
Chapter 44
Design of an Improved Variable Universe
Fuzzy Control System and Its Stability
Analysis

Weihua Huang and Haiyan Long

Abstract An improved function-type contraction-expansion factor is designed in
this paper. Optimization criterion rules of contraction-expansion factor are designed
by analyzing the changing relationship between the input signals of fuzzy controller
and contraction-expansion factor. And then, an improved contraction-expansion
factor is designed to optimize the structure and improve the control quality of the
system. Based on Lyapunov stability theory, the stability of variable universe fuzzy
control system with designed contraction-expansion factor is proved. Simulation
results show that the design of variable universe fuzzy control method can effectively
improve system performance.

Keywords Improved contraction-expansion factor � Variable universe fuzzy
control � Lyapunov stability

44.1 Introduction

The idea of variable universe fuzzy control was first proposed to regulate the
universe by a set of nonlinear contraction-expansion factor. That is, the universe is
changed with actual error. With the fix fuzzy rule-base, change of contraction-
expansion factor is equal to decrease or increase the number of fuzzy rules. It is
proven that the variable universe fuzzy controller is a high-precision controller with
self-organization, self-learning and self-adaption characters [1].

Generally, there are three basic types of variable universe fuzzy controllers,
which are based on function, fuzzy inference and intelligent searching algorithm,
respectively. A contraction-expansion factor of exponential type is deduced and
applied successfully in the control of four-level-inverted pendulum in [2]. After the
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change law of contraction-expansion factor is analyzed, a contraction-expansion
factor of proportional type is presented to be not only as the antecedent of rules but
also the consequent in [3]. In order to overcome large amount of calculation and
difficulty of realization, the weighted sum is used to replace the integral calculation
in contraction-expansion factor of integral type on the basis of the previous research
[4]. For the various plants, it is difficult to construct contraction-expansion factor by
normal function type. So some contraction-expansion factors of inference type are
proposed in [5], with the consideration of the advantage of fuzzy language inference
mechanism. For example, according to the inference classification of error, a
contraction-expansion factor of inference type is designed to improve the control
precision in [6]. Clearly, the selection of contraction-expansion factor is important
for the performance of fuzzy controller. With the consideration of stability of
control system, which is realized by contraction-expansion factor, an improved
contraction-expansion factor of function type is designed on the analysis of the
relationship between contraction-expansion factor and change of universe. Mean-
while, its stability is proved by Lyapunov method. Simulation results show that the
fuzzy controller with the improved contraction-expansion factor is effective in
comparison with the results of normal factors.

44.2 Definition of Improved Contraction-Expansion Factor

The following practical contraction-expansion factors [2, 6] are commonly used in
fuzzy system, which are,

aðxÞ ¼ ð xj j=EÞs þ e; s 2 ð0; 1Þ; e is a very small positive constant; ð44:1Þ

bðxÞ ¼ 1� kexpð�kx2Þ; k 2 ð0; 1Þ; k[ 0; ð44:2Þ

Suggest the input universes of SISO fuzzy controller is expressed as ½�E;E�, and
its contraction-expansion factor is aðxÞ. Let the initial universe X ¼ ½�2; 2�. For
Eq. (44.1), s ¼ 0:85 and for Eq. (44.2), k ¼ 0:97; k ¼ 1. The relationship between
contraction-expansion factor and universe is shown in Fig. 44.1.

Supposed that there are there terms: big, medium and small for the description of
universe and aðxÞ. With the Fig. 44.1, the relationship between contraction-
expansion factor and universe, x ! aðxÞ, can be concluded by the following rules:
(44.1) if error x is big then aðxÞ is big; (44.2) if error x is medium then aðxÞ is
medium; (44.3) if error x is small then aðxÞ is small. When x is big, the number of
control rules need not be added, so the change rate of aðxÞ is small. If x is small, the
system is near stable state, the system need more fuzzy rules to enhance the per-
formance of convergence, i.e., the change rate of aðxÞ should be big to make error
close to zero rapidly. Based on the above analysis, the rules for x ! DaðxÞ can be
concluded by: (44.1) if error x is big then DaðxÞ is big; (44.2) if error x is medium
then DaðxÞ is medium; (44.3) if error x is small then DaðxÞ is small. The rules for
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aðxÞ and DaðxÞ are called as designing criterion. With the consideration of coor-
dination and zero avoidance of contraction-expansion factor, DaðxÞ is denoted by

DaðxÞ ¼ 2 � k � Dx � ðE � xj jÞ � ð1� aðxÞÞ=E ð44:3Þ

After solving differential equation, Eq. (44.3) becomes,

aðxÞ ¼ 1� ke�2k xj jþkx2=E; k[ 0; k[ 0 ð44:4Þ

Let k1 ¼ 2k, Eq. (44.3) becomes

aðxÞ ¼ 1� ke�k1 xj jþk2x2 ; k1 [ 0; k2 [ 0; k[ 0 ð44:5Þ

where k is the adjusted parameter. Equation (44.4) is the improved contraction-
expansion factor designed in the paper, and its performance of improved
contraction-expansion factor is discussed as follows,

(1) According to the basic definition of contraction-expansion factor, as to
Eq. (44.4), when xj j ! E, a ! 1 and xj j ! 0, a ! 1� k. Obviously,
Eq. (44.4) is satisfying to the requirements of definition of contraction-
expansion factor, which are duality, monotonicity, zero avoidance and
coordination.

(2) According to the designing criterion for contraction-expansion factor, there is

daðxÞ=dx ¼ �kð�k1 þ k2 xj jÞe�k1 xj jþk2x2 ð44:6Þ
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For Eq. (44.6), when xj j ! E, daðxÞ=dx ! 0; and when xj j ! 0,
daðxÞ=dx ! kk1, which can be adjusted by the adapt value of k1. So the improved
contraction-expansion factor, denoted by Eq. (44.4), satisfies the designing crite-
rion. Additionally, aðxÞ can be proportional-type and exponential-type [2, 7] with
the change of k1 and k2. Let the initial universe X ¼ ½�E;E�, and then compare the
improved contraction-expansion factor with other two types of typical ones, which
are generally called as proportional factor and exponential factor and denoted by
Eqs. (44.1) and (44.2), respectively,

aðxÞ ¼ ð xj j=EÞs þ e ð44:7Þ

where s 2 ð0; 1Þ, e is a very small positive constant.

aðxÞ ¼ 1� kexpð�kx2Þ; ð44:8Þ

where k 2 ð0; 1Þ, k[ 0.
Suggest X ¼ ½�2; 2� and the figures of aðxÞ and daðxÞ=dx are shown in

Figs. 44.2 and 44.3.
It is obvious to find that the change rate of improved factor is bigger when error

is small, which leads to fast change of universe and makes system arrive at stable
state quickly. Additionally, the figure of improved factor is smoother than other two
ones and without jump like exponential factor.
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44.3 Stability Analysis of Fuzzy System with Improved
Contraction Expansion Factor

Think of the following n-order continuous nonlinear system,

_x1 ¼ x2; _x2 ¼ x3; . . .; _xn ¼ f ðx1; x2. . .xnÞ þ buþ d

y ¼ x1
ð44:9Þ

where f ðx1; x2. . .xnÞ is an unknown nonlinear continuous function, and
f ðxÞj j � f0ðxÞ; 0\b1\b\b2; d�DN , f0ðxÞ is a known continuous function, b is
an unknown constant, d is a disturbance variable, b1; b2 are constants, u; y are
control input and system output, respectively, and u; y 2 R. Let
x ¼ ½x1; x2. . .xn�T , ðx; _x. . .xðn�1ÞÞT , then Eq. (44.9) can be expressed by

_x ¼ Âxþ B̂ðf ðxÞ þ buþ dÞ
y ¼ ĈTx

ð44:10Þ
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; Ĉ ¼

1

0

0

..

.

0

2
66666664

3
77777775
.

Let r be input of system, and error e ¼ r � y, denoted by
e ¼ ðe1; e2. . .enÞT , ðe; _e. . .eðn�1ÞÞT . In order to realize the control target, that is,
lim
t!1 ek k ¼ 0, select a Hurwitz polynomial, which is,
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hðsÞ ¼ sn þ k1s
n�1 þ � � � þ kn�1sþ kn ð44:11Þ

Because the system, denoted by Eq. (44.9), is stable if and only if all roots of
Eq. (44.10) belongs to left half-plane, an equation about error can be structured as;

eðnÞ þ k1e
ðn�1Þ þ � � � þ kn�1 _eþ kne ¼ 0 ð44:12Þ

Obviously, e is approximately stable if Eq. (44.11) has a solution. Let
k, ½kn; kn�1. . .k1�T , then Eq. (44.12) can be expressed by

eðnÞ ¼ �kTe ð44:13Þ

and there is,

u ¼ 1
b
ð�f ðxÞ þ rðnÞ þ kTeÞ ð44:14Þ

Let uf is the output of the fuzzy controller with the improved contraction-
expansion factor, and us is offset variable for the output of the fuzzy controller, so
there is

u ¼ uf þ us ð44:15Þ

Substituting Eq. (44.15) into (44.10) gives

xðnÞ ¼ f ðxÞ þ bðuf þ usÞ þ d ð44:16Þ

With Eqs. (44.13) and (44.16), the error is

eðnÞ ¼ �kTeþ bðu� � uf � usÞ ð44:17Þ
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is,

_e ¼ Aeþ Bðu� � uf � us � dÞ ð44:18Þ

Theorem 44.1 The system expressed by Eq. (44.18) is a approximately stable
system with the adaptive selection of us.
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Prove According to Lyapunov equation, there is a positive definite matrix P to
satisfy the following condition with arbitrary selected positive definite matrix Q.

ATPþ PA ¼ �Q ð44:19Þ

Construct energy function VðeÞ ¼ eTPe=2, and then _VðeÞ is

_VðeÞ ¼ �eTQe
�
2þeTPBðu� � uf � usÞ ¼ �eTQe

�
2þ eTPnBðu� � uf � usÞ

where Pn ¼ ½p1; p2. . .pn�T .

Let us ¼ I�sgnðeTPÞ½ðf0 þ rðnÞ
�� ��þ kTe

�� ��Þ.bþ uf
�� ��þ DN � ð44:20Þ

Where I� ¼ 1; ePj jðf0 þ rnj j þ kTe
�� ��þ b2 uf

�� ��Þ\eTPe=2
0; otherwise

�
.

With Eqs. (44.8) and (44.14), there is

_VðeÞ� � eTQeþ eTPn

�� ��bð u�j j þ uf
�� ��þ DNÞ

�
2� eTPnbus

� � eTQeþ eTPn

�� ��bðf0 þ rðnÞ
�� ��þ kTe

�� ��þ b uf
�� ��þ DNÞ

.
2� eTPnbus

When I� ¼ 0, _VðeÞ� 0; When I� ¼ 1, _VðeÞ� � eTQe=2� 0, and if and only if
ek k ¼ 0, _VðeÞ ¼ 0. So the system expressed by Eq. (44.18) is a approximately

stable system with the adaptive selection of us.

Deduction 44.1 The error vector is bounded after adding of Compensator us to the
system, i.e., 9E0 [ 0, make ek k�E0. Additionally, If the inference input r is
bounded, the state variable x is also bounded.

Prove Because of VðeÞ� 0 and _V � 0, st. 8t, VðeÞ�V0. Let kmin is the minimum
eigenvalue of P, there exists 1

2 ek k2kmin � 1
2 e

TPe ¼ VðeÞ�V0. Because P is posi-

tive definite matrix, kmin [ 0, ek k is : ek k� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=kminðPÞ

p
.

Let E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=kmin

p
, then ek k�E0. Supposed that the system input r is

bounded, 9Xr [ 0 and 8t, make rk k�X, where r ¼ ðr; _r; . . .; rðn�1ÞÞ. Obviously,
xk k� rk k þ ek k�Xr þ E0. Let Xx ¼ Xr þ E0, then xk k�Xx, that is, x is bounded.

44.4 Simulations

Consider the non-minimum phase system GðsÞ ¼ 1
�
s2 � 0:65sþ 1. Without any

control, the system denoted by Eq. (44.6) is divergent and unstable, shown in
Fig. 44.4. The sampling time T ¼ 0:01.
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Parameters of fuzzy controller are: Universes of error e, change of error ec and
output u are ½�6; 6�. Scale factors of e, ec and u are ke ¼ 5, kec ¼ 2, ku ¼ 1
respectively. Fuzzy partitions of e, ec and u are NB;NM;NS;ZO; PS; PM; PBf g
respectively, Here, the membership functions are all taken triangle membership
functions, shown as Fig. 44.5 and fuzzy rules are shown in Table 44.1.

Three kinds of contraction-expansion factors are selected as followings: pro-
portional contraction-expansion factor: aðxÞ ¼ xj j=Eð Þs, where s ¼ 0:5; exponential
contraction-expansion factor: aðxÞ ¼ 1� k1expð�k1x2Þ, where k1 ¼ 0:88; k1 ¼ 0:8,
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Fig. 44.5 Distribution of fuzzy sets for e, ec and u

Table 44.1 Fuzzy rules
EC NB NM NS ZO PS PM PB

u

E

NB −6 −6 −4 −2 0 0 2

NM −6 −6 −4 −2 0 2 4

NS −6 −4 −2 −2 0 4 4

ZO −6 −4 −2 0 2 4 6

PS −4 −2 0 2 2 4 6

PM −4 −2 0 2 4 6 6

PB −2 0 0 2 4 6 6
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and improved contraction-expansion factor: aðxÞ ¼ 1� k2expð�k2 xj j þ k3x2Þ,
where k2 ¼ 0:98; k2 ¼ 0:9; k3 ¼ 0:01. With the same structure of fuzzy controller,
figures for fuzzy control system with the above three kinds of expansion factors are
shown in Figs. 44.6 and 44.7.

With Figs. 44.6 and 44.7, the fuzzy system with improved contraction-expansion
factor is of some good characteristics, such as short setting time, little overshot,
small stable error, strong robustness. Meanwhile, the simulation results also man-
ifest the effective design and optimal designing criterion.

Fig. 44.6 Step responding
figures

Fig. 44.7 Changes of
expansion factors with error
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44.5 Conclusion

An improved contraction-expansion factor is designed in the paper. With the dis-
cussion of the relationship between error, weight of university and contraction-
expansion factor, optimal designing criterion for contraction-expansion factor is
deduced, which gives the basis for design of an improved contraction-expansion
factor. And then, stability of fuzzy system with improved contraction-expansion
factor is proved by Lyapunov stability theorem. Finally, simulations for a non-
minimum phase system are manifested that the performance of the fuzzy system
with an improved contraction-expansion factor is more effective than that with
proportional contraction-expansion factor and exponential contraction-expansion
factor.
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