
Chapter 4
Robust Weighted Measurement Fusion
Kalman Filter with Uncertain Parameters
and Noise Variances

Chunshan Yang and Zili Deng

Abstract For the multisensor time-invariant system with both the uncertainties
noise variances and parameters, by introducing a fictitious white noise to com-
pensate the uncertain parameters, based on the minimax robust estimation principle
and the Lyapunov equation method, a robust weighted measurement fusion Kalman
filter is presented. It is proved that for prescribed upper bound variance of fictitious
noise, there exists a sufficiently small robust region of uncertain parameter per-
turbances, such that its actual filtering error variances are guaranteed to have a
conservative upper bound. A simulation example shows how to search the robust
region, and shows its good performances.

Keywords Uncertain parameters � Uncertain noise variances � Fictitious white
noise � Weighted measurement fusion � Minimax robust Kalman filter

4.1 Introduction

Multisensor information fusion Kalman filtering has been applied to many fields,
[1, 2]. One of the key assumptions in Kalman filtering is that the model parameters
and noise variances are exactly known. But in many applications, this condition
cannot always hold, thus the performance of the Kalman filter may degraded or an
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inexact model may cause the filter divergence [3]. This has stirred up many studies
on robust Kalman filter design.

So far, robust Kalman filters for systems with uncertain parameters have been
designed, two important approaches are the Riccati equation approach [3] and linear
matrix inequality (LMI) approach [4]. The robust Kalman filters for systems with
uncertain noise variances have been designed [5, 6], a Lyapunov equation approach
is presented to prove the robustness of the proposed robust Kalman filters. Up to
now, the robust Kalman filters for uncertain systems both in noise variances and
model parameters are seldom considered.

In this paper, we consider these two uncertainties for multi-sensor invariant
system. By introducing a fictitious white noise to compensate the uncertain model
parameter, the uncertain system can be converted into the worse-case conservative
system with known parameters and uncertain noise variance. Using the minimax
robust estimation principle, weighted least squares method, a robust weighted
measurement fusion Kalman filter is presented based on the worst-case conservative
system with the conservative upper bounds of noise variances. Furthermore, the
robustness of the proposed robust Kalman filters is proved by Lyapunov equation
approach.

4.2 Weighted Measurement and Local Robust Steady-State
Kalman Filter

Consider the true discrete system with uncertain noise variances and uncertain
model parameters.

x t þ 1ð Þ ¼ Ue þ DUð Þx tð Þ þ Cw tð Þ ð4:1Þ

yiðtÞ ¼ HixðtÞ þ viðtÞ; i ¼ 1; . . .; L ð4:2Þ

where state xðtÞ 2 Rn, measurement of the ith subsystem yi tð Þ 2 Rmi . wðtÞ 2 Rr and
vi tð Þ are uncorrelated white noises with zero means and uncertain actual variances
�Q and �Ri, respectively. Assume that Q and Ri are conservative upper bounds of �Q
and �Ri, i.e.,

�Q�Q; �Ri �Ri; i ¼ 1; . . .; L ð4:3Þ

Ue; C; Hi are known constant matrices. U ¼ Ue þ DU is the true transition matrix.
DU is the uncertain perturbances of model parameter matrix and satisfies that

DU 2 <DU ð4:4Þ

And each subsystem is completely observative and completely controllable.
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A fictitious white noise n tð Þ with zero mean and upper bound variance Dn [ 0 is
used to compensate the uncertain model parameter error term DUx tð Þ in (4.1), then
the system (4.1) and (4.2) is transformed into the following worse-case conservative
system with known parameters and uncertain noise variance

x t þ 1ð Þ ¼ Uex tð Þ þ Cw tð Þ þ n tð Þ ð4:5Þ

yiðtÞ ¼ HixðtÞ þ viðtÞ; i ¼ 1; . . .; L ð4:6Þ

Assume that each measurement matrix Hi has a common m� n right factor

H [7], i.e., Hi ¼ MiH; i ¼ 1; . . .; L and define Mð0Þ ¼ MT
1 ; . . .; MT

L

� �T
, where the

symbol T denotes the transpose. Assume that Mð0Þ is of full-column rank. The
centralized fusion measurement equation is given as

ycðtÞ ¼ HcxðtÞ þ vcðtÞ ð4:7Þ

Hc ¼ HT
1 ; . . .;H

T
L

� �T
; vc tð Þ ¼ vT1 tð Þ; . . .; vTL tð Þ� �T ð4:8Þ

and vc tð Þ has the conservative and actual variance matrix

Rc ¼ diagðR1; . . .;RLÞ; �Rc ¼ diagð�R1; . . .; �RLÞ ð4:9Þ

Applying the WLS method, Eq. (4.7) can be converted into

yMðtÞ ¼ HxðtÞ þ vMðtÞ ð4:10Þ

where yMðtÞ is the conservative weighted fusion measurement, vMðtÞ is the fused
measurement white noise, such that

yM tð Þ ¼
XL
i¼1

MT
i R

�1
i Mi

� ��1 XL
i¼1

MT
i R

�1
i yiðtÞ ð4:11Þ

vM tð Þ ¼
XL
i¼1

MT
i R

�1
i Mi

� ��1 XL
i¼1

MT
i R

�1
i viðtÞ ð4:12Þ

vM tð Þ has the conservative and actual variances matrix [5]

RM ¼ Mð0ÞTR�1
c Mð0Þ

h i�1
ð4:13Þ

�RM ¼
XL
i¼1

MT
i R

�1
i Mi

� ��1 XL
i¼1

MT
i R

�1
i
�RiR

�1
i Mi

XL
i¼1

MT
i R

�1
i Mi

� ��1 ð4:14Þ
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For the conservative system (4.5) and (4.11), we have the conservative weighted
measurement fusion steady-state Kalman filter

x̂M tjtð Þ ¼ WMx̂M t � 1jt � 1ð Þ þ KMyM tð Þ ð4:15Þ

WM ¼ In � KMH½ �Ue; KM ¼ RMH
T HRMH

T þ RM
� ��1 ð4:16Þ

RM satisfies the steady-state Riccati equation

RM ¼ Ue RM � RMHT HRMHT þ RM
� ��1

h i
UT

e þ CQCT þ Dn ð4:17Þ

From (4.5), (4.11), and (4.15), we have

~xM tjtð Þ ¼ WM~xM t � 1jt � 1ð Þ þ In � KMH½ � Cw t � 1ð Þ þ n t � 1ð Þ½ � � KMvM tð Þ
ð4:18Þ

So we have the conservative filtering error variance

PM ¼ WMPMW
T
M þ In � KMH½ � CQCT þ Dn

� �
In � KMH½ �TþKMRMK

T
M ð4:19Þ

Now we find the actual filter error variance

~xM tjtð Þ ¼ x tð Þ � x̂M tjtð Þ ð4:20Þ

where x tð Þ is the true state given in (4.1), x̂M tjtð Þ is the actual Kalman filter (4.15)
with yM tð Þ is the actual fused measurement (4.11) with yi tð Þ is the actual yi tð Þ are
define by (4.1) and (4.2).

Notice that the actual system (4.1)–(4.2) and conservative system (4.5)–(4.6)
have the same weighted measurement fusion equation as (4.10)–(4.11).

For the actual system, x tð Þ is defined by (4.1) and yM tð Þ is defined by the actual
measurement based on (4.1) and (4.2). Hence we have the actual error

~xM tjtð Þ ¼ Uex t � 1ð Þ þ DUx t � 1ð Þ þ Cw t � 1ð Þ � x̂M tjtð Þ ð4:21Þ

From (4.1), (4.2) and (4.15) we have

~xM tjtð Þ ¼ WM~xM t � 1jt � 1ð Þ þ In � KMH½ �Cw t � 1ð Þ
þ In � KMH½ �DUx t � 1ð Þ � KMvM tð Þ ð4:22Þ

So we have the actual filtering error variance

�PM ¼ WM�PMW
T
M þ In � KMH½ � C�QCT þ DUXDUT� �

In � KMH½ �T

þ In � KMH½ �DUCWT
M þWf C

TDUT In � KfH
� �TþKM�RMK

T
M

ð4:23Þ
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where X ¼ E xðtÞxTðtÞ½ �, C ¼ E xðtÞ~xTðtjtÞ½ �, X and C satisfy the following equation,
respectively

X ¼ UXUT þ C�QCT ð4:24Þ

C ¼ UCWT
M þ UXDUT In � KMH½ �TþC�QCT In � KMH½ �T ð4:25Þ

Lemma 4.1 [8] Consider the Lyapunov equation with U being a symmetric matrix

P ¼ FPFT þ U ð4:26Þ

If the matrix F is stable and U is positive (semi-)definite, then the solution P is
unique, symmetric, and positive (semi-)definite.

Theorem 4.1 For multisensor uncertain system (4.1) and (4.2) with uncertain
model parameters and uncertain noise variances, the actual steady-state Kalman
filter are robust in the sense that for all admissible model parameters DU satisfying
(4.4) with du being a sufficiently small position number, we have

�PM\PM ð4:27Þ

Proof Define DPM ¼ PM � �PM , subtracting (4.23) from (4.19) yields the Lyapu-
nov equation DPM ¼ WMDPWT

M þ VM with the definition

VM ¼ In � KMH½ �C Q� �Qð ÞCT In � KMH½ �TþKM R� �RMð ÞKT
M þ �VM ð4:28Þ

�VM ¼ In � KMH½ �Dn In � KMH½ �T� In � KMH½ �DUXDUT In � KMH½ �T

� In � KMH½ �DUCWT
M �WMC

TDUT In � KMH½ �T
ð4:29Þ

From In � KMH½ � ¼ PMR�1
M , we have that det In � KMH½ � ¼ det PMR�1

M

� � 6¼ 0,
so that In � KMH½ � is invertible, and

V0 ¼ In � KMH½ �Dn In � KMH½ �T [ 0 ð4:30Þ
h

From (4.29) and (4.30), when DU ! 0, then �VM ! V0. Hence there exists a
sufficiently small robust region <DU of uncertain DU, such that for all DU 2 <DU, it
follows that �VM [ 0. Applying Lemma 4.1 to Lyapunov equation DPM ¼
WMDPWT

M þ VM yields DPM � 0, i.e., �PM\PM . The proof is completed.
Similarly, for the local subsystem (4.1) and (4.2) we can obtain the robust local

steady-state Kalman filter x̂i tjtð Þ with the conservative and actual variances Pi and
�Pi, and with the robustness �Pi\Pi, PM\Pi; i ¼ 1; . . .;L.
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Corollary 4.1 We have the accuracy relations

�Pi\Pi; �PM\PM �Pi; i ¼ 1; . . .; L ð4:31Þ
�Pc\Pc; tr�PM\trPM\trPi; i ¼ 1; . . .; L ð4:32Þ

Proof For the conservative system, we have PM ¼ Pc, where Pc is conservative
variance of the centralized fusion Kalman filter for system (4.5) and (4.7). From
Pc �Pi, we have PM �Pi; i ¼ 1; . . .; L. The proof is completed. h

4.3 Simulation Example

Consider the 2-sensor invariant tracking system (4.1) and (4.2) with

Ue ¼ 0:8 0:3
0:5 0

� �
, DU ¼ 0 0

0 d

� �
, C ¼ 1

0

� �
,
H1 ¼ 1 0½ �
H2 ¼ 0 1½ � ,

Q ¼ 1:5
�Q ¼ 1:0

,
R1 ¼ 2:5
�R1 ¼ 2:0

,

R2 ¼ 4:5, �R2 ¼ 3:8. The simulation results are given in the following. d is uncertain
perturbances of parameter.

The common right factor we select is H ¼ I2. Taking the conservative upper
bound of the compensating fictitious noise variance as Dn ¼ 0:5I2. The values of
determinant �VM changed with the uncertainty δ are shown in Fig. 4.1. From Fig. 4.1,
the robust region of uncertainty δ is <DU ¼ dj det �VM [ 0f g ¼ �0:806; 0:171ð Þ,
which ensures DPM [ 0, i.e., �PM\PM .
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Fig. 4.1 The robust region of the fused robust Kalman filter
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When �Q varies from 0 to Q, the changes of robust region of the uncertainty with
�Q are given in Fig. 4.2. From Fig. 4.2, we can obtain that when �Q varies from 0 to
Q, the robust region of the fused Kalman filter narrows.

A three-dimensional figure of the robust region of the Kalman filter is given in
Fig. 4.3. From Fig. 4.3, we can see that the robust region of the fused robust
Kalman filter how changes over �Q and δ.

Taking Dn ¼ 0:5I2; d ¼ 0:1 in the robust region, the comparisons of filtering
performance among the weighted measurement fusion optimal, robust, and sub-
optimal Kalman filters are given in Fig. 4.4. From Fig. 4.4, we can see that the
performance of suboptimal Kalman filter is clearly worse than that of the other two
filters, because it does not consider the uncertainty of model parameter and noise
variances, so suboptimal Kalman filter leads to serious performance loss.
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Fig. 4.2 The robust region of the fused robust Kalman filter changes over �Q
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Fig. 4.3 The robust region of the fused robust Kalman filter changes over �Q and δ
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In order to verify the above theoretical accuracy relations, Fig. 4.5 gives the
mean square error (MSE) curves with q ¼ 200 Monte Carlo simulation runs.
According to the ergodicity [9], we have

MSEhðtÞ ! tr�Ph; as t ! 1; q ! 1; ðh ¼ 1; 2;MÞ ð4:33Þ

From Fig. 4.5, we can see that when t ! 1, the values of MSEðtÞ are close to
the corresponding theoretical values tr�Ph, which verifies the robust accuracy rela-
tion (4.31).
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Fig. 4.4 The comparison among the optimal, robust, and suboptimal Kalman filters
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Fig. 4.5 The MSE curves of local and fused robust Kalman filters
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4.4 Conclusion

For the multisensor system with uncertain parameters and noise variances, using a
fictitious noise approach to compensate parameter uncertainties, a robust weighted
measurement fusion Kalman filter has been presented based on the worst-case
conservative system with the conservative upper bounds of noise variances. Based
on the Lyapunov equation approach, its robustness is proved, and their robust
accuracy is higher than that of each local robust Kalman filter. A search approach
for finding the robust region is given.
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