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Robust Covariance Intersection Fusion
Steady-State Kalman Filter with Uncertain
Parameters

Wenjuan Qi, Xuemei Wang, Wenqiang Liu and Zili Deng

Abstract For the linear discrete time-invariant system with uncertain parameters
and known noise variances, a robust covariance intersection (CI) fusion steady-state
Kalman filter is presented by the new approach of compensating the parameter
uncertainties by a fictitious noise. Based on the Lyapunov equation approach, it is
proved that for the prescribed upper bound of the fictitious noise variances, there
exists a sufficiently small region of uncertain parameters; such that its actual fil-
tering error variances are guaranteed to have a less-conservative upper bound. This
region is called the robust region. By the searching method, the robust region can be
found. Its robust accuracy is higher than that of each local robust Kalman filter.
A Monte-Carlo simulation example shows its effectiveness and the good
performance.
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2.1 Introduction

Multisensor information fusion Kalman filtering has been applied to many fields,
such as signal processing, data fusion, and target tracking. For Kalman filtering
fusion, there are two basic fusion methods: The centralized and distributed fusion
methods. For the distributed fusion method, the three-weighted state fusion
approaches weighted by matrices, diagonal matrices, and scalars have been pre-
sented. In order to compute the weights, the cross-covariances among the local
filtering errors are required. However, in many practical applications, the compu-
tation of the cross-covariance is very difficult [1]. In order to overcome this limi-
tation, the covariance intersection fusion algorithm has been presented [2].
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In this paper, a robust CI fusion steady-state Kalman filter is presented for
system with uncertain parameters and known noise variances. Two important
approaches used to develop the robust Kalman filter are the Riccati equation
approach [3] and the linear matrix inequality (LMI) approach [4]. More research
references on this topic are using these two approaches; however, in this paper, a
new approach is presented by compensating the uncertain parameters by a fictitious
noise which converts the system with uncertain parameters into the system with
noise variance uncertainties [5].

This paper extends the robust CI fusion Kalman filter with uncertain noise
variances [5] to the robust CI fusion Kalman filter with uncertain parameters.
Compared with the suboptimal Kalman filter without fictitious noise, the proposed
robust Kalman filter can significantly improve the filtering performance, and its
robust accuracy is higher than that of each local robust Kalman filter.

2.2 Local Robust Steady-State Kalman Filter

Consider the multisensor uncertain system with model parameters uncertainties

x t þ 1ð Þ ¼ Ue þ DUð Þx tð Þ þ Cw tð Þ ð2:1Þ

yi tð Þ ¼ Hix tð Þ þ vi tð Þ; i ¼ 1; . . .; L ð2:2Þ

where t is the discrete time, xðtÞ 2 Rn is the state to be estimated, yiðtÞ 2 Rmi is the
measurement of the ith subsystem, wðtÞ 2 Rr; viðtÞ 2 Rmi are uncorrelated white
noises with zero means and known variances Q and Ri, respectively. Φe, Γ , and Hi

are known constant matrices with appropriate dimensions. L is the number of
sensors. U ¼ Ue þ DU is uncertain transition matrix, ΔΦ is the uncertain parameter
disturbance. Assume that Φ and Φe are stable matrices.

ξ(t) is a uncertain fictitious white noise with zeros mean and upper-bound
variance Δξ > 0, which is used to compensate the uncertain model parameter error
term ΔΦx(t) in (2.1), so that the systems (2.1) and (2.2) with uncertain model
parameters can be converted into the following worst-case conservative system with
known model parameters and noise variances Q, Ri, and Δξ.

xe t þ 1ð Þ ¼ Uexe tð Þ þ we tð Þ; we tð Þ ¼ Cw tð Þ þ n tð Þ ð2:3Þ

yei tð Þ ¼ Hixe tð Þ þ vi tð Þ; i ¼ 1; . . .; L ð2:4Þ

Assume that each conservative subsystem is completely observable and com-
pletely controllable. The conservative local steady-state optimal Kalman filters are
given as
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x̂ei tjtð Þ ¼ Wix̂ei t � 1jt � 1ð Þ þ Kiyei tð Þ ð2:5Þ

Wi ¼ In � KiHi½ �Ue; Ki¼RiH
T
i HiRiH

T
i þ Ri

� ��1
; Pi¼ In � KiHi½ �Ri ð2:6Þ

where In is an n × n identity matrix, Ψi is a stable matrix, and Σi satisfies the steady-
state Riccati equation

Ri ¼ Ue Ri � RiH
T
i ðHiRiH

T
i þ RiÞ�1HiRi

h i
UT

e þ CQCT þ Dn ð2:7Þ

where the symbol T denotes the transpose. Define ~xei tjtð Þ ¼ xe tð Þ � x̂ei tjtð Þ,
applying (2.3) and (2.5), we have

~xei tjtð Þ ¼ Wi~xei t � 1jt � 1ð Þ þ In � KiHi½ �Cw t � 1ð Þ
þ In � KiHi½ �n t � 1ð Þ � Kivi tð Þ ð2:8Þ

Applying (2.8) yields that the conservative local filtering error variances Pi and
cross-covariance Pij satisfy the conservative Laypunov equation

Pij ¼ WiPijW
T
j þ In � KiHi½ �CQCT In � KjHj

� �T
þ In � KiHi½ �Dn In � KjHj

� �TþKiRijK
T
j dij; i; j ¼ 1; . . .; L ð2:9Þ

where δij is the Kronecker δ function, δii = 1, δij = 0 (i ≠ j).

Remark 2.1 Notice that in (2.5), the conservative measurements yei(t) are
unavailable, only the actual measurements yi(t) are known. Therefore, replacing the
conservative measurements yei(t) with the known actual measurements yi tð Þ, we
obtain the actual local Kalman filters as

x̂i tjtð Þ ¼ Wix̂i t � 1jt � 1ð Þ þ Kiyi tð Þ ð2:10Þ

From (2.10) and (2.11) we have

~xi tjtð Þ ¼ Wi~xi t � 1jt � 1ð Þ þ In � KiHi½ �DUx t � 1ð Þ
þ In � KiHi½ �Cw t � 1ð Þ � Kivi tð Þ ð2:11Þ

So the actual local filtering error variances and cross-covariance are given as

�Pij ¼ Wi�PijW
T
j þ In � KiHi½ �DUXDUT In � KjHj

� �T
þ In � KiHi½ �CQCT In � KjHj

� �Tþ In � KiHi½ �DUCjW
T
j

þWiC
T
i DU

T In � KjHj
� �TþKiRijK

T
j dij ð2:12Þ
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where X ¼ E x tð ÞxT tð Þ� �
;Ci ¼ E x tð Þ~xTi tjtð Þ� �

. From (2.1), X satisfies the following
Lyapunov equation

X ¼ UXUT þ CQCT ð2:13Þ

Applying (2.1) and (2.11), we have the Lyapunov equation

Ci ¼ UCiW
T
i þ UXDUT In � KiHi½ �TþCQCT In � KiHi½ �T ð2:14Þ

Lemma 2.1 [6] Consider the Lyapunov equation with U to be a symmetric matrix

P ¼ FPFT þ U ð2:15Þ

If the matrix F is stable (all its eigenvalues are inside the unit circle) and U is
positive (semi)definite, then the solution P is unique, symmetric, and positive
(semi-)definite.

Theorem 2.1 For uncertain systems (2.1) and (2.2) with uncertain parameters, the
actual local steady-state Kalman filter (2.10) is robust in the sense that there exists

a region <ðiÞ
DU, such that for all admissible uncertain model parameter DU 2 <ðiÞ

DU,
the corresponding actual filtering variances �Pi have the upper-bound Pi, i.e.,

�Pi\Pi ð2:16Þ

and <ðiÞ
DU is called the robust region of the local robust Kalman filter (2.10).

Proof Define DPi ¼ Pi � �Pi, subtracting (2.12) from (2.9) yields

DPi ¼ WiDPiW
T
i þ UiðDUÞ ð2:17Þ

UiðDUÞ ¼ In � KiHi½ �Dn In � KiHi½ �T� In � KiHi½ �DUXDUT In � KiHi½ �T

� In � KiHi½ �DUCiW
T
i �WiC

T
i DU

T In � KiHi½ �T ð2:18Þ

From (2.6) yields In � KiHi ¼ PiR�1
i , so we have det In � KiHi½ � ¼ detPi det

R�1
i 6¼ 0; In � KiHi½ � is invertible. Since Dn [ 0, then U0i ¼ In � KiHi½ �Dn In�½

KiHi�T [ 0. According to the property of the continuous function, as ΔΦ → 0, we

have UiðDUÞ ! U0i [ 0 . Hence there exists a sufficiently small region <ðiÞ
DU, such

that for all admissible DU 2 <ðiÞ
DU, we have UiðDUÞ[ 0. Applying Lemma 2.1

yields DPi [ 0, i.e., (2.16) holds, and <ðiÞ
DU is called the robust region of uncertain

parameters for the local robust Kalman filter (2.10). The proof is completed.
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2.3 Robust CI Fusion Steady-State Kalman Filter

For multisensor uncertain time-invariant systems (2.1) and (2.2), the robust steady-
state CI-fused Kalman filter is presented as

x̂CI tjtð Þ ¼ PCI

XL
i¼1

xiP
�1
i x̂i tjtð Þ ð2:19Þ

PCI ¼
XL
i¼1

xiP
�1
i

" #�1

;
XL
i¼1

xi ¼ 1; xi � 0 ð2:20Þ

The optimal weighting coefficientsωi are obtained by minimizing the perfor-
mance index

J ¼ min
xi

trPCI ¼ min
xi 2 0; 1½ �

x1 þ � � � þ xL ¼ 1

tr
XL
i¼1

xiP
�1
i

" #�1
8<
:

9=
; ð2:21Þ

The actual error variances are given as

�PCI ¼ PCI

XL
i¼1

XL
j¼1

xiP�1
i
�PijP�1

j xj

" #
PCI ð2:22Þ

It is proved that [7] the local robustness (2.16) yields the robustness of the CI

fuser for all DU 2 <CI
DU ¼ TL

i¼1
<ðiÞ

DU

�PCI �PCI ð2:23Þ

where the symbol ∩ denotes the intersection of sets.

Theorem 2.2 [8] The local and CI fusion robust Kalman filters have the following
robust accuracy relations

tr�Pi\trPi; i ¼ 1; . . .; L ð2:24Þ

tr�PCI � trPCI � trPi; i ¼ 1; . . .; L ð2:25Þ

Remark 2.2 Taking the trace operation for (2.16), we have tr�Pi\trPi; i ¼ 1; . . .; L.
The trace trPi is called robust accuracy or global accuracy of a robust Kalman filter,
the trace tr�Pi is called its actual accuracy. Theorem 2.1 shows that the robust accuracy
of the CI fusion Kalman filter is higher than that of each local robust Kalman filter.
The actual accuracy of the local or CI fuser is higher that its robust accuracy.
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2.4 Simulation Example

Consider a 2-sensor time-invariant system with uncertain model parameters

xðt þ 1Þ ¼ ðUe þ DUÞxðtÞ þ CwðtÞ ð2:26Þ

yiðtÞ ¼ HixðtÞ þ viðtÞ; i ¼ 1; 2 ð2:27Þ

In the simulation, we take Ue ¼ 0:43 0:32
0:56 0

� �
;DU ¼ 0 0

0 d

� �
;C ¼ 1

0

� �
;H1 ¼

1 0½ �; H2 ¼ I2;Q ¼ 1;R1 ¼ 1;R2 ¼ diagð6; 0:36Þ; d is the uncertain parameter.
The simulation results are shown in the following. From Figs. 2.1 and 2.2, the
necessary and sufficient condition of UiðdÞ[ 0 is that detUiðdÞ[ 0, so we can
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obtain that the robust region of x̂1ðtjtÞ is <ð1Þ
d : �0:72\d\0:43, the robust region

of x̂2ðtjtÞ is <ð2Þ
d : �0:73\d\0:48, so the robust region of CI fuser is

<CI
d ¼ <ð1Þ

d \ <ð2Þ
d : �0:72\d\0:43.

When δ = 0.2 in the robust region, the traces comparisons of the conservative
and actual filtering error variances are given in Table 2.1, which verify the accuracy
relations (2.24) and (2.25).

In order to give a geometric interpretation of the matrix accuracy relations, the
covariance ellipse of variance Pis defined as the locus of points x : xTP�1x ¼ c

� 	
,

where P is n × n the variance matrix and x ∊ Rn and cis a constant. Generally, we
select c = 1 without loss of generality. It has been proved in [8] that P1 ≤ P2 is
equivalent to that the covariance ellipse of P1 is enclosed in that of P2.

The matrix accuracy relations are given based on the covariance ellipses as
shown in Fig. 2.3. From Fig. 2.3, we see that the ellipse of �Pi is enclosed in that of
Pi, the ellipse of �PCI is enclosed in that of PCI. These verify that the accuracy
relations (2.16) and (2.23) hold.

In order to verify the above theoretical results for the accuracy relation, taking
the Monte-Carlo simulation with 1,000 runs, the mean-square error (MSE) curves
of the local and CI-fused Kalman filters are shown in Fig. 2.4; we see that the
values of the MSEiðtÞ, i = 1, 2, CI are close to the corresponding tr�Pi and the
accuracy relations (2.24–2.25) hold.

Table 2.1 The robust and
actual accuracy comparison of
trPi and tr�Pi, i = 1, 2, CI

trP1ðtr�P1Þ trP2ðtr�P2Þ trPCIðtr�PCIÞ
1.1477 (0.7412) 1.4713 (1.1673) 1.1059 (0.6299)
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Fig. 2.3 The covariance
ellipses of the local and CI
fusion robust Kalman filters
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2.5 Conclusion

For multisensor systems with uncertain parameters and known noise variances, the
local and CI-fused steady-state Kalman filters are presented by the new approach of
compensating the parameters uncertainties by a fictitious noise. It is proved that the
local and CI-fused Kalman filters are robust for all admissible uncertain parameters
in the robust region, this is, the actual filtering error variances have a less-con-
servative upper bound, and the robust accuracy of the CI fuser is higher than those
of the local robust Kalman filters. When the fictitious noise variance is prescribed,
by the searching method, the robust region can be found.
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