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Robust Centralized Fusion Steady-State
Kalman Predictor with Uncertain
Parameters

Xuemei Wang, Wenqiang Liu and Zili Deng

Abstract For multisensor time-invariant systems with uncertain parameter and
known noise variances, the centralized fusion robust steady-state Kalman predictor
based on the minimax robust estimation principle is presented by a new approach of
compensating the parameter uncertainties by fictitious noise. Using the Lyapunov
equation, it is proved that the variances of its actual prediction error variances have
a conservative upper bound when the uncertainty of parameters is restricted in a
sufficiently small region, which is called the robust region of the parameter
uncertainties. It is also proved that the robust accuracy of the centralized fuser is
higher than that of each local robust Kalman predictor. A simulation example
shows how to search the robust region and shows its good performances.

Keywords Robust � Kalman predictor � Uncertain parameters � Centralized
fusion � Lyapunov equation approach

3.1 Introduction

Multisensor information fusion has been applied to many fields, including military
affairs, navigation, guidance, remote sensing, signal processing, target tracking.
There exist two basic fusion methods: one is the centralized fusion approach [1],
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which can give a globally optimal state estimate by directly combing the local
measurement equations to obtain an augmented measurement equation. The other is
the distributed fusion approach [2–5], which can combine or weight the local
Kalman estimators to obtain a global optimal or suboptimal state estimator.

The standard Kalman filtering is only suitable for the systems with exactly
known model. For uncertain systems with the uncertainties of model parameters
and/or noise variances, the performance of the Kalman filter will degrade or the
filter may be divergent [6]. However, since the system model is usually an
approximation to a physical situation in many applications, the research on robust
Kalman filters for uncertain systems received great attention. An important class of
robust Kalman filtering problems is to find a Kalman filter such that its actual
filtering error variances yielded by all admissible uncertainties are guaranteed to
have a minimal upper bound [7]. Such a Kalman filter is called robust Kalman filter,
and such property is called robustness. There are two main approaches to solve this
problem, i.e., the Riccati equation approach [8] and the linear matrix inequality
(LMI) approach [9]. The limitation of the above robust Kalman filters is that only
model parameters are assumed to be uncertain, while the noise variances are
assumed to be exactly known.

Centralized fusion steady-state robust Kalman filter [10] for multisensor systems
with uncertainty of noise variances, the local and centralized fusion robust steady-
state Kalman filter are presented.

In this paper, we consider the problem of designing the local and centralized
fusion robust steady-state Kalman predictors for systems with uncertain parameters
and known noise variances by a fictitious noise-based compensation technique. The
uncertainty of parameters is compensated by introducing a fictitious noise with
upper bound variance. Further, we can obtain the robust region by the searching
method. Finally, it is proved that the robust accuracy of the centralized fuser is
higher than that of the local robust Kalman predictor.

3.2 Local and Centralized Fusion Robust Kalman
Predictors

Consider the multisensor system with uncertain parameters

x t þ 1ð Þ ¼ Ue þ DUð Þx tð Þ þ Cx tð Þ ð3:1Þ

yiðtÞ ¼ HixðtÞ þ viðtÞ; i ¼ 1; . . .; L ð3:2Þ

U ¼ Ue þ DU ð3:3Þ

where t is the discrete time, x tð Þ 2 Rn is the state to be estimated, yi tð Þ 2 Rmi is the
measurement of the ith subsystem, x tð Þ 2 Rr is the input noise, vi tð Þ 2 Rmi is the
measurement noise, and they are mutually uncorrelated white noises with zero
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means and known variances Q and Ri. Φ is the true transition matrix, Φe is a known
estimate of Φ and ΔΦ is the uncertain parameter disturbance matrix. C;Hi;Q and Ri

are known constant matrices with appropriate dimensions.

DU 2 <DU ð3:4Þ

<DU can be found or prescribed.
From (3.1)

x t þ 1ð Þ ¼ Uex tð Þ þ DUx tð Þ þ Cx tð Þ ð3:5Þ

Introducing a fictitious white noise ξ(t) with zero mean and known upper bound
variance Δξ of variances, which compensates the model error term DUx tð Þ, then we
have the worst-case conservative multisensor system

x t þ 1ð Þ ¼ Uex tð Þ þ n tð Þ þ Cx tð Þ ð3:6Þ

yiðtÞ ¼ HixðtÞ þ viðtÞ; i ¼ 1; . . .; L ð3:7Þ

where ω(t) and vi(t) have the known true variances Q and Ri.
The conservative centralized fused system is given as

x t þ 1ð Þ ¼ Uex tð Þ þ n tð Þ þ Cx tð Þ ð3:8Þ

yc tð Þ ¼ Hcx tð Þ þ vc tð Þ ð3:9Þ

ycðtÞ ¼ yT1 ðtÞ; . . .; yTLðtÞ
� �T

; Hc ¼ HT
1 ; . . .;H

T
L

� �T
; vcðtÞ ¼ vT1 ðtÞ; . . .; vTLðtÞ

� �T
ð3:10Þ

where the symbol T denotes the transpose. vc(t) is the conservative fused noise, and
has the variance Rc ¼ diagðR1; . . .;RLÞ.

The conservative centralized fusion Kalman predictor is given as

x̂ t þ 1jtð Þ ¼ Wcx̂ tjt � 1ð Þ þ Kcyc tð Þ ð3:11Þ

where yc(t) is conservative measurement, and

Wc ¼ Ue � KcHc; Kc ¼ UeRcH
T
c HcRcH

T
c þ Rc

� ��1 ð3:12Þ

where Ψc is stable, the conservative prediction error variance Σc satisfies the Riccati
equation

Rc ¼ Ue Rc � RcH
T
c HcRcH

T
c þ Rc

� ��1
HcRc

h i
UT

e þ CQCT þ Dn ð3:13Þ
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From (3.6), (3.9), and (3.11), we easily obtain the conservative prediction error
system

~x t þ 1jtð Þ ¼ Wc~x tjt � 1ð Þ þ CxðtÞ þ nðtÞ � KcvcðtÞ ð3:14Þ

where ~x t þ 1jtð Þ ¼ x t þ 1ð Þ � x̂ t þ 1jtð Þ, x t þ 1ð Þ is the conservative state in (3.6),
x̂ t þ 1jtð Þ is the conservative Kalman predictor in (3.11). vcðtÞ is the conservative
fused noise with variance Rc.

This yields the conservative variance Rc satisfies the Lyapunov equation

Rc ¼ WcRcW
T
c þ CQCT þ Dn þ KcRcKT

c ð3:15Þ

Now we find the actual prediction error

~x t þ 1jtð Þ ¼ x t þ 1ð Þ � x̂ t þ 1jtð Þ ð3:16Þ

where x(t + 1) is the true state given by (3.1), and x̂ t þ 1jtð Þ is the actual Kalman

predictor (3.11) with yc(t) is the actual measurement, i.e., ycðtÞ ¼ yT1 ðtÞ; . . .; yTLðtÞ
� �T

,
where yi(t) is the actual measurement, which is available, and which is yielded from
(3.1) and (3.2). Hence from (3.1), (3.9) and (3.11) we obtain

~x t þ 1jtð Þ ¼ Wc~x tjt � 1ð Þ þ DUxðtÞ þ CxðtÞ � KcvcðtÞ ð3:17Þ

where vcðtÞ is the actual fused noise with variance �Rc ¼ diagð�R1; . . .; �RLÞ.
Thus we obtain the actual predictor error variance �Rc satisfies the Lyapunov

equation

�Rc ¼ Wc�RcW
T
c þ CQCT þ KcRcK

T
c þ DUXDUT þ DUCWT

c þWcCTDUT ð3:18Þ

where we defind the steady-state cross-covariance

C ¼ E x tð Þ~xT tjt � 1ð Þ� � ¼ E x t þ 1ð Þ~x t þ 1jtð ÞT
h i

ð3:19Þ

From (3.1), (3.17) and (3.19) we obtain the Lyapunov equation

C ¼ UCWT
C þ UXDUT þ CQCT ð3:20Þ

with the definition X ¼ E x tð ÞxT tð Þ½ �. From (3.1) we have

X ¼ UXUT þ CQCT ð3:21Þ

U ¼ Ue þ DUð Þ ð3:22Þ
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Theorem 3.1 For multisensor system (3.1, 3.2 and 3.3) with uncertain parameters
and known noise variances, the actual centralized fusion steady-state Kalman
predictor (3.11) with the actual fused measurement yc(t), is robust in the sense that
for the prescribed upper bound Dn [ 0 of fictitious noise variances, there exists a
sufficiently small region <DU, such that for all admissible uncertain disturbance
DU 2 <DU, we have

�Rc\Rc ð3:23Þ

which is called the robustness of robust Kalman predictor.

Proof Letting DRc ¼ Rc � �Rc, from (3.15) and (3.18) we have the Lyapunov
equation

DRc ¼ WcDRcW
T
c þ Dn � DUXDUT � DUCWT

c �WcCTDUT ð3:24Þ

Defining

U ¼ Dn � DUXDUT � DUCWT
c �WcCTDUT ð3:25Þ

Since DU ! 0, U ! Dn [ 0, hence there exists a sufficiently small region <DU,
such that for all DU 2 <DU,we have

U[ 0 ð3:26Þ

Form (3.24–3.26) we obtain DRc [ 0, i.e.,

�Rc\Rc ð3:27Þ

The proof is completed. h

Remark 3.1 Similar to the derivation of the centralized fusion robust Kalman
predictor, for the system (3.1–3.3), we can also obtain the corresponding local
robust Kalman predictors x̂i t þ 1jtð Þ; i ¼ 1; . . .; L with the actual variance �Ri and
the conservative upped bounds Σi, and similar to the derivation of Theorem 3.1, we
have the robustness �Ri\Ri.

Theorem 3.2 The local and centralized robust Kalman predictors have the robust
accuracy relation

Rc\Ri; i ¼ 1; . . .; L ð3:28Þ

tr�Rc\trRc\trRi; i ¼ 1; . . .; L ð3:29Þ

where the symbol tr denote the trace of matrix.
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Proof For the worst-case conservative system (3.6) and (3.9), applying [10] yields
(3.28) to hold. Taking the trace operations to (3.23) and (3.28) yield (3.29).The
proof is completed. h

Remark 2 The trace trRc is called as robust accuracy, and the trace tr�Rc is called as
actual accuracy. This shows that the actual accuracy of a robust Kalman predictor is
higher than its robust accuracy. The robust accuracy of the centralized fuser is
higher than that of each local robust Kalman predictor.

3.3 Simulation Example

Consider two-dimensional 2-sensors time-invariant system (3.1–3.3) with uncertain

parameter, where x tð Þ ¼ x1 tð Þ; x2 tð Þ½ �T is the state. In the simulation, we take Ue ¼
0:3 �0:5
1 0:5

� �
;DU ¼ d 0

0 0

� �
;C ¼ �6

1

� �
;H1 ¼ 1 1½ �;H2 ¼ 1 1½ �;Q ¼ 1:5;

R1 ¼ 20;R2 ¼ 3:5.
The conservative prediction error variances of the local robust and centralized

robust fused steady-state Kalman predictors are given in Table 3.1.
When the fictitious noise variance Δξ = αI2 is prescribed, the robust region of

uncertainty in the state matrix can be obtained by the searching method. When
α = 3.6, from Table 3.2, we can obtain that the robust region of centralized robust
fused Kalman prediction is −0.3 < δ < 0.1, which ensures det ΔΣc > 0, which yields
ΔΣc > 0. Similarly, the robust regions of the local robust Kalman prediction are

Table 3.1 The conservative prediction error variances of the local and centralized robust steady-
state Kalman predictors

Σ1 Σ2 Σc

68:6106 �0:6727
�0:6727 21:9944

� �
64:1738 �4:2876
�4:2876 10:6171

� �
63:9180 �4:5165
�4:5165 10:0066

� �

Table 3.2 The determinants
of ΔΣθ, θ = 1, 2, c with
respect to δ

δ det ΔΣ1 det ΔΣ2 det ΔΣc

−0.5 −54.2566 −28.7639 −28.5661

−0.4 −24.2111 −8.1500 −7.9089

−0.3 −1.3032 7.5152 7.7730

−0.2 14.5833 18.3569 18.6248

−0.1 22.5712 23.8877 24.1846

0.0 20.4353 22.7732 23.1547

0.1 3.8500 12.2712 12.8509

0.2 −35.1000 −13.0677 −12.0807
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�0:2\d\0:1 and �0:3\d\0:1 respectively, which ensures detDRi [ 0, which
yields ΔΣi > 0.

From Fig. 3.1, we have a parabola going downwards. It can obtain a more
precise robust region of centralized fusion robust Kalman predictor
�0:3534\d\0:1607 by dichotomy, so that detD�Rc [ 0 and �Rc\Rc in this robust
region.

The 1,000 Monte Carlo runs are performed. The MSE curves of the local and
centralized robust steady-state Kalman predictors are shown in Fig. 3.2.
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Fig. 3.1 Robust region of the centralized robust Kalman predictor
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Fig. 3.2 MSE curves of the local robust and centralized robust fused Kalman predictors
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From Fig. 3.2, we see that the values of MSEhðtÞ are close to the corresponding
tr Σθ, θ = 1, 2, c and the accuracy relation (3.29) holds. The curves of accumulated
prediction errors squares for component x1(t) are shown in Fig. 3.3. From Fig. 3.3,
we can see that the actual accuracy of centralized robust fused steady-state Kalman
predictor is superior to others.

3.4 Conclusion

For multisensor systems with uncertainty parameters, a new robust Kalman pre-
diction approach of compensating parametric uncertain by fictitious noise was
presented. The problem is converted into the robust Kalman prediction problem for
the system with uncertain noise variances. The local and centralized robust steady-
state Kalman prediction algorithms are presented. Based on the Lyapunov equation,
it is proved that the robustness of local and centralized robust fusion Kalman
predictor, i.e., the actual predictor error variance have a conservative upper bound
for all the admissible uncertainties. This approach is different from the Riccati
equation approach and the linear matrix inequality (LMI) approach. The simulation
results show that actual accuracy of centralized robust fusion Kalman predictor is
higher than those of the local optimal Kalman predictor and the local suboptimal
predictor. The simulation shows at how to search the robust region and shows its
good performances.
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