
Chapter 10
A Novel Method Based on Data Visual
Autoencoding for Time-Series
Classification

Chen Qian, Yan Wang and Lei Guo

Abstract A variety of techniques based on numerical characteristics are currently
presented for mining time-series data. However, we find that time-series data
generally contain curves sharing some set of visual characteristics and features.
These characteristics offer a deeper understanding of time-series data, and open up a
potential new technique for time-series analysis. Particularly beneficial from recent
advances in deep neural networks, representations and features can be automatically
learnt by deep learning architectures such as autoencoders. Based on that, our work
proposes a novel method, named time-series visualization (TSV), to efficiently
detect visual characteristics from curves of time-series data and use these charac-
teristics for intelligent analysis. Architecture and algorithm of TSV based on
stacked autoencoders are introduced in this paper. Further, important factors
affecting the performance of TSV are discussed based on empirical results. Through
empirical evaluation, it is demonstrated that TSV has better efficiency and higher
classification accuracy on analyzing the datasets with significant curve feature.
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10.1 Introduction

In the last decade, interest in mining time-series data is like an explosion which, in
turn, resulted in lots of researches proposed to introduce new techniques to index,
classify, cluster, and segment time series. However, most of these techniques have
limited performance because the form of time-series data is inconstant but their
focus is mainly on numerical characteristics of data.

Similarity measure is one of the most important ways toward mining time-series
data. The most straightforward similarity measure for time series is the Euclidean
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Distance (ED) [1], which has two advantages: Linear complexity and parameter-
free. However, ED is quite sensitive to noise and misalignments which means it is
unable to handle the time-shifting series. Inspired by this motivation, Berndt and
Clifford [2] introduced dynamic time warping (DTW) which can be used to mea-
sure the similarity between time series with local shifts. However, DTW is too slow
to be of practical use, even though it provides good measuring accuracy [3]. Thus,
many methods have been proposed based on DTW to improve the efficiency of
DTW [4–6]. In addition, longest common subsequences (LCSS) was proposed
based on the model introduced by André-Jönsson and Badal [7], which was another
group of similarity measures. Other famous examples for this category include edit
distance on real sequence (EDR) [8] and edit distance with real penalty (ERP) [9].
However, most of these similarity measures focus on numerical characteristics,
which make them quite sensitive to changes of time-series data.

Interestingly, for human, it is intuitional to identify the similarity of time series
through curves rather than the real data. Based that, we think if it is possible to get a
good representation of time series from the curves and use it for time-series anal-
ysis. Fortunately, autoencoder provides a potential way to achieve that autoencoder
is a learning circuit to encode the inputs into some representations that are as close
as possible to outputs [10]. It was first proposed by Hinton and his group in the
1980s, but with the recent revival of interest in “deep networks,” [11] autoencoder
is coming back to the center stage. We believe that autoencoder and human visual
system are quite similar in some aspects [12]; and in this paper, we try to construct a
new method named time-series visualization (TSV) for time-series classification
based on good representations learnt from curves of time-series data. First, repre-
sentations can be learnt by stacked autoencoder (SAE) during the pretraining
process. Since the learning performance of normal SAE architecture seems not
good enough for image patches, dropout is introduced into input layer to reduce
model complexity. Experimental results show that input dropout improves 86 %
training accuracy and reduces 16 % running time. Second, a normal neural network
classifier is trained by using encoding weights as initial connect weights between
input layer and hidden layer during the training process. Finally, the trained clas-
sifier can be applied to classify similar time-series data.

The remainder of this paper is organized as follows: Section. 10.2 discusses the
architecture of SAE with an input dropout that is used in the rest of the paper.
Section 10.3 describes the architecture of TSV. Then, the experimental results and
comparisons are presented on classification for time-series data. Finally, Sect. 10.4
presents our conclusions.

10.2 The Architecture of TSV for Time-Series
Classification

The architecture of TSV for time-series classification is given in Fig. 10.1
intuitively.
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Three processes are executed successively in an overall similarity matching of
TSV. It is worth noting that not all the parameters trained from the previous level
will be transported to the next level as shown in Fig. 10.1. For example, only the
trained weights between input layer and hidden layer of SAE will be used in the
next training of the NN classifier.

Here we define an input X = [x1,x2 … xn]
T, and the autoencoder transforms the

input X into an output Y = [y1,y2 … yn]
T with learnt representation. In order to drive

a general architecture of autoencoder network, a three-layer neural network archi-
tecture is applied. However, autoencoders are distinguished from more general
neural networks by the fact that their outputs are desired to be the same to their
inputs. The hidden layer detects features in input data. Then the corresponding
decoder takes encodings, and attempts to reconstruct the original input.

Dropout was proposed by Hinton et al. [13] as an approach to improve the
performance of fully connected neural network layers. When the dropout is applied
in a fully connected layer, each element of the layer is kept with probability p,
otherwise set to 0 with probability (1 − p). Our dropout algorithm is modified by
introducing dropout probability (1 − p) into input layer. The architecture and
introduction of SAE with input dropout is specified below.

Fig. 10.1 The architecture of TSV for time-series classification
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Encoder. The deterministic mapping fh that transforms an input into hidden features
is called the encoder [14]. Each input vector X and the weight matrix W followed by
a nonlinear activation function a(u) such as tanh, sigmoid, or relu, which can be
expressed as (Fig. 10.2):

V ¼ fhðXÞ ¼ aðWX þ bÞ;

where V is a feature matrix extracted by the encoder. fh is an affine mapping and its
parameter set is h ¼ fW ; bg, where W is a d × n weight matrix and b is an offset
vector of hidden dimensionality d. Because we have introduced dropout probability
(1 − p) into input layer, fh can be rewritten as

V ¼ aðWðmXÞ þ bÞ ¼ aððM0 �WÞX þ bÞ;

where m is a binary vector of size n with each element mj drawn independently
from BernoulliðpÞ, and M 0

is a d × n drop connect weight matrix with a same binary
value in each row. Then we made an approximation

X

M0
aððM0 �WÞX þ bÞ � að

X

M0
ððM0 �WÞX þ bÞÞ

Fig. 10.2 The architecture of SAE with input dropouts
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Decoder. The decoder mapping gh0 is used to reconstruct the output Y. It can be
regarded as a reverse process of encoder. Thus, the decoder can be expressed as
follows with its appropriately sized parameters h0 ¼ fW 0; b0g.

Y ¼ gh0 ðVÞ ¼ oðW 0V þ b0Þ

According to informax principle put forward by Linsker [15], a good repre-
sentation is to retain a significant amount of information from the input, which
means to learn parameters fh; h0g that minimize the overall distortion function
expressed as follows:

minEðX; YÞ ¼ min
h;h0;M

Xn

i¼1

DðX; Y ; h; h0;M0Þ ¼ min
h;h0

X

M

ðpðM0Þ
Xn

i¼1

DðX; Y ; h; h0ÞÞ

Once the randomly drawn mask m is chosen, it is applied to train the parameters
fh; h0g via stochastic gradient descent (SGD) by back-propagation gradients of the
loss function. Specific calculation steps of SGD training with input dropout are
provided in Table 10.1.

10.3 Experiments on TSV: Classification for Time-Series
Data

In this section, we experimentally evaluate the performance of TSV on time-series
classification. Four benchmarks are applied to perform comparisons for classifica-
tion accuracy with some other measures such as ED, DTW, EDR, and LCSS, which
are used in references [3, 16, 17]. These four datasets contain curve features,

Table 10.1 Training SAE
with input dropouts Initialization: input X → image format → stacked vector X 0,

initialize parameters fh0; h00g, and learning rate g.

Input: Randomly selected input x0 and parameters fht�1; h
0
t�1g

from step t � 1.

Forward Pass:
Select randomly drawn mask m: m�BernoulliðpÞ
Compute hidden features: v ¼ aðwðx0 � mÞ þ bÞ
Compute output: y ¼ oðw0vþ b0Þ
Back-propagation Gradients:
Compute the loss function of decoding layer and encoding layer
and, respectively, expressed as L0W 0 and L0W .
Update weights of decoding layer: W 0

t ¼ W 0
t�1 � gL0W 0

Update weights of encoding layer: Wt ¼ Wt�1 � gðM0 � L0W Þ
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including the popular CBF dataset, ECG200 dataset, synthetic control dataset, and
trace dataset.

For a fair comparison, we keep all parameters of TSV invariable for four
datasets, which is 900 input nodes with 70 % dropouts, 100 hidden nodes, learning
rate g ¼ 1, and we trained SAE 3000 epochs and classifier 1000 epochs, respec-
tively. Note that, the performance of TSV may not be in the best situation for every
datasets we tested; however, our focus is not the best performance of TSV on a
specific dataset, but a robust performance on all datasets.

Since the number of input nodes cannot be changed, resizing each image patch
into a certain size is necessary. Here we restrict the size of image patch to 30 × 30,
which seems to be a draconian restriction to some datasets like trace dataset whose
length is 275. However, we are surprised to see that results of trace are all correct.
Because sometimes, the dimensionality of time series is very high and details is not
the key for detecting the feature of time-series data, resizing provides a way to
reduce the dimensionality of data but keep the most important visual characteristics.
In this way, autoencoder can be trained with lower training error and faster running
time. Furthermore, dimensionality of time series is reduced to 100 hidden layer
output. It seems like that curves sharing the general characteristics of time-series
data are separated by the autoencoder and each training sample can be expressed as
a combination of these curves. Hence, if the number of hidden nodes is chosen
properly, dimensionality of time-series data can be significantly reduced.

Training image pitches of time-series samples and visualization of weights learnt
by SAE with input dropout is shown in Fig. 10.3. And we compared training error
and running time under different dropout probabilities. Further, the error ratios of all
methods based on four benchmarks are shown in Table 10.2.

In summary, SAE with 70 % input dropout has the lowest train error and it is one
of the fastest algorithms according to the running time comparison as in Fig. 10.4. It
improves 86 % training accuracy and reduces 16 % running time. And from

Fig. 10.3 Training image pitches of time-series samples and visualization of weights learnt by
SAE with input dropout
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Table 10.2, we can see 1-NN ERP get the best effect on CBF data, but DTW and
TSV have a very close performance. However, 1-NN DTW takes the first place on

synthetic control dataset; in spite of this, these three methods are still quite close.
TSV performs best on last two datasets, especially the trace dataset on which error
ratio is zero, and 1-NN ERP and 1-NN DTW are inferior on the ECG200 dataset.
Through experiments, we find that there is no clear evidence that one classification
method tested is superior to others in all dataset tests in terms of accuracy. While
TSV is a little bit more effective generally on the four datasets we used, some
methods like 1-NN ERP and 1-NN DTW are superior on certain datasets but
inferior on some other datasets. Hence, we believe that TSV is a more effective
method compared to existing methods on the dataset with significant curve feature.

10.4 Conclusion

In this paper, we have presented a novel method called TSV to improve the per-
formance of classification for time-series data on the datasets with a significant
curve feature. We have clearly introduced the full architecture and algorithms of
TSV, including SAE with input dropouts and a normal NN classifier. Then, we

Table 10.2 Error ratio of different methods

CBF Synthetic control ECG200 Trace

1-NN Euclidean distance 0.087 0.143 0.16 0.36

1-NN DTW 0.003 0.02 0.23 0.02

1-NN EDR 0.013 0.117 0.21 0.15

1-NN ERP 0 0.037 0.21 0.08

1-NN LCSS 0.017 0.06 0.17 0.12

SVM Euclidean distance 0.123 0.0767 0.19 0.27

TSV 0.004 0.023 0.15 0

Fig. 10.4 Comparison of the training error and running time under different dropout probabilities
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evaluate the performance of TSV for time-series classification on four popular
benchmarks. In this experiment, the results show that the performance of TSV is
quite good in almost every datasets, which demonstrates that TSV is an effective
method for time-series classification.
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