
Chapter 6
Hybrid Dependency Parser
with Segmented Treebanks and Reparsing

Fuxiang Wu and Fugen Zhou

Abstract We propose a hybrid dependency parsing pipeline which combines
transition-based parser and graph-based parser, and use segmented treebanks to
train transition-based parsers as subparsers in front end, and then propose a con-
strained Eisner’s algorithm to reparse their outputs. We build the pipeline to
investigate the influence on parsing accuracy when training with different seg-
mentations of training data and find a convenient method to obtain parsing reli-
ability score while achieving state-of-the-art parsing accuracy. Our results show that
the pipeline with segmented training dataset could improve accuracy through
reparsing while providing parsing reliability score.

Keywords Hybrid dependency parsing � Constrained Eisner’s algorithm � Parsing
reliability score � Transition-based parser � Graph-based parser

6.1 Introduction

A good amount of research has been devoted to parsing technology, due to the
importance of dependency parsing, and many natural language applications, such as
information retrieval and Q&A system [10], employing it as a base component, and
their performance may highly rely on the parsing result.

Recent methods of dependency parsing can be divided into two classes: data-
driven methods and rule-based methods. Data-driven methods usually are statistical
parser and use some machine learning algorithms to catch the statistical features of
data in order to produce syntactic relations of words in sentences.

F. Wu (&) � F. Zhou
Image Processing Center, Beihang University, Beihang, China
e-mail: fxwuedu@buaa.edu.cn

F. Zhou
e-mail: zhfugen@buaa.edu.cn

© Springer-Verlag Berlin Heidelberg 2015
Z. Deng and H. Li (eds.), Proceedings of the 2015 Chinese Intelligent
Automation Conference, Lecture Notes in Electrical Engineering 336,
DOI 10.1007/978-3-662-46469-4_6

53



Most of the state-of-the-art parsers are statistical parser, parsing accuracy of
which highly relies on the quality and quantity of treebank [3, 6, 11]. There are
several treebanks in China for syntactic parsing, such as Penn Chinese Treebank
(CTB) [8] and Chinese Dependency Treebank (CDT). The CTB is constituency
annotation and was retrieved from Xinhua Newswire, Hong Kong news, Sinorama
and ACE broadcast news, while the CDT is a dependency treebank which was
retrieved from People’s Daily newswire stories. Occurrence frequency of syntactic
substructure (subtree) in one treebank may vary from another. Some would fre-
quently occur in the treebank but others would not. The rare syntactic substructures
of some sentences in the treebank are well formed for human, but would be
abandoned when there are some common syntactic substructures which are conflict
with the rare ones and prevent the parser from handling rare syntactic structures
correctly. This would lead to label attachment recall rate degradation partly.

In order to examine the assumption, we segment treebank into k-parts in one
round, and train a transition-based parser (subparser) for each part, and then a result
set generated by the subparsers is compared with k-best generated by parser trained
with full treebank. We learn that label attachment recall rate of k-segments would
be higher than corresponding k-best’s, and this confirms the assumption. Depending
on this phenomenon, we further employ a parser to post-reparse the subparsers
output. Since transition-based parser and graph-based parser have different training
and inference algorithms [5, 7] and have different behaviors, we construct the post-
reparser with constrained Eisner’s algorithm [2, 4] to find maximum spanning trees
(MST). The experiment shows that the pipeline could improve the parsing accuracy
while computing the parsing reliability score.

6.2 Parsing Pipeline

The pipeline in this paper addresses the general structural prediction problem,
which map an input sentence x 2 X to an output dependency structure y 2 Y, which
is composed of edge e,

e ¼ i; j; ; lh i
i; j;!; lh i

�
ð6:1Þ

where i and j are relation endpoints, l is dependent label in label set L. We employ
transition-based parser with beam search [9] as subparser and use MST parser with
conditional random field as post-reparser. In CRF model, the output y probability
would be,

p yjxð Þ ¼ exp f y; xð Þ � kð Þ=Z xð Þ ð6:2Þ

54 F. Wu and F. Zhou



where f y; xð Þ maps y and x to a feature vector, λ is a corresponding weight vector,
and Z xð Þ is the normalization factor. For a sentence x, the parsing result y is cal-
culated by finding the highest probability one among the all possible results,

O xð Þ ¼ argmaxy2PSET xð Þ p yjxð Þ ð6:3Þ

where PSET xð Þ denotes the set of the possible result for the sentence x.
The pipeline is composed of a training procedure and a parsing procedure. The

training procedure mainly creates a set of subparsers which are transition-based
parser. And in parsing procedure, we first use this set of subparsers to achieve a
result set, and then reparse the set to compute the best output.

6.2.1 Training

The training procedure is as follows:

• Segmenting treebank into equally sized sub-treebanks X ¼ bif gi¼1;...;N
• Training subparser ti with sub-treebank bi 2 X to build a set of subparsers

CN ¼ tif gi¼1;���;N .
• Training the MST parser T with the whole treebank to calculate the weight

vector kT for features.

Through this procedure, we get a trained model N;CN ; kT ; fTf g, where N is the
number of subparsers trained by segmented treebanks; fT is a feature extract
function of MST parser, built by feature temples.

6.2.2 Post-reparsing

In parsing step, a set of result R ¼ rif gi¼1;...;N , which is different from N-best result,
have been generated by subparser in CN for an input sentence x. We use them to
constrain the searching space for the sentence (far small than the full searching
space), and then employ constrained Eisner’s algorithm to extract the best result.
The constraint scores are obtained as follows:

sc e;Rð Þ ¼ fT eð Þ � kT if e 2 ri; i ¼ 1; . . .;N
0 else

�
ð6:4Þ

where fT eð Þ maps edge e to a feature vector. And mixture score is as follows:

smixc e;R; að Þ ¼ a � fT eð Þ � kT þ 1� að Þ � sc e;Rð Þ ð6:5Þ

6 Hybrid Dependency Parser … 55



where α is a mixture factor which controls the strength of constraint from the result
set, given a sentence S ¼ w0w1 � � �wN and the corresponding R. The post-reparsing
procedure is as follows (Table 6.1).

6.2.3 Reliability Score of Dependency Relation

With the pipeline, we can get a set of subparsers CN , in which each subparser is
trained by different parts of training corpora. Because each part of corpora can be
seen as unseen data from other part, we can assume that the parsing result of each
subparser for a sentence is supported by the corresponding part of training corpora.
Thus, reliability score can be calculated like a weighted voting scheme [1] as
follows:

c eið Þ ¼
X

e2Ei;e¼ei
exp n � fT eð Þ � kTð Þ

,X
e2Ri

exp n � fT eð Þ � kTð Þ ð6:6Þ

where Ei is a set of dependency relationships i; �; �; �h i, which is ith relationship of
dependency structure in set R, ξ is an adjusting factor, and when n ¼ 0; c eið Þ is
normal voting score for edge ei.

Table 6.1 Pseudo-code for constrained Eisner’s algorithm

56 F. Wu and F. Zhou



6.3 Baseline and Experiments

This section presents the pipeline experiments of segmentation and post-reparsing.
Before this, we only evaluate the pipeline with Chinese Penn Treebank corpora as
heavy computation cost for the CRF training without loss of generality. We split
sentences in the Penn Treebank 6.0 into training, development, and test set as
Table 6.2, and then employ the head-finding rule to translate them into dependency
structures.

Baseline parsers are ZPar1 dependency parser, MSTParser2, and crfParser,3

which are open source projects and have achieved state-of-the-art accuracy. They
are trained with the training data in Table 6.2, and use their default feature temple,
respectively. The test results are as follows (Table 6.3).

where MSTParser1 and crfParser are first order graph-based parsers, MSTParser
is second order parser, and ZPar is transition-based dependency parser.

In order to explore the phenomenon brought by corpora segmentation, we
segment the training data into parts with different number, namely,
H ¼ ½2; 3; 4; 6; 12�, and then build the set of subparser CK for each k 2 H.

6.3.1 Attachment Recall Rate

Labeled/unlabeled attachment recall rate (LAR/UAR) is the ratio of correct labeled/
unlabeled attachment among the dependency structure of result set,

Table 6.2 The training,
development, and test data for
CTB6

File index Sentences

Training 1–1129; 2019–2923 24,092

Dev 2924–3012; 3108–3145 1191

Test 1130–1151; 2000–2018;
3013–3107

2846

Table 6.3 The test results of
the baseline parsers ZPar MSTParser1 MSTParser2 crfParser

LAS 0.824361 0.775656 0.763978 0.782913

UAS 0.83939 0.81595 0.82032 0.8024

1 http://sourceforge.net/projects/zpar/.
2 http://sourceforge.net/projects/mstparser/.
3 http://sourceforge.net/projects/crfparser/.

6 Hybrid Dependency Parser … 57

http://sourceforge.net/projects/zpar/
http://sourceforge.net/projects/mstparser/
http://sourceforge.net/projects/crfparser/


LAR Pð Þ ¼ P
RK ;rcð Þ2P

dL RK ; rcð Þ
,P

RK ;rcð Þ2P rcj j

UAR Pð Þ ¼ P
RK ;rcð Þ2P

dU RK ; rcð Þ
,P

RK ;rcð Þ2P rcj j

8>>>><
>>>>:

where RK and rc are a set of parsing result and gold dependency structure for a
sentence, P generated from test data is a set of RK ; rcð Þ; rcj j is the number of
relationship in dependency rc, function dLðRk; rcÞ counts the correct dependency
relationships with label in rc which coexist in result set Rk, and function dU counts
similarly without label.

We calculate LAR and UAR for the k-segment’s result set RK and baseline
parser’s k-best result. The relationship between number of parts and attachment
recall rate is as follows.

With data segmentation, we can achieve higher LAR and UAR then k-best
parsing result, this means that the dataset RK would cover more correct dependency
relationship than the k-best dataset. It would be beneficial to postprocessing in the
pipeline, such as reparsing and reranking, with small searching space.

6.3.2 Post-reparsing

In post-reparsing state, we analyze the result set generated by the set of subparser
CN or the N-best result made by baseline parser to get final parsing result, and their
accuracy is as follows.

For each k 2 H, we search the best a 2 0; 1½ � for calculating the LAS/UAS of
each k-segment’s or k-best result. The highest LAS of 2-segmentation is 83.2112,
and is 0.7751 % higher than the ZPar in baseline parsers, and 2-best’s is 83.1275 %.
From Fig. 6.2, we could see that the LAS of k-segment and k-best is lower than the
ZPar’s when k > 2, meanwhile, k-segment’s LAS is lower than k-best’s. The reason
may be the postparser, which is first-order minimum spanning tree parser with local
features, is not powerful enough to utilize the higher label attachment recall rate.
That is why 2-segment’s LAS is higher than 2-best’s. From Fig. 6.1, we could find
that k-segment’s LAR ascends faster than k-best’s, and the k-best’s LAS descend
slower than k-segment’s since k > 3 in Fig. 6.2, this is also shown that the post-
parser needs a finer design. Besides, we employ reliability score c eið Þ to rerank the
result set RK , the result is as follows:

From Fig. 6.3, we can find that using reliability score c eið Þ to directly select
dependency relationship is feasible. Their LAS/UAS are higher than each element
in k-segment’s result set, but their output may be not a tree, and need further
process. The LAS/UAS of reranking result is lower than the baseline ZPar, this may
also due to weakness of the postparser as well.

58 F. Wu and F. Zhou



0.78
0.8

0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96

2 3 4 6 12 24

A
cc

ur
ac

y

Number of Parts

ZPar n-best's LAR ZPar n-best's UAR

crfParser n -best's LAR

crfParser n-best's UAR n-segment's LAR

n-segment's UAR

Fig. 6.1 The labeled/unlabeled attachment recall rate (LAR/UAR)—number of parts curve

0.8

0.81

0.82

0.83

0.84

0.85

2 3 4 6 12 24

A
cc

ur
ac

y

Number of Parts
k-segment LAS k-segment UAS
k-best LAS k-best UAS

Fig. 6.2 The LAS/UAS of reparsing for k-segment’s and k-best result set

0.71
0.73
0.75
0.77
0.79
0.81
0.83
0.85

2 3 4 6 12 24

A
cc

ur
ac

y

Number of Parts

reranking LAS reranking UAS
single part LAS single part UAS

Fig. 6.3 The LAS/UAS of reranking for k-segment’s result set. The dot line is the maximum LAS/
UAS of element in k-segment’s set

6 Hybrid Dependency Parser … 59



6.4 Conclusions and Future Work

We build a hybrid parsing pipeline, which employs transition-based dependency
parser as subparser in front end, and then use graph-based dependency parser in
next stage. Finally, we investigate the influence on the pipeline with different
k-segment dataset. From the experiment, we found that using segmentation of
training data would largely improve the labeled/unlabeled attachment recall rate
with some final LAS/UAS drop, and the result set generated by the subparsers with
high attachment recall rate could be used to calculate reliability score, such as
simple voting scheme used in this paper. Besides, the hybrid pipeline could
improve the final LAS/UAS when using 2-segment. But it cannot further improve
the accuracy due to weak postparser. In future, we would try to use more sophis-
ticated parser as postparser to explore the searching space constructed by the
subparsers effectively.

References

1. Collins M (2002) Ranking algorithms for named-entity extraction: boosting and the voted
perceptron. In: Proceedings of the 40th annual meeting on association for computational
linguistics (ACL’ 02), pp 489–496

2. Eisner J (1996) Three new probabilistic models for dependency parsing: an exploration. In:
Proceedings of the 16th international conference on computational linguistics (COLING-96),
pp 340–345

3. Li ZH, Liu T, Che WX (2012) Exploiting multiple treebanks for parsing with quasi-
synchronous grammars. In: Proceedings of the 50th annual meeting of the association for
computational linguistics (ACL’ 12), pp 675–684

4. McDonald R, Pereira F (2006) Online learning of approximate dependency parsing
algorithms. In: Proceedings of the 11th international conference of the European chapter of
the association for computational linguistics (EACL 2006), pp 81–88

5. Nivre J, McDonald R (2008) Integrating graph-based and transition-based dependency parsers.
In: Proceedings of the 46th annual meeting of the association for computational linguistics,
pp 950–958

6. Niu ZY, Wang HF, Wu H (2009) Exploiting heterogeneous treebanks for parsing. In:
Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th
international joint conference on natural language processing of the AFNLP, pp 46–54

7. Plank B, Noord GV (2010) Grammar-driven versus data-driven: which parsing system is more
affected by domain shifts? In: Proceedings of the 2010 workshop on NLP and linguistics:
finding the common ground (NLPLING’ 10), pp 25–33

8. Xue NW, Xia F, Chiou FD, Palmer M (2005) The Penn Chinese treebank: phrase structure
annotation of a large corpus. Nat Lang Eng 11(2):207–238

9. Zhang Y, Clark S (2011) Syntactic processing using the generalized perceptron and beam
search. Comput Linguist 37(1):105–151

10. Zhou GY, Cai L, Zhao J, Liu K (2011) Phrase-based translation model for question retrieval in
community question answer archives. In: Proceedings of the 49th annual meeting of the
association for computational linguistics: human language technologies (HLT’ 11), pp 653–662

11. Zhou GY, Zhao J (2013) Joint inference for heterogeneous dependency parsing. In: The 51st
annual meeting of the association for computational linguistics, pp 104–109

60 F. Wu and F. Zhou


	6 Hybrid Dependency Parser with Segmented Treebanks and Reparsing
	Abstract
	6.1 Introduction
	6.2 Parsing Pipeline
	6.2.1 Training
	6.2.2 Post-reparsing
	6.2.3 Reliability Score of Dependency Relation

	6.3 Baseline and Experiments
	6.3.1 Attachment Recall Rate
	6.3.2 Post-reparsing

	6.4 Conclusions and Future Work
	References


