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Variable Thrust Angle Constant
Thrust Rendezvous

Yongqiang Qi and Ding Lv

Abstract In this paper, variable thrust angle (VTA) constant thrust rendezvous is
studied. In particular, the rendezvous process is divided into in-plane motion and
out-plane motion based on the relative motion dynamic model. For the in-plane
motion, the calculation of thrust angle control lows is cast into a convex optimization
problem by introducing a Lyapunov function subject to linear matrix inequalities.
For the out-plane motion, a new algorithm of constant thrust fitting is proposed
through the impulse compensation. The illustrative example is provided to show the
effectiveness of the proposed control design method.

Keywords Rendezvous � Constant thrust � Variable thrust angle � Robust
controller

12.1 Introduction

The problem of rendezvous has been studied and many results have been reported.
For example, the optimal impulsive control method for rendezvous is studied in [1];
adaptive control theory is applied to the rendezvous problem in [2]; an annealing
algorithm method for rendezvous orbital control is proposed in [3]; maneuvers
during rendezvous operations cannot normally be considered as continuous thrust
maneuver or impulsive maneuver [4–6]. In addition, the variable thrust angle
(VTA) constant thrust maneuver, until recent years, has been the least studied.

The purpose of this paper is to study VTA constant thrust rendezvous, in other
words, to design robust closed-loop VTA control laws for the in-plane motion, and
to calculate and compare the fuel consumption under the theoretical continuous
thrust and the actual constant thrust. First of all, for in-plane motion, the robust
control laws for constant thrust VTA satisfying the requirements can be designed by
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solving the convex optimization problem. Then, for out-plane motion, a new
algorithm of constant thrust fitting is proposed by using the impulse compensation
method. Finally, the optimal fuel consumption can be obtained by comparing the
theoretical thrust and the actual constant thrust, and then the actual working times of
the thrusters can be computed using time series analysis method. An illustrative
example shows the effectiveness of the proposed control design method.

12.2 The Robust Variable Thrust Angle Control Laws
for In-plane Motion

The relative motion coordinate system can be established as follows: first, the target
spacecraft is assumed as a rigid body and in a circular orbit, and the relative motion
can be described by Clohessy-Wiltshire equations. Then, the centroid of the target
spacecraft OT is selected as the origin of coordinate, the x-axis is opposite to the
target spacecraft motion, the y-axis is from the center of the earth to the target
spacecraft, the z-axis is determined by the right-handed rule. Then the collision
avoidance process can be divided into in-plane motion and out-plane motion based
on the relative motion dynamic model as follows, where the relative motion
dynamic model of the in-plane motion is:

x
::�2x _y ¼ Fxþgx

m
:: þ 2x _x� 3x2y ¼ Fy þ gy

m

(
ð12:1Þ

where x represents the angular velocity of the target spacecraft. Fx;Fy represent the
vacuum thrust of the chaser and gx; gy represent the sum of the perturbation and
nonlinear factors in the x-axis and in the y-axis, respectively. m represents the mass
of the chaser at the beginning of the collision avoidance maneuver.

Suppose the actual constant thrusts of the chaser are Fx;Fy;Fz, the maximum

thrusts are F
_

x;F
_

y;F
_

z , and the theoretical continuous thrusts are F�
x ;F

�
y ;F

�
z .The

range of the thrust angle in the x-axis hx is defined as shown in Figs. 12.1.
The goal of the collision avoidance maneuver is to design a proper controller for

the chaser, such that the chaser can be asymptotically maneuvered to the target
position. Define the state error vector xeðtÞ ¼ xðtÞ � xtðtÞ, and its state equation can
be obtained as

_xeðtÞ ¼ ðA1 þ DAÞxeðtÞ þ ðB1 þ DBÞuðtÞ
uðtÞ ¼ KxeðtÞ

�
ð12:2Þ
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Lyapunov function is defined as follows:

V ¼ xTe ðtÞPxeðtÞ ð12:3Þ

where P is a positive definite symmetric matrix. According to the system stability
theory, the necessary and sufficient conditions for robust stability of the system
(12.2) are as follow:

ATPþ PA\0 ð12:4Þ

Then a multi-objective controller design strategy is proposed by translating a
multi-objective controller design problem into a convex optimization problem.
And the control input constraints can be met simultaneously. Assuming the initial
conditions satisfy the following inequality, where q is a given positive constant.

xTð0ÞPxð0Þ\q ð12:5Þ

Theorem 12.1 If there exist a corresponding dimension of the matrix L, a symmetric
positive definite matrix X and two parameters e1 [ 0; e2 [ 0, then for sufficient
condition for robust stability there exist a state feedback controller K which can meet
the following conditions simultaneously:

R X L
X �e1 0
LT 0 �e2

0
@

1
A\0; qI xTð0Þ

xð0Þ X

� �
\0; ð12:6Þ

where R ¼ XAT
0 þ A0X þ LTB0 þ B0Lþ e1a2I þ e2b

2I, then the theoretical state
feedback controller K can be calculated as follows:

Fig. 12.1 Variable thrust angle thrusters
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K ¼ LX�1 ¼ K11 K12 K13 K14

K21 K22 K23 K24

� �
ð12:7Þ

Then the following results can be obtained:

Lx
Nx

F̂x cos hx þ Ly
Ny

F̂y sin hy ¼ k11xeðtÞ þ k12yeðtÞ þ k13DVx þ k14DVy

Lx
Nx

F̂x sin hx þ Ly
Ny

F̂y cos hy ¼ k21xeðtÞ þ k22yeðtÞ þ k23DVx þ k24DVy

8>><
>>: ð12:8Þ

Then the thrust angle control lows hx; hy which satisfy the robust stability of the in
plane motion can be obtained from Eq. (12.8).

12.3 Compare Fuel Consumption for the Out-plane
and Calculate the Control Law

The relative motion dynamic model of the out-plane motion:

z
::þx2z ¼ Fz þ gz

m
ð12:9Þ

For the out-plane motion, a new algorithm of constant thrust fitting is proposed
using the impulse compensation method as follows. Suppose the thrusters in the
z-axis can provide different sizes of constant thrust to meet different thrust
requirements.

Constant thrust fitting is proposed by using the impulse compensation method as
follows. Suppose the thrusters in the z-axis can provide different sizes of constant
thrust to meet different thrust requirements. If the theoretical working time of z-axis
thruster in the ith thrust arc t�z ¼ DT\Ti and t�z can be any one of Mi shortest
switching time interval in the ith thrust arc. Without loss of generality, suppose t�z is
the first shortest switching time interval and the impulse error in the z-axis in the ith
thrust arc DIzi can be calculated as follows:

There are Nz þ 1 thrust levels that can be selected and the level of the constant
thrust can be calculated as follows:

Lz ¼
Nz
R TiþDT
Ti

F�
z ðtÞ

�� ��dt
F̂zDT

" #
ð12:10Þ
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Calculate the impulse error.

DIzi ¼ sgn F�
z tð Þ� � ZTiiþDT

Ti

F�
x tð Þ�� ��dt� LzF̂zDT

Nz

������
������ ð12:11Þ

Determine the value of the impulse compensation threshold. Suppose the value of
the impulse compensation threshold is a positive constant c[ 0, if the impulse
error DIzi satisfies the following condition:

ZTiiþDT

Ti

F�
x ðtÞ

�� ��dt � F̂zDT
Nz

Nz
R TiþDT
Ti

F�
z ðtÞ

�� ��
F̂zDT

" #������
������� c ð12:12Þ

the actual constant thrust of the chaser in the z-axis can be calculated as follows:

Fz ¼ sgnðF�
z ðtÞÞ

F̂zDT
Nz

Nz
R TþDTi
Ti

F̂�
z ðtÞ

�� ��dt
F̂zDT

" #
ð12:13Þ

then the chaser will not carry out impulse compensation. Suppose

ZTiþM1DT

Ti

F�
z ðtÞNz

F̂zDT
dt�

ZTiþM1DT

T1þðm1þ1ÞDT

fsgnðF
�
zðtÞÞ

DT

Nz
R Tiþðjþ1ÞDT
TiþjDT F�zðtÞdt

�� ��
F̂zDT

" #
gdt

�������
�������

2
64

3
75

¼ m2

ð12:14Þ

Furthermore, if the impulse error DIzi satisfies the following condition:

½
ZTiþM1DT

Ti

F�
z ðtÞdt�

ZTiþM1DT

T1þðm1þ1ÞDT

fsgnðF�zðtÞÞ
F̂z
Nz

Nz
R Tiþðjþ1ÞDT
TiþjDT F�zðtÞdt

�� ��
F̂zDT

" #
gdt

�������
��������\c

ð12:15Þ

if the impulse error DIzi satisfies the following condition:

½
ZTiþM1DT

Ti

F�
z ðtÞdt�

ZTiþM1DT

T1þðm1þ1ÞDT

fsgnðF�zðtÞÞ
F̂z
Nz

Nz
R Tiþðjþ1ÞDT
TiþjDT F�zðtÞdt

�� ��
F̂zDT

" #
gdt

�������
��������[ c

ð12:16Þ
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then the chaser should carry out impulse compensation and the size of the constant
thrust impulse compensation in the z-axis can be calculated as follows:

DIzi ¼F5m2DT ¼ m2F̂zDT
Nz

; ðF�
z ðtÞ\0Þ

DIzi ¼F6m2DT ¼ �m2F̂zDT
Nz

; ðF�
z ðtÞ[ 0Þ

ð12:17Þ

the actual constant thrust of the chaser in the x-axis can be calculated as follows.
The fuel savings in the x-axis in the ith thrust arc can be calculated as follows:

DPzi ¼
XM1

j¼0

ZTiþðjþ1ÞDT

TiþjDT

p0Nz F�
z ðtÞ

�� ��
F̂z

� sgnðF�
z ðtÞÞp0

Nz
R Tþðjþ1ÞDT
TiþjDT F̂�

z ðtÞ
�� ��dt

F̂zDT

" #( )
dt

ð12:18Þ

Finally, the switch control laws for the rendezvous maneuver can be given in three
axes. For convenience, let us take the time intervals in the ith thrust arc in the x-axis
for example:

Szi ¼ Ti þ jDT ; sgnðF�
z ðtÞÞ

F̂zDT
Nz

Nz
R Tþðjþ1ÞDT
TiþjDT F̂�

z ðtÞ
�� ��dt

F̂zDT

" # !( )
ð12:19Þ

12.4 Simulation Example

The height of target spacecraft is assumed to be 356 km in a circular orbit, then the
mean angular velocity is x ¼ 0:0654� 10�3rad=s and the uncertainty parameters
is assumed as Dx ¼ �1� 10�3rad=s. The initial mass of the chaser is assumed to
be 180 kg at the beginning of rendezvous maneuver. The size of thrusts are
assumed to be �1;200N in three axes and the shortest switching time is DT ¼ 1s
The initial position and velocity of the chaser are assumed to be (1000, 500,
−200 m) and (−10; −5; 2 m/s).

Figure 12.2 shows the change in x, y, z and Vx;Vy;Vz during rendezvous
maneuver.

The results in Fig. 12.3 show the change in Fx;Fy;Fz during rendezvous
maneuver.

The result in Fig. 12.4 shows the trajectory of chaser and the change of the thrust
angles during rendezvous maneuver. It shows that with the switch control control,
the chaser can get to the 20 target positions smoothly.
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Fig. 12.4 The change in the trajectory of the chaser and thrust angles

Fig. 12.3 The change of thrust during rendezvous maneuver

Fig. 12.2 The change of position and velocity during rendezvous maneuver
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The switch control laws can be given according to the sizes and the directions of
the thrust of the chaser. Taking the switch control law in the z-axis as an example:

Szi ¼ fðDT ;�600Þ; . . .; ð27DT ;�100Þ; . . .; ð30DT ; 0Þg ð12:20Þ
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