for the functionality
they want to compute (−; f(x0, x1)). However, in this case the simulation is not
corruption-oblivious.3 We therefore slightly modify a protocol: P1 first generates
random z, and P0 generates a garbled circuit for the function f ′(x0, (x1, z)) =
f(x0, x1)⊕ z. As we’ll see, this will suffice for making the simulation corruption-
oblivious.

Oblivious transfer. We use the following one out of two OT protocol, based
on [EGL85]: assume P0 has k0, k1 and P1 has a bit b; we want P1 to learn kb.
First, P1 generates keys (EKb, DKb) and EK1−b without corresponding decryp-
tion key (this encryption scheme, in addition to normal key generation, should
have oblivious key generation algorithm which outputs encryption keys with-
out corresponding decryption keys, in such a way that this encryption keys are
indistinguishable from normal encryption keys. For this we use augmented non-
committing encryption). P1 sends EK0, EK1 to P0. P0 sends back encryptions
c0 = Enc(EK0; k0) and c1 = Enc(EK1; k1). Since P1 has DKb, he can decrypt
kb = Dec(DKb; cb). However, since there is no DK1−b generated , the second
value k1−b remains unknown to P1. Following [CLOS02], we make the OT adap-
tively secure by using non-committing encryption for the encryption scheme.

With this implementation of OT, the Yao protocol consists of the following
two messages:

1. First, P1 generates two sets of encryption keys PK0, PK1 and one set of
decryption keys SKx1 (such that for every input bit xi

1 P1 only knowsDKi
xi
).

P1 sends PK0, PK1 to P0.
2. P0 generates a garbled circuit GC and sends to P1 GC, keys for P0’s input

bits, and keys for all possible P1’s input bits encrypted under PK0, PK1

(we will call this a Yao message). P1 decrypts the keys corresponding to its
input, and, since it has GC and all input labels, it evaluates the circuit gate
by gate.

Protocol description. We have parties P0, P1 with inputs x0, x1 respectively. The
protocol for allowingP1 to learn the value f(x0, x1) for some function f is described

3 Indeed, for the simulation to be corruption-oblivious, the subroutine for generating
P1’s internal state should be able to create a fake garbled circuit without knowing
x0. At the same time, the subroutine for creating P0 internal state should be able to
create (the same) fake garbled circuit without knowing the output y. It is not clear
how to do that for the above “natural” garbling method.

568 R. Canetti, S. Goldwasser, and O. Poburinnaya

in Figure 1. The referece string consists of programs P and Explain, described in
Figures 2 and 3. The circuit C that prorgam P evaluates will be the circuit that
computes the function f ′(x0, (x1, z)) = f(x0, x1)⊕ z. (The value z will be chosen
by P1 at random as part of the protocol.)

The protocol consists of two rounds. In round one, P1 (the evaluator) chooses
randomness s and z and sets x′

1 = (x1, z) to be its new input. It samples se-
cret and public keys for oblivious transfer using s (public keys which do not
correspond to P1’s input are sampled obliviously). P1 sends all public keys to
P0. In the second round P0 chooses its randomness r and runs a program P on
its input x0, randomness r and a set of public keys from P1. The program P
internally generates new randomness u and runs the underlying subroutine Gen
to generate a Yao message, which becomes the program output. P0 sends this
message to P1. P1 gets the labels for x0, decrypts the labels for x1 and evaluates
the circuit, obtaining f(x0, x1)⊕ z. Then P1 xor’s the result with z and gets the
output f(x0, x1).

The program Explain is not used in the protocol directly. However, it is used
in the case when parties want to deny their inputs, as well as in the proof.

The Protocol:

1. P1 chooses random z and sets x′
1 ← (x1, z). Then it chooses random s and gen-

erates PKx′
1
, SKx′

1
← Enc.Gen(s[0]) and PK1−x′

1
← Enc.oGen(s[1]). It sets

α∗ ← PK0, PK1 and sends α
∗ to P0.

2. P0 chooses random r∗, runs β∗ ← P (x0, α
∗; r∗) and sends β∗

3. P1 evaluates the garbled circuit taken from β∗, using the labels and output table
from β∗, and outputs the result xor’ed with z.

Fig. 1. Protocol description

We show:

Theorem 2. Let:

– SEnc be CPA-secure symmetric key encryption scheme with an elusive effi-
ciently verifiable range ([LP09])

– Enc be an augmented non-committing encryption scheme
– E = {EkE} be an extracting puncturable PRF family
– I = {IkI} be an injective puncturable PRF family
– F = {Fk} be a puncturable PRF family
– PRG be an input-doubling PRG
– iO be indistinguishability obfuscator

then the protocol is adaptively secure with oblivious simulation in the factory
model in the presence of semi-honest adversaries given secure channels.

Adaptively Secure Two-Party Computation 569

Program P

inputs: P0’s input x, P1’s 1-round message α, randomness r = r[1]r[2]
P (x, α; r) :

1. check if r has encoded value inside:
(a) M ′ ← Fk(r[2])⊕ r[1]; if IkI

(M ′) �= r[2] then goto 2;
(b) parse M ′ as β′, x′, α′, ρ̂′. If (x′, α′) �= (x, α) then goto 2;
(c) output β′

2. else run Gen:
(a) u ← EkE

(x, α, r)
(b) output Gen(x, α;u)

Program Gen.

Constants: circuit C with m wires and s output wires; let’s assume that first 2n wires are
input wires and last s wires are output wires
Input: P0’s input x0; P1’s two sets of public keys PK0, PK1;
randomness u = u1u2u3u4

Gen(x0, PK; u):

1. Create labels for wires: (k01 , k
1
1), . . . , (k

0
m, k1m) ← u1

2. Create encryptions of labels:
(a) Partition u2 into u21, . . . , u2m, and each u2t into u2t1, . . . , u2t4

(b) Partition u3 into u31, . . . , u3m, and each u3t into u3t1, . . . , u3t4

(c) For every gate t in C create 4 encryptions:
– if t is an AND gate:

GCt[0, 0] ← SEnck0
i
(SEnck0

j
(k0l ;u2t1);u3t1)

GCt[0, 1] ← SEnck0
i
(SEnck1

j
(k0l ;u2t2);u3t2)

GCt[1, 0] ← SEnck1
i
(SEnck0

j
(k0l ;u2t3);u3t3)

GCt[1, 1] ← SEnck1
i
(SEnck1

j
(k1l ;u2t4);u3t4)

– if t is an OR gate:
GCt[0, 0] ← SEnck0

i
(SEnck0

j
(k0l ;u2t1);u3t1)

GCt[0, 1] ← SEnck0
i
(SEnck1

j
(k1l ;u2t2);u3t2)

GCt[1, 0] ← SEnck1
i
(SEnck0

j
(k1l ;u2t3);u3t3)

GCt[1, 1] ← SEnck1
i
(SEnck1

j
(k1l ;u2t4);u3t4)

(d) shuffle GCt[0, 0], GCt[1, 0], GCt[0, 1], GCt[1, 1]
3. Create encryptions of labels for P1’s input:

(a) Partition u4 into u401, . . . , u40n, u411, . . . , u41n

(b) For all i = 1, . . . , n c0i ← EncPKi
0
(k0n+i; u40i), c

1
i ← EncPKi

1
(k1n+i; u41i)

4. output:
(a) GCi[0, 0], GCi[0, 1], GCi[1, 0], GCi[1, 1] for i = 1..m (garbled circuit)
(b) (0 : k0m−s+1; 1 : k1m−s+1), . . . , (0 : k0m; 1 : k1m) (the result table)

(c) k
x1
0

1 , . . . , k
xn
0

n (labels for P0’s input)
(d) (c01, c

1
1) . . . , (c

0
n, c

1
n) (encrypted labels for P1’s input)

Fig. 2. Program P is used by P0 to generated the second protocol message. It calls
Gen as a subroutine; Gen is a program which outputs a Yao message: that is, a garbled
circuit, labels for P0’s input and encrypted labels for all possible P1’s inputs.

570 R. Canetti, S. Goldwasser, and O. Poburinnaya

Program Explain

inputs: message m which should be encoded; randomness ρ
P (m;ρ) :

1. M ← m, prg(ρ)
2. r[2]← IkI (M), r[1]← Fk(r[2])⊕M
3. output r = r[1]r[2]

Fig. 3. Program Explain

The choice of parameters. Since we use different types of PRFs (in particular,
extracting PRFs and injective PRFs) in the construction, we must ensure that
the lengths of all values fit the requirements for these PRFs. Indeed, as shown
in [SW14], there exist:

– injective puncturable PRFs which map n(λ) bits to m(λ) bits where injec-
tivity holds with probability 1− 2−e(λ) (over the choice of a key), as long as
m(λ) ≥ 2n(λ) + e(λ);

– extracting puncturable PRFs which map n(λ) bits to m(λ) bits for distribu-
tion X with min-entropy k(λ) with statistical distance between (k, Fk(X))
and (k, Um) at most 2−e(λ), as long as n(λ) ≥ k(λ) ≥ m(λ) + 2e(λ) + 2.

Let’s recall how we use these PRFs in the computation. Let’s denote the
lengths of a Yao message β and randomness used to create it u as |β| and
|u|; also we denote the length of M (the hidden value prepared by a simulator
and encoded inside randomness) as |M |. All these lengths are polynomial in
security parameter as well as a circuit size and inputs length. We have to choose
randomness length to guarantee that both injective and extracting PRFs exist.
Recall that randomness r (denoted as er in simulated case) consists of two parts
r[1] and r[2]. Note that the way er[1], the first part of randomness, is generated
(er[1] ← Fk(er2)⊕M) implies that its length is exactly |M |.

1. IkI should be an injective PRF with negligible failure. It takes as input M
and outputs er[2]. Thus, it should be the case that |er[2]| ≥ 2|M |+ λ.

2. EkE should be an extracting PRF with negligible distance. It takes as input
(x0, PK, r[1]r[2]) and outputs u. We are going to use extracting property
when r = r[1]r[2] is chosen at random, and min-entropy of input is at least
|r| = |r[1]|+|r[2]|. Thus, it should be the case that |x0|+|PK|+|r[1]|+|r[2]| ≥
|r[1]|+ |r[2]| ≥ |u|+ 2λ+ 2.

Once a security parameter and a circuit are fixed, all values above are also
fixed except |r[2]|. Note that by choosing |r[2]| large enough (but still polynomial
in the security parameter), we can satisfy both inequalities.

Adaptively Secure Two-Party Computation 571

Proof. The outline of the proof is the following. First, we give a description of
our simulator. Then we prove that no environment can distinguish between a
real execution and a simulation. We do this in two steps. In step one we deal with
the case of non-adaptively chosen inputs; that is, the environment first chooses
parties’ inputs and only then sees a CRS. In order to show indistinguishability in
non-adaptive case, we consider an intermidiate middle hybrid where all protocol
messages are generated as in a real execution, but the randomness is explained.
In two lemmas we prove that this middle hybrid is indistinguishable from both
real execution and simulation. In step two we consider the case of adaptive inputs
choice, thus proving the theorem statement.

Simplifying assumptions. In our honest-but-curious setting we can assume that
corruptions happen after the protocol execution and that both parties are cor-
rupted. Since our simulator, as we see later, is corruption-oblivious (information
learned in one party corruption is not used in the other party corruption), we
don’t need to think about different order of corrupting parties. Also we assume
secure channels, therefore our simulator has to show the protocol transcript only
after one of the parties is corrupted.

In our proofs of lemmas instead of having an interactive game with the ad-
versary we just run an experiment and show to the adversary the resulting dis-
tribution, asking it to guess which hybrid it sees. Indeed, by itself the security
definition is interactive: an environment first sees a CRS and then outputs inputs;
after this, it sees protocol messages. Then it can send corruption requests and get
back parties’ internal states. Given this information, the adversary chooses which
hybrid it sees. However, in the case of non-adaptively chosen inputs, we can use
a non-interactive security definition: the inputs are fixed in advance, therefore
we can send a CRS later with other values the adversary should see. Next, we
assumed that all parties are corrupted, and therefore the adversary doesn’t need
to send corruption requests; the simulator will send it all parties’ internal states
itself. Therefore, instead of playing an interactive game with the adversary, in
our security definitions the simulator generates all protocol information (proto-
col messages, parties’ internal states) and sends it to the adversary, who should
distinguish between hybrids.

Description of the simulator. Our simulator is described in Figure 4. It gets
a CRS, generates randomness needed (sPKE to create P1’s keys for encryp-
tion scheme, sGC to create a fake garbled circuit, and sy, a random value
which is the result of z ⊕ y in a real execution), and sets its state to be s =
(CRS, sPKE , sGC , sy).

Since we assume secure channels, the simulator doesn’t need to show a tran-
script before corruptions. Upon corruption of a party Pi, the simulator calls
its subroutine SimPi(CRS, sPKE , sGC , sy) to simulate Pi’s internal state. Each
subroutine has to show randomness used by a party and the communication it
sees. SimPi first generates secret and public keys for P1 and sets α∗ to be P1’s
public keys (note that since all three programs (Sim, SimP0 and SimP1) use
the same state to generate values, they get the same result - public keys and

572 R. Canetti, S. Goldwasser, and O. Poburinnaya

garbled circuit). Then it generates a fake garbled circuit and encryptions for
OT β∗ ← SimGen(sy, α

∗; sGC). The next step depends on the party. A simula-
tor for P0 computes explained randomness er∗ ← Explain((β∗;x0, PK; ρ∗) for
randomly chosen ρ∗ and shows er∗ (internal state) and α∗ (communication). A
simulator for P1 sets its randomness z to be consistent with the garbled circuit
output and the protocol output (that is, z = y ⊕ sy) and then, using an in-
vertion algorithm, creates randomness es∗, which produces obliviously sampled
keys PK1−x1 . The simulator shows es∗ and z as P1’s internal state and β∗ as
the communication seen.

Note that to simulate a party during corruption, the simulator doesn’t use
internal information of the other party; only this party’s input/output is used,
together with randomness s which acts as a state of the simulator. Therefore
this simulator is corruption oblivious.

The simulation:

1. Obtain the public programs CRS = P,Explain
2. Choose randomness for simulation (sPKE , sGC , sy). Set the state to be s =
(CRS, sPKE , sGC , sy)

3. upon corruption of P0: output SimP0(s)
4. upon corruption of P1: output SimP1(s)

SimP0(CRS, sPKE , sGC , sy)

1. learn x0

2. generate PK0, SK0, PK1, SK1 ← Enc.Gen(sPKE); set α
∗ ← PK0, PK1

3. set β∗ ← SimGen(sy, PK; sGC)
4. choose random ρ∗ and set er∗ ← Explain(β∗;x0, PK; ρ∗)
5. output (er∗, α∗)

SimP1(CRS, sPKE , sGC , sy)

1. learn x1, y
2. generate PK0, SK0, PK1, SK1 ← Enc.Gen(sPKE)
3. set β∗ ← SimGen(sy, PK; sGC)
4. set z ← sy ⊕ y, x′

1 ← (x1, z)
5. set es∗ ← Enc.Inv(s, x′

1)
6. output (es∗, z;β∗)

Fig. 4. Simulation

Step one - non-adaptive inputs case. In the following two lemmas, we prove
that real and simulated experiments are indistinguishable. To achieve this we
consider a middle hybrid where all protocol messages are generated honestly
like in a real execution, but the randomness shown to the adversary is obtained
using Explain algorithm. In the first lemma we show that this middle hybrid is
indistinguishable from the simulation; indistinguishability between the middle

Adaptively Secure Two-Party Computation 573

Program SimGen

Constants: circuit C with m wires and s output wires; let’s assume that first 2n
wires are input wires and last s wires are output wires
Input: the result of the computation y; P1’s two sets of public keys PK0, PK1;
randomness u = u1u2u3u4

Gen(y, PK;u):

1. Create labels for wires: (k0
1, k

1
1), . . . , (k

0
m, k1

m)← u1

2. Create encryptions of labels:
(a) Partition u2 into u21, . . . , u2m, and each u2t into u2t1, . . . , u2t4

(b) Partition u3 into u31, . . . , u3m, and each u3t into u3t1, . . . , u3t4

(c) For every gate t in C create 4 encryptions (all 4 encryptions encrypt the same
label):
GCt[0, 0]← SEnck0

i
(SEnck0

j
(k0

l ;u2t1);u3t1)

GCt[0, 1]← SEnck0
i
(SEnck1

j
(k0

l ;u2t2);u3t2)

GCt[1, 0]← SEnck1
i
(SEnck0

j
(k0

l ;u2t3);u3t3)

GCt[1, 1]← SEnck1
i
(SEnck1

j
(k0

l ;u2t4);u3t4)

(d) shuffle GCt[0, 0], GCt[1, 0], GCt[0, 1], GCt[1, 1]
3. Create encryptions of labels for P1’s input:
(a) Partition u4 into u401, . . . , u40n, u411, . . . , u41n

(b) For all i = 1, . . . , n c0i ← EncPKi
0
(k0

n+i;u40i), c
1
i ← EncPKi

1
(k1

n+i;u41i)
4. output:
(a) GCi[0, 0], GCi[0, 1], GCi[1, 0], GCi[1, 1] for i = 1..m (garbled circuit)
(b) (y1 : k

0
m−s+1; 1− y1 : k

1
m−s+1), . . . , (ys : k

0
m; 1− ys : k

1
m) (the result table)

(c) k0
1 , . . . , k

0
n (labels for P0’s input)

(d) (c01, c
1
1) . . . , (c

0
n, c

1
n) (encrypted labels for P1’s input)

Fig. 5. Program SimGen, used by a simulator to create a fake garbled circuit

hybrid and a real execution is shown in lemma 2. In both proofs we first give an
overview of hybrids, and then present a detailed description with reductions.

Our notation. To denote the first and the second part of randomness, we
write r[1] and r[2]. By PK we denote a set of public keys for each possible input
bit of P1’s input; PK0 and PK1 mean sets of public keys for input bits 0 and
input bits 1. By PKx1 we mean the set of public keys corresponding to P1’s
input, that is, PKx1 = (PK1

x1
1
, . . . , PKn

xn
1
). By PK1−x1 we mean the opposite

set of public keys.
We mark the values obtained in the experiment with a star to distinguish

these values from variables in programs. We denote the first round message
(P1’s public keys) as α∗ and the second round message (a garbled circuit, an
output table, labels for P0’s input, encrypted labels for all possible P1’s inputs)
as β∗.

574 R. Canetti, S. Goldwasser, and O. Poburinnaya

Lemma 1. The results of the following two experiments are indistinguishable:

Experiment Simulation:

1. choose randomness sPKE , sCRS , sGC , sy. Set z = y ⊕ sy. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, internal keys for Gen, and choose ran-
domness for obfuscation xP , xExpl using sCRS . Create obfuscated programs
P ← O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PK0, PK1, SK0, SK1 ← PKE.Gen(sPKE).
Set α∗ ← PK0, PK1

4. run β∗ ← SimGen(sy, α
∗; sGC)

5. choose ρ∗ at random
6. er∗ ← Explain(β∗;x0, α

∗; ρ∗), es∗ ← Enc.Inv(sPKE , x′
1)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (es∗, z),
programs (P,Explain).

and
Experiment Middle:

1. choose randomness sPKE , sCRS , sGC , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random r∗

5. run β∗ ← P (x0, α
∗; r∗)

6. choose ρ∗ at random
7. er∗ ← Explain(β∗;x0, α

∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (sPKE , z),
programs (P,Explain).

Proof. We show indistinguishability using several hybrids as described below:

1. H0 = Simulation
2. H1: like a simulation, but OT public keys PK1−x1 (which do not correspond

to P1’s input) are sampled obliviously
3. H2: like H1, but β∗ is chosen as a result of Gen(x0;α

∗;u∗) for some random
u∗; previously β∗ was the result of SimGen. Based on indistinguishability
between a fake and a real garbled circuit.

4. H3: Like H2, but u∗ is chosen as EkE (x0, α
∗, r∗) for random r∗; previously

it was chosen at random. Based on extracting property of EkE

5. H4 = Middle: Like H3, but β∗ ← P (x0, α
∗; r∗) (which means that now first

check 1 is performed on randomness r∗ before generating the output). Based
on the fact that r∗ is random and for a random value this check passes with
negligible probability.

Adaptively Secure Two-Party Computation 575

H1.

1. choose randomness sPKE , sCRS , sGC , sy. Set z = y ⊕ sy. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;x), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. run β∗ ← SimGen(sy, α
∗; sGC)

5. choose ρ∗ at random
6. er∗ ← Explain(β∗;x0, α

∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (sPKE , z),
programs (P,Explain).

In this hybrid we generate public keys for OT which do not correspond to P1’
input obliviously and show to the adversary the real randomness sPKE which was
used to generate these keys. Indistinguishability holds because of the property
of augmented non-committing encryption: no adversary can distinguish between
a real randomness used for oblivious key generation and a randomness obtained
as a result of inverting algorithm.

H2.

1. choose randomness sPKE , sCRS , sGC , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random u∗

5. run β∗ ← Gen(x0, α
∗;u∗)

6. choose ρ∗ at random
7. er∗ ← Explain(β∗;x0, α

∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (sPKE , z),
programs (P,Explain).

In this hybrid we changed the way β∗ is generated. Previously it contained
a fake garbled circuit which always evaluates to sy, now it contains a real gar-
bled circuit. Indistinguishability is based on indistinguishability between a fake
garbled circuit and a real one, as shown in [LP09].

H3.

1. choose randomness sPKE , sCRS,sGC , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

576 R. Canetti, S. Goldwasser, and O. Poburinnaya

4. choose random r∗. Set u∗ ← EkE (x0, α
∗, r∗)

5. run β∗ ← Gen(x0, α
∗;u∗)

6. choose ρ∗ at random
7. er∗ ← Explain(β∗;x0, α

∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (sPKE , z),
programs (P,Explain).

In this hybrid we choose u∗ as u∗ ← EkE (x0, α
∗, r∗), instead of choosing it

at random. Indistinguishability holds because of extracting property of EkE .
Indeed, since min-entropy of the PRF input is at least |r∗|, then by our choice
of parameters the output of this PRF is indistinguishable from random. We
can reduce these hybrids to an extracting prf game as follows: given kE and
random w or w = EkE (x0, α

∗, r∗) for random r∗, we choose other keys and
obfuscate programs, and then compute other variables using u∗ = w. Depending
on whether w is random or not, we are either in H2 or in H3.

H4 (Middle).

1. choose randomness sPKE , sCRS , sGC , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random r∗.
5. run β∗ ← P (x0, α

∗; r∗)
6. choose ρ∗ at random
7. er∗ ← Explain(β∗;x0, α

∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (sPKE , z),
programs (P,Explain).

In this hybrid we generate β∗ as a result of a program P . In other words,
before computing u∗ we perform check 1 in P . Since for randomly chosen r∗ this
check passes with negligible probability, hybrids are statistically close to each
other.

Thus lemma 1 is proved.

Lemma 2. No PPT adversary can distinguish between the following two distri-
butions:

Experiment Middle:

1. choose randomness sPKE , sCRS , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random r∗

Adaptively Secure Two-Party Computation 577

5. run β∗ ← P (x0, α
∗; r∗)

6. choose ρ∗ at random
7. er∗ ← Explain(β∗;x0, α

∗; ρ∗)

An adversary sees (α∗, β∗, er∗, sPKE , z), programs (P,Explain).

Experiment Real:

1. choose randomness sPKE , sCRS , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random r∗

5. run β∗ ← P (x0, α
∗; r∗)

An adversary sees (α∗, β∗, r∗, sPKE , z), programs (P,Explain).

Proof. The lemma states that the view of an adversary in the real execution is
indistinguishable from its view in the experiment when instead of real random-
ness, explained randomness is shown (which we called a middle experiment). To
prove the lemma statement, we consider a sequence of hybrids Real = H0

0 ∼
. . . ∼ H0

6 ∼ H1
6 ∼ . . . ∼ H1

0 = Middle. For b = 0, 1 we will show that Hb
0 is

indistinguishable from Hb
6 . After this, we show that H0

6 and H1
6 are indistin-

guishable as well. This proves that a middle hybrid and a real execution are
indistinguishable.

Hybrids overview:

1. In H1b we skip check 1 in the program P and directly compute u∗ ←
EkE (x0, α

∗; r∗), β∗ ← Gen(x0, α
∗;u∗). Since r∗ is random, the check passes

with negligible probability.
2. In H2b, instead of computing ρ̂∗ ← prg(ρ∗) (and then evaluating er∗ using

this ρ̂∗), we choose ρ̂∗ at random. Indistinguishability is based on security
of a PRG.

3. In H3b we show punctured programs P : 1 and Explain : 1 instead of
original ones. We prove that new programs have the same functionality and
rely the indistinguishability on the security of iO.

4. In H4b we choose u∗ at random instead of EkE (x
∗
0, α

∗; r∗). Based on punc-
tured PRF EkE .

5. In H5b we choose er∗[2] at random instead of IkI (β
∗;x0, α

∗; ρ̂∗). Based on
punctured PRF IkI .

6. In H6b we choose er∗[1] at random instead of Fk(er
∗[2]) ⊕ (β∗;x0, α

∗; ρ̂∗).
Based on punctured PRF Fk.

578 R. Canetti, S. Goldwasser, and O. Poburinnaya

H0b

1. choose randomness sPKE , sCRS , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random r∗

5. run β∗ ← P (x0, α
∗; r∗)

6. choose ρ∗ at random
7. er∗ ← Explain(β∗;x0, α

∗; ρ∗)

If b = 0, an adversary sees (α∗, β∗, r∗, sPKE , z), programs (P,Explain).
If b = 1, an adversary sees (α∗, β∗, er∗, sPKE , z), programs (P,Explain).

H1b

1. choose randomness sPKE , sCRS , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random r∗, u∗ ← EkE (x0, α
∗; r∗),

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ∗ at random
7. er∗ ← Explain(β∗;x0, α

∗; ρ∗)

If b = 0, an adversary sees (α∗, β∗, r∗, sPKE , z), programs (P,Explain).
If b = 1, an adversary sees (α∗, β∗, er∗, sPKE , z), programs (P,Explain).

In this hybrid we omit check 1 in the program P while computing β∗. Since
for randomly chosen r∗ the check passes with negligible probability, hybrids are
statistically close.

H2b

1. choose randomness sPKE , sCRS , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random r∗, u∗ ← EkE (x0, α
∗; r∗),

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random
7. set M∗ ← β∗;x0, α

∗; ρ̂∗

8. er∗[2] ← IkI (M
∗)

9. er∗[1] ← Fk(er
∗[2])⊕M∗

Adaptively Secure Two-Party Computation 579

If b = 0, an adversary sees (α∗, β∗, r∗, sPKE , z), programs (P,Explain).
If b = 1, an adversary sees (α∗, β∗, er∗, sPKE , z), programs (P,Explain).

In this hybrid we use randomly chosen ρ̂∗ instead of the result of applying
a PRG to ρ∗ while generating er∗. Indistinguishability of hybrids immediately
follows from the security of a PRG.

H3b

1. choose randomness sPKE , sCRS , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random r∗, u∗ ← EkE (x0, α
∗; r∗),

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random
7. set M∗ ← β∗;x0, α

∗; ρ̂∗

8. er∗[2] ← IkI (M
∗)

9. er∗[1] ← Fk(er
∗[2])⊕M∗

If b = 0, an adversary sees (α∗, β∗, r∗, sPKE , z), programs (P : 1, Explain : 1).
If b = 1, an adversary sees (α∗, β∗, er∗, sPKE , z), programs (P : 1, Explain : 1).

In this hybrid we show punctured programs P : 1 (Fig. 6) and Explain : 1
(Fig. 7) instead of their normal versions. We rely the indistinguishability on
iO security: modified programs have the same functionality as original ones, as
proven in [SW14] in their proof for deniable encryption scheme (with a natural
modification of the input from their input m, r to our input (x0, PK, r)). How-
ever, for the sake of self-containment we briefly sketch it here:

Program P:

1. we add a line “if (x, α, r) = (x0, α
∗, r∗) or (x, α, r) = (x0, α

∗, er∗) then output
β∗”, this is exactly what the original program outputs on these inputs.

2. add “f r[2] = r∗[2] or r[2] = er∗[2] then goto 2”. If r[2] = r∗[2], then the
check in step one will not pass since a random r∗[2] with high probability
is outside the image of IkI , so we can go to step 2. If r[2] = er∗[2], then
either the check doesn’t pass and we can go to step 2, or, if it passes, then
the encoded message M ′ = M∗ (due to injectivity of IkI), and therefore
r[1] = er∗[1], (x′, α′) = (x0, α

∗), which would be detected in the first added
line in P:1.

3. now Fk is never called on r∗[2] or er∗[2], therefore we can safely puncture at
these points.

4. add “if M ′ = M∗ then goto 2”. If M ′ = M∗ and the check passes, then
r[2] = er∗[2], r[1] = er∗[1], and this would be detected in the first line in
P:1.

580 R. Canetti, S. Goldwasser, and O. Poburinnaya

5. now IkI will not be called on M∗, and we can puncture at this point.
6. we can puncture Fk1{(x0,α∗,r∗),(x0,α∗,er∗)}, since these inputs are treated in

the first line of P:1.

Program Explain:

1. we puncture kI at M∗, since ρ̂∗ (which is a part of M∗) is generated at
random (instead of prg(ρ∗)) and with high probability is outside the image
of a PRG; therefore no input results in M = M∗ in Explain.

2. we puncture k at both points r∗[2] and er∗[2]. Since r∗[2] is randomly chosen,
with high probability it is outside the image of a PRF IkI , therefore no input
for Explain results in r[2] = r∗[2] and therefore Fk is never called on r∗[2].
Furthermore, as we said no input for Explain results in M = M∗, and due
to IkI injectivity no input for Explain results in er∗[2] = IkI (M

∗), which
means that Fk is not called on er∗[2] as well.

Program P:1

constants: α∗, r∗, er∗, β∗,M∗, x0.
inputs: protocol input x, 1-round message α, randomness r = r[1]r[2]
P (x,α; r) :

1. check if r has encoded value inside:
(a) if (x,α, r) = (x0, α

∗, r∗) or (x, α, r) = (x0, α
∗, er∗) then output β∗

(b) if r[2] = r∗[2] or r[2] = er∗[2] then goto 2
(c) M ′ ← Fk{r∗[2],er∗[2]}(r[2]) ⊕ r[1];
(d) if M ′ =M∗ then goto 2;
(e) if IkI{M∗}(M

′) �= r[2] then goto 2;
(f) parse M ′ as β′, x′, α′, ρ̂′. If (x′, α′) �= (x,α) then goto 2;
(g) output β′

2. else run Gen:
(a) u ← EkE{(x0,α∗,r∗),(x0,α∗,er∗)}(x, α, r)
(b) output Gen(x, α;u)

Fig. 6. Program P:1

H4b

1. choose randomness sPKE , sCRS , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose randomness
for obfuscation xP , xExpl using sCRS . Create obfuscated programs P : 1 ←
O(P : 1kE ,kI ,k;Gen;xP), Explain : 1 ← O(Explain : 1kI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random u∗, r∗

Adaptively Secure Two-Party Computation 581

Program Explain:1

constants: M∗, r∗, er∗

inputs: message m which should be encoded; randomness ρ
P (m;ρ) :

1. M ← m, prg(ρ)
2. r[2]← IkI{M∗}(M), r[1]← Fk{r∗[2],er∗[2]}(r[2])⊕M
3. output r = r[1]r[2]

Fig. 7. Program Explain:1

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random
7. set M∗ ← β∗;x0, α

∗; ρ̂∗

8. er∗[2] ← IkI (M
∗)

9. er∗[1] ← Fk(er
∗[2])⊕M∗

If b = 0, an adversary sees (α∗, β∗, r∗, sPKE , z), programs (P : 1, Explain : 1).
If b = 1, an adversary sees (α∗, β∗, er∗, sPKE , z), programs (P : 1, Explain : 1).

In this hybrid we choose u∗ at random instead of choosing it as
EkE (xk, α

∗
1−k, r

∗). Security follows from pseudorandomness of a puncturable
PRF. Indeed, given a punctured key kE{(xk, α

∗
1−k, r

∗)} and w, which is ran-
dom or EkE (xk, α

∗
1−k, r

∗), we choose other keys ourselves and create programs.
Then we evaluate variables in the experiment setting u∗ = w and showing the
resulting destribution to the adversary. If w was random, then the adversary
sees Hb

4 , otherwise Hb
3 .

H5b

1. choose randomness sPKE , sCRS , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose randomness
for obfuscation xP , xExpl using sCRS . Create obfuscated programs P : 1 ←
O(P : 1kE ,kI ,k;Gen;xP), Explain : 1 ← O(Explain : 1kI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random u∗, r∗

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random
7. set M∗ ← β∗;x0, α

∗; ρ̂∗

8. choose random er∗[2]
9. er∗[1] ← Fk(er

∗[2])⊕M∗

If b = 0, an adversary sees (α∗, β∗, r∗, sPKE , z), programs (P : 1, Explain : 1).
If b = 1, an adversary sees (α∗, β∗, er∗, sPKE , z), programs (P : 1, Explain : 1).

In this hybrid we choose er∗[2] at random instead of choosing it as IkI (M
∗).

Security follows from pseudorandomness of a puncturable PRF. Indeed, given

582 R. Canetti, S. Goldwasser, and O. Poburinnaya

a punctured key kI{M∗} and w, which is random or IkI (M
∗), we choose other

keys ourselves and create programs. Then we evaluate variables in the experiment
setting er∗[2] = w and showing the resulting destribution to the adversary. If w
was random, then the adversary sees Hb

5 , otherwise Hb
4 .

H6b

1. choose randomness sPKE , sCRS , sy. Choose random z. Set x′
1 ← (x1, z)

2. generate a CRS: prf keys kE , kI , k, Gen internal keys and choose random-
ness for obfuscation xP , xExpl using sCRS . Create obfuscated programs P ←
O(PkE ,kI ,k;Gen;xP), Explain ← O(ExplainkI ,k;xExpl).

3. sample P0’s keys PKx′
1
, SKx′

1
← PKE.Gen(sPKE[0]),

PK1−x′
1
← PKE.oGen(sPKE [1]). Set α∗ ← PK0, PK1

4. choose random u∗, r∗

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random
7. set M∗ ← β∗;x0, α

∗; ρ̂∗

8. choose random er∗[2]
9. choose random er∗[1]

If b = 0, an adversary sees (α∗, β∗, r∗, sPKE , z), programs (P : 1, Explain : 1).
If b = 1, an adversary sees (α∗, β∗, er∗, sPKE , z), programs (P : 1, Explain : 1).

In this hybrid we choose er∗[1] at random instead of choosing it as Fk(er
∗[2])⊕

M . Security follows from pseudorandomness of a puncturable PRF. Indeed, given
a punctured key k{er∗[2]} and w, which is random or Fk(M

∗), we choose other
keys ourselves and create programs. Then we evaluate variables in the experiment
setting er∗[2] = w and showing the resulting destribution to the adversary. If w
was random, then the adversary sees Hb

6 , otherwise Hb
5 .

Finally we notice that distributions H0
6 and H1

6 are the same, since both
programs and the experiment treat r∗ and er∗ in the same manner (i.e. both r∗

and er∗ are chosen at random and are not connected to other variables in the
protocol). Therefore no adversary can distinguish between these two hybrids,
and lemma statement is proved.

Step two - dealing with adaptive inputs. In this part we show how to deal
with the case of adaptive inputs. In order to do this, for all possible pairs of
inputs (x∗

0, x
∗
1) = (0n, 0n), . . . , (x∗

0, x
∗
1) = (1n, 1n), sorted lexicographically, we

consider a hybrid Mx∗
0,x

∗
1
. In this hybrid we use x∗

0, x
∗
1 as a guess for inputs

which an adversary will choose. We create a CRS and show it to the adversary.
If it chooses (lexicographically) smaller pair of inputs (x′

0, x
′
1), then we run a

simulation experiment with new inputs x′
0, x

′
1; otherwise we run a real execution

experiment with new inputs x′
0, x

′
1 (it is crucial that in both a real execution and

a simulation, a CRS has the same distribution; this allows us to choose which
experiment to run after we show a CRS). Note that M0n,0n is always a real
execution and M1n,1n is a real execution only if an adversary chooses (1n, 1n).

Indistinguishability between Mk and Mk+1 (and also between M1n,1n and a
simulation) follows from selective security of the protocol proven in part one. If
an adversary which sees a CRS chooses an input which is smaller than k, then in

Adaptively Secure Two-Party Computation 583

both cases it sees the same distribution (real). If it chooses an input greater or
equal than k+1, then it again sees the same distribution (a simulation). Finally,
if an adversary chooses an input k, then it sees a real execution in Mk and a
simulation in Mk+1. As we proved in part one, for any fixed input these distribu-
tions are indistinguishable. This implies that for every k = 02n, . . . , 12n Mk and
Mk+1 are indistinguishable (where M12n+1 is a simulation), and therefore a real
execution and a simulation are indistinguishable even in the case of adaptively
chosen inputs.

It should be noted that we have as many hybrids as the number of potential
inputs to the protocol, thus the security loss is also linear in the number of pos-
sible inputs to the computation. Consequently, the parameters of the underlying
primitives (especially, the obfuscation and the puncturable PRFs) need to be set
accordingly.

4.1 Obtaining Incoercibility

Recall that, to be incoercible, the protocol should be augmented by faking al-
gorithms for the two parties. The faking algorithm for a party takes as input a
value x′, representing a fake input value for the party, as well as the party’s local
state and the messages sent by that party so far, and outputs a “fake random
input” r′ for the party, such that running the party’s program on input x′ and
random input r′ results in the messages sent by the party so far, and furthermore
r′ “looks random” given the rest of the view of the adversary. More precisely,
the protocol together with the faking algorithm should be simulatable as in the
definition of incoercible computation presented in Section 2.

To show incoercibility for the garbler, we demonstrate a faking algorithm:
Having received message α, sent message β, and given the fake input value x′,
simply run the Explain algorithm with input message m = β, x′, α and some
fresh randomness. Then output the output of Explain.

It is straightforward to see that the same simulation actually demonstrates
incoercibility for the garbler. Indeed, the simulator exhibits the same information
for coercion and corruption attacks.

References

BCH12. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer,
Heidelberg (2012)

BDL14. Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation
with input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg
(2014)

BGI+01. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. Electronic
Colloquium on Computational Complexity (ECCC) 8(057) (2001)

BGI13. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom
functions. IACR Cryptology ePrint Archive, 2013:401 (2013)

584 R. Canetti, S. Goldwasser, and O. Poburinnaya

BGW88. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In: Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, Chicago, Illinois, USA, May 2-4, pp. 1–10 (1988)

BW13. Boneh, D., Waters, B.: Constrained pseudorandom functions and their ap-
plications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

Can01. Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: FOCS, pp. 136–145 (2001), Full version in IACR
Eprint Archive, record 2000/067 (2013 revision)

CDNO97. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104.
Springer, Heidelberg (1997)

CDPW07. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61–85. Springer, Heidelberg (2007)

CFGN96. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-
party computation. In: Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, pp. 639–648 (1996)

CG96. Canetti, R., Gennaro, R.: Incoercible multiparty computation (extended
abstract). In: 37th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 1996, Burlington, Vermont, USA, October 14-16, pp. 504–513
(1996)

CLOS02. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: Proceedings on 34th
Annual ACM Symposium on Theory of Computing, Montréal, Québec,
Canada, May 19-21, pp. 494–503 (2002)

DKR14. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally com-
posable, multi-party computation in constant rounds. IACR Cryptology
ePrint Archive, 2014:858 (2014)

DN00. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes
based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

EGL85. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

GGH+13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all cir-
cuits. In: 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, Berkeley, CA, USA, October 26-29, pp. 40–49 (2013)

GGM86. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

GMW87. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, New York,
USA, pp. 218–229 (1987)

GP14. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from in-
distinguishability obfuscation. IACR Cryptology ePrint Archive, 2014:844
(2014)

GR14. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryptol-
ogy 27(3), 480–505 (2014)

Adaptively Secure Two-Party Computation 585

GS12. Garg, S., Sahai, A.: Adaptively secure multi-party computation with dis-
honest majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 105–123. Springer, Heidelberg (2012)

IPS08. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008)

LP09. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptology 22(2), 161–188 (2009)

SW14. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Symposium on Theory of Computing, STOC
2014, New York, NY, USA, 2014, May 31-June 03, pp. 475–484 (2014)

Adaptively Secure, Universally Composable,

Multiparty Computation in Constant Rounds

Dana Dachman-Soled1, Jonathan Katz1,�, and Vanishree Rao2,��

1 University of Maryland, USA
danadach@ece.umd.edu, jkatz@cs.umd.edu

2 University of California at Los Angeles, USA
vanishri@cs.ucla.edu

Abstract. Cryptographic protocols with adaptive security ensure that
security holds against an adversary who can dynamically determine which
parties to corrupt as the protocol progresses—or even after the protocol
is finished. In the setting where all parties may potentially be corrupted,
and secure erasure is not assumed, it has been a long-standing open
question to design secure-computation protocols with adaptive security
running in constant rounds.
Here, we show a constant-round, universally composable protocol for

computing any functionality, tolerating a malicious, adaptive adversary
corrupting any number of parties. Interestingly, our protocol can com-
pute all functionalities, not just adaptively well-formed ones. The pro-
tocol relies on indistinguishability obfuscation, and assumes a common
reference string.

1 Introduction

When designing and analyzing protocols for secure computation, there are sev-
eral different adversarial models one can consider. The original definitions of
security assume a static adversary who decides which parties to corrupt before
execution of the protocol begins. Subsequently [3,11], researchers began to con-
sider the more challenging setting in which the adversary may adaptively decide
which parties to corrupt as the protocol progresses—or even after the proto-
col ends. It is easy to come up with examples of protocols that are secure in a
static-corruption model, but that are trivially insecure in the adaptive setting.

Even in a setting where adaptive corruptions are considered, there are dif-
ferent assumptions one can make. Initial work on adaptive security [3] made
the assumption that honest parties can securely erase local data (e.g., random-
ness or other internal state) when no longer needed. Later work, led by Canetti
et al. [11], sought to avoid this assumption, arguing that it is unwise to rely
on other parties to erase data (since there is no way such erasure can be ver-
ified) and that it is generally difficult—even for an honest party who intends

� Work supported in part by NSF awards #1111599 and #1223623.
�� Work done while visiting the University of Maryland.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 586–613, 2015.
c© International Association for Cryptologic Research 2015

Adaptively Secure, Universally Composable, Multiparty Computation 587

to erase data—to ensure that all traces of data are gone. Whether or not era-
sure is assumed has a significant impact on the complexity of adaptively secure
protocols; for example, adaptively secure public-key encryption is fairly simple
and efficient [3] if erasure is assumed, but much more complicated (and much
less efficient) [11,2,18,16] without this assumption. Similarly, adaptively secure
two-party computation is much easier with the assumption of secure erasure [30]
than without [14].

Designing protocols without the assumption of secure erasure is difficult, in
part, due to the need to deal with post-execution corruption (PEC), whereby
an adversary can corrupt parties (and hence obtain the randomness they used)
even after execution of the protocol has concluded. Handling PEC is inherent
to the setting of universal composability (UC) [9], and is important for ensuring
sequential composition even in the stand-alone setting [8]. If secure erasure is
assumed, the definition of adaptive security does not change whether or not PEC
is allowed [10], but without erasure the requirement of dealing with PEC adds
significant additional complications.

Prior Work.We are interested in adaptive security, with PEC, in a model where
secure erasure is not assumed. Some prior protocols for secure computation in
this setting (e.g., [11,2]) assume a majority of the parties remain uncorrupted.
Other work [28,27,22,25], including concurrent work of [19], allows all but one
of the parties to be corrupted. While it may seem strange to worry about cor-
ruption of all parties, consideration of this case is important when a protocol
Πouter invokes some protocol Πinner (not involving all parties running Πouter) as a
subroutine. In this case, all parties running Πinner may eventually be corrupted,
and security of Πouter should still be guaranteed.

To the best of our knowledge, all prior work giving adaptively secure protocols
for general functionalities (without erasure), and tolerating an arbitrary number
of corruptions, are based on the Goldreich-Micali-Wigderson [23] paradigm for
semi-honest computation, and thus have round complexity linear in the depth
of the circuit being computed. These include protocols in the common reference
string model [14], the “sunspots” model [15], the key-registration model [1],
and, more generally, based on adaptively secure UC puzzles [17]. In addition, all
prior work in this setting handles only “adaptively well-formed functionalities”
(see [14] for a definition).

1.1 Our Result

We show a constant-round, universally composable protocol for multiparty com-
putation of arbitrary functionalities, with security against a malicious, adaptive
adversary corrupting any number of parties. We highlight that our protocol can
be used to securely compute all functionalities, not just adaptively well-formed
ones. Our protocol relies on indistinguishability obfuscation, and assumes a com-
mon reference string.

Overview of Our Techniques. The main difficulty in our setting is to con-
struct a constant-round protocol with security against a semi-honest, adaptive

588 D. Dachman-Soled, J. Katz, and V. Rao

adversary corrupting any number of parties. Given any such protocol, we can
compile it as in [14] to obtain a universally composable protocol with security
against a malicious, adaptive adversary, and still running in constant rounds. We
may also assume secure channels, which can be implemented using adaptively
secure encryption.

Our protocol in the semi-honest setting relies on a common reference string
(CRS). While it would be more elegant to avoid this assumption, a CRS—or
some other form of setup—is anyway needed [12] in order to obtain universally
composable computation in the presence of malicious adversaries corrupting half
or more of the parties, even in a static-corruption model. Thus, as far as our final
result (i.e., our protocol with security in the malicious setting) is concerned, some
form of setup is unavoidable. Moreover, results of Garg and Sahai [22] indicate
that a CRS (or some other form of setup) is needed to obtain constant-round,
universally composable, multiparty protocols with adaptive security even in the
semi-honest case; see further discussion below.

At its core, our protocol relies on the ability to make arbitrary algorithms
explainable, an idea we explain in more detail now. Fix some randomized algo-

rithm Alg. Informally, an explainable version of Alg is an algorithm Ãlg along with
an associated explain algorithm Explain such that, for any input, (1) the distri-

butions over the outputs of Alg(input) and Ãlg(input) are statistically close, and

(2) choosing random coins r, computing output := Ãlg(input; r), and outputting
(output, r) is computationally indistinguishable from choosing random coins r,

computing output := Ãlg(input; r), and then outputting (output,Explain(input,
output)). That is, the Explain algorithm provides the ability to sample random

coins for Ãlg that “explain” any given input/output pair. (A related notion was
considered by Ishai et al. [26], though without any construction being given.)

Sahai and Waters [31] introduced the notion of explainability for the specific
case of public-key encryption schemes, in the context of constructing a deniable
encryption scheme. We observe that their techniques can be suitably generalized
to give an explainable version of arbitrary algorithms based on indistinguishabil-
ity obfuscation for general circuits (and one-way functions). We refer the reader
to Section 3 for a formal statement of this result.

Let C be a circuit taking n-bit inputs.1 Consider the following functional-
ity NextMsg that (essentially) computes the next-message function for a two-
round secure-computation protocol for C based on garbled circuits: NextMsg
takes as input a sequence of first-round messages OT1,1, . . . ,OT1,n for a two-
round, adaptively secure, oblivious-transfer (OT) protocol (e.g., the protocol
of [14]); it then (1) computes a garbled circuit GC corresponding to C, along
with input-wire labels {(yi,0, yi,1)}ni=1, and (2) computes a sequence of OT re-
sponses OT2,1, . . . ,OT2,n. (These responses allow the party that generated OT1,i

using input bit b to recover yi,b while learning nothing about yi,1−b.) The output

of NextMsg is (GC,OT2,1, . . . ,OT2,n). The CRS for our protocol will be ˜NextMsg,

1 We assume for simplicity here that C is deterministic. Randomized functionalities
are handled in Section 4.

Adaptively Secure, Universally Composable, Multiparty Computation 589

an explainable version of NextMsg.2 We note that, in contrast to [31], in the real-
world execution no parties have access to the Explain algorithm corresponding

to ˜NextMsg.
Our multiparty protocol computing C can now be described quite simply.

The protocol proceeds in four rounds. Say we have n parties P1, . . . , Pn holding
inputs x1, . . . , xn, respectively. These parties generate first-round OT messages
OT1,1, . . . ,OT1,n (with the party who is supposed to provide the ith input gen-

erating OT1,i), and send these to Pn. Party Pn then runs ˜NextMsg(OT1,1, . . . ,
OT1,n) to obtain GC,OT2,1, . . . ,OT2,n, and sends OT2,i to the corresponding
party (which might be itself). Each party Pi then locally recovers yi, the label
for the ith input wire of the garbled circuit, and sends yi to Pn. Finally, Pn eval-
uates the garbled circuit GC using the provided input-wire labels to obtain the
output z, and sends z to all the other parties.3 Only the third- and fourth-round
messages need to be sent via a secure channel.

We now describe the simulator informally. Our simulator begins by generating
˜NextMsg along with its associated Explain algorithm, and letting ˜NextMsg be

the CRS. It simulates OT1,1, . . . ,OT1,n and OT2,1, . . . ,OT2,n using the simulator
for the OT protocol (recall the OT protocol is adaptively secure), and uses
these for the first two rounds of the protocol. Upon corruption of party Pi, the
simulator corrupts that party in the ideal world and learns its input xi and the
output z. Then:

– If this is the first corruption, the simulator generates a simulated garbled
circuit GC consistent with output z, along with n input-wire labels y1, . . . , yn.
It also uses the Explain algorithm to generate random coins r∗ consistent with

running ˜NextMsg on input OT1,1, . . . ,OT1,n and obtaining output GC,OT2,1,
. . . ,OT2,n.

– The simulator uses the simulator for the OT protocol to generate internal
state for Pi consistent with input xi and output yi, and returns this to the
adversary. In addition, if P = Pn then it returns r∗ to the adversary.

Notably, our simulator is “corruption oblivious” [4]. Roughly, this means the
behavior of the simulator upon corruption of a party is independent of the ideal
state learned previously. By [4, Theorem 1.2], this means our protocol is also the
first leakage-tolerant protocol with arbitrary leakage for general functionalities
under semi-honest corruption. Moreover, by [5, Theorem 1], we also obtain the
first construction of a 2-component OCL compiler (see [5] for a definition).

Impossibility Results? We briefly mention two impossibility results regarding
(constant-round) adaptively secure computation, and explain why they do not
apply in our setting.

2 As described, the CRS depends on the circuit C. However, by taking C to be a
universal circuit, the CRS can be fixed independently of the “actual” function f the
parties wish to compute (other than the size of a circuit for f).

3 As described, all parties learn the output of the computation. Standard techniques
can be used to handle the general case in which each party learns a possibly different
function of the inputs.

590 D. Dachman-Soled, J. Katz, and V. Rao

First, our protocol can compute arbitrary randomized functionalities, not just
adaptively well-formed ones. (We refer to [14] for a definition of this term.) This
may seem somewhat surprising in light of an impossibility result of Ishai et
al. [26] showing that adaptively secure computation of functionalities that are
not adaptively well-formed is impossible. A closer examination of their result,
however, reveals that it does not hold in the CRS model.

Second, Garg and Sahai [22] show that no constant-round, adaptively secure,
multiparty protocol can be proven secure using black-box techniques; although
they only claim this result for protocols with security against malicious adver-
saries, their proof appears to extend to the case of semi-honest adversaries as
well. Again, however, their impossibility result only applies to the “plain” model
with no setup, whereas we assume a CRS.

Concurrent Work. Independent of our work, two other groups of researchers
have also studied the problem of constant-round adaptively secure computa-
tion. Canetti et al. [13] give a protocol that is similar in spirit to ours, but
works only for the two-party case and requires sub-exponentially hard indistin-
guishability obfuscation. Garg and Polychroniadou [21], though also relying on
indistinguishability obfuscation, follow a different approach. They give a round-
optimal, adaptively secure protocol for the multiparty setting. We remark that
both these other works only consider adaptively well-formed functionalities.

1.2 Organization of the Paper

We review some standard cryptographic background and primitives in Section 2.
In Section 3, we introduce the notion of an explainable algorithm, and show how
the Sahai-Waters compiler [31] can be used to make any algorithm explain-
able. Finally, in Section 4 we present a constant-round multiparty computation
protocol tolerating a semi-honest, adaptive adversary corrupting any number
of parties. Applying the compiler of Canetti et al. [14] yields a constant-round
protocol tolerating a malicious, adaptive adversary corrupting any number of
parties.

2 Preliminaries

We let λ denote the security parameter. We refer to previous work [8,10,30] for
definitions of secure computation in the adaptive-corruption setting (with PEC).

2.1 Garbled Circuits

We rely on the standard notion of garbled circuits [32]. However, we use slightly
non-standard notation that we introduce here. Let C be a randomized circuit
taking n-bit inputs and using λ bits of randomness. We abstract the construc-
tion/evaluation of a garbled circuit for C via algorithms GenGC,EvalGC with
the following properties. GenGC is a randomized algorithm that takes as input
1λ and C, and outputs a garbled circuit GC along with 2n input-wire labels

Adaptively Secure, Universally Composable, Multiparty Computation 591

y1,0, y1,1, . . . , yn,0, yn,1 ∈ {0, 1}λ and 2λ random-wire labels w1,0, w1,1, . . . , wλ,0,
wλ,1 ∈ {0, 1}λ. Deterministic algorithm EvalGC takes as input GC and n + λ
labels y1, . . . , yn, w1, . . . , wλ, and outputs a value z.

Correctness requires that for any GC,
(
{yi,0, yi,1}ni=1, {wi,0, wi,1}λi=1

)
output

by GenGC(1λ, C), any x ∈ {0, 1}n and any r ∈ {0, 1}λ, we have

EvalGC
(
GC, {yi,xi}ni=1, {wi,ri}λi=1

)
= C(x; r).

Security requires an efficient simulator SimGC such that for all x, r, the dis-
tribution {(

GC, {(yi,0, yi,1)}ni=1, {(wi,0, wi,1)}λi=1

)
← GenGC(1λ, C) :(

GC, {yi,xi}ni=1, {wi,ri}λi=1

)}
is computationally indistinguishable from the output of SimGC(1λ, C, C(x; r)).

2.2 Adaptively Secure Oblivious Transfer

Our protocol uses a two-round, semi-honest, adaptively secure OT protocol as
a building block. A suitable construction can be found in [14].

A two-round OT protocol ΠOT comprises three algorithms: a receiver algo-
rithm ROT, a sender algorithm SOT, and an evaluation algorithm EOT.
Algorithm ROT takes as input a bit b and random coins rR, and outputs ini-
tial message OT1. Algorithm SOT takes as input an initial message OT1, a pair
of λ-bit strings (y0, y1), and randomness rS , and outputs message OT2. The
evaluation algorithm EOT takes as input b, rR, and OT2 and outputs the λ-bit
string yb.

For our purposes we require the following property that is implied by semi-
honest, adaptive security of ΠOT. There is exist an efficient simulator SimOT =
(SimOT1, SimOT2), where SimOT2 is deterministic, such that (1) SimOT1 out-
puts a transcript (OT1,OT2) along with state st and (2) SimOT2, given as input
b, y, and st, outputs coins rR for the receiver consistent with (OT1,OT2) and the
receiver holding input b and obtaining output y; for any b, y0, y1, the distribution{

rR, rS ← {0, 1}∗;OT1 := ROT(b; rR) :
(
rR, OT1, SOT(OT1, y0, y1; rS)

)}
is computationally indistinguishable from{

(OT1,OT2, st) ← SimOT1(1
λ);

rR := SimOT2(1
λ, b, yb, st)

: (rR,OT1,OT2)

}
.

That is, we only require “one-sided security” [25] for adaptive corruption of the
receiver.

If we define algorithm SimOT′
1(1

λ) to run SimOT1(1
λ) and output only

(OT1, st), and define the algorithm SimOT′
2(1

λ, b, st) to simply run SimOT2(1
λ, b,

0λ, st), then for any b the distribution
{
rR ← {0, 1}∗ :

(
rR, ROT(b; rR)

)}
is com-

putationally indistinguishable from{
(OT1, st) ← SimOT′

1(1
λ);

rR := SimOT′
2(1

λ, b, st)
: (rR,OT1)

}
.

592 D. Dachman-Soled, J. Katz, and V. Rao

2.3 Indistinguishability Obfuscation

We use an indistinguishability obfuscator as a building block. A ppt machine
iO is an indistinguishability obfuscator for a circuit class {Cλ} if the following
conditions are satisfied:

Correctness. For all λ, and all C ∈ Cλ, it holds that C and iO(1λ, C) compute
the same function.

Polynomial slowdown. There is a polynomial p(·) such that |iO(1λ, C)| ≤
p(λ) · |C| for all C ∈ Cλ.

Indistinguishability. For any sequence {(Cλ,0, Cλ,1, auxλ)}λ whereCλ,0, Cλ,1 ∈
Cλ, Cλ,0 ≡ Cλ,1, and |Cλ,0| = |Cλ,1|, and any ppt distinguisher D, there is
a negligible function negl such that:∣∣Pr[D(iO(1λ, Cλ,0), auxλ) = 1]− Pr[D(iO(1λ, Cλ,1), auxλ) = 1]

∣∣ ≤ negl(λ).

When clear from the context, we will often omit the security parameter 1λ as
an input to iO and as a subscript for C.

iO is an indistinguishability obfuscator for P/poly if there is a polynomial p
such that iO is an indistinguishability obfuscator for {Cλ}, where Cλ contains
all circuits of size at most p(λ). Garg et al. [20] have shown the first candidate
construction of indistinguishability obfuscators for P/poly.

3 Explainability Compilers

Sahai and Waters [31] define a notion of explainability for public-key encryption,
and show a compiler that transforms any public-key encryption scheme into
an explainable version. Here, we generalize the notion of explainability for an
arbitrary algorithm Alg, and show that the Sahai-Waters compiler can be used

to transform any algorithm Alg into an explainable version Ãlg.
At a high level, an explainability compiler takes as input (a description of) a

randomized algorithm Alg, and outputs two algorithms Ãlg,Explain. The first of
these is a randomized algorithm computing the same functionality as Alg. The
second algorithm, roughly speaking, takes an input/output pair input, output

and produces random coins r consistent with running Ãlg(input) and obtain-
ing the result output. That is, the algorithm “explains” the input/output pair
input, output. We now give a formal definition.

Definition 1. A ppt algorithm Comp is an explainability compiler if for every
efficient, randomized circuit Alg, the following hold:

Polynomial slowdown. There is a polynomial p(·) such that, for any (Ãlg,

Explain) output by Comp(1λ,Alg) it holds that |Ãlg| ≤ p(λ) · |Alg|.
Statistical functional equivalence. With overwhelming probability over choice

of (Ãlg, �) as output by Comp(1λ,Alg), the distribution of Ãlg(input) is statis-
tically close to the distribution of Alg(input) for all input.

Adaptively Secure, Universally Composable, Multiparty Computation 593

Alg

Hardwired constants: Keys K1, K2, and K3.
Input: Input input and randomness u = (u[1], u[2]).

1. Let input′, output′, r′) := F3(K3, u[1])⊕u[2]. If it is the case that input =
input′ and u[1] = F2(K2, (input

′, output′, r′)), then output output :=
output′ and end.

2. Else let x := F1(K1, (input, u)) and output output := Alg(input;x).

Fig. 1. Program Alg

Explainability. The success probability of every non-uniform, polynomial-time
adversary A in the following experiment is negligibly close to 1/2:
1. A(1λ) outputs input∗ of its choice.

2. Comp(1λ,Alg) is run to obtain (Ãlg,Explain).

3. Choose uniform coins r0 ∈ {0, 1}∗ and compute output∗ := Ãlg(input∗; r0).
4. Compute r1 ← Explain(input∗, output∗).

5. Choose a uniform bit b and give Ãlg, output∗, rb to A.
6. A outputs a bit b′, and succeeds if b′ = b.

We highlight one key difference between our definition and the correspond-
ing one from [31]: in our case input∗ is an arbitrary length value (depending on
the domain of Alg) chosen by the adversary, whereas in [31] the input to the ex-
plainable algorithm is a single bit chosen uniformly (and given to the adversary).
Because of this, and due to the way the explainability compiler is constructed,
we require the adversary to choose input∗ “non-adaptively,” i.e., before being

given Ãlg. This definition of explainability suffices for our eventual protocol.

3.1 Constructing an Explainability Compiler

Following [31], we now show how to construct an explainability compiler. As
in [31], we rely on an indistinguishability obfuscator, iO, for P/poly and three
different pseudorandom function (PRF) variants (cf. Appendix A):

– A puncturable, extracting PRF F1(K1, ·) that accepts inputs of length �1 +
�2 + �in, and outputs strings of length �r. It is extracting when the input
min-entropy is greater than �r + 2λ + 4, with statistical closeness less than
2−(λ+1). Observe that �in+�1+�2 ≥ �r+2λ+4, and thus if one-way functions
exist then such a PRF exists by Theorem 4.

– A puncturable, statistically injective PRF F2(K2, ·) that accepts inputs of
length 2λ + �in + �out, and outputs strings of length �1. Observe that �1 ≥
2 · (2λ+ �in + �out) + λ, and thus if one-way functions exist then such a PRF
exists by Theorem 3.

– A puncturable PRF F3(K3, ·) that accepts inputs of length �1 and outputs
strings of length �2. If one-way functions exist, then such a PRF exists by
Theorem 2.

594 D. Dachman-Soled, J. Katz, and V. Rao

We define Comp(1λ,Alg) as follows. Let Alg : {0, 1}�in × {0, 1}�r → {0, 1}�out
be an algorithm with domain {0, 1}�in, range {0, 1}�out, and randomness length

�r. Our compiled program Ãlg will take input input ∈ {0, 1}�in and randomness
u = (u[1], u[2]) of length �1 + �2, where |u[1]| = �1 = 5λ + 2(�in + �out) + �r
and |u[2]| = �2 = 2λ + �in + �out. Our compiler first samples keys K1, K2, and
K3 for PRFs F1, F2, and F3, respectively. It then defines algorithms Alg and

Explain as in Figures 1 and 2, respectively. Finally, it computes Ãlg ← iO(Alg)

and Explain ← iO(Explain), and outputs (Ãlg,Explain).
The proofs of security for our compiler, given for completeness in Appendix B,

follow closely along the lines of the analogous proofs in [31]. Specifically, the proof
of statistical functional equivalence closely follows the proof used by Sahai and
Waters to establish IND-CPA security of their deniable encryption scheme, and
the proof of explainability follows the Sahai-Waters proof establishing explain-
ability of their deniable encryption scheme. We highlight, however, that in our
proof of explainability a difference arises because in our case the input input∗ is
an arbitrary length value (depending on the domain of Alg), whereas in [31] the
input is just a single bit. We are able to adapt the proof to this case because we

do not allow input∗ to depend on Ãlg.

4 A Semi-Honest, Adaptively Secure Protocol

We describe here a protocol for secure computation of a randomized circuit C
by a set of parties P1, . . . , Pn. We assume for simplicity that all parties learn the
output of C; using standard techniques, we can handle the general case in which
each party learns a possibly different function of the inputs. For ease of notation,
we assume that the domain of C is {0, 1}n with party Pi providing the ith input
xi ∈ {0, 1}. (One can easily verify that our protocol and proof generalize to the
case of arbitrary-length inputs.) We also assume without loss of generality that
C uses λ random bits.

The CRS of our protocol is an “explainable” version ˜NextMsg of the algo-
rithm NextMsg defined in Figure 3. That is, the CRS is generated by computing

(˜NextMsg,Explain) ← Comp(1λ,NextMsg) and letting the CRS be ˜NextMsg. As
described, the CRS depends on C (since NextMsg does); however, by letting C

Explain

Hardwired constants: Keys K2 and K3.
Input: input, output, and randomness r ∈ {0, 1}λ.

1. Set α := F2(K2, (input, output,PRG(r))) and let β := F3(K3, α) ⊕
(input, output,PRG(r)).
Output (α, β).

Fig. 2. Program Explain

Adaptively Secure, Universally Composable, Multiparty Computation 595

NextMsg

Inputs: OT1,1, . . . ,OT1,n; randomness r1, . . . , rλ ∈ {0, 1} and
rGC, rS,1, . . . , rS,n ∈ {0, 1}∗.

1. Run GenGC(1λ, C; rGC) to produce the garbled circuit GC along with n
pairs of input-wire labels {(yi,0, yi,1)}ni=1 and λ pairs of random-wire
labels {(wi,0, wi,1)}λi=1.

2. For i ∈ [n], run SOT on input OT1,i and (yi,0, yi,1) using random-
ness rS,i, to obtain OT2,i.

3. Output GC, OT messages {OT2,i}ni=1, and random-wire labels
w1,r1 , . . . , wλ,rλ .

Fig. 3. Algorithm NextMsg. The security parameter 1λ and circuit C are hardwired.

be a universal circuit the CRS can be fixed independently of the “actual” func-
tion the parties wish to compute. We note that we allow the environment Z to
choose the parties’ inputs depending on the CRS.

Let ΠOT = (ROT, SOT, EOT) be a two-round, semi-honest, adaptively secure
OT protocol (cf. Section 2.2). Our secure-computation protocol Π is defined
in Figure 4. We describe the protocol assuming the existence of secure chan-
nels; these can be instantiated using any adaptively secure public-key encryption
scheme.

Theorem 1. Assume Comp is an explainability compiler, and GenGC and ΠOT

satisfy the definitions from Sections 2.1 and 2.2, respectively. Then protocol Π in
Figure 4 UC-realizes functionality C in the presence of a semi-honest, adaptive
adversary corrupting any number of parties.

Proof. Let SimGC, SimOT denote appropriate simulators as defined in Section 2.
Fix an environment Z and a dummy adversary A attacking protocol Π. Recall
that we allow the environment Z to adaptively choose the inputs of all parties
after seeing the common reference string. Without loss of generality, we assume
Z first observes the entire protocol transcript (which, since we use secure chan-
nels in rounds 3 and 4, consists only of the messages sent in the first two rounds)
before corrupting any parties. Our simulator Sim for this adversary proceeds as
follows:

1. Compute (˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS.

2. Run SimOT1(1
λ) a total of n times to obtain {(OT1,i,OT2,i, sti)}ni=1. Give

OT1,1, . . . ,OT1,n−1 to Z as the first-round message, and OT2,1, . . . ,OT2,n−1

to Z as the second-round message.
3. When Z requests to corrupt party Pi, corrupt Pi in the ideal world to learn

its input xi and the output z. Then:

– If this is the first party to be corrupted, compute (GC, {yi}ni=1, {wi}λi=1)
← SimGC(1λ, C, z) and r∗n ← Explain ((OT1,1, . . . ,OT1,n), (GC,OT2,1, . . . ,

596 D. Dachman-Soled, J. Katz, and V. Rao

Semi-Honest, Adaptively Secure Multiparty Computation

Common input:

– CRS = ˜NextMsg.
– Description of a randomized circuit C.

Private inputs: Every party Pi has private input xi ∈ {0, 1}.

Each Pi: Compute first-round OT messages:

– Sample random coins rR,i ← {0, 1}∗ of appropriate length.
– Compute OT1,i := ROT(xi; rR,i) and, for i ∈ [n− 1], send OT1,i to Pn.

Pn: Compute garbled circuit and second-round OT messages:

– Sample random coins rn ← {0, 1}∗ of appropriate length.
– Compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

– For i ∈ [n− 1], send OT2,i to Pi.

Each Pi: Recover OT output :

– Compute yi := EOT(xi, rR,i,OT2,i) and, for i ∈ [n − 1], send yi to Pn

over a secure channel.

Pn: Evaluate garbled circuit and broadcast output :

– Compute z := EvalGC(GC, {yi}ni=1, {wi}λi=1).
– For i ∈ [n− 1], send z to Pi over a secure channel.

Output: Each party Pi outputs z.

Fig. 4. Protocol Π for computing randomized circuit C.

OT2,n, w1, . . . , wn)). Store these values to be used, as needed, in the rest
of the simulation.

– In any case, compute rR,i := SimOT2(1
λ, xi, yi, sti) and give xi, z, yi, and

rR,i to Z. In addition, if i = n give {yi}n−1
i=1 and r∗n to Z.

4. Output whatever Z outputs.

We prove that the output of Z when interacting with A and parties in a
real-world execution of protocol Π is indistinguishable from the output of Z
when interacting with Sim and the functionality C in an ideal-world execution
of the protocol. We do so by considering a sequence of hybrid experiments, be-
ginning with the real-world execution and ending with the ideal-world execution,
and showing that each experiment is computationally indistinguishable from the
preceding one.

Hybrid 0. This corresponds to the real-world execution of the protocol. We
write the experiment in a format convenient for the proof. This experiment
proceeds via the following steps:

Adaptively Secure, Universally Composable, Multiparty Computation 597

1. Compute (˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. For i ∈ [n], sample coins rR,i and compute OT1,i := ROT(xi; rR,i). Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Sample coins rn and compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.
4. When Z requests to corrupt party Pi, compute yi := EOT(xi, rR,i,OT2,i)

and give xi, z, yi, and rR,i to Z. In addition, if i = n then compute yi :=
EOT(xi, rR,i,OT2,i) for i ∈ [n− 1] and give {yi}n−1

i=1 and rn to Z.

Hybrid 1. This experiment is similar to the previous one, except that the OT1

messages and the random coins {rR,i} are generated by the simulator for the
OT protocol (cf. Section 2.2). That is, the experiment proceeds via the following
steps:

1. Compute (˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT′
1(1

λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Sample coins rn and compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.
4. When Z corrupts party Pi, compute rR,i := SimOT′

2(1
λ, xi, sti) and yi :=

EOT(xi, rR,i,OT2,i), and give xi, z, yi, and rR,i to Z. In addition, if i = n then
for i ∈ [n − 1] compute rR,i := SimOT′

2(1
λ, xi, sti) and yi := EOT(xi, rR,i,

OT2,i), and give {yi}n−1
i=1 and rn to Z.

It follows immediately by security of the OT protocol (and a straightforward
hybrid argument) that this experiment is computationally indistinguishable from
the previous one.

Hybrid 2. This experiment is similar to the previous one, except that we now use
the Explain algorithm to generate the random coins rn. That is, the experiment
proceeds as follow:

1. Compute (˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT′
1(1

λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Sample coins rn and compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

In addition, let input∗ = (OT1,1, . . . ,OT1,n) and output∗ = (GC,OT2,1, . . . ,
OT2,n, w1, . . . , wλ), and compute r∗n ← Explain(input∗, output∗).
Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

598 D. Dachman-Soled, J. Katz, and V. Rao

4. When Z corrupts party Pi, compute rR,i := SimOT′
2(1

λ, xi, sti) and yi :=
EOT(xi, rR,i,OT2,i), and give xi, z, yi, and rR,i to Z. In addition, if i = n then
for i ∈ [n − 1] compute rR,i := SimOT′

2(1
λ, xi, sti) and yi := EOT(xi, rR,i,

OT2,i), and give {yi}n−1
i=1 and r∗n to Z.

Computationally indistinguishability of this experiment from the previous
one follows from the definition of explainability (cf. Definition 1), and the fact
that Comp is an explainability compiler. To see this, say there is an efficient
adversary Z and a non-uniform, polynomial-time distinguisher D that distin-
guishes the outcome of Hybrid 1 from that of Hybrid 2. We show how to use
this to construct an attacker A′ violating explainability. A′ works as follows: it
runs SimOT′

1(1
λ) a total of n times to obtain {(OT1,i, sti)}ni=1, and outputs the

value input∗ = (OT1,1, . . . ,OT1,n). Given ˜NextMsg, output∗, r in response, where
output∗ = (GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ), it then does:

1. Give ˜NextMsg to Z as the CRS. Z chooses inputs x1, . . . , xn.
2. Give OT1,1, . . . ,OT1,n−1 to Z as the first-round message, and OT2,1, . . . ,

OT2,n−1 to Z as the second-round message.
3. When Z corrupts party Pi, compute rR,i := SimOT′

2(1
λ, xi, sti) and yi :=

EOT(xi, rR,i,OT2,i), and give xi, z, yi, and rR,i to Z. In addition, if i = n then
for i ∈ [n − 1] compute rR,i := SimOT′

2(1
λ, xi, sti) and yi := EOT(xi, rR,i,

OT2,i), and give {yi}n−1
i=1 and r to Z.

Finally, run D on the output of Z and output the result. It is easy to see that

if the coins r are those used to run ˜NextMsg, then the view of Z when run as a
subroutine by A′ corresponds to Hybrid 1, whereas if the coins r are those output
by Explain, then the view of Z when run as a subroutine by A′ corresponds to
Hybrid 2. Indistinguishability of the two experiments follows.

Hybrid 3. This is similar to the previous experiment, except that NextMsg and

Explain are used in place of ˜NextMsg. That is, the experiment proceeds as follows:

1. Compute (˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT′
1(1

λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) ← NextMsg(OT1,1, . . . ,OT1,n).

In addition, let input∗ = (OT1,1, . . . ,OT1,n) and output∗ = (GC,OT2,1, . . . ,
OT2,n, w1, . . . , wλ), and compute r∗n ← Explain(input∗, output∗).
Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

4. When Z corrupts party Pi, compute rR,i := SimOT′
2(1

λ, xi, sti) and yi :=
EOT(xi, rR,i,OT2,i), and give xi, z, yi, and rR,i to Z. In addition, if i = n then
for i ∈ [n − 1] compute rR,i := SimOT′

2(1
λ, xi, sti) and yi := EOT(xi, rR,i,

OT2,i), and give {yi}n−1
i=1 and r∗n to Z.

Adaptively Secure, Universally Composable, Multiparty Computation 599

Indistinguishability of this experiment from the previous one follows by sta-

tistical equivalence of NextMsg and ˜NextMsg.

Hybrid 4. In this experiment, we first make explicit the steps of NextMsg.
(This is just a syntactic rewriting, and does not affect the experiment.) In ad-
dition, we now set yi = yi,xi instead of computing yi using the OT-evaluation
algorithm EOT. This experiment proceeds as follows:

1. Compute (˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT′
1(1

λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the
sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Compute (GC, {(yi,0, yi,1)}ni=1, {(wi,0, wi,1)}λi=1) ← GenGC(1λ, C) and set
yi = yi,xi for all i. For i ∈ [n], run OT2,i ← SOT(OT1, yi,0, yi,1). Choose uni-
form r1, . . . , rλ ∈ {0, 1}, and let input∗ = (OT1,1, . . . ,OT1,n) and output∗ =
(GC,OT2,1, . . . ,OT2,n, wr1 , . . . , wrλ). Compute r∗n ← Explain(input∗, output∗).
Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

4. When Z corrupts party Pi, compute rR,i := SimOT′
2(1

λ, xi, sti). Give xi, z, yi,
and rR,i to Z. In addition, if i = n then give {yi}n−1

i=1 and r∗n to Z.

Computational indistinguishability of this experiment from the previous one
follows from security of the OT protocol.

Hybrid 5. In the previous experiment the OT2 messages were generated hon-
estly as part of NextMsg. Here, we have the OT simulator output them instead.
That is, we now do:

1. Compute (˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

2. Run SimOT1(1
λ) a total of n times to obtain {(OT1,i,OT2,i, sti)}ni=1. Give

the sequence of values OT1,1, . . . ,OT1,n−1 to Z as the first-round message,
and give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

3. Compute (GC, {(yi,0, yi,1)}ni=1, {(wi,0, wi,1)}λi=1) ← GenGC(1λ, C) and set
yi = yi,xi for all i. Choose uniform values r1, . . . , rλ ∈ {0, 1}, and let input∗ =
(OT1,1, . . . ,OT1,n) and output∗ = (GC,OT2,1, . . . ,OT2,n, wr1 , . . . , wrλ). Com-
pute r∗n ← Explain(input∗, output∗).

4. When Z corrupts party Pi, compute rR,i := SimOT2(1
λ, xi, yi, sti). Give

xi, z, yi, and rR,i to Z. In addition, if i = n then give {yi}n−1
i=1 and r∗n to Z.

Again, computational indistinguishability between this experiment and the
previous one follows by security of the OT protocol.

Hybrid 6. Here we use the garbled-circuit simulator (cf. Section 2.1) instead of
the garbled-circuit generation algorithm. Thus, the experiment now proceeds as
follows:

1. Compute (˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z
as the CRS. Z chooses inputs x1, . . . , xn.

600 D. Dachman-Soled, J. Katz, and V. Rao

2. Run SimOT1(1
λ) a total of n times to obtain {(OT1,i,OT2,i, sti)}ni=1. Give

OT1,1, . . . ,OT1,n−1 to Z as the first-round message, and OT2,1, . . . ,OT2,n−1

to Z as the second-round message.
3. Compute (GC, {yi}ni=1, {wi}λi=1) ← SimGC(1λ, C, z). Let input∗ = (OT1,1, . . . ,

OT1,n) and output∗ = (GC,OT2,1, . . . ,OT2,n, wr1 , . . . , wrλ). Compute r∗n ←
Explain(input∗, output∗).

4. When Z corrupts party Pi, compute rR,i := SimOT2(1
λ, xi, yi, sti). Give

xi, z, yi, and rR,i to Z. In addition, if i = n then for i ∈ [n− 1] give {yi}n−1
i=1

and r∗n to Z.

Computational indistinguishability between this experiment and the previous
one follows from security of garbled circuits.

We conclude the proof by noting that Hybrid 6 is simply a syntactic rewriting
of the ideal-world execution involving the simulator originally defined.

5 Conclusions and Open Questions

In this work we have shown the first constant-round, universally composable
protocol tolerating a malicious, adaptive adversary that can corrupt any number
of parties, in a setting where secure erasure is not assumed. In addition, we have
shown the first adaptively secure protocol, regardless of round complexity, that
can compute arbitrary functionalities (and not only adaptively well-formed ones)
in the presence of any number of corruptions and without erasures.

Several interesting open questions remain. Although a CRS (or some other
form of setup) is necessary if we wish to obtain a universally composable protocol
with security against malicious adversaries corrupting an arbitrary number of
parties, it is still possible that the CRS can be avoided in the semi-honest case,
or in the stand-alone setting. Moreover, our protocol assumes that the CRS
depends on the circuit C being computed or, if we let C be a universal circuit
(cf. footnote 2), an a priori bound on the size of the circuit being computed. It
would be interesting to see if this can be avoided.

References

1. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 186–195. IEEE (2004)

2. Beaver, D.: Plug and play encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 75–89. Springer, Heidelberg (1997)

3. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dy-
namic adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 307–323. Springer, Heidelberg (1993)

4. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

Adaptively Secure, Universally Composable, Multiparty Computation 601

5. Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with
input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg (2014)

6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 136–145. IEEE (2001), Full version at
http://eprint.iacr.org/2000/067/

10. Canetti, R., Damg̊ard, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus
non-adaptive security of multi-party protocols. J. Crypto. 17(3), 153–207 (2004)

11. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multiparty com-
putation. In: 28th Annual ACM Symposium on Theory of Computing (STOC),
pp. 639–648. ACM Press (1996)

12. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

13. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2014/845 (2014)

14. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: 34th Annual ACM Symposium on Theory
of Computing (STOC), pp. 494–503. ACM Press (2002), Full version available at
http://eprint.iacr.org/2002/140

15. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: How to use an im-
perfect reference string. In: 48th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 249–259. IEEE (2007)

16. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)

17. Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive
and concurrent secure computation from new adaptive, non-malleable commit-
ments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269,
pp. 316–336. Springer, Heidelberg (2013)

18. Damg̊ard, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

19. Damg̊ard, I., Polychroniadou, A., Rao, V.: Secure UC constant round multi-party
computation. Cryptology ePrint Archive, Report 2014/830 (2014)

20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 40–49. IEEE
(2013)

21. Garg, S., Polychroniadou, A.: Two-round adaptively secure mpc from indistin-
guishability obfuscation. Cryptology ePrint Archive, Report 2014/844 (2014)

http://eprint.iacr.org/2000/067/
http://eprint.iacr.org/2002/140

602 D. Dachman-Soled, J. Katz, and V. Rao

22. Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest
majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 105–123. Springer, Heidelberg (2012)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: 19th Annual ACM
Symposium on Theory of Computing (STOC), pp. 218–229. ACM Press (1987)

24. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 276–288. Springer, Heidelberg (1985)

25. Hazay, C., Patra, A.: One-sided adaptively secure two-party computation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 368–393. Springer, Heidelberg (2014)

26. Ishai, Y., Kumarasubramanian, A., Orlandi, C., Sahai, A.: On invertible sampling
and adaptive security. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
466–482. Springer, Heidelberg (2010)

27. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

28. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)

29. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: 20th ACM Conf. on Computer and Com-
munications Security (CCS), pp. 669–684. ACM Press (2013)

30. Lindell, A.Y.: Adaptively secure two-party computation with erasures. In: Fischlin,
M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 117–132. Springer, Heidelberg (2009)

31. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable en-
cryption, and more. In: 46th Annual ACM Symposium on Theory of Com- puting
(STOC), pp. 475–484. ACM Press (2014)

32. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Sympo- sium
on Foundations of Computer Science (FOCS), pp. 162–167. IEEE (1986)

A Puncturable PRFs

Puncturable PRFs are a type of constrained PRF [6,7,29] whereby it is pos-
sible to generate a key that defines the function everywhere except on some
polynomial-size set of inputs:

Definition 2. A puncturable family of PRFs is defined by polynomials n(·) and
m(·) and a triple of Turing machines KeyF , PunctureF , and EvalF satisfying the
following conditions:

Functionality preserved under puncturing. For all polynomial-size sets S
⊆ {0, 1}n(λ) and all x ∈ {0, 1}n(λ) \S, we have:

Pr
[
K ← KeyF (1

λ);KS = PunctureF (K,S) : EvalF (K,x)=EvalF (KS , x)
]
=1.

Pseudorandom at punctured points. For every ppt adversary (A1, A2) such
that A1(1

λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment

Adaptively Secure, Universally Composable, Multiparty Computation 603

where K ← KeyF (1
λ) and KS = PunctureF (K,S). Then we have∣∣∣Pr [A2(σ,KS , S,EvalF (K,S)) = 1

]
− Pr

[
A2(σ,KS , S, Um(λ)·|S|) = 1

]∣∣∣
≤ negl(λ)

where EvalF (K,S) is the concatenation of EvalF (K,x1), . . . ,EvalF (K,xk),
and S = {x1, . . . , xk} denoted the elements of S in lexicographic order.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also repre-
sent the punctured key PunctureF (K,S) by K(S).

As observed by [6,7,29], the GGM construction [24] of PRFs from one-way
functions yields puncturable PRFs. Thus:

Theorem 2. [6,7,29] Assuming one-way functions exist, for all polynomials
n(λ),m(λ) there is a puncturable PRF family that maps n(λ) bits to m(λ) bits.

We follow [31] for the following definitions of puncturable PRFs with enhanced
properties:

Definition 3. A statistically injective (puncturable) PRF family with failure prob-
ability ε(·) is a family of (puncturable) PRFs F such that with probability 1−ε(λ)
over the random choice of key K ← KeyF (1

λ), we have that F (K, ·) is injective.

Definition 4. An extracting (puncturable) PRF family with error ε(·) for min-
entropy k(·) is a family of (puncturable) PRFs F mapping n(λ) bits to m(λ)
bits such that for all λ, if X is any distribution over n(λ) bits with min-entropy
greater than k(λ), then the statistical distance between (K ← KeyF (1

λ), F (K,X))
and (K ← KeyF (1

λ), Um(λ)) is at most ε(λ).

The following results were proved in [31]:

Theorem 3 ([31]). If one-way functions exist, then for all efficiently com-
putable functions n(λ), m(λ), and e(λ) such that m(λ) ≥ 2n(λ) + e(λ), there
exists a puncturable statistically injective PRF family with failure probability
2−e(λ) that maps n(λ) bits to m(λ) bits.

Theorem 4. If one-way functions exist, then for all efficiently computable func-
tions n(λ), m(λ), k(λ), and e(λ) such that n(λ) ≥ k(λ) ≥ m(λ) + 2e(λ) + 2,
there exists an extracting puncturable PRF family that maps n(λ) bits to m(λ)
bits with error 2−e(λ) for min-entropy k(λ).

B Proof of Security for Our Explainability Compiler

In this section we prove security of our explainability compiler. We must show
two properties: statistical functional equivalence and explainability. (Polynomial
slowdown is obvious.) The proof of statistical functional equivalence is largely
identical to the analogous proof in [31], and is omitted. Instead, we focus on
explainability.

We first state the following lemma, whose proof is the same as in [31].

604 D. Dachman-Soled, J. Katz, and V. Rao

Lemma 1. Except with negligible probability over the choice of key K2, the fol-
lowing hold:

1. For any fixed u[1] = α, there exists at most one pair (input, β) such that the
input input with randomness u = (α, β) will cause the Step 1 check of Alg to
be satisfied.

2. There are at most 22λ+�in+�out values for the randomness u that can cause the
Step 1 check of Alg to be satisfied.

Given the above, we prove:

Theorem 5. If F1, F2, F3 are PRFs that satisfy the properties specified in Sec-
tion 3.1, and iO is an indistinguishability obfuscator for P/poly, then our con-
struction Comp(·, ·) satisfies explainability.

Proof. Recall the explainability experiment from Definition 1:

1. A(1λ) outputs input∗ of its choice.

2. Comp(1λ,Alg) is run to obtain (Ãlg,Explain).

3. Choose random coins r0 ← {0, 1}∗, and compute output∗ ← Ãlg(input∗; r0).
4. Compute r1 ← Explain(input∗, output∗).

5. Choose a uniform bit b and give Ãlg, output∗, rb to A.
6. A outputs a bit b′, and succeeds if b′ = b.

Let ExplAlg,A be a random variable set to 1 if A succeeds in outputting b′ = b

in the above experiment. Security of Comp(1λ,Alg) requires that for every ppt A
and for every efficient algorithm Alg, we have Pr[ExplAlg,A = 1] ≤ 1/2+ negl(λ).

Assume towards a contradiction that there is some ppt adversaryA and some
efficient algorithm Alg such that Pr[ExplAlg,A = 1] ≥ 1/2+ε(λ), for non-negligible
ε(·). We derive a contradiction via a sequence of hybrid experiments. The change
between each experiment and the previous one will be denoted by underlined
text.

Original Experiment. We consider the probability that b′ = b in the following
experiment:

1. b ← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r∗ at random.
5. If F3(K3, u[1])⊕u[2] = (input′, output′, r′) for (proper length) strings output′,

r′, input′, and input′ = input∗, and u[1] = F2(K2, (input
′, output′, r′)), then

let output∗ = output′ and jump to the next step. Otherwise, let x∗ =
F1(K1, (input

∗, u∗)) and output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α
∗)⊕ (input∗,

output∗,PRG(r∗)), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 1. Let Explain ← iO(Explain) for
Explain as in Figure 2.

Adaptively Secure, Universally Composable, Multiparty Computation 605

Alg

Constants: Keys K1, K2, and K3.
Input: Input input, randomness u = (u[1], u[2]).

1. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length)
strings output′, r′, input′, and input′ = input, and u[1] =
F2(K2, (input

′, output′, r′)), then output output = output′ and end.
2. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 5. Program Alg

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 0. Next, we eliminate the check in Step 1 from the Alg program when
preparing the outputs of the fixed challenge input∗. Hybrid 0 is statistically close
to the original experiment by Lemma 1. Consider the probability that b′ = b in
the following experiment:

1. b ← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r∗ at random.
5. If F3(K3, u[1])⊕u[2] = (input′, output′, r′) for (proper length) strings output′,

r′, input′, and input′ = input∗, and u[1] = F2(K2, (input
′, output′, r′)), then

let output∗ = output′ and jump to the next step. Otherwise, let x∗ =
F1(K1, (input

∗, u∗)) and output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α
∗)⊕ (input∗,

output∗,PRG(r∗)), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 5. Let Explain ← iO(Explain) for
Explain as in Figure 6.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Explain

Constants: Keys K2 and K3.
Input: Input input, output output, randomness r ∈ {0, 1}λ.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 6. Program Explain

Hybrid 1. Here, we modify the Alg program as follows: First, we add constants
input∗, output∗, u∗, e∗ to the program. Then, we add an “if” statement at the

606 D. Dachman-Soled, J. Katz, and V. Rao

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input

∗, u∗), (input∗, e∗)), K2, and K3.
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.

2. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length)
strings output′, r′, input′, and input′ = input, and u[1] =
F2(K2, (input

′, output′, r′)), then output output = output′ and end.
3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 7. Program Alg

start that outputs output∗ if the input is either (input∗, u∗) or (input∗, e∗), as
this is exactly what the original Alg program would do by our choice of u∗, e∗.
Because this “if” statement is in place, we know that F1 cannot be evaluated
at either (input∗, u∗) or (input∗, e∗) within the program, and therefore we can
safely puncture K1 at those two positions.

By construction, the new Alg program is functionally equivalent to the original
Alg program. Therefore, indistinguishability of Hybrid 0 and Hybrid 1 follows
by the security of iO. Thus, the difference in the probabilities that A outputs
b′ = b in Hybrid 0 and Hybrid 1 is negligible.

1. b ← {0, 1}.
2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.

4. Select u∗ and r∗ at random.

5. Let x∗ = F1(K1, (input
∗, u∗)) and let output∗ = Alg(input∗;x∗).

6. Set α∗ = F2(K2, (input
∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α

∗)⊕ (input∗,
output∗,PRG(r∗)), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 7. Let Explain ← iO(Explain) for
Explain as in Figure 8.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Explain

Constants: PRF keys K2, and K3.
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 8. Program Explain

Adaptively Secure, Universally Composable, Multiparty Computation 607

Hybrid 2. Here, the value x∗ is chosen uniformly instead of as the output of
F1(K1, (input

∗, u∗)). Pseudorandomness of F1 thus implies that the difference in
the probabilities that A outputs b′ = b in Hybrid 1 and Hybrid 2 is negligible.

1. b ← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r∗ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α
∗)⊕ (input∗,

output∗,PRG(r∗)), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 9. Let Explain ← iO(Explain) for
Explain as in Figure 10.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input

∗, u∗), (input∗, e∗)), K2, and K3.
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length)
strings output′, r′, input′, and input′ = input, and u[1] =
F2(K2, (input

′, output′, r′)), then output output = output′ and end.
3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 9. Program Alg

Explain

Constants: PRF keys K2, and K3.
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 10. Program Explain

608 D. Dachman-Soled, J. Katz, and V. Rao

Hybrid 3. Here, instead of choosing uniform r∗ and applying a PRG to it, a
value r̃ is chosen uniformly from the range of the PRG. Security of the PRG
implies that the difference in the probabilities that A outputs b′ = b in Hybrid 2
and Hybrid 3 is negligible.

1. b ← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗, r̃)). Let β∗ = F3(K3, α
∗)⊕(input∗, output∗,

r̃), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 11. Let Explain ← iO(Explain) for
Explain as in Figure 12.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input

∗, u∗), (input∗, e∗)), K2, and K3.
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length)
strings output′, r′, input′, and input′ = input, and u[1] =
F2(K2, (input

′, output′, r′)), then output output = output′ and end.
3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 11. Program Alg

Hybrid 4. Here, the Alg and Explain programs are modified as shown below.
In Lemma 2, (proven below), we argue that except with negligible probability
over choice of constants, these modifications do not alter the functionality of
either program. Thus, the iO security property implies that the difference in the
probabilities that A outputs b′ = b in Hybrid 3 and Hybrid 4 is negligible.

1. b ← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗, r̃)). Let β∗ = F3(K3, α
∗)⊕(input∗, output∗,

r̃), and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 13. Let Explain ← iO(Explain) for
Explain as in Figure 14.

Adaptively Secure, Universally Composable, Multiparty Computation 609

Explain

Constants: PRF keys K2, and K3.
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 12. Program Explain

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input

∗, u∗), (input∗, e∗)), K2, and K3(u
∗[1], e∗[1]).

Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1]) ⊕

u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′,
and input′ = input, and u[1] = F2(K2, (input

′, output′, r′)), then output
output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 13. Program Alg

Explain

Constants: PRF keys K2, and K3(u
∗[1], e∗[1]).

Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 14. Program Explain

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 5. Here, the value e∗[2], denoted β∗, is chosen at random instead of
being chosen as β∗ = F3(K3, α

∗)⊕ (input∗, output∗, r̃). Pseudorandomness of F3

thus implies that the difference in the probabilities that A outputs b′ = b in
Hybrid 4 and Hybrid 5 is negligible.

1. b ← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗, r̃)). Choose uniform β∗, and set e∗ = (α∗,
β∗).

610 D. Dachman-Soled, J. Katz, and V. Rao

7. Let Ãlg ← iO(Alg) for Alg as in Figure 15. Let Explain ← iO(Explain) for
Explain as in Figure 16.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys
K1((input

∗, u∗), (input∗, e∗)), K2, and K3(u
∗[1], e∗[1]).

Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1]) ⊕

u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′,
and input′ = input, and u[1] = F2(K2, (input

′, output′, r′)), then output
output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 15. Program Alg

Hybrid 6. First we modify the Alg program to add a condition to the check
in Step 2 to determine if (input′, output′, r′) = (input∗, output∗, r̃) and, if so, to
skip this check. This does not change the functionality of the program, because
e∗[1] = F2(K2, (input

∗, output∗, r̃)), and therefore the check cannot be satisfied
if (input′, output′, r′) = (input∗, output∗, r̃), since Step 2 is skipped entirely if
u[1] = e∗[1]. Furthermore, both the Alg and Explain programs are modified to
have K2 punctured at the points (input∗, output∗, r̃). This puncturing does not
change the functionality of the Alg program because of the new “if” condition
just added. With overwhelming probability, r̃ is not in the image of the PRG and
therefore this puncturing also does not change the functionality of the Explain
program. Thus, the difference in the probabilities that A outputs b′ = b in
Hybrid 5 and Hybrid 6 is negligible.

Explain

Constants: PRF keys K2, and K3(u
∗[1], e∗[1]).

Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 16. Program Explain

Adaptively Secure, Universally Composable, Multiparty Computation 611

1. b ← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Set α∗ = F2(K2, (input

∗, output∗, r̃)). Choose uniform β∗, and set e∗ =
(α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 17. Let Explain ← iO(Explain) for
Explain as in Figure 18.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗, r̃ and PRF keys
K1((input

∗, u∗), (input∗, e∗)), K2((input
∗, output∗, r̃)), and K3(u

∗[1], e∗[1]).
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step.
If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper
length) strings output′, r′, input′, and input′ = input, and
(input′, output′, r′) �= (input∗, output∗, r̃), then also check if u[1] =

F2(K2, (input
′, output′, r′)), then output output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 17. Program Alg

Explain

Constants: PRF keys K2((input
∗, output∗, r̃)), and K3(u

∗[1], e∗[1]).
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 18. Program Explain

Hybrid 7. Finally, we modify e∗[1], denoted α∗, to be uniform, instead of being
computed as α∗ = F2(K2, (input

∗, output∗, r̃)). Pseudorandomness of F2 implies
that the difference in the probabilities that A outputs b′ = b in Hybrid 6 and
Hybrid 7 is negligible.

612 D. Dachman-Soled, J. Katz, and V. Rao

1. b ← {0, 1}.
2. input∗ ← A(1λ).
3. Choose K1,K2,K3 at random.
4. Select u∗ and r̃ at random.
5. Choose uniform x∗ and let output∗ = Alg(input∗;x∗).
6. Choose uniform α∗ and β∗, and set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 19. Let Explain ← iO(Explain) for
Explain as in Figure 20.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗). If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗, r̃ and PRF keys
K1((input

∗, u∗), (input∗, e∗)), K2((input
∗, output∗, r̃)), and K3(u

∗[1], e∗[1]).
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.
2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1]) ⊕

u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′,
and input′ = input, and, (input′, output′, r′) �= (input∗, output∗, r̃), then
also check if u[1] = F2(K2, (input

′, output′, r′)), then output output =
output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Fig. 19. Program Alg

In Hybrid 7 we observe that the variables e∗, u∗ are now uniform and inde-
pendent. Thus, the inputs to A are distributed identically regardless of whether
b = 0 or b = 1 are identical, and so b = b′ with probability exactly 1/2. The
lemma below thus concludes the proof.

Explain

Constants: PRF keys K2((input
∗, output∗, r̃)), and K3(u

∗[1], e∗[1]).
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α) ⊕
(input, output,PRG(r)). Output e = (α, β).

Fig. 20. Program Explain

The proof above relies on the following lemma showing that the programs
obfuscated in Hybrid 3 are equivalent to the corresponding programs in Hybrid 4.

Adaptively Secure, Universally Composable, Multiparty Computation 613

Lemma 2. Except with negligible probability over the choice of u∗[1] and e∗[1],
the Alg and Explain programs in Hybrid 4 are equivalent to the Alg and Explain
programs in Hybrid 3.

Proof. We consider below each change to the programs.
First, an “if” statement is added to Step 2 of the Alg program, to skip the

check in Step 2 if either u[1] = e∗[1] or u[1] = u∗[1]. To see why this change does
not affect the functionality of the program, let us consider each case in turn. By
Lemma 1, if u[1] = e∗[1], then the only way the Step 2 check can be satisfied
is if input = input∗ and u[2] = e∗[2]. But this case is already handled in Step 1;
therefore, skipping Step 2 if u[1] = e∗[1] does not affect the functionality of the
program. On the other hand, recall that u∗[1] is chosen at random, and therefore
the probability that u∗[1] is in the image of F2(K2, ·) is negligible. Thus, with
overwhelming probability over the choice of constants u∗[1], the check in Step 2
cannot be satisfied if u[1] = u∗[1]. Therefore, the addition of this “if” statement
does not alter the functionality of the Alg program.

Also, the key K3 is punctured at u∗[1], e∗[1] in both the Alg and Explain
programs. The new “if” statement above ensures that F3(K3, ·) is never called
at these values in the Alg program. Recall that the Explain program only calls
F3(K3, ·) on values computed as F2(K2, (input, output,PRG(r))) for some bit
input and strings output and r. Furthermore, F2 is statistically injective with
a very sparse image set, by our choice of parameters. Since every u∗[1] is ran-
domly chosen, it is very unlikely to be in the image of F2(K2, ·). Since every e∗[1]
is chosen based on a random r̃ value instead of a PRG output, it is very un-
likely to correspond to F2(K2, (input, output,PRG(r))) for any (input, output, r).
Thus, these values are not called by the Explain program, except with negligible
probability over the choice of these constants u∗[1] and e∗[1].

Two-Round Adaptively Secure MPC

from Indistinguishability Obfuscation

Sanjam Garg1 and Antigoni Polychroniadou2,�

1 University of California, Berkeley, USA
sanjamg@berkeley.edu

2 Aarhus University, Denmark
antigoni@cs.au.dk

Abstract. Adaptively secure Multi-Party Computation (MPC) first
studied by Canetti, Feige, Goldreich, and Naor in 1996, is a fundamental
notion in cryptography. Adaptive security is particularly hard to achieve
in settings where arbitrary number of parties can be corrupted and hon-
est parties are not trusted to properly erase their internal state. We did
not know how to realize constant round protocols for this task even if we
were to restrict ourselves to semi-honest adversaries and to the simpler
two-party setting. Specifically the round complexity of known protocols
grows with the depth of the circuit the parties are trying to compute.
In this work, using indistinguishability obfuscation, we construct a UC

two-round Multi-Party computation protocol secure against any active,
adaptive adversary corrupting an arbitrary number of parties.

1 Introduction

The notion of secure computation is central in cryptography. Introduced in the
seminal work of [41,30] secure multiparty computation (MPC) allows several
mutually distrustful parties P1, . . . , Pn to compute a joint function f on their
private inputs (x1, . . . , xn), in a way that ensures that honest parties obtain
the correct outputs and no group of colluding malicious parties learns anything
beyond their own inputs and the prescribed output. For this problem, we are
interested in the natural setting where the attacker can on-the-fly decide on
which parties to corrupt. This model of adaptive corruption was first studied by
Canetti et al. [9]. In this paper we consider adaptive adversaries that are allowed
to corrupt arbitrary number of honest parties. Additionally we only consider non-
erasure protocols, specifically the protocols whose security does not depend on
having honest parties erase any of their internal state. We refer the reader to [9,
Section 1] for discussion on the importance of considering adaptive adversaries.

� Research supported by the Danish National Research Foundation and the National
Science Foundation of China (under the grant 61061130540) for the Sino-Danish
Center for the Theory of Interactive Computation and from the Center for Research
in Foundations of Electronic Markets (CFEM), supported by the Danish Strategic
Research Council. Also supported by ISF grant no. 1255/12.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 614–637, 2015.
c© International Association for Cryptologic Research 2015

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 615

One fundamental complexity measure of an MPC protocol is its round com-
plexity. For the static setting, Yao’s original two-party secure computation proto-
col [41] was already round-optimal. Analogous results for the multi-party setting
were obtain recently [1,22].

However achieving similar results in the adaptive setting has remained open.
In the case where all but one of the parties can be corrupted, [36,34] and [35,27]
including the concurrent work of [18], propose constant round two-party and
multi-party protocols, respectively. On the other hand, round complexity of all
know adaptively secure protocols secure against an arbitrary number of corrup-
tions grows (see, e.g. [14,27,16]) linearly in the depth of the circuit that the
parties are trying to compute. We stress that for this problem, this limitation
holds for essentially every special case of interest — namely, even if we were to
restrict to semi-honest/passive adversaries or to the special case of two-party
protocols. In this work we ask the following fundamental question:

Is it possible to construct a constant round protocol secure against
adaptive corruption of arbitrary number of parties?

1.1 Our Result

We answer the above question in the affirmative and show how to obtain a
two-round adaptively secure MPC protocol. Specifically:

Theorem 1 (Informal). Assuming sub-exponentially secure indistinguishabil-
ity obfuscation and other standard assumptions, we show that arbitrary functions
can be UC-securely [8] computed in the presence of adaptive, active corruption
of arbitrary number of parties with just two rounds of broadcast messages.

We stress that in the above claim we are in the setting where security holds
against an adversary corrupting any arbitrary number of parties. Furthermore,
honest parties in our case are not required to erase anything. Also note that
our results are for the strongest notion of security, the UC security. This means
that our protocol remains secure even when multiple instances of our protocol
are executed simultaneously. Since it is impossible to achieve UC security for
dishonest majority without assuming trusted setup assumptions [10,12,37], we
base our construction in the common reference string model.

In our results we consider an asynchronous multi-party network1 where the
communication is open (i.e. all the communication between the parties is seen
by the adversary) and delivery of messages is not guaranteed. For simplicity,
we assume that the delivered messages are authenticated. This can be achieved
using standard methods.

1.2 Independent Work

In two very recent concurrent and independent works, [15,11] construct con-
stant round protocols with security against a semi-honest, adaptive adversary

1 The fact that the network is asynchronous means that the messages are not neces-
sarily delivered in the order which they are sent.

616 S. Garg and A. Polychroniadou

corrupting any number of parties. Both works can obtain a constant round ma-
licious version of their protocols by applying the [14] compiler.

In our paper we construct a two-round multi-party protocol with security
against a malicious, adaptive adversary corrupting any number of parties. In
contract, the protocols of [15] and [11] require more rounds. Furthermore, the
construction of [11] solves the problem only for the special case of two parties.
Note that the reduction in our result and the result of [11] involves a sub-
exponential loss of security.

Last but not least, our protocol and the protocol of [11] are also leakage
tolerant. The semi-honest version of [11] is also incoercible with respect to one
of the parties.

1.3 Technical Difficulties and New Ideas

The key technical tool that we use in our construction is obfuscation so let us
start by recalling it briefly.

Obfuscation. Obfuscation was first rigorously defined and studied by Barak et
al. [4]. Most famously, they defined the notion of virtual black box (VBB) ob-
fuscation, and proved that this notion is impossible to realize in general — i.e.,
there exist functions, though a bit unnatural, that are VBB unobfuscatable.

Barak et al. also defined a weaker notion of indistinguishability obfuscation
(iO), which avoids their impossibility results. Indistinguishability obfuscation
requires that for any two circuits C0, C1 of similar size that compute the same
function, it is hard to distinguish an obfuscation of C0 from an obfuscation of C1.
In a recent result, Garg et al. [23] proposed a construction of iO for all circuits,
basing security on assumptions related to multilinear maps [21].

Starting point — Garg et al. [22] construction. In a recent work, Garg et al. [22]
constructed a two-round multiparty computation protocol secure against static
adversaries. Though our goal is to realize a protocol secure in the adaptive setting
it would be illustrative to see how Garg et al.’s construction works.

With the goal of explaining intuition [22] better we will describe the ideas
assuming we have access to VBB obfuscation, rather than just indistinguishabil-
ity obfuscation. We start by noting that two rounds of interaction are essential
for realizing multiparty secure computation. This is because a 1-round protocol
is inherently susceptible to the “residual function” attack in which a corrupted
party could repeatedly evaluate the “residual function” with the inputs of the
honest parties fixed on many different inputs of its own (e.g., see [33]). This
attack can be circumvented by having two rounds of interaction — where in
the first round the parties commit to their inputs and the output is generated
only in the second round. The first round commitments help guarantee that the
“residual function” attack can not be performed in this setting.

The key idea of the Garg et al. construction is to have every party com-
mit to its input along with its randomness in the first round. The second
round of the Garg et al. protocol is actually a simple compiler: it takes any

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 617

(possibly highly interactive) underlying MPC protocol, and has each party ob-
fuscate their “next-message” function in that protocol, providing one obfuscation
for each round. This enables each party to independently evaluate the obfusca-
tions one by one, generating messages of the underlying MPC protocol and finally
obtain the output. Party i’s next-message circuit for round j in the underlying
MPC protocol depends on its input xi and randomness ri (which are hard-coded
in the obfuscation). This circuit takes as input the transcript through round j−1,
and it produces as output the next broadcast message.

However, there is another complication. Unlike the initial interactive protocol
being compiled, the obfuscations are susceptible to a “reset” attack – i.e., they
can be evaluated on multiple inputs. To prevent such an attack, we need to limit
the obfuscations to be used for evaluation only on a unique set of values – namely,
values consistent with the inputs and randomness that the parties committed to
in the first round, and the current transcript of the underlying MPC protocol.
Note that this would implicitly fix the transcript to a unique value. To ensure this
consistency, Garg et al. [22] use non-interactive zero-knowledge (NIZK) proofs.
Since the NIZKs apply not only to the committed values of the first round,
but also to the transcript as it develops in the second round, the obfuscations
themselves must also generate these NIZKs “on the fly”. In other words, the
obfuscations are now augmented to perform not only the next-message function,
but also to prove that their output is consistent with their input, randomness and
transcript so far. Also, obfuscations in round j of the underlying MPC protocol
verify NIZKs associated to obfuscations in previous rounds before providing any
output.

Garg et al. show that this construction can be adapted so that security can
be based on indistinguishability obfuscation alone but we will not delve into
that. Instead we will argue that this approach is fundamentally problematic for
achieving the task at hand.

Our approach – starting afresh. Note that the above intuitive description uses
multiple obfuscations that are generated by honest parties. This however only
works in the static setting and our goal is adaptive security. The challenge in
proving adaptive security is that, a simulator would have a hard time explaining
these obfuscations as being honestly generated. Towards solving this problem we
first would like to limit the use of obfuscation in our construction; specifically
not requiring honest parties to generate any obfuscations.

Still assuming we have access to VBB obfuscation, we need a fresh direction to
solve the above problem. Here is our first stab at the problem: assume the parties
had access to a trusted third party. In this case each party could encrypt its input
and deliver it to the trusted party. The trusted party could then decrypts these
values to obtain the inputs of all the parties, compute the function on the inputs
and then deliver the output back to the parties. Our idea is to have an obfuscated
program given out as part of the CRS implement this trusted party. Just like
the Garg et al. construction, in order to make this construction secure against
“residual function” attack we will need to consider a setting with two rounds. In
the first round, we will have all parties commit to their inputs and then in the

618 S. Garg and A. Polychroniadou

second round we will have them provide encryptions of the openings previously
committed.

Making this construction adaptively secure seems more amenable — specifi-
cally, by using adaptive commitments for the first round and a deniable encryp-
tion scheme for the second. We actually need the first round commitments to be
simulation extractable. This allows our simulator to extract the values commit-
ted to by the adversary on behalf of corrupted parties, even as it equivocates on
its own commitments. Once the simulator has access to the inputs of the cor-
rupted outputs it can force the output by including it in its own second round
encryption.

Basing it on Indistinguishability Obfuscation. The protocol described so far re-
lies on VBB and we would like to instantiate our construction based on iO. The
CRS of the scheme includes an obfuscation that takes as input encryptions of
inputs of all the parties and computes the desired functionality on their decryp-
tions. A reader might have observed that this bears resemblance with functional
encryption or even multi-input functional encryption [31]. One might wonder if
the use of “two key trick” can help us realize this construction using just in-
distinguishability obfuscation — in a way similar to the functional encryption
construction of Garg et al. [23]. In particular the idea would be that each party
encrypts its input along with the opening twice under two different keys and at-
tach along with them a NIZK proof proving that they indeed encrypt the same
value.

Unfortunately, this solution is fundamentally problematic as we are in the
adaptive setting. Even if we were to use an adaptively secure NIZK the problem
is that NIZKs given on deniable encryptions are useless. This is because the
encryption scheme is deniable. The deniability of the encryption scheme allows
the adversary to encrypt two different plaintexts under the two public keys but
still succeed in explaining them as encrypting the same message. This also allows
the attacker to successfully prove that the two ciphertexts indeed encrypt the
same message.

In summary, what we really need is a system with two ciphertexts and a proof
proving that the two ciphertexts encrypt the same message with the property
that only valid proofs exists. Additionally we need the property that both the
ciphertexts and the proof can be denied upon in the proof of security. These
requirements indeed seem to be in conflict with each other. For example, simul-
taneously achieving perfect soundness for NIZK and the ability to explain the
simulated proofs as though they were honestly generated seems like a bottleneck.

Our solution to this seemingly paradoxical problem is to first construct a core
two key encryption scheme which comes attached with a NIZK and then build
deniability on top of it. In particular, the underlying core encryption scheme
consists of two copies of a perfectly correct encryption scheme along with a
NIZK proving that the two ciphertexts encrypt the same message and it is com-
bined with a language which also binds it with the commitments of the first
round. The NIZK we use will have statistical soundness. This underlying encryp-
tion scheme is then made deniable using the Sahai and Waters [40] Universal

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 619

Deniable Encryption (UDE) transformation. Briefly, UDE takes any encryption
scheme and converts it to deniable so that ciphertexts are still indistinguishable
from the usual ciphertexts of the underlying core encryption. Hence, our result-
ing encryption is deniable in a very strong sense — specifically, it allows the
encryptor to deny not just on the two ciphertexts but also on the NIZK directly.
However, interestingly proofs for invalid statements do not exist.

Finally various other technical challenges arise in the security proof. For ex-
ample, in the proof of security the simulator needs to hardcode the output that
the adversary gets as part of its ciphertext in a way that remains indistinguish-
able from an honest execution. In order to force the output, the core encryption
scheme which is plugged into the UDE transformation is combined with the
language which implicitly includes a trapdoor mode. In its trapdoor mode, the
simulator can in particular plant the output of the function inside the encryp-
tions it generates on behalf of honest parties. Then the obfuscation checks for
such a trapdoor and acts accordingly. We refer the reader to the full construction
and proof for details on how we resolve this and other issues.

1.4 Application to Leakage Tolerant Protocols

As another application of our techniques, we observe that our adaptively secure
protocol is also leakage tolerant in a way that previous protocols failed to be.
The study of leakage tolerant protocols was initiated by Bitansky et al. [5] and
Garg et al. [25]. Very roughly, leakage tolerant protocols preserve security even
when the adversary can obtain arbitrary leakage on the entire internal state of
honest parties, however only up to the leaked information.

One limitation of known leakage tolerant secure computation protocols [7]
(see also [17]) from the literature is that the leakage in the ideal world queries
needs to depend on the inputs of all honest parties rather than just on the input
of the party being leaked upon. Our adaptively secure protocol also turns out
to be leakage resilient further avoiding this limitation. Another advantage of our
protocol is that it is much simpler than the Boyle et al. [7] construction.

In a recent result, Garg et al. [24] show an alternative way of avoiding this
limitation, without using indistinguishability obfuscation. However their result
is restricted to a setting where at least one of the parties is never leaked on. We
do not make such an assumption.

2 Preliminaries

In this section we recall preliminary notions needed in this work. We will start
by recalling notions of indistinguishability obfuscation and non-interactive zero-
knowledge. Next we recall the notion of publicly deniable encryption scheme
that we adapt from [40].

2.1 Notation

Throuhgout the paper λ ∈ N will denote the security parameter. We say that a
function f : N → R is negligible if ∀c ∃ nc such that if n > nc then f(n) < n−c.

620 S. Garg and A. Polychroniadou

We will use negl(·) to denote an unspecified negligible function. We often use
[n] to denote the set {1, ..., n}. The concatenation of a with b is denoted by
a||b. Moreover, we use d ← D to denote the process of sampling d from the
distribution D or, if D is a set, a uniform choice from it. If D1 and D2 are two
distributions, then we denote that they are statistically close by D1 ≈s D2; we
denote that they are computationally indistinguishable by D1 ≈c D2; and we
denote that they are identical by D1 ≡ D2.

2.2 Indistinguishability Obfuscators

We will start by recalling the notion of indistinguishability obfuscation (iO)
recently realized in [23] using candidate multilinear maps [21].

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for a circuit class {Cλ} if
the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– For any (not necessarily uniform) PPT distinguisher D, there exists a neg-
ligible function α such that the following holds: For all security parameters
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x)
for all inputs x, then∣∣∣Pr [D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ negl(λ)

2.3 Non-Interactive Zero-Knowledge Proofs

Let R be an NP-relation. For pairs (x,w) ∈ R we call x the statement and w the
witness. Let L be the language consisting of statements in R. A Non-Interactive
Zero Knowledge (NIZK) Proof system [6,19] consists of three PPT algorithms
(K,P, V), a common reference string generation algorithm K, a prover P and a
verifier V .

– K(1λ) expects as input the unary representation of the security parameter
λ and outputs a common reference string σ of length Ω(λ).

– P (σ, x, w) takes as input a common reference string σ, a statement x together
with a witness w such that R(x,w) and produces a proof π.

– V (σ, x, π) takes as input a common reference string σ, a statement x, a proof
π and outputs 1 if the proof is accepting and 0 otherwise.

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 621

We call (K,P, V) a non-interactive proof system for R if it satisfies the fol-
lowing properties.

Perfect completeness. A proof system is complete if an honest prover with
a valid witness can convince an honest verifier. Formally, ∀x ∈ L, ∀w witness
of x

Pr
[
σ ← K(1λ);π ← P (σ, x, w) : V (σ, x, π) = 1

]
= 1.

Statistical soundness. A proof system is sound if it is infeasible to convince
an honest verifier when the statement is false. Formally, we have

Pr
[
σ ← K(1λ); ∃(x, π) : x �∈ L ∧ V (σ, x, π) = 1

]
< negl(λ).

Computational zero-knowledge. We say a non-interactive proof (K,P, V)
is computational zero-knowledge if there exists a PPT simulator S = (S1, S2),
where S1 returns a simulated common reference string σ together with a simu-
lation trapdoor τ that enables S2 to simulate proofs without having access to
the witness. For all non-uniform PPT adversaries A = (A1,A2) the following
quantity is upper bounded by a negligible function:∣∣∣∣∣Pr

[
σ ← K(1λ); (x, state)← A1(σ);π ← P (σ, x,w) : A2(x, σ, π, state) = 1

]
−

Pr
[
(σ, τ)← S1(1

λ); (x, state)← A1(σ);π ← S2(σ, τ, x) : A2(x, σ, π, state) = 1
]∣∣∣∣∣.

2.4 Double Key Encryption and Its Deniable Variant

Our protocol will use a special publicly deniable encryption scheme that we
construct by first describing a core public-key encryption scheme that we then
transform to its deniable variant using the Universal Deniable Encryption (UDE)
transformation of [40].

Let (Setup,Enc,Dec) be a perfectly correct IND-CPA secure public-key en-
cryption scheme and let (K,P , V) be a NIZK proof system with statistical
soundness and computational zero-knowledge. The core encryption scheme we
consider is very similar to the Naor-Yung CCA [39] secure encryption scheme.
Recall that in the Naor-Yung construction a ciphertext consists of encryptions
of a message under two different public keys and a NIZK proof certifying that
the two ciphertexts indeed encrypt the same message. In our encryption scheme
a ciphertext will also consist of two ciphertexts under the two public keys but
the NIZK proof will be used to certify a more sophisticated requirement. More
formally:

Definition 2 (Double Key Encryption Scheme). Let (Setup,Enc,Dec) be
a IND-CPA secure encryption scheme with perfect correctness. Let (K,P , V)
be a NIZK proof system for an NP -Language L. A Double Key encryption
scheme, parametrised by a language L, consists of three algorithms DKL =
(SetupDK,EncDK,DecDK).

622 S. Garg and A. Polychroniadou

– SetupDK(1
λ, 1�) is a polynomial time procedure that takes as input the unary

representation of the security parameter λ, the description of length of mes-
sages encrypted 1�. It computes (pk0, sk0), (pk1, sk1) ← Setup(1λ) and the
common reference string σ ← K(1λ) for the NIZK proof. It outputs the
public key PK = (pk0, pk1, σ) and the secret key SK = (sk0, sk1).

– EncDK(PK,m0,m1, aux, w; r): This polynomial time procedure takes as in-
put public key PK = (pk0, pk1, σ), messages m0,m1 ∈ {0, 1}�, auxiliary
information aux and some w which will be used as part of the witness for
the language L. It generates c = Enc(pk0,m0; s0) and c′ = Enc(pk1,m1; s1)
and outputs (c, c′, π), where π ← P (σ, (c, c′, aux), (m0,m1, s0, s1, w)) for the
language L.

– DecDK(PK, SK, (c, c′, π), aux)): is a polynomial time procedure that takes as
input PK = (pk0, pk1, σ), SK = (sk0, sk1), ciphertext (c, c

′, π) and auxiliary
information aux. Outputs ⊥, in case that V (σ, (c, c′, aux), π) = 0 else output
(Dec(sk0, c),Dec(sk1, c

′)).

Double Key Deniable Encryption Scheme. Next we want to transform the above
core public key encryption into its deniable variant using the UDE transfor-
mation of Sahai and Waters [40, Section 4.2]. In particular, once we plug the
above DKL double key encryption scheme in the UDE transformation, we ob-
tain a double key deniable encryption scheme DDKL = (SetupDDK,EncDDK,
DecDDK,DenEncDDK,ExplainDDK) parametrized by the language L with associate
relation RL where the procedures EncDDK and DecDDK are same as EncDK and
DecDK. Here SetupDDK is obtained by augmenting the procedure SetupDK to ad-
ditionally output a public denying key DK generated using UniversalSetup(PK)
as defined in [40, Section 4.2] which is going to be included in PK. Further the
scheme is augmented with the following two procedures where PK =
(σ, pk0, pk1, DK).

– DenEncDDK(PK,m0,m1, aux, w; r) is a polynomial time procedure that takes
as input PK which includes the public denying key DK, m0,m1 ∈ {0, 1}�,
auxiliary information aux and witness w and uses random coins r. It then
outputs (c, c′, π).

– ExplainDDK(PK, (c, c′, π), (m0,m1, aux, w);u): This polynomial time proce-
dure takes as input public key PK which includes the public denying key
DK, messages m0,m1 ∈ {0, 1}�, auxiliary information aux and witness w. It
also takes as input a value (c, c′, π) and outputs a string e, that is the same
size as the randomness r taken by DenEncDDK above.

This new scheme has the following two additional properties.

Indistinguishability of source of ciphertext. We say that the scheme has in-
distinguishability of source of ciphertext if for any λ and any PPT adversary
A = (A1,A2) the following quantity can be upper bounded by a negligible

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 623

function:
∣∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎢⎣

(PK, SK) ← SetupDDK(1
λ, 1�),

(m0,m1, aux, w) ← A1(PK),

ct = EncDDK(PK,m0, m1, aux, w; r)

A2(PK, ct) = 1

⎤
⎥⎥⎥⎥⎦

− Pr

⎡
⎢⎢⎢⎢⎣

(PK,SK) ← SetupDDK(1
λ, 1�),

(m0,m1, aux, w) ← A1(PK),

ct = DenEncDDK(PK,m0, m1, aux, w; r)

A2(PK, ct) = 1

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣

Indistinguishability of explanation. We say that the scheme has indistinguisha-
bility of explanation if for any λ and any PPT adversary A = (A1,A2) the
following quantity can be upper bounded by a negligible function:∣∣∣∣∣∣∣∣∣∣∣∣
Pr

⎡⎢⎢⎢⎢⎢⎢⎣
(PK, SK) ← SetupDDK(1

λ, 1�),

(m0,m1, aux, w) ← A1(PK),

ct = DenEncDDK(PK,m0,m1, aux, w; r)

A2(PK, ct, r) = 1

⎤⎥⎥⎥⎥⎥⎥⎦ − Pr

⎡⎢⎢⎢⎢⎢⎢⎣
(PK, SK) ← SetupDDK(1

λ, 1�),

(m0,m1, aux, w) ← A1(PK),

ct = DenEncDDK(PK,m0,m1, aux, w; r)

e = ExplainDDK(PK, ct, (m0,m1, aux, w);u)

A2(PK, ct, e) = 1

⎤⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
We remark that the [40] deniable encryption scheme immediately implies a

deniable encryption scheme for multi-bit messages of any polynomial length k
bits by creating a ciphertext for a k-bit message as a sequence of k single bit
encryptions. Our construction cannot support the above bit-by-bit encryption
since every single encryption takes longer messages. However the Sahai-Waters
construction is selectivly secure and the security can be amplified to the adaptive
setting (as defined above) at the cost of a sub-exponential loss in the security.
In other words we can realize the above definition assuming sub-exponential
hardness on the assumptions made by Sahai-Waters.

2.5 Equivocal and Extractable Commitments

An Equivocal and Extractable Commitment scheme COM consists of a tuple
of PPT algorithms (SetupbindCom, SetupequivCom ,Com,Extr,Equiv). We will describe our
definitions for the setting of bit commitment and note that they extend to the
setting of strings in a natural way.

– SetupbindCom(1
λ) expects as input the unary representation of the security pa-

rameter λ and outputs a public parameter CK together with a trapdoor μ
(used for extraction).

– SetupequivCom (1λ) expects as input the unary representation of the security pa-
rameter λ and outputs a public parameter CK together with trapdoors μ
and ν (used for extraction and equivocation).

– Com(CK, b; r) takes as input CK, a bit b ∈ {0, 1} and randomness r ∈
{0, 1}λ and outputs a commitment β.

Let us define the following language (the extraction procedure Extr is defined
below):

LCom = {(β, b) | ∃t : β = Com(CK, b; t) ∨ b = Extr(CK, t, β)}.

624 S. Garg and A. Polychroniadou

We note that the language naturally extends to a setting where commitments
are defined over strings instead of just bits. Also we defined associated relation
RCom. The above commitment scheme should satisfy the following properties.

Indistinguishability of Public Parameters. We require that:∣∣∣Pr [(CK,μ) ← SetupbindCom(1
λ) : A(CK,μ) = 1

]
−

Pr
[
(CK,μ, ν) ← SetupequivCom (1λ) : A(CK,μ) = 1

]∣∣∣ < negl(λ).

Computational Hiding. Hiding means that no computationally bounded ad-
versary can distinguish as to which bit is locked in the commitment. LetA be any
non-uniform adversary running in time poly(λ). We say that the commitment
scheme is computationally hiding if:

Pr

[
b = b′

∣∣∣∣ b ← {0, 1}; (CK,μ) ← SetupbindCom(1
λ);

β = Com(CK, b; r); b′ ← A(β)

]
=

1

2
+ negl(λ) .

The same applies to the setup algorithm SetupequivCom .

Perfectly Binding. Intuitively speaking, binding requires that no (even un-
bounded) adversary can open the commitment in two different ways. Here, we
define the strongest variant known as perfectly binding. Formally we require
that for all (CK,μ) ← SetupbindCom(1

λ) there exists no values (r0, r1) such that
Com(CK, 0; r0) = Com(CK, 1; r1). For perfectly binding we require that either
(c, 0) ∈ LCom or (c, 1) ∈ LCom, but not both.

Polynomial equivocality. The setup algorithm SetupequivCom generates pub-
lic parameters together with trapdoors μ and ν such that Equiv using ν is
able to produce polynomially many fake commitments, using the same CK,
which can then be explained to either 0 and 1. More formally, Equiv can be
viewed as a pair of PPT algorithms (Equiv1,Equiv2) such that the following

holds. Let (CK,μ, ν) ← SetupequivCom (1λ) then (β, state) ← Equiv1(CK, ν) and
rb ← Equiv2(CK, ν, β, state, b) such that Com(CK, b; rb) = β. Furthermore we
require that for b ∈ {0, 1} the distribution of {(CK, β, rb)} generated in this way
is computationally indistinguishable from the distribution {(CK, β, rb)} where
β = Com(CK, b; rb).

Simulation extractability. We require that the commitment remains bind-
ing for any adversary A, even after A obtains polynomially many equivocal
commitments generated by Equiv along with their openings. More formally, the
following quantity is negligible:

Pr

[
b �= b′

∣∣∣∣ (CK,μ, ν) ← SetupequivCom (1λ); (β, b, r) ← AEquiv∗(CK,ν)(CK);
Com((CK, b, r) = β ∧ Extr(CK,μ, β) = b′

]

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 625

where Equiv∗ is either invoked as Equiv1 without revealing the state, or as
Equiv2 which only expects as input fake commitments generated by previous
invocations of Equiv1.

In this paper, we use the non-interactive equivocal and extractable commit-
ment scheme of [14] (CLOS commitment) which assumes the existence of en-
hanced trapdoor permutations. At the heart of their commitment scheme is the
Feige-Shamir trapdoor commitment scheme [20], which they transform to obtain
a UC Commitment scheme secure against adaptive adversaries.

3 Our Protocol

In this section we will present our adaptively secure two-round MPC protocol,
described in Figure 1. For simplicity, we assume that the delivered messages are
authenticated. Also for simplicity of exposition, in the sequel, we will assume
that random coins are an implicit input to the commitment and encryption
functions, unless specified explicitly.

Theorem 2. Let f be any deterministic poly-time function with n inputs and
single output. Assume the existence of an Indistinguishability Obfuscator iO, a
Double Key Deniable encryption scheme DDKL = (SetupDDK,EncDDK,DecDDK,
DenEncDDK,ExplainDDK) and an adaptively secure Commitment scheme COM =

(SetupbindCom, SetupequivCom ,Com,Extr,Equiv). Then the protocol Π presented in Fig-
ure 1 UC-securely realizes the ideal functionality Ff in the FCRS-hybrid model
with computational security against any adaptive, active adversary corrupting
an arbitrary number of parties in two rounds of broadcast.

Corollary 1. Assume the existence of a sub-exponentially secure indistinguisha-
bility obfuscation and doubly enhanced trapdoor permutation then any ideal
functionality Ff can be UC-securely realized in the FCRS- model against any
adaptive, active adversary corrupting an arbitrary number of parties. Further-
more this protocol involves only two rounds of broadcast.

We start by noting that the protocol is correct. Observe that if all the parties
behave honestly then the protocol ends us executing the circuit f on the inputs
of all parties, leading to the correct output. Security is proved via a simulator
provided in Section 4 and indistinguishability is argued in Section 5.

3.1 Extensions

Now we give some natural extensions of our protocol and remove assumptions
that were made to simplify exposition.

626 S. Garg and A. Polychroniadou

Protocol Π

Protocol Π uses an Indistinguishability Obfuscator iO, a Double Key De-
niable encryption scheme DDKL = (SetupDDK,EncDDK,DecDDK,DenEncDDK,
ExplainDDK) based on the scheme (Setup,Enc,Dec) with perfect correctness,
where the relation L is defined below, and an adaptively secure Commitment
scheme COM = (SetupbindCom,Com).

a Let f : ({0, 1}�in)n → {0, 1}�out be the
circuit parties want to evaluate on their private inputs.
Private Inputs: Party Pi for i ∈ [n], receives its input xi.
CRS: Output (PK,CK, oP) as the common reference string generated as
follows:
– Generate (PK, SK)← SetupDDK(1

λ, 1�in+�out) where
PK = (σ, pk0, pk1, DK) and SK = (sk0, sk1)

– Generate (CK,μ)← SetupbindCom(1
λ).

– Let oP = iOProgsk0,PK,CK,f
be the obfuscation of the program

Progsk0,PK,CK,f , described in Figure 2.

Round 1: Each party Pi generates βi = Com(CK, xi;ωi) and broadcasts it
to all parties.
Round 2: Each party Pi generates (ci, c

′
i, πi) = DenEncDDK(PK, xi||φ�out ,

xi||φ�out , (i, {βj}j∈[n]), (0
n·�in , 0�out , {tj}j∈[n]); ri) where φ is a special fixed

symbol and ti = ωi and tj = 0∗ for all j ∈ [n] such that j �= i. It then
broadcasts (ci, c

′
i, πi) to all parties.

Output phase: Each party Pi outputs oP ({βj}j∈[n], {cj , c′j , πj}j∈[n]).

Language L for the Double Key deniable encryption scheme DDKL:
Recall LCom as the language defined in Section 2.5, and let RCom be the asso-
ciated relation. We have that (c, c′, (i, {βj}j∈[n])) ∈ L if (c, c′, (i, {βj}j∈[n])) ∈
L1 ∨ L2 defined as follows:

b

L1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(c, c′, (i, {βj}j∈[n]))

∣∣∣∣∣∣∣∣∣∣

∃ (m0,m1, s0, s1, ({xj}j∈[n], out, {tj}j∈[n])) s.t.

c = Enc(pk0,m0; s0) ∧ c′ = Enc(pk1,m1; s1)

∧ m0 = m1 = xi||φ�out

∧ RCom((βi, xi), ti)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

L2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
(c, c′, (i, {βj}j∈[n]))

∣∣∣∣∣∣∣∣∣∣∣∣

∃ (m0,m1, s0, s1, ({xj}j∈[n], out, {tj}j∈[n])) s.t.

c = Enc(pk0,m0; s0) ∧ c′ = Enc(pk1,m1; s1)

∧ m0 = xi||φ�out ∧m1 = φ�in ||out
∧ ∀j ∈ [n],RCom((βj , xj), tj)

∧ out = f({xj}j∈[n])

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

a We note that COM provides more procedures but we note that they only affect
the proof. Hence for simplicity of exposition we skip mentioning them here.

b Changes in L2 from L1 are highlighted in red.

Fig. 1. The Π Protocol

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 627

Program ProgSKb,PK,CK,f

Input: ({βj}j∈[n], {cj , c′j , πj}j∈[n]).
Description:
1. If there exists j ∈ [n] such that

DecDDK(PK,SKb, (cj , c
′
j , πj), {βj}j∈[n]) =⊥ then output ⊥.

2. Parse cj as dj,0||ej,0 where dj,0 is the encryption of the first �in bits and
ej,0 is the encryption of the rest of the bits. Similarly parse c

′
j as dj,1||ej,1.

If ∃j ∈ [n] such that Dec(skb, ej,b) �= φ�out , then let i be the first such j.
If this is the case then output Dec(skb, ei,b).

3. Otherwise for each j ∈ [n], let xj = Dec(skb, dj,b) and output f({xj}j∈[n]).

Fig. 2. The Program ProgSKb,PK,CK,f

General Functionality. Our basic MPC protocol as described in Figure 1, only
considers deterministic functionalities where all the parties receive the same
output. We would like to generalize it to handle randomized functionalities and
individual outputs (just as in [2]). First, the standard transformation from a
randomized functionality to a deterministic one (See [29, Section 7.3]) works
for this case as well. In this transformation, instead of computing some ran-
domized function g(x1, . . . xn; r), the parties compute the deterministic function

f((r1, x1), . . . , (rn, xn))
def
= g(x1, . . . , xn;⊕n

i=1ri). We note that this computation
does not add any additional rounds. We note that since we are in the setting of
adaptive security we can only realize adaptively well-formed [14] functionalities,
which reveals its randomness if all the parties are corrupted.

Next, we move to individual outputs. Again, we use a standard transformation
(See [38], for example). Given a function g(x1, . . . , xn) → (y1, . . . , yn), the parties
can evaluate the following function which has a single output:

f((k1, x1), . . . , (kn;xn)) = (g1(x1, . . . , xn)⊕ k1|| . . . ||gn(x1, . . . , xn)⊕ kn)

where gi indicates the ith output of g, and ki is randomly chosen by the ith

party. Then, the parties can evaluate f , which is a single output functionality,
instead of g. Subsequently every party Pi uses its secret input ki to recover
its own output. The only difference is that f has one additional exclusive-or
gate for every circuit-output wire. Again, this transformation does not add any
additional rounds of interaction.

Making CRS independent of the circuit being computed. Note that in our con-
struction the obfuscation oP that is given as part of the CRS depends on the
circuit f parties are trying to compute on their joint inputs. We can remove this
dependence by using a universal circuit. Then the parties can feed in the uni-
versal circuit the actual circuit that they want along with their private inputs.
However, the CRS will still depend on the size of the circuit. This is also the
case for the protocols in [11,15]. We can avoid this by setting a priori bound
on the size of the circuit being computed. It would be interesting to remove the
dependence of the CRS on the size of the circuit.

628 S. Garg and A. Polychroniadou

4 Description of Our Simulator

Let A be an active, adaptive adversary that interacts with parties running the
protocol Π from Figure 1 in the FCRS-hybrid model. We construct a simulator
S (the ideal world adversary) with access to the ideal functionality Ff , which
simulates a real execution of Π with A such that no environment Z can distin-
guish the ideal world experiment with S and Ff from a real execution of Π with
A.

Recall that S interacts with the ideal functionality Ff and with the environ-
ment Z. The ideal adversary S starts by invoking a copy of A and running a
simulated interaction of A with the environment Z and the parties running the
protocol. Our simulator S proceeds as follows:

Simulated CRS: The common reference string is chosen by S in the following
manner (recall that S chooses the CRS for the simulated A as we are in the
FCRS-hybrid model):

1. S runs the setup algorithm SetupDDK(1
λ, 1�in+�out) of the Double Key de-

niable encryption scheme, but replaces its internal call to the algorithm K
with S = (S1, S2) of the NIZK proof system. More specifically, S generates
(pk0, sk0), (pk1, sk1) ← Setup(1λ), (σ, τ) ← S1(1

λ), along with the public
denying key DK. It sets the public key PK = (pk0, pk1, σ,DK).

2. S runs the algorithm SetupequivCom (1λ) of the adaptively secure commitment
scheme COM and obtains (CK,μ, ν).

3. S computes oP = iOProgsk1,PK,CK,f
where the latter is the obfuscation of the

program Prog, as described in Figure 2, parameterized with the key sk1.

S sets the common reference string equal to (PK,CK, oP) and locally stores
(SK, τ, μ, ν).

Looking ahead, the trapdoor μ will be used to extract the inputs of the cor-
rupted parties and ν to equivocate on the commitment S provides on behalf
of honest parties. The trapdoor τ for the simulated σ will be used to generate
simulated proofs.

Simulating the communication with Z: Every input value that S receives from
Z is written on A’s input tape. Similarly, every output value written by A on
its own output tape is directly copied to the output tape of S.

Simulating actual protocol messages in Π: Note that there might be multiple
sessions executing concurrently. Let sid be the session identifier for one spe-
cific session. We will specify the simulation strategy corresponding to this spe-
cific session. The simulator strategy for all other sessions will be the same. Let
P = {P1, . . . , Pn} be the set of parties participating in the execution of Π corre-
sponding to the session identified by the session identifier sid. Also let PA ⊆ P
be the set of parties corrupted by the adversary A at any time. Recall that we
are in the setting of adaptive corruption so more parties could be added to this
set as the protocol proceeds. At any point S only generates messages on behalf

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 629

of parties P\PA. In the following, if at the end of some round all parties are
corrupted then S does not need to go to do anything else.

Round 1 Messages S → A: In the first round S must generate messages on behalf
of the honest parties, i.e. parties in the set P\PA. For each party Pi ∈ P\PA

our simulator proceeds as:

1. Generate a fake commitment (βi, statei) ← Equiv1(CK, ν).

It then sends βi to A on behalf of party Pi and it internally saves statei.

Round 1 Messages A → S: Also in the first round the adversary A generates
the messages on behalf of corrupted parties in PA. For each party Pi ∈ PA our
simulator proceeds as follows:

1. Extracting inputs of corrupted parties: Let βi be the commitment that
A sends on behalf of Pi. Our simulator S runs the extraction algorithm
Extr(CK,μ, βi) in order to obtain xi.
Note that it is possible that A sends a commitment βi on behalf of Pi such
that it is not well-formed, or in other words extraction using the function
Extr fails. In this case S sets xi = ⊥ and proceeds to the next step. (Looking
ahead, we note that in this case the adversary will not be able to generate a
valid second round message.)

2. Next S sends (input, sid,P , Pi, xi) to Ff on behalf of the corrupted party Pi.

Simulating corruption of parties in Round 1: When A corrupts a real world party
Pi, then S first corrupts the corresponding ideal world party Pi and obtains
its input xi. Next S prepares the internal state on behalf of Pi such that it
will be consistent with the commitment value βi that it had provided to A
earlier. Specifically S computes Equiv2(CK, ν, βi, statei, xi) in order to obtain
randomness ωi such that βi = Com(CK, βi;ωi). S provides ωi as the randomness
of party Pi to A. Note that S can do this at any point during 1st round.

Completion of Round 1: After S has submitted the inputs of all the corrupted
parties to Ff then it responds by sending back the message (output, sid,P , out)
where out = f({xj}j∈[n]). Note that in case S had failed to extract an input for
some player Pi then it would have sent ⊥ to Ff and would have received ⊥ as
the output from the ideal functionality.

Round 2 Messages S → A: In the second round S generates messages on behalf
of the honest parties, i.e. parties in the set P\PA as follows:

1. For each party Pi ∈ P\PA, S generates ci = Enc(pk0, φ
�in ||out), c′i =

Enc(pk1, φ
�in ||out) and generates πi as a simulated proof for the statement

(ci, c
′
i, (i, {βj}j∈[n])). More specifically it generates πi ← S2(σ, τ, (ci, c

′
i, (i,

{βj}j∈[n]))).

S sends (ci, c
′
i, πi) to A on behalf of Pi.

630 S. Garg and A. Polychroniadou

Round 2 Messages A → S: In the second round the adversary A generates the
messages on behalf of corrupted parties in PA. For each party Pi ∈ PA our
simulator proceeds as:

1. Let (ci, c
′
i, πi) be the message that A sends on behalf of party Pi. S checks

to see if V (σ, (ci, c
′
i, (i, {βj}j∈[n])), πi) = 1 for each Pi ∈ PA.

If all the proofs verify then S sends the message (generateOutput, sid,P) to the
ideal functionality Ff .

Simulating corruption of parties during/at the end of Round 2: WhenA corrupts
a party Pi in the real word, then S corrupts the corresponding party Pi in the
ideal world and obtains its input xi. Next S prepares the internal state on behalf
of Pi such that it will be consistent with messages it had sent on behalf of Pi. As
explained before, S generates randomness ωi that explains the commitment βi

to the value xi running the algorithm ωi = Equiv2(CK, ν, βi, statei, xi). Next S
needs to explain the second round message (ci, c

′
i, πi). S has to explain the mes-

sage (ci, c
′
i, πi) by computing the randomness as ψi = ExplainDDK(PK, (ci, c

′
i, πi),

(xi||φ�out , xi||φ�out , (i, {βj}j∈[n]), (0
n·�in , 0�out , {tj}j∈[n]);u) where ti = ωi and

tj = 0∗ for all j ∈ [n] such that j �= i. S provides ωi||ψi as the randomness
of party Pi to A. Note that S can do this at any point during or after the round
2 of the protocol.

This completes the description of the simulator.

5 Proof of Security

In this section, via a sequence of hybrids, we will prove that no environment Z
can distinguish the ideal world experiment with S and Ff (as defined above) from
a real execution ofΠ with A. We will start with the real world execution in which
the adversary A interacts directly with the honest parties holding their inputs
and step-by-step make changes till we finally reach the simulator as described in
Section 4. At each step we will argue that the environment cannot distinguish
the change except with negligible probability.

Hybrid 0. This hybrid corresponds to the Z interacting with the real world
adversary A and honest parties that hold their private inputs.

We can restate the above experiment with the simulator as follows. We replace
the real world adversaryA with the ideal world adversary S. The ideal adversary
S starts by invoking a copy of A and running a simulated interaction of A with
the environment Z and the honest parties. S forwards the messages that A
generates for it environment directly to Z and vice versa (as explained in the
description of the simulator S). In this hybrid the simulator S holds the private
inputs of the honest parties and generates messages on their behalf using the
honest party strategies as specified by Π .

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 631

Hybrid 1. In this hybrid, we change how the internal randomness of the cor-
rupted party is explained to A on being adaptively corrupted. Specifically
we change the randomness that is used to explain the ciphertext S generates
on behalf of parties in round 2 of protocol Π .
Recall that in the second round S on behalf of an honest party Pi generates
the second message as (ci, c

′
i, πi) = DenEncDDK(PK, xi||φ�out , xi||φ�out , (i,

{βj}j∈[n]), (0
n·�in , 0�out , {tj}j∈[n]); ri) where ti is the randomness used in gen-

erating commitment βi and tj = 0∗ for all j ∈ [n] such that j �= i. So if A
corrupts Pi then the randomness ri would be reveal toA. In Hybrid 1, instead
we provide ψi = ExplainDDK(PK, (ci, c

′
i, πi), (xi||φ�out , xi||φ�out , (i, {βj}j∈[n]),

(0n·�in , 0�out , {tj}j∈[n]);u) where tj values are as before.

Lemma 1. Hybrid0 ≈c Hybrid1.

Proof. The indistinguishability of Hybrid1 from Hybrid0 follows from the
indistinguishability of explanation property of the Double Key deniable en-
cryption scheme.

Hybrid 2. In this hybrid we change the way S generates the message (ci, c
′
i, π)

on behalf of the honest parties.
Recall that in the second round in Hybrid 1, S on behalf of an honest party Pi

generates the second message as (ci, c
′
i, πi) = DenEncDDK(PK, xi||φ�out , xi||

φ�out , (i, {βj}j∈[n]), (0
n·�in , 0�out , {tj}j∈[n]); ri) where ti is the randomness

used in generating commitment βi and tj = 0∗ for all j ∈ [n] such that j �= i.
We will change this by generating the ciphertexts directly using procedures
Enc and the prover P .
Specifically, ci = Enc(pk0, xi||φ�out ; si0) and c′i = Enc(pk1, xi||φ�out ; si1) and
outputs (ci, c

′
i, πi), where πi ← P (σ, (ci, c

′
i, {i, {β}j∈[n]}), (xi||φ�out , xi||φ�out ,

si0, s
i
1, (0

n·�in , 0�out , {tj}j∈[n]))) where ti is the randomness used in generating
commitment βi and tj = 0∗ for all j ∈ [n] such that j �= i.

Lemma 2. Hybrid1 ≈c Hybrid2.

Proof. The indistinguishability of Hybrid2 from Hybrid1 follows immediately
from the indistinguishability of source of ciphertext property of the Double
Key deniable encryption scheme.

Hybrid 3. In this hybrid, we change how σ, which is a part of PK, and the
proofs πi for every Pi ∈ P\PA are generated.
More specifically, S runs the setup algorithm SetupDDK(1

λ, 1�in+�out) of the
Double Key deniable encryption scheme, but replaces its internal call to the
algorithm K with S = (S1, S2) of the NIZK proof system. More specifically,
S generates (pk0, sk0), (pk1, sk1) ← Setup(1λ), (σ, τ) ← S1(1

λ), along with
the public denying key DK. It sets the public key PK = (σ, pk0, pk1, DK).
We also generate fake proofs πi using trapdoor τ . Specifically we generate
πi ← S2(σ, τ, (ci, c

′
i, (i, {βj}j∈[n]))).

Lemma 3. Hybrid2 ≈c Hybrid3.

632 S. Garg and A. Polychroniadou

Proof. The indistinguishability of Hybrid3 from Hybrid2 follows immediately
from the computational zero-knowledge property of the NIZK proof system.

Hybrid 4. We don’t change anything in the output of the hybrid itself. We
just use knowledge of μ to extract the inputs A commits to in the 1st round
messages that it sends on behalf of the corrupted parties.
More specifically, S for every Pi ∈ PA obtains xi = Extr(CK,μ, βi). If
extraction fails then it sets xi = ⊥.

Hybrid 5. In this hybrid, we change how the simulator S generates c′i in the
second round message (ci, c

′
i, πi) on behalf of honest parties Pi ∈ P\PA. In

particular, S instead of computing the ciphertext c′i = Enc(pk1, xi||φ�out ; si1),
generates c′i = Enc(pk1, φ

�in ||out; si1), where out is the output computed as
f({xj}j∈[n]) using the inputs xi of the honest parties, that the simulator has
access to, and extracted inputs of the malicious parties.

Lemma 4. Hybrid4 ≈c Hybrid5.

Proof. We base the indistinguishability between hybrids Hybrid4 andHybrid5
on the semantic security of the encryption scheme (Setup,Enc,Dec).

Hybrid 6. In this hybrid we essentially reverse the change that was made in
going from Hybrid 2 to Hybrid 3. In particular we change the σ so that it is
sampled from the honest distribution and generate the proof honestly. Note
that since now we have changed the ciphertext c′i the proof will have to be
generated with respect to language L2.
More specifically, S uses K to generate σ instead of S1. Also for every Pi ∈
P\PA, S generates πi ← P (σ, (ci, c

′
i, (i, {βj}j∈[n])), (xi||φ�out , φ�in ||out, si0,

si1, ({xi}i∈[n], out, {tj}j∈[n]))) where tj is the witness that βj ∈ LCom .

Lemma 5. Hybrid5 ≈c Hybrid6.

Proof. The indistinguishability of Hybrid5 from Hybrid6 follows immediately
from the computational zero-knowledge property of the NIZK proof system.

Hybrid 7. In this hybrid we change how oP , the obfuscated program in the
CRS is generated. More specifically, oP is generated as an obfuscation of
Progsk1,PK,CK,f instead of Progsk0,PK,CK,f .
In the following we show that the program Prog is equivalent under sk0
and sk1 with overwhelming probability. This allows us to conclude that the
Hybrid 6 and Hybrid 7 are indistinguishable based on indistinguishability
obfuscation.

Lemma 6. Progsk0,PK,CK,f ≡ Progsk1,PK,CK,f .

Proof. Recall that the underlying language L of the Double Key deniable
encryption scheme consists of two languages, namely L1 and L2. Note that
since the NIZK has statistical soundness with overwhelming probability over
the choices of σ we have that all ciphertexts with an accepting proof must

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 633

be from one of the two languages. We refer to the two types of ciphertexts
corresponding to the language L1 and L2, as Type-1 and Type-2 ciphertext,
respectively.
Recall that the program Prog takes {βj}j∈[n] and {cj, c′j , πj}i∈[n] as input.
Recall from Figure 2 that in Step 1, Prog checks to see that all the proofs πi

are accepting and otherwise it outputs ⊥. This means that for the program to
do anything interesting all the proofs must be valid. Next we will show that
in such cases the output of the program is identical regardless of whether
sk0 or sk1 is used.

All ciphertexts are of Type-1: In this case, cj and c′j for j ∈ [n] encrypted
under pk0 and pk1 respectively, encrypt the same value. Hence, regardless
of whether sk0 is used or sk1 is used the program outputs the exact same
value f({xj}j∈[n]).

There is at least one Type-2 ciphertext: Note that, in case sk0 is used then
we have that Step 2 of Prog is never invoked. On the other hand in case sk1
is used then we have that Step 2 of Prog is necessarily invoked.
In other words if sk0 is used then the xj values are decrypted and output is
calculated. On the other hand if sk1 is used then a hard-coded out value is
generated. We will argue that in both cases the output generated by Prog
is identical. We argue this by showing that the only acceptable value for
the hard-coded value out is f({xj}j∈[n]), where xj are the inputs parties
commit to in the first round. Recall that the commitment scheme is perfectly
binding, meaning that for every commitment βi there is exactly one xi such
that (βi, xi) ∈ LCOM. This proves our claim. (#

Hybrid 8. In this hybrid we do the same change that was made in going from
Hybrid 2 to Hybrid 3. In this hybrid, we change how σ, which is a part of
PK, and the proofs πi for every Pi ∈ P\PA are generated.
More specifically, S runs the setup algorithm SetupDDK(1

λ, 1�in+�out) of the
Double Key deniable encryption scheme, but replaces its internal call to the
algorithm K with S = (S1, S2) of the NIZK proof system. More specifically,
S generates (pk0, sk0), (pk1, sk1) ← Setup(1λ), (σ, τ) ← S1(1

λ), along with
the public denying key DK. It sets the public key PK = (σ, pk0, pk1, DK).
We also generate fake proofs πi using trapdoor τ . Specifically, it generates
πi ← S2(σ, τ, (ci, c

′
i, (i, {βj}j∈[n]))).

Lemma 7. Hybrid7 ≈c Hybrid8.

Proof. The indistinguishability of Hybrid7 from Hybrid8 follows immediately
from the computational zero-knowledge of the NIZK proof system.

Hybrid 9. In this hybrid, we change how the simulator S generates cj in the
second round message (cj , c

′
j, πj) on behalf of honest parties Pj ∈ P\PA.

More specifically, S instead of computing cj = Enc(pk0, xi||φ�out), it com-
putes cj = Enc(pk0, φ

�in ||out) where out = f({xj}j∈[n]).

634 S. Garg and A. Polychroniadou

Lemma 8. Hybrid8 ≈c Hybrid9.

Proof. We base the indistinguishability between hybrids Hybrid8 andHybrid9
on the semantic security of the encryption scheme, (Setup,Enc,Dec).

Hybrid 10. In this hybrid we change the way the public parameters of the
commitment scheme COM are generated. In particular, S runs the setup
algorithm SetupequivCom (1λ) (instead of SetupbindCom(1

λ)) of the adaptively secure
commitment scheme COM and obtains (CK,μ, ν) where the trapdoor μ is
still being used for extraction of adversary’s inputs.

Lemma 9. Hybrid9 ≈c Hybrid10.

Proof. Indistinguishability between hybrids Hybrid9 and Hybrid10 follows
from the indistinguishability of the public parameters of the commitment
scheme COM.

Hybrid 11. In this hybrid we change the way S generates the commitments
on behalf of the honest parties. In particular we will remove the inputs
and make these commitments equivocal. More specifically, for every party
Pi ∈ P\PA the first round message is computed by S running (βi, statei) ←
Equiv1(CK, ν). If the party later gets corrupted then S will produce ran-
domness ωi to equivocate the commitment βi to the prescribed input xi. To
this end, S will run ωi = Equiv2(CK, ν, βi, statei, xi).

Lemma 10. Hybrid10 ≈c Hybrid11.

Proof. We base the indistinguishability between hybrids Hybrid10 and
Hybrid11 on the polynomial equivocality of the adaptively secure commit-
ment scheme COM.

Note that Hybrid11 is identical to the simulation strategy described in Section
4. This concludes the proof.

6 Extending to Leakage Tolerant Secure Computation

The adaptively secure protocol presented in this paper also turns out to be
leakage tolerant. The model of leakage can be found in the full version [26].

Lemma 11. Assume the existence of indistinguishability obfuscation and doubly
enhanced trapdoor permutation then any ideal functionality Ff can be UC-securely
realized in the FCRS- model against any adaptive, active adversary corrupting an
arbitrary number of parties and allowed with arbitrary leakage. Furthermore this
protocol involves only two rounds of broadcast.

This lemma follows immediately from our construction and proof except for
some syntactic differences. We explain this next. We will only describe how
our simulator for adaptive security (from Section 4) can be converted into a

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 635

simulator for the setting of leakage tolerance. The proof of indistinguishability
for the adaptive simulator was already provided in Section 5.

Recall that that the simulator for arguing adaptive security, on corruption
of an honest party, uses the honest party’s input alone in order to explain the
messages it had previously sent on behalf of the honest party. In the setting
of leakage, we note that this method of explanation can directly be expressed
by a circuit that on input the input of the honest party outputs the internal
secret state of that party. Furthermore note that the way in which the simulator
explains its first round messages of honest parties remains the same even after
it has sent the second round messages.

Using this explanation procedure as a translation method, allows us to im-
mediately conclude that any leakage query of the real-world adversary can be
reduced directly to a leakage query in the ideal-world.

Acknowledgments. We would like to thank Oxana Poburinnaya and Ran
Canetti for pointing out that sub-exponential iO is needed to instantiate our
double key deniable encryption scheme.

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

2. Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communica-
tion, computation and interaction via threshold FHE. Cryptology ePrint Archive,
Report 2011/613 (2011), http://eprint.iacr.org/2011/613

3. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

5. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

6. Blum, M., Feldman, P., Micali, S.: Proving security against chosen cyphertext
attacks. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 256–268.
Springer, Heidelberg (1990)

7. Boyle, E., Garg, S., Jain, A., Kalai, Y.T., Sahai, A.: Secure computation against
adaptive auxiliary information. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 316–334. Springer, Heidelberg (2013)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, Las
Vegas, Nevada, USA, October 14–17, pp. 136–145. IEEE Computer Society Press
(2001)

9. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party com-
putation. In: 28th Annual ACM Symposium on Theory of Computing, Philadephia,
Pennsylvania, USA, May 22–24, pp. 639–648. ACM Press (1996)

http://eprint.iacr.org/2011/613

636 S. Garg and A. Polychroniadou

10. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

11. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. IACR Cryptology ePrint Archive,
2014:845 (2014)

12. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003)

13. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: 51st Annual Symposium on Founda-
tions of Computer Science, Las Vegas, Nevada, USA, October 23–26, pp. 541–550.
IEEE Computer Society Press (2010)

14. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th Annual ACM Symposium on
Theory of Computing, Montréal, Québec, Canada, May 19–21, pp. 494–503. ACM
Press (2002)

15. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multi-party computation in constant rounds. IACR Cryptology ePrint Archive,
2014:858 (2014)

16. Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive
and Concurrent Secure Computation from New Adaptive, Non-malleable Commit-
ments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269,
pp. 316–336. Springer, Heidelberg (2013)

17. Damg̊ard, I., Hazay, C., Patra, A.: Leakage resilient secure two-party computation.
IACR Cryptology ePrint Archive, 2011:256 (2011)

18. Damg̊ard, I., Polychroniadou, A., Rao, V.: Adaptively secure UC constant round
multi-party computation protocols. IACR Cryptology ePrint Archive, 2014:830
(2014)

19. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st Annual Symposium
on Foundations of Computer Science, St. Louis, Missouri, October 22–24, pp. 308–
317. IEEE Computer Society Press (1990)

20. Feige, U., Shamir, A.: Zero Knowledge Proofs of Knowledge in Two Rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidel-
berg (1990)

21. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

22. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from in-
distinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 74–94. Springer, Heidelberg (2014)

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
54th Annual Symposium on Foundations of Computer Science, October 26–29,
pp. 40–49. IEEE Computer Society Press (2013)

24. Garg, S., Gupta, D., Khurana, D., Sahai, A.: All-but-one leakage resilient multi-
party computation and incoercible multiparty computation. Personal Communica-
tion (2014)

25. Garg, S., Jain, A., Sahai, A.: Leakage-Resilient Zero Knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)

Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation 637

26. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. IACR Cryptology ePrint Archive, 2014:844 (2014)

27. Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest
majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 105–123. Springer, Heidelberg (2012)

28. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge
University Press, Cambridge (2001)

29. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
Annual ACM Symposium on Theory of Computing, May 25–27, pp. 218–229. ACM
Press, New York (1987)

31. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

32. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

33. Halevi, S., Lindell, Y., Pinkas, B.: Secure Computation on the Web: Computing
without Simultaneous Interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011)

34. Hazay, C., Patra, A.: One-sided adaptively secure two-party computation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 368–393. Springer, Heidelberg (2014)

35. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

36. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)

37. Lindell, Y.: Bounded-concurrent secure two-party computation without setup as-
sumptions. In: 35th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 9–11, pp. 683–692. ACM Press,

38. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. Journal of Cryptology 22(2), 161–188 (2009)

39. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, Maryland, USA, May 14–16, pp. 427–437. ACM Press (1990)

40. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing, May 31–June 3, pp. 475–484. ACM Press, New York (2014)

41. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd An-
nual Symposium on Foundations of Computer Science, Chicago, Illinois, November
3–5, pp. 160–164. IEEE Computer Society Press (1982)

Obfuscation-Based Non-black-box Simulation

and Four Message Concurrent Zero Knowledge
for NP

Omkant Pandey1,2,�,��, Manoj Prabhakaran1,�, and Amit Sahai2,��

1 University of Illinois at Urbana Champaign, USA
{omkant,mmp}@uiuc.edu

2 UCLA and Center for Encrypted Functionalities, USA
sahai@cs.ucla.edu

Abstract. We show the following result: Assuming the existence of
public-coin differing-input obfuscation (pc-diO) for the class of all poly-
nomial time Turing machines, then there exists a four message, fully
concurrent zero-knowledge proof system for all languages in NP with
negligible soundness error. This result is constructive: given pc-diO, our
reduction yields an explicit protocol along with an explicit simulator that
is “straight line” and runs in strict polynomial time. The obfuscation se-
curity property is used only to prove soundness.
Public-coin differing-inputs obfuscation is a notion of obfuscation

closely related to indistinguishability obfuscation. Most importantly for
our result, pc-diO does not suffer from any known impossibility results:
recent negative results on standard differing-inputs obfuscation do not
apply to pc-diO. Furthermore, candidate constructions for pc-diO for the
class of all polynomial-time Turing Machines are known.
Our reduction relies on a new non-black-box simulation technique

which does not use the PCP theorem. We view the development of this
new non-black-box simulation technique as the main contribution of our
work. In addition to assuming pc-diO, our reduction also assumes (stan-
dard and polynomial time) cryptographic assumptions such as collision-
resistant hash functions.

1 Introduction

Zero-Knowledge and Program Obfuscation. Zero-knowledge proofs, introduced
by Goldwasser, Micali and Rackoff [GMR85] are the classical example of the

� Research supported in part by the NSF Grant 1228856.
�� Research supported in part from a DARPA/ONR PROCEED award, NSF Frontier
Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Fac-
ulty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through the U.S. Of-
fice of Naval Research under Contract N00014-11- 1-0389. The views expressed are
those of the author and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 638–667, 2015.
c© International Association for Cryptologic Research 2015

Obfuscation-Based Non-black-box Simulation 639

simulation paradigm. They allow a prover to convince a verifier that a math-
ematical statement x ∈ L is true while giving no additional knowledge to the
verifier. Prior to 2001, all known zero-knowledge simulators used the (cheating)
verifier V ∗ as a black-box to produce their output (called the simulated view).
Barak [Bar01] demonstrated how to take advantage of verifier’s program to build
more powerful non-black-box simulation techniques.

Constructing and analyzing non-black-box simulators can be a challenging
task.The reason why taking advantage of verifier’s code is difficult is because
of the intriguing possibility of program obfuscation. Roughly speaking, program
obfuscation is a method to transform a computer program (say described as a
Boolean circuit) into a form that is executable but otherwise completely “unintel-
ligible.” In its strongest form, an obfuscated program leaks no information about
the program beyond its “functionality” or the “input-output behavior”. There-
fore, access to the obfuscated program is no better than having black box access
to it. This property, as formalized by Barak, Goldreich, Impagliazzo, Rudich, Sa-
hai, Vadhan, and Yang [BGI+01], is called the virtual black box (VBB) security.
It was shown in [BGI+01] that VBB-secure obfuscation is impossible in general.
In hindsight, this negative result shows why non-black-box (NBB) simulation
is possible, despite the possibility that program obfuscation could hide nearly
every useful aspect of the verifier’s code.

Zero-knowledge, in particular non-black-box simulation, is intimately con-
nected to program obfuscation. This connection has been explicitly studied in
the works of Hada [Had00], and Bitansky and Paneth [BP12b, BP12a, BP13a],
and alluded to in several other works, e.g., [HT99, Bar01]). In this work, we ex-
plore this line of research further, particularly in light of recent work showing the
first plausible constructions of general-purpose obfuscation schemes [GGH+13].
In particular, for the first time, we show that program obfuscation can be useful
for designing new non-black-box simulation strategies that yield constant-round
concurrent zero knowledge protocols.

General-Purpose Obfuscation. In 2013, Garg, Gentry, Halevi, Raykova, Sahai,
and Waters [GGH+13] presented the first candidate construction for general-
purpose obfuscation. Several formalizations for obfuscation have been proposed
as alternatives to the impossible-to-achieve notion of VBB obfuscation. A basic
definition, called indistinguishability obfuscation (iO) [BGI+01], roughly
speaking, guarantees that if two (same-size) programs C0, C1 are functionally
equivalent, then their obfuscations are computationally indistinguishable. A
closely related notion is that of differing input obfuscation (diO) [BGI+01] which,
roughly speaking, guarantees that the obfuscations of C0 and C1 are computa-
tionally indistinguishable provided that it is hard to find an input x such that
C0(x) �= C1(x). Unfortunately, recently evidence was shown [BP13b, GGHW14]
that the notion of diO is impossible to achieve in general, due to the existence
of problematic contrived auxiliary inputs. However, very recently, Ishai, Pandey,
and Sahai [IPS15] formulated the notion of public-coin differing-inputs obfus-
cation (pc-diO) in which no auxiliary input is allowed except for the random
coins of the sampler. This modification avoids the negative results of [BP13b,

640 O. Pandey, M. Prabhakaran, and A. Sahai

GGHW14], and indeed all previous negative results on obfuscation using auxil-
iary input [GK05, GK13], as all previous negative results using auxiliary input
critically relied on the possibility of a secret being embedded within the auxil-
iary input. Because in pc-diO the auxiliary input is only allowed to be public
randomness, this possibility is eliminated (please see [IPS15] for further details).
Furthermore, [IPS15], building on [ABG+13, BCP14], present candidate con-
structions of pc-diO for the class of all polynomial-time Turing machines which
can accept inputs of unbounded polynomial length.

Our Results. In this work we show how to use program obfuscation to build
a new non-black-box simulation strategy that works for fully concurrent zero-
knowledge. More specifically, we show that:

– If public-coin differing-input obfuscation (pc-diO) exists for the class of all
polynomial time Turing machines with unbounded inputs, then there exists
a constant round, fully concurrent zero knowledge protocol for NP with
negligible soundness error. The protocol has an explicit simulator;1 the sim-
ulator is “straight line” and runs in strict polynomial time. The security of
the obfuscation is used only prove the soundness of our protocol.

– We also show how to implement the core ideas of the above protocol in only
four rounds. That is, our new protocol requires sending only four messages
between the prover and the verifier.

Our protocol can be instantiated using the constructions of [BCP14, ABG+13,
IPS15] which obfuscates polynomial time Turing machines that can accept inputs
of variable length (at most polynomial in the security parameter). We stress
that we are able to obtain an explicit simulator for our protocol irrespective of
the computational assumptions underlying the constructions of differing-inputs
obfuscation. This is because we use the security—i.e., the public-coin differing-
inputs security property—of obfuscation only in proving the soundness of our
protocol. The simulator only depends on the correctness or the functionality of
the obfuscated program, and hence can be described explicitly.

Other than pc-diO, our reduction only assumes standard (polynomial time
hardness) assumptions, namely injective one-way functions and collision-resistant
hash functions. Interestingly, our reduction does not explicitly depend on CS-
proofs or universal-arguments [Kil92, Mic94, Kil95, BG02]; in particular, if we
instantiate the constructions of [IPS15, ABG+13] using the SNARKs of Bitan-
sky et al. [BCCT13] based on bilinear maps (which do not rely on the PCP
theorem), we obtain an instantiation of our protocol that also does not rely on
the PCP theorem.

The round complexity of our final protocol also sheds new light on the ex-
act (as opposed to asymptotic) round-complexity of concurrent zero-knowledge.

1 In some protocols, specifically those based on knowledge-type assumptions [HT99],
by virtue of the assumption that there exists an “extractor,” it is only possible to
obtain an existential result that a simulator exists; however, the actual program of
the simulator is not explicitly given in the security proofs.

Obfuscation-Based Non-black-box Simulation 641

Even in the simpler case of stand alone zero knowledge, the best known con-
structions require at least four rounds [FS89], and historically, concurrent zero-
knowledge has always required more rounds than stand-alone zero-knowledge.2

Our four-round protocol, for the first time, closes the gap between the best
known upper bounds on round complexities of concurrent versus standalone
zero-knowledge protocols (whose simulators can be explicitly described).

In retrospect, the fact that obfuscation actually helps non-black-box simula-
tion can be perplexing. Indeed, in all prior works along this line [Had00, BP12b,
BP13a], the core ideas for simulation are of opposite nature: it is the inability to
obfuscate the “unobfuscatable functions” that helps the simulator. In our case,
similar to [BP12a], it is the ability to obfuscate programs that allows polyno-
mial time simulation. We believe that our method can be useful in other settings
as well where non-black-box simulation seems essential such as constant-round
leakage-resilient zero-knowledge [Pan14, GJS11] or CCA secure commitments in
sub-logarithmic rounds [CLP10, GLP+15].

Paper Organization. We start by discussing how to use program obfuscation
to avoid the use of universal arguments in Barak’s protocol in Section 1.1. This
results in a stand alone ZK protocol with a “straight line” simulator. In Section 4,
we discuss why the simulator of this protocol fails in the concurrent setting, and
present a (substantially) different constant-round protocol which is concurrent
ZK along with main proof ideas. In Section 5, we present an overview of our four-
round concurrent-ZK protocol. The full details can be found in the full version
of this work [PPS15].

1.1 Technical Overview: Non-black-box Simulation via Program
Obfuscation

Let us start by considering the simplest approach to zero-knowledge from (the
possibility of) program obfuscation. For now, let us restrict ourselves to the case
of stand alone zero-knowledge for NP-languages. Let x ∈ L be the statement
and R be the witness-relation.

One simple approach is to have the verifier send an obfuscation of the following
program Mx,s which contains a secret string s ∈ {0, 1}n: Mx,s(a) = s if and

only R(x, a) = 1 and Mx,s(a) = 0n otherwise. Let M̃x,s denote the iO-secure
obfuscation of Mx,s. The real prover can recover s by using a witness w to
x. Further, if x is false, Mx,s is identical to Mx,0n and therefore must hide s,
ensuring the soundness.3 This gives us a two-message, honest verifier ZK proof.
However, this idea does not help the simulation against malicious verifiers.

To fix this, let us try to use Barak’s preamble (called GenStat [Bar01]) which
has the following three rounds: first, the verifier sends a collision-resistant hash

2 Barak’s (bounded-concurrent ZK) protocol [Bar01] and recent construction of
Chung, Lin, and Pass [CLP13b] require at least six rounds even after optimiza-
tions; the recent protocol of Gupta and Sahai [GS12b] requires five rounds and does
not have an explicit simulator.

3 By security of iO, M̃x,s
c≈ M̃x,0n and M̃x,0n has no information about s.

642 O. Pandey, M. Prabhakaran, and A. Sahai

function h : {0, 1}∗ → {0, 1}n, then the prover sends a commitment c to 0n (using
a perfectly binding scheme Com), and then the verifier sends a string r ∈ {0, 1}n.
The transcript defines a “fake statement” λ = 〈h, c, r〉. A “fake witness” ω for
the statement λ consists of a pair (Π,u) such that c = Com(h(Π) ; u) and Π
is a program of length poly(n) which outputs the string r on input the string
c (say, in nlog logn steps). If h is a good collision-resistant hash function, then
it was shown in [Bar01, BG02], no efficient prover P ∗ can output a satisfying
witness ω to the statement λ (sampled in an interaction with the honest verifier).
However, a simulator can commit to h(V ∗) (instead of 0n) so that it will have a
valid witness to the resulting transcript λ.

Coming back to our protocol, we use this idea as follows. We modify our first
idea, and require the verifier to send a the obfuscation of a new program Mλ,s

(instead ofMx,s) where λ = 〈h, c, r〉 is the transcript ofGenStat. The new program
Mλ,s outputs s if and only if it receives a valid witness ω to the statement λ (as
described earlier) and 0n on all other inputs. To prove the statement x will be
proven by proving the knowledge of either a witness w to x or the secret s (using
an ordinary witness-indistinguishable proof-of-knowledge (WIPOK)). A simulator
can “succeed” in the simulation as before: it commits to verifier’s program in c to
obtain (an indistinguishable statement) λ, then uses the fake witness ω (which it

now has) to execute the program M̃λ,s(ω) and learn s and complete the WIPOK

using s.
We now draw attention to some important points arising due to the use of

λ in the obfuscation (instead of x). First, the length of the fake witness ω that
the simulator has depends on the length of the program of V ∗. Since the pro-
tocol needs to take into account V ∗ of every polynomial length, the obfuscated
program M̃λ,s must accept inputs ω of arbitrary, a-priori unknown, polynomial

length. In other words, the obfuscated program M̃λ,s must be a Turing ma-
chine which accepts inputs of arbitrary, a-priori unknown, (polynomial) length.
Therefore, we will have to use program obfuscation for Turing machines.

Second, the statement λ = 〈h, c, r〉 is not a “false” statement since an all
powerful prover can always find collisions in h and obtain a satisfying input to
Mλ,s. The only guarantee we have is that if λ is sampled as above, then it would
be hard for any efficient prover—even those with a valid witness to x—to find a
satisfying input for Mλ,s. Therefore, unlike before (when x was used instead of

λ), obfuscations M̃λ,s and M̃λ,0n are not guaranteed to be indistinguishable if
we use an iO-secure obfuscation; this is because the Turing machines Mλ,s and
Mλ,0n are not functionally equivalent. Therefore, we will have to use diO-secure
obfuscation (since finding a differing input is still hard for these programs). The
security of diO is a subtle issue and we discuss it shortly.

By putting these ideas together, we actually a get a standalone ZK protocol
for NP (summarized below). The protocol needs to use some kind of reference to
s other than the obfuscated program. This is done by using a f(s) where f is a
one-way function. This protocol has a “straight line” simulator. Further, unlike
Barak’s protocol, this protocol does not use universal arguments (and hence the
PCP theorem).

Obfuscation-Based Non-black-box Simulation 643

Standalone Zero-Knowledge using Obfuscation. The protocol has three
stages.
1. Stage-1 is the 3 round preamble GenStat: V sends a CRHF h, P sends a

commitment c = Com(0n;u) and V sends a random r ← {0, 1}n.
2. In stage 2, V sends (f, s̃, M̃λ,s) where f is a one-way function, s̃ = f(s),

and M̃λ,s is the obfuscation of Turing machine Mλ,s described earlier and

λ = 〈h, c, r〉 is the transcript of stage-1. V also proves that (f, s̃, M̃λ,s)
are correctly constructed (using a standard ZK proof).

3. In stage-3 P provess, using a standard WIPOK, the knowledge of “either
a witness w to x or secret s such that s̃ = f(s).”

Standalone ZK of this protocol can be proven by following Barak’s simulator
which commits to the code of V ∗ and therefore has an ω for simulated statement
λ such that M̃λ,s(ω) = s within a polynomial number of steps; the simulator
computes s and uses it in the WIPOK. The soundness of the protocol relies on the
diO-security of obfuscation. Indeed, following [Bar01], for a properly sampled λ,
it is hard to find ω such that Mλ,s(ω) �= Mλ,0n(ω), and therefore it is hard to

distinguish M̃λ,s from M̃λ,0n by diO-security of obfuscation. Now, soundness is
argued using three hybrid experiments: first use the simulator of the ZK protocol
in stage 2, then replace M̃λ,s from M̃λ,0n , and finally extract s from the WIPOK in
stage 3 and violate the hardness of one-way function f (since x is false, extraction
must yield s).

In Section 4, we will discuss why the simulator of this protocol fails in the
concurrent setting, and new ideas will be needed to obtain a concurrent ZK
protocol. In particular, we will make use of the DGS-oracle idea [DGS09].

Security of diO and the issue of auxiliary information. Continuing from our
discussion above, it is clear that for our approach to work obfuscations M̃λ,s and

M̃λ,0n should be indistinguishable to a cheating P ∗. However, this is not all: in
addition to one of these programs, P ∗ also has access to the statement λ, which
is auxiliary information about the two programs. Therefore, our approach works
if we have diO secure w.r.t. auxiliary information (distributed according to λ).

Recent implausibility results of Garg et al. [GGHW14] cast serious doubts
about the existence of diO w.r.t. arbitrary auxiliary information. While their
result does not rule out the possibility of diO w.r.t. specific distributions, we
should be extra careful to not rely on auxiliary information which keeps some
“secret” such as an obfuscated code [GGHW14].

In our approach, the distribution of λ does not have to keep any secrets. In
the language of [IPS15], this is public-coin auxiliary information. We show that
our approach indeed works by only assuming that the obfuscation is public-coin
differing-input secure.

1.2 Related Work

Concurrent zero-knowledge. From early on, it was understood and explicitly
proven in [FS90, GK96], that zero-knowledge is not preserved under parallel

644 O. Pandey, M. Prabhakaran, and A. Sahai

repetition where multiple sessions of the protocol run at the same time. The
more complex notion of concurrent zero-knowledge (cZK) was introduced and
achieved by Dwork, Naor, and Sahai [DNS98] (assuming “timing constraints”
on the underlying network). A large body of research on cZK studied the round-
complexity of black-box concurrent ZK with improving lower bounds on the same
[KPR98, Ros00, CKPR03]. The state of art is the lower-bound is by Canetti,
Kilian, Petrank, and Rosen [CKPR03] who prove that black-box cZK requires
at least O (logn/ log logn) rounds where n is the length of the statements being
proven. Prabhakaran, Rosen, and Sahai [PRS02], building upon the prior works
of Richardson and Kilian [RK99] and Kilian and Petrank [KP01], presented a

cZK protocol for NP which has Õ(log n) rounds, matching the lower bound of
[CKPR03].

The central open question in this area is to construct a constant round cZK
protocol for NP languages based on standard (or at least reasonable) assump-
tions. Barak [Bar01] showed that in the bounded concurrent setting where there
is an a-priori upper bound on the number of sessions, there exists a constant
round non-black-box cZK protocol for NP; the protocol is based on the exis-
tence of collision-resistant hash functions [Bar01] and uses universal arguments
[Kil92, Mic94, Kil95, BG02]. The communication complexity of Barak’s protocol
depends on the a-priori bound on the sessions.

It has proven difficult to extend Barak’s NBB techniques to the setting of fully
concurrent ZK (i.e., to unbounded polynomiallymany sessions) in o(logn) rounds.
Nevertheless,NBB techniques have enjoyed great success resulting in the construc-
tion of resettable protocols [BGGL01, DL07, DGS09, GM11], non-malleable pro-
tocols [Bar02, PR05b, PR05a], leakage-resilient ZK [Pan14], bounded-concurrent
secure computation [PR03, Pas04], adaptive security [GS12a], and so on. Bitanksy
and Paneth [BP12a] showed that it is possible to perform non-black-box simu-
lation using oblivious transfer (instead of collision-resistant hash functions and
universal arguments). This eventually led to the construction of resettablly-sound
ZK under one-way functions [BP13a, CPS13, COPV13]. Goyal [Goy13] presents
a non-black-box simulation technique in the fully concurrent setting and achieves
the first public-coin cZK protocol in the plain model.4

An alternative approach to construct round-efficient zero-knowledge proofs
is to use “knowledge assumptions” [Dam91, HT99, BP04]. The recent work of
Gupta and Sahai [GS12b] shows that such assumptions also yield a constant
round concurrent ZK protocol forNP. However, all known ZK protocols based on
knowledge-type assumptions do not yield an explicit simulator. This is because
the knowledge-type assumptions assume the existence of a special “extractor”
machine (which is not explicitly known); this extractor is used by the simulator
of ZK protocols and only provides an “existential” result.

Chung, Lin, and Pass [CLP13b] recently presented the first construction of
a constant-round fully concurrent ZK protocol which has an explicit simulator.

4 The protocol requires poly(n) rounds. Canetti et al. [CLP13a] obtain a similar result,
albeit in the “global hash” model where a global hash function—which the simulator
cannot program—is known to all parties.

Obfuscation-Based Non-black-box Simulation 645

Their result is based on a new complexity-theoretic assumption, namely the
existence of so called “strong P-certificates.”

Another alternative proposed in the literature is to assume some kind of a
setup such as timing constraints, (untrusted) public-key infrastructure, and so on
[DNS98, DS98, CGGM00, Dam00, Gol02, PTV10, GJO+13] or switch to super-
polynomial time simulation [Pas03, PV08]. We will not consider such models
further in this work.

Program obfuscation. After the strong impossibility results of [BGI+01], research
in program obfuscation proceeded in two main directions. The first line of re-
search focussed on constructing obfuscation for specific functionalities such as
point functions and their variants, proxy re-encryption, encrypted signatures,
hyperplanes, conjunctions, and so on[Wee05, LPS04, HRSV07, Had10, CRV10,
BR13a]. The other line of research focussed on finding weaker definitions and al-
ternative models. Goldwasser and Rothblum [GR07] considered the notion of best
possible obfuscation (and is equivalent to iO when the obfusactor is polynomial
time); and Bitansky and Canetti [BC10] considered virtual grey box security.
Alternative models for obfuscation such as the hardware model were considered
in [GIS+10, BCG+11].

After [GGH+13], an improved construction of iO was presented by Barak et.
al. [BGK+13]. Further, in an idealized “generic encodings” model it is shown that
VBB-obfuscation for all circuits can be achieved [CV13, BR13b, BGK+13]. These
results often involve a “bootstrapping step”; Applebaum [App13] presents an
improved technique for bootstrapping obfuscation. Further complexity-theoretic
results appear in recent works of Moran and Rosen [MR13], and Barak et. al.
[BBC+14].

Sahai and Waters [SW13] show that indistinguishability obfuscation is a pow-
erful tool and use it to successfully construct several (old and new) cryptographic
primitives; further applications of iO appear in [HSW13, BZ13, BCP14, KRW13,
MO13]

Differing input obfuscationwas studied byAnanth et. al. [ABG+13], who present
a candidate construction of diO for the class of polynomial time Turing machines
and demonstrate new applications. Another variant of their construction allows
the Turing machines to accept variable length inputs. Concurrent work of Boyle,
Chung, and Pass [BCP14] introduces a related notion of extractability obfusca-
tion and shows this notion (and diO) are implied by iO when the programs differ
only on polynomially many inputs. In addition, it also presents obfuscation for
the class of polynomial time Turing machines, building upon the work of Braker-
ski and Rothblum [BR13a].Very recently, in concurrent and independent works,
construction for bounded-space RAM programs were presented by relying on iO
and OWFs [BGT14] and other additional assumptions [CHJV14, LP14].

The issue of auxiliary information in program obfuscation was first consid-
ered by Goldwasser and Kalai [GK05], and further explored in [GK13, BCPR13,
BP13b, GGHW14, IPS15]. The work of Bitansky, Canetti, Paneth, and Rosen
[BCPR13] shows that if iO exists then “extractability primitives” such as
knowledge-types assumptions and extractable one-way functions [CD09] cannot

646 O. Pandey, M. Prabhakaran, and A. Sahai

exist in the presence of arbitrary auxiliary information. Boyle and Pass [BP13b]
strengthen this result further by showing a pair of (universal) distributions Z,Z’
on auxiliary information such that either extractable OWF w.r.t. Z do not exist
or extractability-obfuscations w.r.t. Z’ do not exist. The work of Garg, Gentry,
Halevi, and Wichs [GGHW14] shows that diO w.r.t. arbitrary auxiliary informa-
tion cannot exist if certain specific obfuscation assumption is true. Ishai, Pandey,
and Sahai [IPS15] formulate the notion of public-coin diO in which the auxiliary
is restricted to be merely the random coins of the sampler, and recover much of
the existing applications of diO under this new notion.

2 Preliminaries

We use standard notations which are recalled here. This section can be skipped
without affecting readability.

Notation. For a randomized algorithm A we write A(x; r) the process of evalu-
ating A on input x with random coins r. We write A(x) the process of sampling
a uniform r and then evaluating A(x; r). We define A(x, y; r) and A(x, y) analo-
gously. We denote by N and R the set of natural and real numbers respectively.
The concatenation of two string a and b is denoted by a ‖ b.

We assume familiarity with interactive Turing machines (ITMs). For two ran-
domized ITMs A and B, we denote by [A(x, y) ↔ B(x, z)] the interactive com-
putation between A and B, with A’s inputs (x, y) and B’s inputs (x, z), and
uniform randomness; and [A(x, y; rA) ↔ B(x, z; rB)] when we wish to specify
randomness. We denote by VIEWP [A(x, y) ↔ B(x, z)] and OUTP [A(x, y) ↔
B(x, z)] the view and output of machine P ∈ {A,B} in this computation.
Finally, TRANS[A(x, y) ↔ B(x, z)] denotes the transcript of the interaction
[A(x, y) ↔ B(x, z)] which consists of all messages exchanged in the computa-
tion.

We also assume familiarity with oracle Turing machines, which are ordinary
TMs with an extra tape called the oracle communication tape. An oracle TMs
A will be written as A〈·〉 to insist that it is an oracle TM; in addition, we write
AI when A’s oracle is fixed to I. Recall that each query to I counts as one step
towards the running time of AI .

Unless specified otherwise, all algorithms receive a parameter n ∈ N, called
the security parameter, as their first input. Often, the security parameter will not
be mentioned explicitly and dropped from the notation. With some exceptions,
all algorithms run in poly(n) steps and all inputs have poly(n) length. A function
negl : N → R is negligible if it approaches zero faster than every polynomial.

Two ensembles {X\}n∈N and {Y\}n∈N are said to be computationally indistin-

guishable, denoted {X\}
c≈ {Y\}, if for all non-uniform probabilistic polynomial

time (PPT) distinguishers D, sufficiently large n, and every advice string zn:
|Prx←Xn [Dn(x) = 1]− Pry←Yn [Dn(y) = 1]| ≤ negl(n), where we write Dn(a) to
denoted D(n, zn, a), and negl is a negligible function. The statistical distance
between two probability distributions X and Y over the same support S is

Obfuscation-Based Non-black-box Simulation 647

denoted by Δ(X,Y) = 1
2

∑
a∈S |Pr[X = a] − Pr[Y = a]|. We say that en-

sembles {Xn}n∈N and {Yn}n∈N are statistically indistinguishable (or statistically

close), denoted {Xn}
s≈ {Yn}, if there exists a negligible function negl such that

Δ (Xn,Yn) ≤ negl(n) for all sufficiently large n.

Standard primitives. In this work, we will be using a family of injective one-way
functions. In addition, unless specified otherwise, we assume that all functions
f ∈ Fn in the family have an efficiently testable range membership: i.e., there
exists a polynomial time algorithm to test that y ∈ Range(f) where Range(f)
denotes the range of f .

We will also be using a family of collision resistant hash functions (CRHF)
{Hn} where h : {0, 1}∗ → {0, 1}poly(n) for h ∈ Hn; recall that {Hn} is a
CRHF family if there exists a negligible function negl such that for every non-
uniform PPT machines A, every sufficiently large n, and every advice string zn:
Prh←Hn [h(x) = h(y) : (x, y) ← A(zn, h)] ≤ negl(n).

Finally, we will also be using a non-interactive, perfectly binding commitment
scheme for committing strings of polynomial length. A commitment to a string
m using randomness u will be denoted by c = Com(m;u). Without loss of
generality, we assume that the message m committed to in c can be recovered
given the randomness u and the string c. We assume perfectly binding schemes
purely for the simplicity of exposition. One can replace Com by the 2-round
statistically-binding commitment scheme of Naor [Nao89] without affecting our
results.

2.1 Interactive Proofs, Proofs of Knowledge, and Witness
Indistinguishability

We recall the standard definitions of interactive proofs [GMR85], witness indis-
tinguishability [FS90], and proofs of knowledge [GMR85, TW87, FFS88, FS90,
BG92, PR05b].

Definition 1 (Interactive Proofs). A pair of probabilistic polynomial time
interactive Turing machines 〈P, V 〉 is called an interactive argument system for
a language L ∈ NP with witness relation R if there exists a negligible function
negl : N → R such that the following two conditions hold:

– Completeness: for every x ∈ L, and every witness w such that R(x,w) = 1,
it holds that

Pr[OUTV [P (x,w) ↔ V (x)] = 1] = 1.

– Soundness: for every x /∈ L, every interactive Turing machine P ∗ running
in time at most poly(|x|), and every y ∈ {0, 1}∗,

Pr[OUTV [P
∗(x, y) ↔ V (x)] = 1] ≤ negl(|x|).

If the soundness condition holds for every (not necessarily PPT) machine P ∗

then 〈P, V 〉 is called an interactive proof system. (#

648 O. Pandey, M. Prabhakaran, and A. Sahai

The probability in the soundness condition is called the soundness error of the
system, and we say that the system has negligible soundness error since this
probability is at most negl(|x|). Although, traditionally soundness error is defined
in terms of the statement length |x|, in cryptographic contexts, it is convenient to
define it in terms of the security parameter n, and write negl(n). This is without
loss of generality, since in our setting since |x| = poly(n). Also, in this work, we
will use words “argument” and “proof” interchangeably throughout the paper.

Definition 2 (Proof of Knowledge). Let 〈P, V 〉 be an interactive proof sys-
tem for a language L ∈ NP with witness relation R. We say that 〈P, V 〉 is a
proof of knowledge (POK) for relation R if there exists a polynomial p and a
probabilistic oracle machine E (called the extractor) such that for every PPT
ITM P ∗, there exists a negligible function negl such that for every x ∈ L, and
every (y, r) ∈ {0, 1}∗ such that qx,y,r := Pr[OUTV [P

∗
x,y,r ↔ V (x)] = 1] > 0

where P ∗
x,y,r denotes the machine P ∗ whose common input, auxiliary input, and

randomness are fixed to x, y and r respectively and the probability is taken over
the randomness of V , the following conditions holds:

– the expected number of steps taken by EP∗
x,y,r is bounded by p(|x|)

qx,y,r
, where

EP∗
x,y,r is machine E with oracle access to P ∗

x,y,r;

– except with negligible probability, EP∗
x,y,r outputs w∗ such that R(x,w∗) = 1.

(#

Definition 3 (Witness Indistinguishable Proofs). Let 〈P, V 〉 be an inter-
active proof system for a language L ∈ NP with witness relation R. We say
that 〈P, V 〉 is witness indistinguishable (WI) for relation R if for every PPT
ITM V ∗, every statement x ∈ L, every pair of witnesses (w1, w2) such that
R(x,wi) = 1 for every i ∈ {1, 2}, and every (advice) string z ∈ {0, 1}∗, it holds
that {VIEW(1)

|x|}
c≈ {VIEW(2)

|x|} where {VIEW
(i)
|x|} := VIEWV ∗ [P (x,wi) ↔ V ∗(x, z)].

(#
As before, w.l.o.g., we can replace |x| by the security parameter n in all defini-
tions above. We remark that there exists a WIPOK with strict polynomial time
extraction in constant rounds using non-black-box techniques [BL04] and in ω(1)
rounds using black-box techniques [GMR85, Blu87].

Three round, public-coin WIPOKand ZAPs. The classical protocols of [GMR85,
Blu87], based on the existence of non-interactive perfectly binding commitment
schemes, are 3-round witness indistinguishable, proof of knowledge (WIPOK) pro-
tocols (for every language in NP). We will use Blum’s protocol [Blu87] as a
building block and denote its three messages by 〈α, β, γ〉, where β is random
string of sufficient length.5

5 We remark that this protocol has a black-box extractor whose expected running
time is proportional to the inverse of a cheating prover’s success probability. How-
ever, there also exist WIPOK with strict polynomial time extraction in constant
rounds using non-black-box techniques [BL04] and in ω(1) rounds using black-box
techniques [GMR85, Blu87].

Obfuscation-Based Non-black-box Simulation 649

A ZAP for a language L, introduced by Dwork and Naor [DN00], is a two round
witness indistinguishable interactive proof for L. ZAPs can be constructed from
a variety of assumptions such as non-interactive zero-knowledge proofs [BFM88,
BSMP91] (which in turn can be based on trapdoor permutations [FLS99]) and
verifiable random functions [MRV99]. In fact, even non-interarctive (i.e., one
round) constructions for ZAPs for all of NP exist based on bilinear pairings
[GOS06] and derandomization techniques [BOV03].

We will use the two round construction of [DN00] based on NIZK as a build-
ing block and denote its two messages by 〈σ, π〉 where σ is a randomly string of
sufficient length. An important property of this construction is adaptive sound-
ness : the statement to be proven can be chosen after the string σ has been sent
by the verifier. We will rely on this property in our security proofs.

2.2 Concurrent Zero Knowledge

We now recall the notion of concurrent zero-knowledge [DNS98] in which one
considers a “concurrent adversary” V ∗ who interacts in many copies of P , prov-
ing adaptively chosen, possibly correlated, polynomially many statements. We
follow conventions established in [DNS98, PRS02, Ros04].

Concurrent attack. The concurrent attack on an interactive proof systems 〈P, V 〉
for language L ∈ NP with witness relation R considers an arbitrary interactive
TM V ∗ which opens at most m = m(n) sessions for an arbitrary polynomial
m with arbitrary auxiliary input z ∈ {0, 1}∗. Let x := {xi} ∈ Lm be set of
statements in L of length at most poly(n), and w := {wi}i∈[m] be such that
R(xi, wi) = 1. The attack proceeds by uniformly fixing the random coins of V ∗

and initiating its execution on input the security parameter n ∈ N and auxiliary
input z. At each step, V ∗ either initiates a new session—in which case a new
prover instance P (xi, wi) with fresh randomness is fixed who interacts with V ∗

in session i; or V ∗ schedules the delivery of a message of an existing session in
which the corresponding prover instance responds with corresponding message.
There is no restriction on how V ∗ schedules the messages of various sessions. We
say that V ∗ launches m-concurrent attack on 〈P, V 〉. The output of the attack

consists of the view of V ∗, denoted VIEW
〈P,V 〉
V ∗ (n,m,x,w, z).

Definition 4 (Concurrent Zero Knowledge). We say that an interactive
proof system 〈P, V 〉 for a language L ∈ NP (with witness relation R) is con-
current zero knowledge if for every polynomial m : N → N, every PPT ITM
V ∗ launching a m-concurrent attack, there exists a PPT machine SV ∗ such that
for every set x := {xi} ∈ Lm of statements of length at most poly(n), every
w := {wi}i∈[m] such that R(xi, wi) = 1, and every auxiliary input z ∈ {0, 1}∗ it
holds that {

SV ∗
(
n,x, z

)}
n∈N

c≈
{
VIEW

〈P,V 〉
V ∗

(
n,m,x,w, z

)}
n∈N

.

Machine SV ∗ is called the simulator. (#

650 O. Pandey, M. Prabhakaran, and A. Sahai

In what follows, we will sometimes abuse the notation and write V ∗ to also mean
the description of the Turing machine V ∗. However, when we want to be explicit
about the description of a Turing machine M (including V ∗), we will actually
write desc(M). For the simulator, we may sometimes write SV ∗(·) := S(V ∗, ·) to
insist that the program of V ∗ is given as an explicit input to the simulator (and
drop n from the notation). Further, we will assume a (unique) session identifier
for each session represented by a string of length n; this session identifier can be
chosen by V ∗ so long as it is unique for every session. W.l.o.g. we assume that
the all-ones string 1n (not to be confused with the unary representation of the
security parameter) is never used as a session identifier and denotes a special
symbol.

3 Differing Input Obfuscation for Turing Machines

In this section, we recall the notion of public-coin differing input obfuscation (pc-
diO) for Turing machines [IPS15]. Let Steps(M,x) denote the number of steps
taken by a TM M on input x; we use the convention that if M does not halt
on x then Steps(M,x) is defined to be the special symbol ∞. Let M = {Mn}
denote a parameterized collection of polynomial size and polynomial time TMs,
i.e., there exists a global polynomial a such that for every n ∈ N, every M ∈ Mn,
|M | ≤ a(n) and Steps(M,x) ≤ a(|x|) where x can be of arbitrary polynomial
length.

We say that a pair of TMs (M0,M1) in the class Mn (for any n) is compatible
if they have the same size and for every x, Steps(M0, x) = Steps(M1, x).

Definition 5 (Compatible TMs). A pair of Turing machines (M0,M1) ∈
Mn × Mn for n ∈ N is said to be compatible if |M0| = |M1| and for every
string x ∈ {0, 1}∗ it holds that Steps(M0, x) = Steps(M1, x).

We remark that the notion of compatible TMs allows the obfuscation to leak
the running time of the obfuscated TMs. This is standard requirement; we can
also use the convention of [ABG+13, IPS15] where the TMs also output their
running time in addition to the “official” output.

We now recall the notion of public-coin differing inputs sampler [IPS15].
Roughly speaking, Samp is public-coin differing-inputs sampler if, on input the
random coins z, it output a pair of compatible TMs (M0,M1) such that no PPT
adversary A having access to z can produce an x such that: M0(x) �= M1(x).
We use a slightly different notation form [IPS15], and require that in addition
to outputting M0,M1, Samp also outputs its random coins. The randomness z
of Samp will then not be mentioned as an explicit input. The definition follows.

Definition 6 (Public-coin Differing-Inputs Sampler for TMs). We say
that a (possibly non-uniform) PPT Turing machine Samp is a public-coin differing-
inputs sampler for Turing machines if the following conditions hold:

1. the output of Samp(1n) is a triplet (z,M0,M1) such that z is the randomness
of Samp and (M0,M1) ∈ Mn ×Mn is always a pair of compatible TMs;

Obfuscation-Based Non-black-box Simulation 651

2. for every (possibly non-uniform) PPT TM A there exists a negligible function
negl such that for all n ∈ N:

Pr
[
M0(x) �= M1(x) : (z,M0,M1)← Samp(1n; z) ; A(z,M0,M1) = x

]
≤ negl(n).

For convenience, a public-coin differing-input sampler will also be referred to as
a nice sampler. (#

Public-coin differing-input obfuscator. We now present the definition of a public-
coin differing input obfuscator for Turing machines. Roughly speaking, the no-
tion states that a machine O is a pc-diO if the following holds: if there exists a
PPT distinguisher D who distinguishes O(M0) from O(M1) when given as aux-
iliary input the random coins z of the sampler who samples (M0,M1), then it is
easy to find an x (given z) such that M0(x) �= M1(x). In other words, if it is hard
to find the “differing input” x then the two obfuscations are indistinguishable.

Definition 7 (Public-coin Differing-Inputs Obfuscator for Turing Ma-
chines, [IPS15]). A uniform PPT machine O is called a public-coin differing
input obfuscator (pc-diO) for a class of Turing machines {Mn} if the following
conditions are satisfied:

1. Polynomial slowdown and functionality: there exists a polynomial adio such
that for every n ∈ N, every M ∈ Mn, every input x, and every M̃ ←
O(n,M), the following conditions hold:

– Steps(M̃, x) ≤ adio

(
n, Steps(M,x)

)
– M̃(x) = M(x)

Polynomial adio is called the slowdown polynomial of O.
2. Indistinguishability: for every public-coin differing-input (a.k.a. nice) sam-

pler Samp (i.e., satisfying definition 6), for every (possibly non-uniform)
PPT distinguisher D, there exists a negligible function negl such that for all
n: ∣∣∣∣Pr [D (z,O(n,M0)) = 1 : (z,M0,M1) ← Samp (1n; z)

]
−Pr

[
D (z,O(n,M1)) = 1 : (z,M0,M1) ← Samp (1n; z)

]∣∣∣∣ ≤ negl(n).

where the probability is taken over the randomness of both Samp and O. (#

Candidate constructions. In [IPS15], a candidate construction of pc-diO for all
polynomial time TMs with variable length input of polynomial size is presented.
The functionality of the construction allows the TMs to accept inputs of any
length, even larger than polynomial. The security states that if a PPT machine
distinguishes the obfuscation of the given TMs, there will exist an input of poly-
nomial size, which can be extracted, such that the two machines will differ on
that input. The assumptions underlying this construction are: pc-diO for NC1

circuits, fully homomorphic encryption, and SNARKs for NP. The construction

652 O. Pandey, M. Prabhakaran, and A. Sahai

of [GGH+13] is seen as a plausible candidate for pc-diO for NC1 and existing im-
plausibility results [GGHW14] are unlikely to have a consequence to this assump-
tion. Construction of diO with stronger forms of auxiliary input—worst case in
which the security must hold for all auxiliary strings μ, and distributional where
it holds for specific distributions of μ—were presented in [ABG+13, BCP14].

4 Constant Round Concurrent Zero-knowledge

The simplest way to see why the protocol of previous section does not work in
the concurrent setting is to consider its execution in a recursively interleaved
schedule (described by Dwork, Naor, and Sahai [DNS98]). In the context of our
protocol, this schedule will have n sessions interleaved recursively as follows:
session n does not “contain” any messages of any other session, and all messages
of session i are contained between messages ci−1 and ri−1 of session i− 1 for
every i , starting from i = n. A pictorial representation of this scheduling is given
in the full version [PPS15]. The double-headed arrows marked by πi represent
the rest of the messages of the i-th session. Roughly speaking, the simulation
fails because of the following: in order to simulate session i, the simulator needs
to extract the secret si by running the program M̃λi,si ; however, the execution of

M̃λi,si contains an execution of M̃λi+1,si+1 and due to this recursion, simulator’s
total running time in session 1 is exponential in n.

Formally, let t3 ≥ 1 be the time taken by the verifier in computing r3 on
input the string c3. Then clearly, the time taken by the simulator in running
the obfuscated machine M̃λ3,s3 is T3 ≥ t3. Then, if t2 denotes the time taken by
the simulator to obtain string r2, we have that t2 ≥ t3 + T3 ≥ 2t3. Clearly, the
time taken by the simulator to extract s2 by running the program M̃λ2,s2 will
be at least T2 ≥ t2 ≥ 2t3. By repeating this argument for session 1, we have that
T1 ≥ t1 ≥ t2 + T2 ≥ 2t2 ≥ 22t3. Repeating this argument for n sessions in the
DNS schedule, the total time taken by the simulator will be ≥ 2n−1.

Avoiding recursive computation via DGS-oracle. It is clear that the reason our
stand-alone simulator runs in exponential time is because in order to compute si
for session i, the simulator runs (the obfuscation of) a program which recursively
runs such a program for every interleaved session between ci and ri. That is, the
program M̃λi,si ends up recomputing all of the secrets of the interleaved sessions
even though they have already been computed.

We can avoid this recomputation as follows. Let I be an oracle which takes
as input queries of the form (f, s̃)—where f is an injective one-way function
and s̃ is in the range of f—and returns the unique value s such that f(s) = s̃.6

Now consider an arbitrary program ΠI which has access to the inversion oracle
I. Clearly, if r is chosen randomly, then for any (fixed) program ΠI and any
fixed input a, the probability that ΠI(a) = r is at most 2−n. This is because

6 We assume that it is easy to test that f is injective and that s̃ is in the range of f .
These requirements are only for simplicity and the protocol works even if it is not
easy to test these properties.

Obfuscation-Based Non-black-box Simulation 653

once the description of the oracle program Π〈·〉 is fixed, the output of ΠI(a) is
deterministically fixed (for any fixed input a chosen prior to seeing r) and r hits
this value with probability at most 2−n.

Our main point here is that it is hard to come up with a satisfying “fake
witness” ω to the transcripts λ = 〈h, c, r〉 even if the program committed in c
is given access to the inversion oracle I. On the other hand, the simulator can
still predict r as before. However, more importantly, by means of the oracle I we
can avoid the recursive re-computation of the secrets in the concurrent setting
as follows.

Consider an alternative simulator S〈·〉 which will be given access to the oracle
I. This simulator will have access to both, the program of the verifier V ∗ as well

as its own program, given as explicit inputs, collectively denoted as Π
〈·〉
S,V ∗ . The

simulator, on input a session index i, will work by initiating an execution of V ∗.

It will commit to program Π
〈·〉
S,V ∗(j) in session j (ignoring for the moment the

fact that simulator needs fresh randomness); finally, this simulator does not run
any obfuscated program to compute the secrets. Instead it queries the oracle I
on “well formed” (fj , s̃j) for every session j �= i; when j = i it simply returns the
string ri. Then, if all goes well, observe that program Π〈·〉(i) predicts string ri in
polynomial time (given I) and this holds for every session i. In particular, there
is no recursive recomputation of the secrets since they can be fed to the program
directly once they have been computed. We note that such an oracle was first
used by Deng, Goyal, and Sahai [DGS09] to construct the first resettably-sound
resettable zero-knowlege protocol for NP.

It should be clear that the actual simulation will be performed by a “main”
simulator Smain which will not have access to any inversion oracle, and run
in (strict) polynomial time. The main simulator will run in the same manner
as the alternative simulator S〈·〉 except that instead of using I, it will run the
obfuscated programs (only once for each session) to recover the secrets. To ensure
efficient simulation, once a session secret has been recovered, it will be stored in
a global table T (which will be used to simulate answers of I). Therefore the
“fake witness” will now have the form ω = 〈u,Π〈·〉, T), but the statements will
still have the same form λ = 〈h, c, r〉; and we require that ΠT outputs r within
finite steps (see details below).

Relation Rsim and the simple variant of our protocol. To formally capture the
above mentioned requirement for the transcripts λ, we define a relation Rsim in
figure 1. The family of injective one-way functions is denoted by {Fn}n∈N and
that of collision-resistant hash functions by {Hn}n∈N. An important observation
regrading Rsim is that since table T is not a part of the commitment c (and it
should not be), we must enforce that Π〈·〉 never makes any invalid queries to
T . This is because after seeing r, it is easy to design a “bad” table T which will
encode r by means of “bad” entries and “satisy” λ.

Relation Rsim allows us to prove that no efficient prover can compute ω such
that Rsim(λ, ω) = 1 with noticeable probability where λ is the transcript of
GenStat with an honest verifier. We prove this claim formally in lemma 1 un-
der the collision-intractability of {Hn}. We note that Rsim is not decidable in

654 O. Pandey, M. Prabhakaran, and A. Sahai

polynomial time in general, but this will not be an issue for our reductions since
we will ensure that it is checked only on “good” instances (which can be verified
in polynomial time).

Instance: A tuple 〈h, c, r〉 ∈ Hn × {0, 1}poly(n) × {0, 1}n where h :
{0, 1}∗ → {0, 1}n.

Witness: A tuple 〈u,Π〈·〉, T 〉 ∈ {0, 1}poly(n) × {0, 1}∗ × {0, 1}∗ where
Π〈·〉 is an oracle Turing machine, and T is a table containing entries of
the form (f, s̃, s) such that when queried on (f, s̃), T returns s, denoted
T (f, s̃) = s.

Relation: Rsim

(
〈h, c, r〉, 〈u,Π〈·〉, T 〉

)
= 1 if and only if all of the fol-

lowing conditions hold:

1. c = Com
(
h
(
Π〈·〉

)
; u
)

2. ∀ (f, s̃, s) ∈ T it holds that f ∈ Fn is an injective function and
f(s) = s̃

3. Program ΠT , takes no input, outputs the string r, and halts within
2n steps.

4. Program ΠT makes oracle queries of the form (f, s̃) such that:

∀ queries (f, s̃) ∃ s s.t. (f, s̃, s) ∈ T

Fig. 1. Relation Rsim based on a perfectly binding commitment Com.

We are now ready to describe the simpler variant of our protocol which is
constant round and concurrent zero-knowledge. The protocol has three stages:
in first stage λ is sampled, in second stage the verifier sends (f, s̃) and Turing

machine M̃λ,s (and also proves that is is a correctly generated), in stage 3, P
proves the knowledge of either a witness to x (the statement) or s s.t. f(s) = s̃.
The formal description of our protocol, named Simple-cZK, appears in figure 2.
In the protocol description, we have renamed the machine Mλ,s (which was only
informally stated earlier) to SimLockλ,s(·) := SimLock(λ, ·, s)7 where, formally:

SimLock(λ, ω, s):
• Test if Rsim(λ, ω) = 1, and if so output s; else, output 0n.

Relation Ra
sim, language La

sim. Relation Rsim is undecidable in polynomial in
general. We define a polynomial time decidable version of Rsim. For a polyno-
mial a : N → N, relation Ra

sim is defined as follows: Ra
sim is identical to Rsim

except that the witness (u,Π〈·〉, T) satisfies following additional constraints: (1)∣∣T ∣∣ ≤ a(n), and (2) ΠT halts in at most a(n) steps.

7 SimLock stands for “simulator’s lock,” i.e., only the simulator will be able to “unlock”
the secret s from this program.

Obfuscation-Based Non-black-box Simulation 655

Inputs. The common input to P and V is a statement x ∈ L where
language L ∈ NP. The prover’s auxiliary input is a witness w such that
R(x,w) = 1. The security parameter n is an implicit input to both parties.

Protocol. The protocol proceeds in three stages.

Stage 1: P and V execute the GenStat protocol in which V sends the
first message h ← Hn, P sends the second message c = Com(0n;u) for a
random u, and V sends the final message r ← {0, 1}n. Let λ = 〈h, c, r〉
be the transcript.

Stage 2: V samples an injective one-way functions f ← Fn, a random
input s ∈ {0, 1}n, and a sufficiently long random tape ζ ∈ {0, 1}poly(n)

and computes:

s̃ = f(s), M̃λ,s ← O (SimLockλ,s ; ζ) (1)

V sends (f, s̃, M̃λ,s), and proves using a constant round ZK protocol (say
ΠZK) that there exist (s, ζ) satisfying equation (1) above.

Stage 3: P proves to V , using a 3-roundWIPOK (say ΠWIPOK) the knowl-
edge of either:
– w such that R(x,w) = 1; OR
– s such that f(s) = s̃.

Verifier’s output: V accepts if the proof in stage 3 succeeds; otherwise,
it rejects.

Fig. 2. The simpler variant of our protocol: Simple-cZK.

We define Lsim and La
sim to be the languages corresponding to Rsim and Ra

sim

respectively. Note that for every polynomial a, it holds that La
sim ∈ NP. We say

that Z = {Zn} is a hard distribution over the statements of La
sim if there exists a

negligible function negl such that for every non-uniform PPT algorithm A∗ and
every sufficiently large n it holds that Pr[λ ← Zn;ω ← A∗(1n, λ);Ra

sim(λ, ω) =
1] ≤ negl(n).

The main result of this section is the following theorem.

Theorem 1. Assume the existence of collision-resistant hash functions and in-
jective one-way functions. Further, public-coin differing-inputs obfuscation (pc-
diO) for the class of all polynomial-size Turing machines that halt in a poly-
nomial number of steps.8 Then, there exists a constant round, fully concurrent
zero-knowledge protocol with negligible soundness, for all languages in NP.

We prove the above theorem by proving that protocol Simple-cZK is a fully
concurrent zero-knowledge protocol with negligible soundness error. It is clear
that the protocol has constant rounds and perfect completeness. We have already

8 We note that we actually do not need obfuscation for the class of all PPT Turing
machines. Instead, we only need obfuscation for those Turing machines of the form
SimLocka where a is a polynomial and SimLocka is the same as SimLock except that
it runs for at most a(|x|) steps on input x.

656 O. Pandey, M. Prabhakaran, and A. Sahai

discussed briefly the main ideas for proving the soundness and concurrent ZK of
this protocol. We discuss a few more points here and provide the full proofs in
[PPS15].

To prove the soundness, we start by proving some claims about the obfuscation
of Turing machine SimLockλ,s. In Section 6 we prove that it is hard for any (non-
uniform) prover P ∗ to write a “fake witness” ω to the statements λ sampled using
the preamble GenStat (see lemma 1). Using this lemma, we show that a sampling
algorithm that outputs the pair of machines (SimLockλ,s, SimLockλ,0n) is a nice
sampler for Turing machines—which, roughly speaking, means that it is hard
to produce an input y such that SimLockλ,s(y) �= SimLockλ,0n(y). Therefore, by
security of pc-diO, the obfuscation of SimLockλ,s will be indistinguishable from
that of SimLockλ,0n . This however requires some care since we have to ensure
that λ can indeed be correctly sampled using public-coins. But λ consists of
(h, r) which are completely random strings, and c is the output of P ∗ which is
a publicly known deterministic TM. Therefore we can actually sample λ and
still ensure hardness of finding a differing-input given (h, r). Now, the soundness
follows by considering three hybrids as before and violating the hardness of one-
way functions (similar to the soundness of standalone ZK in section 1.1). The
full proof appears in [PPS15].

To prove concurrent ZK we consider two simulators. The first one is called
the internal simulator which requires access to an inversion oracle I for (injec-
tive) one-way functions. The second is the main simulator which essentially runs
exactly as the internal simulator (by committing its description in c) and ex-
tracting the secrets using the obfuscated programs. The full descriptions of both
the simulators as well as the full proof of indistinguishability of simulation are
given in [PPS15].

An important issue that we did not discuss relates to the randomness used
in the simulation. For the simulation to work, it is essential the internal simu-
lator and the main simulator must use identical randomness in computing the
messages that are “fed” to the verifier. This creates a circularity in the security
proof: how can the commitments sent by the main simulator be “secure” when
the message in the commitment (i.e., the program of the internal simulator) is
correlated to the randomness used to create the commitment. We address this
issue as follows: we do not include the randomness as part of the internal simu-
lator’s description in the “plain;” instead, we include it in the “committed” form
using a perfectly binding commitment which can be recovered using the inversion
oracle I—e.g., using commitments based on hard-core bits [GL89].

5 The Four Round Construction

In the previous section, we presented a reduction from constant round, concur-
rent zero-knowledge to diO based on standard cryptographic assumptions. In
this section, we present a similar reduction for four message concurrent zero-
knowledge.

Let us start by optimizing the number of rounds in our constant round proto-
col of previous section. The standalone ZK protocol used in stage 2 has at least

Obfuscation-Based Non-black-box Simulation 657

four rounds.9 Since the last message of this ZK protocol must come from the
verifier, our resulting protocol will have at least five rounds even after optimiza-
tions.

We consider two approaches to obtain a four round protocol. First, we can
use a two-round ZK protocol with super polynomial time simulation[Pas03]. This
approach gives us a reduction where the soundness of the resulting protocol must
assume sub-exponential hardness assumptions. The second approach is to use a
WI protocol to prove the correctness of the obfuscated program. However, in
typical applications of WI, to get any useful security we must somehow ensure
that the statement being proven has at least two witnesses.

The standard approach in such cases is to consider two independently sampled
statements, in this case, two obfuscated programs M̃λ,s and M̃λ,s′ ; and prove
that at least one of them is correctly constructed using a WI proof. However,
this approach actually fails for a very interesting reason. Although it does hide
one of the secrets s, s′, it actually breaks the simulation. Indeed, the internal
simulator committed to in the preamble, will have no efficient way of knowing
which of these two programs is actually correctly prepared. In particular, it will
have to ask for the inversion of two challenges per session but the main simulator
might be able to return only one of them (since one of the obfuscated programs
could have been maliciously prepared). Attempting to overcome this subtle issue
actually breaks the hardness of Rsim.

We therefore use a different approach; we set up an “intermediate statement”
which is selected by the prover, and require the prover to provide a WIPOK of its
correctness. The verifier then proves that either this intermediate statement is
true or the obfuscated program is correctly prepared. The intermediate statement
is prepared in such a way that it is possible to make it false and succeed (using
the real witness for x) without the verifier noticing. This allows us to ensure
that the obfuscated program must be correctly prepared and simulation still
continues to go through. For the soundness, roughly speaking, we can extract
the witness corresponding to the “intermediate statement” by using the extractor
of WIPOK; we then use it to simulate the WI proof that comes from verifier’s side.
This allows us to again enforce the ideas we developed to prove the soundness
of the Simple-cZK protocol.

To setup the “intermediate statement” we use perfectly binding commitments
to specially prepared strings. In the final proof, we will need to actually extract
the secret s to violate the hardness of one-way functions. We get around this
difficulty by using a combination of the WIPOK used by the prover and a ZAP

proof. We now present a sketch of our four round protocol below. The formal
description of the protocol appears [PPS15].

Four round protocol for concurrent zero-knowledge. The protocol has four com-
ponents whose messages will be sent in parallel:

9 To keep our reduction from concurrent ZK to obfuscation free from “knowledge
assumptions,” we cannot use 3-round ZK protocols based on such assumptions.

658 O. Pandey, M. Prabhakaran, and A. Sahai

1. The first component is the GenStat protocol, producing statements of the
form λ = 〈h, c, r〉.

2. The second component is a three round WIPOK given by the prover to the
verfier. The prover prepares two commitments, namely t̃1 = Com(0 ‖ t1; v1)
and t̃2 = Com(0 ‖ t2; v2) and proves that either (t̃1, t̃2) are correctly prepared
or x is true. The 3 messages of this WIPOK will be denoted by 〈α, β, γ〉.

3. The final component is a ZAP for a specially prepared statement, which will
let us extract either a witness to x or the secret s in the proof of soundness.
The special statement is prepared as follows.
The prover creates two commitments τ1, τ2 such that τ1 uses string t1 (de-
fined above in item 2) as its randomness; likewise τ2 uses t2. Further, the
value committed to in one of them is the witness w for statement x. The
prover then proves, using a ZAP, that there exists i ∈ {1, 2} such that τi is
a commitment to w using ti. The two messages of this ZAP are denoted by
〈σ′, π′〉.

To get four rounds, the messages of these components are piggy backed with
each other. The main result of this section is the following theorem.

Theorem 2. Assume the existence of collision-resistant hash functions and trap-
door one-way permutations (alternatively, injective one-way functions and ZAP

proofs for NP). Further, for every polynomial a : N → N, and every hard dis-
tribution Z over the statements of La

sim, assume the existence of Z-auxiliary
differing-input obfuscation (diO) for the class of all polynomial-size Turing ma-
chines that halt in a polynomial number of steps. Then, there exists a four mes-
sage, fully concurrent zero-knowledge protocol with negligible soundness, for all
languages in NP.

We have already discussed main ideas behind the proof of soundness and
concurrent zero-knowledge of this protocol. The full details are given in [PPS15].

References

[ABG+13] Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)

[App13] Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom
functions. Cryptology ePrint Archive, Report 2013/699 (2013),
http://eprint.iacr.org/2013/699.pdf

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS,
pp. 106–115 (2001)

[Bar02] Barak, B.: Constant-round coin-tossing with a man in the middle or real-
izing the shared random string model. In: FOCS (2002)

[BBC+14] Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.:
Obfuscation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 26–51. Springer, Heidelberg (2014)

[BC10] Bitansky, N., Canetti, R.: On strong simulation and composable point
obfuscation. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 520–537. Springer, Heidelberg (2010)

http://eprint.iacr.org/2013/699.pdf

Obfuscation-Based Non-black-box Simulation 659

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composi-
tion and bootstrapping for snarks and proof-carrying data. In: STOC,
pp. 111–120 (2013)

[BCG+11] Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T., Roth-
blum, G.N.: Program obfuscation with leaky hardware. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 722–739.
Springer, Heidelberg (2011)

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation.
In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73.
Springer, Heidelberg (2014), Preliminary version on Eprint 2013:
http://eprint.iacr.org/2013/650.pdf

[BCPR13] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: More on the impossibility
of virtual-black-box obfuscation with auxiliary input. Cryptology ePrint
Archive, Report 2013/701 (2013),
http://eprint.iacr.org/2013/701.pdf

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: STOC, pp. 103–112 (1988)

[BG92] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidel-
berg (1993)

[BG02] Barak, B., Goldreich, O.: Universal arguments and their applications. In:
Annual IEEE Conference on Computational Complexity (CCC), vol. 17
(2002), Preliminary full version available as Cryptology ePrint Archive,
Report 2001/105.

[BGGL01] Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound
zero-knowledge and its applications. In: FOCS 2001, pp. 116–125 (2001)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGK+13] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfusca-
tion against algebraic attacks. IACR Cryptology ePrint Archive, 2013:631
(2013)

[BGT14] Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and
their applications. Cryptology ePrint Archive, Report 2014/771 (2014),
http://eprint.iacr.org/

[BL04] Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction.
SIAM Journal on Computing 33(4), 783–818 (2004), Extended abstract
appeared in STOC 2002

[Blu87] Blum, M.: How to prove a theorem so no one else can claim it. In: Pro-
ceedings of the International Congress of Mathematicians, pp. 1444–1451
(1987)

[BOV03] Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer,
Heidelberg (2003)

[BP04] Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)

[BP12a] Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new
non-black-box simulation technique. In: FOCS, pp. 223–232 (2012)

http://eprint.iacr.org/2013/650.pdf
http://eprint.iacr.org/2013/701.pdf
http://eprint.iacr.org/

660 O. Pandey, M. Prabhakaran, and A. Sahai

[BP12b] Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer,
Heidelberg (2012)

[BP13a] Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation
and applications to resettable cryptography. In: STOC, pp. 241–250 (2013)

[BP13b] Boyle, E., Pass, R.: Limits of extractability assumptions with distribu-
tional auxiliary input. Cryptology ePrint Archive, Report 2013/703 (2013),
http://eprint.iacr.org/2013/703.pdf

[BR13a] Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434.
Springer, Heidelberg (2013)

[BR13b] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. Cryptology ePrint Archive, Report
2013/563 (2013), http://eprint.iacr.org/2013/563.pdf

[BSMP91] Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-
knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)

[BZ13] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2013/642 (2013), http://eprint.iacr.org/

[CD09] Canetti, R., Dakdouk, R.R.: Towards a theory of extractable functions.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 595–613. Springer,
Heidelberg (2009)

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge. In: Proc. 32th STOC, pp. 235–244 (2000)

[CHJV14] Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishabil-
ity obfuscation of iterated circuits and ram programs. Cryptology ePrint
Archive, Report 2014/769 (2014), http://eprint.iacr.org/

[CKPR03] Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM Journal
on Computing 32(1), 1–47 (2003), Preliminary version in STOC 2001

[CLP10] Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security
in the plain model from standard assumptions. In: FOCS, pp. 541–550
(2010), Full version:
http://www.cs.cornell.edu/~rafael/papers/ccacommit.pdf

[CLP13a] Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge
in the global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 80–99. Springer, Heidelberg (2013)

[CLP13b] Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero knowl-
edge from p-certificates. In: FOCS (2013)

[COPV13] Chung, K.-M., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resetta-
bility from one-way functions. In: FOCS, pp. 231–240 (2013)

[CPS13] Chung, K.-M., Pass, R., Seth, K.: Non-black-box simulation from one-way
functions and applications to resettable security. In: STOC, pp. 231–240
(2013)

[CRV10] Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane mem-
bership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89.
Springer, Heidelberg (2010)

[CV13] Canetti, R., Vaikuntanathan, V.: Obfuscating branching programs using
black-box pseudo-free groups. IACR Cryptology ePrint Archive, 2013:500
(2013)

http://eprint.iacr.org/2013/703.pdf
http://eprint.iacr.org/2013/563.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.cs.cornell.edu/~rafael/papers/ccacommit.pdf

Obfuscation-Based Non-black-box Simulation 661

[Dam91] Damg̊ard, I.B.: Towards practical public key systems secure against cho-
sen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 445–456. Springer, Heidelberg (1992)

[Dam00] Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary string
model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
418–430. Springer, Heidelberg (2000)

[DGS09] Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability
conjecture and a new non-black-box simulation strategy. In: FOCS (2009)

[DL07] Deng, Y., Lin, D.: Instance-dependent verifiable random functions and
their application to simultaneous resettability. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 148–168. Springer, Heidelberg (2007)

[DN00] Dwork, C., Naor, M.: Zaps and their applications. In: Proc. 41st FOCS,
pp. 283–293 (2000)

[DNS98] Dwork, C., Naor, M., Sahai, A.: Concurrent zero knowledge. In: Proc. 30th
STOC, pp. 409–418 (1998)

[DS98] Dwork, C., Sahai, A.: Concurrent zero-knowledge: Reducing the need
for timing constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 442–457. Springer, Heidelberg (1998)

[FFS88] Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal
of Cryptology 1(2), 77–94 (1987), Preliminary version in STOC 1987

[FLS99] Feige, Lapidot, Shamir.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM Journal on Computing 29 (1999)

[FS89] Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544.
Springer, Heidelberg (1990)

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding pro-
tocols. In: Proc. 22nd STOC, pp. 416–426 (1990)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: FOCS (2013)

[GGHW14] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of
differing-inputs obfuscation and extractable witness encryption with aux-
iliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014)

[GIS+10] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryp-
tography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

[GJO+13] Goyal, V., Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Concurrent
zero knowledge in the bounded player model. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 60–79. Springer, Heidelberg (2013)

[GJS11] Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowl-
edge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 297–315. Springer, Heidelberg (2011), Full version at:
http://www.cs.ucla.edu/~abhishek/papers/lrzk.pdf

[GK96] Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof
systems. SIAM Journal on Computing 25(1), 169–192 (1996), Preliminary
version appeared in Paterson, M. (ed.): ICALP 1990. LNCS, vol. 443, pp.
268–282. Springer, Heidelberg (1990)

[GK05] Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with aux-
iliary input. In: FOCS, pp. 553–562 (2005)

http://www.cs.ucla.edu/~abhishek/papers/lrzk.pdf

662 O. Pandey, M. Prabhakaran, and A. Sahai

[GK13] Goldwasser, S., Kalai, Y.T.: A note on the impossibility of obfuscation
with auxiliary input. Cryptology ePrint Archive, Report 2013/665 (2013),
http://eprint.iacr.org/2013/665.pdf

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions.
In: Proc. 21st STOC, pp. 25–32 (1989)

[GLP+15] Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient con-
currently composable secure computation via a robust extraction lemma.
In: TCC (2015), Full version of this work available as IACR Eprint Report
2012/65

[GM11] Goyal, V., Maji, H.K.: Stateless cryptographic protocols. In: FOCS, pp.
678–687 (2011)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of in-
teractive proof-systems. In: Proc. 17th STOC, pp. 291–304. ACM (1985)

[Gol02] Goldreich, O.: Concurrent zero-knowledge with timing, revisited. In: Proc.
34th STOC, pp. 332–340 (2002)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 97–111. Springer, Heidelberg (2006)

[Goy13] Goyal, V.: Non-black-box simulation in the fully concurrent setting. In:
STOC, pp. 221–230 (2013)

[GR07] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer,
Heidelberg (2007)

[GS12a] Garg, S., Sahai, A.: Adaptively secure multi-party computation with dis-
honest majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 105–123. Springer, Heidelberg (2012)

[GS12b] Gupta, D., Sahai, A.: On constant-round concurrent zero-knowledge from
a knowledge assumption. CoRR, abs/1210.3719 (2012)

[Had00] Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg
(2000)

[Had10] Hada, S.: Secure obfuscation for encrypted signatures. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg
(2010)

[HRSV07] Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Se-
curely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 233–252. Springer, Heidelberg (2007)

[HSW13] Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In: Cryptology ePrint
Archive, Report 2013/509 (2013),
http://eprint.iacr.org/2013/509.pdf

[HT99] Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge
protocols. Cryptology ePrint Archive, Report 1999/009 (1999),
http://eprint.iacr.org/

[IPS15] Ishai, Y., Pandey, O., Sahai, A.: Public Coin Differing-Inputs Obfuscation.
In: TCC (2015), Cryptology Eprint Archive Report 2014/942

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In: Proc. 24th STOC, pp. 723–732 (1992)

[Kil95] Kilian, J.: Improved efficient arguments. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 311–324. Springer, Heidelberg (1995)

http://eprint.iacr.org/2013/665.pdf
http://eprint.iacr.org/2013/509.pdf
http://eprint.iacr.org/

Obfuscation-Based Non-black-box Simulation 663

[KP01] Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
logarithm rounds. In: STOC, pp. 560–569 (2001)

[KPR98] Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on
the Internet. In: Proc. 39th FOCS, pp. 484–492 (1998)

[KRW13] Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for
arbitrary length key cycles. Cryptology ePrint Archive, Report 2013/683
(2013), http://eprint.iacr.org/2013/683.pdf

[LP14] Lin, H., Pass, R.: Succinct garbling schemes and applications. Cryptology
ePrint Archive, Report 2014/766 (2014), http://eprint.iacr.org/

[LPS04] Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for
obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004)

[Mic94] Micali, S.: CS proofs. In: Proc. 35th FOCS, pp. 436–453 (1994)
[MO13] Marcedone, A., Orlandi, C.: Obfuscation == (ind-cpa security =/=

circular security). Cryptology ePrint Archive, Report 2013/690 (2013),
http://eprint.iacr.org/2013/690.pdf

[MR13] Moran, T., Rosen, A.: There is no indistinguishability obfuscation
in pessiland. Cryptology ePrint Archive, Report 2013/643 (2013),
http://eprint.iacr.org/2013/643.pdf

[MRV99] Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In:
FOCS, pp. 120–130 (1999)

[Nao89] Naor, M.: Bit commitment using pseudo-randomness (extended abstract).
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136.
Springer, Heidelberg (1990)

[Pan14] Pandey, O.: Achieving constant round leakage-resilient zero-knowledge.
In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 146–166.
Springer, Heidelberg (2014), Preliminary version on Eprint 2012:
http://eprint.iacr.org/2012/362.pdf

[Pas03] Pass, R.: Simulation in quasi-polynomial time, and its application to proto-
col composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 160–176. Springer, Heidelberg (2003)

[Pas04] Pass, R.: Bounded-concurrent secure multi-party computation with a dis-
honest majority. In: Proc. 36th STOC, pp. 232–241 (2004)

[PPS15] Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-
box simulation and four message concurrent zero knowledge for np. In:
TCC 2015 (2015), Full version of this work available as Cryptology ePrint
Archive Report 2013/754

[PR03] Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in
a constant number of rounds. In: Proc. 44th FOCS (2003)

[PR05a] Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS
(2005)

[PR05b] Pass, R., Rosen, A.: New and improved constructions of non-malleable
cryptographic protocols. In: STOC (2005)

[PRS02] Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with
logarithmic round-complexity. In: FOCS (2002)

[PTV10] Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Eye for an eye: Ef-
ficient concurrent zero-knowledge in the timing model. In: Micciancio, D.
(ed.) TCC 2010. LNCS, vol. 5978, pp. 518–534. Springer, Heidelberg (2010)

[PV08] Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-
knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570.
Springer, Heidelberg (2008)

http://eprint.iacr.org/2013/683.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/2013/690.pdf
http://eprint.iacr.org/2013/643.pdf
http://eprint.iacr.org/2012/362.pdf

664 O. Pandey, M. Prabhakaran, and A. Sahai

[RK99] Richardson, R., Kilian, J.: On the concurrent composition of zero-
knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 415–432. Springer, Heidelberg (1999)

[Ros00] Rosen, A.: A note on the round-complexity of concurrent zero-knowledge.
In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 451–468.
Springer, Heidelberg (2000)

[Ros04] Rosen, A.: The Round-Complexity of Black-Box Concurrent Zero-
Knowledge. PhD thesis, Department of Computer Science and Applied
Mathematics, Weizmann Institute of Science, Rehovot, Israel (2004)

[SW13] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: De-
niable encryption, and more. IACR Cryptology ePrint Archive, 2013:454
(2013)

[TW87] Tompa, M., Woll, H.: Random self-reducibility and zero-knowledge interac-
tive proofs of possession of information. In: Proc. 28th FOCS, pp. 472–482
(1987)

[Wee05] Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)

6 Hardness of GenStat and a Nice Sampler

In this section, we prove that a randomly sampled transcript of GenStat is a hard
distribution over the statements of La

sim for every polynomial a. Recall that Z =
{Zn} is a hard distribution over the statements of La

sim if there exists a negligible
function negl such that for every non-uniform PPT algorithm A∗ and every
sufficiently large n it holds that Pr[λ ← Zn;ω ← A∗(1n, λ);Ra

sim(λ, ω) = 1] ≤
negl(n). The preamble GenStat, is recalled below. For convenience, we use a non-
interactive perfectly binding commitment scheme; the two-round statistically-
binding commitment scheme of [Nao89] also works.

6.1 Preamble GenStat

Statement generation protocol. Let {Hn} be a family of collision-resistant hash
functions (CRHF) h ∈ Hn such that h : {0, 1}∗ → {0, 1}n and Com be a non-
interactive perfectly-binding commitment scheme for {0, 1}n. The statement gen-
eration protocol GenStat := 〈P1, V1〉 is a three round protocol between P1 and
V1 which proceeds as follows:

Protocol GenStat := 〈P1, V1〉:
1. V1 sends a random h ← Hn

2. P1 sends a commitment c = Com(0n;u) where u is a randomly chosen
3. V1 sends a random string r ← {0, 1}n
The transcript of the protocol is λ := 〈h, c, r〉. (#

6.2 Hardness of GenStat with respect to relation Rsim

We defined Rsim in figure 1. Recall that Rsim is undecidable in polynomial
time in general. But our analysis will ensure that Rsim is tested only on inputs
on which ΠT does halt (and in fact halts in a polynomial number of steps).
To capture this, we defined a bounded variant of this relation, namely Ra

sim for
every polynomial a : N → N.

Obfuscation-Based Non-black-box Simulation 665

Relation Ra
sim: Let a : N → N be a polynomial; relation Ra

sim is identical
to Rsim except that the witness (u,Π〈·〉, T) satisfies following additional
constraints:
1.

∣∣T ∣∣ ≤ a(n),
2. ΠT halts in at most a(n) steps.

Note that Ra
sim can be tested in time poly(a(n)) = poly(n). Lsim (resp. La

sim) is
the language corresponding to relation Rsim (resp., Ra

sim) and La
sim ∈ NP.

The following lemma states that it is hard for any PPTmachine P ∗
1 to compute

a witness ω to statements λ when λ is the transcript of GenStat between P ∗
1 and

an honest V1. The proof follows [Bar01].

Lemma 1 (Hardness of GenStat). Assume that {Hn} is a family of collision-
resistant hash functions against (non-uniform) PPT algorithms. There exists a
negligible function negl such that for every (non-uniform) PPT Turing machine
P ∗
1 , the probability that P ∗

1 , after interacting with an honest V1 in protocol
GenStat, writes a string ω on its (private) output tape such that Rsim(λ, ω) = 1
is at most negl(n), where λ is the transcript of interaction between P ∗

1 and V1,
and the probability is taken over the randomness of both P ∗

1 and V1.

Remark. We note that since P ∗
1 is polynomial time, it can only write a ω of

polynomial length. However, since we have to consider all polynomial time P ∗
1 , it

is not known in advance how large ω will be even though it will be of polynomial
size.

Proof of lemma 1. Assume, on the contrary, that there exist polynomials p, q
and a prover P ∗

1 such that P ∗
1 takes at most p(n) steps and writes a string ω on

its private output tape such that for infinitely many values of n, δ(n) ≥ 1/q(n)
where δ(n) is the probability that Rsim(λ, ω) = 1 (where λ is sampled as defined
in the lemma). Now consider the machine P ∗

1 in an execution of GenStat and let
(h, c) be the first two messages in this interaction. Let the machine P ∗

1,h,c denote
the machine P ∗

1 whose state has been frozen up to the point where c is sent in this
execution. By a standard averaging argument, it follows that with probability
at least δ/2 over the sampling of (h, c) in this interaction, the probability that
P ∗
1,h,c writes a valid witness ω at the end of the interaction is at least δ/2. We

call such (h, c) “good.”
The following procedure finds collisions in h provided (h, c) are good: the

procedure chooses two random strings r1, r2 each of length n, feeds P ∗
1 with r1

and then with r2 separately; let ωi = (ui, Π
〈·,〉
i , Ti) be the contents of the private

output tape of P ∗
1,h,c when fed with string ri for i ∈ {1, 2}. The procedure

outputs (Π1, Π2) as the potential collision on h.
We claim that the procedure finds collisions in h with noticeable probability

as follows. Note that since (h, c) is good, with probability δ2/4, it holds that
Rsim(λi, ωi) = 1 where λi = (h, c, ri). Hence, ΠTi

i = ri and h(Π1) = h(Π2)
w.h.p. since c is perfectly binding.

Now, define I to be an inversion oracle which on input a query of the form
(f, s̃) for f ∈ Fn and s̃ ∈ Range(f) outputs s = f−1(s̃). Then, by definition of

666 O. Pandey, M. Prabhakaran, and A. Sahai

Rsim (in particular, due to condition 4 in figure 1), we have that the output of
ΠTi

i is the same as that of ΠI
i . I.e., Π

I
i outputs ri. Since ΠI

i is a deterministic
computation, it holds that Π1 and Π2 are different programs whenever r1 �= r2
(which happens with prob. 1−2−n). Further, since P ∗

1 runs in time at most p(n),
programs Π1, Π2 are of size at most p(n). Therefore, Π1 and Π2 are collisions

in h, found with probability at least δ2

4 · (1− 2−n) ≥ δ2/8.
It follows that collisions can be found for a noticeable (specifically, at least

δ/2) fraction of functions in {Hn} with noticeable probability (specifically, δ2/8).
This concludes the proof.

6.3 A Nice Sampler for TM

Protocol GenStat allows us to build a (non uniform) sampling algorithm Samp
which will be nice according to definition 6. Samp uses the following simple TM,
which was defined earlier:

SimLock(λ, ω, s):
Test if Rsim(λ, ω) = 1, and if so output s;
Else, output the empty string 0n.

Also, for a fixed (λ, s), define SimLockλ,s(·) := SimLock(λ, ·, s). Machine
SimLockλ,s essentially tests whether the input is a valid witness to λ, and if
so outputs the fixed value s, and nothing otherwise. Note that it is possible that
SimLock takes 2n steps on some inputs. However, no such inputs will be returned
by any PPT adversary who uses (an obfuscation of) SimLock. Also, w.l.o.g., we
assume that Steps(SimLockλ,s1 , ω) = Steps(SimLockλ,s2 , ω) for every λ, ω and
(s1, s2) ∈ {0, 1}n × {0, 1}n.

The sampler. The sampling algorithm, SampP∗
1

is defined with respect to an
arbitrary PPT interactive TM P ∗

1 . ITM P ∗
1 follows the instructions of GenStat

protocol and interacts with algorithm V1.

SampP∗
1
(1n; z).

– z is of the form (h, r, s) ∈ Hn × {0, 1}n × {0, 1}n.
– Sample a random transcript λ of GenStat by interacting with P ∗

1 honestly
by sending h as the first message and r as the third message. Let c be
the output of P ∗

1 so that λ = (h, c, r).
– Output

(
z, SimLockλ,s, SimLockλ,0n

)
When the third component of z is fixed to a specific s, we will denote the sampler
by Samps,P∗

1
to emphasize a fixed s. The following lemma is essentially a corollary

of lemma 1. It proves a stronger claim by directly about Samps,P∗
1
; it is easy to

see that the claim will trivially follow for a random s since it follows for each
one of them.

Lemma 2. For every non-uniform PPT TM P ∗
1 , and every s ∈ {0, 1}n, Samps,P∗

1

is a nice sampler for Turing machines (according to definition 6).

Obfuscation-Based Non-black-box Simulation 667

Proof. Observe that the pair (SimLockλ,s, SimLockλ,0n) is always a pair of com-
patible TMs, by definition of SimLock. Now suppose that the second property
of definition 6 is not satisfied. Then there exists an A, running in time a(n) for
some polynomial a, which outputs an x with noticeable probability such that
SimLockλ,s(x) �= SimLockλ,0n(x), and |x| ≤ a(n); here the probability is taken
over the sampling of λ.It follows, from the definition of SimLockλ,s, that x must
be a witness to λ and therefore A is a PPT machine which finds witnesses to
statements λ ∈ La

sim with noticeable probability. We can use A to violate lemma
1 as follows.

Consider the machine B∗
1,s which incorporates P ∗

1 and A. It then samples λ
by routing messages between P ∗

1 and an external (honest) V1, and returns the
output of A

(
z, SimLockλ,s, SimLockλ,0n

)
. It is straightforward to see that B∗

1,s

violates lemma 1 (for every fixed s).

Public-Coin Differing-Inputs Obfuscation

and Its Applications

Yuval Ishai1,�, Omkant Pandey2,3,��, and Amit Sahai3,��

1 Technioin, Israel
yuvali@cs.technion.ac.il

2 University of Illinois at Urbana Champaign, USA
omkant@uiuc.edu

3 UCLA and Center for Encrypted Functionalities, USA
sahai@cs.ucla.edu

Abstract. Differing inputs obfuscation (diO) is a strengthening of in-
distinguishability obfuscation (iO) that has recently found applications
to improving the efficiency and generality of obfuscation, functional en-
cryption, and related primitives. Roughly speaking, a diO scheme ensures
that the obfuscations of two efficiently generated programs are indistin-
guishable not only if the two programs are equivalent, but also if it is
hard to find an input on which their outputs differ. The above “indistin-
guishability” and “hardness” conditions should hold even in the presence
of an auxiliary input that is generated together with the programs.
The recent works of Boyle and Pass (ePrint 2013) and Garg et al.

(Crypto 2014) cast serious doubt on the plausibility of general-purpose
diO with respect to general auxiliary inputs. This leaves open the exis-
tence of a variant of diO that is plausible, simple, and useful for appli-
cations.
We suggest such a diO variant that we call public-coin diO. A public-

coin diO restricts the original definition of diO by requiring the auxiliary
input to be a public random string which is given as input to all relevant
algorithms. In contrast to standard diO, we argue that it remains very
plausible that current candidate constructions of iO for circuits satisfy
the public-coin diO requirement.
We demonstrate the usefulness of the new notion by showing that

several applications of diO can be obtained by relying on the public-coin

� Research supported by the European Union’s Tenth Framework Programme
(FP10/2010-2016) under grant agreement no. 259426 ERC-CaC, ISF grant 1361/10,
and BSF grant 2012378. Research done in part while visiting UCLA and the Center
for Encrypted Functionalities.

�� Research supported in part from a DARPA/ONR PROCEED award, NSF Frontier
Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Fac-
ulty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through the U.S. Of-
fice of Naval Research under Contract N00014-11- 1-0389. The views expressed are
those of the author and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 668–697, 2015.
c© International Association for Cryptologic Research 2015

Public-Coin Differing-Inputs Obfuscation and Its Applications 669

variant instead. These include constructions of succinct obfuscation and
functional encryption schemes for Turing Machines, where the size of the
obfuscated code or keys is essentially independent of the input-length,
running time and space.

1 Introduction

General-purpose obfuscation refers to the concept of transforming an arbitrary
program so that its functionality is preserved, but otherwise rendering the pro-
gram “unintelligible.” This concept has intrigued cryptographers for decades,
and led to multiple attempts at formalization (most notably [BGI+12]). A crit-
ical goal in obfuscation research has been to identify the strongest notions of
obfuscation that are plausible and have wide applicability. General-purpose ob-
fuscation, however, has proven to be perched precariously between possibility
and impossibility.

On the one extreme, virtual black-box obfuscation (VBB) is an ideal form
of obfuscation that captures the intuitive notion of obfuscation and often can
be directly used in applications. Unfortunately, this notion is impossible in the
sense that it provably cannot be realized for certain contrived classes of pro-
grams [BGI+12], or for quite large classes of programs under contrived auxiliary
inputs [GK05].

On the other extreme, the most liberal notion of general-purpose obfuscation
is indistinguishability obfuscation (iO) [BGI+12, GR07]. An iO scheme for a class
of “programs” is an efficient randomized algorithm that maps any program P
into a functionally equivalent obfuscated program P ′ such that if P1 and P2 com-
pute the same function then their obfuscations P ′

1 and P ′
2 are computationally

indistinguishable.
The first plausible construction of a general-purpose iO scheme was given in

2013 by Garg et al. [GGH+13b]. This construction and similar ones from [BR14,
BGK+14] render the existence of an iO scheme a plausible assumption, since
there are currently no attacks or other evidence suggesting that these construc-
tions fail to meet the iO requirements. In particular, no theoretical impossibility
results are known for iO schemes even for contrived classes of programs and
auxiliary inputs.

On the downside, the security guarantee of iO appears to be too weak for
most natural applications of obfuscation. A recent line of work, originating
from [GGH+13b, SW14], has made impressive progress on applying iO towards
a wide array of cryptographic applications. However, these applications are still
not as broad as one might expect, and the corresponding constructions and
their analysis are significantly more complex than those that could be obtained
from an ideal obfuscation primitive. Indeed, this may be the case because the
definition of iO seems to capture only a quite minimal property of obfuscation.

In search of the “strongest plausible assumption.” The above limitations
of iO motivate the search for stronger notions of obfuscation that support more

670 Y. Ishai, O. Pandey, and A. Sahai

applications and give rise to simpler constructions and security proofs. Such
a stronger notion should be plausible, in the sense that current candidate ob-
fuscation constructions can be conjectured to satisfy the stronger requirements
without contradicting other theoretical or empirical evidence. Another impor-
tant feature is succinct description, ruling out contrived notions whose security
requirements refer separately to each application. This leads to the following
question, which is at the center of our work:

Is there a plausible, useful, and succinctly described notion of obfuscation that
captures stronger security requirements than indistinguishability obfuscation?

Differing Inputs Obfuscation. A seemingly promising positive answer to our
question was given by the notion of differing inputs obfuscation (diO). First pro-
posed in [BGI+12] and recently revisited in [ABG+13, BCP14], diO has found
a diverse array of applications that do not seem to follow from traditional iO
(see below for more details). Roughly speaking, a diO scheme ensures that the
obfuscations of two efficiently generated programs P1 and P2 are indistinguish-
able not only if they compute the same function, but also if it is hard for an
adversary to find an input x on which the two programs differ, namely x such
that P1(x) �= P2(x). The above “indistinguishability” and “hardness” conditions
should hold even in the presence of an auxiliary input aux that is generated
together with the programs and is given as input both to the adversary trying
to find an input x as above and to the distinguisher who tries to distinguish
between the two obfuscated programs. Indeed, different applications give rise to
different distributions of aux.

However, the recent works of [BP13, GGHW14] cast serious doubts on the
plausibility of general-purpose diO with respect to general auxiliary inputs. In
particular, [GGHW14] showed that the existence of diO with respect to arbitrary
auxiliary inputs contradicts a certain “special-purpose obfuscation” conjecture.
At a high level, the impossibility result of [GGHW14] proceeds as follows: Con-
sider a pair of programs P1 and P2 that produce different one-bit outputs only on
inputs x = (m,σ) that consist of valid message-signature pairs with respect to
a fixed unforgeable signature scheme verification key. Now we consider another
program D which takes a program P as input, and then hashes P to compute
m = h(P) together with a signature σ on m. It then feeds x = (m,σ) as input
to P , and outputs the first bit of P (x). Now, the auxiliary input given to the
adversary will be a “special-purpose obfuscation” of this programD. The special-
purpose obfuscation conjecture of [GGHW14] is that even given this auxiliary
input, it is still hard for the adversary to obtain any valid message-signature
pair. This assumption seems quite plausible, for instance if D is obfuscated us-
ing the obfuscators of [GGH+13b, BR14, BGK+14]. Now, it is evident that the
adversary can distinguish between any obfuscations of P1 and P2 using the aux-
iliary input, and yet by the special-purpose assumption, the adversary cannot
compute any valid message-signature pair, and therefore cannot find a differing
input.

Public-Coin Differing-Inputs Obfuscation and Its Applications 671

What Causes Impossibility for diO? If we would like to consider general
notions of obfuscation that capture security requirements beyond indistinguisha-
bility obfuscation, it is imperative that we understand the roots of impossibility
for diO. Indeed, it is not difficult to evade the impossibility results of [BP13,
GGHW14] by simply assuming that diO only holds with respect to specific aux-
iliary input distributions, as has been suggested in [ABG+13, BCP14, BP13].
However, this approach would yield disparate special-purpose variants of the
diO assumption for each potential application scenario, with little clarity on
why any particular such assumption should be valid. This would defeat our goal
of obtaining a general and succinctly described assumption. Therefore, we seek
to understand the essential flaw that the works of [BP13, GGHW14], and others
like it, can exploit using auxiliary inputs.

Our starting point is the suggestion, made in several previous works [BCP14,
BP13, BCCT13, BCPR14], to specifically consider an auxiliary input that is
uniformly random, since at least some applications of diO and other suspect
primitives seem to work with just uniformly random auxiliary inputs. This cer-
tainly seems a great deal safer, and does avoid the specific impossibility results
known. However, our starting observation is that even a uniformly random aux-
iliary input could potentially be problematic in that the auxiliary input could
be chosen so that it is the output of a one-way permutation – thus there would
still be a secret about the auxiliary input that is hidden from the adversary.
Although we don’t currently see a way to exploit this to obtain an impossibility
result, could this eventually lead to trouble?

Indeed, in the negative results of [BP13, GGHW14], and similarly in other
impossibility results using auxiliary inputs (e.g. [GK05]), it is critical that the
auxiliary input can contain trapdoor information. In other words, secrets can be
used to choose the auxiliary input, and these secrets are not themselves revealed
to the adversary. (In the case of [GGHW14], this trapdoor information includes
the secret signing key of the signature scheme, and the randomness used to
obtain the obfuscation of the program D.) Our objective, then, is to formulate
a notion of diO that avoids this possibility altogether.

Public-Coin Differing Inputs Obfuscation. Building upon the observations
above, we introduce the notion of public-coin diO. A public-coin diO restricts the
original definition of diO by requiring the auxiliary input aux to be the actual
random coins that were given to the program that sampled P1 and P2. Thus,
in public-coin diO, the auxiliary input is not chosen by a sampling algorithm,
but rather the auxiliary input is simply a set of public coins that are made
available to all algorithms. In particular, this means that it must be hard to find
an input x such that P1(x) �= P2(x) even given all information about how P1

and P2 were generated. This rules out the possibility of planting a trapdoor in
the auxiliary input, an option that was critical for proving the negative evidence
against diO [BP13, GGHW14].

Indeed, we know of no evidence of impossibility for public-coin diO. The
public coin restriction appears to cut a wide path around the impossibility re-
sult of [GGHW14]. Intuitively, public-coin diO requires that even “nature” –

672 Y. Ishai, O. Pandey, and A. Sahai

which is computationally bounded but all-seeing – cannot find any inputs on
which the two programs P1 and P2 will differ. This is important because not
only [BP13, GGHW14], but also all previous impossibility results on VBB ob-
fuscation (e.g [BGI+12, GK05]) used the input/output behavior of the program
to plant hidden inputs on which the output of the program is too revealing.
But in public-coin diO, the existence of such planted inputs would automati-
cally rule out any security guarantee from diO, since given knowledge of these
planted inputs it is easy to find a differing input. Thus, intuitively speaking,
this suggests that an impossibility result for public-coin diO would need to find
actual weaknesses in the obfuscation mechanism itself – some way to distinguish
obfuscations that does not use the input/output behavior of the underlying pro-
grams in any way. Existing security proofs in generic1 models [BR14, BGK+14]
offer strong evidence that such an impossibility result is unlikely to exist.

We also view our public coin restriction as being a natural limitation to place
on diO. Indeed, while our notion is novel in the context of obfuscation, it is rem-
iniscent of (but also quite different from) other scenarios in cryptography where
the public-coin restriction was introduced in order to prevent the existence of
trapdoor information. For example, in the context of trapdoor permutations, it
was observed that allowing the input sampler to use general auxiliary informa-
tion can lead to problematic constructions technically satisfying the definition
of a trapdoor permutation but rendering applications of trapdoor permutations
insecure [GR13]. To prevent this, the notion of enhanced trapdoor permutations
limits the input samplers to be given only public coins as input. Separately, in the
context of collision-resistant hash functions, the distinction between secret-coin
and public-coin collision-resistant hash families was studied in [HR04], where
it was noted that some applications of collision-resistant hashing require public
coins, since secret coins may enable the party picking the key to know impermis-
sible trapdoor information. While these other public-coin primitives are quite
different in nature from ours, we view our notion of public-coin diO to be as
natural a variant as enhanced trapdoor permutations or public-coin collision
resistant hash functions.

Bellare, Stepanovs, and Tessaro [BST14] presented a definitional framework
for diO where security of obfuscation is parameterized by a class of samplers (in-
stead of applying for all circuits). This allows one to define and study restricted
forms of diO by considering different types of samplers. The central object in this
framework is then to identify appropriate types of samplers (which, for example,
do not suffer from the negative results of [BP13, GGHW14]).

Our notion of public-coin diO can be cast in the framework of [BST14] by
considering samplers that are public-coin. We put forward the case of public-coin
samplers as an important notion worthy of further study. Our work demonstrates
that the public-coin case is of general interest, evades the implausibility results of
[BP13, GGHW14] at a fundamental level, and yields several applications which
we discuss shortly.

1 The idealized adversary model considered in [BR14, BGK+14] is a generic model for
multilinear maps [GGH13a, CLT13].

Public-Coin Differing-Inputs Obfuscation and Its Applications 673

On Non-uniformity. Often, because auxiliary input can also capture non-
uniformity, the issues of auxiliary input and non-uniformity are treated jointly in
definitions. However, since we are introducing nontrivial constraints on auxiliary
inputs, we deal with non-uniformity separately. We formulate our definitions to
separate out the contributions of auxiliary input (which is a public coin input
to the potentially non-uniform sampler), and non-uniform advice. Specifically,
we take care to ensure that no secrets can be embedded in the non-uniform
advice provided to the sampler, by allowing the non-uniform advice given to
the differing-input finding algorithm to depend arbitrarily on the non-uniform
advice given to the sampler. Thus, in particular, the non-uniform advice given
to the differing-input finding algorithm can contain all secrets present in the
non-uniform advice given to the sampler.

Applications of Public-Coin diO. While the public-coin limitation allows us
to give a general definition that avoids all known techniques for proving impos-
sibility, one may wonder whether this limitation also rules out known applica-
tions of diO. Indeed, at first glance, the situation may seem quite problematic,
since an auxiliary input is typically used to capture the partial progress of a
security reduction, which will almost always contain various secrets that must
be kept from the adversary. Indeed, existing security proofs for applications of
diO [ABG+13, BCP14] proceed along these lines, and therefore do not carry
over for public-coin diO.

In order to make use of public-coin diO, we need to ensure that a stronger
property is true in the application scenario and throughout the hybrids in the
security proof where the diO property is being used: We need to ensure that
whenever the diO property is used, the two programs P1 and P2 being consid-
ered have the property that it is infeasible to find a differing input between P1

and P2 even given all the randomness used in the entire description of the hy-
brid experiment (except for the random coins of the obfuscation itself). This is
sufficient: When using the diO property across two hybrids, we need that the
obfuscations are indistinguishable to an all-knowing adversary that is privy to
all randomness in these hybrids (except for the random coins of the obfuscation
itself). But if the obfuscations are indistinguishable to an all-knowing adversary,
then they are also indistinguishable to a more ignorant adversary. Thus, even if
some secrets need to be hidden from the adversary in other hybrid experiments,
the proof of security can go through.

Despite the flexibility of the above approach, there are still applications of
diO in the literature where we do not know how to use public-coin diO in a sim-
ilar way, because of the nature of the programs being obfuscated. For example,
in [BCP14], diO is used to obtain full security for functional encryption by obfus-
cating programs that deal explicitly with signatures, where a secret verification
key of a signature scheme is hidden within obfuscated programs, and given the
signing key it is possible to discover differing inputs. Since trapdoors are crucial
in this approach, we do not know how to apply public-coin diO. The fact that
public-coin diO does not generically replace diO for all applications illustrates
the nontrivial nature of our restriction.

674 Y. Ishai, O. Pandey, and A. Sahai

Nevertheless, we can use public-coin diO to obtain several interesting appli-
cations, as we now detail. Separate from the applications below, building on
our work, public-coin diO has been used to replace the need for diO to achieve
constant-round concurrent zero knowledge based on obfuscation [PPS15].

Obfuscating Turing Machines / RAMs with Unbounded Inputs. Gener-
ally, obfuscation has been studied in the context of circuits [BGI+12, GGH+13b].
Of course, given a bound on both (1) the input length and (2) the running time,
any Turing Machine or RAM program can be converted to an equivalent circuit.
However, if either or both of these variables can be unbounded, then obfuscating
Turing Machines presents new feasibility questions beyond obfuscating circuits.

Moreover, note that transforming the TM into an equivalent circuit results
in a circuit whose size is proportional to the worst case running time of the
TM. This leads to severe inefficiency since one would have to evaluate a rather
large circuit for every input. Indeed, motivated by this issue, Goldwasser et al.
[GKP+13a, GKP+13b] introduced and studied the notion of input-specific run
time in the context of several cryptographic primitives such as fully homomorphic
encryption [Gen09], functional encryption [SW05, BSW11], and attribute-based
encryption [SW05, GPSW06].

Using indistinguishability obfuscation alone, there has recently been exciting
progress towards obfuscating Turing Machines directly (i.e., without first trans-
forming it into a circuit). The recent works of Lin and Pass [LP14], Canetti,
Holmgren, Jain, and Vaikuntanathan [CHJV14], and Bitansky, Garg, and Telang
[BGT14], show how to obfuscate Turing machines or RAM programs directly
when both the input-length and the overall space of the computation is a-priori
bounded. More specifically, [LP14, CHJV14, BGT14] first construct garbling
schemes for Turing machines (with bounded input-length and space) and use
them to obtain obfuscation for Turing machines under same constraints. The
size of the obfuscated program in these constructions only depends on the maxi-
mum input length and space used by the computation (as opposed to worst case
running time of the original TM). However, obtaining obfuscation of TMs from
garbling schemes introduces its own subtleties due to which current constructions
additionally require cryptographic assumptions of sub-exponential hardness.

The recent work of Koppula, Lewko, and Waters [KLW14] presents a novel
construction of indistinguishability obfuscation for TuringMachines with bounded
input length (and unbounded space), based only on iO for circuits and standard as-
sumptions. In other words, the size of the obfuscated TM in the [KLW14] construc-
tion is polynomial in the maximum input length to be accepted by the
obfuscated TM, the description-size of the TM M to be obfuscated, and the secu-
rity parameter. (Note that, in particular, it is independent of the maximum space
of the computation.) While this is a remarkable result, the dependence upon the
maximum input length is still a drawback of this work – a drawback that our
work does not encounter. In applications of iO for TMs such as non-black-box
simulation [PPS15], it is crucial that there is no a-priori polynomial upper bound
on the input length of the obfuscated TM. Furthermore, we note that our con-
struction is significantly simpler than the iO-based construction of [KLW14] and

Public-Coin Differing-Inputs Obfuscation and Its Applications 675

relies only on polynomial hardness assumptions; in contrast [KLW14] (as well as
[LP14, CHJV14, BGT14]) require sub-exponential hardness assumptions.

In [BCP14, ABG+13], diO for circuits, together with SNARKs [BCCT12,
BCCT13, BCC+14], was shown to imply diO for Turing Machines with un-
bounded inputs, running time, and space complexity (we will refer to this setting
as the setting of general Turing Machines). However, given the evidence of im-
possibility for diO, prior to our work, there was no method known to bootstrap
from obfuscation for circuits to obfuscation for general Turing Machines based
on a plausible and general obfuscation definition. We show that the construction
and proofs of [BCP14, ABG+13] can be adapted to the setting of public-coin
diO: Specifically, we show that public-coin diO for NC1, together with fully ho-
momorphic encryption with decryption in NC1, and public-coin SNARKs, imply
diO for general Turing Machines. We note that our formulation of public-coin
SNARK also avoids all known impossibility results for SNARKs and other ex-
tractability assumptions [BCPR14].

Functional Encryption for Turing Machines with Unbounded Inputs.
We next tackle the problem of (selectively secure) functional encryption [SW05,
BSW11] for Turing Machines with unbounded inputs. Here, we are able to show
that public-coin diO for general Turing Machines together with standard crypto-
graphic assumptions, implies selectively secure functional encryption for general
Turing Machines. As mentioned above, the approach given in [BCP14] achieves
full security for functional encryption, but does not adapt to the setting of public-
coin diO. The starting point for our scheme is the functional encryption construc-
tion given by [ABG+13], however in the case of functional encryption, we must
make several adjustments to both the construction and the proof of security in
order to make use of public-coin diO, and avoid the need for security with respect
to general auxiliary inputs. We note that for the case of single-key functional
encryption [SS10], the problem of supporting Turing machines and achieving
input-specific runtimes was previously introduced and resolved by Goldwasser
et al. [GKP+13a] under cryptographic assumptions that are incomparable to our
work, but nevertheless, subject to the same criticism as the existence of diO.

Functional encryption is strict strengthening of many cryptographic notions
including garbling schemes [Yao82, FKN94, BHR12] (also known as randomized
encoding of functions [IK00, AIK06]). Thus, our results for functional encryption
imply results for garbling schemes (as well as other notions that are implied by
functional encryption) under the public-coin diO assumptions of only polynomial
hardness. In particular, this applies to several applications of garbling schemes
discussed in recent works of [LP14, CHJV14, BGT14] (under incomparable
assumptions). We refer the reader to [App11] for a survey of applications of
garbling schemes in different areas of cryptography.

Other related works. Another general and plausible notion of obfuscation
that strengthens iO is virtual gray box (VGB) obfuscation [BC14, BCKP14].
While conceptually appealing, this notion does not seem as useful as diO for
natural applications.

676 Y. Ishai, O. Pandey, and A. Sahai

As briefly discussed above, current iO obfuscation candidates can be backed
by security proofs in a generic multilinear model [BR14, BGK+14]. One can
draw an analogy between the broad challenge addressed in the present work and
earlier works on instantiating random oracles. Similarly to the practical use of
the random oracle model [BR93], provable constructions in the generic multi-
linear model can give rise to heuristic real-world constructions by plugging in
multilinear map candidates such as those from [GGH13a, CLT13]. This may
be a reasonable heuristic leap of faith in the context of concrete natural ap-
plications. However, similarly to the negative results on instantiating random
oracles [CGH04], this methodology is provably not sound in general. Thus, one
is left with the challenge of formulating a succinct and plausible assumption that
can be satisfied by an explicit random oracle instantiation and suffices for a wide
array of applications. Despite some partial progress (e.g., [Can97, BHK13]), this
challenge is still quite far from being fully met.

2 Our Definitions

Notation. We denote by N the set of all natural numbers, and use n ∈ N to
denote the security parameter. An efficient non-uniform algorithm A is denoted
by a family of circuits A = {An}n∈N and an associated polynomial s such the
size of An is at most s(n) for all n ∈ N.

We denote by C = {Cn}n∈N a parameterized collection of circuits such that Cn
is the set of all circuits of size at most n. Likewise, we denote by M = {Mn}n∈N

a parameterized collection of Turing machines (TM) such that Mn is the set
of all TMs of size at most n which halt within polynomial number steps on all
inputs. For x ∈ {0, 1}∗, if M halts on input x, we denote by steps(M,x) the
number of steps M takes to output M(x). Following [ABG+13], we adopt the
convention that the output M(x) includes the number of steps M takes on x, in
addition to the “official” output. When clear from the context, we drop n ∈ N
from the notation.

2.1 Circuits

We first define the notion of a public-coin differing-inputs sampler.

Definition 1 (Public-Coin Differing-Inputs Sampler for Circuits). An
efficient non-uniform sampling algorithm Sam = {Samn} is called a public-coin
differing-inputs sampler for the parameterized collection of circuits C = {Cn} if
the output of Samn is distributed over Cn×Cn and for every efficient non-uniform
algorithm A = {An} there exists a negligible function ε such that for all n ∈ N:

Pr
r
[C0(x) �= C1(x) : (C0, C1) ← Samn(r), x ← An(r)] ≤ ε(n). �

The definition insists that the sampler and the attacker circuits both receive the
same random coins as input. Therefore, Sam cannot keep any “secret” from A.
We now define the notion of public-coin differing-inputs obfuscator. The crucial

Public-Coin Differing-Inputs Obfuscation and Its Applications 677

change from existing diO definitions is that the distinguisher now gets the actual
coins of the sampler as the auxiliary input.

Definition 2 (Public-Coin Differing-Inputs Obfuscator for Circuits).
A uniform PPT algorithm O is a public-coin differing-inputs obfuscator for the
parameterized collection of circuits C = {Cn} if the following requirements hold:

– Correctness: ∀n, ∀C ∈ Cn, ∀x we have that
Pr[C′(x) = C(x) : C′ ← O(1n, C)] = 1.

– Security: for every public-coin differing-inputs samplers Sam = {Samn}
for the collection C, every efficient non-uniform (distinguishing) algorithm
D = {Dn}, there exists a negligible function ε s.t. for all n:

|Pr[Dn(r, C
′) = 1 : (C0, C1) ← Samn(r), C

′ ← O(1n, C0)]−
Pr[Dn(r, C

′) = 1 : (C0, C1) ← Samn(r), C
′ ← O(1n, C1)] | ≤ ε(n)

where the probability is taken over r and the coins of O. �

2.2 Turing Machines

We now present our definitions for the case of Turing machines.

Definition 3 (Public-Coin Differing-Inputs Sampler for TMs). An ef-
ficient non-uniform sampling algorithm Sam = {Samn} is called a public-coin
differing-inputs sampler for the parameterized collection of TMs M = {Mn} if
the output of Samn is always a pair of Turing machines (M0,M1) ∈ Mn ×Mn

such that |M0|= |M1| and for all efficient non-uniform (attacker) algorithms
A = {An} there exists a negligible function ε such that for all n ∈ N:

Pr
r

[
M0(x) �= M1(x) ∧

steps(M0, x) = steps(M1, x) = t
:
(M0,M1) ← Samn(r),

(x, 1t) ← An(r)

]
≤ ε(n). �

Remark. By requiring An to output 1t, we rule out all inputs x for which
M0,M1 may take more than polynomial steps.

Definition 4 (Public-Coin Differing-Inputs Obfuscator for TMs). A
uniform PPT algorithm O is a public-coin differing-inputs obfuscator for the
parameterized collection of TMs M = {Mn} if the following requirements hold:

– Correctness: ∀n, ∀M ∈ Mn, ∀x ∈ {0, 1}∗ we have that
Pr[M ′(x) = M(x) : M ′ ← O(1n,M)] = 1.

– Security: for every public-coin differing-inputs samplers Sam = {Samn} for
the collection M, for every efficient non-uniform (distinguishing) algorithm
D = {Dn}, there exists a negligible function ε s.t. for all n:

|Pr[Dn(r,M
′) = 1 : (M0,M1) ← Samn(r),M

′ ← O(1n,M0)]−
Pr[Dn(r,M

′) = 1 : (M0,M1) ← Samn(r),M
′ ← O(1n,M1)] | ≤ ε(n)

where the probability is taken over r and the coins of O.

678 Y. Ishai, O. Pandey, and A. Sahai

– Succinctness and input-specific running time: there exists a (global)
polynomial s′ such that for all n, for all M ∈ Mn, for all M ′ ← O(1n,M),
and for all x ∈ {0, 1}∗, steps(M ′, x) ≤ s′(n, steps(M,x)). �

Remark. The size of the obfuscated machine M ′ is always bounded by the
running time of O which is polynomial in n. More importantly, the size of M ′

is independent of the running time of M . This holds even if we consider TMs
which always run in polynomial time. This is because the polynomial bounding
the running time of O is independent of the collection M being obfuscated.

It is easy to obtain a uniform formulation from our current definitions.

3 Preliminaries

Succinct Non-Interactive Arguments. The universal relation [BG02] is de-
fined to be the set RU of instance-witness pairs (y, w) such that y is of the form
(M,x, t), |w|≤ t, and M is a TM which accepts (x,w) within t steps where t
is an arbitrary number in N. For constant c ∈ N, we define Rc to the subset
of RU consisting of those pairs {(y, w) = ((M,x, t), w)} for which t ≤ |x|c. The
language corresponding to a relation R ⊆ RU will be denoted by LR.

We recall the definitions of succinct non-interactive arguments (SNARG) and
succinct non-interactive arguments of knowledge (SNARK) below. We require
that these systems be publicly verifiable and work in the common random string
model where any uniformly random string of sufficient length can act as the
CRS. Our definition follows the standard formulations [BCCT12, BCP14].

Definition 5 (SNARG). A pair of algorithms (P, V) is a (publicly verifiable)
SNARG for a relation R ⊆ RU in the common random string model if there
exist polynomials p, q, � (independent of R) such that the following conditions
are satisfied:

– Completeness: ∀(y, w) ∈ R, it holds that
Pr

[
V (crs, y, π) = 1 : crs ← {0, 1}poly(n), π ← P (crs, y, w)

]
= 1, and for every

crs, P (crs, y, w) halts within p(n, |y|, t) where y = (M,x, t).
– Succinctness: for every (crs, y, w) ∈ {0, 1}poly(n) × R the size of π ←

P (crs, y, w) is bounded by �(n, log t) and the running time of V (crs, y, π) is
bounded by q(n+ |y|) = q(n+ |M |+|x|+ log t).

– Adaptive soundness: for every polynomial-size prover P ∗ = {P ∗
n}, there

exists a negligible function ε such that for all n:

Pr
[
V (crs, y, π) = 1 ∧ y /∈ LR : crs ← {0, 1}poly(n), (y, π) ← P ∗

n(crs)
]
≤ ε(n). �

Observe that the soundness condition is not required to hold with respect to
common auxiliary input of any kind. This notion suffices for the restricted cases
where obfuscation size grows with the maximum supported input length (a.k.a.
bounded-input case). To deal with inputs of unbounded polynomial length, we
need the following stronger notion.

Public-Coin Differing-Inputs Obfuscation and Its Applications 679

Definition 6 (SNARK). A pair of algorithms (P, V) is a (publicly verifiable)
SNARK for the relation R ⊆ RU in the common random string model if it
satisfies the completeness and succinctness conditions of definition 5 (above)
and the following argument-of-knowledge property:

– Adaptive Argument of Knowledge: for every polynomial-size prover
P ∗ = {P ∗

n}, there exists a polynomial-size extractor EP∗ = {En} and a neg-
ligible function ε such that for all n:

(3.1)

Pr

[
(V (crs, y, π) = 1)

∧ ((y, w) /∈ R) :

{
crs ← {0, 1}poly(n), z ← {0, 1}poly(n),
(y, π) ← P ∗

n(crs, z), (y, w) ← En(crs, z)

}]
≤ ε(n). �

Observe that in this definition a uniformly distributed auxiliary input z is al-
lowed. As noted in [BCCT12], none of the existing implausibility results re-
garding the existence of SNARKs or extractable one-way/collision-resistant-hash
functions apply to the case where auxiliary input is a uniformly random string. A
candidate construction (and perhaps the only one at this time) for such SNARKs
is Micali’s CS proof system [Mic94].

We remark that the above definition requires the extraction to succeed with
probability almost 1. Our results do not require this strong form of extraction,
and work with a weaker notion as well where extraction probability is only
required to be negligibly close to the success probability of the cheating prover.

We shall also use fully homomorphic encryption and non-interactive strong
witness indistinguishable proofs, e.g., [FLS99]. We discuss them in appendix A.

4 Bootstrapping Obfuscation from NC1 to Turing
Machines

In this section, we show that given a public-coin differing-inputs obfuscator for
the class NC1, we can construct a public-coin differing-inputs obfuscator for the
parameterized collection Mn of all polynomial-time TMs. The construction is a
slightly simplified version of [ABG+13] where we get rid of the hash functions.
We shall prove the following theorem.

Theorem 1. If there exists a public-coin differing-inputs obfuscator for cir-
cuits in the class NC1, a fully homomorphic encryption scheme with decryp-
tion in NC1, and a public-coin SNARK for RU in the common random string
model, there exists a public-coin differing-inputs obfuscator for the class of all
polynomial-time Turing machines accepting inputs of unbounded polynomial
length.

680 Y. Ishai, O. Pandey, and A. Sahai

We first present the construction, and then prove the theorem. Let M =
{Mn}n∈N be a parameterized collection of polynomial-time TMs that accepts
inputs of unbounded polynomial length, i.e., there exists a constant c ∈ N such
that every M ∈ Mn is of size n, takes inputs of length at most nc, and halts
within nc steps. We adopt the convention that c is included in the description of
M . Let FHE = (Gen,Enc,Dec,Eval) be a fully homomorphic encryption scheme
with decryption in NC1 and Π = (P, V) be a SNARK for the relation RU defined
earlier. The description of our obfuscator for M, and its evaluation algorithm,
are as follows.

Obfuscator O (1n,M ∈ Mn): By convention, description of M includes a con-
stant c bounding the running time of M on all inputs by nc. Let Un be an
oblivious universal TM which on input the description of a TM B, and a string
x executes B on x for no more than nc steps. The obfuscator proceeds in the
following steps:

1. Generate two FHE public-keys (pk1, sk1) ← Gen(1n;u1) and (pk2, sk2) ←
Gen(1n;u2).

2. Encrypt M under both FHE public-keys: g1 ← Encpk1(M ; v1) and g2 ←
Encpk2(M ; v2). Here M is assumed to be encoded as a bit string of length n
for use by the universal TM Un.

3. Uniformly sample crs ← {0, 1}poly(n) of sufficient length (for the SNARK Π).
4. Generate an obfuscation of the NC1-program P1

crs

sk1,g1,g2
given in figure 1:

P ′ ← ONC1

(
1n, P1

crs

sk1,g1,g2

)
.

5. Output M ′ = (P ′, crs, pk1, pk2, g1, g2).

Evaluation of M ′: Evaluate M ′ = (P ′, crs, pk1, pk2, g1, g2) on input x as fol-
lows:

1. Compute (e1, e2) = MEval(x). This takes at most n2c steps. See fig. 1 for
MEval.

2. Compute a SNARK proof π using x as the witness and t = n4c as the
time-bound:

π ← P
(
crs, (M̃Eval, (e1, e2), t), x

)
3. Compute a low-depth proof φ for the NP-statement 1 = V (crs, (M̃Eval,

(e1, e2), t), π). This can be done by providing the entire computation of V
on these inputs.

4. Execute P ′(e1, e2, t, π, φ) and output the result.

The construction is now analyzed in the proof below. We denote by a‖b the
concatenation of two bit strings a and b.

Public-Coin Differing-Inputs Obfuscation and Its Applications 681

Program P1
crs

sk1,g1,g2
:

◦ Input: a tuple (e1, e2, t, π, φ), Constants: crs, sk1, g1, g2, pk1, pk2.
◦ Check that t ≤ 2n and φ is a valid low-depth proof for the NP-
statement:

1 = V
(
crs, (M̃Eval, (e1, e2), t), π

)
where M̃Eval is defined as follows. Let MEval be the computation that
takes x as input, has (pk1, pk2, g1, g2) hardcoded, and homomorphi-
cally evaluates Un(·, x) on g1 and g2 to produce e1 and e2 respectively.
I.e.,

e1 = Evalpk1(Un(·, x), g1) and e2 = Evalpk2(Un(·, x), g2).
M̃Eval takes as input an instance of the form (e1, e2) and a witness x;
it accepts if and only if MEval(x) outputs (e1, e2) within 2

n steps.
◦ If the check fails, output ⊥; otherwise output Decsk1(e1).

Program P2
crs

sk2,g1,g2
:

◦ Same as P1crssk1,g1,g2
except that if the check is successful, it outputs

Decsk2(e2).

Fig. 1. The programs P1 and P2

Proof of theorem 1. The correctness and succinctness of this construction are
relatively straightforward to verify, and in particular, closely follow the analyses
in [ABG+13, BCP14]. We analyze its security.

Security. Fix any public-coin differing-inputs sampler Sam = {Samn} for the
family M and any efficient distinguisher D = {Dn}. For a bit b, let Xn(b) denote
the output of the following experiment over a random choice of r and the coins
of O:

Xn(b) := {(M0,M1) ← Samn(r),M
′ ← O(1n,Mb), output Dn(r,M

′)}

We need to show that Xn(0) ≈c Xn(1). Consider the following sequence of hybrid
experiments.

– H0: This hybrid corresponds to an honest sampling of Xn(0). In this case,
M ′ creates two FHE encryptions of M0, namely g1 and g2 (where M0 is the
first output of Samn).

– H1: Same as H0 except that the second FHE ciphertext is now generated as
an encryption of M1, i.e., g2 = Encpk2(M1) (where M1 is the second output
of Samn).

– H2: Same as H1 except that the obfuscated program P ′ is now generated
as an obfuscation of P2

crs

sk2,g1,g2
which decrypts the second ciphertext using

sk2, i.e., P
′ ← ONC1(1n, P2

crs

sk2,g1,g2
).

682 Y. Ishai, O. Pandey, and A. Sahai

– H3: Same asH2 except that the first FHE ciphertext g1 is now also generated
as an encryption of M1, i.e., g1 ← Encpk1(M1).

– H4: Same as H3 except that the obfuscated program P ′ is once again gener-
ated as an obfuscation of P1

crs

sk1,g1,g2
, i.e., P ′ ← ONC1(1n, P1

crs

sk1,g1,g2
). Note

that H4 is identical to Xn(1).

We now prove that each hybrid in this sequence is indistinguishable from the
previous one.

Step 1: H0 ≈c H1. This follows from the IND-CPA security of FHE. Formally,
consider an adversary AFHE, who receives a challenge public-key pk, then sam-
ples (M0,M1) ← Samn(r) for a random r, and receives an honestly generated
ciphertext g to either M0 or M1 under pk. AFHE then generates an obfuscation
of M0 following the instruction of O except that it sets pk2 = pk and g2 = g.
Note that all instructions of O can indeed be performed efficiently knowing
only (pk2, g2). Let M ′ denote the resulting obfuscation which includes an NC1-
obfuscation P ′ of program P1

crs

sk1,g1,g2=g. AFHE outputs whatever Dn(r,M
′) out-

puts. The output of AFHE is distributed identically to that of Hb when g is an
encryption of Mb where b ∈ {0, 1}. Because Samn and Dn are of polynomial-size,
it follows that AFHE is a polynomial-size circuit violating IND-CPA security of
FHE unless H0 ≈c H1.

Step 2: H1 ≈c H2. We use the soundness of SNARK and diO-security of ONC1

to argue that H1 ≈c H2. Suppose that H1 and H2 are not computationally in-
distinguishable. We use Samn and Dn to construct a public-coin differing-inputs

sampler SamNC1

n along with a distinguisher DNC1

n such that SamNC1

n outputs cir-

cuits in NC1 and DNC1

n violates the security of ONC1 w.r.t. SamNC1

n . We start

by constructing SamNC1

n .

Sampler SamNC1

n (ρ).
1. Parse ρ as ρ = (r, ρ1, , u1, u2, v1, v2).
2. Sample (M0,M1) ← Samn(r). // comment: this is the given sampler.

3. Set crs = ρ1, (pk1, sk1) ← Gen(1n;u1), (pk2, sk2) ← Gen(1n;u2).
4. Set g1 ← Encpk1 (M0; v1) and g2 ← Encpk2(M1; v2).

5. Output (C0, C1) corresponding to theprograms
(
P1

crs

sk1,g1,g2
, P2

crs

sk2,g1,g2

)
.

Note that input to the circuits C0, C1 above are of the form m = (e1, e2, t, π, φ).

Claim. ∀n ∈ N SamNC1

n is a public-coin differing-inputs sampler for a family
C ∈ NC1.

Proof. We have to show that every non-uniform PPT attacker {ANC1

n } fails to

find a differing-input for circuits sampled by SamNC1

n . Given an attacker ANC1

n

which succeeds against our sampler, we construct an attacker An which will suc-
ceed against the given sampler Samn We shall rely on the soundness of SNARK
to prove this.

Public-Coin Differing-Inputs Obfuscation and Its Applications 683

Formally, suppose that the claim is false, and there exists a polynomial-size
attacker family {ANC1

n }, a polynomial p, and infinitely many n s.t.

Pr
ρ

[
C0(x) �= C1(x) : (C0, C1) ← SamNC1

n (ρ), x ← ANC1

n (ρ)
]
≥ 1/p(n).

We start by defining a prover family which receives a uniformly random auxiliary
input, denoted by z, and then use it to define an attacker Ãn which also receives a
uniform auxiliary input. Later on, this auxiliary input will be completely removed
from Ãn.

Prover P
∗
n(crs, z): String z is of the form (r, u1, u2, v1, v2) and the circuit has

adversary ANC1

n hardcoded in it. The circuit proceeds as follows:
1. Define ρ := (r, crs, u1, u2, v1, v2) using z and crs.

2. Compute m ← ANC1

n (ρ) which is of the form m = (e1, e2, t, π, φ). Re-

call that ANC1

n (ρ) defines a TM M̃Eval and π is a SNARK proof for the

statement y := (M̃Eval, (e1, e2), t).
3. Output (y, π).

Let {E∗
n} be a family of extractor circuits w.r.t. the prover family {P ∗

n} defined

above. Now we define the following attacker circuit Ãn which receives a uniformly
random auxiliary input z∗ and outputs a differing input for the given sampler
Samn. Later we will choose an appropriate z∗ and hardcode it as part of the
circuit description to achieve an attacker circuit without auxiliary input.

Circuit Ãn(r, z
∗): String z∗ is of the form (ρ1, u1, u2, v1, v2) and extractor

circuit E∗
n is hardcoded in this circuit. The circuit computes as follows:

1. Define crs = ρ1 and z = (r, u1, u2, v1, v2) using r and z∗.

2. Compute (y, w) ← E∗
n(crs, z)where y is of the form y := (M̃Eval, (e1, e2), t).

3. Output x = w as the differing input.

For any given r, z∗, the concatenation ρ = r‖z∗ is of the form (r, ρ1, u1, u2, v1, v2),

and defines a valid random string for ANC1

n . We say that a fixed string z∗ is

good if, the success probability of ANC1

n (ρ) is at least 1
2p over the choice of

r. Formally, a string z∗ is good if for a randomly chosen r, defining the tape
ρ = r‖z∗, the probability that ANC1

n (ρ) outputs m such that C0(m) �= C1(m)

where (C0, C1) ← SamNC1

n (ρ) is at least 1/2p. By simple averaging, at least 1
2p

fraction of z∗ are good.
Now let us define sound strings. Roughly speaking, we say that z∗ is sound

if the probability that the output of ANC1

n (ρ) contains a valid proof π but the
output of the extractor (in step 2 above) is not a valid witness, is less than 1/4p.

Formally, we say that a fixed string z∗ = (ρ1, u1, u2, v1, v2) is sound if for
a randomly chosen r, defining the tape ρ = r‖z∗, the probability of the fol-
lowing event, taken over r, is at most 1/4p: the output of E∗(crs, z) (in step 2

of Ãn(r, z
∗)) is (y, w) and output of ANC1

n (ρ) is m = (e1, e2, t, π, φ) such that
V accepts the proof π for the statement y but w is not a valid witness, i.e.
(y, w) /∈ R2c.

684 Y. Ishai, O. Pandey, and A. Sahai

A randomly chosen z∗ contains a uniformly distributed crs string; therefore,
it follows that at least 1 − ε′ fraction of z∗ are sound where ε′ is the soundness
error of SNARK.

Therefore, at least 1
2p − ε′ ≥ 1

4p fraction of z∗ are both good and sound. Fix

such a z∗. By definition of good it follows that w.r.t. this z∗, at least 1/2p frac-

tion of inputs r are such that ANC1

n (r‖z∗) outputs a differing-input for C0, C1.
Further, by definition of sound, at most a 1/4p fraction of such inputs r are
such that the extractor E∗

n (in step 2 above) will not output a valid witness w.
Therefore, at least 1

2p −
1
4p ≥ 1

4p of inputs r result in a differing-input where the
extractor’s output is a valid witness. We call such inputs nice.

By construction, for nice r, we have that:

C0(m) �= C1(m) =⇒ P1
crs=ρ1

sk1,g1,g2(m) �= P2
crs=ρ1

sk2,g1,g2(m) =⇒ M0(x) �= M1(x)

where x = w is the differing-input output by Ãn, and the last implication follows
because x is a valid witness, i.e. if m contains ciphertexts e1, e2 then the values in
these ciphertexts will indeed be M0(x) and M1(x) respectively. Here M0,M1 are

the TMs sampled in (step 2 of) the execution of SamNC1

n (r‖z∗). We now observe
that, by construction, (M0,M1) are also the output of Samn(r). Therefore, the

output of Ãn outputs a differing input x for the outputs of Samn whenever z∗

is good and sound and r is nice.
To have a deterministic attackerAn which on input r outputs a differing-input

x, we choose a z∗ that is good and sound, and hardcode it in the description of
Ãn. It follows that, since the fraction of nice strings r is at least 1/4p, An violates
the public-coin differing-input property of Samn with noticeable property. The

proof is completed by observing that circuits output by SamNC1

n are indeed in
the complexity class NC1.

We now present distinguisher DNC1

n which violates the security of ONC1 w.r.t.

sampler SamNC1

n .

Distinguisher DNC1

n (ρ, C′). The input consists a string ρ and an obfuscated
circuit C′. C′ is an obfuscation of either C0 or C1 which are output by

SamNC1

n (ρ). The distinguisher attempts to create a valid obfuscation M ′ of
the TM implicitly present in C′. Since entire string ρ is available, it can be
efficiently done as follows.
1. Parse ρ as ρ = (r, ρ1, u1, u2, v1, v2), and set crs = ρ1, (pk1, sk1) ←

Gen(1n;u1), (pk2, sk2) ← Gen(1n;u2), g1 ← Encpk1(M0; v1) and g2 ←
Encpk2(M1; v2), where (M0,M1) ← Sam(1n; r).

2. Define M ′ = (C′, crs, pk1, pk2, g1, g2), and output whatever Dn(r,M
′)

outputs. (Recall that Dn is the given distinguisher).

By construction of SamNC1

n , we can see that if C′ is a correctly generated obfus-
cation of Cb, then M ′ is distributed as in hybrid Hb+1. It follows that if outputs

of H1 and H2 are distinguishable then DNC1

n is a good distinguisher against

ONC1 w.r.t. SamNC1

n .

Public-Coin Differing-Inputs Obfuscation and Its Applications 685

Final step: H2 ≈c H3 and H3 ≈c H4. Proof for the claim H2 ≈c H3 is nearly
identical to step 1. The proof for H3 ≈c H4 is nearly identical to step 2. We omit
the details.

5 Functional Encryption for Turing Machines

In this section, we shall construct a functional encryption scheme. The scheme
can encrypt messages of arbitrary polynomial length. The secret key SKM is
given corresponding to a TM M of polynomial size which can accept inputs of
arbitrary polynomial length and halts in polynomial time. The holder of SKM

can learn the value of M(x) given an encryption of x. The size of the public-
parameters of our scheme is polynomial in the security parameter, and the size
of secret-keys, say SKM , is polynomial in the security parameter, |M |, and log t
where t is an arbitrary polynomial bounding the worst case running time of M .

We assume familiarity with the definition of functional encryption (FE)
schemes. Our scheme will satisfy indistinguishability based notion of security
in the selective model of security which we recall here. In this model, we con-
sider the following experiment Expt between an attacker A and a challenger. The
experiment takes a bit b as input, and proceeds as follows:

Init A sends two messages x∗
0, x

∗
1 such that |x∗

0|= |x∗
1|.

Phase 1 The challenger samples (pp,msk) ← F.Setup(1n) and sends pp to
A.

Phase 2 A adaptively asks polynomially secret-key queries where in each
query it sends the description of a TM M ∈ M such that M(x∗

1) = M(x∗
2).

2

The challenger responds with SKM ← F.KeyGen(pp,msk,M).

Challenge The challenger sends an encryption e = F.Enc(pp, x∗
b).

Phase 3 Phase 2 is repeated.

Output The output A is the output of the experiment, which is a bit without
loss of generality.

The scheme is said to be selectively secure if AdvA is negligible in n where we
define AdvA := |Pr [Expt(0) = 1]− Pr [Expt(1) = 1]|.

Our Construction. Let O be a public-coin differing-inputs obfuscation for
the class of polynomial-size and polynomial-time TMs taking inputs of arbi-
trary polynomial length. Let Π = (CRSGen, P, V) be a statistically sound, non-
interactive, strong witness-indistinguishable proof system forNP where CRSGen
simply outputs its own random coins—therefore, we are in the common random
string model where any random string of sufficient length can act as the CRS.
Let H = {Hn} be a family of collision-resistant hash functions such that every
h ∈ Hn maps strings from {0, 1}∗ to {0, 1}n.
2 Recall that according to our convention, the output of M on an input x includes its
running time as well.

686 Y. Ishai, O. Pandey, and A. Sahai

Let PKE = (Gen,Enc,Dec) be an ordinary, semantically secure public-key
encryption scheme, and com be a statistically binding commitment scheme.3 We
assume that PKE (resp., com) encrypts (resp., commits) to a string of unbounded
polynomial length by individually encrypting (resp., committing) to each bit. We
assume w.l.o.g. that PKE (resp., com) uses randomness of length n to encrypt
(resp., commit) to a single bit (and therefore sn random bits for a string of
length s will be needed).

The algorithms of our functional encryption scheme are as follows. Recall that
a‖b denotes the concatenation of two bit strings a and b.

– F.Setup(1n): Generate (pk1, sk1) ← Gen(1n), (pk2, sk2) ← Gen(1n), and
(pk3, sk3) ← Gen(1n). Generate two commitments α1 = com(0n;u1) and
α2 = com(0n;u2). Sample crs ← CRSGen(1n) and h ← Hn. Output (pp,msk)
where:

pp := (pk1, pk2, pk3, α1, α2, crs, h), msk := sk1.

– F.Enc(pp, x): On input a message x ∈ {0, 1}∗ of arbitrary polynomial length,
generate two ciphertexts c1 = Encpk1(x; r1) and c2 = Encpk2(x; r2). De-

fine string a := x‖r1‖0n
2‖x‖r2‖0n

2

and encrypt it under the third public-
key to get ciphertext c3 = Encpk3(a; r3). Finally, compute a proof π for
the statement that y ∈ Lfe using w = (a, r3) as the witness where y =
(c1, c2, c3, pk1, pk2, pk3, α1, α2): i.e., π ← P (crs, y, w).4 Here Lfe is is the lan-
guage corresponding to the relation Rfe defined below.

Relaton Rfe:
Instance: y′ = (c′1, c

′
2, c

′
3, pk

′
1, pk

′
2, pk

′
3, α

′
1, α

′
2)

Witness: w′ = (a′, r′3) where a′ = x′
1‖r′1‖u′

1‖x′
2‖r′2‖u′

2

Rfe(y
′, w′) = 1 if and only if the following condition holds:

1. c′3 = Encpk3(a
′; r′3); and

2. The or of the following two statements is true:

(a) c′1, c
′
2 encrypt the same message which is one of x′

1 or x′
2, i.e.:

(c′1 = Encpk′
1
(x′

1; r
′
1) and c′2 = Encpk′

2
(x′

1; r
′
2)); or

(c′1 = Encpk′
1
(x′

2; r
′
1) and c′2 = Encpk′

2
(x′

2; r
′
2));

(b) c′1, c
′
2 encrypt x

′
1, x

′
2 respectively, which may be different but then

the hash of one them is committed in α′
1, α

′
2; i.e.,

i. (c′1 = Encpk′
1
(x′

1; r
′
1) and c′2 = Encpk′

2
(x′

2; r
′
2)); and

ii. (α′
1 = com(h(x′

1);u
′
1) or α′

1 = com(h(x′
2);u

′
1)); and

iii. (α′
2 = com(h(x′

1);u
′
2) or α′

2 = com(h(x′
2);u

′
2)).

Proof π is computed for the and of statements 1 and 2(a) of Rfe. The
algorithm outputs e = (c1, c2, c3, π) as the ciphertext.

3 We view com as a non-interactive algorithm; we can also use two-round schemes
where the first message is fixed as part of the public-parameters by the setup algo-
rithm and then com is viewed w.r.t. such a fixed message.

4 Observe that here no a-priori bound is known on |x|; any multi-theorem proof system
such as [FLS99] is capable of proving statements of unbounded polynomial length.

Public-Coin Differing-Inputs Obfuscation and Its Applications 687

– F.KeyGen(pp,msk,M): The secret-key SKM corresponding to a TM M is
an obfuscation of the program ProgM,msk, i.e., SKM ← O

(
1n,ProgM,msk

)
,

where ProgM,msk is the following program.

Program ProgM,msk:
◦ Input: a ciphertext e of the form e = (c1, c2, c3, π).
◦ Constants: msk = sk1 and pp = (pk1, pk2, pk3, α1, α2, crs, h).
◦ The program checks that 1 = V (crs, y, π) where y = (c1, c2, c3, pk1,

pk2, pk3, α1, α2).
◦ If the check fails, output ⊥; otherwise output M (Decsk1(c1)).

– F.Dec(SKM , e): Evaluate the program SKM on input e and output whatever
it outputs.

Theorem 2. Let M be the class of all polynomial-time Turing machines accept-
ing inputs of unbounded polynomial length. If there exists a public-coin differing-
inputs obfuscator for the class M, a non-interactive zero-knowledge proof system
(i.e., with statistical soundness) for NP in the common random string model,
a public-key encryption scheme, a non-interactive perfectly-binding commitment
scheme, and a family of collision-resistant hash functions with publicly sam-
plable index, then there exists a selectively-secure functional encryption scheme
with indistinguishability-based security for Turing machines in the class M.

Proof of Theorem 2. The correctness and succinctness of our scheme is easy
to verify, and in particular, is similar to analyses in [GGH+13b, ABG+13]. We
shall provide this analysis in the full version. We now analyze the security of
this construction. We prove that the scheme satisfies indistinguishability based
security for FE in the selective security model. We prove this by considering the
following sequence of hybrid experiments:

– Hybrid H0 : This hybrid is identical to experiment Expt(0). The public-
parameters pp in Phase 1 are of the form pp := (pk1, pk2, pk3, α1, α2, crs, h)
where α1 = com(0n;u1) and α2 = com(0n;u2).

– Hybrid H1 : This hybrid is identical to H0 except that α1 and α2 are com-
puted as commitments to h(x∗

0) and h(x∗
1) respectively: α1 = com(h(x∗

0);u1)
and α2 = com(h(x∗

1);u2). We recall that the challenge ciphertext is of
the form (c1, c2, c3, π) where both c1, c2 encrypt x∗

0, c3 encrypts a0 =

x∗
0‖r1‖0n

2‖x∗
0‖r2‖0n

2

using randomness r3, and π is computed using w =
(a0, r3) as the witness. This is identical to how these values were computed
in the previous hybrid.

– Hybrid H2 : Identical to H2 except that string a0 is now changed to a∗ =
x∗
0‖r1‖u1‖x∗

1‖r2‖u2. Consequently, ciphertext c3 is an encryption of a∗ which
we denote by c∗3. Since a∗ has changed, the witness used in computing the
proof π has also changed, and we shall denote the new proof by π∗. The chal-
lenge ciphertext is therefore (c1, c2, c

∗
3, π

∗) where both c1, c2 still encrypt x∗
0.

– Hybrid H3 : Same as H2 except that c2 now encrypts x∗
1. Furthermore, π∗

is computed w.r.t. the and of statements 1 and 2(b) (see the description
of Rfe). That is, the witness corresponding to condition 2(b.i) will now be

688 Y. Ishai, O. Pandey, and A. Sahai

(x∗
0, r1, x

∗
1, r2), and for 2(b.ii) and 2(b.iii) it will be (x∗

0, u1) and (x∗
1, u2)

respectively. Note that a∗, c∗3 and everything else remains the same.
– Hybrid H4 : Same as H3 except that the keys are generated differently. The
challenger sets msk = sk2 and answers the secret-key queries corresponding
to a TM M by obfuscating the following program Prog∗M,msk:

Program Prog∗M,msk: The program is identical to ProgM,msk except that
it decrypts the second ciphertext using msk = sk2 if the check succeeds.
That is, the input to the program is a ciphertext e = (c1, c2, c3, π), the
constants are (msk, pp). The program outputs ⊥ if π is not a valid proof;
otherwise it outputs M(Decsk2 (c2)).

– Hybrid H5 Same as H4 except that c1 is now changed to encrypt x∗
1. Fur-

thermore, π∗ is computed by using the witness corresponding to condition
2(a), i.e., using (x∗

1, r1, r2).
– Hybrid H6 : Same as H5 except that all secret-key queries are now switched
back to using msk = sk1 and the key for TM M is an obfuscation of the
program ProgM,msk.

– Hybrid H7: Same as H6 except that a∗ is changed to string a1 =
x∗
1‖r1‖0n

2‖x∗
1‖r2‖0n

2

. The witness corresponding to 2(a) does not change,
but corresponding to statement in 1 changes (see Rfe). Therefore, proof π
also changes.

– Hybrid H8: Same as H7 except that α1, α2 are switched back to the com-
mitments of 0n. Observe that H8 is identical to the experiment Expt(1).

We now prove the indistinguishability of every two consecutive hybrids in this
experiment.

Step 1: H0 ≈c H1. This follows from computational hiding of the commitment
scheme. Formally, we consider the following adversary Acom, which internally
executes the hybrid H0 except that it does not generate commitments (α1, α2)
on its own. Instead, after receiving values (x∗

1, x
∗
2) during Init phase from A,

it sends two sets of strings, namely (0n, 0n) and (h(x∗
1), h(x

∗
2)), to the outside

challenger and receives in return two commitments (α1, α2) corresponding to
either the first or the second set of strings. It is clear that Acom is a polynomial
time machine, and violates the hiding of com unless H0 ≈c H1.

Step 2: H1 ≈c H2. The proof of this claim relies on the semantic security of
PKE and the strongwitness indistinguishability of the proof system Π for polyno-
mially many statements.5 Recall that strong WI asserts the following: let D0 and
D1 be distributions which output an instance-witness pair for an NP-relation
R and suppose that the first components of these distributions are computa-
tionally indistinguishable, i.e., {y : (y, w) ← D0(1

n)} ≈c {y : (y, w) ← D1(1
n)};

then X0 ≈c X1 where Xb : {(crs, y, π) : crs ← CRSGen(1n); (y, w) ← D0(1
n);π ←

5 Strictly speaking, we only need strong WI w.r.t. a single statement y of unbounded
polynomial length. Any multi-theorem NIZK proof system such as [FLS99] generi-
cally yields a strong WI proof system for unbounded polynomial length statements.

Public-Coin Differing-Inputs Obfuscation and Its Applications 689

P (crs, y, w)} for b ∈ {0, 1}. Strong WI for polynomially many statements is im-
plied by any multi-theorem NIZK proof such as [FLS99].

Suppose that H1 and H2 can be distinguished with noticeable advantage δ. Ob-
serve that both distribution internally sample the following values in an identical
manner: z := (h, pk1, pk2, pk3, c1, c2, α1, α2) which is all but crs, c3 and π. By sim-
ple averaging, there are at least δ/2 fraction of string st s.t. the two hybrids can
be distinguished with advantage at least δ/2 when z = st. Call such a z good.

Fix one such z, and denote the resulting hybrids by H
(z)
1 , H

(z)
2 . Note that the

hybrids have inbuilt into them all other values used to sample z namely: (x∗
0, x

∗
1)

received from A, randomness u1, u2, r1, r2 for (α1, α2, c1, c2) respectively, and
msk = sk1.

Define distribution D(z)
0 as follows: set a0 = (x∗

0‖r1‖0n
2‖x∗

0‖r2‖0n
2

), com-
pute c3 = Encpk3(a0; r3), and let statement y = (c1, c2, c3, pk1, pk2, pk3, α1, α2),
witness w0 = (a0, r3); output (y, w0). Note that y has identical to z except that
h has been removed and c3 has been added. Now define a second distribution
D(z)

1 which is identical to D(z)
0 except that instead of string a0, it uses string

a∗ = (x∗
0‖r1‖u1‖x∗

0‖r2‖u2), sets c3 = Encpk3(a
∗; r3), and w = (a∗, r3). It follows

from the security of the encryption scheme that the distribution of y sampled

by D(z)
0 is computationally indistinguishable from when it is sampled by D(z)

1 .
Therefore, we must have that X0 ≈ X1 w.r.t. these distributions. We show that

this is not the case unless H
(z)
1 ≈c H

(z)
2 .

Consider an adversary for strong WI who incorporates A and z (along with
sk1 and all values for computing z described above), and receives a challenge

(crs, y, π) distributed according to either D
(z)
0 or D

(z)
1 ; here y has a component

c3 (and all other parts of y are identical to the respective parts of z \ {h}).
The adversary uses crs to completely define pp and feeds it to A; it uses sk1
to complete phase 2 and 4, and (c3, π) to define the challenge ciphertext e =
(c1, c2, c3). The adversary outputs whatever A outputs. We observe that the

output of this adversary is distributed according to H
(z)
1 (resp., H

(z)
2) when it

receives a tuple from distribution X0 (resp., X1). A randomly sampled z is good
with probability at least δ/2, and therefore it follows that with probability at
least δ2/4 the strong WI property will be violated unless δ is negligible.

Step 3: H2 ≈c H3. The proof of this part follows exactly the same ideas as in
step 2, and relies on the semantic security of encryption and strong WI property
of Π. Roughly speaking, changing c2 to encrypt x∗

1 results in a computationally
indistinguishable distribution over the statement (to be proven by proof π). Due
to this, although the resulting proof π will use a different witness, strong WI
guarantees that the joint distribution of statement and proof (present in the
challenge ciphertext) remains computationally indistinguishable in these two
hybrids. The details are omitted.

Step 4: H3 ≈c H4. This is the key part of our proof where we shall rely on the
indistinguishability security of public-coin diO. Suppose that the claim is false

690 Y. Ishai, O. Pandey, and A. Sahai

and A’s output in H3 is noticeably different from its output in H4. Suppose that
A’s running time is bounded by a polynomial t so that there are at most t secret-
key queries it can make in phase 2 and 3 combined. We consider a sequence of
t hybrid experiments between H3 and H3 such that hybrid Hi

3, for i ∈ [t] is as
follows.

Hybrid Hi
3 is identical to H3 except that it answers the secret-key queries

as follows. For j ∈ [t], if j ≤ i, the secret-key corresponding to the j-th query,
denoted Mj, is an obfuscation of program ProgMj ,sk1

; otherwise, for j > i, it

is an obfuscation of program Prog∗Mj ,sk2
. We define H0

3 to be H3 and observe

that Ht
3 is the same as H4.

By simple calculation, we see that if A’s advantage in distinguishing H3 and H4

is δ, then there exists an i ∈ [t] such that A distinguishes between Hi−1
3 and

Hi
3 with advantage at least δ/t. We show that if δ is not negligible than we can

us A to violate the indistinguishability of O. To do so, we define a sampling
algorithm Sami

A and a distinguishing algorithm Di
A and prove that Sami

A is a
public-coin differing-input sampler outputting a pair of differing-input TMs yet
Di

A can distinguish an obfuscation of left TM from that of right output by Sami
A.

The description of these two algorithms is as follows:

Sampler Sami
A(ρ):

1. Receive (x∗
0, x

∗
1) from A.

2. Parse ρ as (crs, h, τ).
3. Proceed identically to H4 using τ as randomness for all tasks except for

sampling the hash function which is set to h, and the CRS, which is set
to crs. This involves the following steps:
(a) Parse τ = (τ1, τ2, τ3, r1, r2, r3, u1, u3).
(b) Use τi as randomness to generate (pki, ski) ← Gen(1n; τi) for i ∈ [3],

r1, r2 to generate c1 = Encpk1(x
∗
0; r1), c2 = Encpk1(x

∗
1; r2), and u1, u2

to generate α1 = com(h(x∗
0);u1), α2 = com(h(x∗

1);u2).
(c) Use a∗ = x∗

0‖r1‖u1‖x∗
1‖r2‖u2 and r3 to compute c∗3 = Encpk3(a

∗; r3),
and then use w = (a∗, r3) to compute proof π∗ corresponding to
conditions 1 and 2(b) in Rfe.

4. Define pp = (pk1, pk2, pk3, α1, α2, crs, h) and challenge e = (c1, c2, c
∗
3, π

∗).
5. Send pp to A and answer its secret-key queries as follows. For all queries

Mj until j < i, send an obfuscation of ProgM,sk1
.

6. If i-th secret-key query comes in phase 2, send ciphertext e in the chal-
lenge phase.

7. Upon receiving the i-th secret-key query Mi, output (M0,M1) and halt
where:

M0 := ProgMi,sk1
, M1 := Prog∗Mi,sk2

.

Distinguisher Di
A(ρ,M

′): on input a random tape ρ and an obfuscated
TM M ′, the distinguisher simply executes all steps of the sampler Sami

A(ρ),
answering secret-keys for all j < i, as described above. The distinguisher,

Public-Coin Differing-Inputs Obfuscation and Its Applications 691

however, does not halt when i-th query is sent, and continues the execution
of A answering secret-key queries for Mj as follows:

– if j = i: send M ′ (which is an obfuscation of either M0 or M1)
– if j > i: send an obfuscation of Prog∗Mj ,sk2

The distinguisher outputs whatever A outputs.

It is straightforward to see that if M ′ is an obfuscation of M1, the output of
Di

A is identical to A’s output in Hi−1
3 ; and if M ′ is an obfuscation of M0, it

is identical to A’s output in Hi
3. We have that Di

A distinguishes Hi−1
3 and Hi

3

with at least δ/t advantage. All that remains to prove now is that Sami
A is a

public-coin differing-inputs sampler.

Claim. Sami
A is a public-coin differing-inputs sampler.

Proof. We show that if there exists an adversary B who can find differing-inputs
to the pair of TMs sampled by Sami

A with noticeable probability, say μ, we can
use B and Sami

A to construct an efficient algorithm CollFinderB,Sami
A
which finds

collisions in h with probability μ− negl(n). The algorithm works as follows:

CollFinderB,Sami
A
(h):

The algorithm incorporates B, Sami
A. On input a random hash function h ←

Hn, the algorithm works as follows:

– sample uniformly random strings (crs, τ) to define a random tape ρ :=
(crs, h, τ).

– sample (M0,M1) ← Sami
A(ρ) and e ← B(ρ).

– recall that e is of the form (c1, c2, c3, π) where c3 is an encryption under
pk3 where (pk3, sk3) are sampled using parts of the randomness τ .

– let x∗
0 �= x∗

1 be the strings output by A during the Init phase in the
execution of Sami

A.
– if π is a valid proof, compute a = Decsk3(c3) and let a =

x′
1‖r′1‖u′

1‖x′
2‖r′2‖u′

2.
– if h(x∗

0) = h(x∗
1), output (x∗

0, x
∗
1) as the collisions; otherwise, if ∃ m1 ∈

{x′
1, x

′
2} and ∃ m2 ∈ {x∗

0, x
∗
1} s.t. m1 �= m2 and h(m1) = h(m2) output

(m1,m2) as collisions; if none of the two conditions hold, output ⊥.

Let us now analyze the success probability of this algorithm. Since h is uni-
formly sampled, ρ is a uniform random tape, and therefore with probability
μ, B outputs an e such that M0(e) �= M1(e). Recall that M0 = ProgMi,sk1

and M2 = Prog∗Mi,sk2
for some TM Mi such that Mi(x

∗
0) = M∗

i (x
∗
1). Further-

more, both of these programs output ⊥ if proof π is not valid. Since the out-
put these two programs differ on e, it must be that π is a valid proof so that
M0(e) = Mi(Decsk1 (c1)) and M1(e) = Mi(Decsk2(c2)). By construction, since
π is a statistically sound proof, except with negligible probability it holds that
x′
1 = Decsk1 (c1)) and x′

2 = decsk2(c2) where x′
1, x

′
2 are part of the string a ob-

tained by the collision finding algorithm by decrypting c3 above. Therefore, we
have that M0(e) = Mi(x

′
1) and M1(e) = Mi(x

′
2). However, we also have that

692 Y. Ishai, O. Pandey, and A. Sahai

M0(e) �= M1(e) =⇒ Mi(x
′
1) �= Mi(x

′
2) =⇒ x′

1 �= x′
2. Since Mi(x

∗
0) = Mi(x

∗
1) it

holds that the sets {x′
1, x

′
2} �= {x∗

0, x
∗
1}.

Since π is valid, and c1, c2 are encryptions of (unequal strings) x′
1, x

′
2, from

the statistical soundness of π statements 2(b.ii) and 2(b.iii) must be true. That
is, α1 (likewise α2) must be a commitment to one of h(x′

1) or h(x′
2). But α1 is

a commitment to h(x∗
0) and α2 is a commitment to h(x∗

1) and commitment is
statistically binding. Since at least one of x′

1, x
′
2 is not equal to any of x∗

0, x
∗
1 the

collision must occur on one of the four possible pairs of these strings.

Step 5: Indistinguishability of H4–H8. Hybrids H4 to H8 are applying
changes very similar to the first four hybrids except in the reverse order. The
proof of their indistinguishability can be obtained by following previous proofs
in a near identical fashion. In particular we can prove H4 ≈c H5 by relying on
the security of encryption and strong WI (following the proof in step 2 or 3),
H5 ≈c H6 following the proof in step 4, H6 ≈c H7 following the proof in step 2,
and H7 ≈c H8 following the proof in step 1.

This completes the proof of security of our functional encryption scheme.

References

[ABG+13] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs
obfuscation and applications. IACR Cryptology ePrint Archive, 2013 (2013)

[AIK06] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in nc0. SIAM J.
Comput. 36(4), 845–888 (2006)

[App11] Applebaum, B.: Randomly encoding functions: A new cryptographic
paradigm. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 25–31.
Springer, Heidelberg (2011)

[BC14] Bitansky, N., Canetti, R.: On strong simulation and composable point ob-
fuscation. J. Cryptology 27(2), 317–357 (2014)

[BCC+14] Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein,
A., Tromer, E.: The hunting of the SNARK. IACR Cryptology ePrint
Archive, 2014:580 (2014)

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back
again. In: Innovations in Theoretical Computer Science 2012, Cambridge,
MA, USA, January 8-10, pp. 326–349 (2012)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: Symposium
on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA,
June 1-4, pp. 111–120 (2013)

[BCKP14] Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box ob-
fuscation for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014)

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014), Preliminary version on Eprint 2013:
http://eprint.iacr.org/2013/650.pdf

http://eprint.iacr.org/2013/650.pdf

Public-Coin Differing-Inputs Obfuscation and Its Applications 693

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: Symposium on Theory of Computing,
STOC, New York, NY, USA, May 31 - June 03, pp. 505–514 (2014)

[BG02] Barak, B., Goldreich, O.: Universal arguments and their applications. In:
Annual IEEE Conference on Computational Complexity (CCC), vol. 17
(2002), Preliminary full version available as Cryptology ePrint Archive,
Report 2001/105

[BGI+12] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vad-
han, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J.
ACM 59(2), 6 (2012)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting ob-
fuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014)

[BGT14] Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and their
applications. Cryptology ePrint Archive, Report 2014/771 (2014),
http://eprint.iacr.org/

[BHK13] Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via
uces. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 398–415. Springer, Heidelberg (2013)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
The ACM Conference on Computer and Communications Security, CCS
2012, Raleigh, NC, USA, October 16-18, pp. 784–796 (2012), Cryptoglogy
Eprint Archive Report 2012/265

[BP13] Boyle, E., Pass, R.: Limits of extractability assumptions with distribu-
tional auxiliary input. Cryptology ePrint Archive, Report 2013/703 (2013),
http://eprint.iacr.org/2013/703.pdf

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: ACM Conference on Computer and Com-
munications Security, pp. 62–73 (1993)

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014), Preliminary version on
Eprint at http://eprint.iacr.org/2013/563.pdf

[BST14] Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-
way function and a framework for differing-inputs obfuscation. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–
121. Springer, Heidelberg (2014), Earlier version: IACR Cryptology ePrint
Archive 2013:873 (December 2013)

[BSW11] Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Pater-
son, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer,
Heidelberg (2011)

[Can97] Canetti, R.: Towards realizing random oracles: Hash functions that hide
all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 455–469. Springer, Heidelberg (1997)

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited. J. ACM 51(4), 557–594 (2004)

[CHJV14] Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishabil-
ity obfuscation of iterated circuits and ram programs. Cryptology ePrint
Archive, Report 2014/769 (2014), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/2013/703.pdf
http://eprint.iacr.org/2013/563.pdf
http://eprint.iacr.org/

694 Y. Ishai, O. Pandey, and A. Sahai

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the
integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation.
In: STOC, pp. 554–563 (1994)

[FLS99] Feige, Lapidot, Shamir.: Multiple noninteractive zero knowledge proofs un-
der general assumptions. SIAM Journal on Computing 29 (1999)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all cir-
cuits. In: FOCS, pp. 40–49 (2013)

[GGHW14] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of
differing-inputs obfuscation and extractable witness encryption with aux-
iliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014)

[GK05] Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with aux-
iliary input. In: FOCS, pp. 553–562 (2005)

[GKP+13a] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer,
Heidelberg (2013)

[GKP+13b] Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Succinct functional encryption and applications: Reusable garbled circuits
and beyond. In: STOC (2013)

[Gol01] Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press (2001), Earlier version available on
http://www.wisdom.weizmann.ac.il/~oded/frag.html

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: CCS (2006)

[GR07] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg
(2007)

[GR13] Goldreich, O., Rothblum, R.D.: Enhancements of trapdoor permutations.
J. Cryptology 26(3), 484–512 (2013)

[HR04] Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure
hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004)

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In: 41st Annual
Symposium on Foundations of Computer Science, FOCS 2000, Redondo
Beach, California, USA, November 12-14, pp. 294–304 (2000)

[KLW14] Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for
turing machines with unbounded memory. Cryptology ePrint Archive, Re-
port 2014/925 (2014)

[LP14] Lin, H., Pass, R.: Succinct garbling schemes and applications. Cryptology
ePrint Archive, Report 2014/766 (2014), http://eprint.iacr.org/

http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://eprint.iacr.org/

Public-Coin Differing-Inputs Obfuscation and Its Applications 695

[Mic94] Micali, S.: CS proofs. In: FOCS, pp. 436–453 (1994)

[PPS15] Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box
simulation and four message concurrent zero knowledge for NP. In: TCC
(2015), Earlier version: IACR Cryptology ePrint Archive 2013:754

[SS10] Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with
public keys. In: CCS, pp. 463–472 (2010)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer,
Heidelberg (2005)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: STOC, pp. 475–484 (2014)

[Yao82] Yao, A.C.: Theory and applications of trapdoor functions. In: Proc. 23rd
FOCS, pp. 80–91 (1982)

A Other Primitives

Fully Homomorphic Encryption with Decryption in NC1. A fully ho-
momorphic encryption (FHE) scheme is a public-key encryption scheme with
an additional evaluation algorithm Eval. Formally, given a public-key pk, cipher-
texts c1, . . . , cm corresponding to the bits b1, . . . , bm (under pk), and a circuit
f : {0, 1}m → {0, 1}, algorithm Eval outputs a ciphertext c′ such that except
with negligible probability over the randomness of all algorithms, the decryption
of c′ is the bit f(b1, . . . , bm) where m = m(n) is an arbitrary polynomial.

The encryption of a long message x ∈ {0, 1}n under pk consists of encrypting
each bit of x under pk, and will be denoted by c = Encpk(x). Given c, the
homomorphic evaluation of an oblivious Turing machine M with known running
time t consists of t homomorphic evaluations of the the circuit corresponding to
the transition function of M where in the i-th iteration the transition function
is applied on the contents of the encrypted input/work tape (containing x at the
start) and an encrypted state; it results in a new encrypted state as well as new
encrypted contents on the work tape.

A FHE scheme has decryption in NC1 if there exists a constant c ∈ N such
that for all n ∈ N the depth of the circuit corresponding to the decryption
function Dec(1n, pk, ·) is at most c logn.

Strong Non-Interactive Witness Indistinguishable Proofs for NP. As
a tool for our functional encryption application, we need non-interactive proofs
for NP in the common random string model. We require that the proof system
be capable of proving statements of unbounded polynomial length. In terms of
soundness, we require the system to be a proof system where the soundness guar-
antee is statistical: i.e., even unbounded provers cannot prove a false statement
with noticeable probability. In terms of prover security, we only require the proof
system to satisfy strong witness indistinguishability [Gol01] which is implied by
the zero-knowledge property. The NIZK proof system of Feige, Lapidot, and
Shamir [FLS99] satisfies all of these requirements.

696 Y. Ishai, O. Pandey, and A. Sahai

B Bounded-Input Case

In this section we consider the �-bounded-input case, in which we consider the
class of TMs whose input is bounded by a polynomial �, and the size of the
obfuscation is allowed to depend on �; however it does not depend on the running
time of TMs in the class, which could be much larger than �. To emphasize that
a class is a bounded-input TM class, we will explicitly include � in the notation.

Definition 7 (Public-Coin Differing-Inputs Obfuscator for �-Bounded-
Input TMs). For every polynomial � : N → N, let M = {M�

n}n∈N denote the
class of all TMs such that every M ∈ M�

n is of size n, accepts inputs of length
at most �(n), and halts within a polynomial, say t(n), number of steps on all
inputs. A uniform PPT algorithm O is a public-coin differing-inputs obfuscator
for the class of all bounded-input TMs if it satisfies the correctness and security
conditions of definition 4 and the following modified succinctness condition: there
exists a (global) polynomial s′ : N → N such that for all n, for all M ∈ Mn, and
for all M ′ ← O(1n,M), the size of M ′ is bounded by s′(n, �(n)) and its running
time is bounded by s′(n, t(n)) for all x ∈ {0, 1}≤�(n).

We show that given a public-coin differing-inputs obfuscator for the class NC1, we
can construct a public-coin differing-inputs obfuscator for bounded-input Turing
machines’ class.

Theorem 3. Suppose that there exists a public-coin differing-inputs obfuscator
for circuits in the class NC1. Then, assuming the existence of a fully homo-
morphic encryption scheme with decryption in NC1 and a (publicly verifiable)
SNARG system for P (alternatively, a P-certificate) in the common random
string model, there exists a public-coin differing-inputs obfuscator for bounded-
input Turing machines as defined in 7.

We first present the construction, and then prove the theorem. Let � and t be
polynomials, and let M = {M�

n}n∈N be the family of bounded-input TMs where
everyM ∈ M�

n is of size n, accepts inputs of length at most �(n) and halts within
t(n) steps on every x. Let FHE = (Gen,Enc,Dec,Eval) be a fully homomorphic
encryption scheme with decryption in NC1, and Π = (P, V) be a SNARG for
the relation Rc defined earlier where c is a constant such that t(n) ≤ nc for all
n. The description of our obfuscator and its evaluation algorithm, are as follows.

Obfuscator O
(
1n,M ∈ M�

n

)
: By convention, description of M includes the

bounds t and �. Let Un be an oblivious universal TM which on input the de-
scription of a TM B, and a string x ∈ {0, 1}≤�(n) executes B on x for no more
than t(n) steps. The obfuscator proceeds in the following steps:

1. Generate two FHE public-keys (pk1, sk1) ← Gen(1n;u1) and (pk2, sk2) ←
Gen(1n;u2).

2. Encrypt M under both FHE public-keys: g1 ← Encpk1(M ; v1) and g2 ←
Encpk2(M ; v2). Here M is assumed to be encoded as a bit string of length n
for use by the universal TM Un.

Public-Coin Differing-Inputs Obfuscation and Its Applications 697

3. Uniformly sample crs ← {0, 1}poly(n) of sufficient length for SNARG Π.
4. Generate an obfuscation of the NC1-program P1

crs

sk1,g1,g2
given in figure 2:

P ′ ← ONC1

(
1n, P1

crs

sk1,g1,g2

)
.

5. Output M ′ = (P ′, crs, pk1, pk2, g1, g2).

Program P1
crs

sk1,g1,g2
:

◦ Input: a tuple (x, e1, e2, π, φ), Constants: crs, sk1, g1, g2, pk1, pk2.
◦ Check that φ is a valid low-depth proof for the NP-statement:

1 = V
(
crs, (M̃Eval, 〈x, e1, e2〉, t2), π

)
where M̃Eval simply checks that computation MEval(x) outputs (e1, e2)
in ≤ 2t log t steps.MEval(x) is defined as follows: it has (pk1, pk2, g1, g2)
hardcoded, and homomorphically evaluates Un(·, x) on g1 and g2 to
produce e1 and e2 respectively.
I.e., e1 = Evalpk1(Un(·, x), g1) and e2 = Evalpk2(Un(·, x), g2).

◦ If the check fails, output ⊥; otherwise output Decsk1(e1).

Program P2
crs

sk2,g1,g2
:

◦ Same as P1crssk1,g1,g2
except that if the check is successful, it outputs

Decsk2(e2).

Fig. 2. The programs P1 and P2

Evaluation of M ′. Evaluate M ′ = (P ′, crs, pk1, pk2, g1, g2) on input x as fol-
lows:

1. Let (e1, e2) = MEval(x). Recall that (fig. 1): e1 = Evalpk1(Un(·, x), g1), e2 =
Evalpk2(Un(·, x), g2)

2. W.l.o.g, the running time of MEval(x) is at most 2t log t ≤ t2. Compute the
proof π:6

π ← P
(
crs, (M̃Eval, 〈x, e1, e2〉, t2), ⊥

)
3. Compute a low-depth proof φ that π is a valid SNARG, i.e., V (crs, (M̃Eval,

〈σ, e1, e2〉, t2), π) = 1. This can be done by providing the entire computation
of V on these inputs.

4. Execute P ′(x, e1, e2, π, φ) and output the result.

The analysis of this construction is similar to the case of unbounded input. It
can be found in the Eprint version of this work (Report 2014/942).

6 No witness is necessary as this is computation in P.

Author Index

Aggarwal, Divesh I-398
Agrawal, Shashank I-375
Alberini, Giulia II-169
Applebaum, Benny II-528
Asharov, Gilad I-199

Bader, Christoph I-629
Banerjee, Abhishek II-31
Beimel, Amos I-199
Bitansky, Nir II-401
Bogdanov, Andrej I-1
Brakerski, Zvika II-1, II-306, II-528
Brzuska, Christina I-1, II-428

Canetti, Ran II-456, II-468, II-557
Chung, Kai-Min I-66, II-229
Cohen, Aloni II-61
Coretti, Sandro I-532
Cramer, Ronald I-481

Dachman-Soled, Dana I-427, II-586
Döttling, Nico I-319
Dziembowski, Stefan I-398

Farshim, Pooya II-428
Fisch, Ben A. I-182
Freund, Daniel I-182
Fuchsbauer, Georg II-31

Garay, Juan A. I-134
Garg, Sanjam II-614
Gelles, Ran I-134
Gentry, Craig II-498
Goldwasser, Shafi II-61, II-557
Gorbunov, Sergey II-498
Gordon, S. Dov II-144
Goyal, Vipul I-260, II-325
Gu, Dawu I-7
Guo, Chun I-110
Guo, Siyao I-36
Gupta, Divya I-375

Halevi, Shai II-498
Hanaoka, Goichiro I-561
Hazay, Carmit II-90

Hemenway, Brett I-591
Hofheinz, Dennis I-629

Ishai, Yuval II-668

Jafargholi, Zahra I-451
Jager, Tibor I-629, II-121
Jain, Abhishek II-325
Johnson, David S. I-134

Kalai, Yael Tauman II-456
Katz, Jonathan II-144, II-586
Kazana, Tomasz I-398
Kiayias, Aggelos I-134
Kiltz, Eike I-629
Kiyoshima, Susumu I-290
Kolesnikov, Vladimir I-229
Komargodski, Ilan II-352
Koppula, Venkata II-325, II-378
Kraschewski, Daniel I-319

Li, Xiangxue I-7
Li, Xin I-502
Li, Yong I-629
Lin, Dongdai I-110
Lin, Huijia I-260, II-468
Lindell, Yehuda I-93
Liu, Feng-Hao I-427, II-144
Lui, Edward I-66, II-277

Maji, Hemanta K. I-375
Makriyannis, Nikolaos I-199
Malkin, Tal I-36
Matsuda, Takahiro I-561
Maurer, Ueli I-532
Mittelbach, Arno II-428
Mohassel, Payman I-229
Moran, Tal I-159, II-169
Müller-Quade, Jörn I-319

Naor, Moni I-182, II-199
Nilges, Tobias I-319

Obremski, Maciej I-398
Oliveira, Igor C. I-36
Omri, Eran I-199

700 Author Index

Orlov, Ilan I-159
Ostrovsky, Rafail I-345, I-591

Padró, Carles I-481
Pandey, Omkant I-260, I-375, II-638,
II-668

Paneth, Omer II-401, II-456
Pass, Rafael I-66, I-260, II-229, II-277
Peikert, Chris II-31
Pietrzak, Krzysztof II-31
Poburinnaya, Oxana II-557
Polychroniadou, Antigoni II-614
Prabhakaran, Manoj I-375, II-638

Ràfols, Carla II-247
Ramchen, Kim II-378
Rao, Vanishree II-586
Richelson, Silas I-159
Riva, Ben I-229
Rosen, Alon I-36, I-591, II-169
Rosulek, Mike I-229

Sahai, Amit I-260, II-325, II-638, II-668
Scafuro, Alessandra I-345
Segev, Gil II-306, II-352
Shi, Elaine I-427, II-144

Smith, Adam I-609
Stevens, Sophie II-31

Tackmann, Björn I-532
Tessaro, Stefano II-468

Vaikuntanathan, Vinod II-1, II-61,
II-468

Venkitasubramanian,
Muthuramakrishnan I-345

Venturi, Daniele I-532

Waters, Brent II-378
Weng, Jian I-7
Wichs, Daniel I-451

Xing, Chaoping I-481

Yogev, Eylon II-352
Yu, Yu I-7
Yung, Moti I-134

Zhang, Ye I-609
Zhou, Hong-Sheng I-427, II-144
Ziv, Asaf II-199

	Preface
	TCC 2015
	Wyner’s Wire-Tap Channel, Forty Years Later
	Table of Contents
	Pseudorandom Functions and Applications
	Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions(Or: How to Secretly Embed a Circuit in Your PRF)
	1 Introduction
	2 Overview of Our Construction
	3 Preliminaries
	3.1 Constrained Pseudorandom Function: Definition
	3.2 Learning with Errors
	3.3 One-Dimensional Short Integer Solution (SIS) and Variants
	3.4 Admissible Hash Functions
	3.5 Attribute-Based Encryption

	4 Embedding Circuits into Matrices
	5 ConstrainedPRF
	5.1 Construction
	5.2 Setting the Parameters
	5.3 Security
	5.4 Computational Functionality Preserving
	5.5 Other Properties

	6 Succinct Constrained Keys
	References

	Aggregate Pseudorandom Functionsand Connections to Learning
	1 Introduction
	1.1 Our Results: Aggregate Pseudo Random Functions
	1.2 Our Results: Augmented PRFs and Computational Learning

	2 Aggregate PRF
	2.1 A General Security Theorem for Aggregate PRFs
	2.2 Impossibility of Aggregate PRF for General Sets

	3 Constructions of Aggregate PRF
	3.1 Generic Construction for Interval Sets
	3.2 Bit-Fixing Aggregate PRF from DDH
	3.3 Decision Trees
	3.4 Read-Once Formulas

	4 Connection to Learning
	4.1 Preliminaries
	4.2 Learning with Aggregate Queries

	References

	Aggregate Pseudorandom Functionsand Connections to Learning
	1 Introduction
	1.1 Our Results: Aggregate Pseudo Random Functions
	1.2 Our Results: Augmented PRFs and Computational Learning

	2 Aggregate PRF
	2.1 A General Security Theorem for Aggregate PRFs
	2.2 Impossibility of Aggregate PRF for General Sets

	3 Constructions of Aggregate PRF
	3.1 Generic Construction for Interval Sets
	3.2 Bit-Fixing Aggregate PRF from DDH
	3.3 Decision Trees
	3.4 Read-Once Formulas

	4 Connection to Learning
	4.1 Preliminaries
	4.2 Learning with Aggregate Queries

	References

	Oblivious Polynomial Evaluation and SecureSet-Intersection from Algebraic PRFs
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Basic Notations
	2.2 Zero-Knowledge Proofs

	3 Protocols for Oblivious Polynomial Evaluation
	3.1 Algebraic Pseudorandom Functions [6]
	3.2 Our OPE Constructions
	3.3 Secure Protocols for πMaskPoly

	4 Secure Set-Intersection
	4.1 Improved Constructions Using Hash Functions

	5 Committed Oblivious PRF Evaluation
	5.1 The Set-Intersection Protocol
	5.2 Search Functionalities

	References

	Verifiable Random Functionsfrom Weaker Assumptions
	1 Introduction
	2 Preliminaries
	2.1 Verifiable Unpredictable/Random Functions
	2.2 q-Diffie-Hellman Assumptions

	3 Main Construction
	4 Balanced Admissible Hash Functions
	5 VF is a Verifiable Random Function
	6 VF is a Verifiable Unpredictable Function
	6.1 Admissible Hash Functions
	6.2 Security Analysis

	References
	A Proof of Lemma 1
	B Proof of Lemma 4

	Proofs and Verifiable Computation
	Multi-Client Verifiable Computation with Stronger Security Guarantees
	1 Introduction
	1.1 Our Contributions
	1.2 Techniques and New Primitives
	1.3 RelatedWork

	2 Multi-Client Verifiable Computation
	2.1 Definitions
	2.2 Security Definition

	3 Malicious Server or Semi-honest Client Corruptions
	3.1 Multi-sender ABE
	3.2 Achieving Attribute Hiding

	4 From Semi-honest to Malicious Clients Corruptions
	5 When the Server and Some Clients Are Corrupted
	References
	A Preliminaries
	B Instantiations and Efficiency

	Public Verification of Private Effort
	1 Introduction
	1.1 Privately Verifiable Proofs of Effort
	1.2 Our Results
	1.3 Main Theorems
	1.4 Comparison to Verifiable Voting
	1.5 Related Work

	2 Model and Definitions
	2.1 Verifiable Effort-Based Polling
	2.2 Formally Defining Proofs of Effort

	3 The Protocol
	4 Soundness
	4.1 Large-Set Expanding Property
	4.2 Main Theorem and Proofs

	5 Completeness
	6 Discussion and Open Questions
	References
	A Implementing PPEs, Extensions and Selective Polling
	B Choosing Parameters

	Primary-Secondary-Resolver Membership Proof Systems
	1 Introduction
	2 Model and Security Definitions
	2.1 PSR Systems
	2.2 Completeness and Soundness
	2.3 Zero-Knowledge

	3 Concurrent Zero Knowledge
	4 HIBE Based Construction of PSR Systems
	4.1 HIBE Definition
	4.2 HIBE Security
	4.3 PSR from HIBE
	4.4 HIBE Construction by Boneh, Boyen and Goh

	5 PSR System Constructions
	5.1 Using One-Time Signatures
	5.2 Using Cuckoo Hashing with a Stash
	5.3 Using Verifiable Random Looking Functions

	6 Conclusions and Future Directions
	References

	Tight Parallel Repetition Theorems for Public-Coin Arguments Using KL-Divergence
	1 Introduction
	2 Preliminaries
	2.1 Interactive Arguments

	3 Proof of the Parallel Repetition Theorem
	References
	Proof of Lemma 7

	Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability
	1 Introduction
	2 Preliminaries
	3 Commit-and-Prove Scheme
	4 Groth-Sahai NIZK Proofs
	5 (Simulatable) Verifiable Correlated Key Generation: Definitions
	6 NIZK Proofs and NI Zap of Partial Satisfiability
	7 (Simulatable) Verifiable Correlated Key Generation: Constructions
	8 Examples
	9 Applications
	References
	A Proof of Lemma 1
	B Security Definitions
	C Verifiable Correlated Key Generation For Other Equation Types

	Differential Privacy
	Outlier Privacy
	1 Introduction
	2 Outlier Privacy
	2.1 Simple Outlier Privacy
	2.2 Simultaneously Achieving Simple Outlier Privacy and Differential Privacy
	2.3 Staircase Outlier Privacy
	2.4 Examples of Outlier Private Histogram Algorithms for General�(·), δ(·)
	2.5 Comparing the Staircase Algorithm and the Algorithms for General (·), δ(·)

	3 Simultaneously Achieving Simple Outlier Privacy and Distributional Differential Privacy
	References

	Functional Encryption
	Function-Private Functional Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 Subsequent Work
	1.3 Additional Related Work
	1.4 Overview of Our Approach
	1.5 Open Problems
	1.6 Paper Organization

	2 Preliminaries
	2.1 Private-Key Encryption
	2.2 Private-Key Functional Encryption

	3 Modeling Function Privacy in the Private-Key Setting
	4 Our Function-Private Scheme
	References

	Functional Encryptionfor Randomized Functionalities
	1 Introduction
	2 Functional Encryption for Randomized Functions
	2.1 Security for Functional Encryption

	3 Preliminaries
	3.1 Indistinguishability Obfuscation
	3.2 Puncturable Pseudorandom Functions
	3.3 Non-Interactive Witness Indistinguishable Proofs
	3.4 Commitment Schemes

	4 Our Construction
	5.1 Description of Simulator
	5.2 Indistinguishability of the Outputs

	5 Proof of Theorem 2
	References
	A Correctness of
	B
	Security Implies
	and
	Security

	Functional Encryption for Randomized Functionalities in the Private-Key Setting from Minimal Assumptions
	1 Introduction
	1.1 Our Contributions
	1.2 Additional Related Work
	1.3 Overview of Our Approach
	1.4 Paper Organization

	2 Preliminaries
	2.1 Pseudorandom Functions
	2.2 Private-Key Functional Encryption

	3 Private-Key Functional Encryption for Randomized Functionalities
	3.1 Correctness and Independence
	3.2 “Best-Possible” Message Privacy

	4 Our Functional Encryption Scheme
	4.1 Proof of Theorem 2

	References

	Obfuscation
	Separations in Circular Security for Arbitrary Length Key Cycles
	1 Introduction
	2 Preliminaries
	2.1 Circular Security
	2.2 Indistinguishability Obfuscation

	3 Counter Example for n-Circular Security
	3.1 The Attack
	3.2 IND-CPA Security

	4 Counter Example for 1-Circular Security of Bit-by-bit Encryption
	5 Key Recovery from Circular Insecurity
	References
	A Counter Example for 1-Circular Security of Bit-by-bit Encryption
	B Key Recovery From Circular Insecurity

	ZAPs and Non-InteractiveWitness Indistinguishability from Indistinguishability Obfuscation
	1 Introduction
	1.1 Results
	1.2 Techniques

	2 Definitions
	2.1 Non-Interactive Zero-Knowledge
	2.2 ZAPs
	2.3 NIWIs
	2.4 Indistinguishability Obfuscation

	3 Invariant Signatures from Indistinguishability Obfuscation
	3.1 Puncturable PRFs
	3.2 Invariant Signatures Construction

	4 NIZKs and ZAPs from Invariant Signatures
	5 Non-Interactive Witness-Indistinguishability
	References

	Random-Oracle Uninstantiability from Indistinguishability Obfuscation
	1 Introduction
	1.1 Background
	1.2 Uninstantiability
	1.3 Our Results

	2 Preliminaries
	3 Deterministic Encryption
	3.1 Definitions
	3.2 Uninstantiability of EwH
	3.3 Consequences for UCEs
	3.4 Extension to Hedged PKEs
	3.5 Other Uninstantiability Results

	4 Concluding Remarks
	References
	References

	On Obfuscation with Random Oracles
	1 Introduction
	1.1 This Work
	1.2 Techniques

	2 Impossibility of Obfuscation in the RO Model
	2.1 Approximate Obfuscation
	2.2 The Impossibility

	References

	Obfuscation of Probabilistic Circuits and Applications
	1 Introduction
	2 Overview
	2.1 Our Definitional Framework: IO for Probabilistic Circuits
	2.2 Application 1: Fully-Homomorphic Encryption
	2.3 Application 2: Bootstrapping IO

	3 IO for Probabilistic Circuits
	3.1 IO for General Samplers over Probabilistic Circuits
	3.2 Static-input pIO for Circuits
	3.3 Dynamic-input pIO for Circuits
	3.4 Worst-case-input pIO for Circuits
	3.5 Relations

	4 Application 1: Fully Homomorphic Encryption
	4.1 Trapdoor Encryption Schemes
	4.2 From Trapdoor Encryption to Leveled Homomorphic Encryption
	4.3 From LHE to FHE

	References

	Graph-Induced Multilinear Maps from Lattices
	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Organization

	2 Preliminaries
	2.1 Lattice Preliminaries
	2.2 Graded Multilinear Encodings

	3 Our Graph-Induced Multilinear Maps
	3.1 Correctness
	3.2 A Commutative Variant
	3.3 Public Sampling and Some Other Variations
	3.4 Hardness Assumptions

	4 Cryptanalysis
	4.1 Encoding of Zero is a Weak Trapdoor
	4.2 The Cheon et al. Attacks
	4.3 Recovering Hidden Av’s.

	5 Applications
	5.1 Multipartite Key-Agreement
	5.2 Candidate Branching-Program Obfuscation

	References
	A Parameter Selection

	Obfuscating Circuits via Composite-Order Graded Encoding
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 RelatedWorks

	2 Graded Encoding over Composite Order Groups
	2.1 General Notation
	2.2 Syntax
	2.3 Ideal GES Oracles

	3 GES-Based Obfuscators
	3.1 Main Definitions
	3.2 Algebraic Security

	4 Description of the Obfuscator and Correctness
	4.1 Setting and Definitions
	4.2 The Obfuscator SimpleObf
	4.3 The Obfuscator RobustObf
	4.4 Evaluating an Obfuscated Program

	5 Generic Security of Our Construction
	5.1 Useful Algebraic Tools
	5.2 Admissible Distributions on Composites and Rings
	5.3 Proof Outline
	5.4 Algebraic Security Proof for SimpleObf
	5.5 Algebraic Security Proof for RobustObf

	References

	Adaptively Secure Two-Party Computation from Indistinguishability Obfuscation
	1 Introduction
	2 The Models of Computation
	3 Protocol Overview
	4 Detailed Description and Analysis
	References

	Adaptively Secure, Universally Composable, Multiparty Computation in Constant Rounds
	1 Introduction
	1.1 Our Result
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Garbled Circuits
	output of SimGC(1λ, C, C(x; r)).2.2 Adaptively Secure Oblivious Transfer
	2.3 Indistinguishability Obfuscation

	3 Explainability Compilers
	3.1 Constructing an Explainability Compiler

	4 A Semi-Honest, Adaptively Secure Protocol
	5 Conclusions and Open Questions
	References
	A Puncturable PRFs
	B Proof of Security for Our Explainability Compiler

	Two-Round Adaptively Secure MPCfrom Indistinguishability Obfuscation
	1 Introduction
	1.1 Our Result
	1.2 Independent Work
	1.3 Technical Difficulties and New Ideas
	1.4 Application to Leakage Tolerant Protocols

	2 Preliminaries
	2.1 Notation
	2.2 Indistinguishability Obfuscators
	2.3 Non-Interactive Zero-Knowledge Proofs
	2.4 Double Key Encryption and Its Deniable Variant
	2.5 Equivocal and Extractable Commitments

	3 Our Protocol
	3.1 Extensions

	4 Description of Our Simulator
	5 Proof of Security
	6 Extending to Leakage Tolerant Secure Computation
	References

	Obfuscation-Based Non-black-box Simulation and Four Message Concurrent Zero Knowledgefor NP
	1 Introduction
	1.1 Technical Overview: Non-black-box Simulation via Program Obfuscation
	1.2 Related Work

	2 Preliminaries
	2.1 Interactive Proofs, Proofs of Knowledge, and Witness Indistinguishability
	2.2 Concurrent Zero Knowledge

	3 Differing Input Obfuscation for Turing Machines
	4 Constant Round Concurrent Zero-knowledge
	5 The Four Round Construction
	References
	6 Hardness of GenStat and a Nice Sampler
	6.1 Preamble GenStat
	6.3 A Nice Sampler for TM

	Public-Coin Differing-Inputs Obfuscation and Its Applications
	1 Introduction
	2 Our Definitions
	2.1 Circuits
	2.2 Turing Machines

	3 Preliminaries
	4 Bootstrapping Obfuscation from NC1 to Turing Machines
	5 Functional Encryption for Turing Machines
	References
	A Other Primitives
	B Bounded-Input Case

	Author Index

