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Preface

The 24th International Conference on Database and Expert Systems Applications
(DEXA 2013), with proceedings published as volumes 8055 and 8056 in Springer’s
Lecture Notes in Computer Science, featured some outstanding keynote presentations
and regular articles. As with previous editions of the DEXA conference, the Program
Co-chairs of DEXA 2013 invited some of the authors to submit extended papers to a
special issue of the Springer journal Transactions on Large-Scale Data- and Knowledge-
Centered Systems (TLDKS). Following these invitations, both keynote papers and eight
regular articles were submitted. Apart from the keynotes, each submission was carefully
assessed by at least two (often more) recognized experts in the respective field. In total,
35 reviews were received, most of them of excellent quality. After two rounds of
revisions, five of the eight regular papers were accepted for inclusion in this special
issue, in addition to the two keynote papers.

The contributions in this special issue address a range of important modern subject
areas in data-centric systems and applications, inclusive of argumentation, e-government,
business processes, predictive traffic estimation, semantic model integration, top-k query
processing, uncertainty handling, graph comparison, community detection, genetic
programming, and web services. In the DEXA tradition, all contributions distinguish
themselves by the novelty and innovation they bring to these subject areas.

The first keynote paper is authored by the presenter, Trevor Bench-Capon, from the
University of Liverpool, England, together with his colleagues Katie Atkinson, also
from Liverpool, and Adam Wyner, affiliated with the University of Aberdeen in
Scotland. Each of them is a distinguished expert in the field of computational argu-
mentation. Theoretical work on argumentation usually focuses on inferring consistent
sets of facts, rules, and assumptions that support each other and form coherent positions
on an issue. In addition to that, the authors investigate an argumentative form of
practical reasoning, for justifying decisions about actions, as opposed to theoretical
reasoning, which merely deals with what is the case. The particular application of
practical reasoning investigated in the keynote paper entitled “Using Argumentation to
Structure E-Participation in Policy Making” is the engagement of citizens in dialogues
with governmental entities about policies, by means of electronic computational
devices using argumentation.

For the second keynote paper, several authors from the Software Competence Center
in Hagenberg and the close-by University of Linz, both in Austria, have collaborated
under the leadership of the original keynote presenter, Klaus-Dieter Schewe. Tradi-
tionally, the many different aspects of business process modeling have been addressed
by different models. This makes it nearly impossible for stakeholders to develop suf-
ficient levels of trust in the quality of the business processes as a whole, preventing
mission-critical analysis and decision making. In their contribution “Horizontal
Business Process Model Integration,” the authors propose the integration of different
process models by specifying their semantics uniformly with abstract state machines.



The proposal is driven by the strong desire to derive targeted levels of quality on the
business processes in their entirety, which can be derived by taking advantage of the
rigorous verification and formal validation techniques that are a built-in feature of
abstract state machines.

The paper entitled “Exact and Approximate Generic Multi-criteria Top-k Query
Processing” is concerned with the ranking of answers to queries. It is authored by
Mehdi Badr and Dan Vodislav, both from the University of Cergy-Pontoise, France.
Top-k queries ask for the k best answers, where answer goodness is ranked according
to the scores produced by criteria that are stated in the query as ranking predicates.
Most top-k query processing algorithms are tailored to work for a specific kind of
access to ranking predicate scores, which may either be sorted, or at random, or both
sorted and random. An important contribution of the work by Badr and Vodislav is that
they propose a framework for generic top-k processing, in which it is possible to
express and analyze any top-k algorithm, regardless of whether it uses some strict
(i.e., either sorted or random) or some hybrid form of access. They have also elaborated
on extended, more generic variants of previously proposed algorithms, such that they
become easily comparable. Many existing approaches for top-k query processing only
compute exact results. While, in principle, exactness is desirable, it all too often comes
at the expense of execution time, so that more efficient approximations have to be
resorted to. The generic framework presented in this paper results in a thorough
performance analysis and comparison of exact and approximate top-k algorithms.

A pragmatic and highly interesting special-purpose solution to the problem of timely
traffic route prediction is proposed in the article on “Continuous Predictive Line Queries
for On-the-Go Traffic Estimation,” authored by Lasanthi Heendaliya, Dan Lin, and Ali
Hurson from the Missouri University of Science and Technology in Rolla, Missouri,
USA. Instead of simply offering predictions of optimal routings, called lines, that are
based on static snapshots of traffic conditions, the paper proposes a new type of spatial-
temporal queries, called continuous predictive line queries. These result in continuously
monitoring traffic dynamics, and return adjusted route suggestions whenever the
monitored circumstances change significantly. Thus, a much more up-to-date feedback
loop to users on the road is enabled. Details about a novel data structure and the pseudo-
code of algorithms for implementing the proposed approach are provided in the paper, as
well as assiduous analyses of its performance and costs. The evaluations reveal quan-
tifications of efficiency and effectiveness that improve conventional static predictions.

The recent resurgence of graph and network data types in the framework of graph
databases is reflected in the paper entitled “Query Operators for Comparing Uncertain
Graphs,” authored by a team of researchers from Georgetown University, Washington
DC, USA, consisting of Denis Dimitrov, Lisa Singh, and Janet Mann. Graph com-
parison is useful for detecting deviations and for hypothesizing properties of networked
structures by analogy from known properties of similar networks. Several query lan-
guages feature operators for comparing graphs and subgraphs. Others have proposed
extensions of graph models by incorporating vague attribute values, as well as
uncertainties about the presence or absence of vertices and edges. However, the
combination of comparison and uncertainty as presented in this paper is innovative.
Dolphin observation and citation networks are two showcases used to illustrate
the query language and its ability to analyze real-world uncertain graph data.

VI Preface



A performance study shows the viability of the proposed framework for reasonably
large graphs.

The paper entitled “Fast Disjoint and Overlapping Community Detection” is
authored by Yi Song and Stéphane Bressan, from the University of Singapore, and
Gillian Dobbie, from the University of Auckland, New Zealand. Grosso modo, their
work falls into the topic area of social networks. Communities are defined as the
subgraphs of such networks that feature a significantly high interconnectivity among
their members. The detection of such communities is useful in many applications, such
as sociology, biology, marketing, health care, etc. Many approaches to community
detection focus on partitions of disjoint communities (which, for example, is natural for
distributed networks of data stores that are fragmented by some node failures or broken
connections). However, the algorithms presented in this paper can be parallelized for
scaling them up to possibly large networks with overlapping communities. Such
overlaps are typical for social networks and critical applications such as epidemics
control or, more generally, networks with nonlocal interconnectivity. The metrics used
for empirically quantifying the effectiveness and runtime efficiency of the algorithms
involve network dimensions such as modularity, conductance, internal density, cut ratio,
community size, and weighted community clusters. The measurements of effectiveness
and efficiency also serve to compare the algorithms with state-of-the-art solutions, with
favorable results for the approach presented by the authors.

Finally, the paper “A Hybrid Approach using Genetic Programming and Greedy
Search for QoS-Aware Web Service Composition,” by Hui Ma, Anqi Wang, and
Mengjie Zhang from the Victoria University of Wellington, New Zealand, offers
insights into synergies obtained by applying methods from the hybrid fields of genetic
programming and greedy search, resulting in surprising improvements in web service
composition. The difficulties of the latter have grown proportionally to a tremendous
increase of web services in recent years. The authors propose the use of a greedy
algorithm for generating populations of candidate services, on which genetic-pro-
gramming-based mutations are performed in order to obtain optimized service com-
positions. The validity of the proposal is made plausible by an experimental study based
on public benchmark test cases with repositories of large quantities of web services and
pertinent properties. Moreover, the authors elaborate on an extension of their approach
in terms of optimizing solutions according to some given quality of service criteria.

We would like to thank all authors for their contributions to this special issue. We
are grateful to all reviewers for their invaluable work in reviewing the papers and
ensuring the high quality of this collection of articles. Last, but not least, our gratitude
goes to Gabriela Wagner, whose editorial assistance and handling of all the commu-
nication with the authors and the reviewers finally made this volume possible.

December 2014 Hendrik Decker
Lenka Lhotska
Sebastian Link
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Using Argumentation to Structure
E-Participation in Policy Making

Trevor Bench-Capon1(B), Katie Atkinson1, and Adam Wyner2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
tbc@liverpool.ac.uk

2 Department of Computing Science, University of Aberdeen, Aberdeen, UK

Abstract. Tools for e-participation are becoming increasingly impor-
tant. In this paper we argue that existing tools exhibit a number of
limitations, and that these can be addressed by basing tools on devel-
opments in the field of computational argumentation. After discussing
the limitations, we present an argumentation scheme which can be used
to justify policy proposals, and a way of modelling the domain so that
arguments using this scheme and attacks upon them can be automat-
ically generated. We then present two prototype tools: one to present
justifications and receive criticism, and the other to elicit justifications
of user-proposed policies and critique them. We use a running example
of a genuine policy debate to illustrate the various aspects.

Keywords: E-participation · Argumentation · Dialogues · Deliberation ·
Values · Policy making

1 Introduction

An important feature of democracies is that citizens can engage their govern-
ments in dialogues about policies. Traditionally this was done by writing letters:
government departments employed a large number of people whose main func-
tion was to reply to these letters on behalf on the Ministers to whom the letters
were addressed1. Although a large number of letters concerned the particular
individual circumstances of the writer, others were directed towards general pol-
icy matters. Such letters tended to fall into one of three types: some were in
pursuit of information and sought a justification of some policy or action; some
(probably the most common) objected to all or some aspects of a policy; a third
type made policy proposals of their own. The policies we have in mind have a
very broad range, running from particular local issues with a small impact to
issues of national importance which potentially impact on all citizens. In this
introduction we will characterise each of the three different types of engagement
1 The first author worked as a Civil Servant for the UK Department of Health and

Social Security in the late seventies, and part of his duties was replying to such
correspondence.

c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XVIII, LNCS 8980, pp. 1–29, 2015.
DOI: 10.1007/978-3-662-46485-4 1



2 T. Bench-Capon et al.

and illustrate them with reference to a simple motivating example concerning
a proposal by a local council to close a community library. In subsequent sec-
tions we will use the introduction of cameras by a national government to detect
motorists who are exceeding the speed limits as a running example which we
will model and discuss in detail.

For the first type of letter described above, the reply need only state a jus-
tification, which could be a stock reply: once a justification has been developed
it can be sent in response to all such inquiries. Relating this to our example
scenario, when the proposal to close the library is announced people may seek
information about the number of users and trends in usage over a time period,
as well as information about the running costs, both of which are likely to form
part of the justification for the proposed closure. The response is also likely give
reasons for closure in terms of usage or budget, or some other motivation.

For the second type of letter, a justification is not enough: to produce a sat-
isfactory reply the respondent needs first to understand what the citizen objects
to, and then to give an answer to the specific points. This may not be entirely
straightforward: often the writer will be unclear or ambiguous or lack focus. In
our example, the citizen might object to the closure of the library on a number
of different grounds such as a lack of alternative libraries in the local area, or the
council’s allocation of funds across its services, which must be first disentangled
and then answered separately.

For the third type of letter, even more is required. First a well formulated
proposal must be stated, and then that proposal can then be critiqued from the
standpoint of the government’s own beliefs and values. Both of these might prove
difficult. Formulating a policy is not an easy task, and so some considerable effort
might be needed to get the proposal into a coherent form. Also the critique might
require a variety of different kinds of knowledge, ranging from facts, through
economic models and budgetary constraints, to value choices. In our example
scenario, an alternative action that might be proposed is the creation of a mobile
library to serve a number of different communities and save costs.

A valuable by-product of this correspondence was that it enabled the mood
of the public to be gauged: those receiving and replying to this correspondence
could get a feel for which aspects of policy were popular and which were unpop-
ular, and which alternatives were well supported. But such knowledge tended
to be anecdotal and impressionistic: the paper process did not lend itself to
systematic quantification.

Nowadays e-mail and the internet offer a better way of conducting this kind
of dialogue. But while communication is quicker and more convenient, the task
remains difficult. It is still hard to formulate policy proposals, justifications and
critiques cogently. Nor does standard e-mail correspondence lend itself to sta-
tistical aggregation. But there is no obligation simply to replicate the existing
process. E-participation does offer opportunities to provide support for under-
standing inquiries, formulating replies and the aggregation task required to make
sense of the feedback. Unfortunately these opportunities have rarely been taken.

Current e-participation systems too often lack structure. Most commonly
they take the form of petitions or threaded discussions. Petitions allow the
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expression of general feelings, but they are unable to express objections with
precision. Too often they are ill expressed and conflate a variety of different
arguments, so that it is not clear what people are subscribing too. Threaded dis-
cussions allow people to feel that they have expressed their views, but they too
lack structure. Thus arguments are typically ill-formed, and the lack of structure
also makes comparison, aggregation and assimilation difficult. In consequence,
government replies are often general, bland and superficial; they fail to address
the particular objections of the citizens; and the views expressed by the citizens
remain hard to quantify. To address these issues, we believe that tools that are
firmly grounded on a well defined model of argument are needed.

Following a discussion of some existing tools, and their limitations, we intro-
duce our model of argument. We present an underlying semantic structure and
argument scheme for the justification of policy proposals, along with ways of
critiquing such justifications in terms of its structure. We also offer a detailed
example, instantiating the formal structure with a representation of a real policy
debate: whether speed cameras should be introduced on major roads. This will
form a running example for use in the following sections where we introduce our
two tools, directed in turn at each of the second and third tasks described above,
and at the collection and aggregation of information from the dialogues. Finally
we offer some concluding remarks.

2 Existing Tools

From a developer’s point of view, a key consideration in designing and building
on-line tools for e-participation is the trade-off between the amount of structure
provided by the tool and its ease of learning and use. Since the target audience
is the general public, participation must be fostered by making the interactive
system as straightforward to use as possible. If, however, the responses are to
be meaningfully analysed in terms of their content, then considerable structure
needs to be imposed on the data. In this section we will discuss some existing
tools2 and then summarise what we see as their limitations.

2.1 E-Petitions

The simplest e-participation tool is the e-petition. This allows people to register
a petition, criticising a policy or advocating a change of policy, and provides
the means for other people to endorse it. This is the modern version of a very
traditional method of expressing grievances: since at least the eighteenth century
2 The IMPACT project ran from January 2010 until December 2012. The tools

described here are predominately those that provided the context for the devel-
opments of that project, which are the main topic of this paper. Since then, social
media, especially Twitter, has become widely used, and several e-participation devel-
opments have attempted to reflect this. Thus the focus remains very much on the
communications channel, and it remains true that there has been little attention
paid to providing more structure and coherence to the utterances.
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people went round with paper petitions gathering signatures and presenting them
to their rulers. Given enough signatures, the government may issue a reply, or the
issue might even be debated in Parliament. But really, apart from convenience,
the e-petition represents little by way of progress from the paper version.

Under the previous Labour administration (1997–2010), the UK government
introduced a much used e-petition site3. The motivation was stated on the site
as e-petitions is an easy way for you to influence government policy in the UK.
These e-petitions could address anything for which the government is responsi-
ble. Once a petition got at least 100,000 signatures, it was eligible for debate in
the UK parliament. A similar site was also used by the US government where
an official response was issued once the petition reached a threshold number of
signatures.

Whilst these e-petitions indeed proved easy to use, easy to respond to and
facilitated signature collection (one particular petition in the UK gained over
1.81 million electronic signatures), the quality of engagement they offered is
questionable. Such e-petitions are simply electronic versions of paper petitions,
and they suffer from the same shortcomings as paper versions, the most signifi-
cant being the conflation of a number of issues into one catch-all statement. As
Dr. Samuel Johnson wrote back in the eighteenth century:

The petition is then handed from town to town, and from house to house;
and, wherever it comes, the inhabitants flock together, that they may
see that which must be sent to the king. Names are easily collected. One
man signs, because he hates the papists; another, because he has vowed
destruction to the turnpikes; one, because it will vex the parson; another,
because he owes his landlord nothing; one, because he is rich; another,
because he is poor; one, to show that he is not afraid; and another, to
show that he can write.

The recipient of the petition can only assume that by signing, the signatory
agrees wholeheartedly with all of the (potentially) multiple points raised in the
statement. This makes it easy to over simplify and to blur the issues since it
is likely that individuals object for different reasons. Consider, for example,
one of the most popular petitions on the UK site which criticised a proposed
reduction in the UK national speed limit on roads. The petition objected that the
reduction would not make a difference to road deaths and that the subsequent
cut in carbon emissions would be too insignificant to justify the speed limit
reduction. Signing such a petition is an ‘all-or-nothing’ statement with no room
to discriminate between (or even acknowledge) the two very different objections
raised. In a word, the petitions lack structure. The responses provided by the
government were also at a general level and not able to recognise or address
particular concerns, and so typically failed to satisfy anyone fully. We need the
opinions to be presented in a coherent, well reasoned, structure: arguments rather
than mere assertions.
3 A very similar site, launched by the current Conservative administration, is currently

(2014) available at http://epetitions.direct.gov.uk.

http://epetitions.direct.gov.uk
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2.2 Free Text Based Tools

There have been several proposals for policy-making support tools in the
European Union and the United States which use currently available wiki, com-
ment, email, or social networking technologies (see [9,16] for discussion of other
tools such as IBIS+, Compendium, DebateGraph). We discuss several of these
briefly in order to set the context for the contribution of our Structured Consul-
tation Tool (which we refer to herein as the SCT).4

The United Kingdom’s Cabinet Office Public Reading website5, presented
the Protection of Freedoms Bill, using a website that unfolds the proposed bill,
allowing on-line readers to look at specific sections. At the bottom level, the
user can use a threaded comment facility to respond to a particular portion or
responses made by other users. With the Public Reading tool, it is difficult to get
an overview understanding of the whole policy and the relation of responses to it.
Thus, the role and impact of responses is not highlighted. There is no support for
analysing the responses, which is then done “manually” by analysts of the consul-
tation, making the contribution of the responses to any subsequent development
of the policy draft obscure. Moreover, while the responses are specifically linked
to parts of the legislation, the unconstrained nature of the responses means the
consultation is unstructured and unsystematic. Not only does this allow inap-
propriate or irrelevant responses, but it may not elicit the kind of important
or useful information that is the primary motivation for the consultation in the
first place. The Bill itself proposes a solution to some legislative problem; com-
ments on the Bill may discuss alternative solutions. Yet understanding the Bill
or alternative solutions may rest on the motivations and justifications underlying
the solutions, for example, in terms of social values that the solution promotes.
Making these motivations and justifications overt would further support rational
analysis and understanding of the Bill, which in turn would better represent the
stakeholders’ interests and objectives.

Like the UK Prime Minister’s Office e-petition site discussed above, the Euro-
pean Commission’s The European Citizens’ Initiative facilities allow citizens to
electronically create, sign, and submit petitions.6 By the same token, these tools
can be used to “vote” on a policy proposal. The tools, which enable respondents
to submit petitions, are web-based versions of what is has been traditionally
accomplished manually. Both of these tools contribute to the policy formula-
tion stage of the policy-making cycle, but not to the comment stage. There is
no analytic framework. A particular problem is that it is unclear exactly what
respondents are signatory to; that is, it provides an unrefined all or nothing rep-
resentation of a point of view, whereas there may well be respondents who agree
with some parts of the proposal, but not other parts, yet nonetheless sign on to
the whole. What is needed is support to differentiate and draw out such subtle
alternative viewpoints.
4 All websites accessed April 24, 2014.
5 http://publicreadingstage.cabinetoffice.gov.uk/ (archive only).
6 http://epetitions.direct.gov.uk/.

http://ec.europa.eu/citizens-initiative/public/welcome.

http://publicreadingstage.cabinetoffice.gov.uk/
http://epetitions.direct.gov.uk/
http://ec.europa.eu/citizens-initiative/public/welcome
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Other initiatives aim to improve the quality of comments on proposed legis-
lation. The US General Services Administration used a tool to support consul-
tation, ExpertNet, which drew upon “crowdsourced” expertise and attempted to
structure responses with social networking facilities such as ranking responses,
providing specific questions for community voting and annotating responses,
among others. While this does give indicative information on respondents’ reac-
tions, the legislation is not represented in an analytic form, let alone a form able
to support machine analysis. Rather, although the content of the legislation and
the reactions to it must be further analysed, there is no analytic framework to
support this. There are additional issues raised about how to identify, certify,
and monitor the community of experts. The RegulationRoom is an academically
hosted facility for commenting on proposed legislation, providing guidelines on
effective comments. This is more substantive than ExpertNet, but it requires
highly skilled individuals to follow the guidelines; it may best suit respondents
who already participate in policy consultations rather than untrained members
of the public.7

Finally, in the US state of Massachusetts, legislators provide a wiki tool, Lex-
Pop, to “crowdsource” the incremental development of legislation.8 The question
here concerns who is in a position to use such a tool, not just in terms of rep-
resenting the interests of others and reasoning about legislation, which often
requires a deep understanding of law and how to author legislation, but also
reasoning about legal values and consequences. The success of current wikis
(e.g. Wikipedia) rests on an often small coterie of self-selected, self-regulating
authors who write about specialist topics, where questions and controversies can
be left unresolved and where there are no legislated consequences.

Despite these drawbacks, these past and current tools and initiatives are
clearly potentially important and useful in leveraging current technologies to
draw in greater citizen participation to policy-making by making participation
easier and improving the informativeness of feedback. However, providing the
means to address or avoid these limitations would positively impact on policy
making. In particular, the tools discussed above do not further the substantive
semantic analysis of the comments in a form that supports machine-processing of
rich, complex information, particularly where the comments introduce conflicts
and inconsistencies that must be reasoned with. That is, they do not make use of
current thinking or techniques found in Artificial Intelligence on argumentation.

2.3 Structured Tools

A key issue we have raised here with respect to tools that solicit user input in
free text is how and where to impose structure to identify the arguments pro-
posed so that the analysis of the opinions can be made meaningful, and even
supported through computational analysis. An alternative, relatively untried in
7 http://expertnet.wikispaces.com/.

http://regulationroom.org/.
8 http://lexpop.org/.

http://expertnet.wikispaces.com/
http://regulationroom.org/
http://lexpop.org/
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practice, where success seems to be judged by the quantity rather than the qual-
ity of responses received, is to oblige users to conform to a restrictive structure.
This may, however, inhibit their interaction or require them to understand the
underlying theory. Users may then make mistakes, and their responses be pre-
cise but wrong, which is even worse than being vague. Despite the difficulties, a
number of research systems have been developed with the intention of providing
a better level of support. We briefly discuss some of the better known and the
issues they raise.

One category of tool is argument mapping tools. Araucaria [19] is one exam-
ple which enables users to mark up the premises and conclusions of arguments,
and indicate particular argumentation schemes identifying patterns of reason-
ing. Whilst the mark-up requires users to think more deeply about the structure
of their arguments, there still remains no guarantee that the semantics of the
marked up text is coherent and consistent since users simply decide what text to
label as premises and conclusions and what the inferences are. In consequence
the tool can accept invalid mark-ups and typically there are several different,
equally valid, mark-ups.

Other on-line argument mapping tools include Debatepedia and its replace-
ment, Debatabase9. These are on-line ‘wikis’ containing an ever growing collec-
tion of arguments and debates within which users can express pros and cons of
a range of issues. Although democratic in that users can freely modify others’
contributions, the arguments entered are not required to conform to any partic-
ular semantics that would support coherence and argument evaluation, and so
it is often difficult to relate the various points made, and to evaluate the status
of the debate.

Still more structure is imposed by systems that have been built using the
IBIS (Issue Based Information Systems) model of argument [15]. IBIS enables a
particular problem or issue to be decomposed into a number of different positions.
Arguments can then be created to attack or defend the positions until the issue
is settled (possibly by a vote). A collaborative decision support system that
uses this model is HERMES [14] (as does its predecessor Zeno [12]). Evaluation
showed that although users enjoyed using the system it was not easy to learn
and difficulties were experienced understanding the argumentation content of
the system, casting doubt on the usefulness of its output.

More recently there has been a shift towards the development of tools that
make use of ideas and trends from social media. A comprehensive survey of the
state-of-the-art in web-based argumentation tools, which also covers a number
of the tools we have mentioned above, can be found in [20].

2.4 Limitations of Existing Tools

In this section we will summarise the limitations of existing tools, which we hope
to address using the model-based tools we will describe in later sections. The
first problem relates to the analysis of the responses. The current tools have a
9 http://idebate.org/debatabase.

http://idebate.org/debatabase
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focus on usability and accessibility, and are indeed easy and convenient to use.
In consequence they have proved highly popular and successful in attracting
participants. The downside, however, is that there is a lot of unstructured data
collected: too much data to be able to use these responses to inform policy
making. The current tools allow people to express their opinions, but do not
enable these opinions to feed easily into policy making. This raises the following
questions:

– How can we systematically organise the analysis of comments?
– How can we organise the information to accurately identify issues and consult

participants in further depth?
– The abundance of claims, counter-claims, evidence, points of view, etc. results

in a rich ‘web’ of information. How can we manage so large a quantity of
heterogeneous data, and reason effectively with it?

As well as the quantity of data, the fact that it is unstructured - typically
simply free text authored by non specialists - presents problems:

– Comments are in an unstructured and unsystematic format. While threaded
lists are often used, enabling people to follow and continue a discussion to
some extent, it remains difficult even for a skilled human, let alone a machine,
to extract meaningful information in any systematic way.

– Threaded lists can often wander away from their original topic, so that they
may become irrelevant, or relevant information may appear under unrelated
headings.

– Comments are not sufficiently fine-grained to be as informative as may be
needed if they are to impact on policy making. Underlying motivations and
justifications are often insufficiently specific and are also often left implicit
or taken for granted by users unused to framing their opinions for a general
audience.

Third, since the focus is on allowing people to “have their say”, many of the
contributions are ill informed, biased and unbalanced. But the bias may also
come from the analyst: since there is simply a mass of unstructured information,
it is possible to cherry-pick the comments that one will make use of. Experts
who mediate, analyse, and summarise the comments can bias information or
obscure the relation between comments and policy outcomes. Outlier, hybrid,
challenging, and novel positions on issues may get ‘lost’. Thus the process does
not produce objective, transparent results.

Finally we can see problems with the model of interaction itself. The task
that the participants are asked to perform is really rather difficult, both for the
citizens and the officials. They are being asked to:

– construct a coherent argument
– maintain relevance and focus
– get the facts right
– understand an argument
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– identify and answer specific objections
– answer at the correct level of detail
– relate, combine and aggregate arguments.

This adds up to a rather demanding skill set which we would not expect
everyone to possess. But current tools exhibit:

– Lack of support for reasoning processes (inference, modelling, consistency,
alternative policy positions).

– Little interaction and feedback among stakeholders and between stakeholders
and the consultative body. There is no deliberation.

Given all the issues we have raised, we see a clear need for on-line opin-
ion gathering tools to be grounded on some solid semantic foundation whilst
retaining their usability. To achieve this, we look to multi-agent systems, and in
particular how the reasoning of the agents in a system can be supported by a
computational model of argument. In the next section we describe an approach
from this field that can provide the backbone of support for tools that can be
used to improve on-line opinion gathering.

3 Policy as Practical Reasoning

While current systems make excellent use of the available technology, they serve
mainly as a communications channel and lack the domain expertise and knowl-
edge, which would be required to provide the users with support in formulating
and structuring their contributions and to facilitate understanding and analysis.
We therefore look to computational argumentation to overcome these deficien-
cies. Computational argumentation provides us with methods of argument rep-
resentation and evaluation. This provides the expertise, although when building
tools to support citizen participation, we must not neglect to strike a balance
between the use of structured argument and ease of use of the tools. But compu-
tational argumentation also requires domain knowledge to instantiate the argu-
mentation structures, and so we need an underlying model of the domain as well
as a model of argumentation.

In this section we will describe how the model of argumentation based on
argumentation schemes as proposed in [22], and in particular the argumenta-
tion scheme for practical reasoning proposed in [4], can supply the model of
argumentation, and how Action-based Alternating Transition Systems (AATS),
developed in multi-agent systems for reasoning about joint actions and coali-
tions [24] provide an appropriate model with which to store domain knowledge.
Specifically we will base our tools on [2] which used AATSs to provide a formal
basis for the practical reasoning argumentation scheme of [4].

3.1 Argumentation Scheme for Practical Reasoning

Practical reasoning is used to justify, or argue for, decisions as to what to do
(in contrast to theoretical reasoning which concerns what is the case). As such
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we need to recognise that different people may decide, justifiably, to do different
things, because they have different desires, aspirations and preferences. As Searle
[21] puts it, whereas in theoretical reasoning we attempt to fit our beliefs to the
world, in practical reasoning we try to fit the world to our desires: and our desires
differ.

Normally there will be aspects of the current state that the agent likes, and
aspects that it does not like. So, with respect to change, the agent will have four
possible motivations:

– To make something currently false true (achievement goal).
– To make something currently true false (remedy goal).
– To keep something true true (maintenance goal).
– To keep something false false (avoidance goal).

What an agent wants can be specified at several levels of abstraction. Suppose
an agent enters a bar on a hot day and is asked what it wants. The agent may
reply:

– I want to increase my happiness.
– I want to slake my thirst.
– I want a pint of lager.

The first reply relates to something which is almost always true, and for
the sake of which other things are done. Normally there will be several things
that promote this state. The second is a specific way of increasing happiness:
it is a remedy goal. There is an element of the current situation the rectifica-
tion of which would increase the happiness of the agent. Again there are several
ways of bringing this about. Finally the third reply identifies a specific way
of remedying the situation: the agent selected a lager in preference to water,
juice, etc. It is a specific condition under which the goal will be satisfied. Previ-
ous work such as [2] has used values, goals and circumstances to refer to these
three levels of abstraction. In [2] these levels are related to motivate or justify
a choice through expression as an argument scheme. Argument schemes provide
templates to capture stereotypical patterns of reasoning and they have associ-
ated with them critical questions to probe the presumptive conclusions that can
be drawn by instantiating the schemes. A variety of different schemes is docu-
mented in the informal logic literature [22], and they are increasingly being used
in computational argumentation. The following argument scheme for practical
reasoning distinguishes the three levels of abstraction discussed above:

PRAS: In the current circumstances R, I should perform action A, to bring
about new circumstances S, which will achieve goal G and promote value V.

Applied to the example above, this would give: In the pub (current circum-
stances), I should order a lager (action), to have a drink (new circumstances),
which will slake my thirst (goal), which will increase my happiness (value). Pol-
icy making can be seen as conforming to this model. The policy makers will have



Using Argumentation to Structure E-Participation in Policy Making 11

some values which they wish to pursue. This language of values is very common
in contemporary politics, and voters often choose between parties on the basis of
their perceived values rather than on the basis of specific policy proposals. Values
can only be realised, however, through concrete action, and this requires a set of
goals to be adopted. Finally ways of realising these goals must be identified and
actions to bring the required circumstances about must be identified. Thus we
can see policy making as a form of practical reasoning, and the argumentation
scheme of [2] as a form of argument for policy justification.

We shall next describe the underlying semantic structure, the AATS, extended
to include values, and how this structure can be used to instantiate arguments of
the form of PRAS. We then consider how such arguments can be attacked and
defended.

3.2 A Semantic Structure for Practical Reasoning

Action-Based Alternating Transition Systems (AATSs) were originally presented
in [24] as semantical structures for modelling game-like, dynamic, multi-agent
systems in which the agents can perform actions in order to modify and attempt
to control the system in some way. These structures are thus well suited to serve
as the basis for the representation of arguments about which action to take in
situations where the outcome may be affected by the actions of other agents.
First we recapitulate the definition of the components of an AATS given in [24].

Defnition 1: AATS An Action-based Alternating Transition System (AATS)
is an (n + 7)-tuple S = 〈Q, q0, Ag, Ac1, ... , Acn, ρ, τ, Φ, π〉, where:

– Q is a finite, non-empty set of states;
– q0 ∈ Q is the initial state;
– Ag = {1,...,n} is a finite, non-empty set of agents;
– Aci is a finite, non-empty set of actions, for each i ∈ Ag where Aci ∩ Acj =

∅ for all i �= j ∈ Ag ;
– ρ : AcAg → 2Q is an action pre-condition function, which for each action α ∈

AcAg defines the set of states ρ(α) from which α may be executed;
– τ : Q × JAg → Q is a partial system transition function, which defines the

state τ(q, j ) that would result by the performance of j from state q – note
that, as this function is partial, not all joint actions are possible in all states
(cf. the pre-condition function above);

– Φ is a finite, non-empty set of atomic propositions; and
– π : Q → 2Φ is an interpretation function, which gives the set of primitive

propositions satisfied in each state: if p ∈ π(q), then this means that the
propositional variable p is satisfied (equivalently, true) in state q.

AATSs are particularly concerned with the joint actions of the set of agents
Ag. jAg is the joint action of the set of n agents that make up Ag, and is a tuple
〈α1,...,αn〉, where for each αj (where j ≤ n) there is some i ∈ Ag such that αj ∈
Aci. Moreover, there are no two different actions αj and αj′ in jAg that belong
to the same Aci. The set of all joint actions for the set of agents Ag is denoted
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by JAg, so JAg =
∏

i∈Ag Aci. Given an element j of JAg and an agent i ∈ Ag,
i ’s action in j is denoted by j i.

To represent the values within our reasoning framework, the AATS structure
must be extended to enable the representation of values, which was done in [2].
For this, a set V of values was introduced, along with a function δ to enable
every transition between two states to be labelled as either promoting, demoting,
or being neutral with respect to each value.

Definition 2: AATS+V

Given an AATS, an AATS+V is defined as follows:

– V is a finite, non-empty set of values.
– δ : Q × Q × V → {+, –, =} is a valuation function which defines the status

(promoted (+), demoted (–) or neutral (=)) of a value vu ∈ V ascribed to
the transition between two states: δ(qx, qy, vu) labels the transition between
qx and qy with one of {+, –, =} with respect to the value vu ∈ V.

An Action-based Alternating Transition System with Values (AATS+V) is
thus defined as a (n + 9) tuple S = 〈Q, q0, Ag, Ac1, ..., Acn, ρ, τ, Φ, π,V, δ〉.

This formalism was used in [2] to formalise the PRAS argumentation scheme
introduced informally in the previous section.

Definition 3: PRAS

In the initial state q0 = qx ∈ Q,
Agent i ∈ Ag should participate in joint action jn ∈ JAg

where j i
n = αi,

and τ(qx, jn) is qy,

and pa ∈ π(qy) and pa /∈ π(qx), or pa /∈ π(qy) and pa ∈ π(qx),

and for some vu ∈ V, δ(qx, qy, vu) is +.

3.3 Attacking and Justifying Policy Arguments

An important feature of argumentation schemes as described by Walton [22] is
that they only presumptively justify their conclusions. Moreover, each argumen-
tation scheme has its own characteristic ways of being attacked. Walton termed
these methods of attack “critical questions”. In [2] seventeen ways to attack
arguments based on PRAS were identified, and these were divided into three
different types of critical question:

– problem formulation: deciding what the propositions and values relevant to
the particular situation are, and constructing the AATS. There are eight such
attacks. These concern the propositions used in the state descriptions, the
actions available and their effects, which values exist and which transitions
promote and demote them.
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– epistemic reasoning : determining the initial state in the structure formed at
the previous stage, and which joint action will be performed. There are two
such attacks: one challenging the current circumstances and one questioning
the anticipated behaviour of the other agents involved in joint actions.

– choice of action: These are the remaining seven attacks, which involve consid-
eration of alternative ways of achieving goals and values; side effects that that
will demote values, and passing up an opportunity to promote some other
value. Essentially these will be resolved according to the value preferences of
the individual acting as the audience for the argument.

These different categories of attack can be seen as requiring resolution at
different levels. The problem formulation attacks are the most fundamental:
they express differences about what is relevant, the results of actions, what
promotes values, and the like. Differences at this level necessitate different models
of the world: they require those disagreeing to have a different AATS in mind.
Epistemic questions are not fundamental: they do not need a different AATS,
but they do seek to establish agreement as to where we are in the structure and
what paths we will follow. Either there must be a recognised way of determining
the “truth of the matter”, or else disputants must agree to proceed on the basis
of assumptions. For choice of action, however, disagreement is to be expected,
since differences turn on the different priorities given to the various social values
involved. The set of arguments generated will be the same, but they will be
evaluated differently by different audiences.

With regard to answering such attacks, analysis in [9] suggested that the
underlying claims were typically justified by citing some credible source. This
might be expert opinion, the conclusion of some scientific survey, a public opinion
poll, witness testimony, or - in the case of value statements - party manifestos.
Rarely were arguments from first principles used. Credible source arguments
cover a number of the argument schemes given in [22]. The work of [9] suggests
a three ply model: a policy justification using PRAS; a challenge based on one of
the characteristic ways of attacking PRAS; and a rebuttal of the attack using a
credible source argument appropriate to the topic concerned. Further discussion
of credible source as an argument scheme can be found in [28].

4 Case Study: Speed Cameras

The formal machinery using the AATS+V is intended to provide the basis
for the specification of semantic models which enable arguments about policy
proposals to take place. We now consider the general process of policy mak-
ing, and show how policies can be modelled and argued about, using a running
example. The example is an issue in UK Road Traffic policy, previously used
as an e-participation example in [3,5,10]. The number of fatal road accidents
is an obvious cause for concern, and in the UK there are speed restrictions on
various types of road, in the belief that excessive speed causes accidents. The
policy issue which we will consider is how to reduce road deaths.
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The starting point of policy making is when a policy issue on a particular
topic is identified and the relevant governing body wishes to launch a consul-
tation to solicit views on the issue. Since there is no specific commitment to a
particular action at this stage, a Green Paper on the issue will be released pub-
licly. The Green Paper is intended to encourage debate, with a view to interested
parties, such as unions, pressure groups, think tanks, companies, universities etc.,
putting forth their views and comments on the issue, which they submit as for-
mal responses. Considering our running example, the Green Paper would solicit
opinions on the issue of what to do to reduce road deaths.

At this deliberative stage of the process, typically a wide range of proposals
is put forward representing the different perspectives of different parties with
different expertise, interests and values on the issue. For these to inform policy
making, the relevant government department must analyse them to identify rel-
evant facts, theories, interests and values, trying to synthesise them into some
coherent form which can provide the basis of deliberation as to the policy to
recommend in the subsequent White Paper. A White Paper sets out a concrete
policy intended to form the basis of legislation and its justification. Again com-
ments are sought from interested parties on the White Paper, but now with this
rather specific focus. In short, when moving from the Green Paper to the White
Paper, the government department tries to make sense of the alternative views
submitted to try to produce a coherent picture of the domain of interest. Of
course, this sense-making is not at present done using any formal apparatus.
We argue, however, that such sense-making could be facilitated by formally rep-
resenting the alternative views as AATS+V models, then reasoning with these
models using argumentation schemes. This would clarify the alternative posi-
tions on the policy, force reconciliation of any incompatible views, and provide
an integrated summary of the consultation. This aspect is discussed in more
detail in [3].

4.1 Constructing Semantic Models of Policies

To fully describe a model using the AATS+V we need to specify the various
components of the structure. We need the set of propositions Φ with which we
can identify the possible member states of Q. Since if there are n elements in Φ
there may be 2n elements in Q, it is desirable to keep Φ as small as possible and
only include propositions if they are definitely relevant to the problem. Given Φ,
we can constrain the size of Q by identifying logical relationships between mem-
bers of Φ, such that for p1, p2 ∈ Φ, ¬(p1 ∧ p2), which will allow the elimination
of certain states. We need to give the set of agents, Ag, the actions they can
perform, and any values inherently promoted or demoted by the performance
of the action. Again, in order to keep the number of joint actions within rea-
sonable bounds, we will need to be as frugal as possible in including agents and
actions: n agents, each with m actions, give rise to nm potential joint actions.
Again this is an upper bound: some pairs of actions may be incompatible and
so give rise to no joint action. Finally, we need a transition matrix expressing
ρ, τ and δ. This matrix comprises a row for each state in Q and a column for
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each joint action in J . An entry in a cell indicates that the preconditions for the
joint action are satisfied, and comprises a triple consisting of the state reached
if that joint action is executed, the set of values promoted, and the set of val-
ues demoted. These transitions are a representation of a causal theory which
explains the effects of various actions, and an evaluative theory which tells us
when values are promoted and demoted.10

Returning to our running example, we suppose that we are trying to develop
a policy to reduce road traffic deaths and have received responses to a Green
Paper from which we will extract the various components of the AATS+V. As
there may be alternative responses, we may need to create alternative models,
or use the responses to build incrementally a complex model which represents
the sum of the policy deliberations. The representation process is described in
detail in [3], and also discussed with reference to a different domain in [18].

For example, one response to the Green Paper issue put forward by those
concerned about road safety might be that we install and operate speed cameras
at strategic points. The speed cameras automatically photograph speeding cars,
and the photographs are subsequently used to identify the car and issue speeding
tickets to the drivers; we will use the installation of the cameras to refer to
this overall process. There is evidence from other countries and pilot studies
that this measure can be effective. So we might propose the following as the
intended meaning of the response: The government should install speed cameras
to reduce road deaths, which will promote the value of Life. However, we want to
argue about policy using our practical reasoning argumentation scheme, which
explicitly references circumstances and consequences. The response just given is
elliptical, having only the action and the value. So to be compatible with PRAS,
we need to add the current circumstances (that road deaths are too high, and
that speeding is rife), and a consequence (that there will be fewer accidents and
so fewer deaths). There is still some magic here, however: it is not the speed
cameras themselves that reduce the accidents: the belief is that speed cameras
will cause motorists to observe the speed limits, that observing speed limits will
reduce accidents, and this will lead to fewer deaths, and so we need to include
motorists and how they change their behaviour in response to the policy in our
model.

From this initial conceptualisation of the problem, we present an initial model
in the form of the following AATS:

– Q = {q0, q1, q2}. Although we have two propositions (and so four potential
states) we model the assumption that a reduction of speeding will reduce road
deaths and so ignore the state r,¬s.

– Ag = {G,M}, where G is the government and M is motorist11;
– AcG = {G1, G0}, which are the actions the government does or does not

perform, respectively. AcM = {M1,M0}, which are the actions the motorist
10 In order to keep matters simple we chose to restrict goals to elements of Φ and

conjunctions thereof for both our tools. The machinery to handle more complex
goals is fully described in [1].

11 Where motorist is an abstraction to use the ‘collective’ interpretation of ‘motorist’.
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does or does not perform. Here G1 is operate speed cameras, and M1 is cut
speed. G0 and M0 are, respectively, that the government and the motorist do
nothing.

– Φ = {r, s,¬r,¬s}. where r represents road deaths being high and s represents
there being excessive speeding. While we informally also have have a propo-
sition a representing a high accident rate, we assume, to keep the number
of states down, that a and r can be taken as equivalent, since accidents and
deaths are correlated;

– V = {L}. Our one value is saving lives.
– δ is such that δ(qx, qy, L) = +, if r holds in qx and ¬r holds in qy; − if ¬r

holds in qx and r holds in qy; and = otherwise.
– π is a function such that π(q0) = {r, s}, π(q1) = {¬r, s}, and π(q2) = {¬r,

¬s};
– JAg, the set of all joint actions, is {j0, j1, j2}, where j0 is < G0,M0 >, j1 is

< G1,M0 >, j2 is < G1,M1 >. We have eliminated one logically possible joint
action by assuming that Motorists do not cut their speed if the government
does nothing.

The model also requires the functions ρ (for action pre-conditions) and τ (for
system transitions). We can express these as in a transition matrix shown in
Table 1: an entry in a cell indicates the pre-conditions for the joint action are
satisfied; the first argument is the state reached if that joint action is executed,
the second is the set of values promoted, and the third is the set of values
demoted; where no value is promoted or demoted, we have “ ”; null means the
pre-conditions of one or more of the component actions cannot be satisfied,
so that joint action is not possible in that state. This is true of j0 in q2 in our
example: in the case where the speed cameras have succeeded in reducing speeds,
it is assumed that the government will continue to operate them, so that only
the joint actions containing G1 are possible in q2.

Table 1. Initial Transition Matrix

j0 j1 j2

q0 〈q0, , 〉 〈q0, , 〉 〈q2,+L, 〉
q1 〈q1, , 〉 〈q1, , 〉 〈q2, , 〉
q2 null 〈q0, ,−L〉 〈q2, , 〉

A second response might be from a group of people who dispute that excessive
speeding is a factor in deaths. In order to represent that the effect of actions can
be indeterminate, we introduce a third agent N , which is usually termed nature,
and distinguish two joint actions containing the indeterminate action, depending
on whether nature cooperates, (here, meaning that a reduction in speed has the
desired effect on deaths), or nature does nothing, (which here means that a
reduction in speed does not have the desired effect).
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The second response was intended as an objection to speed cameras. A third
response might, however, provide a rebuttal to this objection by saying that
even if compliance with speed limits did not have a significant effect on acci-
dents, it would still be worthwhile, since it would mean that there was increased
compliance with the law, and that this is a value in itself (C).

Next we may need to add some additional aspects, considering the cost of the
proposal and an alternative proposal involving education. Speed cameras cost
money, and there is only a limited budget available for improving road safety.
We therefore need to consider monetary matters. This will relate to a value B,
which is demoted if the budget is exceeded and promoted if there is a surplus.
Assuming we do have money to spend, we can cost our plan and interpret the
action of introducing cameras as being the introduction of such speed cameras as
the budget will allow. Where cameras are installed according to budget the action
is neutral with respect to B and so the transition will be neutral with respect
to B. If, however, motorists fail to respond to the deterrent effect of the cameras,
continue to speed, and pay the fines, then, because we can easily identify and
prosecute the speeders, income from fines will be greater than expected and the
expenditure will be recouped.

For an alternative action, suppose there is a submission by a group who
believes that introducing speed cameras will not reduce road deaths, but is very
much in favour of reducing these deaths. They may argue that some other action
(G2) is required to be effective. For example, if we were to educate drivers, so
that they were better aware of the effects of speed, and better able to handle
their vehicles at speed, then we would expect to reduce accidents, and hence
deaths. Thus the government’s education of drivers would, it is argued, lead to
a reduction in deaths whether or not speeding decreased, since motorists who
continue to speed are better able to control their cars. The only problem is that
education is more expensive than cameras and does not give rise to any revenue
stream, and so this proposal would be over budget, demoting B.

All this gives the final AATS+V shown diagrammatically in Fig. 1.
To keep the set of actions small, the action used to represent education

can also be used to represent any other government actions which it is claimed
will lead to a reduction in accidents but which will exceed the budget, such as
deploying increased numbers of traffic police to catch speeders. Note, however,
that we now need to distinguish between speeding and accidents, and so require
the fourth state where speeding continues, but deaths decrease, reachable by the
joint action educating motorists who continue to speed.

Finally, we will consider responses to the Green Paper that are representa-
tive of arguments from Civil Liberties pressure groups. They argue that speed
cameras, by revealing the location and movements of citizens, represent an unac-
ceptable intrusion of privacy. This requires a new proposition (p) to represent
the existence of the speed cameras making an excessive intrusion on privacy.
This will be accompanied by an additional value, F representing civil liberties.
This requires an extension to the model: adding p splits every state reachable
by introducing cameras into two to distinguish states where privacy is respected
from those where it is not.



18 T. Bench-Capon et al.

F
ig
.
1
.
A

A
T

S
+

V
fo

r
S
p
ee

d
C

a
m

er
a

D
o
m

a
in



Using Argumentation to Structure E-Participation in Policy Making 19

Formally the components of this AATS+V are:

– Q = {q0, q1, q2, q3, q4, q5, q6}.
– Ag = {G,M,N}, where G is the government, M is motorist and N is Nature.
– AcG = {G2,G1, G0}, which are the actions of the government, respectively

educate motorist, introduce cameras, and take no action. As before, AcM =
{M1,M0}, and ACN is {N1, N0}, depending on whether or not reducing speed
also reduces deaths.

– Φ = {r, s, p,¬r,¬s,¬p}, where r represents road deaths being high, s repre-
sents there being excessive speeding and p represent unacceptable intrusions
on privacy.

– V = {L, C, B, F}, as explained above.
– δ is such that δ(qx, qy, L) = +, if r holds in qx and ¬r holds in qy; − if ¬r

holds in qx and r holds in qy; and = otherwise. δ(qx, qy, C) = +, if s holds in
qx and ¬s holds in qy; − if negs holds in qx and s holds in qy; and = otherwise.
δ(qx, qy, B) = +, if the transition between qx and qy contains both G1 and
M0; − if the transition between qx and qy contains G2 and = otherwise. δ(qx,
qy, P) = +, if ¬p holds in qx and p holds in qy; − if p holds in qx and ¬p
holds in qy; and = otherwise.

– π is a function such that states are interpreted as shown in Fig. 1.
– JAg, the set of all joint actions, is {j0, j1, j2, j3, j4, j5}, where j0 is

< G0,M0, N0 >; j1 is < G1,M0, N0 >; j2 is < G1,M1, N0 >, j3 is <
G1,M1, N1 >, j4 is < G2,M1, N1 > and j5 is < G2,M0, N1 >.

The functions τ and ρ are shown in the transition matrix in Table 2.

Table 2. Final Transition matrix.

j0 j1 j2

q0 〈q0, , 〉 〈q0,+B,-F〉 〈q5,+L+C,-F〉
j3 j4 j5

q0 〈q6,+C,-F〉 〈q2,+L+C,-B〉 〈q3,+L,-B〉

When the response period for the Green Paper closes, the opinion gathering
ends and the policy analyst can then focus on the proposal to be chosen as the
preferred option to be set out in the White Paper, forming the next part of the
process. It is at this point that we envisage the Structured Consultation Tool
described below being deployed.

4.2 Implementation

Once we have identified the elements of an AATS+V, implementation is straight-
forward. The AATS+V is described by representing three relations: states, joint
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actions, and transitions. These relations are represented in data structures appro-
priate to the language of choice. In Prolog they would be clauses: if using a
database they would be tables. The Prolog prototype was described in [25] and
the database version is described in [23] and, more fully, in [27]. Sample Prolog
clauses for the above AATS+V would be:

state(0,1,3,6).
jointAction(j0,[do,nothing],[do,nothing],[have,no,effect]).
transition(1,0,5,j2,[l,c],[f]).

where state has an id, and a literal for each of r, s, and p; joint action has an
id, and action for each of the three agents; and transition has an id, a source
state, a target state, a set of values promoted and a set of values demoted. Addi-
tional relations can be used to provide additional information such as textual
descriptions:

value(4,b,budget).
action(government,3,[educate,motorists]).
literal(1,1,[there,is,excessive,speeding],[]).

Now we can run appropriate queries to instantiate PRAS and attacks upon
its instantiations. For example we can instantiate PRAS using the Prolog query:

argumentPro(A,S,R,V):-transition(ID,S,R,J,X,_),
member(V,X),
jointAction(J,A,_,_)
([government,should,A,in,S,to,reach,R,
and,promote,V]).

and identify an attack based on the demotion of a value with:

argumentCon(A,S,R,V):-transition(ID,S,R,J,_,X),
member(V,X),
jointAction(J,A,_,_),

write([government,should,not,A,in,S,to,avoid,R,
which,would,demote,V]).

It is a simple matter to write equivalent queries in SQL if using a database
(see [27]).

5 Justifying and Critiquing Policies

In this section we will describe our applications built using the apparatus des-
cribed above. We have two tools: one, the SCT, presents a justification of a
policy and receives feedback on which points the citizens agree with and which
points they disagree with. The second tool, the Critique Tool (CT), reverses the
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roles; this tool solicits a proposal from the citizen and then provides a critique
from the government perspective.

The idea is that internally the system will operate by instantiating PRAS
and attacks upon these instantiations based on the AATS+V, which represents
the domain model. All of this will, however, be hidden from the users who will
be presented with a series of screens presenting these justifications and attacks,
and users will be asked to answer “yes” or “no” to indicate their agreement
or disagreement. Once given, these answers can be interpreted in terms of the
model, so that the statements agreed with become justifications and attacks
on justifications. This further allows the responses to be aggregated so that it
becomes clear what the specific strengths and weaknesses (as perceived by the
citizens) of a policy justification are.

Both tools are implemented in MySQL and then embedded in PHP to provide
access over the internet. The tools are (May 2014) available at

– http://impact.uid.com:8080/impact/ and
– http://cgi.csc.liv.ac.uk/∼maya/ACT/

5.1 Structured Consultation Tool (SCT)

The role of the SCT is:

– to present the justification of a policy to members of the public;
– to allow members of the public to disagree with certain specific points of that

justification;
– to present Credible Source arguments to justify the points disagreed with.

In this way the popularity of the policy can be gauged, and, if it is not sup-
ported, the reasons why it is not popular identified. The AATS+V can be used
to instantiate a justification for the policy for presentation to the public using
the SCT. Feedback on the argument and the model used is then sought, con-
cerning disagreements and omissions, the assumptions made, and the ordering
of values chosen.

After an initial statement of the justification, participants who disagree are
led through a series of screens to identify the particular points at which they
disagree, or want further justification. Further justification of specific points is
given by a “digression” which presents (and receives feedback on) an appropriate
credible source argument.

– Screen 1 asks about the current state. For each proposition in the current
state, the participant is invited to agree or disagree that it is the case. This
corresponds to an epistemic challenge on the beliefs as to what is current the
case. If there is disagreement, evidence is presented (e.g. accident statistics).
If the participant remains unconvinced, the argument supporting the premise
can be critiqued. The first screen also asks the participant to list any other

http://impact.uid.com:8080/impact/
http://cgi.csc.liv.ac.uk/~maya/ACT/
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relevant facts that need to be considered. To give an example of the look and
feel of the system, a screen shot is shown in Fig. 212.

– Screen 2 asks questions such as “Do you agree that reducing road deaths
promotes life?”, so that each of the labellings of the relevant transitions can
be questioned. This effectively challenges the way the δ function has been
defined in the AATS+V.

– Screen 3 relates to the states reached by a transition. Participants are asked
if the propositions claimed to be true in the next state will indeed result
from the action. This challenges the underlying causal model relating actions
and outcomes in the AATS+V. Disagreement will result in an argument jus-
tifying that transition being shown, and either participants will accept this
and return, or be led through a critique of this further argument justifying
the causal relationship. This screen also offers the opportunity to identify
unstated consequences of the action thought relevant and undesirable.

– Screen 4 offers a range of other actions (such as G2 in the speed camera
example) which participants may think achieve the aims of the policy. Select-
ing one of these leads to the reason for rejecting it (in the example, that this
action would be beyond the available budget). Any other alternative actions
not included in the AATS+V supported by participants may be entered as
free text.

– Screen 5 asks about values: whether participants endorse the values used,
or want other values considered, and gives the opportunity to express their
ordering of values. This is to explore whether it is the desirability of the
policy rather than its effectiveness and feasibility that is being challenged.
Such challenges are intrinsically subjective, whereas the earlier challenges can
be seen as objective.

When participants have submitted their opinions, we can see whether our
proposed policy commands popular support and, if not, exactly why not. Screen
1 should confirm that the number of deaths and accidents are seen as a problem,
and asks for any factors other than speeding which may be seen as a cause of the
problem. A substantial write-in for poor lighting, coupled with later comments,
would indicate that a different approach has popular support. Screen 2 is about
the link between goals and values. It may be that people disagree that cameras
represent an unacceptable intrusion on privacy, which would be good news for
advocates of the policy of introducing cameras. Screen 3 allows the underlying
causal model to be questioned. This is the opportunity to deny that speeding
causes accidents, and, for example, to offer poor lighting as an alternative cause.
Screen 4 gauges support for G2, and is where people may suggest other alterna-
tives, such as improved lighting. The acceptability of the budgetary argument
against G2 is also indicated by the reception of the argument against G2 in the
digression. Finally Screen 5 tests our assessment of value priorities. We ranked
life above privacy; this may be endorsed or disputed. The advantages of the SCT
over current tools are:
12 The application shown in the screenshot is that addressed by the IMPACT project,

concerning a copyright topic. See [18].
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– Justification is structured;
– Both citizens and officials are helped to make good arguments;
– Interaction has a natural flow;
– Replies are cogent and to the point;
– Specific points of disagreement are identified;
– No training or theory is required;
– Users only have to answer yes or no;
– The structure allows for replies to be related and aggregated;
– Which aspects of the policy require change or better explanation are identified.

5.2 Critique Tool

The second tool reverses the roles of the SCT: now it is the citizen who is
providing the proposal and the justification and the tool which supplies a critique
by finding objections using the model.

Fig. 2. Screenshot of the SCT
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The first thing to do is to get the proposal. This is done by guiding users
step by step through the instantiation of PRAS with respect to their conceptu-
alisation of the domain, but requiring only “yes” or “no” responses. Thus users
are presented with the screen shown as Fig. 3.

Note that the relevance of circumstances is determined by what the gov-
ernment considers relevant. This can, of course, be seen as a weakness, but it
reflects that proposing a policy will only be persuasive if it is couched in terms
acceptable to its audience [6], which, in the context of this tool, is the govern-
ment rather than the citizen. The user having indicated which propositions are
believed, the responses will be checked against q0. The answers may be agreed,
as in Fig. 3, or arguments justifying the different beliefs presented. This could be
done using credible source arguments, as the digressions of the SCT, or simply
by presenting some justifying text or web resource, as in the prototype critique
tool. Users may at this point change their minds or stick with their original
beliefs, in which case the consultation will proceed using their assumptions (i.e.
the state believed by the user is taken as q0.)

Next a set of alternative actions is presented, and users are invited to choose
an action. The action is checked for its pre-conditions being satisfied, and if the
pre-conditions are not satisfied, this will be explained. If the action is accepted
as possible, the expected consequences are sought, using a screen similar to that
relating to circumstances. Again any points of disagreement are identified, and
supported with arguments, and the users invited to change their beliefs. Users
are then invited to say which values they believe will be promoted, and again
this is checked against the model.

Fig. 3. Getting the Circumstances in the Critique Tool
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This completes the solicitation of an instantiation of PRAS, and so at this
stage we will have an argument justifying a policy which is valid according to
the model. Although this means that the argument is a valid argument, there
may be a number of reasons why it might be considered unacceptable:

– It may have undesirable side effects, demoting values;
– There may be other, perhaps better, ways of promoting the values;
– It may be possible to promote different, perhaps preferable, values;
– Other agents may not respond as anticipated.

All of these objections can be identified by posing simple queries to the model,
and are then presented to the user using the screen shown in Fig. 4.

The strengths of the Critique Tool are that the argumentation scheme, critical
questions and the underlying model together allow a systematic and intelligent
critique of a proposal to be automatically generated from the model. This:

– Challenges assumptions and factual errors;
– Provides supporting arguments if required;
– Offers alternative ways of promoting the desired values, and alternative values

that can be pursued in the circumstances, and identifies flaws in the argu-
ments, and any potentially damaging side effects and risks posed by others
not behaving as anticipated.

Like the SCT, the responses made using the Critique Tool can be interpreted,
stored and aggregated, in terms of the argumentation scheme and the AATS+V.

5.3 Linking to Other Sites

As well as their primary purpose of getting feedback from citizens on policy
issues, the tools can also be a means for members of the public to explore
and learn about the various issues. The fact that the tools are embedded in
the internet means that there is ready access to a wealth of information. The
two tools offer different ways of justifying claims: the SCT using digressions to
present arguments based on credible sources which can be interacted with, and
the Critique Tool referring on to the credible sources themselves. It would also
be possible to combine these methods; first presenting the credible source as a
web page and then summarising it as an argument that can be critiqued.

A further possibility is to present information resources putting the pros and
cons of the various points to the user before they are asked to express their
beliefs and opinions. This puts the user in the position of an arbiter rather than
a proponent of a particular side of the debate. Such a tool might be especially
useful at the Green Paper stage of a policy consultation.

5.4 Evaluating the Responses

Both tools serve to collect responses which can be organised as arguments and
counter arguments. This means that as well as purely numeric processing, which
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Fig. 4. Possible Objections to the User’s Proposal

would enable us to say, for example, that 90 % of respondents agree that there
are too many road deaths, and that 87 % agree that introducing speeds cam-
eras would ameliorate this, we can take advantage of the argument structure.
In computational argumention, since the introduction of argumentation frame-
works by Dung [11], much has been done to determine the status of arguments in
a framework of conflicting arguments and counter arguments. These techniques
have also been applied to arguments which vary in strength according to the
preferences of their audiences, in particular preferences based on value order-
ings (Value-based Argumentation Frameworks) [7] and preferences which can
themselves be argued for (Extended Argumentation Frameworks) [17]. The idea
is to find consistent sets of arguments which support one another and so form
coherent positions on an issue, or identify which arguments require particular
assumptions. These techniques can support both the initial policy choice, and
the analysis of responses received from our tools. This argumentation oriented
assessment of responses is explored in [9] and formulation and assessment of
arguments about speed cameras using value-based argumentation frameworks is
described and discussed in [3].

6 Concluding Remarks

A major problem with current e-participation systems is organising the replies
for comparison, aggregation and assimilation. One answer to this is to make use
of a well defined argumentation structure to organise policy justifications and
critiques of these justifications. We have described:
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– An argumentation scheme to structure justification and critiques;
– A semantical structure for models to underpin this scheme;
– A tool to facilitate a precise critique of the scheme;
– A tool to elicit a well formed justification and generate an automatic critique.

Both tools operate on the same underlying models of argumentation and of
the domain. Some small scale evaluation exercises have been conducted with
the SCT, and its earlier incarnation as described in [9]. Initial feedback about
early versions of the SCT was positive about the aims of the system, in terms
of supporting participatory democracy, and the ease with which the tool could
be learned and used. However, users also expressed a desire to be able to put
forward their own proposals. This identified the need for the Critique Tool that
was subsequently developed.

Both tools are currently research prototypes and require evaluation in a seri-
ous situation concerning a genuine, live, policy issue. Building the model does
require a considerable investment to time and expertise, but this is true of the
conventional consultation process as well. We would argue that the potential
gains from using such tools in terms of the quality of the feedback received,
and the ease of analysing the feedback, would justify the effort required when
undertaken as part of a consultation process. The purpose of the prototypes is
to demonstrate the potential of using a well structured form of argumentation
to present positions and receive feedback: we would anticipate that evaluation
would identify opportunities for the tools to refined and extended.
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Abstract. Modelling business processes in general is a complex endeav-
our, as many different aspects such as the control flow, the management
of data, event and message handling, actors and interaction, exception
handling, etc. have to be taken into account, all of which require different
models. This paper focuses on the horizontal integration of models for
control flow, message flow, event handling, interaction, actors, data and
exception handling. The method is based on Abstract State Machines
(ASMs), which are used to formally define the semantics of each of the
individual models. Throughout the process rigorous quality assurance
methods will be applied.

1 Introduction

Modelling information systems in general is a complex endeavour, as systems
comprise many different aspects such as the data, functionality, interaction, dis-
tribution, context, etc., which all require different models. In addition, models
are usually built on different levels of abstraction and the switch from one of
these levels to another one may cause mismatches. Horizontal model integration
refers to the creation of system models by successive enlargement, whereas ver-
tical model integration refers to the systematic, seamless refinement process of
high-level abstract (conceptual) models down to running systems.

In this paper we concentrate on the horizontal integration of business pro-
cess models following the approach sketched in [27]. Taking a meromorphic view
we consider complex systems as aggregations of parts, each requiring a different
model. Then the extension of one submodel by another one is formally handled by
refinement capturing interfaces and overlaps in a consistent way. Key questions
to be addressed concern the provision of a clear semantics for the integration, the
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understanding of the information capacity of integrated models through notions
of dominance and equivalence, and the integration into the process of require-
ments elicitation, refinement, validation and verification.

Business process modelling has a long tradition in research with many mod-
elling approaches such as BPMN [30], YAWL [29], ARIS [26] or S-BPM [11], just
to mention a few1. Syntactical errors can be checked with the help of an ontology
defining the concepts in BPMN [18]. However, a key concern is that though all
methods claim to have reached a high level of maturity, semantics [1,10,32], flex-
ibility [25] and adequacy for the problem domain [31,33] are still matters of con-
cern. Surprisingly, still many relevant aspects of business processes are not well
covered, e.g. data handling or exeption handling, while others are overloaded. In
other words, the issue of semantics is still open as discussed in detail by Börger
in [4]. Our own research started from BPMN and so far closed several semantic
gaps, which will be reported in the monograph [16].

1.1 Our Approach

With respect to horizontal model integration it is common to start with the
control flow model, i.e. a business process is described in an abstract way by a
set of activities and gateways, the latter ones for splitting and synchronisation,
plus start and termination events. Depending on whether one, all or an arbi-
trary selection of (outgoing) paths are enabled in splitting gateways, we adopt
the common distinction between XOR-, AND- and OR-gateways with an anal-
ogous distinction for the synchronisation gateways. However, this terminology
is in a sense misleading, as there need not be a well-nested structure, in which
a splitting-gateway corresponds to exactly one synchronisation gateway. This is
one of the reasons, why we formalise the semantics of each of the constructs
by means of Abstract State Machines (ASMs, [7]). As a state-based rigorous
method, ASMs support the unambiguous capture of the semantics [5,8], in par-
ticular for OR-synchronisation [6]. Furthermore, on grounds of ASMs necessary
subtle distinctions and extensions to the control flow model such as counters,
priorities, freezing, etc. can be easily integrated in a smooth way. All constructs
found in a control flow model are supposed to be executed in parallel for all
process instances.

The control flow model is then extended by a message model and an event
model. For this refinement in ASMs – mainly conservative extensions – are
exploited [15]. In particular, the ground specification of firing conditions that
depend on the state of the control flow, data, events and resources and actions
that update this state [9] requires that only conditions and actions are refined.
While messages are easily captured by means of specifications of sender and
receiver, it becomes more subtle to define details such as synchronised vs. asyn-
chronised messaging, delivery failure, rejection, message box overflows, etc.
In our approach the ASM-based specification of messaging from S-BPM [11]
has been adopted. For the event model it is necessary and sufficient to specify
1 The survey in [24] tries to give a comparative evaluation.
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what kind of events are to be observed, which can be captured on the grounds of
monitored locations in ASMs, and which event conditions are to be integrated
into the model.

The next horizontal extensions concern the actor model, i.e. the specification
of responsibilities for the execution of activities (roles), as well as rules govern-
ing rights and obligations. This leads to the integration of deontic constraints
[17,22], some of which can be exploited to simplify the control flow [20,21] or to
handle optionality [19]. In this way subtle distinctions regarding decision-making
responsibilities in BPM can be captured. Horizontal model integration through
refinement is then extended towards an interaction model and a data model. For
this, an abstract dialogue model is adopted (see [28] or similarly [12,14]) cap-
turing interaction by means of operations on views that are defined on top of a
database schema. In this way the data model results from view integration, but
global consistency has to be addressed, as a global database infers dependencies
between activities that are not visible on the control flow level.

Finally, an exception handling model has to be integrated to complete the
horizontal integration picture. This is still in a preliminary state in our work.
Overall, the general idea is that an exception is a disruptive event that requires
partial rollback and depending on the state the continuation with a different
subprocess.

1.2 Outline of This Article

In Sect. 2 we discuss simple control flow specifications. While syntactically we
stay close to the BPMN approach with respect to activities and gateways
we define semantics on grounds of ASMs and discuss some fundamental prob-
lems. We also show simple verification examples. In Sect. 3 we continue this
discussion of control flow focussing now on extensions by flags and counters
and their use. We also extend the discussion on verification. Then Sect. 4 is
dedicated to messages and events, by means of which the control flow will be
enriched by additional conditions and actions. This is followed by a discussion
of data handling in Sect. 5, where we stress the importance of a two-layered app-
roach separating the external data handling by means of dialogues and views
supporting the activities in the control flow and the internal data handling by
means of underlying databases, the associated problems of tansaction handling
and view updates, and the impact on the semantics of the business processes.
This is taken further in Sect. 6 addressing actors, roles and associated deontic
concepts of permission and obligation. In this context we also briefly discuss
principles of exception handling. We conclude in Sect. 7 with a brief summary
and a discussion of further extensions needed with respect to horizontal busi-
ness model integration. We also emphasise the role of complementary vertical
business process model integration, which is outside the scope of this article.
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2 Simple Control Flows

In this section we discuss the semantics and verification of simple control flow
specifications as they appear in most control-oriented BPM specification meth-
ods, e.g. in BPMN. Our presentation stays close to BPMN, but we question some
semantic declarations and require concretisations.

2.1 Components of Simple Control Flows

Basically, a control flow specification is a directed graph specifying the
sequencing of (basic, i.e. atomic) activities. To be able to illustrate our very
fundamental approach to semantics, let us for the moment restrict ourselves to
only the following core components that are permitted in a simple control flow:

– Activities: An activity marks that someone has to execute a particular task
such as compiling an order, writing a review, endorsing an application, prepar-
ing a delivery, composing a bill, etc. We consider activities to be atomic, but
nonetheless the execution may need some time, and for the time being the
duration of the execution is not specified. We only assume that eventually an
activity that has been activated will also be terminated.

– Start and End events: A start event simply marks that a process will be
initiated here. There is only one edge going out of a start event. A start event
marks the termination of the process. There may be more than one edge
leading to an end event.

– Gateways: A gateway enables the specification that the control flow is split
into several branches, or analogously several branches are synchronised in a
single continuing flow.

The simplest split gateways are exclusive and parallel splits. In the former
case exactly one of the continuation paths will be followed, in the latter case
all continuation paths will be followed. It is not foreseen to restrict gateways in
a way that for each split there is a corresponding matching join. It may well
be the case that a split is followed by other splits, where some branches will be
synchronised, but it is also possible that no synchronisation is specified at all2.

Analogously, there are exclusive and parallel synchronisation gateways, also
denoted as join gateways. In the former case a single incoming flow will be
passed on – we will have to discuss this later in this section. In the latter case
all incoming flows must have been completed in order to continue with a single
flow.

2.2 Examples

Let us look at some examples illustrated by Figs. 1, 2, 3 and 4. Though the core
components in control flows are similar to those used by BPMN, we slightly
2 Therefore, the notion of XOR-split and AND-split used as synonyms in the literature

are misleading, as in general there is no well-defined bracket structure.
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Fig. 1. Control flow with exclusive split and join

Fig. 2. Control flow with parallel split and join

modify the graph notation. In particular, we want to highlight the difference
between split-gateways (one incoming edge and several outgoing ones) and syn-
chronisation gateways (several incoming edges and only one outgoing one), so
we use triangles instead of diamonds. In this way, we can reserve diamonds for
gateways with several incoming and several outgoing flows, i.e. complex gate-
ways. Furthermore, we use labels X and & for exclusive and parallel (split and
join) gateways, respectively.

Example 1. Figure 1 shows a control flow with an exclusive split and a matching
join. That is, after start the process will be either continued by activity A or
activity B, followed by activity C. Similarly, Fig. 2 shows a control flow with
a parallel split and a matching join. That is, after start the process will be
continued by executing activities A and B in parallel, followed by activity C.
So in both cases the informal semantics of the control flow is clear.

Example 2. This is not so clear for the control flow in Fig. 3, as the parallel
split is matched by an exclusive join. Informally, this means that after start
both activities A and B are executed in parallel, but what is the meaning of
the synchronising exclusive join? If control is simply passed on as foreseen in
BPMN, then activity C will be executed twice. If, however, this is not desired,
the conrol flow could be considered to be incorrect, in which case this should be
detected, and the control flow should not be permitted. Alternatively, it could
still be considered to be correct, if the exclusive join gateway only passes the
control on after the first completion of either A or B, whereas any follow-on
enabling of the gateway would be ignored. In this case, however, the semantics
of an exclusive join has to be specified in a way that permits to keep track, if
still some information may arrive or not.
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Fig. 3. Control flow with parallel split and exclusive join

Fig. 4. Control flow without matching split and join gateways

Example 3. Finally, look at Fig. 4. In this case it seems informally clear that
the control flow specification is not correct. After start activities A and B would
be executed in parallel. After completion of A an exclusive split would either
enable activity D or pass the control onto the parallel join gateway following
activity B. That is, if D is enabled, this parallel join will wait forever, and
activity C cannot be enabled. Only if control is not passed onto D, the parallel
join would (after completion of B) pass control onto C.

Our examples already show two things: First, although the semantics of exlu-
sive and parallel splits and joins seems to be informally clear, we have to be very
precise about their meaning. In particular, it will be necessary to discuss exclu-
sive joins. Second, the semantics must be defined in such a way that desired
properties of the specified control flow can be verified. For instance, for the con-
trol flow in Example 3 we want to show that it may lead to a deadlock, i.e.
the process may get stuck. In order to fulfil these requirements we will exploit
Abstract State Machines (ASMs) for the rigorous definition of semantics

2.3 Abstract State Machines

ASMs are a rigorous, state-based method, where a specification can be considered
as an iteration of a parallel execution of a set of rules of the form IF 〈condition〉
THEN 〈action〉. Conditions are evaluated on states, which are universal algebras,
i.e. sets of functions (resulting from interpretations of function symbols). Actions
initiated by the activities, gateways and the start and end events update these
states, i.e. change the values of functions at certain locations (arguments). Func-
tions of arity 0 capture the usual concepts of variables and constants in case these
functions are declared to be dynamic (updateable) or static (non-updateable),
respectively. Thus, functions can be static, dynamic or derived, the dynamic
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ones being further classified as controlled, monitored, shared, in and out. Con-
trolled functions are updated by the process, monitored ones by the environment
(e.g. in case of sensors), shared ones by both. In-locations are only read, where
out-locations are only updated (as e.g. for incoming and outgoing mail). The
theoretical background is the ASM thesis (Yuri Gurevich) according to which
each parallel algorithm can be step-by-step simulated by an ASM [2,3,13].

In principle, any other equivalent formalism could be used, but ASMs have
some advantages. In particular, we will see later that the concept of state is
very important to easily capture features, where the semantics cannot be simply
defined locally. If e.g. Petri nets [23] as a state-less formalism were used instead,
this information would have to be captured in the tokens with the disadvantage
of potential redundancy, overly complicated evaluation, and lack of clarity.

The ASM thesis guarantees that business processes can be modelled on any
level of abstraction, and the levels can be formally related by means of refine-
ment. As ASMs support unbounded parallelism, this may become helpful, as
process instances run in parallel and also activities of each process instance
do so. As states of ASMs are abstract, this can be exploited to easily capture
more advanced concepts such as counting, priorities, coupling with databases,
etc. Furthermore, the formal semantics forms a basis for rigorous methods for
quality assurance by means of verification. Last, but not least ASMs have been
applied in specifications and correctness proofs (even fully mechanised) for many
application areas.

2.4 A Glimpse on ASM Semantics

Let us now sketch the ASM-based definition of semantics for simple control flows.
We use a variable Processes to capture at all time the (identifiers) of active
process instances. Then the semantics of a start event is simply to create a new
process instance:

LET p = New(process-id) IN Processes := Processes ∪{p}
Similarly, the semantics of an end event is to delete each incoming token – we
will discuss the token model in the remainder of this section – and to remove a
process instance from Processes, if no more tokens are left:

IF no more tokens(p) THEN Processes := Processes −{p} ENDIF

The basic rules for control flows can now be specified exploiting the parallelism
and a token model. As already remarked, process instances run in parallel, which
can be defined as follows:

FORALL p WITH p ∈ Processes DO run(p) ENDDO

Furthermore, also flow nodes, i.e. gateways, activities, etc. run in parallel:

FORALL f WITH f ∈ Flow-Nodes(p) DO execute(f(p)) ENDDO

For the specification of the control flow execution exploit a token model. For
this we first capture the edges (aka sequence flows) in the underlying graph by
means of functions IncomingSequenceFlows and OutgoingSequenceFlows, both
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defined on Flow-Nodes(p). Then we use an edge labelling function tokensIn-
SequenceFlow associating a set of tokens with each sequence flow. Tokens can be
modelled just by identifiers, but in addition we may define functions associating
more detailed information with a token such as the associated process instance,
the creating flow node, etc.

The semantics for flow nodes can then be specified in general as follows:

rule NodeTransition(flowNode) =
IF

controlCondition(flowNode) AND eventCondition(flowNode) AND
dataCondition(flowNode) AND resourceCondition(flowNode)

THEN
parblock

controlOperation(flowNode)
eventOperation(flowNode)
dataOperation(flowNode)
resourceOperation(flowNode)

endparblock
For the core model only the controlCondition and the controlOperation are

relevant. This gives: execute(f(p)) = NodeTransition(f(p)).

Specialisation for Split Gateways. Let us now take a closer look at split
gateways. For both exclusive and parallel split gateways the control condition is
the same:

splitControlCondition(flowNode) =
Exists e ∈ IncomingSequenceFlows(flowNode)

With tokensInSequenceFlow(e) �= ∅
Also, in both cases one incoming token has to be removed:

removeIncomingToken(flowNode) =
Choose e ∈ IncomingSequenceFlows(flowNode)

With tokensInSequenceFlow(e) �= ∅
Choose t ∈ tokensInSequenceFlow(e)

tokensInSequenceFlow(e) := tokensInSequenceFlow(e) − {t}

However, the production of outgoing tokens differs for exclusive and parallel
split gateways. For exclusive split gateways just one outgoing token is produced

produceOneOutgoingToken(flowNode) =
Choose e ∈ OutgoingSequenceFlows(flowNode)
Let t = New(token) In

tokensInSequenceFlow(e) := tokensInSequenceFlow(e) ∪ {t}
For exclusive split gateways one token is produced for every outgoing sequence
flow:

produceAllOutgoingToken(flowNode) =
Forall e ∈ OutgoingSequenceFlows(flowNode) DO
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Let t = New(token) In
tokensInSequenceFlow(e) := tokensInSequenceFlow(e) ∪ {t}

ENDDO

In summary, we obtain the following refinement for the exclusive split gate-
way:

exclusiveSplitTransition(flowNode) = NodeTransition(flowNode) Where
controlCondition(flowNode) = splitControlCondition(flowNode) AND
controlOperation(flowNode) =

parblock
removeIncomingToken(flowNode)
produceOneOutgoingToken(flowNode)

endparblock

Analogously, we obtain the following refinement for the parallel split gateway
parallelSplitTransition(flowNode) = NodeTransition(flowNode) Where

controlCondition(flowNode) = splitControlCondition(flowNode) AND
controlOperation(flowNode) =

parblock
removeIncomingToken(flowNode)
produceAllOutgoingToken(flowNode)

endparblock

Specialisation for Join Gateways. For exclusive join gateways the control
condition is the same as for the split:

exclusiveJoinControlCondition(flowNode) =
Exists e ∈ IncomingSequenceFlows(flowNode)

With tokensInSequenceFlow(e) �= ∅
For parallel join gateways the control condition tokens must exist for all incom-
ing sequence flows:

parallelJoinControlCondition(flowNode) =
All e ∈ IncomingSequenceFlows(flowNode)

With tokensInSequenceFlow(e) �= ∅
In both cases just one outgoing token is produced, for which the operation pro-
duceOneOutgoingToken(flowNode) can be reused.

For exclusive join gateways just one ingoing token is removed:

removeOneIncomingToken(flowNode) =
Choose e ∈ IncomingSequenceFlows(flowNode)

With tokensInSequenceFlow(e) �= ∅
Choose t ∈ tokensInSequenceFlow(e)

tokensInSequenceFlow(e) := tokensInSequenceFlow(e) − {t}
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For parallel join gateways one token is removed for every incoming sequence
flow:

removeAllIncomingToken(flowNode) =
Forall e ∈ IncomingSequenceFlows(flowNode) Do
Choose t ∈ tokensInSequenceFlow(e)

tokensInSequenceFlow(e) := tokensInSequenceFlow(e) − {t}
Enddo

In summary, we obtain the following refinement for the exclusive join gate-
way:

exclusiveJoinTransition(flowNode) = NodeTransition(flowNode) Where
controlCondition(flowNode) = exclusiveJoinControlCondition(flowNode) AND

controlOperation(flowNode) =
parblock

removeOneIncomingToken(flowNode)
produceOneOutgoingToken(flowNode)

endparblock

Analogously, we obtain the following refinement for the parallel join gateway:

parallelJoinTransition(flowNode) = NodeTransition(flowNode) Where
controlCondition(flowNode) = parallelJoinControlCondition(flowNode) AND

controlOperation(flowNode) =
parblock

removeAllIncomingToken(flowNode)
produceOneOutgoingToken(flowNode)

endparblock

Let us finally look again at the semantics specified above for the exclusive join
gateway. Roughly said, the specified semantics is “one incoming token will be
removed and one outgoing token will be produced.” Actually, this is equivalent
to doing nothing: each token appearing on any incoming sequence flow is simply
forwarded to the outgoing sequence flow – control flow is simply passed on. As
we saw in Example 2 the effect may be that follow-on activities must be executed
multiple times.

So the question is, whether this “empty” semantics is really the desired one?
Alternatives to the specified semantics are the following ones:

– True Join: Only one incoming token is considered, all others are ignored, i.e.
“the first one will be served”. In this case other incoming tokens have to be
deleted including those that still may arrive, but not via loops, so it is getting
tricky, and additional information has to be kept in the state. We will discuss
this alternative in the contexts of inclusive join gateways and flags in Sect. 3.

– True XOR: If it is possible to have more than one incoming token, this
is considered an error. In this case it has to be verified that the erroneous
situation may never occur.
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2.5 A Glimpse on Verification

In our discussion of semantics we have now seen already several cases, where it
is necessary to verify desired properties of control flow specifications. Examples
of such properties are the following:

– Liveliness: Each started process will eventually terminate.
– No deadlocks: A flow flode may have to wait forever, though the process

instance is not yet completed.
– No redundancy: Each activity or gateway can eventually be fired.
– True XOR join: Only one token may arrive at an incoming sequence flow

of an exclusive gateway (third semantics).

Example 4. In Examples 1–3 we should see the following properties:

– Liveliness holds for the first three cases (empty semantics assumed) in Figs. 1,
2 and 3, only in the first two cases for the “true XOR” semantics, but not in
the fourth case in Fig. 4.

– There are no deadlocks in the first three cases and no redundant flow nodes
in any of the four cases.

– In the third case two tokens may arrive at the exclusive join, while in the
fourth case it may occur that only one token arrives at the parallel join thus
creating a deadlock.

In all these cases the proofs are rather obvious. Nonetheless, let us sketch
examples of liveliness proofs.

First consider the control flow in Example 1 corresponding to Fig. 1. It can
be easily seen that at any time there is at most one token, and that each path
starting at the start node leads to the end node.

Next consider the slightly more complicated control flow in Example 1 corre-
sponding to Fig. 2. In this case, if the parallel split is fired, then also the parallel
join will fire. Then the proof can be reduced to the argumentation for the first
example.

3 Control Flow Extensions

The discussion of different semantics for exclusive joins motivates to think about
alternative gateways for synchronisation. Therefore, in this section we will intro-
duce a few extensions to the simple control flow specifications considered so far.
We will start with a discussion of inclusive split and join gateways. Informally, an
inclusion split gateway will produce tokens on any subset of outgoing sequence
flows, which can be easily specified by ASMs. Then an inclusive join must syn-
chronise all incoming tokens that may arrive, but those that may arrive via a
loop have to be excluded.

We adopt the semantics defined by Börger, Sörensen and Thalheim in [6],
which provides a nice example for the use of flags in the state. Flags are de facto
Boolean-valued locations, which can be used to define more complex control
conditions and actions. As another extension we briefly sketch counters, i.e.
integer-valued locations that can be used among others to capture priorities.
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3.1 Inclusive Gateways

As stated above an inclusive join gateway has to synchronise all incoming tokens
that may arrive (excluding loops). So, we need a different control condition. How-
ever, as the condition has to capture, if any token may still arive, the property
is no longer local, i.e. it does not only depend on the token on incoming edges.

Fig. 5. Control flow with inclusive join gateway

Example 5. Let us modify the (erroneous) Example 3 illustrated in Fig. 4 by
replacing the parallel join by an inclusive one. This is illustrated in Fig. 5. Intu-
itively, the informal semantics sketched above indicates that the control flow is
now correct. As before after start the activities A and B will be executed in
parallel and eventually completed. So the inclusive join will receive a token from
B and wait, if another token arrives from the exclusive split following the com-
pletion of A. Now, if the exclusive split enables activity D, no such token may
arrive at the inclusive join anymore, i.e. it will fire and thus enable activity C –
so in this case both C and D will be executed. Otherwise, if the decision at the
exclusive split is different, then D will not be executed, but the second token
will appear at the other incoming edge of the inclusive gateway, which will fire
and enable activity C – so in this case only C will be executed.

Example 6. Now consider a more complicated example as illustrated by the
control flow in Fig. 6. After start the inclusive split gateway will select any subset
of activities A, B and C to be executed in parallel. Regardless, which of these
activities have been selected, they will eventually terminate. If B or C or both
were selected, this will be synchronised again by the first inclusive join, and the

Fig. 6. Control flow with inclusive split and join gateways and feedback loop
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follow-on parallel split will then pass tokens onto activity D and the second
inclusive join. The latter one has two more incoming sequence flows. The one
coming from activity F has to be ignored, as a token can only come this way, if
it had passed already the (waiting) inclusive gateway, which is impossible. So, if
A has been selected, executed, and the follow-on exclusive split does not select
to pass on control to activity E, but to the second inclusive gateway, this one
will fire.

To specify the semantics of the inclusive gateway it is therefore possible to
proceed as follows. The inclusive split at the beginning “informs” all possible
successors that are inclusive joins about its decision. That is, if A is in the
selected set, the second inclusive gateway will receive a flag on the incoming
flow corresponding to the path through A. Analogously, if one or both of B or
C is selected, the other incoming flow of the second inclusive join will receive
a flag in addition to flags on the incoming edges of the first inclusive gateway.
If A is completed, but the following exclusive split passes control onto E, the
corresponding flag can be removed, as no token may arrive via this path. Then an
inclusive join can fire, if all tokens on incoming edges that could arrive actually
have arrived. Then all tokens and flags will be removed and a token at the
outgoing edge will be created.

Let us finally remark on the feedback loop. In case the second inclusive
gateway fires, first G will be enabled. Then after completion, F might be enabled,
in which case also a flag is created at the third incoming edge of the inclusive
join. As no other flag could be set, this gateway could immediately fire again.

3.2 Semantics of Inclusive Gateways Using Flags

For inclusive splits the changes to exclusive or parallel gateways, respectively, are
straightforward. Instead of creating exactly one token on one (or all, respectively)
outgoing sequence flows, we select an arbitrary (in general non-empty) subset
of these sequence flows and create tokens on all of them. In addition, all split
gateways will have to create control flags for “reachable” inclusive join gateways,
as we will discuss next.

So, for inclusive joins we want to exploit the paths from a split gateway of
any type to a join gateway without any repetition of flow nodes. For this we
can use a function reachableJoin defined for all outgoing sequence flows of split
gateways assigning a set of sequence flows to them. More precisely, if there is
a path from a flow node f to an inclusive join gateway fo (not involving fo
itself) with initial sequence flow e (which is an outgoing sequence flow of f),
then the final sequence flow e′ (which is an incoming sequence flow of fo) is in
reachableJoin(e). The function reachableJoin is static and defined only by the
control flow.

The idea is then that whenever a token is placed on an outgoing sequence
flow e, a flag is defined for all e′ ∈ reachableJoin(e) indicating that a token may
arrive this way. These flags can be updated, so the information, which tokens
may still arrive is kept up to date. Thus, for each incoming sequence flow e of
an inclusive join we define a function flags resulting in a set of flags, where a
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flag is defined as t.o, where t identifies a token, and o indicates the flow node, at
which the token was generated. Then we have to refine all previous definitions
of gateways:

– For each flow node the origin o of the generated tokens t.o is an identifier for
the gateway.

– All flags t.o consumed by flow node f appearing in some flags(e′) with e′ ∈
reachableJoin(e) and e ∈ OutgoingSequenceFlows(f) will be replaced by a
new flag t′.f , where t′ is the new token produced on e.

– In particular, at the start s the generated token t.s will be placed into all
flags(e′) with e′ ∈ reachableJoin(s).

The refinement of the ASM specifications is straightforward.
Let us now look at the definition of the control operation and condition for

inclusive join gateways. Informally, the control operation for an inclusive join is
analogous to exclusive and parallel joins, as only one token is generated and the
tokens needed in the control condition are removed. This includes the deletion
of the flags. The control condition is simply to check that all tokens that may
arrive have actually arrived:

inclusiveJoinControlCondition(flowNode) =
All e ∈ IncomingSequenceFlows(flowNode)

With tokensInSequenceFlow(e) = flags(e)

More details concerning the ASM specification for inclusive gateways can
be found in [6]. It should be noted that in this particular case concerning the
specification of inclusive joins the use of flags can be avoided as the inclusiveJoin-
ControlCondition can be derived from the distribution of tokens, i.e. from the
state. Furthermore, if multisets are used, identifiers for tokens may be preserved.
However, it should also be noted that in any case the semantics of the inclusive
gateway is no longer “local”, as tokens in different parts of the specification have
to be explored. This is simplified by the use of flags.

Nonetheless, flags associated with incoming (and outgoing) sequence flows
can be used as a general extension mechanism. Another example for their use
could be the definition of semantics of the “true join” semantics for exclusive
joins “the first one coming is served”.

3.3 Counters and Priorities

As we have already seen in our discussion of very simple examples (see Fig. 3),
already with the (empty) semantics of exclusive joins it is possible to create
multiple tokens associated with a single edge. Therefore, it appears natural to
associate counters with incoming sequence flows to define complex control condi-
tions requiring specified numbers of tokens on each incoming sequence flow to be
consumed. Analogously, we may associate counters with outgoing sequence flows
to define complex control operations generating specified numbers of tokens on
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each outgoing sequence flow. As such counters belong to the state, they may be
subject of updates, e.g. updated by activities.

For instance, define how many reviews will be required by a certain appli-
cation and how many positive ones will be needed for success. Then integrated
split and join gateways as well as gateways with only one incoming and one
outgoing sequence flow will be enabled.

This leads to several new verification problems. If complex control conditions
involving counters are used, the question arises, if these conditions can always
be satisfied. Another question is what happens with remaining tokens (as for
exclusive joins). These tokens could be ignored or removed. Then again flags are
needed for potentially more arriving tokens. Alternatively, left over tokens might
be considered as a specification error. In case the soundness can only be checked
at run-time, because counters can be updated, an exception may be raised.

Counters may also be used to count how often a flow node has fired for a
particular process instance. This can be used to model different behaviour for
the first, second, etc. run through the flow node. A special case for the use of
such a run counter is the complex gateway in BPMN, for which the internal
“state” can be modelled by the run counter, and control operations may affect
the counter as well.

In a complex gateway with several incoming and several outgoing sequence
flows priorities among several control conditions can be easily modelled. As the
semantics of gateways (and other flow nodes) is defined by means of ASMs, any
other complex conditions for splitting and synchronising the control flow can be
modelled – if necessary, the state signature has to be extended.

4 Messages and Events

Messages and events are necessary extensions in business processes to fine-
tune the specification. Basically, a message is defined by a sender, one or more
receiver(s) and the message content. Sending a message is nothing more than
a specific activity, but receiving a message can also be modelled as a specific
activity, and the content of a message is created by the sender before sending –
this is illustrated by the specific graphical notation for send and receive actions
in Fig. 7. We distinguish a signal from a message by the main criterium that
the signal is created continuously while sending. Messaging can be done in a
synchronous or asynchronous way. Analogously, signals may be transmitted in
a synchronous way or spooled.

Fig. 7. Send and receive actions in a control flow
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As sending and receiving are activities, they appear in control flows just as
all other activities. Furthermore, sending and receiving (as activities) produce
tokens when executed, and they may change the state in other ways. This has
to be distinguished from the events that occur in connection with messaging.

The sending of a message creates an event sent, and the receiving of a mes-
sage creates an event received. Besides these further message-related events can
occur: delayed, lost, rejected, undeliverable, etc. It seems not advisable
to create specific notation for each of these events, in particular not, if messaging
events are integrated with other events using a temporal language for creating
complex events.

4.1 Message Processing

A detailed ASM specification of communication actions (send, receive) has been
done for S-BPM [11]. We adopt this specification in our modelling approach.
In this model each receiver is equipped with an inputPool, which is subject to
size restrictions concerning the total capacity (number of messages), the number
of messages from a particular sender, the number of messages of a particular
type, and the number of messages of a particular type coming from a particular
sender. The bound 0 is used to indicate synchronous communication, otherwise
it is asynchronous. Different strategies for handling violations to these bounds
have been specified.

For sending and receiving the actor (sender or receiver) chooses between
several alternatives defined by receiver and meassage type, and prepares a mes-
sageToBeHandled. For sending this is a messageToBeSent, for receiving this is
an expectedIncomingMessage. Then TryAlternativecommAct actually tries to send
or receive the message.

Let us now sketch the ASM specification for message specification. Details
can be found in the appendix of [11].

Perform (actor, CommAct, state) =
IF NonBlockingTryRound(actor, state) THEN

IF TryRoundFinished(actor, state) THEN
InitializeBlockingTryRounds (actor, state)

ELSE TryAlternativeCommAct (actor, state) ENDIF
ENDIF
IF BlockingTryRound(actor, state) THEN

IF TryRoundFinished (actor, state) THEN
InitializeRoundAlternatives (actor, state)

ELSIF Timeout (actor, state, timeout (state)) THEN
InterruptCommAct (actor, state)

ELSIF UserAbruption(actor, state) THEN
AbruptCommAct (actor, state)

ELSE TryAlternativeCommAct (actor, state) ENDIF
ENDIF

with
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TryAlternativeCommAct (actor, state) =
ChoosePrepareAlternativeCommAct (actor, state) seq TryCommAct (actor,

state)
In a simple messaging model receivers are well-defined activities, i.e. the

actors associated with the receiving activities. However, such a view is rather
static. More generally, the state of the processes can be exploited to define
receivers in a much more dynamic way. In particular, the receivers may depend
on control, event, data and resource conditions just like flow nodes, and the
dynamic determination of receivers can be part of the data operations.

4.2 Types of Events

There is a vast amount of possible event types: internal events, timing events,
messaging events, etc. In general, events refer to something atomic that “has
happened”.

Internal events can refer to particular progress in the process flow, e.g. activ-
ities may be enabled, started, completed, but also postponed, interrupted, can-
celled, delegated, delayed, etc., gateways may be waiting, enabled, fired, etc.,
and the whole process may have started or ended.

Likewise messages may have been sent, received, rejected, lost, retried (n’th
time), etc., and signals may have been started, receiving, received, spooled, etc.

External events refer to activities that are happening in the environment,
which can be captured by monitored functions in the ASM specification. Events
can be combined to complex events using the usual logical junctors.

Events can also refer to time, for which a discrete, linear time model can be
used. In distributed systems it is advisable to refer to local time (time depends
on location) in order to avoid the problem of clock synchronisation. With time
complex events can be created using temporal relationships: (directly) before,
(directly) after, simultaneous, etc. Logically, time events and internal events can
be combined.

4.3 Event Conditions and Actions

Thus, they main purpose of events is to enable the specification of event con-
ditions, with which the firing of flow node instances becomes dependent on the
progress of the process instance. Event conditions have been foreseen for all types
of flow nodes, even starting or termination of a process (instance) can be made
dependent on an event.

However, event conditions (as specified so far) refer to the firing of flow nodes.
Nonetheless, event conditions can also be used to refine the control operation, e.g.
deciding, on which outgoing sequence flows tokens shall be created. An example
of the latter behaviour is captured by event-based gateways in BPMN. However,
using events in the state permits more general definitions of complex gateways
or event-driven activities.

Event actions have also been foreseen for all types of flow nodes. The purpose
of event actions is to record those events that are relevant for the continuation of
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the process, as not all events are relevant to be recorded. That is, the recording
would cover which event happened where and when, etc.

Some events may be disruptive requiring the process to be interrupted, (par-
tially) rolled back and restarted with additional information. The handling of
interrupts refers to exception handling.

5 Interaction and Data Handling

Interaction refers to the detailed specification, how basic activities are executed.
The key idea is that each basic activity defines a dialogue, which may be broken
down into several dialogue steps. We will first look into dialogue specifications,
then briefly address how data conditions and actions can be specified. For the
latter it is decisive that in each dialogue step certain data are consumed, while
other data is produced. Here data consumption refers to the data that is needed
(i.e. read) to perform any operation associated with the dialogue step, while data
production refers to the data that is created by one of the operations associated
with the dialogue step.

5.1 Interaction and Dialogues

Data consumption and production provide a local view on the data. Thus, both
can be defined by small schemata associated with activities and then also dia-
logue steps. The integration of all these schemata defines a part of a global
schema that underlies the data handling of the whole process for all instances.

Therefore, we distinguish between database objects defined by the global
schema and dialogue objects defined by local schemata. Naturally, the local
schemata define views on the global schema. By abstraction from individual
activities we obtain a model of dialogue types, which we adopt from [28].

According to the previous discussion let us assume a (global) database schema.
Elements appearing in instances of the global schema are referred to as database
objects. These may be relations, trees, graphs, arrays, etc. We deliberately leave
this open in order to stress that any data model (relational, nested, object-
oriented, tree-based, graph-based, etc.) may be used here, but we must assume
a query language that can be used to define views.

Then a dialogue type is basically defined by such a view plus operations.
A dialogue object is an element in such a view for a particular database instance
plus the operations of the dialogue type restricted to this element.

Based on the database schema operations (usually transactions) can be
defined. Such db-operations require some input types and a specification of the
actual updates of the database by means of db-programs.

Analogusly, operations on dialogue types can be defined. Such dialogue-
operations also require input types plus a selection type defined on the view
and a body that specifies which db-operations are used and which other dialogue
objects are to be created.
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Usually, on a high level of abstraction the concrete definition of the database
schema, the queries defining the views and the db-operations are left abstract.
According to our discussion a basic activity can be defined by a set of dialogue
types defining implicitly data consumption and production and the flow of dia-
logue steps.

5.2 Data Conditions and Actions

The assumed global schema can be used to define data conditions for all flow
nodes in the control flow specification. Such data conditions are expressed as
Boolean queries. Analogously, the db-operations define data actions that may
also be associated with the flow nodes in the control flow.

However, for activities the data actions result from the defining dialogue
operations. Only the initialisation of the starting dialogue type has to be defined.

Data actions have global effects on the state. In particular, data conditions
in remote parts of the specified process now depend on activities that seem to be
independent. Thus, data conditions and actions require additional consistency
verification due to these hidden dependencies. Furthermore, dialogue operations
may also be defined directly on the views requiring a translation of the view
updates to database updates. How to verify consistency with respect to data
dependencies, is still a matter of research and will not be stressed further in this
article.

6 Actors, Roles and Exceptions

The flow-centric specification of business processes emphasises the activities,
their effects, and controlling conditions. Those who have to perform the (basic)
activities are referred to as actors. Thus, to complete the picture, actors have
to be associated with all activities. Then it is the responsibility of the actor to
perform the activity using the associated dialogue objects as tools.

6.1 Responsibilities and Decision Making

Therefore, instead of directly associating actors, activities are usually assigned
to roles, which are names representing an assortment of obligations and rights.
In particular, some decisions on the flow of a process depend on data and events,
while others have to be made explicitly by actors in certain roles.

Fig. 8. Control flow with optional activity
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Fig. 9. Control flow with explicitly marked optional activity

Example 7. In the control flow illustrated in Fig. 8 the activity A is optional.
The question is who decides, if A is executed or not?

– Activity B may contain a data action such that the follow-on exclusive split
can evaluate a data condition, which determines, if A or nothing is done. In
this case, actually the actor associated with B is responsible for the decision.

– Alternatively, the data condition associated with the gateway can be defined
elsewhere, if embedded in a larger control flow.

– We may associate a role also with the gateway, which, however, would blur
the distinction between gateways that fire immediately when enabled and
activities that usually depend on actor interaction.

– Finally, the decision may be a right of the actor associated with activity A,
in which case the control flow is misleading.

In order to cope with situations as in Example 7 we have to distinguish cases,
where decisions are based on pure data conditions from those, where it is the
responsibility of the actor him/herself to decide about executing an optional
activity. Therefore, deontic rules should be supported, some of which can be
easily marked in control flows (see [20,22] for details).

Example 8. For instance, in Example 7 the activity A could be marked as
optional as illustrated in Fig. 9. Executing O(A) means that the actor associated
with this activity either executes A or nothing. Analogously, alternatives and
forbidden actions can be handled this way [20,22].

A more fine-grained specification of rights and obligations associated with
roles can be obtained by deontic action logic. The atoms of the logic are defined
as follows:

– do(r, a) means that an actor in role r executes action a.
– Pdo(r, a) means that an actor in role r is permitted to execute action a.
– Fdo(r, a) means it is forbidden for an actor in role r to execute action a.
– Odo(r, a) means that an actor in role r is obliged to execute action a.

Formulae in the logic are constructed from the atoms with the usual logical
junctors. Then deontic constraints give rise to another verification task, i.e. to
check if processes can be executed under the given constraints.

6.2 Exception Handling

An exception is a disruptive event, i.e. an exception causes that the running
process instance is interrupted regardless of its state, a complete or partial roll-
back to a consistent state will be executed, and depending on the kind of the
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exception a restart from a consistent state with a different continuation process
will be launched. Examples of exceptions are order cancellation, bancrupcy of a
customer, serious breakdown, etc.

The rollback may affect a single or a few activities, but also the complete
process may have to be rolled back. The rollback triggered by an exception is
a process in its own right. It will first collect activities that have to be undone,
either perform undo operations as in databases or apply compensation activ-
ities if possible. Undo operations may require adequate data, i.e. the detailed
specifications of activities, gateways, decisions, etc. have to be refined.

At the end of the rollback the process should have reached a consistent pre-
vious state, from which the process instance will resume, i.e. continue in the
modified state, which also contains information about the exception.

Continuation processes can be part of the process specification. Thus, we
may use conservative extensions to specify alternative paths in case of particular
exceptions:

IF notInterrupted THEN 〈as specified〉
ELSIF exception1 THEN continuation1 . . .

Usually, continuation processes give rise to subprocesses.
Exception handling is still subject to research, so we dispense with discussing

further details in this article.

7 Conclusions

In this article we briefly outlined business process specifications grounded in hor-
izontal refinements, which enables the integration of several sub-systems address-
ing control flow, message handling, event handling, data handling, exception
handling, etc. While some of the work has reached already a mature state, other
parts are still under investigation. The final goal is to complete the specification
of an integrated businss process model H-BPM with unambiguous semantics
defined by ASMs.

The main emphasis of H-BPM is to capture all relevant aspects of BPM
and to formally define the semantics using Abstract State Machines in order
to enable validation and formal verification. Usually actors and data handling
have been neglected, while other constructs handled superficially (see [16] for
a discussion of major parts of BPMN 2.0). In this way H-BPM aims to enable
seamless modelling of business processes on all levels of abstraction as well as
horizontal and vertical model integration by means of formal refinement.

Regarding vertical integration is achieved by further refining the involved
ASMs in a development process that is targeting the executable specification of a
workflow engine that is enriched with components for data and dialogue handling
and exception processing. Throughout the process rigorous quality assurance
methods have to be applied.

In this brief article we only gave an overview of the most relevant aspects
of H-BPM without going too much into details. In particular, several exten-
sions were not yet handled such as modularity by subprocesses with replacement
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semantics, which will have many implications on the constructs introduced so
far, further details of the ASM specifications, multiple view presentations, in
particular coarse and fine presentation of specifications, etc. We also did not
stress how to handle validation nor how to effectively perform verification.

Regarding our future research further extensions are envisioned. These com-
prise the possibility to postpone or cancel activities with the corresponding meta-
level rights and obligations. Furthermore, we intend to investigate adaptivity in
business process specifications, in particular with respect to preferences, excep-
tion handling and ad-hoc changes. Adaptivity is the subject of a running research
project AdaBPM.
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17. Natschläger, C.: Deontic BPMN. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D.,
Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 264–278. Springer,
Heidelberg (2011)
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21. Natschläger, C., Schewe, K.D.: A flattening approach for attributed type graphs
with inheritance in algebraic graph transformation. Electron. Commun. EASST
47, 160–173 (2012)
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Abstract. Many algorithms for multi-criteria top-k query processing
with ranking predicates have been proposed, but little effort has been
directed toward genericity, i.e. supporting any type of access to the lists
of predicate scores (sorted and/or random), or any access cost settings.
In this paper we propose a general approach to exact and approximate
generic top-k processing. To this end, we propose a general framework
(GF) for generic top-k processing, able to express any top-k algorithm
and present within this framework a first comparison between generic
algorithms. In previous work, we proposed BreadthRefine (BR), a generic
algorithm that considers the current top-k candidates as a whole instead
of focusing on the best candidate for score refinement, then we compared
it with specific top-k algorithms. In this paper, we propose two variants of
existing generic strategies and experimentally compare them with the BR
breadth-first strategy, showing that BR leads to better execution costs.
We also extend the notion of θ-approximation to the GF framework and
present a first experimental study of the approximation potential of top-k
algorithms on early stopping.

Keywords: Top-k query processing · Ranking · Multi-criteria informa-
tion retrieval

1 Introduction

We address the problem of top-k multi-criteria query processing, where queries
are composed of a set of ranking predicates, each one expressing a measure of sim-
ilarity between data objects on some specific criterion. Unlike traditional Boolean
predicates, similarity predicates return a relevance score in a given interval.
The query also specifies an aggregation function that combines the scores pro-
duced by the similarity predicate of each criterion. Query results are ranked
following the global score and only the best k ones are returned.

Ranking predicates acquired an increasing importance in today’s data retrieval
applications, especially with the introduction of new, weakly structured data
types: text, images, maps, etc. Searching such data requires content-based infor-
mation retrieval (CBIR) techniques, based on predicates measuring the similarity
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Fig. 1. General form and example of a top-k query

between data objects, by using content descriptors such as keyword sets, image
descriptors, geographical coordinates, etc. We consider here the case of expensive
ranking predicates over data objects, whose specificity is that their evaluation
cost dominates the cost of the other query processing operations.

The general form of the top-k queries that we consider is expressed in Fig. 1.
The query asks for the k best objects following the scores produced by m ranking
predicates p1, ..., pm, aggregated by a monotone function F .

Figure 1 also presents a query example coming e.g. from a smartphone touris-
tic application, where the visitor of a Renaissance monument, after finishing the
visit, searches for another similar monument (the “best” one) on three criteria:
near to his current location, containing a similar detail to some picture taken
with the smartphone, and exposing Renaissance artworks, preferably sculptures.
Here, the aggregate function is a simple sum.

As in this example, expensive ranking predicates come often from the eval-
uation of similarity between images, text, locations and other multimedia types,
whose content is described by numerical vectors. This results in expensive searches
in highly dimensional spaces, based often on specific multidimensional index struc-
tures [3]. Note that most of the ranked predicates in this case come from binary
predicates sim(o1, o2) evaluating similarity between objects, transformed into
unary ranked predicates p(o) = sim(o, q) evaluating the similarity with a query
object q.

In many cases, predicates are evaluated by distant, specialized sites, that pro-
vide specific web services, e.g. map services evaluating spatial proximity, photo
sharing sites allowing search of similar images, specialized web sites proposing
rankings for hotels, restaurants, etc. Internet access to such services results into
expensive predicate evaluation by distant, independent sites. Moreover, the con-
trol over predicate evaluation is minimal most of the time, reduced to the call
of the provided web service.

For each query, a ranking predicate may produce a score for each object.
Following, we call a source the collection of scores produced by a ranking predi-
cate for the set of data objects. The list of scores may be produced e.g. by access-
ing a local index structure that returns results by order of relevance. We consider
here the general case, where the access to the scores of a source is limited to
sorted and/or random access. This allows three possible types for a source S:

– S-source: sorted access only, through the operator getNext(S) returning the
pair (o, s) containing the identifier o of the object with the next highest score s.

– R-source: random access only, through the operator getScore(S, o) returning
the score of a given object o.

– SR-source: a source with both sorted and random access.
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Fig. 2. Examples of sources and query execution for the query example

The general idea of a top-k algorithm is to avoid computing all the global
scores, by maintaining a list of candidate objects and the interval [L,U ] of possi-
ble global scores for each of them. The initial interval of a candidate is obtained
by aggregating the minimum/maximum source scores.

The monotonicity of the aggregation function ensures that further source
accesses always decrease the upper bound U and increase the lower bound L.
The algorithm stops when the score of the best k candidates cannot be exceeded
by the other objects anymore.

Figure 2 presents a possible execution for the example query in Fig. 1. We
suppose S1 is an S-source, S2 an SR-source, S3 an R-source; scores are presented
in descending order for S/SR sources and by object identifier for R-sources. Local
scores belong to the [0, 1] interval in this example, so the initial global score
interval is [0, 3] for all objects.

We note candidates the set of candidates and Uunseen the maximum score of
unseen objects (not yet discovered in some source). Initially, candidates = ∅ and
Uunseen = 3.

– A sorted access to S1 retrieves (o2, 0.4), so o2’s global score interval becomes
[0.4, 2.4]. Also Uunseen becomes 2.4 because further scores in S1 cannot
exceed 0.4.

– Then, a sorted access to S2 retrieves (o3, 0.9). This adds a new candidate (o3),
lowers Uunseen to 2.3 (further S2 scores cannot exceed 0.9), but also lowers
the upper bound of o2 to 2.3, because the maximum score of S2 is now 0.9.

– Next, a random access to S2 for o2 retrieves (o2, 0.1). This changes only the
global score interval of o2.

– A random access to S3 for o3 retrieves (o3, 0.8) and changes the global score
interval of o3.

– A sorted access to S2 retrieves (o1, 0.2). This adds a new candidate (o1),
lowers Uunseen to 1.6, but does not lower the maximal global score of the
other candidates because o2 and o3 already know their S2 scores.
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The minimum global score of o3 exceeds now both Uunseen and the maximum
global score of all the other candidates and the execution stops since o3 is surely
the best (top-1) object.

2 Related Work and Contribution

A large spectrum of top-k query processing techniques [11] has been proposed at
different levels: query model, access types, implementation structures, etc. We con-
sider here the most general case, of simple top-k selection queries, with expensive
access to sources, limited to individual sorted/random probes, without additional
information about local source scores/objects, and out of the database engine.

This excludes from our context join queries [10,17] or interaction with other
database operators for query optimization [10,12,13]. We consider sequential
access only, parallel processing is out of the scope of this paper. We exclude also
approaches such as TPUT [5], KLEE [16] or BPA [1], able to get several items
at once, or having statistical information available about scores, or having also
the local rank. Algorithms such as LARA [14], that optimize the management
of the candidate list, are orthogonal to our approach for expensive predicates,
which focuses on source access.

In this context, top-k algorithms proposed so far fit with the general method
presented in the example of Fig. 2 and propose their own heuristic for deciding
the next access to a score source. However, most algorithms focus on specific
source types and cost settings.

Algorithms such as NRA [7] (No Random Access) and StreamCombine [9]
consider only S-sources. NRA successively consults all the sources in a fixed
order, while StreamCombine selects at each step the next access based on a
notion of source benefit.

Other algorithms consider only SR-sources. The best known is TA [7] (Thresh-
old Algorithm), which consults sorted sources in a fixed order (like NRA), but
fully evaluates the global score of each candidate through random access to the
other sources. The algorithm stops when at least k global scores exceed Uunseen.
Among the extensions of TA we cite QuickCombine [8], which uses the same idea
as StreamCombine to select the next sorted source to probe, and TAz [4], which
considers an additional set of R-sources besides the SR-sources. CA [7] (Combined
Algorithm) is a combination of TA with NRA that considers random accesses
being h times more expensive than sorted ones. It reduces the number of random
probes by performing h sorted accesses in each source before a complete evaluation
of the best candidate by random probes.

Also supposing cost asymmetry, a third category of algorithms considers one
cheap S-source (providing candidates) and several expensive R-sources. Upper
[4,15] focuses on the candidate with the highest upper bound U and performs
a random probe for it, unless U < Uunseen, in which case a sorted access is
done. The choice of the next R-source to probe is based on a notion of source
benefit, dynamically computed. MPro [6] is similar to Upper, but fixes for all the
candidates the same order for probing the R-sources, determined by sampling
optimization.
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Surprisingly, little effort has been made towards generic top-k processing, i.e.
adapted to any combination of source types and any cost settings. To our knowl-
edge, besides our BreadthRefine proposal described below, NC [19] (Necessary
Choices) is the only other generic approach, however limited to the case of results
with complete scoring. NC proposes a framework for generic top-k algorithms, a
strategy SR that favors sorted accesses, and a specific algorithm SR/G that uses
sampling optimization to find the parameters that produce the best fit given the
source settings.

Approximate top-k processing has been considered in several approaches, the
most usual one being the approximation by early stopping, i.e. considering the cur-
rent top-k objects at some point during the execution as an approximate result.
Since early stopping comes with no guarantees on the quality of the result, sev-
eral constraints providing such guarantees have been considered. For instance, a
variant of the TA algorithm, called TAθ [7], defines an approximation parameter
θ > 1 and the θ-approximation of the top-k result as being a set Ka of k objects
such that ∀x ∈ Ka,∀y /∈ Ka, θ × score(x) ≥ score(y) (global and local scores
are considered to belong to the [0,1] interval). The intuition behind this condition
is that the ratio between the score of the best missed object in the approximate
result (best false negative) and that of the worst false positive cannot exceed θ. To
obtain a θ-approximation, TAθ simply changes the threshold condition: the algo-
rithm stops when at least k objects have a global score ≥ Uunseen/θ, i.e. TAθ is
equivalent to an early stopping of the TA algorithm.

Other approximation algorithms for top-k selection queries are proposed in
[18], for S-source algorithms, or in the KLEE system [16] for top-k processing in
distributed environments. Note that [18] is based on dropping candidates that
have low probability to be in the top-k and provides probabilistic guarantees for
the result, but requires knowledge about score distribution in sources.

In previous work, we have proposed BR (BreadthRefine) [2], a generic algo-
rithm that uses a breadth-first strategy for top-k processing in a larger context
than NC, i.e. with incomplete scoring. The BR strategy considers the current
top-k as a whole to be refined, while all the other proposed strategies focus on
the best candidate. BR has been compared to algorithms of the three categories
mentioned above and proved that it successfully adapts to their specific settings,
with better cost.

In this paper, we address exact and approximate multi-criteria top-k query
processing at a general level, proposing generalizations of existing algorithms
to the generic case and aiming at a comparison of algorithm strategies. More
precisely, our contributions are the following:

– A general framework GF for generic top-k multi-criteria query processing,
that allows expressing any top-k algorithm of our context, thus providing a
basis for comparative analysis and generalization.

– The BR algorithm is generic (adapted to any combination of source types
and any cost settings), but it was only compared to specific top-k algorithms,
since the only other generic approach, introduced by NC, is hardly comparable
with BR. As further detailed in Sect. 3, the difficulty to compare with NC
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comes mainly from the fact that, unlike BR and most top-k algorithms, NC
is not fully heuristic and strongly depends on a sampling optimization phase.
We propose here new, comparable generic variants of the BR, NC and CA
algorithms and experimentally compare these generic strategies, showing that
BR leads to better execution costs.

– A generalization of θ-approximation computing in the context of GF, and a
first experimental study of the ability of top-k multi-criteria algorithms to
produce good approximate results on early stopping, showing that the BR
strategy comes with a better approximation potential.

We do not directly address here algorithm optimality issues. Fagin et al.
demonstrate in [7] that NRA and TA algorithms are instance optimal, i.e. for
any database instance, no top-k algorithm can improve the execution cost with
more than a constant factor. They also show that algorithms based on a dynamic
choice of the next source to access (such as BR or, more generally, algorithms
expressed in GF) may not be instance optimal, although they may have in prac-
tice better execution costs. Even if BR and the other generic algorithms we con-
sider are not instance optimal, our goal is to experimentally demonstrate that
the BR strategy leads to better performances. Note however that, as shown in
[7], BR could be adapted to become instance optimal by adding source accesses
that guarantee every source to be accessed at least once every C steps, for some
constant C.

The rest of the paper is organized as follows: the next section introduces
the generic framework for top-k multi-criteria processing, then proposes and
compares in this context new generic variants for BR, NC and CA. Section 4
presents our approach for top-k approximation in the general framework, then
we report experimental results and end with conclusions.

3 Generic Top-k Framework and Algorithms

We propose GF, a generic framework for multi-criteria top-k processing (Fig. 3).
GF provides a common, general form for expressing any top-k algorithm in
our context. It facilitates comparison between top-k algorithms and strategies
expressed in this common form. For instance, we benefit here from this common
framework in the description of new variants of existing algorithms (NC and
CA), compared then with our BR approach. Another major benefit of GF is
that new properties expressed and proved in this general framework are true for
any top-k algorithm - for instance, the θ-approximation properties presented in
Sect. 4.

As in the example of Fig. 2, GF considers a top-k algorithm as a sequence
of accesses to the sources, that progressively discover scoring information about
data objects. The input parameters are the query q and the set of sources S.
Query q specifies the number k of results to return and the monotone aggregation
function F , while the set of sources S materializes the scores returned by the
query’s ranking predicates.
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Fig. 3. The GF generic top-k framework

In GF, algorithms maintain a set of candidates (initially empty) with their
interval of scores, the threshold Uunseen (initialized with the aggregation of the
maximum scores maxj of the sources), and possibly other local data structures.

Notations

– For a candidate c, we note [L(c), U(c)] its current interval of scores.
– We note Uk (respectively Lk) the current subset of k candidates with the best

k upper (lower) bound scores1.
– We note Uk the current k-th highest upper bound score among the candidates,

i.e. Uk = minc∈Uk
(U(c)), respectively Lk the current k-th highest lower bound

score, Lk = minc∈Lk
(L(c)).

– We note χ ∈ U1 the candidate with the current best upper bound score.

Note that the monotonicity of the aggregation function guarantees that the
threshold and the upper bound of candidate scores only decrease, while their
lower bound only increase during the algorithm.

One source access is performed at each iteration, the access type being decided
by the SortedAccessCondition predicate. In the case of a sorted access, a source
Sj is chosen by the BestSortedSource function, then is accessed through get-
Next. The returned object-score couple is used to update the threshold, the set of
candidates and the local variables. The retrieved object is added/updated in the
candidates set and objects not yet retrieved in Sj update their upper bounds.

Update also includes the discarding of non-viable candidates. A candidate c
with U(c) < Lk is called non-viable because it will never be in the top-k result
since at least k candidates surely have better scores.

In the case of a random access, the ChooseCandidate function selects a
candidate c, then BestRandomSource gives a random source to probe for it.
1 With random selection among candidates with the same score if necessary.
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After the random access through getScore, the candidates set and local variables
are updated (among candidates, only c changes).

The end of the algorithm is controlled by the generic StopCondition predi-
cate, which depends on the type of top-k result expected (e.g. with complete or
incomplete scoring). The earliest end is obtained with predicate

StopCondition ≡ (|candidates| = k ∧ Lk ≥ Uunseen) (1)

i.e. only k candidates are viable and there is no viable unseen object. Since this
result may have incomplete scoring, additional conditions are necessary to ensure
properties such as ordering or complete scoring of the results.

It is simple to demonstrate that this condition is necessary and sufficient for
a correct top-k result. Sufficiency is trivial, the k remaining candidates form a
correct top-k, because their scores are at least Lk, while the score of non viable
candidates and that of unseen objects is ≤ Lk. Necessity comes from the fact
that if condition (1) is not true, either |candidates| < k (and then we do not
have k candidates to form the result), or |candidates| > k (and then any of the
viable candidates still may have a final score that corresponds to a top-k object),
or Lk < Uunseen (and then an unseen object may belong to the top-k).

It is easy to see that any top-k algorithm in our context can be expressed in
GF. Indeed, for a given query and set of sources, each algorithm is equivalent to
the sequence of accesses to the sources it produces, which can be obtained with
a sequence of decisions about the access type, the source and the candidate for
random probes.

Note that this is not true for instance with the NC framework [19], in which
one chooses first a candidate among the k highest upper bound scores, then a
source in which the candidate has not been yet retrieved. This is not compatible
with algorithms that fix the order of accessing sources, such as NRA: a source
in which candidates with the current k highest upper bound scores have been
already found cannot be selected for the next step.

As an example, the NRA algorithm can be expressed in GF with SortedAc-
cessCondition ≡ true (only S-sources), a local variable keeping the last accessed
source and a function BestSortedSource returning the next source in a round
robin order.

Note that algorithms with SR-sources only, like TA, may avoid maintaining
interval scores, because the global score of each candidate is immediately com-
puted; however, this optimization is not relevant in our context, where cost is
given by the access to the sources and not by the updates to local data structures.

Given its ability to express any top-k algorithm, the GF framework is a
valuable tool for comparing top-k strategies. Following, we express in GF and
compare three generic algorithms: a new variant of BR and new, generic and
comparable variants of the NC and CA algorithms.

3.1 BreadthRefine

BreadthRefine (BR) [2] proposes a generic algorithm framework that can be
instantiated to several variants. The main idea of the BR strategy is to maintain
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the set of current top-k candidates Uk as a whole, instead of focusing on the best
candidate χ, which is the common approach.

BR was successfully compared with state of the art non-generic algorithms
in their specific settings. We complete here this comparison by considering also
two other generic top-k strategies, adapted for that purpose to our context.

The BR framework can be expressed in the more general GF framework by
instantiating SortedAccessCondition and ChooseCandidate to realize the BR
strategy.

– SortedAccessCondition ≡ (|candidates| < k or Uunseen > Uk or CostCondi-
tion()).

The SortedAccessCondition in the BR strategy combines three conditions:
a sorted access is scheduled if (i) there are not yet k candidates, or (ii) an
unseen object could belong to the current top-k Uk (Uunseen > Uk), or (iii) a
generic CostCondition favors sorted access in the typical case where a random
access is more expensive than a sorted one.

Condition (ii) targets the decrease of Uunseen through sorted accesses and
is the heart of the BR strategy for sorted sources. The common strategy for
sorted access focuses only on the best candidate χ, and to be sure that χ (and
not some unseen object) has the best upper score, a sorted access is scheduled
if Uunseen > U(χ) to decrease Uunseen below U(χ). The BR strategy focuses
on the whole current top-k: it maintains the whole Uk free of unseen objects,
by scheduling a sorted access if Uunseen > Uk.

– The BR strategy is completed by the ChooseCandidate function for refine-
ment by random probes. All the existing algorithms facing this choice systemat-
ically select the best current candidateχ. Instead, theBR strategymaintains the
k best candidates as a whole by first selecting the least refined candidate in Uk.

BR considers top-k with incomplete scoring, thus StopCondition is given
by (1).

BR-Cost*. Several instantiations of the BR framework have been proposed in
[2]. The one producing the best costs is BR-Cost, that fully implements the BR
strategy and uses a CostCondition inspired from CA: if r is the ratio between
the average costs of random and sorted accesses, then successive random probes
must be separated by at least r sorted accesses.

In BR-Cost, BestSortedSource and BestRandomSource adopt a benefit-
oriented strategy, inspired by StreamCombine [9] for choosing a sorted source, or
by algorithms with controlled random probes such as Upper [4] for random access.

– For a sorted access, the benefit of source Sj is Bsj = (∂F/∂Sj) × Nj ×
δj/Cs(Sj), where (∂F/∂Sj) is the weight of Sj in the aggregation function,
Nj the number of candidates in Uk not yet seen in Sj , δj the expected decrease
of the score in Sj and Cs(Sj) the cost of a sorted access in Sj . Since (∂F/∂Sj)
cannot be computed for any monotone function F , we consider here, for sim-
plicity, only the case of weighted sum, in which (∂F/∂Sj) = coefj > 0, where
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coefj is the coefficient corresponding to source Sj in the weighted sum. The
value of δj can be obtained, e.g. by making one access ahead, with negligible
extra cost.

The intuition behind this formula is that the benefit measures the potential
refinement of the candidates score intervals, relative to the access cost. The
sorted access to Sj refines not only the score interval of the retrieved object,
but also that of objects not yet found in Sj ; for these objects the upper bound
decreases by coefj ×δj . This formula, borrowed from StreamCombine [9], only
considers the Nj candidates of the current top-k not yet found in Sj .

– For a random access, the benefit of source Sj is Brj = coefj × (crtmaxj −
minj)/Cr(Sj), where crtmaxj and minj are respectively the current maxi-
mum score and the minimum score in Sj and Cr(Sj) is the cost of a random
probe in Sj . Note that crtmaxj decreases in SR-sources (after sorted accesses),
but remains constant (equal to maxj) in R-sources. Note also that coefj ×
(crtmaxj −minj) measures the reduction of the candidate’s score interval size
after a random probe in Sj , i.e. here also, the benefit expresses the refinement
of the score interval of the accessed object, relative to the access cost.

We propose here BR-Cost*, an improved variant of BR-Cost, using a dif-
ferent method for estimating r, in this case as a ratio of benefits instead of a
ratio of access costs. We measure r as the ratio between the average benefit of
making a sorted access vs a random one.

As for BestSortedSource and BestRandomSource, we consider the ben-
efit of an access to a source as being related to its impact on the evolution toward
the final top-k, measured by the decrease of the size of the interval of scores of the
candidates. More precisely, the benefit of an access to a source is defined as the
ratio between the refinement produced on all the candidate score intervals and
the cost of that access.

Note that this definition corresponds to that used by BestRandomSource
for random access, because only one candidate is impacted by a random probe,
but generalizes the benefit used by BestSortedSource, by considering the
decrease of score intervals for all the candidates, not only for those of the cur-
rent top-k. This corresponds to an uniform model for the benefit of accessing
any type of source and is more adapted for computing an average benefit. This
approach also favors the comparison with the NC strategy.

Consider the case of a S-source Sj in Fig. 4 at the moment when the current
score is crtmaxj and Nrj objects have not been yet accessed. A sorted access
to Sj refines the score of the retrieved object, but also produces a decrease δj of
crtmaxj that affects the upper bound of the remaining Nrj − 1 objects. For the
retrieved object, the width of the score interval decreases with coefj×(crtmaxj−
minj). For each one of the remaining Nrj −1 objects, the upper bound decreases
with coefj × δj .

In conclusion, the benefit of a sorted access to Sj is:

Bs(Sj) = coefj × (crtmaxj − minj + (Nrj − 1) × δj)/Cs(Sj) (2)
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Fig. 4. Scores in a sorted source Sj

Benefit varies in time; if δj does not vary much, benefit globally decreases
because crtmaxj and Nrj decrease. We approximate the average benefit by
considering δj ≈ (maxj − minj)/N , crtmaxj ≈ (maxj − minj)/2 and Nrj ≈
N/2:

Bs(Sj) ≈ coefj × (maxj − minj)/Cs(Sj) (3)

Note that the instant benefit Bs(Sj) may also be computed at any moment
if the total number of objects in the database is known or can be estimated. The
instant benefit could be used e.g. as an alternative value for BestSortedSource,
or for computing a variable ratio r in the BR-Cost* algorithm. Following, we
only consider a fixed ratio r, based on the average source benefit.

Benefit for a random access is computed in a similar way, but in this case
only the score interval of the selected candidate changes. If Sj is a SR-source,
the benefit, respectively the average benefit of a random access are:

Brs(Sj) = coefj × (crtmaxj − minj)/Cr(Sj) (4)

Brs(Sj) ≈ coefj × (maxj − minj)/2Cr(Sj) (5)

For a R-source crtmaxj = maxj all the time, therefore

Br(Sj) = Br(Sj) = coefj × (maxj − minj)/Cr(Sj) (6)

The global benefit SB (RB) of processing sorted (random) accesses is defined
as the sum of average benefits of the sources allowing this kind of access.

SB =
∑

Sj∈SS∪SSR

Bs(Sj)

RB =
∑

Sj∈SR

Br(Sj) +
∑

Sj∈SSR

Brs(Sj)

where SS , SR and SSR are respectively the disjoint sets of S-sources, R-
sources and SR-sources.

In conclusion, after developing the terms of SB and RB following formulas
(3), (5) and (6) above, the access ratio r used by BR-Cost* becomes:

r = SB/RB =

∑
Sj∈SS∪SSR

Aj

Cs(Sj)
∑

Sj∈SR

Aj

Cr(Sj)
+

∑
Sj∈SSR

Aj

2Cr(Sj)

(7)
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Fig. 5. First steps of BR-Cost* for k = 2 over the example sources in Fig. 2

where Aj = coefj × (maxj −minj) is the amplitude of the interval produced by
Sj in the aggregated score.

Example. As an example, we present in Fig. 5 the first steps of BR-Cost* for the
query in Fig. 1 over the sources in Fig. 2. We have SS = {S1},SR = {S3},SSR =
{S2}. The candidates set is sorted by decreasing value of the upper bound, i.e.
the first k ones form Uk. Let us consider that k = 2, Cs(S1) = Cs(S2) = 1 and
Cr(S2) = Cr(S3) = 2. We have ∀j, coefj = 1, maxj = 1, minj = 0, so Aj = 1.
The access ratio r = SB/RB = (1/1+1/1)/(1/2+1/4) = 8/3, so a random
probe is allowed only after at least r sorted accesses, i.e. 3 sorted accesses before
a random one.

– First access is sorted, because |candidates| < k. Benefits for S1 and S2 com-
puted by BestSortedSource are both 0, because Nj = 0 (no top-k candidates
yet). Remind that BR-Cost* uses the same BestSortedSource as BR-Cost,
based on benefit Bsj = coefj × Nj × δj/Cs(Sj). Source S1 is then randomly
chosen.

– The second access is also sorted (|candidates| < k), but this time N2 = 1 (o2
not yet read in S2), while N1 = 0. Since δ2 = 1 − 0.9 = 0.1, we have Bs2 =
0.1/1 = 0.1, while Bs1 = 0, so S2 is chosen.

– Now |candidates|=k, but CostCondition requires a third sorted access before
a random probe become possible. We have N1 = 1 (o3 not yet retrieved in S1),
N2 = 1 (o2 not yet retrieved in S2), δ1 = 0.4 − 0.3 = 0.1, δ2 = 0.9 − 0.2 = 0.7,
so Bs1 = 0.1 and Bs2 = 0.7, i.e. S2 is chosen for a sorted access.

– Since CostCondition allows now random probes and Uk = Uunseen = 1.6,
SortedAccessCondition returns false and a randomaccess is scheduled. Choose-
Candidate returns the least refined candidate in Uk = {o3, o2}. Both objects
have been read in one source, but o3 is returned, because it has a larger inter-
val than o2. Since crtmax2 = 0.2 and crtmax3 = 1, benefits of random sources
are Br2 = 0.2/2 = 0.1 and Br3 = 1/2 = 0.5. Anyway, o3 has already been
read in S2, so S3 is the only possible choice for a random probe of o3.

– CostCondition forces again at least three sorted accesses. For the benefit, we
have N1 = 1 (o3 not yet retrieved in S1), N2 = 1 (o2 not yet retrieved in S2),
δ1 = 0.4− 0.3 = 0.1, δ2 = 0.2− 0.15 = 0.05, so Bs1 = 0.1 and Bs2 = 0.05, i.e.
S1 is chosen for a sorted access.

– Execution continues in a similar way until StopCondition is satisfied.
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3.2 Necessary Choices

As mentioned above, Necessary Choices (NC) [19] was the first proposal for a
generic algorithm, yet constrained to the case of complete top-k scoring. In this
context, NC identifies necessary accesses at some moment, as being those for
candidates in Uk. Algorithms in the general NC framework do only necessary
accesses: each step selects an element in Uk with incomplete scoring and performs
an access for it.

In this framework, NC proposes an algorithm SR/G that favors sorted against
random accesses for each candidate. SR/G is guided by two parameters: D =
{d1, ..., dm}, which indicates a depth of sorted access in each S- or SR-source,
and H, which indicates a fixed order of probes in the random (R and SR) sources
for all the candidates. The meaning of D is that sorted access to a source Sj

where crtmaxj ≥ dj has always priority against random probes.
Among all the possible pairs (D, H), SR/G selects the optimal one by using

sampling optimization. The optimization process converges iteratively: for some
initial H, one determines the optimal D, then an optimal H for this D, etc.

Despite its genericity, NC is hardly comparable with BR. In the context of
incomplete top-k scoring adopted by BR, NC’s analysis of necessary accesses is
no longer valid. Source sampling used by SR/G is not always possible and does
not guarantee similar score distribution. We propose here a variant of SR/G,
adapted to the context of BR by considering incomplete scoring and a heuristic
approximation of (D, H) inspired by BR-Cost*. The intention is to compare the
strategies proposed by BR-Cost* and SR/G in a context as similar as possible.

The SR/G variant we propose is expressed in the GF framework as follows:

– Besides D and H, a local variable keeps the best candidate, i.e. the candidate
in Uk with incomplete scoring having the highest upper bound. SR/G does
a first sorted access to some source; the best object is initialized with this
first retrieved object and updated after each iteration. Note that at least one
object in Uk has incomplete scoring if the StopCondition has not been yet
reached.

– SortedAccessCondition returns true if the set of sorted sources in which the
best candidate has not been yet retrieved and where crtmaxj ≥ dj is not
empty.

– BestSortedSource returns one of the sources in this set.
– ChooseCandidate returns the best candidate.
– BestRandomSource returns the first random source not yet probed for the

best candidate, following the order defined by H.
– StopCondition, for incomplete scoring, is given by (1).

We propose an heuristic approximation of D and H, based on the notion of
source benefit used for BR-Cost*.

For H we consider the descending order of the random source benefit
computed with (5) and (6).
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Estimation of D is based on three hypotheses:

1. The number of sorted accesses to a source must be proportional to the source
benefit given by (3).

2. Sorted accesses until depth dj in each source should produce a decrease of the
threshold enough for discriminating the top-k result, which is at least until
Uunseen = Rk, where Rk is the k-th highest real score of an object.

3. If nj = N − Nrj is the number of sorted accesses in Sj for reaching depth
dj (see Fig. 4), the relation between nj and dj depends on the score distri-
bution in sources, generally unknown and approximated here with uniform
distribution.

If we note Δj = maxj − dj the score decrease to reach depth dj , the three
hypotheses above give:

1. ∀j, nj = C × Bs(Sj), where C is a constant.
2. Umax −Rk =

∑
coefj ×Δj , where Umax = F(max1, ...,maxm) is the highest

possible aggregated score.
3. ∀j, nj/N = (maxj − dj)/(maxj − minj).

Resolving this equation system produces the following estimation for the
depth:

dj = maxj − A2
j

coefj × Cs(Sj)
× Umax − Rk∑

j A2
j/Cs(Sj)

(8)

Real score Rk may be estimated by various methods. This is not impor-
tant in our experimental evaluation, since we precompute the Rk value, hence
considering the best case for SR/G.

Example. We take the same example as for BR-Cost*, in the same conditions,
to illustrate the first steps of the new variant of NC (see Fig. 6).

We first compute D = {d1, d2} and H. For the two sources with sorted access
(S1 and S2) we have similar parameters, maxj = Aj = 1, coefj = 1, Cs(Sj) = 1,
Umax = 3 and Rk = 1.4 (the real score of the second best object, which is o1).
Formula 8 gives d1 = d2 = 1 − (3 − 1.4)/2 = 0.2. For H, we have Br(S3) = 1/2
and Brs(S2) = 1/4, so the order given by H is [S3, S2].

Fig. 6. First steps of NC for k = 2 over the example sources in Fig. 2
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– A first sorted access is done, S1 is randomly chosen for that.
– o2 is the best object and among the missing accesses for it, the sorted one

in S2 has priority, because crtmax2 = 1 > d2, so S2 is selected for a sorted
access.

– o2 is again the best object and for the same reason as above, S2 is selected
again for a sorted access (crtmax2 = 0.9 > d2).

– Now o3 is the best object and among the missing accesses for it, the sorted
one in S1 has priority, because crtmax1 = 0.4 > d1, so S1 is selected for a
sorted access.

– o3 is again the best object and for the same reason as above, S1 is selected
again for a sorted access.

– o3 is still the best object and for the same reason as above, S1 is selected
again for a sorted access.

– o3 is still the best object, but no more sorted access for it is possible, so the
last access for it is considered - the random access for o3 is scheduled in S3.

– o3 being now fully evaluated, o2 is the new best object. The sorted access for
o2 in S2 still has priority, because crtmax2 = 0.2 ≥ d2, so S2 is selected for a
sorted access.

– o2 is again the best object, but the sorted access to S2 has not priority any-
more, because crtmax2 = 0.15 < d2. The remaining access for o2 (random
probe in S3) is scheduled. Then execution continues in a similar way until
StopCondition is satisfied.

3.3 Combined Algorithm

Although Combined Algorithm (CA) [7], limited to SR-sources, is not a generic
algorithm, it was a first attempt towards genericity, by proposing to combine
NRA and TA strategies to adapt to the case of different costs for random and
sorted access.

We propose here CA-gen, a generic variant of CA adapted to any source
types. Like for CA, if r is the ratio between the average costs of random and
sorted access, each sorted (S- and SR-) source is accessed r times, before per-
forming all the random probes for the best candidate in Uk with incomplete
scoring in random sources. Note that the best candidate may be different of χ.

Unlike CA, but similar to BR, CA-gen does not produce complete scoring for
the best candidate, since its score may still be unknown in some sorted sources.
Like for BR, the stop condition corresponds to incomplete top-k scoring.

– The cycle of r sorted accesses in each source can be simulated in GF with
local variables indicating the next source to access and the number of accesses
already performed in the cycle.

– SortedAccessCondition returns true if the cycle is not yet finished.
– BestSortedSource simply returns the next source.
– ChooseCandidate returns the best candidate, as defined above.
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Fig. 7. First steps of CA-gen for k = 2 over the example sources in Fig. 2

– BestRandomSource returns the first random source not yet probed for the
best candidate. If no such source exists, the cycle stops.

– StopCondition, for incomplete scoring, is given by (1).

Example. We take the same example as for BR-Cost* and NC, in the same
conditions, to illustrate the first steps of CA-gen (see Fig. 7).

The access ratio r = Cr(Sj)/Cs(Sj) = 2, so two sorted accesses are scheduled
in each source before fully evaluating the best object.

– r = 2 sorted accesses to S1, then to S2 are done.
– o3 is the best object and we schedule all the random probes for it. The only

possible one is the access to S3, because o3 has been already read in S2 through
a previous sorted access. Note that o3 is not fully evaluated after this step
because its value in S1 is missing and cannot be obtained by random access.

– Execution continues in the same way, by cycles of two sorted accesses in each
source followed by random probes for the best object, until StopCondition is
satisfied.

4 Approximation by Early Stopping

Top-k processing in our context is usually expensive because of predicate eval-
uation, therefore reducing the execution cost by accepting approximate results
is a promising approach. We adopt the method proposed by TAθ [7], based
on relaxing the threshold condition in TA with a factor θ > 1, i.e. the algo-
rithm stops when the score of at least k candidates exceeds Uunseen/θ. This
produces a θ-approximation of the top-k result, i.e. a set Ka of k objects such
that ∀x ∈ Ka,∀y /∈ Ka, θ × score(x) ≥ score(y). As explained in the related
work section, a θ-approximation guarantees that the ratio between the score of
the best missed object in the approximate result (best false negative) and that
of the worst false positive cannot exceed θ.

Note that this method is equivalent to an early stopping of the exact algo-
rithm, i.e. TA and TAθ have the same execution until the end of TAθ, which
occurs first.

We generalize here the TAθ approach to the case of incomplete scoring within
the GF framework, i.e. to any top-k algorithm in our context, and thus enable
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the comparison of the behavior of top-k algorithms in the case of approximate
results by early stopping.

Note that TAθ considers that all source scores belong to the [0, 1] interval.
In the general case, in order to preserve the meaning of θ-approximations, we
simply consider that scores in source Sj belong to a [0,maxj ] interval.

Consider an approximate solution Ka composed of k candidates with pos-
sibly incomplete scoring at some point during the execution of the algorithm
in the GF framework. Then the condition for detecting Ka as being surely a
θ-approximation of the top-k result is given by the following theorem.

Theorem 1. An approximate solution Ka composed of k candidates with incom-
plete scoring during the execution of a top-k algorithm is surely a θ-approximation
of the top-k result iff

θ × minc∈Ka
(L(c)) ≥ maxc/∈Ka

(U(c)) (9)

Proof. At the given moment during the execution, minc∈Ka
(L(c)) represents

the minimum possible score for a candidate in Ka, while maxc/∈Ka
(U(c)) is the

maximum possible score for an object not in Ka (including unseen objects).
We first show that if condition (9) is true, then Ka is a θ-approximation of

the exact result.
For any candidate c, we have L(c) ≤ score(c) ≤ U(c). More generally, for

any unseen object o, we have U(o) = Uunseen, its maximum possible score. Then
∀x ∈ Ka, score(x) ≥ L(x) ≥ minc∈Ka

(L(c)) and ∀y /∈ Ka,maxc/∈Ka
(U(c)) ≥

U(y) ≥ score(y). If the theorem condition holds, then ∀x ∈ Ka, y /∈ Ka, θ ×
score(x) ≥ score(y), i.e. Ka is a θ-approximation.

We demonstrate the reverse implication by using proof by contradiction: if
condition (9) is not true, then Ka is not surely a θ-approximation.

Consider now x = argminc∈Ka
(L(c)) the candidate with the worst minimal

score in Ka and y = argmaxc/∈Ka
(U(c)) the object with the best maximal score

outside of Ka. If the theorem condition does not hold for Ka, then θ × L(x) <
U(y), so it is possible that θ × score(x) < score(y), i.e. Ka may not be a θ-
approximation.

In the GF context, algorithms manage only the set of candidates discovered in
sorted sources. Considering Ka ⊂ candidates, the stop condition (1) becomes:

θ × minc∈Ka
(L(c)) ≥ max(Uunseen,maxc∈candidates−Ka

(U(c))) (10)

The difference with Theorem 1 is that here Uunseen gives the upper bound
score for all the objects not yet discovered and thus not members of candidates.

Theorem 2. Eliminating non-viable candidates does not affect the stop condi-
tion (10).

Proof. Suppose that at some moment a non viable candidate x affects the stop
condition. Since x /∈ Ka, x can only impact the right side of the inequal-
ity and only if U(x) > Uunseen and U(x) > U(y),∀y ∈ candidates − Ka.
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But U(x) < Lk (x non-viable), so all the objects in candidates − Ka are non-
viable and Lk > Uunseen, which in accordance to (1) means that at the current
moment the exact top-k has been already found, i.e. the algorithm is already
stopped.

To estimate the precision of an approximate solution, we propose a distance
measure based on two principles:

– Order of elements in the top-k solution is not important.
– Only wrong elements (false positives) in the approximate solution affect pre-

cision, i.e. the quality of the approximate result is given by the quality of the
false positives.

Distance is measured by the difference between the real scores of wrong
elements and Rk, the k-th score in the exact solution, normalized to the [0, 1]
interval by dividing it by Rk. Indeed, Rk is the maximum possible distance to
Rk, since the lowest possible global score is 0.

The distance between an element o ∈ Ka and the real top-k result K is
defined as follows:

dist(o,K) =

{
(Rk − score(o))/Rk, if o /∈ K

0, if o ∈ K
(11)

The global distance between an approximate solution Ka and K is defined
as the average of the individual distances between elements of Ka and K.

dist(Ka,K) =
1
k

∑

o∈Ka

dist(o,K) (12)

We measure the quality of an approximate solution Ka as being 1−dist(Ka,K).
The relation between our distance measure and θ-approximations is given by

the following theorem.

Theorem 3. If Ka is a θ-approximation of the real solution K, then dist(Ka,K)
≤ θ − 1. Moreover, the θ − 1 value is optimal in the general case, i.e. it is the
smallest upper bound of dist(Ka,K) that can be guaranteed.

Proof. If Ka = K then dist(Ka,K) = 0 and the inequality is true. Otherwise,
considering x ∈ K − Ka, then score(x) ≥ Rk. Ka being a θ-approximation of
K, ∀o ∈ Ka, θ × score(o) ≥ score(x) ≥ Rk, so Rk − score(o) ≤ (θ − 1)score(o).

In conclusion, dist(Ka,K) = 1
k

∑
o∈Ka

dist(o,K) = 1
k

∑
o∈Ka−K

Rk−score(o)
Rk

≤ 1
k

∑
o∈Ka−K

(θ−1)score(o)
Rk

= θ−1
kRk

∑
o∈Ka−K score(o) ≤ θ−1

kRk
kRk = θ − 1.

Moreover, no distance smaller than θ − 1 can be guaranteed. Indeed, in the
general case it is possible for K to be composed of k objects of score s, while
the approximate solution Ka may be a set of k objects of score s/θ. Given the
definition, this possible Ka is a θ-approximation of K, with dist(Ka,K) = θ−1.
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We propose in this paper a comparative study of the approximation potential
of multi-criteria top-k algorithms.

We draw cost-distance curves for these algorithms and compare their shapes.
A point on the cost-distance curve indicates the quality of the approximate result
on early stopping at that moment/cost. Since arbitrary early stopping comes
with no guarantees on the precision of the approximate result, we also produce
θ-approximations in each case and compare costs for measured and guaranteed
precision.

5 Experiments

We experimentally compare the BR strategy with that of the other generic algo-
rithms in terms of execution cost. Then, we compare the approximation potential of
various categories of state-of-the-art top-k algorithms, both generic and specific.

Data Sets and Parameters. We use synthetic sources, independently gen-
erated as lists of scores in the [0, 1] interval for the N objects, then organized
for S, R or SR access, depending on the source type. We consider two types of
score distribution in a source: uniform or exponential (p(x) = λe−λx), for λ = 1
and restricted to the [0, 1] interval. Exponential distribution illustrates S-sources
where scores have fast decrease at the beginning, potentially more discriminant
than sources with uniform distribution. The choice of synthetic data is moti-
vated by the need for an experimental testbed with a relatively high number of
criteria (up to 18 in our tests), which was not provided by the real data sets we
could find.

We measure the execution costs for each algorithm as the sum of costs of all
the source accesses for computing the top-k result. We consider that all the sorted
(random) accesses have the same cost Cs (Cr). Each result in the experiments
is the average of 10 measures over different randomly generated sources. We
consider weighted sum as the aggregation function, with coefficients randomly
generated for each of the 10 measures.

The following parameters are considered in the experiments:

– The number of database objects is N = 10 000.
– Queries are looking for the best k = 50 objects.
– We consider 6 S-sources, 6 R-sources and 6 SR-sources.
– We consider the most common cost settings, with random accesses more

expensive than sorted ones: Cr = 10, Cs = 1.
– Two configurations for data distribution in sources are considered: uniform

for all the sources or mixed, i.e. exponential distribution for half of the sorted
sources (3 S-sources and 3 SR-sources), uniform for the other sources.

Comparison of the Execution Cost. We compare the execution cost of
BR-Cost* with the NC variant and CA-gen in three configurations of source
types: no R-sources, no S-sources, and all the source types. We also add to the
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(a) All source types (b) No R-sources (c) No S-sources

Fig. 8. Execution cost comparison

comparison the reference non-generic algorithms compatible with that setting.
In each configuration, uniform and mixed data distribution are considered.

– All source types (S, R and SR).
Figure 8a shows that BR-Cost* behaves visibly better (10 %) than both NC
and CA-gen for uniform distribution, while the difference becomes important
for mixed distribution: approximately 37 % better than NC and 40 % better
than CA-gen.

– No R-sources (only S and SR).
Note that here cost and source settings are in favor of algorithms that realize
only sorted access (NRA) or strongly favors them (NC). Figure 8b shows that
in the uniform distribution case BR-Cost* and NC are the best, with very close
costs, much better than CA-gen (around 33 %), which is even outperformed
by NRA. For mixed distribution, BR-Cost* is clearly much better than NC
and CA-gen (almost 60 %), which are outperformed by NRA.

– No S-sources (only R and SR).
Figure 8c shows that in all the cases BR-Cost* outperforms the other algo-
rithms and that NC and CA-gen are less adapted to this setting, performing
worse than Upper. The benefit of using BR-Cost* is bigger in the mixed distri-
bution case (around 28 % better than NC and CA-gen) compared to uniform
distribution (24 %). Compared to Upper, the benefit is similar in both cases,
around 15 %.

In conclusion, BR-Cost* successfully adapts to various source types and data
distribution settings, and outperforms not only the other generic approaches, but
also specific algorithms designed for that case. We also note a weakness for the
other generic strategies in one of the studied cases: no S-sources for NC and no
R-sources for CA-gen. Paradoxically, mixed distribution does not improve cost
in most cases; we guess that discriminant distributions are counter-balanced here
by the lack of correlation between sources and by their relatively high number.

Approximation Potential. We measure the potential of approximation by
early stopping of the top-k algorithms by drawing their cost-distance curves.

Distance between approximate and real solution is computed with formulas
(11)–(12). We measure this distance in several points during the algorithm’s
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(a) All source types, uniform distribution (b) All source types, mixed distribution

Fig. 9. Approximation with Uk, all source types

normal execution, every 2000 cost units (or every 1000 for the no R-source case,
where cost is smaller), then we extrapolate a curve relying these points. Each
point on the curve represents the distance between the approximate solution and
the real one if the algorithm stops at that moment. A curve “below” another
one indicates a better approximation potential.

The form of the curve also indicates approximation stability. A monotone
descending curve means stable approximation, that improves if execution con-
tinues, while non-monotony indicates an algorithm badly adapted for approxi-
mation by early stopping.

For each cost-distance curve we measure the end point that corresponds
to a θ-approximation obtained with the stop condition (10). We consider two
values, θ = 1.05 and θ = 1.01, that correspond to a guaranteed distance of 0.05,
respectively 0.01 (see Theorem 3). We compare the position of these points with
that of the intersection between the curve and the corresponding distance.

We consider two cases for the approximate solution. The first one is the set
Uk of k candidates with the highest upper bound. This is a natural choice for
the approximate solution, since Uk is the set of candidates that top-k algorithm
focus on during execution. More precisely, all the algorithms proposed so far base
their strategies on Uk, either for deciding a sorted access, or for the choice of
a candidate for random probes. Intuitively, candidates with high upper bounds
must be “refined” because their upper bound make them potentially belong to
the final top-k. The algorithm must decide if they really belong to the result or
not - if not, the algorithm cannot end without refining the candidate’s score to
make it non-viable.

The second proposal for an approximate solution is the set of k candidates
with the highest lower bound Lk. Intuitively, belonging to Lk means that the
candidate was already refined with good scores in some sources. This may be a
good indication that the candidate belongs to the final top-k, better than for Uk

where high upper bounds may be the result of little refinement, thus with high
uncertainty.

Approximation with Uk. Figures. 9, 10 and 11 present the cost-distance cur-
ves for uniform and mixed data distributions in the three cases of source types.
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(a) No R-sources, uniform distribution (b) No R-sources, mixed distribution

Fig. 10. Approximation with Uk, no R-sources

(a) No S-sources, uniform distribution (b) No S-sources, mixed distribution

Fig. 11. Approximation with Uk, no S-sources

Final costs for algorithms may be less visible in these figures, but they can also
be retrieved in Fig. 8.

– All source types.
We compare the generic algorithms BR-Cost*, the NC variant and CA-gen.
For uniform distribution (Fig. 9a), BR-Cost* approximation distance quickly
decreases and the algorithm has clearly better approximation properties than
CA-gen (much higher distance, only decreasing at the end) or NC (totally
unstable).

Mixed distribution (Fig. 9b) accentuates the problems of NC and CA-gen
(which becomes unstable), while BR-Cost* keeps a good curve shape. How-
ever, θ-approximation significantly reduces the cost saving for BR-Cost*, e.g.
for θ=1.05 algorithm stops at cost 160 000, while the corresponding distance
of 0.05 is already reached at cost 70 000.

– No R-sources (only S and SR).
Besides the three generic algorithms, we also consider here the NRA algorithm.
Excepting NC, algorithms produce in this case stable approximations. For
uniform distribution (Fig. 10a), BR-Cost* and NRA have very close curves, i.e.
close approximation potential, but BR-Cost* produces θ-approximations with
better costs. Similarly, CA-gen has good approximation potential, especially
in the second half of the execution, but θ-approximations are more expensive
than for NRA. NC is more stable than in the previous case and and its low
execution time helps it producing less expensive θ−approximations.
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For mixed distribution (Fig. 10b), BR-Cost* improves its potential com-
pared to NRA, while NC becomes highly unstable.

– No S-sources (only R and SR).
Besides the three generic algorithms, we also study here the Upper and TAz
algorithms. Despite the fact that it is much more expensive (around six times
the cost of BR-Cost*), TAz is considered because of the good approxima-
tion potential of algorithms with many SR-sources, which reduce as much as
possible the uncertainty of the candidates’ scores.

For both uniform (Fig. 11a) and mixed distribution (Fig. 11b), behavior is
very similar. CA-gen, NC and Upper are highly unstable, while BR-Cost* and
TAz have very close curves, with very good approximation potential. However,
because of its high execution cost, θ-approximations of TAz are much more
expensive than for BR-Cost* (because of their high values, final cost and
θ-approximations for TAz are not visible in the figure).

In conclusion, BR-Cost* has clearly the best approximation potential with
Uk among the generic algorithms, with good properties for the different data
distributions. The other generic algorithms are badly adapted to approximation
with Uk: NC and CA-gen are systematically unstable.

We guess that the good approximation properties of BR-Cost* come from
its breadth-first strategy. Handling the current top-k Uk as a whole, instead of
focusing on the best candidate only, produces a more stable evolution of Uk

toward the final solution.
The price to pay for guaranteed precision in θ-approximations is important

for algorithms with good approximation curves - we notice a significant dif-
ference with the potential cost for the same approximation quality. The cost of
θ-approximations appears to be dependent on the total cost of the algorithm: for
algorithms with very close cost-distance curves, higher total costs systematically
lead to higher θ-approximation costs.

Approximation with Lk. Figures. 12, 13 and 14 present the cost-distance
curves for the approximation with the best k lower bound scores Lk, in the
three cases of source types. The sub-figure for each case presents, besides the
curves, a zoom on the final part of the execution, where the curves are very close.

– All source types.
For both uniform (Fig. 12a) and mixed distribution (Fig. 12b), the curves for
all the algorithms are very close, stable, with good approximation potential.
BR-Cost* and CA-gen have slightly better curves than NC, the difference
being visible in the mixed distribution case and on the final part of the uniform
case.

Comparison of θ-approximations follows the conclusion of the previous
point, algorithms with better execution costs produce better θ-approximations,
i.e. BR-Cost* is the best, while CA-gen and NC are very close.

We notice that cost-distance curves with Lk are better than those with Uk

in all the cases. This also leads to an increased difference between the cost
with θ-approximation and the potential one.
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(a) All source types, uniform distribution (b) All source types, mixed distribution

Fig. 12. Approximation with Lk, all source types

(a) No R-sources, uniform distribution (b) No R-sources, mixed distribution

Fig. 13. Approximation with Lk, no R-sources

– No R-sources.
Conclusions are similar to the all source types case for both curve shapes
and θ-approximations, but differences between algorithms are more important
here.

For uniform distribution (Fig. 13a), BR-Cost* has globally the best shape,
followed very closely by NC and NRA, while CA-gen is slightly, but visibly
worse.

For mixed distribution (Fig. 13b), the superiority of BR-Cost* is clearer,
the other algorithms being close and having sections on which they have better
approximation potential than the others.

– No S-sources.
We find similar conclusions in this case too, with the remark that generic
algorithms have globally better curve shapes than Upper and TAz.
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(a) No S-sources, uniform distribution (b) No S-sources, mixed distribution

Fig. 14. Approximation with Lk, no S-sources

For uniform distribution (Fig. 14a), BR-Cost*, CA-gen and NC are very
close, with CA-gen slightly better on the middle part and NC slightly worse on
the final part. Upper has globally the least favorable approximation potential,
TAz becoming worse at the end only because of its higher cost.

For mixed distribution (Fig. 14b), BR-Cost* and CA-gen have clearly the
best potential, followed by NC. Unlike for uniform distribution, Upper is here
globally better than TAz.

In conclusion, we notice that approximation with Lk has better quality than
with Uk for all the algorithms. Compared with the Uk case, approximation is
always stable with Lk and has better precision at the same execution cost. Even
if BR-Cost* has globally the best properties, the approximation potential of
generic algorithms is very close in this case.

However, θ-approximations are not improved by Lk and lead to an increased
difference between the potential cost and that for guaranteed precision.

6 Conclusion

In this paper we proposed a generic framework GF for top-k processing over
expensive ranking predicates, able to express any top-k algorithm. We compared
within this framework our generic algorithm BR with generic variants that we
proposed for algorithms NC and CA, adapted to a similar context. Comparison
of the algorithm strategies within GF was completed with experimental measures
indicating that the breadth-first strategy of BR adapts itself very well to various
source type configurations and data distributions, leading to better execution
cost than the other generic or specific strategies.
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We also presented a study of the approximation potential of top-k algorithms
by early stopping, by proposing a generalization of θ-approximation in the con-
text of the GF framework and an experimental comparison between algorithms
for two common approximation sets: candidates with best k upper bounds (Uk)
and with best k lower bounds (Lk). By comparing cost-distance curves we con-
cluded that the BR strategy globally has the best approximation potential, with
a clear advantage on the others in the Uk approximation case. However, Lk

approximation produces better results for all the algorithms and greatly reduces
the differences between them. We noticed that θ-approximation is weakly cor-
related with the approximation potential and significantly depends on the total
execution cost. This cancels the difference between Uk and Lk approximation
and favors again the BR strategy, which produces better total costs.
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Abstract. Traffic condition is one vital piece of information that any
commuter would wish to obtain to plan an efficient route. However, most
existing works monitor and report only current traffic, which makes it
too late for commuters to change their routes when they realize they are
already stuck in the traffic. Therefore, in this paper, we propose a traffic
prediction approach by defining and solving a novel continuous predic-
tive line query. The continuous predictive line query aims to accurately
estimate traffic conditions in the near future based on current move-
ment of vehicles on the roads, and continuously update the predicted
traffic conditions as vehicles move. The predicted traffic condition will
not only help redirect commuters in advance but also help relieve the
overall traffic congestion problem. We have proposed three algorithms to
answer the query and carried out both theoretical and empirical study.
Our experimental results demonstrate the effectiveness and efficiency of
our approach.

1 Introduction

Mobile devices are becoming more and more popular in our daily life. As of
2012, the mobile connected device usage was about 6.8 billion [15], which is
numerically about 90 % of the world population. The prevalence of the mobile
technology has enabled a variety of location-based services that help greatly
enhance driving experience. For example, finding an optimal route and checking
the real-time traffic condition are now common practice for many drivers. In this
work, we aim to further advance the existing technology on traffic monitoring and
incorporate the spirit of ubiquitous computing to provide even better experience
for users.

In particular, we observe that most existing traffic monitoring applications
only provide current traffic condition. However, the route calculation based on
current traffic condition may not be optimal. Consider the following example.
Bob plans to travel from Rolla to St. Louis which is about 100 miles (i.e., about
2-hour driving). When he sets off, there is a traffic jam on his way to St. Louis.
If the navigation system computes the travel route for Bob based on current
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traffic condition, the route will probably include a detour to bypass the traf-
fic jam. However, an hour later when Bob is already on his detour route, the
traffic jam has been cleared up. Bob actually needs not take the detour if the
navigation system is able to calculate the route with predicted traffic condition.
This kind of scenarios inspire us to design a traffic prediction system that can
provide better insight in travel planning. Moreover, the traffic prediction should
be proactive/pervasive in that once the user initiates a traffic condition predic-
tion query, the system continuously monitors the prediction results and reports
any changes that may be caused by the dynamic traffic. Figure 1 illustrates an
example of continuous traffic prediction. Specifically, Figs. 1(a) and (b) show
snapshots of three vehicles at time t1 and t2 respectively. The query road seg-
ment is AB, and the current travel plans of the vehicles are highlighted by bold
lines. As shown in Fig. 1(a), three vehicles V1, V2, and V3 may enter the querying
road AB. However, as time passes, vehicle V1 changes its travel plan by making
a right turn earlier at time t2. As a result, only two vehicles (V1 and V3) may
enter the query road which requires an update of the previous query results.

(a) Vehicles at Time t1 (b) Vehicles at Time t2

Fig. 1. Dynamic nature of continuous traffic prediction information

To build the above envisioned system, none of the existing approaches can be
directly adopted. The closely related work that can provide traffic information
includes range queries and density queries. A range query reports traffic infor-
mation in a given circular or rectangular area [2,9,25], which contains traffic
information on irrelevant roads rather than just the routes that the query issuer
may pass by. The density query [11,14,20,26] outputs even coarse information
which are regions with vehicles more than certain threshold. Moreover, most of
the solutions to these query types assume an environment that objects move
freely, which is not the case when the road network constraints are employed.
Very few works [5,12] can be found that consider road network constraints.
Those few, however, only support queries on current traffic condition but not
traffic prediction.
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In this paper, we propose a solution to the construction of the continuous
traffic prediction system. We formalize the problem as a new type query, namely
continuous predictive line query. The continuous predictive line query allows a
user to specify a road that he/she would like to know about the traffic condition
of. Then, the query returns predicted traffic condition of the querying road at the
estimated time that the user may pass by. If there is any significant change of the
prediction results on the querying road due to location updates of other vehicles,
the updated query result will be automatically sent back to the user. To speed up
the query processing and reduce the query maintenance cost, we design a novel
data structure, the TPRQ-tree, which indexes queries and efficiently handles
the query result updates that evolve with time. We also propose three query
algorithms that leverage the TPRQ-tree and achieve increasing efficiency. We
have carried out both theoretical and empirical study. Our experimental results
demonstrate the effectiveness and efficiency of our approach.

A preliminary version of this work was published in [8]. In this paper, our
new major contributions are summarized as follows. First, we propose two new
query algorithms which achieve significant improvement over our previous work.
Second, we theoretically analyze our proposed query algorithms and define the
cost model. Third, we conduct a more comprehensive set of experiments for the
system evaluation.

The rest of this paper is organized as follows. Section 2 formally defines the
problem. Section 3 reviews related work. Section 4 introduces our proposed data
structures, followed by Sect. 5 which elaborates the query algorithms. Then,
Sect. 6 presents an analytical cost model and Sect. 7 reports the experimental
results. Finally, Sect. 8 concludes the paper.

2 Problem Statement

In this section, we present the formal definition of the continuous predictive line
query. The continuous predictive line query is developed based on the predictive
line query as introduced in [7].

Definition 1. [Predictive Line Query] A predictive line query PLQ = (eq, tq, tc)
retrieves all moving objects which will be on the query road segment eq at the
query time tq, where tq > tc and tc is the current time at which the query is
issued.

The predictive line query is a one-time snapshot query. It does not consider
possible changes of the predicted traffic condition when the query issuer moves
closer to the querying road. In order to provide timely and up-to-date informa-
tion to the query issuer, we model moving objects as a linear function of time as
that in many prior works [3,10,23,24,29]. Vehicles are assumed to report their
locations and velocities to the server whenever there is a significant change of
their moving functions. Accordingly, the continuous version of the predictive line
query is defined as follows:
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Definition 2. [Continuous Predictive Line Query] A continuous predictive line
query CPL = (eq, tq, tc, ρ) continuously monitors the moving objects which will
be on the query road segment eq at the query time tq, and returns query results
whenever the number of query results differ more than a threshold ρ. Specifically,
let Ri denote the query results at time ti (tc ≤ ti ≤ tq), CPL returns the query
results in the form of {(R1, tc), (R2, t2), ..., (Rk, tq)}, and |Ri+1| − |Ri| > ρ.

For example, a CPL query like CPLQ = (AB, 8am, 7:30am, 20) means that the
query issuer issued a query at 7:30am (i.e., tc) and is interested in the traffic at
road AB at 8am (i.e., tq). The query issuer expects the server to report the change
of prediction results if the difference of the number of vehicles on the querying
road is more than 20. Note that it is not necessary for the query issuer to specify
the threshold parameter. Instead the threshold can be automatically chosen by
the server according to the past experience to reflect significant traffic change.
Moreover, the server can also provide the query issuer the traffic information in
an easy-to-understand form like “may have traffic jam”or “traffic flow will be
good” based on the raw number of query results and the number of lanes on the
specific road.

3 Related Work

Our proposed continuous predictive line query is a new type of spatial-temporal
query in moving objects databases. In what follows, we review the existing com-
mon types of spatial-temporal queries and discuss their differences from the
continuous predictive line query.

Spatial-temporal queries on moving objects can be classified into two main
categories: snapshot queries and continuous queries. Snapshot queries execute
the user-issued query only once and report the current or predicted positions of
moving objects. Examples of these types of queries include range queries [2,9,25],
density queries [11,14,20,26], k-nearest neighbor queries [18], reverse k-nearest
neighbor (KNN) queries [27], and detour queries [21]. Specifically, a range query
[2,9,25] retrieves moving objects located in a query region at a specified query
time which could be either a current timestamp or a future timestamp. Apply-
ing this query to the traffic prediction in our problem, it however may include
unnecessary information of vehicles on other roads that the query issuer will not
pass by. Moreover, most of existing works on range queries do not consider the
road-network constraints as we did in our work. A density query [11,14,20,26]
only requires the user to specify a time of interest but not necessary a query
region. Then, the density query is able to identify regions with the density of
moving objects being extremely high (above some threshold). We can see that
the density query is also not suitable for predicting traffic on a specified road
segment on a user’s travel route. The KNN query [27] locates k nearest moving
objects to a query location, which means the number of objects in the query
results is always k and hence could not provide the insight on how many vehi-
cles on the whole road. The detour queries [21] aim to find a new travel path
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based on the current traffic condition which deals with an orthogonal problem
compared to our work.

Our proposed continuous predictive line query is more related to continu-
ous spatial-temporal queries which keep updating the query results as moving
objects move around. For most snapshot queries, there is a corresponding contin-
uous query version for it, such as continuous range queries and continuous KNN
queries. A common approach adopted by existing continues queries is to define
safe regions for moving objects [2,9,16,17,22]. When objects are moving within
the safe regions, the query results remain the same. When objects move outside
the safe regions, they check if there is a need to update the query results. To
improve scalability, some works [6,19,28] propose distributed approaches which
distribute the maintenance tasks of the query results to moving objects. Com-
pared to our work, most of existing works on continuous queries assume that
moving objects in Euclidean space rather than on the road networks, which will
affect the accuracy of the traffic prediction as reported in [8]. For those few
[4,13] that consider the road network constraints, they only query on current
positions of moving objects but do not provide prediction of future positions.
Therefore, our work will fill in the gap and advance the state-of-the-art in the
traffic prediction.

In addition, our proposed TPRQ-tree is inspired by the TPR-tree and its vari-
ants [23,24]. The TPR-tree indexes the movement functions of moving objects in
Euclidean space. The MBRs in the TPR-tree are always growing as time evolves.
Unlike the TPR-tree, our TPRQ-tree indexes the continuous queries rather than
the moving objects. The MBRs in the TPRQ-tree are always shrinking as time
evolves. In all, the TPRQ-tree serves a totally different purpose compared to the
TPR-tree, and the TPRQ-tree is associated with a new suite of query algorithms.

4 Data Structures

In order to efficiently answer the continuous predictive line query, we employ
the RD-tree [7] to index the road networks and moving objects; and we propose
a new data structure, namely Time-Parameterized R∗-tree for Query (TPRQ-
tree), to index continuous queries issued by users. In what follows, we describe
the two data structures in detail.

4.1 The RD-tree

We adopt the RD-tree because it supports snapshot predictive line queries on
moving objects under the road network constraints. The RD-tree is composed of
an R∗-tree and a set of hash tables. Figure 2 illustrates the overall structure of the
RD-tree. The road-network information is indexed by the R*-tree. Each entry in
the non-leaf node is in the form of (node MBR, child ptr), where node MBR
is the minimum bounding rectangle (MBR) covering the MBRs of all entries in
its children pointed by child ptr. Leaf nodes in R*-tree pointing to hash tables
represent vehicles at each road segment. Each entry in the leaf node is in the
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form of (edge MBR, obj ptr), where edge MBR is the MBR of a road segment
and obj ptr links to a hash table storing objects moving on this edge.

Fig. 2. RD-tree indexing structure

The road network is represented as a graph G(E, V ); where E is the set of
edges, and V is the set of vertices. Each edge e ∈ E represents a road segment in
the network. Here, e = {v1, v2}, where v1, v2 ∈ V ; v1 and v2 are starting and end
nodes of the road segment, respectively. Furthermore, each edge is associated
with two parameters: l and s, where l is the length of the edge and s is the
maximum possible speed on that edge. Each edge also maintains a list of vehicles
moving on it.

A moving object (or a vehicle1) O is represented by the tuple {vId, x1,
y1, ec, en, speed, ed, t}, where vId is the unique ID of the vehicle, x1 and y1

are the coordinates of the vehicle at the latest update timestamp t, ec is the
current road segment that the vehicle is on, en is the next road segment that
the vehicle is heading to, and ed is the vehicle’s traveling destination. Here,
it is assumed that most moving objects are willing to disclose their tentative
traveling destinations to the service provider (server) in order to obtain high-
quality services. However, the destination may change during the trip. Moving
objects are grouped according to the geographical direction formed according
to individual’s destination with respect to the current position. Details of the
RD-tree can be found in [7].

4.2 The TPRQ-tree

The continuous predictive line (CPL) queries require to continuously monitor
the moving objects on the query road segment at a near future timestamp.
1 Both the terms Moving Object and Vehicle will be used interchangeably.
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A naive approach for answering a continuous query is to reprocess the same query
every timestamp till the expiration of the life time of the continuous query. This
may involve lots of unnecessary efforts if there is no change of the query results
at consecutive timestamps. Observing more closely, there is a need to update the
query results only when an object in the current result becomes invalid or a new
object joins the result due to the change of the moving function. Given a large
amount of moving objects updates occurred every timestamp, we propose TPRQ-
tree to be used to facilitate quick identification of which update affects which CPL
query in order to achieve efficient query performance.

(a) Influence region at query issuing
time: tc

(b) Influence region at a later time
stamp: t′

c

Fig. 3. Shrinking influence region at time tc and t′
c(> tc)

The TPRQ-tree does not simply index the query road segment of a CPL
query. Instead, the TPRQ-tree indexes an influence region for each CPL query.
The influence region (IR) is the region which covers majority of moving objects
that may enter the desired query road segment at the future query time. In other
words, if objects in the IR update their movement functions, the query results
may be affected. To have a better understanding of the IR, let us consider a
query Q that aims to predict moving objects entering the highlighted road in
30 min from now. Figure 3(a) shows the IR of Q at query issuing time. From
the figure, we can see that the IR has a ring shape. Its inner radius is the road
distance that can be traveled in 30 min (the query interval) by an object with
the minimum speed2. On the contrary, its outer radius is the road distance that
can be traveled by an object with fastest moving speed in 30 min. All moving
objects covered by this ring have the possibility to enter the query road segment.
The interesting observation here is that as time evolves, the IR will shrink as
shown in Fig. 3(b). This is because the time to travel to the query road segment
is shortened as the time getting closer to the future query time. More specifically,
at the query issuing time, the CPL query considers objects which travel 30 min
2 Note that the minimum speed is always greater than 0 since we exclude outlier

objects with speed equal to 0 (e.g., an object stopped at a gas station).
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to enter the road segments. After 10 min of the query issuing time, the CPL
query considers objects which take 20 min to enter the road segments.

Fig. 4. Shrinking speeds of the influence region

To model the shrinking IR, it is stored as the parameterized ring which
has moving speed attached to both inner and outer radius. The inner radius
is associated with a minimum moving speed towards the query road segment
while the outer radius is associated with a maximum speed towards the query
road segments as shown by the arrows in Fig. 4. The time-parameterized IR is
formally defined as follows.

Definition 3. [Influence Region] Let Q = (eq, tq, tc, ρ) be a CPL query. The influ-
ence region is a time-parameterized ring in the form of IR = (c, r1, speedmin, r2,
speedmax), where c is the middle point of the querying road eq, r1 and r2 are the
radius of the inner and outer circles respectively, and speedmin and speedmax are
the shrinking speed of the inner and outer circles respectively. The radii are com-
puted as follows: r1=RoadDist(speedmin · (tq − tc)) and r2=RoadDist(speedmax ·
(tq − tc)).

Data Structure of the TPRQ-tree. Figure 5 illustrates the structure of a
TPRQ-tree. The base structure of the TPRQ-tree is the R∗-tree. There are three
types of nodes in the TPRQ-tree: leaf nodes; immediate parent node of the leaf
nodes; higher-level internal nodes. We elaborate their structures as follows:

– Leaf level: An entry in the leaf node of the TPRQ-tree stores information of
a group of CPL queries. The information includes each query’s parameters
(eq, tq, tc, ρ), the corresponding influence region IR, a list of query issuers,
and a pointer to the query results.

– Second level: Each entry in the parent node of the leaf nodes stores a pointer to
the leaf node and a time-parameterized minimum bounding rectangle (MBR)
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(a) Leaf node in the TPRQ-tree (b) An Overview of the Entire TPRQ-tree

Fig. 5. The Structure of the TPRQ-tree

Fig. 6. Shrinking Speeds of the MBR

that bounds all the IRs of the queries in the leaf node. The time-parameterized
MBR has a speed attached to each edge as shown in Fig. 6. The speed of each
edge is the minimum speed among the speeds of outer rings of all IRs in
the MBR. The moving direction of each edge is pointing to the center of the
MBR so that the MBR shrinks as time passes and bounds the shrinking IRs.
The time-parameterized MBR is stored as a six-tuple (x1, y1, x2, y2, speed, tu)
where (x1, y1) is the coordinates of the left lower corner of the MBR, (x2, y2)
is the right upper corner of the MBR, speed is the speed of each edge and tu
is the latest time that the parameters of the MBR is updated.

– Higher levels: An entry in higher level internal nodes contains a pointer to the
child node and a time-parameterized MBR that bounds MBRs in the child
node. Each edge of the MBR is associated with a minimum speed among the
speeds of its child MBRs and each edge is moving towards the center as well.

Construction and Maintenance of the TPRQ -Tree. There are three types
of basic operations in the TPRQ-tree: inserting a new query, deleting an existing
query, and updating an existing query.
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An outline of the insertion algorithm is shown in Fig. 7. Given a new CPL
query, its IR (denoted as IRnew) is calculated (line 1). The TPRQ-tree is then
searched to find the proper leaf node to store the new query. The algorithm to
identifying the leaf node (chooseSubTree() on line 2) will be described shortly
in the next paragraph. At the end of the search, if the same query is found in
a leaf node (since other users may have already issued the same query), the
results stored with the query will be directly return to the user and the ID of
this user will be appended to the list of the query issuers. Note that two queries
are considered the same if they are querying traffic of the same road segment at
the same near future timestamp. Moreover, without affecting the service quality
much, the query cost can be significantly saved by requiring users to specify the
query time at a lower resolution of the time (e.g., every 10 min instead of every
second) so that the probability of having same queries at same timestamp will
be increased. If the new query does not exist in the tree, it will be inserted to
the identified leaf node (line 5–10) and the predictive line query algorithm will
be executed to obtain the initial query results for this new query (line 11). It
is worth noting that the insertion at the leaf node may trigger updates to its
parent nodes all the way up to the root node in that the speed and the size of
the MBRs of its ancestor nodes may need to be adjusted to ensure the newly
inserted query is enclosed. In addition, if the insertion encounters a node that
is full (line 10), the node will be split. The node splitting algorithm is similar
to that in the R*-tree. The only difference is that the speeds of the MBRs after
the splitting need to be re-calculated.

Procedure TPRQ-tree Insert
Input : Q
Input : QResult

1. IRnew ← Q.getIR(Q.time())
2. node ← TPRQ.chooseSubTree(TPRQ.root, IRnew, Q.time())
3. if node = DATA then
4. QResult ← node.result()
5. else
6. numOfChildren ← node.numChildren()
7. if numOfChildren < QueryRTree.MAX then
8. node.addAChild(Q)
9. else
10. NodeSplit(node,Q,Q.time)
11. QResult ← RD.snapshotQuery(Q)
12. return QResult

Fig. 7. Description of the TPRQ -tree Insert operation

We now proceed to elaborate the chooseSubTree() algorithm (Fig. 8). This
process starts from the root. For each node being examined during the search, the
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Procedure chooseSubTree
Input : parent, IRnew, time
Output : atreenode

1. minAreaEnl ← BIGNUMBER
2. minArea ← BIGNUMBER
3. for each children ∈ parent do
4. areaEnl ← findAreaEnlargement(children, IRnew, time)
5. area ← findArea(children, IRnew, time)
6. if (minAreaEnl > areaEnl) or (minAreaEnl = areaEnl and (minArea > area)) then
7. newNode ← children
8. minAreaEnl ← areaEnl
9. minArea ← area
10. if newNode not LEAF then
11. return chooseSubTree(newNode, IRnew, time)
12. else if newNode = LEAF then
13. duplicate ← newNode.findDuplicate(IRnew, time)
14. if duplicate = nil then return children
15. return duplicate

Fig. 8. Description of the chooseSubTree operation

chooseSubTree() algorithm first computes the MBR of each entry of this node at
the current timestamp based on the shrinking speed of the corresponding MBR.
The entries with the MBRs that fully cover IRnew will be considered first (i.e.,
areaEnl = 0). If none of the MBRs fully cover IRnew, the entry with the MBR
that needs the minimum enlargement to include IRnew will be considered. If
there are several candidate entries, the entry with the MBR of the minimum
area will be chosen to break the tie. At the end of the search, the algorithm
returns either an existing query (if the same query is found) or a leaf node for
inserting the new query.

Next, we introduce the deletion algorithm. A CPL query needs to be deleted
from the TPRQ-tree either when the query issuer passed the querying road
segment or when the issuer withdrew the query before the query expires. Figure 9
outlines the deletion process. Specifically, given a query to be deleted, the first
step is to locate this query. The search starts from the root of the TPRQ-tree.
At each level, the entries with the MBRs that fully cover the query’s IR will
be considered (line 1) and their children nodes will be checked in the same way
until the leaf nodes are reached. Then, check each located leaf node to identify
the one that contains the query to be deleted. After deleting the query from
the leaf node, the MBR of the leaf node may need to be re-calculated, and the
update may propagate to the ancestor nodes of this leaf node all the way to the
root of the tree. In addition, if the deletion causes a node underflow (containing
entries fewer than half of the capacity), the under-flow treatment will be applied
(line 6). The under-flow treatment considers the merging with the sibling node
first. If the merging can not be done due to the relatively full occupation of the
sibling nodes, entries of the under-flowed node will be deleted and reinserted to
the tree.
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Procedure TPRQ-tree Delete
Input : Q

1. parentNode ← TPRQ.search(Q)
2. if parent �= null then
3. parentNode.remove(Q)
4. updateMBR()
5. if parentNode.numChildren() < QueryRTree.MIN then
6. underflowTreat(parentNode)

Fig. 9. Description of the TPRQ -tree Delete operation

A query update is processed as follows. First, we search the TPRQ-tree to
locate the leaf node containing the query. If the query with the new parameters
is still covered by the MBR of the leaf node, we will update the query parameters
as well as the speed of the MBR of this leaf node if the speed needs to be changed
to the new query parameters. If the new query can no longer be included in the
current leaf node, we delete the query and treat it as a new query to be inserted
to the tree.

5 Continuous Predictive Line Query Algorithms

In this section, we present the CPL query algorithm which consists of two phases:
the initial phase and the maintenance phase. The initial phase computes the
query result that is valid at the query issuing time. The maintenance phase
maintains the query results as time passes.

5.1 Initial Phase

Upon receiving a new query from a user u, the TPRQ-tree will be updated as
discussed in Sect. 4.2. Recall that if the new query coincides with a previously
stored query in the TPRQ-tree, there is no need to execute this query again.
Instead, the stored query results will be directly returned to the user u, and
hence repeated query execution is avoided. This is one of the advantages of the
TPRQ-tree. In practice, it can be expected that many people might be interested
in some particular road segments. That could be because the road segments often
have traffic congestion issues, or they are the hubs for many popular destinations.
Thus, in this kind of situation, using the TPRQ-tree to group the same users
with respect to the same query helps save the query cost.

In other cases when the new query cannot be found in the TPRQ-tree, we
will first insert the new query to the tree, and then execute a snapshot predic-
tive line query [7] to identify those moving objects that may enter the query
road segment at the query time based on their current movement functions.
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These initial query results will be reported to the user and stored along with the
new query in the TPRQ-tree. Due to the characteristics of mobile objects, the
initial query results will need to be revised during the subsequent maintenance
phase until the query expires.

5.2 Maintenance Phase

The query results computed at the initial phase may need to be updated upon
changes of some vehicles’ travel plans just as shown in Fig. 1 in the introduction.

If a vehicle changes its moving direction or speed dramatically, the vehicle
will send an update to the server. Upon receiving the update message, the server
performs two tasks. The first task is to update the object in the RD-tree [7]. The
second task is to check if the update affects existing queries by answering the
following two questions: (1) Is this object currently included in any existing query
result? (2) Is this object going to be in some queries results’ after the update?
Given an object update and one query, there are four cases for the above two
questions:

1. The object is included in the query result, and is still the query result after
the update.

2. The object is included in the query result but will no longer be valid query
result after the update.

3. The object is not included in the query result but will become the query
result after the update.

4. The object is not included in the query result and will also not be the query
result after the update.

Among these four cases, only the second and third cases influence the query
results. In the second case, we need to remove the updated object from the
affected query results; while in the third case, we need to add the object to the
affected query results. The challenge is how to efficiently categorize each update
message into one of the four cases against all existing CPL queries. A brute-
force approach that scans all the queries and check if the object is in or will in
their query results is obviously time consuming since an object may just affect a
small set of existing queries. Therefore, to reduce unnecessary comparisons, we
leverage the proposed TPRQ-tree and propose three query maintenance algo-
rithms with increasing performance achievements: (1) solo-update maintenance;
(2) solo-object maintenance; (3) batch-object maintenance. The details of the
three maintenance algorithms are presented in the following subsections.

Solo-Update (SU) Maintenance. The solo-update (SU) maintenance algo-
rithm considers the update of an object information as two parts separately:
the deletion of the old object information and the insertion of the new object
information. Correspondingly, the SU algorithm conducts two searches on the
TPRQ-tree for each object update. The first search looks for a set of CPL queries
(denoted as Qold) to which the object belongs to at the object’s previous update
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timestamp told; the second search looks for a set of CPL queries (denoted as
Qnew) to which the object belongs to after its update at current timestamp
tnew. Note that in the case when a new object joins the system (an insertion
only), the first search will be skipped and only the second search will be exe-
cuted. On contrast, in the case when an object exits the system (a deletion only),
only the first search will be executed.

To obtain the query set Qold, we start the search from the top of the TPRQ-
tree. For each entry of the visited internal tree node, we compute its MBR at told.
Recall that MBRs and influence regions stored in the TPRQ-tree are associated
with shrinking speed. Therefore, to obtain the MBR at told, we need to expand
it on all the four directions by MBRspeed · (tu − told), where tu is the last time
that the MBR is updated. Then, we check if the old object position falls into
the expanded MBR. If so, that means this object may be included in the CPL
queries stored under the children leaf nodes of this entry. Therefore, we will
further check the children nodes of this entry in the similar way.

When the search reaches the leaf node, we do not simply scan all the query
results associated with each query in this node because it could be time con-
suming. Instead, we take the advantage of the object travel destination and the
influence region to prune queries that definitely do not contain the old object
position. First, we prune the CPL queries whose query road segments are not on
the traveling direction of the object according to its old travel destination. Then
we compute the influence regions of the remaining queries at told. The center of
the old influence region is the same as the one stored in the tree, while the inner
radius (rold inner) and the outer radius (rold outer) are computed based on the
inner/outer speed multiplied by the time difference as shown in Eqs. 1 and 2,
respectively. If the old object position is within the old influence region of the
CPL query, that means this object may be included in the corresponding CPL
query. Then, we further check the actual query results of this query and remove
the object if found. Moreover, the speed of the influence regions of the affected
CPL queries and the MBRs in their ancestor nodes may need to be recalculated
if the deleted object contributes to the minimum or maximum shrinking speed.

rold inner = RoadDist(speedmin · (tq − told)) (1)
rold outer = RoadDist(speedmax · (tq − told)) (2)

An example of computing Qold is illustrated in Fig. 10 which shows an object’s
old position (the black circular point), its old destination (denoted as a star) and
the influence regions of five CPL queries (a, b, c, d, e) at told. Queries a, b and
c are pruned using the object’s old travel destination since they are not in the
traveling direction of the object. Then, the influence regions at told of queries d
and e are computed. Since the object is located in both queries’ influence regions,
the result lists of the two queries will both be checked.

The process for identifying the query set Qnew is very similar to that for
Qold. The main differences are the computations of the MBRs and the influence
regions used during the search. Since tnew is after tu (the latest update time of
the MBR), the MBR at tnew is computed by shrinking the stored MBR at four
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Fig. 10. Influence regions at told in a leaf node of the TPRQ-tree

Procedure SU Maintenance
Input : told, xold, yold, desold, tnew, xnew, ynew, desnew, vId
Output : Qnew and Qold

1. if told is not NULL then
2. Qold ← isContainPoint(told, xold, yold, TPRQ.root)
3. DeleteOldResult(Qold, vId)
4. if tnew is not NULL then
5. Qnew ← isContainPoint(tnew, xnew, ynew, TPRQ.root)
6. InsertNewResrult(Qnew, vId)
7. Report updated query results to the user

Fig. 11. Description of the Solo-Update Maintenance algorithm

directions by MBRspeed · (tnew − tu). The influence regions of CPL queries at
tnew is computed based on the following equations.

rnew inner = RoadDist(speedmin · (tq − tnew)) (3)
rnew outer = RoadDist(speedmax · (tq − tnew)) (4)

For each CPL query in the obtained Qnew, we add the object’s new position
to its query result. Also, the speeds of the influence regions of the queries in
the Qnew and the MBRs of their ancestor nodes may need to be updated by
considering this object’s new speed.

Finally, we record the number of changes for each query result during the
object update. If the number exceeds the specified threshold ρ, the server will
return the latest query results to the query issuer. An outline of the SU mainte-
nance algorithm is given in Figs. 11 and 12 outlines the algorithm to check the
overlap of the point and the node-MBR.

Solo-Object (SO) Maintenance. In general, an object’s new and old posi-
tions in the same update message are relatively close to one another since they
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Procedure isContainPoint()
Input : t, x, y, destination, root
Output : Q

1. node ← root
2. Q ← empty
3. nodeList ← {node}
4. while node not leafnode do
5. for each entry ent ∈ node do
6. MBR ← compute ent.MBR at time t
7. if (x, y) is in MBR then
8. nodeList ← nodeList

⋃{ent.child} − {node}
9. node ← nodeList[0]
10. while nodeList not empty do
11. for each entry ent ∈ node do
12. if ent.CPL is on the object′s destination then
13. IR ← compute the influence region of ent.CPL at time t
14. if (x, y)isinIR then
15. if (x,y) is included in the ent.CPL then
16. Q ← Q

⋃
ent

17. return Q

Fig. 12. Description of the isContainPoints() algorithm

are two consecutive positions on the object’s path and bounded by the maxi-
mum moving speed multiplied by the maximum update interval. Therefore, the
new and old positions in an object’s single update message are very likely to be
covered by the influence regions of the same or nearby CPL queries. In other
words, these two positions may affect the CPL queries stored in the same or
sibling nodes in the TPRQ-tree. Based on this observation, we propose the solo-
object (SO) maintenance algorithm that considers the object update message as
a whole and computes the two sets of CPL queries affected by the update (i.e.,
Qnew and Qold) simultaneously in one round of the search in the TPRQ-tree.
The SO algorithm is expected to be more efficient than the previous discussed
SU algorithm because the SU algorithm carries out two rounds of the search sep-
arately for the new and the old positions, which may visit the same tree nodes
repeatedly.

Figure 13 presents an outline of the SO maintenance strategy. In particular,
we start the search from the root of the TPRQ-tree. For each entry of the visited
internal node, we compute its MBRs at told and tnew, respectively, in the similar
way as discussed in the SU algorithm. If the object’s old or new position is
covered by the MBRs, the child node of this entry will be added for checking
as well. Until the leaf level is reached, the influence regions of the CPL queries
stored in the visited entries will be computed at told and tnew respectively. Then,
the old and new positions will be compared against the respective influence
regions. If the old position is included in the influence region of a CPL query,
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Procedure SO Maintenance
Input : told, xold, yold, tnew, xnew, ynew, vId

1. Qold ← empty
2. Qnew ← empty
3. node ← root
4. nodeList ← {node}
5. while node not leafnode do
6. for each entry ent of the node do
7. MBRold ← computee.MBRattimetold
8. MBRnew ← computee.MBRattimetnew

9. if (oldx, oldy)isinMBRold then
10. nodeList ← nodeList

⋃{ent.child}
11. else if (newx, newy) is in MBRnew then
12. nodeList ← nodeList

⋃{ent.child}
13. remove node from nodeList
14. node ← nodeList[0] \\get the first node in the nodeList
15. NodeUpdateList ← empty
16. while nodeList is not empty do \\now check the leaf nodes
17. for each entry ent of the node do
18. if ent.CPL is on the object’s old destination then
19. IRold ← compute the influence region of ent.CPL at time told
20. if (oldx, oldy) is in IRold then
21. if(oldx, oldy) is included in the ent.CPL then
22. remove (oldx, oldy) from ent.CPL
23. NodeUpdateList ← NodeUpdateList ∪ ent
24. else if ent.CPL is on the object’s new destination then
25. IRnew ← compute the influence region of ent.CPL at time tnew

26. if(newx, newy) is in IRnew then
27. if(newx, newy) are the new answer to ent.CPL then
28. add (oldx, oldy) to ent.CPL
29. NodeUpdateList ← NodeUpdateList ∪ ent
30. Recalculate the IR of entries in NodeUpdateList
31. Update the MBRs of the ancestor nodes of entries in NodeUpdateList
32. Report updated query results to the user

Fig. 13. Description of the Solo-Object Maintenance algorithm

the old position will be removed from the query result. If the new position
contributes to a CPL query, the new position will be inserted to the query
result. Next, the shrinking speeds of influence regions of all the updated CPL
queries will be recalculated. The MBRs of the ancestors of the updated entries
will be recomputed as well. At the end, if the query results have been changed
significantly (exceeding certain threshold), a query update report will be sent
back to the query issuers.

Batch-Object Maintenance. With the increase of the number of moving
objects, the number of object updates at each timestamp will also grow larger.
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(a) Object’s new
and old positions

(b) Object group-
ing based on times-
tamps

(c) Message-MBRs

Fig. 14. Group formation for a set of update messages

Among a large amount of updates that received at the same timestamp, it is
likely that some are from nearby objects and hence they may influence the same
or nearby CPL queries. According to this observation, we take one step further
from the previous SO algorithm by considering all updates received at one single
timestamp as a whole, and propose a batch-object (BO) maintenance algorithm.

Upon receiving the update messages at a timestamp, the BO algorithm first
conducts two rounds of grouping: (i) grouping objects based on their update
timestamps; (ii) grouping objects based on their location proximity. In the first
round of grouping, the objects’ new positions can be easily grouped together
as they are all at the same current timestamp. The challenging design issue is
the grouping of the objects’ old information. This is because objects which issue
updates at the same time now may have issued their last updates at totally dif-
ferent timestamps. In other words, the different timestamps associated with the
old positions make these old positions incomparable. We cannot directly group
the old positions based on only location proximity but overlooking their update
timestamps. To overcome this problem, we group old positions based on their
update timestamps by putting the old positions with the same update timestamp
into the same group. So far, we obtain one group for the objects’ current positions
and multiple groups for the objects’ old positions. The benefit of the first round
of grouping is that it avoids repeated computation of the MBRs and influence
regions in the TPRQ-tree for objects falling into the same timestamp. Next,
we divide the obtained groups into sub-groups based on the location proxim-
ity. Specifically, we employ the similar technique in the R∗-tree by constructing
MBRs for the nearby objects. For the clarify of the subsequent discussion, we
call the MBRs constructed from update messages, the message-MBRs.

Figure 14 illustrates the group formation for a set of object-update messages.
In Fig. 14(a), the circles denote the old positions and the black points denote the
new positions of six objects: A, B, C, D, E, and F. All these update messages
were received at time tnew. The previous updates of objects A, B, C, D, E and
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(a) Tree search for 1st message-
MBR

(b) Tree search for 2nd message-
MBR

(c) Tree search for two message-
MBRs simultaneously (Node Ac-
cesses = 4)

Fig. 15. Different strategies for searching the message-MBRs

F were made at time t1, t1, t0, t3, t1, and t3, respectively. Figure 14(b) shows
the update messages grouped according to their timestamps. As shown in the
figure, new positions form a single group as they all have the same timestamp.
Old information, however, forms three different groups with object C in the first
group, objects A, B and E in the second group, and objects D and F in the third
group. Then, Fig. 14(c) shows the message-MBRs of further partitioning of the
three groups based on their location proximity.

After the grouping, the next step of the SO algorithm is to search the TPRQ-
tree to find the CPL queries that overlap with the message-MBRs, i.e., to find
the CPL queries that may be affected by this set of object updates. Here, if
we search each message-MBR in the TPRQ-tree, there will still be repeated
accesses to the same tree node. For example, suppose that the received update
messages form two message-MBRs. Figure 15(a) and (b) show the search of the
first and the second message-MBRs respectively, where the dashed rectangles
denote the message-MBRs and the number is the count of the page accesses).
As shown, the two searches accessed the same tree nodes consecutively and result
in 8 total node accesses. We can observe that if the two searches are carried out
simultaneously as shown in Fig. 15(c), the repeated node accesses can be avoided
and the cost will be cut in half. Therefore, in our BO algorithm, we consider all
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Fig. 16. Message-MBRs overlapping with MBRs in the TPRQ-tree

message-MBRs against the MBR in the same tree node to ensure that each
tree node is accessed at most once for a set of updates received at the same
timestamp.

Moreover, we also notice that not all message-MBRs overlap with the MBR of
the examined tree node. Figure 16 illustrates this kind of situation, whereby the
two message-MBRs M1 and M2 overlap with different nodes in the TPRQ-tree.
If a message-MBR does not overlap with the MBR of a node in the TPRQ-tree,
there is no need to further consider this message-MBR under the branches of this
tree node. Our BO algorithm leverages this pruning criteria which greatly red-
uces the amount of comparison as well as the computation of the MBRs and
influence regions needed for the comparison.

An overview of the BO algorithm is shown in Fig. 17. First, the message-
MBRs are obtained (line 2–3). Then, the search starts from the root of the
TPRQ-tree (line 4). For each visited internal node, we check the flags of all the
message-MBRs to see if this node’s parent overlaps with the message-MBRs. If
so, we further compare this message-MBR with the MBRs of each entry in the
examined node. Flags are updated for the children node of each entry after the
comparison (line 13). As for the leaf (line 16–27) node, we also check the flags
first. For the candidate CPL queries obtained from the search, we finally evaluate
the query against the actual object position in the update message to adjust the
query results similarly to that in the previous two maintenance algorithms.

6 Query Cost Analysis

The CPL query algorithms consist of two phases: the initial phase and the main-
tenance phase. At the initial phase, a snapshot predictive line query is executed
and the cost of this snapshot query has been analyzed in [7]. Moreover, all the
proposed three algorithms share the same initial phase while differ in the main-
tenance phase. Therefore, we focus on the analysis of the maintenance cost in
this section.

In our cost analysis, we assume that both moving objects and querying road
segments are uniformly distributed in the space being considered. Without loss
of generality, we also assume that all moving objects are alive during the life time
of the queries and all the queries considered are issued at the same timestamp
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Procedure BO Maintenance Algorithm
Inputs : updates: a set of update messages received at the same time stamp
Outputs : QResult

1. G← groups of object updates at the same timestamp
2. for each group G do
3. message-MBR ← group objects in G according to location proximity
4. node ← root of the TPRQ-tree
5. nodelist ← {node}
6. while node is not the leafnode do
7. for each message-MBR do
8. if flag(node, message-MBR) is true then

\\this node’s parent overlaps with the message MBR
9. for each entry in node do

ehtetupmoc.01 MBR at the message-MBR’s timestamp
11. if MBR overlaps with the message-MBR then

tsiLedoNehtotedondlihcs’yrtnesihtdda.21
ehttes.31 flag(entry.child, message-MBR) to true

14. remove node from nodeList
15. node ← nodeList[0] \\get the first node in the nodeList
16. while nodeList is not empty do
17. for each entry in the node do
18. for each message-MBR do
19. if flag(node, message-MBR) is true then
20. compute the IR at the message-MBR’s timestamp
21. for each position contributes in message-MBR do
22. if the position is in IR and position is included in the ent.CPL then
23. if message-MBR’s timestamp is the new timestamp then
24. add position to ent.CPL
25. else
26. remove position from ent.CPL
27. NodeUpdateList ← NodeUpdateList ∪ ent
28. Recalculate the IR of entries in NodeUpdateList
29. Update the MBRs of the ancestor nodes of entries in NodeUpdateList
30. Report updated query results to the user

Fig. 17. Description of the Batch-Object Maintenance algorithm

with the same length of life time. We estimate the average maintenance cost in
terms of the number node accesses (or disk page accesses assuming one node per
disk page). Specifically, the average maintenance cost per query per timestamp
is computed as the total number of disk page accesses (Costtotal) divided by the
product of the total number of CPL queries (Nq) and the total timestamps (T )
during the query life time (Eq. 5).

Cost =
Costtotal
Nq · T

(5)

6.1 Cost of Solo-Update (SU) Maintenance

To obtain the average maintenance cost according to Eq. 5, we only need to
estimate the unknown value, i.e., Costtotal. The total number of page accesses
(Costtotal) during the query life time using the SU algorithm is the multiplication
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of two factors: the number of times that the TPRQ-tree is accessed and the
number of page accesses per tree access.

The number of times that the TPRQ-tree is accessed is twice of the total
number of update messages in the system. This is because the SU maintenance
approach treats one update message as a deletion followed by an insertion. Let
mi denote the total number of update messages from an object i during the query
life time T . The total number of update messages in the system is computed as
ΣN

i=1 (mi), where N is the total number of objects. Then, the total number of
tree accesses (denoted as Totalta) by the SU algorithm is 2ΣN

i=1 (mi).
The second step is to estimate the cost of searching the TPRQ-tree for a

single operation (either a deletion or an insertion). Given an object’s old or
new position, the average number of CPL queries whose influence regions may
contain this position is determined by the area of the influence region at the
update timestamp and the density of the queries in the space being considered.
The area covered by the outer circle of an influence region at the query update
timestamp tu is estimated as Π ·[(T−tu)·SpeedMax]2, where (T−tu)·SpeedMax
is the outer radius rout of the influence region at tu. Since tu evolves from time
0 to T , the average area of the influence region (denoted as AreaIR) during T

is the integration
∫ T
0 Π·routdt

T which is equal to the following:

AreaIR =
Π · (SpeedMax)2 · T 2

3

Take the object position as the center and draw a circle of the size of AreaIR

as illustrated in Fig. 18, where the dark point in the center represents the object
O’s position and the circles drawn in solid lines represent the outer circle of the
CPL queries’ influence regions. If a CPL query’s querying road segment intersects
with the object’s circle, this query’s influence region may contain the object. In
other words, the CPL query whose querying road segments in the shaded area
should be considered.

Fig. 18. Example of the CPL queries that may contain the object
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Fig. 19. Maximum query overlapping area corresponding to one update message

Next, we estimate the number of queries that may fall into the object’s influ-
ence circle. Assuming the road segments being queried are uniformly distributed,
the number of CPL queries per unit area is Densityquery = Nq/Areatotal. Thus,
the number of queries in the object’s influence circle is the multiplication of the
area of the influence circle and the density, which is nq = AreaIR ·Densityquery.
Since these nq queries are close to one another, they are likely to be stored close
to one another in the TPRQ-tree as well. Therefore, the average number of leaf
node containing the nq queries is estimated as nq/f , where f is the fanout (i.e.,
average number of entries per node) of the TPRQ-tree. The number of the par-
ent nodes of the leaf nodes containing these nq queries is estimated as nq/f2.
In general, the number of nodes accessed at the level l of the tree is e (nq/f l),
where the level of the leaf node is 1. After summing up the node accesses at each
level, we obtain the total number of node accesses during one round of the tree

search: Ctree =
h∑

l=1

(nq/(f l)), where h is the height of the tree.

Finally, we can compute the average query cost of the SU maintenance as
follows:

Costsu =
Totalta · Ctree

Nq
(6)

=
2ΣN

i=1 (mi) · Π · (SpeedMax) · T )2 · (1 − (1/fh))
3 · (f − 1) · AreaTotal

(7)

6.2 Cost of Solo-Object (SO) Maintenance

The SO cost analysis follows the same procedure as that of the SU. The SO
algorithm also utilizes the Eq. 5. To find the total cost for the entire query life
time, the number of tree accesses during the query life time and the average
page accesses for a tree access is estimated.

The SO algorithm accesses the TPRQ-tree each time it received an update
message (refer Fig. 13). Furthermore, it compares the entire update message
against the TPRQ-tree. Thus, the number of tree accesses in SO is simply the
total number of update messages: ΣN

i=1 (mi).
The search cost for one tree access (or per update message, in other words)

for SO algorithm is also estimated as it was for SU algorithm. Thus, we first find
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the area that the object may influence query results. This area is illustrated in
the Fig. 19. The small circles at the center of the bigger circles are the object’s
new and old positions. The bigger circles represent the maximum query overlap
area of each position. The distance between two positions is d. The total query-
affected area is the area covered by the boundaries of the two circles: (2Π ·r2

out)−
(r2

out · arccos( d
2rout

)) and the average query-affected area over the T time period

is AreaIR,SO =
∫ T
0 (2Π·r2out)−(r2out·arccos( d

2·rout
))dt

T , which is equivalent to:

[2 · Π · s2 · T 2] − [
s2 · T 2 · arccos( d

2·s·T )
2

]

+[
d

6s2T
· (

(u1.5
T − u1.5

0 )
3

+
d2 · (u0.5

T − u0.5
0 )

4
)]

where s is the SpeedMax, and ui = (SpeedMax · t)2 − (d
2

4 ); i ∈ {0, T}.
Thenumber of queries in the influence regionnq,SO isAreaIR,SO·Densityquery.

Following the same procedure as in SU cost analysis, the total number of node
accesses during one round of tree search Ctree,SO is obtained as: Ctree,SO =
h∑

l=1

(nq/(f l)) (h is the height of the tree). Then the average query cost of SU

maintenance becomes:

Costso =
ΣN

i=1 (mi) · AreaIR,SO · (1 − (1/fh))
(f − 1) · AreaTotal

(8)

Theorem 1. The maintenance cost of the SO algorithm is always no greater
than the cost of the SU algorithm.

Proof. The worst case of the SO algorithm is obtained when each point accesses
entirely different tree nodes. This means that no overlap between the circles
showed in Fig. 19 exists. When there is no overlap between circles, d becomes
zero and the area covered by two circles (i.e., AreaIR,SO) becomes (2Π · r2out).
When the value of AreaIR,SO is plugged on Eq. 8, it is simplified to Eq. 7, which
is the cost for SU algorithm. ��

6.3 Cost of Batch-Object (BO) Maintenance

The BO algorithm also needs to find the number of tree accesses and the number
of page accesses per each tree access to estimate the Costtotal in Eq. 5.

The number of tree accesses in BO algorithm depends on the number of
distinct timestamps at which update messages are initiated. Because, the BO
algorithm groups update messages received at the same timestamp and access
the tree only once per all messages in the same timestamp. Thus, assuming the
number of distinct update message timestamps are Nts, the TPRQ-tree accesses
is also the Nts.

The average page accesses per each tree access depends on the number
of subgroups and their MBR extent. A subgroup whose MBR dimensions are
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(a) for a sub-group of same
time stamped positions

(b) for a group of sub-groups

Fig. 20. Maximum Query-overlap area

d1 x d2 and its maximum query overlap area are shown in the Fig. 20(a). The
MBR of the subgroup is represented by the filled rectangle and the maximum
distance to a query road segment from the MBR boundary is the rout. The area
covered by the dash-lined shape is the influence region of the MBR. Its area is
calculated as follows:

ai = (d1 · d2) + 2(di1 · rout) + 2(di2 · rout) + Πr2
out. (9)

Since all MBRs are compared simultaneously against each tree node, repet-
itive node accesses are not counted. The page accesses per one tree-search is
the total distinct node accesses on the TPRQ-tree. This means that the com-
mon areas in different query influence regions should be counted only once.
Figure 20(b) shows an example of overlapped query-influence areas. This area is
given in Eq. 10.

n−1∑

i=0

ai −
n−2∑

i=0

n−1∑

j=i+1

Overlapi,j (10)

The answer to this calculation is approximated to the area of the MBR
covered by all round-cornered rectangles AreaIR,BO (see Fig. 20(b)). Then the
average number of queries that can overlap with the area is:

nq,BO = AreaIR,BO · Densityquery (11)

Following the same cost estimation steps as in the SU and SO cost analysis,
the average BO maintenance cost becomes:

CostBO =
Nts · AreaupdateMBR · (1 − (1/fh))

(f − 1) · AreaTotal
(12)

Theorem 2. The maintenance cost of the BO algorithm is always less than the
cost of the SO algorithm.
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Proof. The worst case of MO algorithm is obtained, when each MBR accesses
distinct tree nodes. To have distinct node accesses, no overlap should exist among
MBRs. This can be explained with Eq. 10. According to the equation, when
Overlapi,j ∀i, j is zero, the maximum affective area is obtained and it is simply
the summation of all MBRs areas.

Then, let us consider number of elements in a group is elementsg. Hence,
Nts in Eq. 12 can be re-written as Totalmessages/elementsg. The number of sub-
groups also can be obtained in terms of elementsg. For that, assume the average
number of elements in a subgroup to be elementssg. Then, the average number
of subgroups n = 1 + (elementsg/elementssg). The maximum aggregated area
of MBRs is obtained when n is large. The largest n is obtained when elementsg
is largest and elementssg is the smallest. The smallest possible elementssg is
one. When, elementssg is one, each ai in Eq. 10 becomes Πr2

out, according to
Eq. 9. With the deduced parameter values Eq. 12 can be simplified as follows:

CostBO =

Totalmessages

elementsg
·
elementsg+1∑

i=0

Πr2
out · (1 − (1/fh))

(f − 1) · AreaTotal

In this equation, when elementsg = 1, cost for SO algorithm is obtained. To
sum up, the BO obtain the SO maintenance cost, when: no overlaps between
subgroups are exist, number of objects in one group is one, and number of
elements in sub groups is one (i.e., two subgroups in the group). ��

7 Performance Study

The proposed algorithms were evaluated on moving object data sets generated by
the Brinkhoff’ generator [1]. The moving object datasets were generated using
four real road maps selected from different states in United States. The road
maps contain a similar number of road segments, but different topologies. The
number of moving objects in each dataset ranges from 10k to 100k.

For each dataset, sets of queries were randomly generated by randomly select-
ing query issuer and its query issuing position. Then the querying road segment
was selected from its path which will be reached by the end of the predictive
query length. The predictive query lengths were ranged from 10 min to 60 min.
The chosen parameters and their values are presented in Table 1. The bold values
represents the default value for each parameter.

We compare our proposed approaches with a naive approach that executes
snapshot predictive line queries [7] for every update message. Since the initial
phase of the four approaches are the same, in the following, we only report the
comparison of their maintenance cost. The performance is measured in terms
of the prediction error rate and the I/O cost. The error rate was computed by
comparing the number of objects in the predictive query results with the actual
number of objects on the query road segment at the query time. The I/O cost
is the number of disk page accesses. The reported I/O cost is the average page
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Table 1. Simulation parameters and their values

Parameters Values

Buffer YES, NO

Number of queries 0.5 %, 2%, 5 %, 20%, 40 %, 60%, 80 %, 100% 20 K

Number of moving objects 10K, 20K, . . . , 50K, 60K, . . . , 100K

Predictive time length 10, 20, 30, 40, 50, 60 (mins)

Road maps Alpine (CA), Charles (MD), Salem (NJ), Worth (MO)

accesses per query per timstamp. It first calculates the average page accesses
(averaged per query and per timestamp) during each 5 mins time interval though
out the query life time (AvgPg(5min)). The average page accesses for the entire
query life time is, then, calculated by taking the average of all AvgPg(5min)’s
in the query life time.

7.1 Maintenance Cost of CPL Queries

In the following, we evaluate various factors that may affect the query perfor-
mance including the time, the number of queries, the number of moving objects,
the predictive length, the road topology, and the buffer size.

Query Performance over the Query Life Time. First, we evaluate the
performance of the query result maintenance as time passes. We compute the
average maintenance cost and prediction error rate per timestamp within each
5-minute interval for 30 min. Figure 21(a) and (b) report the performance of
the naive approach and the three proposed approaches: Solo-Update (SU), Solo-
Object (SO), and Batch-Object (BO).

From Fig. 21(a), we can observe that our proposed three algorithms consis-
tently yield much lower prediction error than the naive approach. This is because
the naive approach defines the query ring based on the Euclidean distance to
the query road segment [7], whereas the influence regions employed by SU, SO
and BO consider the road distance which is more accurate to estimate vehicles
that may enter the query road segment. In addition, we can also see that the
prediction accuracy of our three algorithms is similar which is not affected by
the various maintenance algorithms adopted.

Figure 21(b) shows the average maintenance cost. As expected, our proposed
three algorithms all perform better than the naive approach, and the BO app-
roach performs best. This is because the naive approach needs to execute each
query every timestamp which may involve duplicate efforts when there is no
change to the results. The TPRQ-tree, which is utilized by the proposed algo-
rithms, takes object update messages and checks all affected queries simulta-
neously, which helps reduce the unnecessary efforts on the query processing
significantly. The reason that the BO approach achieves the least maintenance
cost is that the BO approach is the most aggressive one among the three proposed
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(a) Error Rate (b) Query Cost

Fig. 21. Query performance over the query life time

approaches and considers most possibilities of simultaneous executions for cost
saving. In addition, the experimental results also demonstrate the evolvement of
the maintenance cost with time. As shown in the figure, the closer to the end of
the query life time (i.e., the time when the query issuer will enter the querying
road segment), the less maintenance cost is needed in general. The possible rea-
son of such behavior is that the influence regions are shrinking as time passes
and hence the number of objects to be checked become fewer. Note that the BO
approach shows a slight increase of the maintenance cost at the beginning. The
reason is the following, the BO approach considers all the updates issued at one
timestamp and the number of updates are fewer when the system just starts
because the objects take some time to speed up.

Effect of the Number of Queries. In this round of experiments, we evaluate
the effect of the number of queries on the query performance by varying the total
number of queries from 0.5 % of the total number of moving objects from 100 %.
As shown in Fig. 22, the naive approach exhibits a relatively stable performance
regardless of the number of queries. This means that the average cost per one
query is independent from the total number of queries being executing. Each
query is applied on the same process and on the same tree (RD-tree). Hence,
the cost depends only on the size of the RD-tree, but not the number of queries.
Our proposed SU, SO, and BO approaches, however, access the TPRQ-tree and
the number of queries stored in the tree changes the tree structure. In fact, the
number of queries decides the tree fanout (f) and the height of the tree (h).
These two factors directly impact on the query maintenance cost. The query

cost, in all three proposed algorithms, is proportional to the expression
1− 1

fh

f−1 .
The impact of h and f is contravened on both the this expression and the average
query cost.

For smaller h values, impact of both f and h is significant. For example, for
0.5 % (250 in count) of queries, all queries can be accommodated in the root;
which means h is one and f is greater (refer Table 2). When the number of queries
is increased up to 2 %, the number of tree levels increases and, at the same
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(a) Error Rate (b) Page Access (with Cache)

(c) Page Access (Without Cache)

Fig. 22. Effect of number of queries

Table 2. TPRQ-tree structure’s information

Query percentage 0.5 % 2% 5 % 20 % 40% 60 % 80 % 100%

Number of queries 250 1000 2500 10000 20000 30000 40000 50000

Number of tree levels 1 2 2 2 2 2 2 3

fanout 231 182 159 180 180 174 180 179

time, fanout decreases. Both these changes result to increase the value of the
expression. When the h gets bigger, the expression becomes nearly independent
of h as 1

fL becomes insignificant. The expression is, then, left only to f . Hence,
as the number of levels is increased (i.e., higher number of queries), a smooth
query cost decrement is demonstrated.

Effect of Buffer Utilization. We repeat the set of experiments conducted
in the previous section to see the effect of the buffer utilization. Specifically,
we employ a buffer with 50k capacity and LRU (Least Recently Used) replace-
ment policy. Figure 22(b) reports the query cost for deferent query percentages
with the buffer3. As the figure shows, the query maintenance cost up to 20 % is
essentially a zero and the rest of the query sets shows an increased query cost.
3 Since the accuracy is not affected by the buffer, it is omitted in the discussion.
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(a) Error Rate (b) Page Access

Fig. 23. Effect of number of objects

The increased costs are comparable to that of in Fig. 22(c). Comparing Fig. 22(c)
with Fig. 22(b), it is clear that the query performance up to 20 % has improved
due to the buffer usage. This is because, up to 20 %, the number of tree nodes
in the entire tree structure is less than 50. This means that the entire tree can
be accommodated by the buffer. Thus, at most one disk access is made per
one tree node. Once the node is stored in the buffer, no buffer replacement is
required. When the number of nodes in the tree exceeds the buffer size, buffer
cannot accommodate all necessary tree nodes simultaneously. Thus, buffer-miss
rate increases and hence page access count increases.

Effect of Number of Moving Objects. In this round of experiments, we
evaluate the performance when the number of moving objects increases from
10K to 100K. Figure 23(a) shows the average error rate of proposed algorithms
together with the naive approach. As the figure shows, similar to the other cases
reported in early sections, all three algorithms show competitive accuracy. The
error rates, in all approaches, increase slightly with the number of objects. This
is because more the moving objects, more the uncertainty of the prediction.
However, our approach always achieves a lower error rate for the same reason
discussed in the previous section.

Figure 23(b) shows the query cost of all four algorithms. According to the
graph, one common observation on all algorithms is they all consume more page
accesses when the object count is increased. In the naive approach, this happens
because the RD-tree expands with the higher number of objects and hence the
number of node accesses is increased. In the proposed algorithms, the tree struc-
ture remains unchanged, but the number of update messages compared against
the tree is increased. Another vital observation is the naive approach gives the
worst query cost for lesser number of objects, and it defeats the performance of
SU when the number of objects are increased (approximately at 60k). The reason
can be explained as follows. The page access count in naive approach depends
on two factors: the size of the RD-tree and the number of update messages
received. The expansion of RD-tree is slower for higher object counts than the
smaller object counts. This same expansion speed will be applied on the page



110 L. Heendaliya et al.

access count as well. Additionally, the number of update messages is directly
proportional to the pageedrxsh0 access count, because for each update message,
the RD-tree is searched. However, the SU algorithm also accesses the TPRQ-tree
per each update message. In fact, SU algorithm accesses the TPRQ-tree twice
per each message. So, the SU algorithms’ page access count increases in a faster
rate compared to the naive approach. Similarly, naive approach and SO algo-
rithm performance curves are more likely parallel each other (i.e. the same rate).
This is because, both naive and SO algorithms access their trees once per each
message. The gap between two plots explains the advantage of the TPRQ-tree
over the RD-tree.

The BO algorithm, on the other hand, behaves totally different to the other
approaches and shows extremely better performance. As the figure shows, the
BO algorithm has not been affected by the number of object as it was in the
other three algorithms, especially when the number of objects is higher. As a
matter of fact, the BO algorithm’s performance depends on only the number of
different time stamps and it is countably finite, within the 30 min time period.
Thus, the BO shows a bounded query cost independent of the number of objects.

Effect of Predictive Time Length. In this set of experiments, the predictive
time length is varied from 10 min to 60 min. As shown in Fig. 24(a) the error
rate stays in a similar range regardless of the predictive time length for both
approaches. The behavior can be explained as follows. For the naive approach,
it executes the query every timestamp and hence any change of object travel
plan will be captured. Similarly, in proposed approaches, the effect of the object
update on the query results at every timestamp is considered.

On the other hand, the predictive time length does affect the query cost
as shown in Fig. 24(b). The query cost of naive approach increases when the
predictive time length is longer. This is because in the naive approach, a bigger
ring query is generated for a longer predictive time length. In the proposed
approaches also the query cost increases with the length of the query window;
but, with a slower rate. This is again due to the advantage of the TPRQ-tree
utilization.

As it was explained in the Sect. 6, the proposed algorithms total query cost
depends on either the number of update messages (for SU and SO) or the number
of different time stamps within the query life time (for BO). The average query
cost for 5 mins time interval depends on the message counts within the 5 mins.
Thus, no matter how long the predictive query window is, average query cost
depends on the average number of messages within the query window. Given a
fixed number of objects (and assuming the same mobile patterns for any query
window size) the average number of messages independent on the query window.
The other factor that can affect the query cost of proposed algorithms is the
query influence area: higher the query window higher the query effective area.
Thus, all three proposed approaches experienced slightly higher query cost with
the wider query window.
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(a) Error Rate (b) Page Access

Fig. 24. Effect of predictive time length

Effect of Road Topology. This section evaluates the effect of the road topol-
ogy by testing different maps: Alpine (CA), Charles (MD), Salem (NJ), and
Worth (MO). The number of edges in each map was 1576, 1766, 1789, and 1573
respectively, and the average road segment length is 232 m, 370 m, 515 m, and
551 m, respectively. By observing the average error rate of individual topology in
Fig. 25(a), it is tend to conclude that the larger the number of edges, the lower
the error rate. Regarding the page accesses as shown in Fig. 25(b), our approach
is relatively independent of the number of edges. However, all three algorithms
show better performance when the average road segment length is bigger. This
is because, when the road segments are lengthier, the update messages time
interval is spacer. Thus, algorithms handle less update messages.

7.2 Cost Model Evaluation

This section validates the cost model discussed in Sect. 6 for maintenance cost
of the proposed three algorithms. The evaluation was performed based on the
Eqs. 7, 8, and 12. Figure 26 compares the estimated cost computed from the
cost model with the experimental results obtained from the proposed three

(a) Error Rate (b) Page Access

Fig. 25. Effect of road topology
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(a) Number of Objects (b) Query Percentage

(c) Query Predictive Length (d) Topology

Fig. 26. Cost model validation

maintenance algorithms. Figure 26(a) shows the effect of number of objects. In
this case, the cost model’s error rate is below 10 %. Figure 26(b) shows the effect
of the number queries, whereby the estimation is getting close to the actual cost
with the increase of the number of queries. The reason is straightforward. The
cost model is developed based on uniform distribution of queries and when there
more queries, their distribution is closer to uniform distribution. Next, Fig. 26(c)
shows the comparison of the estimated cost and the actual cost in the case when
the predictive query length is varied. Again, we can see that the cost model yields
an error around 10 %. Finally, Fig. 26(d) reports the comparison results when
testing different map topologies which also shows the similarly good accuracy
of the cost model. To sum up, our cost model achieves around 90 % accuracy in
various cases.

8 Conclusion

This paper presents a new type of query, namely continuous predictive line
(CPL) query, which takes the road network constraints into account and con-
tinuously provide predicted traffic information. In order to efficiently manage a
large amount of CPL queries, we propose a novel index structure, the TPRQ-
tree, to index queries’ influence regions so as to quickly judge whether the object
updates may affect the continuous query results. Leveraging the TPRQ-tree, we



Continuous Predictive Line Queries for On-the-Go Traffic Estimation 113

develop three query algorithms with increasing efficiency on the query perfor-
mance. We evaluate our approach both theoretically and experimentally, and
the results demonstrate the efficiency and effectiveness of our approach.
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Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1001–1019. Springer,
Heidelberg (2006)

20. Ni, J., Ravishankar, C.V.: Pointwise-dense region queries in spatio-temporal data-
bases. In: IEEE 23rd International Conference on Data Engineering (2007)

21. Nutanong, S., Tanin, E., Shao, J., Zhang, R., Kotagiri, R.: Continuous detour
queries in spatial networks. IEEE Trans. Knowl. Data Eng. 24, 1201–1215 (2012)

22. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query
indexing and velocity constrained indexing: scalable techniques for continuous
queries on moving objects. IEEE Trans. Comput. 51, 1124–1140 (2002)

23. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access
method for predictive queries. In: Proceedings of the 29th International Conference
on Very Large Data Bases, VLDB 2003, vol. 29, pp. 790–801. VLDB Endowment
(2003)
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Abstract. Extending graph models to incorporate uncertainty is impor-
tant for many applications, including citation networks, disease trans-
mission networks, social networks, and observational networks. These
networks may have existence probabilities associated with nodes or edges,
as well as probabilities associated with attribute values of nodes or
edges. Comparison of graphs and subgraphs is challenging without prob-
abilities. When considering uncertainty of different graph elements and
attributes, traditional graph operators and semantics are insufficient. In
this paper, we present a prototype SQL-like graph query language that
focuses on operators for querying and comparing uncertain graphs and
subgraphs. Two interesting operators include ego neighborhood similar-
ity and semantic path similarity. Similarity operators are particularly
useful for comparison queries, the focus of this paper. After motivating
and describing our operators, we present an implementation of a query
engine that uses this query language. This implementation combines a
layered and service-oriented architecture and is designed to be extensible,
so that simple operators can be used as building blocks for more complex
ones. We demonstrate the utility of our query language and operators for
analyzing uncertain graphs based on two real world networks, a dolphin
observation network and a citation network. Finally, we conduct a per-
formance evaluation of some of the more complex operators, illustrating
the viability of these operators for analysis of larger graphs.

Keywords: Graph query language · Comparison queries · Similarity
queries · Uncertain graphs

1 Introduction

Graphs and networks have become a ubiquitous type of data. Traditional graph
models contain nodes, edges, and their respective attributes. Figure 1(a) shows
a small example containing two nodes (Kate and Joe), one edge (the solid line
between the nodes), and attributes associated with the nodes (node id and
gender). It is assumed that nodes and edges in the graph exist, and attributes
have a known value or a null value. However, many data sets contain uncertainty
about vertex existence, edge existence, and attribute values. Figure 1(b) shows
an example where existence probabilities and attribute value confidences have
c© Springer-Verlag Berlin Heidelberg 2015
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(a) Basic Graph

(b) Uncertain Graph

Fig. 1. Two different representations of graph data. 1(a) shows the representation for
traditional graph data. 1(b) shows an example of an uncertain graph.

been added. Data from many different application domains that can be repre-
sented using uncertain graph models include disease transmission networks with
disease transmission probabilities, observed terrorist networks with node exis-
tence probabilities, and physical computer networks with associated reliability
probabilities.

While basic queries involving most probable attribute values and the iden-
tification of nodes with high certainty can be handled by relational, graph, and
probabilistic query engines, none of the corresponding database systems have
query languages that focus on (or in most cases even handle) operators specif-
ically designed for comparison of uncertain graphs. In this paper, we are inter-
ested in introducing operators that are relevant to graph comparison and to
uncertainty. While many operators are important for graph queries or proba-
bilistic queries, they have already been introduced in previous literature and
are, therefore, not the focus of this paper. Interest in uncertain graph analysis
is emerging, but is still in its infancy [22,27,37,38].

Our motivation for uncertain graph comparison arises from two completely
different motivating scenarios - uncertainty occurring during scientific observa-
tion and uncertainty resulting from data analysis. We now describe the impor-
tance of uncertain graph comparison in each of these examples.

Observational scientific data: Observational scientists study animal societies
in their natural settings, often, with the purpose of understanding the social
relationships and behaviors within the society [20]. Such social network data
can be captured as a graph, where nodes represent observed animals and edges
between nodes represent sightings of both animals together. A researcher observ-
ing a particular animal may be uncertain about its identification, relationships,
features, or behavior. This uncertainty can be expressed as existence probabil-
ities between 0 and 1, associated with nodes and/or edges, and attribute value
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confidences, represented as discrete probability distributions over the set of pos-
sible categorical attribute values. Analyzing and comparing uncertain graphs can
be useful for answering questions about similarities between local neighborhoods
of different animals, changes in animal sociality over time, diffusion of behav-
iors, differences among animal subgroups across locations, and observation bias
across researchers, to name a few.

Analysis output data: A second setting we consider involves machine learn-
ing algorithms generating uncertain graphs that can be used as the basis for
prediction, generalization, and statistical analysis. One specific example is a
node labeling algorithm. Node labeling algorithms attempt to predict the label
(attribute value) of nodes in a graph [28]. For example, they can be used to
predict the topics of each publication in a citation network, or to predict which
customers will recommend products to their friends using a customer network,
or to predict the political affiliations of people in a social network [29]. The input
to a node labeling algorithm is a partially observed graph. The output of such
algorithms is an uncertain graph containing a probability distribution across
the possible set of labels or attribute values for each node. Comparing and con-
trasting these uncertain graphs to each other or to a ground-truth graph allows
researchers to analyze the performance of different machine learning algorithms,
experiment with a single algorithm under different assumptions, and examine
the graph dataset by highlighting parts of data where the algorithms disagree in
their predictions or perform poorly.

Figure 2 shows a small node labeling example. The graph on the left side is a
ground truth graph containing the true labels of the sex attribute for each node.
The node labeling task is to correctly label node A. In other words, assume

Fig. 2. A node labeling example. Different node labeling algorithms generate an uncer-
tain graph containing a prediction of the sex attribute.
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node A does not have a known label and use different algorithms to predict
the label. In this example, two algorithms run and each gives its prediction
for the sex attribute of node A. Algorithm 1 is more confident about predicting
‘Male’ than algorithm 2, but both agree on the label. Having operators that
compare these uncertain values for different attributes and components of the
graph is important when analyzing the output of different algorithms.

Contributions: This paper is an extended version of [11]. In [11], we introduced
the following. (1) A basic SQL-like language, which incorporates uncertain graph
analysis and comparison operators, while taking advantage of existing SQL capa-
bilities. The semantics of this proposed language is a combination between rela-
tional database and uncertain graph semantics, part of which is novel and part
of which is necessary for the language to be applicable. (2) A set of compos-
able, comparative operators for uncertain graphs, where the previous literature
focuses on single graph operators, on specific graph algorithms in the presence of
uncertainty, or on operators for multiple certain graphs. We introduce opera-
tors for estimating similarity between graphs, nodes, edges, and their attributes,
including finding a common subgraph that exists across two graphs containing
edges with high certainty and identifying a set of nodes that have the same pre-
dicted node label across two uncertain graphs. (3) A novel system framework
that uses a combination of a layered and a service oriented architecture, and is
extensible, modular, and expandable, allowing for easy integration of new oper-
ators. The novelty of our design is the focus on extensibility and modularity.
Traditionally, databases construct query trees whose set of possible operations
is predefined. This design allows for query optimization by applying a set of
rewrite rules. Our approach provides a flexible mapping of operators to their
implementation. The query engine can, therefore, support easy integration of
new operators without affecting the existing ones and without requiring signif-
icant changes to the framework itself. While we do not claim this design to be
better than traditional query processing, we show it to be a viable alternative
with advantages when new operators are being designed. (4) An initial imple-
mentation of our query framework and a demonstration of our approach for two
case studies.

Along with those contributions, this extended version also includes the follow-
ing additional contributions. (1) New operators related to directed graphs that
are particularly useful in the context of observational scientific data. (2) A signif-
icantly more detailed discussion of the query language, the query engine, and the
system architecture. (3) An additional case study that focuses on the new hier-
archical path operator. (4) A performance analysis of some of our more complex
operators that includes a comparison to a traditional relational query engine.

2 Related Literature

Storage, analysis, and manipulation of graph data is a vast area of interest for both
the research community and industry. In particular, there are multiple graph data-
bases in existence: [2,4–7], to name a few, offering efficient data storage and access,
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as well as scalability and transaction management. The query options sometimes
include proprietary APIs (Neo4j Traverser) or proprietary SQL-like query lan-
guages [6]; in other cases ([1,2,5–7]) there is support for Gremlin [3] or SPARQL
[25]. SPARQL is a query language for the RDF format with similarities to our app-
roach in terms of semantics and SQL-like syntax, including joins and the capability
to retrieve and combine data from several graphs. In comparison to our language,
SPARQL offers more flexible pattern matching, but is more restricted in that its
standard data types are XML-based, its set of operators is more limited, and it
does not offer extended SQL-like constructs such as MERGE BY and SPLIT BY
presented in Sect. 4. Gremlin is a relatively simple but powerful language for graph
traversal and manipulation, supporting built-in functions such as union, differ-
ence, intersection that are applicable to graph comparison. Neither of these lan-
guages focuses on uncertain graphs. Similarly, many of the languages suggested
in existing research [8,9,13–15] often do not consider uncertainty during graph
analysis and comparison across multiple graphs.

Querying similar graphs in graph databases has been studied in recent years
[40]; however, existing works mainly focus on structural information and con-
nectivity. Uncertainty is often incorporated in the context of specific algorithms
[16,17,23,24,30,37,38,42]. These problems are important in answering some of
the possible uncertain graph queries, yet our goal is to create a more compre-
hensive set of albeit simpler uncertain comparison operators. Other researchers
study uncertainty arising from approximate queries rather than uncertain data
[39]. Moustafa et al. [22] propose a graph model for reasoning about different
types of uncertainty that arise in different real world entities and relationships
that can be represented in graphs. They introduce the probabilistic entity graph
(PEG) and then propose algorithms for subgraph pattern matching. Our com-
parative operators can be used with PEG graphs or other variations that model
uncertainty within a graph [27].

Probabilistic databases, on the other hand, typically support queries based
on the concept of Possible World Semantics [18,32,35]. Recently researchers
have extended the Possible World Semantics to uncertain graphs [27,36,41].
While applicable for many problems, this concept is different from our focus on
graph comparison regardless of the nature of the underlying probabilities. We
do, however, build upon operators for comparison of probabilistic attributes [32],
as they are applicable for uncertain graph attributes.

Finally, there are a number of visual graph tools, including [10,29]. Excellent
for visual comparison of uncertain graphs, they could complement rather than
substitute the capability to execute user-defined queries.

We pause to mention that while we implemented our query language inde-
pendent of the SQL query language or other ones that have been proposed in
the graph and probabilistic databases literature, we could have chosen to build
it above existing query languages. As shown in the performance analysis section,
it is feasible for many of our operators. Our choice to not do so resulted from our
interest in designing a language and its constructs in a way that allows for easy
manipulation and comparison of uncertain graphs. Incorporating either uncer-
tainty or graph constructs into existing query languages is cumbersome at best.
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Those database query languages were not designed to handle comparison queries
for uncertain graphs. Further, because we are interested in continually adding
more operators, we also preferred a design approach that was particularly exten-
sible.

3 Probabilistic Formulation

Throughout the subsequent sections we use the following background definitions,
underlying assumptions, and notation. As mentioned in Sect. 1, the object of
interest is an uncertain graph. It is a generalization of a deterministic graph,
incorporating uncertainty about vertex/edge existence and attribute values. We
now formally describe the elements of the graphs being studied.

Uncertain Graph. An uncertain graph G = (V,E,AV , AE , PAV , PAE) has a
non-empty finite set of vertices, V = {v1, . . . vm}, and a finite set of undirected
edges, E = {e1, . . . en}, where each edge ey is a pair of vertices, ey ∈ V × V ,
and V × V = {(vi, vj)|vi ∈ V, vj ∈ V }; AV = {A1, . . . Ap} is a set of (certain)
attributes for vertices; AE = {A1, . . . Aq} is a set of (certain) attributes for
edges; PAV = {PA1, PA2, . . . PAr} is a set of uncertain attributes for vertices;
and PAE = {PA1, PA2, . . . PAt} is a set of uncertain attributes for edges. The
attributes are consistent across vertices and across edges respectively, i.e. all
vertices have the same schema and so do all edges. We refer to both edges and
vertices as graph elements.

Certain Attributes. The set of all certain attributes is defined as A =
{A1, A2, . . . As} = AV ∪ AE . Given an attribute Aj ∈ AV , its domain Dj , and
a vertex vi ∈ V , we associate a value bk ∈ Dj with the pair (vi, Aj) and denote
it using the notation a(vi, Aj) = bk. Every vertex has an identifying attribute.
We refer to this attribute as the node id, or id for shorthand. Similarly, an edge
attribute value is denoted as a(ei, Aj) = bk. When we are generically speaking
about an attribute value on either a vertex or edge graph element, as shorthand,
we will use aij .

Structural Uncertainty. To express structural uncertainty, we store our confi-
dence about existence of the corresponding graph element as one of the attributes
in AV and AE : ∃Aj : aij ∈ [0, 1], ∀i ∈ [1,m] and ∃Aj : aij ∈ [0, 1], ∀i ∈ [1, n].
Henceforth, we refer to this attribute as ‘conf ’ or ‘confidence’.

Uncertain Attributes. By analogy, the set of all uncertain attributes is PA =
{PA1, PA2, . . . PAo} = PAV ∪PAE . Uncertain attributes allow the data model
to express semantic uncertainty in the graph. The value of an uncertain attribute
PAj is a set of pairs of each possible attribute value and a probability associated
with each possible value. For example, an uncertain attribute sex with value
domain {male, female} reflects the researcher’s uncertainty about the sex of
the observed animal. For a specific vertex, the set of its value pairs could be
{(male, 0.8), (female, 0.2)}.

More precisely, value domain V Dj is the constrained (discrete) domain of
possible values associated with attribute PAj . The value domain is ordered and
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we use the notation at
j to designate the t-th member of V Dj , where t ∈ [1, |V Dj |].

Continuing with the previous example, a1
j = male, a2

j = female.
PDj is the domain of uncertain attribute PAj : PDj = {{(at

j , f(at
j) : ∀at

j ∈
V Dj} : for all probability distribution functions f(x) over the value domain
V Dj}. In other words, the domain PDj is the infinite set of all permissible values
for uncertain attribute PAj , where each of these values corresponds to a different
possible probability distribution function and thus in itself represents a set of
pairs of each possible value from the value domain V Dj and the corresponding
pdf output.

Given an uncertain attribute PAj ∈ PAV and a vertex vi ∈ V , we associate
a value ck ∈ PDj with the pair (vi, PAj) and denote it using the notation
pa(vi, PAj) = ck. Similarly, given an attribute PAj ∈ PAE and an edge ei ∈ E,
we associate a value ck ∈ PDj with the pair (ei, PAj) and denote it using the
notation pa(ei, PAj) = ck. As shorthand, when the type of attribute (vertex vs.
edge) is not significant, we use paij .

By analogy to using at
j to refer to members of value domain V Dj , the

shorthand ptij refers to the corresponding probability f(at
j), associated with

value at
j for vertex vi. We define the set of uncertain attributes for a partic-

ular vertex vi as PA(vi) = {PAj : PAj ∈ PAV and pa(vi, PAj) �= null}.
Similarly, the set of uncertain attributes for a particular edge ei is defined as
PA(ei) = {PAj : PAj ∈ PAE and pa(ei, PAj) �= null}.

According to these definitions, our data model supports uncertain attributes
only with discrete probability distribution. Future work will consider extending
this model to support continuous uncertain attributes.

Assumptions. We make the following general assumptions about the uncer-
tainty in the graph and the form of comparison:

Assumption 1: The existence probability of an edge is assumed to be conditional
upon the existence of its endpoints.

Assumption 2: Uncertain attributes contain probabilities associated with each
possible value from their domain, expressing the likelihood that the attribute
takes on this particular value.

Assumption 3: We make no assumptions about the nature of probability values
assigned to the graphs that we need to compare. In other words, the analyst can
decide if the probabilities are marginal or posterior.

Assumption 4: When comparing two graphs g1 and g2, we assume that the
following partial mapping exists between their elements: (1) the vertex mapping
consists of a bijective mapping function for those vertices that are mapped, plus
a set of unmapped vertices in each of the graphs g1 and g2; and (2) edge mapping
is equivalent to vertex mapping, with the added constraint that edges g1.e and
g2.f can be mapped to each other only if both of their endpoint vertices are also
mapped. We refer to two graphs with this property as aligned graphs.
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Assumption 5: Alignment is assumed to be based on the id of the element:
elements from graph g1 are mapped to elements with the same unique id in
graph g2; they are unmapped if there is no corresponding element with the
same id.

4 Query Language

In this work we create a new query language that incorporates necessary opera-
tors for uncertain graph comparison. While we create a new language, it makes
sense to leverage people’s SQL knowledge and use the SQL semantics to han-
dle graphs, graph elements, and attributes as relations when possible. In other
words, we will use the notion of a relation, but we will allow a tuple to contain
any graph element, e.g. a vertex, an attribute value, or a collection of any graph
elements, including an entire graph. As we will show, the ability of a graph to
be a value in a tuple of a relation is important for graph comparison.

We chose to base our query language on SQL because it is a mature, proven,
and well-known language. While we do not claim that it is the best language
for the purpose, we believe it is sufficient for expressing a wide range of uncer-
tain graph comparison queries using our set of operators. Using these operators
directly with traditional SQL was certainly another option; however, there are
several disadvantages. On syntactic and semantic level, a dedicated query lan-
guage allows the flexibility for any modifications that best suit the specifics of
uncertain graph analysis. On implementation level, extending an existing SQL
query engine effectively would mean using a relational database as storage for
uncertain graph data. While this is reasonable, a number of interesting graph
and probabilistic databases have arisen. Therefore, we wanted to use an app-
roach where the query language was not restricted to a particular storage type.
Having the ability to query any underlying database in a single consistent man-
ner was an important goal. Our query language accomplishes this by leveraging
important SQL semantics without tying the language to relational databases.

Operations from SQL. Our query language supports the major SQL
operations, such as SELECT, FROM, JOIN, WHERE, GROUP BY, HAVING,
and ORDER BY, introducing modifications and extensions to accommodate the
specifics of graph comparison. For example, the FROM operation can extract
individual nodes, edges, both nodes and edges, attributes from the specified
graph (creating a tuple for each of them), or return the graph as a whole in a
relation as a single tuple. An example that returns a table containing edges e
from graph g1 with high existence probability (conf(e) > 0.5) along with the
confidence of existence (conf(e)) sorted by the edge confidence is as follows:

SELECT e, conf(e)
FROM g1 TYPE edge AS e
WHERE conf(e) > 0.5
ORDER BY conf(e) DESC
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New Operations. We introduce two new operations to support the manip-
ulation of collections. These operations are MERGE BY and SPLIT BY. To
describe these operations, suppose that α is a collection containing a set of val-
ues, for example, the set of values for a categorical attribute.

The SPLIT BY operation is used to separate each element in the collection
α into separate tuples. In other words, in the result relation of the SPLIT BY
operation the original tuple is replaced with a set of tuples, one for each element
in α. The remaining columns in each of these tuples are unchanged. Intuitively,
this operation is used to “flatten out” or “unnest” a relation when α contains a
set of values instead of a single value.

Suppose we have the following query:

SELECT n, location
FROM g1 TYPE node AS n
SPLIT BY mpv(n.location) AS location

In this query, g1 is the graph of interest and n is a column of type vertex.
location is an uncertain attribute containing all the possible values for location
for each vertex in n, and the mpv() operator gets one or possibly several most
probable values from the attribute. In this example, the SPLIT BY operation
transforms the single row, collection result obtained from the mpv() operator
to a multi-row result. In other words, it extracts values (in this case, the most
probable values) from a collection (in this case, the location attribute) into
separate tuples. This query produces the result shown in Fig. 3.

Fig. 3. Illustration of simple SPLIT BY operation.

The MERGE {DISTINCT} (BY | ALL) operation is the semantic opposite
of the SPLIT BY operation. Similar to GROUP BY, the MERGE BY opera-
tion returns a relation that contains one tuple for each distinct column value
referenced in the clause, or distinct combination of values in case of multiple
columns. Unlike GROUP BY, the MERGE BY operation retains the original
values in each of the remaining columns by merging them into a collection - one
collection for each resulting tuple and column. Therefore, all columns remain
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visible to subsequent non-aggregate operators. For illustration, assuming that
vertices have an attribute size equal to one of the “small”, “medium”, and
“large”, the following example query will produce the result in Fig. 4. In this
example, vertices from graph g1 form column n, whose type is vertex. The ver-
tices with the same attribute value can be merged into a single collection using
the MERGE BY operation.

SELECT n, size
FROM g1 TYPE node AS n
MERGE BY n.size AS size

Fig. 4. Illustration of simple MERGE BY operation.

The MERGE BY operation can be applied not only to columns, but to an
arbitrary mix of columns and expressions. Omitting them altogether (specified
as MERGE ALL), is equivalent to merging a relation r into a single tuple, where
each column contains a collection of values from the corresponding column for
all tuples of r. An additional feature is the DISTINCT modifier. When enabled,
the operation discards duplicates for each column that is turned into a collection.
As illustrated, the addition of operations for merging and splitting elements in a
relation are necessary for manipulating and converting between individual graph
elements and collections of graph elements.

5 Proposed Operators

While we take advantage of the SQL-like operations to retrieve, filter, sort, group,
and join data, individual operators are used within each of these clauses to specify
the required behavior. As shown in the query example, the same operator can
be re-used with several operations, subject to rules between aggregate vs. non-
aggregate operators and operations.

In order to effectively query uncertain graphs, we need operators for attri-
butes, graph elements, local subgraphs and graphs, and hierarchical elements.
While this leads to a large number of operators, many of which are quite intuitive
and straightforward, we also introduce some novel operators as well. Therefore,
this section begins by highlighting important operators for each of the mentioned
targets (attributes, graph elements, local subgraphs, and hierarchical elements).
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This is followed by a detailed discussion of similarity operators, since they are
most relevant to the uncertain graph comparison tasks outlined in the motivating
examples and span some of the previous categories of operators.

The different operator examples are based on the sample graph in Fig. 5.
In this example, there are two nodes, v1 and v2, and one edge e1. Each node
has three attributes, id, conf , and loc, where id is the unique identifier, conf
is the existence probability, and loc is an uncertain attribute that contains 5
possible values (PN , WB, HB, EA, RCB). This uncertain attribute represents
the location where different dolphins are observed. Finally, the edge has two
attributes, id and conf . Parallel to their node counterparts, id is the unique
identifier and conf is the existence probability of the edge.

Fig. 5. Sample network for operator examples.

5.1 Operators for Uncertain Attributes

Operators in this category can be used to answer queries about values and prob-
abilities associated with one or more uncertain attributes. Because the attribute
value represents a discrete probability distribution, the proposed attribute opera-
tors’ functionality ranges from simply extracting the probability that an attribute
has a specific value (valueCertainty()) to the most/least probable value (mpv()
and lpv()) to analyzing the shape of the distribution (peakToAvgDist()). Table 1
lists operators related to uncertain attributes. The leftmost column of the table
contains the name of the operator. The middle column describes the operator
and the rightmost column shows an example of the operator in use. For exam-
ple, the peakToNextDist() operator is used to identify uncertain attributes with
a dominant (peak) probability that significantly exceeds the probabilities for the
remaining values.

5.2 Operators for Graph Elements

Graph element operators may be incorporated into a query, such as the one in
the introductory example in Sect. 4, to identify strong/weak connections within
a single graph (conf()) or to compare the confidence of the corresponding ele-
ments across two aligned graphs (sim()), isolating the elements not only based
on their low or high confidence, but also on whether the two graphs agree or
differ significantly (compBin()). Table 2 lists the operators for graph elements.
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Table 1. Uncertain Attribute Operators: These operators answer queries about
values and probabilities associated with one or more uncertain attributes.

Operator Description Example

mpv(), lpv() most/least probable attribute value mpv(v1.loc) = “PN”

valueCertainty() probability that an attribute has a
specific value from the domain

valueCertainty(v1.loc,
“WB”) = 0.2

maxV alueCertainty(),
minV alueCertainty(),

avgV alueCertainty(),
medianV alueCertainty()

max, min, mean, or median
probability among all
probabilities associated with an
attribute

maxV alueCertainty
(v1.loc) = 0.6

peakToAvgDist() difference between the max and the
average certainty

peakToAvgDist
(v1.loc) = 0.4

peakToNextDist() difference between the max and the
second-highest attribute value
probability

peakToNextDist
(v1.loc) = 0.4

valueCertaintyDev() standard deviation of probabilities
for an uncertain attribute

valueCertaintyRange() difference between highest and
lowest probability of an
attribute

valueCertaintyRange
(v1.loc) = 0.6

sim() similarity score between two
uncertain attributes of the same
type, typically in the range
[0, 1]. It is generally measured
between the two sets of their
respective attribute values and
probabilities

The specific similarity
measures are
described later in
this section

Similarly to Table 1, this table has three columns for the operator name, descrip-
tion, and an example using the operator. Some of these operators are designed
to be used together. For example, the bin() operator returns a true or false
value. Given a threshold, the operator returns a true when the confidence of the
graph element is higher than the threshold and a false when it is lower than
the threshold. The confidences of two graph elements can then be compared
using compBin() operator. It uses the output of the bin() operator to deter-
mine the probabilistic relationship between the two graph elements, returning
a ‘high’, ‘low’, or ‘opposite’ value. A value of ‘high’ indicates that both graph
elements have a high confidence. A value of ‘low’ indicates the contrary. A value
of ‘opposite’ indicates that the two elements have divergent confidences.

5.3 Operators for Local Subgraphs and Graphs

Sometimes, when graphs are analyzed, the comparison of interest is not on a
graph element. Instead, it is on a part of the graph containing multiple ver-
tices and multiple edges. One common level of analysis is the ego network level.
An ego network of a vertex v is the subgraph that contains v, its neighbors, and
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Table 2. Graph Element Operators: Most of these operators serve to query and
analyze the confidence of existence of a single graph element or relative to another
vertex or edge. Other operators in this group aggregate the results from attribute-level
operators for the given graph element.

Operator Description Example

conf() confidence of element’s existence conf(v1) = 0.8

bin() true or false bin, corresponding
to high or low conf() relative
to a threshold

bin(v1, 0.5) = true

compBin() “high”, “opposite”, or “low”,
depending on the relationship
between the output of the
bin() operator applied to
each of the two operands

compBin(v1, v2) = high

magnitudeDiff() difference between confidence of
existence of 2 elements

magnitudeDiff
(v1, v2) = 0.2

diffSignificance() whether the absolute value of
magnitude difference is above
a threshold

diffSignificance
(v1, v2, 0.1) = true

valueCertaintyScore() average maxV alueCertainty()
of all uncertain attributes of
the element

valueCertaintyScore
(v1) = 0.6

sim() similarity score between 2
elements of the same type
(vertices or edges), typically
in the range [0, 1]

the edges connecting v to its neighbors [34]. Common usage examples of graph
and ego-net operators are provided in Table 3. Operators allowing for struc-
tural graph comparison based on graph alignment include: intersect(g1, g2),
union(g1, g2), difference(g1, g2), and bidirectionalDifference(g1, g2). For
example, by intersecting the ego networks of two specific dolphins in the same
graph, the analyst can discover their common friends. The graph reconstruction
operator, toGraph(), can be used in a query to derive a subgraph based on spec-
ified conditions. For example, to obtain a subgraph of high-confidence elements,
it can be combined with the bin() operator and MERGE BY clause. While this
operator is not as sophisticated as pattern matching [15], it does provide the
capability for subgraph filtering based on a flexible set of conditions.

5.4 Operators for Trees

We also introduce operators for capturing hierarchical relationships and tree
structures in the graph. For example, some networks contain family relationships
such as parent/child. Identifying matrilines within the graph using tree-related
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Table 3. Graph and ego-net operators: These operators can be used for structural
and semantic comparison of subgraphs and graphs.

Operator Description

egoNet() given a vertex vi, returns the set of vertices
and edges that are part of vi’s
ego-network, including vi itself

egoSim(v1, v2) similarity score between two ego-networks
defined by their center vertices v1 and v2,
respectively, typically in the range [0, 1]

intersect(), union(), difference(),
bidirectionalDifference()

creates a new graph that represents,
respectively, an intersection, union,
difference, and bi-directional difference of
two graphs

toGraph() recreates a graph from a set of vertices and
edges

toElements() breaks down a given graph into a set of
vertices and edges

operators makes it possible to see which attributes or behaviors are most proba-
ble within a family and which are not. Table 4 contains a list of operators related
to hierarchical analysis. In addition to several traditional tree operators such as
treeDepth(), hasChildren() and children(), this category includes operators
allowing for subtree comparison that can be useful when trying to understand
properties of social networks.

As an example, suppose a node attribute indicates lineage in the network, per-
haps parent-child relationships. This data can be useful for understanding when
different behaviors occur within a family. Is the behavior consistent within single
branches of the family tree or do some of the nodes in the branch exhibit the behav-
ior while others do not? To help with this, we introduce the switchRatio operator,
described in Sect. 5.6. Finally, the countFeature operator supplements the differ-
ent flavors of the switch operator by giving the number of nodes possessing a given
attribute value, although its functionality in most cases could be replicated using
other operators at the expense of query complexity and readability. Its application
is not restricted to trees, as it can be used on any collection of elements.

5.5 Similarity Operators

Uncertain Attribute Similarity. The sim() operator is one of our novel
operators for comparing uncertain attributes paij and palj . In the proposed set
of measures, similarity is classified as either structural or semantic. The for-
mer identifies the similarity between the general shapes of the two distributions,
ignoring the attribute values and their arrangement relative to each other. For
example, attribute {(a, 0.8), (b, 0.1), (c, 0.1)} should be considered structurally
equivalent to attribute {(a, 0.1), (b, 0.1), (c, 0.8)}, as both have a dominant value
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Table 4. Subtree operators: Necessary for understanding hierarchical components
of the graph.

Operator Description

roots() returns a set of vertices, representing root
nodes for every tree in the given graph,
i.e. all vertices having child nodes but
not parent nodes. Optionally, vertices
without child nodes may be included

hasParents(), hasChildren() test for existence of parent and child nodes
of a given vertex, respectively

parents(), children(), siblings() return a set containing, respectively, the
parent nodes, child nodes, or siblings of a
given vertex

tree() extracts from a graph the tree rooted at the
given node by creating a set of all
descendant nodes and the corresponding
directed edges that connect these nodes
to the tree

treeDepth(), treeSize() depth and size (number of nodes),
respectively, of the tree rooted at the
given node

switchRatio(),
switchRatioPositive(),
switchRatioNegative()

a score in the range [0, 1] measuring
variation of the given attribute value
among the descendants of the given
node. Defined as the number of edges in
the hierarchy where an attribute value of
the node changes in the specified way
between the parent and child divided by
the total number of edges in the
hierarchy

countFeature() count of elements in the given set with a
particular attribute value

(peak) of 0.8. Structural similarity is useful for discovering certain envelope
patterns. For example, a pattern with a single dominant value would suggest
that observers (or algorithms) were able to establish the value with a higher
degree of certainty than if the pattern is flat - regardless of which exactly value
is dominant. We support two structural similarity measures, entropy ratio and
absolute distance ratio, where the entropy ratio compares the distribution spread
for the specified uncertain attribute and the absolute distance ratio compares
the magnitude of the distance between the different uncertain attribute values.
For example, the absolute distance ratio equals AD(paij)

AD(palj)
, where absolute dis-

tance is calculated as AD(paij) =
∑|V Dj |

t=2 |ptij − pt−1
ij | and by analogy, for palj .

To correctly reflect structural similarity through absolute distance, probability
sets in both attributes must first be sorted.



130 D. Dimitrov et al.

The semantic similarity, on the other hand, compares probabilities between
the corresponding attribute values. An instance of an uncertain attribute can
be represented as a histogram. We refer to each possible attribute value as a
‘bin’ in the histogram, conceptually containing the associated probability. This
representation allows us to use a number of measures that have been proposed
for histogram similarity. They generally fall into two categories - bin-by-bin and
cross-bin approaches [26]. The bin-by-bin similarity compares the contents of only
corresponding bins, or in our case, probabilities for the same attribute values in
two attribute instances. Cross-bin measures, on the other hand, compare non-
corresponding bins. This is possible only if the ground distance between pairs
of non-corresponding attribute values is known. In this work we focus on the
following bin-by-bin similarity measures, because they are useful across many
domains. Instead of selecting one, we implement the ones most frequently used
in the literature [26]:

1. Default: sim(paij , palj) = 1 −
∑|V Dj |

t=1 |pt
ij−pt

lj |
2

2. Minkowski-Form Distance
3. Histogram intersection
4. K-L divergence

We refer you to [26] for details about each of these measures.

Ego Network Similarity. The egoSim() operator uses a variety of similarity
measures and algorithms depending on user-specified constraints and on ego net-
work containment within the same or different graphs. For measuring similarity
between two ego networks (or ego-nets), the two center nodes are mapped to each
other, each of the non-center nodes from the first subgraph is mapped to 0 or 1
non-center nodes from the second subgraph, and vice versa. For ego-net similarity,
we assume that multiple edges between a pair of vertices are not allowed.

We now intuitively describe different types of ego-net similarity. They are
the cornerstone of our uncertain comparative operators, allowing researchers to
better compare graph substructures, not just entire graphs or single graph ele-
ments. The different cases of ego-network similarity are outlined in Fig. 6. We
consider all the permutations, since different application domains may be inter-
ested in different forms of similarity. Depending on alignment between the two
ego-nets, similarity can be aligned and unaligned. In the aligned case, the map-
ping is determined by the alignment scheme. If no alignment scheme is chosen
(not aligned case), the elements are mapped between the two ego-networks in a
way that maximizes similarity.

Ego-net similarity can be structural, semantic or both. Structural similar-
ity only takes into account the existence or confidence of existence of ver-
tices and edges in each mapped pair between the two ego-nets, while ignoring
attributes and their values. Structural similarity is subdivided into topological,
probabilistic-topological, and comparison count. The user can select the similar-
ity measure that is most applicable to the comparison.

Before we define the various similarity measures, we need to introduce some
additional notation. Let o1 and o2 be the center vertices of the two ego-networks,
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Fig. 6. Classification of ego-network similarity.

eg1 and eg2, respectively. Let |eg1| and |eg2| be the size of the corresponding
ego-net, measured as number of non-center vertices, i.e. the degree of the center
vertex. In the aligned case, let a mapping rm be expressed as (e, v, e′, v′). In
this notation, e and v are an edge and non-center vertex from eg1, while e′ and
v′ are the corresponding mapped edge and non-center vertex from eg2. Let the
alignment set RM be the set of all mappings between vertices and edges from
eg1 and eg2, excluding the center vertex. By definition, RM does not include
unmapped edge-vertex pairs. To represent this case, we define a pseudo-mapping
pm in the same way as the regular mapping rm, except that one side of the
pseudo-mapping is always null: pm = (e, v, e′, v′), (e = null, v = null) or (e′ =
null, v′ = null). Let the set PM contain all pseudo-mappings pm between
eg1 and eg2. Then, the complete alignment set M is defined as RM ∪ PM .
|RM |, |PM |, and |M | designate the sizes of the corresponding sets. In a similar
fashion, we define a pair of mapped uncertain attributes as mp = (ua, ua′),
where ua = pa(v, PAj) and ua′ = (v′, PAj) share the same definition (domain
and order of values). The set MP contains all pairs of mapped attributes between
a pair of mapped vertices. Note that one side of mp ∈ MP can be null.

Topological similarity compares the structure of the two ego-nets based on
the existence of their elements, but not on confidence values associated with
existence. It is calculated as follows:

– In the aligned case: |RM |
max(|eg1|,|eg2|)

– In the unaligned case: |eg1|
|eg2| , if |eg1| < |eg2|, else |eg2|

|eg1|
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Probabilistic-topological similarity takes into account the confidence values
associated with edges and non-center vertices. In the aligned case the
calculation is:

1 −
∑

m∈M abs value(conf(m.e) ∗ conf(m.v) − conf(m.e′) ∗ conf(m.v′))
|M | .

In the case of pseudo-mappings, the side that is null results in a confidence
product of 0. The proposed formula accounts at the same time for both the
number of mapped vertices and the mapping quality between the edge-vertex
pairs, which is based on their confidence values. In the unaligned case, the same
formula is used, but the complete alignment set M is created differently - in a
manner similar to the merge-sort algorithm. For both ego-nets eg1 and eg2, we
calculate the product of confidences for each non-center vertex and associated
edge. These are sorted descending for both ego-nets separately. Each mapping
rm in RM is formed by taking the edge-vertex pair with highest values from
each list and removing them from the list. When one of the lists is empty,
pseudo-mappings pm are formed using the remaining elements of the other list.
This algorithm, as most of our algorithms used in the unaligned case, is an
approximation.

Comparison count is simply a count of aligned non-center nodes between the
two ego-networks. It is useful when the researcher is interested in an absolute
similarity measure, related to the size of the ego-networks, rather than in a ratio
between 0 and 1 that is returned by the topological and probabilistic-topological
similarity. In the aligned case, the value is |RM |. In the unaligned case, the value
is: min(|eg1|, |eg2|).

Semantic similarity, on the other hand, ignores confidence and derives the
similarity score by only using similarity measures between the individual nodes
and edges in the mapped pairs. In the aligned case, similarity is measured by
aggregating similarities between pairs of attributes with the same name and defi-
nition, belonging to each pair of aligned vertices. In the unaligned case, alignment
is chosen in an attempt to maximize the total similarity of all attribute pairs
between aligned vertices - usually by greedy heuristics.

Depending on the number of attributes under consideration, the measure
can be either single- or multiple-attribute. In both of those cases, similarity
between a pair of uncertain attributes can be estimated using different measures.
We propose two of them: mpv and distribution similarity. In the aligned case,
attribute similarity is always calculated as:

∑
rm∈RM similarity measure(rm.v, rm.v′)

|RM |
where similarity measure(rm.v, rm.v′) varies based on one of the single attri-
bute or multiple attribute cases.

Case 1 - Single attribute. Let PAj be the selected uncertain attribute, and
ua = pa(v, PAj), ua′ = pa(v′, PAj). Then one of the following measures can be
used for similarity:
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– MPV. The user can select between a partial or a full match between the
attribute’s sets of mpv values:
similarity measure(rm.v, rm.v′) = 1, if mpv(ua) ∩ mpv(ua′) �= ∅, else 0, or
similarity measure(rm.v, rm.v′) = 1, if mpv(ua) ≡ mpv(ua′), else 0. The
result is also 0 if ua = null, ua′ = null, or both.

– Distribution. In this case, the distribution of certainty values for an attribute
is used:
similarity measure(rm.v, rm.v′) = sim(ua, ua′), where sim is any user-
selected semantic uncertain attribute similarity measure.

Case 2 - Multiple attributes. More options and complexity exist when con-
sidering multiple attributes. One of the following measures can be used for sim-
ilarity:
– MPV. Between each pair of mapped uncertain attributes, we use the same simi-

larity measure as in the case of single attribute: smpv(ua, ua′) = 1, if mpv(ua)∩
mpv(ua′) �= ∅, else 0, or smpv(ua, ua′) = 1, if mpv(ua) ≡ mpv(ua′), else 0.
Because we deal with multiple mapped attributes mp ∈ MP , the total
similarity measure for the set MP can be derived in different ways from the
similarity measure smpv between each mp pair.

• ‘AND’ - the result is 1 if smpv(mp.ua,mp.ua′) = 1, ∀mp ∈ MP, else 0.
• ‘OR’ - the result is the average of pairwise attribute similarity for all

mapped attribute pairs:
∑

mp∈MP smpv(mp.ua,mp.ua′)
|MP |

– Distribution. Between each pair of mapped uncertain attributes, we use the
same similarity measure as in the case of single attribute: sdistr(ua, ua′) =
sim(ua, ua′), where sim is any user-selected semantic uncertain attribute sim-
ilarity measure. Because the values returned by sdistr are not restricted to
either 1 or 0, we do not apply the ‘AND’ case in dealing with multiple mapped
attributes mp ∈ MP . The result is derived by averaging the pairwise attribute
similarity for all mapped attribute pairs:

∑
mp∈MP sdistr(mp.ua,mp.ua′)

|MP | .

In the unaligned case, we restrict the similarity measure to a single attribute
for considerations of computational complexity. Even in the case of a single
attribute, the brute force approach for finding the alignment that would max-
imize similarity is highly inefficient in some cases. In those cases, we propose
using a greedy heuristics, similar to the merge-sort algorithm, that reduces run-
ning time but does not guarantee optimality. As in the aligned case, the user
has a choice of two similarity measures, MPV and distribution based similarity.

5.6 Tree Branch Attribute Similarity

In many graph data sets, hierarchies exist within the graph structure. For exam-
ple, in a social network, node attributes may indicate lineage such as parent-
child relationships. When exploring data, observational scientists are sometimes
interested in understanding when different behaviors occur within a family. Is
the behavior consistent within single branches of the family tree or do some of
the nodes in the branch exhibit the behavior while others do not? To help with
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this, we introduce the switchRatio operator. The switchRatio operator is the
number of edges in the hierarchy where an attribute value of the node changes
between the parent and child divided by the total number of edges in the tree.
The positiveSwitchRatio is the number of edges in the hierarchy where the
attribute value changes from not existing in the parent (FALSE) to existing in
the child (TRUE) divided by the total number of edges. negativeSwitchRatio
is the opposite - the attribute value exists in the parent, but not in the child.
A switchRatio of 0 indicates homogeneity of the behavior in the tree branch.
A higher switchRatio indicates more variation between parent-child nodes in
the tree. A switchRatio of 1 indicates that every child has a different value for
the attribute than its parent. This operator is an important supplement to a sim-
ple count of the number of nodes in the graph with a particular attribute value.
It gives the analysts and scientists some initial insight into how the behavior is
diffusing throughout the graph.

5.7 Other Operators

In addition to operators related to uncertain graph comparison, the proposed
query language supports general operators, most of which are commonly present
in many other languages, including SQL, e.g. aggregate operators, logical oper-
ators, set operators, etc.

5.8 Route Operators

While path operators are central to graph query languages, their use is not as cen-
tral as similarity for uncertain graph comparison. Some operators that are useful
in this context include: comparing high confidence path existence between two
nodes or ego-nets, comparing high confidence shortest paths, and comparing con-
nected components when taking into account the confidence of existence of graph
elements. While we have not implemented them in our query language, we con-
sider them useful for uncertain graph comparison and leave them for future work.

6 High Level System Architecture

This section describes the high-level architecture of the query engine. Broadly,
we combine concepts from service-oriented design and a layered system archi-
tecture to create a highly extensible framework. The remainder of this section
begins by describing our design priorities, followed by a high level explanation
of the architecture itself and a discussion of the query compilation and operator
composition.

6.1 System Goals

Our highest priority design goals in developing the query engine architecture
and prototype implementation include:
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Extensibility. Because we intend to continue building upon our initial query
language, allowing for extensibility at all levels was our highest priority. At the
lowest level, the system must allow easy integration of any additional operators
and operations. When concepts that do not fit in the existing implementation
are introduced, for example, aggregate operators, it is desirable to minimize the
required changes to the query processing framework. We refer to this as mid-
level extensibility. At a high level, the design must provide room for new system
capabilities, such as plugging in different data storage implementations.

Operator composition. Operators sometimes re-use the functionality of other
existing operators. For example, vertex and ego-network similarity operators
build upon different attribute similarity operators. Because we anticipate that
being a common situation, the system should provide re-use of existing opera-
tors to the programmer, who creates new operators. The user can also compose
operators implicitly within the limits of the query language by creating expres-
sions or within the limits of the pre-programmed sub-operator selections, such
as choosing an underlying attribute similarity measure.

Adaptability. Capabilities to introduce future optimizations specific to our data
model and query language without restricting the implementation to a particular
platform or data storage.

6.2 System Overview

To meet these goals, we use a combination of layered and service-oriented archi-
tecture, illustrated in Fig. 7. The main component of this architecture is the
query engine, a lightweight and generic platform for deployment of modules
responsible for the individual steps in the query processing workflow, such as

Fig. 7. Different components of the layered architecture.
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parsing, compilation, optimization, validation, and execution. The set of included
modules, represented as services, is not pre-defined, making it different from tra-
ditional database query engines.

The engine offers two important capabilities: service configuration and ser-
vice lookup. The former allows parameter tuning without code recompilation,
including deploying the same implementation under different configurations. The
latter allows flexible and dynamic linking of services, e.g. transparent replace-
ment of the underlying data storage implementation. The individual modules are
designed with the goal of decoupling them from each other and, in turn, they
can be customized by plugging in implementations of their sub-components. For
example, an operation registry is the sub-component that provides the default
mapping between operators and their compiled representations. For integrating
simple operators, it is sufficient to add a reference to the registry.

The query execution process is as follows. It begins when the Parser mod-
ule transforms the textual representation of a query into an abstract syntax
tree (AST), which we refer to as logical query. The Compiler module translates
the AST using a post-order traversal of operations in the logical tree into an inter-
nal representation suitable for optimization and execution. Next, the Optimizer
module generates and evaluates several alternative execution plans, choosing the
best one. The Executor is the key module where the operations and operators
that make up the query are executed. The Validator module can be invoked
at different stages to ensure compliance with the pre-defined rules. The Facade
and Connector modules provide the interface for interaction between external
systems and the query processing workflow. Data Store serves to retrieve the
data requested in the query and convert the graph(s) into an incidence list
based internal representation, which includes vertex objects and edge objects.
Each vertex object has an instance variable pointing to a collection object that
lists the neighboring edge objects. In turn, each edge object points to the two
vertex objects at its endpoints. Attribute maps are linked to every vertex and
edge object and conform to the common vertex or edge schema, respectively,
both of which are associated with the graph. We now go through some of the
different steps, focusing on how one develops and composes new operators given
the extensible system design.

6.3 Query Compilation

The logical query tree, produced by the Parser, conforms to a simple and generic
data model. The query is represented as a logical tree, composed of operations,
constants, and variables, which in turn can contain expression subtrees. Tree
edges represent data flow in the direction of the root. The Compiler performs
post-order traversal of operations of the logical query tree, mapping logical nodes
to their compiled counterparts. The mapping between operations is given with
the operation registry. For more customization, compiler modules can be assigned
to operations that require special handling. This way, the default compiler can
be configured for our proposed query languages, and at the same time it is
generic enough to be used with other query languages conforming to the same
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logical structure. Adding new operations to the compiler in most cases requires
minimum effort, involving only registering them with the operation registry.

In our design, we maintain a separate structure for a compiled query, which is
executed by the query executor module. Mapping a logical query to the compiled
query is the task of the compiler module. Decoupling the two structures from
each other provides a clean separation between the specification of the user
request and the internal operations taking place during query execution, such
as optimizations. An additional benefit is that the queries can be pre-compiled
and parameterized at a later time using the logical variable component of the
logical query. This separation does not enforce pre-compilation. If interpretation
is more desirable, compilation can be done at run-time.

6.4 Developing and Composing Operators

Traditionally, databases construct query trees whose set of possible operations
is predefined. This design allows for query optimization by applying a set of
rewrite rules. Our approach differs because we provides a flexible mapping of
operators to their implementation. This allows the query engine to support easy
integration of new operators without affecting the existing ones and without
requiring significant changes to the framework itself.

Developing an operator involves implementing a simple interface with two
methods. The first method allows the Executor to set the operator’s input para-
meters. Then, the second method is called, in which the operator performs its
calculations over these supplied parameters and returns the result. In the simple
case, no other code is required. Adding the operator to the configuration of the
OperationRegistry is sufficient to incorporate it into the query language, as the
registry is used for both compilation and execution.

Composing an operator using operators that are already in the language is
also straightforward, as the framework supports their lookup and execution from
the dependent operator. For example, ego-network semantic similarity re-uses
one of the existing attribute level similarity operators, as selected by the user, to
derive similarity for the ego-network as a whole. During execution, each operator
has access to the Context, from which it can retrieve its configuration and any
other data previously bound to the Context. Because the user does not directly
specify the nested operators, it is not possible to pass their configuration as
regular parameters; instead, the configuration is bound to the enclosing operator
and passed down to the nested operators, which use the Context mechanism to
retrieve these parameters.

The Context also provides implementation instance of a simple invocation
interface, which abstracts calling other existing operators explicitly from within
an operator and decouples their implementations. In addition to this static oper-
ator composition, for even more flexibility, when the nested operator is not known
until run-time, an operator can define an arbitrary logical query, compile, and
execute it dynamically.
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7 Detailed Operator Use Cases

To show the utility and composition ability of our operators, we have integrated
our query engine with Invenio [12,31], a visual analytic tool for graph mining.
Our query engine and the Invenio tool are both written in Java. The application
analyzes graphs in main memory and visualizes different projections of them.
Using the two motivating scenarios presented in Sect. 1, we highlight a subset of
our operators in three different case studies, two that utilize a dolphin association
network and one that uses a citation network.

7.1 Queries to Support Ego-Net Analysis

The Shark Bay Research Project studies dolphins in Shark Bay, Australia for
over 30 years [21]. Our data set includes demographic data about approximately
800 dolphins, represented as graph nodes with certain attributes (id, conf, dol-
phin name, birth date) and uncertain attributes (sex code, location, mortal-
ity status code). Survey data about social interactions between these dolphins
are captured as approximately 29,000 edges with attributes (id, conf).

Our team met with researchers on the Shark Bay Research Project and devel-
oped a list of typical queries that observational scientists would like the capability
to issue when analyzing this dolphin social network and its inherent uncertainty:

– Selecting the number of associates and sex composition of associates for male
and female dolphins, respectively, using the most probable value of the sex code
attribute.

– Visualizing the union, intersection, difference, and bi-directional difference
between the ego-networks of a particular dolphin during two different years,
where the confidence of relationship existence is above a specified threshold.

– Finding the common associates (friends) of two specific dolphins with a rela-
tionship confidence above a certain threshold.

– Finding all dolphins having associates whose most probable location is different
from their own.

– Calculating a measure of structural and semantic similarity between ego-
networks of two particular dolphins.

– Selecting the subgraph that consists only of dolphins linked by observations
with low confidence of existence (lower than a specified threshold). The results
of this query tell researchers if observers are having difficulty identifying cer-
tain dolphins.

The query in Table 5 is an example that shows counts by sex of dolphins seen
together (task 1). The inner query selects pairs of dolphins seen together and
uses SPLIT BY to split into a set of rows the collection that is returned by the
adjacentV ertices() operator. The outer select produces counts for each possi-
ble sex combination, grouping the nodes based on the most probable sex code.
Researchers can use the resulting table to see that dolphins who are most prob-
ably males are seen together more often than any of the other combinations.
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Table 5. Sample query and its result: counts by sex of dolphins seen together.

MALE MALE 9930

MALE FEMALE 6184

FEMALE MALE 6184

FEMALE FEMALE 6092

SELECT sex, sexAdj, count(adj) AS cntFriends
FROM (

SELECT *
FROM

(
SELECT n, adjacentVertices(n) AS adj
FROM g1 TYPE node AS n

)
SPLIT BY adj
)
GROUP BY first(mpv(n.sex_code)) AS sex,

first(mpv(adj.sex_code)) AS sexAdj

The second task focuses on determining the union, intersection, difference,
and bi-directional difference between the ego-networks of a particular dolphin
during two different years. It introduces a time component. The results for a
particular dolphin are displayed in graph format in Fig. 8. It is easy to see that

Fig. 8. Clockwise from upper left: complete dolphin network, union, intersection, dif-
ference of ego-networks of dolphin ‘JOY’ between years 2010 & 2009.
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the dolphin has almost as many new associates as repeat associates, i.e. occurring
during both years. Researchers can then visually explore who these associates
are, what sex they are, etc., to gain more insight about dolphin sociality.

To validate the significance of our similarity operators, we evaluate one of
the more complex measures. We estimate the ego-network semantic similarity
between dolphin JOY and other dolphins in the same graph, in absence of
alignment, using the most probable value of the location attribute. By picking
dolphins with different characteristics, we can demonstrate the behavior and
validity of the chosen similarity measure. For example, we discovered that the
average ego-net similarity by location is twice as high for dolphins located in the
same primary area as JOY, e.g. RCB: 0.28 vs 0.14. This is the expected result,
since dolphins are likely to have associates mostly in their primary location.

To compare uncertain ego-nets, we randomly chose several dolphins from
different locations with high and low similarity relative to JOY’s. For every
dolphin under consideration, we ran a query to retrieve their most probable
location, their ego-network location similarity to that of JOY, and a breakdown
by location of the dolphin’s ego-network. The results are summarized in Table 6.
They are consistent across the two cases of same and different location. Both
LITTLE and WHELK differ from JOY in their most probable location; how-
ever, the ego-network’s location composition between LITTLE and JOY results
in a much higher similarity score. PUCK and JOYSFRIEND reside in the same
location as JOY, share many associates with her, and have a very similar dis-
tribution of associates by location. These commonalities lead to a particularly
high similarity score. MYRTLE, on the other hand, who only shares 88 out of
147 associates with JOY despite the same location, is average in similarity. For
WANDA, the most probable location is a tie between WB and RCB, which is
also reflected in having associates from mostly those locations. This difference
with JOY’s ego-network again corresponds to the lower similarity.

Overall, examining different cases confirms that the similarity measure pro-
vides a relevant single numeric value that correlates with the semantic compo-
sition of a pair of ego-networks based on the chosen attribute. Researchers can
use this simple result to identify and rank potentially similar ego-networks.

The query also shows operator re-use and composition from the user’s
perspective. By supplying context parameters, the user configures the general

Table 6. Ego-network similarity results.

JOY LITTLE WHELK PUCK JOYSFRIEND MYRTLE WANDA

RCB 211 125 1 171 172 92 56

EA 38 5 43 32 47 6 7

WB 28 48 7 8 45 33

HB 4 1 4

PN 5

sim with JOY 0.56 0.14 0.75 0.78 0.44 0.32

primary loc RCB WB EA RCB RCB RCB WB, RCB
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ego-net similarity operator. Specifying the mpv-based similarity measure and
attribute name causes the similarity operator to re-use the mpv() operator to
retrieve the most probable attribute value.

7.2 Queries to Support Node Labeling Algorithm Comparison

In the second scenario, we examine the output of two different node labeling
algorithms. For this analysis, we use the CiteSeer paper citation data set from
[28]. It consists of 3312 scientific publications classified into one of six topics. In
the citation network each publication is a node and each citation is an edge. We
use partially observed citation data to predict the probability distribution of the
topic attribute of each paper by applying two different classification algorithms.
The queries of interest deal with understanding the similarities and differences
between most probable node labels across the two classification algorithms and
include:

– Selecting the papers, whose topic certainty is significantly higher in one uncer-
tain graph when compared to the other.

– Selecting the papers, for which the predicted discrete probability distribution
differs the most between the two graphs, using different attribute similarity
measures, e.g. KL divergence, Minkowski-form distance, and histogram inter-
section.

– Counting the number of papers that are misclassified by both models.
– Selecting the papers, which are misclassified with high confidence by both

classifiers.

The example query below retrieves the count of papers misclassified by one
of the models with confidence over 0.75. The inner query joins nodes from the
predicted graph ica and the ground truth graph gt based on their id. The outer
query filters these tuples using nested operators to express the desired criteria
and selects the count of remaining tuples.

SELECT count(g1Node) as cntMisclassified
FROM (

SELECT g1Node
FROM ica TYPE node AS g1Node
JOIN
SELECT gtNode
FROM gt TYPE node AS gtNode
ON g1Node.id == gtNode.id

)
WHERE and(

greaterThan(maxValueCertainty(g1Node.label), 0.75),
isEmpty( setIntersect(mpv(g1Node.label), mpv(gtNode.label)) )

)

Some of the results we found using this data set are as follows: model 1
misclassified fewer documents (83) than model 2 (103); of the documents
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misclassified by both classifiers (65), both models misclassify them with the
same label; and 8 of the 10 largest ego networks were in the area of information
retrieval.

7.3 Queries to Support Analysis Related to Diffusion of Behaviors

The first two use cases demonstrated how our language can be used to answer a
wide range of questions about a dolphin social network in the presence of observa-
tional uncertainty and about a citation network with uncertainty introduced by
node labeling algorithms. In this final use case, we focus on queries that support
investigation of diffusion of behaviors. Observational scientists are interested in
understanding the diffusion of different foraging behaviors, exhibited by dolphins
in Shark Bay. To support this type of analysis, we consider useful queries related
to two particular foraging behaviors - sponging and snacking. Sponging refers
to a foraging behavior where dolphins find and wear marine sponges on their
beaks to help them flesh out hiding prey on the seafloor in deep channels. The
sponges help protect the dolphins from sharp rocks or shells when searching for
these buried fish [19,33]. Researchers in Shark Bay have learned that sponging
is transmitted vertically from mother to child. Snacking is a foraging behavior
in which a dolphin swims belly up and chases small fish, trapping them at the
water surface. Researchers in Shark Bay are uncertain about how this behavior
is transmitted. In this use case, we use operators to help identify any matrilineal
relationships between the foraging behaviors and the dolphins.

In our dataset, sponging and snacking behaviors are two different binary node
attributes. The certain attribute values are set to ‘true’ if a dolphin exhibits the
corresponding behavior. The dataset additionally includes 544 directed edges
designating a relationship between a mother and a child dolphin. Using the
directed graph operators described earlier, we develop simple hierarchical queries
and establish that the graph contains 192 matrilineal trees and 383 single nodes
that do not have any incoming or outgoing directed edges. The trees have max-
imum depth of 3 and maximum size of 20 nodes, with an average size of 3.8.

To either hypothesize about behavior diffusion or confirm a hypothesis,
researchers can use the proposed operators to study where the behavior occurs:
across parent-child relationships (or generations) throughout the matrilineal
tree, within the dolphin’s ego-network, or within the dolphin’s siblings.

Using our count operator and GROUP BY operation, we identify the fol-
lowing about the dolphins in our dataset:

– Out of 1119 dolphins in this dataset, only 44 dolphins use the sponging forag-
ing behavior while 110 use snacking. This represents less than 4 % and 10 %
of the dolphin population, respectively.

– Only 1 dolphin exhibits both sponging and snacking.
– The proportion of males and females exhibiting each behavior varies. Fewer

males sponge than females (9 males vs 33 females), but more snack than
females (59 males vs 43 females)1.

1 The numbers do not add up to the total count of sponging and snacking dolphins,
because the sex for some of these dolphins cannot be established with certainty.
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We now use the hierarchical operators to try to find support for matrilineal
behavior diffusion throughout the graph. Using a group-by query on mother-
child pairs, we see that all sponging child dolphins have a mother that sponges.
This supports the idea that the behavior may be transmitted vertically. We also
see that the reverse is not true: a sponging mother has children who do not
sponge. Both of these results are consistent with previous research findings by
Shark Bay researchers.

In contrast, children who exhibit the snacking behavior do not always have
mothers who exhibit the behavior (38 snacking moms vs 33 non-snacking moms).
The reverse is also similar. A snacking mother has a similar number of chil-
dren who use the snacking foraging tactic as do not (38 snacking vs 44 non-
snacking). In addition, non-snackers generally have non-snacking mothers by a
large margin - 429 vs 44. As determined in response to the following sample query
returning a breakdown by mother snacking, child sex code, and child snacking,
snacking is spread evenly across sex groups for every combination of mother-
child snacking behavior. Consequently, in this dataset, it appears that snacking
is not a foraging behavior that is always transmitted vertically.

SELECT motherSnack, childSexCode, childSnack, count(n) AS cnt

FROM (

SELECT *

FROM (

SELECT n, children(n) AS child

FROM gt TYPE node AS n

)

SPLIT BY child

)

GROUP BY n.snacking AS motherSnack, child.sex_code AS childSexCode,

child.snacking AS childSnack

As a final interesting note, there is only one mother who has children that
use both sponging and snacking. This is interesting because there is little overlap
between the subpopulations that exhibit each of these behaviors.

Queries dealing with behavior within siblings indicate that both sponging and
snacking are independent of the corresponding behavior of a dolphin’s siblings,
i.e. all spongers have between 0 and 6 siblings total and all snackers have between
0 and 7 siblings total, with any number of siblings among them exhibiting the
sponging or snacking behavior, respectively. The only consistent observation is
that for every sponging dolphin who has siblings, at least one of the siblings is
a non-sponger.

The following query demonstrates how counting sponging siblings and total
siblings of each dolphin is a straightforward task, facilitated by the countFeature
along with siblings operator.

SELECT
countFeature(siblings(n), "sponging") AS cntSponging,
size(siblings(n)) AS cntSiblings

FROM gt TYPE node AS n
WHERE equals(n.sponging, "true")
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We now analyze the family trees using the switchRatio operator. For spong-
ing, the positiveSwitchRatio = 0, reconfirming that all spongers have a sponging
mother. Many trees, including the three largest trees, have a switchRatio = 0,
i.e. completely homogeneous. All of the remaining trees except one have
switchRatio = negativeSwitchRatio ≥ 0.5. In other words, there are many
children who have sponging mothers yet do not sponge themselves.

When querying for snacking behavior, we discover that many trees have
a switchRatio = 0, because they do not contain any snackers. Within the
remaining trees of depth 1 or 2, the switchRatio varies from 0.14 to 1.0 depend-
ing on the total number of nodes. Considering that snackers are in minor-
ity, the lower number usually occurs when the root is a non-snacking dolphin,
and therefore, the positiveSwitchRatio > 0. A higher switchRatio, accom-
panied by a negativeSwitchRatio > 0, usually occurs when the root node is
a snacking dolphin. The more children the root dolphin has, the larger the
negativeSwitchRatio. For example, the trees rooted at KWI and QUO respec-
tively, have the following numbers (Table 7):

Table 7. Switch ratio for two example trees.

dolphin name swtichRatio positiveSwitchRatio negativeSwitchRatio

KWI 0.33 0.33 0

QUO 0.4 0 0.4

These trees have approximately the same number of nodes, structure, depth,
and same number of snackers (see Fig. 9). However, snackers are related in a
different way to other snackers. Hence the switchRatio’s are equal, but the
positive and negative ones are different.

Fig. 9. Trees rooted at nodes KWI and QUO respectively. Green-colored nodes repre-
sent snacking dolphins (Color figure online).

Due to the large size of ego-networks (on average, 94 associates for a sponging
dolphin and 164 associates for a snacking dolphin), it is not surprising that the
networks tend to include a mix of spongers, snackers, and those dolphins not
exhibiting either behavior. After querying the minimum, maximum, and average
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number of associates for each sponger and snacker, we find that both for sponging
and snacking dolphins the average ratio of spongers and snackers to the total
size of the ego-network (0.23 and 0.36, respectively) is significantly higher than
the graph average of approximately 0.04 and 0.1, respectively.

These simple queries on directed graphs and trees can help observational
scientists begin hypothesizing about the impact of the networks on the diffusion
of behaviors. This use case is also a testimony to the extensibility of the query
language design, as new operators were added specifically for the analytical task
of studying behavior diffusion without impacting existing operators.

These three example cases demonstrate how our language can be used to
enable scientists to formulate a wide range of ad-hoc queries that analyze and
compare uncertain graphs and hierarchies without the need for custom
programming.

8 Performance Evaluation

To illustrate the viability of our proposed query language, this section presents
a performance evaluation on synthetic graphs ranging from 100 s of nodes to 1
million nodes. Similar to many real world, non-synthetic networks, the graphs
we study are sparse in terms of number of edges. We begin by comparing our
uncertain graph query language to the relational query language. Then for some
interesting operators that do not translate easily into traditional SQL or pro-
cedural SQL, we present the runtime query performance for queries involving
those operators, again, highlighting the viability of the language.

We pause to mention that none of the operators or queries containing the
operators have been optimized. This un-optimized query evaluation is presented
to illustrate the following: (1) the reasonable scalability of the operators; (2) the
types of operators that are not suited for a standard relational query language;
(3) future directions that can be explored to improve the performance of the
query language while maintain its strength for extensibility.

8.1 Performance Comparison to Standard Relational
Query Language

Our query language was developed in the Java programming language. Because
the proposed language is similar to SQL, we compare the performance of our
query engine against an implementation based on a relational database. To that
end, we created a fully functional implementation of a subset of our operators in
PostgreSQL 9.3. The graphs and their elements are stored in tables shown in the
schema in Fig. 10. Operators are implemented through user-defined functions in
SQL and PL/pgSQL, using similar algorithms as in our Java operators.

For this evaluation, we execute equivalent queries on the same data sets in both
implementations. We generate three synthetic data sets of varying size: 10,000
nodes and 100,000 edges; 100,000 nodes and 1,000,000 edges; and 1,000,000 nodes
and 1,000,000 edges. Each of these graphs has a mix of randomly generated string,
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Fig. 10. PostgreSQL schema for performance evaluation

numeric, and categorical attributes associated with their vertices, two attributes
of each type. Categorical attributes have up to seven distinct attribute values.

All experiments were run on a MacBook Pro with 16 GB of RAM, 2.6 GHz
quad core Intel i7 processor, and 512 GB SSD drive. We average the execution
time of 5 runs, after discarding the first run. Removing the first run allows us
to ignore the variations due to query parsing, loading data into buffers, etc.

There are several major implementation differences that we want to point
out. Our Java query engine reads the entire graph(s) into in-memory graph data
structures, before executing the query. Because we want the ability to tie this
language to different data storages, we chose this approach. For this reason, we
do not implement indices. RDBMS that pre-index their primary keys will, by
default, have an advantage over our unindexed implementation. In other words,
if the RDBMS only needs a subset of the data, i.e. it does not need a full table
scan, it will access the data using an index and also take advantage of internal
cache buffering. To mitigate the I/O costs, our implementation can keep the
data in memory and re-use it for all subsequent queries, until space is needed
for retrieving a different graph.Therefore, we provide performance results both
including and excluding the time required for initial graph loading.

The second important consideration is the inherent disadvantage of storing
graphs in a relational database, which results in multiple joins for queries requir-
ing graph traversal. Our approach of abstracting graph structures from relational
tables and processing on them directly is expected to be more efficient, especially
for path and graph traversal algorithms. Therefore, when choosing our queries,
we begin with queries that do not require graph traversal beyond one hop. In
the last subsection, we consider a query that involves longer path traversal.

Query 1: The first query returns the set of all nodes, for which a particular
categorical attribute has a maximum value certainty above a threshold. The
results are summarized in Table 8. We see that PostgresSQL performs better,
by using primary key indices. In our case, we are reading the entire data set in
memory. On the other hand, if the graph is cached in memory, the subsequent
executions exhibit comparable performance with PostgreSQL.
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Table 8. Running times of filtering by maxValueCertainty query (msec).

Graph size (nodes + edges) Java - total time Java - query exec. only PostgreSQL time

10 000 + 100 000 977 259 95

100 000 + 1 000 000 13 375 670 1 438

1 000 000 + 1 000 000 47 810 13 716 11 061

Query 2: This query returns the difference between ego-networks of two partic-
ular vertices, selected by id. With slight modifications (i.e. difference instead of
intersection), this query is borrowed from one of our earlier use case examples,
where we were interested in finding common friends of two dolphins. The query
was chosen to compare performance for cases when the RDBMS optimizer can-
not take advantage of indices. The SQL execution plan employs a nested loop
instead. Table 9 shows that the running times of our Java implementation are
very close to the running times of the previous query and again, dominated by
the I/O cost. The suboptimal PostgreSQL execution is not only much slower
than the previous query, but is also worse than a full table scan based execution
in our engine.

Table 9. Running times of ego-network difference query (msec).

Graph size (nodes + edges) Java-total time Java-query exec. only PostgreSQL time

10 000 + 100 000 1 055 350 4 828

100 000 + 1 000 000 13 719 650 61 835

1 000 000 + 1 000 000 49 614 15 899 77 310

8.2 Operator Scalability Evaluation

Some of our operators are not easily implemented in PostgresSQL, for example,
operators involving attribute similarity. Therefore, in this subsection, we demon-
strate the scalability of our query language implementation for a more complex
query without a direct comparison with relational databases.

Query 3: Our third example returns the average semantic attribute similarity
between the ego-network of a particular vertex and the ego-networks of all other
vertices in the graph that satisfy a condition based on one of the uncertain
categorical attributes. The query includes where clauses, a join, and aggregation,
in addition to the relatively expensive similarity operator applied to a large
number of vertices. The actual query follows. For this query, n1 and n2 are
vertices in graph gt.
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{egosim_attr_name="cat0", egosim_align="false",
egosim_measure="MPVAttributeSimilarity"}

SELECT average(semanticSimilarity(n1, n2)) AS avgEgoSim
FROM (
SELECT n1
FROM gt TYPE node AS n1
WHERE n1.id = ?
JOIN
SELECT n2
FROM gt TYPE node AS n2
)
WHERE in("a", mpv(n2.cat0))

The results on the three synthetic data sets are shown in Table 10. For these
sample graphs, the execution time scales linearly with the number of nodes.

Table 10. Running times of ego-network similarity query (msec).

Graph size (nodes + edges) Java-total time Java-query execution only

10 000 + 100 000 1 348 640

100 000 + 1 000 000 17 097 5070

1 000 000 + 1 000 000 61 799 26 010

8.3 Path Traversal Query Evaluation

We now consider a query related to the new switch operator. This query involves
path traversals since we are considering hierarchies in the graph. As mentioned
earlier, queries with underlying path traversals are generally slow in a relational
database since multiple joins are required over the RDBMS schema.

Query 4: This query simply calculates the switchCount of a single tree. To
abstract the processing time from disk I/O, we experiment with the same graph
containing 10 000 vertices and 100 000 edges, and instead choose trees of varying
sizes. Also, in this data set, trees represent the subgraph of a directed acyclic
graph, rooted at a designated vertex. Consequently, there may be multiple paths
through some of the vertices and hence, we measure the tree size in edges
rather than nodes. As expected, Table 11 shows that our implementation scales
very well to path queries, while the relational implementation struggles with
larger trees.

8.4 Discussion

The experiments confirm that the performance bottleneck in our engine is the
I/O cost of loading the entire graph in memory. Profiling showed that reading
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Table 11. Running times of switch count query (msec).

Tree size as number of edges Java-total time Java-query exec. only PostgreSQL time

17 980 260 461

1 036 1 017 282 27 585

9 103 1 055 339 241 492

and handling attributes has a major performance impact, which at this stage we
mitigated by loading a graph in parallel using several threads. Depending on the
number of attributes, we realized performance gains ranging from insignificant to
up to 3–3.5 times compared to single-threaded loading. A further improvement
would be loading attributes lazily on demand, only if they are used in a query.
It should be noted that the RDBMS implementation is also directly affected by
the number of attributes, because the cardinality of attribute tables equals the
number of attributes × the number of vertices and edges, respectively. A more
sweeping optimization and one of our planned future directions involves retriev-
ing only the required data, either introducing indices or completely integrating
with an external graph database.

Even without such optimizations, the current implementation is suitable for
practical application with graphs on a scale of a million vertices and edges.
Running several additional queries adapted from our use cases confirmed that
the query engine scales well to the relatively larger synthetic graphs, using
commodity hardware. The observed memory and execution time at different
graph sizes gives confidence that through vertical scalability, the engine should be
capable of processing larger graphs using a multi-core/high memory infrastruc-
ture such as Amazon Cloud Services.

Despite not being built with performance as a priority, for some queries our
implementation provides comparable performance to an RDBMS-based imple-
mentation that takes advantage of a number of optimizations already built into
the database. For other queries, such as the ones including operators that require
graph traversal, our engine outperforms the relational-based storage. In fact, the
performance of our implementation seems comparatively more stable and pre-
dictable across different queries we tested, while our query language still benefits
from the same SQL semantics. In addition, our engine performance improves dra-
matically when ignoring I/O costs, i.e. if usage patterns permit running different
queries on the same graphs that are already loaded into memory.

Finally, while implementations of some operators in traditional SQL are con-
cise and efficient, we found that other operators and queries are non-trivial, fully
benefiting from the additional semantics of our proposed language. For example,
using graphs as first-class citizens allows for convenient representation of entities
such as ego-networks and other subgraphs. For some operators, such as semantic
similarity, we did not see an efficient and straightforward implementation option
using only SQL and PL/ pgSQL.
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9 Conclusions and Future Directions

Graphs have become a ubiquitous data model with application in multiple
domains. For many applications, it is important to account for uncertainty, either
inherent or introduced during data analysis by extending the traditional graph
model. We address the need to analyze and compare graphs and subgraphs by
considering the graph structure, the graph semantics, embedded hierarchical
structures, all in the context of uncertainty. In this paper, we proposed a SQL-
type language with a set of composable comparative operators for uncertain
graphs and their elements. Our language takes advantage of developers’ knowl-
edge of SQL by incorporating the generic logic of existing SQL and extending it
to consider graphs and uncertainty. We developed a query engine implementa-
tion using an extensible, modular system framework that combines layered and
service-oriented architecture. The novelty of this approach lies in the focus on
breadth of operator creation and composition, as opposed to an in-depth focus
on the optimization of a single operator. We then presented case studies that
demonstrated the utility of the proposed language and operators for analyzing
different aspects of real-world uncertain graph datasets. Finally, we presented a
simple performance evaluation and comparison to a relational database imple-
mentation that confirms the viability of our approach for relatively large graphs.

There are several future directions to consider. First, because our focus was
on operation creation and composition, we have not developed a query opti-
mizer. We need to investigate generic and specific query optimization for our
operators. If we focus on optimizing base operators that are used in the compo-
sition of a number of different operators, then many different types of queries will
benefit from the optimizations. Adding indexing is also important. In general,
our initial prototype implementation can benefit in terms of performance from
a more flexible subgraph retrieval, indexing, and optimizations on certain sim-
ilarity measures. Finally, there are other operators that could be beneficial for
uncertain graph comparison including additional path and routing operators,
graph mining algorithms, e.g. community detection, and notions of uncertain
time-varying graphs.
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Abstract. We propose algorithms for the detection of disjoint and over-
lapping communities in networks. The algorithms exploit both the degree
and clustering coefficient of vertices as these metrics characterize dense
connections, which we hypothesize as being indicative of communities.
Each vertex independently seeks the community to which it belongs, by
visiting its neighboring vertices and choosing its peers on the basis of
their degrees and clustering coefficients. The algorithms are intrinsically
data parallel. We devise a version for Graphics Processing Unit (GPU).
We empirically evaluate the performance of our methods. We measure
and compare their efficiency and effectiveness to several state-of-the-art
community detection algorithms. Effectiveness is quantified by metrics,
namely, modularity, conductance, internal density, cut ratio, weighted
community clustering and normalized mutual information. Additionally,
average community size and community size distribution are measured.
Efficiency is measured by the running time. We show that our methods
are both effective and efficient. Meanwhile, the opportunity to parallelize
our algorithm yields an efficient solution to the community detection
problem.

1 Introduction

A community forms when a group of vertices in a network is more interconnected
than its vertices are connected to other vertices in the network. The knowledge
of such groups or communities helps find efficient ways to distribute and gather
information in online social networks for example. Community detection is a use-
ful tool in various fields such as sociology, biology and marketing. In this paper,
we propose efficient yet effective algorithms for the detection of communities in
networks.

We model a network as a simple graph G(V,E), where V is a set of vertices
and E is a set of edges. G is undirected, un-weighted, and has no self-loop. The
idea of our method is, for each vertex, to seek the community to which it belongs
by visiting its neighbor vertices. Decisions are made based on the degrees, clus-
tering coefficients of the neighbors and the number of common neighbors. Degree
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and clustering coefficient are two importance properties of graph topology. Clus-
tering coefficient measures the cliquishness of neighborhood and thus indicates
clustering in the graph locally [21,41].

Our method starts from a micro perspective, which is different from that of
previous works such as GN [15,31]. Considering the size of networks in mod-
ern applications, we try to design a scalable method in order to deal with the
large networks within a reasonable time. Therefore, we try to minimize the num-
ber of pair-wise computations among vertices. Instead of comparing all pairs of
vertices in a graph, we only explore each vertex’s immediate neighborhood.
Indeed, vertices in the same community are more likely to be neighbors [16].
This significantly reduces the complexity except in the case of dense graphs. In
our method, as vertices can independently explore their neighborhood and join a
community by following an immediate neighbor, the algorithms are intrinsically
data parallel. We devise a parallel algorithm for disjoint community detection
and implement it on a Graphics Processing Unit (GPU). In the case of overlap-
ping community detection, a vertex is allowed to belong to several communities
if strong connections exist between the vertex and any of those communities.

We empirically evaluate the performance of our algorithm with both real
world networks and synthetic networks. We evaluate the quality of communities
using metrics from different classes [45], as well as one metric recently proposed
in [34]. The metrics include modularity, conductance, internal density, cut ratio,
weighted community clustering, and Normalized Mutual Information [23]. The
metrics indicate the community quality from different perspectives. We measure
the efficiency by running time. We compare our algorithms with several state-
of-the-art algorithms.

This paper is an extension of our prior work [38]. We include an improved
algorithm and new experimental results. Particularly, the major extensions are
listed as follows.

1. We extend the method [38] to overlapping community detection. It is possible
that each vertex belongs to more than one community. The algorithm is
proposed in Sect. 3.2.

2. We compare the new algorithm with two state-of-the-art algorithms, a game
theory based algorithm and a label propagation based algorithm. The effec-
tiveness and efficiency of the new algorithm are evaluated. We evaluate the
quality of communities from various perspectives, including the adaption of
the measurements for disjoint communities to the case of overlapping commu-
nities. We also design new synthetic data sets with overlapping communities
for these experiments. The description for the new synthetic data sets and
metrics for experiment are added in Sects. 4.1 and 4.2. The new experimental
results for overlapping community detection are shown in Sect. 4.4.

The rest of the paper is organized as follows. Section 2 briefly reviews the
related works on community detection methods. Section 3 presents the algo-
rithms we propose. Section 4 shows the experiment setting, experiment results
and results analysis. Finally we conclude in Sect. 5. In this paper, we use the
term “community” and “cluster” exchangeably.
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2 Related Work

Community detection methods can be categorized into several classes.
Several authors [20,22,33,40,47] use random walks. For example, Pons and

Latapy [33] use random walk to calculate the similarities, which they call dis-
tance between each pair of adjacent vertices, and then use Ward’s agglomerative
hierarchical clustering approach to find communities. Jin et al. [22] propose an
algorithm based on Markov random walk to unfold the communities, and extract
them with a cutoff criterion in terms of conductance. Dongen [40] uses Markov
Clustering, which simulates the random walks.

Several authors [6,18,19,31,32] focus on modularity which is first proposed
by Girvan and Newman [15]. Modularity is defined as the number of edges inside
groups minus the expected number in an equivalent graph with edges placed at
random. An equivalent graph means that the graph has the same number of
edges and the same degree distribution. Clauset [6] defines a local measure-
ment of community structure called local modularity and proposes an agglomer-
ative algorithm to maximize the local modularity of the communities detected.
Girvan and Newman [31] propose a divisive method to identify community. The
edges with highest betweenness are removed iteratively, thus disconnecting the
graph and creating communities. The best partition has the highest modularity.
Gregory [18] extends Girvan and Newmans’ algorithm [15,31] by defining split-
ting betweenness and allows a vertex to split into multiple copies and to be found
in different communities, and thus forms overlapping communities.

Some authors, e.g., in [11,14], use cliques, subgraphs with certain number of
vertices and edges between every two vertices. For example, Du et al. [11] use
maximal cliques for community detection. The algorithm proposed enumerates
all the maximal cliques for finding clustering kernel, assigns the rest vertices to
closest kernels, and merges fractional communities. Palla et al. [14] design the
clique percolation method which finds all cliques of size k. Communities detected
consist of overlapping sets of fully connected subgraphs, union of k-cliques.

The authors of [1,7,36] detect community in an agglomerative way. Ahn
et al. [1] define clusters as sets of edges. Their method groups edges with an agglom-
erative hierarchical clustering technique. Clauset et al. [7] propose a greedy hierar-
chical agglomerative algorithm. It starts from each vertex being a community and
then joins two communities at each iteration. The two communities are selected
based on the idea of maximizing modularity increment. They use dendrogram to
represent the whole process.

Some methods, such as those presented in [2,3,17,23,25], detect community
in a local manner. For example, Baumes et al. [2,3] propose two heuristics to
detect locally dense subgraphs as communities. Two subgraphs with significant
overlap can be locally optimal and thus are overlapping communities. The first
heuristic finds disjoined clusters by deleting high-ranking vertices and then adds
the deleted vertices to one or more clusters. The second heuristic starts from
randomly chosen seeds and then adds or deletes one vertex at a time until the
density metric cannot be further improved. Goldberg et al. [17] propose an addi-
tional requirement based on the work in [2,3], which requires the community
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to be a connected sub-graph, so that the algorithm is able to examine the con-
nectivity of the cluster found. Lancichinetti et al. [23] utilize local expansion
and optimization to find communities. Communities are expanded from random
seeds until the finiteness function defined reaches locally maximal. This method
depends significantly on the design of the fitness function and corresponding
parameters. Lancichinetti et al. [25] propose to detect overlapping communities
by examining the significance of a cluster with regard to a global null model
during the process of community expansion.

Label propagation algorithm for disjoint community detection is extended to
overlapping community detection [8,43] by allowing each vertex to have multiple
labels instead of only one label. Jierui and Boleslaw [43] propose speaker-listener
label propagation algorithm for overlapping community detection. The labels
are spread between vertices according to defined pairwise interact rules. After
iterations, the probability of having a label for a vertex indicates the membership
strength. Michele et al. [8] propose a democratic approach that lets each vertex
vote for the communities surrounding it by using label propagation algorithm.
Local communities are then merged to global ones.

Besides, Zhang et al. [48] propose a method that combines spectral mapping,
fuzzy clustering and the optimization of a quality function. Yan and Gregory
[44] propose an optimization for existing community detection algorithms. Pair-
wise vertex similarities are measured beforehand, and existing algorithms are
applied on the graph with the vertex similarities as edge weights. Rosvall and
Bergstrom [35] use an information theoretic approach to detect community in
weighted and directed network. Nepusz et al. [30] model overlapping community
detection as a nonlinear constrained optimization problem that can be solved
by simulated annealing methods. Chen et al. [5] propose a game theory based
framework. Each vertex is viewed as an agent and is allowed to join and leave
communities based on calculated gain and loss, until an equilibrium is reached.
Some authors [4,46,49] propose model-based methods which use nonnegative
matrix factorization.

Discussion. Our algorithms detect communities locally, but different from the
algorithms in the same category, our algorithms is more straightforward. The
algorithms discover communities directly based on the intrinsic properties of
the graph, i.e. vertex degree, rather than the designed fitness functions.

3 Algorithm

We propose an algorithm that delegates the job of finding communities to indi-
vidual vertices. Each vertex seeks its community independently. The decisions
of which community to join are made based on the degrees and clustering coeffi-
cients of neighbors, as well as the number of common immediate neighbors. We
hypothesize that vertices tend to join groups with more connections. In other
words, the vertices try to attach themselves to dense structures, i.e. structures
with more connections among vertices in this structure.



Fast Disjoint and Overlapping Community Detection 157

3.1 Fast Disjoint Community Detection

The algorithm starts by calculating the degrees and local clustering coefficient
for each vertex (line 1). The local clustering coefficient is defined as

cc[i] =
ejk : j, k ∈ V, ejk ∈ E

degree[i] ∗ (degree[i] − 1)

It is the ratio between the number of edges between vertices within its neigh-
borhood and the number of edges that could possibly exist between them. It
quantifies how closely the vertex connects with its neighbors.

Algorithm 1. Fast Community Detection
Input: graph G(V, E) with |V | vertices, |E| edges;
Result: Clusters Ci, i ∈ (1, 2, ..., k′)

1 Compute degree[v] and cc[v], v ∈ V ;
2 for each v do
3 if degree[v]<degree[vj ] then /* vj ∈vneighbor */

4 g[v] ← vi, where degree[vi] = max(degree[vj ]) ;
5 else
6 g[v] = v;

7 for each v do
8 if g[v] = v and degree[v] = degree[vi] then
9 if v and vi has more than half common vertices;

10 then
11 g[v] ← vi, if vi has smaller id;

12 else
13 vg ← g[v];
14 c1 ← number of common neighbors between v and j;
15 c2 ← number of common neighbors between v and (vneighbor \ vg);
16 if c1 < c2 then
17 g[v] ← vi, where degree[vi] = max(degree[vj ]), vj ∈(vneighbor \ vg)

18 for each v do
19 if g[v] �= v then
20 i ← g[v];
21 repeat
22 i ← g[i];
23 until g[i] = i find standalone vertex;
24 g[v] ← i;

25 k ← different numbers in g[v];
26 for i from 1 to k do
27 for v ∈ Ci do
28 find the cluster Cj where v has the maximum number of immediate

neighbors;
29 if i �= j then
30 Cluster v into Cj ;

31 Return Ci,i ∈ (1, 2, ..., k′);
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Next, each vertex looks around its immediate neighbors. If the degree of
the vertex, for example vertex v, is the largest among its immediate neighbors,
vertex v stands alone and does not follow other vertices. If the degree of vertex
v is not the largest among its immediate neighbors and itself, vertex v follows
the neighbor with the largest degree among v’s immediate neighbors (line 2–6).
If more than one vertex among the immediate neighbors have the largest degree,
then vertex v follows the one with the largest clustering coefficient, compared to
other neighbors.

In the second round, each vertex adjusts their decisions (line 7–17). If the
standing-alone vertex v has neighbors with the same degree, check the number
of common neighbors of vertex v and v′s neighbor that has the same degree. If
there are enough common neighbors, these two vertices are suggested to be in
the same community. If vertex v does not stand alone but follows some neighbor,
we check the number of common neighbors vertex v has with the vertex that it
follows, and the number of common neighbors it has with the other neighbors.
If vertex v has more common neighbors with its other neighbors than the one it
follows, then vertex v turns to the vertex with the second largest degree in the
neighborhood or stands alone if it itself has the second largest degree.

In the third round, each vertex finalizes the community which it desires to join
(line 18–24). If the vertex that vertex v follows is also following vertex vi, then
vertex v also turns to vertex vi. In the end, each vertex follows a vertex that stands
alone. With all the other vertices that follow this vertex, they form a community.

After each vertex chooses its community (line 25), we post-process the mem-
berships to refine the communities (line 26–30). If any vertex has more connections
outside the community than inside the community, it changes itsmembership.This
refinement process may change the number of communities from the last step.

The only input of the algorithm is the graph itself. No pre-defined number
of communities is needed. In the experiments, the graph is given as an edge list.
The output is the communities.

Fig. 1. Example

Figure 1 shows a graph with 8 vertices and 14 edges. After the first round,
vertex 2, 3, 4, 5, 6 all follow vertex 1 (g[1] = 1, g[2] = 1, g[3] = 1, g[4] = 1, g[5] = 1,
g[6] = 1), while vertex 7 and 8 follow vertex 6 (g[7] = 6, g[8] = 6). In the second
round for each vertex, the status of vertex 1 is unchanged. The status of vertex
2, 3, 4, 5 is also unchanged, because they have more common neighbors with ver-
tex 1, that they follow than with other vertices ({vertex 2, 3, 4, 5}\themselves),
vertex 7 and 8 still follow 6, while vertex 6 changes to stand alone instead of
following vertex 1 because vertex 6 has more common neighbors with 7 and 8
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than with vertex 1. No more changes happen in the third round and the refine-
ment, and thus the final result is that we find two communities: one community
is labeled by vertex 1, and has vertex 1, 2, 3, 4, 5; the other community is labeled
by vertex 6, and has vertex 6, 7, 8.

We also devise a parallel version. Both the first and second rounds are paral-
lelized. In the first round the vertices look for the vertex with the largest degree
in the neighborhood at the same time. In the second round, each vertex makes
a decision concurrently. The rest of the algorithm is sequential.

3.2 Fast Overlapping Community Detection

For the case of overlapping communities, we extend FCD with modifications in
the second round and post-processing, with an additional input parameter θ.

In the second round, each vertex adjusts its decision (line 7–16). If the ver-
tex v does not stand alone but follows some neighbor, and vertex v has more
common neighbors with its other neighbors than the one that it follows, then
vertex v turns to stand alone so that vertex v leaves the opportunity of finding
its communities to the post-processing part. This aims to cluster controversial
vertices after other vertices choose their communities, and therefore there are
clear local pictures for the controversial vertices to make decisions.

When post-processing the memberships to refine the communities (line 25–29),
the number of connections of each vertex v with each cluster is counted. Nv

i is the
number of immediate neighbors that v has in Ci, representing the number of con-
nections. For any vertex v, Nv

max equals max(Nv
i ) where 1 ≤ i ≤ k (line 27). It is

the maximum number of immediate neighbors of vertex v that it has with some
cluster. Each vertex is grouped into the cluster with the most connections, and the
clusters that have significant number of connections compared with the maximum
number, satisfying the criteria of Nv

max − Nv
i ≥ θ. The parameter θ, overlapping

factor, determines the degree of overlapping. If θ equals 0, vertex v is grouped to
the clusters that have Nv

max connection with v. If θ equals 1, vertex v is grouped
to the clusters that have Nv

max or Nv
max − 1 connections with v. The larger θ is,

the more clusters one vertex may be clustered into, and thus the more overlapping
vertices there are. A vertex changes its membership if the community to which it
currently belongs does not have enough connections with it. Note that overlaps
may still exist if θ equals 0.

3.3 Complexity Analysis

The time complexity for calculating the clustering coefficient is O(n·d2), where n
is the number of vertices and d is the average degree of vertices in the graph. The
complexity for the first round is O(n · d). The complexity for the second round
is O(n·d2). The complexity for the third round is O(n2) in the worst case which is
very unlikely to happen. The usual complexity for this part is O(α ·n) where α is
generally smaller than the graph diameter and presents a value less than 2 in our
experiments. The complexity for the refinement is O(n · d2). Therefore, the time
complexity for the whole algorithm is O((d2 + α) · n) in the worst case. For the
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parallel version, the complexity for the first round is O(d). The complexity for
the second round is O(d2). The rest is the same as that of the sequential version.
Thus the time complexity for the whole parallel algorithm is O(d2 +α ·n) in the
worst case.

Algorithm 2. Fast Overlapping Community Detection
Input: graph G(V, E), parameter θ;
Result: Clusters Ci, i ∈ (1, 2, ..., k′)

1 Compute degree[v] and cc[v], v ∈ V ;
2 for each v do
3 if degree[v]<degree[vj ] then /* vj ∈vneighbor */

4 g[v] ← vi, where degree[vi] = max(degree[vj ]) ;
5 else
6 g[v] ← v;

7 for each v do
8 if g[v] = v and degree[v] = degree[vi] then
9 if v and vi has more than half common vertices;

10 then
11 g[v]← vi, if vi has smaller id;

12 else
13 vg ← g[v];
14 c1 ← number of common neighbors between v and j;
15 c2 ← number of common neighbors between v and (vneighbor \ vg);
16 if c1 < c2 then g[v] ← v;

17 for each v do
18 if g[v] �= v then
19 i ← g[v];
20 repeat
21 i ← g[i] ;
22 until g[i]= i find standalone vertex;
23 g[v] ← i;

24 k ← different numbers in g[v];
25 repeat
26 for each v do
27 find clusters {Ci|Nv

max − Nv
i ≥ θ, 1 ≤ i ≤ k};

28 if v /∈ Ci then Cluster v into Ci

29 until reach equilibrium;
30 Return Ci,i ∈ (1, 2, ..., k′);

The two algorithms can be applied to the networks according to the prelim-
inary knowledge of communities, e.g. whether they are disjoint or overlapped.

4 Experiment

We conduct experiments on both synthetic and real world graphs, including three
benchmarks for community detection. We ran the sequential algorithms on an
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2.83 GHz Inter Core, 2 Quad CPU machine with 2 GB of main memory under
Windows 8 OS. The parallel algorithm ran on the same machine with a GeForce
GTX 560 Ti graphics card having 2048 MB of global memory, 8 multiprocessor
and 48 CUDA cores per multiprocessor. The algorithms are implemented in
Visual C++ 10.0. The parallel algorithm is implemented using the application
programming interface CUDA for the C language. CUDA [9], the C language
Compute Unified Device Architecture, is provided by NVIDIA and works on
NVIDIA graphic cards. The CUDA programming model consists of a sequential
host code combined with a parallel kernel code.

We compare our algorithm for disjoint community detection with three state-
of-the-art algorithms: InfoMap [35], WalkTrap [33] and Girvan and Newman
(GN ) [15,31]. InfoMap is based on information theory. Walktrap is based on
random walk. InfoMap has been empirically shown to have better performance
compared to other algorithms, for community detection [13]. We compare our
algorithm for overlapping community detection with two algorithms: game theory
algorithm and speaker-listener label propagation algorithm (SLPA) [43], which
show good performance [42,43]. In the experiment, we directly use the original
C++ code of the game-theory algorithm provided by author of [5] and Java
executable file of SLPA provided by author of [43].

4.1 Data Sets

We generate a batch of benchmark graphs [24] with known community struc-
ture, number of vertices, the average degree, maximum degree, minimum and
maximum size of micro and macro community due to the hierarchical structure,
and fraction of edges between vertices belonging to the same or different com-
munities (see Table 2). The first set of graphs are generated with 2,000 vertices
and different average degrees while the other parameters remain the same. They
have no overlapping communities. For overlapping communities, we generate two
sets of graphs. The first set of graphs has 10,000 vertices and different average
degrees, while the other parameters are the same. Every five graphs have a sim-
ilar average degree. We run the algorithm on all the graphs and we take and
compare the average values. The second set of graphs generated have a varying
number of vertices from 10,000 to 50,000, and for every number of vertices, five
graphs are generated.

The real-world benchmark graphs used are listed as follows. Among them,
Zachary’s Karate Club data, American College Football data and Dolphin network
are widely used for evaluating community detection algorithms.

Karate Club data is a social network of karate club members studied by
the sociologist Wayne Zachary. The network has 34 members (vertices) and they
are separated into two different groups due to a controversy between one of the
instructors and administrator of the club.

American College Football data is a network with 115 teams (vertices)
which are separated into 12 conferences. An edge exists between two vertices if
there is a match between two teams. More games happen among teams within
the same conference than teams from different conferences.
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Dolphin Network is collected by David Lusseaua [28]. The network repre-
sents frequent associations between 62 dolphins (vertices) in a community living
off Doubtful Sound, New Zealand.

Email-URV data is collected by Guimer et al. [10]. The network contains
user-to-user (address- to-address) links from the network of e-mail interchanges
among faculty and graduate students at Rovira i Virgili University of Tarragona,
Spain. It’s available on Alex Arenas website [12].

Arxiv HEP-PH collected by Leskovec et al. [27], is a collaboration network
containing scientific collaborations between authors who submitted papers to
High Energy Physics. It is available on the SNAP website [37].

Wiki-Vote , collected by Leskove et al. [26], contains user-to-user (who-vote-
whom) links from the Wikipedia network. It is available on the SNAP web-
site [37]. Each vertex represents a user. An edge is created from a user to a
candidate if a user votes for Wikipedia admin candidates.

Email-Enron data set contains user-to-user (address-to-address) links. It
was made public by the Federal Energy Regulatory Commission during its inves-
tigations. We obtained it from [37]. Each vertex represents an email address. An
edge exists between vertex i and vertex j if address i sends at least one email
message to address j.

Epinions data set contains user-to-user (who-trust-whom) links from Epin-
ions network. It was collected by Epinions staff P. Massa. We obtained it from
trustlet website [29,39]. Each vertex represents a user. An edge corresponds to
a trust or distrust statement from one user to another user.

We extract the largest component of the networks that have more than one
component. The number of vertices and the number of edges of each data set
are listed in Table 1

4.2 Metrics

We use five metrics to qualify the disjoint communities: modularity, conductance,
internal density, cut ratio and weighted community clustering. Modularity, con-
ductance, internal density and cut ratio are selected from four classes of metrics
for community [45] so that we can eliminate the bias of having only one kind of
metric. Weighted community clustering is a recently proposed metric [34].

The Modularity [31] is defined as

modularity =
1

2m
Σi,j∈V (Aij − kikj

2m
)δ(ci, cj)

where Aij = 1 if i and j are connected, otherwise Aij = 0, and δ(ci, cj) = 1
if i and j belong to the same cluster, otherwise δ(ci, cj) = 0.

The Conductance for a set of vertices S is defined as

conductance(S) =
cs

2ms + cs

where cs = |(u, v) ∈ E : u ∈ S, v /∈ S|. It is the number of edges with one end in
the set and the other end outside the set. ms = |(u, v) ∈ E : u ∈ S, v ∈ S|. It is
the number of edges in S.
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Table 1. Main parameters for generating the benchmark graphs

Maximum degree 60

Minimum for the micro community sizes 10

Maximum for the micro community sizes 100

Number of overlapping vertices 100

Number of memberships of the overlapping vertices 3

Minimum for the macro community size 100

Maximum for the macro community size 200

The fraction of edges between vertices belonging to different
macro-communities

0.1

The fraction of edges between vertices belonging to the same macro but not
micro community

0.3

The Internal Density for a set of vertices S is defined as

InternalDensity(S) =
ms

ns(ns − 1)/2

where ms is the same as above. ns is the number of vertices in S. Internal Density
is the internal edge density of S.

Table 2. Description of data sets

Number of vertices Number of edges

Karate Club 34 78

Dolphin 62 159

American College Football 115 610

Email-URV 1,133 5,451

Wiki-Vote 7,066 100,736

Arxiv HEP-PH 11,204 117,649

Email-Enron 33,696 180,811

Epinions 119,130 704,276

The Cut Ratio for a set of vertices S is defined as

CutRatio(S) =
cs

ns(n − ns)

Cut Ratio is the fraction of existing edges out of all possible edges having one
end outside the cluster.

The Weighted Community Clustering for a community is defined as

WCC(S) =
1

|S|
∑

x∈S

f(x, S)
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where f(x, S) = t(x,S)
t(x,V ) ∗ vt(x,V )

|S\x|+vt(x,V \s) if t(x, V ) �= 0; f(x, S) = 0 if t(x, V ) = 0.
t(x, S) is the number of triangles that vertex x closes with vertices in S and
vt(x, S) is the number of vertices of S that form at least one triangle with x.

High modularity suggests dense connections between the vertices within
communities but sparse connections between vertices in different communities,
while modularity value of zero suggests the connections within communities are
no better than those in random graphs which have no community structures.
Conductance, internal density and cut ratio measure the quality of communities
in term of the internal and external connectivity. WCC measures the community
quality based on the close triangles. High WCC suggests higher probability of
closed triangles among the vertices within communities than between communi-
ties. In our experiments, we take the average of the conductances of communities
found for the conductance of the whole network, and it is the same for the other
metrics except modularity.

Additionally, we use a widely adopted metric called normalized mutual infor-
mation (NMI ) [23] to measure the quality of detected disjoint or overlapping
communities and a revised modularity to measure the quality of overlapping
communities. The revised modularity for overlapping community is defined as:

QE
ov =

1
2m

ΣcΣi,j∈c[Aij − kikj
2m

]
1

OiOj

where Oi is the number of communities to which vertex i belongs, and Oj is the
number of communities to which vertex j belongs.

Normalized Mutual Information (NMI ) of two sets of communities {C1}
and {C2} is defined as:

NMI(X|Y ) = 1 − [H(X|Y ) + H(Y |X)]/2,

where H(X)(H(Y )) is the entropy of the random variable X(Y ) associated to
the set of community {C1}({C2}), and H(X|Y ) is the conditional entropy of X
with respect to Y . For a set of overlapping communities {C1}, the membership
of a vertex v is viewed as a binary array of vC elements. vC is the number of the
communities, to which vertex v belongs. The kth element of the array is regarded
as the realization of a random variable (X)k. The detailed calculation procedure
is described in [23]. NMI indicates the similarity between two sets communities.
It yields values between 0 and 1. Value 1 corresponds to a perfect match. We
compute the NMI value of the set of communities detected and the known set
of communities of the graphs that we generate.

4.3 Experimental Assessment for Disjoint Community Detection

Figure 2 shows the communities found in the Karate Club network by each algo-
rithm. Figure 3 shows the communities found in the Dolphin new network by
each algorithm. Vertices of the same color are in the same community.



Fast Disjoint and Overlapping Community Detection 165

(a) FCD (b) InfoMap (c) WalkTrap (d) GN

Fig. 2. Communities for Karate Club data by different algorithms

(a) FCD (b) InfoMap (c) WalkTrap (d) GN

Fig. 3. Communities for Dolphin data by different algorithms

Figure 4 shows the measurement results on the four real data sets. The x-axis
is labelled by the names of data sets. The y-axis is the value of metric. For each
data set, the metric values for the communities detected by each algorithm are
compared. Figure 4(a) shows that the communities that FCD and ParallelFCD
found have a lower modularity on these four data sets. However, this does not
indicate that our algorithm is not better than the other three algorithms. Figure 2
shows that our algorithm identifies two communities, that coincides with the
truth that the members of the Karate Club separated into two different groups
due to a controversy, and thus the result of our algorithm is actually more
reasonable than the other three algorithms even though the modularity values
are lower. Figure 4(b) shows the conductance results. The lower the conductance,
the better the communities found. In this case, our algorithm has the lowest
conductance on two data sets and highest conductance on the other two data sets.
Figure 4(c) shows the internal density results. The higher the internal density,
the better the communities found. In this case, our algorithm has highest internal
density in three of the four data sets, and the lowest in one data set. Figure 4(d)
shows the cut ratio results. The lower the cut ratio, the better the communities
found. In this case, our algorithm has the lowest cut ratio in one of the four data
sets, and the highest in the other three data sets. Figure 4(e) shows the weighted
community clustering results. The higher the WCC, the better the communities
found [34]. In this case our algorithm has a lower WCC in three of the four data
sets. Figure 4(f) shows the running time. For the four data sets, FCD performs
the fastest among the algorithms. ParallelFCD performs faster than InfoMap,
WalkTrap and GN on the Email-URV data. Comparing the performances of the
same algorithm on the four data sets, we can see big differences which are due to
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Fig. 4. Measurements on real world graphs

the different graph structures, e.g. different number of vertices, number of edges,
different densities.

To sum up the results on these four real data sets, our algorithm, FCD and its
parallel version, finds communities with better values in terms of internal density
and conductance, but not with the other metrics. However, as we can see from
the results for Karate Club, the communities detected by our algorithm stay
more truthful than those of the other algorithms. In this sense, our algorithm is
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effective. From the comparison of running time, FCD is obviously more efficient
than the others.

Figure 5 shows the results on the first set of benchmark graphs. It shows that
the metric value changes as the graphs increase in average degree. The x-axis
is the average degree of the graphs. The y-axis is the value of metrics. Each
dot represents one metric value for the communities detected by one algorithm.
Figure 5(a) shows the modularity results. It shows that WalkTrap has the highest
modularity in general, although in some cases, GN and FCD have the highest
modularity, and FCD has a higher modularity than InfoMap. Figure 5(b) shows
the conductance results. It shows that InfoMap has the highest conductance
and GN has the lowest. Figure 5(c) shows the internal density results. It shows
that InfoMap has the highest internal density, and GN has the lowest density.
Figure 5(d) shows the cut ratio results. It shows that InfoMap has the highest
cut ratio, and GN has the lowest. Figure 5(e) shows the WCC results. It shows
that FCD and WalkTrap have a higher WCC, and InfoMap and GN have a
lower WCC. As FCD and ParallelFCD detect the same communities, the green
line and the red line overlap in Fig. 5(a)–(e). Figure 5(f) shows the running time.
FCD and ParallelFCD are shown to be faster in most cases. GN is much slower
than InfoMap, WalkTrap and FCD. ParallelFCD is not obviously faster than
FCD, due to the data communication between the host CPU and device GPU.
Figure 5(g) shows the measurement of NMI. It shows that InfoMap and Walk-
Trap display higher NMI values. Figure 5(h) shows the average and deviation of
community size. The results reveal that the average size of communities is the
closest to the ground truth when the average degree of the graph is about 10 or
less than 10. In other words, FCD shows better performance in sparse graphs.

Comparing the metric values of the communities found by algorithms and
the ground truth, we can see that in some cases FCD finds communities closer to
the ground truth while in the other cases GN and WalkTrap find communities
closer to the ground truth.

Figure 6 shows the distributions of sizes of communities in four randomly
picked graphs. The x-axis is the size of community. The y-axis is the frequency
of community size. The results show that FCD and WalkTrap find communities
of closer sizes to the ground truth relatively in general, while in the last case,
GN finds the communities of the most similar sizes as the known ones.

To sum up the results on these synthetic graphs, FCD (ParallelFCD) is more
stable than InfoMap and GN in terms of effectiveness. InfoMap is the best in
terms of internal density but the other three algorithms are better in terms of
conductance, cut ratio and WCC. GN and WalkTrap are the best in terms of
conductance and cut ratio but the other two algorithms are better in terms
of internal density. Comparing the detected communities with the ground truth
gives a different evaluation of detected community quality, as the good metric
value does not always indicate the closeness of the detected communities to the
ground truth. The running time shows that FCD is faster than the other three
in general.
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Fig. 5. Measurements on synthetic graphs
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Fig. 6. Community distribution

Another set of experiments demonstrating the running time are carried out
on Wiki-Vote, Arxiv HEP-PH, Email-Enron, and Epinion network. We sample
subgraphs from the networks. Every subgraph contains k percentage vertices of
the original networks, where k = 10, 20, ..., 90. We run the FCD and InfoMap
algorithms on these subgraphs and the original graphs. The running time is
recorded. Figure 7 shows the running time changing, as the number of vertices
of networks increases. Each figure shows the results for one data set. The x-axis
is the number of vertices. The y-axis is the time measured in seconds. Due to
WalkTrap and GN algorithms’ scalability on large graphs, we only compare the
InfoMap and FCD algorithms here. The results show that both algorithms are
able to work with graphs with more than 100,000 vertices. For graphs such as
Email-Enron with 33,696 vertices, the algorithms are able to finish the task in
a few minutes. In most cases FCD is faster than InfoMap.

4.4 Experimental Assessment for Overlapping Community
Detection

We set the parameter of θ to be 0 in this set of experiments, as we do not expect
a large amount of overlaps in our synthetic graphs according to the number of
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Fig. 7. Running time for large graphs

overlapping vertices and the number of memberships of the overlapping vertices
that we set for generating the graphs. We also examined the effects of the higher
values of θ and the comparisons indicate a lower quality of detected communities
in these graphs when the values of θ is higher.

Figure 8 shows the results for the graphs with varying average degree. The
x-axis is the average degree of the graphs. The y-axis is the value of metric.
We conduct experiment on five graphs with similar average degree and then
take the average of the values to reduce bias against different graph structures.
Thus each dot represents one metric value averaged over five values of the com-
munities detected by one algorithm. Figure 8(a) shows the results for NMI. It
shows that our algorithm FCD-OV results in the highest NMI value compared
to the GameTheory and SLPA algorithm, which indicates that the communities
found by FCD-OV are the closest to the true community structure in the input
graphs. Figure 8(b)–(f) show the measurement results for community quality. As
the community structure of the generated graphs are known, we compare the
quality of the communities detected by the three algorithms and the quality of
the known communities that is labelled as original in the figures. It is obvious
that FCD-OV results in the values that are closest to the original ones, sug-
gesting FCD-OV has a better capability to find true communities. Figure 8(g)
shows the average size of the set of communities found as well as the original
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Fig. 8. Measurements on graphs with varying average degree
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(f) Weighted Community Clustering

 0

 100

 200

 300

 400

 500

 10000 15000 20000 25000 30000 35000 40000 45000 50000

a
v
e
r
a
g
e
 
c
o
m
m
u
n
i
t
y
 
s
i
z
e

number of vertices

FCD-OV
GAME
SLPA

ORIGINAL

(g) Average Community Size

Fig. 9. Measurements on graphs with varying size
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Fig. 10. Measurements on graphs with varying average degree
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Fig. 11. Measurements on graphs with varying size

average size of the communities in each graph. FCD-OV finds the communities
with average sizes that are closest to the known ones.

Figure 9 shows the same measurements as Fig. 8 on the graphs with varying
size. The x-axis is the number of vertices in the graphs. The y-axis is the value of
metric. As the graph size increases from 10,000 to 50,000, we measure the values
of each metric for communities found in each graph. We conduct experiment
on every five graphs with the same size and then take average of the values
to reduce bias against different graph structures. Figure 9(a) shows the results
of NMI. It shows that FCD-OV has the highest values. Figure 9(b)–(f) show
the measurement results on community quality. Figure 9(g) shows the average
size of the set of communities found as well as the original average size of the
communities in each graph.

The results in Fig. 9 suggest that the communities found by FCD-OV are
the most truthful to the known communities. They also suggest that the change
of metric values for the communities is almost independent of the size of graphs
except the cut ratio.

Figure 10 shows the average size and standard deviation of each set of the
communities in graphs of different average degrees. Figure 11 shows the average
size and standard deviation of each set of communities in graphs with different
sizes. In Fig. 10, the x-axis is the average degree of the graphs, and the y-axis is
the size of community. In Fig. 11, the x-axis is the size of the graph, and the y-axis
is the size of the community. It shows that the average size of the communities
detected by FCD-OV is closer to the average size of known communities.

Figure 12 shows the plots of community distribution for six randomly selected
graphs. The x-axis is the size of the community. The y-axis is the ratio of the
number of communities of certain size and the total number of communities in
the graph, i.e., the frequency of community size. The known communities are
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Fig. 12. Community distribution

mostly within size 100 to 200, while many communities detected by the game-
theory and SLPA algorithms are of a size smaller than 100. In comparison, many
lines for FCD-OV overlap with the lines for the known communities, and this
indicates that most of the communities detected by FCD-OV are of the sizes of
the known communities or close to the sizes of the known communities.

Figure 13 shows the effects of the parameter θ on the values of NMI of the
detected communities, and the running time of the FCD algorithm. Figure 13(a)
shows that, as the value of θ increases, the value of NMI decreases in these cases.
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Fig. 14. Running time comparison

On the other hand, we can see that the effect of θ on the detected communities is
larger for graphs with smaller average degrees and smaller for graphs with larger
average degrees. Figure 13(b) shows the comparison of running time for different
values of θ. The result shows that for graphs with smaller average degrees, a
larger input value of θ costs more running time for these graphs. From the
results, we can see that an inappropriate value of θ can affect the quality of
the resulted communities and increase running time. Therefore, we suggest to
choose an appropriate value of θ according to the graphs and the approximated
number of overlaps.

Figure 14 shows the running time of three algorithms on the two sets of
generated graphs. In both cases, FCD-OV costs the least time compared to the
game-theory and SLPA algorithm. The running time also shows that FCD-OV
detects community in graphs with 50,000 vertices within one and a half minutes.
The high efficiency of FCD-OV is exhibited.
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4.5 Summary

To sum up, we empirically evaluate FCD algorithms. For disjoint communities,
we examine FCD on four real graphs and a set of synthetic graphs. Knowing
few ground-truths about the communities in the real graphs, we measure the
community quality by calculating the values of chosen metrics. For synthetic
graphs, we measure the extend to which the detected communities match the
ground-truths. Compared to the InfoMap, WalkTrap and GN algorithms, FCD
is the fastest and it produces results of comparable quality. FCD shows better
performance on several metrics.

For overlapping community detection, we examine FCD on synthetic graphs.
We measure the community quality by calculating values of the metrics and
compare the detected communities with the ground-truths. Compared with the
game-theory and SLPA algorithms, FCD identifies communities closer to the
ground-truths. FCD also takes less time to find the communities.

5 Conclusions

In this paper we propose two fast community detection algorithms, one for
disjoint community detection and the other for overlapping community detec-
tion. They initiate each vertex to independently seek out the community in
its neighborhood. Each vertex chooses its community and peers based on a
knowledge of degrees and clustering coefficients of neighbors and the number
of common neighbors. The algorithms are parallelizable and thus we devise
a GPU version of the algorithm for disjoint community detection for parallel
computation. In the case of disjoint community detection, we empirically eval-
uate the performance of FCD, and compare it to the InfoMap, WalkTrap and
GN algorithms. We find that FCD is the fastest, while it produces results of
comparable quality. We assess effectiveness based on the values of modularity,
conductance, internal density, cut ratio, weighted community clustering, and
normalized mutual information as well as community size. In the case of over-
lapping community detection, we empirically compare the performance of FCD
for overlapping communities with game-theory and SLPA. We find that FCD for
overlapping communities is more efficient, and more effective.
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Abstract. Service compositions build new web services by orchestrat-
ing sets of existing web services provided in service repositories. Due to
the increasing number of available web services, the search space for find-
ing best service compositions is growing exponentially. Further, there are
many available web services that provide identical functionality but differ
in their Quality of Service (QoS). Decisions need to be made to deter-
mine which services are selected to participate in service compositions
with optimized QoS properties.

In this paper, a hybrid approach to service composition is proposed
that combines the use of genetic programming and random greedy search.
The greedy algorithm is utilized to generate valid and locally optimized
individuals to populate the initial generation for genetic programming
(GP), and to perform mutation operations during genetic programming.

A full experimental evaluation has been carried out using public
benchmark test cases with repositories of up to 15,000 web services and
31,000 properties. The results show good performance in searching for
best service compositions, where the number of atomic web services used
and the tree depth are used as objectives for minimization.

Further, we extend our approach to the more general problem of
finding service composition solutions that have near-optimal QoS. Our
experimental evaluation demonstrates that our GP-based greedy algo-
rithm enhanced approach can be applied with good performance to the
QoS-aware service composition problem.

1 Introduction

Service-oriented software is built on top of service repositories containing hun-
dreds or thousands of atomic web services. In addition to functional properties
(i.e., inputs and outputs), web services have non-functional properties, called
quality of service (QoS). QoS properties of high practical relevance are for exam-
ple response time, execution cost, availability and reliability. Even when available
web services observe identical or overlapping functionality, they may vary con-
siderably in their QoS properties. To satisfy the functional requirements of a
particular service engineering task it is common practice to build suitable com-
posite services by composing atomic web services found in the service repository.
c© Springer-Verlag Berlin Heidelberg 2015
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The QoS-aware web service composition problem asks to discover a composite
service that satisfies the given functional requirements and has optimal QoS.
As more and more web services become available by service providers, the size
of service repositories is steadily increasing nowadays. Consequently, the search
space for finding the best service composition a particular service engineering
task is growing exponentially. Hence, computing an optimal solution is imprac-
tical in general. Rather, one is interested in efficient and effective approaches for
computing near-optimal solutions.

Web service composition has recently attracted much interest. Many existing
approaches tackle service composition tasks by considering them as planning
problems using established planning techniques [10,16,22–25]. However, these
approaches do not scale. The complexity that they consider is much lower than
the one typically observed in service composition tasks based on dedicated web
service languages like OWL-S [20] and BPEL4WS [3]. Other approaches tackle
service composition tasks by using artificial intelligence techniques [28,30,35,36].
Most approaches have been tested for small service repositories only, without
any attention to scalability. In [4,26,29], genetic programming (GP) is used for
computing near-optimal service compositions. A thorough analysis reveals the
limited effectiveness of the evolutionary process in these GP-based approaches
that is due to the complexity of the data structures used and the randomness of
the initial population. Therefore, it requires an extremely long time to discover
near-optimal solutions, and the results are very unstable, see [26].

Though many works have studied the QoS-aware web service composition
problem [2,8,31–34], the process of generating service compositions is gener-
ally separated from the process of selecting optimal concrete web services with
regard to QoS. The existing approaches assume that the workflow of a service
composition is given, and there are many available services that provide identical
functions but with different QoS properties. The aim of the existing approach
is then to select concrete services for the given workflow so that overall QoS
becomes optimal. However, the separation of generating service composition
solutions from selecting concrete web services restrict the space of finding opti-
mal service composition solutions. QoS-aware web service composition should
consider the generation of a service composition and service selection at the
same time. However, finding a service composition with optimal QoS properties
is known to be an NP-hard optimization problem [7] and is very time-consuming
if the composition process is done manually. GP has shown its ability to pro-
vide good approximate solutions to such a problem. Therefore, in this paper we
exploit GP to tackle the QoS-aware web service composition problem.

The goal of this paper is to propose a novel GP-based approach to web ser-
vice composition that overcomes shortcomings of previous GP-based approaches.
Our approach to web service composition is a hybrid approach that combines
the use of genetic programming and a greedy search algorithm. Instead of start-
ing with an initial population of service compositions that are randomly gener-
ated from the huge number of atomic web services in the repository, we apply
the greedy search algorithm to pre-filter the repository for those atomic web
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services that are exclusively related to the given service composition task. We
have examined our proposal using the public web service repositories of OWL-S
TC [19], WSC2008 [6], and WSC2009 [17] as benchmarks. Further, we extend
our work in [27] by adapting our GP-based greedy algorithm enhanced app-
roach to QoS-aware web service composition, and propose two fitness functions
to guide the GP-based evolution. We have examined these fitness functions using
the service repositories of WSC2008 and WSC2009 extended with QoS proper-
ties. We can demonstrate the effectiveness and efficiency of our GP-based greedy
algorithm enhanced approach to QoS aware service composition. Specifically, we
have investigated the following objectives:

1. Whether the new method can achieve reasonably good performance, and in
particular outperforms existing GP-based approaches.

2. Whether the greedy algorithm can effectively discover atomic web services
that are exclusively related to the service composition task.

3. Whether the evolved program (the solution to the given service composition
task) is interpretable.

4. Whether the new method is suitable for QoS-aware service composition, and
which fitness function should be applied during GP evolution.

This paper is structured as follows: Sect. 2 discusses representations of service
compositions while Sect. 3 reviews related work on service composition. Sec-
tions 4 and 5 present our GP-based approach to the service composition prob-
lem. In Sect. 6 we investigate the applicability of our approach to the QoS-aware
service composition problem. Section 7 reports on the experiments conducted to
test our proposed approaches. Finally, Sect. 8 states our conclusions and sugges-
tions for future research.

2 Representation of Service Compositions

Web services for complex tasks can be composed from atomic web services pro-
vided in a service repository. A web service takes certain inputs to generate
certain outputs. The inputs and outputs can be semantically described through
ontologies as concepts, cf. [6,17]. Assume, for example, the given task is to deter-
mine the maximum price of a book, its ISBN and the recommended price in dol-
lars for a given input AcademicItemNumber. That is, a web service is needed that
takes the concept I = {AcademicItemNumber} as input, and produces the con-
cept O = {MaxPrice, ISBN,RecommendedPrice} as output, see Fig. 1. If the
service repository contains no such atomic web service, a composite service might
be able to accomplish the given task.

Service compositions are often represented as directed acyclic graphs, see
Fig. 1(a). Squares represent atomic web services used in the composition, while
circles represent the input concept I and the output concept O of the composite
service S. Arcs are labelled by the properties that are transferred from one atomic
service to another, or taken from the input I, or produced for the output O.
The service composition must be verified for formal correctness. For that,
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(a) Graph representation of S

Atomic web service Input Output
S1 GetMaxPrice Author Book, MaxPrice
S2 GetISBN Book, Publisher Author, ISBN
S3 GetRecommendedPricePublisher Book RecommendedPrice, Publisher
S4 GetBookAuthor AcademicItemNumber Book, Author

(b) Some atomic web services in the repository

Fig. 1. A composite web service S composed from four atomic web services S1, . . . , S4

found in the repository.

each atomic web service used in the composition must satisfy the matching rule:
its input concept must be subsumed by the union of the properties on its incom-
ing arcs, and its output concept must subsume the union of the properties on its
outgoing arcs. In this case, the input concept matches the properties received,
and the output concept matches the properties sent. In our example, all atomic
web services satisfy their respective matching rules.

2.1 The Problem

The number of candidate service compositions grows exponentially with the
number of atomic web services in the service repository. The problem studied in
this paper is how to efficiently find “good” service composition solutions. Due
to the inherent complexity of the service composition problem we employ GP to
find near-optimal solutions. To do this, we first explore the use of GP for service
composition without taking QoS into consideration. Then we extend our app-
roach to QoS-aware service composition. We assume that the reader is familiar
with the principles of genetic programming (GP) [18]. While directed acyclic
graphs are a natural way to represent service compositions, GP traditionally
represents evolved programs as tree structures in memory.

2.2 Structures

To facilitate the use of tree-based GP techniques the graph representation of
service compositions is converted into a tree representation. We make use of the
standard transformation of directed acyclic graphs into trees [5], also known as
unfolding. In our example, the directed acyclic graph in Fig. 1(a) is transformed
into the tree in Fig. 2. Unfolding starts with the output concept O which becomes
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the root of the tree, while the terminal nodes of the tree represent multiple
copies of the input concept I of the composite service S. Unfolding often causes
duplicate nodes. In Fig. 2, there are two S1 nodes, two S3 nodes, four S4 nodes,
and four I nodes. For the sake of simplicity, we occasionally skip the subtree
rooted at a duplicated node in our illustrations.

Fig. 2. Tree representation of S

2.3 Genetic Programming Overview

GP [18] is an automated method for creating a working computer program for a
problem described by a high-level problem statement. It is considered as a spe-
cial application of Genetic Algorithm, which is based on Darwinian principles of
natural selection. In GP, the term population refers to a collection of candidate
solutions, called individuals, to an optimisation problem. Each of candidate solu-
tions, referred as chromosome, is most commonly represented as a tree. The major
variations of GP include the terminal set and function set. The terminal set con-
sists of the variables and constants of the program while the function set consists
of the functions of the programs.

GP [18] simulates natural evolution and selection of a population to search for
an optimal solution. It evolves computer programs, traditionally represented in
memory as tree structures. Trees can be easily evaluated in a recursive manner.
Every tree node represents an operator function and every terminal node rep-
resents an operand. The search starts from a randomly initial population with
a defined number of individuals instead of the entire search space. GP uses a
fitness function to evaluate the degree of how good (or bad) each individual is.
It evolves all individuals to generate a new population with a defined num-
ber of generations using three genetic operations: reproduction, crossover and
mutation. Reproduction picks up individuals into a new population without any
modification. Crossover is applied on an individual by simply switching one of its
nodes with another node from another individual in the population. With a tree
representation, replacing a node means replacing the entire subtree rooted at
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this node. Mutation affects an individual in the population by replacing a node
randomly chosen in the selected individual. GP stops when the best solution is
found, or a defined number of individuals in the generation has been reached.
To execute a GP-based algorithm we identify the set of terminals, the set of
functions, the fitness function and other relevant variables, such as the size of
the population and the number of generations, cf. [18].

3 Related Work

Several GP-based approaches for tackling the service composition problem have
been presented in the literature. [4] pioneered the use of GP for finding near-
optimal web service compositions. They designed genetic operators and fitness
functions for assessing composed services, and also compared GP to genetic algo-
rithms (GA) [13]. However, the proposed approach has only been tested on very
small repositories. [26] introduced a context-free grammar to randomly initialize
the first population and applied a tree structure to represent the chromosome of
each individual. The nodes in the tree represent the functions in GP, which are
five control structures, while the leaves represent atomic web services. This app-
roach aims to minimize the number of atomic web services used in the service
composition. However, due to the structure used to represent service composi-
tion, the initial generation often contains many weak individuals, thus makes
the whole approach inefficient and leads unstable results. To overcome short-
comings of [26], [29] refined the tree representation, and introduced the service
dependency graph for checking the matching rules. A major limitation is that
only atomic web services with a single property as output are permitted. In all
the above mentioned GP-based approaches, the terminal nodes of the parse
tree represent atomic web services and the non-terminal nodes represent various
workflow structures. In [26], the authors employ a context-free grammar in order
to compose a range of web services with valid structures. However, none of these
approaches take into account QoS criteria while discovering service composition
solutions. For example, [26] only considers the number of atomic web services
used without being concerned about the quality of the composite service.

Other approaches work with graph representations of service compositions
[30,35], but are not GP-based. Based on dependency graphs in OWL-S lan-
guage, [14] used nodes to represent input and output concepts of web services,
and edges represent component web services. They employed a Breadth First
Search algorithm to search for one path from the input concept to the output
concept. If such a path is found, then the execution of the algorithm is stopped
and the path is reported as the solution. The problem of this approach is that
it does not support complex control flows as in [26]. Meanwhile, even though
it can efficiently find a solution for service composition, it does not provide best
solutions or near-optimal solutions because the path found first is not necessary
the best path of solution. [30] proposes an ant colony algorithm for the web
service composition problem. The approach treats each atomic web service as
nodes and output-to-input as edges in a graph so that the web service com-
position problem is transformed into a path searching problem. It searches a
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path from arrowtails (provided inputs) to arrowheads (desired outputs) through
edges (output-to-input) and nodes (atomic services). There are four parameters
affecting the ant colony algorithm. However, so far the ant colony algorithm
only had some experimental parameters which may not be the best fit for web
service compositions. To search the best four parameters used in ant colony algo-
rithm a genetic algorithm is employed. A shortcoming of the approach is that
the algorithm is very complicated to use. Also it is evaluated with very small
repositories only.

QoS-aware web services composition describes web services in terms of both
functional features and non-functional features. References [31] and [32] adopt
integer linear programming (ILP) to optimally select component services in
which the objective function is defined as a linear composition of multiple QoS
constraints. However, the computational time of the ILP based approach will
rise exponentially as the number of available web services increases. In order to
overcome these problems, [34] puts forward a GA-based approach, which adopts
a one-dimensional chromosome-encoded method. However, the shortcoming of
this approach is that the length of the chromosome increases as the number of
tasks and candidate services increase. [8] proposes a revised encoding method in
which each gene of the chromosome represents the task of a composite service,
while its value represents a candidate service. However, this encoding method
cannot reflect the relationships among component services in a composite ser-
vice, and the validity of crossover and mutation operations is not checked to
assure legal individuals. An improved GA-based approach on the basis of rela-
tional matrix encoding method is presented in [33], where the encoding schema
is able to express different execution paths. The GA-based approaches assume
that a workflow of tasks is given for a service request. However, often the given
workflows are not optimized. Also, frequent checking of validity of execution
path of individuals after each crossover and mutation operation results in low
efficiency of the approach.

This paper proposes an GP-based greedy algorithm enhanced approach with
a new representation to tackle the web service composition problem. We first
present our approach to web service composition that is able to consider service
composition and service selection at the same time, thus overcoming a known
weakness of earlier GP-based approaches proposed in the literature. Then we
extend our approach to the QoS-aware web service composition problem.

4 The Novel GP-based Approach

As mentioned in Sect. 3, existing GP-based approaches often start with a low
quality population at the initial stage. To overcome this matter, we propose a
GP-based greedy algorithm enhanced approach that uses a greedy algorithm
combined with our GP-based service composition approach. A greedy algorithm
can help to search locally optimal solutions, though using a greedy algorithm by
itself cannot generate globally optimal solutions for web service composition
in general. Rather, we plan to employ a greedy algorithm to generate locally
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optimal solutions such that the performance of generating a globally optimal
solution by GP can be improved. In particular, we propose to use a greedy
algorithm to generate individuals that can form the initial population of our
GP-based service composition algorithm.

4.1 Variables in Genetic Programming

To apply GP to the service composition problem, the first major step is to
define the variables in GP, i.e., to identify the terminal set, the function set,
and the fitness function. We will discuss how tree representations of web service
compositions will be used for our tree-based GP approach.

Now, we define the variables commonly used in GP, i.e., the terminal set, the
function set, and the fitness function [18]. A service composition task is defined
by an input concept I, an output concept O, and a repository R of atomic web
services. We use the atomic web services in the given repository as the function
set in GP, i.e., we regard the atomic web services as functions that map inputs
to outputs. GP uses the tree representation discussed above: the internal nodes
correspond to functions, all terminal nodes to the input concept I, and the root
to the output concept O.

Terminal Set. A service composition task is defined by an input concept I,
an output concept O, and a repository of atomic web services. In our approach,
all terminal nodes of the tree represent the given input concept I of the service
composition task. In Fig. 2, for example, all terminal nodes of the tree represent
the input concept I of the desired composite service S.

Function Set. The atomic web services may be regarded as functions that map
their inputs to their outputs. We can directly use the atomic web services in the
given repository as the function set in GP. In our approach, all nodes of the
tree represent functions, except for the terminal nodes that represent the input
concept I, and for the root node that represents the output concept O. In Fig. 2,
for example, the function set consists of S1, S2, S3, and S4, which are the atomic
web services chosen from the given repository.

Fitness Function. A fitness function is used to measure the quality of candi-
date compositions. How to measure the quality of service composition depends
on the task of web service composition. If we do not consider QoS requirements
we use the unduplicated number of atomic web services used in a service com-
position to measure the fitness of a service composition. The fewer atomic web
services used in the service composition, the better its performance will be. In
addition, we also use the tree depth to measure the fitness of service compo-
sitions. The tree depth corresponds to the length of the longest path from the
input concept to the output concept. In our example in Fig. 1, the number of
features is 4, since S1, . . . , S4 are used and duplicates are not considered, and the
depth feature is 3. We use the depth feature only to distinguish service compo-
sitions with identical number of features. If two service compositions share their
number of features, shallow trees are preferred.
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If we consider QoS requirements we will use QoS values of composite services
to measure the fitness of the composite services. Details of suitable QoS-aware
fitness functions will be discussed in Sect. 6.

4.2 Genetic Operators

GP uses the operations crossover, mutation, and reproduction to evolve individu-
als, i.e., service compositions in our case. To perform crossover, we stochastically
select two random individuals and check if there is one node representing the
same atomic web service in both individuals, and then swap the node together
with their subtrees between the two individuals. This guarantees that the match-
ing rules stay satisfied. In Fig. 3, for example, the S3 nodes in the two individuals
are swapped together with the subtrees rooted at them. As usual, the two new
individuals generated as offsprings from the two individuals from the previous
generation are then included into the next generation.

Fig. 3. An example for our crossover.

The mutation operator is normally used to replace a node together with its
subtree in a selected individual, or to replace only the node. In our approach,
we perform mutation by stochastically selecting one node in a randomly chosen
individual and replacing its subtree with a new subtree generated by applying a
greedy algorithm that will be presented in Sect. 5. In Fig. 4, for example, assume
S3 is selected for mutation and ca and cb are properties that S3 receives from
S5 and S6, respectively. Then, the mutation operator replaces the subtree of S3

with a new subtree to generate a new individual as an offspring.
The fitness of the offspring generated by crossover or mutation can be smaller

than its parents’ one. To avoid a decrease of fitness of the fittest individuals we
choose a top percentage of individuals from the old generation for mere repro-
duction and include them into the next generation without any modification.

Fig. 4. An example for our mutation.
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4.3 GP-based Algorithm for Service Composition

We now present a GP-based algorithm for service composition, see Algorithm 1.
The fitness function to be used depends on the requirements of the particular
service composition task. In the case of non-QoS aware service composition,
the fitness function is presented in Sect. 4.1. For QoS-aware service composition,
we will present two fitness functions in Sect. 6.

Input: P /* a set of initial service compositions
Output: an optimal service composition solution S

Evaluate each individual i in P using the fitness function
while g < gmax do

Perform reproduction with the rate r
Select two parents from the population P
Perform crossover with rate c
Perform mutation with rate m
Generate a new population P ′

Evaluate each individual i in P ′ using fitness function
end while

Algorithm 1. genetic programming for web services composition

As we mentioned in Sect. 2, existing GP-based approaches start with ran-
dom generated initial populations and therefore take a long time to discover
near-optimal solutions. In Sect. 5 we present a greedy algorithm for web service
composition to overcome this matter.

5 Random Greedy Search for Initialization and Mutation

Next we propose a randomly greedy algorithm for computing locally optimal solu-
tions for a service composition problem, see Algorithm 2. Its inputs are the input
concept I, the output concept O, and the repository R of the service composition
task to be solved. The algorithm generates the tree representation of a service
composition S that is formally correct for the composition task at hand.

In the algorithm, Csearch denotes the concept used for searching the reposi-
tory R, and Sfound denotes the set of all those atomic web services whose inputs
match Csearch. To begin with, Csearch is initialized by the input concept I. The
discovered atomic web services are added to Sfound, the outputs of these services
are adjoined to Csearch. Steps 4 to 8 are repeated until no new atomic web service
is discovered. In particular this is the case when Csearch is no longer extended.
Afterwards it is checked whether Csearch subsumes the required output concept
O of the composition task. If so, then the composition task has a solution. By
applying the matching rule, the nodes of the tree are then stochastically con-
nected to generate the arcs of the tree. Otherwise, there is no solution.

We use the random greedy algorithm as an auxiliary to our GP-based app-
roach in Sect. 4. It generates a set of locally optimal individuals to populate
the initial generation for GP. By construction, all of them are formally correct
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solutions for the composition task at hand. By using the search concept Csearch

the algorithm only considers services that are related to the composition task.
The locally optimal individuals constitute an initial population that is already
of high quality, thus overcoming a weakness of previous GP-based approaches.

Input: I, O, R
Output: a service composition S, Slist

1: Csearch ← I;
2: Slist ← {}; /* discover a shrunk set of atomic web services
3: Sfound ← DiscoverService();
4: while |Sfound| > 0 do
5: Slist ← Slist ∪ Sfound;
6: Csearch ← Csearch ∪ Coutput of Sfound;
7: Sfound ← DiscoverService();
8: end while
9: if Csearch ⊇ O then

10: ConnectNodes();
11: Report solution; /* generate a web service composition
12: else
13: Report no solution;
14: end if

Algorithm 2. A greedy algorithm for service composition.

Moreover, we apply our greedy algorithm to perform mutation in our GP-
based approach. We use it to generate the new subtree rooted at the selected
node. This time, the output of the corresponding atomic web service serves as O,
and R is restricted to the atomic web services that occur in the composition.

6 QoS-Aware Service Composition

Above we have proposed a novel GP-based greedy algorithm enhanced approach
to web service composition. The greedy algorithm is used to reduce the search
space of service composition solutions and GP is used to search for service com-
position solutions that use the smallest number of atomic services. We will now
extend our approach to the more general QoS-aware web service composition
problem, where additional QoS requirements must be considered.

6.1 QoS Aggregation

The global QoS of a composite service is determined by the local QoS of its
component services and the composition pattern of the composite service. To
evaluate the global QoS of a composite service, we need to identify a web ser-
vices quality model so that the global QoS value can be calculated by aggre-
gation from the local QoS values of component services. In accordance with
previous works on GP-based web service composition [31] we use the QoS prop-
erties availability and reliability, execution cost and response time to exemplify
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our approach. The values of QoS attributes can either be collected from service
providers (e.g. cost), or from records of monitoring previous service execution
(e.g. response time, availability). As emphasized in [15,21] these QoS proper-
ties represent a selection of relevant characteristics in the field of web services.
However, other QoS attributes, e.g. reputation, can be easily included in our
approach with only simple modification of the fitness functions that aggregate
the values of QoS attributes of composite services.

According to [31], the four parameters are defined as follows. The availability
A is the probability that a web service is accessible. The global availability of
a composite service can be computed as the product of the local availabilities
of the atomic web services used in the service composition. For example, the
availability of the composite service S in Fig. 5 is A = aA ·aB ·aC ·aD ·aE , where
aA, . . . , aE denote the availability of the atomic services SA, . . . , SE .

The reliability R is the probability that a request is correctly responded
within the maximum permitted time frame. The global reliability of a composite
service can be computed as the product of the local reliabilities of the atomic
web services used in the service composition. For example, the reliability of the
composite service S in Fig. 5 is R = rA · rB · rC · rD · rE , where rA, . . . , rE denote
the reliability of the atomic services SA, . . . , SE .

The execution cost C is the amount of money that a service requester has
to pay for executing the web service. The global execution cost of a composite
service can be computed as the sum of the execution costs of the atomic web
services used in the service composition. For example, the execution of the com-
posite service S in Fig. 5 is C = cA + cB + cC + cD + cE , where cA, . . . , cE denote
the execution cost of the atomic services SA, . . . , SE .

The response time T is the expected time delay between the moment when a
request is sent and the moment when the results are received. When executing
a composite web service some of the atomic services can be executed in parallel,
while others must be executed in a sequential order. These execution depen-
dencies are reflected by the graph representation of a composite web service.

(a) Graph representation (b) Tree representation.

Fig. 5. A composite web service S composed from five atomic web services SA, . . . , SE

found in the repository.
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For example, in Fig. 5, the atomic services SA and SB can be executed in par-
allel, as well as SC and SD can be executed in parallel. Conversely, SA must be
executed before SC , and SC before SE . Every branch in the tree representation
of the composite service S (see Fig. 5) corresponds to a sequence of atomic ser-
vices that must be executed in the prescribed order. For the aggregation of local
QoS values we follow [9] where parallel and sequential execution are considered
as the most widely used control structures shared by web service composition
languages such as OWL-S and BPEL4WS. The overall time needed for executing
the atomic services on a branch b is

Tb =
∑

Si is an atomicweb service on branch b ti

where ti denotes the response time of Si. For example, for the left most branch in
Fig. 5 the time is tA + tC + tE . The global response time of the composite service
can then be obtained as the maximum time when ranging over all branches, i.e.,

T = max{Tb : b is a branch in the tree representation}.

Note that while in the tree representation some atomic services are shown
multiple times they will only be executed once as illustrated in the graph repre-
sentation of the composite service.

6.2 QoS-Aware Fitness Functions

To control the GP-based evolution of individuals a suitable fitness function is
needed. The fitness of an individual should indicate the goodness of the respec-
tive solution for the QoS-aware service composition problem. Hence, we look for
a fitness function that reflects the global quality of service of the correspond-
ing service composition, and that can used in our approach as a replacement
for the original fitness function introduced in Sect. 4.1. As common practice
for the application of GP to multi-criteria optimization problems we will nor-
malize the values of each QoS property considered to be in the interval [0, 1].
In the following we will introduce two QoS-aware fitness functions that we have
used in our experiments.

We start with a dynamic QoS-aware fitness function. For individual i in
generation g of the GP evolution, the fitness is defined as follows:

fitdi = w1 · Ad
i + w2 · Rd

i + w3 · T d
i + w4 · Cd

i (1)

where Ad
i , R

d
i , T

d
i and Cd

i denote the normalized availability, reliability, response
time, and execution cost of individual i, and where w1, w2, w3, and w4 are real and
positive weights assigned to the respective QoS criteria. Note that the weights
are chosen by the user and reflect the relative importance of the different QoS
properties for the user. Also, note that a fitness function can be achieved from
the QoS requirements of service requesters. For the sake of simplicity, assume the
weights sum up to 1, that is,

∑4
j=1 wj = 1.
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In GP the fitness of an individual indicates its goodness relative to the other
individuals in the same generation. For normalization we therefore use the min-
imum and maximum values of a particular QoS criteria when ranging over all
individuals of the same generation. We use the following formulae to compute
the normalized QoS values:

Ad
i =

{
Ai−Amin

Amax−Amin
if Amax − Amin �= 0

1 if Amax − Amin = 0
(2)

Rd
i =

{
Ri−Rmin

Rmax−Rmin
if Rmax − Rmin �= 0

1 if Rmax − Rmin = 0
(3)

T d
i =

{
Tmax−Ti

Tmax−Tmin
if Tmax − Tmin �= 0

1 if Tmax − Tmin = 0
(4)

Cd
i =

{
Cmax−Ci

Cmax−Cmin
if Cmax − Cmin �= 0

1 if Cmax − Cmin = 0
(5)

Note that the formulae for the availability (A) and reliability (R) slightly
differ from the formulae for the response time (T ) and execution cost (C). This
is because the former two QoS properties are positive criteria, for which the
higher the QoS value the better the quality. The latter two QoS properties are
negative criteria, for which the lower the QoS value the better the quality. After
normalization we have that for each QoS property normalized values closer to 1
indicate better quality, while normalized values closer to 0 indicate worse quality.

For example, to compute the normalized execution cost Cd
i of individual i in

some generation we identify the maximum and a minimum value of the execution
cost, denoted by Cmax and Cmin, across all individuals in the same generation,
then we map the minimum to 1 and the maximum to 0. If the original execution
cost of individual i is Ci = 60 and we find Cmax = 100 and Cmin = 50, then
Cd

i = Cmax−Ci

Cmax−Cmin
= 0.8. So here the execution cost of individual i is quite close to

the best execution cost observed among the individuals in the same generation.
Using the dynamic QoS-aware fitness function, QoS-aware web service com-

position problem is converted into a maximization problem. When the fitness is
closer to 1, the solution is more likely to observe better global QoS properties.

We continue with a static QoS-aware fitness function. A potential disadvan-
tage of the dynamic fitness function introduced above is that the formulae used
for normalization are generation-specific. That is, for each generation we need to
find the maximum and minimum values of the QoS properties across all individ-
uals in this generation. This decreases the performance of computing the fitness
of individuals. Alternatively, one could use static maximum and minimum values
for each QoS property that do not depend on the particular generation in the GP
evolution. Indeed, one could determine lower and upper bounds for the global
QoS values of composite web services in advance based on the given service
repository, and then use them when computing the fitness of individuals during
the GP evolution. However, in Sect. 5 we have observed that not all atomic web
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services in a given repository are related to a given service request. Therefore it
is more appropriate to focus on the shrunk repository where all unrelated atomic
web services have been deleted (see Slist in Algorithm 2).

Let n denote the total number of atomic services in the shrunk repository
Slist. For the execution cost (C) and response time (T ) we determine the smallest
values that occur among the atomic web services in the shrunk repository and
choose them as Cmin and Tmin, respectively. That is, Cmin = min{ci : Si in Slist}
and Tmin = min{ti : Si in Slist}. This gives us lower bounds for the global exe-
cution cost and response time of service composition solutions obtained during
the GP evolution. For Cmax and Tmax we determine the largest values that occur
among the atomic web services in the shrunk repository, and multiply them by n.
That is, Cmax = n · max{ci : Si in Slist} and Tmax = n · max{ti : Si in Slist}.
This gives us upper bounds for the global execution cost and response time of
service composition solutions obtained during the GP evolution.

For the availability (A) and reliability (R) we determine the largest values
that occur among the atomic web services in the shrunk repository and choose
them as Amax and Rmax, respectively. That is, Amax = max{ai : Si in Slist}
and Rmax = max{ri : Si in Slist}. This gives us upper bounds for the global
availability and reliability of service composition solutions obtained during the
GP evolution. For Amin and Rmin, we would in principle determine the smallest
values that occur among the atomic web services in the shrunk repository, and
compute their nth power. That is, Amin = min{ai : Si in Slist}n and Rmin =
min{ri : Si in Slist}n. This gives us lower bounds for the global availability and
reliability of service composition solutions obtained during the GP evolution.
For performance reasons we have simplified this to Amin = 0 and Rmin = 0 in
our experiments.

Once we precomputed the lower and upper bounds of global QoS values for
composite services for each QoS property under consideration, we can use them
to compute the normalized QoS values for the individuals obtained during the
GP evolution. For this we use formulae (2) to (5) again, but with the static
values Amin, Amax, Rmin, Rmax, Tmin, Tmax, Cmin, Cmax which do not need to
be recomputed for each GP generation. Let As

i , R
s
i , T

s
i , Cs

i denote the normalized
QoS values obtained for individual i this way. We can then compute the fitness
of individual i as follows:

fitsi = w1 · As
i + w2 · Rs

i + w3 · T s
i + w3 · Cs

i (6)

where w1, w2, w3, and w4 are real and positive weights with
∑4

j=1 wj = 1
as before.

Recall that in our GP-based approach we always choose a top percentage of
individuals from the old generation for mere reproduction and include them into
the next generation without any modification. Advantage of using the static
fitness function is that the fitness of a reproduced individual does not vary
from generation to generation. Hence we do not need to recompute the fitness
of reproduced individuals, which again increases the performance of the GP
evolution.
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7 Empirical Results

To evaluate our proposal we tested it using the collection of benchmark test cases
provided by the web service competitions WSC2008 and WSC2009. Each test
case specifies a service composition task including input concept, output concept,
and service repository. The complexity of the composition tasks is very diverse
in terms of the overall number of properties considered. In addition, we also used
the benchmark test cases of OWL-S TC V2.2 for testing. While the reposito-
ries of WSC2008 and WSC2009 are all randomly generated, the repositories of
OWL-S TC are all from real domains. The benchmark test suits are publicly
available. Some of the test cases of the suites have been used in the literature
[26] before, so reusing them allows a comparison. Also, the range of the test cases
included represents the diversity of complexity of service composition problems.

Our test platform was a PC with an i5-3320(2.60 GHz) processor, 4.0 GB
RAM, and Windows 7 64-bit operating system. As our approach is stochastic,
we run each task 30 independent times to record the average and standard
deviation of the best fitness and the time consumed. Clearly, the population size
and the number of generations used for GP affected the time. For our tests we set
the parameters population size = 200, number of generations = 30, reproduction
percentage = 0.1, crossover percentage = 0.8, mutation percentage = 0.1, and
left the tree depth unbounded.

7.1 Results of the Greedy Algorithm

To evaluate the effectiveness of our greedy algorithm we applied it to all test cases
provided by WSC2008 and WSC2009. Table 1 shows the number of atomic web
services and the number of properties used for the original repositories, and for
the repositories shrunk by applying the greedy algorithm for initialization. For
example, for task 1 of WSC2008, there are 158 atomic web services in the original
repository, but only 61 of them are related to the given composition task. For task
5 of WSC2009, there are 15211 atomic web services in the original repository,
but only 237 of them are related to the composition task. This demonstrates the
effectiveness of our greedy algorithm for reducing the search space.

To further evaluate the efficiency of applying our greedy algorithm in service
composition we conduct experiments to evaluate the performance of our hybrid
approach in comparison to a GP-only approach without greedy search. The
experiments are tested on all test cases provided by WSC2008 and WSC2009.
For all the test cases both approaches produce the same good results but with
different total execution time. The total execution time of the two approaches
are shown in the Table 2.

From the experimental results shown above we can see that for all tasks, our
hybrid approach uses far less time than theGP-only approach. For some tasks, such
as WSC2008-7 and WSC2008-8, our hybrid approach uses less than 10 percent of
the time used by the GP-only approach. This justifies the use of random greedy
search, and demonstrates its impact on the efficiency of our hybrid approach.
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Table 1. Original repositories vs. shrunk repositories from greedy search

Task Number of atomic web services Number of properties

Original repository Shrunk repository Original repository Shrunk repository

WSC2008-1 158 61 1540 252

WSC2008-2 558 63 1565 245

WSC2008-3 604 106 3089 406

WSC2008-4 1041 45 3135 205

WSC2008-5 1090 103 3067 423

WSC2008-6 2198 205 12468 830

WSC2008-7 4113 165 3075 621

WSC2008-8 8119 132 12337 596

WSC2009-1 572 80 1578 331

WSC2009-2 4129 140 12388 599

WSC2009-3 8138 153 18573 644

WSC2009-4 8301 330 18673 1432

WSC2009-5 15211 237 31044 1025

Table 2. Total time: GP based composition without Greedy Search vs. GP based
composition with Greedy Search (χ̄ ± σ)

Task Without Greedy Search With Greedy Search

WSC2008-1 5016 ± 35 2338 ± 33

WSC2008-2 13167 ± 90 2172 ± 23

WSC2008-3 213053 ± 4488 145135 ± 2102

WSC2008-4 10367 ± 104 1301 ± 31

WSC2008-5 48001 ± 222 7630 ± 52

WSC2008-6 328638 ± 8141 38935 ± 297

WSC2008-7 419382 ± 8695 25433 ± 385

WSC2008-8 837021 ± 13187 27123 ± 257

WSC2009-1 828333 ± 78 4886 ± 29

WSC2009-2 397599 ± 4354 19086 ± 93

WSC2009-3 615461 ± 11284 19173 ± 179

WSC2009-4 4198047 ± 42484 192930 ± 3288

WSC2009-5 2953832 ± 158181 93209 ± 382

7.2 Overall Results by GP-Based No-QoS Aware
Service Composition

Table 3 shows a comparison of our approach with a recent approach proposed in
[26] that also used OWL-S TC, WSC2008, and WSC2009 for testing. Column
“Min” records the number of atomic web services in the best known solutions,
see [6,17,19]. There are three columns for our approach: Column “Number”
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records the number of atomic web services in the best solution found by our app-
roach, column “Depth” records the tree depth of the best solution, and column
“Time” records the search time used for computing the best solution. For the
existing approach [26] the respective information is given in the remaining three
columns. Note that the search times recorded for the two approaches are not
directly comparable as they were evaluated on different platforms. The inten-
tion of presenting the time here is to show that our approach is efficient and
scalable, as it does not take a long time even for complex tasks using big service
repositories.

Our approach was successful in computing a solution for each of the service
composition tasks specified by WSC2008 and WSC2009, except for tasks 9 and 10
of WSC2008 which are both known not to have a solution [6]. Recall that our
approach only needs the initial greedy search to check for the mere existence of
a solution, and is therefore very efficient.

Table 3. Average results for the tests (χ̄ ± σ).

Task Our approach Existing approach [26]

Name Min Number Depth Time (in ms) Number Depth Time (in ms)

OWL-S TC1 1 1.00 ± 0.00 1.00 ± 0.00 14 ± 10 1.00 ± 0.00 1.00 ± 0.00 749 ± 364

OWL-S TC2 2 2.00 ± 0.00 2.00 ± 0.00 51 ± 15 2.00 ± 0.00 2.00 ± 0.00 484 ± 139

OWL-S TC3 2 2.00 ± 0.00 2.00 ± 0.00 250 ± 16 2.00 ± 0.00 2.00 ± 0.00 473 ± 76

OWL-S TC4 4 4.00 ± 0.00 2.63 ± 0.49 341 ± 15 5.70 ± 1.19 2.20 ± 0.40 3010 ± 422

OWL-S TC5 3 3.00 ± 0.00 1.00 ± 0.00 389 ± 21 3.30 ± 0.46 1.00 ± 0.00 1098 ± 240

WSC2008-1 10 10.00 ± 0.00 3.00 ± 0.00 2338 ± 33 15.80 ± 5.71 6.00 ± 1.26 6919 ± 1612

WSC2008-2 5 5.00 ± 0.00 3.87 ± 0.35 2172 ± 23 6.00 ± 0.89 3.50 ± 0.67 11137 ± 3106

WSC2008-3 40 40.60 ± 0.62 23.00 ± 0.00 145135 ± 2102 n/a n/a n/a

WSC2008-4 10 10.00 ± 0.00 5.00 ± 0.00 1301 ± 31 n/a n/a n/a

WSC2008-5 20 20.00 ± 0.00 8.00 ± 0.00 7630 ± 52 49.90 ± 16.84 9.20 ± 2.96 95390 ± 43521

WSC2008-6 40 45.80 ± 0.92 9.00 ± 0.00 38935 ± 297 n/a n/a n/a

WSC2008-7 20 20.00 ± 0.00 15.00 ± 0.00 25433 ± 385 n/a n/a n/a

WSC2008-8 30 32.10 ± 0.30 23.00 ± 0.00 27123 ± 257 n/a n/a n/a

WSC2008-9 n/a n/a n/a n/a n/a n/a n/a

WSC2008-10 n/a n/a n/a n/a n/a n/a n/a

WSC2009-1 5 5.00 ± 0.00 3.67 ± 0.96 4986 ± 29 n/a n/a n/a

WSC2009-2 20 20.03 ± 0.18 6.00 ± 0.00 19086 ± 93 n/a n/a n/a

WSC2009-3 10 10.20 ± 0.76 3.07 ± 0.25 19173 ± 179 n/a n/a n/a

WSC2009-4 40 42.03 ± 0.85 8.00 ± 4.32 192930 ± 3288 n/a n/a n/a

WSC2009-5 30 30.07 ± 0.25 19.00 ± 0.00 93209 ± 382 n/a n/a n/a

Note that [26] tested their approach with only 5 tasks from OWL-S TC
and 3 tasks from WSC2008. For the first three tasks there is no significant
difference between the two approaches. For all the remaining 5 tasks, the statistic
significance analysis results shows that our approach is significantly better than
the existing approach in [26], i.e., fewer atomic services are used in the best
known solutions.

Our approach achieved good test results for the remaining tasks, too. For
all solvable tasks, our solutions are interpretable and the numbers of services
in our solutions are equal or very close to the numbers of services in the best
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known solution, with less than 1.00 standard deviation. In terms of search time,
our results are also stable with standard deviation less than 5 % of the aver-
age. The time consumed is short, even for the most complex tasks of WSC2008
(task 3) and WSC2009 (task 4).

In summary, outcomes of our evaluation show that our hybrid approach
to web service composition efficiently generates correct and interpretable near-
optimal solutions.

7.3 Examples of Evolved Programs of No-QoS Aware
Service Composition

The results of web service composition generated by our GP-based approach
are interpretable, i.e., the result trees can be translated into pseudo code that
specifies how to compose services step by step. We always start from the leaves
(inputs) of the tree and move to the root (output) of the tree. Each node of the
tree corresponds to an atomic service, which can be understood as a function
call where all its inputs are the function parameters and all its outputs are the
function returns.

Due to the page limitation, we only briefly discuss two resulting service com-
position solutions, one from OWL-S TC V2.2 and one from WSC 2008. This ser-
vice composition task requests to find a service composition solution for a real
world domain problem, i.e., for a given DURATION, CITY and COUNTRY
find service composition that provides output WEATHERSEASON, MAP and
HOTEL. The service composition solution is very simple, which involves three
atomic services processed in parallel, with each of the atomic services producing
one of the three outputs required. The tree based result is shown in Fig. 6.

Task OWL-S TC V2.2-5: Get the weather, map and hotel given the city.
Inputs: CITY, DURATION, COUNTRY
Outputs: WEATHERSEASON, MAP, HOTEL
S1: Service: CITY WEATHERSEASON SERVICE

Inputs: CITY
Outputs: WEATHERSEASON

S2: Service: CITY MAP SERVICE
Inputs: CITY
Outputs: MAP

S3: Service: DURATIONCOUNTRYCITY HOTEL SERVICE
Inputs: CITY, COUNTRY, DURATION
Outputs: HOTEL

Task 5 of WSC2008 is a relatively complex one. Our greedy algorithm already
found a local best solution with 29 atomic web services which, however, is not yet
the global best solution. Our GP-based approach then produced the global best
solution with 20 atomic web services that are discovered in the first generations.
The tree based result is shown in Fig. 7 below.
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Fig. 6. Service composition solution for task 5 of OWL-S TC V2.2-5.

It can be easily translated into pseudo code. Due to the space limitation we
do not show the pseudo code that can be generated from the solution tree. The
following shows the task and the solution (shown in Fig. 7) produced by our
approach.

Task WSC2008-5: the repository contains 1090 atomic services
Inputs: con428391640, con2100909192
Outputs: con1092196197, con1374634550, con2055848680

Fig. 7. Service Composition Solution for task 5 of WSC2008-5

The matching rules of atomic web services are validated by checking subsump-
tion. For example, consider task 5 of WSC2008. The input of the task is I =
{con428391640, con2100909192}. It matches the input I8 = {con2100909192,
con1368696763} of S8 because con2100909192 occurs in both I and I8, while
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con428391640 in I is a subclass of con1368696763 in I8 according to the
ontology given as part of the test case. Further, the output O8= {con1411706461,
con874272353, con1721591710, con1477657601, con1974742748, con841297848,
con1355382428, con2001163191, con1310528051, con2135522241, con78906
9053, con945139087} of S8 matches the input I4 = {con2135522241, con197269
4064, con945139087} of S4 because con2135522241 and con945139087 occur in
both O8 and I4, while con789069053 in O8 is a subclass of con1972694064 in I4.
Similarly one can see that all other matching rules hold in the computed solution.

7.4 Empirical Results of QoS-Aware Service Composition

Above we have seen that our hybrid approach performs well to generate service
composition solutions with a small number of atomic web services. In Sect. 6
we have proposed an extension of our approach so that it becomes applicable to
the more general QoS-aware service composition problem. To evaluate our pro-
posal we again use the WSC test cases. The service repositories of WSC2008 and
WSC2009 have been extended by attaching QoS properties to the description of
the atomic web services in the repository. Thus, each atomic web service is char-
acterized by its inputs, outputs and QoS values for the QoS properties considered
in this paper (availability, reliability, response time, execution cost). The QoS val-
ues have been randomly chosen in the range of the values found in QWS [1], a
dataset collected for publicly available web services from real domains. In the fol-
lowing we discuss the outcomes of testing our novel GP-based greedy algorithm
enhanced approach with the WSC2008 and WSC2009 repositories extended with
QoS properties. Same as in Sect. 7, because our approach is stochastic we run each
task 30 independent times to record the average and standard deviation of the best
fitness and time consumed. All the other settings are the same as in Sect. 7.

We have conducted tests of our GP-based greedy algorithm enhanced app-
roach using both proposed QoS-fitness functions, the dynamic (fitd) one and the
static one (fits). Table 4 records the overall search times used by our algorithm
for each of the service composition tasks, including the greedy initialization and
the GP evolution till termination. Column “QoS-aware using Dynamic Fitness
(Time)” records the average and standard deviation of the time consumed when
using the dynamic QoS-aware fitness function (fitd). Column “QoS-aware using
Static Fitness (Time)” records the average and standard deviation of the time
consumed when using the static QoS-aware fitness function (fits). For com-
parison we have also included the time consumed by our approach when not
considering QoS requirements as presented in Sect. 7 where we just looked for
service composition solutions with the smallest number of atomic web services,
see column “Not QoS-aware (Time)”.

Moreover, we have recorded the average and standard deviation of the QoS
value of the best service composition solution found when using the dynamic fit-
ness function (in column “QoS-aware using Dynamic Fitness (Fitness of best)”)
and when using the static fitness function (in column “QoS-aware using Static
Fitness (Fitness of best)”) during GP evolution. Note that for better comparison
in both cases we show the static fitness of the best solutions obtained by the
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GP evolution. Recall that the static fitness of an individual is independent of a
specific GP generation, but only depends on the shrunk service repository for
the particular task. Clearly, for a particular task our approach uses the same
shrunk repository, independently of whether the GP evolution is controlled by
the dynamic or the static fitness function. Hence, the shown (i.e., static) fitness
values of the best solutions for both cases can be directly compared.

7.5 Discussion of Our QoS-Aware Service Composition Approach

In Sect. 6 we have extended our GP-based greedy algorithm enhanced approach
to the QoS-aware web service composition problem. A major strength of our
approach is that it starts with an initial reduction of the given service reposi-
tory to those atomic web services that are actually related to the given service
composition task. A further strength is the use of a random greedy algorithm
to generate the initial population for the GP evolution. Both advantages also
hold true for our approach when applied to the more general QoS-aware service
composition problem. This initial computation of the shrunk repositories helps
to dramatically reduce the search space for the web service composition solu-
tions. Hence, our approach can efficiently find near-optimal service composition
solutions in large service repositories with many atomic web services. The greedy
algorithm for the random creation of a first population from the shrunk reposi-
tories overcomes weaknesses of earlier approaches [26] that suffered from many
weak individuals in the beginning of the GP evolution. Further, our approach
does not assume a fixed workflow as service composition structure and therefore
can search for QoS-optimal service compositions while at the same time select-
ing QoS-optimal atomic services from the given repository. Furthermore, the use
of the greedy algorithm for the initialization and for performing mutations in
our approach ensures that each constructed individual constitutes a feasible web
service solution. That is, the matching rules derived from the inputs and output

Table 4. Average results of the tests for QoS-aware service composition

Task Not QoS-aware QoS-aware using Dynamic Fitness QoS-aware using Static Fitness

Time (in ms) Time (in ms) Fitness of best Time (in ms) Fitness of best

WSC2008-1 2338 ± 33 2313 ± 73 0.4745 ± 0.0016 2348 ± 62 0.4748 ± 0.0000

WSC2008-2 2172 ± 23 2146 ± 45 0.5168 ± 0.0002 2199 ± 48 0.5415 ± 0.0000

WSC2008-3 145135 ± 2102 182173 ± 2805 0.4253 ± 0.0025 181448 ± 2400 0.4298 ± 0.0013

WSC2008-4 1301 ± 31 1322 ± 88 0.4503 ± 0.0012 1372 ± 75 0.4534 ± 0.0000

WSC2008-5 7630 ± 52 7588 ± 57 0.4656 ± 0.0020 7626 ± 56 0.4683 ± 0.0007

WSC2008-6 38935 ± 297 38697 ± 442 0.4651 ± 0.0018 38376 ± 315 0.4677 ± 0.0010

WSC2008-7 25433 ± 385 25299 ± 394 0.4728 ± 0.0026 25475 ± 364 0.4773 ± 0.0007

WSC2008-8 27123 ± 257 29825 ± 770 0.4512 ± 0.0011 30313 ± 363 0.4532 ± 0.0006

WSC2009-1 4986 ± 29 4889 ± 42 0.5514 ± 0.0000 4974 ± 41 0.5582 ± 0.0110

WSC2009-2 19086 ± 93 19314 ± 164 0.4771 ± 0.0013 19521 ± 175 0.4787 ± 0.0008

WSC2009-3 19173 ± 179 18917 ± 158 0.4908 ± 0.0012 19113 ± 179 0.4911 ± 0.0012

WSC2009-4 192930 ± 3288 190663 ± 2516 0.4775 ± 0.0026 191652 ± 3063 0.4821 ± 0.0006

WSC2009-5 93209 ± 382 89171 ± 1143 0.4687 ± 0.0026 88480 ± 1678 0.4725 ± 0.0008
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in the service requests are satisfied by each individual. Therefore, no extra step
to check the validity is required and all constructed individuals are interpretable
as service composition solutions.

The empirical results of our tests in Sect. 7.4 show that our GP-based greedy
algorithm enhanced approach can be extended to the QoS-aware service com-
position problem without sacrificing much of its performance, when compared
to the simpler, not QoS-aware service composition problem. For our tests we
have used two different fitness functions to control the GP evolution. Neither
of them has emerged as the clear winner over the other. Roughly speaking, for
both fitness functions the search time of our approach has the same order of
magnitude. The same observation holds true for the QoS of the best individual
found in both cases.

For the majority of tasks in Table 4 the search time was slightly less when
using the dynamic fitness function and the best individual found had slightly
better QoS. However, the observed differences are quite marginal and might be
random effects. As argued above, the static fitness function is easier to implement
and requires less recomputations during the GP evolution. On the other hand,
the dynamic fitness functions permits the use of tighter upper and lower bounds
for the QoS values, which are specific for a particular generation in the GP
evolution. Thus the dynamic fitness might better capture the goodness of an
individual relative to the other individuals in the same generation.

Note that the search time for non-QoS-aware composition, QoS-aware com-
position with static fitness, and QoS-aware composition with dynamic fitness
are not much different. This may be explained as follows: The total search time
is determined by the time for initializing individuals, performing crossover and
mutation operations, and evaluating the fitness values of individuals. The three
kinds of composition just differ in the fitness function that they use. No matter
which fitness function is used, the time for evaluating fitness values of individ-
uals are marginal compared to the total search time. In other words, the time
used for initializing individuals and for performing crossover and mutation oper-
ations dominates the total search time. When comparing the search time for
QoS-aware composition with static fitness and that with dynamic fitness we
notice the following: while the use of a dynamic fitness function may take extra
time for computing the maximum and minimum QoS values within a generation,
the individuals in a generation may consist of less atomic services and, therefore,
less time is needed overall for calculating the fitness values.

We see no reason to generally favour one QoS-aware fitness function over the
other, but recommend to try both for a service composition task at hand. For
service composition tasks where good lower and upper bounds for QoS values
are unknown or hard to obtain, we recommend the dynamic fitness function,
e.g., for service repositories that are not fixed in advance.

8 Conclusions

In this paper we presented an approach for performing web service composition
using a combination of GP and greedy search. The random greedy algorithm is an
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auxiliary to GP. It generates locally optimal individuals for populating the initial
generation for GP, and to perform mutations during GP. Moreover, it guarantees
that the generated individuals are formally correct and thus interpretable for web
service composition. We have applied the GP-based greedy algorithm enhanced
approach to service composition without QoS requirements, and also to QoS-
aware service composition. We have tested our approach with service composition
tasks from the common benchmark test case collections. For QoS-aware service
composition we have proposed two QoS-aware fitness functions, a dynamic and
a static one. The analysis of the experimental results demonstrates that our
approach is efficient, effective and stable for computing near-optimal solutions,
when compared to earlier approaches. Most notably, the initial greedy search
helps to shrink the number of atomic web services to be considered by GP
later on, thus greatly reducing the search space. Our experiments further show
that our approach can be extended to QoS-aware service composition using
any of the two proposed QoS-aware fitness functions, with a small performance
penalty only.

In this paper, multiple QoS criteria are combined into one single criterion
to be optimized during the search for service composition solutions. Our service
composition approach produces only one close to optimal solution. For the cases
where the preferences of QoS properties are not known we may want to provide
multiple solutions so that users can choose a solution according to their prefer-
ences. Therefore, for future work we will investigate the use of multi-objective GP
with the expectation that multiple and often conflicting QoS criteria (e.g., time
and cost) can be optimized simultaneously to produce a set of pareto-optimal
solutions.
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