
Chapter 15
BMI Optimization Based on Improved
Path-Following Method in Control

Jian Chen and Chong Lin

Abstract This paper deals with the optimization of the bilinear matrix inequality
problems by using an improved path-following method. First, the existing path-
following method is depicted in detail, including its implementation and limit.
Then, based on a new linearization method, an improved path-following method is
given. In order to enhance the ability of global optimization, a wide range of
perturbation steps is added. Both methods are implemented on static output feed-
back control problems. Finally, a numerical example is presented to show that the
convergence and optimization ability of the improved path-following method are
better than the existing one.

Keywords Bilinear matrix inequalities � Control problem � Path-following
method � Convergence

15.1 Introduction

The bilinear matrix inequality (BMI) problems are not convex optimization prob-
lems due to the bilinear terms in the constraint [1] and, therefore, can have multiple
local solutions. BMI problems are proved to be NP-hard [2]. In recent years,
considerable research effort has been devoted to the development of algorithms to
solve BMI problems. Branch and bound method [3, 4] is a global optimization
algorithm for solving BMIs, which is an implicit enumeration. Based on some
branching rules and bounding approaches, the local minima is decided in order to
obtain the global minimum. But the combination explosion problem is common in
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solving high-order BMI problems. Another simple global optimization algorithm is
random search method [5]. In this method, the probability to find a solution as well
as the number of random trials can be evaluated. The drawback is that the proba-
bility that the algorithm fails is not equal to zero for a finite number of iterations and
the computation complex is still high. The rank minimization approach [1], also a
global optimization method, is based on the semidefinite programming relaxation
approach to indefinite quadratic programming. But the convergence rate is slow and
sometimes it cannot find the global optimum. As global methods have so many
difficulties, most of the algorithms formed in the literature that claim the applica-
bility to control-related problems of practical size are local search algorithms. Most
of the existing local approaches are computationally fast but, depending on the
initial condition, may not converge to the global optimum. The simplest local
approach makes use of the fact that by fixing some of the variables, the BMI
problem becomes convex in the remaining variables, and vice versa, and iterates
between them [6–9]. This method is not guaranteed to converge to a local solution.
Another local approach is the so-called over-bounding method [10], which splits
two variables in BMI terms into different LMI ones, and the nonpositive quadratic
terms are successively replaced by their upper bounds. Over-bounding method can
reduce the conservatism arising from seeking a common LMI solution in the past
results. But sometimes it has the defect of low convergence rate. Path-following
method (PFM) was proposed in [11]. As a step-by-step method, implying lineari-
zation approach at its key step, it has shown a significant advantage [12–14].
However, the linearization method of this method leads to nonconvergence when
the perturbation is too wide, or the rate of convergence is very slow when the
perturbation is too small.

The main purpose of this paper is to provide an improvement on the path-
following method. The result is based on a new linearization method. By solving
the problem of static output feedback control, the detailed steps of the method is
presented. A numerical example is given to show the effectiveness of our method.

This paper is organized as follows. Section 15.2 describes the existing path-
following method steps and the improved path-following method in detail.
Section 15.3 applies this algorithm to the numerical examples, and compares results
with the existing path-following method. Finally, Sect. 15.4 conclude the work with
some comments.

15.2 Problem Formulation and Path-Following Method

15.2.1 Problem Formulation

Consider the problem of static output feedback (SOF) design for the linear fol-
lowing time-invariant dynamical system:
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_x ¼ Axþ Bu
y ¼ Cx;

�
ð15:1Þ

The SOF stabilization problem is to find a SOF controller u ¼ Fy, such that the
closed-loop system given by

_x ¼ ðAþ BFCÞx ð15:2Þ

is stable. As is known, the closed-loop system (15.2) is stable if and only if there
exists a P ¼ PT [ 0 such that

PðAþ BFCÞ þ ðAþ BFCÞTP\0 ð15:3Þ

As mentioned in [8], if

PðAþ BFCÞ þ ðAþ BFCÞTP� aP\0 ð15:4Þ

holds for some negative number a, the closed-loop system matrix Aþ BFC has its
eigenvalues on the strict left-hand side of the line a in the complex s-plane. If a� 0
satisfying (15.4) can be found, the SOF stabilization problem is solved. So, the SOF
optimization problem in control is

OP1 min a

subject to PðAþ BFCÞ þ ðAþ BFCÞT � aP\ 0:

15.2.2 PFM

In order to solve optimization problem OP1, the PFM developed in [11] can be
adopted. The method consists of three steps.

Step1: Initialization step. At initial, this step is to search suboptimal values of
F0, P0, and a0 by computing OP1 as follows.

(1) Select an initial value M such that Aþ BM is Hurwitz;
(2) Solve the optimization problem OP2 with respect to P.

OP2 min a

subject to PðAþ BMÞ þ ðAþ BMÞTP� aP\0
(3) For fixed P, solve OP1 with respect to a and F.

If a� 0; F is the stabilising SOF gain, stop. Else, set k = 1, i = 1, and let a0 ¼ a,
F0 = F, Ac = A + BF0C.
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Step 2: Perturbation step. The BMI (15.4) is then linearized around (Fk;Pk; ak)
by means of perturbations DF, DP and Da. Set b ¼ b0. The LMI problem to be
solved in this step is

OP3 min a

subject to Pk þ DP[ 0

bPk DP

DP bPk

 !
[ 0

ðPk þ DPÞAc þ AT
c ðPk þ DPÞ þ PkBDFC þ ðBDFCÞTPk\aPk

Step 3: Update step. Let Fk ¼ Fk þ DF;Pk ¼ Pk þ DP; ak ¼ ak þ Da. For fixed
Fk , compute new Pk by solving OP1, and then compute new Fk and ak by
solving OP1. Let Ac ¼ Aþ BFkC.

If a� 0; stop. Else if the relative improvement in a is larger than a preset value, let
k ¼ k þ 1; go to Step 2.

15.3 Main Result

In this section, the new linearization method and IPFM is given as follows.
Write DF ¼ F � Fk , DP ¼ P� Pk and Ac ¼ Aþ BFkC, where Fk and Pk are

fixed matrices. The left side of inequality (15.3) is expanded around ðFk;PkÞ as
follows:

PðAþ BFCÞ þ ðAþ BFCÞTP
¼PkðAc þ BDFCÞ þ ðAc þ BDFCÞTPk þ DPAc þ AT

cDP

þ DPBDFC þ ðBDFCÞTDP
� PkðAc þ BDFCÞ þ ðAc þ BDFCÞTPk þ DPAc þ AT

cDP

þ 1
2
ðDPþ BDFCÞTðDPþ BDFCÞ

¼ bðDF;DPÞ:

Then, by applying Schur complement, bðDF;DPÞ\0 is equivalent to the fol-
lowing LMI condition:

ðPk þ DPÞAc þ AT
c ðPk þ DPÞ þ PkBDFC þ ðBDFCÞTPk �

BDFC þ DP �2I

� �
\0 ð15:5Þ
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The algorithm for improved path-following method consists of five steps.

Step 1: Initialization step. This step is the same as the initialization step in PFM.
Step 2: Small range of perturbation step. The BMI (15.4) is then linearized around
(Fk;Pk; ak) by means of perturbations DF, DP and Da. Set b ¼ b0. The LMI
problem to be solved in this step is

OP4 min a

subject to Pk þ DP[ 0

bPk DP

DP bPk

� �
[ 0

ðPk þ DPÞAc þ AT
c ðPk þ DPÞ þ PkBDFC þ ðBDFCÞTPk � aPk �

BDFC þ DP �2I

 !
\0

Step 3: Update step. Let Fk ¼ Fk þ DF;Pk ¼ Pk þ DP; ak ¼ ak þ Da. For fixed
Fk , compute new Pk by solving OP1, and then compute new Fk and ak by
solving OP1. Let Ac ¼ Aþ BFkC.
If a� 0; stop. Else if jak � ak�1j\e1, a prescribed tolerance, set j = 1, let
b ¼ b� 2Z, F0 ¼ Fk;P0 ¼ Pk; a0 ¼ ak; Else let k ¼ k þ 1 go to Step 2.
Step 4: Wide range of perturbation step. Solve OP4 with replacement of k by j.
Step 5: Update step. Let Fj ¼ Fj þ DF;Pj ¼ Pj þ DP; aj ¼ aj þ Da. For fixed
Fj, compute new Pj by solving OP1, and then compute new Fj and aj by solving
OP1.
Let Ac ¼ Aþ BFjC:
If a� 0; stop. Else, if the difference aj � aj�1\� e2, let F0 ¼ Fj;P0 ¼ Pj;

a0 ¼ aj, i ¼ iþ 1; set k ¼ 1, go to step 2; Else, if the difference
aj � aj�1 [ � e2, and j < 3, let j = j + 1 and b ¼ b� 2, and then go to step 4;
Else, if the difference aj � aj�1 [ � e2, and j ≥ 3, stop. The system may not be
stable via output feedback.

15.4 Numerical Example

An example concerning the SOF control problem is given in this section.

Example 15.1 Consider the SOF stabilization problem of system (15.1) with the
following parameter matrices [6]:
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A ¼

�4 �2 �8 5 �1 �8 4

�9 �7 �6 �3 �2 2 6

�7 �3 7 5 2 10 �1

�6 �3 8 1 2 3 �7

0 �5 6 �3 �4 6 1

2 8 �4 6 �9 �2 �4

5 8 3 1 9 �6 3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

B ¼ �3:9 2 0:1 �2:5 �1 2:5 �1

0:5 0:5 �1 �0:5 1 2 �0:05

� �T

;

C ¼ 3 6 �5 �2 �1 �7 5

�1 �4 �7 �1 �6 �5 �3

� �
:

In this example, two different initialization methods are used in the first step,
which aims to test whether IPFM is sensitive to the initial value. The first initial-
ization method is shown in our algorithms, which is very simple, but the initial
value is not good enough. The second one in [6] is to optimize the initial value by
iteration. It is more complex but a better initial value can be obtained.

Using the initialization method in our algorithms, we obtain the initial value

F01 ¼ 0:4890 0:1910
0:4440 1:4200

� �

and a01 ¼ 49:8330. After four iterations of small range of perturbation and three
iterations of large range of perturbation of IPFM, a SOF gain is found as

F ¼ 0:5663 3:5617
�0:0314 1:3763

� �
;

a ¼ �1:7580, and the eigenvalues of the closed-loop system are −20.9826
± j25.8332, −0.9704 ± j12.6477, −0.9618 ± j0.0784 and −5.0692. But the existing
path-following method (PFM) cannot find a stabilizing solution.

Using the initialization step in [6], the initial value is obtained

F02 ¼ �0:8871 4:9310
�0:6576 0:9867

� �

and a02 ¼ 0:00079717. After two iterations of small range of perturbation and 0
iterations of large range of perturbation, a SOF gain F is found as
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F ¼ �0:8664 4:7886
�0:6107 0:8197

� �
;

a ¼ �1:0250, and the eigenvalues of the closed-loop system are
−6.6636 ± j35.4503, −0.8788 ± j12.6648, −0.5967 and −4.8248 ± j6.2698. In this
case, the PFM can also find a solution as

F ¼ �0:7647 4:5271
�0:5021 0:6122

� �
;

and a ¼ �2:7612.
Table 15.1 shows the comparison of convergence between IPFM and PFM. Let

b ¼ 0:2, both of them are convergent; when the value increases to 0.5, IPFM is still
convergent, but PFM will not converge.

The results indicate that IPFM is able to quickly obtain the stable SOF gain
under the two initial value. However, PFM can solve the SOF problem under the
initial value F02 and cannot solve it under the initial value F01. It shows IPFM is not
sensitive to the initial values. This is owing to the newly wide range of perturbation
step introduced, IPFM has the ability to escape from local optimum.

15.5 Conclusion

In this paper, we have given the improved path-following method. Compared with
the existing path-following method, our method is to linearize the BMIs by use of a
new linearization approach, which improved convergence to a great extent. Then,
by means of adding a wide range of perturbation step, IPFM is able to escape from
local optimum. A numerical example is presented to show that the convergence and
optimization ability of IPFM are better than PFM.
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of China (61174033, 61473160) and in part by the Natural Science Foundation of Shandong
Province, China (ZR2011FM006).

Table 15.1 The comparison of convergence between IPFM and PFM (Example 1)

Method Initial value b ¼ 0:2 b ¼ 0:5

IPFM a01 ¼ 49:8330

F01 ¼ 0:4890 0:1910
0:4440 1:4200

� � a ¼ �1:7580

F ¼ 0:5663 3:5617
�0:0314 1:3763

� � a ¼ �0:0479

F ¼ 21:7030 57:3726
23:0029 60:7208

� �

PFM a ¼ 10:1310

F ¼ 5:5164 �0:3290
�0:3591 5:5478

� � a ¼ 51:0277

F ¼ 1:0eþ 006� 5:7511 �2:3282
3:2026 �1:2965

� �
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