
Chapter 7
Accelerated Rendering and Fast
Reconstruction of EEG Data
in Real-Time BCI

Ning Wang, Peng Lu, Lipeng Zhang, Shijie Li and Hanghang Hu

Abstract In real-time BCI (Brain Computer Interface), the ITRs (Information
Transmission Rates) is one of the most common criteria for evaluating the per-
formance of the whole system, and one of the key factors is the duration of one
single trial. This paper aims at improving the ITRs by decreasing the duration.
Accelerated rendering is used for drawing raw EEG (Electroencephalogram) data in
presentation thread, and thread scheduling based on adaptive one-sided fuzzy
inference and the mechanism of mutual exclusion and synchronization with sem-
aphore is adopted to recombine intervening data blocks in reconstruction thread.

Keywords Real-time BCI � The mechanism of mutual exclusion � EEG data �
Thread scheduling � Fuzzy inference

7.1 Introduction

The target of BCI (Brain Computer Interface) is to transform awareness into real-
time commands of controlling external devices and communication tools [1, 2].
Compared with offline BCI, continuous and real-time judgement of brain status is
needed in online BCI. The key strategy of a high-performance BCI system is the
immediate processing of raw EEG (Electroencephalogram) data [3]. By far,
the usual policy is adopting general software platform, for instance, LabVIEW

N. Wang � P. Lu (&) � L. Zhang � S. Li � H. Hu
The 27th Research Institute of China Electronics Technology Group Corporation,
Zhengzhou 450047, China
e-mail: lupeng@zzu.edu.cn

N. Wang � P. Lu � L. Zhang � S. Li � H. Hu
School of Electric Engineering, Zhengzhou University, Zhengzhou 450001, China

© Springer-Verlag Berlin Heidelberg 2015
Z. Deng and H. Li (eds.), Proceedings of the 2015 Chinese Intelligent
Automation Conference, Lecture Notes in Electrical Engineering 336,
DOI 10.1007/978-3-662-46469-4_7

61

components are used to handle data streams in document [4], and BCI2000 is
adopted in document [5]. While general software packages fixed function interfaces
or mix too many other function modules, their flexibility and efficiencies are limited
for online BCI system when facing complicated problems. This paper focuses on
solving the instantaneity of online BCI through deeper threads mechanism.

The main performance index of an online BCI system is the ITRs (Information
Transmission Rates) calculated with the following equation (unit: bits/min),

ITRs ¼ B � 60=T; ð7:1Þ

where

B ¼ lbN þ PlbPþ ð1� PÞlb 1� Pð Þ= N � 1ð Þ½ �; ð7:2Þ

indicates the amount of information transmission in a single trial, N indicates the
classification number of awareness recognition, P indicates the accuracy rate of
recognition, and T is the period (unit: s) of a single trial. When N is certain, ITRs
have positive relationship with P and inverse relationship with T. Thus decreasing
T is one of the keys to improve ITRs.

In general, online BCI system [6] with synchronous stimulation, one single trial
can be decomposed into three stages T1, T2, and T3, as shown in Fig. 7.1. The
system samples raw EEG data in T1, presents and reconstructs them in T2, and
analyzes them in T3. Before effective EEG data comes in the next trial, the whole
procedure has to be finished in time. Document [7] lists each parameter’s influences
on ITRs, which still assumes that each trial runs serially.

In our experiment, we found that stage T2, T3 always consume more time than
stage T1, and there are even losses of effective EEG data in some trials. The primary
reason is that a single thread cannot finish the handling of analysis in the time
between the front and rear two sections of effective EEG data. In synchronous BCI,
before the next section of effective EEG data comes, the tasks in T2 and T3 should
be completed in time. This paper focuses on the time factor for ITRs and aims at
decreasing T2 through concurrent thread mechanisms.

Raw EEG
Data sampling

Raw EEG data
presentation

(TP2)

Effective EEG
data extracting

(TR2)

Effective EEG data
identification

Results
output

T1 T2 T3

Fig. 7.1 General procedures of online BCI

62 N. Wang et al.

7.2 Method

Through mechanism of thread concurrency, we decompose a single trial into more
subtasks further, allowing the front subtask enter next trial while the rear subtask is
executing, and make concurrent subtasks execute among adjacent trials.

Decompose the whole online BCI system into 3 main concurrent modules, with
the second module including 2 main threads: the presentation thread and the
reconstruction thread. Duration of the presentation thread and the reconstruction
thread is our research target. Accelerated rendering is used for drawing raw EEG
data in presentation thread, and thread scheduling based on adaptive one-sided
fuzzy inference [8] and the mechanism of mutual exclusion and synchronization [9]
with semaphore is adopted to recombine intervening data blocks in reconstruction
thread.

The thread module structure of the online BCI system is designed as Fig. 7.2.
There are four main threads, namely the sampling thread Th1, the presentation
thread Thp2, the reconstruction thread Thr2, and the analysis and recognition thread
Th3. Besides that, there are more subthreads dominated by Thr2 for fitting better the
complicated change of EEG data size.

7.2.1 Accelerated Rendering of Raw EEG Data

In general, EEG acquisition system such as Neuroscan, the raw EEG data is pre-
sented in a method of superposition by column from left to right with the ordinary
GDI (Graphics Device Interface) drawing [10]. We found that the method of
superposition by column only draws in a local area each time; thus it has a relative
small workload.

This kind of presentation has two main shortages:

1. Each drawing process contains an operation of clearing the local area so as to
cover the data curves of last drawing. Moreover, as the number of EEG sam-
pling channels increases, and the sampling rate speeds up, this phenomenon
becomes more serious. Because the GDI drawing is based on CPU [11], more
operations means more burdens for CPU.

Sampling thread
(Th1)

Presentation
thread (Thp2)

Reconstruction
thread (Thr2)

Buffer
B1

Buffer
B2

Analysis thread
(Th3)

Buffer
B3

Sub work thread
(Ths1……Thsi)

Fig. 7.2 Threading module structure

7 Accelerated Rendering and Fast Reconstruction … 63

2. The procedure of superposition by column is continuous in time but not in
spatial presentation; from Fig. 7.1, we can see that later EEG data may appear on
the left of earlier EEG data. If the EEG data curves can be presented from left to
right all the time, then the presentation will look more intuitive.

Based on the two factors proposed, the accelerated rendering technology is an
available choice. As most computers support GPU-accelerated rendering currently
[12], delivering the presentation to GPU and taking full advantage of the graphics
card can contribute to fluent presentation of large-scale EEG data and relieve the
burden of CPU to some extent. What is more, this can decrease duration of stage
T2, and reserve more CPU resources for the analysis process of stage T3.

Due to the fixed drawing area in a practical EEG system, a circular buffer of
fixed size is feasible, and in the mode of hardware acceleration.

Assume that the sampling rate is S, the EEG channel number and column
number of each data block transmitted from the network is N and C, the pixel width
and height of the drawing area is W and H, and the duration for the presentation of
the whole drawing area is Tp2 (unit: s).

The linguistic descriptions for the procedure of accelerated rendering are as
follows:

1. Buffer construction. Construct a circular buffer B1 with a length of S*Tp2*N as
the frame buffer unit, and initialize the data pointer pHead and pTail to point the
head of B1; construct a vector buffer with a length of S*Tp2 for the accelerated
rendering of graphics card.

2. Matrix transposition. Due to the fact that EEG data of all channels exist con-
tinuously in each data block from the network, a matrix transposition is needed
so that the EEG data of the same channel can be attached directly, as shown in
Fig. 7.2.

3. Data block connection. Now the data block can be attached directly, so put it
into B1 directly and move the tail pointer at the same time. When the length of
EEG data in B1 is S*Tp2, transpose it again to a matrix with row N and column
S*Tp2.

4. Coordinate mapping. According to the position of the drawing area, map the
EEG data values to the screen coordinates and send them to the vector buffer.
Then take each row of data in the vector buffer as one unit and draw them to the
hardware off-screen buffer; after drawing, send them to hardware frame buffer to
finish the accelerated rendering of one row.

5. Pointer handling. When the tail pointer pTail arrives to the tail of B1, it auto-
matically moves from the head next time. When pTail exceeds the head pointer
pHead, pHead automatically moves to the next data block after pTail.

64 N. Wang et al.

7.2.2 Thread Scheduling Against Variable EEG Data

Reconstruction of effective EEG data is a procedure of recombining the data in
working status before recognition. The duration of this procedure is marked as Tr2
in Fig. 7.1, and the target of this section is to decrease Tr2.

Assume the column number of effective EEG data unit for one-time recognition
is L, due to the uncertain appearing time of event mark value in raw EEG data
block, an effective EEG data unit may not start exactly at the beginning of an EEG
data block, so the number of raw EEG data block needed to recombine an effective
EEG data unit should be L/C + 1, in which C is the column number of a raw EEG
data block mentioned in Sect. 7.2.1. The flowchart for reconstruction of effective
EEG data is shown in Fig. 7.3, in which chi indicates the ith sampling channel.

In Fig. 7.3, the green fill area represents an effective EEG data unit, and the
processing steps of reconstruction are as follows:

1. Buffer construction. Construct a second buffer named B2 for storing an effective
data unit, and initialize the data pointer pHead and pTail to point the head of B2;

2. Matrix transposition. Read the event mark value in the raw EEG data block, and
transpose the data block from a matrix with N rows and C columns to another
with C rows and N columns.

3. Data blocks recombining. The data blocks transposed can be put in B2 and
stored sequentially. Move the head pointer pHead to the position pos1 where the
event value begins to appear, and the tail pointer pTail to the position
pos2 = pos1 + k*C when the following kth data block comes, so the length
between pHead and pTail is always an integer multiple of that for a data block.
When the length between pHead and pTail is L, transpose the matrix of the
whole data unit again and use the effective data unit with row N and column
L for analysis afterward.

4. Pointer reset. Move pHead and pTail to the head of B2 and begin the next
reconstruction of another effective data unit.

Data
block 1

Data
block 2

Data block 1
(Transposed)

Data block 2
(Transposed)

Raw data blocks Recognition

Artifacts
removing

Characteristic
extracting

Classification
Recognition

Effective data units

Data block i
(Transposed)

Data Unit

Transposition

EEG
data

streams

ch1

ch2

chn
ch1
ch2

chn

ch1 ch2 chn

Fig. 7.3 Reconstruction of effective EEG data

7 Accelerated Rendering and Fast Reconstruction … 65

Different sampling rate and the data reading speed will lead to increase and
decrease variations of data size. Our experiments show that, due to the accelerated
rendering process, the EEG data in buffer B1 can always be consumed in time,
whereas in buffer B2, the EEG data size may generate all kinds of increase and
decrease variations.

Predicting the changes of data size effectively, and handling the EEG data
flexibly, is the key to prevent the space complexity from increasing, reduce system
delay, and improve the efficiency of the system. The online BCI system has a
typical environment of time-varying multitasking, and compared with traditional
methods, fuzzy inference has a prominent advantage in predicting data variations
[13]. Therefore, a method of fuzzy inference is designed to solve the problems of
predicting data streams variations in nonlinear environment, as shown in Fig. 7.4.
The reconstruction process is fulfilled by the reconstruction thread Thr2 and more
subworking threads Ths. The input r = 0 indicates the desired data size in buffer B2,
the error e indicates the current actual data size, the error rate ec = de/dt indicates
the change rate of data streams, and u indicates number of desired subworking
threads. Data size and the number of subworking threads cannot be negative, as a
result, the structure above is a procedure of one-sided fuzzy inference.

Set M as the initial total number of subworking threads, K as the number of the
subworking threads inferred by fuzzy inference. Take e, ec, and u as the input and
output of fuzzy inference, use positive domain to fuzzily e and u, and use two-sided
domain to fuzzily ec, and adopt the triangle membership function and the Mamdani
minimax reasoning method to design one-sided fuzzy inference rules, as shown in
Table 7.1.

Adopt gravity method for the defuzzification process, and assume the ith fuzzy
rule is:

Ri : If x is Ai and y is Bi; then z is Ci;

Output
u

Change rate
of error ec

Expected input
r

Fuzzy
inference

Error e
Sub threads
scheduling

× Data size in B2

Fig. 7.4 Thread scheduling based on one-sided fuzzy inference

Table 7.1 One-sided fuzzy
inference rules e ec

NB NM NS Z PS PM PB

Z Z Z Z Z PS PS PM

PS Z Z Z PS PS PM PM

PM Z Z PS PS PM PM PB

PB Z PS PS PM PM PB PB

66 N. Wang et al.

where Ai, Bi, and Ci are, respectively, the fuzzy subset of input variables x, y, and
output variable z, thus fuzzy set of z can be obtained through (7.3);

Ri ¼ ðAi and BiÞ ! Ci; R ¼ [n
i¼1

Ri;C
T ¼ ðAT � BTÞ � R ¼ [n

i¼1
CT
i ; ð7:3Þ

where AT ; BT are the fuzzy sets of inputs. The implication operation “→” fuzzy
“and” operator, the synthetic operation “�” adopts maximum–minimum method,
and the minimum, minimum indicate fuzzy “and,” “or” operator. Accurate output z0
can be converted from fuzzy quantity through (7.4).

z0 ¼
Pn

i¼1 zi
R
lCðziÞPn

i¼1

R
lCðziÞ

; ð7:4Þ

where
R
lCðziÞ is the area of conclusion membership function for the ith rule,

ziði ¼ 1; 2; . . .; nÞ indicates the center of each conclusion membership function.
For Mamdani fuzzy inference process with double inputs and one output, set the

error e and its change rate ec as input, and u as output, considering the influences of
quantization factor ke, kec, and scaling factor ku on the system is not monotonous,
influences of different stages are distinct and restrict for each other. Dynamic
correction factors are adopted to adjust quantization and scaling factors ke, kec, and
ku, the adjustment rules are as follows:

keðnþ 1Þ ¼ keðnÞ þ d1
kecðnþ 1Þ ¼ kecðnÞ þ d2
kuðnþ 1Þ ¼ kuðnÞ þ d3

; ð7:5Þ

where d1; d2; d3 are, respectively, the dynamic correction factors of the quantization
factor ke, kec, and scaling factor ku.

In order to make the adjustment rules play a part in the whole domain, use
another variable e as a threshold value to make the control effect more accurate for
small errors, so as to ensure the control accuracy. As e > 0, Thr2’s online automatic
adjustment strategies of parameters are set as follows:

Rule1 : If e[0 and ec[0 then

d1 ¼ Dke; d2 ¼ 0; d3 ¼ �Dku;

Rule2 : If e[0 and ec\0 and e[e then

d1 ¼ Dke; d2 ¼ 0; d3 ¼ Dku;

Rule3 : If e[0 and ec\0 and e\e then

d1 ¼ �Dke; d2 ¼ Dkec; d3 ¼ �Dku;

In rules proposed above, Dke;Dkec;Dku are, respectively, the minimum increment
of ke, kec, and ku, whose values can be set according to actual situations.

7 Accelerated Rendering and Fast Reconstruction … 67

7.2.3 Restricted Access to Shared Resources

Concurrent multitasks can make full use of system resources, and improve the per-
formance of onlineBCI data analysis system [14]. However, influenced by scheduling
properties of the operating system [15], intermediate results are not ordered. In order
to get true awareness instructions, a reliable mechanism of mutual exclusion and
synchronization to ensure the correct recombination of raw EEG data is necessary.

For the analysis process in real-time BCI, the procedure of EEG data processing
is that Th1 receives data and put it in B2, Thr2 control the scheduling of subthreads
Ths, Ths read, recombine EEG data to the form of data units and put them in buffer
B3. Th3 reads data units from B3 and identify them. Direct production–consump-
tion relationship exists between Th1 (P) and Ths (C1, C2, …, Cn), Ths (P1, P2, …,
Pn) and Th3 (C).

Since Th1, Ths, and Th3 are related to the access of shared resources in B2, B3, a
reliable mechanism of mutual exclusion and synchronization is the key to manage
shared resources. Therefore, to solve the mutex and synchronization problem, the
system kernel object such as the mutex lock, the event, and semaphore object are
adopted.

Mutual exclusion and synchronization access rules on B2 are as follows:

1. B2 = 0, all Ths get into synchronous waiting state;
2. B2 ≠ 0, one Ths consumes data block in a method of mutual exclusion.

Set up a semaphore object between Thr2 and Ths, and initialize the resource
count with 0 and the maximum resource count with M; Set a mutex lock among
multiple Ths with its initial state signaled. For thread Thr2, the result K of fuzzy
inference determines the implement times of V.

Mutual exclusion and synchronization access rules on B3 are as follows:

1 Multiple Ths put data units into B3 in the correct sequence exclusively;
2 B3 = 0, Th3 get into the synchronous waiting state.

Set a mutex lock (hMutex2) for multiple Ths with initial state signaled; Set an
event object (hEvent2) between Ths and Th3 with initial state nonsignaled; Set two
global variables (TR, TW) protected by the mutex as the token numbers to control the
correct recombination of intermediate results. Each Ths carries the token number
information through a TLS (Thread Local Storage) [16] variable with the same name.

7.3 Results and Discussion

Subject selections: Select graduate students with healthy physical and normal vision
correction, and the ratio of male to female is 1:1. Subjects and the EEG acquisition
system are in a shielded room. Indoor lighting is darker to reduce the EOG (Electro-
Oculogram) artifacts and distraction caused by surrounding environment.

68 N. Wang et al.

System structure configurations: CPU Intel (R) Celeron (R) 2.5 GHz, 2.5 GHz;
RAM: 4.00 GB; Operating system platform: Windows 7, 32 bit; Signal stimulation
equipment: E-Prime2.0; Data acquisition system: Neuroscan 4.5; Offline analysis
environment: MATLAB R2010a.

Experimental paradigms: Stimulation time of each trial: 3 s; Stimulus onset
asynchrony: 2 s; Presentation order: random; Use 10–20 system electrode cap with
64 channels, and choose original raw EEG data of C3, C4, FC3, and FC4 channels
for multimodal analysis.

We chose six students (male:female = 3:3), and let each one have two online
synchronous stimulus experiments. In each one’s two experiments, one was with
ordinary drawing and thread scheduling, while the other was with accelerated
rendering and adaptive thread scheduling. Moreover, the latter experiment’s
effective EEG data units were immediately saved as the experiment was in progress,
so that we could verify the accuracy of online BCI experiment results through
offline analysis. Each experiment contains 80 trials.

First, we compared the two kinds of drawing effects and durations of completing
a whole window screen repainting.

Figure 7.5 displays the effect of ordinary drawing method. In normal running
state, this kind of presentation through superposition by column seems not prob-
lematic; however, when encountering the restoring of a window from the mini-
mized state, the window screen began to show an evident sign of stuck drawing
process due to tremendous EEG data.

In contrast, Fig. 7.6 shows the accelerated rendering for all kinds of status.
Dynamic drawing processes reflect the rapidity and stability of accelerated
rendering.

Moreover, the duration of drawing time for a whole window screen is shown in
Fig. 7.7 for the six subjects, from which, we can see that the accelerated rendering
consumes significantly less time than the other.

Then we set a monitoring window to display dynamic changes of data size in B2
and corresponding number of active subthreads, and compared thread scheduling
under different conditions, including the ordinary methods just according to the
EEG data size in B2, and the adaptive methods based on the adaptive one-sided

Fig. 7.5 Delay of screen refresh. a Neuroscan’s normal drawing status. b Neuroscan’s row
drawing delay in repainting. c Our client’s column drawing delay in repainting with ordinary
drawing

7 Accelerated Rendering and Fast Reconstruction … 69

fuzzy inference according to both the EEG data size and its variation trend.
Figure 7.8 shows dynamic variation of data size in B2 and number of active
subthreads following time under condition of ordinary thread scheduling.

Next, we tested the adaptive fuzzy inference process in the main working thread
Thr2, and provided a set of suitable parameters according to the actual situation.
The basic parameters include basic domain and fuzzy subset domain of the error e,

Fig. 7.6 Presentation of accelerated rendering

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

Drawing time for a whole window screen(ms)

Su
bj

ec
t n

um
be

r

GDI drawing
Accelerated rendering

Fig. 7.7 Comparison of two
kinds of drawing time for a
whole window screen
repainting

70 N. Wang et al.

the error rate of change ec, and the output u, and the corresponding quantization,
scale factor ke, kec, and ku, as shown in Table 7.2.

The minimum increments of ke, kec, and ku were set as Dke ¼ 0:5ke; Dkde ¼
0:25kde; Dku ¼ 0:125ku; the switch threshold of error change was set as e ¼ 3, and
the parameters of the fuzzy inference process were adjusted according to Rule1,
Rule2, and Rule3 proposed above in Sect. 7.2.2. Afterward, we re-ran the system
and observed dynamic variation of data size in B2 and corresponding number of
active subthreads following time under adaptive fuzzy inference, as shown in
Fig. 7.9.

Compare Figs. 7.9 with 7.8, data size in B2 changes obviously and K keeps a
trend of oscillation for ordinary thread scheduling, whereas on condition of adaptive
fuzzy inference, data size in B2 becomes relatively stable, and with the increase of
K from the initial stage, only some but small overshoot appears, moreover, K is
always approaching a stable state following time variation.

At last, we compared the average delay time of the two kinds of online handling
methods in each trial. The raw EEG data was saved for offline analysis at the same
time. Final statistical results are shown in Fig. 7.10 and Table 7.3, in which the
offline recognition time amounts to the serial time of one trial, i.e., T1 + T2 + T3,
considering some overlaps existing between two adjoining trials on condition of
online real-time concurrence, the duration of one trial in online BCI is an average of
all trials from the start time to the end time.

Fig. 7.8 Thread scheduling
through ordinary methods

Table 7.2 Setting of domain, quantization factor, and scale factor

Variable Basic domain Fuzzy subset domain Quantization/scale factor

e [0, 5] [0, 6] ke = 1.2

ec [−20, 20] [−6, 6] kec = 0.3

u [0, 30] [0, 6] ku = 0.2

7 Accelerated Rendering and Fast Reconstruction … 71

Based on the same recognition algorithms, the procedure of offline analysis
amounts to implementation of serial trials, thus has the longest time, as can be seen
from Fig. 7.10. Concurrence of online BCI data analysis system makes the delay
time overlapped for each trial, thus reduces the average delay time of each trial.
What is more, from Fig. 7.8 and Table 7.3 we can see that ordinary thread
scheduling is less adaptive to high-speed EEG data streams, thus has a relatively
low recognition rate due to some losses of effective EEG data, whereas adaptive
thread scheduling decreases the average delay time to about 2.1 s with a compar-
ative accuracy rate, which is significant enough to the improvement of ITRs.

Fig. 7.9 Thread scheduling
through adaptive fuzzy
inference. a System running
in the initial stage. b System
running in the stable stage

72 N. Wang et al.

Figure 7.11 is an overall running status of the whole system showing the event
mark value and the result on condition of adaptive thread scheduling, in which the
bars indicate the actual event mark values and the curves indicate the recognition
results. The whole system runs stably and keeps relatively short delay time from
beginning to end.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

Average delay time of one trial (ms)

Su
bj

ec
t n

um
be

r

Offline recognition
Ordinary thread scheduling
Adaptive thread scheduling

Fig. 7.10 Delay time of one
trial under different conditions

Table 7.3 Result comparison for 80 trials

Subject
number

Ordinary online
recognition

Adaptive online
recognition

Offline recognition

Correct
results

Accuracy
rate (%)

Correct
results

Accuracy
rate (%)

Correct
results

Accuracy
rate (%)

1 64 80.00 64 80.00 65 81.25

2 61 76.25 65 81.25 66 82.50

3 59 73.75 64 80.00 66 82.50

4 60 75.00 64 80.00 65 81.25

5 59 73.75 66 82.50 67 83.75

6 60 75.00 64 80.00 65 81.25

Average 75.62 80.63 82.08

Fig. 7.11 Running status of our system showing the event mark value and the result

7 Accelerated Rendering and Fast Reconstruction … 73

7.4 Conclusion

Accelerated rendering and fast reconstruction proposed by this paper is an effective
way to improve the rapidity and stability of online real-time BCI system. Through
the mechanism of thread concurrency, each module can make full use of the system
resources; through accelerated rendering, the presentation of raw EEG data can be
more fluent; and through fast reconstruction, effective EEG data unit can be ana-
lyzed timely. What is more, thread scheduling based on adaptive one-sided fuzzy
inference in the process of reconstruction can enhance the robustness of the whole
system for responding to the complicated data streams on condition of different
sampling rate. As the statistical results show, integrative design scheme decreases
the average delay time of one single trial, and improve the ITRs.

Acknowledgments Fund Project: The National Natural Science Fund (NO.60841004, 60971000,
61172152).

References

1. Allison BZ, Brunner C, Altstätter C et al (2012) A hybrid ERD/SSVEP BCI for continuous
simultaneous two dimensional cursor control. J Neurosci Methods 209(2):209–307

2. Geng T, Gan JQ, Hu H (2010) A self-paced online BCI for mobile robot control. Int J Adv
Mechatron Syst 2(1–2):28–35

3. Liu T, Yang P, Peng X, Huang Y, Yao D (2009) Real-time brain-computer interface system
based on motor imagery. J Electron Sci Technol Chin 7(1)

4. Yu X (2012) Real time brain-computer interface based on alpha rhythms in
electroencephalography. J Chongqing Univ Technol (Nat Sci) 26(7):89–93, 2012

5. Henderson A (2010) A design for a middleware communications layer between an industrial
robotic arm and the BCI2000 software package. In: Proceedings of Florida conference on
recent advances in robotics

6. Chin Z, Ang K, Wang C, Guan C, Zhang H (2009) Multi-class filter bank common spatial
pattern for four-class motor imagery BCI. In: Engineering in medicine and biology society,
annual international conference of the IEEE, vol 1, pp 571–574

7. Yuan P, Gao X, Allison B et al (2013) A study of the existing problems of estimating the
information transfer rate in online brain–computer interfaces. J Neural Eng 10(2) (Article ID
026014)

8. Leite D, Ballini R, Costa P, Gomide F (2012) Evolving fuzzy granular modeling from
nonstationary fuzzy data streams. Evolving Syst 3(2):65–79

9. Katz G, Peled D (2008) Genetic programming and model checking: synthesizing new mutual
exclusion algorithms, automated technology for verification and analysis. Springer, Berlin,
pp 33–47

10. Han L, Kong Q, Yang F, Li W (2012) Visualization of multi-beam bathymetric data based on
GDI. Sci Surveying Mapp 4:051

11. Li Q, Hai T (2010) The study on GDI/GDI + rendering function defects and how to avoid
them. In: 2010 2nd international conference on Information engineering and computer science.
IEEE, pp 1–5

12. Kutter O, Shams R, Navab N (2009) Visualization and GPU-accelerated simulation of medical
ultrasound from CT images. Comput Methods Programs Biomed 94(3):250–266

74 N. Wang et al.

13. Long Z, Liang X, Yang L (2010) Some approximation properties of adaptive fuzzy systems
with variable universe of discourse. Inf Sci 180(16):2991–3005

14. Gebhart M, Johnson DR, Tarjan D et al (2012) A hierarchical thread scheduler and register file
for energy-efficient throughput processors. ACM Trans Comput Syst 30(2):8

15. Zhuravlev S, Blagodurov S, Fedorova A (2010) Addressing shared resource contention in
multicore processors via scheduling. ACM SIGARCH Comput Archit News 38(1):129–142

16. Carribault P, Pérache M, Jourdren H (2011) Thread-local storage extension to support thread-
based MPI/OpenMP applications, OpenMP in the Petascale Era. Springer, Berlin pp 80–93

7 Accelerated Rendering and Fast Reconstruction … 75

	7 Accelerated Rendering and Fast Reconstruction of EEG Data in Real-Time BCI
	Abstract
	7.1 Introduction
	7.2 Method
	7.2.1 Accelerated Rendering of Raw EEG Data
	7.2.2 Thread Scheduling Against Variable EEG Data
	7.2.3 Restricted Access to Shared Resources

	7.3 Results and Discussion
	7.4 Conclusion
	Acknowledgments
	References

