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Abstract This paper investigates the problems of dissipativity analysis and
synthesis for singular systems through delta operator method. First, a sufficient
condition is obtained such that a singular delta operator system is admissible and
strictly dissipative. Then the existence condition and explicit expression of a state
feedback strictly dissipative controller are presented. A numerical example is also
provided to demonstrate the effectiveness of the theoretical results.
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3.1 Introduction

During the past decades, much attention has been paid to singular systems as they
can describe many practical systems such as economic systems, electrical networks,
highly interconnected large-scale systems, etc. [1]. Many achievements have been
made in singular system theory in recent years [1–5, 8–10, 15]. Dissipativity theory
is an important part in control theory which has made a positive effect on studying
stability and other properties of control systems [12, 13]. There have been some
valuable results on dissipativity analysis and dissipative control for singular systems
[2, 8, 9]. For example, a necessary and sufficient condition was obtained to ensure
an uncertain singular discrete system admissible and strict dissipative [2]. The
existence condition and explicit expression of a state feedback strictly dissipative
controller were also given in [2]. The results of robust dissipativity analysis and
some design method of a robust dissipative controller were presented for singular
continuous systems with affine uncertainty in [8, 9], respectively.
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In control theory, most research results adopt the standard shift operator in the
study of discrete systems. But there exists a problem that the dynamic response of a
discrete system does not converge smoothly to its continuous counterpart when the
sampling period tends to zero [11], which is called the numerical ill-condition. In
order to avoid the above problem, a delta operator method was proposed in [6]. It
was shown that the delta operator requires smaller word length when implementing
fixed-point digital control processors than the shift operator does [7]. The delta
operator method is also significantly less sensitive than the shift operator method at
high sampling rates [14]. Furthermore, the delta operator model can provide a
theoretically unified formulation of normal continuous and discrete systems. Most
recently, the delta operator method has been introduced to study singular systems
and some valuable results have been derived. Dong [3] and Dong et al. [4] studied
the problem of admissibility analysis for singular systems via delta operator
method. Dong et al. [4] and Mao et al. [10] considered the problem of admissible
control for singular delta operator systems. But until now there is no result on
dissipativity analysis and control for singular delta operator systems.

In this paper, we consider the problems of dissipativity analysis and synthesis for
singular delta operator systems. A sufficient condition is obtained such that a sin-
gular delta operator system is admissible and strictly dissipative. Based on the
above result, the existence condition and explicit expression of a state feedback
strictly dissipative controller are presented. A numerical example is also provided to
demonstrate the effectiveness of the theoretical results.

Throughout this paper, the following notations are adopted: d is the delta
operator defined by dxðtÞ ¼ _xðtÞ when h ¼ 0 and dxðtÞ ¼ h�1ðxðt þ hÞ � xðtÞÞ
when h 6¼ 0, where h is the sampling period. Matrix P[ 0 (or P\0, respectively)
means that P is symmetric and positive definite (or negative definite, respectively).
Dintða; rÞ is the interior of the region in the complex plane with the center at (a, 0)
and the radius r. kðA;BÞ ¼ fz detðzA� BÞ ¼ 0gj .

3.2 Preliminaries

Consider the following singular delta operator system:

Edx(tk) ¼ Ax(tk)þ B1w(tk)

z(tk) ¼ Cx(tk)þ D1w(tk)
ð3:1Þ

where xðtkÞ 2 Rn is the state, wðtkÞ 2 Rp is the disturbance input, zðtkÞ 2 Rq is the
controlled output, tk means the time t ¼ kh, and h[ 0 is the sampling period.
E 2 Rn�n and rankðEÞ ¼ r\n, A;B1;C;D1 are known real matrices with appro-
priate dimensions.
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Consider the following system:

EdxðtkÞ ¼ AxðtkÞ ð3:2Þ

Definition 3.1 [3] The system (3.2) is said to be regular if detðgE � AÞ is not
identically zero. The system (3.2) is said to be causal if �ðdetðgE � AÞÞ ¼ rankðEÞ.
The system (3.2) is said to be stable if kðE;AÞ � Dintð�1=h; 1=hÞ. The system (3.2)
is said to be admissible if it is regular, causal, and stable.

Lemma 3.1 [3] The system (3.2) is admissible if and only if there exist matrices
P > 0 and F satisfying hATPAþ ATPE þ ETPAþ FGTAþ ATGFT\0, where G is
any matrix of full column rank and satisfies ETG ¼ 0.

The energy supply function of the system (3.1) is defined by
E(w, z, T) = \z, Qz[ T + 2 \z, Sw[ T + \w, Rw[ T , where T is a nonneg-
ative integer; Q, S, and R are known real matrices with Q and R symmetric.
\u; v[ T is defined as \u; v[ T ¼ PT

k¼0 uðtkÞTvðtkÞ.
Definition 3.2 [2] The system (3.1) is said to be strictly (Q, S, R) dissipative if for
some scalar α > 0 and under zero initial state x(0) = 0, the following inequality
holds

Eðw; z; TÞ� a\w;w[ T ; 8T � 0 ð3:3Þ

In order to include H1 performance (where Q ¼ �I; S ¼ 0;R ¼ c2I) and pas-
sivity (where Q ¼ 0; S ¼ I;R ¼ 0) as special cases of the above strict (Q, S, R)
dissipativity, we make the following assumption:

Assumption 3.1 Q� 0.

3.3 Dissipativity Analysis

The purpose of this section is to present some conditions for the system (3.1) to be
admissible (when wðtkÞ ¼ 0) and strictly dissipative (when wðtkÞ 6¼ 0). The dis-
sipativity analysis result is given in the following theorem:

Theorem 3.1 Let the matrices Q, S, and R be given with Q and R symmetric and
Assumption 3.1 holds. Then the system (3.1) is admissible and strictly ðQ; S;RÞ
dissipative if there exist matrices P > 0 and F satisfying

R11 RT
21 CTQT

1
R21 R22 DT

1Q
T
1

Q1C Q1D1 �I

2
4

3
5\ 0 ð3:4Þ
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where Q1 is any matrix satisfying QT
1Q1 ¼ �Q, G is any matrix of full column rank

and satisfies ETG ¼ 0, R11 ¼ hATPAþ ATPE þ ETPAþ FGTAþ ATGFT ,
R21 ¼ hBT

1PAþ BT
1PE þ BT

1GF
T � STC; R22 ¼ hBT

1PB1 � DT
1S� STD1 � R:

Proof Assume that the inequality (3.4) holds. From (3.4) it is easy to obtain

hATPAþ ATPE þ ETPAþ FGTAþ ATGFT\0 ð3:5Þ

Then from Lemma 3.1 we have that the system (3.1) is admissible.
From ETG ¼ 0 we have

0 ¼ 2dxðtkÞTETGFTxðtkÞ ¼ xðtkÞT wðtkÞT
� �

X1
xðtkÞ
wðtkÞ

� �

where

X1 ¼ ATGFT þ FGTA FGTB1

BT
1GF

T 0

� �

Let VðxðtkÞÞ ¼ ðxðtkÞÞTETPExðtkÞ and then we can derive VðxðtkÞÞ� 0 for any
k� 0 from P > 0. Then we have

J ¼ dVðxðtkÞÞ � zðtkÞTQzðtkÞ � 2zðtkÞTSwðtkÞ � wðtkÞTRwðtkÞ
¼ ðEdxðtkÞÞTPExðtkÞ þ xðtkÞTETPEdxðtkÞ þ hðEdxðtkÞÞTPEdxðtkÞ
� zðtkÞTQzðtkÞ � 2zðtkÞTSwðtkÞ � wðtkÞTRwðtkÞ

¼ xðtkÞT wðtkÞT
� �

X2
xðtkÞ
wðtkÞ

� �

¼ xðtkÞT wðtkÞT
� �ðX1 þ X2Þ

xðtkÞ
wðtkÞ

� �

where

X2 ¼ ETPAþ ATPE þ hATPA� CTQC ETPB1 þ hATPB1 � CTS� CTQD1

BT
1PE þ hBT

1PA� STC � DT
1QC R22 � DT

1QD1

� �

When (3.4) holds, from Schur complement we have that (3.4) is equivalent to
X1 þ X2\0 which means J\0. In this case, a sufficiently small scalar a[ 0 can
always be found such that J þ awðtkÞTwðtkÞ� 0. Sum the above inequality up from
0 to T, and notice that h[ 0; xð0Þ ¼ 0, VðxðtTÞÞ� 0, we can obtain

h�1VðxðtTÞÞ � Eðw; z; TÞ þ a\w;w[ T � 0
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Therefore from the above inequality and Definition 3.2 we have that the system
(3.1) is strictly ðQ; S;RÞ dissipative. This completes the proof.

3.4 Dissipative Control

Consider the following singular delta operator system with control input

EdxðtkÞ ¼ AxðtkÞ þ B1wðtkÞ þ B2uðtkÞ
zðtkÞ ¼ CxðtkÞ þ D1wðtkÞ þ D2uðtkÞ

ð3:6Þ

where uðtkÞ 2 Rm is the control input, B2;D2 are known real matrices with
appropriate dimensions, the other notations are the same as those in (3.1).

The purpose of this section is to design a state feedback controller

uðtkÞ ¼ KxðtkÞ ð3:7Þ

for the system (3.6), such that the resulting closed-loop system

EdxðtkÞ ¼ AcxðtkÞ þ B1wðtkÞ
zðtkÞ ¼ CcxðtkÞ þ D1wðtkÞ

ð3:8Þ

is admissible and strictly ðQ; S;RÞ dissipative, and in this case the controller (3.7) is
said to be a strictly dissipative controller for the system (3.6), where K is the
controller gain matrix to be designed and Ac ¼ Aþ B2K;Cc ¼ C þ D2K.

The dissipativity synthesis result is given in the following theorem.

Theorem 3.2 Let the matrices Q, S, and R be given with Q and R symmetric and
Assumption 3.1 hold. Then there exists a state feedback strictly dissipative con-
troller (3.7) for the system (3.6) if there exist matrices P[ 0;F and a scalar e� 0
satisfying

R11 �WTZ�1W RT
21 CTQT

1
R21 R22 DT

1Q
T
1

Q1C Q1D1 �I

2
4

3
5\0 ð3:9Þ

where Q1;G;R11;R21;R22 are the same as those in Theorem 3.1, and
M ¼ R22 � DT

1QD1;N ¼ hBT
1PB2 � STD2 � DT

2QD1; L ¼ R21 � DT
1QC; Z ¼ hBT

2

PB2 � DT
2QD2 � NTM�1N þ eI[ 0; W ¼ hBT

2PAþ BT
2PE � BT

2GF
T � DT

2QC�
NTM�1L. In this case, the gain matrix K of the controller (3.7) can be designed as

K ¼ �Z�1W ð3:10Þ
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Proof Assume that the inequality (3.9) holds. From Theorem 3.1, we have that
system (3.8) is admissible and strictly ðQ; S;RÞ dissipative, if there exist matrices
P[ 0 and F satisfying the following inequality:

P11 PT
21 CT

c Q
T
1

P21 R22 DT
1Q

T
1

Q1Cc Q1D1 �I

2
4

3
5\0 ð3:11Þ

where P11;P21 are obtained from R11;R21 by replacing the matrices A, C with
Ac;Cc, respectively.

From Schur complement, the inequality (3.11) is equivalent to

P11 PT
21

P21 R22

� �
� CT

c
DT

1

� �
Q Cc D1½ 	\0 ð3:12Þ

Again by Schur complement, we know that (3.12) is equivalent to M\0 and

H ¼ P11 � CT
c QCc � ðPT

21 � CT
c QD1ÞM�1ðP21 � DT

1QCcÞ\0 ð3:13Þ

The inequality (3.13) is also the same as

H ¼ H1 þWTK þ KTW þ KTðZ � eIÞK\0 ð3:14Þ

where H1 ¼ R11 � CTQC � LTM�1L.
Similarly, from Schur complement, we can obtain that the inequality (3.9) is

equivalent to H1 �WTZ�1W\0, which together with e� 0 and (3.10) gives

H�H1 þWTK þ KTW þ KTZK

¼ H1 �WTZ�1W þ ðKT þWTZ�1ÞZðK þ Z�1WÞ ¼ H1 �WTZ�1W\0

Then the inequality (3.14) (i.e. (3.11)) holds. Thus from Theorem 3.1 we have
that the closed-loop system (3.8) is admissible and strictly ðQ; S;RÞ dissipative and
the controller (3.7) is indeed a strictly dissipative controller of the system (3.6). This
completes the proof.

3.5 Example

Consider the system (3.6) with the following parameter matrices

E ¼ 1 0
2 0

� �
; A ¼ �1 0

1 7

� �
; B1 ¼ �0:4

1

� �
; B2 ¼ �2

�1

� �
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C ¼ �2 1½ 	;D1 ¼ 1; D2 ¼ �6; h ¼ 0:1

Let Q ¼ �1; S ¼ 0:4;R ¼ 2 and G ¼ �2 1½ 	T . First we solve the inequality
(3.4) and cannot find a feasible solution. Thus from Theorem 3.1 we know that the
above system is not admissible and strictly dissipative. Next we want to design a
state feedback strictly dissipative controller for the above system. Select

P ¼ 1 �0:01
�0:01 0:02

� �
; F ¼ 0:1

�1

� �
; e ¼ 0

and then we can obtain that the inequality (3.9) indeed holds from

�5:839 0:8871 0:5614 �2
2:8871 �1:5647 �1:1832 1
0:5614 �1:1832 �2:7812 1
�2 1 1 �1

2
664

3
775\0

Then by Theorem 3.2, there exists a strictly dissipative controller (3.7) for the
system (3.1) and it can be designed as uðtkÞ ¼ �0:2816 0:1763½ 	xðtkÞ.

3.6 Conclusion

In this paper, the problems of dissipativity analysis and synthesis have been con-
sidered for singular systems via delta operator method. A sufficient condition about
dissipativity analysis has been presented for singular delta operator systems. Based
on the above result, the existence condition and design method of a state feedback
strictly dissipative controller have also been derived. An example is also provided
to illustrate the effectiveness of the obtained results.
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