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Robust PI-Type Position Controller Design
for Permanent Magnet Synchronous
Motor Using LMI Techniques

Xiaokang Sun, Yang Yi, Songyin Cao, Heqing Liu
and Tianping Zhang

Abstract In this paper, a novel proportional-integral (PI) rotor position tracking
controller-based linear matrix inequality (LMI) technique is designed for the per-
manent magnet synchronous motor (PMSM) system. Different from the results on
structure control for PMSM, the PI-type gain parameters can be obtained by solving
a series of LMIs instead of by manual debugging repeatedly. As a result, more
control requirements for PMSM system including stability, position tracking, and
robustness can be guaranteed based on systemic analysis method. Moreover, when
considering the motor model without position sensor, a reduced-order Luenberger
observer is constructed to estimate the rotor position.

Keywords PI-type position controller � PMSM � Robust control � LMI �
Luenberger observer

41.1 Introduction

In recent years, the permanent magnet synchronous motor (PMSM) has received
increasing interest in the field of industrial application [1]. Compared with other
drive devices, the PMSM model can obtain higher power density, larger torque to
inertia, and higher efficiency which makes the PMSM a prior choice in certain
applications [2, 3]. It is noted that both the rotor position and the angular speed in
PMSM system are the two main controlled objectives and have obtained wide-
spread concerns (see [4–9]). However, the existence of nonlinearities, unknown
disturbances, and load torque will influence the control performance of PMSM
system [1, 2]. In order to solve these difficulties, some advanced control algorithms
have been presented for the PMSM system, such as predictive control [2], adaptive
control [3], backstepping method [8], sliding mode control [9], and so on.
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It is well known that PI/PID control is widely applied in practical systems and
some theoretical algorithms have also been discussed based on both the frequency-
domain and time-domain approaches [10]. With the popularity of linear matrix
inequality (LMI) techniques, the PI/PID controller-based LMI optimization algo-
rithm has been designed to achieve satisfactory control performance in the scope of
time domain [11]. For the control problem of PMSM system, the control gains in
some traditional PI/PID algorithms can be obtained only by debugging repeatedly or
depending on experience, which seriously affects the system performance of PMSM
[3, 5]. Moreover, not enough sensors applied in PMSM system [7] will bring more
difficulties in controlling the rotor position or the angular speed in PMSM system.

In this paper, a PI-type position controller based on LMIs is proposed for PMSM
system. Instead of manual debugging repeatedly, the control gains can be computed
by solving a series of convex LMIs and rigorous proof is given such that the closed-
loop PMSM system can be guaranteed to be stable and the tracking error of rotor
position can also converge to zero. At the same time, in order to deal with the in-
measurable position problem when lacking position sensors, a linear Luenberger
observer based on PMSM system is constructed to estimate the position variable.
Furthermore, the peak-to-peak index is used to formulate the disturbance attenua-
tion performance of PMSM system.

41.2 Mathematical Model of Surface-Mounted PMSM

After making some standard assumptions, the dynamical model of a surface-
mounted PMSM can be written as follows: [1–3]
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where id and iq are the d � q axis currents, ud and uq are the d � q axis voltages, x
is the angular velocity, h is the rotor angle position, R is the stator resistance, L is
the stator inductor, p is the pole pair, B is the viscous friction coefficient, J is the
rotor moment of inertia, /f is the rotor flux linkage, TL is the load torque, Kt ¼
1:5 p/f is the torque constant.

In order to eliminate the influence of the coupling terms between angular
velocity and currents, the d-axis reference current is usually assumed as i�d ¼ 0. If
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the current controllers work well, the output term id ¼ i�d ¼ 0. As a result, the
PMSM system (41.1) can be simplified in the following form:
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which makes the position controller design simpler.
With the desired angular position h�, fðtÞ is a designed auxiliary variable based on

tracking error with the expression _fðtÞ ¼ h� � hðtÞ. To achieve good control
objective, the augmented state variable is defined as xðtÞ ¼ hðtÞ; iqðtÞ; fðtÞ; xðtÞ½ �T .
Assuming uðtÞ ¼ uqðtÞ as the control input and dðtÞ ¼ h�; TL½ �T as the disturbance
term, the state equation can be given in the following augmented form:

_x ¼ AxðtÞ þ BuðtÞ þ B1dðtÞ
zðtÞ ¼ CxðtÞ þ DdðtÞ

(
ð41:3Þ

where zðtÞ is the reference output with known matrices C and D, and
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41.3 PI-Type Controller Design

For the position tracking problem, a novel PI-type position controller is proposed as
follows:

uðtÞ ¼ KP1hðtÞ þ KP2iqðtÞ þ KI

Z t

0

ðh� � hðsÞÞdsþ KP3xðtÞ ð41:4Þ

where KP1;KP2;KP3 and KI are controller gains to be determined later.
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Substituting uðtÞ ¼ KxðtÞ into augmented system (41.3), the corresponding
closed-loop PMSM system can be described as

_xðtÞ ¼ ðAþ BKÞxðtÞ þ B1dðtÞ
zðtÞ ¼ CxðtÞ þ DdðtÞ

(
ð41:5Þ

where K ¼ KP1 KP2 KI KP3½ �.

41.4 Stability Analysis with Disturbance Attenuation
Performance

The following result provides a criterion for the performance analysis of the
unforced PMSM system of (41.3).

Theorem 41.1 For the known parameters k; liði ¼ 1; 2Þ; a[ 0; suppose there
exist matrices with appropriate dimensions P; T [ 0; and parameter c[ 0 such
that the following LMIs
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are solvable, then the unforced system of (41.3) is stable, and the output satisfies
the disturbance attenuation performance sup dðtÞk k1 � 1 zðtÞk k1\c2.

Proof Defining a typical Lyapunov function as

VðxðtÞ; tÞ ¼ xTðtÞPxðtÞ ð41:8Þ

Obviously it is noted that VðxðtÞ; tÞ� 0. Furthermore, we can get

_VðxðtÞ; tÞ� xTðtÞU1xðtÞ þ l2dðtÞk k2 ð41:9Þ

where U1 ¼ symðATPÞ þ l�2
2 PB1BT

1P.
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Based on Schur complement formula, (41.6) implies that U1 þ l21T\0 holds.
With (41.10), it can be seen that for any dðtÞk k1 � 1, we can get

_VðxðtÞ; tÞ� � l21x
TðtÞTxðtÞ þ l22 ð41:10Þ

So for any xðtÞ, it can be seen that
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which also implies that the unforced PMSM system of (41.3) is stable.
The proof of disturbance attenuation performance is omitted here to save

space. h

41.5 Position Tracking with Peak-to-Peak Performance

The following theorem provides an effective solution for the PI-type position
tracking problem of closed-loop PMSM system (41.5).

Theorem 41.2 For the known parameters liði ¼ 1; 2Þ; a[ 0; suppose there exist
matrices with appropriate dimensions Q ¼ P�1 [ 0;M ¼ T�1;R[ 0; and
parameter c[ 0 such that the following LMIs
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are solvable, then the closed-loop PMSM system (41.5) under the PI-type control
law (41.4) is stable and satisfies both limt!1 hðtÞ ¼ h� and sup dðtÞk k1 � 1

zðtÞk k1\c2. In this case, the control gains KP1;KP2;KP3 and KI can be solved via
R ¼ KQ.

The proof of Theorem 41.2 is omitted here to save space.
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41.6 Reduced Luenberger Observer Design

In this section, we focus on the motor model without position sensor. As a result,
the position status of the rotor cannot be measured directly. So a typical reduced-
order Luenberger observer needs to be constructed to observe the state variables of
PMSM system and further to estimate the position values.

Based on the PMSM system (41.2), the reduced Luenberger observer is designed
as follows:
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where îq and x̂ represent the estimate values of iq and x, respectively.
Combining (41.2) with (41.14), we can get

deq
dt

dex
dt

2
6664

3
7775 ¼

�R
L
� e � p/f

L

3p/f

2J
�B
J

2
6664

3
7775

eq

ex

2
4

3
5 ð41:15Þ

where eq ¼ iq � îq; ex ¼ x� x̂ represent the observation errors of iq and x. From
(41.15), the observer gain e can be designed to make the continuous error dynamics
converge to zero asymptotically. It is shown that the proposed observer is of first
order, so the computation burden is relatively light. Hence, the position of the rotor
can be calculated by h ¼ R

x̂dt.

41.7 Simulation Results

The specification of the PMSM system is shown in Table 41.1.
From t ¼ 0 to 20 s, the position command is designed as p rad, and after t = 20 s,

the position command is changed as 4 rad. Defining parameters e ¼ 5; TL ¼ 5Nm.
By using the LMI box, the PI-type controller can be computed as
KP1 ¼ �1:5968;KP2 ¼ 0:5192;KP3 ¼ 0:1498;KI ¼ 1:1481.

Table 41.1 Specification of the PMSM system

Stator resistance R 0:54X Viscous coefficient B 0.0001 Nm/rad/s

Stator inductance L 0:0096H Rotor inertia J 0:016 kgm2

Pole pairs p 4 Flux of linkage /f 0:61wb
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The above four figures show the dynamical responses of PMSM in combination
with the PI-type controller and the Luenberger observer. From Fig. 41.1, the rotor
position and the d-axis current are correct and rapidly converge to their reference
values, respectively. The satisfactory position tracking and speed control are
embodied in Fig. 41.2.

41.8 Conclusion

This paper considers the tracking problem for the rotor position of PMSM system
by combining a generalized PI-type controller with a reduced-order Luenberger
observer. Based on convex optimization LMI techniques, some typical control
objectives including stabilization, position tracking, and robustness for PMSM
system can be guaranteed simultaneously.
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Fig. 41.2 Error between desired position and actual position and responses of angular speed

Fig. 41.1 Position responses of with Luenberger observer and responses of the q-axis current
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