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Abstract. The BBCRS scheme is a variant of the McEliece public-key
encryption scheme where the hiding phase is performed by taking the
inverse of a matrix which is of the form T + R where T is a sparse
matrix with average row/column weight equal to a very small quantity
m, usually m < 2, and R is a matrix of small rank z � 1. The ratio-
nale of this new transformation is the reintroduction of families of codes,
like generalized Reed-Solomon codes, that are famously known for rep-
resentin insecure choices. We present a key-recovery attack when z = 1
and m is chosen between 1 and 1+R+O( 1√

n
) where R denotes the code

rate. This attack has complexity O(n6) and breaks all the parameters
suggested in the literature.

Keywords: Code-based cryptography · Distinguisher · Generalized
Reed-Solomon codes · Key-recovery · Component-wise product of codes

Introduction

Post-Quantum Cryptography. All public key cryptographic primitives used
in practice such as RSA, ElGamal scheme, DSA or ECDSA rely either on the
difficulty of factoring or computing the discrete logarithm and would therefore
be broken by Shor’s algorithm [24] if a large enough quantum computer could be
built. Moreover, even if a large enough quantum computer might not be built in
the next five years, it should be mentioned that tremendous progress has been
made for computing the discrete logarithm over finite fields of small characteristic
with the quasi-polynomial time algorithm of [5]. This lack of diversity in public
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key cryptography has been identified as a major concern in the field of infor-
mation security. For all these reasons, it would be very desirable to be ready to
replace these schemes by others that would rely on other hard problems. How-
ever only few other proposals have emerged which are essentially hash-based
signature schemes, lattice-based, code-based and multivariate quadratic based
schemes. They are either based on the problem of solving multivariate equations
over a finite field, the problem of finding a short vector in a lattice and the prob-
lem of decoding a linear code. Those problems are known for being NP-hard and
are therefore believed to be immune to the quantum computer threat.

The McEliece Cryptosystem. Among those, one of the most promising
scheme is the McEliece public key cryptosystem [20]. It is also one of the old-
est public-key cryptosystem. It uses a family of codes for which there is a fast
decoding algorithm (the binary Goppa code family here) which is used in the
decryption process whereas an attacker has only a random generator matrix
of the Goppa code which reveals nothing about the algebraic structure of the
Goppa code that is used in the decoding process. He has therefore to decode
a generic linear code for which only exponential time decoding algorithms are
known. The main advantage of this system is to have very fast encryption and
decryption functions. Depending on how the parameters are chosen for a fixed
security level, this cryptosystem is about five times faster for encryption and
about 10 to 100 times faster for decryption than RSA [8]. Furthermore, it has
withstood many attacking attempts. After more than thirty five years now, it
still belongs to the very few public key cryptosystems which remain unbroken.

The Use of Reed-Solomon Codes in a McEliece Scheme. Goppa codes
are subfield subcodes of Generalized Reed-Solomon codes (GRS codes in short).
This means that a Goppa code defined over Fq is actually the set of codewords
of a GRS code defined over an extension field Fqµ (we say that μ is the extension
degree of the Goppa code) whose coordinates all belong to the subfield Fq. Actu-
ally the fast decoding process of Goppa codes is the decoder of the underlying
GRS code. Roughly speaking, a Goppa code of length n and dimension n − 2tμ
defined over Fq can correct t errors1 and is a subfield subcode of a GRS code
that can also correct t errors which is of the same length n but has a larger
dimension n − 2t and is defined over Fqµ . In this sense, the underlying GRS
code has a better error correction capacity than the Goppa code. This raises
the issue of using GRS codes instead of Goppa codes in the McEliece system.
The better decoding capacity of GRS codes translates into smaller public key
sizes for the McEliece scheme which is actually one of the main drawback of this
scheme. This approach has been tried in Niederreiter’s scheme (whose security
is equivalent to the McEliece scheme) but has encountered a dreadful fate when
the Sidelnikov-Shestakov attack appeared [25].

Baldi et al. Approach for Reviving GRS Codes. In their Journal of Cryp-
tology article [2], Baldi et al. have suggested a new way of using GRS codes
in this context. Instead of using directly such a code, they multiplied it by the
1 But the dimension can be increased to n − tµ in the binary case.
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inverse of the sum T +R where T is a sparse matrix and R is a low rank matrix.
By doing this, the attacker sees a code which is radically different from a GRS
code but the legitimate user can still use the underlying GRS decoder. This
thwarts the Sidelnikov-Shestakov attack completely. However the decoding capac-
ity of the resulting code is basically scaled down by a factor of 1

m where m denotes
the average weight of rows of the matrix T . It should be noted that the very
same approach has also been tried for the Low-Density-Parity-Check code fam-
ily, LDPC in short, which is notoriously known for being insecure in a McEliece
scheme [3,4,22]. In this case, they did not even use the low rank matrix and
despite of this fact the resulting public code obtained by this multiplication is
not an LDPC code anymore (it becomes a moderate-density-parity-check code)
and it seems now that if the attacker wants to break this scheme he has to be
able to solve a generic decoding problem [21]. There are therefore good rea-
sons to believe that this approach can be powerful for disguising the secret code
structure.

An Earlier Attempt. Baldi et al. [1] first used this approach with T being a
permutation matrix. In this case m = 1 and nothing is lost in term of decoding
capacity compared to a GRS decoder. In other words, this allows to decrease
the public key size as if we had a GRS code in the McEliece cryptosystem. This
first attempt got broken in [11,12]. Roughly speaking the reason of this attack
in this case can be traced back to two facts (i) it turns out that the resulting
code is still close to the underlying GRS code: the intersection of the public code
with the secret GRS code is of co-dimension one; (ii) there is a very powerful
way of distinguishing a GRS code [12] from a random code by computing the
dimension of its square which can be used to unravel the algebraic structure of
the public code. On the other hand, when the degree of sparseness of T is > 1
the resulting code does not have a large intersection with a GRS code and there
was some hope to obtain a secure scheme.

Our Contribution: an Attack Which Works in the Regime 1 < m < 2.
In the present article we will show that despite the fact that the public code is
far from being a GRS code, a similar trick that has already been used to attack
successfully in [14] some wild Goppa codes proposed in [7] when the degree of
extension is only 2 can also be used in this context. It consists in computing
the dimension of the square of shortenings of the public code. Because of the
hidden structure of the public code, the squares of some of its shortenings have
a smaller dimension than the squares of shortened random codes of the same
dimension. This distinguisher is then used to unravel the structure of the matrix
T . This gives an attack of polynomial time complexity which can be used to
break the examples given in [2]. Several were broken in a few hours, and others
in a few days. As an illustration, Example 1 given in [2] with a claimed 90-
bit security can be broken in 2.75 hours on a computer equipped with Xeon
2.27GHz processor and 72 Gb of RAM. This attack works up to values of m of
order 1 + R + O( 1√

n
), where R is the rate of the public code. The attack we

present here can obviously be thwarted by taking values for m greater than 2,
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but in this case, since the price to pay is a decrease of the decoding capacity by
a factor of more than 2, we do not obtain better public key sizes than the ones
we obtain by using Goppa codes, or more generally alternant codes of extension
degree 2, provided we choose non wild Goppa codes in order to avoid the attack
of [14]. The complexity of the present attack is similar to that of [11], namely
O(n6) where n is the code length. More precisely, this attack starts with two
steps of respective complexity O(n3) and O(n5) and then applying the attack of
[11] whose complexity is O(n6) operations in the base field.

Note. Due to space limitation, several proofs are omitted. A longer ver- sion of
the present paper including the missing proofs can be found online.

1 GRS Codes and the Square Code Construction

We recall in this section a few relevant results and definitions from coding theory
and bring in the fundamental notion of square code construction.

Definition 1 (Generalized Reed-Solomon code). Let k and n be integers
such that 1 � k < n � q where q is a prime power. The code GRSk (x,y)
of dimension k is associated to a pair (x,y) where x is an n-tuple of distinct
elements of Fq and y ∈ (F×

q )n, is defined as:

GRSk (x,y)
def
=

{
(y1p(x1), . . . , ynp(xn)) | p ∈ Fq[X],deg p < k

}
.

The first work that suggested to use GRS codes in a public-key encryption
scheme was [23]. But Sidelnikov and Shestakov [25] showed that for any GRS
code it is possible to recover in polynomial time a pair (x,y) defining it, which
is all that is needed to decode efficiently such codes and is therefore enough to
break any McEliece type cryptosystem [20] that uses GRS codes.

Definition 2 (Componentwise products). Given two vectors a = (a1, . . . ,
an) and b = (b1, . . . , bn) ∈ F

n
q , we denote by a � b the componentwise product

a � b
def
= (a1b1, . . . , anbn).

The star product a � b should be distinguished from a more common operation,
namely the canonical inner product:

a · b
def=

n∑
i=1

aibi.

Definition 3 (Product of codes & square code). Let A and B be two
codes of length n. The star product code denoted by A � B of A and B is the
vector space spanned by all products a � b where a and b range over A and B
respectively. When B = A then A � A is called the square code of A and is
rather denoted by A 2.
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Proposition 1. Let A be a code of length n, then

dim(A 2) � min
{

n,

(
dim(A ) + 1

2

)}
.

Proposition 2. Let A ⊂ F
n
q be a code of dimension k. The complexity of the

computation of a basis of A 2 is O(k2n2) operations in Fq.

See for instance [11], for proofs of Propositions 1 and 2.
The importance of the square code construction becomes clear when we com-

pare the dimension of the square of structured codes like GRS codes with the
dimension of the square of a random code. Roughly speaking, given a code of
dimension k, the dimension of its square is linear in k if it is a GRS code and
quadratic if it is a random code as explained in the two following propositions.

Proposition 3. GRSk (x,y)2 = GRS2k−1 (x,y � y) .

Proof. See for instance [18, Proposition 10].

Remark 1. This property can also be used in the case 2k − 1 > n. To see this,
consider the dual of the Reed-Solomon code, which is itself a generalized Reed-
Solomon code [17, Theorem 4, p.304].

Theorem 1. Let A be a random code of length n and dimension k such that
n >

(
k+1
2

)
. Then, for all integer � <

(
k+1
2

)
,

Prob

(
dimA 2 �

(
k + 1

2

)
− �

)
= O

(
q−� · q−(n−(k+1

2 ))
)

, (k → +∞).

Proof. See [10].

Remark 2. A slightly weaker result was already obtained in the papers [15,16]
(see also [19]).

For this reason, GRSk (x,y) can be distinguished from a random linear code
of the same dimension by computing the dimension of the associated square code.
In [15,16], this phenomenon was already observed for q-ary alternant codes (in
particular Goppa codes) at very high rates whose duals are distinguishable from
random codes by the very same manner. Subsequently, the very same phenom-
enon lead to attacks on GRS based cryptosystems [11,12], to a polynomial time
attack on Wild Goppa codes over quadratic extensions [14] and to a polynomial
time attack on algebraic geometry codes [13].

Historically, the star product of codes has been used for the first time by Wiesche-
brink to cryptanalyze a McEliece-like scheme [6] based on subcodes of Reed-
Solomon codes [26]. The use of the star product here is nevertheless different
from the way it is used in [26]. In Wieschebrink’s paper, the star product is
used to identify, given a certain low codimensional subcode C of a GRS code
GRSk (x,y), a possible pair (x,y). This is achieved by computing C 2 which
turns out to be GRSk (x,y)2 = GRS2k−1 (x,y � y) with a high probability.
The Sidelnikov and Shestakov algorithm is then used on C 2 to recover a pos-
sible (x,y � y) pair to describe C 2 as a GRS code, and hence, a pair (x,y) is
deduced for which C ⊂ GRSk (x,y).
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2 Description of the Scheme

The BBCRS public-key encryption scheme given in [2] can be summarized as
follows:

Secret Key
– Gsec is a generator matrix of a GRS code of length n and dimension k

over Fq.

– Q
def= T +R where T is an n×n non-singular sparse matrix with elements

in Fq and average row weight m � n. Note that m is not necessarily
an integer. For example m = 1.4 means that 40% of the rows of T have
weight equal to 2 and the other 60% have weight equal to 1.

– R is a rank-z matrix over Fq such that Q is invertible. In other words

there exist α
def= (α1, . . . , αn) and β

def= (β1, . . . , βn) such that R
def= αT β

and αi and βi are z × 1 full rank matrices defined over Fq for all i ∈
{1, . . . , n} and z � n.

– S is a k × k random invertible matrix over Fq.
Public Key

Gpub
def= S−1GsecQ

−1. (1)

Encryption. The ciphertext c ∈ F
n
q of a plaintext m ∈ F

k
q is obtained by

drawing at random e in F
n
q of weight less than or equal to n−k

2m (recall that

m denotes the density of the matrix T ) and computing c
def= mGpub + e.

Decryption. It consists in performing the three following steps:
1. Guessing the value of eR.
2. Calculating c′ def= cQ−eR = mS−1Gsec+eQ−eR = mS−1Gsec+eT

and using the decoding algorithm of the GRS code to recover mS−1 from
the knowledge of c′.

3. Multiplying the result of the decoding by S to recover m.

Remark 3. In [2], the authors suggest to take m = 1 + n−k−3
n ≈ 2 − R for the

density of T .

Further Details on the Construction of the Matrix T . We deal with the
case m � 2. According to [2] the matrix T is constructed2 as follows.

1. Choose a permutation matrix P . Replace each 1 by a random element of
F

×
q .

2. Set t
def= �n−k

2 	, δt
def= t − � t

m	 and �
def= �(m − 1)n	. Choose a random set C

of δt columns and a random set J2 of � rows of P .
3. For all i ∈ J2, we denote by π(i) the integer such that P i,π(i) 
= 0. For each

i ∈ J2, choose a random element j ∈ C \ π(i) and add a random element of
F

×
q at position (i, j).

2 Actually, the authors propose three constructions for T and express a clear preference
for the one described in the present article.
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We also tested another construction allowing to have row and column weight
upper bounded by 2. The sparse matrix T is constructed as T = T 1+T 2 where:

– T 1 is of the form T 1 = D1P 1, where D1 is diagonal invertible and P 1 is a
permutation matrix;

– T 2 = D2P 2, where D2 is diagonal with (m − 1)n nonzero diagonal coeffi-
cients and P 2 is a permutation matrix;

– The matrices do not overlap, that is, there is no pair (i, j) with 1 � i, j � n
such that both (T 1)ij and (T 2)ij are nonzero.

Our attack works for both choices of the matrix T . The experimental results
in Sec. 6 rely on the first construction for T .

2.1 Previous Attacks and Discussion on the Parameters

The BBCRS scheme has been subject to an attack [11] in the case m = 1, i.e.
the matrix T is a permutation matrix and z = 1, i.e. the matrix R has rank
1. The attack presented here holds for m < 1 + R + O( 1√

n
) and z = 1. The

relevance of choosing higher m or z is discussed in Section 7.
The attack of the present article uses in its last step the attack [11] on the

original system [1].

2.2 Notation

It will be convenient to bring the following notation.

– Cpub is the code with generator matrix Gpub;
– Csec is the GRS code with generator matrix Gsec, we assume that it is

specified by its dual (which is itself a GRS code) as C⊥
sec = GRSn−k (x,y);

– J1 is the set of positions which correspond to rows of T of Hamming weight
1. The elements of J1 are called the positions of degree 1. For any row i ∈ J1

of T , we define j(i) as the unique column of T for which Tij(i) 
= 0;
– J2 is the set of positions which correspond to rows of T of Hamming weight

2. The positions in J2 are called the positions of degree 2. When i belongs
to J2, let j1 and j2 be the columns of T for which we have Tij1 
= 0 and
Tij2 
= 0. We define similarly j(i) as the set {j1, j2} in this case.

2.3 Structure of the Public Code

The following result explains how Cpub and Csec and their duals are related.

Lemma 1

Cpub = Csec(T + R)−1 (2)
C⊥
pub = C⊥

sec(T + R)T . (3)
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Proof The first equality follows immediately from (1), whereas the second one
was is observed in [2, p.6, Equation (8)] where a parity-check matrix for the
public code Cpub is expressed in terms of a parity-check matrix of the secret
code. This can be proved as follows. For all c ∈ Csec, c′ ∈ C⊥

sec,

(c(T + R)−1) · (c′(T + R)T ) = (c(T + R)−1(T + R)) · c′ = c · c′ = 0.

Moreover, since Q = T +R is invertible, we get dimC⊥
sec(T +R)T +dimCsec(T +

R)−1 = n, hence the codes are dual to each other.

3 The Fundamental Tool: Shortening and Puncturing
the Dual of the Public Code

Puncturing and shortening will play a fundamental role in the attack. Recall
that for a given code C ⊂ F

n
q and a subset I of code positions the punctured

code PI (C ) and shortened code SI (C ) are defined as:

PI (C ) def=
{
(ci)i/∈I | c ∈ C

}
;

SI (C ) def=
{
(ci)i/∈I | ∃c = (ci)i ∈ C such that ∀i ∈ I, ci = 0

}
.

Given a subset I of the set of coordinates of a vector u, we denote by PI (u)
the vector u punctured at I, that is to say, indexes that are in I are removed.

First let us recall the influence of these operations on GRS codes.

Lemma 2. Let x,y be two n–tuples of element sof Fq such that x has pairwise
distinct entries and y has only nonzero entries. Let k < n and I ⊆ {1, . . . , n}.
Then

PI (GRSk (x,y)) = GRSk (PI (x) ,PI (y)) (4)
SI (GRSk (x,y)) = GRSk−|I| (PI (x) ,yI) , (5)

for some yI ∈ F
n−|I|
q depends only on y and I.

Next, with these notions at hand, it follows that the dual of the public code
punctured in J2 is very close to a GRS code. We will also need to understand
the structure of versions of this code which are shortened in positions belonging
to J1 and then punctured in J2. It turns out that these codes too are close to
GRS codes. First of all, puncturing C⊥

pub in the positions belonging to J2 gives
“almost” a GRS code, as shown by:

Lemma 3. Let u = (ui)i∈J1 and v = (vi)i∈J1 be vectors in F
n−|J2|
q defined by

ui = xj(i)

vi = Tij(i)yj(i).

Let D
def
= C⊥

secT
T , then

PJ2 (D) ⊆ GRSn−k (u,v) . (6)
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Lemma 4. Let λ and μ be vectors of Fn
q such that RT = λT μ and let C⊥

sec(λ)
def
=

C⊥
sec ∩ < λ >⊥, C⊥

pub(λ)
def
= C⊥

sec(λ)(T T + RT ). Then,

PJ2

(
C⊥
pub(λ)

) ⊆ GRSn−k (u,v) , (7)

Moreover if J1 contains an information set3 of C⊥
secT

T and T T is invertible,
then there exist a and b in F

n−|J2|
q such that for any c in PJ2

(
C⊥
pub

)
, there

exists a vector p in GRSn−k (u,v) for which

c = p + (p · b)a. (8)

In particular, PJ2

(
C⊥
pub

)
⊆ GRSn−k (u,v) + < a >.

If we puncture with respect to J2 shortened versions of C⊥
pub in positions

belonging to J1, then we observe a similar phenomenon, namely

Lemma 5. Let I1 be a subset of code positions which is a subset of J1. Let
s

def
= |I1| and assume that s � n−k. Then there exist vectors a,u,v in F

n−s−|J2|
q

such that:
PJ2

(SI1

(
C⊥
pub

)) ⊆ E+ < a > (9)

and E is a subcode of GRSn−k−s (u,v).

4 Key-Recovery Attack

4.1 Outline

Our key-recovery attack starts with a parity-check matrix Hpub of the (public)
codeCpub. Themain goal is to recovermatricesT andR, whereHpub(T T + RT )

−1

is a parity check matrix of a GRS code, T is a low density square matrix and R a
rank 1 matrix. Recall that in our terminology, rows of T belonging to J1 are posi-
tions of degree 1, and those in J2 are positions of degree 2. It implies, thanks to
(3), that some columns of Hpub belong to J1 and the others are in J2.

Our attack is composed of three mains steps having the following objectives:

1. Detecting columns of Hpub that belong to J2, and then deducing those of
J1.

2. Transforming columns of J2 into degree 1 columns by linear combinations
with columns of J1.

3 In coding theory, an information set of a code C of dimension k is a set of k positions
I such that the knowledge of a codeword c ∈ C on the positions in I determines
entirely the codeword. Equivalently, if G denotes a k × n generator matrix of the
code, then the k × k submatrix of G given by extracting the columns indexed by I
is invertible.
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3. At this stage, the public code has been transformed into another code C
such that there exists a secret GRS code C ′

sec and a matrix Π + R′ where Π
is a permutation matrix and R′ is rank-1 matrix such that:

C = C ′
sec(Π + R′). (10)

The third step consists then in applying the attack developed in [11] which is
purposely devised to recover a pair (Π,R′) from C as outlined in Section 2.1.

The purpose of the next sections is to describe more precisely the first two
steps of the attack.

4.2 A Distinguisher of the Public Code

The attack uses in a crucial way a distinguisher which discriminates the public
code from a random code of the same dimension. It is based on square code con-
siderations. The point is the following: if we shorten the dual C⊥

pub of the public

code in a large enough set of positions I, then the square code
(
SI

(
C⊥
pub

))2

has dimension strictly smaller than that of
(SI

(
C⊥
rand

))2 where Crand is a ran-
dom code of the same dimension as Cpub. The code

(SI
(
C⊥
rand

))2 has dimension

which is typically min
{

n − |I|, (kI+1
2

)}
where kI stands for the dimension of

SI
(
C⊥
rand

)
. In general, kI is equal to n−k−|I| since dimC⊥

rand = dimC⊥
pub = n−k

whereas we generally have:

dim
(SI

(
C⊥
pub

))2 � 3(n − k) + |J2| − 3|I| − 1. (11)

In other words, when 3(n−k)+ |J2|−3|I|−1 < min
{

n − |I|, (kI+1
2

)}
we expect

to distinguish Cpub from a random code of the same dimension. We write here
“generally” because there are some exceptional cases where such an inequality
does not hold. However in the case when I ⊂ J1, this inequality always holds.

Proposition 4. Let I ⊆ J1, then dim
(
SI

(
C⊥
pub

))2

� 3(n−k)−3|I|−1+|J2|.

Remark 4. It turns out that a similar inequality also generally holds when I
contains degree 2 positions. However in this case, the situation is more com-
plicated and it might happen in rare cases that this upper-bound is not met
but, roughly speaking, when it happens, the actual result remains close to this
upper bound. Experimentally, we observed that (11) was satisfied even when I
contained positions of J2.

Remark 5. The use of shortening is important since in general the (dual) public
code itself is non distinguishable because its square equals the whole ambient
space. However, for a part of the parameters proposed in [2], the dual public code
is distinguishable from a random code without shortening. See §6 for further
details.
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4.3 Description of the Attack

First Step – Distinguishing Between Positions in J1 and J2. Roughly
speaking the attack builds upon an algorithm which allows to distinguish between
a position of degree 1 and a position of degree 2. It turns out now that once we
are able to distinguish the public code from a random one by shortening it in a
set of positions I such that:

dim
(SI

(
C⊥
pub

))2
< min

{
n − |I|,

(
n − k − |I| + 1

2

)}
, (12)

we can puncture SI
(
C⊥
pub

)
in a position i that does not belong to I and this

allows to distinguish degree 1 positions from degree 2 positions. The dimension
of the square code of this punctured code will differ drastically when i is a degree
1 position (or a certain type of degree 2 position) or a “usual” degree 2 position.
When i is a degree 1 position it turns out that

dim
(SI

(
C⊥
pub

))2
= dim

(Pi

(SI
(
C⊥
pub

)))2
, (13)

whereas for “usual” degree 2 positions we observe that

dim
(SI

(
C⊥
pub

))2
= dim

(Pi

(SI
(
C⊥
pub

)))2
+ 1. (14)

Sometimes (in the “non usual” cases), we can have positions of degree 2 for
which

dim
(SI

(
C⊥
pub

))2
= dim

(Pi

(SI
(
C⊥
pub

)))2

as for degree 1 positions. This happens for instance if shortening in I “induces”
a degree 1 position in i. This arises mostly when the position i of degree 2 is
such that j(i) = {j1, j2} where either j1 = j(i′) or j2 = j(i′) for a position i′ of
degree 1 that belongs to I. This phenomenon really depends on the choice of I.
However, by choosing several random subsets I we quickly find a shortening set
I for which the degree 2 position we want to test behaves as predicted in (14).

Procedure to Compute J2

– Choose a set of random subsets I1, . . . , Is (in our experimentations we always
chose s ≈ 20) whose cardinals satisfy (12).

– For i = 1, . . . , s compute SIi

(
C⊥
pub

)2

and call J2(i) this set of positions
satisfying

dim SIi

(
C⊥
pub

)2 
= dimPj

(
SIi

(
C⊥
pub

)2)
.

– Set J2 = J2(1) ∪ · · · ∪ J2(s).



186 A. Couvreur et al.

Second Step – Transforming Degree 2 Positions into Degree 1 Ones

Proposition 5. Let i1 ∈ J1 and i2 ∈ J2 be a position associated to i1. Let
D(α, i1, i2) be an n × n matrix which is the identity matrix with an additional

entry in column i2 and row i1 that is equal to α. Define C
def
= C⊥

pubDα,i1,i2 . If

α = −Ti2j1
Ti1j1

, then there exists R′ of rank at most one such that

C = C⊥
sec(T

′T + R′T ) (15)

where T ′ differs from T only in row i2 and column j1, the corresponding entry
being now equal to 0.

This proposition is exploited as follows, we first compute for a degree 1
position i1 the set of degree 2 positions i2 such that j(i1) ∈ j(i2). These positions
i2 can be detected by checking if i2 has now become a degree 1 position for
S{i1}

(
C⊥
pub

)
(this is the case if and only if j(i1) ∈ j(i2)). Once such a pair

(i1, i2) has been found we try all possible values for α ∈ F
×
q until we obtain a

code C for which the corresponding T ′ contains a row of index i2 which is now of
Hamming weight 1. That is to say: i2 became a position of degree 1 for C . This
can be easily checked by using the previous technique to distinguish between a
position of degree 1 or 2.

In other words, when we are successful, we obtain a new code C for which
there is one more row of weight 1. We iterate this process by replacing C⊥

pub by
C and J1 by J1 ∪ {i2} until we do not find such pairs (i1, i2). For the values of
m chosen in [2] and with rows of T which were all of weight 1 or 2 we ended up
with T ′ which was a permutation matrix and a code C which was linked to the
secret code by

C = C⊥
sec(Π + R′)

where Π is a permutation matrix and R′ a matrix of rank at most 1. To finish
the attack, we just apply the attack described in [11, Sec.4 ] to recover Csec.

Case of Remaining Degree-2 Positions

It could happen that the previoulsy decribed method is unsufficient to transform
every degree 2 position into a degree 1. It could for instance happen if there is
a position i of degree 2 such that for all position i′ of degree 1, j(i′) /∈ j(i). In
such a situation, no position of degree 1 can be used to eliminate this position
of degree 2.

This problem can be addressed as soon as the set of positions of degree 1
contains an information set of the code. We describe the strategy to conclude
the attack in such a situation.

Let C be the code obtained after performing the two steps of the attack and
assume that there remains as nonempty set J2 of positions of degree 2, which
are known (since they have been identified during the first step of the attack).
Here is the strategy
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1. Puncture C at J2. The punctured code is of the form

C ′(I + R′) (16)

where C ′ is a GRS code, I is the identity matrix and R′ a rank 1 matrix.
2. Perform the attack of [11] on PJ2 (C ). We get the knowledge of a support

x′ a multiplier y′ and a rank 1 matrix R′ such that

C ′ = GRSk (x′,y′) (I + R′).

Moreover, we are able to identify the polynomials P1, . . . , Pk yielding the
rows of the public matrix Gpub.

3. For all x ∈ Fq which is not in the support x′ of C ′, compute the column
⎛
⎜⎜⎜⎝

P1(x)
P2(x)

...
Pk(x)

⎞
⎟⎟⎟⎠

and join it to the matrix Gpub. By this manner we get new positions of
degree 1 which can be used to eliminate the remaining positions of degree 2.

Remark 6. In our experiments, this situation never happened: we have always
eliminated all the degree 2 positions using Proposition 5.

5 Limits and Complexity of the Attack

5.1 Choosing Appropriately the Cardinality of I
By definition of the density m, the sets J1 and J2 have respective cardinalities
(2 − m)n and (m − 1)n. In what follows, we denote by R the rate of the public
code namely R = k/n. Let us recall that the attack shortens the dual of a public
code which is of dimension n − k. The cardinality of I is denoted by a. We list
the constraints we need to satisfy for the success of the attack.

1. The shortened code should be reduced to the zero space, which implies that
a < n − k.

2. The code punctured at J2 must contain an information set, that is to say:

n − k � |J1|. (17)

It is clear that (17) is equivalent to m � 1 + R.
3. The computed square code in Proposition 4 should also be different from the

full space which implies:

3(n − k − a) + |J2| − 1 < n − a (18)

One can easily check that (18) is equivalent to:

a � 1
2

(
(1 + m)n − 3k

)
. (19)
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4. Finally, to have good chances that the dimension of the square code reaches
the upper bound given by Proposition 4, we also need:

3(n − k − a) + |J2| − 1 <

(
n − k − a + 1

2

)
(20)

which is equivalent to the inequality:

a2 +
(
5 − 2(n − k)

)
a + (n − k)2 − 5(n − k) + 2(1 − m)n � 0 (21)

Considering (21) as an inequality involving a degree-2 polynomial in a, we
can check that its discriminant is equal to Δ def= 8(m − 1)n + 25, so that its
roots are a0 and a1 where:

a0
def= n − k − 5

2
− 1

2

√
Δ and a1

def= n − k − 5
2

+
1
2

√
Δ. (22)

Let us recall that in order to have (21) satisfied, we should have a � a0 or
a � a1. Because of the constraint a < n − k and since a1 > n − k, the only
case to study is a � a0. Combining (19) with a � a0, we obtain:

1
2

(
(1 + m)n − 3k

)
� a0.

which is equivalent to the following inequality involving this time a degree-2
polynomial in m:

n2m2 + 2n(1 − n − k)m + 2kn + k2 − 10k + n2 − 2n � 0. (23)

The discriminant of this polynomial is n2(8k + 1) and the roots are:

m0
def= 1 + R − 1

n
−

√
8
n

R +
1
n2

and m1
def= 1 + R − 1

n
+

√
8
n

R +
1
n2

·

Because of the fact that m � 1 + R from (17), and since m1 > 1 + R, we
conclude that the attack can be applied as long as m � m0, that is to say:

m � 1 + R − 1
n

−
√

8
n

R +
1
n2

· (24)

5. Finally, the last step of the attack consists in performing the attack of [11].

Remark 7. This upper-bound is roughly 1 + R. In [2], the authors suggest to
choose m ≈ 2 − R for rates R > 1

2 , which is well within the reach of the present
attack.
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5.2 Estimating the Complexity

As explained in Proposition 2, the square of a code of dimension k and length n
can be computed in O(n2k2). Let us study the costs of the steps of the attack.

• Step 1. Finding the positions of degree 2. For a constant number of
subsets I of length a � a0 where a0 is defined in (22), we shorten C⊥

pub and
compute its square. If a is close to a0 then, the shortened code has dimension
n − k − a = O(

√
n). Hence, the computation of its square costs O(n3). Thus

this first step costs O(n3) operations in Fq.
• Step 2. Transforming degree-2 positions into degree 1 positions.

This is the most expensive part of the attack. For a given position i1 ∈
J1, the computation of positions i2 of degree 2 such that4 j(i1) ∈ j(i2)
consists essentially in shortening the dual public code at i1 and applying to
the shortened code the first step. This costs O(n3). Then, the application
of Proposition 5 to transform i2 requires to proceed to at most q linear
combinations and, for each one, to check whether the position became of
degree 1. Each check has mostly the same cost as the first step, that is
O(n3). Thus, the overall cost to reduce one position of degree 2 is O(n4) and
hence the cost of this second step is O(n5).

• Step 3. According to [11], it is in O(n6).

6 Experimental Results

Table 1 gathers experimental results obtained when the attack is programmed
in Magma V2.20-3 [9]. The attacked parameters are taken from [2, Tables 3 & 4]
The timings given are obtained with Intel R© Xeon 2.27GHz and 72 Gb of RAM.
Our programs are far from being optimized and probably improved programs
could provide better timings and memory usage.

The running times for codes of length 346 are below 5 hours and those for
codes of length 546 can be a bit longer than one day. The total memory usage
remains below 100Mb for codes of length 346 and 500Mb for codes of length 546.

Remark 8. Since the algorithms include many random choices, the identification
of pairs (i1, i2), where i1 ∈ J1 and i2 ∈ J2 such that j(i1) ∈ j(i2) might happen
quickly or be rather long. This explains the important gaps between different
running times.

Remark 9. Actually some parameters proposed in [2] were directly distinguish-
able without even shortening. This holds for (q, n, k) = (347, 346, 268), (q, n, k) =
(347, 346, 284) and (q, n, k) = (547, 546, 428) with m respectively equal to 1.217,
1.171 and 1.211. This explains why the first step is quicker for these examples.
4 Equivalently, there exists an integer j such that T i1,j �= 0 and T i2,j �= 0.
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Table 1. Running times

(q, n, k, z) m Step 1 Step 2

(347, 346, 180, 1) 1.471 15s 18513s (≈5 hours)
(347, 346, 188, 1) 1.448 8s 10811s (≈3 hours)
(347, 346, 204, 1) 1.402 10s 8150s (≈2.25 hours)
(347, 346, 228, 1) 1.332 15s 9015s (≈2.5 hours)
(347, 346, 252, 1) 1.263 36s 10049s (≈2.75 hours)
(347, 346, 268, 1) 1.217 3s 14887s (≈4 hours)
(347, 346, 284, 1) 1.171 3s 7165s (≈2 hours)

(547, 546, 324, 1) 1.401 60s 58778s (≈16 hours)
(547, 546, 340, 1) 1.372 83s 72863s (≈20 hours)
(547, 546, 364, 1) 1.328 100s 72343s (≈20 hours)
(547, 546, 388, 1) 1.284 170s 85699s (≈24 hours)
(547, 546, 412, 1) 1.240 15s 157999s (≈43 hours)
(547, 546, 428, 1) 1.211 15s 109970s (≈30,5 hours)

Remark 10. The examples [346, 180]347 and [346, 188]347 do not satisfy (24).
However, they are distinguishable by shortening and squaring and the attack
works on them. Because of some cancellation phenomenon for positions of degree
2 which we do not control, it may happen that the upper bound in Proposition
4 is not sharp and that some shortenings of C⊥

pub turn out to be distinguishable
while our formulas could not anticipate it.

The above remark is of interest since it points out that our attack might
work for values of m above 1 + R.

7 Concluding Remarks

The papers [1–4] can be seen as an attempt of replacing the permutation matrix
in the McEliece scheme by a more complicated transformation. Instead of having
as in the McEliece scheme a relation between the secret code Csec and the public
code Cpub of the form Csec = CpubΠ where Π is a permutation matrix, it was
chosen in [3,4] that

Csec = CpubT

where T is a sparse matrix of density m or as

Csec = Cpub(T + R)

where T is as before and R is of very small rank z (the case of rank 1 being
probably the only practical way of choosing this rank as will be discussed below)
as in [1,2]. It was advocated that this allows to use for the secret code Csec,
codes which are well known to be weak in the usual McEliece cryptosystem
such as LDPC codes [3,4] or GRS codes [1,2]. Interestingly enough, it turns out
that for LDPC codes this basically amounts choosing a McEliece system where
the density of the parity-check matrix is increased by a large amount and the
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error-correction capacity is decreased by the same multiplicative constant. The
latter approach has been studied in [21], it leads to schemes with slightly larger
decoding complexity but that have at least partial security proofs.

In the case of GRS codes, the first attempt [1] of choosing for T a permutation
matrix was broken in [11, Sec.4]. It was suggested later on [2] that this attack
can be avoided by choosing T of larger density. In order to reduce the public
key size when compared to the McEliece scheme based on Goppa codes, rather
moderate values of m between 1 and 2 (m = 1.4 for instance) were chosen in
[2]. We show here that the parameters proposed in [2] can be broken by a new
attack computing first the dimension of the square code of shortened versions of
the dual of the public code and using this to reduce the problem to the original
problem [1] when T is a permutation matrix. This attack can be avoided by
choosing larger values for m and/or z, but this comes at a certain cost as we
now show.

Increasing z. Increasing z = 1 to larger values of z avoids the attack given
here, though some of the ideas of [11] might be used in this new context to
get rid of the R part in the scheme and might lead to an attack of reasonable
complexity when z = 2 by trying first to guess several codewords which lie in
the code C

def= C⊥
secT

T ∩ C⊥
pub (this code is of codimension at least z in C⊥

pub).
Once C is found, we basically have to recover T and the approach used in this
paper can be applied to it. To avoid such an attack, rather large values of z
have to be chosen, but the decryption cost becomes prohibitive by doing so.
Indeed, decryption time is of order qzC where C is the decoding complexity of
the underlying GRS code. Choosing z = 2 is of questionable practical interest
and z > 2 becomes probably unreasonable.

Increasing m. Choosing values for m close enough to 2 will avoid the attack
presented here. However this also reduces strongly the gain in key size when
compared to the McEliece scheme based on Goppa or alternant codes. Indeed,
assume for simplicity m = 2. We can use in such a case for the secret code a
GRS code over Fq of dimension k = n − 2t and add errors of weight � t

2 in the
BBCRS scheme. The public key size of such a scheme is however not better than
choosing in the McEliece scheme a Goppa code of the same dimension n−2t but
which is the subfield subcode of a GRS code over Fq2 of dimension n − t, and
which can also correct t

2 errors. This Goppa code has the very same parameters
and provides the same security level. For this reason, one loses the advantages
of using GRS codes when choosing m close to 2. Thus, to have interesting key
sizes and to resist to our attack m should be smaller than 2 and larger than
1+R. One should however be careful, since, as explained in §6, it is still unclear
whether the attack fails for m closely above 1 + R.

On the other hand, it might be interesting for theoretical reasons to under-
stand better the security of the BBCRS scheme for larger values of m. There
might be a closer connection than what it looks between the BBCRS scheme



192 A. Couvreur et al.

with density m and the usual McEliece scheme with (possibly non-binary) Goppa
codes of extension degree m. The connection is that the case m = 2 is in both
cases the limiting case where the distinguishing approach of [11,14] might work
(in [14], the attack only works because wild Goppa codes are studied and this
brings an additional power to the distinguishing attack). It should also be added
that it might be interesting to study the choice of Csec being an LDPC code and
Csec = Cpub(T + R) since here adding R of small rank can also change rather
drastically the property of Cpub being an LDPC code (which is at the heart of
the key attacks on McEliece schemes based on LDPC codes).
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