One-Round Key Exchange with Strong Security:
An Efficient and Generic Construction
in the Standard Model

=)

Florian Bergsma'="’, Tibor Jager, and Jorg Schwenk

Horst Gortz Institute for IT Security, Ruhr-University Bochum, Bochum, Germany
{florian.bergsma,tibor.jager, joerg.schwenk}@rub.de

Abstract. One-round authenticated key exchange (ORKE) is an estab-
lished research area, with many prominent protocol constructions like
HMQV (Krawczyk, CRYPTO 2005) and Naxos (La Macchia et al.,
ProvSec 2007), and many slightly different, strong security models.
Most constructions combine ephemeral and static Diffie-Hellman Key
Exchange (DHKE), in a manner often closely tied to the underlying
security model.

We give a generic construction of ORKE protocols from general
assumptions, with security in the standard model, and in a strong secu-
rity model where the attacker is even allowed to learn the randomness
or the long-term secret of either party in the target session. The only
restriction is that the attacker must not learn both the randomness and
the long-term secret of one party of the target session, since this would
allow him to recompute all internal states of this party, including the
session key.

This is the first such construction that does not rely on random ora-
cles. The construction is intuitive, relatively simple, and efficient. It uses
only standard primitives, namely non-interactive key exchange, a digital
signature scheme, and a pseudorandom function, with standard security
properties, as building blocks.

Keywords: One-round key exchange - eCK security - Provable security

1 Introduction

KEY EXCHANGE PROTOCOLS AND THEIR SECURITY. Interactive key exchange
protocols are fundamental cryptographic building blocks. Two-party protocols,
where two parties A and B exchange messages in order to establish a com-
mon secret kap, are particularly important in practice. Popular examples are
SSL/TLS [13], SSH [34], and IPSec IKE [22].

Following the seminal works of Bellare and Rogaway (BR) [1] and Canetti
and Krawczyk [8], security for such protocols is usually defined with respect to
active attackers [23,25,32], which may intercept, read, alter, replay, or drop any

© International Association for Cryptologic Research 2015
J. Katz (Ed.): PKC 2015, LNCS 9020, pp. 477-494, 2015.
DOI: 10.1007/978-3-662-46447-2_21

478 F. Bergsma et al.

message transmitted between parties (see Section 3.3 for a precise definition). An
attacker in such a security model interacts with a collection of oracles 7, . .. ,ﬂ'fl,
where all oracles 7}, ..., 7¢ share the same long-term public and secret keys
of party P;. An adversary breaks the security of the protocol, if she is able
to distinguish the session key k shared between two oracles 7§ and 7T§» from a
random value from the same distribution. To this end, the attacker may ask a
Test(4, s)-query to oracle 7f. Oracle 7§ returns either the real key k or a random
value, each with probability 1/2.

Typical security models also allow the attacker to corrupt selected parties,
that is, to learn their long-term secret keys, or to reveal keys, that is, to learn
the shared keys of sessions which are not related to the Test session. Stronger
models [8,23,25,32] allow the attacker furthermore to learn the randomness used
by an oracle (which is easy to define clearly), or even internal computation states
(which are difficult to define precisely).

ONE-ROUND KEY EXCHANGE. In this paper we consider one-round key exchange
(ORKE) protocols, where two parties are able to establish a key in a single
round. Such protocols are particularly interesting, due to their simplicity and
their efficiency in terms of messages exchanged between parties.

In a (public-key, two-party) ORKE protocol, only two messages are exchanged
between two parties A and B. If (pk,, ska) is the public key pair of A, and
(pk g, skp) that of B, key establishment proceeds as follows. Party A chooses
a random nonce r4, computes a message ma = f(ska,pkp,r4), and sends
my to B. B chooses a random nonce rp and responds with message mp =
f(skp,pka,rp) (cf. Section 3.2). Note that mp does not depend on my4, thus,
messages m 4 and mp may be computed and sent simultaneously in one round.
The key is computed by evaluating a function g with g(ska,pkp,ra,mp) =
g(skp,pka,rB,MmA).

SECURITY MODELS. Some combinations of adversarial queries lead to trivial
attacks, these trivial attacks must of course be excluded from the security defi-
nition. For instance, in all models, the attacker is not allowed to simultaneously
reveal the session key of an oracle 7, and then ask a Test query to 7}, as this
would trivially allow the adversary to correctly answer the Test query with prob-
ability 1. Moreover, the attacker must also not learn both the long-lived secret
key (Corrupt) and the randomness (RevealRand) of an oracle involved in the
Test-session, because then the attacker would learn the entire internal state of
this oracle, and thus would be able to re-compute everything the oracle is able

to compute, including the secret session key.

RESEARCH CHALLENGES. The strongest form of security that is possible to
achieve in such a model is to allow corruptions and randomness reveals even
against oracles involved in the Test-session, provided that the attacker does not
reveal both the randomness and the long-term secret of one oracle. (Corrup-
tions of parties are of course only allowed after the key has been established, as

One-Round Key Exchange with Strong Security 479

otherwise trivial man-in-the-middle attacks are possible.) Is it possible to con-
struct an ORKE protocol that achieves security in such a strong model?

If a party is corrupted, the adversary can impersonate this party in the future.
In some cases, the adversary can also break the security of session keys that have
been generated in the past (e.g. if RSA key transport is used). The property that
session keys computed before the corruption remain secure is known as perfect
forward secrecy (PFS) [14,16]. In reaction to a conjecture of Krawczyk that
ORKE protocols could only achieve a weaker form of PFS [24], Cremers showed
that full PFS is generally achievable for ORKE protocols [11]. However until
now, none of the proposed ORKE protocols has this property. Can we construct

an ORKE protocol that achieves perfect forward secrecy in such a strong model
as eCK?

CONTRIBUTIONS. In this paper, we make the following contributions:

— Nowel generic construction. We give an intuitive, relatively simple and effi-
cient construction of an ORKE protocol with provable security in a model
that allows all non-trivial combinations of corrupt- and reveal-queries, even
against the Test-session.

— Non-DH ORKE instantiation. Instantiating our protocol with the factoring
based NIKE protocol by Freire et al. [15], this yields an ORKE protocol based
on the hardness of factoring large integers. This provides an alternative to
known constructions based on (decisional) Diffie-Hellman.

— First ORKE with perfect forward security under standard assumptions. Our
protocol is the first one-round AKE protocol which provides perfect forward
security without random oracles.

— Well-established, general assumptions. The construction is based on general
assumptions, namely the existence of secure non-interactive key exchange
(NIKE) protocols [9,15], (unique) digital signatures, and a pseudorandom
function. For all building blocks we require standard security properties.

— Security in the Standard Model. The security analysis is completely in the
standard model, that is, without resorting to the Random Oracle heuristic [2]
and without relying on non-standard complexity assumptions.

THE ADVANTAGES OF GENERIC CONSTRUCTIONS. From a theoretical point
of view, generic constructions show relations and implications between different
types of cryptographic primitives. From a practical point of view, a generic
protocol construction based on abstract building blocks allows to instantiate
the protocol with arbitrary concrete instantiations of these building blocks —
provided that they meet the required security properties. For instance, in order
to obtain a “post-quantum”-instantiation of our protocol, it suffices to construct
a NIKE scheme, digital signatures, and a PRF with post-quantum security and
plug these primitives into the generic construction.

A common disadvantage of generic constructions is that they tend to be
significantly less efficient than direct constructions. However, when instantiated
with the NIKE schemes from [15], our protocol is already efficient enough to be

480 F. Bergsma et al.

deployed in practice. See Section 5 for an efficiency comparison to other ORKE
protocols.

PRACTICAL MOTIVATION OF THE MODEL. Most cryptographic protocols inher-
ently require “good” (i.e., independent and uniform) randomness to achieve their
security goals. The availability of “good” random coins is simply assumed in the
theoretical security analysis. However in practice, there are many famous exam-
ples where a flawed (i.e., low-entropy) generation of random numbers has led to
serious security flaws. These include, for instance, the Debian OpenSSL bug,!
the results of Lenstra et al. [28] and Heninger et al. [17] on the distribution of
public keys on the Internet, or the case of certified smart cards considered by
Bernstein et al. [3].

In our security model we allow the attacker to learn the full randomness of
each party. Thus, even if this randomness is completely predictable, the protocol
still provides security — as long as the long-lived secret keys of all parties are
generated with good, “secret” randomness.

2 Related Work

AUTHENTICATED KEY EXCHANGE. An important line of research on the field
of authenticated key exchange protocols started with Bellare and Rogaway [1]
(the BR model) and Canetti and Krawczyk [8] (the CK model). The CK model
is usually used to analyze one-round protocols, where authentication and key
negotiation is performed very efficiently by two parties, only sending one message
per party. Examples of such one-round protocols are MQV [27], KEA [26,30], or
NAXOS [25]. HMQV [23], SMQV [32] were proposed to meet stronger security
definitions. A comparison of different variants of the CK model can be found
in [10,35]. Most constructions are proven secure in the Random Oracle Model
(ROM) [2], with only a few exceptions [5,31,33].

PFS AND KCI ATTACKS. Perfect forward secrecy (PFS) is an important security
goal for key-exchange protocols. Loosely speaking, PFS guarantees the secrecy
of older session keys, even when the parties long-term key is compromised.
Krawczyk [24] conjectured that no one-round protocol with implicit authen-
tication can achieve full PFS in a CK-type model and introduced the notion of
weak PFS (wPFS); this conjecture was refuted by Cremers et al. [11]. A protocol
is wPF'S secure, if the session key is indistinguishable from a random key and
the parties long-term key is compromised if the adversary was passive during
the session key negotiation [24, Section 3.2]. Similar to [11], we define rules for
the security game to model and prove (full) PFS. In our security definition, the
party corresponding to the tested oracle is allowed to be corrupted before the
session completes. The only restriction to the corruption of parties in the test
session is that the intended partner of the tested oracle is uncorrupted until the
tested oracle accepts.

! https://www.debian.org/security /2008 /dsa-1571

https://www.debian.org/security/2008/dsa-1571

One-Round Key Exchange with Strong Security 481

Another security goal of AKE protocols is security against key-compromise
impersonation (KCI) attacks [24]. In a KCI attack, an adversary corrupts a party
A and is able to authenticate herself to A as some uncorrupted party B. Since
in the eCK model the adversary is always allowed to corrupt some party and
learn the session randomness of the matching session, security in the eCK model
naturally brings security against KCI attacks.

eCK MODELS. The term “extended Canetti-Krawczyk model” (eCK) was first
introduced in [25]. The main difference to the CK model is that the RevealState-
query (which has to be specified for each protocol) is replaced with a different
query, namely RevealEphemeralExponent (which is a meaningful definition only
for DH-based protocols, or other protocols where ephemeral exponents appear).
In subsequent publications, the eCK model was often slightly modified, such
that it is difficult to speak of “the” eCK model.

THE eCK-PFS SECURITY MODEL. In 2012 Cremers and Feltz introduced a
variant of the extended Canetti-Krawczyk model to capture perfect forward
security [11]. The major difference between the eCK and eCK-PFS security
models is the definition of session identifiers. Cremers et al. introduced the notion
of origin sessions, which solves technical problems with the session identifier
definition from the original eCK-model [12].

We slightly enhanced the eCK-PFS model in order to better model PFS, by
introducing an explicit counter of adversarial interactions as done by Jager et al.
[20] for the BR security model. Thus, we have a clear order of events and we
can formally validate if a party was corrupted before or after a session accepted
another party as a communication partner.

3 Preliminaries

In this paragraph we will define non-interactive key exchange (NIKE) and one-
round key exchange (ORKE) protocols and their security.

3.1 Secure Non-Interactive Key Exchange

Definition 1. A non-interactive key exchange (NIKE) scheme consists of two
deterministic algorithms (NIKEgen, NIKEkey).

NIKEgen(1*,7) takes a security parameter A\ and randomness r € {0,1}*. It
outputs a key pair (pk, sk). We write (pk, sk) < NIKEgen(1*) to denote that

NIKEgen(1*,7) is executed with uniformly random r & {0,1}*.
NIKEkey(sk;, pkj) 1 a deterministic algorithm which takes as input a secret key
sk; and a public key pk;, and outputs a key ki ;.

We say that a NIKE scheme is correct, if for all (pk;, sk;) & NIKEgen(1*) and
(pkj, sk;) & NIKEgen(1*) holds that NIKEkey(sk;, pk;) = NIKEkey(sk;, pk;).

482 F. Bergsma et al.

A NIKE scheme is used by d parties Py, ..., P; as follows. Each party P; gen-
erates a key pair (pk;, sk;) — NIKEgen(1*) and publishes pk;. In order to com-
pute the key shared by P; and P;, party P; computes k; ; = NIKEkey(sk;, pkj).
Similarly, party P; computes k;; = NIKEkey(sk;, pk;). Correctness of the NIKE
scheme guarantees that k; ; = k; ;.

CKS-LIGHT SECURITY. The CKS-light security model for NIKE protocols is
relatively simplistic and compact. We choose this model because other (more
complex) NIKE security models like CKS, CKS-heavy and m-CKS-heavy are
polynomial-time equivalent to CKS-light. See [15] for more details.

Security of a NIKE protocol NIKE is defined by a game NIKE played between
an adversary A and a challenger. The challenger takes a security parameter A
and a random bit b as input and answers all queries of A until she outputs a bit
b’. The challenger answers the following queries for A:

— RegisterHonest(7). A supplies an index i. The challenger runs NIKEgen(1*)
to generate a key pair (pk;, sk;) and records the tuple (honest, pk;, sk;) for
later and returns pk; to A. This query may be asked at most twice by A.
RegisterCorrupt(pk;). With this query A supplies a public key pk;. The chal-
lenger records the tuple (corrupt, pk;) for later.

— GetCorruptKey(i, 7). A supplies two indexes ¢ and j where pk; was registered
as corrupt and pk; as honest. The challenger runs & <« NIKEkey(sk;, pk;)
and returns k to A.

Test(7, 7). The adversary supplies two indexes i and j that were registered
honestly. Now the challenger uses bit b: if b = 0, then the challenger runs
k; ; < NIKEkey(pk;, sk;) and returns the key k; ;. If b = 1, then the chal-
lenger samples a random element from the key space, records it for later,
and returns the key to A.

The game NIKE outputs 1, denoted by NIKEg|xg(A\) = 1 if b = ' and 0
otherwise. We say A wins the game if NIKEgg(\) = 1.

Definition 2. For any adversary A playing the above NIKE game against a
NIKE scheme NIKE, we define the advantage of winning the game NIKE as

- 1
AdugiT "M (A) = Pr [NIKEgle (V) = 1] — 5

Let A\ be a security parameter, NIKE be a NIKE protocol and A an adver-
sary. We say NIKE is a CKS-light-secure NIKE protocol, if for all probabilis-
tic polynomial-time adversaries A, the function Adv,\C“IéLEg"hght(A) s a negligible

function in A.

3.2 One-Round Key Exchange Protocols

Definition 3. A one-round key exchange (ORKE) scheme consists of three
deterministic algorithms (ORKEgen, ORKEmsg, ORKEkey).

One-Round Key Exchange with Strong Security 483

~ ORKEgen(1*,7) takes a security parameter \ and randomness r € {0,1}*.
It outputs a key pair (pk, sk). We write (pk, sk) & ORKEgen(1*) to denote

that ORKEgen is executed with uniformly random r < {0,1}*.

~ ORKEmsg(r;, ski, pk;) takes as input randomness r; € {0, 1}, secret key sk;
and a public key pk;, and outputs a message m;.

- ORKEkey(ski,pkj7ri7mj) takes as input a secret key sk, a public key pk;,
randomness r;, and message m;. It outputs a key k.

We say that a ORKE scheme is correct, if for all (pk;, ski) <~ ORKEgen(1*)
and (pk;, sk;) £ ORKEgen(1*), and for all r;,r; < {0,1}* holds that

ORKEkey(sk;, pkj, i, m;) = ORKEkey(sk;, pk;, 5, m;),
where m; := ORKEmsg(r;, ski, pk;) and m; := ORKEmsg(r;, sk, pk;).

A ORKE scheme is used by d parties P, ..., P; as follows. Each party P; gen-
erates a key pair (pk;, sk;) & ORKEgen(1*) and publishes pk;. Then, two parties
P;, P; can establish a shared key as follows (see Figure 1 for an illustration).

1. P, chooses r; < {0,1}*, computes m; := ORKEmsg(r;, ski, pk;), and sends

m; to Pj.

2. P; chooses T & {0,1}*, computes m; := ORKEmsg(r;, skj, pk;), and sends
m; to B;.
(Both messages m; and m; may be sent simultaneously, as this is a one-round
protocol).

3. The shared key is computed by party P; as k; j := ORKEkey(sk;, pk;, i, m;).
Similarly, party P; computes k;; = ORKEkey(sk;, pk;,7;,m;). Correctness
of the ORKE scheme guarantees that k; ; = k; ;.

P, P,
(sk;,pk;) < ORKEgen(1*, 1) (skj, pk;) & ORKEgen(1*, j)
"
r & {013 r; & {0,1}*

m; := ORKEmsg(r;, ski, pk;)

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
l
m; := ORKEmsg(r;j, skj, pk;) i
|
|
1

kji = ORKEkey(skj, pk;, r;,m:)

s N el -

Fig. 1. Execution of an ORKE protocol

484 F. Bergsma et al.

3.3 Secure One-Round Key Exchange

Security models for one-round key exchange have two major building blocks.
The first defines the execution environment provided to an attacker on the AKE
protocol. The second defines the rules of the game and the winning condition
for an attacker.

Execution Environment. Consider a set of parties { Py, ..., P}, d € N, where
each party P; € {Pi,..., Py} is a (potential) protocol participant and has a long-
term key pair (pk;, sk;). To formalize several sequential and parallel executions
of the protocol, each party P; is modeled by a collection of £ oracles. Each oracle
represents a process that executes one single instance of the protocol. All oracles
representing party P; have access to the same long-term key pair (pk;, sk;) of
P; and to all public keys pky,...,pkq. Moreover, each oracle m; maintains as
internal state the following variables:

— Accepted; € NU {reject}. This variable indicates whether and when the
oracle accepted. It is initialized to Accepted; = reject.

- Key; € KU {0}, where K is the keyspace of the protocol and @ is the empty
string, initialized to Key; = ().

— Partner] containing the intended communication partner. We assume that
each party P; is uniquely identified by its public key pk;, and therefore use
public keys as identities.? The variable is initialized to Partner; = (. 4

— A variable Mg, storing the message sent by an oracle and a variable M;>*

7,8

storing the received protocol message. Both are initialized as Miir;s = Mg =
0.

— A variable Randomness;, which contains a uniformly string from {0, 1}*. This
string corresponds to the local randomness of an oracle. It is never changed
or modified by an oracle.

— Variables RevealedKey;, Corrupted, € N, which will be used to determine
if and when a RevealKey or Corrupt query was asked to this oracle or the
corresponding party was corrupted (see below for details). These variables
are initialized as RevealedKey; = Corrupted; = cc.

We will assume (for simplicity) that
Key; #) <= Accepted; € N.

We assume the adversary controls the network. Thus she is able to generate,
manipulate or delay messages. Furthermore, the adversary can learn session keys,
parties’ secret long term keys and even the session randomness in our model.
Formally the adversary may interact with the execution environment by issuing
the following queries.

2 In practice, several keys may be assigned to one identity. There are other ways to
determine identities, for instance by using certificates. However, this is out of scope
of this paper.

One-Round Key Exchange with Strong Security 485

— Send(%,s,m) — m': The adversary sends message m to oracle 7f. Party P;
processes message m according to the protocol specification and its inter-
nal oracle state 7, updates its state®, and optionally outputs an outgoing
message m’.

There is a distinguished initialization message ini which allows the adver-
sary to activate the oracle with certain information. In particular, the ini-
tialization message contains the identity P; of the intended partner of this
oracle.

— RevealKey(i, s): if this is the 7-th query issued by A, then the challenger sets
RevealedKey; := 7 and responds with the contents of variable Key;. Recall
that Key; # () iff Accepted; € N.

— RevealRand(i, s): the challenger responds with the contents of Randomness;.

— Corrupt(i, pk*): if this is the 7-th query issued by A (in total), then the chal-
lenger sets the oracle state Corrupted, := 7 and responds with sk;. Moreover,
the public key pk; is replaced (globally) with the adversarially-chosen key
pk* .4

— Test(i,s): This query may be asked only once throughout the game, it is
answered as follows. Let k; := Key’ and ko < K. If Accepted; € N, the

oracle flips a fair coin b <~ {0,1} and returns k. If Accepted; = reject or
if Partner; = j and P; is corrupted when Test is issued, terminate the game
and output a random bit.

eCK-PFS Security Definition. In the following we give the security defi-
nition for one-round key-exchange protocols in the extended Canetti-Krawczyk
model with perfect forward security. Firstly we introduce the partnering defini-
tions from Cremers and Feltz. Secondly we define the rules by which an adversary
has to play the AKE game in the eCK-PFS-model. Finally we define the security
for one-round key-exchange protocols in the model.

Definition 4 (Origin session). Consider two parties P; and P; with oracles

s t s e ; t o, 68 _ Agdst ;
m; and ;. We say 7} has origin session 7}, if M:" = Mgy, and denote this by

s % t
™, 7Tj.

Alternatively we could say 7§ is an origin session of 77, if M{)" = M.

Using the concept of origin sessions, we can define matching sessions as a
symmetric relation of origin sessions: two sessions match, if they are origin ses-
sions to each other. We capture this in the following definition.

Definition 5 (Matching session). Consider two parties P; and P; with ora-

cles 77 and 7r§». We say 77 has a matching session to 7r§ (and vice versa), if 7}

s an origin session of 7r§ and 775» is an origin session of ;.

3 In particular, if 7§ accepts after the 7-th query, set Accepted; = 7.

4 Note, that the adversary does not ‘take control’ of oracles corresponding to a cor-
rupted party. But he learns the long-term secret key, and can henceforth simulate
these oracles.

486 F. Bergsma et al.

The notions of origin and matching sessions will be used in Definition 6 to
exclude trivial attacks from the security model: If Test(i, s) is asked, restrictions
are imposed on oracle 7 itself, and on oracles and parties from which the test
oracle has received a message. On the other hand, sessions and parties to which
a message was sent from the test session do not necessary play any role in
Definition 6, for example if the test session has no matching session.

AKE GAME. Consider the following security experiment AKEé()\) played
between a challenger C and an adversary A. The challenger receives the security
parameter A as an input and sets up all protocol parameters (like long term keys
generation etc.). C simulates the protocol IT and keeps track of all variables of
the execution environment. The adversary interacts by issuing any combination
of the above mentioned queries. At some point of time during the game, she asks
the Test] query and gets a key kjp, which is either the exchanged key or a random
key as described in the previous section. She may continue asking queries and
finally outputs a bit ¥’. The game AKE outputs 1, denoted by AKE“{}(A) =1
if b =10 and 0 otherwise.

Definition 6 (eCK-PFS-rules). A plays the AKE game by eCK-PFS-rules,
if the following conditions hold simultaneously when she issues Test(i, s):

— Accepted; = 7 with 7 € N.

— A did not ask both Corrupt(i, pk*) and RevealRand(i, s).

— If ™7 has an origin session TI';-, then it does not hold that both Corrupted; <7
and A asked RevealRand(j,t).

— If m¢ has no origin session but intended partner Partner; = j, then it does
not hold that Corruptedj <.

When A terminates and outputs a bit b, it also holds that A did not ask
RevealKey(i, s) and (if 7§ has a matching session to m%) RevealKey(j, t).

We say A wins the AKE game, if AKE#(\) = 1.

Definition 7 (eCK-PFS-security). We define the advantage of A winning
this game playing by eCK-PFS-rules as

AdviP" TS (A) = Pr |AKER(\) = 1| —

DN | =

Let X be a security parameter, I1 be an AKE protocol and A an adversary.
We say 11 is an eCK-secure AKE protocol, if it is correct and for all proba-
bilistic polynomial-time adversaries A playing by eCK-PFS-rules, the function
AdviFE IS (A) s a negligible function in \.

Remark 1. Note that this security definition includes perfect-forward secrecy
and security against KCI attacks.

One-Round Key Exchange with Strong Security 487

3.4 Further Building Blocks

DIGITAL SIGNATURES. A digital signature scheme consists of three polynomial-
time algorithms SIG = (SIGgen, SIGsign, SIGvfy). The key generation algorithm
(sk,pk) < SIGgen(1*) generates a public verification key pk and a secret signing
key sk on input of security parameter \. Signing algorithm o < SIGsign(sk, m)
generates a signature for message m. Verification algorithm SIGvfy(pk, o, m)
returns 1 if o is a valid signature for m under key pk, and 0 otherwise.

Definition 8. We say that SIG is deterministic, if SIGsign is deterministic.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger generates a public/secret key pair (sk, pk) & SIGgen(1%), the
adversary receives pk as input.

2. The adversary may query arbitrary messages m; to the challenger. The chal-
lenger replies to each query with a signature o; = SIGsign(sk, m;). Here i is
an index, ranging between 1 < i < ¢ for some ¢ € N. Queries can be made
adaptively.

3. Eventually, the adversary outputs a message/signature pair (m, o).

Definition 9. We define the advantage on an adversary A in this game as

SBUP- SIGvfy(pk, m, o) = 1,
AdeFGUF CMA(A) = Pr|(m,0) AT (k) (m VU})/(Q (7:; (;)i) Vi

SIG is strongly secure against existential forgeries under adaptive chosen-
message attacks (sEUF-CMA), if AdvngGUF'CMA(A) is a negligible function in
A for all probabilistic polynomial-time adversaries A.

Remark 2. Deterministic signatures with sSEUF-CMA security can be construc-
ted, for instance, from verifiable unpredictable or verifiable random functions
with large input spaces [4,18,19,29].

PSEUDORANDOM FUNCTIONS. A pseudo-random function is an algorithm PRF.
This algorithm implements a deterministic function z = PRF(k,x), taking as
input a key k € {0,1}* and some bit string x, and returning a string z € {0, 1}*.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger samples k <~ {0,1}* uniformly random.

2. The adversary may query arbitrary values x; to the challenger. The chal-
lenger replies to each query with z; = PRF(k, z;). Here 7 is an index, ranging
between 1 < i < ¢ for some g € N. Queries can be made adaptively.

3. Eventually, the adversary outputs value x and a special symbol T. The
challenger sets zy = PRF(k, z) and samples z; < {0,1}* uniformly random.

Then it tosses a coin b < {0,1}, and returns z;, to the adversary.

488 F. Bergsma et al.

4. Finally, the adversary outputs a guess b’ € {0, 1}.
The Adversary wins the game, if she outputs b’ such that b = b'.

Definition 10. We denote the advantage of an adversary A in winning this

game as

AdvggF(A) = Pr [b =V fort & AC()‘)(V\)} _ %

We say that PRF is a secure pseudo-random function, if for all probabilistic
polynomial time adversaries A Ad’vgerF(A) is a negligible function in .

4 Generic Construction of eCK-Secure Key Exchange

Let SIG = (SIGgen, SlGsign, SIGvfy) be a deterministic signature scheme, NIKE =
(NIKEgen, NIKEkey) be a NIKE scheme, and let PRF be a pseudo-random func-
tion. Let sort be an arbitrary function which takes as input two strings (m;, m;),
and outputs them according to some order (e.g. lexicographically). That is,

SOrt(mZ,mj) = {(mz’m])7 if m; S mj?

(mj,mi), if m; > mj,

where < and > are defined with respect to some (arbitrary) ordering. We con-
struct an ORKE protocol IT = (ORKEgen, ORKEmsg, ORKEkey) as follows (see
also Figure 2).

ORKEgen(1*) computes key pairs for the NIKE and digital signature scheme,
respectively, as (pk7", sk7) <& NIKEgen(1*) and (pk3e, sk58) < SIGgen(1*),
and outputs _ . _ .

(pki7 Skl) = ((pkzmke7 pk?g)> <3k?|ke’ Sk?g))

ORKEmsg(r;, ski, pk;) parses sk; = (k7. skjig). Then it samples r; < {0,1}*
and runs the key generation algorithm (pk'™, sk'™) <& NIKEgen(1*,7;) to
generate a key pair of the NIKE scheme. Then it computes a signature
over pki™ as o; < SlGsign(skS'®, pki™) and outputs the message m; :=
(pk;mpv Ji)'

ORKEkey(ski,.(pk;'kf, PkS®),ri,my) first parses its input as m; = (pk;™, 0;) and
sk; = (skI™®, sk3€). If

SIGvfy (pk3® pk;mp,oj) #£1,
then it outputs L. Otherwise it runs (pki™, ski™) < NIKEgen(1*,7;) to

re-compute skzmp from ;. Finally it derives the key k as follows.
1. Compute T := sort(pk;"™", pki™").

One-Round Key Exchange with Strong Security 489

2. Compute

Fnike,nike = PRF(NIKEkey (sk}™, pk™®), T), (
Knike.tmp 1= PRF(NIKEkey (sk]™®, pki™), T), (
Kemp.nike := PRF(NIKEkey (sk;™, pk™®), T), (3
Ktmp,tmp 1= NIKEkey(sk;™, k™). (

3. Compute k as
k.= knike,nike 2] knike,tmp S ktmp,nike S ktmp,tmp

and output k.

P _ P _
(Cshie, ki), (phi™, pk®)) (s, sk5). (o3, piS®))

r & {013 r; & {0,1}*

(sk'™, pki™) < NIKEgen(1*,r;) (pkE™ . o) (Sk‘imp,pk;mp) + NIKEgen(1*,7;)
i 00

. [S A AN .

i < SlGsign(sk3®, pki™) (pk;mp, ;) 0; + SIGsign(sk5E, pk™)

(

If: SIGvfy(pkSE, pki™, 0j) = 1: If: SIGVfy(pkS®, pki™, o)) = 1:

T:= sort(pkf"'p,pk;'"”) T := sort(pki™, pk;mp)

Faike,nive = PRF(NIKEkey(sk?", pk3™©), T) Enike,nike = PRF(NIKEkey(sk7*e, pk™®), T')
Fike smp = PR (NIKEkey(sk7", phi™), T) Foike.imp = PRF(NIKEkey(sk?, pk™), T)
Fenpnke = PRF(NIKEKey(sk{™, pk7*),) Kumpie — PRE(NIKEkey(sK™, pk?™), T)

Ftmp,tmp = PRF(NIKEkey(sk{™, pk™)) tmp tmp = PRF(NIKEkey(ski™, pki™))

ki j := Knike,nike @ Knike,tmp kj i = Knike,nike ® Enike,tmp
@Bktmp,nike D Ktmp,tmp BKtmp,nike D Ktmp,tmp

Fig. 2. Execution of protocol II

Remark 3. In our generic construction II we use a deterministic, strong existen-
tially-unforgeable (sEUF-CMA) signature scheme. We could use a probabilistic
signature scheme instead, but in this case we require a strong existentially-
unforgeable public coin signature scheme.

The reason why we need strong existential unforgeability is the strictness of
the matching conversation definition, which is also discussed in [7]. When using
a probabilistic signature scheme, then we would need the public coin property
to simulate RevealRand queries.

490 F. Bergsma et al.

Even though such signatures may be easier or more efficiently to construct,
we would not gain a better understanding of the reduction. Only the proofs
would become harder to follow. For this reason we decided to use a deterministic
scheme for simplicity.

(1) pl0)

Theorem 1. From each attacker A, we can construct attackers Bsig, B.ie: Brives

and By such that

Advi"(A) < 4- @202 - (Advgyd " (BRL) + Advbid (Bor))

nike

+4-d- AdvdVTOMA(Byy) + 4 - Adv(S (B)

nike
The running time of Bsig, Br(]ilk)e, Bg?k)e, and By is equal to the running time
of A plus a minor overhead for the simulation of the security experiment for A.

In order to prove Theorem 1, we will distinguish between four different types
of attackers. Without loss of generality, we assume that an attacker always asks
a Test(i, s)-query for some (7, s). (Otherwise it is impossible to have a non-zero
advantage, as then all computations are independent of the bit b sampled by the
Test-query.) We distinguish between the following four types of attackers.

1. A Type-RR-attacker never asks RevealRand(i, s). If there exists an oracle 7r§

such that 77 <= %, then it also never asks RevealRand(j, t).

2. A Type-RC-attacker never asks RevealRand(i, s). If there exists an oracle 7r§
such that w5 «— 7r§, then it also never asks Corrupt(j,-).

3. A Type-CR-attacker never asks Corrupt(z, -). If there exists an oracle 7r§ such

that w7 <= 7, then it also never asks RevealRand(j,).

4. A Type-CC-attacker never asks Corrupt(s, -). If there exists an oracle 7r§ such
that w7 «— 7, then it also never asks Corrupt(j, -).

Note that each valid attacker in the sense of Definition 7 falls into (at least) one
of these four categories. We will consider attackers of each type seperately in the
sequel.

Intuition for the proof of Theorem 1. Let us now give some intuition why this
classification of attackers will be useful for the security proof of II. Recall that in
protocol II the key is computed as k := Knike,nike @ Knike,tmp © Ktmp,nike © Ktmp,tmps
where the keys Enike,nike, Fnike,tmp> Ktmp,nike, Ktmp,tmp are computed as described in
Equations 1 to 4. The idea behind this construction is that in the proof we
want to be able to reduce the indistinguishability of the ORKE-key k to the
indistinguishability of a NIKE-key.

Recall that in the NIKE security experiment the attacker receives two chal-
lenge public-keys pk™*e, pk"ike/ from the challenger. In the reduction, we want to
embed these keys into the view of the ORKE-attacker, such that we can embed
the NIKE-challenge key into k while at the same time being able to answer all
queries of the ORKE-attacker, in particular all Corrupt and RevealRand queries.

One-Round Key Exchange with Strong Security 491

A Type-RR-attacker never asks RevealRand(i,s) and RevealRand(j,t) (if
applicable). Thus, when considering Type-RR-attackers, then we can embed the
NIKE-keys obtained from the NIKE-challenger as

tmp | ik tmp | ike’
pki"" = pk™¢ and pki™® = pk™,

where pki™ and pk;mp are the ephemeral keys generated by oracles ;) and 7f,
respectively. Moreover, we embed the NIKE-challenge key knike S Ktmp,tmp =
knike-

However, this embedding strategy does not work for Type-RC-attackers,
because such an attacker might ask RevealRand(j,t). However, we know that
a Type-RC attacker never asks a Corrupt(j,), therefore we are able to embed

the NIKE challenge public keys as
pk;mp — pknike and pk2ike .— pknike/’

where pk‘zmp is the ephemeral keys generated by 77, and pk;ike is the long-term
secret of party P;. The NIKE-challenge key Knike is in this case embedded as
Etmp nike := PRF (knike, T'). The additional PRF is necessary in this case, because
the embedding involves a long-term secret of one party of the test session. This
long-term secret is used in (potentially) many protocol executions involving party
P;. Similarly, CR- and CC-type attackers can be handled by embedding the
NIKE challenge public- and session as appropriate for each case.

Thus, the four different types of attackers correspond exactly to all four pos-
sible combinations of Corrupt- and RevealRand-queries against the Test-session
that the attacker is allowed (resp. not allowed) to ask in our security model.

The full proof of Theorem 1 can be found in Appendix A.

5 Efficiency Comparison with Other ORKE Protocols

In Table 1 we compare the efficiency of instantiations of our construction to other
one-round key-exchange protocols. We count the number of exponentiations and
pairing evaluations. We do not distinguish an exponentiation in a DH group
from an exponentiation in an RSA group.

We see that our generic construction ORKE, if instantiated with the most
efficient NIKE primitive from [15], will be almost as efficient as the NAXOS pro-
tocol if the Cremers-Feltz compiler is applied [11]. The efficient NIKE primitive
is secure in the random oracle model, but its security is based on the factoring
problem.

The very high number of pairing evaluations within the standard model
instantiation results from the fact, that the underlying NIKE scheme needs 3
pairing evaluations for key computation and we have to compute 4 NIKE keys
per key-exchange at each party.

492

F. Bergsma et al.

Table 1. Efficiency comparison of popular one-round key-exchange protocols to our
generic construction.

! A variant of the Bellare-Rogaway model [1] with modified partnering definition. No
ephemeral states can be revealed.

2 The NAXOS protocol after application of the Cremers-Feltz compiler [11].

3 Our construction instantiated with a secure NIKE scheme in the random-oracle
model.

4 Our construction instantiated with a standard-model NIKE scheme

Standard |PFS|weak|KCI| exp. pairing | Security
Model PFS per party|evaluations| model
TS1 [21] X X | X | X 1 - BR?
7S3 [21] v v« 3 - BR'
MQV X X | v | X 1 CK
HMQV X X | v |V 2 - CK
KEA X X | v |V 2 - CK
P1 [6] v X | X |V 8 2 CK
P2 [6] v X | v |V 10 2 CK
NAXOS X X | vV |V 4 - eCK
Okamoto |v +7PRF| X | v | V/ 8 - eCK
NAXOS?, X VN 4 - eCK-PFS
ORKE® [X(NIKE)| v | v [V 5 - eCK-PFS
ORKE* v S0 16 12 eCK-PFS
References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg
(1994)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993: 1st Conference on Computer
and Communications Security, pp. 62-73, Fairfax, Virginia, USA, November 3-5.
ACM Press (1993)

3. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,
T., van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013, Part II. LNCS, vol.
8270, pp. 341-360. Springer, Heidelberg (2013)

4. Boneh, D., Montgomery, H-W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010: 17th Conference on Com-
puter and Communications Security, pp. 131-140, Chicago, Illinois, USA, October
4-8. ACM Press (2010)

5. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: Efficient one-round key exchange
in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 69-83. Springer, Heidelberg (2008)

6. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key exchange in the

standard model. IJACT 1(3), 181-199 (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

One-Round Key Exchange with Strong Security 493

Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV
channel establishment protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013: 20th Conference on Computer and Communications Security, pp.
373-386, Berlin, Germany, November 4-8. ACM Press (2013)

Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453-474. Springer, Heidelberg (2001)

Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127-145. Springer,
Heidelberg (2008)

Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: The case of CK, CK-HMQV, and eCK. In: Cheung, B.S.N.,
Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASTACCS 2011: 6th Conference on
Computer and Communications Security, pp. 80-91, Hong Kong, China, March
22-24. ACM Press (2011)

Cremers, C., Feltz, M.: Beyond eCK: Perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734-751. Springer, Heidelberg (2012)
Cremers, C.J.F.: Formally and practically relating the CK, CK-HMQV, and eCK
security models for authenticated key exchange. Cryptology ePrint Archive, Report
2009/253 (2009). http://eprint.iacr.org/2009/253

Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), Updated by RFCs 5746, 5878, 6176, August 2008
Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2), 107-125 (1992)

Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254-271. Springer, Heidelberg (2013)

Giinther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29-37. Springer,
Heidelberg (1990)

Heninger, N., Durumeric, Z., Wustrow, E., Alex Halderman, J.: Mining your ps
and gs: Detection of widespread weak keys in network devices. In: Kohno, T.
(ed.) Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA,
August 8-10, pp. 205-220. USENIX Association (2012)

Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656—
672. Springer, Heidelberg (2010)

Jager, T.: Verifiable random functions from weaker assumptions. Cryptology ePrint
Archive, Report 2014/799 (2014). http://eprint.iacr.org/

Jager, T., Kohlar, F., Schége, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273-293. Springer, Heidelberg (2012)

Jeong, I.R., Katz, J., Lee, D.-H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220-232. Springer, Heidelberg (2004)

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., Kivinen, T.: Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 7296 (INTERNET STANDARD). Updated by
RFC 7427, October 2014

http://eprint.iacr.org/2009/253
http://eprint.iacr.org/

494

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

F. Bergsma et al.

Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Heidelberg
(2005)

Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. Cryp-
tology ePrint Archive, Report 2005/176 (2005). http://eprint.iacr.org/2005/176
LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1-16. Springer, Heidelberg (2007)

Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 378-394. Springer, Heidelberg (2006)

Law, L., Menezes, A., Minghua, Q., Solinas, J., Vanstone, S.: An efficient protocol
for authenticated key agreement. Designs, Codes and Cryptography 28(2), 119-134
(2003)

Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626-642. Springer, Heidelberg (2012)

Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597-612.
Springer, Heidelberg (2002)

NIST. Skipjack and kea algorithm specifications (1998). http://csrc.nist.gov/
groups/STM /cavp/documents/skipjack/skipjack.pdf

Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 474-484.
Springer, Heidelberg (2007)

Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authenti-
cated key agreement. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol.
6280, pp. 219-234. Springer, Heidelberg (2010)

Yang, Z.: Efficient eCK-secure authenticated key exchange protocols in the stan-
dard model. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233,
pp. 185-193. Springer, Heidelberg (2013)

Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol. RFC
4253 (Proposed Standard). Updated by RFC 6668, January 2006

Yoneyama, K., Zhao, Y.: Taxonomical security consideration of authenticated key
exchange resilient to intermediate computation leakage. In: Boyen, X., Chen, X.
(eds.) ProvSec 2011. LNCS, vol. 6980, pp. 348-365. Springer, Heidelberg (2011)

http://eprint.iacr.org/2005/176
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf

	One-Round Key Exchange with Strong Security: An Efficient and Generic Construction in the Standard Model
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Secure Non-Interactive Key Exchange
	3.2 One-Round Key Exchange Protocols
	3.3 Secure One-Round Key Exchange
	3.4 Further Building Blocks

	4 Generic Construction of eCK-Secure Key Exchange
	5 Efficiency Comparison with Other ORKE Protocols
	References

